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SUMMARY

This dissertation focuses on rare-event simulation in the context of Gaussian random processes,

which are in widespread use amongst industry practitioners. In particular, Gaussian processes have

been used in financial disciplines such as risk management and portfolio valuation, because these

processes are computationally tractable and come with an abundance of vendor tools. The present

work provides both a theoretical and practical treatment of simulating Gaussian rare events, from

algorithm construction and asymptotics, to empirical analysis via computational studies across

multiple problem instances. The preliminary chapters of this dissertation provide the mathemati-

cal framework and theoretical justification for our methodology, including a case study in a sim-

plified problem setting; this treatment is then extended to the later chapters, wherein we generalize

previous theory to broader classes of functionals, and also consider specific applications of our

method.

First, in Chapters 1 and 2, we introduce the research topic area, mathematical context and

goals. We give further detail in Chapter 1 on our problem motivation, which is the design of

an efficient, generalizable Monte Carlo algorithm for simulating exceedance probabilities of rare-

event-type functionals, such as maxiXi, for discrete Gaussian random vectors X . We follow

this introductory chapter with a discussion in Chapter 2 of the mathematical foundations for our

proposed simulation method, including a background to importance sampling theory and mathe-

matical notions of algorithmic complexity and efficiency, particularly in asymptotic settings. We

analyze two small problem instances where standard variance-reduction tools have computational

setbacks; we outline the subtleties that make these problems non-trivial, and show their relevance

for the alternative methodology explored in this dissertation. To provide additional understanding

for how our method operates and the underlying mathematical intuition, in Chapter 3 we give an

expository study focusing on a special problem instance of the constrained maximum functional.

In this chapter, we detail the construction of an efficient Monte Carlo estimator wherein the un-
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derlying Gaussian vector has standard marginals, for which the minimum is also restricted to be

non-negative. Through the estimation problem we study in Chapter 3, we provide the key prin-

ciples and performance insights for our simulation algorithm, which we highlight through several

computational studies.

The latter parts of this dissertation, Chapters 4 and 5, extend the earlier theoretical framework

to cover a wide class of functions, taken with respect to Gaussian marginals having general vari-

ance structures, and also including conditional functionals relevant to financial risk management.

In Chapter 4, we give the construction of a general, efficient Monte Carlo estimator to compute

exceedance probabilities for rare-event-type functionals of discrete Gaussian vectors, taken with

nonstandard marginals, for what we show to be a broad class of functions. The mathematical treat-

ment in Chapter 4 serves to bridge the theory from the special case of the constrained maximum in

Chapter 3 to a general abstract problem setting. We provide proofs in Chapter 4 that our general

estimator is unbiased and also has desirable asymptotic properties. We substantiate these claims

with detailed computational studies. Lastly, in Chapter 5, we present an additional extension to

types of functionals relevant to applied settings, for example to assess financial risk. Focusing on

topics important to simulation practitioners, particularly the computation of certain risk measures

such as expected shortfall or conditional value-at-risk, we describe the usefulness of our method

for wide problem applications. We close Chapter 5 with numerical examples that highlight the

potential practical uses and flexibility of our simulation method.
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CHAPTER 1

INTRODUCTION

1.1 Gaussian processes in practice.

Our research has focused on rare-event simulation in the context of Gaussian random processes,

which are in widespread use amongst broad classes of industry practitioners. In particular, Gaus-

sian processes have enormous influence in financial disciplines such as risk management and port-

folio valuation, because these processes are computationally tractable and come with an abundance

of vendor tools. By computationally tractability, we refer to the attractive mathematical properties

of Gaussian distributions, which allows for fast computation in high-dimensional settings. This

property of computational tractability leads to the other property, the abundance of vendor tools

available to practitioners. Because Gaussian processes not only have the benefit of extensive aca-

demic literature, but also have sophisticated software tools available, marketed through vendors

such as RiskMetrics or MSCI Barra, practitioners have the ability to start with these existing tools,

and then add their own customizations.

A major application area for Gaussian processes is in financial risk settings, particularly in

the computation of risk metrics. For computing risk metrics, a value is assigned to quantify the

risk position of a security or portfolio relative to other financial instruments in consideration. A

frequent risk measure in finance is known as value-at-risk, or VaR, which can also be considered a

measure of tail risk. VaR produces a percentile for a given probability distribution, which has been

used to model the value of a financial instrument; a low percentile, for example, would signify a

low value which could be expected on a bad trading day.

Because Gaussian processes allow for quick computation of VaR both for single positions and

also in portfolio settings, they are often used. The two papers [24] and [19] look at efficient impor-
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tance sampling techniques for the simulation of portfolio value-at-risk. The importance sampling

tools explored by Glasserman in these works were shown to be asymptotically efficient but were

usually model-specific, dependent on the model used for the risk factors in the portfolio, for exam-

ple a Delta-Gamma approximation. Differences in the results obtained by various risk measures,

depending on the underlying portfolio model, are also explored in [46] and [33].

More advanced risk metrics may also be considered beyond the traditional measures such as

value-at-risk. For these metrics, additional criteria are considered, such as the size of tail losses or

moment properties. Recent works that focus on the simulation of portfolio value-at-risk consider

cases in which model pitfalls may be avoided through a robust optimization problem. This problem

is known as robust risk measurement and is explored in [26], as well as in more general papers in

mathematical finance, with notable examples being [35] and [34]. Alongside those risk measures

just mentioned, such as value-at-risk and conditional value-at-risk, examples of alternative criteria

include metrics such as worst-case risk evaluation and maximum-drawdown.

Beyond specific applications in traditional risk measures, which produce a value to quantify the

risk of a position or portfolio, another related area is the concept of default or credit risk. In this

field, the motivational question is the probability of a default or loss event. In the default scenario,

the notion of default may be considered similar to the notion of survival in reliability estimation.

As with the computation of portfolio risk measures for value-at-risk, Gaussian processes fre-

quently arise in the study of the rare default probabilities, just mentioned, and in this setting known

as credit risk. Here the problem focus is on modeling the chance of survival of the single security

or portfolio, until some default event, based on dependence to an underlying system of risk factors.

Typically, a Gaussian framework is used to model the risk factors, with the security or portfolio

value fluctuating in according to the volatility experienced through the underlying risk factors. In

traditional measurement of credit risk, a default event may be defined by a given lower-bound

value, but more complicated definitions of default may also be considered.

2



1.2 Theoretical context.

Previous work in rare event simulation for Gaussian processes has focused on the construction of

Monte Carlo estimators with low variance. In most instances, the asymptotic variance of the Monte

Carlo estimator is the primary criterion of judging efficiency. Notions of asymptotic efficiency

were first outlined by Glynn and Whitt in [28].

Within the context of simulating rare events for Gaussian processes, no study to date has

achieved the construction of an estimator which is strongly efficient, that is, having bounded

relative error, in all problem settings, although progress has been made under certain restrictive

conditions. Significant advancements in the field were made by Adler et al. [1], which was a study

of efficient estimators of suprema of Gaussian random fields. This work by Adler et al. yielded

simulation algorithms which the authors showed to be polynomially efficient in the general case,

but only strongly efficient under certain special conditions. Notably, the technique proposed by

the authors adopted an importance-sampling density which could also be applicable to conditional

estimators and Gaussian functions. For example, the paper [42] explores expanding the change-

of-measure technique first adopted by Adler, Blanchet and Liu in [1] for the theoretical problem of

simulating exponential Gaussian integrals.

In addition to this work by Adler et al., another importance impetus for the present research

is a change-of-measure argument first advanced by Dieker and Yakir [12] in their study of simu-

lation methods for Pickands’ constant. In this paper, the authors developed a change-of-measure

technique involving a quotient of exponentials which forms the general theory for the importance

sampling method followed in this work. We give a more detailed perspective on the linkage be-

tween this paper and this thesis in the appendix of Chapter 3.
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1.3 Problem formulation.

Given an arbitrary, n-dimensional Gaussian random vector X , our research motivation has been to

devise an efficient simulation algorithm for computing the probability that a rare-event-type func-

tional, such as maxiXi, exceeds a certain level-crossing parameter b. In the first part of this work,

we focus in the special case of a constrained max functional, with standard Gaussian marginals,

wherein we introduce and explain the pedagogical motivation behind our methodology in a simple

setting. In the latter parts, as a first extension, we generalize the problem to more broad problem

classes, such as general max functionals, or related rare-event functionals, taken over nonstan-

dard Gaussian marginals. From there, we consider further extensions, in particular, conditional

functionals such as conditional tail probabilities, and explore the usage of these functionals across

widespread industry applications, focusing on financial risk management.

For our purposes here, we are focused on only Gaussian processes, and specifically in a discrete

setting. For the general problem formulation, we define X to be an n-dimensional, Gaussian

random vector, whose marginal components may have arbitrary drift and variance. We denote the

i-th element of the vector X by Xi for i = 1, . . . , n.

This probability, as described, may be written mathematically, given a general vector-valued

function g, and an exceedance threshold b, as:

P [g(X) > b] .

We may also consider the related problem, which is of particular interest for applications, given

for another general functional f by

E [f(X); g(X) > b] .

Here, we assume the parameter b to be large, so that traditional Monte Carlo simulation would

4



not be practical. The two properties which we intend to study for our estimator are first, its mean,

which to be unbiased must have the same expectation as the original probability, and second, its

variance, an important criterion for algorithmic efficiency.

The simulation methodology followed in this research is Monte Carlo using importance sam-

pling, whereby a change-of-measure is adopted to improve the efficiency of the Monte Carlo esti-

mator. We note here that a sample realization of an (unbiased) estimator Θb from a given simulation

replication k may be denoted Θ
(k)
b . After all simulation replications are finished, and assuming m

replications in total, our final estimate for EΘb would be calculated according to the sample aver-

age, with representation

Θ̄b =
1

m

m∑
k=1

Θ
(k)
b .

The efficiency goal, and motivation for importance sampling, in our context, is to construct

a Monte Carlo estimator Θb so that Θb/EΘb is asymptotically independent of the exceedance

parameter b. Hence, for this setting, the coefficient of variation would remain uniformly bounded as

the exceedance parameter, also known as a threshold parameter or level-crossing barrier, increases.

1.4 Research contributions.

Flexibility and impact of methodology for risk applications.

We believe our research has considerable practical significance because of the flexibility our method

allows across multiple problem settings, with extensions to finance, insurance, and risk disciplines.

This flexibility arises from the ability to use our work to construct estimators for exceedance prob-

abilities related to general Gaussian functionals, which can be interpreted according to various

financial risk metrics, as well as portfolio analytic tools. In particular, our technique allows for

the efficient simulation of Gaussian tail probabilities which are used in risk measures popular in fi-

nance, such as value-at-risk, known as VaR, as well as conditional value-at-risk, CVaR, also known

as expected shortfall. Additionally, our work also, we believe, allows for the fast computation of

5



portfolio credit analytics, that rely on assessing probability of default according to default scenarios

calibrated based on Gaussian default intensities. Seen from this perspective, our estimator allows

for the calculation of default probabilities, where the level-crossing parameter from our original

problem may be interpreted as a default barrier.

Efficient, generalizable Monte Carlo tools.

Our research allows, first, for the development of a new change-of-measure technique and impor-

tance sampling methodology, and second, and most importantly, it is noteworthy for the general

flexibility across general Gaussian functionals. Furthermore, our work not only allows for the

construction of estimators with attractive efficiency properties, for the study of exceedance proba-

bilities for Gaussian maxima, but also, as we shall show, allows for the construction of estimators

related to general Gaussian functionals.

Because our methodology is not limited to a specific functional, it has the important benefit

of being related to broad problem classes. Moreover, this flexibility of our method has the bene-

fit of allowing a single underlying simulation methodology which utilizes a common importance

sampling approach. As mentioned, this ease of generalization has not only important theoretical

considerations, but practical benefits as well, by allowing practitioners to have a unifying simula-

tion framework in risk or portfolio calculations they may need to perform.

1.5 Structure of thesis.

In Chapter 2, Mathematical Preliminaries, we provide the theoretical foundations for the present

work, including a background to importance sampling theory and mathematical notions of effi-

ciency. In Chapter 3, we present an expository study to our more general methodology, by focus-

ing on a special problem case of the constrained maximum functional, assuming standard Gaussian

marginals. In Chapter 4, we extend this framework to cover quite general classes of functionals, as

well as non-standard Gaussian marginals including general variance structures. In the final chap-

6



ter, we present an additional extension to conditional functionals and explore areas of relevance

for important application topics, such as value-at-risk and loss-given-default, across insurance and

financial risk management industries.

7



CHAPTER 2

MATHEMATICAL FRAMEWORK AND MOTIVATION

Overview.

In this chapter, we provide a mathematical overview of the method of Monte Carlo simulation. In

particular, we discuss the variance-reduction technique of importance sampling, and additionally,

we show how standard variance-reduction tools for the general problem setting discussed in this

thesis are not easily applied. To support this assertion, as a case study, we analyze two small

problem instances, and for each instance, compare and contrast the relative (in)efficiencies of the

standard tools. The limitation posed by these standard tools, as we show, is what motivates our

search for an alternative method with superior algorithmic performance.

2.1 Preliminaries.

2.1.1 Traditional Monte Carlo.

To begin, we assume an event A defined on a probability space (Ω,F , P ) and unknown quantity

of interest z ≡ P [A]. Standard Monte Carlo estimates z by repeatedly sampling from the original

probability distribution P. A typical estimator would be:

Z = 1 (A) ,

and hence, EP [Z] = P [A]. When A is a rare event (e.g. P [A] < 10−3), computational cost is high

for achieving reasonable levels of accuracy.

In addition to estimating probabilities, standard Monte Carlo may also be used to compute

functions of random variables. For example, for Y a F-measurable random variable, we may wish

8



to estimate Eh(Y ). In this case, the Monte Carlo estimator T could be derived as

T (ω) =
∑
ω∈Ω

h(Y (ω))1(ω).

The high cost of traditional Monte Carlo in these cases prompts the usage of alternative techniques,

among them, importance sampling, which we discuss next.

2.1.2 Importance Sampling.

Importance sampling is a variance-reduction technique, whereby random samples are drawn from

an alternative probability measure which differs from the natural (or original) measure. We assume

here an unbiased Monte Carlo estimator Z under the original measure, to be denoted P , such that

z = EPZ. Informally, the goal is to sample under a new measure Q, rather than the original

measure P , so that more mass is placed in that region of the state space which contributes the most

to the quantity being studied.

Furthermore, importance sampling is a technique which applies not just to single random vari-

ables but also to (continuous) functionals of those variables. Because random variable functionals

are the main interest in this thesis, we will emphasize the benefits of importance sampling from

that perspective.

The insight for importance sampling utilizes what is known as a likelihood ratio to modify the

sampling procedure from measure P to Q. We will assume here continuous probability densities;

specifically, the random variable Z admits a probability density under P (pZ), and also under Q

(qZ), though the framework holds in more general settings as well. We assume one measure-space

(Ω,F) and that Z is F-measurable. Given h(·) a continuous functional over the support of Z, we

have the integral representation:

ˆ
Ω

h(ω) pZ(ω) dω =

ˆ
Ω

h(ω)

(
pZ(ω)

qZ(ω)

)
qZ(ω) dω.

9



The above relation may also be written using the expectation operator. Letting EP represent an

expectation taken under measure P and similarly noted for measure Q, we have

EP [h(Z)] = EQ
[
h(Z)

p(Z)

q(Z)

]
.

In the above instance, the Radon-Nikodym derivative L is given by the quotient of the probability

densities, that is L(Z) := p(Z)/q(Z). This quantity is also known as the likelihood ratio.

Using the likelihood ratio, we can relate the expectation under the original measure to the

expectation from the importance sampling measure, shown as follows:

EP [h(Z)] = EQ [h(Z)L(Z)] . (2.1)

More formally, for any given random variable Z which admits a Radon-Nikodym derivative L, we

have that:

P (dω) = L (ω)Q (dω) .

It follows under the above relation that z = EPZ = EQZL. Thus, the importance sampling

method for Monte Carlo is to simulate independent and identically-distributed (IID) replicates of

ZL drawn from measure Q, rather than replicates of Z drawn from P .

One important category or family of importance sampling densities, which we will explore

shortly, is known as exponential twisting. Because the technique of exponential twisting is widely

used by practitioners, and also factors heavily into our discussion of alternative sampling proce-

dures, we provide a formal definition here.

Given a random variable Z and measure-space (Ω,F) as defined previously, with P the orig-

inal probability measure, the exponential twisting density is constructed as follows. Using a real

parameter, let us call it θ, which is also known as the “twist”, the new exponential twisting density,
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which we may denote Qθ, has the form,

Qθ(dω) :=
eθω

EP[eθZ ]
P (dω). (2.2)

It can be readily verified that the new density Qθ will integrate to 1 over the sample space Ω, as

required, given the division by the moment-generating function in the denominator. The likelihood

ratio Lθ(ω) is given by the reciprocal to this quantity, which is

Lθ(ω) := e−θω EP[eθZ ].

It should be noted, that although the mechanics of exponential twisting appear straightforward, the

choice of the parameter θ plays quite an important role. The twisting parameter θ is, in fact, critical

to the evaluation of the quality of the estimator, due to its influence on the sampling variance.

As has been stated, a chief goal of any importance sampling procedure is variance reduction,

because of the computational savings. Variance-reduction is achieved provided that

VarQZL < VarPZ. (2.3)

Any probability measure Q with a likelihood ratio L with respect to P which lowers the sampling

variance is a candidate for importance sampling.

However, while multiple choices may be available for the importance sampling density, not

all measures may be optimal from a computational perspective. Indeed, the degree of variance

reduction is closely related to the concept of algorithmic efficiency, which we discuss next.

2.1.3 Notions of efficiency.

A significant criterion for evaluating the quality of a Monte Carlo estimator is the notion of relative

error. By relative error, we properly refer to the statistical term, root mean squared error, or coef-

11



ficient of variation. (Relative error is the more typical term in simulation literature when referring

to efficiency criterion of algorithms, as discussed in such studies as [43] and [45].)

Definition: Relative error.

Let Z be an unbiased estimator for the quantity z(b), given a threshold (e.g., exceedance or level-

crossing) parameter b, with EZ = z(b). Then we define the relative error, to be denoted eZ(b), and

it holds that

eZ(b) :=

√
VarZ(b)

z(b)
. (2.4)

Two of the most relevant criteria for measuring the efficiency of a Monte Carlo algorithm are

strong efficiency and logarithmic efficiency, with logarithmic efficiency being the weaker of the

two notions. These two notions are defined below, and can also be related to the concept of relative

error, given above in (2.4) and additionally shown in [43].

Definition: Logarithmic (log) efficiency.

An estimator Z is said to be logarithmically efficient (also known as “weakly efficient” or “asymp-

totically efficient”) in estimating z(b) if EZ = z(b) and it holds that:

lim inf
b→∞

|logVarZ(b)|
|log z(b)2|

≥ 1,

or equivalently

lim sup
b→∞

z(b)εeZ(b) <∞ for all ε > 0.
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Definition: Strong efficiency.

An estimator Z is said to be strongly efficient (or have bounded relative error) in estimating z(b)

if EZ = z(b) and it holds that

lim sup
b→∞

VarZ(b)

z(b)2
<∞,

or equivalently

lim sup
b→∞

eZ(b) <∞.

Thus, in the notion of relative error, strong efficiency can be understood as the property of having

uniformly bounded relative error.

Because it is relevant to the present study, we also introduce here the special (stronger) case

within the class of strong efficiency, which occurs for an estimator with relative error that asymp-

totically approaches zero. This notion is called vanishing relative error and is defined as given

below.

Definition: Vanishing relative error.

LetZ be an unbiased estimator for the quantity z(b), given a threshold (e.g., exceedance parameter)

b, with EZ = z(b). Then we define vanishing relative error by,

lim
b→∞

eZ(b) = 0. (2.5)
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2.2 One-dimensional Gaussian tail probabilities.

In this section we work out the techniques for the estimation of single-dimension Gaussian tail-

probabilities under three different methods, which we show to have varying efficiency properties.

We will later contrast these efficiency results with what is available in two-dimensions, to show

that the one-dimension results cannot be generally extended to higher dimensions or more general

settings.

Here, we assume X follows a standard normal distribution. We let ϕ(·) denote the standard

normal density. We wish to estimate the upper-tail probability given a threshold value b, where

z := P (X > b) =

ˆ ∞
b

ϕ(x)dx =

ˆ ∞
b

1√
2π
e−x

2/2dx ,

for b a large, positive real number (e.g. b� 3).

In the paragraphs below, we describe the three alternative procedures we will examine for

estimating Gaussian tail probabilities:

1. Numerical evaluation of tail integral.

2. Importance sampling via exponential twisting.

3. Importance sampling via the exponential density.

Moreover, we compare the quality of the estimator Z obtained under each method by analyzing

the relative error asymptotics, given by eZ(b) for b→∞. The asymptotic behavior of the relative

error for each of these estimators is well-documented; the proofs below are provided to aid the

reader. (The details of each proof are our own, although the results are otherwise established in

existing literature.)

14



Numerical integral approximation.

Proposition 2.2.1. The numerical approximation method for the Gaussian upper-tail integral, with

estimator to be denoted ZΨ, given

ZΨ := Ψ(b) =

ˆ ∞
b

ϕ(x)dx ,

and with ϕ(·) denoting the standard normal density, then ZΨ has the relative error property:

eZΨ
(b) = 0 for all b > 0 ,

where the integral calculation is done numerically.

Proof. Here we assume an exact numeric approximation for the tail integral is available, and be-

cause the calculation is considered exact, there is zero relative error.

Importance sampling: exponential twisting.

Proposition 2.2.2. The importance sampling estimator via exponential twisting, to be denoted

ZIT , with twist parameter b, as defined by

ZIT := e−bX+b2/2 1 (X > b) ,

has relative error which grows like
√
b:

eZIT (b) ∼
(π

2

) 1
4
√
b, b→∞.

Proof. Here, the intuition is to shift the probability density under the original measure P , which

we may denote by the function p(·), to a new density, some function qb(·), under a new probability
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measure, Qb, centered at the exceedance threshold b:

qb (x) =
1√
2π
e−(x−b)2/2.

The threshold b, in fact, also corresponds to a choice of exponential twisting parameter.

Using the set-up for the exponential twist defined in (2.2), then for a twist θ = b, the likelihood

ratio, L, is given by
dP (x)

dQb(x)
= e−bx+b2/2.

Taking Z = 1 (X > b) to be the standard Monte Carlo estimator under P , the new estimator under

Qb will be

ZIT := ZL = e−bX+b2/2 1 (X > b) .

Recalling that the estimator ZIT = ZL is unbiased, with EQb [ZIT ] = P[X > b] =: z, we may

compute the squared relative error for ZIT by the ratio,

VarQb [ZL]

[P(X > b)]2
=

(EQb [(ZL)2]− (EQb [ZL])2)

[P(X > b)]2

=
EQb [(ZL)2]

z2
− 1

= [eZ(b)]2 .

To aid with the asymptotic analysis, we make use of the identity known as Mills’ ratio. This result

states that given a positive threshold b, with ϕ(·) the standard normal density, then as b grows, the

upper-tail integral has the behavior,

ˆ ∞
b

ϕ(x) ∼ ϕ(b)

b
, b→∞. (2.6)
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We may derive by the usual calculus that EQb [(ZL)2] has the following tail-integral form,

EQb
[
(ZL)2

]
= eb

2

ˆ ∞
2b

ϕ(x)dx.

Thus, using the Mills’ ratio asymptotic result given in (2.6), we find that

EQb
[
(ZL)2

]
∼ eb

2 ϕ(2b)

2b
, b→∞.

And so, again by using Mills’ ratio, we have the relation:

EQb [(ZITL)2]

[EQb(ZIT )]2
∼ eb

2
(ϕ(2b)/2b)

(ϕ(b)/b)2 , b→∞.

As can be readily verified from the above steps, the relative error eZIT (b) behaves asymptoti-

cally for b→∞ as √
eb2 (ϕ(2b)/2b)

(ϕ(b)/b)2 =
(π

2

)1/4√
b,

which grows polynomially with b. Although this estimator does meet the criterion for logarithmic

efficiency, it will not be strongly efficient, since the relative error grows without bound as the

threshold b approaches infinity.

Importance sampling: exponential density.

Proposition 2.2.3. The importance sampling estimator via the exponential density, denoted ZIE ,

which given a standard exponential variable Y , has the construction

ZIE(b) :=
e−b

2/2

b
√

2π
e−Y

2/(2b2),
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then ZIE has vanishing relative error,

eZIE(b)→ 0, b→∞.

Proof. The estimator, denoted ZIE(b), is given in the general case where Y has the standard expo-

nential distribution, by

ZIE(b) :=
e−b

2/2

b
√

2π
e−Y

2/(2b2).

To see how this estimator is derived, then, starting from the problem P[X > b], where X is

standard normal, we have

ˆ ∞
b

e−x
2/2

√
2π

dx =

ˆ ∞
0

e−(x+b)2/2

√
2π

dx

=
e−b

2/2

√
2π

ˆ ∞
0

e−x
2/2e−xbdx

=
e−b

2/2

b
√

2π

ˆ ∞
0

e−y
2/(2b2)e−ydy.

Alternatively, we can also assume a general parameter λ which we leave open, along with a

standard exponential variable Λ. Done in this manner, the derivation is as follows.

ˆ ∞
b

φ(x)dx =

ˆ ∞
0

φ(x+ b)dx

=
1

λ

ˆ ∞
0

λe−λxeλxφ(x+ b)dx

=
1

λ
E
[
eΛφ

(
Λ

λ
+ b

)]
.

To see that ZIE has vanishing relative error, we look at the ratio of E(ZIE)2 to the square of

the first moment. Because by the unbiased property EZIE = P[X > b], this latter quantity is

P[X > b]2.
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Using the above calculations, therefore, we have that:

E(ZIE)2/[E(ZIE)]2

=
1
λ2E

[
e2λφ(Λ/λ+ b)2

][
1
λ
E [eΛφ(Λ/λ+ b)]

]2
=

1
λ2

e−b
2

√
2π

´∞
0

1√
2π

exp (2y(1− b/λ)− y) exp (−y2/λ2) dy

1
λ2 e−b

2

(´∞
0

1√
2π

exp (y(1− b/λ)− y) exp (−y2/(2λ2)) dy
)2

=
exp ((λ2(1− b/λ− 1/2))2/λ2)

´∞
0

(
1√
2π

)2

exp (−(y − λ2(1− b/λ− 1/2))2/λ2) dy

(exp ((λ2(1− b/λ− 1))2/(2λ2)))2
(´∞

0
1√
2π

exp (−(y − λ2(1− b/λ− 1))2/(2λ2)) dy
)2

=
exp (λ2(b/λ)(b/λ− 1) + λ2/4)

exp (λ2(b2/λ2))

´∞
−λ2(1−b/λ)+λ2/2

exp (−z2/λ2) dz(´∞
−λ2(1−b/λ)+λ2 exp (−z2/(2λ2)) dz

)2

= eλ
2/4−bλ

´∞
bλ−λ2/2

exp(−z2/λ2)dz(´∞
bλ

exp (−z2/(2λ2)) dz
)2 .

From here, we use the asymptotic approximation for ξ →∞ that

ˆ ∞
ξ

e−y
2/2dy ∼ 1

ξ
e−ξ

2/2.

This asymptotic approximation gives us for b→∞ that

E(ZIE)2/[E(ZIE)]2

∼ exp
(
λ2/4− bλ

) 1
2(bλ−λ2/2)/λ2 exp (−(bλ− λ2/2)2/λ2)(

1
2bλ/(2λ2)

exp (−b2λ2/(2λ2))
)2

= exp
(
λ2/4− bλ− λ2/4 + bλ

) b2/λ2

2(b/λ− 1/2)

=
(b/λ)2

2b/λ− 1
.

For the above asymptotics to hold, we require bλ → ∞ in the lower limit for the integral in the
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denominator, and in the numerator, we also require bλ − λ2/2 → ∞. Together these conditions

imply λ < 2b and also that λ� 1/b.

The remaining terms give us a minimization which we may write as

min
λ: 0<λ<2b

b2/λ2

2b/λ− 1
. (2.7)

We may check that the first derivative with respect to λ for the above yields

d

dλ

(
b2/λ2

2b/λ− 1

)
=

2b2(λ− b)
λ2(λ− 2b)2

.

Over the range λ ∈ (0, 2b) the minimum is attained at λ = b for which the above derivative is zero,

and for which the moment ratio equals 1.

Separately, we may also verify the condition λ < 2b, since for any λ > 2b, the scaling factor

would be of the form exp{λ2/4 − bλ + b2}, which would tend to infinity for λ > 2b with b →

∞.

20



2.3 Two-dimensional Gaussian maximum.

In this section, similar to the prior section, we work out alternative techniques for the estimation of

Gaussian tail-probabilities using standard tools, but now in a two-dimensional setting, which turns

out to pose mathematical hurdles.

As we show here, the standard tools from the prior section break down and deteriorate, when

measured in terms of efficiency. These limitations, particular as they relate to the ability to handle

quite general problem settings, motivate the need for an alternative, more flexible, and algorithmi-

cally superior procedure, which is the subject of this thesis.

For the two-dimensional example setting, we take the problem set-up to be that X is a bivariate

Gaussian vector, i.e. X ∼ N (0,Σ2), where we have the functional g given by,

g(x) = max(x1, x2),

and a covariance matrix Σ2, which is defined for ρ > 0 as:

 1 ρ

ρ 1

 .

We further note that the above instance is a special case of the problem P[maxi=1,...,nXi > b],

which is one of our chief research interests.

For the cases to follow, in two instances, which are the naive (standard) Monte Carlo estimator,

and the exponential-twisting estimator, the relative error asymptotics have previously been estab-

lished in existing literature. (As in the prior section, proofs are provided for the understanding of

the reader, with the proof details being our own.)

However, in one instance, for what we call the “integrated” estimator, the proof of the relative

error asymptotic behavior has not otherwise been established to our knowledge, and is a new result.
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Standard estimator.

The “standard” Monte Carlo estimator may be derived as:

ZMC
b := 1 {max(X1, X2) > b} .

However, it is readily verified that this estimator is not computationally efficient (in any mathemat-

ical sense), since

E(ZMC
b )2 � (EZMC

b )2, b→∞.

Tail integral or integrated estimator.

Under this approach, first brought to our attention by J. Blanchet, the idea is to integrate in one

dimension, and then sample in the others. For this technique, it is helpful to define:

X(1) = X − w1X1, w1 := (1, ρ),

ξ1
b (x) = min(b− x1, (b− x2)/ρ),

given a general input vector x := (x1, x2). The vector X(1) has the first coordinate equal to zero.

To see this, note that w1
1 = 1 hence X(1)

1 = X1 −X1 = 0.

The new estimator as constructed we call the “integrated” estimator, to be abbreviated “IgS”,

and we define it as

Z IgS
b := Ψ(ξ1

b (X
(1))), (2.8)

where Ψ(b) = 1−Φ(b) denotes the standard Gaussian upper-tail probability for a point b, given as

one less the cdf Φ(·) evaluated at b. This estimator has the construction, which also shows it to be
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unbiased, via the derivation,

P[max(X1, X2) > b] = E
[
P[max(X1, X2) > b | X(1)]

]
= E

[
1
(
X1 > ξ1

b (X
(1))
)]

= E
[
Ψ
(
ξ1
b (X

(1))
)]
.

To aid with the efficiency analysis, we present the asymptotic result as a proposition first with-

out proof. The full proof of the proposition follows after the explanatory text and required lemmas

found next below.

Proposition 2.3.1. The integrated estimator Z IgS
b , with form

Z IgS
b := Ψ(ξ1

b (X
(1)),

given Ψ(·) a standard Gaussian upper-integral, has relative error which has exponential forma for

c > 0, behaving according to the form

log e(b) ∼ cb2, b→∞,

for ρ ∈ [0, 1].

As a preliminary insight into the proposition, we note that

ξ1
b (X

(1)) = min(b, (b−X(1)
2 )/ρ).

Therefore, by evaluating the variableX(1)
2 under the disjoint events {X(1)

2 ≤ b(1−ρ)} and {X(1)
2 >
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b(1− ρ)}, we have that ξ1
b (X

(1)) has the following form:

Ψ(ξ1
b (X

(1))) =


Ψ(b) X

(1)
2 ≤ b(1− ρ)

Ψ((b−X(1)
2 )/ρ) X

(1)
2 > b(1− ρ).

Since (b−X(1)
2 )/ρ has a normal distribution with mean b/ρ and variance (1−ρ2)/ρ2, it also follows

that

E
[
Ψ
(
ξ1
b (X

(1))
)α]

= Ψ(b)αP (X
(1)
2 ≤ b(1− ρ)) + E

[
Ψ
(

(b−X(1)
2 )/ρ

)α
;X

(1)
2 > b(1− ρ)

]
= Ψ(b)αP (Yb ≥ b) + E [Ψ(Yb)

α;Yb < b] ,

where Yb ∼ N (b/ρ, (1− ρ2)/ρ2).

To show the inefficiency of the “integrated” estimator, we bring in support the following lemma.

Lemma 2.3.1. Suppose Yb ∼ N (b/ρ, (1− ρ2)/ρ2) for some ρ ∈ (0, 1). For α ≥ 2, we have

lim
b→∞

1

b2
logE

[
exp

(
−αY 2

b /2
)

;Yb < b
]
> −α/2.

Proof. Noting that Yb has the same distribution as b/ρ+
√

1− ρ2N/ρ for a standard normal random

variable N , we find that

E
[
exp

(
−αY 2

b /2
)

;Yb < b
]

=
1√
2π

ˆ −b√ 1−ρ
1+ρ

−∞
exp

−α
2

(
b

ρ
+

√
1− ρ2

ρ
z

)2

− z2/2

 dz.

We next compute the maximizer of the integrand by setting the derivative of the exponent equal to

0. We find that z∗ = bν, where

ν = − α
√

1− ρ2

ρ2 + α(1− ρ2)
,
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so that z∗ lies in the integration interval if α > ρ/(1 + ρ). The Laplace method yields in that case

that

lim
b→∞

1

b2
logE

[
exp

(
−αY 2

b /2
)

;Yb < b
]

= −α
2

(
1

ρ
+

√
1− ρ2

ρ
ν

)2

− ν2/2

= − α[1 + α(1− ρ2)]

2(ρ2 + α(1− ρ2))2
,

and it is readily verified that this is larger than −α/2 if α ≥ 2.

Proof of Proposition 2.3.1. As derived earlier, we utilize the representation,

E
[
Ψ
(
ξ1
b (X

(1))
)α]

= Ψ(b)αP (X
(1)
2 ≤ b(1− ρ)) + E

[
Ψ
(

(b−X(1)
2 )/ρ

)α
;X

(1)
2 > b(1− ρ)

]
= Ψ(b)αP (Yb ≥ b) + E [Ψ(Yb)

α;Yb < b] ,

where Yb ∼ N (b/ρ, (1− ρ2)/ρ2).

Now, with lemma (2.3.1) also at hand, and using the fact that P (Yb ≥ b)→ 1, we may conclude

that, as b→∞,

lim
b→∞

1

b2
logE

[
Ψ
(
ξ1
b (X

(1))
)2
]
> −1.

On the other hand, we also may establish,

1

b2
logE

[
Ψ
(
ξ1
b (X

(1))
)]

=
1

b2
logP (max(X1, X2) > b),

which converges to −1/2 as b→∞.
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Exponential twisting.

To improve upon the above estimator, one may consider the importance sampling estimator, to be

abbreviated “IS”, which we define here as:

Z IS
b := e−bX1−b2/2 1{max(X1, X2 − b(1− ρ)) > 0}.

We may further establish that the above estimator is unbiased using the below identity,

P[max(X1, X2) > b] = E
[
e−bX1−b2/2; max(X1 + b,X2 + ρb) > b

]
= E

[
e−bX1−b2/2; max(X1, X2 − (1− ρ)b) > 0

]
.

Proposition 2.3.2. The importance sampling estimator Z IS
b via exponential twisting, with form

Z IS
b := e−bX1−b2/2 1{max(X1, X2 − b(1− ρ)) > 0},

has relative error for some c > 0,

log e(b) ∼ cb2, b→∞.

As stated above, the above estimator is not a good choice for the reason that the second moment

is unbounded in b. This result was also shown in [25]. In other words, we may establish for the

above IS estimator that

E(ΘIS
b )2 � (EΘIS

b )2, b→∞.
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Proof. By the Laplace method (see also Dieker and Mandjes, e.g. [11]), we have

lim
b→∞

1

b2
logE

[
e−αbX1−αb2/2; max(X1, X2 − (1− ρ)b) > 0

]
= − inf

{x∈R2:max(x1,x2−(1−ρ))≥0}

[
αx1 + α/2 +

x2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

]
,

and it is readily seen that x = (−(1 − ρ)(2 + ρ), 1 − ρ) is the minimizer for α = 2 while x =

(−(1− ρ), 1− ρ) and x = (0, 0) are the minimizers for α = 1. Since the minimizer for the second

moment is not a minimizer for the first moment, the estimator is not logarithmically efficient.
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CHAPTER 3

CONSTRAINED GAUSSIAN MAXIMUM

3.1 Overview.

In this chapter, our focus is the construction of an efficient estimator for simulating the exceedance

probability with respect to a discrete, standard Gaussian vector, but in the presence of simplifying

constraints. This chapter is meant an expository study for the more general techniques introduced

later in this thesis. The estimation problem focused on here is chosen so that the most important,

basic ideas underlying our method may be distilled from the subtleties necessary for more general

estimation problems.

Specifically, in this chapter, we study the estimation of

P
[

max
i=1,...,n

Xi > b, min
i=1,...,n

Xi > 0

]
, (3.1)

where each of the Xi are standard normal and Cov(Xj, Xk) > 0 for all j, k. As before, we assume

the parameter b to be large, so that traditional Monte Carlo simulation would not be practical. This

complication motivates the use of a variance-reduction technique such as importance sampling, as

we utilize in our method.

The two properties which we intend to study for our estimator are first, its mean, which to be

unbiased must have the same expectation as the original probability, and secondly, its variance.

The variance property is critically related to the notion of algorithmic efficiency.

Thus, simply stated, our goal is the construction of an unbiased Monte Carlo estimator Θb,

whereby we can achieve the dual qualities:
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1. Unbiased property:

EΘb = P
(

max
i=1,...,n

Xi > b, min
i=1,...,n

Xi > 0

)
;

2. Strong efficiency: Having bounded relative error for b→∞, given by the inequality, for C a

positive constant,

lim
b→∞

eΘ(b) ≤ C.

In this chapter, we provide only empirical support for bounded relative error, stated above as

point 2, and defray a theoretical discussion of the asymptotic properties of our estimator to Chap-

ter 4. Numerical evidence for the efficiency performance of our algorithm is provided via several

simulation studies which close this chapter.

3.1.1 Primary assumptions and definitions.

Mathematically, as stated, we define X to be an n-dimensional, multivariate Gaussian random

vector, where each of the marginals Xi is standard normal for i = 1, . . . , n, and the covariance

between any two marginal components is strictly positive, that is Cov(Xj, Xk) > 0 for all j, k =

1, . . . , n. In the absence of a subscript, we let X stand for a vector representation, i.e. X :=

(X1, . . . , Xn).

In addition to the Gaussian vector X , we suppose that we have a uniform random variable,

J , where J is uniformly distributed on {1, . . . , n}, as well as an exponential random variable, Λ,

where Λ, has the standard exponential distribution, mutually independent of J and also indepen-

dent of X .
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With these observations, we then define:

X(j) := X −Xjw
j, j = 1, . . . , n (3.2)

where wj is a n-dimensional vector with

wjk = Cov(Xj, Xk), j, k = 1, . . . , n.

As we will show, our estimator heavily exploits the fact that X(j) is independent of Xj .

Furthermore, for b > 0, we set

Ab =

{
x ∈ Rn : max

i=1,...,n
xi > b, min

i=1,...,n
xi > 0

}
, (3.3)

so that the probability of interest from (3.1) is equivalently written P[X ∈ Ab].

3.1.2 Simulation set-up.

Basic formulation. The Monte Carlo estimator Θb we have constructed utilizes the variables

given above, as well as some additional ingredients specified here.

We note here that a sample realization of Θb from a given simulation replication k may be

denoted Θ
(k)
b . After all simulation replications are finished, and assuming m replications in total,

our final estimate for EΘb would be calculated according to the sample average, given by

Θ̄b =
1

m

m∑
k=1

Θ
(k)
b .

It follows trivially that Θ̄b is an unbiased estimator of Θb. For notational simplification, in all

subsequent references to our estimator, we refer to the underlying random variable Θb.

We need a few definitions before we can formulate our algorithm. We first define a truncation
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function t by setting t(ξ) = max(|ξ|, 1) for ξ ∈ R. We also define, for j = 1, . . . , n, x ∈ Rn, and

y ∈ R,

hjb(y;x) =
φ(y)

1
n

∑n
k=1 exp

(
bxk − b(1− wjk)y

) (3.4)

and

ξjb(x) = max

(
max
k=1,...,n

−xk
wjk

, min
k=1,...,n

b− xk
wjk

)
. (3.5)

Algorithm. We now describe the steps for our algorithm to generate a single simulation replica-

tion.

Algorithm 3.1.1. The algorithm takes the inputs defined below, with the main procedure and out-

put following.

Inputs: A Gaussian random vector X of dimension n, with standard marginals; a stan-

dard exponential random variable Λ, which has unit mean; and a uniform random variable J on

{1, . . . , n}.

Steps: We generate sample realizations of X and Λ as well as an index j from the uniform

variable J . From these inputs, we construct the sample vector for X(J) as well as the related quan-

tities ξJb (X(J)) and hjb(y;X(J)).

Output: We then output our estimator Θb:

Θb =
1

t(ξJb (X(J)))
eΛ hJb

(
Λ

t(ξJb (X(J)))
+ ξJb (X(J));X(J)

)
, (3.6)
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3.2 Theoretical results.

3.2.1 Estimator is unbiased.

In this section, we show that our estimator is unbiased for estimating P[X ∈ Ab]. We start with

writing the event of interest in terms of Xj and X(j), which are independent. This lemma is the

reason for imposing the condition of positive covariances; we do not need this assumption in the

later chapters of this thesis.

Lemma 3.2.1. For b > 0 and any j = 1, . . . , n, we have

{X ∈ Ab} = {Xj > ξjb(X
(j))}.

Proof. By definition of ξjb , the statement ξjb(x) < y is equivalent to the following two statements:

(1) −xk < wjky for k = 1, . . . , n, and (2) there exists some ` such that b− x` < wj`y.

Statement (1) is equivalent to xk + wjky > 0 for every k and statement (2) is equivalent to the

existence of some ` such that x` + wjky > b. For x = X(j) and y = Xj , (1) becomes minkXk > 0

and (2) becomes max`X` > b.

The following lemma is a key ingredient in our proof that our estimator is unbiased.

Lemma 3.2.2. Suppose the random variable J is uniformly distributed on {1, . . . , n}, and inde-

pendent of X . For b > 0, we then have

P[X ∈ Ab] = E

[ˆ ∞
ξJb (X(J))

hJb (y;X(J))dy

]
.
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Proof. For b > 0, we have

P[X ∈ Ab] =
n∑
j=1

E
[

1[X ∈ Ab]∑n
k=1 e

bXk−bXj

]

=
n∑
j=1

E

[
1
[
Xj > ξjb(X

(j))
]∑n

k=1 e
bX

(j)
k −b(1−w

j
k)Xj

]

=
n∑
j=1

E

[ˆ ∞
−∞

φ(y)∑n
k=1 e

bX
(j)
k −b(1−w

j
k)y

1
[
y > ξjb(X

(j))
]
dy

]

=
n∑
j=1

E

[ˆ ∞
ξjb(X(j))

φ(y)∑n
k=1 e

bX
(j)
k −b(1−w

j
k)y
dy

]

=
1

n

n∑
j=1

E

[ˆ ∞
ξjb(X(j))

hjb(y;X(j))dy

]
,

and the claim follows.

Recall (from calculation in Chapter 2) that for any µ > 0 and ξ ∈ R and any function h, we

have ˆ ∞
ξ

h(y)dy =
1

µ
E
[
eΛh(Λ/µ+ ξ)

]
,

where Λ is a standard exponential. The best choice for µ is µ = ξ as ξ →∞, but this choice is not

possible for ξ = 0. That is why we use µ = t(ξ), and

1

t(ξ)
eΛh(Λ/t(ξ) + ξ)

is therefore an unbiased estimator for
´∞
ξ
h(y)dy.

Combining this with Lemma 3.2.2, we obtain the following proposition.

Proposition 3.2.1. For b > 0, we have

EΘb = P
[

max
i=1,...,n

Xi > b, min
i=1,...,n

Xi > 0

]
.
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3.3 Numerical experiments.

3.3.1 Overview.

In this section, we present two numerical simulation studies, focused on two specific instances of

the problem form we introduced at the beginning of this chapter, that is P [X ∈ Ab], equivalently,

P
[

max
i=1,...,n

Xi > b, min
i=1,...,n

Xi > 0

]
.

The two instances are chosen by changing the covariance structure of the Gaussian vectorX , which

also have the benefit of allowing closed-form solutions to which we can compare our method for

accuracy. These instances are:

1. Independent and identically-distributed (“IID”) marginals Xi. Here the pairwise correlation

is set approximately equal to 0.

2. Perfectly correlated marginals Xi. Here the pairwise correlation is set approximately equal

to 1.

3.3.2 IID Study.

For this case study, because the marginals are IID, the problem calculation admits a straightforward

analytical solution:

P
[

max
i=1,...,n

Xi > b, min
i=1,...,n

Xi > 0

]
= P[ min

i=1,...,n
Xi > 0]− P

[
max
i=1,...,n

Xi ≤ b, min
i=1,...,n

Xi > 0

]
= [P[X1]]n − [P[0 < X1 < b]]n

= (1/2)n − [Φ(b)− 1/2]n ,
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where Φ(·) represents the normal cdf. Thus, we may compare the values generated by our method

against the true values from the analytical calculation to check for accuracy.

First, we present a table given in 3.1 which summarizes the simulated versus true values, and

also includes the sample variance and relative error calculations of our Monte Carlo estimates. We

use m = 106 simulation replications and set n = 16. We also give graphical summaries in 3.1 and

3.2.

Table 3.1: IID Study: Monte Carlo Estimates vs. True Values

Threshold Sample Mean True Values Std. Error Relative Error
4 7.729E-09 8.211E-09 2.068E-09 0.26753
4.5 8.266E-10 8.813E-10 2.211E-10 0.26744
5 6.949E-11 7.436E-11 1.858E-11 0.26738
5.5 4.591E-12 4.926E-12 1.227E-12 0.26734
6 2.380E-13 2.559E-13 6.361E-14 0.26732
6.5 9.669E-15 1.042E-14 2.585E-15 0.26730
7 3.077E-16 3.320E-16 8.224E-17 0.26729

Second, we present a graphical summary of the complementary CDF and relative error perfor-

mance. The two graphs together show not only do the MC estimates quite closely approximate the

true values, but also that the relative error of the estimation procedure stays bounded, even as the

problem becomes computationally more difficult for higher thresholds.
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Figure 3.1: IID Study: Complementary CDF
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Figure 3.2: IID Study: Relative Error vs. Thresholds
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3.3.3 Perfect correlation study.

For this case study, because the marginals are perfectly correlated, the problem has the simple

solution,

P
[

max
i=1,...,n

Xi > b, min
i=1,...,n

Xi > 0

]
= P[X1 > b, X1 > 0]

= 1− Φ(b).

Next, we present a table given in 3.2which summarizes the simulated versus true values, and also

includes the sample variance and relative error calculations of our Monte Carlo estimates. As

before, for the Monte Carlo parameters, we use 106 replications, and n = 16 Gaussian marginals.

We also give graphical summaries in 3.3 and 3.4.

Table 3.2: Perfect Correlation Study: Monte Carlo Estimates vs. True Values

Threshold Sample Mean True Values Std. Error Relative Error
4 3.167E-05 3.167E-05 3.235E-09 1.021E-04
4.5 3.397E-06 3.398E-06 2.886E-10 8.496E-05
5 2.866E-07 2.867E-07 2.053E-11 7.163E-05
5.5 1.899E-08 1.899E-08 1.161E-12 6.112E-05
6 9.866E-10 9.866E-10 5.199E-14 5.270E-05
6.5 4.016E-11 4.016E-11 1.842E-15 4.586E-05
7 1.280E-12 1.280E-12 5.150E-17 4.024E-05

Second, we present a graphical summary of the complementary CDF and relative error perfor-

mance. As with the previous study, data from the tables and accompanying two graphs altogether

are empirical evidence both that the MC estimates are highly accurate, and also that the relative

error of the estimation procedure has stayed bounded, suggesting bounded relative error.
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3.4 Appendix.

This appendix explains how our technique is related to a change-of-measure lemma from Dieker

and Yakir [12]; we present this result below. The proof shown here is adapted from [12]. While

that paper presented a claim in the context of fractional Brownian motion, the lemma used here

has been modified specifically for the Gaussian vectors relevant to this research study.

Lemma 3.4.1. Let ξ be a random vector in Rn with a centered Gaussian distribution. Write

Ξi = ξi−Var (ξi) /2 and Ξj
i = ξi−Var (ξi − ξj) /2 for i, j = 1, . . . , n. Then for any measurable

function f : Rn → R, we have for any j = 1, . . . , n, that

E
[
eΞjf(Ξ1, . . . ,Ξn)

]
= E

[
f(Ξj

1 + Var (Ξj) /2, . . . ,Ξ
j
n + Var (Ξj) /2)

]
.

Proof. To establish the equivalence of the two sides of the equality in the lemma as given here, we

can show the equivalence of moment-generating functions. To do so, we compare the function ob-

tained from the new, implied measure, versus that from the natural (original) probability measure,

let us call it P. For simplicity we let E ≡ EP.

We define, for an arbitrary event A ∈ F on some measurable space (Ω,F), the probability

measure Q given by Q(A) = E
[
eΞj1(A)

]
, with the random variable Ξj being as defined in the

lemma. Let us denote by EQ the expectation taken under Q. For the same event A ∈ F , we also

have the original probability measure P, where P(A) = E1(A).

Without loss of generality, we may establish the proof for the linear functional and arbitrary

scaling vector t, f(tΞ) =: f(ti Ξi, . . . , tn Ξn) =
∑n

i=1 ti Ξi. Taking for simplicity of presentation
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t ≡ 1, we find that

logEQ [ef(Ξ)
]

= logE
[
e
∑n
i=1 Ξi+Ξj

]
= E

[
n∑
i=1

Ξi + Ξj

]
+ 1/2 · Var(

n∑
i=1

Ξi + Ξj)

= E

[
−

n∑
i=1

Var(ξi)/2

]
+ Var(ξj)/2 + 1/2 · Var

(
n∑
i=1

ξi + ξj

)

= −
n∑
i=1

(Var (ξi) /2− Cov (ξi, ξj)) + 1/2 · Var

(
n∑
i=1

ξi

)

=
n∑
i=1

(
Ξj
i + Var(Ξj)/2

)
+ 1/2 · Var

(
n∑
i=1

Ξj
i

)
= E [f(Ξ)] + 1/2 · Var (f(Ξ)) ,

and this establishes the claim.

This change of measure lemma is used in the following alternative proof of Lemma 3.2.2.

Alternative proof of Lemma 3.2.2. Choosing ξi = bXi and

f(x) =
1[x ∈ Ab]∑n
k=1 e

bxk−b2/2

in Lemma 3.4.1, it follows that:

P[X ∈ Ab] =
n∑
j=1

E
[
ebXj−b

2/2 1[X ∈ Ab]∑n
k=1 e

bXk−b2/2

]

=
n∑
j=1

E

[
1[X + bwj ∈ Ab]∑n
k=1 e

b(Xk+bwjk)−b2/2

]

= e−b
2/2

n∑
j=1

E

[
1[X + bwj ∈ Ab]∑n
k=1 e

bXk−b2(1−wjk)

]

= e−b
2/2

n∑
j=1

E

[
1
[
X(j) +Xjw

j + bwj ∈ Ab
]∑n

k=1 e
bX

(j)
k +bXjw

j
k−b2(1−wjk)

]
.
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From Lemma 3.2.2 we deduce that

{X(j) +Xjw
j + bwj ∈ Ab} = {Xj + b > ξjb(X

(j))},

so that, since X(j) and Xj are independent,

P[X ∈ Ab] = e−b
2/2

n∑
j=1

E

[
1
[
Xj + b > ξjb(X

(j))
]∑n

k=1 e
bX

(j)
k +bXjw

j
k−b2(1−wjk)

]

= e−b
2/2

n∑
j=1

E

[ˆ ∞
ξjb(X

(j))−b

φ(y)∑n
k=1 e

bX
(j)
k +b y wjk−b2(1−wjk)

dy

]

= e−b
2/2

n∑
j=1

E

[ˆ ∞
ξjb(X

(j))

φ(y + b)∑n
k=1 e

bX
(j)
k +b (y+b)wjk−b2(1−wjk)

dy

]
,

and it is readily verified that this agrees with the statement of the lemma.
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CHAPTER 4

GENERAL GAUSSIAN FUNCTIONALS

4.1 Overview.

Our goal in this chapter is the construction of an efficient simulation algorithm to compute the

quantity, for a level-crossing parameter b, and for a wide class of measurable functions g:

P [g(X) > b] . (4.1)

As before, we assume b to be large, making traditional Monte Carlo procedures inefficient.

Consistent with previous chapters, we denote the marginals of X by Xi for i = 1, . . . , n. Addi-

tionally, because here we consider general centered marginals, with arbitrary covariance structure,

we set Var(Xi) =: σ2
i . Our assumption that X has zero mean is without loss of generality. We

could also have assumed that all marginals are standard normal without loss of generality, but we

do not do so since we find it insightful to be able to work with arbitrary variances. Unlike in Chap-

ter 3, we do not assume the covariance between arbitrary marginal components Xi and Xj to be

strictly positive.

4.1.1 Primary definitions.

Mathematically, as stated, we define X to be an n-dimensional, multivariate Gaussian random

vector, where each of the marginals Xi has arbitrary variance σ2
i for i = 1, . . . , n. In the absence

of a subscript, we let X stand for a vector representation, i.e. X := (X1, . . . , Xn).

In addition to the Gaussian vector X , we use a random variable J with a uniform distribution

on {1, . . . , n}, as well as a random variable Λ with a standard exponential distribution, mutually
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independent of J and also independent of X .

With these observations, we then define:

X(j) := X −Xjw
j/σ2

j , j = 1, . . . , n (4.2)

where wj is a n-dimensional vector with

wjk = Cov(Xj, Xk), j, k = 1, . . . , n.

We then also define for x ∈ Rn,

ξjb(x) = inf
{
ξ ∈ R : g

(
x+ ξwj

)
> b
}
, (4.3)

where in addition, we require that g(x + ξwj) is nondecreasing in ξ for every j = 1, . . . , n and

every x ∈ Rn. We impose no other assumptions on the function g. The monotonicity requirement

can be relaxed significantly in a relatively straightforward manner, at the expense of more complex

estimators with additional indicators. For the sake of the presentation, we do not pursue this.

4.1.2 Simulation set-up.

As in Chapter 3, we define a truncation function t by setting t(ξ) = max(|ξ|, 1) for ξ ∈ R. We

also define, for j = 1, . . . , n, x ∈ Rn, and y ∈ R,

hjb(y;x) =
φ(y)

1
n

∑n
k=1 e

ξkb (0)xk−(ξjb(0)−ξkb (0)wjk/σ
2
j )σjy

. (4.4)

We first discuss how to estimate
´∞
ξ
h(y)dy for a general function h with the ‘bulk’ close to 0.

In our setting, the bulk location is inherited from the standard Gaussian density in the numerator,

while the denominator acts as a (multple of) an indicator function. As we see shortly, the key
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complication relative to the setting of Chapter 3 is that ξ can be very negative and therefore far to

the left of the ‘bulk’ of the function h, yet a good estimator must capture the bulk well.

Estimating
´∞
ξ
h(y)dy. Our discussion of techniques for estimating

´∞
ξ
h(y)dy builds on Chap-

ter 2. As was shown in Chapter 2, it holds that for any µ > 0 and ξ ∈ R and any function h,

ˆ ∞
ξ

h(y)dy =
1

µ
E
[
eΛh(Λ/µ+ ξ)

]
,

where Λ is a standard exponential. The best choice for µ is µ = ξ as ξ →∞; however, this choice

is problematic for ξ ≤ 0.

As an additional potential problem, the bulk of the integral of h over (ξ,∞) may lie far away

from ξ, in which case the unbiased estimator

1

µ
eΛh(Λ/µ+ ξ), (4.5)

underestimates the sought integral since Λ/µ doesn’t hit the bulk of h. Thus, we seek an estimator

that avoid such a rare event estimation problem.

We solve this problem by working with

ˆ ∞
ξ

h(y)dy =

ˆ ∞
−∞

h(y)dy −
ˆ ξ

−∞
h(y)dy

Both terms need to be estimated. If ξ < 0 then we can use a similar estimator as in (4.5) for the

second term, and there is no rare event estimation problem for this term. The first term may need

to be estimated as well. For instance, since our functions h are ‘almost’ standard normal densities,

h(Z)

φ(Z)
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is a reasonable choice for an unbiased estimator of the integral

ˆ ∞
−∞

h(y)dy,

where Z is a standard normal random variable.

Then, with the truncation function t(ξ) as defined above, we use the following estimator for
´∞
ξ
h(y)dy: 

1
t(ξ)
eΛh

(
Λ
t(ξ)

+ ξ
)

ξ ≥ 0

´∞
−∞ h−∞(y)dy − 1

t(ξ)
eΛh

(
− Λ
t(ξ)

+ ξ
)

ξ < 0,

where we estimate the first term on the second line; more details are given in the proof of Proposi-

tion 4.2.1 below.

Algorithm. We now describe the steps for our algorithm to generate a single simulation replica-

tion.

Algorithm 4.1.1. The algorithm takes the inputs defined below, with the main procedure and out-

put following.

Inputs: A Gaussian random vector X of dimension n, with Var(Xj) = σ2
j for all j; a stan-

dard exponential random variable Λ, which has unit mean; and a uniform random variable J , where

J ∼ unif(1, . . . , n).

Steps: We generate sample realizations of X and Λ as well as an index j from the uniform

variable J . From these inputs, we construct the sample vector for X(J) as well as the related quan-

tities ξJb (x) and hJb (y;X(J)).
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Output: We then output our estimator Θb:

Θb =


1

t(σJξ
J
b (X(J)))

eΛhJb

(
Λ

t(σJξ
J
b (X(J)))

+ σJξ
J
b (X(J));X(J)

)
ξJb (X(J)) ≥ 0

eξ
J
b (0)XJ

1
n

∑n
k=1 e

ξk
b

(0)Xk
− 1

t(σJξ
J
b (X(J)))

eΛhJb

(
− Λ
t(σJξ

J
b (X(J)))

+ σJξ
J
b (X(J));X(J)

)
ξJb (X(J)) < 0.

(4.6)

4.2 Theoretical results.

4.2.1 Estimator is unbiased.

The following lemma is the analog of Lemma 3.2.2.

Lemma 4.2.1. Suppose the random variable J is uniformly distributed on {1, . . . , n}, and inde-

pendent of X . For b in R, we then have

P[g(X) > b] = E

[ˆ ∞
σJξ

J
b (X(J))

hJb (y;X(J))dy

]
,

where

hjb(y;X(j)) =
φ(y)

1
n

∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )σjy

.
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Proof. For b ∈ R, we have

P[g(X) > b]

=
n∑
j=1

E

[
eξ
j
b(0)Xj1[g(X) > b]∑n

k=1 e
ξkb (0)Xk

]

=
n∑
j=1

E

[
eξ
j
b(0)Xj1

[
g
(
X(j) + wjXj/σ

2
j

)
> b
]

∑n
k=1 e

ξkb (0)X
(j)
k +ξkb (0)wjkXj/σ

2
j

]

=
n∑
j=1

E

[
1
[
g
(
X(j) + wjXj/σ

2
j

)
> b
]

∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )Xj

]

=
n∑
j=1

E

[ˆ ∞
−∞

φ(y/σj)/σj∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )y

1
[
g
(
X(j) + wjy/σ2

j

)
> b
]
dy

]

=
n∑
j=1

E

[ˆ ∞
σ2
j ξ
j
b(X(j))

φ(y/σj)/σj∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )y
dy

]

=
n∑
j=1

E

[ˆ ∞
σjξ

j
b(X(j))

φ(y)∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )σjy

dy

]

=
1

n

n∑
j=1

E

[ˆ ∞
σjξ

j
b(X(j))

hjb(y;X(j))dy

]
,

as claimed.

Here, proving that our estimator is unbiased is slightly more intricate compared to Chapter 3,

since our estimator takes a different from depending on the sign of ξJb (X(J)).

Proposition 4.2.1. For b ∈ R, we have

EΘb = P(g(X) > b).

Proof. The discussion in Section 4.1.2 on estimating
´∞
ξ
h(y)dy, in conjunction with Lemma 4.2.1,
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shows that 
´∞
σJξ

J
b (X(J))

hJb (y;X(J))dy ξJb (X(J)) ≥ 0

´∞
−∞ h

J
b (y;X(J))dy −

´∞
σJξ

J
b (X(J))

hJb (y;X(J))dy ξJb (X(J)) < 0

is an unbiased estimator for P(g(X) > b). Tracing the arguments in the proof of Lemma 4.2.1 in

opposite order with ξjb(X
(j))→ −∞, we find that

eξ
J
b (0)XJ

1
n

∑n
k=1 e

ξkb (0)Xk

has the same mean as
´∞
−∞ h

J
b (y;X(J))dy conditional on X(J) and J .

4.2.2 Estimator has desirable asymptotic properties.

For j = 1, . . . , n and b ∈ R, we define the function f jb : Rn → R+ by

f jb (x) =
eξ
j
b(0)xj∑n

k=1 e
ξkb (0)xk

.

Conditions on the rare event set Ab.

(A1) (Rare event condition) For every j, we have limb→∞ ξ
j
b(0) =∞.

(A2) (Cone containment condition) If x ∈ Ab, then the cone x+ Conv({wj : j = 1, . . . , n}) also

lies in Ab, where Conv(S) stands for the convex hull of the finite set S.

(A3) (Beam projection condition) For every j and for every K > 0 large enough, we have

lim
b→∞

sup
x∈Ab∩{x:‖x−wjxj‖<K}

|f jb (x)− 1| = 0.
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(A4) (Straight hit condition) For every j and for every K > 0 large enough, we have

lim
b→∞

sup
x∈Ab∩{x:‖x−wjxj‖<K}

|ξjb(0)[ξjb(x)− ξjb(0)]| = 0.

We illustrate these assumptions in Figure 4.1 for the ‘standard’ case where

Ab = {x : max(x1, x2) > b}.

51



(a) Beam projection condition. The darkest col-
ored set is projected orthogonally onto a subset
the line {x : x1 +x2 = 0} for which f1b (x) ≈ 1.
Since ξjb(0) = b for all j, the function f jb is con-
stant when subtracting a multiple of (1, 1).

(b) Straight hit condition. The darkest colored
set is projected obliquely along the beam to a
set with roughly the same ξjb value (in fact, here,
they have equal ξjb value).

Figure 4.1: Illustrations of Assumption (A3), left, and Assumption (A4), right. The darkest col-
ored set is Ab ∩ {x : ‖x− wjxj‖ < K}.
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The main result in this section is the following theorem.

Theorem 4.2.2. Suppose that (A1)–(A4) hold. For the estimator Θb defined in (4.6),

Θb∑n
j=1

1

σjξ
j
b(0)

φ(σjξ
j
b(0))

converges to 1 in probability.

The significance of this theorem is not so much the functional form of the denominator, but it

is the fact that the estimator after appropriate deterministic normalization converges to a constant

as the event becomes more rare. As such, this theorem highlights a property of our estimator that

is consistent with a vanishing relative error. Strengthening this theorem to convergence of the first

two moments, which immediately implies vanishing relative error, remains open and we leave this

for further research.

We prove this theorem in a series of lemmas. It is an immediate consequence of the next lemma

and (A1) that ξjb(X
j) → ∞ as b → ∞. In particular, to prove Theorem 4.2.2 it suffices to only

consider the first row of (4.6). Our strategy is to rewrite parts of the estimator ‘up to a random

error’, which vanishes as b → ∞. We do so in a sequence of propositions (Proposition 4.2.2–

Proposition 4.2.4), which together prove the theorem. Throughout, we assume that σj = 1 for all

j without loss of generality.

Lemma 4.2.3. Under Assumption (A4), ξjb(0)[ξjb(X
(j))− ξjb(0)] converges to 0 in probability.

Proof. The proof follows from arguments that we use repeatedly throughout this section. We have,

for any ε > 0 and K > 0,

P (ξjb(0)[ξjb(X
(j))−ξjb(0)] > ε) ≤ P (‖X(j)‖ ≥ K)+P (ξjb(0)[ξjb(X

(j))−ξjb(0)] > ε, ‖X(j)‖ < K).

From Assumption (A4) and dominated convergence we deduce that the second term converges to
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0 as b→∞. Consequently, we establish the claim by first letting b→∞ and then K →∞ in the

preceding display.

Proposition 4.2.2. Under Assumptions (A1) and (A4), t(ξjb(X
(j)))/ξjb(0) converges to 1 in proba-

bility.

Proof. It follows from the bound, for every ε > 0,

P (ξjb(X
(j)) > ξjb(0)(1 + ε)) ≤ P (ξjb(X

(j))− ξjb(0) > ε/ξjb(0)),

which is valid by (A1) and converges to 0 by Lemma 4.2.3. From a similar lower bound we

conclude that ξjb(X
(j))/ξjb(0) converges to 1 in probability. For large enough b, by (A1) and (A4)

we have ξjb(X
(j)) ≥ 1 and therefore t(ξjb(X

(j))) = ξjb(X
(j)).

Lemma 4.2.4. Suppose (A2) and (A3) hold. For x with xj = 0 and ‖x‖ < K, we have

lim
b→∞

sup
x∈Rn:xj=0,‖x‖<K

sup
λ>0

∣∣∣∣∣∣
hjb

(
λ

t(ξjb(x))
+ ξjb(x);x

)
nφ
(

λ

t(ξjb(x))
+ ξjb(x)

) − 1

∣∣∣∣∣∣ = 0.

Proof. By definition of hjb and f jb , we have

hjb

(
λ

t(ξjb(x))
+ ξjb(x);x

)
nφ
(

λ

t(ξjb(x))
+ ξjb(x)

) = f jb

(
x+ wj

(
λ

t(ξjb(x))
+ ξjb(x)

))
.

Noting that x+wjξjb(x) lies in the (closure of)Ab, then by Assumption (A2) x+wj
(

λ

t(ξjb(x))
+ ξjb(x)

)
lies in Ab as well. Moreover, we have

sup
x∈Rn:xj=0,‖x‖<K

sup
λ>0

∣∣∣∣∣f jb
(
x+ wj

(
λ

t(ξjb(x))
+ ξjb(x)

))
− 1

∣∣∣∣∣ = sup
x∈Ab∩{x:‖x−wjxj‖<K}

|f jb (x)− 1|.

Therefore, the lemma follows from Assumption (A3).
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As a corollary, we obtain a convergence in probability (or, since the limit is a constant, in

distribution).

Proposition 4.2.3. Suppose (A2) and (A3) hold. For every j, the random variable

hjb

(
Λ

t(ξjb(X(j)))
+ ξjb(X

(j));X(j)
)

nφ
(

Λ

t(ξjb(X(j)))
+ ξjb(X

(j))
) = f jb

(
X(j) + wj

(
Λ

t(ξjb(X
(j)))

+ ξjb(X
(j))

))

converges to 1 in probability.

Proof. The argument is similar to the one in the proof of Lemma 4.2.3. Writing Y j
b for the random

variable from the statement, then Y j
b is bounded by 1 from above. For every ε > 0, we find that

P (Y j
b < 1− ε) ≤ P (‖X(j)‖ ≥ K) + P (Y j

b < 1− ε, ‖X(j)‖ < K). (4.7)

Lemma 4.2.4 and dominated convergence imply that limb→∞ P (Y j
b < 1 − ε, ‖X(j)‖ < K) = 0.

Thus, first letting b→∞ and then K →∞ in (4.7) yields the claim.

Proposition 4.2.4. Suppose (A4) holds. For every j, the random variable

φ
(

Λ

t(ξjb(X(j)))
+ ξjb(X

(j))
)

e−Λφ(ξjb(0))

converges to 1 in probability.

Proof. We give the proof with t(ξjb(X
(j))) replaced by ξjb(X

(j)), noting that we may do so in view

of Proposition 4.2.2. We have

φ
(

Λ

ξjb(X(j))
+ ξjb(X

(j))
)

e−Λφ(ξjb(0))
= exp

(
− Λ2

2ξjb(X
(j))2

)
×
φ
(
ξjb(X

(j))
)

φ(ξjb(0))
.
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The first term converges to 1 in probability by Lemma 4.2.3. For the second term, we note that

ξjb(X
(j))2 − ξjb(0)2 = ξjb(0)[ξjb(X

(j))− ξjb(0)]×
[
ξjb(X

(j))/ξjb(0)− 1
]
,

which converges to 0 in probability by Lemma 4.2.3. As a result, the second term also converges

to 1 in probability and this proves the claim.

We are now in a position to establish the main theorem.

Proof of Theorem 4.2.2. Fix j. Propositions 4.2.3 and 4.2.4 show that

hjb

(
Λ

t(ξjb(X(j)))
+ ξjb(X

(j));X(j)
)

ne−Λφ(ξjb(0))

converges to 1 in probability. Together with Proposition 4.2.2, we thus find that

1

t(ξjb(X(j)))
eΛhjb

(
Λ

t(ξjb(X(j)))
+ ξjb(X

(j));X(j)
)

nφ(ξjb(0))/ξjb(0)

converges to 1 in probability.

4.3 Numerical experiments.

4.3.1 Overview.

In this section, we present three numerical simulation studies, focused on two specific instances of

the problem form we introduced at the beginning of this chapter, that is P [X ∈ Ab], equivalently,

P
[

max
i=1,...,n

Xi > b

]
.

Similar to Chapter 3, the first problem instances are chosen by changing the covariance structure

of the Gaussian vector X , which also have the benefit of allowing closed-form solutions to which
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we can compare our method for accuracy. For an additional experiment, we also consider a cosine

correlation structure. These instances are:

1. Perfectly correlated marginals Xi. Here the pairwise correlation is set approximately equal

to 1.

2. A cosine correlation structure.

We note finally that we have not included an IID study in the numerical section for this chapter.

This exclusion is due to added complications in the calculation of our method for ξjb(x) in the IID

case of Chapter 4, which is unlike in the other two studies for this section. These computational

differences make the IID case here less comparable to the others.

4.3.2 Perfect correlation study.

For this case study, because the marginals are perfectly correlated, the problem has the simple

solution,

P
[

max
i=1,...,n

Xi > b

]
= P[X1 > b] = 1− Φ(b).

First, we present a table given in 4.1 which summarizes the simulated versus true values, and also

includes the sample variance and relative error calculations of our Monte Carlo estimates. For the

Monte Carlo parameters, we use 106 replications, and n = 16 Gaussian marginals. Following this

we also give graphical summaries in 4.2 and 4.3 of the data.

Second, we present a graphical summary of the complementary CDF and relative error perfor-

mance. As with the previous study, data from the tables and accompanying two graphs altogether

are empirical evidence both that the MC estimates are highly accurate, and also that the relative

error of the estimation procedure has stayed bounded, suggesting computational efficiency.
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Table 4.1: Perfect Correlation Study: Monte Carlo Estimates vs. True Values

Threshold Sample Mean True Values Std. Error Relative Error
4 3.167E-05 3.167E-05 3.217E-09 1.016E-04
4.5 3.398E-06 3.398E-06 2.870E-10 8.45E-05
5 2.867E-07 2.867E-07 2.041E-11 7.12E-05
5.5 1.899E-08 1.899E-08 1.154E-12 6.07E-05
6 9.867E-10 9.866E-10 5.167E-14 5.24E-05
6.5 4.016E-11 4.016E-11 1.830E-15 4.56E-05
7 1.280E-12 1.280E-12 5.117E-17 4.00E-05
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Figure 4.2: Perfect Correlation Study: Complementary CDF
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Figure 4.3: Perfect Correlation Study: Relative Error vs. Thresholds
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4.3.3 Cosine correlation study.

For this numerical test, we choose a cosine covariance function, where closed-form formulae exist

to evaluate the answer exactly.

For this purpose, we represent the Gaussian process as a cosine field, given by the parameteri-

zation

f(t) = Z1 cos t+ Z2 sin t, (4.8)

where t stands for time, with Z1 and Z2 representing independent standard normals. As can be

shown, the cosine process from (4.8) is a classical example of a stationary Gaussian process, where

it can further be shown that the covariance between any two points is given by the cosine of the

difference between those two points, i.e.

Cov(f(s), f(t)) = cos(t− s), s, t ∈ R.

Using this set-up, the result is known for the time interval t ∈ [0, .75] that

P

[
sup

t∈[0, .75]

f(t) > x

]
= 1− Φ(x) +

3

8π
e−x

2/2, (4.9)

where Φ(·) represents the standard normal cumulative distribution function.

In our experiments, we estimate an approximation of this probability by discretizing the interval

over which we take the supremum. In fact, we divide the interval into n = 16 equal pieces and run

106 simulation replications.

Below, we present a table in 4.2 which summarizes the simulated versus true values, and also

includes the sample variance and relative error calculations. We also give graphical summaries

following the table in 4.4 and 4.5.
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Table 4.2: Cosine Study: Monte Carlo Estimates vs. True Values

Threshold Sample Mean True Values Std. Error Relative Error
4 7.159E-05 7.171E-05 3.364E-08 4.699E-04
4.5 8.164E-06 8.180E-06 3.862E-09 4.731E-04
5 7.299E-07 7.315E-07 3.454E-10 4.732E-04
5.5 5.108E-08 5.121E-08 2.405E-11 4.707E-04
6 2.797E-09 2.805E-09 1.304E-12 4.662E-04
6.5 1.196E-10 1.200E-10 5.507E-14 4.603E-04
7 3.998E-12 4.013E-12 1.812E-15 4.532E-04
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Figure 4.4: Cosine Study: Complementary CDF
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Figure 4.5: Cosine Study: Relative Error vs. Thresholds
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4.4 Appendix.

This appendix works out the ‘standard maximum’ case in more detail, where g(X) = maxi=1,...,nXi

and the Xi are standard normal. Throughout this appendix, we assume that 0 < Cov(Xi, Xj) < 1

for all i 6= j. We show that in this case, we can improve our estimator in the regime b → −∞.

Recall that we chose our estimator in search of desirable properties as b → ∞, yet it is unbiased

for every b ∈ R. In this appendix we are working towards an estimator that is efficient in both tails.

As b → −∞ the first term on the second line in (4.6) becomes n1[XJ = min(X1, . . . , Xn)],

which has a high variance if n is large. This is undesirable and therefore we introduce a control

variate. This construction builds on the fact that this term, conditionally on X(j), has the same

mean as ˆ ∞
−∞

hjb(y;X(j))dy,

which converges as b→ −∞ by dominated convergence to

ˆ ∞
−∞

hj−∞(y;X(j))dy

where, for y ∈ R,

hj−∞(y;X(j)) := lim
b→−∞

hjb(y;X(j)) = nφ(y)1

(
y ≤ min

k 6=j

X
(j)
k

1− wjk

)
.

As a result, ˆ ∞
−∞

hj−∞(y;X(j))dy = nΦ

(
min
k 6=j

X
(j)
k

1− wjk

)
,

has, conditionally on X(j), the same mean as n1[Xj = min(X1, . . . , Xn)].

Therefore, the first expression on the second line of (4.6) has, conditionally on J and X(J), the
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same mean as

nΦ

(
min
k 6=J

X
(J)
k

1− wJk

)
− n1 [Xj = min(X1, . . . , Xn)] +

eξ
J
b (0)XJ

1
n

∑n
k=1 e

ξkb (0)Xk

− 1

t(σJξJb (X(J)))
eΛhJb

(
− Λ

t(σJξJb (X(J)))
+ σJξ

J
b (X(J));X(J)

)
,

so by replacing the second line of (4.6) by this expression, we have an estimator with lower variance

as b→ −∞.
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CHAPTER 5

CONDITIONAL FUNCTIONALS

5.1 Overview.

Our goal in this chapter is the construction of an efficient simulation algorithm to compute the

quantity, for a level-crossing parameter b, and for any measurable functions g:

E [f(X) | g(X) > b] . (5.1)

As before, we assume b to be large, making traditional Monte Carlo procedures inefficient.

Problems involving a conditional expectation are readily incorporated into the existing method-

ology we have established in this thesis. To see the connection, we need only to note that the

conditional expectation from the above display can be reduced to the ratio of two unconditional

expectations, given by
E [f(X) ; g(X) > b]

P [g(X) > b]
.

This chapter is intended as an expository treatment, similar to Chapter 3; thus, for the construc-

tion of the conditional estimator, we focus on linear functionals f(X), given a vector c ∈ Rn of

the form

f(X) := 〈c, X〉.

This simplification is to allow a concise form of the resulting estimator, without additional terms

which may arise in more complicated functions. Examples of other relevant functions would be a

sum of squared marginals
∑

iX
2
i , or sums involving cross-product terms Xi ·Xj .

Having developed theory for the conditional estimator, we then discuss a wide array of problem

applications. Particularly, these areas of application may be understand as motivated by observa-
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tions concerning financial tail risk, which often incorporate conditional statements.

5.2 Applications in finance.

Problems involving conditional expectations of the form E [f(X)| g(X) > b], as we explore here

in this chapter, are particularly relevant to work done in insurance and financial risk. We focus in

this chapter on financial applications involving the computation of risk measures.

Risk measures are closely related to the work done in Chapter 4 because they involve tail

probabilities of form P[g(X) > b]. For this instance, the Gaussian vector X may be comprised

of components X1, X2, . . . , Xn which correspond to n assets in a hypothetical portfolio. The

computation of the tail probability P[g(X) > b] is then used to assess the firm’s level of financial

risk. The choice of g will vary depending on how a practitioner measures loss. In some situations,

total loss may be most important, in which case a linear functional summing the losses across

portfolio assets Xi may be used. In other cases, where the size of a specific loss in an individual

asset is important, a functional such as maxiXi, rather than total loss, may be used instead.

Mathematically, risk measures can be understood as a probability mapping, often based on

calculating a quantile q, such that q = P[g(X) > b], or instead directly using the underlying tail

probability, to which a risk value is assigned. In the classical setting of VaR, the risk metric is the

extreme quantile itself, but related metrics are also often used, frequently alongside VaR. These

additional measures may condition on certain tail events, such as a VaR which exceeds a certain

loss threshold.

Financial risk measures have received considerable attention in the literature, particularly fol-

lowing severe market volatility in 2007 and 2008. VaR and its associated measures such as ex-

pected shortfall, also known as conditional VaR or average VaR, can be categorized within a

much broader class of risk functionals, with differing attributes including coherence versus non-

coherence, or convexity, which are summarized, for example, in [16] as well as [14] and [15].

For assessing financial risk, one important area of study looks at fluctuations in the market
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value of a portfolio’s total assets. The total assets may be represented in a simple setting by the

linear sum
∑

iXi, with a risk measure computed conditional on a loss level given by a threshold

b. In the notation of this chapter, taking g(X) := maxiXi, the relevant quantity to compute would

be

E

[∑
i

Xi

∣∣∣∣∣ max
i
Xi > b

]
.

Because these problem involve tail probabilities for extreme thresholds b, the underlying prob-

abilities are rare events to which the present line of research is well-suited. Moreover, given the rise

in complicated portfolio structures in the financial industry, there is a need for computationally-

powerful simulation algorithms which, in turn, are flexible across different choices of risk func-

tionals. We believe the flexibility of our method to incorporate various functions f and g is a key

benefit, although we show only a simple setting in this chapter.

5.2.1 Primary definitions.

Consistent with prior chapters, we define X to be an n-dimensional, multivariate Gaussian random

vector. As in Chapter 4, we allow each of the marginals Xi to have arbitrary variance σ2
i for

i = 1, . . . , n, and we define wji = Cov(Xi, Xj). Also consistent with prior usage, we let J signify

a uniformly-distributed random variable on {1, . . . , n}, and let Λ be a standard, exponentially-

distributed random variable, mutually independent of J and also independent of X .

Our definitions of the associated variables X(j) and ξjb correspond to the previous formulas

(4.2) and (4.3), respectively. To assist the reader, we have included these definitions here below,

with

X(j) := X −Xjw
j/σ2

j , j = 1, . . . , n

and for x ∈ Rn,

ξjb(x) = inf
{
ξ ∈ R : g

(
x+ ξwj

)
> b
}
,

where g(x+ ξwj) is nondecreasing in ξ for every j = 1, . . . , n and every x ∈ Rn.

69



Furthermore, as previously done, we use a truncation function t by setting t(ξ) = max(|ξ|, 1)

for ξ ∈ R. We also define the function hjb(y;x), given for j = 1, . . . , n, x ∈ Rn, and y ∈ R, by

hjb(y;x) =
φ(y)

1
n

∑n
k=1 e

ξkb (0)xk−(ξjb(0)−ξkb (0)wjk/σ
2
j )σjy

.

New to this chapter, we also define the related function, which we shall call ιjb(y;x), given by

ιjb(y;x) := y · hjb(y;x). (5.2)

As mentioned in the Overview, we focus here on linear functionals f(X) =
∑n

i=1 ciXi. Here

we let the Xi correspond to market value losses in a portfolio with n assets in total, where Xi

represents the market value loss on asset i. (A positive Xi thus corresponds to a loss, while a

negative Xi corresponds to a gain.) Additionally, we let the constants c1, c2, . . . , cn correspond to

arbitrary weights.

We then define the total portfolio market loss L to be given by

L :=
n∑
i=1

ciXi, ci > 0, i = 1, . . . , n. (5.3)

We also define a “loss level” which we shall denote b.

Given the loss level b, the risk quantity which we will simulate is the expected loss L = 〈c, X〉

given the occurrence of the loss event b. In this chapter, we will focus specifically on the max

functional. The mathematical quantity for the conditional expected loss is then given by:

E
[
〈c, X〉 | max

i
Xi > b

]
=

E [〈c, X〉 ; maxiXi > b]

P [maxiXi > b]
. (5.4)
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5.2.2 Simulation set-up.

Our simulation goal is the construction of an unbiased Monte Carlo estimator ηb such that

Eηb = E
[
〈c, X〉 ; max

i
Xi > b

]
, (5.5)

so that an estimator for the sought quantity (5.4) can be found upon taking the ratio of ηb and the

estimator Θb for the tail probability P (g(X) > b) from Chapter 4. Thus, the estimator described

in Chapter 5 uses the output from the Monte Carlo estimator in Chapter 4 as input.

Algorithm. We now describe the steps for our algorithm that generates our estimator for

E[〈c,X〉| g(X) > b].

Algorithm 5.2.1. The algorithm takes the inputs defined below, with the main procedure and out-

put following.

Inputs: A Gaussian random vector X of dimension n, with Var(Xj) = σ2
j for all j; a stan-

dard exponential random variable Λ, which has unit mean; and a uniform random variable J , where

J ∼ unif(1, . . . , n).

Steps: We generate sample realizations of X and Λ as well as an index j from the uniform

variable J . From these inputs, we construct the sample vector for X(J) as well as the related

quantities ξJb (x) and hJb (y;X(J)). By the methods of Chapter 4, we also compute and store the

value for the simulated tail probability, again to be denoted Θb, given by:

Θb =


1

t(σJξ
J
b (X(J)))

eΛhJb

(
Λ

t(σJξ
J
b (X(J)))

+ σJξ
J
b (X(J));X(J)

)
ξJb (X(J)) ≥ 0

eξ
J
b (0)XJ

1
n

∑n
k=1 e

ξk
b

(0)Xk
− 1

t(σJξ
J
b (X(J)))

eΛhJb

(
− Λ
t(σJξ

J
b (X(J)))

+ σJξ
J
b (X(J));X(J)

)
ξJb (X(J)) < 0.
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Output: We have the collective output:

ηb,11
[
ξJb (X(J)) ≥ 0

]
+ ηb,21

[
ξJb (X(J)) < 0

]
Θb

, (5.6)

where

ηb,1 = 〈c, X(J)〉
[

1

t(σJξJb (X(J)))
eΛhJb

(
Λ

t(σJξJb (X(J)))
+ σJξ

J
b (X(J)) X(J)

)]
+

1

t(σJξJb (X(J)))
〈c, wJ〉eΛιJb

(
Λ

t(σJξJb (X(J)))
+ σJξ

J
b (X(J)) X(J)

)

and

ηb,2

= 〈c, X(J)〉

[
eξ
J
b (0)XJ

1
n

∑n
k=1 e

ξkb (0)Xk
− 1

t(σJξJb (X(J)))
eΛhJb

(
− Λ

t(σJξJb (X(J)))
+ σJξ

J
b (X(J));X(J)

)]

− 1

t(σJξJb (X(J)))
〈c, wJ〉eΛιJb

(
− Λ

t(σJξJb (X(J)))
+ σJξ

J
b (X(J));X(J)

)

We write ηb = ηb,11
[
ξJb (X(J)) ≥ 0

]
+ ηb,21

[
ξJb (X(J)) < 0

]
. If multiple Monte Carlo replications

are run, our output is the sample average of the numerator in (5.6) over the sample average of the

denominator in (5.6).

5.3 Theoretical results.

5.3.1 Numerator of estimator is unbiased.

The following lemma is the analog of Lemma 4.2.1.

Lemma 5.3.1. Suppose the random variable J is uniformly distributed on {1, . . . , n}, and inde-
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pendent of X . For b in R, we then have

E [〈c, X〉; g(X) > b] = E

[ˆ ∞
σJξ

J
b (X(J))

[
〈c, X(j)〉+ 〈c, wjy〉

]
hJb (y;X(J))dy

]
,

where

hjb(y;X(j)) =
φ(y)

1
n

∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )σjy

.

Proof. For b ∈ R, we then may construct our estimator using the steps to follow, proceeding

similar to the proof of unbiasedness we gave in Chapter 4:

E [〈c, X〉; g(X) > b]

=
n∑
j=1

E

[
n∑
i=1

ci ·Xi ·
eξ
j
b(0)Xj1[g(X) > b]∑n

k=1 e
ξkb (0)Xk

]

=
n∑
j=1

E

[
n∑
i=1

ci(X
(j)
i +Xjw

j
i ) ·

eξ
j
b(0)Xj1

[
g
(
X(j) + wjXj/σ

2
j

)
> b
]

∑n
k=1 e

ξkb (0)X
(j)
k +ξkb (0)wjkXj/σ

2
j

]

=
n∑
j=1

E

[[
〈c, X(j)〉+Xj〈c, wj〉

]
·

1
[
g
(
X(j) + wjXj/σ

2
j

)
> b
]

∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )Xj

]

=
n∑
j=1

E

[[
〈c, X(j)〉+Xj〈c, wj〉

]
·

1
[
g
(
X(j) + wjXj/σ

2
j

)
> b
]

∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )Xj

]
.

From here we keep track of each component of the estimator separately, according to the compo-

nents of the sum given by: (i) 〈c, X(j)〉 and (ii) Xj〈c, wj〉.
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We start with the second component, (ii) Xj〈c, wj〉.

n∑
j=1

E

[
Xj〈c, wj〉 ·

1
[
g
(
X(j) + wjXj/σ

2
j

)
> b
]

∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )Xj

]

=
n∑
j=1

E

[ˆ ∞
−∞

〈c, wjy〉φ(y/σj)/σj∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )y

1
[
g
(
X(j) + wjy/σ2

j

)
> b
]
dy

]

=
n∑
j=1

E

[ˆ ∞
σ2
j ξ
j
b(X(j))

〈c, wjy〉φ(y/σj)/σj∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )y
dy

]

=
n∑
j=1

E

[ˆ ∞
σjξ

j
b(X(j))

〈c, wjy〉φ(y)∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )σjy

dy

]

=
1

n

n∑
j=1

E

[ˆ ∞
σjξ

j
b(X(j))

〈c, wjy〉hjb
(
y; X(j)

)
dy

]
.

Next, we address the first component, (i) 〈c, X(j)〉.

n∑
j=1

E

[
〈c, X(j)〉

1
[
g
(
X(j) + wjXj/σ

2
j

)
> b
]

∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )Xj

]

=
n∑
j=1

E

[
〈c, X(j)〉

ˆ ∞
−∞

φ(y/σj)/σj∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )y

1
[
g
(
X(j) + wjy/σ2

j

)
> b
]
dy

]

=
n∑
j=1

E

[
〈c, X(j)〉

ˆ ∞
σ2
j ξ
j
b(X(j))

φ(y/σj)/σj∑n
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ξkb (0)X
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k −(ξjb(0)−ξkb (0)wjk/σ

2
j )y
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]

=
n∑
j=1

E

[
〈c, X(j)〉

ˆ ∞
σjξ

j
b(X(j))

φ(y)∑n
k=1 e

ξkb (0)X
(j)
k −(ξjb(0)−ξkb (0)wjk/σ

2
j )σjy
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]

=
1

n

n∑
j=1

E

[
〈c, X(j)〉

ˆ ∞
σjξ

j
b(X(j))

hjb
(
y; X(j)

)
dy

]
.

Finally, merging the two derivations above, we arrive at a single expression for the modified esti-

mator, which is

1

n

n∑
j=1

E

[ˆ ∞
σjξ

j
b(X(j))

[
〈c, X(j)〉+ 〈c, wjy〉

]
hjb
(
y; X(j)

)
dy

]
.
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Here we show the final steps for the unbiasedness of the numerator of our estimator, according

to the sign of ξJb (X(J)).

Proposition 5.3.1. For b ∈ R, we have

Eηb = E [ 〈c, X〉; g(X) > b ] .

Proof. Here we follow the same reasoning used in estimating
´∞
ξ
h(y)dy as given previously in

Section 4.1.2, but modified for this chapter, so that the function h(y) inside the integral is scaled

by the terms 〈c, X(j)〉 and 〈c, wjy〉. Using these results in conjunction with Lemma 5.3.1, shows

that


´∞
σJξJb (X(J))

[
〈c, X(J)〉+ 〈c, wJy〉

]
hJb (y;X

(J))dy ξJb (X
(J)) ≥ 0

´∞
−∞

[
〈c, X(J)〉+ 〈c, wJy〉

]
hJb (y;X

(J))dy −
´∞
σJξJb (X(J))

[
〈c, X(J)〉+ 〈c, wJy〉

]
hJb (y;X

(J))dy ξJb (X
(J)) < 0

is an unbiased estimator for E [〈c, X〉; g(X) > b].

5.4 Numerical experiments.

5.4.1 Overview.

Here we take X a general Gaussian random vector and assess the joint expectation which is the

numerator of our estimator, with the numerator represented by the expression ηb, using a linear

functional f(X) and also a max functional for g(X). This expression is

Eηb = E [f(X); g(X) > b]

= E
[
〈c, X〉 ; max

i
Xi > b

]
.
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For purposes of studying the expected shortfall, we vary the constants c as well as change the cor-

relation structure between the marginals Xi. In turn, we can also compare risk measures computed

using our method to traditional methods. For these comparisons, we take g(X) to be the max func-

tional, while traditional methods take g(X) to be a linear function of the marginals Xi, for which

analytical solutions exist.

For validation purposes, we use the known values for the univariate case where X ∼ N (0, 1),

given by

E[X; X > b] = φ(b).

Below, we present some initial tests of our algorithm for varying covariance structures.

5.4.2 Perfect correlation study.

In this first example, we take a simple case where all constants ci are set equal to 1. We use

Monte Carlo parameters with n = 106 replications and m = 16 Gaussian marginals, assuming

pairwise correlations. Because we assume perfect correlation between the marginals Xi, a multi-

dimensional setting collapses to a univariate setting for which the test threshold is known.

Table 5.1: Perfect Correlation Study: E [X1; max(X1, . . . , X16) > b]

Threshold Sample Mean True Values Std. Error Relative Error
4 1.339E-04 1.338E-04 9.102E-09 6.796E-05
4.5 1.60E-05 1.60E-05 8.969E-10 5.61E-05
5 1.49E-06 1.49E-06 6.989E-11 4.70E-05
5.5 1.08E-07 1.08E-07 4.298E-12 3.99E-05
6 6.08E-09 6.08E-09 2.082E-13 3.42E-05
6.5 2.67E-10 2.67E-10 7.933E-15 2.97E-05
7 9.15E-12 9.13E-12 2.375E-16 2.60E-05
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Figure 5.1: Perfect Correlation Study: Estimated Relative Error

77



5.4.3 Bivariate study.

In this new case, we take a hypothetical portfolio L =
∑2

i=1 ciXi, with ci = 1, but assume the

correlation between the marginals is equal to 0.5. We then compute the new conditional loss L for

thresholds b ∈ {4, 4.5, 5, . . . , 6.5}, using Monte Carlo parameters n = 106 replications and m = 2

Gaussian marginals. For a bivariate normal vector, with standard marginals, the true value may be

computed according to the formula,

E [X1; X1 +X2 > b] = φ(b) · [1 + Cov(X1, X2)] .

For the graph in 5.3 depicting how the joint expectation changes for varying covariances, a thresh-

old of b = 6 is used.

Table 5.2: Bivariate Study: E [X1; max(X1, X2) > b]

Threshold Sample Mean True Values Std. Error Relative Error
4 1.984E-04 2.007E-04 2.514E-07 1.268E-03
4.5 2.38E-05 2.40E-05 2.900E-08 1.22E-03
5 2.22E-06 2.23E-06 2.632E-09 1.18E-03
5.5 1.61E-07 1.62E-07 1.874E-10 1.16E-03
6 9.10E-09 9.11E-09 1.040E-11 1.14E-03
6.5 4.00E-10 4.00E-10 4.516E-13 1.13E-03
7 1.37E-11 1.37E-11 1.532E-14 1.12E-03
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Figure 5.2: Bivariate Study, 0.5 Correlation: Estimated Relative Error

Table 5.3: Covariance Table for Monte Carlo Estimates

Cases: Problem: E[X1; max(X1, X2) > 6]
Cov(X1, X2) Sample Means True Values Std. Error Relative Error
0.1 6.707E-09 6.683E-09 1.785E-11 2.662E-03
0.2 7.283E-09 7.291E-09 1.598E-11 2.195E-03
0.3 7.898E-09 7.899E-09 1.414E-11 1.791E-03
0.4 8.485E-09 8.506E-09 1.226E-11 1.445E-03
0.5 9.099E-09 9.114E-09 1.047E-11 1.151E-03
0.6 9.694E-09 9.721E-09 8.538E-12 8.807E-04
0.7 1.027E-08 1.033E-08 6.678E-12 6.501E-04
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Figure 5.3: Monte Carlo Estimates versus Covariance, Threshold b = 6
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limit. Ann. Probab. 37, 4 (2009), 1459–1482.

[45] VANDEN-EIJNDEN, E., AND WEARE, J. Rare event simulation of small noise diffusions.
Comm. Pure Appl. Math. 65, 12 (2012), 1770–1803.

[46] YAMAI, Y., AND YOSHIBA, T. Comparative analyses of expected shortfall and value-at-risk.
J. Oper. Res. Soc. Japan 45, 4 (2002), 490–506. Theory, methodology and applications in
financial engineering.

84


	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction
	Gaussian processes in practice.
	Theoretical context.
	Problem formulation.
	Research contributions.
	Structure of thesis.

	Mathematical Framework and Motivation
	Preliminaries.
	Traditional Monte Carlo.
	Importance Sampling.
	Notions of efficiency.

	One-dimensional Gaussian tail probabilities.
	Two-dimensional Gaussian maximum.

	Constrained Gaussian Maximum
	Overview.
	Primary assumptions and definitions.
	Simulation set-up.

	Theoretical results.
	Estimator is unbiased.

	Numerical experiments.
	Overview.
	IID Study.
	Perfect correlation study.

	Appendix.

	General Gaussian Functionals
	Overview.
	Primary definitions.
	Simulation set-up.

	Theoretical results.
	Estimator is unbiased.
	Estimator has desirable asymptotic properties.

	Numerical experiments.
	Overview.
	Perfect correlation study.
	Cosine correlation study.

	Appendix.

	Conditional Functionals
	Overview.
	Applications in finance.
	Primary definitions.
	Simulation set-up.

	Theoretical results.
	Numerator of estimator is unbiased.

	Numerical experiments.
	Overview.
	Perfect correlation study.
	Bivariate study.


	Bibliography

