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SUMMARY

The first part of this dissertation is devoted to synchronization in distributed Josephson

junction arrays. Josephson junction arrays have long been the theoretical archetype for

uniformly, globally coupled oscillators. However, as experiments push arrays to higher

frequencies the old model of Josephson junction arrays no longer captures the dynamics

of real arrays. We explore the dynamics of a newer model that is valid even in the high

frequency limit. In the second part we explore a variation of stochastic resonance. Typically,

stochastic resonance is modelled using a single source of idealized white noise. We examine

what happens when multiple sources of noise are present with multiple correlation times.

We find that if one noise source is white and the other colored then stochastic resonance

may or may not occur as a function of the correlated noise strength. If the correlation time

is small, then stochastic resonance still occurs. However, if the correlation time becomes

too large then stochastic resonance disappears altogether.
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CHAPTER 1

INTRODUCTION

Coherence is an astonishing phenomenon. To illustrate this statement, let’s take a simple

example: a crowd of people clapping in time with music. At first glance this example might

seem trivial. One might think: “of course people can clap together, how hard can that be?”

Well, let’s think carefully about what it takes for a crowd to behave in such a synchronous

manner.

First, each individual must be able to clap rhythmically. Luckily, we, as humans, can

force our bodies to oscillate at a (mostly) constant frequency. Most people do this invol-

untarily when they clap, walk, run, or tap their fingers impatiently. For some reason our

bodies tend to do some things rhythmically. In one sense this is not surprising, since our

bodies execute many truly involuntary functions periodically (such as breathing and beating

of the heart). Though scientists have studied how humans perform oscillatory feats, we are

more concerned here that they can perform them. In other words, humans are oscillators.

Another necessary component of rhythmic clapping is the ability to hear. It is one

thing to be able to clap, but it is another to know when to do it. Hearing allows us to

understand what is going on around us. That sensory input, in turn, tells us when, and

how fast, we should clap. Not every oscillator has the ability to obtain information about

the other oscillators around it. For instance, a piano player might set his tempo based on

the clicks and clacks of a metronome, but no one would say that the metronome is clicking

and clacking based on the music of the pianist. This is called driving – the metronome is

driving the pianist, but not the other way around. Likewise, when a crowd claps in time

with music, it is the music that is driving the crowd.

Finally, it is important that humans can adapt to the changing environment. If, for

instance, one finds that he is clapping too slowly, he can easily change his tempo to fit the

music. Or, if in the absence of music, the tempo of a group starts to change, individuals

1



can change with it, anticipating when the next clap should come. This ability also allows us

to ignore people who are clapping incorrectly, since we are more inclined to follow what we

perceive as the correct tempo set by the music. Adaptability is not trivial. Imagine trying

to program a computer to “clap” in time with humans. It is easy to make the computer

clap at a constant rhythm, but it is another thing altogether to get the computer to change

its tempo based upon what a less precise human does.

Ironically, it is this last ability, the one that makes us the most flexible, that actually

makes it hard to get large crowds to clap in unison. We have all been in audiences that

start clapping along to music, but never seem to quite get into unison. What causes this?

Typically it is due to several factors. If the crowd is large enough, there is generally a

noticeable difference between the times when the front of the audience hears the music and

when the back of the audience hears it. This causes a difference in the drive between the two

groups. The front group is being driven before the rear group. As a result, the two groups

clap at different times. In the absence of our ability to adjust the frequency of our claps,

this would not cause a problem. However, people in one group can hear the other group

and sense that something is wrong. The individual clapper must make a choice between

following the music that he hears, and trying to synchronize with other members of the

audience. The decision usually depends on which urge is stronger, and probably involves

psychological factors beyond the scope of this discussion. Nevertheless, a decision is made,

and when every person in an audience makes that decision the result rarely leads to perfect

synchronization of the clapping.

Certainly there are ways to improve the synchronization capability of large groups. For

instance, if each individual had a personal headset on which to listen to the music, everyone

would hear the music at the same time. Visual clues could also be given. Because light

travels much faster than sound, these visual clues would reach everyone nearly instanta-

neously. Both of these solutions fix the problem of disparate driving times for different

members of the audience. In other words, these tools make each member of the audience

more identical to the other members. Generally, the more similarly each clapper hears and

reacts to his surroundings, the more synchronization will be possible. This is because the
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choice between following the crowd tempo or following the drive tempo is now a choice

between nearly identical options.

This simple example illustrates an important point about the synchronization of cou-

pled oscillators. Typically, in the literature, these oscillators are considered uniformly and

globally coupled, meaning that each oscillator hears and senses all of the other oscillators

and the response of each to those inputs is also the same. Unfortunately, as in the case of

the crowd clapping along to music, oscillators are rarely coupled uniformly and globally.

The first part of this dissertation we address the matter of non-uniformly coupled oscil-

lators. By examining high frequency Josephson junction arrays new light will be shed on

an old subject. Josephson junction arrays have long been esteemed as the archetype of syn-

chronizing oscillator arrays. Wiesenfeld et al. realized that, in one limit, Josephson junction

arrays can be mapped onto a variant of the mathematical model called the Kuramoto os-

cillator array [61, 62, 86, 103]. This model treats the junctions as identical oscillators, each

of which is uniformly coupled into every other oscillator. The synchronization properties of

the Kuramoto model were by then well understood, and its extension onto the Josephson

junction array problem worked beautifully.

Unfortunately, one assumption by Wiesenfeld et al. breaks down in the high frequency

limit. This assumption, known as the Kirchhoff limit, had treated the current through the

junctions as uniform throughout the array. At high frequencies, however, the current is no

longer uniform, and varies at each junction depending on its position along the array. As

real arrays are pushed to ever higher frequencies, it becomes important that we understand

the dynamics of Josephson junction arrays operating outside the Kirchhoff limit.

We will show that the consequence of the breakdown of the Kirchhoff limit assumption

is a system that can be mapped onto another variant of the Kuramoto model – one in which

the coupling scheme is no longer uniform. In other words, each oscillator in the array senses

the other oscillators differently. This non-uniformity in the coupling drastically changes the

synchronization properties of the array, and we will explore exactly how this works.

The second part of this dissertation will be dedicated to a different type of coherence

phenomenon known as stochastic resonance. Instead of trying to synchronize multiple

3



oscillators, here we try to maximize the coherence of a single system to a periodic drive.

To complicate matters the system is in a noisy environment. This situation is analogous

to hearing. Imagine trying to listen to a pure tone, perhaps a middle C played on a violin.

However, in addition to the violin there is also some noise, perhaps from a radio that has

been tuned to an empty band of the radio spectrum. Normally, the louder the radio is the

harder it is to hear the violin, and we hear the violin best when the noise from the radio is at

the lowest possible volume. Stochastic resonance, by contrast, is the phenomenon by which

the violin is actually heard better when the volume of the noise is turned up to some finite

level. Unfortunately, real radios cannot take advantage of this phenomenon, because their

response to incoming radio waves is approximately linear. Stochastic resonance requires a

nonlinear response of the system to incoming signals.

Stochastic resonance was first proposed as a mechanism to explain the periodicity of

the Earth’s ice ages [3]. Since that time stochastic resonance has been found in a myriad

of systems and is now well understood in a variety of forms. Systems that exhibit stochas-

tic resonance typically contain three necessary elements. First, the system must contain

a nonlinearity. The first models of stochastic resonance consisted of systems in which the

dynamics are prescribed by a double well potential function, creating the necessary nonlin-

earity. The two wells of the potential function generally correspond to two different states of

the system, with one state corresponding to one value of the output current, and the other

state a different value. As the periodic drive forces the system towards one state and then

the other, the system may respond by switching to the corresponding well. The drive, which

is the second necessary element of stochastic resonance, is the “signal” which the system

is trying to detect. In the case of our simple hearing analogy the drive is the middle C

played by the violin. The third and final element is the noise. It provides a random forcing

term that usually muddies the clear signal of the drive. In systems that exhibit stochastic

resonance, though, we shall see that the noise will actually help the system detect the signal.

It is the noise that will be the central focus of our study of stochastic resonance. In

most models, the noise is typically assumed to be Gaussian white noise. This type of

noise, which is an idealization of what truly occurs in physical systems, has the advantage

4



that certain analytic methods for analyzing such systems become tractable. Nevertheless,

many systems that exhibit stochastic resonance are not well modelled by white noise, and

instead may contain noise that is “colored”, or perhaps even have multiple sources of noise

with differing characteristics. When this is taken into account the analysis of the resulting

equations becomes prohibitively difficult. We will examine two theories that might be able

to explain stochastic resonance in systems that contain two sources of noise - one that is

fast (i.e. white) and one that is slow (i.e. colored).

At first glance these two phenomena - synchronization and stochastic resonance - are very

different. In one, synchronization, we have a deterministic system comprised of numerous

interacting parts, while in the other, stochastic resonance, the system is non-deterministic

and consists of just a single driven sensor. The two are very different, but they share

something fascinating. Both are complex systems that exhibit emergent phenomenon. This

means that even though each system is, at its core, a complicated and unorganized entity,

the behavior of each can be strikingly (and perhaps unexpectedly) rich and uniform. In

other words, the coherence of both systems is more than what one would expect given their

complex nature.
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CHAPTER 2

JOSEPHSON JUNCTION ARRAYS

2.1 The Josephson Effect

In 1962, Brian Josephson made an astonishing discovery [57]. He correctly predicted that

when two superconducting electrodes were brought close to each other a supercurrent would

arise between them (see Figure 1). This would happen whenever the gap was small enough

and filled with some insulating material. Josephson calculated that the supercurrent would

have the magnitude

I = Ic sin(φ), (1)

where Ic is the critical current (the maximum current allowed), and φ is the phase difference

between the quantum wavefunctions in the two electrodes. As current flows from one

electrode into the other a voltage arises between them. Josephson also found that when

this occurs the induced voltage is simply related to the phase difference by

V =
~φ̇

2e
, (2)

where e is the magnitude of the charge of the electron, V is the voltage between the two

electrodes, ~ is Planck’s constant divided by 2π, and the overdot denotes differentiation

with respect to time. Equations (1) and (2) and the physical system they describe are now

eponymously known as the Josephson equations and the Josephson junction, respectively.

A derivation of Equations (1) and (2) will not be given in this text. For a simple, heuristic

derivation see Reference [25], and for a more detailed derivation see Reference [20].

It must be noted that Equations (1) and (2) model ideal junctions only. In practice

the actual dynamics of a Josephson junction can behave quite differently. This is because

a junction has electrical properties beyond that of the pure Josephson effect. For instance,
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superconducting wires

gap

Figure 1: Schematic of a simple Josephson junction. It consists of a superconducting wire
with a gap.

(a) (b) (c)

or

Figure 2: A practical Josephson junction (a) can be modelled either (b) in parallel with both
a resistor and a capacitor or (c) with just a resistor. The practical junction is represented
by a ⊗ while an ideal junction is represented by a ×.

the gap can cause significant capacitance in the circuit, and the material inside the gap may

not be a pure insulator. These effects are commonly modelled by placing the ideal junction

in parallel with a resistor and a capacitor [69], as shown in Figures 2 (a) and (b). The actual

values of the resistance and capacitance are determined by the material and geometry of

the system.

In practice the capacitance can be made very large, effectively eliminating the need to

put a capacitor in the model. The result is the resistively shunted junction (RSJ) model

[65], with just the ideal model in parallel with a resistor (see Figure 2 (c)). While other

models do exist [17, 65], the RSJ model is of particular interest due to its common use in

studies of Josephson junction arrays. These will be discussed later in the text.
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The Josephson effect is now known to be quite general, occurring in a variety of systems.

The geometry of the system need not be precisely that of Figure 1, and the substantive

nature of the gap is not restricted to pure insulators. The only requirement is that two

superconducting materials are separated by a thin region of material that is less super-

conducting. The gap may consist of an insulator, a normal conductive metal, or even

be comprised of the same superconductive material as the electrodes, provided its cross

sectional area is less than that of the wire [91].

Josephson junctions are now used in a variety of applications. For instance we use them

in the present definition of the standard Volt [40]. Josephson junctions have the ability to

change DC voltages into AC currents, and we can now measure frequencies with extreme

accuracy. From Equation (2) we see that the frequency of oscillation of the junction is given

by

f =
eV

π~
. (3)

The standard Volt is subsequently defined as the voltage needed to drive the junction at a

frequency of 483,597.9 GHz.

Josephson junctions are also used to make superconducting quantum interference devices

(SQUIDs) [91]. A SQUID is comprised of superconducting material formed into the shape

of a circle. Two gaps (Josephson junctions) 1 are then created in the circle directly apart

from each other as shown in Figure 3. SQUIDs are extremely sensitive to changes in the

magnetic field, and they were used in the discovery and measurement of the magnetic flux

quantum

Φ0 =
π~

e
. (4)

1We speak here of DC SQUIDs. There also exist single junction (RF) SQUIDs that are used in quantum
interference experiments and may be used in quantum computers as memory cells and logic circuits [65].
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Figure 3: Schematic of a DC SQUID.

2.2 Kirchhoff Limit Josephson Junction Arrays

Soon after the discovery of the Josephson effect, it became clear that Josephson junctions

could be used as sources of far infra-red radiation [18]. Unfortunately one junction alone

cannot generate enough power to be of much use as a parametric amplifier. To get around

this problem one may use many junctions in an array, thereby increasing the power. How-

ever, it is necessary to synchronize the junctions so that the emitted radiation is coherent.

If the junctions are all at different phases, then so too are the emitted EM waves, which may

then cancel each other out. By synchronizing the phases of all of the Josephson junctions

in the array, the emitted EM waves all have the same phase, generating larger radiative

powers.

As we will soon see, in the Kirchhoff limit each Josephson junction in an array is dy-

namically independent (uncoupled) from every other junction. In order to synchronize the

junctions it becomes necessary to dynamically couple them together in some way. Early

studies took advantage of the Josephson junction’s reaction to resonant cavity modes set up

in the array chamber [18, 90]. Though research into cavity-coupled arrays continues (see,

for instance, References [2, 45, 94]), arrays are most commonly coupled by the use of an

external load.

In addition to coupling schemes, the geometry of arrays also varies greatly. The array

may contain junctions that are simply in series (as in Figure 4) [11, 13, 96] or in more
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Figure 4: Three types of Josephson junction arrays consisting of four junctions each. Each
array is driven by a constant current source, Ib, and can be (a) uncoupled, (b) coupled
through a resonant cavity, or (c) coupled through an external load.

complicated arrangements such as two dimensional grids in which the junctions are both in

series and parallel [12, 16, 41, 78, 94]. Beginning with work in the late 1980s, series arrays

of the type shown in Figure 4(c) became a popular class of systems in nonlinear dynamics,

serving as an archetype of spontaneous synchronization in coupled oscillator populations

[37, 38, 87, 88].

2.2.1 The Kirchhoff Limit

Circuit analysis typically makes use of two main rules, known as Kirchhoff’s laws. The two

rules are the node rule2 and the loop rule, and with their (sometimes repeated) use, the

dynamical equations which govern most circuits can be derived. Though they are not always

valid, they are a good approximation whenever the length scales of current fluctuations is

large compared to the circuit size. This occurs whenever the intrinsic time scales in the

circuit are very large (i.e. low frequency).

If we assume that our circuit is operating in the low frequency regime, so that one may

use Kirchhoff’s laws, then deriving the dynamical equations of linear arrays becomes quite

2The node rule is typically called the junction rule. However, we will use the term “node rule” in order
to avoid confusion between a circuit junction and a Josephson junction.
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Figure 5: An array of N identical resistively shunted Josephson junctions. They are driven
by a constant current source, Ib, and have identical resistances, r.

simple. As a first example consider a linear array of N identical junctions in series (Figure

4(a)) and driven by a constant current source. To perform the circuit analysis we replace

each practical junction with a resistively shunted junction model. This gives us the array

shown in Figure 5.

Looking at the ith junction and using both of Kirchhoff’s laws gives us complete knowl-

edge of the system. First, using the node rule on either of the two nodes at the ith junction

tells us that

Ib = IJ,i + Ir,i, (5)

where Ib is the bias current, IJ,i is the current through the ith ideal Josephson junction,

and Ir,i is the current through the ith resistor. Using the first Josephson relation (Equation

(1)) and Ohm’s law turns Equation (5) into

Ib = Ic sin(φi) +
Vr,i

r
, (6)

where Ic is the (identical) critical current of the junctions, φi is the phase difference across

the ith Josephson junction, Vr,i is the voltage across the ith resistor, and r is the (identical)

shunt resistance across each junction.

Next, using Kirchhoff’s loop rule on the ith loop tells us that

VJ,i = Vr,i, (7)

where VJ,i is the voltage across the ith ideal junction. Now, using the second Josephson
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relation (Equation (2)) tells us that

Vr,i =
~φ̇i

2e
. (8)

Finally, substituting Equation (8) into Equation (6), and doing some rearranging yields the

equation

~

2er
φ̇i + Ic sin(φi) = Ib. (9)

Equation (9) gives a complete dynamical description of the ith junction. Notice that the

dynamics of the ith junction are completely independent of the other junctions.

The dynamical independence of junctions in unloaded linear arrays has a profound

consequence. It means that even though the junctions are in the same circuit and being

driven by the same bias current, they will not be affected by one another. One array of N

junctions is then (mathematically) equivalent to N circuits of one junction each. In this

case there is no hope that the junctions will synchronize when, and if, they oscillate.

Before we move on, one more point should be made about Equation (9), pertaining to

the types of solutions one should expect. In this discussion we will be concerned primarily

with the oscillatory nature of the solutions. Notice, though, that stationary solutions can

also occur. From Equation (9) we see that the stationary solutions

φa = sin−1

(

Ib
Ic

)

(10)

and

φb = π − sin−1

(

Ib
Ic

)

(11)

exist provided Ib < Ic. Both solutions exist for |Ib| ≤ Ic, and the first solution, φa, is

stable while the other, φb, is unstable. The stationary solutions disappear when |Ib| > Ic,

however, and stable periodic solutions then arise. Whenever we discuss periodic solutions

we will assume that they are present.

The analysis for an array that contains a load is nearly identical to the analysis of the

unloaded array. An array with a general RLC load is shown in Figure 6. The major analytic

difference between the loaded and unloaded arrays is the value of the current that flows

through the junctions. In the unloaded case, the junction and its associated resistor split a

13



r rrr

1 2 i N

Ib

R L C

Figure 6: A loaded array of N identical resistively shunted Josephson junctions. They are
driven by a constant current source, Ib, and have identical resistances, r. The load has a
resistance R, inductance L, and capacitance C.

total current of Ib, due to the bias current. In the loaded case, some of that bias current is

redirected through the load, so that the current passing through the junction-resistor loop,

IJ , is now less than Ib. The node rule tells us that

Ib = IJ + IL, (12)

where IL is the current passing through the load. Knowing this, we can simply replace the

term Ib in Equation (9) with IJ = Ib − IL to arrive at the differential equation

~

2er
φ̇i + Ic sin(φi) = Ib − IL. (13)

At first glance Equation (13) also appears to describe uncoupled behavior between the

elements in the array, just as in Equation (9). However, notice that we have the extra term

IL on the right hand side. This term, describing the current through the load impedance

will evolve with time. We are therefore missing an equation describing IL(t).

We can derive this equation if we use the loop rule one more time. This time we look

at the simple loop containing the load and each of the ideal junctions, giving us

LİL +RIL +
Q

C
=

~

2e

N
∑

k=1

φ̇k, (14)
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where R, L, and C are the load resistance, inductance, and capacitance, respectively, and

Q is the charge on the load capacitor.

The left hand side of Equation (14) represents the voltage drop across each of the three

load elements, while the right hand side represents the total voltage drop across all of the

junctions. Taking the time derivative of Equation (14) and realizing IL = Q̇ leads us to

LÏL +RİL +
1

C
IL =

~

2e

N
∑

k=1

φ̈k. (15)

Equations (13) and (15) now provide a complete description of the loaded array problem.

Notice that each junction is now dynamically coupled to every other junction. This is

because the right hand side of Equation (13) depends on IL, which in turn depends on all

N junctions, as seen in Equation (15).

2.2.2 Synchronization of Kirchoff Limit JJ Arrays

The system of equations that govern loaded Josephson junction arrays represents an exact

model in the Kirchoff limit, and fully symmetric (synchronized) solutions exist. However,

analysis of such synchronized states quickly becomes unmanageable because even approxi-

mate solutions are difficult to find. This difficulty was overcome by Wiesenfeld and Swift

[103] who used an averaging technique introduced by Swift et al. [89] to map the N + 2

dimensional system (where N is the number of junctions)

~

2er
φ̇i + Ic sin(φi) = Ib − Q̇ (16)

LQ̈+RQ̇+
1

C
Q =

~

2e

N
∑

k=1

φ̇k (17)

onto the N dimensional system

ψ̇k = 1 +
κ

N

N
∑

j=1

cos(ψj − ψk − δ), (18)

where κ and δ are constants comprised of the system parameters and the ψk are transfor-

mations of the phase angles φk into a “natural” coordinate system. This natural coordinate

system represents one in which the rotation of the phase angles, in the uncoupled limit, are

constant in time. Experimentally, Ib is the most directly accessible control parameter. It

controls the oscillator frequencies: the larger Ib the higher the frequency.
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The loss of two dimensions, corresponding to the two degrees of freedom for the load,

is due to the averaging technique, which treats the coupling between the junctions and the

load as small. We will not go into the technique in this section, since a detailed derivation,

modified for the distributed problem, will be given in the next chapter.

Equation (18) represents a major breakthrough not only in the study of Josephson

junction arrays, but also in the more general study of coupled phase oscillators. It was

the first time a quantitative connection had been made between a real physical system and

the Kuramoto model. The Kuramoto model [62, 86] was derived to model systems that

contain numerous oscillators that are coupled in some way. If the dynamics are such that

the oscillators are operating near their limit cycles, the amplitudes may be ignored and the

phases of each oscillator become the dominant dynamical variables of the problem. The

Kuramoto model describes this type of behavior, and makes the further assumption that

the coupling depends only on the differences of the phases. Equation (18) is an example

of just this type of system. One drawback of the model, however, is the loss of amplitude

information. If one is concerned with the output power of the oscillators, it is not enough

that they all be synchronized. If the amplitude of oscillation is small, then so, too, is the

output power. This difficulty will become apparent in Chapter 3, when we will find regimes

in which all of the junctions will be synchronized, yet the output power is small.

Swift and Wiesenfeld were able to analyze Equation (18) and derive a previously known

rule for synchronization, namely that stable in-phase solutions exist provided

ω > ω0, (19)

where ω = (~/2eRIc)
√

Ib/Ic − 1 is the frequency of oscillations of the (uncoupled) junctions,

and ω0 =
√

1/LC is the angular frequency of the load in the absence of the load resistance.

Therefore, for large enough bias currents, in-phase states should be seen. If, however, the

bias current is too small (but still larger than the critical current), the in-phase solutions

become unstable. This behavior is illustrated in Figure 7. For small bias currents, resulting

in ω < ω0, the behavior of the system is incoherent (Figure 7(a)). However, whenever the

bias current is large enough so that ω > ω0 the in-phase state becomes stable, resulting in
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Figure 7: Junction voltage vs. time plots of an array consisting of 4 junctions obtained from
direct integration of Equations (13) and (14). In (a) the bias current is such that ω < ω0,
resulting in an incoherent state. In (b) the bias current has been increased so that ω > ω0,
leading to stable in-phase oscillations (so that all four traces now coincide).

coherent voltage oscillations (Figure 7(b)).

2.3 Beyond the Kirchhoff Limit

In the previous section the qualifier “Kirchhoff limit” was used repeatedly during the dis-

cussion. But what exactly is the Kirchhoff limit, and why is it (seemingly) so important to

the analysis? Let us examine each rule (the loop rule and the node rule) to find out exactly

when they are valid.

First, let us look at the loop rule. The loop rule states that “[t]he algebraic sum of the

changes in potential encountered in a complete traversal of any loop of a circuit must be

zero [39].” Mathematically this can be stated in terms of the line integral

∮

E · dl = 0, (20)

where E is the electric field. Using Stokes’s Theorem, we can change the line integral into
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an area integral, giving us
∮

E · dl =

∫

∇× E · da = 0. (21)

Next, we realize that the curl of the electric field is related to the magnetic field through

Faraday’s law, giving us
∫

∂B

∂t
· da = 0, (22)

where B is the magnetic field. Finally, since it is true for any loop (and therefore any area),

it must be that

∂B

∂t
= 0. (23)

Before we get into what it means that the magnetic field is constant in time in the

Kirchhoff limit, let us first examine Kirchhoff’s other law, the node rule. It states that

“[t]he sum of the currents entering any [node] must be equal to the sum of the currents

leaving that [node] [39].” This means that the divergence of the current density is zero

everywhere within the wire. Mathematically, this becomes

∇ · j = 0, (24)

where j is the current density in the wire. Using the Ampère-Maxwell relation to substitute

for j gives us

∇ ·
{

v2∇× B − ∂E

∂t

}

= 0, (25)

where v is the speed of light within the wire. The divergence of a curl must be zero, leaving

us with

∇ · ∂E
∂t

= 0. (26)

Finally, the use of Gauss’s law gives us

∂

∂t
∇ · E =

1

ε0

∂ρ

∂t
= 0, (27)

where ρ is the charge density within the wire.

So there appear to be two conditions that are necessary in order for Kirchhoff’s laws to

hold. They are

∂B

∂t
= 0 (28)
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and

∂ρ

∂t
= 0. (29)

Both are constraints on the constancy of the system. The first requires the magnetic field

to be constant, while the second requires the charge density to be constant. The second

constraint, Equation (29), is also an incompressibility condition because it constrains us

to treat the charge carriers in the wire as an incompressible fluid. In other words, charge

cannot accumulate (or be taken away from) any point within the wire. Charges can still

move, but whenever they do they are immediately replaced to conserve the charge density.

Note that this is a more stringent condition than the current conservation condition given

by

∇ · j +
∂ρ

∂t
= 0, (30)

which is always true for any system. For Kirchhoff systems, Equation (30) still holds, but

now each term must be identically zero.

The constraint on the induced magnetic field, Equation (28), puts a limit on how fast the

system changes. If the circuit is oscillating very fast, then so too will the induced magnetic

field. This means that the time derivative of the magnetic field can get very large at times.

But how large is too large? To answer this we note that the frequency of magnetic field

fluctuations is related to the wavelength according to λ = v/f , where v is the velocity. If

the wavelength of the field is much larger than the characteristic length scale of the circuit,

then Equation (28), while not precisely true, is a good approximation, and Kirchhoff’s laws

will hold. If, however, the wavelength is comparable to (or even smaller than) the circuit

size, then Kirchhoff’s laws will not hold, and any dynamical equations derived from them

will be invalid.

As it happens, the twin technological goals of generating higher operating frequencies

and larger output powers (and thus more junctions) in Josephson junction arrays both work

against the Kirchhoff limit. This is illustrated in Figure 8. The oscillator frequency, f , sets

the radiation wavelength λ = c/nf , where c is the speed of light in a vacuum and n is

the index of refraction of the wire. Meanwhile, the total length of the system is l = Nd,

where N is the total number of junctions and d is the average spacing between junctions.
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Figure 8: Curve f = c/nl showing where the radiation wavelength equals the spatial extent
of the array (here n is taken to be 2.5, which is typical for Josephson arrays). As the length
of the array increases, the frequency regime of the Kirchhoff limit decreases. Also indicated
are the points at which some experimental arrays operated. (Bi et al. (¤) [11]; Booi and
Benz (◦) [13]; Jain et al. (×) [53]; Wan et al. (∗) [96]; Vasilić et al. (¦) [94]; and Ovsyannikov
et al. (+) [78].)

(The junctions themselves are typically much smaller than d.) To take an example, an

array operating at 300 GHz – not a particularly high frequency for Josephson junctions –

corresponds to a wavelength of 0.4 millimeters when the index of refraction is 2.5; for a

typical spacing of 10µm, this is about the same size as an array of about 40 junctions – not

a particularly large number for Josephson arrays (arrays consisting of millions of junctions

are now being built [15]).

Since Josephson junction arrays are being pushed past the Kirchhoff limit experimen-

tally, we must go beyond Kirchhoff’s laws analytically. It therefore becomes necessary to

treat the wire as a dynamical entity by allowing current to be non-uniform along its length.

To this end we use a model derived by Cawthorne et al. [16] which treats the wire as a

transmission line. This model adds to the wire a capacitance and an inductance per unit
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Figure 9: Schematic of a distributed series array with constant current source Ibias. The
junctions have resistance r and zero capacitance (the ideal part of a junction is denoted by
a cross). The wire has an inductance per unit length L and capacitance per unit length C.

length. Since Josephson junction arrays use superconducting wires in their circuitry, the

resistance per unit length of the wire is ignored. A schematic of this situation is given in

Figure 9. Notice that there is no load present in the array. As we will soon see, the trans-

mission line nature of the wire is enough to couple the junctions to one another, so that no

load is required. The case when both the transmission line and the load are present was

studied numerically by Cawthorne et al. [16, 17]. However, in an attempt to make analytic

progress we will restrict ourselves to this simpler, loadless model.

Paradoxically, this new model, which is necessary because of the breakdown of Kirch-

hoff’s laws, must be analyzed using those same laws. However, since each use of Kirchhoff’s

laws will be on loops of some arbitrarily small linear size ∆x, they will be valid provided

the length scales of current variation are large compared to ∆x. In the limit ∆x → 0 this

will necessarily be true.

We can now derive a new system of equations for the array by examining a section of

the transmission line containing one junction, as shown in Figure 10. Looking at the node

between the two inductors tells us that

Ii−1 = Ii + q̇i. (31)

Next, using the loop rule on the loop not containing the junction gives us

qi−1

C∆x
= L∆x

dIi−1

dt
+

qi
C∆x

. (32)

Taking the time derivative of Equation (32) and substituting Equation (31) into it yields

d2Ii−1

dt2
− v2

{

Ii − 2Ii−1 + ii−2

∆x2

}

= 0, (33)
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Figure 10: A close up of a section of a transmission wire containing a Josephson junction.
The current through the ith inductor is Ii, while the charge on the ith capacitor is qi.

where v =
√

1/LC is the wave speed within the wire. In the limit ∆x → 0, and equating

Ii(t) = I(x, t), this becomes

∂2I

∂t2
− v2 ∂

2I

∂x2
= 0. (34)

Equation (34) is true throughout the lossless transmission wire, provided there are no

Josephson junctions. We can glean the effect of the junctions when we examine the other

loop in Figure 10. The junction gives us another voltage drop, turning Equation (32) into

qi
C∆x

= L∆x
dIi
dt

+
qi+1

C∆x
+

~

2e
φ̇. (35)

If we again take the time derivative and use Equation (31) we arrive at

d2Ii
dt2

− v2

{

Ii+1 − 2Ii + ii−1

∆x2

}

= − ~

2eL∆x
φ̈. (36)

We must now be careful when we take the limit ∆x→ 0. The term on the right-hand side

of the equation will go to infinity in that limit. We realize, however that this happens only

at the ith segment. If the junction is at a position x = xJ then we may equate Ii(t) = I(x, t)

provided

lim
∆x→0

~

2eL∆x
φ̈ =

~

2eL
φ̈δ(x− xJ). (37)

If there are N junctions such that the jth junction is at x = xj then we may write

∂2I

∂t2
− v2 ∂

2I

∂x2
= −

N
∑

j=1

~

2eL
φ̈jδ(x− xj). (38)

Since the wire in question begins and ends at the constant current source, we must add the

boundary conditions

I(0, t) = I(l, t) = Ibias, (39)
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where l is the total length of the wire.

The dynamical equation governing the junctions is very similar to that derived for the

Kirchhoff limit array. Recall that Equation (9) described the dynamics of a single junction

driven by a constant current source. If we look at Figure 10 we see that the junction is in

a very similar situation, except that instead of a constant current source, we now have a

time dependent and spatially local current driving the junction. We therefore can modify

Equation (9) by replacing Ib with the correct value of the local current. This gives us, for

the phase of the jth junction,

~

2er
φ̇j + Ic sinφj = I(xj , t). (40)

Equations (38) and (40), along with the boundary condition, Equation (39) now give a

complete description of the dynamics of high frequency Josephson junction arrays of the

type shown in Figure 9. Because the positions of each of the junctions is now important,

this model is called the Distributed Josephson Junction Array model. The analysis of this

system will be the topic of the next chapter.
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CHAPTER 3

DISTRIBUTED JOSEPHSON JUNCTION ARRAYS

To date, theorists have paid relatively little attention to the dynamics of Josephson arrays

at high frequencies. The problem was first taken up in 1999 by Cawthorne et al., who

did numerical studies of series arrays with a load [16], and in 2002 by Almaas and Stroud,

who studied the effects of high frequency operation in a resonant cavity [2]. The problem

is considerably more complicated than its low frequency counterpart and we will confine

ourselves to the simplest version of the problem, namely where the load is absent. As

demonstrated in Section 2.2.1, this case is trivial in the Kirchhoff limit: without a load the

junctions are uncoupled and there is no hope of synchronization. But at higher frequencies

the current in the wire is not necessarily spatially uniform, so the wire becomes a significant

dynamical entity which couples the junctions along its length. Tsygankov and Wiesenfeld

were able to show that this can provide sufficient coupling to induce synchronization in

uniform arrays [92].

As we saw in the previous chapter, the governing dynamical equations are

~

2er
φ̇j + Ic sinφj = I(xj , t) j = 1, 2, . . . , N (41)

∂2I

∂t2
− v2 ∂

2I

∂x2
= −

N
∑

j=1

~

2eL
φ̈jδ(x− xj), (42)

where I(x, t) is the current in the wire at position x and time t; v and L are the wave speed

and inductance per unit length of the wire, respectively. The first equation is the statement

of current conservation for each (point) junction. The second is the evolution equation for a

lossless transmission line with each junction acting as a spatially localized, time dependent

voltage source. The boundary conditions are

I(0, t) = I(l, t) = Ibias (43)

where l is the length of the wire and Ibias is the bias current. As in Chapter 2, the bias current
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is again the most accessible parameter experimentally, as it sets the oscillator frequency.

The goal is to have an attracting in-phase state, so that the junction voltages (propor-

tional to φ̇j) all oscillate with the same frequency and phase. It is also desirable that the

amplitude of the oscillations be as large as possible. It is debatable whether the in-phase

state has ever been achieved in any real Josephson junction array; estimates suggest [98, 99]

that existing arrays need to use junctions which are matched to within one or two percent,

which is just barely attainable with existing technology [21].1 What is certain is that the

best reported results for total output power at high frequencies used spatially non-uniform

arrays built with a periodic structure. The idea behind the “resonant architecture” used

in these experiments is as follows. Since, in the absence of any junctions, the equation

governing the current distribution, Equation (42), is a wave equation, the solutions will

be standing waves (normal modes) with nodes at each end of the wire, each with its own

resonant frequency. Imagine that the junctions oscillate at a frequency close to the resonant

frequency of one of the normal modes of the transmission line. Then one expects a large

amplitude response of this particular mode; if the junctions are placed at “equivalent posi-

tions” relative to this mode, they will all feel the same (large) AC drive, which presumably

is beneficial for generating in-phase oscillations. Moreover, one expects the most effective

scheme would be to place the junctions at antinodes of the resonant mode.

The situation is depicted in Figures 11 and 12. In Figure 11 each of the six junctions is

placed at an antinode (of the same polarity) of the normal mode. If the current is dominated

by that particular mode, then the junctions will each experience the same AC current. If,

on the other hand, the junctions are placed in a different manner, as in Figure 12, then

each junction will experience a different driving current than the rest. It is reasonable to

assume that the first case, where the junctions are commensurate with the current mode,

will be more likely to synchronize than the second. But what about a situation as the one

depicted in Figure 13? Here the junctions are placed commensurate with the mode, but

are bunched about the antinodes. There will now be differences in the currents that each

1We refer here to arrays of capacitanceless junctions. The situation is predicted to be better for junctions
with an optimized capacitance
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Figure 11: A depiction of a configuration of junctions (denoted by crosses) that is commen-
surate with a particular normal mode. Here, each of the junctions is placed at an antinode
so that the local current is the same for each.
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Figure 12: A depiction of a configuration of junctions (denoted by crosses) that is not

commensurate with a particular normal mode. Here, the junctions are placed such that
there are differences in the local current.
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Figure 13: A depiction of a configuration of junctions (denoted by crosses) that is com-
mensurate with a particular normal mode, but bunched around the antinodes. Differences
in the currents seen by the junctions will be small.

junction sees, but these differences should be small. It is also not out of the question that

this configuration would also synchronize.

This picture has a strong physical appeal, and experimentalists have tried to take advan-

tage of the fact that spatial positioning of the junctions is important in the high frequency

regime. Han et al. [11, 41] and Booi and Benz [13] demonstrated that clustering junctions

at strategic locations along the wire connecting them can increase the emitted power. There

is almost no theoretical work, however, to justify this strategy [65, 84]. Naturally, it would

be desirable to put the basic idea on a firm quantitative footing (assuming that it is cor-

rect). Beyond this, the picture leaves open certain rather important practical questions. For

example, to maximize the total power it is desirable to maximize the number of in-phase

junctions. If one places a group of junctions near each equivalent site, how large (relative

to the mode wavelength) can this group be? Similarly, is it acceptable to place junctions

(or groups of junctions) at each half-wavelength [11, 13] rather than at each wavelength

[41]? It has been argued that although neighboring antinodes represent local current flow

of opposite polarity, this is irrelevant for the purposes of synchronization [11, 13].
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In the first part of our analysis we will apply an averaging scheme similar to that used by

Swift and Wiesenfeld [89], who studied the lumped (Kirchhoff limit) version of the problem.

The averaging scheme will give us a reduced model for the phase dynamics of the junctions

similar to Equation (18). This particular technique has played a central role in a number of

advances in the study of lumped Josephson arrays – in understanding the massive neutral

stability of splay phase states [97]; in establishing the connection with the Kuramoto model

[98, 99]; and in deriving the frequency matching condition for stability of the in-phase state

[89].

After deriving the averaged equations, we will investigate whether spatially clustered

arrays have better synchronization properties than uniform arrays. We find that, when

driven near resonance, tightly clustered arrays tend to phase lock better than non-clustered

arrays. However, we also find that increasing the number of junctions within a cluster can

diminish synchronization and even wipe it out entirely. Our analysis of a few well-chosen

cases leads us to a clear understanding of these effects.

3.1 Derivation of Averaged Equations

We begin by putting Equations (41) and (42) into dimensionless form. We make the fol-

lowing rescalings

2erIc
~

t→ t ,
I

Ic
→ I ,

x

l
→ x, (44)

and introduce spatial Fourier decompositions

I(x, t) = Ib +
∞
∑

k=1

Ak(t) sin(πkx), (45)

δ(x− xj) =

∞
∑

k=1

2 sin(πkxj) sin(πkx). (46)

With these Equations (41) and (42) become

φ̇j + sinφj = Ib +

∞
∑

k=1

ajkAk j = 1, 2, . . . , N (47)

Äk + ω2
kAk = −2α

N
∑

j=1

ajkφ̈j k = 1, 2, . . .∞ (48)
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where the overdot now denotes differentiation with respect to the dimensionless time and

α =
~

2eIcLl
, (49)

ωk =
π~kv

2erlIc
, (50)

Ib =
Ibias

Ic
, (51)

ajk = sin(πkxj). (52)

We now follow the averaging procedure of References [89, 103]. First, we transform the

phases φj into the natural angles ψj given by

ψj(φj) = 2 tan−1

[

√

Ib − 1

Ib + 1
tan

(

φj

2
+
π

4

)

]

(53)

φj(ψj) = 2 tan−1

[

√

Ib + 1

Ib − 1
tan

(

ψj

2

)

]

− π

2
. (54)

The ψj variables are “natural” in the sense that the angular velocities ψ̇j are constant in

the uncoupled limit, whereas the corresponding φ̇j are not. Differentiating Equation (47)

and substituting the resulting expression for φ̈ into Equation (48) yields

ψ̇j = 1 +
∞
∑

k=1

ajkAk

Ib − sinφj
(55)

ω2Äk + ω2
kAk = −2α

N
∑

j=1

ajk

{

sinφj cosφj − Ib cosφj +
∞
∑

l=1

ajl(ωȦl −Al cosφj)
}

. (56)

where ω =
√

I2
b − 1 and we have rescaled time once again: ωt→ t.

The sum over l is a significant complication since it couples together all of the modes.

Our simulations show that we cannot summarily drop these terms. On the other hand, our

simulations also show that the relevant contribution of the Al cosφj term is smaller than

the ωȦl term by a factor of approximately I2
b, and that neglecting only the Al cosφj term

yields accurate results. In what follows, we make this (uncontrolled) approximation since

it substantially simplifies the ensuing analysis.

We also use the trigonometric identities

cosφ =
ω sinψ

Ib − cosψ
, sinφ = Ib − I2

b − 1

Ib − cosψ
=

1 − Ib cosψ

Ib − cosψ
(57)
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to write

sinφj cosφj − Ib cosφj =
C0

2
+

∞
∑

p=1

(Bp sin(pψj) + Cp cos(pψj)). (58)

where, in particular, C0 = C1 = 0 and

B1 = 2ω2(ω − Ib). (59)

We will see later that in the sum over p in Equation (58) only the term involving sinψ

survives the averaging procedure, so we can safely ignore all terms with p > 1. Dropping

these, Equation (56) becomes

ω2Äk + ω2
kAk = −2α

N
∑

j=1

ajkB1 sinψj − 2αω
∞
∑

l=1

N
∑

j=1

ajkajlȦl. (60)

The averaging scheme treats the coupling term in Equation (55) as small, so that in the

uncoupled limit ψj(t) = t + γj , where γj is the initial value of ψj . Substituting this into

Equation (60) leads to a steady state solution

Ak = Mk sin t+Nk cos t. (61)

where the Mk and Nk are determined by the linear system

(ω2
k − ω2)Mk −

∞
∑

l=1

ηklNl = fk (62)

(ω2
k − ω2)Nk +

∞
∑

l=1

ηklMl = gk, (63)

with

fk = −2α
N
∑

j=1

ajkB1 cos(γj) , gk = −2α
N
∑

j=1

ajkB1 sin(γj)

and

ηkl = 2αω
N
∑

j=1

ajkajl. (64)

Our task is now to find the coefficients Mk and Nk in Equations (62) and (63). To

accomplish this, we first introduce an integer cut-off parameter kmax, truncating the infinite

sums. In practice, kmax should be large, but not so large that the actual physical size of

the junctions is comparable to the wavelength 2π/kmax of the cutoff mode. (Recall that the
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transmission line model Equation (42) treats the junctions as spatially point-like.) With

this truncation the system (62) and (63) can be written as:

(

a −η

η a

)( ~M

~N

)

=

( ~f

~g

)

(65)

where the matrix η is defined in Equation (64), akl = (ω2
k − ω2)δkl, and the vectors ~M , ~N ,

~f , and ~g are the kmax-dimensional column vectors defined above.

The linear system (65) allows us to solve for Mk and Nk (numerically, in the general

case). These, in turn, give us the solutions for the Ak’s such that (cf. Equation (61)):

Ak =
N
∑

j=1

{[Pjk cos γj +Qjk sin γj ] sin t+ [Rjk cos γj + Sjk sin γj ] cos t} (66)

where:

Pjk = −2αB(1)
kmax
∑

l=1

ajlTkl (67)

Qjk = −2αB(1)
2kmax
∑

l=kmax+1

ajlTkl (68)

Rjk = −2αB(1)
kmax
∑

l=1

ajlT(k+kmax)l (69)

Sjk = −2αB(1)
2kmax
∑

l=kmax+1

ajlT(k+kmax)l (70)

and

T =







a −η

η a







−1

(71)

is the 2kmax × 2kmax solution matrix to system (65).

It is evident from Equation (71) that the matrix T will have the same block form as its

inverse, provided it has one. In other words,

T =







U −V

V U






, (72)

for some kmax × kmax dimensional matrices U and V . If we examine the definitions of P

and S, above, we see that both contain the same sum over the matrix U. Similarly, the
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definitions of Q and R both contain the same sum over the matrix V. This tells us that

P = S and Q = −R, allowing us to reduce Equation (66) to

Ak =
N
∑

j=1

{

Pjk sin(t+ γj) −Qjk cos(t+ γj)
}

. (73)

Substitution of (73) into Equation (55) and using Equation (57) yields

ψ̇j = 1 +

kmax
∑

k=1

1

ω2
ajkAk(t)(Ib − cosψj). (74)

We are now ready for the averaging step. We replace ψj on the right-hand side with its

approximation ψj = t+ γj and average the resulting equation over one period:

〈ψ̇j〉 = 1 +
1

2πω2

kmax
∑

k=1

ajk

∫ 2π

0
Ak(t)(Ib − cos(t+ γj))dt (75)

This last equation makes it apparent why only the first harmonics of Ak were needed: upon

averaging, all higher harmonics integrate to zero.

The final step is to drop the angular brackets and replace the initial values γj by the

slowly evolving ψj . This yields the final averaged equations

ψ̇j = 1 +
1

2ω2

N
∑

i=1

kmax
∑

k=1

ajkWik sin(ψi − ψj + Θik) (76)

where

Wik =
√

P 2
ik +Q2

ik and Θik = tan−1
( Qik

−Pik

)

. (77)

Equation (76) can be further simplified to:

ψ̇j = 1 +
1

2ω2

N
∑

i=1

Mji sin(ψi − ψj + Ωji), (78)

with

Mji =

√

√

√

√

(

kmax
∑

k=1

ajkPik

)2
+
(

kmax
∑

k=1

ajkQik

)2
and Ωji = tan−1

[ ∑kmax

k=1 ajkQik

−∑kmax

k=1 ajkPik

]

. (79)

Equation (78) is our main result. In form it is very similar to the averaged equation for

the loaded lumped circuit problem, Equation (18). When suitably rearranged that equation

has the form [103]

ψ̇k = 1 + ρ
N
∑

j=1

sin(ψj − ψk − δ), (80)
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where ρ and δ are constants. Equation (78) differs from (80) in two ways. First, the coupling

constants Mji and phase shifts Ωji are pair dependent. Second, although one has simple

closed form expressions for ρ and δ, Mji and Ωji must, in general, be computed numerically

by solving the linear system Equation (65). On the other hand, we have derived Equation

(78) without placing any restrictions on the placement of the junctions, so it is a useful

starting point for studying various spatial configurations.

It should be noted here that both Equation (78) and Equation (80) are variations of

the well-known Kuramoto model [61, 86]. That model, used to describe collections of N

coupled phase oscillators typically has the form

ψ̇i = ωi +
κ

N

N
∑

j=1

sin(ψj − ψi + δ), (81)

where κ and δ are some constants, and i = 1 . . . N . Notice that in the Kuramoto model each

oscillator has its own natural frequency, but the coupling is global and uniform. This type of

asymmetry has been studied much more extensively than the coupling asymmetry present

in our version, Equation (78). For the Kuramoto model it was found that synchronized

solutions can exist provided the distribution of the natural frequencies, ωi, was sufficiently

narrow2. In other words, coherent behavior can still be observed provided the asymmetry

is not too strong. This type of argument is the basis behind resonant architectures. If the

asymmetry in the coupling in Equation (78) is made small enough, can coherent solutions

exist? Answering this question will be the goal of the following sections.

3.2 Existence and Stability of In-phase States

In the usual terminology, an in-phase state is fully symmetric, i.e. φj(t) = φ1(t) for all

j. While such solutions always exist for the lumped circuit problem Equations (13) and

(15), they typically don’t exist for the distributed problem, Equations (41) and (42). The

same distinction holds for the corresponding averaged versions, Equations (18) and (78),

respectively. This is because of the asymmetry inherent in the problem. A solution to the

equations must either have the symmetry of the equations, or lower. This means that there

2For a wonderful review of this topic, please refer to the article by Strogatz [86].
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is no hope of finding purely symmetric solutions unless we can find parameter regimes for

which

ψ̇j = 1 +
1

2ω2

N
∑

i=1

Mji sin(Ωji) (82)

is independent of j. This corresponds to a symmetric solution (ψj = ψi) to Equation

(78) in which each oscillator has a constant angular velocity. The oscillators will not stay

in the symmetric state unless each angular velocity is constant, which can only happen if

∑N
i=1Mji sin Ωji is independent of j. Note that this condition depends on both the junction

positions and the operating frequency. This point is illustrated in Figure 14. This plot shows

the normalized standard deviation of the sequence {λj} = {∑N
i=1Mji sin Ωji} as a function

of ω. The dash-dot curve represents a configuration of ten junctions evenly spaced along

the wire. As can be seen, an in-phase solution does not exist for any frequency 0 < ω < 6.

The solid curve represents a configuration in which the ten junctions have been rearranged

such that they are clustered about the points x = 1/3 and x = 2/3. The standard deviation

has nearly gone to zero, so there are in-phase solutions except in a small range of operating

frequencies near ω = 3.

Interestingly, the transition between the uniformly distributed and clustered cases shown

in Figure 14 is not uniform. This fact is illustrated in Figure 15. These three curves represent

two clusters of 5 junctions each, centered about the points x = 1/3 and x = 2/3. As the

total width of each cluster decreases there is no discernible pattern that arises. Only when

the width of the clusters becomes extremely small does the standard deviation also become

very small, as is seen in Figure 16. Even when the width of the clusters has gone to zero

(Figure 17) there are still peaks in the standard deviation near some frequencies, even

though the standard deviation is approximately zero for most frequencies. Interestingly,

the peaks that appear in the standard deviation that appear for small values of ε have

complicated structure. This is illustrated in Figure 18. This figure shows a close up of

Figure 16 near ω = 3. The existence and explanation of the complexity of these peaks is

still poorly understood. It is most likely related to the node structure of the resonant mode

corresponding to ω = 3. The nodes of the third mode are at precisely x = 1/3 and x = 2/3,

which are also the centers of the junction clusters. Why this would cause such a wide peak,
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Figure 14: Normalized standard deviation of {λj} versus ω. The two curves represent ten
junctions placed evenly along the wire (dash-dot curve); and clustered about the points x =
1/3 and x = 2/3 (solid curve). A standard deviation near zero represents j-independence
of λj and hence existence of in-phase solutions.
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Figure 15: Normalized standard deviation of {λj} versus ω. Here there are two clusters of
5 junctions each centered about the points x = 1/3 and x = 2/3. The total width of each
cluster is 2ε. The three curves represent ε = 0.2 (dotted curve), ε = 0.1 (dashed curve) and
ε = 0.02 (solid curve).
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Figure 16: Normalized standard deviation of {λj} versus ω. Here there are two clusters of
5 junctions each centered about the points x = 1/3 and x = 2/3. The half width of these
clusters is ε = 0.002.
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Figure 17: Normalized standard deviation of {λj} versus ω. Here there are two clusters of
5 junctions each centered about the points x = 1/3 and x = 2/3. The half width of these
clusters is ε = 0.
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Figure 18: A closeup view of the normalized standard deviation of {λj} versus ω. Here
there are two clusters of 5 junctions each centered about the points x = 1/3 and x = 2/3.
The half width of these clusters is ε = 0.002.

though, is still a mystery.

Figure 19 shows a similar situation, but now with the ten junctions clustered about the

points x = 1/6 and x = 5/6, corresponding to the two antinodes of the third mode that

have the same parity. For ε = 0.1 the standard deviation can be quite large, meaning that

fully symmetric solutions do not exist. When ε = 0.02, however, the standard deviation

dips quite low near ω = 3, the resonant frequency of the third mode. Plots of the standard

deviation for even smaller values of ε are shown in Figure 20. For ε = 0.002 the standard

deviation has nearly gone to zero, except for peaks near ω = 1.5 and ω = 4.5. The smaller

cluster size, ε = 0.0002 does even better, but the two peaks still remain. Again, the existence

of these peaks is a mystery, especially now since these do not correspond to resonant mode

frequencies, but are in fact exactly in between them.

As a final example, let us examine the behavior of a grouping of junctions that puts

clusters at every half wavelength of a desired mode. Imagine nine junctions in three clus-

ters of three junctions each, centered about the points x = 1/6, x = 1/2 and x = 5/6,

corresponding to all three of the antinodes of the third mode. The standard deviation for
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Figure 19: Normalized standard deviation of {λj} versus ω. Here there are two clusters of
5 junctions each centered about the points x = 1/6 and x = 5/6. The total width of each
cluster is 2ε. The two curves represent ε = 0.1 (solid curve) and ε = 0.02 (dashed curve).
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Figure 20: Normalized standard deviation of {λj} versus ω. Here there are two clusters
of 5 junctions each centered about the points x = 1/6 and x = 5/6. The total width of
each cluster is 2ε. The two curves represent ε = 0.002 (solid curve) and ε = 0.0002 (dashed
curve).
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Figure 21: Normalized standard deviation of {λj} versus ω. Here there are three clusters
of 3 junctions each centered about the points x = 1/6, x = 1/2 and x = 5/6. The total
width of each cluster is 2ε. The two curves represent ε = 0.01 (solid curve) and ε = 0.05
(dashed curve).

this configuration is shown in Figure 21. For ε = 0.05 the standard deviation remains high,

with a peak near ω ≈ 4.5. When the width decreases to ε = 0.01 the peak shifts to ω = 3.

Figure 22 shows the same configuration with an extremely tight cluster, with ε = 10−7. This

smaller cluster now shows a standard deviation near zero for most values of the frequency,

yet the peak near ω = 3 (the resonant frequency of our “preferred” mode) persists.

While the standard deviation calculations cannot tell us whether or not in-phase states

are stable, they can at least tell us when they exist – and when they do exist it is straight-

forward to check their stability. Setting ψj(t) = ψ0(t) + ξj(t), we linearize Equation (78)

for small ξj , with result

ξ̇j =
1

2ω2

N
∑

i=1

[

kmax
∑

k=1

ajkPik

]

(ξj − ξi) (83)

From here it is an easy matter to solve the linear system Equation (65) numerically, and

hence find the stability matrix for Equation (83). The eigenvalues of the stability matrix

determine the stability of the in-phase state. One eigenvalue is constrained to be zero (since
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Figure 22: Normalized standard deviation of {λj} versus ω. Here there are three clusters
of 3 junctions each centered about the points x = 1/6, x = 1/2 and x = 5/6. The total
width of each cluster is 2ε. This curve represent ε = 10−7.

the orbit is neutrally stable to perturbations tangent to it); if all other eigenvalues have

negative real part then the in-phase state is linearly stable.

We have investigated the stability of the in-phase state for several array configura-

tions that exhibit the necessary symmetry for in-phase solutions. There is good agreement

between the eigenvalue analysis based on the averaged equations and direct numerical sim-

ulations of the differential Equations (47) and (48), especially when α is of the order of

unity or smaller. For larger α the approximations made in the averaging derivation break

down. We assumed that the coupling between the current modes Ak and the junctions φk

was small. From Equation (48) it is clear that the larger α, the larger Ak; from Equation

(47) we see that this increases the coupling to the junctions, in turn.

Figures 23 and 24 show plots of the largest non-zero eigenvalue determined from Equa-

tion (83) along with the total emitted power obtained by direct integration of Equations

(47) and (48). The emitted power is calculated by time averaging the AC part of
∑N

i=1 φ̇
2
i

(since φ̇ is proportional to the voltage). Prominent in Figure 23 is the window around
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Ib ≈ 3.5 where the leading eigenvalue dips below zero (indicating stable in-phase solutions)

and the emitted power is maximized. Above and below the narrow window the emitted

power is low because the junction oscillations are incoherent. There is a much wider win-

dow of stable in-phase states for lower values of Ib; here the emitted power is relatively low

because the voltage oscillation amplitude of the individual junctions is small. This is an

important point. Simply because the junctions are all oscillating with the same phase does

not mean that the output power will be large. Additionally, the amplitude of the voltage

oscillations needs to be large in order to get an appreciable amount of power out of the

system.

The dependence of the power on both the amplitudes and phases of the junctions is

also illustrated in our next example, as shown in Figure 24. In this figure there are now 4

junctions, two each at the points x = 1/6 and x = 5/6. Just as in the first example, the

emitted power is low whenever the leading eigenvalue is positive; conversely, the emitted

power can be quite large when the in-phase state is stable. We show in Figure 25 examples

of the coherence properties of phase locked junctions. Figure 25(a) shows incoherent be-

havior, while Figures 25(b) and (c) show coherent behavior with low and high amplitudes,

respectively. The example shown in Figure 25(b) emits very little power compared to that

shown in Figure 25(c) because of its relatively low amplitude. Again, just because points

(b) and (c) in Figure 24 are in the same region of in-phase stability does not mean that

their emitted powers will be comparable.

Unfortunately examples of configurations that exhibit perfectly in-phase solutions are

few and far between. We can achieve these solutions easily numerically, especially if we

allow the junctions to be placed on top of each other (as they were in the example shown

in Figure 24). By placing the junctions on top of each other we reduce the asymmetry

in the problem. Of course, real world arrays cannot be produced in this manner, but the

idea behind near resonant architectures follows the same principle. When the junctions are

placed in clusters about the anti-nodes, the asymmetry of the system is (hopefully) reduced.

This may allow nearly in-phase solutions to arise that, though not perfect, may still phase

lock closely enough as to emit coherent power. It is just these types of architectures that
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Figure 23: Plot of the largest non-zero eigenvalue (solid line) of Equation (83) and the
emitted power (triangles) computed by direct integration (arbitrary units). Here there are
two junctions at xj ∈ {1/3, 2/3}, kmax = 15, α = 2 and v = 1/π.
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Figure 24: Plot of the largest non-zero eigenvalue (solid line) of Equation (83) and the
emitted power (triangles) computed by direct integration (arbitrary units). Here there are
four junctions, two each at xj ∈ {1/6, 5/6}, kmax = 15, α = 1 and v = 1/π. Also shown
(arrows) are the three trials plotted in Figure 25.
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Figure 25: Comparison of the coherence and amplitude properties of phase locked junctions.
Plotted are the three trials indicated in Figure 24. These trials are examples of (a) incoherent
phase locking, (b) low and (c) high amplitude coherent phase locking.

we turn to next.

3.3 Near Resonant Behavior

We now take a look at the case of near resonant behavior and the dynamical consequences

of spatially clustering the junctions, such as the configuration shown in Figure 13. We take

for inspiration experiments [13, 41, 96] which use arrays intended to operate at a normal

mode frequency of the transmission line. (By this we mean the modes in the absence of the

junctions, corresponding to a particular Fourier index k = k?.) Numerically this situation

is easily achieved. Figure 26 shows a plot of numerically obtained mode amplitudes of a

configuration designed to select the fifth mode. This is done by placing six junctions in pairs

centered on the three antinodes of similar parity of the fifth mode (i.e. at x = 1/10, x = 1/2

and x = 9/10, as shown in Figure 27). The system is then driven by a bias current that

produces an operating frequency (recall ω =
√

I2
b − 1) very close to the resonant frequency

of the fifth mode. Clearly the fifth mode is dominant, as is also seen in the RMS current

profile shown in Figure 27. In practice we have found that configurations that operate with
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Figure 26: Histogram of the mode amplitudes (relative to the fifth) of a configuration
designed to select the fifth mode. Here there are six junctions at xj ∈ {1/10 ± .01, 1/2 ±
.01, 9/10 ± .01}. The bias current was chosen such that ω/ω5 ≈ 1.01, with α = 0.01 and
kmax = 15. The values of the mode amplitudes were obtained from direct simulation of
Equations (41) and (42).
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Figure 27: Plot of the RMS current profile of the example given in Figure 26. Also shown
(crosses) are the positions of the six junctions.
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a dominant mode are easy to construct provided the bias current is chosen properly and

the junction configuration is commensurate with the desired mode profile.

We now wish to examine these near resonant architectures and their synchronization

properties. Let’s first see what we can conclude without specifying the junction positions

{xi}. Assume that the system is operating in a near resonant manner, such that the resonant

mode is clearly dominant over the other modes. In this case we will approximate all sums

over the current modes with just the term involving the resonant mode. In other words,

kmax
∑

k=1

fkAk ≈ fk?Ak? , (84)

for any fk, and where k? is the Fourier index of the resonant current mode. Using this

approximation, and writing aj = ajk? = sin(πk?xj), Equation (78) reduces to:

ψ̇j = 1 +K
N
∑

i=1

ajai sin(ψi − ψj + θ), (85)

where

K =
2α(Ib − ω)

√

(ω2
k? − ω2)2 + (2αω

∑N
q=1 a

2
q)

2
(86)

and

θ = tan−1

[

2αω
∑N

q=1 a
2
q

ω2 − ω2
k?

]

. (87)

Equation (85) is significantly simpler than Equation (78). We now have explicit expres-

sions for both the coupling constants and the phase shift. Also the phase shift matrix, Ωji,

reduces to a constant phase shift θ. This last reduction is important because it makes the

ensuing analysis tractable. It is still difficult to make analytic progress for arbitrary junction

placements, but significant insight can be obtained from examining two simple cases.

First consider the case where the junctions are in one “group”. By this we mean that

the junctions have the property aj = a for all j. This condition is most obviously met when

all of the (point-like) junctions are at the same spot, but also includes any arrangement

where they occupy similar places along the waveform of the mode. In other words, the

junctions can be at any position x that satisfies the equation sin(πk?x) = a for x ∈ [0, 1].

Figure 28 illustrates a possible configuration which satisfies this condition.
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Figure 28: A configuration of junctions (denoted by crosses) which satisfies the “one group”
condition. This is because the local current amplitude at each junction is the same.

Wan et al. [96] proposed a design which falls within this category. They used a so-

called “quasilumped” circuit which places junctions uniformly along the wire such that the

spacing between them was exactly one wavelength of the desired operating frequency. In

this manner each junction was thought to see the same amplitude and phase of the AC

current provided that the chosen mode is dominant.

When such a one group situation exists, Equation (85) becomes

ψ̇j = 1 + a2K
N
∑

i=1

sin(ψi − ψj + θ). (88)

This admits an in-phase state ψj = ψ0 for all j. Introducing small perturbations ψj =

ψ0+ξj , the linearized equations are diagonalized by switching to the coordinates σ =
∑N

i=1 ξi

and δj = ξj+1 − ξj , with result:

σ̇ = 0 (89)

δ̇j = −Na2K cos(θ)δj . (90)
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So, there is one zero eigenvalue and N − 1 degenerate eigenvalues given by:

λ = −Na2K cos θ. (91)

Because Ib is strictly greater than ω, we see from Equation (86) that K is positive and the

condition for linear stability reduces to

cos θ =
ω2 − ω2

k?

√

(ω2
k? − ω2)2 + (2αωNa2)2

> 0, (92)

or, rather,

ω > ωk? . (93)

This result is nearly identical to the one for the RLC-loaded array studied in the lumped

limit [53, 103]. There, the condition for in-phase stability is ω > ω0 where ω =
√

I2
b − 1

and ω0 is the natural frequency of the RLC load. We see that the resonant mode frequency

ωk? in the transmission line model (without load) plays the role of the load frequency ω0 in

the lumped model.

As a second example, consider the case of two groups. By this we mean that there are

n1 +n2 = N junctions such that n1 junctions have the property ajk? = a1 and n2 junctions

have the property ajk? = a2. The clustered array depicted in Figure 13 is an example of

a two group array. Provided the resonant mode is dominant, the local current amplitude

seen by the junctions in Figure 13 will take on one of two values. The junctions placed at

the anti-nodes will have a larger value of the local current amplitude than the junctions

placed at their sides. Another possible configuration which satisfies the two group condition

is the case when the junctions are placed at every anti-node of the resonant mode (so that

they are 1/2 wavelength apart). The junctions at one parity of anti-node will experience a

local current that is exactly opposite that of the junctions placed at the anti-nodes of the

opposite parity.

To make the analysis cleaner, we rename the phase variables so that ψ
(p)
j is the phase

of the jth junction in group p and j ∈ [1, np]. With this notation Equation (85) becomes

ψ̇
(p)
j = 1 +Kap

{

a1

n1
∑

i=1

sin(ψ
(1)
i − ψ

(p)
j + θ) + a2

n2
∑

i=1

sin(ψ
(2)
i − ψ

(p)
j + θ)

}

. (94)
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Equation (94) admits solutions in which junctions within each group are in-phase and

junctions between groups have a constant phase difference δ = ψ
(1)
j − ψ

(2)
i . It is easy to

show that when such a solution exists the phase difference between groups is given by

δ = sin−1

[

n1a
2
1 − n2a

2
2

a1a2K ′
sin θ

]

− Φ (95)

where

K ′ cos Φ = N cos θ and K′ sin Φ = (n1 − n2) sin θ. (96)

Note that there are phase locked solutions if and only if

∣

∣

∣

∣

(n1a
2
1 − n2a

2
2)

a1a2K ′
sin θ

∣

∣

∣

∣

≤ 1 (97)

or, in terms of the original parameters,
∣

∣

∣

∣

∣

2αω(n2
1a

4
1 − n2

2a
4
2)

a1a2

√

N2(ω2
k? − ω2)2 + 4α2ω2(n1 − n2)2(n1a2

1 + n2a2
2)

2

∣

∣

∣

∣

∣

≤ 1. (98)

With the knowledge that phase locked solutions exist and an explicit expression for the

phase difference between the two groups, we can now examine the stability of such solutions.

We let ψ
(1)
i = ψ

(1)
0 + xi and ψ

(2)
i = ψ

(2)
0 + yi where both xi and yi are small. Then, to first

order, Equation (94) becomes

ẋj = Ka2
1 cos θ

n1
∑

i=1

(xi − xj) +Ka1a2 cos(−δ + θ)

n2
∑

i=1

(yi − xj) (99)

ẏj = Ka1a2 cos(δ + θ)

n1
∑

i=1

(xi − yj) +Ka2
2 cos θ

n2
∑

i=1

(yi − yj). (100)

This system is diagonalized by the coordinate transformations

Γ = cos(δ + θ)

n1
∑

i=1

xi + cos(−δ + θ)

n2
∑

i=1

yi (101)

Λ = n2

n1
∑

i=1

xi − n1

n2
∑

i=1

yi (102)

δ
(x)
i = xi+1 − xi i = 1, . . . , n1 − 1, (103)

δ
(y)
i = yi+1 − yi i = 1, . . . , n2 − 1, (104)

giving us

Γ̇ = 0 (105)
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Figure 29: A plot of the critical value of a2 above which phase locking becomes possible
for the situation described in the text. The solid line is the theoretical prediction based on
Equation (98). The squares are data taken from direct simulation of Equations (47) and
(48), while constraining all Fourier modes to be zero except the resonant mode.

Λ̇ = −Ka1a2

[

n2 cos(−δ + θ) + n1 cos(δ + θ)
]

Λ (106)

δ̇
(x)
i = −Ka1

[

n1a1 cos θ + n2a2 cos(−δ + θ)
]

δ
(x)
i (107)

δ̇
(y)
i = −Ka2

[

n1a1 cos(δ + θ) + n2a2 cos θ)
]

δ
(y)
i . (108)

Figure 29 shows a typical example of the accuracy of Equation (98). With α = 1,

ωk? = 3, n1 = n2 = 4 and a1 = 1 we plot the critical value of a2 above which phase

locking becomes possible. This configuration consists of four junctions placed at (arbitrarily)

positive anti-nodes, and four junctions placed at equivalent positions along the wave form

of the resonant mode. Equation (98) predicts, and direct simulation of Equations (47) and

(48) (keeping only the resonant mode) confirms, that if a2 is smaller than the critical value

then phase locked solutions will not exist. If, however, a2 is larger than some critical value

a2c, then the phase locked solution will be stable for ω > ωk? .

The physical principles involved in the locking condition can be better elucidated by

taking a more concrete example. Consider the situation depicted in Figure 30. Here there
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are nine junctions placed along the wire in three groups centered about the positive anti-

nodes of the fifth mode. If we drive the system close to the resonant frequency of the fifth

mode we expect that mode to dominate. But how big can each cluster of junctions be? In

other words, if the positions of the junctions are given by xj ∈ {.1, .1±δx, .5, .5±δx, .9, .9±

δx}, how big can δx be before phase locking is lost? A close up view of one of the three

groups showing the spacing is given in Figure 31. This configuration falls into our “two

group” classification because the three junctions at the anti-nodes are at equivalent positions

along the mode, while the six at the sides are also at equivalent positions. Equation (98)

predicts that if δx is small enough then phase locked solutions will exist, provided ω > ω5.

Figure 32 verifies that this is reasonably accurate. The sold line is the theoretical prediction

of Equation (98) while the square are data obtained from direct simulation of Equations

(47) and (48). Above the line δx is too large for phase locked solutions, while below the

line stable phase locked solutions exist. Note that the simulation data given in Figure 32

was obtained while keeping the first 50 modes, not just the resonant mode. This shows that

while Equation (98) was derived by keeping just the resonant mode, it still does a decent

job in predicting the behavior of the full transmission line problem.

Several concepts can be gleaned from these examples, and from Equation (98). First, it

is apparent from Equation (98) that the closer the groups are in both number and placement

(with respect to the resonant mode) the better the chances are of locking. This follows from

the fact that as n1 → n2 and a1 → a2 the numerator in Equation (98) vanishes. This may

not be the only way to create phase locked solutions but it does have a physical appeal

that mirrors experimental attempts to create high power arrays. Han et al. [41] proposed

that arrays with clusters of junctions separated by whole wavelengths near the anti-nodes of

the resonant mode should exhibit better phase locking properties than other configurations.

They believed that since the junctions would see similar currents they would more easily

phase lock. Our theory confirms this expectation, and Equation (98) can then tell us

something about how large these clusters can be before phase locking becomes impossible.

Second, Equation (98) also implies that the closer the system is to resonance, the harder

it is to achieve phase locking. This becomes easier to see if one considers the case where
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Figure 30: A configuration of junctions (denoted by crosses) designed to select the fifth
current mode. Here there are nine junction. Three junctions are placed at the positive
anti-nodes, while the remaining six are placed at to sides of the the first three. Also shown
is the profile of the desired resonant mode.
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Figure 31: A close-up view of one of the groups shown in Figure 30. The total width of
the group is 2δx.
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Figure 32: Comparison of the theoretical (solid line) and numerical (squares) values of
the critical value of δx. Here there are nine junctions placed at xj ∈ {.1, .1 ± δx, .5, .5 ±
δx, .9, .9 ± δx}, α = 0.01, v = 1/π, and kmax = 10. Phase locked solutions are stable below
the curve.

n1 = n2. Then Equation (98) becomes:

∣

∣

∣

∣

αωN(a4
1 − a4

2)

2a1a2(ω2
k? − ω2)

∣

∣

∣

∣

≤ 1. (109)

The resonant denominator is now clearly seen in Equation (109). Note, also, that the total

number of junctions affects the stability, but in a surprising way: the higher N , the lower

the chance of locking. This puts a limit on the total number of junctions since δx must be

finite. Consequently, arbitrarily large arrays designed with resonant architectures in mind

will not be able to phase lock.

We can get a physical understanding of these conclusions, as follows. Consider the

resonant mode as it is being driven by the junctions. Since it is a driven harmonic oscillator,

the amplitude response of the mode is directly proportional to the number of junctions

driving it, and inversely proportional to the difference of the squares of the driving frequency

and the mode frequency. Next consider the junctions as they are being driven by the mode.

Equation (47) tells us that near resonance each junction is driven by both the dc component

(Ib) and a scaled oscillatory part, Iosc ≈ aik?Ak?(t)). The difference in the driving for the
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Figure 33: A close-up view of one of the groups shown in Figure 30. The spacing within
the cluster causes a difference in the local current, δI, seen by the junctions

two groups is then determined by the difference in the local current, δI ≈ (a1 − a2)Ak?(t).

Figure 33 illustrates this point. For phase locking to occur the amplitude of the driving

difference cannot be too large. Therefore, the larger the amplitude of the mode the smaller

the chance of phase locking. This is also the reason that tightly clustering the junctions

increases the chance of phase locking: as a1 → a2 the difference in the local current goes to

zero.

Another configuration inspired by experiment [11, 41] that falls within the “two group”

case consists of one junction placed at every anti-node of the resonant mode (so that they

are separated by one half of a wavelength). First consider the case where n1 = n2 = 1

and a1 = −a2 = 1. This represents just two junctions – one placed at one anti-node,

and the other placed at an anti-node of opposite polarity. An in-phase solution exists for

this configuration and is stable for ω < ωk? . This is the exact opposite of the stability

condition found in the one group case and is due to the polarity reversal between the

coupling constants of the two junctions. This would seem to suggest that placing junctions

at every half wavelength instead of every wavelength is a plausible alternative to achieve
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phase locking. However, if we allow for more than just two junctions things become more

complicated.

Let n1 = n2 > 1 and a1 = −a2 = 1. Again this corresponds to the junctions placed at

anti-nodes of opposing polarity, but now we allow for more than one of each kind. Equation

(98) implies that a phase locked solution still exists, but from Equations (105-108) one finds

that there are N − 1 zero eigenvalues and just a single non-zero eigenvalue. This implies

neutral stability of these solutions, so that small perturbations away from them will not

decay. Our simulations of Equations (47) and (48) confirm these predictions. We have found

that phase locked solutions do indeed exist for ω < ωk? but are not stable to perturbations.

Furthermore, when perturbed, phase locked solutions will remain phase locked but with a

new value for the phase difference between the two groups. This situation is reminiscent of

the the lumped circuit problem, where incoherent periodic solutions appear not individually

but rather in continuous families [75, 97]; more generally such indeterminacy of relative

phase between locked groups is typical of clustering behavior in lumped arrays [85]. This

example casts serious doubt on the legitimacy of architectures that rely on half wavelength

spacings. We do expect that such configurations will phase lock, but the indeterminacy of

the phase difference means that output powers can be quite low.

Two experiments back up these conclusions. Bi et al. tried a configuration that consisted

of two groups of junctions centered about two antinodes of opposite polarity [11]. They

found that the output power was consist with their predictions. On the other hand, Booi and

Benz tried a configuration that grouped multiple junctions about more than one antinode

of each polarity [13]. They found that the output power was only about 12% of their

theoretically predicted value. Note the difference between the two. Bi et al. placed the

junctions about just two antinodes, which we found to have stable coherent solutions, while

Booi and Benz placed the groups about many antinodes, which we found to have phase

indeterminant solutions. Of course, we were able to do the analysis for just a single junction

at each node, while both of these experiments were done with groups of junctions at each

node. Booi and Benz attributed their discrepancy to the presence of a large impedance

mismatch, but it is possible that a form of phase indeterminacy (similar to that described
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above) also played a role.

3.4 Summary

At sufficiently high frequencies, the wire connecting the elements of any electronic oscillator

array becomes an essential dynamical entity. But for Josephson arrays especially, this new

wrinkle is an important consideration. The twin technological pressures of higher powers and

higher frequencies inevitably push the design of the arrays out of the lumped-circuit limit.

At the same time, new experimental strategies become available through manipulation of

the spatial distribution of the junctions.

In this discussion, we considered perhaps the simplest non-trivial distributed architec-

ture. The averaging scheme that we used led us to a set of equations structurally similar

to those of a loaded lumped array with external load. These equations are valid for any

spatial arrangement of the junctions, and thus serve as a natural springboard for inves-

tigations that compare and contrast various spatial distribution schemes. Unfortunately,

the coupling constants in the averaged equations are pair dependent, and this is a major

hurdle for further analysis. Nevertheless, we were able to make good progress for certain

judiciously chosen examples.

In the case of near-resonant architectures we made a further reduction of the problem.

The resonant case is especially revealing, and leads to significant physical insight into achiev-

ing attracting synchronized dynamics. The tighter the clusters, the more likely it is that

phase locked solutions appear. Surprisingly, however, increasing the number of junctions

within a cluster can be detrimental. The interplay between these two – which are the most

fundamental properties of distributed architectures used in past experiments – is captured

by the two-group model.

Further development of the theory of transmission line coupled arrays may have a

broader significance than the problem we treated. For example, new schemes for power

combining in nonlinear antenna arrays rely on transmission line coupling of semiconductor

oscillators, as do related methods for beam scanning and beam shaping [104, 79, 46]. There

are also hints that distributed arrays exhibit fundamentally different phenomena than their
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lumped counterparts. For instance, Tsygankov and Wiesenfeld have found a novel type of

synchronization in systems of nonlinear oscillators coupled through a transmission line [93].

In a phenomenon they call “dynamical dimerization”, they have shown that in such systems

pairs of oscillators can spontaneously synchronize and become dynamically independent of

the other oscillators. This can happen when a pair of oscillators is separated by a half wave-

length of a normal mode (not necessarily a resonant mode) of the transmission line. The

work of Tsygankov and Wiesenfeld serves to underscore the complexity of the transmission

line coupling scheme. The interplay among driving frequency, mode frequencies, and spatial

positioning of the oscillators is just now beginning to be understood.
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CHAPTER 4

STOCHASTIC RESONANCE

The reception of weak periodic signals is of utmost importance to today’s communication

and sensor technologies. In most cases the presence of background noise is a major problem

because it degrades the quality of the signal reception. In some cases, however, the presence

of background noise can actually improve the quality, and even allow the reception of signals

that are undetectable in the absence of noise. One such phenomenon, known as stochastic

resonance (SR), has been widely studied and is known to be present in a variety of systems.

4.1 A History of SR

The theory of SR was first proposed by Benzi et al. and independently by Nicolis to describe

observed behavior in the Earth’s climate over the past 700,000 years [3, 4, 5, 6, 76, 77].

Scientists noted that the amount of ice covering the Earth’s surface was roughly periodic

during this time span and had an average period of approximately 100,000 years. The only

known planetary phenomenon that has that same period is the oscillation of the eccentricity

of the Earth’s orbit about the Sun caused by extra-planetary perturbations. Because these

oscillations cause differences in the total amount of solar energy flux incident on the Earth’s

surface it is possible that they are the cause of the periodicity of ice coverage. When the flux

is at a minimum, the ice coverage should be at a maximum, and vice-a-versa. However, the

total variation in the incident flux is extremely small [4], while the corresponding changes

in the ice coverage are drastic.

Though the Earth’s climate is exceedingly complicated, Benzi et al. considered a very

simple one-dimensional model they hoped could explain the phenomenon. They imagined

the climate as a particle existing on a “climate potential” landscape and driven by external

parameters such as the solar energy flux. An accurate climate potential function would have
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Figure 34: The one dimensional model of the climate consists of a rocked bi-stable potential.
In (a) the solar energy flux is at a minimum, biasing the potential toward the “cold” state,
while in (c) the flux is at a maximum, biasing the potential toward the “warm” state. In
(b) the flux is normal, making either state equally probable.

many dimensions and parameters, but one can imagine projecting the dynamics onto a one-

dimensional manifold describing the amount of ice coverage. The resulting one-dimensional

potential should then be bi-stable – one minimum describing a cold (lots of ice) state, and

the other a warm (small amounts of ice) state [23]. As the incident flux oscillates, the

potential is rocked back and forth, but not to such a degree as to eliminate either of the

two stable states (see Figure 34).

Notice that the model described above must be incomplete, because as stated, once

the climate was in a particular state it would never leave that state. There must also

be another mechanism that allows the state to jump from one state to the other. Benzi et

al. proposed that this mechanism was noise. The actual source of the noise is not necessarily

important, for it could be a number of things including fluctuations of the solar flux not due

to eccentricity changes, atmospheric conditions such as global cloud coverage, or even the

density of land vegetation. It is well known that a particle under the influence of noise can

escape from a local minimum [44, 60], and Benzi et al. realized that these escapes would be

more likely to occur when the potential was biased in the proper direction.

It is still debatable whether this description has any relevance to to the periodicity of the

Earth’s ice ages, but stochastic resonance is now also being used as one possible explanation

for a similar phenomenon, Dansgaard-Oeschger events [58]. These events, which occur

roughly every 1, 500 years, involve the sudden rise in temperatures in the North Atlantic.
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Ganopolski and Rahmstorf have postulated that Atlantic currents can exist in two states,

differing in the amount of fresh water that flows into the North Atlantic [33]. The changes

in fresh water flux are enough to cause global temperature variations, and thereby explain

Dansgaard-Oeschger events. The periodicity of the events is thought to have its roots in

stochastic resonance [1, 34]. The currents are modulated at a period of roughly 1, 500 years,

and are helped along by climatic noise.

The type of stochastic resonance described above is commonly referred to as two state

stochastic resonance. The system can reside in either of two states. For the climate model

these two states correspond to low and high levels of global ice coverage. This two state

model has been studied to great extent, but it is only one form of stochastic resonance.

Another type of stochastic resonance, typically called excitable SR or “stochastic resonance

on a circle”[102], involves a slightly different system.

Excitable SR is similar to two state SR in that the potential landscape of the system

has a minimum. Unlike two state stochastic resonance, however, excitable SR has just one

minimum, called the ground state. Once the system is kicked out of the ground state it

quickly, and deterministically, returns to the ground state. The time it takes to return

to the ground state is called the refractory time, and is generally smaller than other time

scales in the problem [102]. The result is that the output signal of the system becomes a

spike train, instead of a telegraph-like signal characteristic of two state SR. The difference

between the two is demonstrated in Figure 35. Figure 35(a) shows the output signal of

an excitable system. Whenever the system is kicked out of the stable state it quickly

returns, resulting in an output signal that is called a spike train. In contrast, Figure 35(b)

shows the output signal of a two state system. Here, when the system is kicked out of one

stable state it enters the other, where it remains until it is kicked out again. Excitable

stochastic resonance has been used to model the reaction of periodically and noisily driven

systems such as under-biased Josephson junctions, the Fitzhugh-Nagumo neuron models,

semiconductor p-n junctions, and voltage dependent ion channels [9, 102].

The first experimental realization of SR was reported in 1983 by Fauve and Heslot [24].

They used a nonlinear circuit device called a Schmitt trigger that acts as a two state device.
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Figure 35: A comparison of idealized output signals from (a) an excitable system and (b)
a two state system.
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Vp(t)

Vn(t)

Figure 36: A schematic of a Schmitt trigger. The operational amplifier has a periodic
input, Vp(t), a noisy input, Vn(t) and a feedback loop.

Vin
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Figure 37: An idealized response diagram of a Schmitt trigger.

A schematic of a Schmitt trigger is shown in Figure 36. When in the low state, if the input

voltage becomes higher than a threshold voltage, Vhigh, the trigger will switch to the high

state. Once in the the high state, the input voltage must go lower than another threshold

voltage, Vlow < Vhigh, in order to go back to the low state. As a result, the corresponding

response diagram shows a familiar loop characteristic of hysteresis (see Figure 37).

Fauve and Heslot prepared the Schmitt trigger so that the input voltage was a combi-

nation of a periodic and a noisy source. Without the noise the amplitude of the periodic

voltage was too small to make the trigger switch from one state to the other. With the

addition of the noisy voltage, however, the trigger did switch occasionally. They found

that there existed a finite noise amplitude which maximized the output signal to noise ra-

tio (SNR). This maximization of the SNR is now the characteristic most associated with

62



stochastic resonance.

Several years after the discovery of Fauve and Heslot stochastic resonance was also

observed in a bistable ring laser system [71, 95], and in SQUIDS [48, 49]. Simulations [31]

and theoretical work soon followed. In July of 1988 Fox submitted a paper containing an

analysis combining time dependent perturbation theory with eigenfunction expansion of

the underlying Fokker-Planck equation that described stochastic resonance in double well

potentials [29]. Three months later McNamara and Wiesenfeld submitted their paper which

described the double well system using a modulated rate theory approach [70]. Wiesenfeld

et al. were later able to give a theoretical explanation of excitable stochastic resonance

[102, 100] that used a rate theory technique similar to that used by Rice in his explanation

of the “shot effect” [81].

One of the more intriguing aspects of stochastic resonance is its possible role in biological

systems. The first suggestions of biological SR were made by Bulsara et al. in 1991 [14, 68],

with their work on sensory neuron models. Several years later Douglass et al. published

experimental evidence of SR in the mechanoreceptor hair cells of crayfish [22, 101, 102].

Subsequent work has shown SR to exist in a myriad of biological systems, including ion

channels [8], cercal systems of crickets [63], and in mammalian cutaneous tissue [19]. Moss

et al. have found that electrical noise improves the ability of paddlefish to find food [30, 83],

and the search for SR in higher order functions has led to studies in vision [73], balance

[80], respiration [50], and hearing [74].

In the following chapters we will examine stochastic resonance in several forms. First,

we will attempt to derive a theory that can explain both two-state and excitable SR. The

two different theories currently used to explain the two types of SR yield strikingly similar

results. In one limit the predictions made by the two theories are identical. This begs

the question of whether or not the two types of SR have a deeper connection, and we will

examine this possibility.

In the last chapter we will look at SR with multiple sources of noise. In particular,

we wish to investigate the properties of two state systems when a second, correlated noise

source is added to a white noise source. We have found that this type of system can be
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used to model signal transduction in the saccular hair cells of frogs [67]. We will show

numerically that, as a function of the correlated noise strength, SR exists in such systems

provided that the correlation time of the secondary noise is small enough. Two theories will

be examined in an attempt to explain this phenomenon.
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CHAPTER 5

A UNIFIED THEORY OF STOCHASTIC RESONANCE

The theory of McNamara and Wiesenfeld [70] which describes two state stochastic resonance

uses a rate theory approach to explain the dynamics of the problem. The key to their model

was in making a connection between the underlying continuous dynamics of a double well

Langevin system to the discrete dynamics of a state model. This requires the probability

distribution of the position variable to be sharply peaked near the minima of the double

well. Additionally, all transitions between minima need to be relatively quick, so that once

over the potential barrier the system quickly relaxes to a nearly stationary distribution

around the new minimum. These assumptions led them to use two rates, corresponding

to transitions back and forth between the two states. The sinusoidal drive of the signal

modulates the two rates and if the drive is small enough, McNamara and Wiesenfeld showed

that the rates are well approximated by

W±(t) = α± ε cos(ωst+ φ), (110)

where α and ε are constants and ωs and φ are the frequency and initial phase of the drive.

The ± refers to the present state of the system, either the “low” (−) state or the “high”

(+), so that W±(t) is the rate out of the ± state.

Using Equation 110 McNamara and Wiesenfeld calculated that the signal to noise ratio,

R, of the system is

R =
πε2

2α

{

1 − 2ε2

4α2 + ω2
s

}−1

. (111)

Now if we assume that the term in brackets is near unity (which can happen in either the

high frequency or small signal limits) then Equation (111) reduces to

R ≈ πε2

2α
. (112)

Equation (112) also happens to be the signal to noise ratio found by Wiesenfeld et al. in
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their analysis of the excitable system [102]1. In that system they assumed that the firing

rate had the form

We = α+ ε cos(ωst+ φ), (113)

where, again, α and ε are constants and ωs and φ are the frequency and initial phase of

the sinusoidal drive, respectively. The constant α now represents the average rate at which

the system fires, and the time dependent part is the correction to α due to the (adiabatic)

sinusoidal drive. Just as in the two state system, the time scale of the drive must be slow

compared to the average time between firings (i.e. αÀ ωs).

In their derivation, Wiesenfeld et al. used a technique similar to that used by Rice

in his analysis of the shot effect [81]. They assumed that the output current was zero

everywhere except when the system fires, at which point there is a spike modelled by a Dirac

delta function. Using just the statistics of this modulated Poisson process (as governed by

Equation (113)) they were able to directly calculate the autocorrelation function without

the use of a rate equation. This is in contrast to the theory of McNamara and Wiesenfeld

for the two state system which relies on the solution of just such an ODE. Nevertheless,

Wiesenfeld et al. were able to derive the SNR for the excitable system, Re,W , with result

Re,W =
πε2

2α
. (114)

Both Equations (111) and (114) do well in predicting the SNR curves of their respective

systems. This is shown in Figures 38 and 39. In these plots the rates α and ε are taken to

be related to the escape rates out of a potential well, such that

α = r0 exp

[−∆U

D

]

(115)

and

ε =
ηr0
D

exp

[−∆U

D

]

, (116)

where r0 and η are constants, ∆U is the barrier height, and D is the noise strength [70, 102].

The maxima in the SNR curves characteristic of stochastic resonance is clearly seen in both

1Actually, the result of Wiesenfeld et al. differs from our result by a factor of π/2 due to their choice of
normalization of the Fourier transform of the cosine function. Also note that Equation (7) in their paper
(Reference [102]) has an inadvertent factor 1/2 in it that is corrected later in the paper.
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the two state (Figure 38) and one state (Figure 39) systems. For both low and high levels

of the noise strength, D, the SNR is low. When the noise strength is is near D ≈ 130 the

SNR is maximized for both the one state and two state systems.

Some correspondence between the two systems could be expected given that they both

rely on rate pictures of activated escape to cause an event (either a state switch or an

excitation). But this begs the question of whether or not a single theory could encompass

both phenomena.

In the present chapter we will provide a unified theory that is capable of describing

both two state and excitable stochastic resonance. The method is similar to the rate theory

used by McNamara and Wiesenfeld to describe two state stochastic resonance, but modified

to work in two limits. In the first, the symmetric limit, the model will reduce to the two

state theory of McNamara and Wiesenfeld, while in the second it models the excitable

system studied by Wiesenfeld et al. This models does well in predicting the SNR curves

of the symmetric limit and correctly predicts the behavior of intermediate regimes. In

the excitable limit, however, the theory is off by a factor of two. We will examine this

discrepancy in an effort to resolve the issue.

5.1 The Constrained Asymmetric Rate Model

One way of looking at the excitable limit is to imagine a two state process that has a finite

rate of escape from one state and an infinite rate of escape from the other. In other words,

once the system is kicked out of the − state into the + state it will immediately get kicked

back into the − state. This leads us to an asymmetric rate model of a two state system.

Such a system has been studied before, in the context of asymmetric double well potentials.

In looking at this model, Li [64] was led to a rate picture with rates of the form

W±(t) = α± ± ε± cos(ωst+ φ). (117)

The asymmetry of the double well potential is evident in the constants α± and ε±. Unfortu-

nately the rate equation corresponding to the above rates is prohibitively difficult to solve.

Li was able to get around this difficulty by assuming that ε+ − ε− was small, corresponding

to a slight asymmetry.
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Figure 38: A plot of the SNR of a two state system. The solid line is the theoretical
prediction of Equation (111) while the boxes are data taken from our numerical simulations
of the two state process with r0 ≈ 7.2, η ≈ 45.2 and ∆U = 256.
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Figure 39: A plot of the SNR of a one state system. The solid line is the theoretical
prediction of Equation (114) while the boxes are data taken from our numerical simulations
of the one state process with r0 ≈ 7.2, η ≈ 45.2 and ∆U = 256.
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If we are to use a two state picture to model the excitable system, however, the asym-

metry will be infinitely large. The rate out of the lower state will remain finite, but the rate

out of the high state will go to infinity (i.e. both α+ and ε+ will go to infinity, but α− and

ε− will remain finite). The fact that α+ − α− → ∞ poses no problem for the analysis, but

the rate equation will be severely complicated since ε+ − ε− → ∞.

Recall, though, that Equation (117) was the result of an examination of an underlying

Langevin process within an asymmetric double well potential. If we wish to model an

excitable system with a two state process, however, it would be wrong to constrain ourselves

to an underlying double well potential. In particular, we note that when the system is in

the + state we always want it to immediately relax back into the − state, no matter what

the phase or amplitude of the drive is. This is accomplished simply by allowing α+ to go

to infinity while constraining ε+/α+ to be less than unity. In the excitable limit it does not

matter what ε+ is, since it will not affect the dynamics.

With this in mind, we begin our derivation by considering a modulated two state Markov

process with states s− and s+. Instead of the rates given in Equation (117) we choose rates

of the form

W±(t) = α± ± ε cos(ωst+ φ), (118)

where α± are the bare (unmodulated) rates out of the states s±, and ε, ωs and φ are the

amplitude, frequency and initial phase of the periodic signal, respectively. Notice that the

amplitude of the drive is the same for both the s− and s+ states. This simple constraint

will make the resulting rate equation solvable. This model, with the symmetric signal

amplitudes, we call the “Constrained Asymmetric Rate Model” (CARM).

The probability of being in the state s+ is governed by the ODE

Ṗ+ = −W+P+ +W−P−

= −σP+ + α− − ε cos(ωst+ φ), (119)

where P± is the probability of being in the ± state, σ = α+ + α−, and the second line

follows from the fact that P− = 1 − P+. This has as its solution
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P+(t|s0, t0) = exp [−σ|t− t0|]
{

δs0,s+
− α−

σ
+

ε
√

σ2 + ω2
s

sin(ωst0 + θ)

}

+
α−

σ
− ε
√

σ2 + ω2
s

sin(ωst+ θ), (120)

where P+(t|s0, t0) is the probability of being in the state s+ at time t given that the system

was in state s0 ∈ {s+, s−} at time t0, θ = φ+ tan−1(σ/ωs), and δi,j is the Kronecker delta

function.

We define the output current of the system to be

I(t) =











A if in the s+ state

0 if in the s− state.
(121)

The amplitude of the current, A, is arbitrary and carries the required units of the problem.

It will set the strength of both the signal and noise of the output current, but will not

appear in the signal to noise ratio. Even so, the current amplitude will become important

when we make a detailed analysis of our theory in the excitable limit. For this reason, we

will keep A as a free parameter until the need arises for us to specify it.

Equation (121) allows us to compute the autocorrelation function of the current,

ψ(τ) = lim
t0→∞

〈I(t+ τ)I(t)|s0, t0〉

= lim
t0→∞

A2

2π

∫ 2π

0
dφ P+(t+ τ |s+, t)P+(t|s0, t0), (122)

where the brackets indicate averaging over both the probability distribution and the initial

phase of the drive. Plugging in Equation (120) gives us

ψ(τ) =
A2α−

σ

[

1 − α−

σ

]

exp (−σ|τ |) − A2ε2

2(σ2 + ω2
s)

exp (−σ|τ |)

+
A2α2

−

σ2
+

A2ε2

2(σ2 + ω2
s)

cos(ωsτ). (123)

The power spectrum can now be obtained by using the Wiener-Khinchin theorem [81].

Because the autocorrelation function is real and is an even function of τ , we may use the

one-sided cosine transform. The result will be a combination of a Lorentzian due to the

exponential and two Dirac delta functions. One of these delta functions is due to the cosine

drive term, and the other is due to the constant term A2α2
−/σ

2. This second delta function
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represents dc power from the non zero average of the current, and is uninteresting. Ignoring

this term the power spectrum is

S(ω > 0) = 4

∫

∞

0
dτ ψ(τ) cos(ωτ)

=
4A2α−

σ2 + ω2

[

1 − α−

σ

]

− 2A2ε2σ

(σ2 + ω2
s)(σ

2 + ω2)
+

πA2ε2

σ2 + ω2
s

δ(ω − ωs). (124)

Notice that the power spectrum is of the form

S(ω) = N(ω) + Cδ(ω − ωs), (125)

where N(ω) represents the broad band noise associated with the system, and Cδ(ω−ωs) is

the power directly attributable to the coherent signal. The signal to noise ratio is defined

to be ratio of the signal power to the noise power at the signal frequency

R =
C

N(ωs)
. (126)

Reading these terms off from Equation (124) gives us

R = πε2
[

4α−

(

1 − α−

σ

)

− 2ε2σ

σ2 + ω2
s

]−1

. (127)

We are now ready to take the two limits associated with the symmetric and excitable

systems. In the symmetric limit both of the bare rates are equal, so that α+ = α− = α and

σ = 2α. In this limit the signal to noise ratio reduces to

Rs =
πε2

2α

{

1 − 2ε2

4α2 + ω2
s

}−1

, (128)

which is precisely the signal to noise ration given by McNamara and Wiesenfeld for the

symmetric two-state case [70].

In the excitable limit we need the system to remain in the excited (s+) state only

instantaneously. This means that the rate out of the excited state should go to infinity.

The result is a system that resides in the ground state (s−) until being excited out. At that

time the system immediately returns to the ground state. The current of such a system

will be constant (at I = 0) except at a discrete number of points at which there is a spike.

We obtain this limit by taking α+ → ∞, meaning that once in the excited state the time
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to relax back into the ground state will go to zero. In this limit the signal to noise ratio

reduces to

Re = lim
α+→∞

R =
πε2

4α
, (129)

where we have made the substitution α− = α.

Equation 129 differs from the correct result given by Wiesenfeld et al. by a factor of 1/2

[102]. Their result, when suitably normalized, is given by

Re,W =
πε2

2α
. (130)

We will devote the next section to the examination of the connection between the excitable

limit of the CARM and the “true” excitable system.

5.2 An Examination of the Excitable Limit Discrepancy

The first step in examining the discrepancy in the excitable limit of the Constrained Asym-

metric Rate model involves specifying the amplitude of the output current. In the symmetric

limit this amplitude is arbitrary, because it sets the strengths of both the noise and the sig-

nal components of the power spectrum. No matter what the value of the current amplitude,

the signal to noise ratio of the symmetric limit will be unchanged. For physically plausible

two state systems the current amplitude should remain finite. However, just the opposite

is true for excitable systems. Because the system only spends an infinitesimal time in the

excited state the current amplitude needs to be infinite for there to be a nonzero autocorre-

lation. In other words, given the discrete set of times {ti} for i = −∞, . . . ,−1, 0, 1, . . . ,∞

representing the times at which the system becomes excited, the current is

Ie(t) =











Hδ(t− ti) if t = ti ∀ i

0 otherwise.
(131)

The strength of the delta function, H, is now the arbitrary constant that sets the strengths

of the noise and signal in the power spectrum, analogous to A in the symmetric limit.

Our task is to find the proper value of A such that in the limit α+ → ∞ Equation (121)

becomes Equation (131). In other words, as the rate out of the excited state goes to infinity

the square waves of the current must become delta functions. This necessitates an infinite
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value of A, with appropriate behavior as α+ gets large. To this end, let us make use of the

rectangular function defined by

rect(t) =























0 if |t| > 1/2

1/2 if |t| = 1/2

1 if |t| < 1/2.

(132)

The rectangular function has zero value outside of a region of length 1 centered about the

origin in which it has unit value. Also, any integral spanning the support ([−1/2, 1/2]) of

rect(t) has unit value (i.e. the area under the curve is one). These features lead to the

relation

lim
a→∞

a · rect(at) = δ(t). (133)

Without loss of generality, assume that the set {ti} of excitation times also represents

the times of the midpoints of the square wave excitations. As depicted in Figure 40, the

height of each square wave is A while the average width is 1/α+. Therefore we may write

the ith square wave of the current as

Ii(t) = A · rect [α+(t− ti)] . (134)

Furthermore, assume that the current amplitude increases linearly with α+, so that A =

Cα+. Then

lim
α+→∞

Ii(t) = lim
α+→∞

Cα+ · rect [α+(t− ti)] = Cδ(t− ti). (135)

Comparing Equation (135) to Equation (131) we see that C = H, meaning that the correct

current amplitude to use is A = Hα+.

We can now plug the new current amplitude into the result for the autocorrelation of

the CARM, Equation (123), giving us

ψ(τ) =
H2α2

+α−

σ

[

1 − α−

σ

]

exp (−σ|τ |) − H2α2
+ε

2

2(σ2 + ω2
s)

exp (−σ|τ |)

+
H2α2

+α
2
−

σ2
+

H2α2
+ε

2

2(σ2 + ω2
s)

cos(ωsτ). (136)

Recall that σ = α− + α+, so that when we take the limit α+ → ∞ we must take this into

account. Also note that for finite x

lim
α+→∞

α2
+

α2
+ + x

= 1, (137)
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Figure 40: One excitation pulse of the current given in Equation (121). The pulse has an
average width 1/α+ and a height A.

and

lim
α+→∞

exp [−σ|τ |] = 0, (138)

meaning that all terms of the form [α2
+/(α

2
+ + x)] exp [−σ|τ |] vanish in the limit α+ → ∞.

This leaves us with

lim
α+→∞

ψ(τ) = lim
α+→∞

H2α2
+α−

σ
exp (−σ|τ |) +H2α2

− +
1

2
H2ε2 cos(ωsτ). (139)

The remaining limit can be evaluated by noticing

lim
a→∞

a2

a+ c
exp [−(a+ c)|τ |] = lim

a→∞

[

(a+ c)2

a+ c
− 2ac+ c2

a+ c

]

exp [−(a+ c)|τ |] (140)

= lim
a→∞

(a+ c) exp [−(a+ c)|τ |] (141)

= lim
b→∞

b exp [−b|τ |] (142)

= 2δ(τ). (143)

This means that, in the excitable limit, the autocorrelation function for the CARM is

ψe(τ) = 2H2α−δ(τ) +H2α2
− +

1

2
H2ε2 cos(ωsτ). (144)
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Equation (144) is nearly identical to the autocorrelation function given by Wiesenfeld

et al. in their derivation of the true excitable system. That autocorrelation is

ψe,W (τ) = H2α−δ(τ) +H2α2
− +

1

2
H2ε2 cos(ωsτ). (145)

Now we can see exactly where the problem lies. The coefficient of the δ(τ) term in the

CARM autocorrelation has an extra factor of two. This term is directly responsible for the

broadband background noise of the system, since the power spectrum is given by

Se(ω > 0) = 4

∫

∞

0
dτ ψe(τ) cos(ωτ) (146)

= 4H2α− + πH2ε2δ(ω − ωs), (147)

where the dc component of the noise resulting from the constant term in Equation (144) has

been ignored. The first term in Equation (147) is the noise attributable to the δ(τ) term

in Equation (144) while the δ(ω− ωs) term represents the coherent power in the sinusoidal

signal. Again, Equation (147) differs from the result of Wiesenfeld et al. by a factor of two

in the background noise. The correct power spectrum for their result is

Se,W (ω > 0) = 2H2α− + πH2ε2δ(ω − ωs). (148)

Apparently the CARM gets the coherent signal term correct, but overestimates the noise.

We have numerically checked both theories, and both do well in describing their respec-

tive systems. Figures 41-43 illustrate this point. In Figures 41 and 42 we have let α+ = nα−

and A = α+. In the truly symmetric case (n = 1) we recover the result of McNamara and

Wiesenfeld (Figure 41). If we turn on the asymmetry by allowing n > 1 the predictions

made by the CARM are still excellent, even when n = 1000 (Figure 42). Note that when

n = 1000, however, there seems to be a systematic error of about 10%. It is yet unknown if

this error is a true difference, or whether it is due to the numerical difficulties of integrating

a system with such a discrepancy in time scales. In the truly excitable limit, the theory of

Wiesenfeld et al. does a near perfect job (Figure 43).

Notice that as the asymmetry is turned on in the CARM, the power spectrum begins

to flatten out to a constant value. This happens because the corner frequency of the
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Figure 41: The power spectrum of the symmetric two state model. The solid line is
the theoretical prediction of the CARM, while the crosses are numerical data taken from
simulation of the two state process. Here α− ≈ 0.043, ε ≈ 0.039, ωs ≈ 1.23 and n = 1.
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Figure 42: The power spectrum of an asymmetric two state model. The solid line is
the theoretical prediction of the CARM, while the crosses are numerical data taken from
simulation of the two state process. Here α− ≈ 0.043, ε ≈ 0.039, ωs ≈ 1.23 and n = 1000.
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Figure 43: The power spectrum of the one state model. The solid line is the theoretical pre-
diction of the Wiesenfeld et al., while the crosses are numerical data taken from simulation
of the one state process. Here α− ≈ 0.043, ε ≈ 0.039, ωs ≈ 1.23.

Lorentzian shaped spectrum of the noise moves to higher frequencies as the system becomes

more asymmetric. However, in the limit n → ∞ the CARM converges to a value of the

background noise that is twice as large as the true excitable limit. This is illustrated in

Figure 44.

The CARM does an excellent job in describing two state systems with finite asymmetries

in the base rates, and correctly predicts the SNR of the symmetric system. It was our hope,

however, that this model would allow for a limit capable of correctly describing excitable

systems. Unfortunately this is not the case, and the reasons for it are still unknown to

us. The result the CARM gives for the SNR of the excitable limit does have the same

functional form as that given by Wiesenfeld et al. (differing only by a factor of 2) and this

is tantalizing evidence that gives us hope that a two state model of excitable systems can

still be found.
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Figure 44: The theoretical noise power spectra predicted by the CARM for n =
1, 10, 100, 1000 and ∞. Also plotted is the correct prediction of Wiesenfeld et al. for the
true excitable limit (TEL).
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CHAPTER 6

STOCHASTIC RESONANCE WITH WHITE AND

COLORED NOISE

One of the main features common to most work on stochastic resonance is the “whiteness”

of the noise term. In other words, the autocorrelation function of the noise is generally a

Dirac delta function, giving the noise infinite variance but zero correlation time. Certain

theoretical considerations make this approximation attractive, since analytic progress in

systems containing correlated noise sources is considerably more difficult than in those

with uncorrelated sources. Real world noise sources are not purely uncorrelated, but the

argument can often be made that the correlation time of the noise source is much smaller

than all other time scales in the problem, rendering the noise effectively white.

There are times when the finite correlation time of the noise source must be taken into

account. One can then ask: how does colored noise affect stochastic resonance? This ques-

tion was taken up first numerically by Gammaitoni et al. who found that the effectiveness

of SR decreased with increasing correlation time [32]. This finding was backed up theoret-

ically by Hänggi et al. [43]. They predicted that the effectiveness of SR should decrease

with increasing correlation time for over-damped bistable systems, but also that it can in-

crease for systems with non-negligible inertia. Experimental work has also been done on an

optical bistable system that shows a clear decrease in the peak SNR values for increasing

correlation times [72].

Various forms of noise sources have now been studied in the context of stochastic res-

onance. For instance the noise need not be purely additive [7, 56, 105], nor does it need

to be Gaussian [36, 59, 82]. In the present chapter we will explore stochastic resonance

in bistable systems in the presence of two independent additive noise sources. One place

where we have encountered this situation is in the hair cells of vertebrates [67]. Hair cells

play a major role in the auditory system in that they convert mechanical energy into the
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Stereocilia

Tip Links

Figure 45: A single row of stereocilia (“rods”). The rods increase in height along the row
and are connected by an elastic tip link.

electrical impulses that are sent to the brain. Experiments have now shown that vertebrate

hair cells exhibit stochastic resonance [47, 52, 54, 55]. Very little theoretical work has been

done on this type of system, however, and in the present chapter we begin to explore one

aspect of such a system, namely the effect of multiple noise sources.

Mammalian auditory hair cells reside in the organ of Corti [66] beneath the tectorial

membrane. There are two types of hair cells, inner hair cells and outer hair cells. The

motile outer hair cells appear to be attached to the tectorial membrane and are thought to

actively amplify and refine the local motion of the organ of Corti. In contrast, the inner hair

cells are detached from the tectorial membrane. Their motion is directly attributable to the

ambient fluid, and therefore they could undergo significant Brownian motion [51, 54, 55, 66].

At the top of each hair cell resides a hair bundle comprised of stereocilia. The hair

bundle reacts to the motion of the ambient fluid by tilting in one direction or another.

This tilting forces open gates near the tops of the stereocilia that allow ions in the fluid

to flow into ion channels that lead to the neural auditory system. The ions are generally

small monovalent cations (Li+, Na+, K+, Rb+, Cs+ and NH+
4 are the most common) but

larger ions such as choline, tetramethylammonium and tetraethylammonium can also pass

through the gates [51].

The hair bundles themselves usually contain tens of stereocilia arranged into a two
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(a) (b) (c)

Figure 46: A schematic of two rods and their associated tip link as they are (a) closed-
biased, (b) unbiased and (c) open-biased.

dimensional array. Along the rows of the array the tops of each stereocilium (sometimes

called a “rod”) are connected by an elastic tip link (see Figure 45). When stretched, this

tip link pulls on the ion channel gate, biasing it either to the open or closed position (see

Figure 46). Once the gate is open, ions in the surrounding fluid pass through the gate and

down the neural pathways, as shown in Figure 47.

Our recent work [67] has modelled hair cells as a coupled system of bistable potentials

driven by a sinusoidal drive (the signal) and two sources of noise, one white and the other

colored. The bistable potential corresponds to the gate dynamics, since each gate can

stably reside in either the open or closed states. The white noise source is due to impacts

sustained by the gate directly from the ambient Brownian fluid, while the colored noise and

sinusoidal drive are attributable to the motion of the rod. The secondary noise is colored

because its affects on the gates are indirect, since they are filtered through the other degrees

of freedom. Though the noise on the rods is initially white, the filtering process takes out

the high frequency content, so that each gate feels a colored noise source. In the uncoupled

limit, we model the gate dynamics (in the over damped limit) with a symmetric quartic

bistable potential with a sinusoidal drive and two sources of additive noise, resulting in an

equation of the form

ẋ = ax− bx3 +A cos(ωst+ φ) + ξw(t) + ξc(t), (149)

where A, ωs and φ are the amplitude, frequency and initial phase of the drive, respectively;
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Figure 47: A close-up view of the gate mechanism at the top of a rod. When the gate
is open (as shown) ions are allowed to flow into the ion channel and down into the neural
pathways.

a and b are constants; and ξw(t) and ξc(t) are the white and colored noise sources, with the

correlations

〈ξw(t)〉 = 〈ξc(t)〉 = 0, (150)

〈

ξw(t)ξw(t′)
〉

= 2Dwδ(t− t′), (151)

〈

ξc(t)ξc(t
′)
〉

=
Dc

τc
exp

[

−|t− t′|
τc

]

, (152)

and

〈

ξw(t)ξc(t
′)
〉

= 0, (153)

where Dw and Dc are the white and colored noise strengths, respectively, and τc is the

correlation time of the colored noise.

For the remainder of this chapter we will examine Equation (149). Without the colored

noise term it is identical to the system studied by, for example, McNamara and Wiesenfeld

in their study of stochastic resonance in bistable systems [70] and by Fox [29]. The addition

of the colored noise term is a complication, and we specifically wish to investigate the effect

the correlation time has on stochastic resonance in this system (as a function of the colored

noise strength).

82



0 100 200 300 400 500 600
2

3

4

5

6

7

8

9

D
c

SN
R

τ
c
= 0 

τ
c
= 0.1

τ
c
= 0.25 

τ
c
= 0.5 

τ
c
= 1 

Figure 48: A plot of the numerically calculated signal to noise ratios versus colored noise
intensity for various values of the correlation time. Notice that the peak of the SNR curve
moves toward lower values of SNR and higher values of noise intensity as the correlation
time is increased. The peak disappears for correlation times near unity. Here a = 32, b = 1,
A = 8, ωs = .031 and Dw = 75. The data are interpolated with straight lines for ease of
viewing.

Figure 48 shows the results of direct Monte Carlo integration of Equation (149). Six

curves are shown, each representing the SNR of the system versus Dc for different values of

τc. Notice that the stochastic resonance peak in each SNR curve changes as the correlation

time is increased. Specifically, as τc increases, the peak shifts to lower values of SNR while

simultaneously requiring a higher value of Dc to achieve the maximum. Also, note that the

peak disappears altogether for larger values of τc.

We wish to explain this behavior theoretically, and to this end we will explore two

different theories. The first theory is based on the work of Bezrukov [9, 10]. He postulates

that if the correlation time of the colored noise is large, then it can be treated adiabatically.

This led Bezrukov to model an excitable system with a stochastic rate – i.e. one in which

the colored noise term is treated the same as the periodic signal. Bezrukov found that

stochastic resonance still occurs in such system, and calculated sufficient conditions for its

presence. We will attempt to use this “stochastic rate” theory approach for our two state

(bistable) system. The second theory is a rate theory based on work by Fox [27, 28], who
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was able to calculate the mean first passage times for systems with a single source of colored

noise in the small τc limit. By extending that work to systems with both white and colored

noises, a new mean first passage time (and hence rate) can be calculated.

We will show that stochastic rate theory does a poor job in describing stochastic reso-

nance in a two state system with white and colored noise sources. Numerical integration

of this model will show little in common with its Langevin equivalent. The match is bad

enough that the overall validity of stochastic rates is questionable, and we will explore that

aspect in more detail. The small τc rate theory does predict stochastic resonance, but the

dependence on the correlation time is incorrect. As it turns out, the value of τc above which

stochastic resonance “turns off” is in an intermediate regime inaccessible to either theory.

Stochastic rate theory only works in the high τc limit, while small τc theory is only valid

for extremely small values of τc.

6.1 Stochastic Rate Theory

We first turn to the problem of escape from a potential well in the presence of both white and

colored noise sources. In particular we are interested in the stochastic differential equation

ẋ = A(x) + ξw(t) + ξc(t), (154)

where A(x) is the force on the particle due to the deterministic double well potential, and

ξw(t) and ξc(t) are, again, the white and colored noise sources, respectively, with

〈ξw(t)〉 = 〈ξc(t)〉 = 0, (155)

〈

ξw(t)ξw(t′)
〉

= 2Dwδ(t− t′), (156)

〈

ξc(t)ξc(t
′)
〉

=
Dc

τc
exp

[

−|t− t′|
τc

]

, (157)

and

〈

ξw(t)ξc(t
′)
〉

= 0. (158)

The correlation time, τc, sets the time scale over which the colored noise changes in

time. In this section we will assume that τc is much larger than any other time scale in the

problem.
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Equation (154) can be rewritten to get rid of the colored noise term at the expense of

adding another spatial dimension [27]. Specifically, we can rewrite Equation (154) as

ẋ = A(x) + ξw(t) + y (159)

ẏ = − 1

τc
y +

Dc

τc
ζ(t), (160)

where ζ(t) is unit variance Gaussian white noise. Note that the correlations for the y

variable (i.e. Equations (155) and (157), corresponding to the colored noise term) will only

be correct provided one also averages the initial values of y over their stationary distribution

[26]. Numerically this can be done by integrating the system until all transients in the y

variable die out.

By examining the SDE for the y variable it becomes easy to see what happens in the

limit τc → ∞. In that limit (provided Dc is finite) the right hand side of Equation (160)

becomes zero. This means

lim
τc→∞

y(t) = C, (161)

for some arbitrary constant, C. In this case we can rewrite Equation (160) as

ẋ = A(x) + C + ξw(t). (162)

Notice we have essentially reduced the dimension of the problem from two to one. The

corresponding Fokker-Planck equation subsequently becomes

∂P

∂t
= − ∂

∂x
[(A(x) + C)P ] +Dw

∂2P

∂x2
, (163)

where P = P (x, t|x0, t0) is the conditional probability density function.

While the limit of infinite correlation time is not very useful, it makes a good starting

point for the relaxation of that limit. Imagine that instead of an infinite correlation time

we now have a correlation time that is very large (many orders of magnitude larger than

any other time scale in the problem), but still finite. It is not hard to imagine that during

intervals of time much smaller than the correlation time the colored noise will appear con-

stant. During those intervals a FPE much like Equation (163) should still be valid. The
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FPE is then well approximated by

∂P

∂t
= − ∂

∂x
[(A(x) + ξc(t))P ] +Dw

∂2P

∂x2
. (164)

In other words, we are assuming that the colored noise acts adiabatically on the system.

In one sense, this is not much different than the adiabatic approximation used by Mc-

Namara and Wiesenfeld in their derivation of the rate theory approach to classic stochastic

resonance [70]. In that approximation the frequency of the drive is assumed to be very small,

so that the period of oscillation is much larger than all other time scales. For systems with

just white noise the SDE is

ẋ = A(x) + ε cos(ωst+ φ) + ξw(t), (165)

where ε, ωs and φ are the amplitude, frequency and initial phase of the drive, respectively.

Because the frequency is small, McNamara and Wiesenfeld assumed that the well known

Kramers formula for the MFPT for this system could be used, provided the modulation of

the barrier height due to the drive was taken into account. For

A(x) = ax− bx3 (166)

they found that the appropriate rates to use were

W±(t) =
a√
2π

exp

[

− 1

Dw
(∆U ± εxm cos(ωst+ φ))

]

, (167)

where ∆U = a2/4b and xm =
√

a/b.

If Equation (167) is to be valid the period of the drive must be much larger than all other

time scales. This is just the case that we want for the colored noise, where the correlation

time is very large. By analogy, the escape rates out of the two wells (for the same A(x)) of

Equation (154) should be

W±(t) =
a√
2π

exp

[

− 1

Dw
(∆U ± xmξc(t))

]

, (168)

provided that not only is the correlation time large enough, but also that Dc is small enough.

(Recall that Equation (167) also requires the drive amplitude to be small.)
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Our goal is to explain stochastic resonance in systems that contain both white and

colored noise, and this means the sinusoidal drive term should be added to the argument

of the exponent in Equation (168). In other words, for the SDE

ẋ = ax− bx3 + ξw + ξc + ε cos(ωst+ φ) (169)

the subsequent rate is given by

W±(t) =
a√
2π

exp

[

− 1

Dw
(∆U ± xmξc(t) ± εxm cos(ωst+ φ))

]

. (170)

The validity of Equation (170), which we call a stochastic rate, is what we wish to examine

in this section.

Before we continue with the analysis we should pause to reflect on the meaning of

Equation (170). Mathematically it is well defined – it is simply a time dependent rate in

which some of the time dependence is stochastic. A rate is usually simply related to the

inverse of the mean first passage time. Here, that definition has little meaning, since the

inverse of this rate is definitely not simply related to the MFPT. In deriving it we assumed

that W−1
± does represent the time local MFPT, but not the overall global MFPT.

Though there is some question as to what they represent, stochastic rates have previously

been used in stochastic resonance studies. Bezrukov studied an excitable system in which

the firing rates were stochastic [9, 10], and Ginzburg et al. [36] also used stochastic rates in

their study of SR in voltage-gated ion channels in biological membranes. In neither study,

however, is there an attempt to connect the stochastic rates to an underlying Langevin

model. In fact, Bezrukov and Vodyanoy found that in order to see stochastic resonance

the colored noise must be fast enough [9]. This is very similar to what we have found

numerically for the two state system. This brings up an interesting conundrum, however.

If, in order to exhibit SR, the correlation time of the colored noise must be small enough

can the stochastic rate picture still be valid when it requires the correlation time to be very

large? In other words, does the range of validity of the stochastic rate model (if it exists at

all) extend to small enough τc so that SR can still be accurately modelled?
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Figure 49: A plot of the numerically calculated signal to noise ratios versus colored noise
intensity for various values of the correlation time in the stochastic rate model. Here a = 32,
b = 1, ε = 8, ωs = 0.031 and Dw = 75. The data are interpolated with straight lines for
ease of viewing.
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Figure 50: A plot of the numerically calculated signal to noise ratios versus colored noise
intensity for various values of the correlation time in the Langevin model. Here a = 32,
b = 1, ε = 8, ωs = 0.031 and Dw = 75. The data are interpolated with straight lines for
ease of viewing.
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6.1.1 Comparing Stochastic Rate Theory to a Langevin Model

In order to test the validity of the stochastic rate model we integrate the stochastic rates and

check if the resulting signal to noise ratios correspond to those of the integrated Langevin

model. This is done by relating the time dependent rates given in Equation (170) to a two

state Markov process. In other words, if the system is in state s±, then the probability that

the system switches to the other state at time ti is given by

P (± → ∓, ti) = ∆tW±(ti), (171)

where ∆t is the (small) integration time step. The results of such an integration are given

in Figure 49, while the SNR curves for the corresponding Langevin model are shown in

Figure 50.

It is obvious from Figures 49 and 50 that stochastic rate theory cannot explain the

stochastic resonance of the Langevin model. The comparison is bad enough that it calls

into question the validity of the stochastic rate model. The idea that the dynamics of

a stochastic rate model can ever closely resemble those of a Langevin model needs to be

explored. To this end let us strip away the sinusoidal drive needed for stochastic resonance.

In other words, we wish to compare the stochastic differential equation

ẋ = ax− bx3 + ξw(t) + ξc(t) (172)

to the dynamics of a two state Markov process defined by the rates

W±(t) =
a√
2π

exp

[

− 1

Dw
(∆U ± xmξc(t))

]

. (173)

The question then becomes: is there a limit in which stochastic rate theory works?

Because there is no sinusoidal drive in Equation (172), the signal to noise ratio is no

longer a good measure of the accuracy of stochastic rate theory. Instead, let us look at

the resulting power spectra from the two systems. First examine Figure 51. Here we see

the power spectra from both the stochastic rate model (circles) and the Langevin process

(crosses) for a small value of the correlation time (τc = 0.1). Note that the power spectrum

from the Langevin process shows a Lorentzian shape typical of a system that switches
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Figure 51: A comparison of the power spectral densities of the stochastic rate model (circles)
and the Langevin model (crosses). Here τc = 0.1, a = 32, b = 1, Dw = 55 and Dc = 50.

randomly between two states [81]. The Lorentzian has a corner frequency (the frequency

at which the curve starts to decay with a power law) near f = 0.07 which is very near the

pure white noise rate of the system,

W0 =
a√
2π

exp

[

−∆U

Dw

]

, (174)

which for the parameters used in the simulation is W0 ≈ 0.069.

The power spectrum of the stochastic rate model has a decidedly non-Lorentzian shape.

It appears that its power spectrum decays with a power law throughout all frequencies.

Indeed, the power spectrum of the stochastic rate model is so different from that of the

Langevin process that we should not expect the stochastic rate model to be able to predict

anything about the Langevin process for such a small correlation time. But from our

numerical experiments on stochastic resonance, we were not expecting good agreement

between the two in this parameter regime.
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Figure 52 shows a comparison between the two models for a higher value of the correla-

tion time (τc = 10). Here we still see a non-Lorentzian shape for the power spectrum of the

stochastic rate model, though it has moved closer to the power spectrum of the Langevin

system. The situation improves drastically if the correlation time is increased even further.

Figure 53 shows a comparison when τc = 20, Figure 54 when τc = 30, and Figure 55 when

τc = 100. When τc = 20 the power spectrum of the stochastic rate model begins to conform

its shape to the Lorentzian, and when τc = 30 its shape is very nearly Lorentzian with the

same corner frequency as the Langevin power spectrum. When τc = 100 the stochastic rate

model does an excellent job in replicating the power spectrum of the Langevin system.

It appears, then, that stochastic rate theories can model Langevin processes, but only

for correlation times that are very large. However, because the stochastic resonance that

we are interested in happens at smaller values of the correlation time, stochastic rate theory

cannot help us in explaining SR with white and colored noise. Subsequently, we turn next

to a theory that is aimed at the opposite end of the τc scale. Whereas stochastic rate theory

is valid for large values of τc, small τc rate theory is, as the name implies, an approach that

is valid for very small values of τc.

6.2 A Small τc Rate Theory

Another possible way to analyze SR in systems with both white and colored noise is to

use the theory of McNamara and Wiesenfeld [70], the result of which is identical to our

derivation of the symmetric two state SR in Chapter 5. Recall that the signal to noise

ratio was derived without knowledge of the explicit form of the rates. In Reference [70] a

connection is made between the MFPT of a system and the escape rates and the theory

then predicts stochastic resonance. This means that in our attempt to predict SR in our

system, containing both white and colored noise, we must find the corresponding rates and

plug them into Equation (128), which is the signal to noise ratio in the symmetric limit.

Unfortunately no theory exists which can find the MFPTs for any value of the correlation

time. Perturbative approaches exist, however, that allow one to estimate the MFPTs for

bistable systems in the presence of a single colored noise source with a small correlation
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Figure 52: A comparison of the power spectral densities of the stochastic rate model (circles)
and the Langevin model (crosses). Here τc = 10, a = 32, b = 1, Dw = 55 and Dc = 50.
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Figure 53: A comparison of the power spectral densities of the stochastic rate model (circles)
and the Langevin model (crosses). Here τc = 20, a = 32, b = 1, Dw = 55 and Dc = 50.
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Figure 54: A comparison of the power spectral densities of the stochastic rate model (circles)
and the Langevin model (crosses). Here τc = 30, a = 32, b = 1, Dw = 55 and Dc = 50.
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Figure 55: A comparison of the power spectral densities of the stochastic rate model (circles)
and the Langevin model (crosses). Here τc = 100, a = 32, b = 1, Dw = 55 and Dc = 50.
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time. In what follows, we will extend Fox’s functional calculus approach [27, 28] that allowed

him to calculate an effective Fokker-Planck equation (EFPE) describing the probability

distribution, and subsequently estimate the MFPT for systems with a single source of

correlated noise. This extension allows us to write down a MFPT for a system containing

many noise sources with multiple correlation times. We will then compare the resulting

predictions for the SNR of the system to simulations.

6.2.1 The Effective Fokker-Planck Equation

For stochastic differential equations (SDEs) containing Gaussian white noise, we can write

down the corresponding Fokker-Planck equation (FPE) which governs the probability dis-

tribution [35]. For instance, in one dimension, the SDE

ẋ = A(x) +
√

B(x)ξw(t), (175)

where

〈ξw(t)〉 = 0 (176)

and

〈

ξw(t)ξw(t′)
〉

= δ(t− t′), (177)

leads to the FPE

∂

∂t
P = − ∂

∂x
[A(x)P ] +

1

2

∂2

∂x2
[B(x)P ] , (178)

where

P = P (x, t;x0, t0) (179)

and P has the initial condition

P (x, t0;x0, t0) = δ(x− x0). (180)

Given the functions A(x) and B(x) one may then calculate MFPTs from the FPE [35].

Unfortunately no method exists for writing down a FPE for colored noise that has just

one spatial dimension. This is due to the non-Markovian nature of colored noise, and FPEs

are only valid for Markov processes (i.e. for SDEs that contain only white noise). If the
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noise is such that the correlation is given by Equation (152) then it is possible to write the

one dimensional SDE

ẋ = A(x) + ξc(t) (181)

as the two dimensional system

ẋ = A(x) + y (182)

ẏ = − 1

τc
y +

1

τc
ξy(t), (183)

where

〈ξy(t)〉 = 0 (184)

and

〈

ξy(t)ξy(t
′)
〉

= 2Dcδ(t− t′), (185)

provided that one, again, also averages the initial values of y over their stationary distribu-

tion [26].

Notice that in this two dimensional form the noise term, ξy(t), is now Gaussian white

noise. This has changed the nature of the problem from that of a non-Markovian process to

one that is Markovian, at the expense of adding a spatial dimension. This trade off allows

us to write down a two dimensional FPE [35] of the form

∂

∂t
P = − ∂

∂x
[(A(x) + y)P ] +

∂

∂y

[(

y

τc
+
Dc

τ2
c

∂

∂y

)

P

]

. (186)

Unlike its one dimensional analogue, an analytic expression for the MFPT derived from

Equation (186) has yet to be calculated [28]. What is needed, then, is an approximate one

dimensional FPE that can be used when the correlation time of the colored noise is small.

Fox [27] was able to use a functional calculus approach that allowed him to calculate the

effective Fokker-Planck equation (EFPE) for systems such as Equation (181) that is valid

for small τc. He found the EFPE has the form

∂

∂t
P = − ∂

∂x
[A(x)P ] +Dc

∂2

∂x2

[

1

1 − τcA′(x)
P

]

, (187)

where the prime indicates differentiation with respect to x. Because the EFPE is one

dimensional it is possible to calculate MFPTs from it.
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We can extend this result to a system that has N sources of noise which are uncorrelated

with each other, but not necessarily uncorrelated in time. In particular, we examine the

equation

ẋ = A(x) +
N
∑

i=1

ξi(t), (188)

where

〈ξi(t)〉 = 0 (189)

and

〈

ξi(t)ξj(t
′)
〉

=
δijDi

τi
exp

[

−|t− t′|
τi

]

, (190)

where Di and τi are noise strength the correlation time of time of the ith noise source,

respectively, and δij is the Kronecker delta function. Since each noise source is uncorrelated

with the others, each source adds its own diffusion term to the EFPE similar to that in

Equation (187). The resulting EFPE for Equation (188) then becomes

∂

∂t
P = − ∂

∂x
[A(x)P ] +

∂2

∂x2

[

N
∑

i=1

Di

1 − τiA′(x)
P

]

. (191)

For the system we are interested in, Equation (149), there only two noise sources, one

white and one colored. The white noise source can be obtained from Equation (190) in the

limit τi → 0. The resulting EFPE for Equation (149) is then given by

∂P

∂t
= − ∂

∂y
[W (y)P ] +

∂2

∂y2

{[

Dw +
Dc

1 − τcW ′(y)

]

P

}

. (192)

Equation (192) will allow us to calculate the mean first passage time that is needed to create

a new rate theory for the two-state system with both white and colored noise.

6.2.2 The Mean First Passage Time for Systems with White and Colored Noise

Given a bistable system and its corresponding Fokker Planck equation of the form

∂P

∂t
= − ∂

∂y
{W (y)P} +

∂2

∂y2
{D(y)P} (193)

it is possible to derive a formula for the average time it takes for the particle to escape

from one of the wells, the MFPT [28, 35]. For the quadratic double-well system given in

Equation (149), where

W (x) = ax− bx3, (194)

96



this is tantamount to finding the average time, Tfp(xi), it takes for the particle, starting at

position xi = −
√

a/b (the position of the left minimum), to reach the point xf = 0 (the

local maximum). This time is given explicitly by [28]

Tfp(−
√

a/b) =

∫ 0

−

√
a/b

dy

∫ y

−∞

dz
ψ(z)

ψ(y)

1

D(z)
, (195)

where

ψ(x) = exp

[∫ x

−∞

dx′
W (x′)

D(x′)

]

. (196)

For systems with both white and colored noise the function D(x) can be obtained directly

from Equation (192):

D(x) = Dw +
Dc

1 − τcW ′(x)
. (197)

The evaluation of the integrals in the expression for the MFPT, Equation (195), is our

next task, and we will follow the technique of Fox [28], only modified to fit our problem. We

begin by realizing that 1/ψ(y) is sharply peaked near y = 0. Also, since D(z) is a slowly

varying function of z, we can safely evaluate it near the peak of ψ(z), namely z = −
√

a/b.

These approximations yield

Tfp(−
√

a/b) ≈
[

πD(0)

2a

]1/2 1

D(−
√

a/b)

∫ 0

−∞

dz exp

[∫ z

0
dx

W (x)

D(x)

]

. (198)

For small τc we can approximate 1/D(x), to first order in τc, as

1

D(x)
≈ 1

σ

[

1 − DcW
′(x)

σ
τc

]

, (199)

where σ = Dw +Dc. Plugging this in, and evaluating the resulting integral over x yields

Tfp(−
√

a/b) ≈
[

πD(0)

2a

]1/2 1

D(−
√

a/b)

∫ 0

−∞

dz exp
[

αz2 − βz4 − γz6
]

, (200)

where

α ≡ a

2σ

(

1 − Dcaτc
σ

)

, (201)

β ≡ b

4σ

(

1 − 4Dcaτc
σ

)

(202)

and

γ ≡ Dcb
2τc

2σ2
. (203)
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Using the method of steepest descent on the remaining integral yields,

Tfp(−
√

a/b) ≈
[

πD(0)

2a

]1/2 1

D(−
√

a/b)

[

πσ

a
(

1 + 2Dcaτc

σ

)

]1/2

exp

[

a2

4bσ

]

. (204)

Plugging in the appropriate expressions for D(0) and D(−
√

a/b) gives us our final result,

Tfp(−
√

a/b) ≈ π√
2a

[

σ + 2Dcaτc
σ −Dcaτc

]1/2

exp

[

a2

4bσ

]

. (205)

Because of the τc dependence in the denominator if Equation (197) there is a limit to

the range validity of both Equations (200) and (205). In particular, in order for them to be

valid, the inequality

τc <
1

W ′(0)
=

1

a
(206)

must hold. When this inequality does hold, Equation (205) does a decent job of approxi-

mating Equation (200), as is demonstrated in Figure 56.

Recall that Equation (205) is based upon the EFPE, Equation (192), which is itself a

small τc approximation of the true probability evolution equation for the underlying SDE,

Equation (149). This means that while Inequality (206) sets a limit on the possible range

of validity for τc, it is only an upper bound. The true upper limit for τc may be lower

than 1/a. Due to differences in time scales that arise for such small values of τc, numerical

simulations of Equation (149) take prohibitively long to compute. Additionally, as we will

see in the next section, signal to noise ratios calculated using rates derived from Equation

(205) compare poorly with those obtained from direct simulation of Equation (149). For

these reasons, direct comparisons of Equation (205) to MFPTs obtained from simulation of

Equation (149) have not been done.

Though direct comparison to simulation is difficult, three important limits exist that

can give us confidence that Equation (205) is the correct formula for small values of τc.

First, in the absence of the colored noise, the mean first passage time should limit to the

well known Kramers formula, which it does:

lim
Dc→0

Tfp =
π√
2a

exp

[

∆U

Dw

]

, (207)

where ∆U = a2/4b is the barrier height. Second, if the correlation time of the colored

noise goes to zero, the colored noise becomes white. In that limit the MFPT should be the
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Figure 56: A comparison of the MFPT approximated by the method of steepest descent,
Equation (205) (solid line), and numerically calculated values of Equation (200) (squares).
Here Dw = Dc = 50, a = 32 and b = 1. Both approximations are valid only when
τc < 1/a ≈ 0.03.

Kramers formula, but the noise intensity should be the sum of both the noise terms. Again,

this is the case:

lim
τc→0

Tfp =
π√
2a

exp

[

∆U

Dw +Dc

]

. (208)

Finally, if the intensity of the white noise goes to zero, the system is then driven by just

the colored noise. This limit was first calculated by Hänggi et al. [42], and later verified by

Fox [28]. Our expression for the MFPT does indeed have this limit, with result

lim
Dw→0

Tfp =
π√
2a

[

1 + 2aτc
1 − aτc

]1/2

exp

[

∆U

Dc

]

. (209)

6.2.3 SR Using Small τc Rate Theory

Recall that in Chapter 5 we used the rates

W± = α± ε cos(ωst+ φ) (210)

to derive the signal to noise ratio for a symmetric system, with result,

Rs =
πε2

2α

{

1 − 2ε2

4α2 + ω2
s

}−1

. (211)
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McNamara and Wiesenfeld were able to show that the continuous dynamics of a symmetric

double well system are well approximated by a two state rate model provided that the rates

out of the left (-) and right (+) wells are given by [70]

W±(t) =
1

2Tfp,±(t)
. (212)

If we use the MFPT for our system (Equation (205)), calculated in the previous section, we

see that the corresponding rates are

W±(t) =
a√
2π

√

σ −Dcaτc
σ + 2Dcaτc

exp

[

−∆U±(t)

σ

]

, (213)

where ∆U±(t) is the time dependent barrier height of the left or right well, given by

∆U±(t) =
a2

4b
±
√

a

b
A cos(ωst+ φ). (214)

For small driving amplitudes, A, we can Taylor expand Equation (213) to get, to first order

in A,

W±(t) ≈ a√
2π

√

σ −Dcaτc
σ + 2Dcaτc

exp

[

− a2

4bσ

]{

1 ∓
√

a

b

A

σ
cos(ωst+ φ)

}

. (215)

Writing Equation (215) as

W±(t) ≈ α∓ ε cos(ωst+ φ) (216)

we see that

α =
a√
2π

√

σ −Dcaτc
σ + 2Dcaτc

exp

[

− a2

4bσ

]

(217)

and

ε =
αA

σ

√

a

b
. (218)

Plugging these rates into the Equation (211) allows us to find the signal to noise ratio for

the system. Plots of the SNR for various values of the correlation time are shown in Figure

57, using the same parameters as those used in Figure 48. Notice that as the correlation

time increases the peak of the SNR curve occurs at lower values of Dc and decreases in

height. For large enough τc the peak vanishes altogether.

If we compare the analytic prediction, Figure 57, to the numerical results, Figure 48,

we notice several things. We first note that for both the rate theory and the numerical
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Figure 57: A plot of the theoretically calculated signal to noise ratios versus colored noise
intensity for various values of the correlation time. Here a = 32, b = 1, A = 8, ωs = .031
and Dw = 75.

results, the peak value of the SNR decreases with increasing τc, and that the peak vanishes

for high values of τc. This is where the similarity ends, however. Numerically we find that

as τc increases, the peak of the SNR curve occurs at higher values of Dc, whereas just

the opposite occurs in the theoretical model. Additionally, the values of τc for which the

peak disappears altogether differs between the numerical and theoretical models. In the

numerical model the peak disappears at τc ≈ 1, while in the theoretical model it disappears

at some point when 0.02 < τc < 0.03, which is a difference of two orders of magnitude.

The failure of the small τc rate theory to predict the point at which SR no longer occurs

in the system is not surprising. For the parameters used in the example, that point occurs

when τc ≈ 1. As we explained earlier, small τc rate theory is only valid for values of τc that

are at most 1/a, which is roughly 0.03 here. Therefore, small τc rate theory could never

have correctly predicted the turnover point in the SNR curves.

It should be noted that small τc rate theory converges to the correct value of the SNR

in the white noise limit. Whether or not our theory is correct for extremely small values

of τc (i.e. τc ¿ 1/a) is still undetermined. Unfortunately, verifying this is difficult for two

reasons. First, the numerical model takes prohibitively long to integrate for very small τc.
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This is due to the extremely small time step needed to accurately model noise with such

a small correlation time. Second, it is unlikely that in regions where our theory is correct

that it differs greatly from a McNamara model of the same system, treating the colored

noise as purely white. In this case the differences are likely to be smaller than the intrinsic

error of the McNamara theory.

What we are left with, then, is a theoretical model that is possibly correct in some limit,

but that fails in parameter regimes of interest (namely those values of τc for which the peak

in the SNR curve disappears). It may be possible to modify the derivation of the rates to

include higher order terms of τc, but it is highly unlikely the realm of validity would increase

by several orders of magnitude. Furthermore, to the best of our knowledge, no theory exists

that can correctly predict the MFPTs of systems in which the correlation time is of order

1/a or greater.

6.3 Discussion

Though both small τc rate theory and stochastic rate theory have limits in which they are

accurate, it would seem that neither is valid in the parameter regime we want. Small τc

rate theory, which is accurate in the limit τc → 0, does indeed predict stochastic resonance,

but cannot predict the value of τc for which SR no longer occurs. Stochastic rate theory, on

the other hand, does predict the absence of SR at extremely large values of τc but likewise

cannot predict the value of τc at which SR begins to occur.

The critical value of τc, below which SR occurs, lies directly in between the regimes of

validity of the two theories. What is really needed is a theory that is valid for moderate

values of τc. Unfortunately no such theory exists. The problem of moderate values of τc

has historically been very stubborn, and the value of the critical correlation time, unluckily,

falls within this moderate regime.

It is interesting to note that Bezrukov, in his study of an excitable system containing

both white and colored noise does predict the critical value of the correlation time [9, 10].

He found that in order for stochastic resonance to occur, the correlation time of the colored
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noise must be smaller than the bare transition time, i.e.

τc < T0. (219)

The bare transition time corresponds to the inverse of the escape rate in the absence of the

colored noise and sinusoidal drive. In our notation this would be

T0 = W−1
0 =

√
2π

a
exp

[

∆U

Dw

]

. (220)

The Bezrukov result does mirror our results for the two state system in that the cor-

relation time must be fast enough in order to see stochastic resonance. In our two state

system, however, a relation similar to Equation (219) could be found neither numerically

nor analytically. However, Bezrukov takes as his starting point the stochastic rate model,

with no mention of an underlying Langevin system. The question remains, then, whether

or not the Bezrukov theory could be used to explain SR in excitable system described by

SDEs.

If we look back to Figures 51–55 we can see that stochastic rate theory does not do a

good job until the correlation time is greater than the bare transition time of the Langevin

process. For those plots the bare transition time is W−1
0 ≈ 15. A case could even be made

that stochastic rate theory is not valid until τc is greater than the true transition time of the

Langevin process. The true transition time, which is the inverse of the corner frequency,

represents that actual time of transitions in the presence of both the white and the colored

noise. As we can see from Figures 51–55 the corner frequency of the Langevin process

decreases from roughly 0.07 to 0.02 as the correlation time increases. This means the true

transition time increases from roughly 15 to 50 over that same span. Since the accuracy

of the stochastic rate process does not occur until τc & 30, the true transition time might

represent a more accurate boundary for the validity of stochastic rate theory.

Whatever the true boundary is for the accuracy of stochastic rate theory, the bare

transition time seems to be a good lower bound. This means that in order for stochastic

rate theory to be accurate we must have

τc > T0. (221)
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Compare this to Equation (219) and we see that there is a problem. Whereas Bezrukov

requires τc < T0 in order to see stochastic resonance, we predict that τc > T0 needs to hold

in order for stochastic rate theory to accurately model a Langevin process.

To be fair to Bezrukov, he never tries to make a connection between his theory and an

underlying Langevin process. Treated mathematically, stochastic rates are well defined and

Bezrukov’s predictions about them are accurate. However, it is hard to read his papers

and not come away with the impression that his stochastic rates are intended to model an

underlying physical process, and hence a Langevin process.

It remains an open question, then, whether or not stochastic rate theory can accurately

describe SR in excitable systems described by an SDE. Though theory seems to fail in

the case of SR in a two state system, it would be wrong to extrapolate the results to an

excitable system. However, the failure of the theory in the two state case brings their use in

excitable systems into serious question. More work needs to be done to figure out exactly

when stochastic rate theory can and cannot be used.
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