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SUMMARY

Accurately representing the price-demand relationship is critical for the success of a

price optimization system. This research first uses booking data from 28 U.S. hotels

to investigate the validity of two key assumptions in hotel revenue management. The

assumptions are: 1) customers who book later are willing to pay higher rates than

customers who book earlier; and, 2) demand is stronger during the week than on the

weekend. Empirical results based on an analysis of booking curves, average paid rates,

and occupancy rates for group, restricted retail, unrestricted retail, and negotiated

demand segments challenge the validity of these assumptions. The combination of

lower utilization rates and greater product differentiation suggests that hotels should

apply different approaches than simply matching competitor rates to avoid losing

market share. On days when inventory is near capacity, traditional yield management

tactics deliver tremendous value, but these should be augmented by incorporating

price response of demand and competition effects. On days when demand is soft

and occupancy is projected to be low, price and competition based strategies should

dominate.

The hotel price optimization problem with linear demand model is a quadratic pro-

gramming problem with prices of products that utilize multiple staynight rooms as

the decision variable. The optimal solution of the hotel price optimization problems

has unique properties that enables us to develop an alternative optimization algo-

rithm that does not require solving quadratic optimization problem. Using the well

known least norm problem as a subroutine, the optimization problem can be solved as

vii



finding a minimum distance between a polyhedron defined by non-negative demand

and capacity constraints. This algorithm is efficient when only a few of the staynights

are highly constrained.

In practice, the choice of a demand model is largely driven by the ease of estimation

and model fit statistics such as R2 and mean absolute percentage error (MAPE).

These metrics provide measures of statistical validity of the model, however, they do

not measure how well the price optimization will perform which is the ultimate inter-

est of the practitioners. In order to measure the impact of demand models on price

optimization performance, we first investigate the goodness of fit of linear demand

models with different driver variables using actual data from 23 U.S. hotels represent-

ing multiple brands and location types. We find that hotels within the same location

types (such as urban, suburban, airport) share similar driver variables. Airport and

suburban hotels have simpler model specifications with less drivers compared to the

urban hotels. The airport hotel demand models are different from other location

hotels in that the airport hotel demand level does not differ by day of week.

We then measure the impact of demand model misrepresentation on the performance

of price optimization through simulation experiments, which are performed for differ-

ent levels of demand and forecast accuracy to represent various market environments

that hotels operate in. We find that using models with missing driver variables

can reduce the potential revenue by 13%∼53% and using the wrong functional form

5%∼43% under our simulation environment. The findings from our research imply

that correctly representing the demand model in price optimization is crucial to its

success. In order for hotels to realize the maximum potential revenue through pricing,

efforts should be focused on identifying the major driver variables influencing demand

including the ones that we found to be significant.

viii



CHAPTER I

INTRODUCTION

The revenue management discipline has traditionally developed around managing in-

ventory assigned to a limited number of classes with pre-defined set of prices (for

example, see Belobaba [8] and Talluri and Van Ryzin [53] for description of tradi-

tional revenue management methods). This approach is reasonable when the market

environment is relatively static and frequently updated market response pricing is not

necessary. On the other hand, for businesses that operate under highly competitive

market with dynamic competitive environment shifts, ability to optimize price in re-

sponse of market change in short time frame is crucial. In the hotel industry, where

the market is quickly evolving to the previously described condition, price optimiza-

tion has gained much interest over the recent few years [3]. This study investigates

the commonly used demand models and their impacts on price optimization.

Demand forecasting is one of the most critical components in hotel revenue manage-

ment and especially in price optimization. Most popular price-dependent demand

models are univariate linear and exponential models (see Weatherford and Kimes

[59]). In practice, the choice of demand model formulation is largely driven by the

ease of estimation and optimization along with model fit statistics, but not by the

impact of the different model specification to optimization performance. In this study

we investigate the goodness of fit for different demand models using the data gathered

from hotels and measures the impact of misrepresenting the demand model on price

optimization. Econometric models with drivers such as price, time of booking, day

of week and annual seasonality and autoregressive variable are tested to determine
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the best fit demand model. Also, the impacts of demand model specification on price

optimization performance are measured.

The primary goal of this thesis is first to develop a demand model with both good

explanatory and predicting power and then test the impact of demand models on

price optimization performance. In order to achieve this goal, data gathered from

U.S. domestic hotels are used. In Chapter 2, the characteristics of hotel demand are

examined and validated against major revenue management assumptions originating

from the airline industry. In Chapter 3, price-demand model for hotel demand is de-

veloped using both cross-sectional and temporal explanatory variables. Some of the

explanatory variables tested include month, day of week, location, and competitor

prices. After developing a valid demand model, sensitivity of the optimal solution in

price optimization to different specifications of demand model is tested through a sim-

ulation study. Chapter 4 reports the results of simulation experiments comparing the

performance of demand models and pricing methods. Chapter 6 contains summary

of this thesis and future research directions.
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CHAPTER II

STUDY OF HOTEL DEMAND

2.1 Introduction

Within the airline industry, revenue management (RM) has a well-established track-

record of increasing profitability and has played an integral role in strategic and tac-

tical managerial decision making. Over time, the utilization of analytics has evolved

from using simple descriptive analysis to manage inventory to solving complex opti-

mization problems that automatically set rate availability and other inventory con-

trols. Based on the initial success of RM within the airline industry, it was not long

before other industries began to adopt these practices. There are numerous indus-

tries using RM and many others considering using RM, including airlines, hotels,

car rentals, casinos, restaurants, grocery chains, golf courses, cruise lines, apartment

rentals, sports, performing arts, media, etc. (e.g., Garrow and Ferguson [25], Garrow

et al [26], Gu [28], Hawtin [29], Heching et al [30], Kimes [37], Kimes and Schruben

[38], Kimes et al [39], Kuyumucu [40], Lieberman and Dieck [43], Lippman [45],

Vinod [58]). While the growth in revenue management across industries is impres-

sive, one may, nonetheless question the wisdom of applying RM techniques originally

developed for the airline industry to other industries without consideration of unique

market characteristics.

The objective of this chapter is to investigate whether fundamental assumptions re-

lated to customer demand patterns typically observed in the airline industry (that

3



are critical for successful RM implementation) also hold for the U.S. retail hotel sec-

tor. Empirical results, based on a study of 28 U.S. hotels representing five different

brands and complete booking histories for 420 arrival dates (60 weeks), suggest that

hotel retail demand has significant differences from airline demand. Specifically, this

study challenges two classic assumptions used for the majority of hotel RM applica-

tions, namely: 1) late booking customers are willing to pay higher rates than early

booking customers; and, 2) weekday demand is higher than weekend demand. The

hotel demand is classified into three segments for the analysis - group, negotiated and

retail. Readers not familiar with these terminologies can refer to 2.2 for the detailed

description of these segments.

The expectation that late booking customers tend to be willing to pay higher rates

is shared across the airline, hotel, and car rental industries (e.g., Alstrup et al [5]

and Belobaba [9] for airline applications; Baker and Collier [6], Ben Ghalia and Wang

[10], Schwarz [51] for hotel applications; and Carroll and Grimes [15] for car rental

applications).

In general, the second assumption also appears reasonable, i.e., that hotel demand will

be stronger on weekdays versus weekends, particularly for business-oriented properties

that comprise the majority of hotels for large hospitality enterprises (and that also

forms the basis for this analysis) . This assumption commonly appears in hotel

literature (Choi and Kimes [16], Jeffrey and Barden [32]) and has been validated

by several empirical studies; Rushmore [50] empirically observed that the transient

demand is weaker on weekends and Jeffrey et al [33] examined 15 years of hotel

data from England. It is important to note, that these observations are on the total

demand and not focused on the true retail demand, which is the only segment that

will be sensitive to price changes. While the negotiated segment, mainly comprised

of mid-week business customers, can be strong during the weekdays, the price for
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Table 1: Anticipated relationships between demand assumptions and observable
data

Assumption Expected observations

1. Late booking customers are
willing to pay higher rates than
early booking customers

• Higher-valued, unrestricted booking classes
book later than lower-valued, restricted
booking classes
• Average paid rates increase as the arrival
date approaches

2. Weekday demand is higher
than weekend demand

• Occupancy rates are higher during week-
days
• Booking rates are higher during weekdays

this segment is fixed by a pre-determined contract. If the assumption of strong mid-

week demand is mainly based on the patterns from the negotiated demand (or total

demand which is largely impacted by the negotiated demand) and not the pure retail

demand, it might end up misleading important retail pricing decisions.

In order to investigate the validity of these assumptions, we undertook extensive

statistical analysis on booking curves, average paid rates, and occupancy rates. While

it is not possible to directly observe the validity of these two assumptions using only

actual booking data, it is possible to observe whether the expected relationships

between these assumptions and booking curves, prices, and occupancy rates hold.

As shown in Table 1, one would expect to observe the following relationships if the

assumptions were valid.

One factor not considered in Table 1 is the possibility that the availability of prod-

ucts skewing the resulting price paid by customers. For example, if the discounted

products are only available close to arrival dates, the resulting price paid by cus-

tomers may decrease as it gets close to the arrival date, regardless of willingness to

pay of customers. In order to verify that this unusual scenario is playing out, the

availability information of products throughout the booking horizon is needed, but

this information is not available. Instead the booking data can be used as a proxy
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for the availability. If a product was booked at a certain booking date, than it is

reasonable to assume that the product was available at that date, though the inverse

is not necessarily true. On the aggregate level, it is observed throughout this study

that the discounted products (in restricted retail segment) are sold throughout the

entire booking horizon (for example, see Figure 1). Given that about 50% of the

bookings for discounted retail products occur within 7 days prior to departure, the

sales of discounted products prior to and after 7 days to departure can be compared

as an indicator of discounted products being available closer to departure only. Out of

all possible hotel/arrival combinations, only 3.6% was recorded to have no restricted

retail product sales further out than 7 days and have sales within 7 days. Since this

is a booking statistic and not availability, it can be inferred that there is even less

cases where the restricted product is not available before 7 days to departure. If the

cut off is defined at 14 days to departure rather than 7, the percentage increases to

7.9%, which is still too small to impact the aggregate level average rates paid trend.

From the booking patterns of the restricted products, it can be concluded that the

availability of restricted retail products are relatively stable over the booking horizon

and is not skewing the average price or booking trends in some part of the booking

window.

Empirical results based on an analysis of the expected outcomes suggest both of

these assumptions may not be valid for U.S. hotel retail customers. Consequently,

new recommendations for how to apply RM to transient hotel customers and how to

price weekday versus weekend rates are presented. To this extent, it is the authors’

hope that this study will serve as a broader warning of applying model assumptions

developed for the airline industry to other industries without considering the market

context. An example of such case would be hotels without the structural product

differentiation where there is less differentiation of products and most of the products
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are highly substitutable with each other. In this case the virtual bucket or class

based revenue management algorithms will not work. Another case of mis-adopted

revenue management would be the price discrimination experiment by Amazon.com

(see Talluri and Van Ryzin [53] for details of the incident); the experiment to offer

different prices to different customers created a significantly negative perception for

Amazon.com, unlike in the airlines where it has become acceptable to the customers

to explicitly price discriminate.

2.2 Data

The data for this analysis is based on 60 weeks of booking data from March 2006

to April 2007. The data set represents 28 different hotels in the U.S. that span five

different brands ranging from limited to premium full service. The hotels used in this

analysis ranges widely in their variety - 5 luxury, 8 premium full-service, 6 full-service

business, 6 limited service and 3 extended stay hotels. These hotels are located in

urban (12), suburban (11), airport (5) and highway (1) locations. Of these hotels,

only one property is located in a purely leisure destination, others are either heavily

business oriented or business-leisure mixed destinations. Competitive unrestricted

retail rates are available from two to seven competitors associated with each hotel

property. The competitor rate data was obtained through a private company (Rubi-

con’s Market Vision product) that collects shopping data through various channels

including GDS and Internet.

In compiling the data for this analysis, demand was classified according to macro-

channel as well as the level of restrictions typically associated with the demand classes.

Four distinct segments are used for the analysis. Group demand refers to bookings

that are associated with an allocated block of rooms, as would be the case for a

conference or a corporate event. Negotiated demand refers to bookings that are

7



associated with a corporate customer or large booking agency. Rates for this segment

generally do not vary, and are available only to corporate employees or customers

that book through travel agencies. The final two segments used for the analysis fall

under the category of retail demand. Retail demand refers to all demand that is

not group or negotiated. Retail customers book through channels that are available

to the general public. In general, retail demand can be classified as unrestricted

retail demand or restricted retail demand. For this study, unrestricted retail demand

refers to bookings that have no advance purchase requirements and no cancellation

fee (in this analysis rates that require cancellations before 5 PM on the day of check-

in are classified as having no cancellation fee). Restricted retail demand refers to

bookings that have restrictions associated with them, specifically advance purchase

requirements, cancellation fees, and/or customer qualifications (e.g., requires AARP

or AAA membership). Unrestricted retail demand is generally considered to be more

valuable, since in theory these customers would be willing to pay more to have liberal

cancellation policies and book closer to arrival dates.

Considering the group and transient segments (the latter of which includes negotiated

demand and retail demand), the only transient demand that RM systems are able to

influence is retail demand (since negotiated demand rates are fixed).

2.3 Assumption 1: Are late booking customers willing to

pay more?

Different statistical analysis can be used to investigate the assumption that late book-

ing customers are willing to pay higher rates than early booking customers. Specif-

ically, if the assumption is true, one would expect that higher-valued, unrestricted

classes book later than lower-valued, restricted classes and that the average rate paid

by customers increases as the arrival date approaches.
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Table 2: Summary statistics of booking days for unrestricted and restricted retail
segments

(a) Overall

Demand Median Mean Std. Dev.

Unrestricted Retail 5 17.0 32.5
Restricted Retail 7 20.0 34.4

(b) Property averaged

Demand Median Mean Std. Dev.

Unrestricted Retail 4.5 13.6 26.0
Restricted Retail 7.4 18.5 30.8

2.3.1 Comparison of Booking Profiles

If higher valued customers tend to book later than lower valued customers, one would

expect to see the distribution of unrestricted bookings more concentrated towards

the day of arrival relative to the distribution of restricted customers. However, this

relationship is only weakly observed in the data. As shown in Table 2(a), the median

booking days from arrival are also similar (5 vs. 7 days, respectively). On average,

restricted retail bookings occur three days earlier than unrestricted retail bookings

(17 vs. 20 days, respectively).

The property average statistics in Table 2(b) show a little more gap between the

unrestricted and restricted retail segment, implying that the larger hotels have less

distinction between the timing of bookings between the two segments.

In addition to comparing descriptive statistics for the unrestricted and restricted retail

segments, one can examine their booking profiles. Figure 1(a), which portrays the

log of bookings for the restricted and unrestricted retail segments by days prior to

arrival indicates that statistically, there is no discernible difference between the slopes

of the booking profiles for restricted and unrestricted retail segments. The slopes of

linear approximations for log unrestricted and log restricted bookings are displayed

9



Figure 1: Log of arrivals for restricted and unrestricted retail segments

Table 3: Slope of linear approximation for log(unrestricted bookings) and
log(restricted bookings)

Demand # Obs. Slope Std. Err. P value R2

Unrestricted Retail 348 -0.0194 3.9E-5 << 0.001 0.88
Restricted Retail 365 -0.0191 3.2E-5 << 0.001 0.68

Negotiated 328 -0.0237 5.2E-5 << 0.001 0.87

in Table 3. A two sample t-test cannot reject the null hypothesis that the two slopes

are the same (p=0.55). For comparison, the log of bookings for negotiated and all

retail bookings are shown in Figure 1(b).

Finally, booking profiles can also be examined in terms of cumulative frequencies. If

the assumption that higher valued customers tend to book later than lower valued

customers is true, one would observe that the distribution for the unrestricted segment

is more concentrated towards the arrival date than the restricted retail segment and

that the cumulative distribution of unrestricted demand lies above the restricted retail

frequency distribution. As seen in Figure 2, the cumulative distribution associated

with the unrestricted retail bookings is slightly more concentrated towards arrival

date. This is statistically confirmed via the Kolmogorov-Smirnov test (bootstrap

10



Figure 2: Cumulative frequency distributions by demand segment and days prior to
arrival

version1) which rejects that null hypothesis that the unrestricted retail booking curve

does not lie above the restricted booking curve (p=0.076).

To summarize, the statistical analysis provides only weak evidence that the distribu-

tion of unrestricted bookings is more concentrated towards the day of arrival relative

to the distribution of restricted bookings. From a practical perspective, this implies

that the assumption that higher value customers book closer to arrival date may not

be entirely appropriate for hotel revenue management applications.

2.3.2 Comparison of Average Paid Rates

The assumption that higher valued customers tend to book later than lower valued

customers can also be investigated by comparing average paid rates. Consistent with

expectation, Figure 3 illustrates that unrestricted retail rates are on average 35.6%

1The Kolmogorov-Smirnov (K-S) test is not exact when the underlying distribution is discrete.
Since the days prior distribution in nature is discrete, the bootstrap version of the K-S test was used
(Abadie [4]).
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Figure 3: Average daily prices by days prior to arrival

higher than overall retail rates. However, the average rates paid (defined using arrival

date as the unit of analysis) for hotel rooms declines as the day of arrival approaches,

across both retail and negotiated demand segments. This result is also observed

by competitor hotels. Table 4 summarizes the results of linear regression models

associated with the slope of the average daily rate profiles. Note that the decline

in average daily rates is steepest for the unrestricted retail segment (i.e., a decline

of $0.59 per day)2. This is somewhat counterintuitive given that unrestricted retail

products are generally designed for customers who book closer to arrival date (and

in theory are willing to pay more for the flexibility of booking later and being able to

change plans without cancellation fees).

One note of caution applies to the above result. Specifically, the result in Figure 3

may be influenced by ”soft” demand days in which a large number of bookings at

deeply discounted rates occur close to the arrival date and/or in which a few bookings

2Note that since “days” decreases as one nears the check-in date, a positive coefficient associated
with days from arrival implies that the average daily price decreases.

12



Table 4: Regression results for average daily price as a function of days prior

Demand # Obs. Slope Std. Err. P value

Unrestricted Retail 95,515 0.589 0.01300 << 0.001
All Retail 314,666 0.269 0.00526 << 0.001

Group 134,509 0.109 0.00658 << 0.001
Transient 405,219 0.347 0.00450 << 0.001

Competitor Avg. 501,182 0.373 0.00383 << 0.001

at very high rates occur far from the arrival date. In order to control for this potential

effect, average booked rates were normalized to the average rate for each arrival date.

Figures 4(a) and 4(b) portray the normalized curves for restricted and unrestricted

retail bookings, respectively.

The light solid curves in Figure 4 represent the number of bookings for the segment

by days prior and provide information on the number bookings at each price point

during the booking cycle. The top and bottom edges in rectangles for each price

point represents 25th and 75th percentiles associated with the normalized average

rates. The dark solid line inside the box is the median rate at each day prior to

arrival. There is also a light straight line at the normalized daily rate of 1.0 in Figure

4(a) that is used to highlight the decline in average rate for restricted retail bookings.

This line is omitted in Figure 4(b) as the normalized rate is relatively flat.

The normalized average daily rate curves paint a slightly different picture than the

non-normalized average daily rate curves. Table 5 summarizes the results of linear re-

gression models associated with the slope of the normalized average daily rate profiles.

Consistent with the non-normalized data, the restricted retail rates tend to decrease

as the arrival date approaches; however, in contrast to the non-normalized data, the

unrestricted retail rate slightly rises. Nonetheless, from a practical perspective the

estimated increase in the normalized unrestricted retail rate, while statistically sig-

nificant, will have little to no financial implications (the increase is only 0.01% of the
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Figure 4: Restricted and unrestricted retail bookings and normalized rates by days
prior to arrival
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Table 5: Regression results for normalized average daily price as a function of days
prior

Demand # Obs. Slope Std. Err. P value

Unrestricted Retail 93,096 -0.00010 -2.5E-6 << 0.001
Restricted Retail 245,296 0.00190 5.6E-6 << 0.001

average daily rate).

To summarize, both the analysis of booking curves for unrestricted and restricted

classes as well as average daily rates paid by customers the statistical analysis provides

only weak evidence in support of the assumption that late booking customers are

willing to pay higher rates than early booking customers.

2.4 Assumption 2: Is weekday retail demand higher than

weekend demand?

Statistical analysis can also be used to investigate the assumption that weekday de-

mand is higher than weekend demand. Specifically, if the assumption is true, one

would expect that occupancy rates and booking rates are higher during the week-

days. However, when looking for these expected relationships in the data, it is also

important to recognize that the belief that retail demand is strongest midweek will

lead to a general pricing strategy of charging higher rates during the week and lower

rates during the weekend. The strategy is based upon the rationale that if occupan-

cies are lower on the weekend, then prices should be lowered in order to stimulate

more demand. Figure 5 clearly demonstrates the presence of such a pricing strategy

both at the properties used in this study set as well as for their competitors.
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Figure 5: Transient, unrestricted retail, and unrestricted competitor rates by day
of week

2.4.1 Comparison of Occupancy Rates and Demand

Latent (or unconstrained) demand is difficult to measure objectively. However, con-

strained demand is strongly correlated with unconstrained demand, and can be ob-

jectively measured. Occupancy is simply the constrained demand divided by the

capacity. An analysis of occupancy rates for total demand reveals a pattern that

is consistent with current industry intuition, namely that hotels tend to be busier

during the weekdays versus weekends (see Figure 6(a)). Specifically, defining week-

ends as Friday and Saturday and weekdays as Sunday through Thursday, with the

exception of Sunday, weekday occupancy rates are consistently higher than weekend

demands. Richer insights can be gleaned by examining occupancy rates by demand

segments (see Figure 6(b)) which reveals, counter to current business intuition, that

retail demand is actually stronger on the weekends (Friday and Saturday) than for

weekdays. This observation is confirmed via an ANOVA model of retail, transient

and total rooms sold (Table 6). The coefficients capture how much the weekend retail

and total rooms sold differ from the weekday. In the case of retail occupancy, the

estimate for the weekend coefficient is positive and statistically significant, indicating
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Figure 6: Average occupancy by day of week and demand segment

Table 6: T test from ANOVA model of weekend retail, transient and total rooms

Demand Coeff. T-stat P value Interpretation

Retail Rooms Sold 1.161 33.3 << 0.001 Stronger retail de-
mand on weekends

Transient Rooms Sold -0.304 -6.36 << 0.001 Stronger transient de-
mand on weekdays

Total Rooms Sold -0.122 -1.46 0.145 Stronger demand on
weekdays vs. week-
ends

that the weekend retail demand is significantly larger than the weekday rooms sold.

This is a particularly interesting finding since the transient demand (defined as the

combination of negotiated and retail demand) is the intended target of most current

applications of hotel revenue management today. Negotiated rates are generally fixed,

thus the price can not be adjusted up or down. Moreover, most corporate negotiated

rates have a last room availability (LRA) clause. The hotels used for this study have

71.7% of the negotiated rooms sold under the LRA accounts. Rates with LRA can

not be yielded out of the hotel even by length of stay controls. Even when transient

demand is strongest during the week, which is the case on average for this study, a

strategy that seeks to set length of stay controls or optimize rates based on a transient
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forecast would lead to suboptimal decisions. We submit that it is the retail segment

in isolation that should be the focus of ’individual demand’ revenue management, i.e.,

dynamic pricing (rate optimization) and inventory control actions.

It is also important to note that because retail demand is really strongest during the

weekend and softest during the week, one may raise questions about the appropriate-

ness of having lower retail rates on the weekends. Further study is required before

one can conclude that having lower rates on the weekend is an incorrect (or correct)

strategy. There are many factors that likely impact customers’ willingness to pay

higher retail rates on the weekend, including price elasticity and competitive rates.

2.5 Discussion

Using data from 28 different hotels, this study investigates two common assumptions

common in the application of hotel pricing and revenue management: 1) customers

who book later are willing to pay higher rates than customers who book earlier; and,

2) demand is stronger during the week than on the weekend. Empirical analysis

indicates that rates, particularly retail rates, do not increase as the day of arrival

approaches. Assumption two, while seemingly true in the aggregate, does not apply

to the retail demand segment, yet the retail demand segment is the only segment

impacted by traditional RM and dynamic pricing strategies. These findings challenge

the current pricing and revenue management practices of most hotel companies. Table

7 provides a summary of the findings from this study.

One possible explanation for why hotel rates do not increase as the booking date

approaches the arrival date - as observed in the airline industry - could be due to the

different capacity constraints between the two industries. In general, airlines are more

capacity constrained than the hotels. The International Air Transport Association
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Table 7: Summary of analysis, findings and implications in Chapter 2

Assumption Expected
Outcome

Observed Outcome Implication

1. Late
booking
customers
are willing
to pay
higher
rates

Higher valued
customers
book later
than lower
valued cus-
tomers

Higher valued retail
customers book at
the same pace or only
slightly later than
lower valued retail
customers.

Raises serious doubts
regarding the assumption
that late booking customers
are willing to pay higher
rates. If they are willing to
pay higher rates, there is no
evidence that they are
being charged higher rates.

Average rates
paid increase
as the book-
ing date ap-
proaches the
arrival date

Average rates for
restricted retail
demand decrease
as day of arrival
approaches. Average
rates for unrestricted
retail demand are flat
or slightly increasing.

2.
Weekdays
have
higher
demand
than
weekends

Occupancy is
higher during
the week than
on the week-
end

Total hotel occu-
pancy is not signifi-
cantly greater during
the week than on
the weekend. While
Transient demand is
stronger during the
week, retail demand
is in fact highest on
the weekend.

Based on occupancy,
weekday demand is not
much stronger than
weekend demand.
Moreover, the key retail
segment experiences peak
demand on the weekend. At
the same time rates,
including retail rates are
significantly lower on the
weekend. One must ask the
question - is it really
necessary to lower rates so
much on the weekend?

Weekday
rates are
higher than
weekend rates

Own property and
the competitive
set consistently
price lower on the
weekend.
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reports a North America average utilization (load factor) of 80.9% in 2006 [2], where

U.S. hotels had an average occupancy rate of 63.4% [1]. In the classic microeconomic

theory, positive shift of supply in a competitive market with other factors equal results

in lower equilibrium price (see Varian [56] or any major economics textbook).

Differentiation is another key factor that must be considered when translating tradi-

tional airline yield management to the hotel industry. It is hard to differentiate one

airline seat from another for a specific itinerary. Both leave from the same (or one of

a few) origin airports and arrive at the same (or one of a few) destination airports.

Hotels, on the other hand, are strongly differentiated by their location. Only one

hotel can be the closest hotel to a traveler’s intended destination. If the traveler

has a business meeting downtown at 8 AM, a suburban hotel 25 miles from the city

center may not be an acceptable alternative. However, a price conscious customer,

particularly one with an automobile, can increase their alternatives by choosing a

hotel further from their intended destination, but at a lower rate. Finally, hotels have

a tremendous advantage over airlines in their ability to differentiate the customer

experience through amenities and quality of service. Hotels seemingly have many

opportunities to differentiate by both price and product attributes.

The combination of lower utilization rates, greater product differentiation, but more

alternatives, suggests that hotels must apply different approaches than those learned

from traditional yield management (as practiced by the airline industry). Simply

matching competitor rates to avoid losing market share is not necessarily a profit

optimal strategy. On days when inventory is tight, traditional yield management

tactics deliver tremendous value, but these should be augmented by incorporating

price response and competition. On days when demand is soft and occupancy is

projected to be low, price and competition based strategies should dominate. In

this study, very little difference in booking patterns between high and low valued
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customers was observed. The fact that high and low valued customers tend to book

at the same time raises serious questions about appropriateness of applying traditional

yield management methods that seek to protect rooms for late booking, high value

customers. Cooper et al [18] show that applying the assumption “high valued demand

books later” can lead to a downward spiral of rates in situations where demand is soft.

When hotel demand is high, this is less of a concern. However, most in the hospitality

industry saw their rates plummet during the post 9-11 travel recession. Leading hotel

companies should revisit the assumptions inherent in their revenue management and

pricing strategies before the onset of the next travel recession.

The general pricing strategy for properties in this study was to have lower rates on

the weekend. This strategy is common - if not dominant - in the hotel industry as

a whole, yet the retail segment is strongest on the weekend, suggesting that retail

customers might be willing to accept higher rates. Retail customers booking over the

weekend are likely to be leisure customers who only have leisure time on the weekend.

Would they still travel and book a hotel room if the rates were a bit higher? In some

cases, probably so. An understanding of the retail customer’s response to own and

competitive rates would be required to determine if retail rates could be increased

over the weekend.

Hotels must reevaluate their pricing strategies and revenue management programs.

Central to this reevaluation is to move from the traditional group-transient segmenta-

tion, to further differentiate true retail demand from negotiated demand. Negotiated

demand can only be priced at the time of contract negotiation. Once set, these rates

are not (typically) flexed as retail rates are changed. It is mainly the retail segment

that is subject to the full array of both inventory controls and pricing actions. While

restricting the focus of existing revenue management models to the retail segment,

hotels must develop new approaches to ensure that revenue is also maximized for the

21



group and negotiated segments and, in turn, for the total hotel.

Before optimizing the rate structure, revenue mangers need to thoroughly explore

the data and truly understand the retail response to price, competition and other

non price factors, particularly day of week. Modeling demand response to price

with any degree of precision is not straightforward; yet developing such models will

be a critical determiner of success for revenue management going forward. With a

clear understanding of how demand will change under different market conditions

and pricing structures, yield management and pricing models can be enhanced to

incorporate the true nature of hotel demand. With this understanding, we will be

able to use pricing as a powerful tool for maximizing profit.
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CHAPTER III

DEMAND MODEL ESTIMATION USING HOTEL DATA

3.1 Introduction

Revenue management refers to the practice of applying analytics to predict consumer

behaviors and optimizing the product availability and/or pricing decisions in order

to maximize revenue. The traditional revenue management discipline was initially

developed with its focus on controlling the availability of products (commonly referred

as the yield management; see Talluri and Van Ryzin [53] and Cross et al [19] for a

comprehensive review of the revenue management discipline). The traditional yield

management has it’s limitations, mainly due to the fact that the demand is assumed

to be independent of prices. The objective of the price optimization is to maximize

the revenue under the assumption that the demand is a function of the price.

In the hotel context, price optimization provides optimal itinerary (combination of

arrival date and the length of stay) prices to maximize revenue where the expected

number of itinerary bookings is a function of the itinerary price. One of the early

adopters of hotel price optimization reported 2.7% additional revenue attributable to

this capability [3].

In price optimization, the demand model determines the shape of the objective func-

tion and therefore is one of the most important inputs. Demand models are typically

estimated using historical observations and are chosen based on various model fit

statistics such as R2, mean absolute percentage error (MAPE), Bayesian information
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criterion, etc. Besbes et al [11] reviews the various model testing methodologies com-

monly utilized in the revenue management field. The focus of demand modeling in

revenue management is to achieve a good model fit, however, the impact of demand

models on price optimization performance has not been actively explored and utilized

in the practical context. Since efforts to achieve the best model fit requires extensive

data collection and analysis, the benefits of using a better demand model needs to

be justified. Also by identifying aspects of demand models more critical to revenue,

the users can be better informed to make decisions such as whether to include cer-

tain driver variables and whether to choose a different functional form at the cost of

increasing the complexity of the optimization problem.

In this chapter we investigate the goodness of fit for different demand models using

data gathered from hotels. We evaluate various linear models using driver variables

such as price, number of days prior to the check in date the booking was made, length

of stay, day of week, demand from previous booking dates and the interaction of these

variables. Booking and pricing data from U.S. domestic hotels are used to develop

a comprehensive demand model that gives a good representation of the actual hotel

demand.

3.2 Literature Review

Tourism demand literature focuses on finding driver variables and comparing the

goodness of fit of different models for tourism related products such as transporta-

tion, accommodation and attractions. In these studies, econometric models with price

as an explanatory variable have been popular for forecasting market level demand.

Witt and Witt [63] give an overview of various demand models used in the tourism

literature and compare their forecasting accuracy. One of the major findings in Witt

and Witt [63] is that there is no single model superior in all markets, which suggests
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different models need to be considered for different market environments. Song et

al [52] further introduces advanced econometric demand models to compare their

forecasting accuracy with exponential price response models and time series models.

The authors find that Time Varying Parameter model (allowing different parameters

for different time lag) achieves the highest accuracy (MAPE, RMSPE (Root Mean

Squared Percentage Error)) among the six econometric models they tested includ-

ing error correction models, autoregressive distributed lag model, unrestricted vector

autoregressive model, and ARIMA models. Lim [44] reviews existing literature on

tourism demand forecasting.

According to Lim [44], the log linear model is the most frequently used model form in

the existing tourism demand forecast studies followed by the linear model. The ex-

planatory variables most often found in these studies include customer income, price,

price of substitutables, trend and autoregressive terms of these variables collected

from surveys or transactional data. In our research, we examine these variables as

candidate driver variables in linear form to explain hotel demand.

3.3 Estimating the Hotel Demand

In this section we first review the summary statistics of hotel demand using historical

booking data from actual hotels. Using the summary statistics, we explore aggre-

gation schemes to be used in the regression analysis. In Section 3.3.4 we present

the framework for estimating the linear demand models for each hotel in our dataset

along with the analysis of model estimation results.
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Table 8: Summary demand characteristics of hotel bookings

Daily Days to
Parameter Capacity Occupancy booking LOS arrival c.v.

Minimum 81 39.0% 16.5 1.26 5.54 0.20
25 percentile 208 63.3% 28.5 1.60 8.50 0.32

Average 322 69.9% 56.6 1.87 14.0 0.40
75 percentile 423 77.4% 71.7 2.08 18.5 0.45

Maximum 807 89.4% 162.4 2.60 31.5 0.72

3.3.1 Data

We first take a look at the demand characteristics of different types of hotels based

on historic booking data from a global hotel chain. This data is an extension of data

used in Chapter 2, collected over 23 months from March 2006 to January 2008 from

23 U.S. non-extended stay hotels, consisting of 5 luxury, 7 premium full-service, 6

full-service business, and 5 limited service hotels. They are located in city center

(11), suburban (9), and airport (3) locations. Only the retail segment (the non-

group, non-negotiated segment of hotel demand) was analyzed for this analysis since

we focus on optimization of retail rates. Retail segment typically occupies 25%∼45%

of total capacity for the test hotels. Negotiated and group segments were included

for calculating occupancy and coefficient of variation (c.v.).

Table 8 summarizes the key parameters of the hotel booking data. The capacity, which

is the physical rooms available in a hotel, ranges from 81 to 807. The occupancy

is calculated as the average of total bookings for a staynight divided by the hotel

capacity, and ranges from 39% to 90%. Booking is the average number of the retail

segment bookings by arrival date, and the length of stay (LOS) is the average number

of staynights for a typical retail booking for the hotel. Finally, c.v. shows the average

coefficient of variation for the total staynight bookings for a hotel.
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Table 9: Length of stay distribution by location

Length of stay
Location 1 2 3 4 5+

Airport 76.8% 13.4% 5.7% 2.7% 1.4%
Suburban 60.0% 23.5% 9.7% 4.7% 2.1%

Urban 47.9% 27.5% 14.1% 7.2% 3.3%
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Figure 7: Booking fraction by days prior to arrival

3.3.2 Hotel Demand Characteristics

Table 9 shows the length of stay distribution of bookings for the three location types

in the data. Location is an important factor influencing the demand characteristic

and impacting the revenue management performance. We observe that more than

76% of airport bookings are for a single night stay. On the contrary, only 48% of

urban hotel bookings are for a single night stay.

Figure 7 shows the average booking percentages by the number of days prior to arrival

date (booking curves) for all hotels. Bookings are highly concentrated on the day of

the arrival and the last week of the booking window.

Figure 8 plots the coefficient of variation of staynight demand against price levels.
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Figure 8: Coefficient of variation of staynight demand

We find that there is no significant trend between the coefficient of variation and the

price level, as the p value of the slope coefficient in Figure 8 is greater than 0.1.

3.3.3 Aggregation of Data

On average, most of the hotel demand is booked on the last month of the booking

window and is very sparse further out (average of 80%∼92% booked within 30 days

prior to arrival, depending on the location). Also, majority of the bookings have one

or two nights of stay and there is only a small percentage of bookings for longer stays

(see Table 9). If we do not aggregate the higher days prior and length of stay levels,

demand model coefficients are likely to be highly volatile or insignificant due to the

data sparsity in these levels.

Table 9 shows LOS 4 segment has on average 3%∼7% of bookings, depending on the

location. With average daily retail bookings of 57 (Table 8), any LOS higher than four

would have less than 2∼4 bookings on average. Such a small segment, possibly with

a large number of zero demand observations, could lead to unstable model estimation
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and therefore we group the lengths of stay 4 and above into a single category. For

the days prior variable, we group the values ranging from 0 to 364 into a few number

of categories. For this purpose, we employ the discrete wavelet transform method

(DWT).

Wavelet transform is a method to decompose a function into mixtures of wavelets.

DWT, which approximates a limited number of discretely sampled wavelets from

a distribution, has been applied to nonparametric density estimation with success

(Vidakovic [57]). Chui [17] provides a general exposition on wavelet theory. Recently,

Popescu et al [49] used wavelet method to estimate cargo demand distribution as a

function of show up rates.

DWT assumes the given distribution is composed of discrete number of signals (rep-

resented by the wavelet coefficients) and noise. Given the initial number of bins and

the basis wavelet type assumption, the method estimates the wavelet coefficients for

the given number of bins by ignoring the small details which it considers as noise.

Once the noise is eliminated, adjacent bins with same frequency are grouped together

resulting in variable sized bins.

Discrete wavelet basis used to decompose a distribution is a group of functions rep-

resented by scaling function φ and translations and dilations of the mother wavelet

ψ, which define the basis that spans space of integrable functions, L2(R). In our im-

plementation we use the Haar wavelet as the mother wavelet and the unity function

as the scaling function.

φ(x) = 1 (0 ≤ x < 1) (1)

ψ(x) =











1 0 ≤ x < 1
2

−1 1
2
≤ x < 1

(2)

In our implementation we assume this distribution is composed of 2d bins, with d
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as log of Birgé-Rozenholc estimate of number of bins [12] rounded to the nearest

integer. With 2d initial bins, a quadratic variance-stabilizing transformation is used

to estimate the optimal variable bin sizes as described in Vidakovic [57]. After the

transform, we perform wavelet shrinkage to smooth out the noise in the original sig-

nal or the wavelet coefficients. The shrinkage procedure first sets coefficients below

a universal threshold of
√

2log2dσ to zero (where σ2 is the noise variance), and then

shrinks the nonzero coefficients. The shrinkage method (known as soft threshold-

ing) and the universal threshold value used in our implementation follow those from

Popescu et al [49]. The steps of our DWT implementation is outlined as follows.

1. Estimate the initial number of number of bins, 2d, where d = logD rounded

to the nearest integer and D is the recommended number of bins from the

Birgé-Rozenholc procedure.

2. Perform variance-stabilizing transform to number of observations per bin, 2
√

fi +
3
8
,

where fi is number of observations for bin i.

3. Perform wavelet shrinkage and only choose coefficients passing the threshold

criteria.

4. Construct the smoothed signal of f .

5. Calculate the variable size bins based on the smoothed signal.

Initial number of bins in DWT can be any power of two. In our case we followed the

Birgé-Rozenholc procedure [12] to estimate the ideal number of bins and rounded it to

the closest power of two. The Birgé-Rozenholc procedure and the DWT process was

applied to only days prior 0 to 45 in order to avoid too many days prior groupings.

The implementation of the DWT in this study closely follow Popescu et al [49].

Many statistical packages offer DWT functionality. In our study, dwt function from
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Figure 9: Distribution of booking density by DWT estimated days prior groupings

waveslim package in statistical software R (Whitcher [61]) was used to estimate the

optimal days prior groupings with the Haar wavelet, which is a step function with

value 1 on [0, 1
2
) and -1 on [1

2
, 1), as the basis wavelet.

In our analysis, DWT was performed separately for each location. The bin definition

estimated by DWT is identical for all locations while the density of each bin signifi-

cantly differed by location. Figure 9 shows the booking density distribution for days

prior 0 to 45 for each location, which are grouped into the following categories by

DWT: 0, 1∼6, 7∼11, 12∼22, and 23∼45.

Airport hotels with high percentage of transit demand have highly concentrated de-

mand on the day of arrival (days prior 0). On the other hand, urban hotels bookings

are less concentrated closer to the arrival date and more evenly distributed through-

out the booking window as represented by the heavier tail in the booking density

distribution.

3.3.4 Estimating the Linear Demand Model

In this section, we estimate hotel demand models using the explanatory variables

shown in Table 10. The model estimated in this section has a linear price-demand
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Table 10: List of potential explanatory variables

Variable Type Description

Price Continuous Average retail price for products sold
Average competitor price Continuous Average price of 4 competitors

Days prior Ordinal Number of days between the booking
date and the arrival date

Length of stay Ordinal Number of nights
Day of week Categorical Day of week of arrival date

Month Categorical Month of arrival date
Saturday night stay Categorical Saturday night included in the stay

(Y/N)

relationship and are referred as the linear model. Competitive unrestricted retail

rates used in our study are based on the averages from four competitors designated

by the hotel revenue managers.

Among the variables presented in Table 10, only the ones that have significant im-

pact on the drivers are chosen to represent the base model (Table 11). In addition

to the base model, Table 11 also identifies additional terms that could be included in

the demand model to significantly improve the adjusted R2. All of the base model

and additional driver variables are chosen if adjusted R2 is improved by more than

1% by including the variable and if the estimated coefficient for the variable is sta-

tistically significant (p value<0.05). It should be noted that instrumented variable

regression was performed to test for price endogeniety but residual coefficients were

insignificant (p>0.05) for the majority of the properites. This results indicates that

price endogeneity is not significant, meaning that the price variable is not significantly

correlated with the error term in the regression.

For each of the 23 hotels, the best fit model is determined by the following process.

Step 1 Estimate the following models
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Model 1 (Base Model)

d = a+ bPP +
5

∑

i=2

biDP1DP=i +
4

∑

i=2

biLOS1LOS=i +
Sat
∑

i=Mon

biDOW1DOW=i

+ bDLAG1DLAG1

Model 2

d = BaseModel +
5

∑

i=2

biDP×P1DP=i

Model 3

d = BaseModel +
4

∑

i=2

5
∑

j=2

bijLOS×DP1LOS=i1DP=j

Model 4

d = BaseModel +
Sat
∑

i=Mon

4
∑

j=2

bijDOW×LOS1DOW=i1LOS=j

Model 5

d = BaseModel +
5

∑

i=2

biDP×DLAG11DP=i

Step 2 Among the additional terms in Models 2∼5, choose those that are significant

and contributes more than 1% to adjusted R squared

Step 3 Estimate a model with all the terms chosen in Step 2 (Model 6)

Step 4 Among the parameters estimated for Model 6, identify coefficients which are

not significantly different (two sample t-test)

Step 5 Merge the coefficients found in Step 4, drop insignificant coefficients

Figure 10 describes the best fit models for the 23 hotels and shows that hotels within

the same location share similar model specifications.
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Table 11: List of base model and candidate explanatory variables

Variable Category/Range

Price (P) Non-negative
Days prior (DP) 0,1∼6,7∼11,12∼22,23+
Length of stay 1,2,3,4+

Base model Day of week (DOW) Sun∼Sat
variables Days prior lag demand (DLAG1)∗ Non-negative

P×DP
LOS×DP

Candidate DOW×LOS
variables DLAG1×DP

Note: *Average daily bookings for immediately previous days prior group

Table 12: Summary of estimated demand models by location

Variable Airport Suburban Urban

Price

Days prior

LOS

DOW

Lag 1 demand

Price×Days prior

LOS×Days prior

DOW×LOS

Lag 1 demand×Days prior

Model uses variable at a higher level of aggregation (ex. LOS2+)

Model uses variable at the disaggregated level (ex. LOS2, LOS3, LOS4)
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Among the estimated demand models, we observe that the airport and suburban

hotels have a simpler model specification with less drivers compared to the urban

hotels. For example, the airport and suburban hotel demand do not have significantly

different sensitivity to length of stay 2,3 and 4+, whereas the urban hotel demand has

significantly different sensitivity to each LOS (i.e, the coefficients for LOS 2,3 and 4+

are significantly different). A similar pattern is observed for the days prior grouping

coefficients. While the airport and suburban demand models have similar coefficients

for days prior 7 and above, the urban hotel demand model has statistically distinct

coefficients for all four levels of days prior groupings.

The airport hotel demand models are different from other location hotels in that the

airport hotel demand level does not differ by day of week. The suburban and urban

hotel demand exhibit different demand patterns for weekends (Friday and Saturday)

compared to Sunday or Monday to Thursday. This observation highlights the distinc-

tive behavior of airport hotel customers who mainly stay at these hotels for transit

purposes. Other location hotels, which are mostly located near customers’ final desti-

nations, have clearly different demand patterns by day of week contrary to the airport

hotels.

The demand models for urban properties can be classified into two types, one with

more (the right side of the urban hotel column in Table 12) and another type with less

detailed model specifications. The hotels identified as the first type are located in large

metropolitan areas such as New York City, San Fransisco, Chicago and Washington

DC, indicating that the large city hotel demand are influenced by more factors and

are more sensitive to different levels of driver variables than the small city or suburban

area hotel demand.

Overall, the results in Figure 10 suggest that the hotels within the same location

types share similar demand patterns. Contrarily, different locations have distinctive
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set of explanatory variables at different levels, although a few sets of variables (days

prior, length of stay, etc.) are common drivers for all hotel demands.

1 2 3 4 5 6 7 8 9 10 11 12
Pr Elas (at mean) -0.190 -0.073 -0.092 -0.116 -0.380 -0.061 -0.107 -0.071 -0.102 -0.076 -0.067 -0.132

Pr Slope -0.460 -0.086 -0.207 -0.097 0.285 -0.048 -0.099 -0.067 -0.075 -0.093 -0.097 -0.164
R sq 59.99% 45.24% 63.34% 65.15% 46.11% 26.65% 56.17% 41.84% 50.27% 57.12% 62.96% 57.56%

Intercept 16.47 6.17 20.96 8.48 4.37 3.16 3.50 3.17 2.09 6.71 7.14 8.52
Price/100 -0.46 -0.09 -0.21 -0.10 -0.28 -0.05 -0.10 -0.07 -0.08 -0.09 -0.10 -0.16
Days prior 1~6 -5.83 -0.98 -2.55 2.10 -0.67 -0.39 1.13 -1.52 0.41** -4.62 -4.52 -3.19
Days prior 7~11 -2.45
Days prior 12~22 -2.22
Days prior 23~45 -1.66
LOS2
LOS3
LOS4
Monday 1.56
Tuesday 3.18
Wednesday 2.67
Thursday 1.32
Friday 0.87 4.91 1.42 1.16 1.45 3.33 3.28
Saturday 1.29 8.90 2.69 1.68 5.69 2.52 4.91 3.78
lag1 4.27 1.61 1.55 1.41** 3.16 0.88 2.80 1.92 2.56 1.59 2.88 2.50
Price*dp1~6 0.20
Price*dp7~11
Price*dp12~22
Price*dp23~45
LOS2*dp1~6 8.36 1.41 4.46 -1.08 1.02 0.71 0.74 2.01 0.96 5.24 5.01 4.43
LOS2*dp7~11
LOS2*dp12~22
LOS2*dp23~45
LOS3*dp1~6
LOS3*dp7~11
LOS3*dp12~22
LOS3*dp23~45
LOS4*dp1~6
LOS4*dp7~11
LOS4*dp12~22
LOS4*dp23~45
Mon*LOS2
Mon*LOS3
Mon*LOS4
Tue*LOS2
Tue*LOS3
Tue*LOS4
Wed*LOS2
Wed*LOS3
Wed*LOS4
Thu*LOS2
Thu*LOS3
Thu*LOS4
Fri*LOS2 1.56 0.31' -1.26 -1.78
Fri*LOS3
Fri*LOS4
Sat*LOS2
Sat*LOS3
Sat*LOS4
lag1*dp1~6 5.63 -2.03**
lag1*dp7~11
lag1*dp12~22
lag1*dp23~45
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13 14 15 16 17 18 19 20 21 22 23
Pr Elas (at mean) -0.093 -0.107 -0.082 -0.136 -0.115 -0.084 -0.169 -0.112 -0.107 -0.078 -0.117

Pr Slope -0.152 -0.077 -0.093 -0.069 -0.067 -0.045 -0.144 -0.206 -0.043 -0.050 -0.031
R sq 63.39% 32.09% 58.24% 45.84% 40.02% 33.34% 45.05% 48.48% 29.02% 33.33% 30.82%

Intercept 7.79 2.39 4.33 5.57 4.97 3.76 6.13 3.36 3.28 2.37 2.79
Price/100 -0.15 -0.08 -0.09 -0.07 -0.07 -0.04 -0.14 -0.21 -0.04 -0.05 -0.03
Days prior 1~6 -1.01 1.80 4.80 10.20 4.80 4.30 6.48 2.10 2.15 2.39 2.62
Days prior 7~11 -4.59 -5.77 -4.33 -4.09 -2.66 -1.94 -1.68
Days prior 12~22 -5.61 -6.51 -4.84 -4.97 -2.82 -2.18 -1.97
Days prior 23~45 -1.45 0.24 -2.52 -1.11** -0.32 -0.55** -0.29
LOS2 -3.25 -1.80
LOS3
LOS4
Monday
Tuesday
Wednesday
Thursday
Friday 1.01 1.19 2.33 3.55 2.38 2.35 2.57 1.06* 2.11
Saturday 1.00 2.85 5.15 4.78 8.62 4.63 7.56 3.89 3.52 3.64 1.92
lag1 4.26 2.08 2.18 0.79 0.78 1.40 0.66 3.00 0.52 1.36 0.47
Price*dp1~6
Price*dp7~11
Price*dp12~22
Price*dp23~45
LOS2*dp1~6 3.87 -0.61 -0.76* -4.59 -2.05 0.56 -3.42 -0.91** -0.01 -0.41' -1.06
LOS2*dp7~11
LOS2*dp12~22
LOS2*dp23~45
LOS3*dp1~6 1.74 -3.46 -8.21 -4.39 -1.92 -5.37 -1.63 -1.48 -1.63 -2.15
LOS3*dp7~11
LOS3*dp12~22
LOS3*dp23~45
LOS4*dp1~6 mrg/LOS3 mrg/LOS3mrg/LOS3 mrg/LOS3mrg/LOS3mrg/LOS3mrg/LOS3mrg/LOS3mrg/LOS3mrg/LOS3
LOS4*dp7~11
LOS4*dp12~22
LOS4*dp23~45
Mon*LOS2 -2.14 -1.52
Mon*LOS3
Mon*LOS4
Tue*LOS2
Tue*LOS3
Tue*LOS4
Wed*LOS2
Wed*LOS3
Wed*LOS4
Thu*LOS2
Thu*LOS3
Thu*LOS4
Fri*LOS2 2.10 -0.52 -0.54 3.49 1.76** 1.80** 5.30 -1.19** 1.77 -0.64* 0.74**
Fri*LOS3
Fri*LOS4
Sat*LOS2
Sat*LOS3
Sat*LOS4
lag1*dp1~6 4.51 5.40 6.95 9.07 3.15 2.34 2.46
lag1*dp7~11
lag1*dp12~22
lag1*dp23~45
** p<0.01, * p<0.1, ' p<0.5, p>0.5 , otherwise p<0.001
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Figure 10: Best Fit Demand Models for the 23 Sample Hotels
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CHAPTER IV

HOTEL PRICE OPTIMIZATION PROBLEM

In this chapter we formulate the hotel price optimization problem in the general

form. We also explore the analytical properties of hotel price optimization under

linear demand and further use these properties to develop an alternate optimization

algorithm to solve the hotel price optimization problem. The performance of the

alternate algorithm is compared to the existing Quadratic Programming algorithms.

4.1 General Problem Formulation

In hotel price optimization the price of a product is the decision variable and the de-

mand for a product is a function of the price. A hotel product is typically an itinerary,

defined by the combination of an arrival date and length of stay. Depending on the

business practice, it is possible to have multiple products within a single itinerary

differentiated by factors such as customer type (corporate, individual, AARP), sales

channel (global distribution system, Internet travel agency, etc.) and product re-

strictions (advance purchase, Saturday night stay, etc.). In our work we define an

itinerary as the hotel product, but our framework can easily be extended to the case

where multiple products exist within an itinerary. An itinerary is composed of mul-

tiple staynights, for example, an itinerary with arrival date of 1/10/2011 and length

of stay 2 utilizes staynights January 10, 2011 and January 11, 2011. Available inven-

tory is by staynights, for example, a hotel has 97 rooms available for the staynight of

January 10, 2011 and 100 rooms for the staynight of January 11, 2011.
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The objective function for our price optimization problem is the total revenue over a

given period of time (decision horizon), which is the sum of itinerary revenues (Equa-

tion (3)). Total demand accommodated for a staynight is the sum of all itinerary

demand that utilizes the staynight and is restricted by the total rooms available (ca-

pacity) for the given staynight (Equation (4)). The hotel price optimization problem

can be expressed as following.

(P ) max
r

∑

(a,l)∈A×L

ra,lda,l(ra,l) (3)

s.t.
∑

(a,l):a≤s≤a+l−1

da,l(ra,l) ≤ cs ∀s ∈ S (4)

where the input parameters and the decision variables are

A : Set of arrival dates

L : Set of possible lengths of stay (duration)

(a, l) : An itinerary with arrival date a and duration of stay l

S : Set of staynights occupied by itineraries in A× L

cs : Remaining hotel capacity at staynight s

ra,l : Price for itinerary (a, l)

da,l(ra,l) : Demand for itinerary (a, l) if price ra,l is charged

Optimization model (P) determines itinerary prices that maximize the expected rev-

enue for the decision horizon at a given point of time. By solving (P) frequently

over the decision horizon, the itinerary prices can be dynamically optimized to max-

imize the remaining revenue opportunities. When demand function is nonnegative

and monotonic decreasing function of price, the optimal solution to (P ) is always

nonnegative.
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4.2 Alternate Price Optimization Algorithm for Price Op-

timization with Linear Demand

In this section we explore the analytical properties of the price optimization solution

and deduct an alternate formulation to the problem (P ). When the demand function

is linear, (P ) becomes a quadratic optimization problem and the solutions have nice

properties we can use to solve the problem efficiently. First, we introduce the follow-

ing notations to express (P ) with linear demand in vector/matrix form.

m : Number of itineraries

n : Number of staynights

α : Vector of intercepts for da,l (α ∈ R
m, α > 0)

β : Vector of absolute value of slopes for da,l (β ∈ R
m, β > 0)

B : Diagonal matrix with βa,l as diagonal elements (B ∈ R
m×m)

T : m× n matrix with (i, j) element=1 if itinerary i utilizes staynight j,

0 otherwise

r : Vector of itinerary prices (r ∈ R
m)

c : Vector of staynight capacity (c ∈ R
n)

Is : Set of itineraries that utilize staynight s

Si : Set of staynights that itinerary i utilizes

(P ) with linear demand in matrix form can be expressed as following.

(P2) max
r

α′r − r′Br (5)

s.t. α−Br ≥ 0 (6)

T ′(α− Br) ≤ c (7)

The following property hold for the optimal solution of (P2).
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P2.1 r∗ ≥ 1
2
B−1α

Proof. Assume that r∗ is an optimal solution of (P2) with r∗i <
αi

2βi
. Let r0 be

same as r∗ except for the ith element, with r0i =
αi

2βi
. Then αi−βir

∗
i > αi−βir

0
i =

αi

2
> 0 and αj − βjr

∗
j = αj − βjr

0
j , ∀i 6= j and hence r0 is a feasible solution for

(P2). Now r∗i (αi−βir
∗
i ) < r0i (αi−βir

0
i ) and r

∗
j (αj−βjr

∗
j ) = r0j (αj−βjr

0
j ), ∀i 6= j

and r∗ cannot be an optimal solution, thus r∗i ≥
αi

2βi
, ∀i ∈ I.

P2.2 If r∗i >
αi

2βi
then cs =

∑

k∈Is αk − βkr
∗
k for at least one element in Si

Proof. Assume r∗ is an optimal solution of (P2) with r∗i > αi

2βi
and cs >

∑

k∈Is αk−βkr
∗
k, ∀s ∈ Si. Let δ = min(mins∈Si cs−(

∑

k∈Is αk−βkr
∗
k), βir

∗
i −

αi

2
),

which is a positive number. Let r1 be same as r∗ except for the ith element,

with r1i = r∗i −
δ
βi
. Then r∗i > r1i ≥ αi

2βi
so αi − βir

1
i ≥ αi − βir

∗
i ≥ 0. Also,

by definition of δ, cs ≥
∑

k∈Is αk − βkr
1
k, ∀s ∈ Si hence r1 is a feasible solution.

Since revenue for itinerary i, Ri(ri) = ri(αi − βiri), decreases as ri increases for

ri ≥
αi

2βi
, Ri(r

∗
i ) < Ri(r

1
i ) and the optimality of r∗ is violated.

By substituting r with 1
2
B−1α + B− 1

2x, where x ∈ R
m, we can create an equivalent

problem with x as the decision variable. With this substitution, the objective function

becomes 1
4
α′B−1α− x′x. Since 1

4
α′B−1α is constant, solving the following problem is

equivalent to solving (P2).

(P3) min
x

x′x (8)

s.t. K1x− l1 ≤ 0 (9)

K2x− l2 ≤ 0 (10)

where K1 = B
1

2 , K2 = −T ′B
1

2 , l1 =
α

2
, l2 = c−

1

2
T ′α (11)
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Solving (P3) can be interpreted as finding the minimum distance between origin and

the polyhedron defined by constraints (9) and (10) (call this polyhedron H) . We can

identify the following properties about (P3) and its optimal solution.

P3.1 From property P2.1, the optimal solution of (P3), x∗, is nonnegative.

P3.2 If the sth element of l2 is nonnegative, then the sth element of K2x− l2 is always

less or equal to zero and the sth row of the inequality K2x− l2 ≤ 0 is redundant.

P3.3 When all elements of l2 are nonnegative, then constraint (9) is not required and

the optimal solution is trivial, x∗ = 0.

P3.4 If capacity for cs is zero, di(x
∗
i ) = 0, ∀i ∈ Is.

P3.5 From property P2.2, we know that if x∗ 6= 0, at least one of the constraints in

(10) is binding.

If we know the set of active constraints (let A) at the optimal solution for (P3), we

can show that solving the following problem is equivalent to solving (P2):

(P4) min
x

||x|| (12)

s.t. Kix− li = 0 ∀i ∈ A (13)

where K =







K1

K2






(14)

Proposition 1. Solving (P3) is equivalent to solving (P4).

Proof. Let HS be the hyperplane defined by set of active constraints at the optimal

solution (set A), HS = {x|Kix = li, ∀i ∈ A}. Let the optimal solution of (P3) be

x∗. Then Kix
∗ = li, ∀i ∈ A and Kjx

∗ < lj, ∀j /∈ A. Since x∗ is in the interior of
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the polyhedron defined in HS, PS = {x ∈ HS|Kjx
∗ ≤ lj, ∀j /∈ A}, we can define an

open ball ǫx∗ ∈ HS with x∗ as the center, which all of its elements are elements of

PS. Then x∗ has the minimum norm among elements in ǫx∗ and is a local optimum

for (P4). Since the objective function of (P4) is convex, x∗ is also the global optimal

solution of (P4). By similar argument the optimal solution for (P4) is also optimal

for (P3).

Analytical solution to the least norm problem (P4) is well known and can be calcu-

lated easily using matrix factorization methods such as Cholesky or QR factorization

(for example, see Trefethen and Bau [54]). Using the least norm solutions and the

properties above, we suggest an alternative algorithm for solving (P3), the Minimum

Norm Algorithm (MNA).

The primary idea of MNA is to utilize the least norm problem (P4) as a subroutine to

obtain the optimal solution for (P3). Solving (P4) only requires matrix algebra and

therefore eliminates the need for Nonlinear Programming methods or solvers. Also,

this algorithm is efficient when only a few of the staynights are highly constrained.

This approach is similar to dual algorithms in the sense that it chooses infeasible

solutions and add constraints until feasibility is obtained, and when feasibility is

obtained for all constraints then we have an optimal solution.

One caveat to the least norm problem (P4) is that the constraint matrix needs to

be full rank. It is not a problem when the binding constraints consist of only capac-

ity constraints (10), since no two staynights are utilized by exactly the same set of

itineraries. When the binding constraints consist of both (9) and (10) constraints,

the constraint matrix may not be of full rank. However this problem can be resolved

by using row echelon reduction of the augmented constraint matrix. This algorithm

needs to loop only through constraints in (10) according to property P3.5.
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MNA algorithm using the least norm subproblem is outlined as following.

1. For all staynight s with zero capacity, eliminate all xi from (P3) for all i ∈ Is

(P3.4).

2. For all rows in (10) such that corresponding element in l2 is nonnegative, elim-

inate the constraint from (10) (P3.5) and let the remaining set be R. If all

constraints in (10) are eliminated then x∗ = 0 (P3.3), otherwise proceed to the

next step.

3. For each constraint in R, ksx − ls ≤ 0, s ∈ R, solve the following least norm

problem

min
x

||x|| (15)

s.t. ksx = ls (16)

to obtain the least norm solution x̄s = k′s(ksk
′
s)

−1ls.

4. For all s ∈ R, check the feasibility of x̄s to (P3). Let R1 be set of s where x̄s is

feasible and R0 be set of s where x̄s is not feasible for (P3).

5. Let z = mins∈R1
||x̄s|| and s̄ be s ∈ R1 where the minimum is attained. z

is the initial upper bound of the optimal value. If R0 = ∅ then we have the

minimum distance to all inequality constraints, and the optimal value of (P3)

is the minimum of all minimum distances, i.e., x∗ = x̄s̄. Otherwise proceed to

the next step.

6. For all s ∈ R0, the minimum distance to the feasible area of hyperplane

{x|ksx = ls} is attained at the intersection with other constraints. To compute

the minimum distance, initialize Rs = {s} and U as the set of all constraints

and take the following steps:
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(a) Compute l −Kx̄s and find the most negative value among constraints in

U . Let the corresponding constraint index be i.

(b) If i is in (9), perform a row echelon reduction to the augmented matrix






KRs
lRs

Ki li






(17)

to 1) assure the current set of constraints are linearly independent (row

echelon reduction returns full rank matrix) and proceed to the next step

or 2) eliminate a redundant constraint (row echelon reduction returns rows

with only zero as elements, eliminate these rows) and proceed to the next

step or 3) find that current set of constraints are infeasible (row echelon

reduction returns rows with all zeros except for the last element), update

U = U \ {i} and repeat 6a.

(c) Update Rs = Rs ∪ {i}. Solve (P4) again with constraints in Rs. Let the

optimal solution be x̄si . If x̄si is feasible for (P3), check if ||x̄si || < z, if

both conditions are satisfied then update z with ||x̄si || and R0 with R0 \ s,

and let xz = x̄si . If x̄si is feasible for (P3) but ||x̄si || ≥ z, then update R0

with R0\s. If R0 = ∅ then the optimum is z attained at x∗ = x̄s̄. If x̄si is

infeasible, update U = U \ {i}.

(d) Repeat 6a. z is the optimal solution when R0 = ∅.

This algorithm iterates through each eligable constraints until it finds a feasible min-

imum norm point. In the best case this algorithm requires iterations equal to num-

ber of remaining constraints after eliminating the trivial constraints (≤ m + n). In

the worst cast, it iterates through nm+n iterations of (P4), when the feasible region

within each constraint hyperplane is constrained by all of the remaining constraints.

Typically the iterations require algebra of very low rank matrices, from which the
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algorithm achieves its efficiency.

4.3 Computational Study of the Minimum Norm Algorithm

In order to compare the performance of the Minimum Norm Algorithm to existing

QP algorithms, we performed a computation study comparing the run time and

number of iterations that each algorithm performed to solve a price optimization

problem. Six hotel demand profiles estimated in Chapter 3 were chosen, with two

hotel profiles from each of the three locations. Three different occupancy levels were

tested, with low/medium/high occupancy level designed to average 50%/70%/90%

occupancy at average price. MNA was compared to three different QP algorithms

in ILOG CPLEX, primal simplex, barrier algorithm and dual simplex. MNA was

performed with statistical software R. All algorithms were run on the single core of

the Intel(R) Core(TM)2 CPU T9400 2.53GHz Windows XP machine with 3GB RAM.

In each scenario the optimizer solved a 112 day horizon problem with 112 itineraries

and 28 staynights. The results of the computational study are reported in Table 13.

Table 13 reports the CPU time and number of iterations performed for each algorithm.

Additionally for MNA the average number of constraint rows in subproblem (P4) is

reported. The results indicate that while MNA requires more iterations than other

algorithms, the number of rows in the matrix to solve for each iteration is much

smaller than typical QP algorithms require. Simplex and barrier algorithms typically

solve matrices with row number in the order of number of constraints (in the above

example, 140) and the dual simplex algorithm typically solves matrices with number

of rows equal to the number of variables (in the above example, 112), whereas the

average number of rows in the MNA constraint matrix is 7.3 in our scenarios. As a

result, the CPU time elapsed for MNA is on average 38% of the barrier algorithm

and 56% of the simplex algorithm. MNA run time is comparable to the dual simplex
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Table 13: Performance of MNA compared to QP algorithms

MNA Simplex Barrier Dual Simplex
Time Iter. Rows Time Iter. Time Iter. Time Iter.

AP1(L) 0.15 38 3.26 1.23 144 1.93 9 0.23 5
AP1(M) 0.17 37 3.16 0.86 146 1.45 9 0.29 5
AP1(H) 1.02 507 11.52 1.36 134 1.84 8 0.78 22
AP2(L) 1.10 553 11.56 1.34 136 2.03 8 0.23 22
AP2(M) 1.58 703 13.52 1.81 128 1.36 7 0.75 26
AP2(H) 1.50 678 13.06 1.45 137 1.96 8 0.70 25
SUB1(L) 0.13 0 0.00 0.90 125 1.89 8 0.93 0
SUB1(M) 0.13 0 0.00 1.42 125 1.90 8 0.76 0
SUB1(H) 0.14 25 3.00 1.51 138 2.50 8 0.84 5
SUB2(L) 0.13 13 2.15 1.17 144 0.89 9 0.78 3
SUB2(M) 0.33 193 6.19 1.46 135 1.42 9 1.29 11
SUB2(H) 0.33 181 6.17 0.84 138 2.07 7 0.75 11
URB1(L) 1.17 571 10.71 1.43 117 1.90 8 0.62 23
URB1(M) 1.05 523 10.20 1.36 111 1.56 8 0.21 21
URB1(H) 0.68 360 8.69 1.48 119 2.60 9 0.20 16
URB2(L) 0.54 300 7.65 0.12 121 1.32 9 0.73 14
URB2(M) 1.15 571 11.50 0.73 117 1.92 8 0.71 23
URB2(H) 1.02 523 10.20 1.45 111 1.40 8 0.76 21

Avg 0.68 320.89 7.36 1.22 129.22 1.77 8.22 0.64 14.06

Table 14: Performance of MNA compared to QP algorithms in low demand scenarios

Algorithm Avg. Time % Difference with MNA time
MNA 0.52 0%

Simplex 0.92 44%
Barrier 1.17 56%

Dual Simplex 0.68 25%
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algorithm since it uses an approach similar to the dual simplex, but is faster when the

problem is “easier” to solve, with less number of constrained staynights. To further

test the performance of MNA at low demand level where it is expected to outperform

the existing QP algorithms, 60 instances of expected occupancy level of 50% were

randomly generated. Table 14 illustrates the average run time of the four algorithms

in the 60 trials. MNA algorithm was the most efficient algorithm among the tested

algorithms. On average MNA performed 25% faster than the dual simplex and 44%,

56% faster than the primal simplex and the barrier algorithm respectively. Two tailed

T test for the average values of MNA run times against the algorithms confirmed that

the MNA algorithm was significantly faster than the simplex and barrier algorithms

at 99% confidence level and 95% confidence level against the dual simplex algorithm.

Note that the naive implementation of the MNA algorithm is comparable to the

highly optimized CPLEX algorithms and additional performance improvements of

the MNA algorithm is expected with further tuning. Overall, the Minimum Norm

Algorithm, which can be easily implemented in general purpose high level languages

such as C++ or R and does not require an optimization solver, performs comaparable

to the existing QP algorithms and can be more effective than other algorithms when

the hotel capacity is not too restricted relative to the demand level.

48



CHAPTER V

THE IMPACT OF THE DEMAND MODEL ON HOTEL

PRICE OPTIMIZATION

5.1 Introduction

In this chapter we address the research question of how much revenue is lost by us-

ing an incorrect demand model. We explore the two most common cases of demand

model misrepresentations: (1) Linear demand model with limited driver variables

is used when the real demand model has more driver variables and (2) Incorrect

functional form is used to represent the demand. More specifically, we test the per-

formance of price optimization when a linear model is used when the true demand

is an exponential function of price, and the opposite case of when an exponential

model is used when the true demand is linear in price. These questions are answered

by using price optimization on simulated demand where the true demand function

is generated according to the results in Chapter 3.3. Revenues earned from using

different models are compared to the revenues earned using the true demand model

to measure the impact of different demand models.

5.2 Literature Review

The literature in revenue management with price sensitive demand can be classified

into two categories: single period problems and multi-period problems. Table 15

summarizes the modeling literature reviewed in this section.
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The single period price optimization problems are variations of the newsvendor prob-

lem with price-demand relationship added to the classic settings where price is origi-

nally assumed to be a fixed value. Whitin [62] is among the first papers in the single

period revenue management literature to include price as a decision variable. The

author shows how to optimize price and order quantity where demand is a determin-

istic linear function of the price. Mills [47] studies price optimization with demand

uncertainty when the demand has additive random error, D(p, ǫ) = y(p) + ǫ, where

D(p, ǫ) denotes demand at price p with random error ǫ and y(p) is a decreasing func-

tion of price. Karlin and Carr [34] present a case where the demand has multiplicative

random variation, D(p, ǫ) = y(p)ǫ.

More recent single period studies include Urban and Baker [55] and Weng [60] who ex-

amine price and markdown/discount optimization under exponential demand models

for general products. Petruzzi and Dada [48] apply both the log linear and linear de-

mand models to the newsvendor problem. Emmons and Gilbert [23] and Khouja [36]

use linear demand model for catalogue goods price optimization and the newsvendor

problem, respectively. Lau and Lau [42] compare the optimal solution for a multi ech-

elon price optimization involving the manufacturer, wholesaler, and the retailer using

exponential, linear and log linear demand models. Lau and Lau [42] and Petruzzi

and Dada [48] both compare the theoretical optimal solutions under different de-

mand models for a single period optimization problem, however they do not extend

their work beyond a single period. In our study, we compare the price optimiza-

tion performance simulated over multiple time periods under realistic hotel business

environments.

The studies of single period pricing problem reviewed above are focused on analyz-

ing the static optimal solution within the single period. Contrarily, multiple period

problems in general are studied under the dynamic pricing setting where the price
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is updated over time as demand drivers and capacity fluctuate. Among the multiple

period price optimization problems, we focus our review to those for fixed capacity

and perishable products, as the hotel revenue management problem belongs in this

category.

Pioneering work of price optimization within this category was done by Gallego and

Van Ryzin [24]. The authors model the pricing problem as a stochastic dynamic

program with demand arriving according to the Poisson distribution. They develop

a deterministic heuristic which is found to be asymptotically optimal as the expected

sales tend to infinity. Bitran and Caldentey [13] and Elmaghraby and Keskinocak [22]

give overview of pricing models used in revenue management, a large part stemming

from approaches in Gallego and Van Ryzin [24].

The work of Besbes et al [11] stems from similar research questions raised in our study.

The authors observe that not enough attention has been given to the performance of

an optimal decision using the estimated models compared to the attention given on

the statistical validity of the demand model. They take the consumer choice model

and an unlimited capacity profit optimization problem to develop a performance

based metric to measure the impact on the optimization. They apply this metric to

an auto lender sales data and show that a simple logit model with “bad” model fit

for four out of eight instances does well under the performance based test for seven

out of eight instances. While Besbes et al [11] focused their efforts on developing

a performance based metric, our research emphasizes measuring the revenue impact

of commonly used demand models in the hotel business (see Khouja [36], Lus and

Muriel [46], Witt and Witt [63], etc.) and providing insights on effective demand

models for price optimization.

While the dynamic programming approach is the most commonly researched in

academia (such as in Bitran and Caldentey [13], Elmaghraby and Keskinocak [22],
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Table 15: Summary of demand model literature

Literature Model type Dependent Explanatory
variable variables

Urban and Baker [55] Log linear Period demand Price
Inventory level
Time trend

Weng [60] General Annual demand Price

Petruzzi and Dada [48] Linear Period demand Price
Log linear

Emmons and Gilbert [23] Linear Period demand Price
Khouja [36] Linear Period demand Price
Lau and Lau [42] Linear Period demand Price

Log linear
Exponential

Gallego and Van Ryzin [24] General Demand intensity Price
Log linear Time

Besbes et al [11] Logit Purchase probability Price

Gallego and Van Ryzin [24]), applying dynamic programming to a large scale net-

work problem is known to be a challenging (the challenge described as “curse of

dimensionality” by Bellman [7]). In our work we take the quadratic programming

framework for multiple period price optimization using the linear demand function.

With this approach we are able to solve a dynamic network optimization problem

close to the real life hotel price optimization problem. While all of the literature that

examine the different demand models reviewed in this section either ignores capacity

constraints (see Bitran and Caldentey [13], Gallego and Van Ryzin [24], Urban and

Baker [55], etc.) and/or focus only on theoretical differences of the optimal solutions

(for example, see Lai [41]), our research estimates demand models using actual hotel

data and measures the performances of dynamic price optimization in the simulated

environment close to the actual hotel business.
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5.3 Impact of Demand Model on Price Optimization

In this section we measure the impact of demand model specification on the price

optimization performance. We start by stating the specific research questions followed

by the experimental design. In Section 5.3.5, we present the results and findings of

the experiments.

5.3.1 Research Questions

In this section we address the following research questions:

1. How much revenue is lost by using a simple linear demand model when the true

demand model is more complicated?

Demand models used in price optimization in practice are often simpler, with

fewer drover or segmentation variables, than the models estimated in Chapter

3.3 (see Lim [44] for typical demand models used). This is partly to ensure a

more robust estimation, and partly due to the unavailability of certain driver

variable information. Hence, measuring the impact of using simple models

versus the “true” demand model can provide the hotels a valuable insight on

what the benefits of demand model analysis.

2. How much revenue is lost by using the wrong functional form of demand model?

(a) When linear demand model is used while the true demand model is expo-

nential.

(b) When exponential demand model is used while the true demand model is

linear.

Linear and exponential models are most widely used models in practice (Lim
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[44]), but there can be cases where one model is used when the other is a

better representation of actual demand. We measure the lost revenue due to

misrepresentation of the functional form as well as the lost revenue due to using

simple demand models through simulation experiments.

5.3.2 Overview of Simulation Process

Figure 11 illustrates the simulation process at a high level. One hotel for each of the

three locations is chosen from the 23 sample hotels. For these 3 hotels, the best fit

models estimated through the process described in Chapter 3 are assumed to be the

true demand model. Note that the true demand model has different intercept terms

by days prior group, length of stay, and day of week according to the corresponding

coefficients. Using the historical demand data, the coefficients for test models are

estimated with regression analysis.

The simulator generates demand and optimizes revenues for a moving 28-day horizon

for 168 days, assuming that the maximum length of stay is four nights (following

our observation in Section 3.3.3). For linear demand models, we solve a quadratic

programming problem ((P2) in Chapter 4) to optimize itinerary prices for the op-

timization horizon. For exponential demand models, we use the alabama package

in statistical software R to solve a constrained convex nonlinear optimization prob-

lem form ((P ) in Chapter 4 with exponential demand). Demand and capacity in

these simulations are for retail segments only, since we focus on optimizing the retail

itinerary rates. Optimal prices are calculated for each itinerary (arrival date, length

of stay) based on the test demand model. Once the optimal price is calculated, we

can use the true demand model to simulate the demand at that price, calculate de-

mand that the hotel can accommodate under the hotel’s capacity, and compute the

corresponding revenue.
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Figure 11: Simulation process flow diagram

The simulation study is performed as following for each scenario. First the “true” and

“test” models are defined according to the simulation scenario. Also the capacity is

set according to the demand level in each scenario, specifically, the average occupancy

at average price according to the true model should be equal to the base occupancy for

each scenario. For all itineraries within the simulation horizon, demand is generated

according to the defined true demand model under randomness respective to the

demand scenario as shown in the example in Section 5.3.3 where how the demand is

generated to simulate what happens in the real world is described in detail.

In our simulation, the price recommendation is updated at every reading date. How-

ever, in cases where optimization horizon is longer with sparser demand towards the

end of horizon, weekly update of prices can also be exercised to improve performance.

5.3.3 Design of Experiments and Demand Generation

Functional forms of demand models tested in this study are linear and exponential.

Demand models compared in this experiment is summarized in Table 16. L2 model
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Table 16: Demand models compared

Model Functional Form Explanatory Variables

L1 Linear Price
L2 Linear Price, DOW
L3 Linear Price, DOW, Days prior group, LOS group
EXP∗ Exponential Price, DOW, Days prior group, LOS group

is not tested for the airport hotel since airport hotels do not have day of week ex-

planatory variables.

Demand scenarios for numerical experiments are designed based on the real hotel

demand characteristics described in Table 8. Different levels of occupancy and coeffi-

cient of variation of staynight demand are combined to create the demand scenarios.

Experiments are performed at combinations of three occupancy levels (50%, 70%,

and 90% approximating the minimum, average, and maximum values in Table 8).

Coefficient of variation of simulated staynight demand are 0.25 and 0.40, close to

the 25 and 75 percentile c.v. value of the real data. The coefficient of variation is

assumed to be constant at all price levels. This assumption is based on our empirical

observation on hotel booking data shown in Section 3.3.2. Individual arrival date and

LOS distribution are simulated based on the true demand model with random errors.

Simulated demand is generated based on the following assumptions and inputs.

1. Average itinerary demand (deterministic portion of demand) is a function of

the itinerary price:

d̄(r) = α− βr for linear true demand (18)

d̄(r) = α · eβr for exponential true demand (19)

where α, β are positive constants.

2. Each demand scenario is built using the two coefficients of variation (0.25, 0.4)
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of staynight demand and the average occupancy rate.

3. Generated demand has multiplicative errors independent of the price (Karlin

and Carr [34], Petruzzi and Dada [48]). Errors are normally distributed with

constant variation parameter σ2 and are designed to achieve staynight c.v. of

0.25 and 0.40 for low and high demand variation scenarios respectively.

d(r) = d̄(r)(1 + ǫ) (20)

ǫ ∼ N(0, σ2) (21)

When creating random variation of demand, both additive error and multiplicative

errors are viable options and are commonly used in stochastic price optimization

problems similar to ours (Petruzzi and Dada [48]). However, additive errors are

independent of demand level, and hence the coefficient of variation varies at different

price levels. Since we assume the coefficient of variation is constant at all price levels

(the standard deviation is proportional to demand), multiplicative errors are more

appropriate in our case.

After models are defined and the capacity and demand coefficients are initialized,

steps performed for each day in the simulation horizon are outlined below. Assume
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the following demand model is used for both test and true demand:

D(dp,DOW,LOS, price) =

7.1

+ (1 ≤ dp ≤ 6)× 10.95− (7 ≤ dp ≤ 11)× 6.03− (12 ≤ dp ≤ 22)× 7.12

− (23 ≤ dp)× 2.97− (LOS ≥ 2)× 3.72

+ (DOW =Mon, Tue,Wed, Thu)× 2.72 + (DOW = Fri)× 2.33

+ (DOW = Sat)× 4.78

− (LOS = 2 & 1 ≤ dp ≤ 6)× 4.59− (LOS ≥ 3 & 1 ≤ dp ≤ 6)× 8.2

− (LOS ≥ 3 & 1 ≤ dp ≤ 6)× 5.67

− (DOW =Mon, Tue,Wed, Thu & LOS ≥ 2)× 0.44

+ (DOW = Fri & LOS = 2)× 3.45− (DOW = Sat & LOS ≥ 2)× 4.68

− 0.7×
price

100

where dp is booking days prior to arrival date, LOS is length of stay and DOW is

day of week.

1. For all itineraries in the optimization horizon, remaining demand model is cal-

culated as sum of all remaining days prior demand models. For example, for

booking date of Day 128, itinerary (arrival date=128(Mon), length of stay 1)

has the following remaining demand:

D(dp = 0, DOW =Mon,LOS = 1, price) = 9.82− 0.7×
price

100

2. Optimal prices are generated by optimizing the remaining revenue using the test

demand model for the optimization horizon under capacity constraints. Assume

the optimal price calculated be $516.58.
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3. Assuming the optimal prices based on the test demand model are implemented,

true demand is generated for each itinerary in the optimization horizon for the

simulating day using the true demand model (for respective day of week, length

of stay, days prior and input price). In our example,

D(dp = 0, DOW =Mon,LOS = 1, $516.58) = 6.2

4. Random number generated according to the coefficient of variation is multiplied

to the true demand. In our example, assume the random number 0.93 is gen-

erated from normal distribution of mean equal to 1 and coefficient of variation

of 0.25.

SimulatedDemand = 6.2× 0.93 = 5.8

5. For any staynight in the optimization horizon, if the generated demand for

the staynight exceeds the remaining capacity, demand is constrained by taking

shorter length of stay of earlier arrival dates first. For example, assume that in

our example we have remaining capacity of 9 and there are following itinerary

demands competing for this capacity on given booking date:

Itin 1 (arrival date=3, LOS=4) has demand of 1

Itin 2 (arrival date=4, LOS=3) has demand of 0

Itin 3 (arrival date=4, LOS=4) has demand of 1

Itin 4 (arrival date=5, LOS=2) has demand of 3

Itin 5 (arrival date=5, LOS=3) has demand of 0

Itin 6 (arrival date=5, LOS=4) has demand of 1

Itin 7 (arrival date=6, LOS=1) has demand of 4

Itin 8 (arrival date=5, LOS=2) has demand of 3

Itin 9 (arrival date=5, LOS=3) has demand of 1

Itin 10 (arrival date=5, LOS=3) has demand of 0
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then itinerary 1∼6 demand is fully accommodated and only 3 out of 4 of

itinerary 7 demand is accommodated. Itinerary 8∼10 demand is rejected.

6. Simulated revenue for the day is sum of all itinerary revenue in the optimization

horizon, which is constrained itinerary demand multiplied by the optimal price.

7. Capacity for each staynight is updated as previous capacity less the constrained

itinerary demand.

The simulation process mimics what happens in the real world, where a portion of

total demand books for each days prior (with more demand booking closer to arrival

date) and price optimization recommends price given the current remaining capacity

and projected remaining demand. Figure 12 illustrates the booking distribution at a

typical booking date in the actual data of the hotel simulated in the example above

(Figure 12(a)) and the simulated demand at day=128 (Figure 12 (b)) from the steps

outlined above. Each line segment in Figure 12 represents a simulated booking,

with starting point at the arrival date and ending point at the last stay date of the

itinerary. The length of the line segment represents the length of stay. The number of

total lines corresponding to arrival date=128 and LOS=1 is 6, indicating 6 bookings

arrived at day=128 for the itinerary of arrival date=128 and LOS=1 as illustrated in

the example above (rounded from the simulated demand of 5.8). The distribution of

demand shown in Figure 12(b) is similar to what is observed in practice as shown in

Figure 12 (a), with most of the demand concentrated in itineraries within 7 days out

to arrival date.

The detailed steps simulations process are outlined as follows. We assume that the

demand starts to arrive at days prior 28, and the demand at that time is sum of

all expected demand for days prior 28 or higher. This allows us to apply the initial

optimal rate (optimal rate at the beginning of the booking horizon when there are
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(a) Visualization of actual demand
Arrival date

0 10 20 30 40 50 60 70

(b) Visualization of simulated demand
Arrival date

128 138 148 158 168 178 188 198

Figure 12: Visualization of simulated demand at day 128

no bookings on hand) to all the bookings booked at days prior 28 or higher when the

arrival date hasn’t rolled into the simulation horizon.

1. Set length of optimization and simulation horizon.

2. Read in the coefficients for the true and test demand model as well as capacity

for the hotel and scenario simulated.

3. For each simulated day in the simulation horizon, for each itinerary in the op-

timization horizon, for each days prior less or equal to the current days prior

(arrival date - simulated day), calculate the true and test demand model coeffi-

cients corresponding to the day of week, days prior and length of stay as shown

in the demand generation example above. For itineraries with arrival date 28

or more days after the simulated day, the demand model should be sum of all

demand models for days prior 28 and beyond (see explanation above).

4. For each simulated day in the simulation horizon do the following.
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(a) For each itinerary in the optimization horizon, calculate the remaining

demand model by adding all future days prior test demand models.

(b) Solve for optimal rates for each itinerary which maximized the total revenue

in the optimization horizon.

(c) Apply the optimal rate to the true demand model of itineraries within the

optimization horizon at corresponding day of week, days prior and length

of stay.

(d) For each staynight in the optimization horizon, check if there are remain-

ing capacity. If there are, accept generated demand following the order

specified in the demand generation example above. Update the capacity

by subtracting number of accepted bookings from the current capacity.

The total revenue gained at the end of the simulation horizon is compared to measure

the impact of demand model performance for different scenarios.

5.3.4 Simulation Parameter Determination

For a simulation study, sufficient number of repetition and warm up period to ensure

the statistical significance of the results need to be determined. We perform 10 repe-

tition for each scenario, which results less than 5% standard deviation of revenue and

average staynight occupancy for all scenarios and provide tight confidence intervals.

For first 28 days in the simulation horizon, the demand is not fully realized since

the demand is generated beginning 28 days prior to the arrival date. Warm up

period should be larger than 28 days for this reason. To determined the length of the

warm up period, we follow the standard techniques in Kelton et al [35]. Figure 13

displays occupancy across simulation horizon for suburban location/base occupancy
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Figure 13: Occupancy across simulation horizon for suburban location, base
occ.=0.7, c.v.=0.25 scenario

0.7/coefficient of variation 0.25 with true model L3 and test model L3. Other scenarios

follow similar trend.

In Figure 13, we observe the occupancy stabilizing between day 20 and 30. Following

Kelton et al [35], we can statistically determine if warm up period of 4 weeks (28

days) is sufficient by performing a t-test between occupancies between week 5 and

6 (day 29∼42) and week 7 and 8 (day 43∼56). The t test could not reject the null

hypothesis that the two periods have same average occupancies at 90% confidence,

which indicates the warm up period of 4 weeks is sufficient. Same test was performed

for revenue and the same conclusion was reached. Following these results we employ

the warm up period of 4 weeks.
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Table 17: Ratio of simulated revenues between price optimization of simple demand
models to true demand models (L3)

Test Revenue ratio
Base occ. c.v. model Airport Suburban Urban

L1 67.6% 83.7% 60.2%
0.25 L2 87.2% 86.4%

L1 67.4% 83.2% 60.1%
50% 0.40 L2 87.2% 85.9%

L1 67.6% 80.7% 53.1%
0.25 L2 85.0% 76.0%

L1 67.8% 80.2% 53.7%
70% 0.40 L2 85.2% 76.3%

L1 67.6% 79.3% 47.0%
0.25 L2 84.6% 67.3%

L1 68.0% 78.8% 47.9%
90% 0.40 L2 85.1% 68.4%

5.3.5 Simulation Results

Table 17 shows the percentage of the true demand model (L3) revenue achieved when

using test demand models L1 and L2. The values displayed in Table 17 are averages

of 10 independent replications.

Using the simplest linear model, L1, our simulation results in 47%∼87% of the revenue

earned with the true demand model. These percentages vary widely, with the urban

hotel with more complex true demand model having the highest revenue loss from

using the L1 model. L2 model with day of week variables achieves about 22%∼30%

more for the urban hotel and about 4%∼6% more for the suburban hotel compared to

when L1 model is used. Performance of simpler demand models L1 and L2 are worse

for high occupancy scenarios in urban and suburban hotels, whereas the performance

of the airport hotel is not sensitive to the occupancy level. For the urban hotel, L2

model performs better than the L1 model more for the high occupancy scenarios. The

variability of demand (c.v.) does not affect the revenue performaces for all scenarios.
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Table 18: Ratio of simulated revenues between price optimization of linear and
exponential demand models to true demand models

True Test Revenue ratio
model model Base occ. c.v. Airport Suburban Urban

0.25 61.8% 56.5% 85.5%
50% 0.40 61.5% 56.6% 85.4%

0.25 64.7% 57.2% 86.2%
70% 0.40 64.8% 57.6% 86.2%

0.25 67.7% 59.9% 89.6%
L3 EXP 90% 0.40 68.0% 60.6% 90.1%

0.25 84.4% 82.0% 87.5%
50% 0.40 84.4% 82.0% 87.5%

0.25 89.5% 85.2% 87.7%
70% 0.40 89.0% 84.4% 87.7%

0.25 87.9% 86.%8 92.1%
EXP L3 90% 0.40 89.6% 88.3% 95.1%

For the impact of functional forms of demand models, Table 18 reports the simulated

revenue when using linear (L3) and exponential (EXP) models as a percentage of

revenue achieved with the true model.

When the true demand is generated by the linear model L3, price optimization with

exponential demand model yields 57%∼90% of the revenue compared to using the

true demand model. In general, urban hotel achieves the highest revenue percentages,

contrary to the results in Table 17. When the true demand is generated by the

exponential model, price optimization with linear demand model yields 82%∼95% of

the potential revenue, having less revenue impact than when the true model is linear

and exponential model is used. The revenue performance of linear model is similar

across all location types. In general, the revenue impact was larger under low demand

level scenarios.
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CHAPTER VI

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this thesis we first investigated the two common assumptions of the hotel revenue

management: 1) late booking customers are willing to pay higher rates and 2) weekday

demand higher than the weekend demand. Empirical analysis presented in Chapter

2 showed that hotel rates retail customers pay do not increase as the day of arrival

approaches. We also showed that weekday retail demand is not really stronger than

the weekend demand. Both these findings suggest that dynamic pricing customized to

retail segment based on dynamically estimated price demand relationship is necessary

in order to achieve the benefits through revenue management.

In Chapter 3, we identified the major demand drivers of hotel demand which are

days prior, day of week, length of stay, previous days prior demand and interactions

of these variables. We also observed that the airport hotel demand shows a similar

pattern across all day of week unlike the demand for other locations. Also, the hotels

in same locations shared similar demand model structures.

One noticeable observation from Chapter 3 is the inelastic response of demand to

price variations. The estimated elasticity from this analysis was between -0.06 and

-0.38, which is comparable to the values reported in the hotel literature: -0.35∼-0.57

(Hiemstra and Ismail [31], 310 properties), -0.8∼-1.8 (Damonte et al [20], Columbia

County, South Carolina (1992∼1995)), -0.1∼-0.3 ([20], Charleston County, South

Carolina (1992∼1995)), and -0.12∼-0.13 (Canina and Carvell [14], 480 urban hotels

in metropolitan areas). The low price elasticity of hotel demand compared to related
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products like air travel (-0.5∼-1.5, [27]) suggests that market factors such as own and

competitor hotel availability, overall market capacity, price of substitutable hotels

and air fares should be considered in hotel demand prediction. Hence the relationship

between air fares and hotel demand can be a promising area of research, as price of

complementary products can have an impact on the demand according to Duvvuri et

al [21].

In Chapter 4, we provided the general formulation for the hotel price optimization

problem. We examined the analytical properties of the price optimization solution

given the linear demand and proposed the Minimum Norm Algorithm which requires

solving iterations of subproblems solvable with matrix algebra. We compared the

computational results of MNA with existing Quadratic Programming algorithms and

showed that MNA shows comparable performance to existing algorithms. In the case

where the capacity constraints are not very tight, MNA algorithm showed better

performance than even the dual simplex algorithm, which performed best among the

existing algorithms for the tested hotel price optimization problems.

In Chapter 5 we identified the impact of driver variables on price optimization per-

formance to be significant, with the revenue lost due to using simpler demand models

being as high as 53%. Using simpler demand models lead to substantial revenue loss,

especially for the hotels that have demand influenced by more variety of driver vari-

ables and interactions of those driver variables. This impact is even greater when the

demand level is high and hotels frequently face capacity limitation, indicating that

having an accurate demand forecast and pricing is crucial in realizing the revenue

potential especially in high demand markets.

Impact of the functional form was less drastic compared to the impact from driver

variables, but still considerable. Estimating demand model with a different functional

form than the true demand resulted on average of 24% revenue loss for linear and
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exponential demand, ranging from 5% to 43% depending on the simulation environ-

ment. In real life, the true demand model is almost never linear or exponential, and

the relative importance of identifying the correct driver variables becomes greater

compared to the importance of representing the demand with the right funtional

form.

The findings from our research imply that correctly representing the demand model in

price optimization is crucial to its success. In order for hotels to realize the maximum

potential revenue through pricing, efforts should be focused on identifying the major

driver variables influencing demand including the ones that we found to be significant.
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APPENDIX A

STAYNIGHT PRICE OPTIMIZATION

Pricing structure also has high impact on revenue management. Currently the hotels

use two kinds of pricing structure, staynight pricing or length-of-stay (LOS) pricing.

Staynight pricing in hotel revenue management refers to a pricing practice where

pricing is done on an individual staynight level. On the other hand, in LOS pricing,

there are no staynight prices and each itinerary (arrival date and length of stay

combination) is independently priced. With LOS pricing hotels have more flexibility

in pricing different itineraries, whereas with staynight pricing itinerary prices are

restricted to be the sum amount of individual staynights. Therefore price optimization

using LOS pricing is expected to achieve higher revenue when compared to staynight

pricing optimization.

Hotels have traditionally used staynight pricing and revenue management until re-

cently. Figure 14 shows how a typical hotel product is sold - itineraries priced as

sum of staynight prices. While the LOS pricing is desirable in terms of flexibility in

pricing, it has been challenging to hotels to make a transition from staynight pric-

ing to the full LOS pricing. Transition to LOS pricing requires substantial changes

in organization, infrastructure, and marketing practices not to mention the cost of

implementation. More importantly, the benefits of implementing LOS pricing has

not been validated with quantitative analysis in the hotel industry. In this paper,

we simulate the earned revenue of staynight vs. LOS pricing to quantify the revenue

impact of the pricing structure. Also we develop a heuristic for staynight pricing and

compared the performance of heuristic optimization vs. exact staynight optimization.
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Figure 14: Hotel staynight pricing example from hotels.com

In this chapter, we research the question of how much revenue is lost by using the

more restrictive staynight pricing instead of LOS pricing. We answer these questions

by establishing a simulation environment where we can test the impact of demand

models and pricing structure in hotel price optimization. Specifically, we compare the

maximized revenue when both the price and quantity of sales are decision variables in

optimization under various demand scenarios extracted from historical booking data.

When we use staynight price instead of LOS price in optimization, the demand func-

tion can no longer span the whole co-domain since the range of LOS prices are re-

stricted to be sum of staynight prices. In this case we no longer have the guarantee

that optimal sales quantity equals demand function at optimal price and we need

to solve the bilinear optimization problem. To our best knowledge, there are no

literature reporting implementation of bilinear optimization in the area of revenue

management. In this paper, we do not attempt to develop a bilinear optimization

algorithm but instead use discretized demand points to address this issue. Since the

hotel sales quantity is always integer in real life, discretization using integer sales

quantity gives an exact solution to the real world problem. The formulation of price

optimization using discretized quantity is given below. In this formulation, price is
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the continuous decision variable. We limit the problem to the case where demand

is a linear decreasing function of price. Following notations are used in addition to

notations defined in Chapter 4.

Ia,d : Set of indices for discrete accepted demand at arrival date a,

duration d. All integer values with maximum at ⌊αa,d⌋.

αa,d, βa,d : Intercept and slope for demand function at arrival date a,

duration d

ra,d,i : Price for arrival date a, duration d, when accepted demand is i

ps : Price for staynight s

ya,d,i : Indicator for accepted demand at arrival date a, duration d

being i

The optimization problem (SN-OPT):

max
r

∑

(a,d)∈A×D

∑

i∈Ia,d

ira,d,i

s.t.
∑

(a,d):
a≤s≤a+d−1

∑

i∈Ia,d

iya,d,i ≤ cs ∀s ∈ S (22)

ra,d,i ≤
αa,d − i

βa,d
ya,d,i ∀(a, d) ∈ A×D (23)

∑

i∈Ia,d

ya,d,i = 1 ∀(a, d) ∈ A×D, ∀i ∈ I (24)

∑

i∈Ia,d

ra,d,i =
∑

s∈S:a≤s≤a+d−1

ps ∀(a, d) ∈ A×D (25)

ra,d,i, ps ≥ 0, ya,d,i ∈ {0, 1} (26)

In this formulation, the potential demand for an itinerary with arrival date a, duration

of stay d is a linear function of the itinerary price, ra,d. Specifically, the demand

generated for this itinerary at price ra,d equals αa,d − βa,dra,d. The coefficient i in

the objective function is the discrete sales quantity point for arrival date a, duration
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of stay d. i ranges from 0 to maximum value ⌊αa,d⌋. Discrete sales quantity i is

multiplied by ra,d in the objective function to calculate maximum revenue. ra,d is

the price for itinerary (arrival date a, duration d) and is structured to have positive

value only when the corresponding discrete sales quantity i is chosen (constraint

(23)). ya,d,i is an indicator, which equals 1 only when discrete sale quantity i is

chosen, and constraint (24) enforces that only one discrete sale quantity is chosen per

itinerary. Hence constraints (23) and (24) together enforces that only one discrete

sales quantity per itinerary contributes to the objective function. Constraint (22)

ensures that the sum of chosen sales quantity that share a staynight does not exceed

hotel capacity. Constraint (23) also enforces that when discrete sales quantity i

is chosen for itinerary (a, d), i.e. ya,d,i = 1, the sales quantity i does not exceed the

potential demand generated with the linear demand function. Finally, constraint (25)

restricts the itinerary prices to be sum of individual staynight prices. Formulated this

way, the bilinear price optimization can be solved as a discrete optimization problem.

We also considered discretizing price points and relaxing quantity to be continuous

decision variable. However, discretized price formulation not only has more compli-

cated constraints but also require more integer variables in order to represent the full

feasible region and hence is more difficult to solve. For this reason, we use only the

discretized quantity method for the simulation experiments in following sections.

Table 19 illustrates preliminary results from comparing the revenue earned by opti-

mizing staynight prices for selected demand models with itinerary price optimization

(P) presented in Chapter 4, as a percentage of earned revenue from (P). Optimality

gap for the staynight optimization problem (SN-OPT) is also presented. Initial re-

sults show that revenue difference between the two pricing methods are typically less

than 10% when the optimality gap is small (less than 5%), far less significant com-

pared to the revenue differences in Chapter 4, indicating that the pricing method may
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Table 19: Revenue differences between itinerary price optimization and staynight
price optimization

Hotel Location Occ. Rev. diff. Opt. gap
50% 6.9% 0.1%
100% 6.9% 0.1%

A Airport 150% 5.3% 2.9%
50% 13.9% 9.3%
100% 13.8% 10.2%

B Airport 150% 10.7% 9.8%
50% 17.2% 9.2%
100% 17.1% 13.3%

C Suburban 150% 20.1% 26.0%
50% 21.3% 13.0%
100% 21.3% 17.0%

D Suburban 150% 18.8% 2.9%
50% 0.5% 0.2%
100% 0.4% 0.2%

E Urban 150% 0.5% 0.2%
50% 7.0% 1.6%
100% 7.2% 5.3%

F Urban 150% 9.1% 10.8%

have less impact on the revenue earned compared to the impact of demand models

on price optimization.

Future research directions on the staynight optimization performance may be focused

on developing algorithms/formulations to enhance performance of the optimization

and developing heuristic to solve the staynight and produce price recommendations

close to the optimal solution.
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