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SUMMARY

This dissertation consists of two self-contained studies.

The first study, in the domain of stochastic inventory theory, addresses the struc-

ture of optimal ordering policies in a periodic review setting. We take multiple sources

of a single product to imply an ordering cost function that is nondecreasing, piece-

wise linear, and convex. Our main contribution is a proof of the optimality of a finite

generalized base stock policy under an average cost criterion. Our inventory model

is formulated as a Markov decision process with complete observations. Orders are

delivered immediately. Excess demand is fully backlogged, and the function describ-

ing holding and backlogging costs is convex. All parameters are stationary, and the

random demands are independent and identically distributed across periods. The

(known) distribution function is subject to mild assumptions along with the holding

and backlogging cost function. Our proof uses a vanishing discount approach. We

extend our results from a continuous environment to the case where demands and

order quantities are integral.

The second study is in the area of capacity planning. Our overarching contribu-

tion is a relatively simple and fast solution approach for the fleet composition problem

faced by a retail distribution firm, focusing on the context of a major beverage dis-

tributor. Vehicles to be included in the fleet may be of multiple sizes; we assume that

spot transportation capacity will be available to supplement the fleet as needed. We

aim to balance the fixed costs of the fleet against exposure to high variable costs due

to reliance on spot capacity.

We propose a two-stage stochastic linear programming model with fixed recourse.

The demand on a particular day in the planning horizon is described by the total

quantity to be delivered and the total number of customers to visit. Thus, daily

demand throughout the entire planning period is captured by a bivariate probability

v



distribution. We present an algorithm that efficiently generates a “definitive” collec-

tion of bases of the recourse program, facilitating rapid computation of the expected

cost of a prospective fleet and its gradient. The equivalent convex program may then

be solved by a standard gradient projection algorithm.

The two investigations making up this dissertation are united by a concern with

multiple sources within their respective contexts. The first study posits multiple

sources of a single product (for example, multiple suppliers or production technolo-

gies) within an inventory control context. The second study considers multiple sources

of transportation capacity, in the form of vehicles of differing sizes and the alternative

of fleet versus spot capacity. For each of the two investigations, our focus on multiple

sources entails a richer analysis than that arising from a single-source setting.
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CHAPTER 1: AVERAGE OPTIMAL CONTROL IN AN INVENTORY
MODEL WITH MULTIPLE SOURCES

1.1 Introduction

Consider a periodic review inventory control context in which there are multiple

suppliers or production technologies for a single product, each source being subject

to a fixed short-term capacity. On the premise that the cheapest source should be used

first, a convex and piecewise linear ordering cost function—associating each source

with a constant marginal ordering cost—may be an appropriate model element. In

this chapter, we investigate the structure of optimal ordering policies for a class of

models with this type of ordering cost function. In defining optimal policies, our focus

is on an average cost criterion. While this type of cost criterion is relatively familiar in

the field of stochastic processes, it is often regarded as more technically forbidding in

comparison to finite-horizon or discounted cost criteria. Thus, our method of analysis

may be of some interest as well as the structural result.

Our inventory model is formulated as a Markov decision process with complete

observations. The ordering cost for any period is a nondecreasing, piecewise linear,

and convex function of the order quantity for a single product. Here we assume that

there is no upper limit on the order quantity in a given period; the most expensive

source is modeled as uncapacitated. We are also assuming that there is no signif-

icant fixed cost to be incurred by ordering a positive quantity as against ordering

nothing. Furthermore, we are assuming that all sources have nonnegative marginal

cost. Orders are delivered immediately. Excess demand is fully backlogged, and the

function describing holding and backlogging costs is convex. All parameters are sta-

tionary, and the random demands are independent and identically distributed across

periods; the (known) distribution function is subject to mild assumptions along with

the holding and backlogging cost function. We prove that a finite generalized base
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stock policy is optimal under a long-run average expected cost criterion. We focus

on the case of a continuous state space in which demands and order quantities might

take any nonnegative real value, and we extend our argument to the discrete case in

which these quantities may take only nonnegative integral values.

Though convex ordering cost functions appeared early in the literature on stochas-

tic inventory theory, and though there has been considerable effort directed at un-

derstanding optimal inventory control policies under average cost criteria, we are not

aware of any prior work establishing our precise conclusions. Our result is not surpris-

ing, however, as finite generalized base stock policies have been claimed to be optimal

in discounted cost settings when the ordering cost function is piecewise linear and

convex. Furthermore, average cost results consistent with ours have been claimed

for the special case when the convex cost function is composed of two linear pieces.

Moreover, important work of Huh et al. (2008) aims to greatly facilitate proofs of

optimal policy structures, under an average cost criterion, for a wide class of inven-

tory control models very nearly encompassing ours (as well as models that are more

complex than ours in fundamental ways).

A possibly unique element of our argument centers around an observation that,

in a relaxed version of our model under a discounted cost criterion, the one-sided

derivatives (with respect to the inventory level) of the optimal value functions are

nonincreasing in the discount factor. This observation may be useful for further

results, and it is not present in the paper by Huh et al. (2008). In its broad outlines,

our method of proof is more familiar: it is based on the well-known vanishing discount

strategy, and it incorporates a relaxation technique used before by Zheng (1991).

In Section 1.2, we review relevant literature. In Section 1.3, we precisely define

our model and state our desired results, and we then summarize our proof. Section

1.4 contains our technical arguments. We conclude the chapter briefly in Section 1.5,

and we give references in Section 1.6.
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1.2 Literature review

In reviewing related literature, we focus on work featuring periodic review inventory

models with a convex (and nonlinear) ordering cost function or with an average cost

criterion. Broader coverage of the subject of inventory theory may be found in Veinott

(1966), Porteus (1990), Zipkin (2000), and Porteus (2002). References on Markov

decision process (MDP) models more generally, including models under average cost

criteria, include Heyman and Sobel (1984), Puterman (1994), Arapostathis et al.

(1993), Hernández-Lerma and Lasserre (1996), Sennott (1999), and Feinberg and

Shwartz (2002).

1.2.1 Inventory control with a convex ordering cost function

Convex ordering cost functions appeared early in the literature on inventory control

and production planning. Several studies in this area consider deterministic models,

unlike our framework which features stochastic demand. For example, Veinott (1964)

studies a production and inventory model with a convex ordering cost function (or

rather a convex production cost function) in a finite-horizon setting with deterministic

future demand; here, uncertainty is dealt with by sensitivity analysis. In a subsequent

survey of inventory theory, Veinott (1966) discusses other work with convex ordering

cost functions in a deterministic setting, much of which was published in the 1950s.

A few additional references along these lines are given in Sethi et al. (2005, p. 11).

In a stochastic and dynamic setting, Karlin (1958) considers basic inventory con-

trol models featuring three types of ordering cost functions, associating each type of

function with an optimal decision rule having a particular structure:

1. A linear ordering cost function is associated with what are now widely known

as base stock rules, which have the form: order up to meet a target inventory

level s∗ when the current period’s inventory level is below s∗; i.e., order the

quantity (s∗ − I) if the current inventory level is I < s∗, and otherwise order
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nothing.

2. An ordering cost function involving a fixed set-up cost incurred for all positive

order quantities, in addition to a linear cost component, is associated with (s, S)

rules: order up to a target level S∗ when we see inventory below a critical level

s∗, where s∗ ≤ S∗; i.e., order the quantity (S∗− I) if the current inventory level

is I < s∗, and otherwise order nothing.

3. A convex ordering cost function is associated with what have been called (in

Porteus 1990) generalized base stock rules, which have the property that the

order-up-to level is a nondecreasing function of the current inventory level,

while the order quantity is a nonincreasing function of the current inventory

level.

Here, Karlin’s criterion for evaluating a given policy is the discounted expected cost

incurred, which by nature diminishes the emphasis on the (perhaps very) long term.

By contrast, we are concerned with the structure of optimal policies under an average

cost criterion, which is intended to ignore the short-term, transient behavior of the

system and focus on the steady state. Also notable is that Karlin assumes strict

convexity of the ordering cost function, apparently making extensive further speci-

fication of optimal policies cumbersome in general. We instead assume a piecewise

linear form that implies an intuitive and relatively simple optimal policy structure.

Further results for stochastic inventory control with a strictly convex ordering cost

function under a discounted cost criterion may be found in Bulinskaya (1967).

The case of a piecewise linear and convex ordering cost function is discussed in the

survey of stochastic inventory theory by Porteus (1990). He describes the structure of

a finite generalized base stock rule by reference to a hypothetical situation involving

alternative production technologies. Each technology has a linear cost and a fixed

per-period capacity—except the most expensive technology, which is uncapacitated.
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This leads to a convex and piecewise linear ordering cost function, as in our setting, on

the assumption that a particular technology is utilized only if all cheaper technologies

are being used to capacity. The decision rule is then defined by a nonincreasing set of

base stock levels corresponding to the technologies in increasing order of marginal cost.

There may therefore be a range of inventory levels for which we do not utilize a given

technology, though we utilize all cheaper technologies to capacity. Porteus asserts the

optimality of a finite generalized base stock policy under a discounted expected cost

criterion, but he offers no proof or reference for this proposition. The only optimality

proof we have found that allows an ordering cost function with any number of linear

pieces is in Bensoussan et al. (1983), under the finite-horizon total expected cost

criterion. Unlike Bensoussan et al., we deal with an average cost criterion, and we

also allow unbounded marginal holding and backlogging costs—as well as a marginal

ordering cost equal to zero for the cheapest source.

Considerable attention has been given to stochastic models with piecewise linear

and convex ordering cost functions for the special case with two linear pieces. Sobel

(1970) studies such a model in which the location of the kink in the function is

chosen at the outset and thereafter is fixed from period to period. He argues for the

optimality of a finite generalized base stock policy when the location of the kink is

given—under discounted cost criteria, and also under an average cost criterion for

the case of discrete demand. His finite-horizon results are used in Kleindorfer and

Kunreuther (1978). Henig et al. (1997) consider a similar model with an ordering

cost function equal to zero for up to R units, with a cost of c per additional unit.

(This is in the context of supply and transportation contracts, in which the available

volume R per period may be specified by a long-term agreement; like Sobel, they aim

to optimally choose R.) They argue for the optimality of a finite generalized base

stock policy specified by two base stock levels (and the parameter R) with respect

to the discounted expected cost. They conjecture that the same type of policy is
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optimal with respect to an average cost criterion. This conjecture is repeated in

Geunes (1999) and in Serel et al. (2001). Yang et al. (2005) consider a model with

capacitated “in-house” production and an uncapacitated “outsourcing” option. In

their default setting, the capacity level fluctuates randomly and there is a fixed cost

of outsourcing as well as a per-unit cost. These complexities aside, they offer in effect

an argument for average optimality, in a discrete setting, of a finite generalized base

stock policy when the ordering cost function is nondecreasing, convex, and piecewise

linear with two linear pieces. Our argument accommodates a cost function with any

(finite) number of linear pieces, and we also allow non-discrete demand distributions.

Stochastic production smoothing models such as that of Beckmann (1961) are also

relevant here. Beckmann’s model incorporates a linear cost of production along with

per-unit costs of increasing and decreasing the production level relative to the level

chosen for the preceding period. Thus we have in effect an inventory model in which

the ordering cost function is convex and piecewise linear with two linear pieces, such

that the location of the kink in the function may change from period to period. It

is even allowed that the function may decrease up to the kink, signifying that it is

very costly to reduce production. (This characteristic is also allowed in Sobel 1970.)

Later work on production smoothing models in this vein includes Sobel (1969) and

Sobel (1971). In our model, by contrast, the ordering cost function is nondecreasing

and fixed across periods, while we allow any number of linear pieces.

Huh et al. (2008) is a study aimed at developing a framework under which the

optimality of particular inventory control policy structures may be immediately ex-

tended from finite-horizon to infinite-horizon (including average cost) settings. Their

framework includes the possibility of a nondecreasing, piecewise linear and convex

ordering cost, though they do not discuss the specific structure of optimal policies

for this situation. Their framework also requires bounds on the marginal holding

and backlogging costs, whereas our arguments do not require such bounds. Further-
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more, in the course of our technical argument we offer some structural insight for our

problem that may be of wider use and that is not present in their paper.

1.2.2 Inventory control under average cost criteria

As observed in the general treatments of Markov decision processes in Heyman and

Sobel (1984, p. 171) and Puterman (1994, p. 331), an average cost criterion may

be appropriate for modeling systems in which decisions are made frequently. These

authors also note the complexity of technical analysis under average cost criteria;

problematic characteristics of inventory models in particular include the possibility

of state spaces and feasible action sets that are unbounded (and perhaps continuous),

as well as unbounded cost functions.

In Section 1.2.1 above, we have discussed work on inventory control under an

average cost criterion when the ordering cost function is convex (and nonlinear).

Here, we mention work on stochastic inventory control models with other types of

ordering cost functions.

The case of an inventory model with a linear ordering cost function (as in the

first case examined in Karlin 1958, mentioned above) is studied in Vega-Amaya and

Montes-de-Oca (1998). They argue that the base stock structure remains optimal un-

der an average cost criterion. Our model encompasses linear (nondecreasing) ordering

cost functions, but we assume backlogging of unmet demand while they assume lost

sales.

Literature on average optimality in models with a fixed cost of ordering in addition

to a linear component (as in the second case examined in Karlin 1958) is briefly

reviewed in Feinberg and Lewis (2006). They cite several papers arguing that the

(s, S) structure remains optimal. One such paper of particular significance for us

is Zheng (1991), which employs a relaxation technique that we use as well. Other

studies cited include Iglehart (1963), Veinott and Wagner (1965), Beyer and Sethi

7



(1999), and Chen and Simchi-Levi (2004). The forthcoming volume of Beyer et al.

(2009) also promises to discuss this case.

The work by Huh et al. (2008) mentioned above stands to establish average opti-

mality of policy structures, for a wide class of cost functions and other model param-

eters, whenever the structures are known to be optimal in a finite-horizon setting.

1.3 Formal problem statement and proof strategy

We define our inventory model as a Markov decision process. Let I ∈ R represent

the inventory level at a particular decision point. Excess demand is backlogged, so

this quantity may be negative. Knowing I, we must choose the order quantity for the

current period; we order so as to bring the inventory level up to some level Z ≥ I,

delivery being instantaneous. The cost of the order is C(Z−I) according to a function

C : R+ → R+. After our decision is made, the demand level X for the current period

is revealed. The demand level in each period is a nonnegative, real-valued random

variable with known distribution; it is independent of the history of the process,

which here consists of all past inventory levels and order-up-to levels, including those

of the current period. In particular, the demand levels are independent and identically

distributed across periods. The period inventory level net of demand is (Z −X). An

inventory holding cost (or backlogging penalty cost, if net inventory is negative) for

the current period is incurred in the amount of L(Z − X) according to a function

L : R → R+. The quantity (Z − X) will be observed as the inventory level at the

next decision point.

In our setting, C(Q) is a convex, nondecreasing, piecewise linear function of the

order quantity Q = (Z − I). The m sources of our product are numbered in order

of marginal cost, with the cheapest source first and the most expensive source last.

(We assume that m is finite.) Without loss of generality, we assume that no two

sources have identical marginal cost, and that each source has nonzero capacity. The
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ordering cost function is defined by parameters as follows:

0 = c0 ≤ c1 < c2 < . . . < cm−1 < cm < +∞

0 = r0 < r1 < r2 < . . . < rm−1 < rm = +∞

Here, ri is the cumulative capacity of the first i sources. On the premise that the

cheapest source(s) should be used first, the marginal cost of increasing the order

quantity is ci when the order quantity satisfies ri−1 ≤ Q < ri. For order quantity Q,

then, we have:

C(Q) =
m∑
i=1

(ci − ci−1)(Q− ri−1)+

We impose the following additional conditions on the holding and backlogging

cost function and the distribution of demand variables:

Assumption 1. L : R→ R+ is a convex function.

Assumption 2. L(I)→ +∞ as |I| → +∞.

Assumption 3. E[L(Z −X)] < +∞ for all Z ∈ R.

Assumption 4. P (X = 0) < 1.

The property E[X] < +∞ is implicit in Assumptions 1–3, and we prove this later

on. Our assumption of convexity of the holding and backlogging cost function is fairly

typical—encompassing the straightforward case of two linear functions that are zero

when the net inventory level is zero—though it is not universal. Given convexity, our

additional assumption that this function approaches +∞ for increasing or decreas-

ing inventory levels is reasonable: the violation of this assumption would imply an

incentive to pursue arbitrarily great inventory or backlog quantities. Furthermore,

given Assumptions 1 and 2 and our optimality criterion, our assumption that L ≥ 0

is without loss of generality. Similarly, it is without loss of generality that we as-

sume C(0) = 0. Assumption 4 is imposed to eliminate a relatively trivial special
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case. Finally, note that our framework allows mixed demand distributions as well as

distributions having a probability density or mass function.

Given the characteristics of our model as just described, we seek to understand

the structure of optimal control policies under an average cost criterion. We now

define the particular criterion we adopt.

Definition 1. For a general Markov decision process, let φ(y, a) be the cost incurred

in any given period when the state is observed to be y and the action a is taken. An

admissible policy π∗ is average optimal if for all admissible policies π and all initial

states y0, we have

lim sup
n→+∞

1

n+ 1
Eπ∗

y0

[
n∑
t=0

φ(yt, at)

]
≤ lim sup

n→+∞

1

n+ 1
Eπ
y0

[
n∑
t=0

φ(yt, at)

]

Above, a policy prescribes the decision rule to be used at all decision points; a

decision rule specifies an action at a particular decision point. (Our usage of these

terms follows Puterman 1994 and is not universal.) An admissible policy consists of

rules that are allowed to depend on any information in the history of the process;

in our case, the history includes (in sequence) all inventory levels I observed and all

order-up-to levels Z chosen. Furthermore, randomized selection of actions may be

employed. However, an admissible policy may not use rules depending on demand

levels not yet realized. There is a further requirement that all policies under consid-

eration satisfy certain measurability requirements. In general (and beyond the issue

of policies) we take measurability for granted in the course of our arguments; to the

best of our knowledge, our constructions do not run afoul of such technical subtleties

at the foundations of fully rigorous treatments of probabilistic models.

Definitions of average optimality similar to ours are given Heyman and Sobel

(1984) and Arapostathis et al. (1993). Our definition is equivalent to the “lim inf”

average optimality of Puterman (1994, p. 129, in the context of maximizing rewards).
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Our use of the limit superior instead of the plain limit is reasonable because it is

possible in our framework to specify an inventory control model and policy for which

the desired limit does not exist. We will, however, find that a plain limit is attained

by the policy we establish as average optimal. (There is also a related “sample path

average cost” criterion which we do not discuss; see Arapostathis et al. 1993.)

Our primary goal is to show that there exists a finite generalized base stock policy

that is average optimal for our inventory model as described. In particular, we will

show that there is such an optimal policy that is expressible in terms of the parameters

{r0, . . . , rm} along with certain critical values {s0, . . . , sm}. The following definition

makes this goal precise.

Definition 2. Given our model parameters {r0, . . . , rm}, and given critical values

sm ≤ sm−1 ≤ . . . ≤ s2 ≤ s1 < s0 = +∞

the corresponding finite generalized base stock policy (“FGB policy”) prescribes an

order-up-to level as a function of the inventory level at any decision point:

• If si−ri ≤ I < si−ri−1 (equivalently, ri−1 < si−I ≤ ri) for some i ∈ {1, . . . ,m},

choose Z = si. Here we are able to reach the ith base stock level by utilizing

the ith source, while using the first (i− 1) sources to their capacities.

• If si − ri−1 ≤ I < si−1 − ri−1 (equivalently, si ≤ I + ri−1 < si−1) for some

i ∈ {1, . . . ,m}, choose Z = I + ri−1. We are in a range where we use the first

(i − 1) sources to their capacities, but we do not use source i. Our use of the

first (i− 1) sources alone brings us above the ith base stock level.

Note that the cases above are mutually exclusive and exhaustive. Also note that

if si = si−1 for some i, the second type of condition above becomes vacuous for that

i. We allow for the possibility that si = −∞ for some i 6= 0, which would imply
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that source i and any more expensive sources are never utilized. However, we will

establish that si is finite for all i 6= 0 characterizing our particular average optimal

FGB policy. (Our definition may be compared with Bensoussan et al. 1983, p. 332,

Porteus 1990, p. 622, and Liu and Esogbue 1999, p. 43.)

Our proof strategy involves studying a relaxed version of the inventory model in

which the inventory level may be reduced by an arbitrary amount at no cost. Note

that by expanding the domain of the function C to be R, our given formula for

C(Q) remains valid. This relaxed model will be associated with a relaxed FGB policy

structure, which we now define.

Definition 3. A relaxed finite generalized base stock policy (“rFGB policy”) is the

same as an FGB policy, except that for s1 − r0 ≤ I < s0 − r0 (that is, I ≥ s1), we

choose Z = min{I, s∗} instead of Z = I + r0 = I. Here s∗ is an additional parameter

satisfying s1 ≤ s∗ < +∞.

In addition to the average cost criterion defined above, we will in the course of

our arguments make use of (rather standard) finite- and infinite-horizon discounted

cost optimality criteria for Markov decision processes, which we define below.

Definition 4. For an MDP, let φ(y, a) be the cost incurred in period t when the

state is y and action a is taken. Let φn(y) be the cost incurred for final state y in the

terminal period n ∈ Z+. Let β ∈ (0, 1) be the discount factor. An admissible policy

π∗ is discount optimal if for all admissible policies π and all initial states y0,

Eπ∗

y0

[∑n−1
t=0 β

tφ(yt, at) + βnφn(yn)
]
≤ Eπ

y0

[∑n−1
t=0 β

tφ(yt, at) + βnφn(yn)
]

If we take β = 1, the above becomes a total expected cost criterion. We will find

it convenient to reverse the numbering of periods, so that subscript ‘0’ is associated

with the terminal period.
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Definition 5. For an MDP, let φ(y, a) be the cost incurred when the state is y and

action a is taken. Let β ∈ (0, 1) be the discount factor. An admissible policy π∗ is

discount optimal if for all admissible policies π and all initial states y0,

Eπ∗

y0

[
+∞∑
t=0

βtφ(yt, at)

]
≤ Eπ

y0

[
+∞∑
t=0

βtφ(yt, at)

]

In our case, φ(y, a) ≥ 0. By the monotone convergence theorem, then, it is

equivalent for us to take the limits outside of the expectations in the definition above.

Our technical arguments run as follows. In Section 1.4.1, we establish some nota-

tion and several analytical results that we will use later. In Section 1.4.2, we begin our

study of the relaxed model. We find that rFGB decision rules are discount optimal in a

finite-horizon setting with discount factor β. Specifically, given n ≥ 1 decision points

remaining and terminal cost equal to zero, critical values {s∗n, s1
n, . . . , s

m
n } defined in

terms of the optimal cost function (also called the “value function”) fn−1(I), which

is convex, correspond to an optimal rFGB decision rule. Upon further examination,

we find that the one-sided derivatives of fn−1(I) with respect to I are nonincreasing

in n as well as in the discount factor β. As a consequence, the critical values sin are

nondecreasing in n and in β (provided that we choose the greatest possible critical

values at each step, in cases where there are multiple optimizers). Finally, we show

that the critical values {s∗n, s1
n, . . . , s

m
n } are finite for sufficiently large n and β.

In Section 1.4.3, we turn to the infinite-horizon setting, considering the situation

as n→ +∞. We observe for the finite-horizon model that we may restrict attention to

a compact interval of actions in any given state, and we also establish fn ↗ f . After

seeing its role in a solution of the discounted cost optimality equation, this function

f turns out to be the optimal cost function for the infinite-horizon setting. Based on

the convex structure of f , we find that rFGB policies are discount optimal. We also

establish that the one-sided derivatives of f(I) with respect to I are nonincreasing
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in β, and that the critical values si derived from f are nondecreasing in β (again

provided that we choose the greatest possible critical values).

In Section 1.4.4, we use the above results to construct and validate average optimal

policies. In the infinite-horizon discounted setting, for β close to 1 we find that we

may restrict attention to a compact interval of actions that does not vary with β. We

also establish for a (convex) relative value function f̄ that f̄ ↗ f̄1 as β → 1. These

facts are used to show the role of f̄1, along with a scalar ρ, in solving the average

cost optimality equation. We then argue that an rFGB policy with critical values

si1 defined by reference to the convex function f̄1 is average optimal for the relaxed

problem, having cost ρ. Finally, we show that this implies that an FGB policy (with

the same critical values, absent s∗1) must be average optimal for the unrelaxed model.

In Section 1.4.5, we aim to attain our secondary goal: extension of our main result

to the discrete case in which demands and order quantities may take only nonnegative

integral values. We show how our main argument in the preceding sections may be

used to establish that an average optimal FGB policy exists in this case as well.

Our arguments are fairly self-contained, making use of many ideas from prior

work. Some notable examples of prior literature that inspired our argument in various

ways include: Heyman and Sobel (1984, Theorems 8-14 and 8-15 and proofs), Zheng

(1991, Section 4), Arapostathis et al. (1993, Theorem 5.1 and proof), Puterman (1994,

Theorems 6.2.2 and 8.10.7 and proofs), Henig et al. (1997, Lemma 1 and Theorem 1

and proofs), and Yang et al. (2005, Lemmas 7 and 8 and proofs). It is also clear that

our argument has elements in common with Sobel (1970) and Schäl (1993, Lemma

1.2 and Proposition 1.3).
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1.4 Technical arguments

1.4.1 Preliminary analytical results

In the rest of the chapter, we will denote left and right derivatives with ‘−’ and ‘+’

superscripts, respectively. In Section 1.4.2 and after, these derivatives will always be

taken with respect to I or Z. We define the left and right derivatives so that they are

equal when the conventional derivative exists. We take the existence of a one-sided

derivative to mean that the corresponding limit is finite.

The following lemma is essentially the same as Theorem 5.1.3 in Webster (1994):

Lemma 1. If a finite-valued, convex function g is defined on an open interval of R,

then g−(x) and g+(x) exist for all x in this interval. Given x1 < x2 in this interval,

we also have

g−(x1) ≤ g+(x1) ≤ g(x2)− g(x1)

x2 − x1

≤ g−(x2) ≤ g+(x2)

In particular, if g : R → R is convex then it is continuous. Sums, positive scalar

multiples, and pointwise limits of convex functions are themselves convex. A convex,

finite-valued function g achieves a local (and therefore global) minimum over R at x∗

if and only if g−(x∗) ≤ 0 ≤ g+(x∗). For a convex, finite-valued function g, we also

define

g−(−∞) := lim
x→−∞

g−(x)

g+(+∞) := lim
x→+∞

g+(x)

and we note that these are monotone limits (by convexity) that may be infinite.

Lemma 2. Let g : R → R be convex, and let Y be a real-valued random variable

such that E[g(x − Y )] is finite for all x ∈ R. E[g(x − Y )] is a convex, finite-valued

function of x over R.
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Proof. Given reals x1 < x2 and λ ∈ (0, 1), we have

g((1− λ)x1 + λx2 − Y ) ≤ (1− λ)g(x1 − Y ) + λg(x2 − Y )

for any realized value of Y by the convexity of g. Since E[g(x − Y )] is finite for all

x ∈ R, we may apply linearity of expectation (Wheeden and Zygmund 1977, Theorem

10.23) as well as monotonicity of expectation (Wheeden and Zygmund 1977, p. 170)

to this inequality, establishing convexity.

The following lemma is essentially contained in Sobel (1970) and Heyman and

Sobel (1984, p. 527):

Lemma 3. Given the premises of Lemma 2, the left and right derivatives with respect

to x of E[g(x− Y )] are equal to the finite quantities E[g−(x− Y )] and E[g+(x− Y )]

respectively for all x ∈ R.

Proof. Let us consider the left derivative case. For any particular x and realized value

of Y , convexity implies that δ−1(g(x− Y )− g(x− δ − Y ))↗ g−(x− Y ) as δ → 0+.

By our premises and linearity of expectation, E[δ−1(g(x−Y )−g(x− δ−Y ))] is finite

for all real δ > 0. Using the monotone convergence theorem (Wheeden and Zygmund

1977, Theorem 10.27), we conclude that

δ−1 (E[g(x− Y )]− E[g(x− δ − Y )])→ E[g−(x− Y )]

By Lemmas 1 and 2, the left derivative of E[g(x−Y )] must exist. By the convergence

above, then, E[g−(x − Y )] is equal to this left derivative and is finite as desired. A

similar argument may be applied for the case of right derivatives.
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Lemma 4. Given the premises of Lemma 2, we have:

• limx→−∞ E[g−(x− Y )] =: E[g−(−∞− Y )] = g−(−∞)

• limx→+∞ E[g+(x− Y )] =: E[g+(+∞− Y )] = g+(+∞)

Proof. For any realized value of Y , we have g−(x− Y )↘ g−(−∞) as x→ −∞ and

g+(x − Y ) ↗ g+(+∞) as x → +∞. By Lemma 3, E[g−(x − Y )] and E[g+(x − Y )]

are finite for every x ∈ R. Using the monotone convergence theorem, we obtain

limx→−∞ E[g−(x− Y )] = g−(−∞) and limx→+∞ E[g+(x− Y )] = g+(+∞).

Rolle’s theorem (Bartle 1976, p. 196) may be modified for one-sided derivatives:

Lemma 5. Let g : R → R be continuous on the closed interval [x1, x2] with g+

existing on the open interval (x1, x2), and suppose g(x1) = g(x2) = 0. There exist x′

and x′′ in (x1, x2) such that g+(x′) ≤ 0 and g+(x′′) ≥ 0.

Proof. If g(x) = 0 for all x ∈ (x1, x2), we may choose x′ = x′′ = 1
2
(x1 + x2). Suppose

that g(x) > 0 for some x ∈ (x1, x2). There must exist a maximizer x′ of the continuous

function g over the compact set [x1, x2]. By our supposition x1 6= x′ 6= x2, and since

x′ is a maximizer we must have g+(x′) ≤ 0. Now there must be some x′′ ∈ (x1, x
′)

such that g(x′′) = 1
2
g(x′) and 1

2
g(x′) < g(x) for all x ∈ (x′′, x′). (By the intermediate

value theorem, there exists x̂ satisfying g(x̂) = 1
2
g(x′) between x and x′ whenever

g(x) < 1
2
g(x′). If for every such x̂ the function g goes below g(x̂) inside (x̂, x′), x̂

may be taken infinitely close to x′ and so g cannot be continuous on the left at x′, a

contradiction.) We conclude that g+(x′′) ≥ 0. Finally, in the last remaining case we

must have g(x) < 0 for some x ∈ (x1, x2), and we may employ a similar argument.

Lemma 5 may be used in a form analogous to the mean value theorem (Bartle

1976, p. 196) to prove, by contradiction, the following condition for convexity; cf.

Theorem 5.3.1 in Hiriart-Urruty and Lemaréchal (1993, p. 34).
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Lemma 6. If g : R→ R is continuous with right derivatives for all x ∈ R and g+(x)

is nondecreasing in x, then g is convex.

The following is implied by Theorem 24.1 in Rockafellar (1970):

Lemma 7. If g : R → R is convex and x̄ ∈ R, then limx→x̄− g
+(x) = g−(x̄) and

limx→x̄+ g+(x) = g+(x̄). Similarly,

The following is a slight modification of Lemma 8-5 in Heyman and Sobel (1984);

cf. Lemma 3 of Sobel (1971).

Lemma 8. If on an open interval of R we have a sequence of finite-valued convex

functions gn such that gn ↗ g, the limit also being finite-valued, then for all x on this

interval we have:

g−(x) ≤ lim inf
n→+∞

g−n (x) ≤ lim sup
n→+∞

g+
n (x) ≤ g+(x)

Proof. Let x be an element of the given interval. By Lemma 1, g−n (x) and g+
n (x) exist

for all n. The limiting function g is finite and inherits convexity, so Lemma 1 implies

that g−(x) and g+(x) exist also.

Suppose that the first desired inequality does not hold. This means that there

exists ε > 0 and a subsequence of elements g−n (x) such that g−n (x) < g−(x) − ε

for all n. But there also exists δ > 0 such that (x − δ) lies in the given interval

and also δ−1(g(x) − g(x − δ)) > g−(x) − ε/2. Furthermore, there exists n′ in our

subsequence of indices such that gn′(x) > g(x) − δε/2. We may now bring out a

contradiction. By Lemma 1, gn′(x − δ) ≥ gn′(x) − δg−n′(x). By our definitions of ε

and n′, we have gn′(x) − δg−n′(x) > g(x) − δg−(x) + δε/2. By our definition of δ,

g(x) − δg−(x) + δε/2 > g(x − δ). Putting these together, the implication is that

gn′(x− δ) > g(x− δ), which contradicts the fact that gn ↗ g.

The second desired inequality follows from noting that g−n (x) ≤ g+
n (x) for all n,
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which is a consequence of Lemma 1. To obtain the third inequality, we may use an

argument symmetrical with that given for the first inequality.

A consequence of Lemma 8 is that any sequence of minimizers of such a sequence

of functions gn will become infinitely close to the set of minimizers of g. (This is not

to say that the sequence of minimizers necessarily converges to a point.) For observe

that if a given x is less than the interval of minimizers of g, we have g+(x) < 0,

and Lemma 8 implies that g+
n (x) < 0 for sufficiently large n, which implies that

minimizers of gn are eventually greater than x. We may argue similarly that, if a

given x is greater than the interval of minimizers of g, then minimizers of gn are

eventually less than x.

The following is given as Dini’s theorem in Bartle (1976, p. 173, without proof).

Lemma 9. If a monotone sequence of continuous functions fn converges at each

point of a compact set K in Rp to a function f which is continuous on K, then the

convergence is uniform on K.

The next lemma is implied by the primary result 1.4.3 in Flett (1980, p. 22).

Lemma 10. Let g : R→ R be continuous, and suppose that g has right derivatives

for all x ∈ R, such that g+(x) ≥ 0 for all x ≥ x′. The function g is nondecreasing

over [x′,+∞).

Note that Lemma 10 may be “turned around” to imply that a function g having

left derivatives is nonincreasing over (−∞, x′] if g−(x) ≤ 0 for all x ≤ x′.

Lemma 11. For all n ≥ 1, let gn : R → R be continuous with right derivatives for

all x ∈ R; let g : R→ R have right derivatives for all x ∈ R, and assume that gn → g.

If for some x′ ∈ R we have g+
n (x) ≥ 0 for all x ≥ x′ and all n ≥ 1, then g+(x′) ≥ 0.

Proof. Suppose instead that we have g+(x′) < 0 for some x′ as described. There exists

δ > 0 small enough so that δ−1(g(x′ + δ)− g(x′)) < 0. Since gn → g, there exists n′
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large enough so that gn′(x
′) and gn′(x

′+δ) are each strictly less than ε away from their

limiting values as n → +∞, where we define ε := (g(x′) − g(x′ + δ))/2, noting that

by our supposition ε > 0. It follows that gn′(x
′) > gn′(x

′ + δ). Lemma 10, however,

implies that gn′ must be nondecreasing over [x′,+∞), so we have a contradiction.

Turning around the preceding result yields g−(x′) ≤ 0, if we are instead given

g−n (x) ≤ 0 for all x ≤ x′ and the existence of left derivatives. These statements may

also be applied to functions −gn with −g to show the preservation of inequalities in

the other direction, i.e., g+(x′) ≤ 0 if g+
n (x) ≤ 0 for all x ≥ x′, and g−(x′) ≥ 0 if

g−n (x) ≥ 0 for all x ≤ x′.

Lemma 12. Let g : R → R be a nondecreasing function, let Y be a real-valued

random variable such that E[g(Y )] is finite, and let y1 and y2 be real with y1 < y2.

If P (Y > y2) > 0, then E[g(Y ) |Y > y2] ≥ E[g(Y ) |Y > y1].

Proof. Define α := E[g(Y ) |Y > y2]. Define g∗(y) := g(y)1(y > y2) + α1(y ≤ y2),

where 1 is the indicator function. Using monotonicity of expectation and the fact

that g is nondecreasing, for y ≤ y2 we obtain g(y) ≤ g(y2) = E[g(y2) |Y > y2] ≤ α.

Hence g ≤ g∗, and by another application of monotonicity of expectation we find that

E[g(Y ) |Y > y1] ≤ E[g∗(Y ) |Y > y1]. Now we may observe

E[g∗(Y ) |Y > y1] =
E[g(Y )1(Y > y2)] + E[α1(y1 < Y ≤ y2)]

P (Y > y1)

=
αP (Y > y2) + αP (y1 < Y ≤ y2)

P (Y > y1)

Simplifying, E[g∗(Y ) |Y > y1] = α, and the desired result follows.

For a nonincreasing function g, the above result may be applied to the function

−g, from which we conclude instead E[g(Y ) |Y > y2] ≤ E[g(Y ) |Y > y1].

The following is a Tauberian theorem relating the infinite-horizon discounted and

average cost criteria. A proof of an analogous statement for nonpositive sequences is
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offered after Lemma 8.10.6 in Puterman (1994).

Lemma 13. Suppose we are given a nonnegative sequence of elements at (e.g., ex-

pected costs in successive decision periods) with discount factor β ∈ (0, 1). We have

lim sup
β→1

(1− β)
+∞∑
j=0

βjaj ≤ lim sup
t→+∞

1

t+ 1

t∑
j=0

aj

Lastly, we may bring out an implicit assumption of our framework which we will

take for granted in the arguments ahead.

Lemma 14. Given our definition of X and Assumptions 1–3, E[X] < +∞ must hold.

Proof. By Assumption 1, Assumption 2, and Lemma 1, there exists Z ′ ∈ R such that

L−(Z ′) < 0. Using Lemma 1, we find that L(Z ′) − L(Z ′ − X) ≤ XL−(Z ′) for all

realized values of X. By linearity and monotonicity of expectation,

E[X] ≤ E[L(Z ′ −X)]− L(Z ′)

−L−(Z ′)

Using Assumption 3, we have a finite upper bound on E[X].

1.4.2 Relaxed model, finite-horizon discounted setting

We begin our formal argument by stating the dynamic programming recursion for

the relaxed model in a finite-horizon discounted setting. For n ≥ 1:

fn(I) := min
Z∈R
{C(Z − I) + E[L(Z −X)] + βE[fn−1(Z −X)]}

Here β ∈ (0, 1) is a discount factor; we define the terminal cost function f0(I) := 0.

fn(I) represents the minimum possible total discounted expected cost, to be incurred

between the present (with n decision points remaining) and the terminal period, if the

current inventory level is I. This fact is implied by the dynamic programming theorem
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in Hernández-Lerma and Lasserre (1996, p. 24, as generalized for discounted costs on

p. 32). To be more precise, their theorem concludes that fn(I) is the minimal cost if

we take the (undiscounted) one-stage cost function to be C(Z − I) + E[L(Z − X)].

Using the tower property (Grimmett and Stirzaker 2001, p. 336), we find that this

characterization of the one-stage cost is equivalent to C(Z − I) +L(Z −X) as far as

our optimality criteria are concerned.

Our first results in this section will show that the minimum in the recursion above

is achieved by a decision rule of the rFGB type. In this effort, we will make use of

the following function, defined for n ≥ 1:

Gn(Z) := E[L(Z −X)] + βE[fn−1(Z −X)]

Theorem 1. Let n ≥ 1 be given. Suppose that Gn(Z) is convex and finite-valued,

with G−n (−∞) < 0 and G+
n (+∞) > 0. Define s0

n := +∞. For all i ∈ {∗, 1, . . . ,m},

choose sin minimizing ciZ + Gn(Z) over R (we define c∗ := 0). If the minimum does

not exist, define sin := −∞. Then for all I ∈ R, the rFGB decision rule corresponding

to parameters {r0, . . . , rm} and critical values {s0
n, . . . , s

m
n } along with s∗n achieves the

minimum in the dynamic programming recursion for fn(I).

Proof. (In this proof, we drop all subscripts n from Gn and the critical values sin.) By

the given properties of G(Z), we may make three comments immediately. First, to

say that the minimum of ciZ + G(Z) does not exist is to imply that this function is

nondecreasing everywhere (since ci ≥ 0); it is therefore natural in this case to define

si = −∞. Second, we may be assured that s∗ is finite. Third, we have:

sm ≤ sm−1 ≤ . . . ≤ s2 ≤ s1 ≤ s∗ < s0 = +∞

For finite si, we know in particular that G−(si) ≤ −ci and G+(si) ≥ −ci. Notice

that for any particular I ∈ R, the dynamic programming recursion is the problem of
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minimizing the convex, finite-valued objective function C(Z− I) +G(Z) over Z ∈ R.

For a given I, an optimal Z∗ is therefore one that satisfies

C−(Z∗ − I) +G−(Z∗) ≤ 0 ≤ C+(Z∗ − I) +G+(Z∗)

We proceed with an analysis of the possible cases for I ∈ R:

• If si − ri ≤ I < si − ri−1 for some i ∈ {1, . . . ,m}, let Z∗ = si. This case only

applies if si is finite, so G−(Z∗) and G+(Z∗) exist. Moreover, the order quantity

is in (ri−1, ri]. We have C−(Z∗ − I) = ci and G−(Z∗) ≤ −ci, so decreasing Z∗

does not improve the total cost. Similarly, C+(Z∗− I) ≥ ci and G+(Z∗) ≥ −ci,

so increasing Z∗ does not improve the total cost, either.

• If si − ri−1 ≤ I < si−1 − ri−1 for some i ∈ {2, . . . ,m}, let Z∗ = I + ri−1.

This case only applies if si−1 is finite, so Z∗ is some finite number in [si, si−1).

C−(Z∗− I) = ci−1 and G−(Z∗) ≤ −ci−1, so decreasing Z∗ does not improve the

total cost. Similarly, C+(Z∗− I) = ci and G+(Z∗) ≥ −ci, so increasing Z∗ also

fails to improve the total cost.

• If s1 ≤ I < s∗, let Z∗ = I. C−(Z∗ − I) = 0 and G−(Z∗) ≤ 0, so decreasing

Z∗ does not improve the total cost; C+(Z∗ − I) = c1 and G+(Z∗) ≥ −c1, so

increasing Z∗ cannot improve the total cost.

• If s∗ ≤ I, let Z∗ = s∗. (We know that s∗ is finite.) C−(Z∗ − I) = 0 and

G−(Z∗) ≤ 0, so decreasing Z∗ will not improve the total cost; C+(Z∗ − I) ≥ 0

and G+(Z∗) ≥ 0, so increasing Z∗ does not improve the total cost.

In each case above, we see that the rFGB decision rule according to the given param-

eters achieves the minimum in the dynamic programming recursion.
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Theorem 2. For all n ≥ 1,

• Gn(Z) is convex and finite-valued with G−n (−∞) < 0 and G+
n (+∞) > 0.

• fn(I) is convex and finite-valued with f−n (−∞) ≥ −cm and f+
n (I) = 0 for I

sufficiently large.

Proof. Our proof will be by induction on n. First, by our definition that f0(I) = 0,

we see that f0(I) satisfies the required conditions. Assume that these conditions are

valid for fn−1(I) for some particular n ≥ 1.

By the induction hypothesis, fn−1(Z) is finite for any Z ∈ R and fn−1(Z −X) is

finite for any realized value of X. The conditions on the derivatives of fn−1 imply that

fn−1(Z) ≤ fn−1(Z−X) ≤ fn−1(Z)+cmX. Since we know that E[X] < +∞, by taking

expectations we find that E[fn−1(Z − X)] is a finite-valued function of Z. Now by

Lemmas 2 and 3 we may also conclude that E[fn−1(Z−X)] is convex in Z and that its

left and right derivatives are equal to E[f−n−1(Z−X)] and E[f+
n−1(Z−X)] respectively.

Lemmas 2 and 3 may be similarly applied to E[L(Z − X)] using Assumption 3.

By Assumption 2 and Lemma 4, E[L−(−∞ − X)] < 0 and E[L+(+∞ − X)] > 0.

Similarly, by the induction hypothesis we may argue that E[f−n−1(−∞−X)] ≤ 0 and

E[f+
n−1(+∞− X)] = 0. We conclude that Gn(Z) is a convex, finite-valued function

with G−n (−∞) < 0 and G+
n (+∞) > 0, and so we may apply Theorem 1 to obtain

fn(I) = C(Z∗n(I)− I) +Gn(Z∗n(I))

where Z∗n(I) prescribes an optimal action for inventory level I according to an rFGB

decision rule with critical values {s0
n, . . . , s

m
n } and s∗n satisfying the conditions of

the theorem. Z∗n(I) is a continuous function of I, and the functions C and Gn are

continuous, so fn(I) is continuous. Similarly, fn(I) is finite-valued. We now analyze

the right derivatives of fn(I):
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• If sin − ri ≤ I < sin − ri−1 for some i ∈ {1, . . . ,m}, then Z∗n(I) = sin. Increasing

I decreases the order quantity, but does not change the order-up-to level. The

order quantity is in (ri−1, ri], so f+
n (I) = −ci here.

• If sin − ri−1 ≤ I < si−1
n − ri−1 for some i ∈ {2, . . . ,m}, Z∗n(I) = I + ri−1.

Increasing I does not change the order quantity, so f+
n (I) = G+

n (I + ri−1) here.

Over [sin, s
i−1
n ), G+

n (Z) is a nondecreasing function with values in [−ci,−ci−1].

• If s1
n ≤ I < s∗n, Z∗n(I) = I. Increasing I does not change the order quantity,

so f+
n (I) = G+

n (I) here. Over [s1
n, s
∗
n), G+

n (Z) is a nondecreasing function with

values in [−c1, 0].

• If s∗n ≤ I, Z∗n(I) = s∗n. Increasing I does not cause any change in ordering cost,

and the order-down-to level is fixed, so f+
n (I) = 0 here.

We observe that fn(I) has nondecreasing right derivatives; we may now invoke Lemma

6 to conclude that fn(I) is convex. Furthermore, by our analysis above we must have

f−n (I) ≥ −cm for all I, and fn(I) is constant over [s∗n,+∞) where s∗n has been shown

to be finite.

By the dynamic programming theorem in Hernández-Lerma and Lasserre (1996),

Theorems 1 and 2 establish that a policy consisting of rFGB decision rules as defined

in Theorem 1 is discount optimal in our finite-horizon setting.

In preparation for our later arguments, we will study properties that depend on

β. To make this dependence explicit, we may add a subscript ‘β’ to symbols already

defined. The two theorems below have implications for limiting cases as n → +∞

and β → 1.

Theorem 3. For all n ≥ 1:

• f+
n (I) ≤ f+

n−1(I) and f−n (I) ≤ f−n−1(I) for all I. (These are derivatives with

respect to I.)
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• sin+1 ≥ sin if these values are chosen to be the greatest minimizers defined in

Theorem 1, for all i ∈ {∗, 1, . . . ,m}.

• f+
β2,n

(I) ≤ f+
β1,n

(I) and f−β2,n
(I) ≤ f−β1,n

(I), for β1 < β2, for all I.

• siβ2,n
≥ siβ1,n

for β1 < β2, if these values are chosen to be the greatest minimizers

defined in Theorem 1, for all i ∈ {∗, 1, . . . ,m}.

Proof. (We prove the first two statements first.) Our proof will be by induction on

n. First, by our definition that f0(I) = 0 and by Theorem 2, we have f+
1 ≤ f+

0 and

f−1 ≤ f−0 . Assume henceforth that f+
n ≤ f+

n−1 and f−n ≤ f−n−1 for some particular

n ≥ 1.

Using Lemmas 2 and 3 as in the proof of Theorem 2 and applying monotonicity of

expectation with the induction hypothesis, we find that G+
n+1 ≤ G+

n and G−n+1 ≤ G−n .

From Theorem 2, we know that Gn−1 and Gn are convex and finite-valued. For

any i ∈ {∗, 1, . . . ,m}, if sin minimizes ciZ + Gn(Z) then we have G−n (sin) ≤ −ci.

We conclude that G−n+1(sin) ≤ −ci also, so sin+1 may be chosen to be greater than

sin as desired. (If sin = −∞ then we have nothing to prove.) Choosing the greatest

minimizers at every step is therefore one way to make sure that sin+1 ≥ sin. (Convexity

implies that the set of minimizers is a closed interval, and it follows in our situation

that the greatest minimizer exists whenever a minimizer exists.)

Choosing the greatest minimizers as indicated, we may now use facts from the

proof of Theorem 2 to verify that f+
n+1(I) ≤ f+

n (I) for all I ∈ R:

• If sin+1 − ri ≤ I < sin+1 − ri−1 for some i ∈ {1, . . . ,m}, then f+
n+1(I) = −ci.

Meanwhile, since sin − ri ≤ sin+1 − ri, we have f+
n (I) ≥ −ci.

• If sin+1 − ri−1 ≤ I < si−1
n+1 − ri−1 for some i ∈ {2, . . . ,m}, then f+

n+1(I) =

G+
n+1(I + ri−1) ≤ −ci−1. At the same time, since sin − ri−1 ≤ sin+1 − ri−1, we

have f+
n (I) ≥ min{G+

n (I + ri−1),−ci−1} ≥ G+
n+1(I + ri−1).
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• If s1
n+1 ≤ I < s∗n+1, then f+

n+1(I) = G+
n+1(I) ≤ 0. Since s1

n ≤ s1
n+1, we also have

f+
n (I) = min{G+

n (I), 0} ≥ G+
n+1(I).

• If s∗n+1 ≤ I, then f+
n+1(I) = 0. Since s∗β1,n

≤ s∗n+1, f+
n (I) = 0 also.

In each case above, we see that the desired inequality holds. That f−n+1(I) ≤ f−n (I)

for all I follows by Lemma 7. For if this inequality were invalid for some inventory

level I ′, then any increasing sequence of inventory levels Ik approaching I ′ would see

f+
n+1(Ik) > f+

n (Ik) eventually.

(We now prove the last two statements of the theorem.) Let β1 and β2 be given

such that β1 < β2. We will argue by induction on n that f+
β2,n
≤ f+

β1,n
and f−β2,n

≤ f−β1,n
.

In the base case, by our definition f+
β,0 = f−β,0 = 0 for all β, and the desired inequalities

are satisfied. Henceforth, let n be given and assume that the case for n− 1 is settled.

For any β and Z, we have, as suggested in the first half of this proof:

G+
β,n(Z) = E[L+(Z −X)] + βE[f+

β,n−1(Z −X)]

The first term on the right side above is independent of the discount factor. Re-

garding the second term: the induction hypothesis and the fact (from Theorem 2)

that f+
β,n−1 ≤ 0 imply, via monotonicity of expectation, that β2E[f+

β2,n−1(Z − X)] ≤

β1E[f+
β1,n−1(Z − X)]. Thus G+

β2,n
≤ G+

β1,n
, and essentially the same argument yields

G−β2,n
≤ G−β1,n

. By reasoning as in the first half of this proof, it follows that choosing

the greatest minimizers gives us siβ2,n
≥ siβ1,n

. Continuing with analogous reasoning,

we find that f+
β2,n
≤ f+

β1,n
and f−β2,n

≤ f−β1,n
.

Theorem 4. If L−(−∞)/(1 − β) < −ci, then the critical values {s∗n, s1
n, . . . , s

i
n}

defined according to Theorem 1 will be finite for n sufficiently large.

Proof. Since the critical values in question are in [sin, s
∗
n] (see the proof of Theorem

1) and we are assured by Theorem 2 that G+
n (+∞) > 0, a sufficient condition for the
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desired finiteness is G−n (−∞) < −ci. Since f0(I) = 0 we have G1(Z) = E[L(Z −X)],

and by Lemma 4 we see that G−1 (−∞) = L−(−∞). Now if sin−1 = −∞, through the

definition of Gn and an analysis of the derivatives of fn−1 as in the proof of Theorem

2, we obtain G−n (−∞) = L−(−∞) +βG−n−1(−∞). Summing this geometric series, we

find that sin′ will be finite for some n′ if L−(−∞)/(1− β) < −ci. By Theorem 3, sin

(and the other, greater critical values) will remain finite for all n > n′ as well.

Since L−(−∞) < 0 by Assumptions 1–3, the condition in Theorem 4 is satisfied

for any particular i ∈ {1, . . . ,m} when β is sufficiently close to 1.

1.4.3 Relaxed model, infinite-horizon discounted setting

We now build a case for the optimality of an rFGB policy for the relaxed model with

respect to the infinite-horizon discounted expected cost. In this effort, we will make

use of results proved for the finite-horizon case. The first two theorems here will

facilitate our solution of the discounted cost optimality equation.

Theorem 5. Let I ∈ R be given. There exist real numbers Z ′I and Z ′′I with Z ′I < Z ′′I

such that the compact interval [Z ′I , Z
′′
I ] contains the minimizer(s) of the dynamic

programming recursion for fn(I), for all n ≥ 1.

Proof. Consider the policy that always chooses Z = 0. The infinite-horizon dis-

counted expected cost of this policy, given that the initial state is I, is

χ(I) := C(−I) + E[L(−X)] + β
E[C(X)] + E[L(−X)]

1− β

which is finite for any given β ∈ (0, 1) under our assumptions. Any finite-horizon

problem with initial state I will have an optimal discounted expected cost no greater

than this quantity.

Let n ≥ 1 and I ∈ R be given. We define Z ′I such that E[L(Z − X)] > χ(I)

for all Z ≤ Z ′, and we define Z ′′I such that E[L(Z − X)] > χ(I) for all Z ≥ Z ′′.
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By Assumptions 1–3 and Lemmas 2–4, Z ′I and Z ′′I may be chosen to be finite with

Z ′I < Z ′′I . C ≥ 0 and L ≥ 0 by definition, and by induction we may argue that

fn−1 ≥ 0, so we have C(Z − I) + βE[fn−1(Z −X)] ≥ 0 for all Z ∈ R. Therefore, for

each Z /∈ [Z ′I , Z
′′
I ] it is the case that

C(Z − I) + E[L(Z −X)] + βE[fn−1(Z −X)] > χ(I)

But by the dynamic programming theorem and Theorems 1 and 2, fn(I) is the cost

of a discount optimal policy, so we must have

C(Z − I) + E[L(Z −X)] + βE[fn−1(Z −X)] ≤ χ(I)

for any minimizer of the recursive expression for fn(I).

Theorem 6. As n→ +∞, 0 ≤ fn ↗ f where f : R→ R is convex with f−(−∞) ≥

−cm and f+(I) = 0 for I sufficiently large.

Proof. By our definitions of the functions C and L and the terminal cost f0, the

cost incurred in any period in our finite-horizon setting is nonnegative. By Theorems

1 and 2 together with the dynamic programming theorem, then, for each n ≥ 0

the optimal cost function fn must be nonnegative. Furthermore, the optimal cost

for our finite-horizon problem with (n + 1) decision points cannot be less than the

optimal cost for the problem with n decision points, given a common initial state.

The sequence {fn(I) : n ≥ 0} is therefore nondecreasing for any given I. Additionally,

continuing with notation introduced in the proof of Theorem 5, for any given I we

have fn(I) ≤ χ(I) for all n ≥ 0 where χ(I) is a finite quantity. Thus the sequence

{fn(I) : n ≥ 0} converges to a finite value as n→ +∞.

As a pointwise limit, f inherits the convexity of the functions fn established in

Theorem 2. Since f is also finite-valued, its left and right derivatives exist. The
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property f−(−∞) ≥ −cm is inherited from the analogous property established for

the functions fn in Theorem 2, as may be seen by using Lemma 11.

It remains to argue that f+(I) = 0 for I sufficiently large. Consider again the

proof of Theorem 5. If I = 0, we may define Z ′′0 such that E[L(Z − X)] > χ(0) for

all Z ≥ Z ′′0 . Now observe that χ(I) = χ(0) for all I ≥ 0. By Theorem 5, then, a

minimizer of the dynamic programming recursion for fn(I) cannot be greater than

Z ′′0 for any I ≥ 0 and n ≥ 1. It follows that critical values s∗n as defined in Theorem

1 cannot exceed Z ′′0 . This implies through the proof of Theorem 2 that f+
n (I) = 0 for

I ≥ Z ′′0 , for all n ≥ 1. Using Lemma 11, we conclude that f+(I) = 0 for I ≥ Z ′′0 .

Following the finite-horizon case, we define G(Z) := E[L(Z−X)]+βE[f(Z−X)].

We also define Jn(I, Z) := C(Z − I) +Gn(Z) and J(I, Z) := C(Z − I) +G(Z).

Theorem 7. For all I ∈ R, f satisfies the discounted cost optimality equation:

f(I) = min
Z∈R
{C(Z − I) + E[L(Z −X)] + βE[f(Z −X)]}

Proof. Theorem 6 implies that 0 ≤ fn(Z −X)↗ f(Z −X) for any given Z ∈ R and

any realized value of X. The properties of the derivatives of f established there along

with the fact that E[X] < +∞ yields that E[f(Z −X)] is finite for all Z, as argued

in the proof of Theorem 2 for E[fn−1(Z − X)]. We may now invoke the monotone

convergence theorem to establish that Gn ↗ G as n → +∞ (by monotonicity of

expectation the convergence is monotone). We may also use Lemma 2 to see that

E[f(Z − X)] is a finite-valued convex function of Z. It follows that, given I ∈ R,

J(I, Z) as well as Jn(I, Z) are finite-valued convex functions of Z. Moreover, that

Gn ↗ G implies Jn(I, Z)↗ J(I, Z) as n→ +∞ for all real I and Z.

Let I ∈ R be given. By Theorem 5, there is a compact interval ϕ(I) := [Z ′I , Z
′′
I ]

such that any minimizer of Jn(I, Z) over Z ∈ R must be in ϕ(I). By the develop-

ment above, Lemma 9 implies that Jn(I, Z) converges uniformly to J(I, Z) on the
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compact interval ϕ(I). Letting ε > 0 be given, there exists N such that n ≥ N

implies both minZ∈ϕ(I) Jn(I, Z) ≤ minZ∈ϕ(I) J(I, Z) + ε and minZ∈ϕ(I) Jn(I, Z) ≥

minZ∈ϕ(I) J(I, Z)−ε. Since ε can be arbitrarily small and fn(I) = minZ∈ϕ(I) Jn(I, Z),

we may take n→ +∞ to conclude that f(I) = minZ∈ϕ(I) J(I, Z).

We may now briefly argue that minZ∈ϕ(I) J(I, Z) = minZ∈R J(I, Z). Again, let

I ∈ R be fixed. By the convexity of Jn and our selection of ϕ(I), it follows that

J−n (I, Z ′I) ≤ 0 and J+
n (I, Z ′′I ) ≥ 0, where these derivatives are taken with respect to

Z, for all n ≥ 1. By Lemma 11, we find that J−(I, Z ′I) ≤ 0 and J+(I, Z ′′I ) ≥ 0,

so a minimizer of J(I, Z) over Z ∈ R will be found in ϕ(I). This establishes that

f(I) = minZ∈R J(I, Z) as desired.

Our next result uses our solution to the discounted cost optimality equation to

establish the optimality of an rFGB policy.

Theorem 8. Define s0 = +∞. For all i ∈ {∗, 1, . . . ,m}, choose si minimizing

ciZ +G(Z) over R. (Again, we define c∗ = 0.) If the minimum does not exist, define

si = −∞. Then for all I ∈ R, the rFGB decision rule corresponding to parameters

{r0, . . . , rm} and critical values {s0, . . . , sm} along with s∗ achieves the minimum

in the functional equation solved by f(I). Moreover, the rFGB policy with these

parameters is discount optimal in the infinite-horizon setting, and its cost is f(I)

given initial state I.

Proof. In the proof of Theorem 7, we argue that E[f(Z − X)] is finite-valued and

convex over Z ∈ R. In this context we may invoke Lemma 3 to the effect that

the left and right derivatives of this funtion are E[f−(Z − X)] and E[f+(Z − X)]

respectively. Furthermore, Lemma 4 and the properties of the derivatives of f imply

that E[f−(−∞ − X)] ≤ 0 and E[f+(+∞ − X)] = 0. Argument as in the proof of

Theorem 2 shows that, in addition to G being finite-valued and convex, G satisfies

G−(−∞) < 0 and G+(+∞) > 0. Theorem 1 (with Gn replaced by G) now implies
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that s∗ is finite, that this and the other critical values specify a valid rFGB decision

rule, and that this rule achieves the minimum in the functional equation. Adjusting

the functional equation, we have:

f(I) ≤ min
Z∈R
{E[C(Z − I) + L(Z −X)] + βE[f(Z −X)]}

for any I ∈ R. Let π be any admissible policy. Treating I0 as an initial state implies

by the above that

f(I0) ≤ Eπ
I0

[C(Z0 − I0) + L(Z0 −X0)] + βEπ
I0

[f(I1)]

where the next state is I1 = Z0 −X0. The history of the process at decision point n,

which we call Hn, consists of (I0, Z0, . . . , In−1, Zn−1, In). Using the above inequality

as a base for induction, suppose for given n ≥ 1 that

f(I0) ≤
n−1∑
t=0

βtEπ
I0

[C(Zt − It) + L(Zt −Xt)] + βnEπ
I0

[f(In)]

Now for any history Hn with present state In, we also have from our functional

equation that

f(In) ≤ Eπ
Hn

[C(Zn − In) + L(Zn −Xn)] + βEπ
Hn

[f(In+1)]

In the induction hypothesis we may therefore apply monotonicity of expectation and

the tower property, obtaining:

f(I0) ≤
n∑
t=0

βtEπ
I0

[C(Zt − It) + L(Zt −Xt)] + βn+1Eπ
I0

[f(In+1)]

The above holds for any I0 ∈ R and any n ≥ 1 by induction. A small adjustment

to our argument shows that the above holds with equality for π = π∗, where π∗
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represents the specified rFGB policy that achieves the minimum in the functional

equation. In the remainder of this proof, we will argue that any policy that does

not satisfy βn+1Eπ
I0

[f(In+1)]→ 0 cannot be optimal. Taking n→ +∞, we may then

obtain:

f(I0) = lim
n→+∞

n∑
t=0

βtEπ∗

I0
[C(Zt − It) + L(Zt −Xt)]

≤ lim
n→+∞

n∑
t=0

βtEπ
I0

[C(Zt − It) + L(Zt −Xt)]

for every policy π worth considering and for every I0 ∈ R. This will then establish

the discount optimality of the rFGB policy π∗ and validate the treatment of f as an

optimal cost function.

For what kind of policy π would we see the condition βn+1Eπ
I0

[f(In+1)] → 0

fail? Consider Theorem 6. Since f is nonnegative, such a policy would have to see

lim supn→+∞ Eπ
I0

[f(In+1)] = +∞. Since f is convex and finite-valued with f−(−∞) ≥

−cm and f+(+∞) = 0, such a policy would have to see lim infn→+∞ Eπ
I0

[In+1] = −∞.

Due to the geometric rate of decrease in βn+1, a merely linear rate of decrease in a

subsequence of {Eπ
I0

[In+1] : n ≥ 0} will not suffice to violate the condition. We will

argue below that only a non-optimal policy could sustain a faster-than-linear rate of

decrease in a subsequence of {Eπ
I0

[In+1] : n ≥ 0}.

Recall from the proof of Theorem 5 that we need not consider policies with infinite-

horizon expected discounted cost greater than the cost incurred by a policy of setting

Z = 0 in every step. The cost of the Z = 0 policy with initial state I is, continuing

with notation defined previously, χ(I) = χ(0)+C(−I). As in Theorem 5, there exists

some I ′ low enough so that Z ≤ I ′ implies E[L(Z − X)] > χ(0). Assumptions 1–3

and Lemmas 2 and 3 imply that the left derivative of E[L(Z −X)] is E[L−(Z −X)]

and is no greater than δ := E[L−(I ′ −X)] < 0 for Z ≤ I ′. For any given initial state
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I, then,

E
[
L
(
I ′ + δ−1cm(−I)+ −X

)]
> χ(0) + cm(−I)+ ≥ χ(I)

Therefore, in state I we need not consider choosing Z below I ′+δ−1cm(−I)+. When I

decreases by one unit, this is to say that our lower bound on the order level Z decreases

by (at most) the fixed quantity |δ−1cm|. For any sequence of realized demands, the

most rapid drop in inventory within our bounds would result from always ordering to

this lower bound; call this policy π′. After our initial order dictated by π′, this lower

bound will decrease after each step by |δ−1cm| times the latest realized demand.

Suppose that the initial state is I0, that the initial action according to π′ is Z0,

and that for n ≥ 1 we have In = Zn−1 −Xn−1. Given any finite sequence of realized

demands, we have for n ≥ 1 that Zn = Zn−1 + δ−1cmXn−1, and so

In+1 = Z0 + δ−1cm(X0 + . . .+Xn−1)−Xn

Given any initial state and a sequence of realized demands up to a given period, the

above state calculated for π′ may be taken as a lower bound on the state for any

policy π we have not ruled out. Taking expectations,

Eπ′

I0
[In+1] = Eπ′

I0
[Z0 + δ−1cm(X0 + . . .+Xn−1)−Xn] = Z0 + nδ−1cmE[X]− E[X]

and so the expected inventory level under π′ falls linearly in n. By monotonicity of

expectation we conclude that, for those policies π we have not ruled out, the expected

inventory level decreases at most at a linear rate (in any subsequence of the decision

points).

To complete this section, we study the effect of β on our solution to the functional

equation. The following result is an infinite-horizon counterpart to Theorem 3.
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Theorem 9. f+
β (I) and f−β (I) are nonincreasing in β for all I. Consequently: if siβ

are chosen to be the greatest minimizers in Theorem 8, then these critical values are

nondecreasing in β for all i ∈ {∗, 1, . . . ,m}.

Proof. Let β1, β2 ∈ (0, 1) be given with β1 < β2. Via Theorems 3 and 6, we may

invoke Lemma 11 to conclude that f+
β1

(I)− f+
β2

(I) ≥ 0 and f−β1
(I)− f−β2

(I) ≥ 0 for all

I. That the critical values are nondecreasing in β follows by an argument analogous

to that used for Theorem 3.

1.4.4 Average optimality in the relaxed and unrelaxed models

We will now develop an argument for the average optimality of an rFGB policy in the

relaxed model. In this effort, we will make use of results proved for the finite-horizon

and infinite-horizon discounted cases. As before, we use subscripts ‘β’ to explicitly

indicate dependence on the discount factor. Theorems 10 and 11 function in this

context similarly to Theorem 5 in its context.

Theorem 10. s∗β, as defined in Theorem 8, is bounded above by a finite quantity

independent of β.

Proof. We will show that there exists I∗ ∈ R and β′ < 1 such that β ≥ β′ implies

s∗β < I∗. Since by Theorem 9 the greatest candidate for s∗β is nondecreasing in β, we

may then conclude that s∗β < I∗ for all β ∈ (0, 1).

Let π∗ denote an optimal rFGB policy as specifed in Theorem 8. Suppose that

the initial state is I0 = s∗β, and consider the operation of π∗ on our model. Given a

real parameter ∆ ≥ 0, we define a history-dependent policy π∗∗∆ by reference to its

control of a second model, operating in parallel and subject to the same initial state

I0 and the same sequence of demand variables Xt (and the same cost functions C and

L). At the initial decision point t = 0, the order quantity (Z0 − I0) is chosen to be

one unit less in the second model than the quantity chosen at t = 0 by π∗ in the first
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model. (Given the initial state I0 = s∗β, this means that π∗∗∆ chooses Z0 = I0−1 while

π∗ selects Z0 = I0.) In subsequent decision points t ≥ 1, the order quantity (Zt − It)

is chosen in the second model to be the same as the quantity chosen at t by π∗ in

the first model—with a single exception. In the first decision point t at which the

inventory level is observed to be strictly below s∗β−∆ in the first system (equivalently,

strictly below s∗β−∆− 1 in the second system), the order quantity (Zt− It) is chosen

to be one unit more in the second system than in the first. We call this special

decision point the “transitional step.” To sum up from another perspective: after the

initial step, the inventory level in the second system tracks exactly one unit below

the level in the first system; then, after the inventory levels fall enough to trigger the

transitional step, the inventory levels in the two systems match exactly. Note that

the policy π∗∗∆ controlling the second system is admissible, with the proviso that we

have only defined its behavior when the initial state is I0 = s∗β.

Except for the transitional step, in which one more unit is ordered under π∗∗∆ than

under π∗, the ordering cost C(Zt − It) is the same for both policies at all decision

points t. Meanwhile, if for all I ≥ s∗β − ∆ − 1 we have L+(I) > 0, then the costs

L(Zt−Xt) are lower for the second system in every step before the transitional step—

excepting possibly the step immediately prior. In the transitional step and after, the

costs L(Zt − Xt) are equal for the two systems. We will show that, if s∗β ≥ I∗ and

β ≥ β′, then for the initial state I0 = s∗β the discounted expected cost of the policy

π∗∗∆ is less than that of π∗. Since we know that π∗ is discount optimal, we may then

conclude that s∗β ≥ I∗ is false for all β ≥ β′.

By Assumptions 1 and 2, there exists ε > 0 and Imin ∈ R such that L+(I) ≥ ε for

all I ≥ Imin−1. We define ∆ := 3kE[X] and β′ := (3/4)1/(k−1) for some integral value

k ≥ 2 to be specified. By Assumption 4, we may focus on the nontrivial case where

P (X = 0) < 1, so we have 0 < E[X] < +∞. By Markov’s inequality (Grimmett and
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Stirzaker 2001, p. 311), we have

P (
∑k−1

t=0 Xt > ∆) ≤ E[
∑k−1

t=0 Xt]/∆ = kE[X]/∆ = 1
3

Defining T∆ := min{n :
∑n

t=0 Xt > ∆}, we then have

P (T∆ ≥ k) = P (
∑k−1

t=0 Xt ≤ ∆) ≥ 2
3

By the structure of rFGB policies and our choice of initial state I0 = s∗β, the time

index of the transitional step must be (strictly) greater than T∆. If we posit I0 =

s∗β ≥ Imin + ∆ and β ≥ β′, then the expected discounted savings under π∗∗∆ (relative

to π∗), before we first see Zt −Xt < I0 −∆− 1, is at least

E[
∑T∆−1

t=0 βtε] ≥ E[
∑T∆−1

t=0 βtε |T∆ ≥ k]P (T∆ ≥ k)

≥ ε(
∑k−2

t=0 β
t)(2

3
)

≥ εk(β′)k−1(2
3
)

= kε/2

We may now fix k to be some integral value large enough so that kε/2 > cm.

Here, cm serves as an upper bound on the expected discounted excess in ordering cost

incurred by π∗∗∆ (relative to π∗) in the transitional step. (The bound remains valid in

expectation even though we have not proved that the transitional step must occur.)

It remains to account for the possible difference between the expected discounted

costs incurred in the period immediately before the transitional step. We use T to

denote the time index of the transitional step.

Suppose the random variable X is bounded above by some real quantity Xmax.

By requiring I∗ ≥ Imin +Xmax + ∆, we ensure that L+(ZT−1−XT−1) > 0 under π∗∗∆ if

the transitional step occurs. In this case of bounded demand, we may then infer that
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the expected discounted savings under π∗∗∆ (relative to π∗) in the period immediately

before the transitional step is nonnegative. In total, then, we have a positive net

savings in expected discounted cost by using π∗∗∆ .

Suppose the random variable X is not bounded above. If the transitional step

occurs, then under π∗∗∆ we have I0 − ∆ − 1 ≤ ZT−1 ≤ I0 − 1. Given ZT−1 = Z,

the expected discounted savings under π∗∗∆ (relative to π∗) in the period immediately

before the transitional step is at least

E[L+(Z −X) |X > (Z − I0 −∆− 1)]

Since L+ is nondecreasing, the quantity above is at least

E[L+(I0 −∆− 1−X) |X > (Z − I0 −∆− 1)]

By Assumption 3 and Lemma 12 (as applied to nonincreasing functions), the quantity

above is at least

E[L+(I0 −∆− 1−X) |X > ∆]

We are to take I0 ≥ I∗, and as I∗ → +∞ we find E[L+(I∗ −∆− 1−X) |X > ∆]→

L+(+∞) > 0. This may be seen by applying the monotone convergence theorem to

the function L+(I∗ −∆− 1−X)1(X > ∆), where 1 is the indicator function, much

as was done for Lemma 4. Thus we may fix I∗ sufficiently high so that the expected

discounted savings in the period of concern is nonnegative. In total, we again have a

positive net savings by using π∗∗∆ .

In the following theorem we define the critical values that will play a role in the

optimal solution to the unrelaxed problem. From this point on, we use a subscript

‘1’ instead of ‘β’ to identify functions and critical values relevant to the undiscounted

case. These functions and critical values are not to be confused with their finite-
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horizon counterparts when there is one decision period remaining.

Theorem 11. For all i ∈ {∗, 1, . . . ,m}, choose siβ to be the greatest minimizer defined

in Theorem 8. We have siβ ↗ si1 where si1 is some finite value, for all i as β → 1

for β ∈ (0, 1). (We define s0
1 := +∞.) Furthermore, there exists a compact interval

containing minimizers of the functional equation in Theorem 7 for all β ∈ (0, 1)

sufficiently large.

Proof. By Theorem 4, there exists β0 < 1 such that smβ0,n′
is finite for some n′ ≥ 1.

By the analysis of the derivatives of fβ,n in Theorem 2, we have f−β0,n
(I) = −cm

for all I < smβ0,n
− rm−1. Since smβ0,n′

≤ smβ0,n
for all n > n′ (by Theorem 3), the

convergence of fβ0,n to fβ0 (by Theorem 6) implies via Lemma 11 that f−β0
(I) = −cm

for all I < smβ0,n′
− rm−1. It follows that G−β0

(Z) < −cm for sufficiently low Z, so smβ0

as defined above is finite.

By Theorem 9, the values siβ defined above are all nondecreasing in β. By the

structure of our rFGB policies and Theorem 10, there exists I∗ such that, for all

β ≥ β0

−∞ < smβ0
≤ smβ ≤ sm−1

β ≤ . . . ≤ s2
β ≤ s1

β ≤ s∗β < I∗ < +∞

Monotonicity and boundedness show the desired finite limits exist with sm1 ≤ sm−1
1 ≤

. . . ≤ s2
1 ≤ s1

1 ≤ s∗1. By the structure of our rFGB policies and Theorem 8, it also

follows that, for each state I, a minimizer of the functional equation lies in [smβ0
, s∗1]

for all β ≥ β0.

For β ∈ (0, 1), we define the relative cost function f̄β(I) := fβ(I) − fβ(s∗1). The

following theorem may be compared with Theorem 6 in the previous part.

Theorem 12. As β → 1 for β ∈ (0, 1), 0 ≤ f̄β ↗ f̄1 where f̄1 : R → R is convex

with f̄−1 (−∞) ≥ −cm and f̄1(I) = 0 for I ≥ s∗1.

39



Proof. By Theorem 11, s∗1 is finite; by Theorem 6, so is fβ(s∗1) and hence f̄β. Therefore,

we may directly obtain f̄+
β (I) = f+

β (I) and f̄−β (I) = f−β (I) for all I. From Theorem

6, then, f̄−β (−∞) = f−β (−∞) ≥ −cm. Moreover, f̄β inherits convexity from fβ. Using

the properties of Gβ shown in the proof of Theorem 8, an analysis of the derivatives

of fβ as in the proof of Theorem 2 yields f+
β (I) = 0 for I ≥ s∗β. Since (via Theorem

11) s∗β ≤ s∗1 we have f̄β(I) = 0 for all I ≥ s∗1. We also have f−β (I) ≤ 0 for I ≤ s∗1

by convexity, so Lemma 10 may be used to show that fβ(I) ≥ fβ(s∗1) for all I < s∗1.

Putting the preceding two comments together, we conclude that f̄β ≥ 0. All of the

foregoing holds for all β ∈ (0, 1).

We may now argue by Theorem 9 that f̄β1 ≤ f̄β2 for β1 < β2. To see this,

observe that f̄β1 = f̄β2 = 0 over [s∗1,+∞) and f̄−β1
≥ f̄−β2

over (−∞, s∗1], each f̄β being

continuous, and apply Lemma 10 (in its “turned around” form) to f̄−β2
− f̄−β1

. f̄β is also

bounded above, since by the preceding paragraph we may write f̄(I) ≤ cm(s∗1 − I)+.

This establishes the desired monotone convergence to the limiting function we call

f̄1. Using Lemma 11, f̄−β (−∞) ≥ −cm implies that f̄−1 (−∞) ≥ −cm. Also, f̄β(I) = 0

implies f̄1(I) = 0 for I ≥ s∗1.

Following the discounted case, we define Ḡβ(Z) := E[L(Z −X)] + βE[f̄β(Z −X)]

and J̄β(I, Z) := C(Z − I) + Ḡβ(Z) for β ∈ (0, 1). Similarly, we define the functions

Ḡ1(Z) := E[L(Z −X)] + E[f̄1(Z −X)] and J̄1(I, Z) := C(Z − I) + Ḡ1(Z).

By adding fβ(s∗1) to both sides of the functional equation in Theorem 7, we obtain

for all I ∈ R and all β ∈ (0, 1) the modified functional equation

(1− β)fβ(s∗1) + f̄β(I) = min
Z∈R
{C(Z − I) + E[L(Z −X)] + βE[f̄β(Z −X)]}

which we will use to prove the following result.
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Theorem 13. For all I ∈ R:

• (1− β)fβ(I)→ ρ as β → 1 for some ρ ∈ R.

• ρ and f̄1 satisfy the average cost optimality equation:

ρ+ f̄1(I) = min
Z∈R
{C(Z − I) + E[L(Z −X)] + E[f̄1(Z −X)]}

Proof. We will substantially follow the proof of Theorem 7. Using Theorem 12 as

a basis instead of Theorem 6, we obtain Ḡβ ↗ Ḡ1 and J̄β ↗ J̄1 as β → 1, where

Ḡ1(Z) and J̄1(I, Z) are finite-valued and convex in Z for fixed I. Let I ∈ R be given.

By Theorem 11, there is a compact interval ϕ such that a minimizer of J̄β(I, Z) over

Z ∈ R must exist in ϕ for β sufficiently large. By the convergences just noted, Lemma

9 implies that J̄β(I, Z) converges uniformly to J̄1(I, Z) on ϕ as β → 1. Letting

ε > 0 be given, there exists β′ such that β ≥ β′ implies both minZ∈ϕ J̄β(I, Z) ≤

minZ∈ϕ J̄1(I, Z) + ε and minZ∈ϕ J̄β(I, Z) ≥ minZ∈ϕ J̄1(I, Z) − ε. Since ε can be

arbitrarily small, we have limβ→1 minZ∈ϕ J̄β(I, Z) = minZ∈ϕ J̄1(I, Z), the latter term

being finite, as it is the minimum of a continuous function over a compact interval.

As we argued for Theorem 7, using the convexity of J̄β and its minimization over ϕ

along with Lemma 11 implies that minZ∈ϕ J̄1(I, Z) = minZ∈R J̄1(I, Z).

By our modified functional equation, (1−β)fβ(s∗1) = minZ∈R J̄β(I, Z)−f̄β(I) for β

sufficiently large. Taking β → 1, we see (1−β)fβ(s∗1)→ minZ∈R J̄1(I, Z)− f̄1(I) =: ρ.

This limit is finite, and it establishes the solution to the average cost optimality

equation. Observe from Theorem 12 that 0 ≤ (1−β)f̄β(I) ≤ (1−β)cm(s∗1− I)+, and

so (1− β)f̄β(I)→ 0 as β → 1, which means that ((1− β)fβ(I)− (1− β)fβ(s∗1))→ 0.

Given our definition of ρ, this implies that (1− β)fβ(I)→ ρ as desired.

The following theorem uses our solution of the average cost optimality equation

to show the average optimality of an rFGB policy.
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Theorem 14. The critical values {s0
1, . . . , s

m
1 } and s∗1 defined in Theorem 11, together

with the given parameters {r0, . . . , rm}, characterize an rFGB policy π∗ that is average

optimal for the relaxed model. Also, for any initial inventory level I0 ∈ R, we have

lim
n→+∞

1

n+ 1

n∑
t=0

Eπ∗

I0
[C(Zt − It) + L(Zt −Xt)] = ρ

Proof. We first argue that π∗ satisfies the average cost optimality equation of Theorem

13 along with ρ and f̄1. Observe from the proof of Theorem 13 that Ḡ1 is finite-

valued and convex. From Theorem 12, Lemmas 2–4, and Assumptions 1–3, we can

see (similar to the proofs of Theorems 2 and 8) that Ḡ−1 (Z) < 0 and Ḡ+
1 (Z) > 0.

The proof of Theorem 1 still works if we take β = 1, so an rFGB decision rule with

critical values minimizing ciZ+ Ḡ1(Z) for i ∈ {∗, 1, . . . ,m} will achieve the minimum

in the average cost optimality equation. Since Ḡβ ↗ Ḡ1 as β → 1 (from the proof

of Theorem 13), Lemma 8 implies that minimizers of ciZ + Ḡβ(Z) will converge to

minimizers of ciZ+ Ḡ1(Z) if they converge at all. By Theorem 11, then, si1 minimizes

ciZ + Ḡ1(Z) for all i ∈ {∗, 1, . . . ,m}.

Consider any admissible policy π. Given initial state I0, by Theorem 8 we have

for all β ∈ (0, 1) that:

+∞∑
t=0

βtEπ
I0

[C(Zt − It) + L(Zt −Xt)] ≥ fβ(I0)

Multiplying both sides of the above by (1− β), it follows from Theorem 13 that

lim sup
β→1

(1− β)
+∞∑
t=0

βtEπ
I0

[C(Zt − It) + L(Zt −Xt)] ≥ lim sup
β→1

(1− β)fβ(I0) = ρ

Applying Lemma 13,

lim sup
t→+∞

1

t+ 1

+∞∑
t=0

Eπ
I0

[C(Zt − It) + L(Zt −Xt)] ≥ ρ
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This means that ρ is a lower bound on the (lim sup) average expected cost. Now

given our argument at the outset, we have for all t:

ρ+ f̄1(It) = Eπ∗

Ht
[C(Zt − It) + L(Zt −Xt)] + Eπ∗

Ht
[f̄1(It+1)]

where Ht represents the information available at the point of decision in period t

(defined in the proof of Theorem 8). Given any initial state I0, we may sum the

equations corresponding to t ∈ {0 . . . n}, divide the resulting equation by (n+1), and

take expectations on both sides (based on π∗ and I0) to obtain

1

n+ 1

n∑
t=0

Eπ∗

I0
[C(Zt − It) + L(Zt −Xt)] = ρ+

1

n+ 1
f̄1(I0)− 1

n+ 1
Eπ∗

I0

[
f̄1(In+1)

]
Consider the right side of this equation as n → +∞. The first term is a constant.

Since f̄1 is finite-valued, the second term converges to 0. Given the form of f̄1 (from

Theorem 12) and π∗, we note that f̄1(In+1) is nonnegative and less than f̄1(sm1 −Xn)

for all realized Xn. Hence the expectation in the third term is nonnegative and less

than E[f̄1(sm1 − Xn)], which is finite by Theorem 12 and the fact that E[X] < +∞.

The third term therefore converges to 0. We conclude that the desired limit indeed

holds, and this establishes the average optimality of π∗.

We now relate our relaxed model with Z ∈ R to the unrelaxed model with the

constraint Z ≥ I, given what we have proved in Theorem 14. This accomplishes the

primary mathematical goal of the chapter.

Theorem 15. The critical values {s0
1, . . . , s

m
1 } defined in Theorem 11 (where all

but s0
1 := +∞ were identified to be finite), together with the given parameters

{r0, . . . , rm}, characterize an FGB policy π̄ that is average optimal for the relaxed

model, and is therefore average optimal for the unrelaxed model as well.

Proof. The FGB policy π̄ specified differs from the average optimal rFGB policy of
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Theorem 14 (which we again call π∗) only in that Z = I is chosen when the inventory

level is observed to be I > s∗1, rather than choosing Z = s∗1. Observe that for initial

states I0 ≤ s∗1, the two policies will behave equivalently at every decision point as

the system operates. This is because an inventory level I > s∗1 will never be seen

given such an initial state, since Z > s∗1 is never chosen by these policies for observed

inventory levels I ≤ s∗1. The long-run average expected cost of π̄ for initial states

I0 ≤ s∗1 is therefore ρ, the same as the long-run average expected cost of π∗ identified

in Theorem 14.

We now argue that, for any given initial state I0 > s∗1, the long-run average

expected cost of π̄ is also ρ. Define T to be a random variable indicating the first

decision period for which It < s∗1 under policy π̄. Since Zt = It for all t < T under this

policy, T is determined by the properties
∑T−2

t=0 Xt ≤ (I0−s∗1) and
∑T−1

t=0 Xt > (I0−s∗1).

Because Assumption 4 tells us that P (X = 0) < 1, a standard theorem of renewal

theory (Grimmett and Stirzaker 2001, p. 412) implies that T is finite with probability

one. Furthermore, IT will be finite with probability one. Given T and IT , both

finite, the cost incurred in periods 0 through T − 1 is bounded above by TM , where

M := max{L(I) : I ∈ [IT , I0]}. By Assumption 1, M is finite, and we also have a

lower bound of 0 on the cost incurred through period T − 1. Given T and IT , both

finite, because the action of π̄ depends only on the current inventory level, the cost

incurred in any period t ≥ T is probabilistically the same as the cost incurred T steps

earlier in a system with initial state IT . Therefore, given T and IT as noted, the

sequence of averages 1
n+1

∑n
t=0 Eπ̄

I0
[C(Zt − It) + L(Zt −Xt)] is bounded above for all

n ≥ T by the sequence

1
n+1

TM +
(
n−T+1
n+1

) (
1

n−T+1

)∑n−T
t=0 Eπ̄

IT
[C(Zt − It) + L(Zt −Xt)]→ ρ
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and bounded below for all n ≥ T by the sequence

(
n−T+1
n+1

) (
1

n−T+1

)∑n−T
t=0 Eπ̄

IT
[C(Zt − It) + L(Zt −Xt)]→ ρ

where in taking limits we have used the fact that IT < s∗1. We conclude that the

long-run average expected cost of the policy π̄ must be ρ as desired.

We may now conclude that the FGB policy π̄ is average optimal for the relaxed

model: it performs as well as the average optimal rFGB policy π∗ with respect to

our optimality criterion. Furthermore, π̄ is feasible for the unrelaxed model, as it

never chooses a negative order quantity. Since any admissible policy that is feasible

for the unrelaxed model is also feasible for the relaxed model, there cannot exist

an admissible policy outperforming π̄ in the unrelaxed model with respect to our

optimality criterion. Such a policy would have to outperform π∗ in the relaxed model,

which by Theorem 14 is impossible.

1.4.5 Extension to the discrete case

In this section, we extend our main result to the discrete case in which demands and

order quantities may take only nonnegative integral values.

First, we may assume without loss of generality that the initial inventory level

is an integer. Consequently, we may posit that the state of the process is always

integral. This assumption is justified because we can shift our holding and backlogging

cost function L by the same amount required to shift a fractional initial inventory

level to reach an integral value. Policies in this “shifted” model then have the same

cost characteristics as “unshifted” policies in the original model, and furthermore an

“unshifted” FGB policy is still of the FGB type (featuring “unshifted” critical values).

We may also assume without loss of generality that the source capacity param-

eters {r1, . . . , rm−1} take integral values. This is because, if some parameters ri

45



are fractional, we can replace the ordering cost function C with another function

C̄ : R+ → R+ which is equal to C for integral order quantities, but which is linear

on the interval [Q,Q+ 1] for each nonnegative Q ∈ Z. By the nature of the discrete

case, this substitution makes no difference to the cost incurred by a given policy. (C̄

may, however, have a larger or smaller number of linear pieces than C.)

Given our assumption that the initial inventory level is integral, we may similarly

replace the holding and backlogging cost function L by L̄ : R→ R+, which is defined

to be equal to L for integral inventory levels, but which is linear on the interval

[I, I + 1] for each I ∈ Z. By the nature of the discrete case, this substitution likewise

makes no difference to the cost incurred by a given policy. Furthermore, L̄ inherits the

satisfaction of Assumptions 1–3 from L. In particular, Assumption 1 may be justified

by Lemma 6: it is clear that L̄ is continuous and that L̄+ is constant on [I, I + 1) for

each I ∈ Z; furthermore, by Lemma 1 we have L̄+(I − 1) ≤ L−(I) ≤ L+(I) ≤ L̄+(I).

Given this, Assumption 2 follows from noting that, as with L, there must exist reals

I ′ and I ′′ such that L̄−(I ′) < 0 and L̄+(I ′′) > 0. It remains to deal with Assumption

3. Let Z∗ ∈ R be given. Using Assumption 2 just shown, define Z ′ to be the greatest

integer less than or equal to min{Z : L̄(Z) = L̄(Z∗)}. Using the convexity of L̄, we

find for any (integral) realized demand X that L̄(Z∗−X) ≤ L̄(Z ′−X) = L(Z ′−X).

That E[L̄(Z∗ −X)] < +∞ follows by monotonicity of expectation.

Let us designate by F the class of functions R→ R exemplified by L̄, defining the

class to consist of those continuous functions that are linear on the interval [x, x+ 1]

for each x ∈ Z. Observe that the ordering cost function C̄ belongs to F when we

extend its domain to the negative real line, where it is defined to be equal to zero in

the context of our relaxed model (i.e., the model allowing negative order quantities).

Key facts about F are as follows. The class is closed with respect to addition,

addition of real constants being a special case. Multiplication by real constants also

preserves membership in F , as does shifting of functions (left or right) by fixed integral
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amounts. Finite limits of sequences of functions in F are also in F . Given g, h ∈ F ,

we may conclude that g(h(x)) ∈ F , if h maps integers to integers and the linear pieces

of h have slopes among {−1, 0, 1} only. If a function in F has a greatest minimizer,

then the greatest minimizer is an integer.

Consider now the main argument of Sections 1.4.2–1.4.4, when we are assured

C,L ∈ F as justified above, ignoring the requirement that order quantities be integral.

In Theorem 1, we find if Gn ∈ F that ciZ +Gn(Z) is in F for each i ∈ {∗, 1, . . . ,m},

and when any of these functions has a minimum its greatest minimizer is integral.

In Theorem 2, we may argue that Gn ∈ F and fn ∈ F for all n ≥ 1. We first argue

that Gn ∈ F if fn−1 ∈ F . We find that L(Z − X) ∈ F for all realized X, and so

E[L(Z−X)] belongs to F as a sum of functions in F or as a finite limit of such sums.

Similarly, by hypothesis E[fn−1(Z −X)] must be in F , and now Gn ∈ F follows. We

next argue that fn ∈ F if Gn ∈ F . Observe that

fn(I) = C(Z∗n(I)− I) +Gn(Z∗n(I))

where Z∗n(I) is a function of I assigning order-up-to levels in accordance with the

rFGB policy specified by the critical values sin that are integral (whenever finite)

as we have established. We find that Z∗n(I) ∈ F , that this function maps integers

to integers, and that its linear pieces have slopes among {0, 1} only. Additionally,

(Z∗n(I) − I) ∈ F maps integers to integers and its linear pieces have slopes among

{−1, 0} only. Since C ∈ F , and since Gn ∈ F by hypothesis, we may conclude that

fn ∈ F as desired. Now, since our terminal value function f0 := 0 is in F , the desired

memberships in F follow for all n ≥ 1.

We turn to the infinite-horizon setting. By Theorem 6, fn ↗ f where f is finite-

valued, so we have f ∈ F . Since G is defined in terms of f in the same way that Gn

is defined in terms of fn−1, the fact that G ∈ F follows by an argument analogous
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to that indicated for the finite-horizon setting. Also like the finite-horizon setting,

we find in Theorem 8 that, by choosing the greatest minimizer of ciZ +G(Z) where

possible, the critical values si are integral (whenever finite). From the perspective

of the vanishing discount approach, these critical values siβ define a discount optimal

rFGB policy when the discount factor is β ∈ (0, 1). By Theorem 11, for each i ∈

{∗, 1, . . . ,m} we have siβ ↗ si1 as β → 1, each limit being finite. By the integrality

of each siβ for i ∈ {∗, 1, . . . ,m}, each of these limiting values si1 must be integral. In

Theorem 15, then, the FGB policy that is average optimal for the unrelaxed model is

specified by the integral critical values {s1
1, . . . , s

m
1 } as well as the integral parameters

{r0, . . . , rm−1} (and, by definition, s0
1 = rm = +∞). Since we are assured that the

initial inventory level is integral (as justified above), it follows that the order quantity

chosen by this FGB policy will be integral at each decision point. Since this policy is

average optimal in the absence of the constraint mandating integral order quantities,

this same policy is also average optimal when the constraint is imposed.

1.5 Conclusion

In this chapter, we have proved the existence of a finite generalized base stock pol-

icy that is optimal under an average cost criterion, for an inventory control model

involving multiple sources of a single product. Our main argument concentrated

on a continuous setting; we subsequently indicated how this argument can also be

used to establish the result in a discrete case. Building on this work, one potentially

interesting research direction would involve integration of our methods with other

mathematical work on average optimal control in Markov decision processes (partic-

ularly including other inventory models). Such integration may enable streamlining

of our main argument. Relatedly, methods we have employed (such as examination of

the derivatives of discounted value functions within a vanishing discount approach)

may also find wider use in proving new results or simplifying proofs of known re-
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sults. Research establishing the degree to which our work is relevant for practical

applications would also be most welcome. Such research may warrant investigation

of methods for computing the critical values we have shown to exist.
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CHAPTER 2: OPTIMAL COMPOSITION OF A RETAIL
DISTRIBUTION FLEET WHEN SPOT CAPACITY IS AVAILABLE

2.1 Introduction

We address the fleet composition problem faced by a retail distribution firm, with

particular attention to a major distributor of beverage products. Every working

day, the distributor transports merchandise from a distribution center to a great

number of customer sites using trucks of several sizes. Demand becomes known to

the distributor just before the requested day of delivery, and the firm strives for a

consistently high service level in which deliveries are not delayed. Vehicle routes are

not fixed. The distributor experiences daily demand that is variable in terms of the

total cubic volume as well as the average drop size. Customers are heterogeneous,

ranging from large hypermarkets to small shops or restaurants. A customer’s demand

on a given day generally does not necessitate a particular size of vehicle to satisfy

the demand. Common carriers can be hired on a spot basis to supplement the fleet

as needed on a given day. We take the planning horizon to be one year in length

for illustrative purposes. The goal is to balance the fixed cost of vehicles to be

owned through the planning horizon against exposure to a high variable cost due to

reliance on spot capacity. (We streamline our discussion in this chapter by referring

to “owned” vehicles, though our reasoning is intended to apply similarly to typical

leasing arrangements.)

To assist the distributor’s decision of the proper fleet size and mix for next year, we

propose an optimization model. The model revolves around the description of a day’s

demand in terms of the total cubic volume to be delivered and the total number of

customers to visit. We submit that this compact characterization is useful for captur-

ing the capabilities of different sizes of vehicles. Consider a specific, substantial cubic

volume of merchandise for delivery on a particular day. If this demand is concentrated
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among only a few customer sites, then in the interest of minimizing variable cost we

would tend to prefer utilizing a few large vehicles from our fleet. (Large vehicles tend

to be more efficient than small vehicles in terms of variable cost, e.g. cost due to

fuel and driver-hours, when moving a great volume of merchandise from one fixed

location to another.) If the same cubic volume of demand is instead scattered evenly

across a great many customer sites, then we are inclined to “parallel process” the

deliveries by utilizing many small vehicles. In this chapter, we introduce a two-stage

stochastic linear program with fixed recourse that is based on this two-dimensional

characterization of demand, and we present an efficient algorithm facilitating solution

of this model by a standard gradient-based method for continuous optimization.

There is a substantial current of published research concerning fleet composi-

tion decisions and the closely related problem of fleet sizing, incorporating a great

variety of application contexts and modeling approaches. Some researchers take a

more detail-oriented approach to modeling the day-to-day operations underlying the

strategic decision at hand (e.g. Dell’Amico et al. 2007, Simão et al. 2008). Such mod-

els typically involve complex vehicle routing subproblems, and they are likely to be

daunting in terms of computational effort and data requirements—particularly when

considering a large customer base for deliveries, for which routes are not fixed from

day to day, under a long planning horizon. Other models are less concerned with the

intricacies of vehicle movements, likely making implementation easier (e.g. Wyatt

1961, Papier and Thonemann 2008).

In the wider context of capacity planning, there is a recent stream of literature

introducing rather abstract capacity decision models whose applicability to fleet com-

position problems has been little studied. Eberly and Van Mieghem (1997) study op-

timal adjustments of multiple factor levels in a multiperiod, stochastic setting. Van

Mieghem and Rudi (2002) introduce a multidimensional capacity investment model

involving a more specific, but still quite general, model of resource processing. This
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more specific model is a recourse linear program within a two-stage stochastic pro-

gram involving uncertain demand variables in the right-hand side; following earlier

work, the authors illustrate a solution approach for the investment problem based on

a decomposition of the space of possible demands.

In the domain of two-stage stochastic linear programming with fixed recourse, the

decomposition just mentioned is fairly familiar (e.g. Birge and Louveaux 1997, pp.

170–171). The space of possible demands is dissected into regions such that the same

basis is optimal throughout any given region. Such a construction facilitates various

means of solution of the stochastic program; if the demand space has low dimension,

then numerical integration might then be used to compute the first-stage cost and its

gradient (or a subgradient). Essentially the same kind of decomposition is sought in

parametric linear programming (e.g. Jones 2005).

Our approach brings together two key elements that have appeared only separately

in the literature on fleet composition: the use of a two-stage stochastic programming

formulation, and the description of a day’s demand by the total quantity to be deliv-

ered and the total number of customers to visit. This synthesis allows us to capture

our distributor’s daily demand over an entire planning horizon by a bivariate proba-

bility distribution. In practice, this opens up the possibility of identifying a suitable

distribution family, for present purposes reducing the task of forecasting a year’s

worth of daily demand to the estimation of a handful of distribution parameters. In

the context of capacity decision models, we offer a specialized recourse structure for

fleet composition within the framework of Eberly and Van Mieghem (1997) and Van

Mieghem and Rudi (2002), and we offer an efficient algorithm producing a decom-

position of the demand space given any number of vehicle types. This algorithm

actually generates what we call a “definitive” collection of bases, which correspond

to a dissection of the demand space facilitating solution of the stochastic program in

the manner suggested above. In the context of stochastic linear programming and
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parametric linear programming, we name and explicitly define (for our model) the

concept of a definitive collection of bases—which seems to have been only implicit in

prior work—and we provide a tailored algorithm generating such a collection when the

(recourse) linear program consists of minimization subject to two positive fractional

covering constraints with variable upper bounds.

Our overarching contribution in this chapter, then, is a relatively simple and

fast solution approach for the fleet composition problem faced by our prototypical

distributor. Our research contributions in support of this overarching goal pertain

to the type of model we propose, which is new in the context of fleet composition,

and to our proposed method of solution. Our solution method, a standard gradient-

based approach at surface level, relies on our specialized algorithm to facilitate rapid

computation of the expected cost of a prospective fleet composition and its gradient.

We articulate the concept of a “definitive” collection of bases, over whose feasible

regions we perform double integration to obtain the expected second-stage cost or

its gradient for any fleet composition. Our recourse linear program has exponentially

many bases, but our algorithm generates a definitive set of O(n2) bases in O(n3) time,

where n is the number of vehicle types.

The rest of the chapter is organized as follows. In Section 2.2, we review relevant

literature in the contexts of fleet management, capacity planning, and optimization.

In Section 2.3, we present our model, we make explicit certain key propositions un-

derlying our model, and we elaborate on our model’s relationship to newsvendor-type

models in prior literature. In Section 2.4, we precisely define our concept of a defini-

tive collection of bases, indicate the usefulness of such collections in solving our model,

and present and validate our algorithm for generating definitive collections for our

model. We offer concluding remarks in Section 2.5 and list references in Section 2.6.

56



2.2 Literature review

2.2.1 Fleet composition and related problems

Fleet composition has been an object of study in the operations research and manage-

ment science literature since at least the 1950s. Early published work on this subject

includes Kirby (1959) and, arguably, Dantzig and Fulkerson (1954). Studies have ad-

dressed fleets of cargo ships (Sigurd et al. 2005), warships (Crary et al. 2002), various

classes of trucks (Gould 1969, Woods and Harris 1979, Ball et al. 1983, Wu et al.

2005), buses (Ceder 2005), locomotives (Nahapetyan et al. 2007, Godwin et al. 2008),

cargo aircraft (Barnhart and Schneur 1996), airliners (Listes and Dekker 2005, Clark

2007), and automated guided vehicles (Hall et al. 2001, Vis et al. 2005), as well as rail

freight cars (Papier and Thonemann 2008), different kinds of containers (Turnquist

and Jordan 1986, Imai and Rivera 2001), barges and tugboats (Richetta and Larson

1997), and more. Some, such as List et al. (2003), have proposed general approaches

to the problem that do not specify a particular mode of transportation. Some re-

searchers approach the problem from the standpoint of drivers (i.e., the number and

type of vehicle operators to employ), for instance Simão et al. (2008). Papers fea-

turing substantial review and efforts at classification of literature in this area include

Etezadi and Beasley (1983), Turnquist (1985), and Żak et al. (2008).

Key phrases in this current of research include “fleet size” (or “fleet sizing”), “fleet

mix,” “fleet composition,” “fleet size and mix,” “fleet planning,” and “fleet design.”

“Fleet composition,” the label that we adopt, has been inconsistently distinguished

from “fleet sizing” in the literature, but the following definitions are in accord with

much published work. A fleet composition problem is a decision problem where, for

some set of vehicle types, we are to specify the number of vehicles of each type to

include in the fleet. A fleet sizing problem or fleet size problem is one where we are

merely to specify the total number of vehicles in the fleet. Fleet size and mix we

take to be in the spirit of fleet composition. The clearest example of a fleet sizing
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problem would be one where there is a single vehicle type under consideration, and in

a mathematical sense such a problem is obviously a special case of fleet composition.

Note that, for a given fleet composition problem, it may well turn out that it is optimal

to include no vehicles of a given type in the fleet. (Our definitions may be contrasted

with those offered in Etezadi and Beasley 1983; cases where our classifications disagree

with other authors’ self-classifications include Fagerholt 1999 and Żak et al. 2008.)

Many authors’ approaches to fleet composition involve detailed modeling of the op-

erational level, including the routing of vehicles. Recent projects of this kind include

Nahapetyan et al. (2007) for a major railroad company (involving rapid simulation

of “trains, locomotives, terminals, and shops in an integrated framework” over many

months of operation) and Simão et al. (2008) for a major truckload carrier (simulat-

ing “at a high level of detail the movements of over 6,000 drivers”). There is also

a fairly standard variant of the classic vehicle routing problem that is designed for

fleet composition, the fleet size and mix vehicle routing problem. This model was

introduced in Golden et al. (1984a), and work since then is surveyed in Renaud and

Boctor (2002). More recently, Dell’Amico et al. (2007) attack a generalization of this

problem incorporating delivery time windows specific to each customer.

In our prototypical beverage distributor’s context, a detail-oriented, routing-based

approach is a daunting proposition: the customer base is large; there are several

vehicle types; the planning horizon is long; demand is uncertain, and exhibits seasonal

as well as day-to-day variation; routes are not fixed. Even though there are techniques

aimed at lowering the computational burden in a routing-based approach (Etezadi

and Beasley 1983, Golden et al. 1984b) or simplifying the spatial representation of

demand (Klincewicz et al. 1990), the broad nature of the firm’s business concerns

(encompassing inventories and marketing as well as transportation of merchandise to

customers) render simpler approaches especially attractive.

Our proposed model brings together two key elements that have appeared only
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separately in the literature on fleet composition. The first element is the use of a

two-stage stochastic programming formulation. List et al. (2003) and Couillard and

Martel (1990) are relatively recent examples of this type of model; the letter of Kirby

(1959) can be considered their ancestor. Kirby (1959) suggests, in essence, a classic

newsvendor approach to the problem of fleet sizing. He models demand by a random

variable indicating the number of wagons (rail freight cars) required; wagons are

hired when demand exceeds the fleet size. Wyatt (1961) and Alsbury (1972) extend

this approach and suggest ways of approaching the fleet composition problem while

keeping a one-dimensional characterization of demand. In our context, however, it

not clear how to infer the individual utilization levels of the variously sized trucks

given a scalar representation of demand. (Recall that our distributor’s demand is

variable in terms of the average daily drop size as well as the total cubic volume, and

that the customer base is heterogeneous.)

The second key element of our model is the description of a day’s demand by

the total cubic volume to be delivered and the total number of customers to visit.

This perspective appears to originate in the fleet composition approach of Eilon et al.

(1971a, pp. 234–236). Subsequent models suggested by Etezadi and Beasley (1983)

feature similarly compact characterizations of demand. These two papers offer deter-

ministic mixed integer linear programming formulations that ask for a serial, daily-

level forecast of demand across the planning horizon. However, they do not explicitly

recognize that the serial order of demand is immaterial under their assumptions.

Adopting a two-stage stochastic programming perspective, we open the door to an

additional level of concision—capturing demand by a distribution function—while

also accommodating uncertainty. We also simplify matters by dropping the require-

ment of integrality, which we believe to be justified considering factors such as the

scale of our distributor’s demand and the strategic nature of the decision at hand.

In closing, we note that we are leaving aside discussion of approaches to fleet com-
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position and related problems based on certain continuous approximation methods

(Diana et al. 2006, Smilowitz and Daganzo 2007) and queueing theory (Papier and

Thonemann 2008, Żak et al. 2008). Useful as these techniques may be to enable

simple implementations in this problem domain, we are not aware of their use in the

literature to address our prototypical distributor’s context. We leave elaboration of

the usefulness of these techniques for our context as a direction for future research.

2.2.2 Capacity investment

This area of research is reviewed rather broadly in Van Mieghem (2003); we focus on a

chain of literature originating with Eberly and Van Mieghem (1997). They introduce

a model of investment in multiple resources in which the decisions concern the ad-

justment of resource levels across multiple periods in a stochastic environment. They

argue that a particular type of control limit policy maximizes expected discounted

profit when the cost of adjusting each individual resource is a kinked piecewise linear

convex function and the operating profit function is concave in the resource levels

(given any realized state of the world).

Our model qualifies as an instance of the Eberly and Van Mieghem (1997) model

in which there is only one decision period, where the multiple resources at issue are the

different vehicle types under consideration for inclusion in the fleet. In our beverage

distributor’s context, business concerns beyond transportation distract attention from

the problem of planning the composition of the fleet multiple periods ahead, though

future extension of our model to a multiperiod setting may nonetheless be useful.

According to the authors, the optimal control limit policy (in our case, the optimal

number of vehicles of each type to purchase) may be defined in terms of the gradient

of the expected profit function. However, the highly abstract nature of their resource

processing model precludes detailed advice for our context. Under our assumptions,

their characterization of the optimal policy essentially amounts to the usual first-order
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condition for gradient-based convex optimization, and they offer no advice on how

to calculate our gradient. Moreover, their focus on an abstract resource adjustment

decision precludes detailed advice on modeling our resource processing mechanism.

(The only explicit multiperiod use of their framework in a fleet-composition-related

context appears to be a car rental fleet sizing model in Angelus and Porteus 2002.)

Within the framework of this 1997 paper, Harrison and Van Mieghem (1999)

study a model in which the operating profit function is specified to be the solution of

a linear program of the product mix type. This recourse program models production

decisions taken on the basis of prior capacity investment decisions (i.e., available

resources) and realized demand for multiple products. Given “kinked” linear resource

adjustment cost functions, stationary parameters, and demand that is independent

and identically distributed across periods, the problem collapses to a single-period

problem in the same form. They classify this single-period problem, which is a two-

stage stochastic programming model, as a multidimensional newsvendor model. We

believe that our model is not a special case of their model; neither is our model

more general. (After developing additional notation, we will contrast our model with

theirs in detail in Section 2.3.2.) For an example problem, Harrison and Van Mieghem

(1999) offer a parametric analysis involving identification of regions in the demand

space throughout which there applies a constant optimal vector of shadow prices for

capacity (degeneracy issues aside). They argue that the gradient of the expected

operating profit function is equal to the sum of these optimal shadow prices weighted

by the probabilities of the associated regions (assuming a probability distribution of

demand having no point mass). To facilitate the solution of our model by a gradient-

based approach, we will introduce an algorithm that in effect carries out this kind of

decomposition of the demand space in our setting.

Van Mieghem and Rudi (2002) propose class of models called newsvendor net-

works. In their basic form, these models are single period capacity investment models
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formulated as two-stage stochastic programs featuring random demand for multiple

products. Their resource processing model (i.e., the second stage) is more general than

that of Harrison and Van Mieghem (1999), but more specific than that of Eberly and

Van Mieghem (1997). Along with a capacity consumption matrix, the recourse linear

program has a general input-output matrix translating input inventories (or stocks)

into products. The authors show that this model captures several forms of produc-

tion activities, including assembly, component commonality, input substitution or

transshipment, resource flexibility, and simultaneous resource requirements. For an

example problem, they identify regions in the demand space involved in a character-

ization of the gradient of the expected operating profit function as in Harrison and

Van Mieghem (1999). Befitting the abstract nature of their model, they remark that

particular instances may be substantially amenable to analytical solution, and they

recommend optimization through simulation for other instances (i.e., estimating the

gradient by solving the recourse linear program for a sample of demand vectors, as in

Kim 2006). At least in terms of its mathematical structure, our model qualifies as a

newsvendor network model. We show in Section 2.3.2 that our model (as we define it)

can be transformed into the form of a newsvendor network; however, we argue that

it is most natural to pose our recourse problem with two positive fractional covering

constraints and some variables bounded above.

In the many published articles in this stream of capacity management research,

one generally finds discussion of the structure of the decomposition of the demand

space only for fairly specific cases. In particular, we are not aware of any substantial

discussion of our type of recourse structure. This appears to be due largely to our

perspective on demand for the service of transportation, highlighting two of its aggre-

gate attributes that are simultaneously satisfied by a single activity. This perspective

may be contrasted with a typical view of demand in terms of quantities of discrete

products, in which a single activity produces a single product. (In our review of this
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stream of capacity investment research, the only model we have found for fleet com-

position is the model of Netessine et al. 2002, which also qualifies as a newsvendor

network. Their model is in a car rental context, and it does not share our perspective

on demand.) Furthermore, our desire to abstract away from a specific number of

vehicle types with fixed characteristics invites a more generalized kind of analysis of

a wide class of decompositions. By in effect generating this kind of decomposition,

our algorithm reduces the temptation to re-solve the recourse linear program from

scratch many times as in the simulation optimization method recommended for gen-

eral problems by Van Mieghem and Rudi (2002). Since our demand space is only

two-dimensional, we are able to recommend straightforward numerical integration in-

stead of simulation for calculating the desired gradient; the appropriate optimal dual

vector (and an optimal basis matrix inverse) can be pre-calculated for each region of

integration before the gradient search algorithm begins.

Finally, given the newsvendor-type models under discussion, it is warranted to

relate our model to other descendents of the classic newsvendor model, which serves

as a foundation for models in capacity planning as well as inventory control. In

particular, newsvendor network models such as ours may be distinguished from the

“multi-product newsvendor” (or “multi-item newsvendor,” or “newsstand”) problems

that appeared earlier in the literature. In these models, the focus is on dealing with

complex ex-ante constraints (e.g. a budget constraint when selecting how many of

each product to stock) while the ex-post constraints are trivial. For us, the main

issue is a trivially constrained ex-ante capacity investment decision, which along with

realized demand determines complex ex-post constraints on operations. Discussion

of the basic newsvendor (or “newsboy”) problem and its many variants can be found

in Porteus (1990) and Khouja (1999).
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2.2.3 Optimization

Our proposed model falls under the general category of two-stage stochastic linear

programs with fixed and relatively complete recourse; a general reference on stochastic

programming is Birge and Louveaux (1997). Our recourse program is a minimization

problem with two positive fractional covering constraints, in which all coefficients are

assumed positive, with some (but not all) variables bounded above.

Our main contribution in the context of optimization is our algorithm in Section

2.4.2 generating a “definitive” collection of bases of our recourse problem. We define

a definitive collection of bases in the context of the analysis of our recourse linear

program, which has varying parameters in the right-hand side. Such a collection B

must satisfy three conditions: Optimality (each basis in B must be optimal for those

parameter values where it is feasible), Covering (for each possible parameter value,

there must be a feasible basis in B), and Disjoint Interiors (for no pair of bases in B

do the associated feasible regions have a common interior point). Having a definitive

collection of bases of our model facilitates the rapid computation of the expected

(first-stage or second-stage) cost and its gradient, so that one may then proceed with

a standard gradient projection algorithm.

The usefulness of such collections as we generate, which goes beyond our present

purpose of cost and gradient computation, is known to researchers in optimization.

The issue of degeneracy complicates matters of conceptualization, but it is clear that

the same general idea comes up in many contexts. In stochastic programming, collec-

tions such as ours are intimately related to the technique of “full decomposition” of

the space of right-hand sides discussed in Birge and Louveaux (1997, pp. 170–171).

“Bunching” techniques seek to employ in effect a partial decomposition (Birge and

Louveaux 1997, pp. 169–174), and can be used to speed up the L-shaped method for

solving stochastic linear programs with recourse (ibid., Chapter 5). These kinds of

decompositions have been used to study the “distribution problem” of stochastic pro-
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gramming, in which one seeks to understand the distribution of the optimal objective

value of a (linear) program having random parameters with known joint distribution

(Foote 1980, Wets 1980). The same general kind of decomposition is sought in para-

metric linear programming (Jones 2005, from the perspective of optimal control). An

early articulation of the theoretical underpinnings of such decompositions is the basis

decomposition theorem of Walkup and Wets (1969).

As one would expect, algorithms producing these useful decompositions have been

proposed. General algorithms are discussed in the studies of Foote (1980), Wets

(1980), and Jones (2005). (Dual simplex pivoting in particular is a useful algorithmic

element in situations where the right-hand side varies.) Studies aimed at producing

such decompositions for particular classes of structured linear programs include Wal-

lace (1986) and Filippi and Romanin-Jacur (2002). We are not aware of any general

or specialized algorithms in prior literature guaranteeing polynomial upper bounds on

time complexity or the number of bases to be generated for our recourse model. Thus,

it seems appropriate to offer an algorithm tailored to our recourse structure and to

identify its complexity. In Section 2.4.2, we offer arguments for the correctness and

efficiency of our algorithm, which identifies O(n2) bases—out of exponentially many

bases that can be defined—in O(n3) time, given n vehicle types.

We expect that our conception of a “definitive” collection of bases can be widened

past the context of the particular model we study here. While the facts giving rise to

our conception are known, it seems that our concept is something of an implicit idea

in the literature, not having a concise term.

In closing, we note that our recourse linear program is structurally related to the

problem of set covering in combinatorial optimization, and also to continuous models

studied in the context of approximation algorithms (e.g. Fleischer 2004).
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2.3 Our model

In Section 2.3.1, we define our model and articulate points to consider in making an

assessment of our model’s validity. In Section 2.3.2, we note that our model may

be seen as a generalization of the classic newsvendor problem, and we show via a

transformation that our model qualifies as a newsvendor network.

2.3.1 Definition

A type i of vehicle under consideration for ownership for the duration of the planning

horizon is distinguished by four parameters: a fixed cost fi, a variable cost vi, a sites

capacity si, and a cubic volume capacity ci. The fixed cost is that cost incurred per

working day due to including one vehicle of this type in the permanent fleet through

the planning horizon, whether or not the vehicle is used. This quantity takes into

account elements such as the vehicle’s depreciation cost, taxes, fixed components

of drivers’ wages and insurance, the cost of parking, and the cost of maintenance

performed at fixed time intervals, all amortized equally across the working days in

the planning horizon. The variable cost is that additional cost per working day

incurred due to fully utilizing one owned vehicle of this type, as against leaving it

unused for the day. This includes, for example, the cost of fuel, variable components

of drivers’ wages, and the cost of maintenance performed at fixed mileage intervals as

well as non-routine maintenance. The cubic volume capacity is the greatest volume of

merchandise that a vehicle of this type can reliably deliver in one working day. The

sites capacity is the greatest number of customer sites that a vehicle of this type can

reliably complete in one working day. Note that full utilization of a vehicle may entail

multiple loads in a given day. More broadly, the parameters vi, si, ci are not intrinsic

to the vehicle; they depend on factors such as the spatial distribution of customers

relative to the distribution center, customers’ order sizes, and other factors.

A type i of vehicle available for hire on a daily (spot) basis during the planning
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horizon is distinguished by three parameters: a variable cost vi, a cubic volume

capacity ci, and a sites capacity si. Under our assumptions, what makes a hired or

spot vehicle different from an owned vehicle in our fleet is that a third party (most

likely a common carrier) assumes responsibility for the fixed cost associated with

long-term control of the vehicle. From the retail distributor’s perspective, then, the

cost incurred when relying on a specific type of hired capacity is essentially a variable

cost that depends on the degree to which the capacity is utilized. The definitions

of vi, ci, and si given above still apply. The method of measuring vi in particular

is likely to be different in the context of a spot vehicle, however, since the separate

components of this cost are probably hidden.

Let O be the set of vehicle types under consideration for ownership, and let H be

the set of vehicle types available for hire on a spot basis. We assume that there are n1

vehicle types in O and n2 vehicle types in H, and we define n = n1 +n2. (To clear up

a possible confusion: if e.g. a particular make and model of vehicle is available both

for ownership and for hire, this should be counted as two distinct vehicle “types” in

the sense relevant here—due to the different cost implications of the two means of

access.) We allow a more compressed notation by defining f ∈ Rn1
+ , v ∈ Rn

+, c ∈ Rn
+,

and s ∈ Rn
+ to be vectors consisting of the parameters introduced above.

Demand for transportation is characterized by two jointly distributed nonnegative

random variables C and S, representing respectively the total cubic volume of mer-

chandise to be delivered and the total number of distinct customer sites to be visited.

This distribution may be interpreted as describing demand on a working day picked

uniformly at random from the planning horizon. (We elaborate on this interpretation

below.) We define the two-dimensional demand D = (C, S).

We define the fleet composition vector K ∈ Rn1
+ to indicate the number of vehicles

of each type we decide to include in our fleet; selecting K is the first-stage (or ex-

ante) decision to be made in our model. Once the day’s demand is known, we have
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the recourse (or second-stage, or ex-post) decision concerning how best to utilize

owned and hired capacity to fulfill demand. We define the utilization vector x ∈ Rn
+

indicating the number of vehicles of each type to utilize. Given a fleet composition

K and realized demand D = (C, S), we define the (optimal) second-stage cost:

z(K,D) := min v′x

s.t. c′x ≥ C

s′x ≥ S

xi ≤ Ki i ∈ O

xi ≥ 0 i ∈ O ∪H

(1)

Observe that we have defined a continuous optimization problem. The constraint

xi ≤ K for i ∈ O reflects simply that we cannot utilize more of these vehicles than

we own. Hired vehicle types, by contrast, are taken to have unlimited availability.

The expected second-stage cost is

Z(K) := E[z(K,D)]

where the expectation is taken with respect to the bivariate probability distribution.

Finally, our formulation of the first-stage decision is simply

min f ′K + Z(K)

s.t. K ≥ 0

which we also treat as a continuous optimization problem. If demand is known

but exhibits variation (said variation being captured by the bivariate probability

distribution), this formulation is equivalent to a deterministic minimization of costs

over the entire planning horizon; if demand is uncertain, this formulation minimizes

expected costs over the planning horizon.
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We elaborate on the interpretation of the model when demand is uncertain. Let t

index the working days in the planning horizon, and suppose the number of working

days in the horizon is T . Let the random vector D be distributed as the demand on a

working day picked uniformly at random from the planning horizon. In this context,

we abbreviate by P (t) the probability that day t is picked, which is by definition

T−1. Let the random vector Dt be distributed as the demand on day t. Observe

that the conditional distribution of D, given that day t was selected, is equal to the

distribution of Dt. Now the expected total cost incurred over the planning horizon,

as a function of the capacity vector K, is equal to:

∑T
t=1(f ′K + E[z(K,Dt)])

by linearity of expectation. It is equivalent to minimize the function obtained by

multiplying the above by the positive constant T−1. The function so obtained is

equal to:

f ′K +
∑T

t=1 E[z(K,D) | t]P (t)

which reduces to our objective function f ′K + E[z(K,D)] by appeal to the law of

total expectation.

Throughout the rest of the chapter, we assume for the sake of simplicity that each

of the parameters fi, vi, ci, and si is positive, and that n1 and n2 are positive. We

also assume that the random variable D = (C, S) has a (known) joint probability

density function with finite second moments.

We now articulate various propositions underlying our model that must be con-

sidered in making a full assessment of our model’s validity. A full defense of our

model, considering further details of the application context, possible qualifications

of certain propositions, mathematical properties of our model, and ways in which our

model may be extended, is beyond the scope of this chapter. We do, however, offer a
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few comments on the propositions.

1. Our continuous, linear model of fixed costs is valid.

2. Our continuous, linear model of resource processing costs, given realized de-

mand, is valid.

Since in theory an optimal solution to our recourse problem might have only one

demand constraint binding, we highlight the subtle proposition that we incur

utilization cost for (optimal) “surplus production” as though demand matched

the total capacities of the vehicles we utilized.

We comment on the first two points. Regarding the general issue of the appro-

priateness of a continuous and linear modeling approach, we appeal to the large

customer base of our prototypical beverage distributor, the strategic nature

of the decision at hand, and the broad nature of the firm’s business concerns

(including inventories and marketing, for example, in addition to the transporta-

tion of merchandise to customers that is our focus in this study). In regard to

our model more specifically, including the representation of demand by the to-

tal cubic volume and number of sites, we appeal to the intuitive considerations

given in the introduction to this chapter, along with the distribution context de-

scribed. Further research will be required to fully validate our proposed model.

3. The fleet composition vector directly translates to the set of vehicles actually

available for use day-to-day, independent of utilization decisions during the plan-

ning horizon.

4. Per-unit utilization costs and capacity parameters of owned vehicle types are

constant throughout the planning horizon, and are independent of our fleet com-

position and day-to-day utilization decisions.
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5. Hired vehicle types may be utilized in (arbitrarily) great quantities; their per-unit

utilization costs and capacity parameters are constant throughout the planning

horizon, and are independent of our fleet composition and day-to-day utilization

decisions.

6. Deliveries are not delayed. To put it another way, there are no backlogs.

7. Demand is independent of the fleet composition and day-to-day utilization deci-

sions.

8. Variable costs incurred at opposite ends of the planning horizon need not be

discounted differently.

9. Our parameters, and the distribution of demand, can be measured with a level of

accuracy appropriate to the decision at hand, considering the effort associated

with this measurement.

In some situations (such as when the fleet is to be leased rather than owned),

contractual agreements might greatly simplify the process of parameter estima-

tion.

For a published account of efforts at estimating fixed and variable cost pa-

rameters for three vehicle fleets, see Eilon et al. (1971b), which informed the

exposition of our cost parameters above. In our view, further studies of this

nature would be valuable additions to the literature.

2.3.2 Relation to other newsvendor-type models

Having dealt with the relationship of our model to other newsvendor-type models to

some extent in our literature review (specifically Section 2.2.2), and having introduced

the notation of our model above, we are now in a position to compare and contrast

the models under discussion with greater precision. For simplicity, we maintain our
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assumption that each of our parameters fi, vi, ci, and si is positive, and that n1 and

n2 are positive.

First, we illustrate a reduction of our model to the traditional newsvendor problem

for a special case. Suppose that in our model there is a single vehicle type available

for ownership, 1 ∈ O, and a single type that will be available for hire on a spot basis,

2 ∈ H. (Here, n1 = n2 = 1.) Furthermore, suppose that c1 = c2 and s1 = s2. In this

case, we can meaningfully view any given demand D = (C, S) in terms of the number

of vehicles required, regardless of type. Let us define this transformed demand as

D∗ = max{C/c1, S/s1} = max{C/c2, S/s2}. The cost incurred by purchasing K

vehicles, after demand is realized, may now be expressed as

(f1 + v1)K + (−v1)(K −D∗)+ + v2(D∗ −K)+

We recognize this as the form of a traditional newsvendor cost model with an ordering

cost of (f1 + v1), a salvage value of v1, and a lost-sales penalty of v2. We assume that

f1 + v1 < v2, so there is some incentive to own vehicles. Accordingly, assuming a

differentiable probability density function, the optimal K is the critical fractile K∗

such that P (D∗ ≤ K∗) = (v2 − f1 − v1)/(v2 − v1). A similar reduction is possible if

we have the more general condition c1/s1 = c2/s2.

In the remainder of this section, we examine the relationship between our model

and the multidimensional newsvendor model defined by Harrison and Van Mieghem

(1999) as well as the newsvendor network model defined by Van Mieghem and Rudi

(2002). We argue that our model qualifies as a newsvendor network, but that it is

most natural to use the formulation we introduced in Section 2.3.1. We also argue that

our model is not a special case of the model defined by Harrison and Van Mieghem

(1999), though their model is also a newsvendor network. We adjust the notation of

Van Mieghem and Rudi (2002) to avoid excessive conflict with our notation.
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In the multidimensional newsvendor model of Harrison and Van Mieghem (1999),

the second-stage cost is max{p′x : Ax ≤ K, x ≤ D, x ≥ 0}, where K is the vector

of chosen capacity levels and D is the vector of realized demand. In the more general

newsvendor network model of Van Mieghem and Rudi (2002), the form of the recourse

problem is:

max (r − cA)′x− c′P (D −RDx)− c′H(S̄ −RSx)

s.t. RSx ≤ S̄

RDx ≤ D

Ax ≤ K

x ≥ 0

where RS, RD, and A are nonnegative matrices. (Though Harrison and Van Mieghem

do not explicitly assume that A is nonnegative, it is reasonable to suppose that they

did not intend for their model to be interpreted otherwise.) Here, S̄ is a vector of

“input stocks” chosen along with K in the first stage; each decision variable in the

vector x corresponds to an “activity” that depletes input stocks and uses resources

to produce demanded “outputs.” The first-stage objective function to be maximized

is the expected value of the optimal profit defined above, less the investment cost

c′SS̄ + c′KK. In terms of mathematical structure, the presence of “resources” adds

nothing; observe that any constraint from the set Ax ≤ K could be subsumed into

the set RS ≤ S̄ with a corresponding “holding cost” (cH) component equal to 0,

moving the associated investment cost from cK to cS. (Van Mieghem and Rudi 2002

go on to extend their model, creating a “dynamic newsvendor network” in which the

distinction between input stocks and resources is much more substantial.) We submit

that the main question becomes whether our recourse problem can be phrased in the
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form:

max (r − cA)′x− c′P (D −RDx)− c′H(K − Ax)

s.t. RDx ≤ D

Ax ≤ K

x ≥ 0

where RD and A are nonnegative matrices. If we take the natural step of interpreting

D above as our two-dimensional demandD = (C, S), it is likewise natural to introduce

an “activity” i for each of our vehicle types with corresponding decision variable

xi and corresponding column (ci, si) in RD. (Note that this structure, reflecting a

vehicle’s ability to produce two “outputs” simultaneously, is not captured by the

recourse problem of Harrison and Van Mieghem 1999.) Since we require that all

demand be satisfied, but equality of utilized vehicle capacity and demand might not be

optimal (or even feasible), we introduce for each vehicle type i additional “activities”

with associated decision variables xci and xsi ; the corresponding columns in RD are

respectively (ci, 0) and (0, si). For each owned vehicle type i, the corresponding row

of A has 1 in the columns corresponding to xi, x
c
i , and xsi , and 0 elsewhere; K is

again interpreted as the fleet composition vector. We set cH = 0 and r = 0; we

define the components of cA to be vi for those entries corresponding to xi, x
c
i , and

xsi ; and we define the entries of cP to be strictly greater than the least marginal cost

of fulfilling the corresponding dimension of demand by a spot vehicle type. Because

the “penalty cost” is so severe, we are assured that both demand constraints will be

binding at optimality—a spot vehicle type can always be used to pick up the slack

while reducing the penalty. It can now be argued that any optimal solution to the

newsvendor network recourse problem we have formulated can be translated into an

optimal solution of the recourse problem in our model with the same cost (though the

objective values have opposite signs). (To translate a solution from the newsvendor

network, we set the utilization of vehicle type i in our model equal to xi + xci + xsi
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from the newsvendor network solution.) Of course, the vector f representing our

linear capacity investment cost can be translated directly to cS or cK . We conclude

that our model can be put into the form of a newsvendor network, though doing so

seems to require a rather contrived mechanism.

2.4 An algorithm facilitating solution of our model

In Section 2.4.1, we first reiterate our technical assumptions and note that our deter-

ministic equivalent program is thereby assured of being a convex program, with the

gradient defined everywhere in the interior of the feasible set. We then define bases

of our recourse program (as well as “optimal” bases) by reference to an alternative

formulation of the recourse program with two surplus variables. We define the feasi-

ble regions of our bases in the space of possible demands, and we introduce notation

for the optimal dual vectors associated with optimal bases. We define our notion of a

“definitive” collection of bases of our recourse program and elucidate the role of such

a collection in a standard gradient search algorithm. In Section 2.4.2, we present our

algorithm generating a definitive set of bases of our recourse program, and we argue

for its correctness and polynomial complexity.

2.4.1 Preliminaries

We first reiterate our technical assumptions, which we have imposed for simplicity.

Assumption 1. Each of the parameters fi, vi, ci, and si is positive, and n1 and n2

are positive.

Assumption 2. The nonnegative random variable D = (C, S) has a known joint

probability density function with finite second moments.

By our first assumption, our stochastic programming model has relatively com-

plete recourse. Our optimization model, min f ′K + Z(K) subject to K ≥ 0, may
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therefore be viewed as a deterministic equivalent program, pushing the stochasticity

within Z(K) into the background of our attention; we do not need to add constraints

on K to ensure that the second stage has an optimal solution for any possible demand

vector. By our two assumptions together, we may invoke a result stated in Birge and

Louveaux (1997, Theorem 6, pp. 90–91) to conclude that our deterministic equivalent

program is a convex program, with the gradient of f ′K + Z(K) defined for all K in

the interior of the feasible set.

The major work to be done involves construction of a special set of bases of our

recourse problem, reformulated with two surplus variables xc and xs to produce equal-

ity constraints (rather than covering constraints). We identify a basis by partitioning

the decision variables (formally, their indices) into three sets: (1) a set B comprised

of two basic indices, (2) a set L of indices of variables held at their lower bounds (i.e.,

zero), and (3) a set U of indices of variables held at their upper bounds, chosen from

O. We describe a basis as optimal if (1) its associated solution is feasible (i.e., basic

variables xi1 and xi2 are nonnegative and, where applicable, are bounded above by

Ki1 and Ki2 respectively), (2) the reduced cost v̄i is nonnegative for each i ∈ L, and

(3) the reduced cost v̄i is nonpositive for each i ∈ U . (We define v̄i = vi − v′BB−1Ai,

where B−1 is interpreted as the inverse of the square matrix composed of the two

basic columns from the system of equalities in the formulation above, and Ai is the

selected nonbasic column of that system. For the theory behind our definition of

bases using variables with upper and lower bounds, see e.g. Bertsimas and Tsitsiklis

1997, especially the exercise on p. 135.) For each basis b we define the associated

feasible regions in the space of possible demands:

Ωb = {(C, S,K) ∈ R2+n1
+ : b is feasible for (C, S,K)}

Ωb(K) = {(C, S) ∈ R2
+ : (C, S,K) ∈ Ωb}
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A basis b that is optimal for some point in Ωb is optimal for every point in this region.

The dual of our recourse problem (as originally formulated) may be expressed as

follows:

max Cµ1 + Sµ2 +K ′λ

s.t. ciµ1 + siµ2 + λi ≤ vi i ∈ O

ciµ1 + siµ2 ≤ vi i ∈ H

µj ≥ 0 j ∈ {1, 2}

λi ≤ 0 i ∈ O

(2)

If b is optimal for Ωb, then a uniquely optimal dual vector λb obtains throughout the

interior of Ωb. Whenever Ki = 0, the ith component of λb may be interpreted as the

right partial derivative of the optimal cost with respect to Ki at demand points in

the interior of Ωb(K).

We desire a set B of bases such that three key conditions are satisfied:

1. (Optimality) Each basis b ∈ B is optimal for Ωb.

2. (Covering)
⋃
b∈B Ωb(K) = R2

+ for each K ≥ 0.

3. (Disjoint Interiors) For each K ≥ 0 and basis pair b1, b2 ∈ B, the interiors of

Ωb1(K) and Ωb2(K) are disjoint.

We call a set satisfying these conditions a definitive collection of bases. The value,

for our purposes, of a definitive set is due in large part to the following result. The

result follows from Proposition 1 of Van Mieghem and Rudi (2002), but we provide

our own proof.

Proposition. Let B be a definitive set of bases, suppose Assumptions 1 and 2 hold.

Then for each K ≥ 0, we have:

∇Z(K) =
∑
b∈B

λbP (Ωb(K))
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Whenever Ki = 0, the ith component of this sum should be interpreted as a right

partial derivative.

Proof. Let K ≥ 0 be given. Consider a point D = (C, S) that lies in the interior

of the region Ωb(K) for some b ∈ B. Supposing Ki > 0, let {δm : m ≥ 1} be a

sequence of real numbers converging to zero; if Ki = 0, let the sequence be positive

as well. Since b is an optimal basis, the sequence of elements δ−1
m [z(K + δmei, D) −

z(K,D)] will eventually become constant and equal to its limit λb,i. (Here ei ∈ Rn1

is the unit vector with ith component equal to one, and λb,i is the ith component

of λb.) Since z(·, ·) is Lipschitz continuous (in fact, piecewise linear), the family of

functions gD(δ) = δ−1[z(K + δei, D) − z(K,D)] is uniformly bounded. Because D

has a probability density function, the set of boundary points of the regions Ωb(K)

for all b ∈ B must have probability mass zero. Applying the bounded convergence

theorem, ∂
∂Ki

E[z(K,D)] = E[ ∂
∂Ki

z(K,D)], where we understand ∂
∂Ki

as the right

partial derivative if Ki = 0. Since B is definitive, we also have E[ ∂
∂Ki

z(K,D)] =∑
b∈B λb,iP (Ωb(K)).

Having an algorithm for generating a definitive set of bases of our recourse prob-

lem, we may pursue a standard gradient projection method for optimization. (Provi-

sion for projection of the improving direction—and limitation of the maximum step

size—are required merely due to our nonnegativity constraints on K.) Computation

of the objective function and its gradient in this context may be facilitated as follows.

Before initiating the search algorithm, generate a definitive collection B using our

algorithm. For each basis b ∈ B, store the corresponding basis matrix inverse B−1

and the vector λb along with the defining sets B, L, and U . (The elements of λb are

defined for reference within the presentation of our algorithm below.) Now suppose

in the course of our gradient search algorithm we are given K ≥ 0 and we require

the gradient of the objective function. For each basis b ∈ B, we obtain P (Ωb(K))

through numerical integration of the density function over the appropriate region; the

78



desired gradient is then f +
∑

b∈B λbP (Ωb(K)), where the ith component is actually

the right partial derivative if Ki = 0. Finally, suppose we are given K ≥ 0 and we

require the value of the objective function for our search algorithm. For this end, we

perform numerical integration over the demand space to calculate the expectation of

f ′K + z(K,D) with respect to the density function. In doing so, we evaluate the

second-stage cost z(K,D) at a given point D = (C, S) using the sets B, L, and U

and the stored matrix B−1 corresponding to a basis b ∈ B for which D ∈ Ωb(K).

We suggest performing this integration over the regions Ωb(K) in sequence, so that

we always know immediately which basis parameters apply for a given demand point

falling in the current region. For the purpose of numerical integration, we can re-

duce the (theoretically unbounded) demand space to a large bounded region, such

that nearly all of the probability mass is captured. On determining the best way to

perform the numerical integrations we suggest, one may find some discussions and

further references in the works by Foote (1980), Wets (1980), and Birge and Lou-

veaux (1997, especially pp. 286–288). Due to the strategic nature of the decision of

interest and the low dimension of the parameter space, we submit that sophisticated

numerical integration methods may not be crucial.

2.4.2 Efficient generation of “definitive” collections for our model

Below, we offer our algorithm for generating a definitive set B. The algorithm takes

the liberty of discarding from the formulation certain vehicle types that will not

(or need not) be present in an optimal fleet composition. The algorithm is based

on a representation of the variable-cost efficiency of a vehicle type by the vector

(ci/vi, si/vi), which we will call φi. By Assumption 1, each of these vectors is well-

defined and has both components strictly positive.

Algorithm.

1. (Eliminate clearly uneconomical or unnecessary vehicle types.) For each vehicle
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type i1, determine whether there is a second vehicle type i2 such that φi1 ≤ φi2 ,

fi1/ci1 ≥ fi2/ci2 , and fi1/si1 ≥ fi2/si2 . If so, eliminate type i1. In this context,

spot vehicle types are understood to have fi = 0; ties may be broken arbitrarily.

(To fulfill a given quantity of demand with i2 instead of i1, the variable cost and

the prerequisite fixed cost will both be lower. Once this step is complete, we

are assured that no two efficiency vectors φi1 and φi2 are identical. We assume

that n1 > 0 even after all possible eliminations have been performed; otherwise,

the basic tradeoff giving rise to our model does not apply.)

2. (Generate bases allowing for a surplus of sites capacity.) Order the vehicle types

so that cik/vik ≥ cik+1
/vik+1

for all k ∈ {1, . . . , n−1}, where sik/vik > sik+1
/vik+1

if cik/vik = cik+1
/vik+1

. The types are now in decreasing order of variable-cost

efficiency at handling cubic volume, with ties broken in favor of the type that is

more efficient at handling customer sites. For each ` from 1 to min{k : ik ∈ H},

generate the basis defined by B = {i`, s}, L = {ik : k > `} ∪ {c}, and U = {ik :

k < `}.

The optimal dual vector we associate with any given basis generated here has

µ1 = vi`/ci` , µ2 = 0, λi = 0 for all i ∈ O \ U , and λi = vi − ciµ1 for all i ∈ U .

3. (Generate bases allowing for a surplus of cubic volume capacity—this step is

symmetrical with the preceding step.) Order the vehicle types so that sik/vik ≥

sik+1
/vik+1

for all k ∈ {1, . . . , n − 1}, where cik/vik > cik+1
/vik+1

if sik/vik =

sik+1
/vik+1

. The types are now in decreasing order of variable-cost efficiency

at handling customer sites, with ties broken in favor of the type that is more

efficient at handling cubic volume. For each ` from 1 to min{k : ik ∈ H},

generate the basis defined by B = {c, i`}, L = {ik : k > `} ∪ {s}, and U = {ik :

k < `}.

The optimal dual vector we associate with any given basis generated here has
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µ1 = 0, µ2 = vi`/si` , λi = 0 for all i ∈ O \ U , and λi = vi − siµ2 for all i ∈ U .

4. (Generate bases featuring two basic vehicle types.) Perform the following for

each pair of vehicle types {i1, i2}. If φi1 ≤ φi2 or φi1 ≥ φi2 , continue with the

next pair to be considered. Otherwise, calculate the values µ1 and µ2 such that

the line µ1y1 + µ2y2 = 1 in R2
+ intersects both φi1 and φi2 . Identify the set V

of vectors φi with i /∈ {i1, i2} such that µ1(ci/vi) + µ2(si/vi) > 1 or such that

φi is a convex combination of φi1 and φi2 . If V ∩H is nonempty, continue with

the next pair to be considered. Otherwise, generate the basis with B = {i1, i2},

U = V , and all remaining indices (including c and s) assigned to L.

The optimal dual vector we associate with any given basis generated here has

λi = 0 for all i ∈ O \ U and λi = vi − ciµ1 − siµ2 for all i ∈ U .

Our main technical result is the following:

Theorem. Suppose Assumption 1 holds. Our algorithm generates a definitive set of

no more than
(
n
2

)
+ 2n1 + 2 bases in O(n3) time.

Note that we are in effect discarding an exponential number of bases, due to the

structure of our recourse linear program. This theorem is proved by means of four

lemmas. The first lemma establishes the algorithm’s computational complexity. The

other three lemmas establish the three key conditions defining a definitive collection

of bases of our model (given in Section 2.4.1 above).

Lemma 1. Suppose Assumption 1 holds. Our algorithm generates no more than(
n
2

)
+ 2n1 + 2 bases in O(n3) time.

Proof. We may quickly verify that Steps 1–3 of our algorithm require no more than

O(n2) time. A straightforward implementation of our algorithm requires O(n3) time

due to Step 4, which may perform quadratically many linear-time operations. (For

pairs of vectors φi, we may determine for each remaining vector which simply defined
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region it belongs to.) No bases are generated in Step 1. In Step 2, the greatest number

of bases that may be generated is n1 + 1. For this bound to be reached, all owned

vehicle types must have greater variable-cost efficiency at handling cubic volume than

the best hired type by this measure. In Step 3, the focus is instead on customer sites,

and similarly the greatest number of bases that may be generated is n1 + 1. In Step

4, we generate at most one basis for each pair of vehicle types, so an upper bound on

the number of bases produced here is
(
n
2

)
.

Lemma 2. Suppose Assumption 1 holds. The bases generated by our algorithm

satisfy the Optimality Condition.

Proof. Using our assumption that each ci and si is positive, we easily see that Ωb(1)

has nonempty interior. Selecting (C, S) from this interior, the corresponding basic

solution is primal nondegenerate, and it will suffice to show that this solution is also

optimal. If b was generated in Step 2, then B = {i`, s} for some vehicle type i`, and

we construct the dual solution with µ1 = vi`/ci` , µ2 = 0, λi = 0 for all i ∈ O \U , and

λi = vi−ciµ1 for all i ∈ U . We may easily verify that this dual solution is feasible and

satisfies complementary slackness conditions with the primal solution corresponding

to basis b, establishing optimality. If instead b was generated in Step 3, the situation

is symmetrical with the previous case; here, B = {c, i`} for some vehicle type i`, and

our dual solution has µ1 = 0, µ2 = vi`/si` , λi = 0 for all i ∈ O \U , and λi = vi− siµ2

for all i ∈ U . Finally, if b was generated in Step 4, then B = {i1, i2} for some vehicle

types i1 and i2. We let µ1 and µ2 be those (unique) values calculated by our algorithm

for this pair of vehicle types; we set λi = 0 for all i ∈ O\U and λi = vi−ciµ1−siµ2 for

all i ∈ U . Without much trouble, we may confirm that this dual solution is feasible

and the complementary slackness conditions hold.

Lemma 3. Suppose Assumption 1 holds. The bases generated by our algorithm

satisfy the Covering Condition.
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Proof. By positivity of n1, n2, and each ci and si, the second-stage program is feasible

and admits an optimal basic solution for each (C, S,K) ∈ R2+n1
+ . By the theory of

linear programming, a basic solution to our recourse problem (2) has at most two

variables that are not at their bounds. By our assumption that v is positive, an

optimal basic solution will never have xc and xs away from their bounds. If (C, S,K)

is such that an optimal basic solution exists with xs and xi` away from their bounds

for some vehicle type i`, then complementary slackness dictates that µ1 = vi`/ci` , that

vehicle types i with vi/ci < µ1 must be owned types with xi = Ki, and that vehicle

types i with vi/ci > µ1 must have xi = 0. Here when we have multiple vehicle types

with vi/ci = µ1, optimality is maintained by utilizing them in decreasing order of

variable-cost efficiency with respect to sites with the last type used designated basic;

we also maintain optimality by ensuring for each type i with Ki = 0 that i ∈ U if

vi/ci < µ1 and i ∈ L if vi/ci > µ1, ending up with a basis we generated in Step 2. We

may argue similarly that some basis generated in Step 3 is optimal when (C, S,K)

is such that an optimal basic solution exists with xc and xi` away from their bounds

for some vehicle type i`. Finally, if (C, S,K) is such that an optimal basic solution

exists with xi1 and xi2 away from their bounds for the pair of vehicle types i1 and

i2, then complementary slackness dictates that µ1 and µ2 are as calculated in Step 4

for this basic pair, that vehicle types i with φi strictly above this line must be owned

types with xi = Ki, and that vehicle types i with φi strictly below this line must

have xi = 0. Here when we have more than two vehicle types with φi on this line,

then we may arrive at a basic pair and corresponding optimal utilizations consistent

with Step 4 by systematically decreasing the utilization of the “outermost” types on

this line while increasing utilization of “inner” types on the line; we also maintain

optimality by ensuring for each type i with Ki = 0 that i ∈ U if φi lies above the line

and i ∈ L if φi lies below the line, ending up with a basis we generated in Step 4.

For each K ≥ 0, the foregoing cases establish for all but a set of Lebesgue measure
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zero the covering of R2
+ by

⋃
b∈B Ωb(K). Since this is a finite covering by closed sets,

it follows that this union in fact covers all of the demand space R2
+.

Lemma 4. Suppose Assumption 1 holds. The bases generated by our algorithm

satisfy the Disjoint Interiors Condition.

Proof. Let K ≥ 0 be given, and let (C, S) be an interior point of some region Ωb(K)

for a basis b our algorithm has generated. If b was generated in Step 2, with B = {i`, s}

for some vehicle type i`, by complementary slackness we must have µ1 = vi`/ci` > 0

and µ2 = 0 at dual optimality. If (C, S) is to be an interior point of Ωb∗(K) for some

other basis b∗ generated by our algorithm, these unique dual values imply that b∗

must have B∗ = {i`∗ , s} with vi`∗/ci`∗ = vi`/ci` . Without loss of generality, we may

assume that type i` comes before type i`∗ in the ordering of Step 2. But now any

point in the interior of Ωb(K) involves strictly less than
∑

i∈U ciKi + ci`Ki` units of

cubic volume, while any point in the interior of Ωb∗(K) involves strictly more than

this quantity of cubic volume since (U ∪ {i`}) ⊆ U∗ by construction. We may argue

similarly for the case where b was generated in Step 3, where B = {c, i`} for some

vehicle type i` and the uniquely optimal dual values are µ1 = 0 and µ2 = vi`/si` > 0.

To conclude, we consider the case where b was generated in Step 4, with B = {i1, i2}

for some vehicle types i1 and i2. Here, complementary slackness implies that the

uniquely optimal dual values of µ1 and µ2 are as calculated for this basic pair in Step

4. If another basis b∗ generated in Step 4 has B = {i3, i4} and the interior points of

Ωb∗(K) share the optimal values of µ1 and µ2, then we must have φi1 , φi2 , φi3 , and φi4

colinear. To support the desired conclusion that (C, S) cannot be an interior point

of Ωb∗(K), we describe the geometric structure of the regions corresponding to all

bases generated in Step 4 using these values of µ1 and µ2. Given µ1 and µ2, we may

without loss of generality assume that the set of vectors falling on the critical line of

Step 4 is {φ1, φ2, . . . , φm} with these vectors appearing on the line in the given order

from left to right. For more than one basis to be generated, we must have m > 2.
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The “canonical” case involves {1, . . . ,m} ⊆ O with Ki > 0 for i ∈ {1, . . . ,m}, in

which
(
m
2

)
bases are generated; the corresponding regions are parallelograms arranged

adjacent to each other in a kind of modified binomial tree structure. Here, the “top

level” region corresponding to B = {1,m} shares sides with the two regions in the

next lower level corresponding to B = {1,m− 1} and B = {2,m}. These two regions

share sides with the three regions in the next lower level (if one exists), and so on

for (m− 1) levels total. At the lowest level, pairs of regions with B = {i, i + 1} and

B = {i + 1, i + 2} for i ∈ {1, . . . ,m − 2} share a side; these adjacency relationships

are in effect added on to a binomial tree structure. Non-canonical cases may be seen

as limiting cases, in which opposite sides of certain parallelograms take zero length

(when some i ∈ {1, . . . ,m} have Ki = 0) or infinite length (when some i ∈ {1, . . . ,m}

are in H).

2.5 Conclusion

In this chapter, we have introduced a relatively simple and fast solution approach

for the fleet composition problem faced by a retail distribution firm, focusing on

the context of a major beverage distributor. In support of this overarching goal, we

introduced a fleet composition model with a novel combination of characteristics, and

we performed technical analysis facilitating solution of the model.

We close by indicating a few logical avenues for further research. Our model’s

validity could be examined more deeply in a study providing details of its practical

implementation in a real-life trial. Such an investigation should clarify the degree

to which certain extensions of our approach are necessary and feasible. It should

also yield insights regarding the best methods of computing solutions to our model.

Another possible investigation would further illuminate the connection of the idea of

a “definitive” collection of bases to the wider contexts of stochastic and parametric

programming.
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