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Summary

Much of programming languages research has been directed at developing abstraction mech-

anisms to support the “separation of concerns”: Orthogonal pieces of functionality should be

developed separately; complex software can then be constructed through the composition of these

pieces. The effectiveness of such mechanisms is derived from their support for modularity and

reusability : The behavior of a piece of code should be reasoned about modularly—independently

of the specific compositions it may participate in; the computation of a piece of code should

allow specialization, so that it is reusable for different compositions. This dissertation introduces

structural abstraction: a new abstraction mechanism that advances the state of the art in modu-

larity and reusability by allowing the writing of highly reusable code—code whose structure can

be specialized per composition, while maintaining a high level of support for modularity.

Structural abstraction addresses the reliance of mainstream abstraction mechanisms on fixed

structures. Although abstraction mechanisms have been developed to allow code to be reused

over ranges of values (e.g., procedural abstraction) and ranges of types (e.g., type genericity),

their modularity guarantees crucially rely on separately developed pieces of code having fixed

structures: A procedure is a structure with a fixed name and a fixed number of argument types,

a type-generic procedure is a similar structure with a fixed number of type variables. This rigid

notion of abstraction means a piece of code cannot be reused for clients with different structures,

and thus often leads to the same piece of functionality having to be manually specialized for the

(possibly infinite number of) different structures it may be composed with. Structural abstraction

addresses this limitation by providing a disciplined way for code to inspect the structure of its

clients in composition, and declare its own structure accordingly. The hallmark feature of structural

abstraction is that, despite its emphasis on generality and greater reusability, it still allows modular

type checking: A piece of structurally abstract code can be type-checked independently of its uses

in compositions. Thus, errors in generic code are detected before composition time—an invaluable

xi



feature for highly reusable components that will be statically composed by other programmers.

This dissertation introduces two specific techniques supporting structural abstraction: static

type conditions, and morphing. Static type conditions allow code to be conditionally declared

based on subtyping constraints. A client of such a piece of code can configure a desirable set

of features by composing the code with types whose positions in a subtyping structure satisfy

the appropriate typing conditions. Morphing allows code to be iteratively declared, by statically

reflecting over the structural members of code that it would be composed with. A morphing piece

of code can mimic the structure of its clients in composition, or change its shape according to

its clients in a pattern-based manner. Thus, using either static type conditions or morphing, the

structure of a piece of code is not statically determined, but can be automatically specialized to

reflect the structure of its clients in composition.

We show how these structural abstraction techniques can be smoothly integrated with a modern

Object-Oriented language, by implementing the languages cJ (for static type conditions) and MorphJ

(for morphing), both of which are extensions of Java. We demonstrate the practical impact of

structural abstraction by reimplementing a number of real world applications using cJ or MorphJ.

We show that the reimplementations are more reusable, and, at the same time, modularly type-safe.

xii



Chapter 1

My Thesis

Structural abstraction, the construction of programs that abstract over the structure of other

programs, allows more concise and reusable capture of software functionality, while maintaining

the ability to modularly reason about the behavior and correctness of such programs.

The inherent complexity of software is best managed through separation of concerns [28, 75]:

orthogonal pieces of functionality should be developed separately; complex software can then be

constructed through the composition of these pieces.

At the heart of the separation of concerns is the modularity and reusability of code. Modularity

refers to the ability to reason about the behavior of a piece of code and guarantee its correctness,1

independently from its uses in compositions. Reusability refers to the ability to use a piece of

code in different compositions, where parts of its computation may be specialized differently per

composition.

Abstraction is key in achieving both modularity and reusability. An abstract representation of a

piece of code is a summary of its functionality that exposes the variable parts of its computation.

The same piece of code can be composed with different instantiations of these variables, allowing

its computation to be specialized for each composition. Varying degrees of requirements are

placed on the values each variable may be instantiated to. The correctness of a piece of code

can then be checked under the assumption that its variables are only instantiated with values that

satisfy such requirements.

The more general the requirements are on its variables, the more reusable a piece of code

is with different compositions. However, the more general the requirements, the less information

there is to reason about the correctness of the code, thus making it harder to guarantee its

1There is a wide spectrum of what the correctness of a program can mean, from syntactic correctness, to type
correctness, to the correctness of the program’s runtime semantics. For the remainder of this dissertation, we concern
ourselves with only the type-correctness of programs. Extending the notion of correctness beyond type-correctness is
an orthogonal issue.
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correctness independently of specific compositions. The development of abstraction mechanisms

has thus been an exercise in raising the level of reuse while maintaining a high level of modularity.

Increasingly reusable, and equally modular, abstraction mechanisms have been developed:

Procedural abstraction allows code to be specialized by the value of a variable; type genericity

allows code to be specialized by the type as well as the value of a variable. The invariant among

these mechanisms, however, is that the structure of a piece of code, and thus the structure of its

abstraction, is always fixed and cannot be specialized by different compositions. For instance, the

abstraction of a procedure is a fixed structure comprising its name, a fixed number of parameters

and their types, and a return type. The abstraction of a type-generic procedure is a similarly fixed

structure, with the addition of a fixed number of type parameters. Thus, for a piece of code to be

used in different compositions, its programmer and clients in composition must agree on such a

fixed structure; as the functionality of the code and the needs of its clients evolve, this structure

must be continually redesigned, as well.

Indeed, this structurally rigid approach to abstraction has never served the separation of

concerns very well. Its reliance on brittle, fixed interfaces had been mitigated by the fact that

software used to be developed by teams closely working together. However, software is increasingly

being constructed by composing together code developed by disparate teams. For example, a piece

of software might use Hibernate [3] for communication with databases, Xerces for parsing XML [1],

Guice [2] for handling the dependency injection between different components, etc. In this new

development environment, the rigid approach to abstraction has become crippling: It is impossible

for these teams to anticipate who their clients are, let alone agree on a fixed structure that suits

the needs of every client.

Consequently, the modern programmer often is faced with the choice between the modularity

and reusability of his code. He can choose to provide abstractions with fixed structures (and

thus stay within the confines of modularity), by specializing his code for each client of a different

structure. The reusability of his code invariably suffers. Each time a client with a new structure

comes along, the programmer must provide another version of his code, specialized to the new

structure, thus forcing a proliferation of declarations of highly similar functionality. Alternatively,

the programmer could maximize the reusability of his code using meta-programming techniques,
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such as reflection, code generation, or newer language mechanisms such as Aspect-Oriented

Programming [61]. These techniques allow a piece of code to inspect the structure and computation

of its client, after composition. Specialized code can then be generated to satisfy the needs of

that client. While highly reusable, meta-programming techniques lack modularity: The code to be

generated using these techniques depends on the control and data flow of the meta-program, both

of which are not amenable to precise static analysis. Thus, it is impossible to make reasonably

complete guarantees about the correctness of generated code indepndently of the compositions.

In any case, structurally rigid abstraction forces the entanglement of concerns: A programmer

must either let the clients’ structures dictate the way he develops his code; or he loses the ability

to reason about and guarantee the correctness of his code.

Thus, the separation of concerns requires a fundamental shift away from the structurally rigid

notion of abstraction. Instead, there needs to be a mechanism that supports the writing of code

that can be composed with clients of different structures, and allows its own structure to be

specialized accordingly.

This dissertation introduces Structural Abstraction, a new abstraction mechanism that allows

the further separation of concerns by decoupling the rigid structural contract between a piece

of code and its clients. A structurally abstract program does not need to be composed with

clients of the same static structure. Instead, it allows its own structure, and thus its abstraction,

to be shaped by the structure of its clients. It is thus a strictly more reusable mechanism,

allowing code to be specialized not only by values and types, but also structures. By providing an

expressive but controlled way for code to declare its own functionality based on the structure of

its client, structurally abstract programs are still modular: The correctness of these programs can

be guaranteed independently of their compositions with clients.

The remainder of this chapter first provides an overview of existing abstraction mechanisms

(Section 1.1) and their limitations (Section 1.2). Section 1.3 then introduces structural abstraction

techniques and briefly illustrates how they mitigate the problems presented by rigid abstractions.

The remainder of this dissertation dives into the details of these structural abstraction techniques.
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1.1 Existing Abstraction Mechanisms

Two abstraction mechanisms are pervasive in practice today: procedural abstraction and type

genericity. Both are fully modular, though with varying degrees of support for reuse.2 Additionally,

there are various mechanisms (e.g., module systems, abstract data types, Object-Orientation) for

the hierarchical organization and the reuse of groups of related functionality.

Procedural Abstraction Procedural abstraction is the earliest and most pervasive abstraction

mechanism in modern programming languages. The key feature of procedural abstraction is that

a piece of code can be declared with value variables (arguments). For example, the following

procedure (in a Java [37] syntax) is declared with a variable i:

int plusOne(int i) { return i++; }

The abstraction of a procedure is a fixed structure comprising its name (plusOne), its argument

types (int), and its return type (int). The arguments of a procedure allow its exact computation to

vary based on the values these arguments are instantiated with; the argument types require these

values to be within particular ranges. Procedural abstraction is modular: The implementation of

a procedure can be checked against the value ranges dictated by the types in its abstraction, to

guarantee that the code is always correct. For example, as long as i is an integer, the code i++ is

always correct (with respect to the static semantics of the language). Similarly, the procedure can

be reused in composition with any concrete value of the specified type (e.g., all integers supported

by the language).

Type Genericity The introduction of static typing inspired and necessitated a new abstrac-

tion mechanism: type genericity. Type-generic mechanisms allow code to be declared with type

variables. In the following example, a type-generic procedure is declared with a type variable T:

<T> T identity(T t) { return t; }

2Certain implementations of type genericity are not modular, the most well-known one being C++ templates [49].
However, the techniques for how to implement a modularly type safe genericity mechanism is well-understood. Most
modern type-generic languages (e.g., Java, C#, Haskell) do in fact support fully modular type-checking.
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The abstraction of a type-generic procedure is a fixed structure comprising its type parameters,

in addition to its name, argument and return types. Requirements on type variables (e.g., subtyping

or structural constraints) allow sophisticated type genericity mechanisms, such as those supported

by ML [71], Haskell [52], C# [39], and Java [37], to guarantee the correctness of type-generic code,

regardless of what concrete types its type variables are instantiated to. In addition to specializing

computation with specific values, the type variable allows the types used in the code to be spe-

cialized by each composition. Thus, compared to procedural abstraction, type genericity provides

strictly more reusability for its code.

As its name suggests, “identity” is a polymorphic identity function that can take an argument

of any type, and returns a value of that exact type.

Hierarchical Code Organization Mechanisms Code implementing related functionality

is often hierarchically organized into modules (e.g., [64, 85, 94]), abstract data types (ADTs) [67], or

classes, if in an Object-Oriented (OO) language.3 This organization on top of individual procedures

necessitates a new way to reuse a group of associated functionality. For instance, inheritance,

mixins [15, 83], and traits [30]) are common techniques to facilitate group-reuse in OO languages.

Nonetheless, the abstract representation of a module, an ADT, or a class still has a fixed structure,

comprising the abstractions of its member procedures. This extra organizational structure in fact

induces even more rigidity than individual procedures. Indeed, in the following section, we use

examples from Java to demonstrate limitations caused by rigid structures imposed by classes.

1.2 A Need for Structurally Flexible Abstraction

The structurally rigid approach to abstraction assumes that the same functionality can be abstractly

represented by the same static structure. In practice, however, there are two common ways that

the same, or highly similar, functionality may need to vary the structure of its abstraction based

on client need: conditionally, and iteratively. We show why existing mechanisms are ineffective

in implementing these types of functionality, and illustrate the choice between modularity and

reusability programmers must often make.

3ADTs and OO mechanisms are mostly seen as data abstraction mechanisms. In this dissertation, we are mostly
concerned with their roles as code abstraction mechanisms, i.e., as hierarchical organizations of code.
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1.2.1 Conditionally Exposed Functionality

Certain features of a piece of functionality are conditionally available based on the need of the

client. For instance, code implementing an array list should offer the feature to add elements

only if the client requires a variable-size array. Using existing mechanisms, a programmer can

express this conditional feature by creating separate definitions of the array list, each representing

a separate use case. For instance, in Java, we could declare the following two interfaces:

interface Array { ... }

interface VariableSizeArray extends Array {

void add(Object o);

}

This approach maintains the modularity guarantees provided by existing mechanisms. Each

interface is a specialization of array list, and the client can choose which one is most appropriate.

However, the approach does not scale to support full reusability. To express an additional orthog-

onal condition, the number of abstract interfaces doubles. For instance, to represent array lists

with mutable or immutable cells, we need to define two additional interfaces:

interface MutableArray extends Array { ... }

interface MutableVariableSizeArray extends VariableSizeArray { ... }

In general, to support n orthogonal conditional features, 2n specialized interfaces are nec-

essary. This is an unmaintainable approach from the programmer’s point of view. It is equally

unmanageable from the clients’ point of view, since clients must keep track of 2n different types

and decide which one is appropriate.

An alternative approach that maximizes reusability is to provide all possible features of an array

list through one interface, and allow the clients to configure appropriate features at composition

time. Meta-programming techniques such as the C-pre-processing primitive #ifdef are often

employed for this purpose. Conditional features are declared under an #ifdef CONDITION clause,

for some meta-variable CONDITION. To include a particular feature, a client declares #define

CONDITION.

Though flexible, the approach is not modular: The implementation of a piece of functionality

can no longer be checked for correctness independently from client configurations. Inconsisten-

cies between conditionally declared code using #ifdef and references to these declarations are
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well-known issues in practice [33]. The only way to guarantee that a piece of code with n condi-

tional declarations is always correct (compilable), regardless of client configurations, is to compile

the code 2n times! Even for moderately sized n, this approach to guaranteeing correctness is

infeasible.

1.2.2 Iteratively Defined Functionality

Consider a piece of code that, given any class X, returns another class that contains the exact same

methods as X, but logs each method’s return value. That is, the code is a reusable representation

of the functionality “logging”, and abstracts over the exact methods it may be applied to. Such a

capture of “logging” would need to apply its functionality iteratively to the methods of its client

class, whatever that class may be. Note that this is a compile-time iteration over the static structure

of X, and not a runtime iteration over dynamic collections.

Using existing mechanisms, to maintain the modularity of code, a programmer must specialize

“logging” for each client class. For instance, to compose “logging” with classes Foo, Bar, and Baz,

the programmer must provide classes LoggedFoo, LoggedBar, and LoggedBaz. These definitions,

of course, are not at all reusable with any other client class.

To define a version of “logging” that is reusable with any client class, a programmers can

resort to meta-programming techniques such as meta-object protocols (MOPs) [58], aspect-oriented

programming (AOP) [61], or even lower-level techniques such as reflection and ad-hoc program

generation using quote primitives, string templates, or bytecode engineering. For instance, using

AspectJ [60], the flagship tool for AOP, one can implement “logging” as:

1 abstract aspect Logging<X> {

2 pointcut loggedMeth() : execution(* X.*(..));

3

4 after() returning(Object r) : loggedMeth() {

5 System.out.println("Returning " + r.toString());

6 }

7 }

For any type X, pointcut loggedMeth() identifies the execution of its methods. The “advice”

on lines 4-6 specifies the logging code to be run after the execution of these methods, where the

return values are caught by Object r. To compose “logging” with Foo, one can use the following

declaration:
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aspect LoggingFoo extends LoggingAspect<Foo> { }

The main problem with meta-programming techniques such as AOP is that they are not mod-

ular: There is no notion of separately reasoning about the definition of LoggingAspect and

guaranteeing its correctness without knowing its specific compositions (e.g., with class Foo, Bar,

Baz, etc.). Errors in LoggingAspect are not caught by its programmer, and may only reveal them-

selves for certain compositions. For instance, this particular declaration of LoggingAspect will

result in ill-typed code if composed with a class that contains a method that returns void: the

code on line 8 will attempt to invoke toString() on a void type. Yet the AspectJ compiler would

not warn the programmer of this potential composition error.4

1.3 Structural Abstraction

Structural abstraction is a new approach to abstraction where the structure of code as well as

its abstraction can be specialized, conditionally or iteratively, by its clients in composition. This

dissertation presents two techniques to support structural abstraction: static type conditions and

morphing. Static type conditions target the issue of code with conditional features, whereas

morphing targets the issue where code structure needs to be iteratively shaped by the structure

of its clients. Next, we show how static type conditions and morphing allow the concise, reusable,

but, at the same time, modular capture of the types of functionality described in Section 1.2.

1.3.1 Static Type Conditions

The goal of static type conditions is to allow the conditional declaration of code without sacrificing

modularity, i.e., the consistency in the declaration and use of conditional code is guaranteed

independently of specific combinations of conditions configured by the clients. To this end, static

type conditions use subtyping constraints as conditions, and code can be conditionally declared if

certain subtyping conditions are satisfied.

We illustrate static type conditions in the language cJ, an extension of Java. cJ allows supertypes,

fields, and methods of a class or interface to be provided only under some static subtyping

4This error can be viewed as not a limitation of the current AspectJ compiler, but a limitation of a more fundamental
nature to the aspects event-based approach. For a detailed exposition on why, see Section 4.7.
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condition. For instance, a cJ generic class, C<P>, may provide a member method m only when the

type provided for parameter P is a subtype of a specific type Q. Clients of C<P> can configure the

functionality necessary by parameterizing it in different ways: C<some-subtype-of-Q> would have

access to method m, whereas C<some-type-not-a-subtype-of-Q> would not.

The problem illustrated in Section 1.2 can be easily solved in cJ with the following interface:

interface ArrayList<X> {

<X extends VariableSize>?

void add(Object o);

}

The method “add” is conditionally declared under the condition that X is some subtype of

VariableSize, where VariableSize is a “marker” interface:

interface VariableSize { }

The declaration of the marker interface allows us to pull the condition of whether or not an

array is being used as a variable-sized one into cJ’s type system. The cJ compiler can now use this

information to guarantee that “add” is always used under conditions that are at least as strong as

the condition under which it is defined, i.e., when used, the instantiation of X is at least a subtype

of VariableSize. Each additional orthogonal condition requires exactly one more marker interface.

Multiple conditions can be specified using a conjunction of types, e.g., <X extends VariableSize

& Mutable>. Thus, for every n conditions, we only need to declare n marker interfaces. There is

no exponential number of types to maintain, for either the programmer or the clients.

1.3.2 Morphing

Morphing is a mechanism developed to allow a piece of functionality to be iteratively composed

with the structure of its clients. We discuss morphing through the language MorphJ. MorphJ is an

extension of Java, where the notion of type genericity in Java is extended so that the structure of

a class or interface can vary based on the structure of type variables. For instance, the logging

functionality discussed in Section 1.2.2 can be implemented as the following MorphJ generic class:
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class Logging<class X> extends X {

<R,Y*>[meth]for(public R meth (Y) : X.methods)

public R meth (Y a) {

R r = super.meth(a);

System.out.println("Returned: " + r);

return r;

}

}

MorphJ allows class Logging to be declared as a subclass of its type parameter, X. The body of

Logging is defined by static iteration (using the for statement) over all methods of X that match

the pattern “public R meth(Y)”. Y, R, meth are pattern-matching variables. Y and R can match any

non-void type, and meth can match any name. Additionally, the * symbol following the declaration

of Y indicates that Y matches any number of types (including zero). That is, the above pattern

matches all public methods that return any non-void type. The pattern-matching variables are

also used in the declaration of Logging’s methods: for each method of the type parameter X,

Logging declares a method with the same name and type signature. (This does not have to be

the case, as shown later.) Thus, the exact methods of class Logging are not determined until it is

composed, or type-instantiated, with a concrete type. For instance, Logging<java.lang.Object>

has methods equals, hashCode, and toString: these are the only public, non-void-returning

methods of java.lang.Object.

A well-formed MorphJ generic class is guaranteed not to contain type errors no matter what

the generic class is type-instantiated with. Note that the above class only iterates over the non-

void methods, and statically avoids the error of invoking toString() on void. Had the pattern

been different and allowed matching of void-returning methods, the MorphJ compiler would have

reported the error without having to compose Logging with any specific class X.

1.4 Contributions

Structural abstraction represents a fundamental shift in the support for the separation of concerns.

Instead of allowing code addressing separate concerns to be tied together through a brittle, rigid

interface, structural abstraction allows code to adapt its structure to the needs of its compositions.

The result is more reusable, more malleable software. The techniques presented in this dissertation,

static type conditions and morphing, show that modularity does not have to suffer with this
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increased level of reuse. By representing the structural relationships of code and its clients in a

disciplined way, structurally abstract code can still be checked for its correctness independently of

its eventual compositions.

Concretely, this dissertation illustrates the power of structural abstraction by combining static

type conditions and morphing with OO mechanisms, and advances the state of the art in program-

ming languages design with the following contributions:

• Both static type conditions and morphing, when combined with OO, allow expressing highly

reusable generic classes concisely. Static type conditions, as implemented in cJ, allow a single

generic class to express the functionality of an exponential number of regular Java classes.

Morphing, as implemented in MorphJ, allows a generic class to express the functionality of

an infinite number of regular Java classes.

• This dissertation shows that static type conditions and morphing can be smoothly integrated

with a modern language: Java. No prior research has considered how type-safe condi-

tional declarations can be implemented in a rich language setting (e.g., with subtyping), or

how advanced language features, such as use-site variance, interact with conditional dec-

larations. Furthermore, prior attempts at offering “reflective” declarations always required

concepts separate from the base language, such as a “transformation”. MorphJ shows how

transformation can be a natural extension of the concept of a generic class.

• Both static type conditions and morphing offer full modular type safety. A cJ or MorphJ

generic class is type-checked independently from its type-instantiations, and errors are

detected if they can occur with any possible type parameter.

• This dissertation demonstrates the practical benefits of structural abstraction techniques

with real-world applications.

– cJ solves a well-known static type safety issue of the Java Collections Framework [5] (or,

the “optional methods” problem). We are not aware of other language proposals that

address this well-publicized need without sacrificing conciseness.
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– MorphJ was used to re-engineer real-world applications. One of the more dramatic

examples is a MorphJ reimplementation of Java Collections Framework [5], which re-

places 314 lines of hardcoded proxy classes with 26 lines of highly reusable MorphJ

code; Another such example is a MorphJ reimplementation of DSTM2 [41], a Java soft-

ware transactional library that heavily uses reflection and bytecode engineering (with

BCEL [9]) to transform sequential classes into transactional ones. The MorphJ re-

implementation replaces 1,484 lines of Java reflection and BCEL library calls with 576

lines of MorphJ code.

1.5 Dissertation Roadmap

In the remainder of this dissertation, Chapter 2 presents static type conditions. The power of

static type conditions is shown by solving the well-known optional methods problems with Java

Collections Framework. A formal type system is presented, with detailed proofs of soundness in

Appendix A.

Chapter 3 presents the features of morphing, as well as how it can be used to solve real-

world programming problems. An informal introduction to the insights behind the separate type-

checking for morphing is presented, along with a formalization of a core subset of MorphJ. Proofs

of soundness of the formal type system are presented in Appendix B.

Finally, Chapter 4 discusses related work, and Chapter 5 concludes with a summary of the

contributions of this work, along with future directions.
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Chapter 2

Static Type Conditions: Modular and Reusable Declaration

of Conditional Features

Static type conditions are an abstraction mechanism that allows code to be conditionally declared,

based on subtyping conditions. A client of such a piece of code can then configure a desirable

set of features, and thus the desired interface of the code, by composing the code with the

types that satisfy the appropriate type conditions. Unlike conditional compilation techniques

(e.g., the C/C++ “#ifdef” construct) static type conditions guarantee the modular type-safety of

conditionally declared code: Regardless of specific client configurations, conditionally declared

code is guaranteed to be well-typed, e.g., there will be no reference to undeclared code due to

inconsistencies in the conditions used for declaration and reference.

We demonstrate the concept of static type conditions with the language cJ. cJ is an extension

of Java that allows supertypes, fields, and methods of a class or interface to be provided only under

some static subtyping condition. For instance, a cJ generic class, C<P>, may provide a member

method m only when the type provided for parameter P is a subtype of a specific type Q.

cJ adds to generic Java classes and interfaces the ability to express case-specific code. As a

specific application, cJ addresses the well-known shortcomings of the Java Collections Framework

(JCF) [5]. JCF data structures often produce run-time errors when an “optional” method is called

upon an object that does not support it. Within the constraints of standard Java, the authors of the

JCF had to either sacrifice static type safety or suffer a combinatorial explosion of the number of

types involved, each type specialized for a different client configuration. cJ avoids both problems,

maintaining both static safety and conciseness (and thus reusability).

2.1 Introduction

Generic types increase the expressiveness and safety of a programming language. Since the in-

troduction of Java and C#, researchers have worked on adding genericity mechanisms that were
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subsequently integrated into the base languages themselves [16, 57, 96]. From a language design

standpoint, modern genericity mechanisms offer a good trade-off between expressiveness and

separate checkability. For instance, Java generics have limited expressiveness compared to undis-

ciplined mechanisms, such as C++ template classes, yet offer the ability to detect static errors (e.g.,

type errors) without having to provide a specific type parameter that triggers the error.

This chapter introduces cJ: an extension of Java with support for static type conditions. cJ

extends the expressiveness of modern genericity by allowing not only the types of declared methods

and fields of a generic class to vary based on client composition, but also the structure of the

class itself to vary. cJ provides this increased level of expressiveness without sacrificing any of

Java’s type-checking guarantees: a cJ generic class is separately type-checked to guarantee that it

is always a well-typed class regardless of type-instantiations.

Specifically, cJ adds to Java the ability to place type-conditions on methods, fields, or super-

types. This is best illustrated with a small example. Consider the following generic cJ class:

class C<X> {

X xRef;

...

<X extends DataSource>?

void store() { ... xRef.getConnection() ... }

}

In this example, the member method store is declared in a type-instantiation of generic class

C, only when the type argument for X is a class (or interface) that implements (resp., extends)

DataSource. The <...>? syntax is cJ’s construct for a static type condition. One can read this

syntax as “static-if”, or just “if”. The call xRef.getConnection() is well-typed only because type

X is guaranteed to be a subtype of DataSource and, consequently, to provide the getConnection

method.

cJ is translated by erasure, reducing to regular Java in a backward compatible manner. This

allows us to solve a well-recognized problem in the Java Collections Framework (JCF) [5], the

standard Java data structures library. Currently, JCF data structures support two main common

interfaces (Collection and Map), regardless of optional behavior, such as whether the data structure

is modifiable or not, and whether the data structure has variable size or not. Classes that do

not support the corresponding operations throw UnsupportedOperationExceptions when the
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operations are called at run-time. The design of the JCF is an instance of sacrificing static type

safety in favor of conciseness. cJ solves this problem, maintaining both type safety and conciseness

of expression.

Interestingly, cJ can be thought of as a language that allows cross-cutting [61] at the level of

types. cJ type conditions are used to define many implicit types from a single class definition. In

the above example, the single definition of class C can be thought of as defining the implicit types

C<subtype-of-DataSource> and C<not-DataSource>. Thus, with cJ type-conditionals, one can

add orthogonal “aspects” or “dimensions” to an existing type hierarchy. Our re-implementation of

the JCF provides a vivid demonstration of this feature. Beginning from a simple subtyping hierarchy,

we introduce variation based on whether a data structure supports content modification or size

variability. The definitions of the various collections (e.g., the List, Collection, Map, and Set

interfaces) are as simple as in plain Java, yet a much richer type hierarchy is produced by modifying

each type with attributes chosen from a separate type hierarchy (with types such as Modifiable,

DeleteOnly, and Resizable). Thus, whereas traditional Aspect-Oriented Programming (AOP) [61]

tools allow cross-cutting code to be injected at the level of methods, using a dynamic, event-driven

model (e.g., when methods of Foo are invoked, inject logging code), cJ supports separation of

concerns at the type level, using a static model based on subtyping hierarchies. Type hierarchies

can be specified separately to represent orthogonal concerns, and cJ allows their composition to

form richer, derived hierarchies. Writing general code that exploits these derived hierarchies can

be done through a natural extension of the Java variance/wildcards mechanism (e.g., “? extends

T” clauses).

Although Java was chosen as the platform for our ideas, the cJ approach is far from Java-

specific. The same programming and type-checking framework can be applied to other languages.

Yet Java is a good representative of modern Object-Oriented (OO) languages and integrating with it

demonstrates clearly both the benefits and the intricacies of our approach.

Static type conditions make the following concrete contributions to programming languages

and software engineering research:

• cJ allows expressing highly reusable generic classes concisely. Compared to standard OO

mechanisms, cJ allows a single generic class to express the functionality of an exponential
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number of regular Java classes.

• cJ offers full modular type safety, analogous to that of the base Java language. A cJ generic

class is checked separately from its uses. The type system ensures that the class is type-

correct under any consistent combination of outcomes of the type-conditionals.

• Other research work [32, 66, 68, 74] has targeted the problem of type-safe conditional dec-

larations. Nevertheless, many of the past mechanisms are in a simpler context (e.g., no

subtyping) or do not allow some of the cJ features (e.g., conditional subtyping). None of

the past research dealt with the integration of conditional members and subtypes with (use-

site) variance, nor provided a backward compatible, erasure-based translation. Overall, cJ is

distinguished by its power and its smooth integration into a modern language.

• cJ solves the static type safety issues of the JCF. We are not aware of other language proposals

that address this well-publicized need without sacrificing conciseness.

The remainder of this chapter is organized as follows. Section 2.2 gives an informal introduction

to the cJ language extensions. This serves as background for the motivating examples of Section 2.3

and the JCF case study. Section 2.4 presents interesting ways in which the cJ extensions interact

with variance in Java. We then analyze the cJ implementation in Section 2.5. Section 2.6 formalizes

cJ’s type system, with detailed proofs of soundness presented in Appendix A.

2.2 cJ Language Introduction

We next give an informal overview of cJ’s syntax and semantics, to prepare the ground for our

motivating examples. A formal description of the language is laid out in Section 2.6.

2.2.1 cJ Basics and Examples

cJ is a conservative extension of Java—we assume Java 5 or above, with support for generics and

variance (“wildcards”) [16, 90] in the base language. cJ adds to Java the ability to change a type’s

structure depending on static type conditions. The language provides a static type-conditional

(or just type-conditional) construct. The following is a simple example showing the use of a

type-conditional:
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class Foo<T> {

<T extends Bar>?

int i;

}

In the above example, <T extends Bar>? is a type-conditional. The declaration immediately

following it, “int i;”, exists only if Foo is parameterized by a subtype of Bar.

Type-conditionals can be used for the declaration of class- or interface-level methods and

fields, as well as for the declaration of conditional supertypes. For instance, we can have:

class Foo<T> <T extends Serializable>? implements Serializable

{ ... }

The above class Foo implements interface Serializable only when it is parameterized by a type

that also implements (or extends) Serializable.

Multiple declarations can exist in the same conditional block by surrounding them in <...>.

For instance:

class Foo<T> {

<T extends Bar>?

<

int i;

void meth(T t) { }

>

}

The above is equivalent to preceding each declaration individually with the type-conditional <T

extends Bar>?.

There are two required components to each type-conditional block. The first is the type

condition, defined inside “<...>?”. Any syntax that is valid for defining the type parameters of

a Java class is valid here as a type condition: the type conditions have the standard F-bounded

polymorphism form [16], where a type parameter can be referenced by its own bound, e.g., “T

extends I<T>”. Note especially that “extends” is used to express all kinds of subtyping constraints

(including interface conformance) and that the syntax admits conjunctions of subtyping bounds

(e.g., “T extends I<T> & J<T>”), as well as bounding multiple parameters (e.g., “S extends I<S>,

T extends J<S>”). Similarly to Java, it is not valid for a type parameter to appear by itself on the

right hand side of extends (i.e. we cannot place lower bounds on a type parameter). Also note

that only type parameters declared at the class/interface level are allowed in type conditions.
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Polymorphic method type parameters are not allowed. The second required component, the

consequent block, immediately follows the type condition. Declarations within this block exist for

the enclosing type if and only if the type condition is true, after all type parameters are instantiated.

A type-conditioned declaration is syntactically a declaration, hence, type-conditionals can nest.

cJ ensures that all uses of type-conditionals are statically safe. All code should be well-typed

under its enclosing type conditions. Furthermore, all uses of class or interface members should

be under equivalent or stronger conditions than those employed in the member’s declaration. For

instance, the following use is legal only if J is a subtype of I:

class Foo<T> {

<T extends I>?

int i;

<T extends J>?

void incI() { i++; } // legal iff J subtypes I

}

The following code is also legal, as the type conditions are strengthened by adding conjunctions:

class Foo<T,U> {

<T extends I>?

int i;

<T extends I, U extends K>?

void incI() { i++; } // legal: stronger condition

<T extends I & J>?

void decI() { i--; } // legal: stronger condition

}

2.2.2 Restrictions

There are some restrictions that cJ imposes on conditional declarations. These restrictions sig-

nificantly simplify the translation and interfacing with existing Java code, as we will discuss in

Section 2.5. The rule of thumb is that a cJ class (or interface) should be a legal Java class (interface)

if all type conditions are removed.

A cJ class can have at most one extends clause, regardless of whether it is under a type-

conditional. Of course, a cJ class can implement multiple interfaces and any of the implements

clauses can be conditional.
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Declarations that are conflicting per the standard Java rules are not allowed, even if their type-

conditional conditions are exclusive. For instance, the following is illegal in cJ, even when neither

Baz nor Bar are a subtype of the other:

interface IFoo<T> {

<T extends Bar>?

void foo(int i);

<T extends Baz>?

int foo(int i); // duplicate definition

}

Furthermore, subtypes are required to define conditional methods under equivalent or weaker

conditions than conflicting methods in their (possibly conditional) supertypes. For example:

interface ISuper<T,U> {

<T extends Bar>?

void meth1(int i);

<T extends Bar>?

void meth2(Object o);

}

interface ISub<T,U> extends ISuper<T,U> {

<T extends Bar & Baz>?

void meth1(int i); // illegal unless Bar subtypes Baz

void meth2(Object o); // legal: weaker (no condition)

}

The above rules extend to the members of conditional supertypes. Their type conditions from the

perspective of the subtype is the conjunction of the subtyping and the membership conditions.

(E.g., a member under a static condition P in an interface implemented under condition Q should

be thought of as being under a condition P&Q for the purposes of the above discussion.) Our

formalism in Section 2.6 makes this definition precise.

2.3 cJ Benefits

Having introduced the cJ language, we can now examine some motivating examples. We first

discuss a small example that demonstrates how a type-conditional avoids a combinatorial blowup

of the number of classes required in a Java application. Then, we examine a specific case study:

the Java Collections Framework and its well-known shortcomings with respect to static type safety.
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2.3.1 The Argument for Safety and Conciseness

There are two ways to view the benefits of cJ over regular Java. In Java, when the contents of a

class can vary with respect to multiple orthogonal concerns, the programmer can either choose to

maintain static type safety and suffer a combinatorial explosion of the number of classes involved,

or sacrifice static type safety in order to keep the number of classes manageable. cJ achieves both

benefits simultaneously.

The conciseness benefits of cJ are relatively easy to see. When multiple conditionals capture

different axes of variability, a cJ generic class corresponds to a hierarchy of many different regular

classes. Consider a simple example class C:

class C<X> {

<X extends Serializable>?

public void store() { ... }

...

<X extends Comparable<X>>?

public X getMin() { ... }

}

That is, class C supports method store only when type parameter X is a serializable type. Similarly,

C supports method getMin only when type parameter X is a comparable type.

To achieve the same effect with regular Java, the programmer needs to create separate classes

that capture all possible combinations. One possibility would be the following class hierarchy:

class CommonC<X> {

... // the common parts of C

}

class CSer<X extends Serializable> extends CommonC<X> {

public void store() { ... }

}

class CComp<X extends Comparable<X>> extends CommonC<X> {

public X getMin() { ... }

}

class CCompSer<X extends Comparable<X> & Serializable> extends CSer<X> {

public X getMin() { ... }

}

The result is four different classes, capturing the same content as the original cJ class. Method

code is replicated: CCompSer cannot inherit getMin from CComp because it already has a superclass,
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CSer. Furthermore, CCompSer is not a subtype of CComp, hence, a CCompSer object cannot be used

where a CComp is expected, even though it supports the required methods of a CComp. Such

code replication and subtyping problems can be alleviated by using delegation techniques and

interfaces, but this may require significant code reorganization, weakening of encapsulation, and

explicitly maintaining object identity. For instance, to minimize code length with delegation, the

programmer often needs to enable access to members of another class, as well as manually ensure

a one-to-one mapping among different sub-objects.

Note that this example deals with only two axes of variability: whether X is Comparable and

whether X is Serializable. Still, the result is undesirable. In the general case, the number of Java

classes required for a faithful emulation is exponential to the number of distinct type-conditionals

in the cJ class, assuming a straightforward mapping. Overall code length will also be exponentially

greater, unless delegation, with its aforementioned disadvantages, is used.

In practice, it is unlikely that Java developers would want to deal with this kind of combinatorial

complexity. Instead, they will likely prefer to provide a single type that captures the union of all

possible members. In that case, when an “unsupported” method is called, a run-time error can be

signaled in the form of an exception. For instance, following Java conventions, our earlier example

is likely to be written in standard Java as follows:

class C<X> {

public void store() throws UnsupportedOperationException

{ ... }

...

public X getMin() throws UnsupportedOperationException

{ ... }

}

This addresses the code size and number-of-types explosion problem at the expense of sacrificing

static type safety. The type checker is no longer able to tell under what conditions the store

and getMin operations would be illegal. A run-time type error is produced instead, when illegal

operations get called.1 Relative to plain Java, cJ combines the advantages of static type safety and

code conciseness.

1The UnsupportedOperationException is a run-time exception (i.e., the compiler does not check that it is always
caught or declared) and a member of the JCF. For the purposes of this paper, we use this exception type even for code
outside the JCF. Any different exception could assume the same general role.
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It is worth noting that the cJ compiler translates its input into plain Java by following an

approach similar to that of the example above (i.e., a single class is produced, containing all

possible members). Yet, the cJ type system statically ensures that no exceptions for unsupported

methods are thrown at run-time. We describe the cJ implementation in Section 2.5.

Finally, an interesting question on the power of type-conditionals concerns their value under

multiple inheritance. Multiple inheritance can address the problems of delegation, in that it allows

composing a class modularly without violating object identity or encapsulation. If Java had multiple

inheritance, in addition to its bounded generics, the above example could be expressed in the same

amount of code as in cJ. Nevertheless, the main benefit of type-conditionals is not in minimizing the

code length, but in minimizing the number of explicit types that users need to manage. Consider

the case of a type hierarchy among types I1, I2, ..., IN. Type conditionals allow the programmer

to create implicitly a virtual isomorphic hierarchy by using a single class C<X> with member and/or

supertype declarations conditional on X extending I1, I2, etc. The language will automatically

ensure that the two hierarchies have consistent structure. If, for instance, I1 is a subtype of I5, all

methods in C declared conditionally under X extends I1 will be able to access methods declared

conditionally under X extends I5. With traditional subtyping mechanisms, the user would need

to create explicit types C1, C2, ..., CN with a subtyping hierarchy reflecting the one of I1, I2, ...,

IN. Relieving the programmer from explicitly managing these types is the greatest advantage of

type-conditionals in any language setting. As we discuss in the next section, the stated motivation

of Java developers for choosing a type-unsafe solution for the JCF was not avoiding code size

explosion but avoiding an explosion in the number of explicit types that users would need to deal

with.

2.3.2 Case Study: Java Collections Framework

A striking demonstration of the problems presented above can be found in the Java Collec-

tions Framework [5]: the standard Java data structures library. The JCF supplies types such as

Collection, Set, Map, and List. However, there are other cross-cutting concerns along which to

organize these basic data structures. One such concern is that of “modifiability”: is a data struc-

ture modifiable through its public interface or not? This concept is not captured via the Java type
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system in the design of the JCF. Instead, any attempt to modify an “unmodifiable” collection results

in the throwing of an UnsupportedOperationException at run-time. Another similar concern is

that of size variability. Some data structures are modifiable, yet their size cannot change—arrays

are a standard example. An array supports the operations of the List interface with the exception

of add or remove, which throw UnsupportedOperationException. This is a case of circumventing

the static type system in order to avoid a combinatorial explosion in the number of types specified

in the library. In fact, six out of the fifteen methods of interface Collection in JDK 1.5 are optional

and may result in run-time errors.

The above is a well-known issue. The very first “frequently asked question” in the Java

Collections API Design FAQ [4] is:

Why don’t you support immutability directly in the core collection interfaces so that
you can do away with optional operations (and UnsupportedOperationException)?

The design rationale reflected in the answer to this FAQ indirectly offers a compelling argument for

cJ. The developers note:

Clearly, static [compile time] type checking is highly desirable, and is the norm in Java.
We would have supported it if we believed it were feasible. Unfortunately, attempts to
achieve this goal cause an explosion in the size of the interface hierarchy ...

Subsequently, the Java Collections API developers proceed to give an illustration of the kinds of

“explosion in size” problems that a type-safe design would encounter, if cross-cutting concerns

such as “modifiable”, “variable-size”, “append-only”, etc., are expressed in the type system. The

Java Collections Design FAQ concludes:

Now we’re up to twenty or so interfaces and five iterators, and it is almost certain
that there are still collections arising in practice that don’t fit cleanly into any of the
interfaces.

The above issue is not specific to the Java Collections Framework. Other developers of Java data

structure libraries have identified the same shortcomings. Doug Lea (quoted in the JCF FAQ)

authored a popular Java collections package and remarks:

Much as it pains me to say it, strong static typing does not work for collection
interfaces in Java.
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(We invite the reader to consult online the informative FAQ answer, which we cannot reproduce

here in its entirety.)

cJ addresses fully and cleanly the above problem with the JCF. Interfaces Collection, List,

etc. are implemented modularly using type-conditionals. Specifically, there are three interesting

properties that we capture: whether a collection is modifiable, whether it supports only deletions,

and whether it supports both deletions and additions (i.e., all size change operations). These cross-

cutting concerns are expressed using (marker) interfaces Modifiable, DeleteOnly and Resizable.

The Resizable interface is a subtype of DeleteOnly—a resizable collection supports operations

such as clear and remove, but also add and addAll. By combining these interfaces one can

specify different flavors of each collection. This is done through a type parameter M passed to each

collection generic class. For instance, interfaces Collection and List are implemented as shown

in Figure 2.3.2.2 (Note that the question-mark symbol is used both in our type-conditional syntax,

and as a wildcard in order to specify variance in generic operations, per the standard Java syntax.)

Concrete classes that implement these interfaces (e.g., ArrayList) have similarly structured

type-conditionals. This implementation is concise without sacrificing static type safety. The user of

the List interface explicitly selects the desired flavor of the collection. For instance, a possible type

instantiation of List is List<Integer,Modifiable>, signifying a modifiable (but not resizable) list

of integers. Another possible instantiation is List<Integer,Object> (or any type that is not a

subtype of Modifiable in place of Object) to signify a non-modifiable and non-resizable list. The

programmer cannot accidentally call a set method on a collection that is statically specified to be

unmodifiable. The need for an UnsupportedOperationException is eliminated.

The JCF case study serves well as a motivating example for the more powerful cJ features

described in later sections. Specifically, the major question we have not yet addressed is how to

write general code that abstracts over multiple cJ types. There are two ways to safely abstract over

types in the Java type system. One way is to use interfaces—e.g., we may want to write code that

works with all Comparable objects regardless of whether they are of type Integer, String, Array,

etc. The other way is to use variance—e.g., we can write code that works with all List<X> objects,

as long as the element type, X, is a subtype of a given type, say, Number. Both of these valuable

2Our re-implementation of the JCF can be found on the cJ website: http://www.cc.gatech.edu/∼ssh/cj.
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interface Collection<E,M> extends Iterable<E,M> {

<M extends Resizable>?

<

boolean add(E o);

boolean addAll(Collection<? extends E, ?> c);

>

<M extends DeleteOnly>?

<

boolean removeAll(Collection<?, ?> c);

void clear();

...

>

boolean contains(Object o);

boolean isEmpty();

... // other methods common to all collections

}

interface List<E,M> extends Collection<E,M> {

<M extends Resizable>?

<

void add(int index, E element);

boolean addAll(int index, Collection<? extends E,?> c);

>

<M extends DeleteOnly>?

<

E remove(int index);

...

>

<M extends Modifiable>?

E set(int index, E element);

... // other methods common to all lists

}

Figure 1: cJ imlementation of Collection and List from Java Collections Framework.
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mechanisms are straightforwardly extended and enhanced in cJ.

cJ conditional supertypes enable abstraction using interfaces even for types that support the

corresponding operations only conditionally. For instance, we can have definitions such as:

class ArrayList<X,M>

<X extends Comparable<X>>? implements Comparable<List<X>> {

...

<X extends Comparable<X>>?

public int compareTo(List<X> that) { ... }

}

The above ArrayList class implements interface Comparable and provides the appropriate compareTo

method only if its parameter type is also a Comparable.3 Thus, we can use such ArrayList objects

with code accepting any Comparable object—unlike the original Java ArrayList class.

The second kind of abstraction is quite interesting and practically valuable in the cJ setting.

For instance, how can we write code that deals uniformly with List objects that support at least

a remove operation, regardless of whether the objects are of type ArrayList<E,DeleteOnly> or

ArrayList<E,Resizable> or any other compatible subtype and “flavor” combination? This is

precisely the role of the question-mark wildcard types that appeared in our above Java Collections

code—e.g., for method addAll. The general approach follows a natural extension of the standard

Java variance mechanism. We discuss this topic in the next section.

2.4 Subtyping and Variance

cJ type-conditionals turn out to fit very well in the Java type checking framework. In particular,

the relationships among different instantiations of the same generic cJ class fall out very simply

from the standard rules for variance, with only a small addition. We next give a bird’s eye view of

wildcards and variance in the Java type system (readers familiar with variance can skip Section 2.4.1)

and then discuss how these relate to cJ.

2.4.1 Variance and Wildcards

Here we only give a brief (and simplified) summary of Java wildcards as used to implement variance.

A thorough treatment can be found in past literature [48, 90].

Java allows using generic types with a non-specific instantiation, through the wildcard syntax

3Our thanks to Phil Wadler and Martin Odersky for this motivating example.
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“? extends T”, “? super T” and “?”. For a generic type C, the meaning of a C<? extends T>

is “C instantiated with any subtype of T”. For instance, the JCF Collection interface supports a

method:

interface Collection<E> extends Iterable<E> {

...

addAll(Collection<? extends E> c);

}

The wildcard means that if, for instance, we have an object of type Collection<Number>, we can

pass as an argument to its addAll method an object of type Collection-of-some-subtype-of-

Number. For instance (assuming Integer subtypes Number):

Collection<Number> c = new ArrayList<Number>();

Collection<Integer> ci = new ArrayList<Integer>();

... // populate ci

c.addAll(ci);

Similarly, the wildcard syntax “C<? super T>” means “C instantiated with any supertype of T”,

and the syntax “C<?>” means “C instantiated with anything”.

Wildcards form an elegant way to write highly general code that can apply to multiple instanti-

ations of generic types. Nevertheless, to statically ensure that the result is safe (i.e., that the object

can indeed support all the operations that the code wants to perform on it) several restrictions

need to be imposed.

• An object c of type C<? extends T> can only be used to call methods where the type

parameter of C is in a co-variant position, i.e., appears only as the return type of a method,

if at all. Also, fields of c typed as the type parameter of C can only be read from, not written

to. For instance, given an object c of type Collection<? extends E>, we can never invoke

a method such as “boolean add(E o)” on c, because this method is declared in interface

Collection<E>, and the type parameter E appears as an argument type to add.

• Similarly, an object c of type C<? super T> can only be used to call methods with the type

parameter of C in a contra-variant position, i.e., it appears only as an argument type to a

method, if at all. Fields of c typed as the type parameter of C can be written to with values

typed T, but only read as values of type Object.

• An object c of type C<?> can only be used to call methods where the type parameter of C
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does not appear at all (bi-variance). Similarly, the fields of c typed as the type parameter of

C can only be read as Objects, and not written to.

Next we discuss how a slight extension of the Java variance rules makes them apply transpar-

ently to cJ.

2.4.2 Variance and Type-Conditionals

We return to the original question regarding type-conditionals and subtyping. Consider a cJ class

C<X>. Can we write code that is general enough to work type-safely with multiple instantiations of

C<X> (i.e., for multiple values of X)? Consider the simple example from Section 2.3.1:

class C<X> {

<X extends Serializable>?

public void store() { ... }

...

<X extends Comparable<X>>?

public X getMin() { ... }

}

Intuitively, X is used in this example only in order to add more members to generic class C. Thus,

a “stronger” X (i.e., one that will satisfy more “extends” type conditions) will only result in more

members being added. In other words, if type S is a subtype of T then C<S> could safely be a

subtype of C<T>—generic class C can be co-variant in its type parameter.

cJ, just like regular Java, does not automatically relate different instantiations of a generic class

via subtyping. That is, in the Java and cJ type systems, an instantiation C<A> is never a subtype of

C<B> for two distinct classes A and B, regardless of the contents of C or how A and B are related.

However, if A is a subtype of B, then C<A> is a subtype of C<? extends B> and C<B> is a subtype

of C<? super A>. The programmer can use such subtyping relations to write code that applies to

multiple instantiations of a generic class and the language statically checks that the code is safe,

based on the rules outlined earlier.

cJ enhances the variance rules to deal with type conditions. For instance, we can have the

following method, accepting an argument of the above type C:

void export(C<? extends Serializable> c) {

... c.store(); ...

}

That is, the export method accepts objects of type C-of-some-subtype-of-Serializable. The
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language ensures that the body of export uses its argument c correctly. In this case, the call

to store is statically type safe, since for any subtype X of Serializable, type C<X> will support

store.

The general rule for interactions between type parameters and variance is simple:

An occurrence of type parameter X in an <X extends ...>? type-condition (on either

a supertype declaration or a member declaration) constitutes a co-variant use.

Enhanced with the above rule, all other rules of the standard variance framework of Java apply and

enable general type safety.

Consider, for instance, a Queue that supports averaging of its elements if they are Numbers.

(This is an artificial example—the functionality is not part of the Java Collections Framework.):

interface Queue<X> {

<X extends Number>?

X average();

... // other methods

}

Both appearances of type parameter X are in co-variant positions: either in a type condition, or as

a return type. In this case, a method can accept objects of type Queue-of-some-subtype-of-Number

and call average on them safely. For instance, we can have:

void covariant(Queue<? extends Number> q) {

Number a = q.average();

}

We already saw uses of variance in our Java Collections API case study. Consider the following

excerpt from the definition of Collection<E,M> in Section 2.3.2:

interface Collection<E,M> extends Iterable<E,M> {

...

boolean addAll(Collection<? extends E, ?> c);

...

boolean removeAll(Collection<?, ?> c);

}

Methods addAll and removeAll in the above use arguments bi-variant with respect to the second

type parameter of Collection. That is, these methods can accept any collection, regardless of

whether it is modifiable or not, delete-only or not, etc. Note that the above type signatures

statically prevent the implementation of methods addAll and removeAll from calling methods
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such as add, clear, or set on their argument c: all these methods are declared conditionally and

c may not support them. Intuitively, this reflects the intent of the interface for methods addAll and

removeAll: they modify the object from which they are invoked, but not their argument object,

from which they only read values to add or remove.

Overall, cJ type-conditionals are an excellent match for Java variance. Not only does variance

offer a natural abstraction mechanism for conditional types, but also variance and type-conditionals

offer the same kind of benefit in a programming language. Both mechanisms allow specifying a

single class C<X> and having the type system automatically compute several useful derivative types.

In the case of variance the derivative types are C<? extends T>, C<? super T> and C<?>, which

contain only the co-variant, contra-variant, and bi-variant methods of the class, with respect to

some type T. In the case of cJ the derivative types correspond to all possible outcomes of type-

conditionals. For instance, Modifiable-and-DeleteOnly-List is an implicit type produced from

the List<E,M> definition. Each cJ implicit type contains only the members that exist for this

combination of conditions.

2.5 Implementation

The design of cJ was carefully planned to admit a simple erasure-based translation that is backward

compatible with Java code. Each cJ generic class can be translated to a single Java generic class

(which in turn can be translated to a single non-generic Java class, per the standard erasure

translation of Java generics). This and other implementation topics are discussed next.

Erasure. The current cJ compiler is a source-to-source translator into Java. Nevertheless, exactly

the same techniques could be used in a direct-to-bytecode translation. Indeed, the source-to-

source translation has even more transparency requirements and demonstrates how well cJ fits the

Java model.

cJ translates a class (or interface) with type-conditionals into a Java class (resp., interface) by

removing all conditional statements. This enables a single class to play the role of all possible

instantiations. Consider our earlier example:
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class C<X> {

<X extends Serializable>?

public void store() { ... }

...

<X extends Comparable<X>>?

public X getMin() { ... }

}

cJ translates C into a class:

class C<X> {

public void store() { ... }

...

public X getMin() { ... }

}

Note that there is no need for a run-time exception. The cJ type system ensures statically that

unsupported methods can never be called. (If client code is not compiled with the cJ compiler,

there is no such guarantee. We later discuss how the user can explicitly request dynamic checks

to ensure that these methods are not called.)

Erasure Intricacies. The cJ translation requires a few more steps than simply removing the

type-conditionals. First, the cJ compiler translates the bodies of conditional methods using type

casts that ensure the appropriate type conditions. Second, it supplies dummy method bodies

to classes implementing (or extending) an interface (class) with unsupported methods. Lastly, it

translates certain type instantiations into their “raw type” forms, and performs the same code

generation that a plain Java compiler performs in translating generic code into non-generic code.

We demonstrate these translations via examples.

When translating conditional code, the cJ compiler needs to maintain known type bounds for

each expression. If this is different from the type the expression would have when conditionals are

eliminated, then casts need to be output. Consider the example from the Introduction:

class C<X> {

X xRef;

...

<X extends DataSource>?

void store() {

... xRef.getConnection() ...

}

}

The call to getConnection is only valid because the type xRef is known to be a subtype of
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DataSource. Thus, the compiler needs to emit a cast that will ensure this type constraint when the

type-conditional is removed. The cast cannot fail at run-time, as the cJ static type checker ensures

the store method is only called when X is indeed a subtype of DataSource. The translated code

is:

class C<X> {

X xRef;

...

void store() {

...((DataSource) xRef).getConnection()...

}

}

In the case of interfaces (or abstract classes), our erasure translation means that classes imple-

menting (extending) an interface (abstract class) may need to be automatically enhanced. Consider

a conditional interface method. Erasure removes the type-conditional and the method will be de-

clared for all instantiations of the interface. Yet, classes implementing some of these instantiations

will not provide implementations of the method, as the method is undeclared for the given type

parameters. For instance:

interface List<E,M> extends Collection<E,M> {

<M extends DeleteOnly>?

E remove(int index);

...

}

class FixedList<E> implements List<E,Object> {

... // no remove: Object is not subtype of DeleteOnly

}

The translation adds a dummy remove public method in FixedList. The translated version of the

above example is as follows:

interface List<E,M> extends Collection<E,M> {

E remove(int index);

...

}

class FixedList<E> implements List<E,Object> {

...

public E remove(int index) throws UnsupportedOperationException {

throw new UnsupportedOperationException();

}

}
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The same translation technique is used for safety: in a naive translation scheme, subclasses of a

class that has conditional methods would inherit those methods because of the erasure translation

in the superclass, allowing code not compiled with the cJ compiler to gain access to those methods.

Instead, we ensure that the subclass overrides the method with a dummy implementation to avoid

such accidental exposure of the superclass functionality. Note that this problem is similar to that

faced by the designers of GJ [16], and the solution we adopt is also similar to theirs. For instance,

consider the following class:

class Channel<T> {

<T extends Trusted>?

void disconnect() { ... }

}

Erasure will remove the type-conditional and, thus, expose the disconnect method. If the user

wants to ensure security he/she can export only specialized subclasses that explicitly do not

implement the Trusted interface:

class NonsecureChannel extends Channel<Object> { }

The cJ compiler will translate the latter into a class that is safe to use in an insecure environment,

avoiding accidental exposure of the superclass method:

class NonsecureChannel extends Channel<Object> {

void disconnect() throws UnsupportedOperationException {

throw new UnsupportedOperationException();

}

}

This translation technique does not help avoid the accidental exposure of fields, however. To

protect a conditional field against unauthorized access, a programmer could designate the field

private, and define getter/setter methods for it. The above translation technique for methods can

then be used to protect the getter/setter methods from unauthorized uses.

In certain situations, a type instantiation considered legal by the cJ compiler might not be

considered legal by a regular Java compiler. For example,
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class C<X> {

<X extends Enum<X>>?

EnumSet<X> es = null;

}

class EnumSet<X extends Enum<X>> {

...

}

A simple erasure applied to class C<X> would erase the type condition <X extends Enum<X>>?.

However, type instantiation EnumSet<X> is not compilable using a Java compiler, because X is

nowhere declared to be a subtype of Enum<X>. In these situations, cJ translates type EnumSet<X>

all the way down to its “raw type” form, EnumSet. Thus, the translation of C<X> would be:

class C<X> {

EnumSet es = null;

}

The cJ compiler then needs to perform all the translations that a regular Java compiler does for

expressions of type EnumSet, e.g., generating casts of return types of methods called on this type.

Translation and Backward Compatibility. The interesting aspect of the cJ translation,

as described above, is that it is remarkably simple and fits very well the existing Java object

model. The restrictions of the cJ language outlined in Section 2.2.2 are in place explicitly so

that an elegant erasure-based translation can be supported. For instance, ensuring that methods

do not conflict, even when they are under disjoint type conditions, means that we can employ

the erasure-based translation without the need for method renamings. Similarly, ensuring that

overriding methods (in a subclass) are declared under weaker type conditions than the overridden

methods (in the superclass) enables a clean erasure by just removing the type-conditionals. It

means that a subclass method does not “accidentally” override a valid superclass method when

the subclass method should not really exist based on its type condition. Translating all cJ classes

and methods one-to-one into Java classes and methods ensures good interfacing with client code,

and even unsuspecting legacy (i.e., standard Java) code.

The cJ translation also includes some transparent special case handling purely for strong back-

ward compatibility, even at the source level. This was motivated by our study of the Java Collections

Framework. The special handling occurs when the cJ compiler is invoked in “compatibility mode”
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and when a type parameter is used only in type-conditionals (and not, for instance, to declare

references). In that case, the cJ compiler treats the parameter as optional. For instance, the cJ

compiler can compile legacy Java code using the Collection<E> interface (and any of the classes

implementing it) against the cJ library, which defines Collection as Collection<E,M>. (Either

all optional parameters or none need to be omitted.) When a type parameter is omitted, the

instantiation is assumed to satisfy all the type-conditionals, and any instantiation with full type

parameters is a subtype of it, and vice versa. Our treatment is directly analogous to “raw types” in

the translation of Java generics [16].

Furthermore, when a type parameter to a class is used only in type-conditionals (or transitively

as a type argument to another class that uses this parameter only in type conditionals), then the

cJ compiler removes it from the translated code. This means that the code generated from the cJ

compiler can be used as a regular Java library, under plain Java compilers. This is best illustrated

with an example. Consider the form of our standard List interface from the Java Collections API:

interface List<E,M> extends Collection<E,M> {

<M extends Modifiable>?

E set(int index, E element);

<M extends Resizable>?

void add(int index, E element);

...

}

List uses its type parameter M only in type conditions and to instantiate another type, Collection,

where it is also used only in type conditions. M is never used as an argument or return type of a

method. Therefore, the cJ compiler accepts code that refers to List with only one type parameter.

At the same time, the translation of the above cJ interface into a plain Java interface eliminates the

second type parameter:

interface List<E> extends Collection<E> {

E set(int index, E element);

void add(int index, E element);

...

}

In short, the cJ compiler compiles old-style Java code even against new-style (cJ) libraries that use

extra type variables for type conditions. Furthermore, the cJ compiler translates new-style (type
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conditional) library code into Java code that is source-compatible with existing Java client code,

under standard Java compilers.

Clearly, our erasure translation has the same requirements as other erasure translations—e.g.,

that of GJ [16]—for the purpose of full integration in Java. For instance, the reflection mechanism

needs to change to support cJ-translated code. This is not part of our current implementation.

2.6 Formalization

We present the formal syntax and typing rules for a subset of cJ. Our formalism is an extension

of the formalism for Featherweight GJ (FGJ) with variance, by Igarashi and Viroli [48]. We call our

calculus Featherweight cJ (FCJ). To aid readers in understanding, we highlight the FCJ-specific parts

of the formalism in grey . FCJ captures a core subset of cJ functionality that allows us to explore the

type-safety issues introduced by type-conditionals, with minimum extra baggage and duplication of

work that has already been done for FGJ [47] and variance [48]. Our formalism requires that all type

parameters declare upper bounds, which may be Object. Each class must declare a superclass,

which may also be Object. Additionally, all superclass declarations must be guarded by type-

conditionals, though unconditional superclasses can be expressed by having the type-conditional be

<X extends N>?, where N is X’s declared upper bound. Similarly, all method declarations must be

guarded by type-conditionals, as well. Conditional fields are not supported in the formalism, since

the issues involving conditional member declarations are thoroughly represented by conditional

methods. Interfaces are not part of either the original FGJ, or our formalism. Thus, we only support

conditional superclasses. A class declaration includes a sequence of fields and method declarations.

We assume an implicit constructor for each class, which takes as arguments expressions that can

be used to initialize field values. The method body is simply an expression.

Note that the variance formalization by Igarashi and Viroli does not strictly model the wildcard

implementation in Java. Some notable differences include the inability in the Igarashi and Viroli

system to model wildcard capture, in which a wildcard is promoted to a fresh type variable.

(Wildcard capture most commonly occurs when an expression typed using a wildcard is used as

an argument in a method invocation. In typing that method invocation, the wildcard is converted

to, or “captured” as, a fresh type variable.) There have been multiple attempts to formalize the
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wildcard mechanism as it is implemented in Java (e.g., [22,89]). Of these, [89] does not have a proof

of soundness. [22] does present the most complete model of Java wildcards as well as a proof

of soundness. Unfortunately, [22] was published after the completion of the work in this chapter.

Thus, we use the Igarashi and Viroli formalization here, as a solid basis for proving the soundness

of our type system.

Notation. For readers unfamiliar with FGJ [47] and the variance formalism [48], we briefly in-

troduce the notational conventions used. The meta-variables C and D range over class names;

X, Y, and Z range over distinct type variables; S, T, U, V, and W range over types; H, N, O, P, Q,

and R range over non-variable types (fully instantiated types); f and g range over field names; m

ranges over method names; x ranges over parameter names; d and e range over expressions; and

M ranges over method declarations. Meta-variable v represents variance annotations o, +, -, and

*, for in-variant, co-variant, contra-variant, and bi-variant, respectively—e.g., +T corresponds to ?

extends T in the full Java syntax. Variance annotations can be placed in front of any non-variable

type. In-variant is the assumed default, and thus, C<oT> is abbreviated to C<T>. A partial order ≤

on variance annotations can be defined as: o ≤ + ≤ *, o ≤ - ≤ *. v1∨v2 represents the least

upper bound of v1 and v2.

In addition, we use a few shorthand conventions for conciseness. X is a shorthand for

X1,...,Xn, and similarly, T x is a shorthand for T1x1,...,Tnxn. When this shorthand is applied

to a type variable or a regular variable (i.e., fields, method arguments), it represents a sequence

with no duplication. We use  to denote an empty sequence. The notation / is the shorthand for

keyword extends, and � is the shorthand for keyword return in method bodies.

We also assume a class table CT , which maps class names C to their declarations. A program

is a pair (CT, e) of a class table, and an expression.

2.6.1 Syntax

We present the FCJ syntax in Figure 2. The syntax follows closely the abstract syntax for FGJ

with variance [48]. The main difference is the addition of a type-conditional construct in front of

superclass and method declarations. The type-conditional construct, <X/R>?, evaluates to true

if, after type parameter instantiation, the types for X are subtypes of R. A fully instantiated class
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has the declared superclass if and only if the type-conditional guarding the superclass declaration

evaluates to true. Otherwise, it extends Object. Similarly, a method exists for a fully instantiated

class if and only if its type condition evaluates to true. We inherit the assumption from FGJ that

method declarations M have unique names—that is, we do not model method name overloading.

Syntax:

T ::= X | N

N ::= C<vT>

v ::= o | + | - | *

CL ::= class C<X/N> S-if /D<S> {T f; M}

M ::= S-if <Y/P> T m (T x) {↑e;}
S-if ::= <X/R>?

e ::= x

| e.f

| e.<T>m(e)

| new C<T>(e)

| (T)e

Figure 2: FCJ: Syntax

2.6.2 Type System

The main typing rules for FCJ are presented in Figure 3 and Figure 4. ∆ and Γ are the two

environments used in typing judgments. ∆ is a type environment that ranges over subtyping

assumptions of the form T<:S. Additionally, ∆ also holds mappings from type variables introduced

to represent variant types, to the corresponding variance annotations and bounds. For instance,

∆(X)=(+,T) indicates X is introduced into ∆ to represent a variant type with an upper-bound of

T. Alternatively, ∆(X)=(-,T) indicates that X represents a variant type with a lower-bound of T.

When X<:N∈∆ and N is a non-variable type, for all X, we say that ∆ has non-variable bounds. Γ

is a variable environment that maps a variable x to its type T. We use x:T to denote variable to

type mapping.

To support the typing rules, we present some auxiliary definitions in Figure 5, and the definition

of “open”(⇑∆) and “close”(⇓∆) of variant types in Figure 6. These rules and definitions follow

closely the format of those in variance-based FGJ. We assume the reader has a certain familiarity

with the FGJ formalization, though not necessarily with the Igarashi and Viroli variance formalism.
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Expression typing:

∆; Γ `x ∈ Γ(x) (T-VAR)

∆; Γ `e0∈T0 ∆ `bound∆(T0)⇑∆′
C<U> fields( (∆,∆′) , C<U>)=S f Si⇓∆′T

∆; Γ `e0.fi∈T (T-FIELD)

∆; Γ `e0∈T0 ∆ `bound∆(T0)⇑∆′
C<T> mtype( (∆,∆′) , m, C<T>)=<Y/P>U→U0

{Y} ∩ dom(∆′) = ∅ ∆ `V ok ∆,∆′`V<:[V/Y]P ∆; Γ `e∈S
∆,∆′`S<:[V/Y]U [V/Y]U0⇓∆′T

∆; Γ `e0.<V>m(e)∈T (T-INVK)

∆ `C<T> ok fields( ∆ , C<T>)=U f ∆; Γ `e∈S ∆ `S<:U
∆; Γ `new C<T>(e)∈C<T> (T-NEW)

∆; Γ `e0∈T0 ∆ `T ok
∆ `bound∆(T0)<:bound∆(T) or ∆ `bound∆(T)<:bound∆(T0)

∆; Γ `(T)e0∈T (T-CAST)

∆; Γ `e0∈T0 ∆ `T ok
∆�̀bound∆(T0)<:bound∆(T) and ∆�̀bound∆(T)<:bound∆(T0)

∆; Γ `(T)e0∈T (T-SCAST)

Method typing:

X<:N`R<:N ∆=X<:R,Y<:P ∆ ` R ,P,T,T0 ok ∆;x:T,this:C<X>`e0∈S0
∆ `S0<:T0 CT (C) =class C<X/N> <X/V>?/D<S> {...}

override( ∆ , m, <X/V>? D<S>, <X/R>? <Y/P>T→T0)

<X/R>? <Y/P>T0 m (T x) { ↑e0; } OK IN C<X/N> (T-METHOD)

Class typing:

∆1=X<:N ∆1`R<:N ∆1`N ok ∆2=X<:R

∆2`R,D<S> ok ∆1`T ok M OK IN C<X/N>

class C<X/N> <X/R>? /D<S> { T f; M } OK (T-CLASS)

Well-formed types:

∆ `Object ok (WF-OBJECT)

X∈dom(∆)
∆`X ok (WF-VAR)

CT (C)=class C<X/N> <X/R>? /D<S> {...} ∆ `T ok ∆ `T<:[T/X]N
∆ `C<vT> ok (WF-CLASS)

Figure 3: FCJ: Typing Rules
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Subtyping:

∆ `T<:T (S-REFL)

∆ `S<:T ∆ `T<:U
∆`S<:U (S-TRANS)

∆(X)=(+,T)
∆ `X<:T (S-UBOUND)

∆(X)=(-,T)
∆ `T<:X (S-LBOUND)

CT (C)=class C<X/N> <X/R>?/D<S> {...} ∆ `C<T>⇑∆′
C<U>

∆,∆′`U<:[U/X]R ([U/X]D<S>)⇓∆′T

∆ `C<T> <:T (S-CLASS)

v ≤ w if wi ≤ -, then ∆ `Ti<:Si
if wi ≤ +, then ∆ `Si<:Ti

∆ `C<vS><:C<wT> (S-VAR)

Figure 4: FCJ: Subtyping Rules

To enhance the understanding of our type system, we first highlight some important additions to

FGJ made by Igarashi and Viroli regarding variance. We then delve into the rules and definitions

specifically changed for the inclusion of type-conditionals in cJ.

Background on Variance Formalism. The two most important additions of the Igarashi

and Viroli system over FGJ are the concepts of “open” and “close” (Figure 6). Before any type is

used (i.e., for field or method invocation, or in a subtyping judgment), it must be “opened” first.

Opening a type means that we introduce a fresh type variable for each co- or contra-variantly

defined type. For example, before we can check the validity of invoking method m in type C<+T>,

we must open this type by introducing a fresh type variable X into ∆, where ∆`X<:T. To look

for method m in C<+T> now means to look for m in C<X>. If T occurs anywhere in m’s type, it is

replaced by X, as well.

This “opening” conveniently disallows illegal accesses of methods or fields that we informally

described in Section 2.4. For example, suppose that in the definition of class C<X>, we have method

D m (X x) { ... }. The type parameter X appears in a contra-variant position—as method m’s

argument type. This means that any co-variantly instantiated type C<+T> should not be able to

invoke method m. This is indeed the case in this formalism: we first open C<+T> to C<Y>, where
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Method type lookup:

CT (C)= class C<X/N> <X/Q>? /D<S>{... M}

<X/R>? <Y/P>U0 m (U x) {↑e;}∈M ∆ `T<:[T/X]R

mtype( ∆ , m, C<T>)=[T/X](<Y/P>U→U0) (MT-CLASS)

CT (C)=class C<X/N> <X/Q>? /D<S>{... M} m6∈M ∆ `T<:[T/X]Q

mtype( ∆ , m, C<T>)=mtype( ∆ , m, [T/X]D<S>) (MT-SUPER)

Method body lookup:

CT (C)=class C<X/N> <X/Q>? /D<S>{... M}

<X/R>? <Y/P>U0 m (U x) {↑e;}∈M ∆ `T<:[T/X]R

mbody( ∆ , m<W>, C<T>)=(x,[W/Y][T/X]e) (MB-CLASS)

CT (C)=class C<X/N> <X/Q>? /D<S>{... M} m 6∈M ∆ `T<:[T/X]Q

mbody( ∆ , m<W>, C<T>)=mbody( ∆ , m<W>, [T/X]D<S>) (MB-SUPER)

Field lookup:

fields( ∆ , Object)= (F-OBJECT)

CT (C)=class C<X/N> <X/R>? /D<U> {S f; M }

fields( ∆ , [T/X]D<U>)=D g ∆ `T<:[T/X]R (F-CLASS-S)

fields( ∆ , C<T>)=D g, [T/X]S f

∆�̀T<:[T/X]R CT (C)=class C<X/N> <X/R>?/D<U> {S f; M }

fields(∆, C<T>)=[T/X]S f (F-CLASS)

Unconditional method type lookup:

CT (C)=class C<X/N> <X/Q>?/D<S>{... M}
<X/R>?<Y/P>U0 m (U x) {↑e;}∈M ∆′=[T/X](X<:R)

mtypeuc(m, C<T>) = (∆′, [T/X](<Y/P>U→U0)) (MTUC-CLASS)

CT (C)=class C<X/N> <X/Q>?/D<S>{... M} m 6∈ M
mtypeuc(m, D<S>) = (∆,<Y/P>U→U0) ∆′=∆,[T/X](X<:Q)

mtypeuc(m, C<T>) = (∆′, [T/X](<Y/P>U→U0)) (MTUC-SUPER)

Valid method overriding:

mtypeuc(m, D<S>) = (∆′, <Z/Q>T→T0) implies

[Y/Z](T,T0,Q)=(U,U0,P) and ∆,∆′,X<:R`X<:H

override( ∆ , m, <X/R>? D<S>, <X/H>?<Y/P>U→U0)

Bound of type:

bound∆(N) = N
∆(X) = (+, S)

bound∆(X) = bound∆(S)

Figure 5: FCJ: Auxiliary definitions
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Open:

∆ `T⇑∅T (O-REFL)

∆ ` S ⇑∆1 T ∆,∆1 ` T ⇑∆2 U

∆ ` S ⇑∆1,∆2 U
(O-TRANS)

X fresh for ∆,C<v1T1,vT,v2T2> v 6= o
∆`C<v1T1,vT,v2T2>⇑X:(v,T)C<v1T1,oX,v2T2> (O-CLASS)

Close:

∆(X) = (+,T)
X ⇓∆ T (C-PROM)

X�∈dom(∆)
X ⇓∆ X

(C-TVAR)

(wi,T
′
i)=

 (vi, Ti) if Ti ⇓∆ Ti

(vi ∨+, Ui) if Ti ⇓∆ Ui and Ti 6= Ui

(vi ∨ v′i, Ui) if Ti = X and ∆(X) = (v′i, Ui)
C<vT>⇓∆C<wT′>

(C-CLASS)

Figure 6: FCJ: Open and Close Rules

∆`Y<:T. We then check that any invocation of m passes in an argument of some subtype of Y.

However, Y is simply a type variable with an upper bound of T. According to the subtyping rules

in Figure 4, no type can be deemed a subtype of Y (except Y itself, which is not available before

the opening, and thus cannot be the type of any argument passed to m). Thus, no invocation of m

on an expression of type C<+T> can be well-typed. Similarly, had the type parameter X appeared

in a co-variant position in C<X>, e.g., as the return type of a method, an expression with the

contra-variantly instantiated type C<-T> would not have been able to invoke that method.

Since “open” introduces new type variables into the type environment, it is always paired with

a “close” operation, where the newly introduced type variable is closed down to its bound and

removed from the type environment. Closing also re-introduces variance annotations, using a

conservative combination of the variance annotations of the current use context (i.e., the type

being closed) and the surrounding definition context used for the preceding “open”.

Auxiliary Definitions. Function mtype(∆, m, C<T>) returns the signature of method m, in

type C<T>, in the form of <Y/P>U→U0. mtype(∆, m, C<T>) is defined under two rules:

• MT-CLASS says that if method m is declared in class C<X> with type-conditional <X/R>?,
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and the type-conditional is satisfied by substituting types T for type parameters X, i.e.,

∆ `T<:[T/X]R, then mtype(∆, m, C<T>) is defined to be the types of m in C<X>.

• MT-SUPER covers the condition when method m is not declared in class C<X> at all. In this

case, if the type-conditional for superclass D<S> is satisfied by the substitution [T/X], then

mtype(∆, m, C<T>) is defined as mtype(∆, m, [T/X](D<S>)).

Note that we do not need a case for when m is declared in C<X>, but the type-conditional

guarding it is not satisfied by the substitution [T/X]. As explained in Section 2.2.2, the type

conditions on a subclass method must be weaker than the type conditions guarding the method

it overrides in the superclass (this restriction is formalized in the override rule, which we explain

later in this section). Thus, if method m’s type conditions in C<X> cannot be satisfied by the

assumptions in ∆, then its type conditions in the superclass of C<X> cannot possibly be satisfied.

There is no need to invoke MT-SUPER in this case.

mbody(∆, m<W>, C<T>) returns a pair, (x, e). x are the parameters of m, and e is m’s body.

W are the actual types inferred for a polymorphic method m. Note mbody is similarly defined under

the same two conditions that mtype is.

fields(∆, C<T>) returns a sequence of fields in class C<T>. Object has no fields. For all

other types C<T>, fields(∆, C<T>) returns the sequence of fields declared in C<T>, and, if the

type-conditional guarding C<T>’s superclass, D<S>, is satisfied by the substitution [T/X], the value

of fields(∆, [T/X](D<S>)) is returned, as well.

The predicate override(∆, m, <X/R>?D<S>, <X/H>?<Y/P>U→U0) judges if a method m, with

signature <X/H>?<Y/P>U→U0 may be defined in a class that has a conditional superclass D<S>,

guarded by condition <X/R>. The extra complication in this rule reflects the restrictions described

in Section 2.2.2. There are two aspects of our translation to consider. Firstly, recall that our

translation scheme erases all type conditionals. After translation, a class C<X> extends its superclass

D<S> unconditionally. Consequently, even if a method m in C<X> is declared under a type-

conditional that precludes the condition for the superclass, the type of m in C<X> still cannot

conflict with the type of m in D<S>. Secondly, also recall that if a method in a subclass has

the same type signature as a method in a superclass, we require the subclass method to always
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override the superclass method. This means the type-conditional on the subclass method must be

implied by the type-conditional on the superclass method. This requirement ensures that we do

not have to dynamically decide whether a class’s own method implementation should be invoked

or it should call super.m(...).

To reflect these restrictions, override uses the function mtypeuc to unconditionally recurse

up the chain of superclasses to find a method’s signature. mtypeuc(m, C<T>) returns a pair,

(∆′,<Y/P>U→U0). ∆′ contains subtyping assumptions that must be satisfied for method m to

have type <Y/P>U→U0. The second part of the pair is m’s signature as defined in the closest

superclass up the unconditional chain of inheritance.

The override rule uses the implies notation (as in FGJ [47]) to indicate that the restrictions

represented by the consequent of the implies need to be satisfied only if the antecedent is true. In

this case, the antecedent is: mtypeuc(m, D<S>)=(∆′,<Z/Q>T→T0). This means that method m is

defined in either D<S> or some conditional superclass of D<S>. If this antecedent is true, then the

parameter, return types, and bounds on the inferred types must be the same in the subclass as

they are in the conditional superclass. It must also be true that given all conditions guarding the

chain of conditional superclasses mtypeuc recursed through to find m, and the condition guarding

m itself, the condition guarding the subclass method is true, as well. This is checked by augmenting

∆ with ∆′ and X<:R, and requiring that these are sufficient to show X<:H.

Note that the definition of override is dependent on the subtyping rules defined in Figure 4.

Depending on the specific algorithm implementing our declarative subtyping rules, it is possible

that the subtyping condition guarding the overriding method, X<:H, cannot be shown to be true

using the assumptions in ∆, ∆′, and X<:R. Consequently, certain valid overriding methods cannot

be proven so. To see this concretely, let ∆=Foo<X><:Baz, where Foo is defined as: class

Foo<X> <X/Bar>?/Baz {...}. If we want to show that ∆ `X<:Bar, we need to deconstruct

type Foo<X>, and infer from Foo<X><:Baz that X<:Bar must be true, as well. Our current

implementation does not deconstruct types to do such inference. Subtyping assumptions thrown

into ∆′ by mtypeuc are only effective if the type variables X are not buried inside of constructed

types, such as Foo<X>. We are currently working on a decidable algorithm for deconstructing

types to get more precise subtyping assumptions. Note that this is a standard point of trade-off: a
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too powerful reasoning procedure may well end up being undecidable. A conservative algorithm,

on the other hand, will reject some programs because of its inability to establish the conditions

for their soundness. The latter is typically preferable in practice, since, in this setting, troublesome

programs tend to be highly contrived.

The two rules for unconditional field lookup are only used in proving the correctness of erasure,

using the erasure rules detailed in the accompanying technical report [45]. They are included for

completeness of the auxiliary functions.

Type Rules. Most of the rules presented in Figure 3 are the same as their variance-based FGJ

counterparts. We now go through the ones particular to the type-conditional extensions in FCJ.

T-FIELD and T-INVK: these rules define when a field reference or a method invocation, respec-

tively, is well-typed. Even though they look identical to their variance-based FGJ counterparts, they

use functions fields and mtype , which fully encapsulate the lookup of conditional supertypes and

conditional methods, as previously explained.

T-METHOD: The interesting change to the T-METHOD rule from its counterpart in variance-

based FGJ is that the environment ∆ (under which the return and parameter types, as well as the

body of the method, expression e0, must be well-typed) is augmented with the type bound X<:R,

which is the type-conditional under which the method is declared. Intuitively, this says that if a

method is declared under type-conditional <X/R>?, then in the scope of the body of the method

it can be assumed that the type environment ∆ supports this bound.

T-CLASS: Note that the conditional superclass D<S> needs to be proved well-typed under ∆

augmented with the type-conditional condition guarding it.

2.7 Proof of Soundness

We prove the soundness of our type system by proving subject reduction and progress properties

[95]. We state the reductions rules (Figure 7) and theorems here. Interested readers can find the

full version of the proofs in Appendix A.

Theorem 1 [Subject Reduction]: If ∆;Γ`e∈T and e−→e′, where ∆ has non-variable

bounds, then ∆;Γ`e′∈S and ∆`S<:T for some S.
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Reduction Rules:

fields(∅, C<T>)=U f
new C<T>(e).fi −→ei (R-FIELD)

mbody(∅, m<V>, C<T>)=(x,e0)
new C<T>(e).<V>m(d)−→[d/x, new C<T>(e)/this]e0 (R-INVK)

∅ `C<T><:T
(T)new C<T>(e)−→new C<T>(e) (R-CAST)

e0−→e′0
e0.f−→e′0.f (RC-FIELD)

e0 −→ e′0
e0.<V>m(e) −→ e′0.<V>m(e) (RC-INV-RECV)

ei−→e′i
e0.<V>m(...,ei,...)−→e0.<V>m(...,e′i,...) (RC-INV-ARG)

ei −→ e′i
new C<T>(...,ei,...)−→new C<T>(...,e′i,...) (RC-NEW-ARG)

e0 −→ e′0
(T)e0 −→ (T)e′0 (RC-CAST)

Figure 7: FCJ: Reduction Rules

Theorem 2 [Progress]: Let e be a well-typed expression.

1. If e has new C<T>(e).f as a subexpression, then fields(∅, C<T>) = U f, and f=fi.

2. If e has new C<T>(e).m(d) as a subexpression, then mbody(∅, m, C<T>) = (x, e0) and

|x| = |d|.

Theorem 3 [Type Soundness]: If ∅; ∅`e∈T and e−→∗e′ being a normal form, then e′ is

either a value v such that ∅; ∅`v∈S and ∅`S<:T for some S, or an expression that includes

(T)new C<T>(e) where ∅�̀C<T><:T.
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Chapter 3

Morphing: Structurally Shaping Code in the Image of Other

Code

This chapter presents a powerful abstraction mechanism called morphing. Morphing allows code

to be declared by statically iterating over the structural members of code that it would be com-

posed with. As such, the structure of morphing code is not statically determined, but automatically

specialized to reflect the structure of its client in composition. We discuss morphing through

MorphJ—a language that extends an Object-Oriented base language, Java, with a morphing mecha-

nism. MorphJ extends the notion of type-genericity in Java so that the structure of a generic class,

i.e., its methods and fields, can vary according to the structure of the types it is composed with.

Morphing allows programmers to express common programming patterns in a highly reusable

way that is otherwise not supported by conventional techniques. For instance, morphing allows one

to implement generic proxies (i.e., classes that can be parameterized with another class and export

the same public methods as that class); default implementations (e.g., a generic type with default

behavior for every method, configurable for any interface); semantic extensions (e.g., specialized

behavior for methods that declare a certain annotation); and more.

Morphing’s hallmark feature is that, despite its emphasis on generality and greater reusability, it

still allows modular type checking: A morphing class can be type-checked independently of its uses

in compositions. Thus, errors in generic code are detected before composition time—an invaluable

feature for highly reusable components that will be statically composed by other programmers.

3.1 Introduction

Morphing targets functionality that needs to iteratively adapt its implementation to the structure of

its client in composition. For instance, consider the following task: how would you write a piece of

code that, given any class X, returns another class that contains the exact same methods as X, but

logs each method’s return value? That is, the code is a reusable representation of the functionality
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“logging”, and abstracts over the exact structure of the class (i.e., its declared methods) it may be

applied to.

Capturing this level of abstraction has traditionally been only possible with techniques such

as meta-object protocols (MOPs) [58], aspect-oriented programming (AOP) [61], or various forms of

meta-programming (e.g., reflection and ad-hoc program generation using quote primitives, string

templates, or bytecode engineering). While just about any programmer can write a method that

logs its return value, the techniques listed above can require steep learning curves or suffer from

poor integration with the base language. More importantly, these techniques do not offer any

modular safety guarantee: There is no guarantee that a piece of code would always be well-typed

regardless of its uses in specific compositions.

Morphing offers the power to express structurally abstract code, while maintaining modular

safety guarantees. We demonstrate the power of morphing through MorphJ—a reference language

that demonstrates what we consider the desired expressiveness and safety features of an advanced

morphing language. MorphJ morphing can express highly reusable object-oriented components (i.e.,

generic classes) whose exact members (e.g., fields and methods) are not known until the component

is parameterized with concrete types. For instance, the following MorphJ class implements the

“logging” extension described above:

1 class Logging<class X> extends X {

2 <R,Y*>[meth]for(public R meth (Y) : X.methods)

3 public R meth (Y a) {

4 R r = super.meth(a);

5 System.out.println("Returned: " + r);

6 return r;

7 }

8 }

MorphJ allows class Logging to be declared as a subclass of its type parameter, X. The body

of Logging is defined by static iteration (using the for statement, on line 2) over all methods

of X that match the pattern “public R meth(Y)”. Y, R, and meth are pattern-matching variables.

Y and R can match any non-void type, and meth can match any identifier. Additionally, the *

symbol following the declaration of Y indicates that Y can match a vector of any number of types

(including zero). That is, the above pattern matches all public methods that return any non-void

type. The pattern-matching variables are also used in the declaration of Logging’s methods: for

48



each method of the type parameter X matched, Logging declares a method with the same name

and type signature. (This does not have to be the case, as shown later.) Thus, the exact methods

of class Logging are not determined until it is composed, or type-instantiated, with a concrete

type. For instance, Logging<java.lang.Object> has methods equals, hashCode, and toString:

these are the only public, non-void-returning methods of java.lang.Object.

The above example illustrates the basic feature of MorphJ: code can be declared by iterating

over members of a class or interface matching a pattern. MorphJ also allows even more expressive

iteration conditions using nested patterns. For instance, the following code iterates over the public,

non-void-returning methods of X, such that there is also some method in X with the same name,

taking no argument :

<R,Y*>[meth]for ( public R meth(Y) : X.methods; some R meth() : X.methods ) ...

The positive nested pattern, “some R meth() : X.methods”, places a positive existential con-

dition on the outer, primary pattern. A negative existential condition can be similarly imposed on

the primary pattern by annotating the nested pattern with the keyword no, instead of some, making

it a negative nested pattern.

“Reflective” program pattern matching and transformation, as in the “logging” example, are not

new. Several pattern matching languages have been proposed in prior literature (e.g., [11–13,91]) and

most of them specify transformations based on some intermediate program representation (e.g.,

abstract syntax trees) although the patterns resemble regular program syntax. Compared to such

work, MorphJ makes the following contributions:

• MorphJ makes reflective transformation functionality a natural extension of Java generics.

For instance, our above example class Logging appears to the programmer as a regular

class, rather than as a separate kind of entity, such as a “transformation”. Using a generic

class is a matter of simple type-instantiation, which produces a regular Java class, such as

Logging<java.lang.Object>.

• MorphJ’s support for nested patterns significantly enhances the expressiveness of pattern-

based reflective declarations. Without nested patterns, pattern-based reflective languages are
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mostly limited to expressing wrapper-like patterns [35], such as the logging class Logging<X>.

• Nested patterns also form the basis for adding more features to the MorphJ language, such as

static if and static errorif statements. The static if allows code to exist or not depending

on the existence or absence of other members. The static errorif acts as a type-cast:

it allows the type system to assume the existence or absence of a member, and, if the

assumption is violated, a composition-time error occurs. This enables MorphJ to express

conditional features like those in Chapter 2, in addition to iterative features.

• The power of morphing is illustrated with real-world applications. We present four smaller

examples: a MorphJ reimplementation of Java Collections Framework [5] that replaces 314

lines of hardcoded proxies with 26 lines of highly reusable MorphJ code; two variants of

MorphJ generic classes that provide default implementations for methods—either to provide

default behavior to all methods of any interface (for testing purposes, for instance), or to

provide implementations for unimplemented interface methods, for a combination of any

class and any interface; and a generic list implementation that can sort its elements by any

Comparable field of its elements. We also present a large-scale case study where MorphJ

was used to reimplement DSTM2 [41], a Java software transactional library that heavily uses

reflection and bytecode engineering (with BCEL [9]) to transform sequential classes into

transactional ones. The MorphJ reimplementation replaces 1,484 lines of Java reflection and

BCEL library calls with 576 lines of MorphJ code.

• MorphJ generic classes support separate type checking—a generic class is type-checked

independently of its type-instantiations, and errors are detected if they can occur with any

possible type parameter. This is an invaluable property for generic code: It prevents errors

that only appear for some type parameters, which the author of the generic class may not

have predicted. This problem has been the target of some prior work, such as type-safe

reflection [29], compile-time reflection (CTR) [34], and safe program generation [44]. Yet none

of these mechanisms offer MorphJ’s modular type checking guarantees. For instance, the

Genoupe [29] approach has been shown unsafe, as the reasoning depends on properties that

can change at runtime; CTR [34] only captures undefined variable and type incompatibility
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errors, does not offer a formal system or proof of soundness, and has limited expressiveness

compared to MorphJ (especially with respect to nested patterns and the ability to match

arbitrary numbers of method arguments); SafeGen [44] has no soundness proof and relies on

the capabilities of an automatic theorem prover—an unpredictable and unfriendly process

from the programmer’s perspective. We formalize our type system and prove it sound. We

offer a decidable algorithm for type-checking.

An Illustration of Separate Type-Checking For an example of separate type checking,

consider a “buggy” generic class:

class CallWithMax<class X> extends X {

<A>[m]for(public int m (A) : X.methods)

int meth(A a1, A a2) {

if (a1.compareTo(a2) > 0)

return super.meth(a1);

else

return super.meth(a2);

}

}

The intent is that class CallWithMax<C>, for some C, imitates the interface of C for all single-

argument methods that return int, yet adds an extra formal parameter to each method. The

corresponding method of C is then called with the greater of the two arguments passed to the

method in CallWithMax<C>. It is easy to define, use, and deploy such a generic transformation

without realizing that it is not always well-typed: not all types A will support the compareTo

method. MorphJ detects such errors when compiling the above code, independently of specific

type-instantiations. In this case, the fix is to strengthen the pattern with the constraint that A must

be a subtype of Comparable<A>:

<A extends Comparable<A>>[m]for(public int m (A) : X.methods)

Additionally, the above code has an even more insidious error. The generated methods in

CallWithMax<C> are not guaranteed to correctly override the methods in its superclass, C. For

instance, if C contains two methods, int foo(int) and String foo(int,int), then the latter will

be improperly overridden by the generated method int foo(int,int) in CallWithMax<C> (which

has the same argument types but an incompatible return type). MorphJ statically catches this
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error. This is an instance of the complexity of MorphJ’s modular type checking when dealing with

unknown entities.

In the remainder of the chapter, Section 3.2 introduces basic MorphJ language features; Sec-

tion 3.3 gives real-world examples in which basic MorphJ features increases the modularity and

reusability of software components; Section 3.4 introduces advanced MorphJ features such as

nested patterns; Section 3.5 provide two real-world examples using nested patterns. Section 3.6

gives a gentle and casual overview of MorphJ’s type system, while Section 3.7 formalizes a core

subset of MorphJ and presents the type rules. The proofs of soundness for the formal type system

are presented in Appendix B. We briefly discuss the implementation of MorphJ in Section 3.8.

3.2 Basic MorphJ Features

MorphJ adds to Java the ability to include reflective iteration blocks inside a class or interface

declaration. The purpose of a reflective iteration block is to statically iterate over a certain subset

of a type’s methods or fields, and produce a declaration or statement for each element in the

iterator. Static iteration means that no runtime reflection exists in compiled MorphJ programs. All

declarations or statements within a reflective block are “generated” at compile-time.

A reflective iteration block (or reflective block) has similar syntax to the existing for iterator

construct in Java. There are two main components to a reflective block: the iterator definition, and

the code block for each iteration. The following is a MorphJ class declaration with a very simple

reflective block:

class C<T> {

for ( static int foo () : T.methods ) {|

public String foo () { return String.valueOf(T.foo()); }

|}

}

We overload the keyword for for static iteration. The iterator definition immediately follows

for, delimited by parentheses. This defines the set of elements for iteration, which we call the

reflective range (or just range) of the iterator. The iterator definition has the basic format “pattern

: reflection set”. The reflection set is defined by applying the .methods or .fields keywords

to a type, designating all methods or fields of that type. The pattern is either a method or field

signature pattern, used to filter out elements from the reflection set. Only elements that match
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the pattern belong in the reflective range. In the example above, the reflective range contains only

static methods of type T, with name foo, no argument, and return type int.

The second component of a reflective block is delimited by {|...|}, and contains either

method or field declarations or a block of statements. The reflective block is itself syntactically a

declaration or block of statements, but we prevent reflective blocks from nesting. In case of a single

declaration (as in most examples in this paper), the delimiters can be dropped. The declarations

or statements are “generated”, once for each element in the reflective range of the block. In the

example above, a method public String foo() { ... } is declared for each element in the

reflective range. Thus, if T has a method foo matching the pattern static int foo(), a method

public String foo() exists for class C<T>, as well.

The reflective block in the previous example is rather boring. Its reflective range contains at

most one method, and we know statically the type and name of that method. For more flexible

patterns, we can introduce type and name variables for pattern matching. Pattern matching type

and name variables are defined right before the for keyword. They are only visible within that

reflective block, and can be used as regular types and names. For example:

class C<T> {

T t;

C(T t) { this.t = t; }

<A>[m] for (int m (A) : T.methods )

int m (A a) { return t.m(a); }

}

The above pattern matches methods of any name that take one argument of any type and

return int. The matching of multiple names and types is done by introducing a type variable, A,

and a name variable, m. Name variables match any identifier and are introduced by enclosing them

in [...]. The syntax for introducing pattern matching type variables extends that for declaring

type parameters for generic Java classes: new type variables are enclosed in <...>. We can give

type variable A one or more bounds (e.g., <A extends Foo & Bar>), and the bounds can contain

A itself (e.g., <A extends Comparable<A>>). Multiple type variables can be introduced, as well:

<A extends Foo,B extends Bar>. In addition to the Java generics syntax, we can annotate a

type parameter with keywords class or interface. For instance <interface A> declares a type
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parameter A that can only match an interface type. (This extension also applies to non-pattern-

matching type parameters, in which case A can only be instantiated with an interface.) A semantic

difference between pattern matching type parameters and type parameters in Java generics is that

a pattern matching type parameter is not required to be a non-primitive type. In fact, without

any declared bounds or class/interface keyword, A can match any type that is not void—this

includes primitive types such as int, boolean, etc. To declare a type variable that only matches

non-primitive types, one can write <A extends Object>.

The type and name variables declared for the reflective block can be used as regular types

and names inside the block. In the example above, a method is declared for each method in the

reflective range, and each declaration has the same name and argument types as the method that

is the current element in the iteration. The body of the method calls method m on a variable of

type T—whatever the value of m is for that iteration, this is the method being invoked.

Often, a user does not care (or know) how many arguments a method takes. It is only

important to be able to faithfully replicate argument types inside the reflective block. We provide a

special syntax for matching any number of types: a * suffix on the pattern matching type variable

definition. For instance, if a pattern matching type variable is declared as <A*>, then String m (A)

is a method pattern that matches any method returning String, no matter how many arguments

it takes (including zero arguments), and no matter what the argument types are. Even though A*

is technically a vector of types, it can only be used as a single entity inside of the reflective block.

MorphJ provides no facility for iterating over the vector of types matching A. This relieves us from

having to deal with issues of order or length.

MorphJ also offers the ability to construct new names from a name variable, by prefixing the

variable with a constant. MorphJ provides the construct # for this purpose. To prefix a name

variable f with the static name get, the user writes get#f. Note that get cannot be another

name variable. Creating names out of name variables can cause possible naming conflicts. In later

sections, we discuss in detail how the MorphJ type system ensures that the resulting identifiers

are unique. MorphJ also offers the ability to create a string out of a name variable (i.e., to use

the name of the method or field that the variable currently matches as a string) via the syntax

var.name. The example below demonstrates these features:
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class C<T> {

T t;

C(T t) { this.t = t; }

<R,A*>[m] for (public R m (A) : T.methods )

R delegate#m (A a) {

System.out.println("Calling method "+ m.name + " on "+ t.toString());

return t.m(a);

}

}

The above example shows a simple proxy class that declares methods that mimic the (non-

void-returning) public methods of its type parameter. Declared method names are the original

method names prefixed by the constant name delegate. Declared methods call the corresponding

original methods after logging the call.

In addition to the above features, MorphJ also allows matching arbitrary modifiers (e.g., final,

synchronized or transient), exception clauses, and Java annotations. MorphJ has a set of

conventions to handle modifier, exception, and annotation matching so that patterns are not

burdened with unnecessary detail—e.g., for most modifiers, a pattern that does not explicitly

mention them matches regardless of their presence. We do not elaborate further on these aspects

of the language, as they represent merely engineering conveniences and are orthogonal to the

main MorphJ insights: the morphing language features, combined with a modular type-checking

approach.

3.3 Applications Using Basic Morphing Features

Even with the basic features introduced in the previous section, MorphJ opens the door for express-

ing a large number of useful idioms in a general, reusable way. We next show three applications

using MorphJ that demonstrate the power of its structural abstraction mechanism.

3.3.1 Generic Synchronization Proxy

The Java Collections Framework (JCF) [5] defines a number of synchronization proxy classes for

its main data structure interfaces. For instance, SynchronizedCollection<E>, whose defini-

tion is shown in Figure 8(a), is a synchronization proxy for Collection<E>. For each method

of Collection<E>, SynchronizedCollection<E> defines a method with the same signature.
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Within each method body, a mutex is first acquired, and the call is delegated to the underly-

ing Collection<E> object.

The definition of SynchronizedCollection<E> exhibits two levels of structural redundancy. At

the method level, every method shares the exact same structure, with variations only in the method

a call is delegated to, and the arguments used in the delegation. Another level of redundancy exists

at the class level. The code for SynchronizedCollection<E> represents a fixed composition of the

“synchronization” behavior with the data structure Collection<E>. If the synchronization behavior

is desired for a different data structure, a new class would need to be defined. For instance,

Figure 8(b) is the definition of SynchronizedList<E>, the fixed composition of “synchronization”

with List<E>. The definition of SynchronizedList<E> shares the exact same structural pattern

as SynchronizedCollection<E>: A method is declared for each method of List<E>, and each

method acquires a mutex before delegating the call.

class SynchronizedCollection<E>

implements Collection<E> {

Collection<E> c;

Object mutex;

... // constructors that initialize

// c and mutex

public int size() {

synchronized(mutex) {

return c.size();

}

}

public boolean remove(E e) {

synchronized(mutex) {

return c.remove(e);

}

}

... // repeat for all methods in

// Collection.

}

(a) Synchronization proxy for Collection.

class SynchronizedList<E>

implements List<E> {

List<E> l;

Object mutex;

... // constructors that initialize

// l and mutex

public int size() {

synchronized(mutex) {

return l.size();

}

}

public int indexOf (E e) {

synchronized(mutex) {

return l.indexOf(o);

}

}

... // repeat for all methods in

// List.

}

(b) Synchronization proxy for List.

Figure 8: Definition of synchronization proxies in JCF.

In JCF, four more such synchronization proxies are defined: SynchronizedRandomAccessList,
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SynchronizedSet, SynchronizedSortedSet, SynchronizedMap, and SynchronizedSortedMap. Us-

ing MorphJ, we can implement a highly generic Synchronized<X> class (Figure 9) to replace all

Synchronized* classes in JCF. The MorphJ class can also be reused with many more data structures

that may desire the synchronization behavior.

The MorphJ class Synchronized is a subtype of its type parameter, X. Additionally, X is re-

quired to be an interface, not a class. The body of Synchronized contains two reflective iteration

blocks: lines 7-12, and lines 14-19. The block on lines 7-12 iterates over all non-void returning

method of the type parameter X . For each matching method in X, a method with the same

name and type signature is declared in Synchronized<X>. The body of the method synchro-

nizes on a mutex first, and then delegates the method call to the underlying X object. The

reflective iteration block on lines 14-19 declares similar methods for the void returning methods

of X. Thus, Synchronized<Collection<E>> is the functional equivalent of the hardcoded proxy

SynchronizedCollection<E> we saw in Figure 8.

1 public class Synchronized<interface X> implements X {

2 X me;

3 Object mutex;

4

5 // ... constructor declarations

6

7 <R,A*>[m] for (public R m (A) : X.methods)

8 R m (A args) {

9 synchronized (mutex) {

10 return me.m(args);

11 }

12 }

13

14 <A*>[m] for (public void m (A) : X.methods)

15 void m (A args) {

16 synchronized (mutex) {

17 me.m(args);

18 }

19 }

20 }

Figure 9: A highly generic Synchronized<X> class in MorphJ
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The full version of the above MorphJ class1 consists of less than 26 lines of code, replacing

more than 314 lines of Sychronized* class definitions in the JCF. Compared to classes such as

SynchronizedCollection<E>, Synchronized<X> is more general: It can be composed with any

interface needing the “synchronization” behavior. (A similar generic class can be defined to add

the behavior to classes.) Furthermore, Synchronized<X> is also immune to interface changes in

the interface of X. When a method is added to or deleted from X, or when a method signature

changes, the structure of Synchronized<X> automatically adapts.

3.3.2 Default Class

Consider a general “default implementation” class that adapts its contents to any interface used as

a type parameter. The class implements all methods in the interface, with each method implemen-

tation returning a default value. This functionality is particularly useful for testing purposes—e.g.,

in the context of an application framework (where parts of the hierarchy will be implemented only

by the end user), in uses of the Strategy pattern [35] with “neutral” strategies, etc. Figure 10 shows

such a MorphJ generic class. (Note that the keyword throws in the pattern does not prevent

methods with no exceptions from being matched, since E is declared to match a possibly-zero

length vector of types.)

One can easily think of ways to enrich this example with more complex default behavior, e.g.,

returning random values or calling constructor methods, instead of using statically determined

default values. The essence of the technique, however, is in the iteration over existing methods and

special handling of each case of return type. This is only possible because of MorphJ’s morphing

capabilities. In practice, random testing systems often implement very similar functionality (e.g.,

[25]) using unsafe run-time reflection. Errors in the reflective or code generating logic are thus not

caught until they are triggered by the right combination of inputs, unlike in the MorphJ case.

3.3.3 Sort-by

A common scenario in data structure libraries is that of supporting sorting according to different

fields of a type. Although one can use a generic sorting routine that accepts a comparison function,

1The full version of the MorphJ class declares constructors that allows the caller of a constructor to set the mutex
to either this, or an arbitrary object.
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class DefaultClass<interface I> implements I {

// For each method returning a non-primitive type, make it return null

<R extends Object,A*,E*>[m] for( R m (A) throws E : T.methods )

public R m ( A a ) throws E { return null; }

// For each method returning a primitive type, return a default value

<A*,E*>[m]for( int m (A) throws E : T.methods )

public int m (A a ) throws E { return 0; }

... // repeat the above for each primitive return type.

// For each method returning void, simply do nothing.

<A*,E*>[m] for ( void m (A) throws E : T.methods )

public void m (A a) throws E { }

}

Figure 10: A generic MorphJ class providing default implementations for every method of its type
parameter interface.

the comparison function needs to be custom-written for each field of a type of interest. Instead,

a simpler solution is to morph comparison functions based on the fields of a type.

Consider the implementation of an ArrayList in Figure 11, modeled after the ArrayList class

in the Java Collections Framework. ArrayList<E> supports a method sortBy#f for every field f

of type E. The power of the above code does not have to do with comparing elements of a certain

type (this can be done with existing Java generics facilities), but with calling the comparison code

on the exact fields that need it. For instance, a crucial part that is not expressible with conventional

techniques is the code e1.f.compareTo(e2.f) (line 11), for any field f.

The examples in this section illustrate the power of MorphJ’s morphing features: a generic class

or interface can be shaped by the properties of the members of the type it is composed with. The

morphing approach is similar to reflection, yet all reasoning is performed statically, there is syntax

support for easily creating new fields and methods, and type safety is statically guaranteed.

Even more examples from the static reflection or generic aspects literature [29, 34, 44, 60] can

be viewed as instances of morphing and can be expressed in MorphJ. For instance, the CTR

work [34] allows the user to express a “transform” that iterates over methods of a class that have

a @UnitTestEntry annotation and generate code to call all such methods while logging the unit
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1 public class ArrayList<E> extends AbstractList<E>

2 implements List<E>, RandomAccess, Cloneable, java.io.Serializable {

3 ...// ArrayList fields and methods.

4

5 // For each Comparable field of E, declare a sortBy method

6 <F extends Comparable<F>>[f]for(public F f : E.fields)

7 public void sortBy#f () {

8 Collections.sort(this,

9 new Comparator<E> () {

10 public int compare(E e1, E e2) {

11 return e1.f.compareTo(e2.f);

12 }

13 });

14 }

15 }

Figure 11: An ArrayList implementation providing sorting methods by each comparable field of
its element type.

test results. The same example can be expressed in MorphJ, with several advantages over CTR:

MorphJ is better integrated in the language, using generic classes instead of a “transform” concept;

MorphJ is a more expressive language, e.g., allowing matching methods with an arbitrary number

and types of arguments; MorphJ offers much stronger guarantees of modular type safety, as its

type system detects the possibility of conflicting definitions (CTR only concentrates on preventing

references to undefined entities) and we offer a proof of type soundness (Appendix B).

3.4 Advanced Morphing with Nested Patterns

Though we’ve shown a number of applications of reflective declaration using simple patterns, there

are many tasks that are otherwise perfectly suited for the morphing mechanism, that cannot be

expressed using simple patterns. MorphJ thus introduces nested patterns. A nested pattern has the

same syntactic form as a primary pattern, but is preceded by the keywords “some” (for a positive

nested pattern) or “no” (for a negative nested pattern). Like primary patterns, nested patterns can

only reflect over concrete types, or type variables of the generic class. A nested pattern places a

condition (nested condition) on each element matched by the primary pattern. An element must

be matched by the primary pattern and satisfy all nested conditions to be a part of a reflective

block’s iteration range. We illustrate the need for and uses of nested patterns with the following
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examples.

3.4.1 Negative Nested Pattern

A negative nested pattern exerts a condition that is only satisfied if there is nothing in the range

of elements matched by the pattern.

To see the necessity for negative nested patterns, consider the pesky problem of defining

“getter” methods for fields in a class. Currently, programmers deal with this by repeating the same

boiler-plate code for each field. This seems to be a task perfectly suited for pattern-based reflective

declaration. However, we cannot implement this in a type-safe way using the basic pattern-based

feature of MorphJ. Consider the following attempt:

class AddGetter<class X> extends X {

<F>[f] for ( F f : X.fields )

F get#f () { return super.f; }

}

AddGetter<X> defines a method get#f() for each field f in type variable X. get#f denotes

an identifier that begins with the string “get”, followed by the identifier matched by f.2 How-

ever, AddGetter<X> is not modularly type safe—we cannot guarantee that no matter what X is

instantiated with, AddGetter<X> is always well-typed! Suppose we have class C:

class C {

Meal lunch; ... // other methods.

boolean getlunch() { return isNoon() ? true : false; }

}

AddGetter<C> contains method “Meal getlunch()”, which incorrectly overrides method “boolean

getlunch()” in its superclass, C. For this reason, the definition of AddGetter<X> does not pass

MorphJ’s type-checking.

This is an error of under-specified requirements. The definition of AddGetter<X> should clearly

specify that it can only declare method get#f for those fields f where a conflictingly defined get#f

does not already exist in X. What we need is to place a negative existential condition on each field

matched by the pattern: for all fields f of X such that method get#f() does not already exist in X,

declare the method get#f().

2This MorphJ class only defines getter methods for non-private fields: the semantics of pattern “F f” without
modifier specification is that it matches all non-private fields. This is a limitation with the subclassing-as-extension
based approach that MorphJ adopts.
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Negative nested patterns give us precisely the ability to specify such negative existential con-

ditions. The following is a modularly type safe implementation of AddGetter<X>:

1 class AddGetter<X> extends X {

2 <F>[f]for( F f : X.fields ; no get#f() : X.methods )

3 F get#f() { return super.f; }

4 }

The nested pattern condition on line 2 is only satisfied by those fields f of X for which there

is no method get#f() in X. (The missing return type in the nested pattern is a MorphJ shorthand

for matching both void and non-void return types.) Observe that this AddGetter<X> class will not

introduce ill-typed code for any X. Potentially conflicting method declarations are prevented by the

negative nested pattern. A field f for which a method get#f() already exists in X does not satisfy

the nested condition, and thus is not in the iteration range of the reflective block.

3.4.2 Positive Nested Pattern

A positive nested pattern exerts a condition that is only satisfied if there is some (i.e., at least one)

element in the range matched by the pattern.

To see when positive nested patterns may be useful, consider how one would define a class

Pair<X,Y>, which is a container for objects x and y of types X and Y, respectively. For every

non-void method that X and Y have in common (i.e., same method name and argument types),

Pair<X,Y> should declare a method with the same name and argument types, but a return type

that is another Pair, constructed from the return types of that method in X and Y.

In order to express this type of functionality, we need a positive existential condition: for all

methods in X, such that another method with the same name and argument types exists in Y,

declare a method that invokes both and returns a Pair of their values.

With a positive nested pattern, we can define the Pair<X,Y> class as shown in Figure 12.

Methods of Pair<X,Y> are defined using the reflective block on lines 5-10. The primary pattern on

line 6 matches all non-void and non-primitive methods of X. For each such method, the positive

nested condition on line 7 is only satisfied if a method with the same name and argument types

also exists in Y. Thus, the primary and nested patterns in this class find precisely all methods that

X and Y share in name and argument types. For each such method, Pair<X,Y> declares a method

with the same name and argument types, and a body that invokes the corresponding method of
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X and Y. The return type is another Pair, constructed from the return values of the invocations.

Following the same pattern, the class can be enhanced to also handle methods returning primitive

types or void.

1 public class Pair<X,Y> {

2 X x; Y y;

3 public Pair(X x, Y y) { this.x = x; this.y = y; }

4

5 <RX extends Object, RY extends Object, A*>[m]

6 for( public RX m(A) : X.methods ;

7 some public RY m(A) : Y.methods )

8 public Pair<RX,RY> m(A args) {

9 return new Pair<RX,RY>(x.m(args), y.m(args));

10 }

11 }

Figure 12: A Pair container class using positive nested patterns.

3.4.3 More Features: if, errorif

Nested patterns enable other powerful language features. The reflective declarations we have seen

so far have been iteration-based: a piece of code is declared for each element in the iteration

range. MorphJ also supports condition-based reflective declarations and statements. (Section 3.4.4

explains precisely how nested patterns enable condition-based reflective declarations.) An example

(from an application discussed in detail in Section 3.5) illustrates the usage of pure conditions in

reflective declarations:

<R> if ( no public R restore() : X.methods )

public void restore() { ... }

The above reflective declaration block consists of a statically exerted condition, specified by

the pattern following the if keyword. If the pattern condition is satisfied, the code following the

condition is declared. Thus, method void restore() is only declared if a method restore(), with

any non-void return type, does not already exist in X.

Another useful feature is introduced by the errorif keyword. errorif acts as a type-assertion,

allowing the programmer to express facts that he/she knows to be true about a type parameter.

For instance, the programmer can express a mixin class that is only applicable to non-conflicting
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classes:

class SizeMixin<X> extends X {

<F> errorif ( some F size : X.fields )

int size = 0;

}

In this case, the programmer wants to assert that, if the parameter type C already contains

a field named size, this is not an error in the definition of SizeMixin but in the instantiation

SizeMixin<C>. Thus, the errorif construct serves as a typical type-cast: it is both an assumption

that the type system can use (i.e., when checking SizeMixin<X> it can be assumed that X has no

size field) and at the same time a type obligation for a later type-checking stage. Unlike, however,

traditional type-casts that turn a static type check into a run-time type check, an errorif turns a

modular type check into a non-modular (type-instantiation time), but still static, type check.

A Note on the Similarity of MorphJ and cJ The if capability of MorphJ allows the

declaration of conditional code, similar to that allowed by static type conditions supported by cJ

(Section 2). Static type conditions allow code to be conditionally declared based on subtyping

conditions, where the subtyping hierarchy is nominal (at least in the implementation context

of cJ); MorphJ allows code to be conditionally declared based on the presence (or absence) of

methods or fields matching certain patterns, which are structural conditions. One can achieve

similar conciseness and safety benefits of cJ by remodeling the subtyping conditions into the

structural conditions supported by MorphJ. However, since MorphJ does not integrate with Java’s

use-site variance annotation (i.e., the wildcard), one cannot create a type in MorphJ that cut

across multiple, orthogonal conditions (e.g., List<? extends VariableSize & Mutable>). The

MorphJ if construct, however, is more expressive in allowing code to be declared under negative

conditions, i.e., the absence of certain methods or fields. There is no way to express negative

conditions using static type conditions. A more detailed comparison between MorphJ and cJ is

carried out in Section 4.1.

3.4.4 Semantics of Nested Patterns

Similarly to primary patterns, a nested pattern introduces an iteration. However, nested patterns

are only used to return a true/false decision. For instance, in class Pair<X,Y>, the nested pattern
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iterates over all the methods in Y matching the pattern, but the iteration only serves to verify

whether a matching method exists, not to produce different code for each matching method.

Furthermore, multiple nested patterns are all nested at the same level, forming a conjunction of

their conditions.

Nested patterns may use pattern variables that are not bound by any primary pattern. However,

there are restrictions as to how variables bound only by nested patterns can be used in code

introduced by the reflective block (i.e., the reflective declaration). Pattern variables bound by only

negative nested patterns cannot be used in the reflective declaration at all. For instance, the pattern

“no public R restore()” above bound type variable R. However, R only appears in a negative

nested pattern, and thus cannot be used in the declaration of restore(). Intuitively, a variable in

a negative nested pattern is never bound to any concrete type or identifier—no match can exist

for the negative nested condition to be satisfied. Clearly, an unbound variable cannot be used in

declarations.

Pattern variables that are bound by positive nested patterns, however, can be used in the

reflective declaration, if we can determine that exactly one element can be matched by the nested

pattern. This is the case only if all uniquely identifying parts of the nested pattern use either

constants, or pattern variables bound by the primary pattern. The uniquely identifying parts of

a method pattern are its name and argument types, and the uniquely identifying part of a field

pattern is its name. For example, in Pair<X,Y>, the positive nested pattern “some RY m(A) :

Y.methods” uses m and A in its uniquely identifying parts. Both pattern variables are bound by the

primary pattern. Thus, we can use RY in the reflective declaration, even though it only appears in

the nested pattern.

It may not be immediately obvious how if and errorif relate to nested patterns. However,

the type system machinery that enables if and errorif is precisely that of nested patterns.

The patterns used as if and errorif conditions are regular nested patterns (with some and no)

with the same semantics and conditions (e.g., limitations on when bound variables can appear in a

reflective declaration). Indeed, even our actual implementation of the static if statement translates

it intermediately into a static for loop with a special “unit” value for the primary pattern condition.

We do not allow the nesting of primary patterns—i.e., it is not legal to have nested static
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for loops. However, if and errorif declarations and statements can be freely nested within the

scopes of one another, or within the scope of a static for loop.

3.5 Applications using Nested Patterns

We next show two real world applications, re-implemented concisely and safely with nested pat-

terns.

3.5.1 DSTM2

DSTM2 [41] is a Java library implementing object-based software transactional memory. It provides

a number of “transactional factories” that take as input a sequential class, and generate a transac-

tional class. Each factory supports a different transactional policy. The strength of DSTM2 is in its

flexibility. Users can mix and match policies for objects, or define new “factories” implementing

their own transactional policies.

In order to automatically generate transactional classes, DSTM2 factory classes use a combina-

tion of Java reflection, bytecode engineering with BCEL [9], and anonymous class definitions. For

instance, for any input Java class, DSTM2 uses the Java reflection API to retrieve all fields annotated

with @atomic, and generates appropriate “getter” and “setter” methods for these fields by injecting

the bytecode representation of these methods into the input class file. However, the information

needed for these generations is purely static and structural. The authors of DSTM2 had to em-

ploy low-level run-time techniques because the Java language does not offer enough support for

compile-time transformation of classes. MorphJ, however, is a good fit for this task.

In our re-implementation of DSTM2’s factories and supporting classes, 1,484 (non-commented,

non-blank) lines of Java code are replaced with 576 lines of MorphJ code. For example, we replaced

DSTM2’s factory.shadow.RecoverableFactory<X> and factory.shadow.Adaptor<X> with the

MorphJ class Recoverable<X> in Figure 13.

For each field of X, Recoverable<X> creates a shadow field, as well as getter and setter methods

that acquire a lock from a transactional manager first, perform the read or write, and then resolve

conflicts before returning. Furthermore, it creates backup() and restore() methods to backup

and restore fields to and from their shadow fields.3

3The MorphJ implementation shown in this document replicates the predecessor of DSTM2, SXM [40], by iterating
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1 @atomic public class Recoverable<class X> extends X {

2 // for each atomic field of X, declare a shadow field.

3 <F>[f]for(@atomic F f: X.fields; no shadow#f: X.fields)

4 F shadow#f;

5

6 // for each field of X, declare a getter.

7 <F>[f]for(@atomic F f: X.fields; no get#f(): X.methods)

8 public F get#f () {

9 Transaction me = Thread.getTransaction();

10 Transaction other = null;

11 while (true) {

12 synchronized (this) {

13 other = openRead(me);

14 if (other == null) { return f; }

15 }

16 manager.resolveConflict(me, other);

17 }

18 }

19

20 // for each field of X, declare a setter

21 <F>[f]for(@atomic F f : X.fields;

22 no set#f(F) : X.methods)

23 public void set#f ( F val ) {

24 ... // code to open transaction.

25 f = val;

26 ... // code resolving conflict.

27 }

28

29 // create backup method

30 <R>if ( no R backup() : X.methods )

31 public void backup() {

32 <F>[f] for (@atomic F f : X.fields)

33 shadow#f = f;

34 }

35

36 // create recover method

37 <R>if ( no R recover() : X.methods )

38 public void recover() {

39 // restore field values from shadow fields.

40 <F>[f] for ( @atomic F f : X.fields )

41 f = shadow#f;

42 }

43 }

Figure 13: A recoverable transactional class in MorphJ.
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The advantage of the MorphJ implementation is two-fold. First, Recoverable<X> is guaranteed

to never declare conflicting declarations. For example, shadow#f is only declared if this field does

not already exist in X, and backup() is only declared if such a method does not already exist in

X. Implementations using reflection and bytecode engineering enjoy no such guarantees, and must

instead rely on thorough testing to discover potential bugs.

Secondly, class Recoverable<X> is easier to write and understand. For example, the code for

generating a backup() method in DSTM2’s RecoverableFactory<X> is illustrated in Figure 14. We

invite the reader to compare the backup() method declaration in Figure 13 (lines 29-33) to the code

in Figure 14.

Interestingly, the predecessor of DSTM2 is a C# software transactional memory library called

SXM [40]. It was re-implemented by Fähndrich, Carbin and Larus as the “quintessential example” of

Compile-Time Reflection (CTR) [34]. However, CTR’s safety guarantees only concern the validity of

references, and not declaration conflicts. We give a more detailed exposition of CTR in Chapter 4.

3.5.2 Default Implementations for Interface Methods

Java ensures that a class cannot be declared to “implement” an interface unless it provides im-

plementations for all of the interface’s methods. This often results in very tedious code. For

instance, it is common in code dealing with the Swing graphics library to implement an event-

listener interface, yet provide empty implementations for most of the interface methods because

the application does not care about the corresponding events. In response to this need, there have

been mechanisms proposed [43, 72] that allow the programmer to specify that he/she wants just

a default implementation for all members of an interface that are not already implemented by a

class. These past solutions introduced new keywords (or Java annotations) for this specific feature.

They either have no guarantee for the well-typedness of generated code [43], or require extensions

to the Java type system [72]. These changes to the underlying language are required to support just

this one feature. In contrast, we can express these language extensions as a MorphJ generic class

that is guaranteed to always produce well-typed code. Figure 15 shows a slightly simplified version

over the @atomic fields of classes, and generating backup fields as needed. The new version, DSTM2, uses factories to
generate transactional classes from interface definitions. It parses the interface’s method names that begin with “get”
and “set” to determine the field names to generate. There is a corresponding MorphJ implementation that operates on
input interfaces. We discuss that particular version in Section 4.7.3.
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public class RecoverableFactory<X> extends BaseFactory<X> {

...

public void createBackup() {

InstructionList il = new

InstructionList(); MethodGen method =

new MethodGen(ACC_PUBLIC, Type.VOID, Type.NO_ARGS,

new String[] { }, "backup",

className, il, _cp);

for (Property p : properties) {

InstructionHandle ih_0 =

il.append(_factory.createLoad(Type.OBJECT, 0));

il.append(_factory.createLoad(Type.OBJECT, 0));

il.append(_factory

.createFieldAccess(className, p.name,

p.type,

Constants.GETFIELD));

il.append(_factory.

.createFieldAccess(className,

p.name + "$",

p.type,

Constants.PUTFIELD));

}

InstructionHandle ih_24 =

il.append(_factory.createReturn(Type.VOID));

method.setMaxStack();

method.setMaxLocals();

_cg.addMethod(method.getMethod());

il.dispose();

}

}

Figure 14: DSTM2 code for creating a method backup().
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class DefaultImplementation<X,interface I> implements I {

X x;

DefaultImplementation(X x) { this.x = x; }

// for all methods in I, if the same method does

// not appear in X, provide default implementation.

<R extends Object,A*>[m]for( R m (A) : I.methods ;

no R m (A) : X.methods )

R m (A a) { return null; }

// for all methods in X that *do* correctly override

// methods in I, we need to copy them.

<R,A*>[m]for( R m (A) : I.methods ;

some R m (A) : X.methods )

R m (A a) { return x.m(a); }

// for all methods in X, such that there is no method

// in I with the same name and arguments, copy method.

<R,A*>[m]for( R m (A) : X.methods;

no m (A) : I.methods)

R m (A a) { return x.m(a); }

}

Figure 15: A MorphJ generic class providing default implementations of methods in any interface
I.

of the MorphJ solution to this problem. (For conciseness, we elide the declarations dealing with

void- or primitive-type-returning methods, which roughly double the code.)

Class DefaultImplementation<X,I> copies all methods of type X that either correctly imple-

ment methods in interface I, or are guaranteed to not conflict with methods in I. For methods

in I that have no counterpart in X, a default implementation is provided. Methods in X that

conflict with methods in I (same argument types, different return types) are ignored. The code

for DefaultImplementation<X,I> demonstrates the power of nested patterns, both in terms of

expressiveness, and in terms of type safety. The application naturally calls for different handling of

methods in a type, based on the existence of methods in another type. Furthermore, these decla-

rations are guaranteed to be unique, and their uniqueness is crucially based on nested patterns.

Note that the difference between DefaultImplementation<X,I>, shown here, and

DefaultClass<I> shown in Figure 10, is that DefaultImplementation<X,I> preserves the behavior

of those methods of I that are already defined in X. DefaultClass<I>, on the other hand, is only
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parameterized by an interface type variable, and provides default implementations for all methods

of that interface.

3.6 Type-Checking MorphJ: A Casual Discussion

Higher variability always introduces complexity in type systems. For instance, polymorphic types

require more sophisticated type systems than monomorphic types, because polymorphic types can

reference type “variables”, whose exact values are unknown at the definition site of the polymorphic

code. In MorphJ, in addition to type variables, there are also name variables—declarations and

references can use names reflectively retrieved from type variables. Thus, the exact values of

these names are not known when writing a generic class. Yet, the author of the generic class

needs to have some confidence that his/her code will work correctly with any parameterization in

its intended domain. The job of MorphJ’s type system is to ensure that generic code does not

introduce static errors, for any type parameter that satisfies the author’s stated assumptions.

There are two main challenges in type-checking a MorphJ program: 1) how do we determine that

declarations made with name variables are unique, i.e., there are no naming conflicts, when we do

not know the exact identifiers these name variables could represent, and 2) how do we determine

that references always refer to declared members and are well-typed, when we know neither the

exact names of the members referenced, or the exact names of the members declared. The key

insight is to treat a declaration as a range of declared elements. (A declaration made without

pattern variables has a one-element range.) Determining the uniqueness of two declarations then

reduces to determining whether their ranges are disjoint. Similarly, a reference is also a range.

Determining whether a reference is valid then reduces to determining containment : Are all entities

in the reference range contained, i.e., have corresponding entities, within the declaration range?

In this section, we present through examples the main problems and insights for checking

reference validity and declaration uniqueness in MorphJ programs. We focus on declarations and

references made by reflecting over type variables: Reflecting over non-variable types is simply

syntactic sugar for manually inlining the declarations. We further focus on the rules for type-

checking methods—rules for fields are a trivial adaptation of those for methods.
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3.6.1 Uniqueness of Declarations

We use range disjointness to check whether declarations are unique. In the case of method

declarations, uniqueness means two methods within the same class (including inherited methods)

cannot have the same name and argument types.4

3.6.1.1 Internally Well-defined Range

A simple property to establish is the uniqueness of declarations introduced by the same reflective

iteration block.

Simple case: Consider a simple MorphJ class:

class CopyMethods<X> {

<R,A*>[m] for( R m (A) : X.methods ; nestedConditions )

R m (A a) { ... }

}

CopyMethods<X>’s methods are declared within one reflective block, which iterates over all

the methods of type parameter X. For each method returning a non-void type that also satisfies

nestedConditions, a method with the same signature is declared for CopyMethods<X>.

How do we guarantee that, given any X, CopyMethods<X> has unique method declarations

(i.e., each method is uniquely identified by its 〈name, argument types〉 tuple)? Observe that X

can only be instantiated with another well-formed type (the base case being Object), and all

well-formed types have unique method declarations. Thus, if a type merely copies the method

signatures of another well-formed type, as CopyMethods<X> does, it is guaranteed to have unique

method signatures, as well. The same principle also applies to reflective field declarations. Nested

conditions only serve to remove more methods from the outer iteration range. Thus, regardless of

the specific nestedConditions, the above declaration is always legal.

It is important to make sure that reflective declarations copy all the uniquely identifying parts

of a method or field. For example, the uniquely identifying parts of a method are its name together

with its argument types. Thus, a reflective method declaration that only copies either name or

4In Java, methods in a subclass are allowed to override their counterparts in the superclass with co-variant return
types. This involves a relaxation of the rules we describe in this section: Return types in the subclass are allowed to be
subtypes of their counterparts in the superclass.
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argument types would not be well-typed. For example:

class CopyMethodsWrong<X> {

<R,A*>[m] for( R m (A) : X.methods )

R m () { ... }

}

The reflective declaration in CopyMethodsWrong<X> only copies the return type and the name

of the methods of a well-formed type. This would cause an error if instantiated with a type with

an overloaded method:

class Overloaded {

int bar (int a);

int bar (String s);

}

CopyMethodsWrong<Overloaded> would have two methods, both named bar, taking no argu-

ments.

There is no way to express nested conditions that would filter out methods defined using

overloaded method names. Such a nested condition would need to explicitly say that there are

no methods in X with the same name, but different arguments than the methods matched by the

primary pattern. MorphJ explicitly does not allow such inequality conditions.

Beyond Copy and Paste: Morphing of classes and interfaces is not restricted to copying

the members of other types. Matched type and name variables can be used freely in reflective

declarations and statements. For example:

class ChangeArgType<X> {

<R,A extends Object>[m] for ( R m (A) : X.methods ; nestedConditions )

R m ( List<A> a ) { /* do for all elements */ ... }

}

In ChangeArgType<X>, for each method of X that takes one non-primitive type argument A and

returns a non-void type R, a method with the same name and return type is declared. However,

instead of taking the same argument type, this method takes a List instantiated with the original

argument type. Even though ChangeArgType<X> does not copy X’s method signatures exactly, we

can still guarantee that all methods of ChangeArgType<X> have unique signatures, no matter what

X is. The key is that a reflective declaration can manipulate the uniquely identifying parts of a

method, (i.e., name and argument types), by using them in type (or name) compositions, as long

73



as these parts remain in the uniquely identifying parts of the new declaration. The following is an

example of an illegal manipulation of types:

class IllegalChange<X> {

<R,A>[m] for ( R m (A) : X.methods ; nestedConditions )

A m ( R a ) { ... }

}

In the above example, the uniquely identifying part of X’s method is no longer the uniquely

identifying part of IllegalChange<X>’s method: the argument types of X’s method is no longer

part of the argument types of IllegalChange<X>’s method. Using class Overloaded defined

above, IllegalChange<Overloaded> will cause an error in the generated code. Again, no nested

conditions here can prevent this type of declaration conflicts.

3.6.1.2 Uniqueness Across Ranges

When there are multiple reflective blocks in the same type declaration, we need to guarantee that

the declarations in one block do not conflict with the declarations in another block. For two

reflective method declarations, their uniqueness means that the range of their 〈name, argument

types〉 tuples cannot overlap. This can be determined by a two-way unification of the two

declarations. In a two-way unification, pattern variables from both reflective blocks are unification

variables.

Let us start with a simple example. Consider the following class:

1 class DisjointDecs<X> {

2 <R>[m] for(R m (int) : X.methods; nestedConditions1 )

3 R m (int i) { ... }

4

5 <S>[n] for(S n (int) : X.methods; nestedConditions2 )

6 S n (int i, String s) { ... }

7 }

It is easy to see that the declarations on lines 3 and 6 cannot overlap for any X. There is no

unification to make the two signatures have the same 〈name, argument types〉 tuple, because there

is simply no way to unify {int} with {int,String}.

When two method signatures do unify, there may be overlap in the declarations. However,

if we can prove that conditions causing the overlap are infeasible, then the declarations are still

unique. An overlap is infeasible if the unification mapping producing the overlap, when applied to
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the primary and nested patterns, produces mutually exclusive conditions. Note that a non-empty

primary pattern range states a condition, as well—it is a positive condition that says some element

exists in this range.

Consider the following class:

1 class StillUnique<X> {

2 <A1>[m]for( String m (A1) : X.methods ; nestedConditions1 )

3 void m (A1 a) { ... }

4

5 <A2>[n]for( int n (A2) : X.methods ; nestedConditions2 )

6 void n (A2 a) { ... }

7 }

The declared signatures on lines 3 and 6 unify with the mapping {m7→n, A17→A2}. Applying this

mapping to the primary patterns on lines 2 and 5, we get “String n (A2) : X.methods”, and

“int n (A2) : X.methods”. Methods matched by these patterns can cause conflicting declara-

tions. However, having at least one method in both of these ranges means that there need to be

two methods in X with the same name and argument types, but different return types. This directly

contradicts the fact that X is a well-formed type. Thus, this unification mapping produces mutually

exclusive conditions between the two primary pattern conditions, and there are no elements that

would make the mapping possible. These declarations are thus still disjoint.

To generalize the rules for determining range disjointness, let 〈Pn,Tn〉 denote the range of

pattern Pn matching over the methods of type Tn, let + prefix a positive pattern condition, and

− prefix a negative condition. There are two conditions for determining disjointness of ranges:

• +〈Pn,Tn〉 and +〈P ′n,Sn〉 are mutually exclusive if Tn is a subtype of Sn, and Pn, P ′n have

unifying method name and argument types, but different return types.

• +〈Pn,Tn〉 and −〈P ′n,Sn〉 are mutually exclusive if 〈P ′n,Sn〉 subsumes 〈Pn,Tn〉

We apply these rules on all pairs of conditions. A single mutual exclusive pair guarantees the

disjointness of ranges. We applied the first rule to prove that StillUnique<X> contains unique

method declarations. The following example demonstrates an application of the second rule:
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1 public class UnionOfStatic<X,Y> {

2 <A*>[m] for( static void m (A) : X.methods; nestedConditions)

3 public static void m(A args) { X.m(args); }

4

5 <B*>[n] for( static void n (B) : Y.methods ;

6 no static void n (int, B) : X.methods )

7 public static int n(int count, B args) {

8 for (int i = 0; i < count; i++) Y.n(args);

9 return count;

10 }

11 }

The two method declarations on lines 3 and 7 have signatures that can be unified with the

mapping { A7→{int,B}, m 7→n}. Applying this substitution to the primary pattern on line 2 yields

“static void n(int,B) : X.methods”. Having a method in the range of this pattern directly

contradicts the condition of the negative nested pattern on line 6, which states there should

be no methods in the range of “static void n(int,B) : X.methods”. Thus, the two method

declarations are unique for all X and Y.

Reflective and Regular Methods Together: Declaration conflicts can also occur when

a class has both regular and reflectively declared members. For example, in the following class

declaration, we cannot guarantee that the methods declared in the reflective block do not conflict

with method int foo().

class Foo<X> {

int foo () { ... }

<R,A*>[m]for ( R m (A) : X.methods ; nestedConditions )

R m (A a) { ... }

}

Just as in the case of multiple iterators, the main issue is establishing the disjointness of

declaration ranges, with the regular methods acting as a constant declaration range. In this case,

a simple way is to use a nested condition to ensure that there is no method named foo in X:

no foo(S) : X.methods, where S is declared as pattern type variable S*. This nested condition

is mutually exclusive with the primary pattern condition—no method in the range of the primary

pattern can possibly satisfy the nested condition, and thus no method will be declared at all

through this reflective block.
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Using Static Prefixes: In general, we can guarantee the uniqueness of declarations across

reflective blocks by proving either type signature or name uniqueness. A general way to establish

the uniqueness of declarations is by using unique static prefixes on names. (For static prefixes to

be uniquely identifying, they must not be prefixes of each other.) For instance, our earlier example

can be rewritten correctly as:

class Manipulation<X> {

<R>[m] for ( R m (List<X>) : X.methods )

R list#m (List<X> a) { ... }

<R>[m] for ( R m (X) : X.methods )

R nolist#m (List<X> a) { ... }

}

Proper Method Overriding and Mixins: Proper overriding means that a subtype should

not declare a method with the same name and arguments as a method in a supertype, but a

non-covariant return type. Ensuring proper method overriding is a special case of declaration

range disjointness: if two methods’ 〈name, argument types〉 tuples are not unique, they are still

well-typed declarations if we can establish that the overriding method’s return type is a subtype of

the overriden return type.

One case that deserves some discussion is that of a type variable used as a supertype. (In

case the type is a class, it is implicitly assumed to be non-final.) This is sometimes called a mixin

pattern [15, 82]. Since the supertype could potentially be any type, we have no way of knowing its

declarations. For instance, the following class is unsafe and will trigger a type error, as there is no

guarantee that the superclass does not already contain an incompatible method foo.

class C<class T> extends T {

int foo () { ... }

}

Static prefixes are similarly insufficient to guarantee that subtype methods do not conflict with

supertype methods. As a result, there are two legal ways to declare mixins in MorphJ.

First, the subclass may contain no members other than reflective iterators over its supertype

that declare overriding versions for (some subset of) the supertype’s methods. For instance, the

following is a legal MorphJ class:
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class C<class T> extends T {

<R,A>[m] for (R m (A) : T.methods)

R m (A a) { ... }

}

The class correctly overrides some of its superclass’s methods (those accepting and returning

one argument).

Alternatively, the subclass may use proper nested conditions to eliminate possibilities of illegal

overriding. For instance:

class C<class T> extends T {

if ( no foo () : T.methods )

int foo () { ... }

}

3.6.2 Validity of References

Another challenge of modular type checking for a morphing language is to ensure the validity

of references. We use the term “validity” to refer to the property that a referenced entity has a

definition, and its use is well-typed.

3.6.2.1 Reference within the Same Range

Let us take another look at class Logging<X> from Section 3.1:

1 class Logging<class X> extends X {

2 <R,Y*>[meth]for(public R meth (Y) : X.methods)

3 public R meth (Y a) {

4 R r = super.meth(a);

5 System.out.println("Returned: " + r);

6 return r;

7 }

8 }

How do we know that the method invocation “super.meth(a)” (line 4) is valid? Notice that the

range of meth (i.e., all the identifiers it could expand to) is exactly the names of methods matched

by the primary pattern on line 2: all non-void methods of X. This range is certainly contained by

the range of all methods declared for X. Thus, we know method meth exists, no matter what X is.

Furthermore, how do we know we are invoking meth with the right arguments? The type of a is Y:

exactly the argument type m of X is expecting.
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3.6.2.2 Reference Across Ranges

Things get a bit more complex when a name variable bound in one reflective block references

a method declared in a different reflective block. Consider the following class, which logs the

arguments of methods accepting strings, before calling Logging to log the return value.

1 class LogStringArg<class Y> {

2 Logging<Y> loggedY;

3

4 <T>[n] for ( public T n(String) : Y.methods )

5 public T n (String s) {

6 System.out.println("arg: " + s);

7 return loggedY.n(s);

8 }

9 }

How do we know that loggedY.n(s) (line 7) is a valid reference, when the methods of loggedY

are defined in a different class and a different reflective block? The key is to determine that the

range of n is contained by the range of method names in Logging<Y>. This is to say that the range

of n’s enclosing reflective block should be contained by the range of Logging<Y>’s declaration

reflective block. Observe that the declaration block of Logging<Y> is defined over methods of

Y (after substituting Y for X), as is the reflective block enclosing n. Secondly, the pattern for the

declaration block of Logging<Y> is more general than the pattern for the reflective block enclosing

n: the former matches all non-void methods, and the latter matches all non-void methods taking

exactly one String argument. Thus, any method that is matched by the reference reflective

block’s pattern is matched by the declaration reflective block’s pattern, regardless of what Y is.

Consequently, there is always a method n in Logging<Y>.

Whether a pattern is more general than another can be systematically determined by finding

a one-way unification from the more general pattern to the more restricted one. In a one-way

unification, only pattern variables declared for the more general pattern are used as unification

variables. All other pattern variables are considered constants. In this example, we can unify

“public R m(A)” to “public T n(String)” using the mapping {R 7→T, m 7→n, A7→{String}}.

We also use this unification mapping in determining whether n is invoked with the right

argument types. We apply the mapping to the method declaration in Logging<Y>, and get the

declared signature “public T n(String)”. Since s has the type String, the invocation is clearly
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correct. Furthermore, we can check that the result of the invocation is of type T, which is precisely

the expected return type of the method enclosing “loggedY.n(s)”.

For a case with nested patterns, consider the following class:

1 class VoidPair<X,Y> {

2 X x; Y y; ...// constructor to initialize x and y.

3

4 <A*>[m]for ( public void m(A) : X.methods ;

5 some public void m(A) : Y.methods )

6 public void m (A a) { x.m(a); y.m(a); }

7 }

VoidPair<X,Y> declares a method for every void method that X and Y share in name and

argument types, and invokes that method on x and y. Using the reference rules described

previously, we know that x.m(a) is a valid reference. Furthermore, because the pattern variables

used in the positive nested pattern on line 5 are all bound by the primary pattern, we know that if

the nested condition is satisfied, there is exactly one element in the range of the nested pattern, so

the call y.m(a) is unambiguous. Since the types also match, y.m(a) is a valid reference, as well.

Let us now consider the general case of a reference made in one reflective block, to declarations

made in another reflective block, when both blocks have nested patterns. Let Rd and Rr denote

the ranges for the reflective blocks of the declaration and the reference, respectively. There are two

sufficient conditions to determine that Rr is subsumed by Rd. First, the primary range of Rr must

be subsumed by the primary range of Rd. Second, for all methods that are in the primary range

of Rr (and thus also in the primary range of Rd), if the method satisfies the nested conditions of

Rr , it should also satisfy the nested conditions of Rd. That is to say, the nested conditions of Rr

should be stronger, and imply the nested conditions of Rd.

Determining that one nested condition implies another can be reduced to single range con-

tainment. Using the same notation as before, we have two ways of determining that one condition

implies another:

• +〈Nr,Tr〉 implies +〈Nd,Td〉 if 〈Nd,Td〉 contains 〈Nr,Tr〉.

• −〈Nr,Tr〉 implies −〈Nd,Td〉 if 〈Nr,Tr〉 contains 〈Nd,Td〉.

Intuitively, +〈Nr,Tr〉 is satisfied if there is at least one element in 〈Nr,Tr〉. Then there is

certainly at least one element in a larger range, as well. Thus, +〈Nd,Td〉 should be satisfied.
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Similar reasoning applies for the implication between two negative conditions.

To be more concrete, consider the following class:

8 class CallVoidsWithString<T,S> {

9 VoidPair<T,S> voidPair;

10 ... // constructor to initialize voidPair

11 [n]for ( public void n(String) : T.methods ;

12 some public void n(String) : S.methods )

13 public void n (String s) { voidPair.n(s); }

14 }

For every void method taking one String argument that T and S have in common,

CallVoidsWithString<T,S> declares a method with the same signature, and invokes a method

with the same name on voidPair, of type VoidPair<T,S>. This reference is valid if the range of

the reflective block on lines 11-12 is contained by the range of the declaration reflective block (lines

4-5 in the definition of VoidPair).

The range of the primary pattern on line 11 is contained by the range of the declaration’s

primary pattern (line 4), by the one-way unification mapping {m7→n, A7→{String}}.

To check whether the nested pattern on line 5 contains the nested pattern on line 12, note that

we first apply the unification mappings obtained from unifying the primary patterns—we only want

to determine this containment relationship for those methods that lie in the range of both primary

patterns. In our example, after applying the unification mapping to the positive nested pattern

on line 5 (and also substituting S for Y), we have “public void n(String) : S.methods”. This

clearly contains “public void n(String) : S.methods” on line 12.

These two conditions guarantee us that reference voidPair.n(s) is always a valid one. It is

easy to check that this is indeed the case.

The above approach generalizes to an arbitrary number of nested conditions: Each nested

condition in the declaration range must be implied by at least one nested condition in the reference

range. A range with no nested patterns is equivalent to a range with a positive nested pattern that

contains everything, or a negative nested pattern that is contained by everything. The case where

there are only nested patterns (i.e., if and errorif statements) can be reduced to a range with a

special primary pattern value that contains only itself and is contained only by itself.
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3.7 Formalization

We present a formalization, FMJ, which is based on FGJ [47], with differences (other than the simple

addition of our extra environment, Λ) highlighted in grey . Figures in which all rules are new to

FMJ (Figures 18,20,21) are not highlighted at all, for better readability.

3.7.1 Syntax

The syntax of FMJ is presented in Figure 16. We adopt many of the notational conventions of FGJ:

C,D denote constant class names; X,Y,Z denote type variables; N,P,Q,R denote non-variable types

(which may be constructed from type variables); S,T,U,V,W denote types; f denotes field names; m

denotes non-variable method names; x,y denote argument names. Notations new to FMJ are: η

denotes a variable method name; n denotes either variable or non-variable names; o denotes a

nested condition operator (either + or -, for the keywords some or no, respectively).

T ::= X | N

N ::= C<T>

CL ::= class C<X/N>/ N {T f; M}

| class C<X/N>/ T {T f; M }

M ::= T m (T x) {↑e;}
M ::= <Y/P>for(Mp;oMn) U η (U x) {↑e;}
o ::= + | -
M ::= V η (V):X.methods
e ::= x | e.f | e. n (e) | new C<T>(e)
n ::= m | η

Figure 16: FMJ: Syntax

We use the shorthand T for a sequence of types T0,T1,...,Tn, and x for a sequence of

unique variables x0,x1,...,xn. We use : for sequence concatenation, e.g. S:T is a sequence

that begins with S, followed by T. We use • to denote an empty sequence. We use ∈ to mean “is

a member of a sequence” (in addition to set membership). We use . . . for values of no particular

significance to a rule. / and ↑ are shorthands for the keywords extends and return, respectively.

Note that all classes must declare a superclass, which can be Object.

FMJ formalizes some core MorphJ features that are representative of our approach. One

simplification is that we do not allow a nested pattern to use any pattern type or name variables
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not bound by its primary pattern. We also do not formalize reflecting over a statically known type,

or using a constant name in reflective patterns. These are decidedly less interesting cases from

a typing perspective. The zero or more length type vectors T* are also not formalized. These

type vectors are a mere matching convenience. Thus, safety issues regarding their use are covered

by non-vector types. We do not formalize reflectively declared fields—their type checking is a

strict adaptation of the techniques for checking methods. Lastly, static name prefixes, casting

expressions and polymorphic methods are not formalized.

FGJ does not support method overloading, and FMJ inherits this restriction. Thus, a method

name alone uniquely identifies a method definition. Furthermore, since we allow no fresh name

variables in nested patterns, there can be only one name variable in a pattern, and we use the

keyword η for name variables, instead of allowing arbitrary identifiers. A reflective definition must

also use this same name (since static prefixes are not allowed and constant names would be illegal

due to conflicts). This results in a small simplification over the informal rules, but leaves their

essence intact.

A program in FMJ is an (e,CT ) pair, where e is an FMJ expression, and CT is the class table.

We place some conditions on CT : Every class declaration class C... has an entry in CT ;

Object is not in CT . The subtyping relation derived from CT must be acyclic, and the sequence

of ancestors of every instantiation type is finite. (The last two properties can be checked with the

algorithm of [8] in the presence of mixins.)

3.7.2 Typing Judgments

The main typing rules of FMJ are presented in Figure 17, with auxiliary definitions presented in

Figures 18 and 19. We recommend reading our text description and referring to the rules as needed

in the flow of the text. Alternatively, the PDF version of this document contains hyperlinks in type

rules, from operators to their text description.

There are three environments used in our typing judgments:

• ∆: Type environment. Maps type variables to their upper bounds.

• Γ: Variable environment. Maps variables (e.g., x) to their types.
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Expression typing:

∆;Λ;Γ`x ∈ Γ(x) (T-VAR)

∆;Λ;Γ`e0∈T0 ∆`fields(bound∆(T0))=T f

∆;Λ;Γ`e0.fi∈Ti (T-FIELD)

∆;Λ;Γ`e0∈T0 ∆;Λ;Γ`e∈S ∆; Λ `mtype(n, T0) =T→T ∆`S<:T
∆;Λ;Γ`e0.n(e)∈T (T-INVK)

∆ `C<T> ok ∆`fields(C<T>)=U f ∆;Λ;Γ`e∈S ∆ `S<:U
∆;Λ;Γ`new C<T>(e)∈C<T> (T-NEW)

Method typing:

∆=X<:N Γ=x7→T,this7→C<X> Λ=∅ ∆ `T,T0 ok
∆;Λ;Γ`e0 ∈S0 ∆ `S0<:T0

CT (C)=class C<X/N>/N {...} ∆; Λ `override(m, N, T→T0)
T0 m (T x) { ↑e0; } OK IN C<X/N> (T-METH-S)

∆=X<:N,Y<:P Γ=x7→T,this7→C<X> ∆ `P,T,T0,N ok ∆ `Mp ,Mf ok
Rp=range(Mp ,<Y/P>) Rn=range(Mf ,•) Λ=〈Rp ,oRn〉

∆;Λ;Γ`e∈S0 ∆ `S0<:T0

CT (C)=class C<X/N>/T { ... } ∆; Λ `override(η, T, T→T0)
<Y/P>for(Mp;oMf) T0 η (T x) {↑e;} OK IN C<X/N> (T-METH-R)

Class typing:

∆=X<:N ∆ `N,N,T ok M OK IN C<X/N>
class C<X/N>/N { T f; M} OK (T-CLASS-S)

∆=X<:N ∆ `N,T,T ok for all Mi∈M, Mi OK IN C<X/N>
for all Mi,Mj∈M, Λi=reflectiveEnv(Mi) Λj=reflectiveEnv(Mj)

∆`disjoint(Λi, Λj)
class C<X/N>/T { T f; M} OK (T-CLASS-R)

Well-formed types:

∆ `Object ok (WF-OBJECT)

X∈dom(∆)
∆`X ok (WF-VAR)

CT (C)=class C<X/N>/ T { ... } ∆ `T ok ∆ `T<:[T/X]N
∆ `C<T> ok (WF-CLASS)

Well-formed Patterns:

M=U0 η (U) :T.methods ∆ `U0,U,T ok
∆ `M ok (WF-PAT)

Figure 17: FMJ: Typing Rules
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Range Construction Functions:

M=U0 η (U) : X.methods

range(M,<Y/P>) =(X, <Y/P>U→U0)

M=<Y/P>for (Mp ;oMf) U0 η (U x) {↑e;}
Rp=range(Mp ,<Y/P>) Rn=range(Mf ,•) Λ=〈Rp ,Rn〉

reflectiveEnv(M) =Λ

Specializing reflective environment:

Λd=〈Rp ,oRn〉 Rp=(Ti, <Y/P>U→U) Rn=(Tj , V→V)
∆;Λ`mtype(m, Ti)=U′→U′ R′p=(Ti, U′→U′)

R′n=(Tj , V′→V′0) ∆;Λ`mtype(m, Tj)=V′→V′0
∆;Λ`specialize(m, Λd)=〈R′p ,+R′n〉 (SP-+)

Λd=〈Rp ,oRn〉 Rp=(Ti, <Y/P>U→U) Rn=(Tj , V→V)
∆;Λ`mtype(m, Ti)=U′→U′ R′p=(Ti, U′→U′)

∆;[W/Y]`R′pvRRp R′n=[W/Y]Rn{
∆; Λ ` mtype(m, Tj) is undefined or
∆; Λ ` mtype(m, Tj) = V

′ → V′0 and [W/Y](V : V) 6= (V′0 : V′)
∆;Λ`specialize(m, Λd)=〈R′p ,-R′n〉 (SP--)

Subtype range validity:

∆ `validRange(∅, T) (VR-NOREFL)

Rp=(X, ...)
∆ `validRange(〈Rp ,-Rn〉,X) (VR-VAR)

CT (C)=class C<X/N>/S { ... M} ∆ `validRange(Λ, [T/X]S)
for all Mi∈M Mi=<Y/P>for(Mp ;oMf)... Λ′=reflectiveEnv(Mi)

∆;[W/Y]`ΛvΛΛ′ or ∆`disjoint(Λ′, Λ)
∆ `validRange(Λ, C<T>) (VR-CLASS)

Figure 18: FMJ: Auxiliary definitions.
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Method type lookup:

Λ=〈Rp ,oRn〉 Rp=(X, <Y/P>U→U0)
∆; Λ `mtype(η, X)=U→U0 (MT-VAR-R1)

Λ=〈Rp ,+Rn〉 Rn=(X, U→U0)
∆; Λ `mtype(η, X)=U→U0 (MT-VAR-R2)

Λ=〈Rp ,oRn〉 Rp=(T, <Y/P>V→V0)
∆; Λ `mtype(n, bound∆(X))=U→U0

∆; Λ `mtype(n, X)=U→U0 (MT-VAR-S)

CT (C)=class C<X/N>/N {... M} U0 m (U x) {↑e;}∈M
∆; Λ `mtype(m, C<T>)=[T/X](U→U0) (MT-CLASS-S)

CT (C)=class C<X/N>/N {... M} m �∈ M

∆; Λ `mtype(m, C<T>)=mtype(m, [T/X]N) (MT-SUPER-S)

CT (C)=class C<X/N>/T {... M}

Mi=<Y/P>for(Mp;oMf) S0 η (S x) {↑e;} Mi∈ M

Λd=[T/X](reflectiveEnv(Mi)){
∆; Λ ` specialize(m, Λd) = Λr if n = m
Λr = Λ if n = η

∆;[W/Y]`ΛrvΛΛd

∆; Λ `mtype(n, C<T>)=[T/X][W/Y](S→S0) (MT-CLASS-R)

CT (C)=class C<X/N>/T {... M}

for all Mi∈M Λd=[T/X](reflectiveEnv(Mi)){
∆; Λ ` specialize(m, Λd) = Λr if n = m
Λr = Λ if n = η

implies ∆`disjoint(Λr, Λd)
∆; Λ `mtype(n, C<T>)=mtype(m, [T/X]T) (MT-SUPER-R)

Field lookup:

∆`fields(Object) = • (FD-OBJ)

CT (C)=class C<X/N>/ T {S f; ...}
∆`fields(bound∆([T/X]T))=D g

∆`fields(C<T>)=D g,[T/X]S f (FD-CLASS)

Valid method overriding:

∆ `validRange(Λ, T) ∆; Λ `mtype(n, T)=V→V0 implies (V=U and V0=U0 )

∆; Λ `override(n, T , U→U0)

Figure 19: FMJ: Method type lookup, overriding and field lookup.
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• Λ: Reflective iteration environment. Λ has the form 〈Rp ,oRn〉, where Rp is the primary

pattern, and oRn the nested pattern. Recall that o can be + or -.

– Rp has the form (T1, <Y/P>U→U0). T1 is the reflective type, over whose methods Rp

iterates. Y are pattern type variables, bounded by P, and U→U0 the method pattern.

– Rn has a similar form: (T2, V→V0). However, note the lack of pattern type variables,

due to the (formalism-only) simplification that the nested pattern not use pattern type

variables not already bound in the primary pattern.

There is no nesting of reflective loops. Thus, Λ contains at most one 〈Rp ,oRn〉 tuple.

We define two functions (Figure 18) to help us construct the reflective environment as well as

the two ranges corresponding to the primary and nested pattern easily:

• reflectiveEnv(M) constructs the Λ corresponding to the reflective declaration M.

• range(M,<Y/Q>) constructs the R corresponding to the pattern M, where Y are the pattern

type variables, and bounded by Q.

We use the 7→ symbol for mappings in the environments. For example, ∆=X 7→C<T> means

that ∆(X)=C<T>. Every type variable must be bounded by a non-variable type. The function

bound∆(T) returns the upper bound of type T in ∆. bound∆(N)=N, if N is not a type variable.

And bound∆(X)=bound∆(S), where ∆(X)=S.

In order to keep our type rules manageable, we make two simplifying assumptions. To avoid

burdening our rules with renamings, we assume that pattern type variables have globally unique

names (i.e., are distinct from pattern type variables in other reflective environments, as well as

from non-pattern type variables). We also assume that all pattern type variables introduced by a

reflective block are bound (i.e., used) in the corresponding primary pattern. Checking this property

is easy and purely syntactic.

The core of this type system is in determining reflective range containment and disjointness.

Thus, we begin our discussion with a detailed explanation of the rules for containment and

disjointness.
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Reflective range containment:

Λ=〈Rp ,oRn〉 Λ′=〈R′p ,o ′R′n〉 R′p=(T′p, <Y/P>V→V0)

∆;[W/Y]`RpvRR
′
p

{
∆; • ` Rn vR [W/Y]R′n if o = o′ = +
∆; • ` [W/Y]R′n vR Rn if o = o′ = −

∆;[W/Y]`ΛvΛΛ′ (SB-Λ)

Single range containment:

R1=(T1, <X/Q>U→U0) R2=(T2, <Y/P>V→V0) ∆`P,Q OK
∆ `T2<:T1 ∆′=∆,X<:Q,Y<:P ∆′;[W/Y]`unify(U0:U, V0:V)

∆;[W/Y]`R1vRR2 (SB-R)

Reflective range disjointness:

Λ=〈Rp ,oRn〉 Λ′=〈R′p ,o′R′n〉
∆`+Rp⊗+R′p or ∆`+Rp⊗o′R′n or ∆`+R′p⊗oRn or ∆`oRn⊗o ′R′n

∆`disjoint(Λ, Λ′) (DS-Λ)

Mutually exclusion of range conditions:

R1=(T, <Y/P>U→U0) R2=(S, <X/Q>V→V0)
∆ `T<:S or S<:T ∆′=∆,Y<:P,X<:Q Z=X:Y

for all W, ∆′;[W/Z]`unify(U, V) implies [W/Z]U0 6=[W/Z]V0

∆`+R1 ⊗ +R2 (ME-1)

R1=(T, <Y/P>U→U0) R2=(S, <X/Q>V→V0)
∆′=∆,Y/P,X/Q ∆′;[W/X]`R1vRR2

∆`+R1 ⊗ -R2 (ME-2)

Figure 20: FMJ: Containment and disjointness rules
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3.7.2.1 Containment and Disjointness

The range of a reflective environment, 〈Rp ,oRn〉, comprises methods in the primary range Rp ,

that also satisfy the nested pattern oRn . The nested pattern +Rn (or -Rn ) is satisfied if there is at

least one method (or no method, resp.) in the range of Rn . We call ranges of Rp and Rn single

ranges. In this section, we explain the rules for determining the following three relations:

• ∆;[W/Y]`ΛvΛΛ′. Range of Λ is contained within the range of Λ′, under the assumptions of

type environment ∆ and the unifying type substitutions of [W/Y].

• ∆;[W/Y]`R1vRR2. Single range R1 is contained within single range R2, under the assump-

tions of ∆ and the unifying type substitutions of [W/Y].

• ∆`disjoint(Λ, Λ′). The range of Λ and Λ′ are disjoint under the assumptions of ∆.

Single range containment. In determining the containment between two reflective environ-

ments, we must first see how containment is determined between two single ranges. Rule SB-R

(Figure 20) defines the two conditions for single range containment. First, the reflective type of the

larger range, R2, should be a subtype of R1’s reflective type. It is only meaningful to talk about

containment if the reflective set of R2 (i.e., all methods of the reflective type of R2, regardless of

whether they can be matched by the pattern) can be mapped onto the reflective set of R1. We

determine this relation using subtyping: A subtype’s methods can be mapped onto its supertype’s

methods. Secondly, R2’s pattern should be more general than R1’s pattern. This means that a

one-way unification exists from the pattern of R2 to the pattern of R1, where only the pattern

type variables in R2 are considered variables in the unification process. [W/Y] are the substitutions

that satisfy such one-way unification: ∆;[W/Y]`unify(U0:U, V0:V).

Rule UNI (Figure 21) describes a standard unification condition with a twist: unifying substi-

tutions (for pattern type variables) must respect the subtyping bounds of the type variables. For

example, the substitution [Y/Object], where ∆`Y<:Number, does not unify Y and Object, be-

cause the bound of Y is tighter than Object. Depending on whether the unification variables Z

appear in T, S, or both, the ability to unify T and S may mean all types matched by S can be

matched by T (one-way unification), vice versa, or that there is some intersection in the types
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matched by T and S (two-way unification).

Figure 21 also lists a number of rules defining when type T is a valid substitution for S:

∆`T≺:ZS. This is to say that T and S can match at least some of the same types, using Z as

pattern type variables. The most complex case in the pattern matching rules is PM-PVARS, which

defines when there is an intersection in the types matched by two different pattern type variables,

Zi and Zj . Recall that if Zi is bounded by type Ti, it can match any subtype of Ti; similarly, Zj

bounded by type Tj can match any subtype of Tj . Technically, for there to be an intersection in

the types Zi and Zj can match, there must be a type that is a subtype of both Ti and Tj . Since

we are modeling a core subset of Java without multiple inheritance (of interfaces), this type must

be a subtype of either Ti or Tj . This is to say, either Zi has a greater upper bound than Zj and is

capable of matching every type matched by Zj , or vice versa. PM-PVARS describes this either-or

condition by taking one of the type variables up to its bound, and invoking the pattern matching

rules on that bound and the remaining type variable.

PM-VAR says that for a pattern matching type variable Z to match a regular type T, the upper

bound of Z must be able to match the upper bound of T. If the bounds are the exact same types

(PM-REFL), we are done. If they are types constructed from the same generic type, we recursively

invoke the pattern matching rules on their respective type parameters (PM-CL). If T’s declared

upper bound is a strict subtype of the upper bound of Z, rule PM-CL-S traces up the declared

superclass of T’s upper bound, until either PM-REFL or PM-CL can be invoked, or the class Object

is reached and no more recursion can occur.

Reflective (nested) range containment. SB-Λ (Figure 20) defines the conditions for the

range of reflective environment Λ=〈Rp ,oRn〉 to be contained within the range of Λ′=〈R′p ,o ′R′n〉.

These conditions reflect precisely the informal rules we presented in the previous section. First,

regardless of nested patterns, the primary range of Λ should at least be contained within the

primary range of Λ′. Second, for every method in Rp that satisfies the nested pattern oRn , the

corresponding method in R′p should satisfy the nested pattern o ′R′n . There are a couple of ways

to guarantee oRn implies o′R′n . If +Rn is true, and Rn is contained within R′n , then +R′n is

also true (i.e., if there is at least one method in Rn , then there is at least one method in a larger
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range, R′n ). This condition is expressed by ∆;•`RnvR[W/Y]R′n , if o=o′=+. We apply the unifying

type substitutions for the primary ranges to the nested range R′n : In order to properly compare

the ranges of Rn and R′n , we need to restrict R′n to what it can be for the methods that are

matched by both Rp and R′p . Note that we are using an empty sequence of type substitutions

(•) in determining that Rn is contained within [W/Y]R′n . This is because nested patterns do not

have pattern type variables of their own, and pattern type variables from the primary pattern are

treated as constants in the nested patterns. Similarly, if -Rn is true, and Rn contains R′n , -R′n is

also true.

Reflective range disjointness. Disjointness of reflective ranges is defined by rule DS-Λ

(Figure 20). DS-Λ says that for two reflective ranges to be disjoint, we must be able to find one

pair of mutually exclusive (⊗) pattern conditions—this includes the implicit (+) conditions stated

by the primary patterns. There are two rules for pattern condition mutual exclusion: ME-1 and

ME-2, defined in Figure 20.

ME-1 says that two + pattern conditions are mutually exclusive if the patterns reflect over types

with an inheritance relationship, and the patterns’ argument types unify, whereas their return types

do not. This means the two patterns are matching over methods of the same argument types,

but different return types. For both of these pattern conditions to be satisfied, i.e. at least one

method in each range, there need to be at least two methods with the same argument types and

different return types, declared by the same class (or one is declared by a subclass). This violates

the correct method overriding rule of well-formed types. Since these patterns only reflect over

well-formed types, these conditions can never be both satisfied.

ME-2 says that +R1 and -R2 are mutually exclusive, if R1 is contained within R2. If there is no

method in the larger range, then certainly there cannot be at least one method in a smaller range.

And vice versa. Thus, the two conditions can never be both satisfied.

These rules reflect very closely the informal rules we presented previously, modulo the small

differences in the formalism mentioned in Section 3.7.1: We do not need to distinguish between

generated/declared patterns and primary patterns in the formalism, as the uniqueness of entities

in the primary pattern implies (through name uniqueness, since there is no overloading) the
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uniqueness of declared entities.

Additionally, DS-Λ makes two overly conservative (and sound) simplifications over our imple-

mentation. First, it is possible for the + condition stated by a primary pattern to be mutually

exclusive from the nested condition of its own nested pattern. This results in a reflective decla-

ration that can never be expanded, and thus, a range that is disjoint from every other range. We

do not check for this in our formalism. Secondly, when two pattern conditions are shown to be

mutually exclusive, a one- or two-way unification exists between either the argument types (ME-1),

or the argument and return types (ME-2, via SB-R). This unification represents the methods that lie

in the intersection of the two ranges defined by the patterns. In practice, we only need to check

whether these methods can in fact exist, by checking whether this particular mapping causes any

of the remaining patterns to be mutually exclusive. However, in this formalism, we do not apply

this unification, and thus check for general mutual exclusion.

Type Unification:

[U/Z]T=[U/Z]S for all Zi∈Z, ∆`Ui≺:ZZi
∆;[U/Z]`unify(T, S) (UNI)

Pattern matching rules:

∆`T≺:ZT (PM-REFL)

∆`T≺:ZS
∆`C<T>≺:ZC<S> (PM-CL)

CT (C)=class C<X/N>/T {...} ∆`[T/X]T≺:ZD<S>
∆`C<T>≺:ZD<S> (PM-CL-S)

Z∈Z T6∈Z bound∆(T)=C<T> ∆`C<T>≺:Z[C<T>/Z]bound∆(Z)
∆`T≺:ZZ (PM-VAR)

Zi∈Z Zj∈Z
{

∆ ` [Zi/Zj ]bound∆(Zj) ≺:Z Zi or
∆ ` [Zj/Zi]bound∆(Zi) ≺:Z Zj

∆`Zi≺:ZZj (PM-PVARS)

Figure 21: FMJ: Unification and pattern matching functions.

3.7.2.2 Valid Method Invocation

The rest of the typing rules add the machinery to standard FGJ type checking to express checks

using range containment and disjointness. For instance, to determine valid method invocation is
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to determine that the reflective environment of the invocation is contained within the reflective

environment of the declaration. T-INVK (Figure 17) specifies conditions for a well-typed method

invocation. It relies on ∆; Λ `mtype(n, T) (Figure 19) to handle the complexities in determining

the type of method n in T, where n can either be a constant or variable name. We highlight the

interesting mtype rules.

MT-VAR-R1 and MT-VAR-R2 say that the type of method with a variable name η in a type X, where

X is either the reflective type for the primary pattern or the reflective type of a positive nested

pattern, is exactly the type specified by the primary (or nested, respectively) pattern. Otherwise, if

T is a type variable, then we must look for the method type in its bound (MT-VAR-S).

MT-CLASS-R lists conditions for retrieving the type of n in C<T>, where C<X> has reflectively

declared methods. If n is a name variable, this is simply checking that the range of reference, which

is the current reflective environment, is contained within the declaration reflective environment.

When n is a constant name m, however, we need to check whether m is within the range of method

names in the declaration reflective range. We do so by specializing the declaration reflective

environment using m. Specializing a range based on a constant name is just a way to package

the information for uniform use by our containment and disjointness checks (which apply to

entire ranges with patterns and not single methods). The main property of specialize(m, Λd)=Λr

(Figure 5) is that m is the name of a method in the declaration range, Λd, (i.e., a declared method),

if and only if the specialized range, Λr , is subsumed by Λd.

The result of mtype is the declared types, with the substitutions of [T/X], and the type

substitutions for unifying the declaration range and the reference range, [W/Y].

Subtyping rules:

∆ `T<:T (S-REFL)

∆ `X <: ∆(X) (S-VAR)

∆ `S<:T ∆ `T<:U
∆ ` S<:U (S-TRANS)

CT (C)=class C<X/N>/ T {...}

∆ `C<T> <: [T/X]T (S-CLASS)

Figure 22: FMJ: Subtyping rules.

93



3.7.2.3 Uniqueness of Definitions

T-METH-R (Figure 17) ensures that methods declared within one reflective block do not conflict

with methods in the superclass (i.e., we have proper overriding). The condition is enforced using

override (Figure 19). override(n, T, U→U0) determines whether method n, defined in some

subclass of T with type signature U→U0, properly overrides method n in T. If method n exists

in T, it must have the exact same argument and return types as n in the subclass. (We made

a simplification over FGJ: FGJ allows a covariant return type for overriding methods, whereas we

disallow it to simplify the pattern matching rules in Figure 21.) Additionally, the reflective range of n

in the subclass must be either completely contained within one of T’s reflective ranges, or disjoint

from all the reflective ranges of T (and, transitively, T’s superclasses). This condition is enforced

using ∆`validRange(Λ, T) (Figure 18).

T-CLASS-R ensures that the reflective blocks within a well-typed class have no declarations that

conflict with each other, by requiring ranges of reflective blocks in a class to be disjoint pairwise.

Since each block has unique names within itself, the pairwise disjointenss guarantees names across

all blocks are unique, as well.

3.7.3 Soundness

We prove the soundness of FMJ by proving Subject Reduction and Progress for an expression

e. Figure 23 defines the operational semantics of FMJ, and Figure 24 defines the method body

lookup rules necessary for the operational semantics. Note that method body lookup rules are

only defined for lookups under a constant name m. A name variable is only meaningful under

a reflective environment Λ. But reduction rules, and thus method body lookup, are done under

empty environments, where Λ=∅. Thus it is not meaningful to define method body lookup for

name variable η.

Next, we show the main theorems, important supporting lemmas, and their proof sketches. It

should not surprised the reader that the highlighted lemmas are generally those supporting method

lookup or invocation, which are the most complex parts of our language and formalism, and also

the parts that deviate most from the original FGJ. Detailed proofs can be found in Appendix B.

94



Reduction Rules:

∅`fields(C<T>)=U f

new C<T>(e).fi −→ei (R-FIELD)

mbody(m, C<T>)=(x,e0)
new C<T>(e).m(d)−→[d/x, new C<T>(e)/this]e0 (R-INVK)

e0 −→ e′0
e0.f −→ e′0.f (RC-FIELD)

e0 −→ e′0
e0.m(e) −→ e′0.m(e) (RC-INV-RECV)

ei −→ e′i
e0.m(...,ei,...) −→ e0.m(...,e

′
i,...) (RC-INV-ARG)

ei −→ e′i
new C<T>(...,ei,...)−→new C<T>(...,e′i,...) (RC-NEW-ARG)

Figure 23: FMJ: Reduction Rules

Method body lookup:

CT (C)=class C<X/N>/N {... M} U0 m (U x) {↑e;}∈M
mbody(m, C<T>)=[T/X](x,e) (MB-CLASS-S)

CT (C)=class C<X/N>/T {... M}

Mi∈M Mi=<Y/P>for(Mp;oMf) S0 η (S x) {↑e;}
∆=X<:N,Y<:P Λd=[T/X](reflectiveEnv(Mi))
∆;∅`specialize(m, Λd)=Λr ∆;[W/Y]`ΛrvΛΛd

mbody(m, C<T>)=[T/X][W/Y](x,[m/η]e) (MB-CLASS-R)

CT (C)=class C<X/N>/N {... M} m �∈ M

mbody(m, C<T>)=mbody(m, [T/X]N) (MB-SUPER-S)

CT (C)=class C<X/N>/T {... M}

for all Mi∈M Mi=<Y/P>for(Mp;oMf) S0 η (S x) {↑e;}
∆=X<:N,Y<:P Λd=[T/X](reflectiveEnv(Mi))
∆;∅`specialize(m, Λd)=Λr

implies ∆`disjoint(Λr, Λd)
mbody(m, C<T>)=mbody(m, [T/X]T) (MB-SUPER-R)

Figure 24: FMJ: Method body lookup rules.
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Theorem 4 [Subject Reduction]: If ∆; Λ; Γ `e∈T, and e → e′, then ∆; Λ; Γ `e′∈S and

∆ `S<:T for some S.

Proof Sketch: We prove by structural induction on the reduction rules in Figure 23. The most

interesting case is R-INVK, where e=new C<T>(e).m(d), e′=[d/x,new C<T>/this]e0.

It is easy to see from R-INVK, T-NEW, and T-INVK that,

mbody(m, C<T>)=(x,e0) ∆`new C<T>(e)∈C<T> ∆`C<T> ok

∆;Λ`mtype(m, C<T>)=T′→T ∆;Γ;Λ`d∈S ∆`S<:T′

The conclusion follows from the following: 1) the expression e0, obtained via mbody, is of type

S′ where ∆`S′<:T: that is, the body of the method is a subtype of its defined return type

(Lemma 16); 2) the expression after term substitution, e′=[d/x,new C<T>/this]e0, is of type S

where ∆`S<:S′ (Lemma 19).

Lemma 16: If ∆;Λ`mtype(m, C<T>)=S→S, mbody(m, C<T>)=(x,e0), where ∆`C<T> ok , then

there exists a type S′ such that ∆`S′<:S, ∆`S′ ok , ∆;Λ;x7→S,this7→C<T>`e0∈S′.

Proof Sketch: We prove by induction on the rules of mbody (Figure 24). Case MB-CLASS-S

does not involve any reflectively declared methods, and thus has a similar proof to that used

in FGJ proofs. Cases MB-SUPER-S and MB-SUPER-R can be easily proven through the induction

hypothesis. The most interesting case, thus, is MB-CLASS-R, where method body is retrieved from

a reflectively declared method Mi. The corresponding mtype is retrieved using rule MT-CLASS-R.

First, notice that there is a bit of ambiguity in MT-CLASS-R (as well as MB-CLASS-R), where Mi

is defined to be one of M. We first prove using Lemma 17 that there is indeed only one such Mi

that satisfies the other conditions for the rule to hold.

It is obvious from the correspondence between MT-CLASS-R and MB-CLASS-R, then,

Λd=[T/X](reflectiveEnv(Mi)) ∆;Λ`specialize(m, Λd)=Λr ∆;[W/Y]`ΛrvΛΛd

∆;Λ`mtype(m, C<T>)=[T/X][W/Y](S′′→S′′) mbody(m, C<T>)=[T/X][W/Y](x,[m/η]e)

Through T-METH-R, we have:

∆′′=X<:N,Y<:P Λ′′=reflectiveEnv(Mi) Γ′′=x7→S′′,this7→C<X>

∆′′;Λ′′;Γ′′`e∈V ∆′′`V<:S′′

Thus, to prove that ∆;Λ;x 7→S,this7→C<T>`[T/X][W/Y][m/η]e∈[T/X][W/Y]S′′, we need to show

that 1) type substitutions [T/X], which are obtained through type-instantiation of a generic class
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(e.g., instantiating C<X> with T) preserve expression typing as well as subtyping (Lemma 23 and

Lemma 21, respectively, which are similarly used in other FGJ-based formalisms), 2) type substitu-

tions [W/Y] and name substitution [m/η], when [W/Y] and m are results of a specialize operation,

also preserves typing (Lemma 35).

Lemma 19 (Term Substitution Preserves Typing). If ∆;Λ;Γ,x7→T`e∈T, η does not appear in e,

∆;Λ;Γ`d∈S, ∆`S<:T, then ∆;Λ;Γ`[d/x]e∈T′, for some T′ where ∆;Λ;Γ`T′<:T.

Proof Sketch: We prove by induction on expression typing rules T-* (Figure 17). The most

interesting case is T-INVK, where e=e0.m(e). By induction hypothesis,

∆;Λ;Γ`e0∈T0 ∆;Λ;Γ`[d/x]e0∈T′0 ∆`T′0<:T0

We need to show that ∆;Λ`mtype(m, T0)=T→T implies ∆;Λ`mtype(m, T′0)=T→T. That is

to say, the method m is defined for a superclass, then it is defined in the subclass, as well, with

the same type signature. Lemma 34, which is a standard lemma for FGJ-based formalisms, proves

this point. However, in our proofs of Lemma 34, we needed to prove two additional, interesting

lemmas regarding the properties of range containment. Lemma 31 shows that type substitutions

preserve single range containment; Lemma 38 shows that single range containment is transitive.

The preservation of reflective range (i.e., primary and nested) containment and transitivity then

follows easily from these lemmas regarding single ranges.

Lemma 31 (Substitution Preserves Single Range Containment): If ∆1,X<:N,∆2;[W/Y]`R1vRR2,

∆1`U<:[U/X]N, where ∆1`U ok, and none of X appears in ∆1, none of X appears on Y, then

∆1,[U/X]∆2;[W′/Y]`R1vRR2, where W′=[U/X]W.

Lemma 38 (Single Range Containment is Transitive): If ∆;[W/Y]`R1vRR2, ∆;[Q/Z]`R2vRR3,

then ∆;[W/Y][Q/Z]`R1vRR3,

Proof Sketch: Both proofs follow from analysis of rule SB-R.

Theorem 5 [Progress]: Let e be a well-typed expression. 1. If e has new C<T>(e).f as

a subexpression, then ∅`fields(C<T>)=U f, and f = fi. 2. If e has new C<T>(e).m(d) as a

subexpression, then mbody(m, C<T>)=(x,e0) and |x| = |d|.

Proof Sketch: Proof follows from T-FIELD and T-INVK respectively, and from the well-typedness
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of subexpressions.

Theorem 6 [Type Soundness]: If ∅; ∅; ∅`e∈T and e−→∗e′, then e′ is a value v such that

∅; ∅; ∅`v∈S and ∅`S<:T for some type S.

Proof: Follows from Theorems 4 and 5.

3.8 MorphJ Implementation

It should not be a surprise to readers that MorphJ cannot be implemented using an erasure-

based approach, as is adopted in the implementation of Java generics. In an erasure-based

implementation, all type-instantiations of a generic share the same copy of bytecode. The type

variables of a generic are “erased” to their upper bounds in that shared bytecode. Appropriate casts

are inserted at the use-sites of type-instantiations. This particular approach works for Java generics

because the structure of a Java generic does not vary with its type-instantiations—a generic always

declares the same methods, fields, and superclasses regardless of its type arguments. A MorphJ

generic class, however, may declare different methods and fields, as well as different supertypes,

depending on its type arguments. Thus, it is impossible for different type-instantiations of a MorphJ

generic to share the same copy of bytecode. MorphJ is thus implemented via expansion: Every

type-instantiation of a MorphJ generic is expanded to its own bytecode representation.

Unlike the expansion-based approach taken by C++ templates, a MorphJ generic is still sepa-

rately compiled. After type-checking, a MorphJ generic is compiled to an annotated bytecode file.

The bytecode sequences corresponding to reflectively declared code are annotated with informa-

tion pertaining to the associated reflective iterator: patterns, nested patterns, and pattern-matching

variables. This copy of bytecode is then used as a template for expansion. Upon type-instantiation,

the annotated bytecode sequences are expanded using information in the annotations. For in-

stance, a block of bytecode for a reflectively declared method may be expanded to bytecode for

multiple methods, by replacing type and name variables in the original with concrete types and

identifiers. Alternatively, a block of bytecode may be removed entirely if the range of its associ-

ated reflective iterator is empty. Type-checking of the expanded bytecode is not necessary, since

MorphJ’s source-level type-checking guarantees that any type-instantiation of a generic is always

well-typed. The bytecode of a MorphJ generic class, assuming it has reflective declarations, is not
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considered valid by the Java bytecode verifier. Its expanded versions, however, are.

MorphJ is implemented using the JastAdd extensible compiler framework for Java [31], and ASM

Java bytecode library [19]. MorphJ is available via http://code.google.com/p/morphing/.
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Chapter 4

Related Work

The limitations stemming from rigidity in code structure have been the focus of much previous

research, starting as early as the design of Lisp macros in the 1960’s. The structural abstraction

techniques presented in this dissertation, static type conditions and morphing, can be seen as

the latest steps in this line of research. We begin this chapter by discussing how static type con-

ditions and morphing relate to each other (Section 4.1). We then compare these two techniques

to traditional, low-level meta-programming mechanisms in Section 4.2. We then draw compar-

isons between structural abstraction and the more recent efforts in providing higher-level language

support (i.e., with either more emphasis on safety, or on higher level language constructs) for meta-

programming. Specifically, Section 4.3 compares structural abstraction to safe program generation

and transformation efforts, and Section 4.4 compares structural abstraction to Aspect-Oriented Pro-

gramming (AOP). Section 4.5 offers a discussion on language techniques that offer support for only

conditional declarations, and Section 4.6 discussions those that only support iterative declarations.

There is a striking similarity between the kinds of problems that can be addressed with AOP, and

those addressable by morphing. This is evident in our use of logging and synchronization as use

cases for morphing, which are also examples commonly used in AOP literature. To further study

the differences in the two techniques, Section 4.7 concludes the chapter with a detailed case study,

in which we attempt to re-engineer two applications with both morphing and AOP, and delineate

the pros and cons of either approach.

4.1 Static Type Conditions vs. Morphing

cJ and MorphJ both add to Java a reflective “if”, though the mechanisms for expressing these

conditions and the kind of conditions expressible differ. Additionally, MorphJ adds a reflective

“for”, as well as the ability to create declarations with non-constant names. Thus, MorphJ is a more

ambitious language with significantly more complexity, which is reflected in the different design
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focus and implementation decisions for cJ and MorphJ.

The cJ reflective “if” is based on subtyping conditions in a nominal subtyping system, whereas

the MorphJ reflective “if” is based on structural constraints, e.g., whether a type has a method or

field matching a certain pattern. Though this difference in mechanism seems inconsequential, the

MorphJ-style “if” constraints can be easily integrated with a structural subtyping system. But more

importantly, the cJ “if” conditions are restricted to straightforward subtyping and conjunctions

of multiple subtyping conditions. MorphJ, however, allows the expression of negative conditions,

using “if ( no PATTERN )” clauses. MorphJ uses negative conditions extensively to ensure the

absence of conflicting declarations. Supporting negative conditions in cJ would have had limited

effectiveness due to the open nature of Java’s type hierarchies. Recall that the main reasoning in cJ’s

type system is whether one condition can be implied by another. A negative condition bounded by

an interface type can never be safely implied by any condition other than itself. Negative conditions

bounded by class types are amenable to more reasoning. Most of our use cases for static type

conditions, however, utilize interface types in type conditions. Thus, we did not see an imminent

need to support negative conditions in cJ.

cJ is designed with backward compatibility in mind, enabling an erasure-based translation. cJ

language constructs can be “erased”, producing regular Java code in a one-to-one correspondence

between cJ generic classes and Java generic classes. Additionally, cJ interacts smoothly with ad-

vanced features in the Java type system, such as variance [48, 90] and polymorphic methods. In

contrast, MorphJ takes a more radical approach, favoring feature-richness and integration of ideas

over backward compatibility and implementation integration. This difference is most evident in

MorphJ’s implementation, which employs an expansion-based translation. MorphJ generic classes

produce one regular non-generic Java class per type-instantiation. This implementation approach

is harder to support in conjunction with some of Java’s features (e.g., dynamic loading) but yields

more power—e.g., the ability to express mixins as generic subclasses. Furthermore, we have

not concerned ourselves with supporting features such as variance and polymorphic methods.

Studying the interaction of these features with MorphJ is left for future work.

Overall, we do not view MorphJ as a language extension that can be easily integrated in

standard Java. (After all, integrating with standard Java seems a near-hopeless proposition even for
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more modest research proposals, as the Java language has matured and the rate of change has

decreased dramatically.) Instead, we view MorphJ as a more radical idea, intended to demonstrate

the principles of morphing and to influence future language designers. Our goal with MorphJ is

to show the first morphing language with a sound modular type checking system, and a smooth

integration of concepts in an Object-Oriented framework.

4.2 Comparison to Traditional Meta-programming Techniques

Meta-programming techniques offer the ability for programs to generate other programs, allowing

the structure of generated programs to change based an arbitrary conditions. Instances of such

techniques are macro facilities such as Lisp macros, reflection, meta-object protocols [27, 58], or

pattern-based program generation and transformation [11–13, 91]. The goal of structural abstraction

is to promote meta-programming capabilities offered in these low-level mechanisms to high-level

language features, with support for full modular type-safety. None of the above mechanisms offer

such safety guarantees: A macro or meta-class cannot be type-checked independently from their

compositions, in a way that guarantees it is well-typed for all its possible compositions.

An interesting instance of meta-programming is the C++ template mechanism [7, 49]. C++

templates provide a powerful (Turing-complete) way to statically configure code. Conditional

declaration can be easily accomplished through template specialization. Even though there is

no inherent support for reflection in C++, it has been shown that reflection can be emulated

using template meta-programming [10], even though it is not applicable to unsuspecting classes.

Though powerful, C++ templates are unsafe: There is little static checking capability beyond the

checking of templates after instantiation. Furthermore, there is no way to guarantee that a template

computation will even terminate. The C++ community has developed ideas on statically validating

the input to a template [69, 81] and the general idea of concepts has emerged and even developed

as a language-independent notion [51]. Nevertheless, concept-based techniques concentrate on

validating the type parameters of a generic class, rather than configuring it under static conditions.

cJ and MorphJ offer the ability to configure classes based on structural information, without

sacrificing static type safety and with a smooth integration in the base language.

An interesting special case of program generation is staging languages such as MetaML [87]
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and MetaOCaml [21]. These languages offer modular type safety: The generated code is guaranteed

correct for any input, if the generator type-checks. Nevertheless, MetaML and MetaOCaml do

not allow generating identifiers (e.g., names of variables) or types that are not constant (as is

supported in MorphJ). Generally, staging languages target program specialization rather than full

program generation: The program must remain valid even when staging annotations are removed.

Thus, staging programs do not abstract over the structure of programs—they are quite explicit in

the structure of the generated program, in fact. It is interesting that even recent meta-programming

tools, such as Template Haskell [80] are explicitly not modularly type safe—its authors acknowledge

that they sacrifice the MetaML guarantees for expressiveness.

4.3 Comparison to Efforts in Safe Program Generation/Transformation

Recent mechanisms such as Genoupe [29], SafeGen [44], and compile-time reflection (CTR) [34]

attempt to add safety guarantees to meta-programming, while maintaining expressiveness. Never-

theless, these approaches either fail to achieve full safety, or reject programs in a way that is not

transparent to the programmer. For instance, the Genoupe approach has been shown unsafe, as

the reasoning depends on properties that can change at runtime; SafeGen has no soundness proof

and relies on the capabilities of an automatic theorem prover—an unpredictable and unfriendly

process from the programmer’s perspective.

MorphJ’s closest relative is CTR [34]. CTR is an extension to C# that pioneered the use of

patterns for reflective iteration and was one of the first systems to aim for modular type safety.

Nevertheless, its modular guarantees concern only validity of references and not the absence of

declaration conflicts. A unique aspect of CTR (compared to MorphJ) is that it transforms classes

in-place, which enables some interesting applications. MorphJ, on the other hand, only allows

enhancement of classes through subtyping or delegation. MorphJ improves over CTR, however, by

adding more expressiveness through nested patterns, while keeping or strengthening the typing

guarantees. For instance, CTR does not allow matching multiple method argument types, or

existential conditions on iteration ranges.

In addition to lacking full type safety, neither of these mechanisms integrate seamlessly with

a programming language, as cJ and MorphJ do. All these approaches require an concept outside
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the base language, such as a “generator” or a “transform”. In cJ and MorphJ, the concept of code

generation is incorporated with the concept of generic classes. Additionally, these mechanisms use

complex syntax for retrieving reflective members, whereas MorphJ utilizes patterns very similar to

method and field signatures.

4.4 Comparison to AOP Tools

4.4.1 Static Type Conditions

cJ can be viewed as an instance of the aspect-oriented programming paradigm [61], because of

its ability to allow a class to be configured based on the structure of a different type hierarchy

(representing a cross-cutting concern). As we demonstrated with the cJ implementation of the JCF,

the cross-cutting concern “modifiability” is separated in the type system from the intrinsic form of

a data structure (e.g., whether it is a list, a set, or a map). The type system does maintain concepts

such as “modifiable list”, “unmodifiable map”, etc., but these are derived from their component

types. In fact, the cJ reimplementation of the JCF can be compared to previous work that uses AOP

to enforce consistency in data structure and behavior [62, 76]—in the cJ reimplementation of JCF,

consistency in the usage of data structures along cross-cutting dimensions is enforced by the cJ

type system.

Nevertheless, cJ differs from common aspect-oriented languages like AspectJ [59] in that sep-

aration of concerns in cJ is confined to static conditions, expressed using types—AspectJ allows

cross-cutting concerns to be specified using dynamic conditions such as control flows. Another

difference is that code for a single concern in cJ is interspersed throughout traditional Java language

components (i.e., classes) and not collected in a single entity. For instance, methods addressing the

concern “modifiable” are interspersed in all classes and interfaces cross-cut by the concern, e.g.,

ArrayList, Collection, etc. In AspectJ, code of a certain concern is generally grouped together

into an “aspect”. It is worth mentioning that previous study has shown that often times, it is most

convenient to intersperse concern code, rather than grouping them into AspectJ-style aspects [55].

A rather superficial difference between cJ and AOP tools is that the current cJ implementation does

not allow type conditions to be used at the statement or expression level. This is an implementa-

tion detail, due to the fact that we wanted to maintain the erasability of cJ programs into regular
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Java programs, without employing runtime reflection.

4.4.2 Morphing

Morphing addresses a small but central part of AOP functionality: aspect advice of structural

program features, such as method before-, after-, and around-advice. Particularly, the logging and

synchronization examples shown in Chapter 3 are frequent use cases for AOP languages. Thus, it

is worth delineating the similarities and distinct differences between morphing and AOP. We next

compare MorphJ to AspectJ [60], a representative AOP tool for Java. A more elaborate case study

drawing detailed differences between morphing and AOP is presented in Section 4.7.

4.4.2.1 How Functionality is Added

Both MorphJ and AspectJ allow functionality that cross-cut multiple class definitions to be de-

fined in a modular way. For example, the method logging functionality can be defined in one

MorphJ class, Logged (Section 3.1). However, the way such functionalities are added into a base

class definition is one of the main differences between MorphJ and AspectJ. With MorphJ, cross-

cutting functionality is added “into” a base class through explicit parameterization of the morphing

class. The new functionality only exists in the parameterized morphing class, whereas the defi-

nition of the base class itself does not change. For example, the parameterized morphing class

Logged<java.lange.Object> has the functionality that all non-void-returning methods are logged.

However, the definition of java.lang.Object itself remains unchanged. In AspectJ, an aspect def-

inition states the classes a functionality should be added to.1 In this way, the new functionality is

weaved with the code of the original class. The program cannot simultaneously use the separate

notions of “original class” and “class with the cross-cutting functionality”. One way to view the

semantics of AspectJ is as changing the original class’s definition. For instance, given an AspectJ

aspect that adds logging code to each non-void-returning method of java.lang.Object, the class

java.lang.Object itself can be thought of as changed after aspect application.2 Indeed this also

happens to be the way current AspectJ compilers implement the semantics of weaving.

1In the case of generic aspects in AspectJ 5, the affected classes can be specified through parameterization of the
aspect.

2Changing the semantics of java.lang.Object is potentially dangerous, since it is the root of all Java classes. For
this reason, AspectJ does not allow advice to be declared for methods and fields of java.lang.Object, or for any type
in the core Java library, i.e., those in package java.lang.
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We view explicit parameterization in MorphJ as an important feature for two reasons. First, the

ability to leave the original class definition untouched is an important one. For example, a pro-

grammer should be able to use both synchronized and unsynchronized versions of a data structure

in the same program, depending on his/her needs. This is indeed the case with the MorphJ class

Synchronized, shown in Figure 9. With AspectJ, however, the programmer must choose one or

the other. AOP purists may hold the view that cross-cutting functionality enhancements, by defini-

tion, should be applied to all classes that need them. But as shown through the synchronization

example, this is a very rigid requirement. Furthermore, if indeed all instantiations of a class should

have a particular cross-cutting functionality, it should be possible to extend MorphJ with a global

search-and-replace tool, replacing all instances of a class with the explicitly parameterized version

of a morphing class. This is part of future work, however. Our current research focuses on the

fundamental core of morphing, and we expect that usability enhancements will come later.

Secondly, explicit parameterization provides a way to clearly document and control the se-

mantics of a program. This is particularly true when multiple, separately-defined functionality

enhancements need to be added to a class. One of the much researched topics in AOP is aspect

interaction. When one defines an aspect in AspectJ, there is no good way to specify the order of its

application relative to all other aspects, some of which may be unknown to the aspect developer.

Furthermore, an addition of another aspect unknown to the developer can change the program se-

mantics in unexpected ways. This is an undesirable characteristic in terms of modularity. MorphJ,

on the other hand, allows explicit control of functionality addition through instantiation order. The

type-instantiation order gives a clear meaning as to where and how functionality is added.

4.4.2.2 Modular Type Safety and Trade-offs in Expressiveness

The other main difference between MorphJ and AspectJ is MorphJ’s guarantee of modular type

safety. In order to make such a guarantee, we limited our attention to some specific features

instead of adding maximum expressiveness to the language. Pattern matching in MorphJ is simple

and high level by design. A programmer can only inspect classes at the level of method and field

signatures: MorphJ pattern matching applies to reflection-level structural elements of a type. In

contrast, AspectJ allows a programmer to match on a program’s dynamic execution characteristics,
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using keywords such as cflow (for control flow) and cflowbelow in pointcuts.

Though MorphJ limits its pattern matching to the type signature level, it does allow matching

using subtype-based semantic conditions, in contrast to the purely syntactic matching of signatures

AspectJ offers. For instance, using pattern-matching type variables, MorphJ allows one to express

a pattern that matches all methods that return some subtype of java.lang.Comparable. This is a

pattern not expressible through AspectJ. The combination of pattern matching and the static for

construct in MorphJ provides a controlled but useful kind of programmability in defining where a

certain functionality should be introduced.

Although we make comparisions only to AspectJ, the arguments in this section generalize to

other AOP tools, as well. AspectJ is representative in the way it applies aspects, and is perhaps the

most expressive aspect language today.

4.5 Work Related Specifically to Static Type Conditions

Clearly the idea of a type-conditional is closely related to conditional compilation, as with the

C/C++ preprocessor “#ifdef” construct. Although #ifdef is valuable for configuring large projects,

it addresses very different needs from cJ. Conditional compilation gives low-level manual control

for software configuration. In the context of a portable language, like Java, an #ifdef statement

becomes less useful. At the same time, conditional compilation suffers from the lack of any

form of safety control. The use of conditional flags may be inconsistent, resulting in invalid

configurations that are not detected until one attempts to select them. There has been work on

adding some safety to conditional compilation by analyzing all configurations of a C program,

and there is evidence that such a heuristic approach may work in several contexts—especially

for refactoring [36]. Nevertheless, cJ offers full static safety guarantees, eliminating the problem

altogether. Furthermore, the type-conditions of cJ are structured, richer than mere propositions,

and well-integrated with the Java type system.

Conditional methods have been explored in OO languages in work at least as early as CLU [66].

Nevertheless, CLU does not support subtyping, so the language context of this work is notably

different. It is, thus, difficult to compare CLU to cJ, where our main goal is to maintain static type

safety, yet, at the same time, maintain a clean subtyping hierarchy used for abstraction. Past work
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on optional methods in Java was also presented by Myers et al. [74]. This was in the context of

a proposal for adding genericity to Java, and it includes the feature of attaching where clauses to

individual methods. The conditions on the where clauses, however, are “structural” constraints—

i.e., does type parameter T provide method void foo();. This mechanism does not support

conditional subtyping—e.g., it is not possible to express that a Collection is Comparable, if the

elements it holds are Comparable. Even more importantly, the work by Myers et al. does not

support type-safe abstraction over classes with conditional methods, as in the interaction of cJ

with variance.

More recently, Emir et al. presented an extension to C# to support generalized type constraints

on methods [32]. This extension allows both upper and lower bound type conditions on methods.

This is similar to cJ in that methods exist conditionally based on the instantiation of parametric

types. Nevertheless, there are significant differences, and in future work we plan to pursue com-

bining the two approaches. cJ currently does not allow using the type parameter of a polymorphic

method inside a type conditional—a crucial feature in Emir et al.’s work. At the same time, cJ has

several features not found in the generalized type constraints approach. First, cJ supports condi-

tional definitions of fields, as well as conditional subtyping. Furthermore, the cJ (and Java) form of

variance we examined earlier is a “use-site variance” mechanism as opposed to the “definition-site

variance” supported in Emir et al.’s work. In addition to being part of standard Java, we believe that

use-site variance is a mechanism better suited for imperative programming languages in general. In

this setting, a single class definition is unlikely to produce types that are purely co-variant, purely

contra-variant, or purely bi-variant. Instead defining a class will likely implicitly yield a co-variant

part, a contra-variant part, etc. In use-site variance, these subsets of the class functionality are

derived automatically from a single definition. In definition-site variance, they have to be explicitly

separated out into distinct interfaces by the programmer. Thus, we believe use-site variance to be

a more user-friendly system and a natural fit for Java.

It is not surprising that conditional declarations have been a focus of software product lines

(SPL) research. Recently, Kästner et al. presented a SPL tool CIDE, which allows the conditional

declaration of code that is guaranteed to be type-safe [54]. Conditions in CIDE are not expressed

in terms of subtyping, and CIDE allows disjunction (e.g., COND1 or COND2), as well as negation.
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cJ does not support either: disjunctive subtyping conditions present problems when we need to

determine a most general type to downcast a variable to (i.e., when the variable is typed by the type

variable used in the conditional); negation is difficult to support in a language with the open-world

assumption, as we explained in Section 4.1. Even though CIDE allows more expressive conditions,

it does not allow multiple configurations to exist in the same application. A piece of code can only

be configured once by a client, and used in that manner. For instance, in CIDE, a client would not

have the ability to use Collection<Modifiable> and Collection<VariableSize> in the same

program. Thus, this mechanism is used mostly for configuration management.

cJ’s support for conditionally declared supertypes can be emulated to a certain extent using

“generalized interfaces” [92] for Java. JavaGI, the Java extension proposed by Wehr et al., allows a

method declaration to be provided for a generic class, only if the type parameters of the generic

class obey certain subtyping conditions. However, JavaGI does not allow such conditional methods

to be provided for generic interfaces. For instance, a compareTo method can be declared for

ArrayList<X> where X extends Comparable<X>. However, a compareTo method cannot be con-

ditionally declared for the interface List<X>. In cJ, conditional declarations are supported for both

classes and interfaces. Of course, the main goal of JavaGI is not to support conditional declarations,

but to incorporate core features of Haskell type-classes [53] into Java. As a result, JavaGI supports

many useful features that are not supported by cJ, e.g., retroactive interface implementation (where

a class can be declared to implement an interface separately from its declaration, and provide

implementations for interface methods separately, as well), binary methods, bounded existential

types, etc. Along the same line, one can achieve similar effect to conditional declarations in Haskell

using type-classes.

In languages with (multi-)methods outside classes, the work on constraint-based polymorphism

in Cecil [68] is related to cJ. Cecil provides users the ability to add constraints to both methods

and supertypes. The constraints can be subtyping constraints, as well as structural constraints,

requiring a type to provide a particular method. This is a very different context from that of our

work, however. Furthermore, the Cecil type system does not have an analogue of our variance

approach to abstracting over all objects with or without some of the conditionally defined members.

It is tempting to find parallels between cJ and advanced OO modularization mechanisms such
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as traits [30, 79], mixins [15], or mixin layers [82]. These approaches vary in expressiveness and

several of them are insufficient for solving the combinatorial explosion problems identified in

Section 2.3. For instance, C++-based mixins or mixin layers would still require a large number of

compositions, with explicit subtyping links added among them, in order to express the required

functionality of the Java Collections Framework. It is possible that a traits-based mechanism could

serve to alleviate many of the problems in the Java Collections Framework (albeit with a complete

rewrite). Nevertheless, there is no such mechanism currently for Java that would tie well with the

rest of the language’s type system (e.g., variance) and execution model. Furthermore, no mixin or

traits mechanism offers capabilities similar to those shown in Section 2.3.1, i.e., the ability to add

extra members only when a type parameter that is already used for other purposes has a certain

subtyping property.

Type-conditionals in cJ can be viewed as being similar to type-safe variant records work—

e.g., [77]. Nevertheless, variant records mechanisms typically try to address the problem of run-time

variability with static type-safety. cJ is not concerned with changes to the type of a variable during

run-time. Instead, cJ focuses on the static configurability of components. The techniques used to

ensure static type safety in the case of variant records and in the case of cJ show this difference

clearly: Statically safe variant records typically require the programmer to specify what code will

get executed for any possible type. Indeed, this is the best one can hope when the object can

indeed vary at run-time. In contrast, cJ statically ensures that the legal operations on an object are

fully known.

4.6 Work Related Specifically to Morphing

An extension of traits [78] offers pattern-based reflection by allowing a trait to use name variables

for declarations. However, [78] does not offer static iteration over the members of classes—a

name-generic trait must be mixed in once for each name instance.

There has been a line of work focused on providing statically type-safe generic traversal of

data structures [50,63]. For instance, the “scrap your boilerplate” [63] line of work offers extensions

of Haskell that allow code to abstract over the exact structure of the data types it acts on, and

to have the appropriate functions invoked when their expected data types are encountered during
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traversals. Abstracting over the structures of data types in functional languages is similar to

abstracting over the fields and methods of classes in object-oriented languages. [93] offers such

generic traversal capabilities for Java. However, whereas [50, 63, 93] focus on offering structurally-

generic traversal, MorphJ focuses on structurally-generic declarations. Neither of [50, 63, 93] allow

more functions to be declared using the names or types retrieved from a non-specific data type.

Thus, these techniques fall short of MorphJ (and static reflection work in general [29, 34, 44, 46])

in this respect. On the other hand, MorphJ is not well-suited for writing generic traversal code.

Traversing data structures and invoking methods on objects encountered is largely based on the

dynamic types of these objects. MorphJ’s reflective declarations are based purely on the static

types of fields and methods.

4.7 A Comparative Study of AOP and Morphing

Aspect-Oriented Programming and morphing can be seen as alternative and complementary ap-

proaches to addressing cross-cutting concerns. AOP is execution-based: points in program execu-

tion are identified, cross-cutting code is woven around these points; Morphing is declaration-based:

structural patterns of a program are identified, code is declared to mimic these structural patterns,

while defining additional functionality. In this section, we compare these approaches through the

re-engineering of two applications: Java Collections Framework, the standard data structures library

for Java, and DSTM2, a software transactional memory framework. We capture cross-cutting con-

cerns in these applications using AspectJ, the flagship tool for AOP, and MorphJ, a Java extension

supporting morphing. We evaluate the suitability of AspectJ and MorphJ in terms of the reusability

and modularity of the resulting software. We identify characteristics of concerns that are structural

in nature, thus favoring a declaration-based approach for expressiveness and safety.

4.7.1 Introduction and Background

Cross-cutting concerns are aspects of a program that cross-cut the program’s dominant orga-

nizational structure. Aspect-Oriented Programming (AOP) [61] has emerged as the most visible

approach in modularly addressing cross-cutting concerns. Section 3 presented an alternative ap-

proach, morphing, which allows the declaring of code that mimics the structure of other code,

but with modified behavior. The result is similar to weaving new functionality across the structure
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of existing code, through new declarations. In this section, we present case studies on the re-

engineering of two real-world Java applications, using both AOP and code morphing. Our studies

show that whereas AOP is well-suited for concerns with definite patterns in program execution,

code morphing is well-suited for concerns with patterns in a program’s static structure.

As a simple exposition, we use the prototypical cross-cutting concern, “logging”, to demonstrate

the principle similarities between AOP and morphing.

Logging with Plain OO: We illustrate the plain Object-Oriented (OO) solution using Java.

One way to add logging to a Java class is by refining it through subclassing:

1 class LoggedFoo extends Foo {

2 public Bar meth1 ( String s ) {

3 Bar r = super.meth1(s);

4 Logger.log("meth1 returning " + r.toString());

5 return r;

6 }

7 public int meth2 () {

8 int i = super.meth2();

9 Logger.log("meth2 returning " + i);

10 return i;

11 }

12 ... // similarly log other methods of Foo.

13 }

LoggedFoo refines its superclass Foo by adding logging code to each method. The logging

code is replicated over multiple methods. With some imagination, one can also envisage the code

being replicated over multiple classes (e.g., LoggedBar, LoggedBaz, etc.). This is to say that log-

ging code cross-cuts the dominant organizational structure of Java programs—their class/interface

hierarchies.

Ideally, we want to define logging once, in a reusable way, and apply it to whichever method

or class requires it.

Logging with AOP: We illustrate the AOP solution to this problem using AspectJ [60], AOP’s

flagship tool. We can encapsulate all logging code in the following generic aspect (a similar example

was also shown in Section 1.2.2):
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1 abstract aspect LoggingAspect<X> {

2 pointcut loggedMeth() : execution(* X.*(..));

3

4 after() returning(Object r) : loggedMeth() {

5 Logger.log(

6 thisJoinPoint.getSignature().getName() +

7 " returning " + r.toString());

8 }

9 }

For any type X, pointcut loggedMeth() identifies the execution of its methods. The advice

on lines 4-8 specifies the logging code to be run after the execution of these methods. To apply

“logging” to Foo, one would use the following declaration:

aspect LoggingFoo extends LoggingAspect<Foo> { }

Logging with Morphing: We have shown in both Section 1.2.2 and 3.1 a generic MorphJ

“logging” class that logged the return values of all non-void-returning methods. Here, we show a

fully fleshed out version that records the execution of both void- and non-void-returning methods:

1 class LoggedClass<class X> extends X {

2 <R,A*>[m] for ( R m (A) : X.methods )

3 R m (A args) {

4 R r = super.m(args);

5 Logger.log(m.name + " returning " + r);

6 return retval;

7 }

8

9 <A*>[m] for ( void m (A) : X.methods )

10 void m (A args) {

11 super.m(args);

12 Logger.log(m.name + " returning void");

13 }

14 }

LoggedClass extends its own type parameter X. The reflective iteration block on lines 2-7

defines a static iteration over all methods of X that take any number of arguments, and have non-

void returns. For each such method, it declares a method with the same signature, and inserts

proper logging code. Lines 9-13 constitute a similar block for the void-returning methods of X.

Instantiating LoggedClass with any type has a similar effect to “weaving” logging code into

that type. For example, LoggedClass<Foo> declares the exact same methods as Foo, with every
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method’s return value logged.

Execution vs. Declaration The AOP approach is a deliberately dynamic, execution-based

one. Pointcuts identify “well-defined points in the execution of a program” [60]: e.g., the execution

of a method, the read or write of a field, etc. Advice code can be applied before, after, or around

these points in execution. Even though we use AspectJ as the representative AOP language, virtually

all AOP implementations (e.g., [20, 42, 70]) are built on the philosophy of identifying and advising

points in program execution.

In contrast, morphing offers a static, declaration-based approach. Programmers use patterns

to capture static, structural elements of a program (e.g., methods of a class). New code is then

declared using information captured by the patterns (e.g., a method’s name, argument and return

types), while expressing additional functionality. Morphing is the latest in a long line of research

in component composition and reuse. It is related to feature-oriented programming [14, 56], mixins

and mixin layers [15, 83], traits [78, 79], Hyper/J [88], object synthesis [26], etc. However, morphing

is the first of its kind to offer high level, separately type-checkable language support for reflecting

over the structure of code, and declaring new code using information obtained from reflection.

A cursory look at the logging example might suggest that AOP and code morphing are moral

equivalents. However, differences emerge for more substantial applications.

In this section, we study two real-world Java applications that deal with cross-cutting concerns

in different, but representative ways. Java Collections Framework (JCF) [5] is the standard data

structures library for Java. It handles cross-cutting concerns such as the “synchronization” of data

structure access by creating proxy classes, and replicating synchronization code for each method

of a proxy, across all proxies. DSTM2 [41] is a software transactional memory framework. It handles

cross-cutting concerns such as “transaction management” using a much lower level mechanism:

code generation through the Java reflection API [37] and bytecode engineering library (BCEL) [9].

We attempt to capture the cross-cutting concerns in these applications using both AspectJ

and MorphJ. The results show that while AspectJ has extremely powerful constructs for identifying

patterns in program execution and advising points captured by these patterns, it is not well-suited

for concerns that identify strongly with a program’s static structure. We identify these concerns
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as structurally cross-cutting concerns. MorphJ, on the other hand, has more expressive constructs

for capturing the structure of programs, and allowing code declarations to mimic the captured

structure. It is thus very well-suited for addressing structural concerns.

4.7.2 Case Study I: Java Collections Framework

Java Collections Framework (JCF) [5] is the standard data structures library for Java. In the ver-

sion of JCF included with Java 5.0, there are 14 main interfaces (e.g. Collection, List, etc.),

and 46 classes implementing these interfaces. To provide these data structures with features

that are orthogonal to the representation of data itself, JCF uses proxy classes. For exam-

ple, to offer the “synchronization” feature, JCF defines a number of synchronization proxies:

SynchronizedCollection, SynchronizedList, etc. To obtain a synchronized version of a data

structure, programmers call static methods in the utility class java.util.Collections. For exam-

ple, Collections.synchronizedCollection(c) returns a synchronized version of a Collection

object c.

class SynchronizedCollection
implements Collection {

Collection c;
Object mutex;

... // constructors that initialize

// c and mutex

public int size() {

synchronized(mutex) {

return c.size();

}

}

public boolean remove(Object o) {
synchronized(mutex) {

return c.remove(o);
}

}

... // repeat for all methods in

// Collection.
}

(a) Synchronization proxy for Collection.

class SynchronizedList
implements List {

List l;
Object mutex;

... // constructors that initialize

// l and mutex

public int size() {

synchronized(mutex) {

return l.size();

}

}

public int indexOf (Object o) {
synchronized(mutex) {

return l.indexOf(o);
}

}

... // repeat for all methods in

// List.
}

(b) Synchronization proxy for List.

Figure 25: Comparison of the JCF synchronization proxy classes.
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Anatomy of the Proxies: We take a closer look at two reperesentative JCF proxies, first

shown in Figure 8, but shown here again in Figure 25 for ease of reference. Closer inspection

shows that these proxies are the result of synchronization code being specialized at both the

method and class levels.

At the method level, the code for synchronization is clearly the block synchronized(mutex)

{...}. However, this block is specialized for the structure of each method of the type being

proxied—e.g., the method’s name and arguments. For example, in SynchronizedCollection, the

block in size() and that in remove(Object o) differ only in the method name and arguments

used for their delegation calls.

At the class level, the code for each proxy is specialized for the structure of the type being

proxied—e.g., that type’s name and methods. The only difference between SynchronizedCollection

and SynchronizedList are due to the structural differences between Collection and List. Each

proxy declares a field holding the object that method calls are delegated to. Such fields for

SynchronizedCollection and SynchronizedList differ only in their types (a structural element

of the field): Collection vs. List. Furthermore, the two proxies declare the same methods

modulo the differences in the declared methods (again, structural elements) of Collection vs. the

declared methods of List.

Thus, the structural specialization of the synchronization code is the root cause for the repli-

cation of synchronization code across methods and classes. Each time synchronization is needed

for a different type, with a different structure, the synchronization code must be specialized to the

structure of that type, through the declaration of a new proxy class.

Advantages and Disadvantages: The one obvious advantage of the proxy solution is that

programmers have the flexibility to use either synchronized or unsynchronized versions of the

same data structure as they see fit.

Yet another advantage that is easily taken for granted is that a pure Java solution stays within

the bounds of the Java type system, and enjoys the separate type-checking guarantees provided by

Java—a synchronization proxy can be type-checked separately from the code that may use it, and

guaranteed that it is well-typed wherever it is used.
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These advantages, however, come at a heavy cost. The biggest of these is the tight coupling in

structure between each synchronization proxy and the type it proxies for. For instance, the struc-

ture of SynchronizedList is tightly coupled with that of List. If the structure of List changes,

e.g., a method is added, or a method signature changes, the structure of SynchronizedList must

also change.

Furthermore, programmers are limited to the 7 synchronization proxies JCF provides. To ob-

tained a synchronized version of a type with no JCF-provided proxy, a programmer has to either

choose a more general supertype with a JCF-provided proxy, or implement his/her own.

Next, we explore how we can approach this problem using AOP and code morphing, mitigating

the disadvantages of the current solution, while maintaining the advantages.

4.7.2.1 AOP with AspectJ

At first glance, it may seem that this task is a good fit for AspectJ. However, the devil is in the

details.

Attempt #1: To advise the methods of a type (and its subtypes) with synchronization code, we

have two choices: We can either advise the points when methods are executed, (i.e., advice code is

injected to where methods are defined), or advise the points when methods are called (i.e., advice

code is injected to where methods are invoked). However, AspectJ disallows the execution-site

advisement of methods declared by classes in the java.* packages. This, unfortunately, includes

the JCF classes. Thus, we explore the call-site advisement option with the following generic aspect:

1 abstract aspect SynchCall<X> pertarget(callMeths()) {

2 pointcut callMeths() : call(* X+.*(..));

3 Object mutex;

4 Object around() : callMeths() {

5 synchronized(mutex) { return proceed(); }

6 }

7 }

Given any type X, SynchCall<X> declares a pointcut callMeths, which captures the call to any

method of X and its subtypes. An around advice (lines 4-6) injects a synchronization construct

around calls captured by callMeths. AspectJ’s proceed() keyword allows the advice to turn control

back to the intercepted code. Additionally, the pertarget construct in the declaration creates one
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instance of the aspect—and thus one instance of mutex—per object of type X whose method

invocations are intercepted.

To apply the synchronization advice to Collection, we declare the following concrete aspect:

aspect SynchCollectionAspect extends SynchCall<Collection> { }

Evaluation: Compared to the plain Java solution, the SynchCall aspect provides a very modular

definition of the synchronization concern. By instantiating SynchCall with different concrete types,

we can apply the synchronization functionality to any type—whether it be data structures in the

core JCF, or those defined by programmers themselves.

However, this solution offers programmers less control over when the synchronization code is

applied, as well as less language-level support for type safety.

Once the SynchCall aspect has been applied to a data structure, all calls to that data structure’s

methods are advised. The unsynchronized version of that data structure is no longer available.

In order to have more fine-grained advisement, programmers need to be able to enhance the

pointcut callMeths with additional program execution patterns. Capturing arbitrarily precise

points in program execution with pointcuts is a difficult issue recognized by many researchers

(e.g., [55, 73]). One technique often employed is hook methods: empty methods that serve no

purpose other than to punctuate a point in program execution that could be further advised by

aspects. However, such technique is widely considered unnatural for programmers [73].

The SynchCall aspect also suffers from AspectJ’s lack of support for separate type-checking.

An aspect cannot be type-checked separately from the programs it may advise, to guarantee that its

advisement will not introduce type errors. As an example, SynchCall is compiled by the AspectJ

compiler without issues. However, there is actually an insidious type error in this aspect: The

around advice naively declares its return type to be Object, even though the pointcut callMeths

identifies the call to all methods of X, including the void-returning ones! The body of the advice

then returns the result of the method by calling return proceed();.

This is an error by the aspect implementer, and should be caught by a type-checker before

the aspect is distributed to users. However, in AspectJ, the error is only discovered if the call of a
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void-returning method is matched by the pointcut, and advised. Even then, the AspectJ compiler

does not complain about the inappropriateness of returning a value from a void-method. Instead,

a NullPointerException ensues. A type error has been turned into a runtime exception!

It is important to note that had the JCF classes not been part of the java.* packages, an

execution-site advisement solution would look very much like the call-site solution we just pre-

sented, and poses the same advantages and problems.

Attempt #2: Since the lack of separate type-checking is a fundamental limitation of AspectJ,

we attempt to make an AspectJ solution that at least affords programmers more control over the

application of the synchronization code. Given the difficulty in refining pointcuts, we attempt a

more explicit approach.

For each data structure, we declare a new, empty subclass. We then use an aspect to advise

this new class instead. Programmers may use this new class when synchronization is wanted.

For example, for a synchronized version of Collection, we declare interface SynchCollection

that extends Collection. We can then use the following pointcut to identify calls to methods of

SynchCollection:

pointcut callSynchCollection(SynchCollection c) :

target(c) && (call(* Collection+.*(..)));

The above pointcut matches calls to all methods defined by Collection and its subtypes.

Additionally, the target(c) construct forces the receiver of these calls to be an object of type

SynchCollection. A method call invoked from an object of (the unsynchronized type) Collection

will thus not be matched by this pointcut. We can now advise callSynchCollection with syn-

chronization code (similar to the code in our previous attempt), without affecting the objects of

Collection. This refinement allows a programmer to use SynchCollection wherever a synchro-

nized version of Collection is required. This more explicit approach is very much in the spirit of

the original JCF, where a programmer explicitly obtains a synchronized version of Collection c

by invoking Collections.synchronizedCollection(c).
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Evaluation: Though this second attempt provides us with more precise control over the ap-

plication of concern code, it loses a bit of modularity. For every data structure in JCF, we need

to declare a synchronized subtype for advisement. What is more tedious than the declarations

of types, though, is that these new types must be related through a type hierarchy that mimics

the type hierarchy of their corresponding originals. For instance, since interface List extends

Collection, we must declare SynchList to extend SynchCollection. And for every class imple-

menting Collection, we must declare their corresponding synchronized subclasses to implement

SynchCollection. This isomorphic type hierarchy is another form of structural specialization. If

the structure of the JCF type hierarchy changes, this synchronization hierarchy must change, as

well.

Observant readers may notice that the original type hierarchy cannot be faithfully replicated for

classes. For example, class AttributeList extends ArrayList. Thus, SynchAttributeList must

extend SynchArrayList. However, SynchAttributeList already extends AttributeList! Without

support for multiple inheritance, we simply cannot accomplish this task.

Another issue affecting the usability of this solution is that the dynamic types of objects are

not taken into account in pointcut matching. When a SynchArrayList object is assigned to a

variable of type ArrayList, method calls invoked from this variable are no longer matched by

callSynchCollection! It is possible, however, that AspectJ could be enhanced to eliminate this

issue.

4.7.2.2 Morphing with MorphJ

The MorphJ solution is a MorphJ generic class that, when instantiated with a concrete type, results

in a class that is equivalent to the manually declared proxy classes. The code below was first

introduced in Chapter 3, Figure 9. We replicate it here for ease of reference:
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1 public class Synchronized<interface X> implements X {

2 X me;

3 Object mutex;

4

5 // ... constructor declarations

6

7 <R,A*>[m] for (public R m (A) : X.methods)

8 R m (A args) {

9 synchronized (mutex) {

10 return me.m(args);

11 }

12 }

13

14 <A*>[m] for (public void m (A) : X.methods)

15 void m (A args) {

16 synchronized (mutex) {

17 me.m(args);

18 }

19 }

20 }

The MorphJ generic class Synchronized can be instantiated by any Java interface, and im-

plements that interface. The core synchronization functionality is expressed in two reflective

declaration blocks, on lines 7-12, and 14-19. The first reflective declaration block statically iterates

over every method of X matched by the pattern, “public R m (A)”. Given that R, A, and m are

pattern-matching variables, and A matches a sequence of types of any length, this pattern matches

all non-void-returning methods of X. For each such method, this block declares a method with the

exact same signature, which first synchronizes on a mutex, and then delegates its call to the under-

lying object of type X. Similarly, the second reflective declaration block declares the void-returning

methods of X.

To obtain a synchronized version of an interface, e.g., Collection, one may instantiate

Synchronized with that type, e.g., Synchronized<Collection>. A similar MorphJ generic class

can be defined for use with classes.

Evaluation Similar to the AspectJ solution, the MorphJ generic class Synchronized offers a

modular encapsulation of the synchronization functionality. In addition, the MorphJ solution offers

programmers precise control over where the synchronization functionality is applied, as well as

language support for separate type-checking. However, the MorphJ solution does share some of

121



the AspectJ solution’s issues with respect to emulating the JCF type hierarchy.

The modularity of the MorphJ solution comes from the expressiveness of the reflective dec-

laration blocks. These blocks allow the declaration of code that abstracts over the structure of

unknown types. E.g., it is not necessary to know what methods a type has to declare methods with

the same signatures, or to invoke these methods. Synchronized can be applied to any interface,

in or outside of JCF, to create synchronized versions.

MorphJ supports an explicit model of concern application: To obtain a synchronized version of

a data structure, a programmer must explicitly instantiate Synchronized with that data structure.

This affords programmers precise control over the application of concern code.

Furthermore, a MorphJ generic class can be type-checked separately from all the (possibly

infinite number of) types it can be instantiated with. If the MorphJ type-checker puts its stamp of

approval on the well-typedness of a MorphJ generic class, the class is guaranteed to not introduce

type errors no matter where and how it is used. Note that the type error we had in SynchCall

simply cannot exist in MorphJ: Attempting to add the return keyword on line 17 would cause the

MorphJ type-checker to complain that one cannot return from a void-returning method.

In the MorphJ solution, there is no need to manually declare synchronized subtypes of the orig-

inal JCF classes—this subtyping happens automatically through the instantiation of Synchronized.

However, the MorphJ solution does share a similar problem as the AspectJ solution with re-

spect to type hierarchies. For reasons of type safety, instantiations of generic classes have an

invariant subtyping relationship. For example, even though List is a subtype of Collection,

Synchronized<List> is not an automatic subtype of Synchronized<Collection>. Obviously, we

would like to be able to assign an object of type Synchronized<List> to a variable of type

Synchronized<Collection>. One possible solution is to use the Java wildcard notation for vari-

ant parametric types [16, 89]. For example, Synchronized<List> is safely and automatically a

subtype of Synchronized<? extends Collection>. This solution, however, must rely on the

programmers to put more thought into declaring the most general types possible for variables.

Furthermore, for type safety issues, certain methods cannot be invoked from Synchronized<?

extends Collection>, whereas they could be from Synchronized<Collection>. Lastly but cer-

tainly not least, MorphJ does not currently support the use of wildcards in morphing generic
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classes. Supporting this advanced feature is still future work.

4.7.3 Case Study II: DSTM2

DSTM2 [41] is a software transactional memory framework written in Java. It provides a number

of “factory” classes supporting different transaction management policies. In Section 3.5, we

saw the MorphJ implementation for a version of DSTM2 which accepts annotated Java classes as

inputs. Here, we describe the latest version of DSTM2, which accepts Java interfaces as inputs.

Given a Java interface (conforming to a certain format), a DSTM2 factory can be used to create

objects implementing that interface, and protected by the factory’s transaction policy. For example,

consider the following interface:

interface INode {

int getValue();

void setValue(int i);

INode getNext ();

void setNext (INode n);

}

All interface inputs to DSTM2 must have getf /setf method pairs, for some set of properties

f ’s. The following code invokes RecoverableFactory to create an object implementing INode,

managed by the “recoverable” policy:

RecoverableFactory rfactory = new RecoverableFactory(INode.class);

INode recoverableNode = rfactory.create();

Under the hood, RecoverableFactory performs magic by generating a class implementing

INode as follows:

• For each pair of getf /setf methods, create a field f , as well as a “shadow” field shadowf .

• Provide implementations for getf /setf methods (field accessors) for the reading and writing

of f , with code for transaction management. For instance, each method must first back up

the values of each field into its corresponding shadow field. After reading/writing, it must

reconcile the transaction with the global state, and possibly restore the values of each field

from its shadow field.

The cross-cutting concern of interest in DSTM2 is “transaction management”. The code for

transaction management is almost the same for each field accessor, modulo the differences in the
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name and type of the field being accessed, and the names and types of fields declared in the

enclosing class. DSTM2 is the perfect example where replicating and specializing the concern code

for each method and class is insufficient. DSTM2 cannot anticipate what interfaces it may receive

as inputs, and thus cannot create specialized transactional implementations of these interfaces

statically. Thus, DSTM2 employs a combination of Java reflection and bytecode engineering with

BCEL [9].

Advantages and Disadvantages: One clear advantage of using reflection and BCEL is that

it is indeed reusable. All the code for transaction management is defined in one place—or rather,

all the code for transaction management is generated, and the generator code is defined in one

place. This generator code can be reused with any input Java interface.

Another advantage is that it allows the mixing and matching of transaction policies. Objects of

the same interface can be created using factories supporting different policies, but can interact.

However, reflection and BCEL are extremely low level techniques. Code written using these

techniques is not only hard to understand and maintain, it also completely bypasses the Java type

system. The type safety of generated classes is not at all guaranteed by the type-checker, and

framework developers can only rely on testing, an incomplete technique, to find bugs that may

introduce type errors into the generated code. (We point out a bug we discovered in the DSTM2

implementation later in this section.)

We next explore how to address “transaction management” with AOP and morphing, maintain-

ing the modularity and flexibility of the original design, while providing high-level implementations

with separate type-checking.

4.7.3.1 AOP with AspectJ

One thing we definitely cannot do with AspectJ, is generating new classes implementing arbitrary

interfaces. Thus, given an interface such as INode, an AspectJ solution would require the users

to provide a very basic implementation of INode before any aspect could advise it. This is a bit

tedious, but not difficult. The following is an outline of such a basic implementation:
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class SimpleNode implements INode {

int value; // field for getValue/setValue methods

INode next; // field for getNext/setNext methods

// basic, non-transactional implementations.

int setValue(int i) { value = i; }

... // implement getValue, setNext, getNext

}

If we accept this as a prerequisite of an AspectJ solution, we can move on to advising the getf

and setf methods of any type X. As with the previous case study, we have the choice of advising

the execution sites of these methods, or the call sites. As call site advisement is a more flexible

and less invasive approach (leaving the original definition untouched for further advisement), we

use the following call-site pointcuts to identify the calls to the getf and setf methods:

pointcut getMeths(X x) : target(x) && call(* X.get*());

pointcut setMeths(X x) : target(x) && call(void X.set*(..));

For each field, we need some way of storing its value in case a transaction is rolled back. The

DSTM2-generated classes accomplish this by declaring a shadow field for each field. In AspectJ, we

can achieve a similar effect by holding old values of fields in a hash map, keyed by field names.3

The following generic aspect shows a skeleton solution, with the difficult parts (lines 7 and 9)

purposely elided:

1 abstract aspect RecoverableAspect<X>

2 pertarget(getMeths(X) || setMeths(X)) {

3 ... // getMeths() and setMeths() definitions

4

5 HashMap shadowValues = new HashMap();

6 void around(X x) : setMeths(x) {

7 ... // backup all fields and open transaction

8 proceed(x);

9 ... // resolve conflict, and possibly roll back.

10 }

11 Object around(X x) : getMeths(x) { ... }

12 }

We again use around advice to inject transaction management code around the calls to getf

and setf methods. The real challenge, however, is how we can backup the field values before the

transaction begins (elided code on line 7), and restore them if the transaction needs to be rolled

3Intertype declarations in AspectJ do not work because we are declaring a generic aspect for any type X, and we do
not know exactly what fields are in X until the aspect becomes instantiated.
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back (elided code on line 9).

In order to backup the value of each field, we must first retrieve its current value, and store

it in shadowValues, using the field’s name as the key. However, the advice code is generic to the

type it is operating on. We do not know the exact fields of X until it is instantiated. Thus, we must

resort to using reflection. The following code retrieves all fields from the type of x, the target of

a setf /getf call, and stores each field’s value in shadowValues map. We have underlined calls to

the reflection API:

Field[] fields = x.getClass().getFields();
for ( Field f : fields )

shadowValues.put(f.getName(), f.get(x));

We must invoke similar code to restore the values of fields in case of a rollback.

Now we can apply the recoverable policy to any type by declaring a concrete aspect extending

the instantiated version of RecoverableAspect. For example, to apply the policy to SimpleNode,

we declare:

aspect RecoverableSimpleNodeAspect extends RecoverableAspect<SimpleNode> { }

Evaluation: The AspectJ solution is reusable: transaction management code is completely en-

capsulated within an aspect, and can be applied to any type.

This solution is also reasonably flexible. Recall that DSTM2 allows programmers to mix and

match different transaction policies for objects of the same type. We can certainly define other

policies using more aspects. For example, we can define ObstructionFreeAspect, which supports

the “obstruction free” transaction policy. However, applying RecoverableAspect to SimpleNode

universally advises the calls to the getf and setf methods of SimpleNode with recoverable

transaction policy. Thus, in order to create objects managed by a different policy, we must declare

another class implementing INode, e.g., SimpleNode2, and apply the aspect for that policy to

SimpleNode2 instead. Thus, for each policy, users must create a different class to be weaved by

this policy’s aspect. This is essentially the same technique we employed in the JCF case study.

This solution is also arguably more high level than the original DSTM2 implementation. There is

no need to understand the Java bytecode standard to understand and maintain this code. However,
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we did have to resort to the reflection API to retrieve and store values from and to fields. Not

only does this affect performance—an important characteristic in transactional memory systems,

it also, again, bypasses the Java type system. There is no guarantee that the code using reflection

does not cause typing errors, e.g., storing the object of a wrong type into a field.

4.7.3.2 Morphing with MorphJ

The MorphJ solution essentially reproduces what would have been generated by the original DSTM2,

but with a MorphJ generic class. We highlight the parts that contrast most with the AOP solution.

The following MorphJ generic class is a transactional implementation of any type X, using the

recoverable policy:

1 class Recoverable<interface X> implements X {

2 <F>[f]for( F get#f() : X.methods;

3 some void set#f(F) : X.methods ) {|

4 F f;

5 F shadow#f;

6 |}

7 ... // implementations of get#f and set#f methods.

8 }

The outer and nested patterns on lines 2 and 3 pick out exactly the getf /setf method pairs

of any type X, for any name f. For each such pair, two fields are declared: f, and shadow#f—the

field and its corresponding shadow field. Note that the AspectJ solution cannot enforce this format

on the input interface or class.

The primary challenge in the AspectJ solution is how to backup and restore field values.

This task is quite simple in the MorphJ solution. The following code backs up each field in

Recoverable<X>:

<F>[f]for(F get#f() : X.methods;

some void set#f(F) : X.methods; )

shadow#f = f;

The above reflective declaration block declares an assignment statement per iteration. The

iterator definition picks out exactly the same getf /setf method pairs of X, and stores the value

of each f into its corresponding shadow#f. Similar code can be used for restoring old values from

shadow fields back into the originals.

Evaluation: Recoverable<X> is a modular definition of the recoverable transaction policy, and
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can be applied to any interface X. Additionally, programmers have explicit control over where (and

which) policy is applied. In contrast to the AOP solution, there is no need for declaring placeholder

implementations just for concern weaving.

Additionally, the MorphJ solution is high level, using neither reflection nor bytecode engineering.

The reflective declaration block of MorphJ lifts reflecting over the static structure of types to the

language level. But the key difference between MorphJ and other languages offering pattern-based

matching over structure (including AspectJ’s own method/field pattern syntax), is that not only can

programmers reflect over the structure of other types, they can declare code using the information

captured by reflection. The ability to write code using these reflectively captured names and types

is crucial to the implementation of backup and restore code without resorting to reflection.

High level support for reflection, both at the introspection and the declaration level, not only

allows more expressive code, but also benefits the type safety of the language. As we mentioned

previously, MorphJ provides separate type-checking. This means Recoverable<X> can be type-

checked without knowing all the possible concrete types that X could be instantiated with, and

guarantee that no matter what X is replaced with, the code is always well-typed.

To punctuate this point, our presentation of Recoverable<X> replicates a bug in the original

DSTM2. Certain instantiations of X can cause type errors in the presented Recoverable<X>.

TrickyNode is such a class:

interface TrickyNode {

int getvalue();

void setvalue(int i);

float getshadowvalue();

void setshadowvalue(float f);

}

Recoverable<TrickyNode> contains fields int value and int shadowvalue from method

pair getvalue/setvalue, and float shadowvalue and float shadowshadowvalue from method

pair getshadowvalue/setshadowvalue. Clearly, the declarations int shadowvalue and float

shadowvalue conflict.

The MorphJ compiler complains about these possible conflicting declarations when compiling

Recoverable—without us having to provide the interface that induces this error. The benefit of

a separately type-checkable language is exactly that programmers are warned of errors they did

128



not anticipate. The correct implementation of the field declaration block should have the following

iterator definition:

<F>[f] for( F get#f() : X.methods;

some void set#f(F) : X.methods;

no getshadow#f() : X.methods) ...

The second nested pattern blocks out any method get#f for which there is already a getshadow#f

method. This means method getvalue() in TrickyNode would not be part of the iteration, and

thus, int value and int shadowvalue are not declared in Recoverable<TrickyNode>.4

TrickyNode may seem contrived, but it illustrates the point that when declarations are done

by reflecting over the structure of another type, using unknown names, errors of duplicate or con-

flicting declarations are easy to make. In fact, this exact bug exists in the DSTM2 implementation,

and we only realized it after the MorphJ compiler complained about our buggy Recoverable class.

4.7.4 Discussion

We were able to produce reusable definitions of cross-cutting concerns using either AOP or mor-

phing. However, the solutions always differed in 1) how easy and precise it is for programmers to

control where concern code is applied, and 2) how high level the solution code is, in terms of both

syntax and type checking support. These differences are consequences of the structural nature of

the concerns.

Structurally Cross-Cutting Concerns: A Definition: We define a structurally cross-

cutting concern as follows:

• The applicability of the concern is associated with static, structural patterns of programs,

instead of runtime, execution patterns.

• The applicability of the concern does not change over the lifetime of an object, or depend

on complex run-time state of the program. (The code for the concern itself could have

runtime state, of course.)

4One could argue that this definition could result in unexpected instantiations. Programmers could employ MorphJ’s
error pattern to produce a compile-time error when the pattern is blocked.
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It is easy to see why synchronization and transaction management are structural concerns.

First, the position of application of synchronization or transaction management can be entirely

captured by patterns on the structure of the programs. The code for synchronization needs to be

applied to every method of a data structure type; the code for transaction management needs to

be applied to every field accessor of a type, and the backup and restore code needs to be applied

to every field of a type. Both methods and fields are part of a type’s structure. They are not,

however, part of a program’s execution pattern.

Secondly, it is most commonly the case that a programmer chooses to either have a synchro-

nized version of a data structure or not, by creating a data structure object with synchronization

protection (or not). Once a data structure object is created, it is unlikely that programmers will

add or remove synchronization from the object during a program’s runtime, conditioned by the

program’s runtime state. The same can be said for transaction management.

The structural nature of these concerns can help us explain why they can be better addressed

with one approach, and cause problems with the other.

Precise Control of Concern Application: The main issue with the AOP solutions of

our case studies is the inability to precisely control where concern code is applied. In the JCF

case study, the AOP solution does not easily allow programmers to use both synchronized and

unsynchronized versions of the same data structure; in the DSTM2 case study, the AOP solution

does not easily allow the mixing and matching of transaction management policies by controlling

exactly which policies are applied to which objects.

The issue lies with AOP’s focus on capturing and advising program execution patterns. AspectJ

provides powerful pointcut patterns for capturing these execution patterns. However, there is

generally no pattern powerful enough to precisely describe any arbitrary point in the lifetime

of one object and that object exactly. Thus, if an object’s usage does not follow an execution

pattern—as is generally the case—it cannot be easily captured by AspectJ, either.

In contrast, morphing focuses on providing expressive constructs for capturing a program’s

static, structural patterns, and allowing the declaration of new code using the information cap-

tured by the patterns. A MorphJ generic class allows the declaration of code that is automatically
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“weaved” into the structure of another program when the generic class is instantiated. This “weav-

ing”, however, happens through the creation of a new type, leaving the original type untouched

and free to be “weaved” again. This deliberately explicit approach provides programmers with fine

grained control over where a concern is applied.

At the same time, however, the explicit approach also forces programmers to be very aware

of where a concern is needed. It could be very onerous if indeed a concern is to be weaved

everywhere in a program. Furthermore, adding a concern that was not originally thought of involves

whole program modification. AspectJ, on the other hand, makes applying concerns universally or

obliviously very easy.5

Morphing also offers no constructs for capturing program execution patterns. For instance,

there is no easy, pattern-based way to pick out constructor invocations on singleton types, nor to

determine a recursive call of a method. Both patterns are easily identified using AspectJ. Thus, if a

concern’s application pattern relies on program execution patterns, capturing where the concern

should apply in morphing can only be done programmatically.

High-Level Definitions: Regardless of the model and pattern of concern application, our

case studies showed that in both AOP and morphing solutions, some code needs to be declared

in a way that abstracts over the structure of other code. Storing the values of all fields into the

backup fields (or into a hash map), while the declaring type of these fields is unknown, is one

such example. The code for doing so must abstract over the differences in the declared fields of

different types. AspectJ does not have support for declaring such structurally abstract code. In

contrast, the entire morphing approach is based on declaring structurally abstract code, through

reflective declaration blocks. MorphJ’s patterns capture both types and names. The ability to

declare code using these names is crucial to MorphJ’s success in capturing DSTM2 functionality

without using either reflection or bytecode engineering.

The ability to declare structurally abstract code is not at all at odds with AspectJ’s execution-

based advisement model. It is possible to incorporate this feature into AspectJ’s intertype declara-

tions, resulting in a more flexible, execution-based approach.

5Although, the effect of obliviousness on modularity is actively debated in research [42].
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High level language support means not only convenient syntax, but also the checking of static

program semantics. One of the crucial properties of modular software development is separate

type checking—a piece of code should be type-checked separately from the (possibly infinite

number of) programs it could be used with. It should be guaranteed that well-typed code would

not introduce type errors to the programs it applies to.

AspectJ’s execution-based nature makes providing separate type checking a major challenge. In

order to reason about the typing properties of its advice, the AspectJ type checker must reason

about the execution of programs described by the pointcuts. Reasoning about dynamic properties

with a static system is in general undecidable.

The static nature of MorphJ, however, affords the MorphJ type checker plenty of static, struc-

tural information. MorphJ thus provides strong separate type checking guarantees. As we demon-

strated in our case studies, this property is very useful in catching subtle but serious bugs.

4.7.5 A Summary of the Comparative Study

We compared AOP and morphing’s relative suitability in addressing cross-cutting concerns by

re-engineering two real-world Java applications. Even though reusable definitions are possible

through either approach, AOP solutions were consistently less flexible in concern application, and

lack modularity: There is no guarantees for the type-safety of the resulting code. The structural

nature of the concerns studied is the cause for this difference. AOP is well-suited for capturing

program execution patterns, and advising points captured by those patterns. However, it provides

no support for capturing structural patterns. Morphing’s strength is exactly the opposite, making

it well-suited for addressing structural concerns, while providing strong typing guarantees.
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Chapter 5

Conclusion

Structural abstraction represents a radical departure from the prevailing notion of abstraction,

where reusability and modularity rely on the rigidity in code structure. Structurally abstract code

can be declared so that its own structure can be automatically specialized through composition.

As such, structural abstraction achieves a higher level of reuse compared to dominant abstraction

mechanisms. At the same time, structural abstraction maintains a high level of modularity guaran-

tee: The correctness of a piece of structurally abstract code is still checked independently from its

eventual compositions, and errors are caught in a modular fashion.

5.1 A Broader Lesson

A broader idea that emerges from this work is that of principled reflection. Reflection has always

been an important mechanism for introspecting and abstracting over code structure. However,

existing reflection implementations (e.g., in languages such as Java, C#, or in more powerful

systems like Meta-Object Protocols or Lisp macros) confuse compile-time entities, e.g., types and

names, with runtime values, e.g., strings. For instance, in the Java reflection API, the class of an

object is represented as another object—a runtime entity—of type Class; the name of a class

is represented as a String object. Furthermore, existing reflection mechanisms allow powerful

Turing-complete constructs to dictate the control and data flow of reflective code. For example, in

Java, reflective code can be embedded in iteration and conditional constructs that employ Turing-

complete conditions; data retrieved through reflection can be arbitrarily manipulated (e.g., stored

in variables that can be reassigned or mutated). The combination of compile/runtime confusion

and unrestrained power of Turing-complete control structures severely limits the modularity of the

reflective approach: A compiler has very limited power to reason about what is being reflected and

how reflected entities are manipulated in the declaration of new code.
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Structural abstraction represents a principled approach to reflection. In both static type condi-

tions and morphing, compile-time entities such as types and names stay as such to the compiler,

through the use of type and name variables. Furthermore, code reflects over other code through

patterns and subtyping condition, which offer limited forms of iteration and conditionals that are

amenable to static analysis. This approach affords the compiler a great deal of power in reasoning

about what is being reflected and how the entities retrieved via reflection are used. The combi-

nation of a clear separation between compile- and run-time entities, along with limited control

constructs, is key in obtaining modular safety guarantees for structurally abstract code.

Principled reflection also gives rise to a new model of code as abstract sets: sets whose exact

elements are unknown, but all elements are described by known properties. Code as abstract sets

is a generalization of the traditional concept, in which a piece of code is a concrete, compile-time

entity. In this new model, a piece of code with statically resolvable structure (e.g., exact name and

argument types) is simply an abstract set with a cardinality of one. In a highly generic language

like MorphJ, however, a reflectively declared method (or field, statement, etc.) is treated as an

abstract set of methods (fields or statements, respectively) whose properties are determined by

the reflective iterator it is defined under. The notion of abstract sets affords an easy way to

model common type-safety properties such as declaration uniqueness and referential integrity.

Declaration uniqueness can be checked through the disjointness of abstract sets, and referential

integrity can be checked through set containment.

The challenge in reasoning about highly generic code is to construct a type system where most

type-correct programs can be proven so automatically. The more variable the code, the more

difficult it is to find the balance between the soundness and the completeness of the approach.

The treatment of typing properties as set disjointness and containment occupies a sweet spot in

the spectrum of code variability and completeness of type systems.

Of course, there is much more that can be reflected from code than just its static structure [17].

The approach of this work may serve as a basis for the design of a principled reflection of runtime

properties.
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5.2 A New Paradigm of Programming

Structural abstraction forms a sound foundation for a new paradigm of programming, where code

is no longer considered an entity with a rigid, fixed structure, but instead, as data structures that

can be inspected by and used to shape the structure of other code. This new paradigm opens the

door for rethinking many of the existing mechanisms for code reuse and language interaction.

5.2.1 Rethinking Inheritance vs. Delegation

The mechanism for code reuse in many Object-Oriented languages is inheritance: class A extends

B, and thus A inherits (and reuses) all the code in B. The criticisms of inheritance as a mechanism

for reuse are well-documented in the research literature [24, 30]. Inheritance confuses the role of

a class as a model for object behavior, and its role as an organizational unit of code. When A

inherits code from B, A is automatically treated as a subtype, or a refinement of the model, of

B. This may not be the desirable behavior—A may simply want to reuse some code. Inheritance

is also a coarse-grained way for code reuse: Often times a subclass only needs to reuse a small

subset of its superclass’s methods, but is forced to inherit all of them. Various alternative reuse

mechanisms have been proposed, such as mixins, traits, etc. [15, 23, 30]. These techniques either

have trouble providing modular safety guarantees [15, 23], or they have limitations with respect to

encapsulating and sharing state [30].

An alternative model of code reuse is delegation [65,84]. Instead of inheriting code from class B,

class A defines methods that model its own behavior, and delegates method calls to the appropriate

methods in B if the behavior is shared. In the delegation approach, A is not treated as a subtype

of B. A can also reuse as much or as little of B’s code as it sees fit. The synchronization proxies in

Java Collections Framework described in Section 3.3 can be seen as code reuse through delegation.

However, as is also evident through the synchronization proxies, delegation involves an enormous

amount of boiler plate delegation method declarations. Furthermore, if A needs to reuse code from

multiple classes through delegation, keeping track of state shared between different delegates is

cumbersome and error-prone. Additionally, there is some performance penalty involved in each

delegation.

Structural abstraction presents a fresh perspective to the inheritance vs. delegation debate.
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Using morphing, class A can easily share code with class B by defining its methods (or fields)

through reflective iteration over methods (or fields) of B. The body of these methods may delegate

calls to the methods of B, which emulates the classic delegation approach. Code reuse does not

confuse itself with the concept of modeling: Class A does not have to be a subtype of B to reuse

code from B. Yet boiler-plate code is replaced with one reflective iteration block.

Alternatively, syntax could be introduced to indicate to the compiler that the code from B

should actually be copied into the body of A, which more closely emulates inheritance. State

variables of B can be explicitly kept inside of A. The overhead of delegation calls can also be

removed, since the code of B is now inlined in svA, instead of being delegated to.

Furthermore, structural abstraction allows code reuse at a granularity that is defined by the

programmer. Class A can choose to inherit all the methods in B, or only a certain subset of

methods in B by refining the patterns used in reflective iteration over B. A may also choose to

inherit methods of B, as well as methods from C, D, etc., using multiple reflective iteration blocks.

This provides an emulation of “multiple inheritance”. But, in the structurally abstract approach,

programmers have explicit control over how methods from multiple classes are incorporated and

interact. For instance, programmers can explicitly state that methods with the same signature from

B, C, and D should first invoke the code of B, then D, then C (or any arbitrary order, or even leave

out invocation of code of C). Similarly, state variables from multiple classes can be kept separate,

or combined if they have the same name and type. In fact, this new form of inheritance can be

generally defined as a MorphJ generic class A<X>, where A can inherit from any type X. We can

similarly define generic classes A<X,Y>, or A<X,Y,Z>, etc. for generic “multiple inheritance”.

Thus, structural abstraction is capable of supporting a hybrid approach between inheritance

and delegation, where code reuse is kept a separate concept from modeling, granularity of code

reuse can be explicitly controlled by the programmers, semantics of shared code and state can be

explicitly managed, and the compiler has the opportunity to optimize away delegation.

5.2.2 Cross-language Structural Abstraction

Though the work presented in this dissertation focuses on using structural abstraction to support

the composition of pieces of code written in the same, general-purpose language, structural
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abstraction can be a powerful technique for facilitating the composition of pieces of code written

in different, possibly domain-specific languages.

It is increasingly common that code written in one language must shape its own structure by

reflecting over code written in a “foreign” language. The most notable example is the interaction

between various general-purpose languages (e.g., Java, Ruby), and domain-specific languages for

database schema description (e.g., XML) or querying (e.g., SQL). For instance, Java programs rou-

tinely create classes that reflect the structure of underlying database tables, so that data can be

represented natively as objects. Programmers also often generate code in a foreign language to

reflect the structure of code in the host language, e.g., constructing SQL queries from within Java,

by reflecting over the structure of a Java class.

This type of structural correspondence across languages is commonly accomplished using ad-

hoc techniques such as reflection APIs and string manipulation. Recently, frameworks such as

Hibernate [3] and Ruby on Rails [6] have emerged to hide the complexity of such techniques from

end programmers. Regardless, the underlying mechanisms are undisciplined: Code written using

them is verbose, difficult to understand and maintain, and most importantly, carries no guarantees

of correctness independently of specific instantiations. One of the most visible consequences

of such undisciplined practices is exposure of code to security issues such as query injection

attacks. Various program analysis [38,86] and language-based [18] approaches have been developed

to detect such attacks. But these techniques focus on ensuring the syntactic correctness of query

commands generated from the host language, not the semantic correctness of code generated,

e.g., whether the database indeed contains the fields referenced by a generated SQL command.

Furthermore, program analyses are necessarily best-effort techniques that tend to be either overly

conservative, or unsound.

Cross-language structural abstraction offers a promising approach to allow tighter, semantically-

aware integration of languages. A cross-language structural abstraction mechanism would allow

principled reflection over code of a foreign language, with controlled iteration and conditionals over

the structure of such code (e.g., a pattern-based static iteration over the columns of a database

table description). It can expose the right kinds of code-level variables (e.g., variables representing

column types and names) for reflecting and retrieving code from the foreign language. Lastly, a
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principled cross-language reflection would provide a mapping from the static semantics of the

foreign language to properties of abstract sets (e.g., all column names of a table are unique), so

that these properties can be used in the type checking of code generated in either the foreign or

the host language.

As software development moves toward a proliferation of domain-specific languages, compo-

sition of code written in different domain specific languages is going to be the key challenge in

modular software construction. Cross-language structural abstraction can play an important role

in the reusability and modularity of code.

To conclude, structural abstraction represents a significant trend in the evolution of program-

ming languages. Most major advances in programming languages are modularity or reusability

enhancements. The first step was taken with procedural abstraction in the 50s and 60s, which

culminated in structured programming languages. Procedural abstraction captured algorithmic

logic in a form that could be multiply reused both in the same program and across programs, over

different data objects. The next major abstraction step was arguably type abstraction or polymor-

phism, which allowed the same abstract logic to be applied to multiple types of data, although the

low-level code for each type would end up being substantially different. Structural abstraction may

very well be the next big step in language evolution, where code can abstract over the structure of

other program elements. The inclusion of such constructs in mainstream languages will be a topic

of major importance for decades to come, and this dissertation represents a big step forward in

this direction.
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Appendix A

Featherweight cJ (FCJ): Proof of Soundness

We provide here proofs for the theorems presented in Section 2.6, as well as their supporting

lemmas. Readers familiar with the proofs presented in [47] and [48] will find these proofs similar.

Theorem 1 (Subject Reduction). If ∆;Γ`e∈T and e−→e′, where ∆ has non-variable bounds,

then ∆;Γ`e′∈S and ∆`S<:T for some S.

Proof. We prove using induction on the derivation of e−→e′.

Case R-FIELD:

e=new C<T>(e).fi e′=ei

By T-FIELD, T-NEW, and O-REFL:

∆;Γ`new C<T>(e)∈C<T> ∆`bound∆(C<T>)⇑∅C<T> fields(∆, C<T>)=U f

Ui⇓∅Ui, where Ui=T ∆;Γ`e∈S ∆`S<:U

Let S=Si

Case R-INVK:

e=new C<T>(e).<V>m(d) e′=[d/x, new C<T>(e)/this]e0

mbody(m<V>,C<T>)=(x,e0)

By T-INVK, T-NEW, O-REFL:

∆;Γ`new C<T>(e)∈C<T> ∆`bound∆(C<T>)⇑∅C<T>

mtype(∆, m, C<T>)=<Y/P>U→U0 ∆`C<T> ok ∆`V ok

∆`V<:[V/Y]P ∆;Γ`d∈S ∆`S<:[V/Y]U [V/Y]U0⇓∅T, where T=[V/Y]U0.

By Lemma 1, for some N, S0,

∆`C<T><:N ∆`N ok ∆`S0<:[V/Y]U0 ∆;x:[V/Y]U,this:N`e0∈S0

By Lemma 4, there is some S′0 such that:

∆;Γ`[d/x, new C<T>/this]e0∈S′0 ∆`S′0<:S0
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By S-TRANS, ∆`S′0<:T. Let S=S′0.

Case R-CAST:

e=(T)new C<T>(e) e′=new C<T>(e) ∅`C<T><:T

By T-CAST, T-NEW: ∆`new C<T>(e)∈C<T>

Let S=C<T>.

Case RC-FIELD:

e=e0.f e′=e′0.f e0−→e′0

By T-FIELD:

∆;Γ`e0∈T0 ∆`bound∆(T0)⇑∆′
C<U> fields((∆,∆′), C<U>)=S f Si⇓∆′T

By induction hypothesis, there exists S0 such that:

∆;Γ`e′0∈S0 ∆`S0<:T0

By Lemma 2, for some ∆′′, D<S>, V, V′0,

∆`bound∆(S0)⇑∆′′
D<S> fields(∆,∆′′, D<S>)=...,V f Vi⇓∆′′V′0 ∆`V′0<:T

By T-FIELD, ∆;Γ`e′0.f∈V′0.

Let S=V′0.

Case RC-INV-RECV:

e0.<V>m(e)−→e′0.<V>m(e) e0−→e′0

By the induction hypothesis, for some T′0:

∆;Γ`e0∈T0 ∆;Γ`e′0∈T′0 ∆`T0,T
′
0 ok ∆`T′0<:T0

By T-INVK,

∆`bound∆(T0)⇑∆′
C<T> mtype((∆,∆′), m, C<T>)=<Y/P>U→U0

{Y} ∩∆′ = ∅ ∆`V ok ∆,∆′`V<:[V/Y]P

∆;Γ`e∈S ∆,∆′`S<:[V/Y]U [V/Y]U0⇓∆′T

By Lemma 3, for some ∆′′, D<S′>, P′, U′, and U′0,
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∆`bound∆(T′0)⇑∆′′
D<S′> mtype((∆,∆′′), m, D<S′>)=<Y/P′>U′→U′0

∆,∆′′ ` V<:[V/Y]P′ ∆,∆′′ ` W<:[V/Y]U′

[V/Y]U′0⇓∆′′V′0 ∆ `V′0<:T

By T-INVK, ∆;Γ`e′0.<V>m(e)∈V′0.

Case RC-INV-ARG:

e0.<V>m(...,ei,...)−→e0.<V>m(...,e′i,...) ei−→e′i

By T-INVK:

∆;Γ`e0∈T0 ∆`bound∆(T0)⇑∆′
C<T>

mtype((∆,∆′), m, C<T>)=<Y/P>U→U0 {Y} ∩∆′ = ∅

∆ ` V ok ∆,∆′ ` V<:[V/Y]P

∆; Γ ` e ∈ S ∆,∆′ ` S<:[V/Y]U

[V/Y]U0⇓∆′T

∆;Γ`ei∈Si. By induction hypothesis, for some S′i,

∆;Γ`ei′∈S′i ∆`S′i<:Si

By S-TRANS and Lemma 5, ∆,∆′`S′i<:Ui

By T-INVK, ∆;Γ`e0.<V>m(...,e′i,...)∈T

Case RC-NEW-ARG:

new C<T>(...,ei,...)−→new C<T>(...,e′i,...) ei−→e′i

By T-NEW: T=C<T>

∆`C<T> ok fields(∆, C<T>)=U f ∆;Γ`e∈S ∆`S<:U ∆;Γ`ei∈Si

By induction hypothesis, for some S′i, ∆;Γ`e′i∈S′i ∆`S′i<:Si

By S-TRANS and T-NEW, ∆;Γ`new C<T>(...,e′i,...)∈C<T>

Case RC-CAST:

(T)e0−→(T)e′0 e0−→e′0

There are two cases when ∆; Γ `(T)e0 ∈T:
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1. T-CAST:

∆;Γ`e0∈T0 ∆`T ok ∆`T0<:bound∆(T) or ∆`bound∆(T)<:T0

By induction and S-TRANS, there is a T′0 such that

∆;Γ`e′0∈T′0 ∆`T′0<:T0 ∆`T′0<:bound∆(T) or ∆`bound∆(T)<:T′0

By T-CAST, ∆;Γ`(T)e′0∈T.

2. T-SCAST: similar to the case by T-CAST.

Theorem 2 (Progress). Let e be a well-typed expression.

1. If e has new C<T>(e).f as a subexpression, then fields(∅, C<T>)= U f, and f = fi.

2. If e has new C<T>(e).m(d) as a subexpression, then mbody(∅, m, C<T>)= (x, e0) and

|x| = |d|.

Proof. 1. Immediate from T-FIELD, T-NEW. 2. Immediate from T-INVK, T-NEW, and the definition of

mbody .

Theorem 3 (Type Soundness). If ∅; ∅`e∈T and e−→∗e′ being a normal form, then e′ is either

a value v such that ∅; ∅ ` v ∈ S and ∅`S<:T for some S, or an expression that includes (T)new

C<T>(e) where ∅�̀C<T><:T.

Proof. Proof is immediate from Theorem 1 and Theorem 2.

Lemma 1. If mtype(∆, m, C<T>)=<Y/P>U→U0, mbody(∆, m<V>, C<T>)=(x,e0), ∆`C<T> ok ,

∆`V ok , and ∆`V<:[V/Y]P, then there exist some N and S such that ∆`C<T><:N and ∆`N ok

and ∆`S<:[V/Y]U0 and ∆;x:[V/Y]U,this:N`e0∈S.

Proof. Prove by induction on the derivation of mtype .

Case MT-CLASS:

CT (C)=class C<X/N> <X/H>?/D<S> {...M}

<X/R>?<Y/P′>U′0 m (U
′ x) { ↑e′0;}∈ M ∆`T<:[T/X]H

P=[T/X]P′ U=[T/X]U′ U0=[T/X]U′0
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By MB-CLASS:

mbody(∆, m<V>, C<T>)=(x,[V/Y][T/X]e′0) e0=[V/Y][T/X]e′0

By T-METHOD:

X<:N`X<:R ∆′=X<:H,Y<:P′ ∆′`P′,H,U′,U′0 ok

∆′;x:U′,this:C<X>`e′0∈S0 ∆′`S0<:U′0

CT (C)=class C<X/N> <X/H>?/D<S> {...M}

override(∆′, m, <X/H>?D<S>, <X/R>?U′→U′0)

By WF-CLASS: ∆`T ok ∆`T<:[T/X]N

By Lemma 5, 6, 7, 10,

∆`[V/Y][T/X]S0<:[V/Y][T/X]U′0 ∆;x:[V/Y]U,this:C<T>`e′0∈[V/Y][T/X]S0

Let N=C<T>, S=[V/Y][T/X]S0.

Case MT-SUPER:

mtype(∆, m, C<T>)=mtype(∆, m, [T/X]D<S>)

CT (C)=class C<X/N> <X/H>?/D<S> {...M}

m 6∈T ∆`T<:[T/X]H

By MB-SUPER:

mbody(∆, m<V>, C<T>)=mbody(∆, m<V>, [T/X]D<S>)

By WF-CLASS and ∆`C<T> ok , ∆`T ok ∆`T<:[T/X]N

By T-CLASS, X<:H`D<S> ok

By Lemma 9, ∆`[T/X]D<S> ok

By induction hypothesis, there is N′, S′such that

∆`[T/X]D<S><:N ∆`N′ok ∆`S′<:[V/Y]U0 ∆;x:[V/Y]U,this:N`e0∈S′

By S-CLASS, ∆`C<T><:[T/X]D<S>

By S-TRANS, ∆`C<T><:N′.

Let N=N′.

By Lemma 7, there exists S such that ∆;x:[V/Y],this:C<T>`e0∈S, ∆`S<:S′.

143



By S-TRANS, ∆`S<:[V/Y]U0.

Lemma 2. If ∆ has non-variable bounds and ∆`bound∆(T)⇑∆1C<T> and fields((∆,∆1), C<T>)=U

f and Ui⇓∆1U
′, then for any S such that ∆`S<:T and ∆`S ok , it holds that ∆`bound∆(S)⇑∆2D<S>

and fields((∆,∆2), D<S>)=...,V f and Vi⇓∆2V
′ and ∆`V′<:U′ for some ∆2, D<S>, V, and V′.

Proof. We prove by induction on the derivation of ∆`S<:T.

Case S-REFL:

Let ∆2=∆1, D<S>=C<T>, V=U, and V′=U′.

Case S-TRANS:

Let there be a type U such that ∆ `S<:U, ∆ `U<:T, and ∆ `U ok .

By induction hypothesis, there exists ∆u, fu, Du<Su>, Vu, and V′u such that:

∆`bound∆(U)⇑∆uDu<Su> fields((∆,∆u), Du<Su>)=...,Vu f

Vui⇓∆uV
′
u ∆`V′u<:U′

Also by induction hypothesis, there exists ∆s, fs, Ds<Ss>, Vs, and V′s such that:

∆`bound∆(S)⇑∆sDs<Ss> fields((∆,∆s), Ds<Ss>)=...,Vs f

Vsi⇓∆sV
′
s ∆`V′s<:V′u

Let ∆2=∆s, D<S>=Ds<Ss>, V=Vs, and V′=V′s.

Case S-UBOUND:

bound∆(S)=bound∆(T).

Let ∆1=∆2, D<S>=C<T>, V=U, and V′=U′.

Case S-LBOUND:

X is a bound, and thus the precondition of the lemma, that ∆ has non-variable bounds, is not

satisfied.

Case S-CLASS: S=D<W>
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CT (D)=class D<X/N> <X/R>?/C<S′> { H g; M }

∆`D<W>⇑∆2D<S> ∆,∆2`S<:[W/X]R [S/X]C<S′>⇓∆2T

There are three rules defining fields . By analyze them case by case.

Subcase F-OBJECT: Trivial

Subcase F-CLASS-S:

fields((∆,∆2), D<S>)=V f,[W/X]H g where fields((∆,∆2), [S/X]C<S′>)=V f

By Lemma 13, Vi⇓∆2Ui.

Subcase F-CLASS:

T must be Object, since condition for superclass is not satisfied. Conclusion follows

trivially.

Case S-VAR: S=C<vS> T=C<wT> v ≤ w

We analyze the four possible values of wj separately. Without loss of generality, we assume

the rest of w remain invariant, e.g. wi=o, j 6= i.

Subcase wi=o:

vj=o, and Sj=Tj . Thus, S=T. Conclusion follows trivially.

Subcase wj=+:

vj=o or +, ∆`Sj<:Tj .

If vj=+, let ∆1=T′j :(+,Tj), ∆2=S′j :(+,Sj),

bound∆(C<T1,+Tj ,T2>)⇑∆1C<T1,T
′
j ,T2> fields((∆,∆1), C<T1,T

′
j ,T2>)=U f Ui⇓∆1U

′

bound∆(C<S1,+Sj ,S2>)⇑∆2C<S1,S
′
j ,S2> fields((∆,∆2), C<S1,S

′
j ,S2>)=V f Vi⇓∆2V

′

By Lemma 14(2), ∆`Ui⇓∆2U
′, and ∆`V′<:U′.

If vj=o, let ∆1=T′j<:Tj , ∆2=∅. Similarly to the above case, by Lemma 14(1), [Tj/T′j ]Ui⇓∅V′,

∆`V′<:U′.

Subcase wi = -:

The proof is similar to the above cases.
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Lemma 3. If ∆ has non-variable bounds and ∆`T ok, and ∆`bound∆(T)⇑∆1C<T> and

mtype((∆,∆1), m, C<T>)=<Y/P>U→U0 and ∆`V,W ok and ∆,∆1`V<:[V/Y]P and

∆,∆1`W<:[V/Y]U and [V/Y]U0⇓∆1V0, then for any S such that ∆`S<:T and ∆`S ok, there exists

∆2, D<S>, P′, U′, and U′0 such that ∆`bound∆(S)⇑∆2D<S> and

mtype((∆,∆2), m, D<S>)=<Y/P′>U′→U′0 and ∆,∆2`V<:[V/Y]P′, and ∆,∆2`W<:[V/Y]U′, and

[V/Y]U0⇓∆2V
′
0, and ∆`V′0<:V0.

Proof. Prove by induction on the derivation of ∆`S<:T.

Case S-REFL: Trivial.

Case S-TRANS:

Let U be such that ∆`S<:U, ∆`U<:T.

By induction:

∆`bound∆(U)⇑∆uDu<Su> mtype((∆,∆u), m, Du<Su>)=<Y/P′u>U
′
u→U′u0

∆,∆u`V<:[V/Y]P′u ∆,∆u`W<:[V/Y]U′u [V/Y]U0⇓∆uV
′
u0

∆ `V′u0
<:V0

Also by induction hypothesis:

∆`bound∆(S)⇑∆sDs<Ss> mtype((∆,∆s), m, Ds<Ss>)=<Y/P′s>U
′
s→U′s0

∆,∆s`V<:[V/Y]P′s ∆,∆s`W<:[V/Y]U′s [V/Y]Uu0⇓∆sV
′
s0

∆`V′s0
<:Vu0

By S-TRANS: ∆`V′s0
<:V0

Let ∆2=∆s, D<S>=Ds<Ss>, P′=P′s, U
′=U′s, U

′
0=U′s0

.

Case S-UBOUND: easy, since bound∆(S)=bound∆(T).

Case S-LBOUND: precondition of the lemma that ∆ has nonvariable bounds is not satisfied.

Case S-CLASS: Let S=D<W>

CT (D)=class D<X/N> <X/R>?/C<S′> {...}

∆`D<W>⇑∆2D<W′> ∆,∆2`W′<:[W′/X]R [W′/X]C<S′>⇓∆2T

There are two rules for the value of mtype((∆,∆2), m, D<W′>). We analyze them case by

case:
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Subcase MT-CLASS:

mtype((∆,∆2), m, D<W′>)=[W′/X](<Y/P′′>U′′→U′′0)

P′=[W′/X]P′′ U′=[W′/X]U′′ U′0=[W′/X]U′′0

mtype((∆,∆1), m, C<T>)=[T/X](<Y/P′′>U′′→U′′0)

P=[T/X]P′′ U=[T/X]U′′ U0=[T/X]U′′0

By Lemma 13(2), ∆,∆2`V<:[V/Y][W′/X]P′′ ∆,∆2`W<:[V/Y][W′/X]U

By substitution, ∆,∆2`V<:[V/Y]P′ ∆,∆2`W<:[V/Y]U′

By Lemma 13(1), [V/Y][W′/X]U′′0⇓∆2V
′
0

It follows from substitution that: [V/Y]U′0⇓∆2V
′
0

By Lemma 14, ∆`V′0<:V0

Subcase MT-SUPER:

The proof is obvious for the cases where mtype(∆, m, D<W′>)=mtype(∆, m, [W′/X]C<S′>).

Case S-VAR:

We analyze the four possible values of wj separately. Without loss of generality, we assume

the rest of w remain invariant, e.g. wi=o, j 6= i.

Subcase wj=o: Sj=Tj . Thus, S=T.

Subcase wj=+: Sj<:Tj

∆`C<T1,+Tj,T2>⇑∆1C<T1,X
′,T2> ∆1(X′)=(+,Tj)

mtype((∆,∆1), m, C<T1,X
′,T2>)=[X′/Tj ](<Y/P′′>U′′→U′′0)

P=[X′/Tj ]P′′ U=[X′/Tj ]U′′ U0=[X′/Tj ]U′′0
vj could be either + or o.

If vj=+,

∆`C<S1,+Sj ,S2>⇑∆2C<S1,,X
′,S2> ∆2(X′)=(+,Sj)

mtype((∆,∆2), m, C<S1,X
′,S2>)=[X′/Sj ](<Y/P′′>U′′→U′′0)

P′=[X′/Sj ]P′′ U′=[X′/Sj ]U′′ U′0=[X′/Sj ]U′′0

By Lemma 13(2), ∆,∆2`V<:[V/Y]P′ ∆,∆2`W<:[V/Y]U′

By Lemma 14(2), [V/Y]U0⇓∆2V
′
0 ∆`V′0<:V0
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If vj=o,

∆`C<S1,Sj,S2>⇑∆2C<S1,Sj ,S2> ∆2=∅

mtype((∆,∆2), m, C<S1,Sj ,S2>)=<Y/P′>U′→U′0

By Lemma 7, ∆,∆2`V<:[V/Y]P′ ∆,∆2`W<:[V/Y]U′

By Lemma 14(1), [V/Y]U0⇓∆2V
′
0, ∆`V′0<:V0

Subcase wj=- or *: Similar to above.

Lemma 4 (Term Substitution Preserves Typing). For any ∆ that has non-variable bounds, if

∆;Γ,x:T`e∈T0 and ∆;Γ`d∈S where ∆`S<:T, then ∆;Γ`[d/x]e∈S0 for some S0 such that

∆`S0<:T0.

Proof. Prove by induction on the derivaion of ∆;Γ,x:T`e∈T0.

Case T-VAR:

If x6∈x, then the conclusion is trivially true.

If x∈x, let x=xi, ∆;Γ,x:T`x∈Ti.

∆;Γ`[d/x]x∈Si ∆;Γ`Si<:Ti

Case T-FIELD: e=e0.fi

∆;Γ`e0∈T0 ∆`bound∆(T0)⇑∆′
C<U> fields((∆,∆′), C<U>)=S f Si⇓∆′T

By induction hypothesis, there exists an S0 such that ∆;Γ`[d/x]e0∈S0, ∆`S0<:T0.

By Lemma 2,

∆`bound∆(S0)⇑∆′′
D<V> fields((∆,∆′′), D<V>)=...W f Wi⇓∆′′W′i ∆`W′i<:T

By T-FIELD, ∆;Γ`[d/x]e0.fi∈W′i.

Case T-INVK: e=e0.<V>m(e)

148



∆;Γ`e0∈T0 ∆`bound∆(T0)⇑∆′
C<T>

mtype((∆,∆′), m, C<T>)=<Y/P>U→U0

Y ∩ dom(∆′) = ∅ ∆`V ok

∆,∆′`V<:[V/Y]P ∆,∆′`e∈S

∆,∆′`S<:[V/Y]U [V/Y]U0⇓∆′T

By the induction hypothesis, there exists a T′0, S
′ such that

∆;Γ`[d/x]e0∈T′0 ∆`T′0<:T0 ∆;Γ`[d/x]e∈S′ ∆`S′<:S

By Lemma 3, there exists D<T′> such that,

∆`bound∆(T′0)⇑∆2D<T′> mtype((∆,∆2), m, D<T′>)=<Y/P′>U′→U′0

∆,∆2`V<:[V/Y]P′ ∆,∆2`S′<:[V/Y]U′ [V/Y]U′0⇓∆2T
′ ∆`T′<:T

By T-METHOD, ∆;Γ`[d/x]e∈T′.

Case T-NEW: e=new C<T>(e), T=C<T>.

∆`C<T> ok fields(∆, C<T>)=U f ∆;Γ`e∈S ∆`S<:U

By induction hypothesis, there exists S′such that

∆;Γ`[d/x]e∈S′ ∆`S′<:S

By S-TRANS and T-NEW, ∆; Γ `new C<T>([d/x]e)∈C<T>.

Case T-CAST and T-SCAST: Easy using induction hypothesis.

Lemma 5 (Weakening). Suppose ∆,X<:N`N ok and ∆`U ok.

1) If ∆`S<:T, then ∆,X<:N`S<:T.

2) If ∆`S ok, then ∆,X<:N`S ok.

3) If ∆;Γ`e∈T, then ∆;Γ,x:U`e∈T and ∆,X<:N;Γ`e∈T.

4) If fields(∆, T)=U f, then fields((∆,X<:N), T)=U f.

5) If mtype(∆, m, C<T>)=<Y/P>U→U0, then mtype((∆,X<:N), m, C<T>)=<Y/P>U→U0.

Proof. 1)Prove by induction on the derivation of ∆`S<:T
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Case S-REFL, S-TRANS, S-UBOUND, S-LBOUND: Trivial.

Case S-CLASS: S=C<T>

class C<X/N> <X/R>?/D<S> { ... }

∆`C<T>⇑∆′
C<U> ∆,∆′`U<:[U/X]R [U/X]D<S>⇓∆′T

By induction hypothesis, ∆,∆′,X<:N`U<:[U/X]R

By Lemma 15,

∆,X<:N`C<T>⇑∆′
C<U> [U/X]D<S>⇓∆′T

Thus, ∆,X<:N`C<T><:T.

Case S-VAR: S=C<S>, T=C<T>.

By induction hypothesis, all conditions for S-VAR still hold when ∆ becomes ∆,X<:N. Thus,

we have ∆,X<:N`C<S><:C<T>.

2) Prove by induction on the derivation of well-formed type rules.

Case WF-OBJECT: Trivial.

Case WF-VAR: S∈dom(∆) implies that S∈dom(∆,X<:N). Done.

Case WF-CLASS: S=C<T>

CT (C)=class C<Y/Q> <Y/R>?/D<S> {...} ∆`T ok ∆`T<:[T/X]Q

By induction hypothesis, ∆,X<:N`T ok ∆,X<:N`T<:[T/X]Q

Thus, ∆,X<:N`C<T> ok .

3) Prove by induction on the derivation of ∆;Γ`e∈T rules.

Case T-VAR: Trivial.

Case T-FIELD: e=e0.fi, ∆;Γ`e0.fi∈T.

∆;Γ`e0∈T0 ∆`bound∆(T0)⇑∆′
C<U> fields((∆,∆′), C<U>)=S f Si⇓∆′T

By Lemma 15, ∆,X<:N`bound∆(T0)⇑∆′
C<U>
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By induction hypothesis, ∆,X<:N`e0∈T0, ∆;Γ,x:U`e0∈T0.

By definition of bound, bound∆(C<U>)=bound∆,X<:N(C<U>).

The conclusion follows from the above conditions and T-FIELD.

Case T-INVK: e=e0.<V>m(e)∈T.

∆;Γ`e0∈T0 ∆`bound∆(T0)⇑∆′
C<T> mtype((∆,∆′), m, C<T>)=<Y/P>U→U0

{Y}∩dom(∆′)=∅ ∆`V ok ∆,∆′`V<:[V/Y]P ∆;Γ`e∈S

∆,∆′`S<:[V/Y]U [V/Y]U0⇓∆′T

By induction hypothesis,

mtype((∆,∆′,X<:N), m, C<T>)=<Y/P>U→U0

∆,X<:N;Γ`e0∈T0 ∆,X<:N`V ok ∆,X<:N,∆′`V<:[V/Y]P ∆,X<:N;Γ`e∈S

By Lemma 15, ∆,X<:N`bound∆,X<:N(T0)⇑∆′
C<T>

Conclusion follows from T-INVK.

Proof for ∆;Γ,x:U`e0.<V>m(e)∈T follows the same structure.

Case T-NEW: e=new C<T>(e)∈C<T>

∆`C<T> ok fields(∆, C<T>)=U f ∆;Γ`e∈S ∆`S<:U

By induction hypothesis,

∆,X<:N`C<T> ok fields((∆,X<:N), C<T>)=U f ∆,X<:N;Γ`e∈S ∆,X<:N`S<:U

It follows from T-NEW that ∆,X<:N;Γ`new C<T>(e)∈C<T>.

Proof for ∆;Γ,x:U`new C<T>(e)∈C<T> follows the same structure.

Case T-CAST, T-SCAST:

By straight-forward induction hypothesis.

4) By case analysis on MT-CLASS and MT-SUPER, and straight-forward induction hypothesis.

5) BY case analysis on F-OBJECT, F-CLASS, and F-CLASS-S, and straight forward induction hy-

pothesis.
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Lemma 6 (Narrowing). 1) If ∆,X<:S`T1<:T2 and ∆`U<:S, then ∆,X<:U`T1<:T2.

2) If ∆,S<:X`T1<:T2 and ∆`S<:U, then ∆,U<:X`T1<:T2.

3) If ∆,X:(*,S)`T1<:T2, then ∆,(X:(v,U))`T1<:T2.

Proof. 1) By induction on the derivation of ∆,X<:S`T1<:T2.

Case S-REFL, S-UBOUND, S-LBOUND: Trivial.

Case S-TRANS, S-VAR: By induction hypothesis.

Case S-CLASS: ∆`C<T><:T

CT (C)=class C<Y/N> <Y/R>?D<S> { ... }

∆,X<:S`C<T>⇑∆′
C<U> ∆,X<:S,∆′`U<:[U/Y]R ([U/Y]D<S>)⇓∆′T

It is clear from the definition of ⇑ that ∆,X<:U`C<T>⇑∆′
C<U>.

By induction hypothesis, ∆,X<:U,∆′`U<:[U/X]R

Conclusion follows from S-CLASS that ∆,X<:U`C<T><:T

2) can be similarly proven as above.

3) can be proven by treating ∆,X:(*,S) as ∆,X<:Object.

Then ∆,X:(+,U) can be treated as ∆,X<:U, where ∆`U<:Object.

Similarly, ∆,X:(-,U) can be treated as ∆,U<:X.

Then the proof follows from 1) and 2).

Lemma 7 (Type Substitution Preserves Subtyping). If ∆1,X<:N,∆2`S<:T and ∆1`U<:[U/X]N,

with ∆1`U ok and none of X appearing in ∆1, then ∆1,[U/X]∆2`[U/X]S<:[U/X]T.

Proof. Prove by induction on the derivation of ∆1,X<:N,∆2`S<:T

Case S-REFL: Trivial.

Case S-TRANS:

Let U be a type such that: ∆1,X<:N,∆2 S<:U ∆1,X<:N,∆2 U<:T

Then, ∆1,[U/X]∆2`[U/X]S<:[U/X]U, and ∆1,[U/X]∆2`[U/X]U<:[U/X]T.
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By S-TRANS, ∆1,[U/X]∆2`[U/X]S<:[U/X]T.

Case S-UBOUND: S=X, (∆1,X<:N,∆2)(X)=(+,T).

If S∈dom(∆1), then the result is obvious, since none of X appears in ∆1.

If S∈dom(∆2), result is also obvious since substitution is applied to both ∆2, S, and T.

If S=Xi, then ∆1`Ui<:[U/X]Ni, and [U/X]S=Ui. Then by Lemma 5, ∆1[U/X]∆2`S<:[U/X]T.

Case S-LBOUND: T=X, (∆1,X<:N,∆2)(X)=(()-, S).

Proof follows the same structure as the proof for case S-UBOUND.

Case S-CLASS: S=C<S>

Let ∆=∆1,X<:N,∆2.

CT (C)=class C<X/N> <X/R>/D<S> {...}

∆`C<T>⇑∆′
C<V> ∆`V<:[V/X]R ([V/X]D<S>)⇓∆′T

By Lemma 8(1) and (2), and the induction hypothesis, the result is obvious.

Case S-VAR: Easily follows from induction hypothesis.

Lemma 8. 1) If ∆1`S<:[S/X]N and ∆1`S ok, ∆1,X<:N,∆2`C<T>⇑∆′
C<U> with none of X ap-

pearing in ∆1 and none of the type variables in dom(∆′) appearing in S, then

∆1,[S/X]∆2`[S/X]C<T>⇑[S/X]∆′
[S/X]C<U>.

2) If S⇓∆T where dom(∆) and X are distinct, then [S/X]S⇓[S/X]∆[S/X]T.

3) [S/X]fields(∆, C<T>)=fields(∆, [S/X]C<T>)

4) [S/X]mtype(∆, m, C<T>)=mtype(∆, m, [S/X]C<T>)

Proof. 1) Prove by derivation of ∆1,X<:N,∆2`C<T>⇑∆′
C<U>.

Case O-REFL: Trivial

Case O-TRANS: Let there be T, where

∆2,X<:N,∆2`C<T>⇑∆3T ∆2,X<:N,∆2,∆3`T⇑∆4C<U>

153



By induction hypothsis,

∆1,[S/X]∆2`[S/X]C<T>⇑[S/X]∆3 [S/X]T ∆1,[S/X]∆2,[S/X]∆3`[S/X]T⇑[S/X]∆4 [S/X]C<U>

By S-TRANS, ∆1,[S/X]∆2`[S/X]C<T>⇑[S/X](∆3,∆4)[S/X]C<U>

2) By induction on the derivation of S⇓∆T.

Case C-PROM: ∆(X)=(+,T), X⇓∆T

Since X do not appear in ∆, conclusion is trivial.

Case C-TVAR: Trivial.

Case C-CLASS: By induction hypothesis.

3) By derivation of fields(∆, C<T>)

Case F-OBJECT: Trivial.

Case F-CLASS-S:

CT (C)=class C<X/N> <X/R>?D<U>{G f; M}

fields(∆, [T/X]D<U>)=D g ∆`T<:[T/X]R

[S/X]fields(∆, C<T>)=[S/X]D g, [S/X][T/X]G f

By Lemma 7, ∆`[S/X]T<:[S/X][T/X]R

By induction hypothesis, fields(∆, [S/X][T/X]D<U>)=[S/X]D g.

Conclusion follows from F-CLASS-S.

Case F-CLASS: By Lemma 7.

4) By derevation of [S/X]mtype(∆, m, C<T>). Both MT-CLASS and MT-SUPER can be shown

through Lemma 7.

Lemma 9 (Type Substitution Preserves Type Well-formedness). If ∆1,X<:N,∆2`T ok and ∆1`U<:[U/X]N

with ∆1`U ok , and none of X appearing in ∆1, then ∆1,[U/X]∆2`[U/X]T ok .
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Proof. We prove by induction on the derivation of typeenv1,X<:N,∆2`T ok .

Case WF-OBJECT: Trivial.

Case WF-VAR: T=X, X∈dom(∆1,X<:N,∆2).

If X6∈X, result is obvious.

If X=Xi, [U/X]X=Ui. By assumptiong, ∆1`Ui ok. By Lemma 5(2), ∆1,[U/X]∆2`Ui ok.

Case WF-CLASS: T=C<T>

CT (C)=class C<Y/P> <Y/R>?D<S> {...}

∆1,X<:N,∆2`T ok ∆1,X<:N,∆2`T<:[T/Y]P

By induction hypothesis, ∆1,[U/X]∆2`[U/X]T ok.

By Lemma 7, ∆1,[U/X]∆2`[U/X]T<:[U/X][T/Y]P. The result follows from WF-CLASS.

Lemma 10 (Type Substitution Preserves Typing). If both ∆1 and ∆2 have non-variable bounds

and ∆1,X<:N,∆2;Γ`e∈T and ∆1`U<:[U/X]N where ∆1`U ok and none of X appears in ∆1, then

∆1,[U/X]∆2;[U/X]Γ`[U/X]e∈S for some S such that ∆1,[U/X]∆2`S<:[U/X]T.

Proof. Prove by induction on the derivation of ∆1,X<:N,∆2;Γ`e∈T.

Let ∆=∆1,X<:N,∆2.

Case T-VAR: Trivial.

Case T-FIELD: e=e0.fi

∆;Γ`e0∈T0 ∆`bound∆(T0)⇑∆′
C<T> fields(∆, C<T>)=S f Si⇓∆′T

By induction hypothesis, there is a S0 such that

∆1,[U/X]∆2;[U/X]Γ`e0∈S0 ∆1,[U/X]∆2`S0<:[U/X]T0

By Lemma 11, ∆1,[U/X]∆2`bound∆1,[U/X]∆2
(T0)<:[U/X](bound∆1,X<:N,∆2

(T0))

By S-TRANS, ∆1,[U/X]∆2`bound∆1,[U/X]∆2
(S0)<:[U/X](bound∆1,X<:N,∆2

(T0))

By Lemma 2,
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∆1,[U/X]∆2`bound∆1,[U/X]∆2
(S0)⇑∆′′

D<S′> fields((∆1,[U/X]∆2), D<S′>)=S′′ f

S′′i ⇓∆′′T′ ∆1,[U/X]∆2`T′<:[U/X]T

By T-FIELD, ∆1,[U/X]∆2;[U/X]Γ`[U/X]e0.fi∈T′.

Let S=T′

Case T-INVK: e=e0.<V>m(e)∈T.

∆;Γ`e0∈T0 ∆`bound∆(T0)⇑∆′
C<T> mtype(∆, m, C<T>)=<Y/P>W→W0

Y∩dom(∆′)=∅ ∆`V ok ∆,∆′`V<:[V/Y]P

∆;Γ`e∈S ∆,∆′`S<:[V/Y]U [V/Y]W0⇓∆′T

By induction hypothesis, there is a S0 such that

∆1,[U/X]∆2;[U/X]Γ`e0∈S0 ∆1,[U/X]∆2`S0<:[U/X]T0

Also by the induction hypothesis, there exists S′such that

∆1,[U/X]∆2;[U/X]Γ`e∈S′ ∆1,[U/X]∆2`S′<:[U/X]S

By Lemma 11 and S-TRANS,

∆1,[U/X]∆2`bound∆1,[U/X]∆2
(S0)<:[U/X](bound∆1,X<:N,∆2

(T0))

By Lemma 9, ∆1,[U/X]∆2`[U/X]V ok

By Lemma 7,

∆1,[U/X](∆2,∆′)`[U/X]V<:[U/X][V/Y]P ∆1,[U/X](∆2,∆′)`[U/X]S<:[U/X][V/Y]W

By Lemma 8(2) and (4),

mtype(∆, m, [U/X]C<T>)=[U/X](<Y/P>W→W0) [U/X][V/Y]W0⇓[U/X]∆′ [U/X]T

Because X does not appear in ∆1, [U/X][V/Y]T = [[U/X]V/Y]([U/X]T)

By Lemma 3,

∆1,[U/X]∆2`bound∆1,[U/X]∆2
(S0)⇑∆′′

D<T′>

mtype((∆1,[U/X]∆2), m, D<T′>)=<Y/P>W′→W′0

∆1,[U/X]∆2,∆′′`[U/X]V<:[[U/X]V/Y]W′ ∆1,[U/X]∆2,∆′′`[U/X]S<:[[U/X]V/Y]W′

[[U/X]V/Y]W′0⇓∆′′T′ ∆1,[U/X]∆2`T′<:[U/X]T

By Lemma 5 and S-TRANS, ∆1,[U/X]∆2,∆′′`S′<:[[U/X]V/Y]W′
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By T-METHOD, ∆1,[U/X]∆2`[U/X]e0.<V>m(e)∈T′

Case T-NEW: e=new C<T>(e), T=C<T>.

∆`C<T> ok fields(∆, C<T>)=U′ f ∆;Γ`e∈S ∆`S<:U′

By Lemma 9, ∆1,[U/X]∆2`[U/X]C<T> ok .

By Lemma 8(3), fields(∆, [U/X]C<T>)=[U/X]U′ f

By induction hypothesis, there is S′,

∆1,[U/X]∆2;[U/X]Γ`[U/X]e∈S′ ∆1,[U/X]∆2`S′<:S

By Lemma 7 and S-TRANS, ∆1,[U/X]∆2`S′<:[U/X]U′

By T-NEW, ∆1, [U/X]∆2; [U/X]Γ `C<[U/X]T>([U/X]e)∈ [U/X]T.

Case T-CAST, T-SCAST: Easy by induction hypothesis.

Lemma 11. Suppose ∆ has non-variable bounds and is of the form ∆1,X<:N,∆2. If ∆`T ok and

∆1`U<:[U/X]N with ∆1`U ok and none of the X appear in ∆1, then,

∆1,[U/X]∆2`bound∆1,[U/X]∆2
([U/X]T)<:[U/X](bound∆(T)).

Proof. We prove for each case in the definition of bound∆.

If T is a non-variable type, bound∆(T)=T. The proof is trivial.

If T is a variable, T=X, ∆(X)=(+,S), then

bound∆(T)=bound∆(S) ∆`T<:S

The proof is trivial if X6∈X.

If X=Xi,

bound∆1,[U/X]∆2
([U/X]Xi)=bound∆1,[U/X]∆2

(Ui)

∆1,[U/X]∆2`bound∆1,[U/X]∆2
(Ni)<:[U/X](bound∆1,[U/X]∆2

(S))
By assumption and Lemma 5, ∆1,[U/X]∆2`Ui<:Ni

And S-TRANS finishes the case.

Lemma 12 (Close Yields A Supertype Without Local Type Variables). If ∆,∆′`S ok and S⇓∆′T,

then ∆,∆′`S<:T and ∆`T ok .
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Proof. We prove by induction on the ⇓∆′ rules.

Case C-PROM: S=X, ∆′(X)=(+,T)

By S-VAR and Lemma 5, ∆,∆′`X<:T.

Inspecting the cases when X:(v, T) are put into a ∆′, it is only when opening a well-typed

C<vT>, where ∆`T ok (WF-CLASS).

Case C-TVAR: By S-REFL.

Case C-CLASS: S=C<vT>, T=C<wT′>.

There are three subcases, and we analyze without loss of generality only one Ti.

Subcase 1: Ti⇓∆′Ti, (wi,T′i)=(vi,Ti). Trivially true.

Subcase 2: Ti⇓∆′Ui, Ti 6=Ui, (wi,T′i)=(vi∨+,Ui).

By induction hypothesis, ∆,∆′`Ti<:Ui.

wi is either + or *. If wi=*, then by Lemma 5 and S-VAR, ∆,∆′`C<vT><:C<wU>.

If wi=+, by S-VAR, and ∆,∆′`Ti<:Ui, we still have ∆,∆′`S<:T.

Subcase 3: Ti=X, ∆(X)=(v′i,Ui).

If v′i=o, or vi and v′i have opposite signs (i.e., one is + and the other -), then wi=o, Ti=Ui.

Conclusion easily falls out of S-VAR.

If v′i=vi=+ or v′i=vi=-, these cases easily falls out from the S-VAR rule, and S-UBOUND

(for v′i=vi=+), and S-LBOUND (for v′i=vi=-).

If either vi or v′i is *, wi=*. Conclusion by S-VAR again.

Lemma 13. Suppose ∆,∆1`C<S> ok and C<S>⇓∆1T and ∆`T⇑∆2C<U> and ∆3`S0 ok where

dom(∆i) (i = 1, 2, 3) are distinct from each other.

1) If [U/X]S0⇓∆2S
′
0 and X do not appear in ∆1 or ∆2, then [S/X]S0⇓∆1S

′
0.

2) If ∆,∆2`U0<:[U/X]S0 and ∆`U0 ok with X not appearing in ∆ or ∆1 or ∆2, then

∆,∆1`U0<:[S/X]S0.
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Proof. By inspecting the given conditions, one of these three properties must hold:

1. Si⇓∆1Si, Ui=Si.

2. Si⇓∆1S
′
i, Si 6=S′i. By Lemma 12, ∆,∆1`Si<:S′i, and Ui is a type variable Y such that

∆2(Y)=(+,S′i).

3. Si is a type variable Z and ∆1(Z)=(+,V), and Ui is a type variable Y and ∆2(Y)=(+,V).

1) We prove by the first part of the lemma by induction on [U/X]S0⇓∆2S
′
0.

Case S0=X, X6∈dom(∆2).

There are two cases:

Subcase X∈X: [U/X]S0=Ui, [S/X]S0=Si.

From the analysis of the three properties above,

1. Si⇓∆Si, Ui=Si. Clearly, Ui⇓∆2Ui.

2. Si⇓∆1S
′
i, Ui⇓∆2S

′
i.

3. Si⇓∆1V, Ui⇓∆2V.

Subcase X�∈X: [U/X]S0=[S/X]S0=X. Proof is simple through induction hypothesis.

Case S0=C<vT>, C<vT>⇓∆2C<wT
′>. Proofs for all cases of vi and wi falls out through induc-

tion hypothesis.

2) The second part is proven by inspecting the three properties above. There exists ∆′, ∆′1, Y,

T, S′′, such that:

∆1=∆′,∆′1 ∆2=∆′,Y<:T S=[S′′/Y]U ∆,∆1`S′′<:T

By Lemma 7, ∆,∆′,∆′1`[S′′/Y]U0<:[S′′/Y][U/X]S0.

By definition Y is fresh in U0 and S0, then,

[S′′/Y]U0=U0 [S′′/Y][U/X]S0=[S/X]S0
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Lemma 14. 1. If S⇓∆′,X:(v,T)S
′′, and ∆`T ok where dom(∆′,X:(v,T)) are fresh w.r.t. ∆, then

[T/X]S⇓∆′S′ and ∆`S′<:S′′.

2. If ∆`T<:U and S⇓∆′,X:(+,T)S
′′ where dom(∆′) and X are fresh for ∆, then S⇓∆′,X:(+,T)S

′

and ∆`S′<:S′′.

3. If ∆`U<:T and S⇓∆′,X:(−,T)S
′′ where dom(∆′) and X are fresh for ∆, then S⇓∆′,X:(−,T)S

′

and ∆`S′<:S′′.

4. If S⇓∆′,X:(∗,U)S
′′ where dom(∆′)∪{X} are fresh for ∆, then S⇓∆′,X:(v,T)S

′ and ∆`S′<:S′′.

Proof. We prove by structural induction on S.

1)

Case S=Y, where Y is a type variable. Y⇓∆′,X:(v,T)S
′′.

If Y6=X, Y⇓∆′,X:(v,T)Y, and Y⇓∆′Y.

If Y=X, v=+, Y⇓∆′,X:(v,T)T. [T/X]Y=T, T⇓∆′T.

If Y�∈dom(∆′,X:(v,T)), then Y⇓∆′,X:(v,T)Y, Y⇓∆′Y.

In all cases, conclusion follows through S-REFL.

Case S=C<vT>, S′′=C<wT′>.

By inspecting the three cases in the definition of (wi,T′i) and the induction hypothesis, it’s easy

to show that [T/X]C<vT>⇓∆′C<w′T′′> such that ∆`C<w′T′′><:C<wT′>.

2), 3), and 4) can be proven similarly through induction hypothesis.

Lemma 15. If ∆,X<:N`N ok, ∆`bound∆(T0)⇑∆′
C<U>, then ∆,X<:N`bound∆,X<:N(T0)⇑∆′

C<U>.

Proof. By straight-forward induction on the derivation of open rules.
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Appendix B

Featherweight MorphJ (FMJ): Proof of Soundness

Theorem 4 (Subject Reduction). If ∆; Λ; Γ `e∈T and e → e′, then ∆; Λ; Γ `e′∈S and ∆ `S<:T

for some S.

Proof. Prove by structural induction on the reduction rules.

Case R-FIELD: e=new C<T>(e).fi, e′=ei

By T-NEW,

∆;Λ;Γ`new C<T>(e)∈C<T> ∆`fields(C<T>)=U f

∆;Λ;Γ`e∈S ∆`S<:U

By T-FIELD and definition of bound ,

bound∆(C<T>)=C<T> ∆;Λ;Γ`new C<T>(e).fi∈Ui

Let S be Si, T be Ui.

Case R-INVK: e=new C<T>(e).m(d), e′=[d/x,new C<T>/this]e0

By R-INVK, T-NEW, T-INVK

mbody(m, C<T>)=(x,e0) ∆`new C<T>(e)∈C<T> ∆`C<T> ok

∆;Λ`mtype(m, C<T>)=T′→T ∆;Γ;Λ`d∈S ∆`S<:T′

By Lemma 16, for some S, ∆`S<:T, ∆`S ok , ∆;Λ;x 7→T′,this7→C<T>`e0∈S.

By Lemma 19, for some S′ where ∆;Λ;Γ`S′<:S ,

∆;Λ;Γ`[d/x,new C<T>/this]e0∈S′,

Case RC-FIELD: e=e0.f, e′=e′0.f

By T-FIELD,

∆;Λ;Γ`e0∈T0 ∆`fields(bound∆(T0))=T f ∆;Λ;Γ`e0.f∈Ti

By induction hypothesis,
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∆;Λ;Γ`e′0∈S0 ∆`S0<:T0

By Lemma 26, ∆`fields(bound∆(S0))=S g, ∆;Λ;Γ`e′0.f∈Si, Si=Ti.

By S-REFL, ∆`Si<:Ti.

Let T be Ti, S be Si.

Case RC-INV-RECV: e=e0.m(e), e′=e′0.m(e)

By T-INVK,

∆;Λ;Γ`e0∈T0 ∆;Λ;Γ`e∈T′

∆;Λ`mtype(m, T0)=T→T ∆`T′<:T

By induction hypothesis, Lemma 34, and T-INVK,

∆;Λ;Γ`e′∈S0 ∆`S0<:T0

∆;Λ`mtype(m, S0)=T→T ∆;Λ;Γ`e′.m(e)∈T

Let S be T.

Case RC-INV-ARG: Easy by induction hypothesis and T-INVK.

Case RC-NEW-ARG: Easy by induction hypothesis and T-NEW.

Theorem 5 (Progress). Let e be a well-typed expression. 1. If e has new C<T>(e).f as a

subexpression, then ∅`fields(C<T>)=U f, and f = fi. 2. If e has new C<T>(e).m(d) as a

subexpression, then mbody(m, C<T>)=(x,e0) and |x| = |d|.

Proof. 1. It follows easily from T-FIELD and the well-typedness of subexpressions.

2. Also using well-typedness of subexpression and T-INVK, we have ∆;Λ`mtype(m, C<T>)=U→U0.

It is then easy using the MB-* rules to show that ∆;Λ`mbody(m, C<T>)=(x,e0), since MB-* and

MT-* rules have a one-to-one correspondence for non-variable types C<T>.

Theorem 6 (Type Soundness). If ∅; ∅; ∅`e∈T and e−→∗e′, then e′ is a value v such that

∅; ∅; ∅`v∈S and ∅`S<:T for some type S.

Proof. Conclusion follows from Theorem 4 and Theorem 5
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Lemma 16. If ∆;Λ`mtype(m, C<T>)=S→S, mbody(m, C<T>)=(x,e0), where ∆`C<T> ok , then

there exists a type S′ such that ∆`S′<:S, ∆`S′ ok , ∆;Λ;x7→S,this7→C<T>`e0∈S′.

Proof. By induction on the derivation of mbody(m, C<T>)=(x,e0):

Case MB-CLASS-S:

CT (C)=class C<X/N>/N {...M} U0 m (U x) {↑e;}∈M e0=[T/X]e

By MT-CLASS-S,

∆;Λ`mtype(m, C<T>)=[T/X](U→U0)

By WF-CLASS, ∆ `T<:[T/X]N

By T-METH-S,

X<:N;∅;x7→S,this7→C<X>`e∈U′0 X<:N`U′0<:U0

By Lemma 23 and 20, ∆;Λ;[T/X](x7→S,this7→C<X>)`[T/X]e∈[T/X]U′0

By Lemma 21 and 20, ∆`[T/X]U′0<:[T/X]U0.

Let S=[T/X]U, S=[T/X]U0, S′=[T/X]U′0.

Case MB-CLASS-R:

CT (C)=class C<X/N>/T { ... M}

<Y/P>for(Mp;oMf) S
′′ η (S′′ x) {↑e′0;}∈M

R′′p=range(Mp ,<Y/P>) R′′n=range(Mf ,•) Λ′′=〈R′′p ,R′′n〉

∆′′=X<:N;Y<:P Λd=[T/X](〈R′′p ,R′′n〉) ∆′′;∅`specialize(m, Λd)=Λr

∆′′;[W/Y]`ΛrvΛΛd e0=[T/X][W/Y][m/η]e′0

By MT-CLASS-R and Lemma 17 (thus there is only one method m),

∆;Λ`mtype(m, C<T>)=[T/X][W/Y](S′′→S′′)

By T-METH-R,

Γ′′=x 7→S′′,this7→C<X> ∆′′;Λ′′;Γ′′`e′0∈T′′ ∆′′`T′′<:S′′ ∆′′`N OK

By WF-CLASS and Lemma 20, ∆,[T/X]∆′′`T<:[T/X]N

By Lemma 21 and Lemma 20, ∆,[T/X]∆′′`[T/X]T′′<:[T/X]S′′
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By Lemma 23, ∆,[T/X]∆′′;[T/X]Λ′′;[T/X]Γ′′`[T/X]e′0∈[T/X]T0

By Lemma 35, and the obvious facts that [T/X][W/Y]∆′′=∅, [T/X][W/Y]Γ′′=Γ,

∆;Λ;Γ`[T/X][W/Y][m/η]e′0∈[T/X][W/Y]T0

By Lemma 22, ∆`[T/X][W/Y]T′′<:S′′

Let S=[T/X][W/Y]S′′, S=[T/X][W/Y]S′′, S′=[T/X][W/Y]T′′.

Case MB-SUPER-S, MB-SUPER-R: Follows from induction hypothesis.

Lemma 17. Suppose ∆`disjoint(Λ1, Λ2), where

Λ1=〈Rp1 ,oRn1〉 Rp1=(T1, <X/Q>U→U0) Rn1=(T′1, U
′→U′0)

Λ2=〈Rp2 ,o
′Rn2〉 Rp2=(T2, <Y/P>V′→V0) Rn2=(T′2, V

′→V′0)
Then for any Λ3, if ∆;[W/X]`Λ3vΛΛ1, then there does not exist W′such that ∆;[W′/Y]`Λ3vΛΛ2

Proof. We prove by contradiction. Let there by such W′ such that ∆;[W′/Y]`Λ3vΛΛ2

Let Λ3=〈Rp3 ,o
′′Rn3〉, where

Rp3=(T3, <Z/N>S→S0) Rn3=(T′3, <Z/N>S→S′0)

By DS-Λ, one of the following mutually exclusive range conditions must hold:

∆`+Rp1⊗+Rp2 ∆`+Rp1⊗o ′Rn2 ∆`+Rp2⊗oRn2 ∆`oRn1⊗o′Rn2

By SB-Λ and SB-R, ∆`P,Q,N OK

∆;[W/X]`Rp3vRRp1 ∆,X<:Q,Z<:N;[W/X]`unify(S0:S, U0:U)

∆;[W′/Y]`Rp3vRRp2 ∆,Y<:P,Z<:N;[W′/Y]`unify(S0:S, V0:V)
By UNI,

[W/X](S0:S)=[W/X](U0:U) for all Xi∈X, ∆,X<:Q,Z<:N`Wi≺:XXi

[W′/Y]S0:S=[W′/Y]V0:V for all Yi∈Y, ∆,Y<:P,Z<:N`W′i≺:YYi
Since neither X or Y appear in S0:S,

[W/X]S0:S=[W′/Y]S0:S=S0:S [W/X]U0:U=[W′/Y]V0:V

By Lemma 20,

for all Xi∈X, ∆,X<:P,Y<:Q`Wi≺:X:YXi

for all Yi∈Y, ∆,X<:P,Y<:Q`W′i≺:X:YYi,

It follows that,
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∆,X<:P,Y<:Q;[(W:W′)/(X:Y)]`unify(U0:U, V0:V)

It directly contradicts ∆`+Rp1⊗+Rp2 Thus, one of the other mutually exclusive range condi-

tions must hold.

By SB-Λ,

∆;[W/X]`Λ3vΛΛ1 implies o=o′′=+ or o=o′′=-

∆;[W′/Y]`Λ3vΛΛ2 implies o′=o′′=+ or o′=o′′=-

Thus, there can only be two options for ∆;[W/X]`Λ3vΛΛ1 and ∆;[W′/Y]`Λ3vΛΛ2 :

o=o′=o′′=+ or o=o′=o ′′=-

We now analyze these two cases:

Case o=o′=o′′=+

By SB-Λ and SB-R,

∆;[W/X]`Rn3vRRn1 ∆,X<:Q,Z<:N;[W/X]`unify(S′0:S′, U′0:U′)

∆;[W′/Y]`Rp3vRRp2 ∆,Y<:P,Z<:N;[W′/Y]`unify(S′0:S′, V′0:V′)

By UNI,

[W/X](S′0:S′)=[W/X](U′0:U′) for all Xi∈X, ∆,X<:Q,Z<:N`Wi≺:XXi

[W′/Y]S′0:S′=[W′/Y]V′0:V′ for all Yi∈Y, ∆,Y<:P,Z<:N`W′i≺:YYi

Since neither X or Y appear in S′0:S′,

[W/X]S′0:S′=[W′/Y]S′0:S′=S′0:S′ [W/X]U′0:U′=[W′/Y]V′0:V′

By Lemma 20,

for all Xi∈X, ∆,X<:P,Y<:Q`Wi≺:X:YXi

for all Yi∈Y, ∆,X<:P,Y<:Q`W′i≺:X:YYi,

It follows that

∆,X<:P,Y<:Q;[(W:W′)/(X:Y)]`unify(U′0:U′, V′0:V′)

This directly contradicts ∆`+Rn1⊗+Rn2

Thus, it must be true that ∆`+Rp1⊗+Rn2 , or ∆`+Rp2⊗+Rn1 .

Assume that ∆`+Rp1⊗+Rn2 . By ∆;[W′/Y]`Rn3vRRn2 , and Lemma 18, ∆`+Rp1⊗+Rn3 , which

makes ∆`disjoint(Λ1, Λ3). This contradicts the assumption.

∆`+Rp2⊗+Rn1 results in a similar contradiction.
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Case o=o′=o′′=-

By Lemma 18 and ∆;[W′/Y]`Rn2vRRn3 , ∆`+Rp1⊗-Rn3 , which makes ∆`disjoint(Λ1, Λ3).

This contradicts the assumption.

Similar contradiction results from ∆`+Rp2⊗-Rn1 .

Lemma 18. 1) Suppose ∆`+R1⊗+R2, ∆;[W/Y]`R3vRR2, where R3 has no pattern type vari-

ables, then ∆`+R1⊗+R3.

2) Suppose ∆`+R1⊗-R2, ∆;[W/Y]`R2vRR3, where R3 has no pattern type variables, then

∆`+R1⊗-R3.

Proof. Let R1=(T1, <X/Q>V→V), R2=(T2, <Y/P>U→U) , R3=(T3, S→S)

1) We prove by contradiction. Suppose ∆�̀+R1⊗+R3

That means for some W′, ∆,X<:Q;[W′/Z]`unify(V:V, S:S)

By definition of SB-R, ∆;[W′/X]`R3vRR1

By UNI, and the fact that neither X or Y appear in S:S,

[W′/X]( S:S)=[W/Y]( S:S) [W′/X](V:V)=[W/Y](U:U)

Since X do not appear in U:U, and Y do not appear in V:V,

[W′/X][W/Y](V:V)=[W/X][W/Y](U:U)

Thus, W:W′ contradicts the condition in ME-1 for ∆`+R1⊗+R2.

2) Proof follows from Lemma 38 and ME-2.

Lemma 19 (Term Substitution Preserves Typing). If ∆;Λ;Γ,x7→T`e∈T, η does not appear in e,

∆;Λ;Γ`d∈S, ∆`S<:T, then ∆;Λ;Γ`[d/x]e∈T′, for some T′ where ∆;Λ;Γ`T′<:T.

Proof. By induction on the derivation of ∆;Λ;Γ,x 7→T`e∈T.

Case T-VAR: e=xi

[d/x]x=di ∆;Λ;Γ`di∈Si

Let T′=Si
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Case T-FIELD: e=e0.fi

By induction hypothesis and T-FIELD,

∆;Λ;Γ`[d/x]e0∈T0 ∆;Λ;Γ`T0<:T

Conclusion follows from Lemma 26.

Case T-INVK: e=e0.n(e)

By premesis of the lemma, n=m

By T-INVK:

∆;Λ;Γ,x7→T`e0∈T0 ∆;Λ;Γ,x7→T`e∈S

∆;Λ`mtype(m, T0)=T→T ∆`S<:T

By induction hypothesis,

∆;Λ;Γ`[d/x]e0∈T′0 ∆;Λ;Γ`[d/x]e∈T′

∆`T′0<:T0 ∆`T′<:T

By Lemma 34, ∆;Λ`mtype(m, T′0)=T→T

By T-INVK, ∆;Λ`[d/x](e0.m(e))∈T

Case T-NEW: e=new C<T>(e)

∆`C<T> ok ∆`fields(C<T>)=U f

∆;Λ;Γ`e∈S ∆`S<:U

By induction hypothesis, ∆;Λ;Γ`[d/x]e∈S′, for some S′where ∆`S′<:S.

By S-TRANS, ∆`S′<:U.

By Lemma 26 and T-NEW, ∆;Λ;Γ`[d/x](new C<T>(e))∈C<T>

Lemma 20 (Weakening). Suppose ∆,X<:N`N ok, none of X appears in ∆, and ∆`U ok.

1. If ∆`S<:T, then ∆,X<:N`S<:T.

2. If ∆`S ok, then ∆,X<:N`S ok.

3. If ∆;Λ;Γ`e∈T, then ∆;Λ;Γ,x∈U`e∈T and ∆,X<:N;Λ;Γ`e∈T.
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4. If ∆;∅;Γ`e∈T, then ∆;Λ;Γ`e∈T.

5. If ∆`T≺:ZS, then ∆,X<:N`T≺:Z S.

Proof. 1. Follows by induction on the derivation of subtyping.

2. Follows by induction on well-formed types rules.

3. Follows by induction on expression typing rules.

4. Follows by induction on expression typing rules.

5. Follows by pattern matching rules.

Lemma 21 (Type Substitution Preserves Subtyping). If ∆1,X<:N,∆2`S<:T, and ∆1`U<:[U/X]N

with ∆1`U ok and none of X appearing in ∆1, then ∆1,[U/X]∆2`[U/X]S<:[U/X]T.

Proof. By induction on the derivation of ∆1,X<:N,∆2`S<:T

Case S-REFL: Trivial

Case S-VAR:

If X6∈X, then it is trivial.

If X∈X, bound∆(Xi)=Ni.

[U/X]Xi=Ui [U/X]bound∆(Xi)=[U/X]Ni.

By assumption and Lemma 20, ∆1,[U/X]∆2`Ui<:[U/X]Ni.

Case S-TRANS: By induction hypothesis.

Case S-CLASS: Trivial.

Lemma 22 (Pattern-matching Type Substitution Preserves Subtyping). If ∆`S<:T, ∆;[W/Y]`ΛvΛΛ′,

∆`Y<:P, ∆`W ok, and Y do not appear in Λ, then ∆`[W/Y]S<:[W/Y]T.

Proof. By induction on the derivation of subtyping relation:
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Case S-REFL: Trivial.

Case S-VAR:

If X6∈Y, conclusion is thus trivial.

If X∈Y, let X=Yi. [W/Y]X=Wi. By Lemma 37, ∆`Wi<:[W/Y]Pi.

Case S-TRANS: By induction hypothesis and S-TRANS.

Case S-CLASS: Easy by S-CLASS.

Lemma 23 (Type Substitution Preserves Typing). If ∆1,X<:N,∆2;Λ;Γ`e∈T and ∆1`U<:[U/X]N

where e is fully grounded, ∆1`U ok, and none of X appears in ∆1 and Λ,

then ∆1,[U/X]∆2;Λ;[U/X]Γ`[U/X]e∈[U/X]T.

Proof. By induction on the derivation of ∆1,X<:N,∆2;Λ;Γ`e∈T

Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[U/X]∆2

Case T-VAR: Trivial

Case T-FIELD: ∆o;Λ;Γ`e0.fi∈Ti

∆o;Λ;Γ`e0∈T0 ∆`fields(bound∆o(T0))=T f

By induction hypothesis, ∆n;Λ;[U/X]Γ`[U/X]e0∈[U/X]T0

By Lemma 25, ∆n`bound∆n([U/X]T0)<:[U/X](bound∆o(T0))

By Lemma 26,

∆n`fields(bound∆n([U/X]T0))=S g,

fj=gj , Sj=[U/X]Tj for j ≤ #(f).

By T-FIELD, ∆n;Λ;[U/X]Γ`e0.fi∈[U/X]Ti.

Case T-INVK: ∆o`e0.n(e)∈T

∆o;Λ;Γ`e0∈T0 ∆o;Λ;Γ`e∈S

∆o;Λ`mtype(n, T0)=T→T ∆o`S<:T

169



By induction hypothesis,

∆n;Λ;[U/X]Γ`[U/X]e0∈[U/X]T0 ∆n;Λ;[U/X]Γ`[U/X]e∈[U/X]S

By Lemma 21, ∆n`[U/X]S<:[U/X]T

By Lemma 28, and that e is fully grounded, and thus n must be m and not η,

∆n`mtype(n, [U/X]T0)=[U/X](T→T)

By T-INVK, ∆n;Λ;[U/X]Γ`[U/X](e0.n(e))∈[U/X]T

Case T-NEW: ∆o`new C<T>(e)∈C<T>

∆o`C<T> ok ∆o`fields(C<T>)=S f

∆o;Λ;Γ`e∈S′ ∆o`S′<:S

By Lemma 24, ∆n`C<[U/X]T> ok

By definition of fields:

CT (C)=class C<Y/N>/S {D g ...} ∆n`fields(bound∆o([T/Y]S))=D′ g′

S f=[T/Y](D g, D′ g′)

Since X cannot appear in S, by the definition of bound,

bound∆o([T/Y]S)=bound∆n([T/Y]S)=[T/Y]S

By Lemma 27, ∆n`fields([T/Y]S)=D′ g′

It follows that, ∆n`fields([U/X]C<T>)=[U/X]S f.

By Lemma 23 and 21,

∆n;Λ;[U/X]Γ`[U/X]e∈[U/X]S′ ∆n`[U/X]S′<:[U/X]S

The conclusion follows from T-NEW.

Lemma 24. If ∆1,X<:N,∆2`T ok , and ∆1`U<:[U/X]N with ∆1`U ok , none of X appearing in

∆1, then ∆1,[U/X]∆2`[U/X]T ok .

Proof. By induction on the derivation of ∆1,X<:N,∆2`T ok

Case WF-OBJECT: Trivial.
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Case WF-VAR: If X not in X, then it’s trivial. Otherwise, X=Xi, [U/X]Xi=Ui, by assumption,

∆1`Ui ok . And by Lemma 20, conclusion follows.

Case WF-CLASS: By induction hypothesis and Lemma 21.

Lemma 25. Suppose ∆1,X<:N,∆2`Tok , and ∆1`U<:[U/X]N with ∆1`U ok , and none of X

appears in ∆1. Then, ∆1,[U/X]∆2`bound∆1,[U/X]∆2
([U/X]T)<:[U/X](bound∆1,X<:N,∆2

(T))

Proof. If T is a non-variable type, then the conclusion is trivial.

If T is a variable type, but T6∈X, then the conclusion is also trivial.

If T∈X,

bound∆1,[U/X]∆2
([U/X]T)=Ui [U/X](bound∆1,X<:N,∆2

(T))=[U/X]Ni

By assumption and Lemma 20, conclusion follows.

Lemma 26. If ∆`S<:T, and ∆`fields(bound∆(T))=T f, then ∆`fields(bound∆(S))=S g, and

Si=Ti, and gi=fi for all i ≤ #(f).

Proof. By induction on the derivation of ∆`S<:T.

Case S-REFL: Trivial.

Case S-VAR: bound∆(S)=bound∆(T). Conclusion follows.

Case S-TRANS: By induction hypothesis.

Case S-CLASS: ∆`C<T><:[T/X]T

By FD-CLASS,

class C<X/N>/T {U f ...} ∆`fields(bound∆([T/X]T))=T f

∆`fields(C<T>)=T f, [T/X]U f

Conclusion is obvious.
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Lemma 27. If ∆1,X<:N,∆2`fields(T)=S f ∆1`U<:[U/X]N, where ∆1`U ok, and none of X

appears in ∆1, then ∆1,[U/X]∆2`fields([U/T]T)=[U/X]S f,S′ f′, for some S′ and f′.

Proof. We prove by case analysis on the definition of fields.

Case FD-OBJ: T=Object. Trivial.

Case FD-CLASS: T=C<T>

CT (C)=class C<Y/N>/S { S f; } ∆1,X<:U,∆2`fields(bound∆1,X<:U,∆2
([T/Y]S))=D g

By induction hypothesis, for some D′, g′,

∆1,[U/X]∆2`fields([U/X](bound∆1,X<:N,∆2
([T/Y]S)))=[U/X]D g, D′ g′.

By Lemma 25,

∆1,[U/X]∆2`bound∆1,[U/X]∆2
([U/X][T/Y]S)<:[U/X](bound∆1,X<:N,∆2

([T/Y]S))

Conclusion then follows from Lemma 26.

Lemma 28. If ∆1,X<:N,∆2;Λ`mtype(m, T)=V→V0, ∆1`U<:[U/X]N, where ∆1`U ok, and none

of X appears in ∆1 or Λ, then ∆1,[U/X]∆2;Λ`mtype(m, [U/X]T)=[U/X](V→V0).

Proof. By induction on the derivation of ∆;Λ`mtype(m, T)=V→V0.

Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[U/X]∆2

Case MT-VAR-S: ∆o;Λ`mtype(m, X)=V→V0

If X not in X, easy.

If X is in X, let [U/X]X=Ui

∆o;Λ`mtype(m, bound∆o(X))=V→V0

By induction hypothesis, ∆n;Λ`mtype(m, [U/X]bound∆o(X))=[U/X](V→V0)

By Lemma 25, ∆n`bound∆n(Ui)<:[U/X](bound∆o(X)).

By Lemma 34 ∆n;Λ`mtype(m, bound∆n(Ui))=[U/X](V→V0)

By MT-VAR-S again, the conclusion follows.
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Case MT-CLASS-S, MT-SUPER-S: Trivial through type substitutions.

Case MT-CLASS-R:

∆o;Λ`specialize(m, Λd)=Λr ∆o;[W/Y]`ΛrvΛΛd

By Lemma 29,

∆n;Λ`specialize(m, Λd)=Λ′r ∆n;[W′/Y]`Λ′rvΛΛd

for some W′. Conclusion follows by MT-CLASS-R.

Case MT-SUPER-R:

CT (C)=class C<Y/N>/T {... M}

for all Mi∈M, Λd=reflectiveEnv(Mi)

∆o;Λ`specialize(m, Λd)=Λr ∆o`disjoint(Λr, Λd)

By Lemma 30,

∆n;Λ`specialize(m, Λd)=Λ′r ∆n`disjoint(Λ′r, Λd)

Conclusion follows from induction hypothesis.

Lemma 29. If ∆1,X<:N,∆2;Λ`specialize(m, Λd)=Λr , ∆1,X<:N,∆2;[W/Y]`ΛrvΛΛd, ∆1`T<:[T/X]N,

where ∆1`T ok, and none of X appears in ∆1 or Λ, then ∆1,[T/X]∆2;Λ`specialize(m, Λd)=Λ′r ,

and ∆1,[T/X]∆2;[W′/Y]`Λ′rvΛΛd, where W′=[T/X]W.

Proof. Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[T/X]∆2

By the definition of specialize,

Λd=〈Rp ,oRn〉 Rp=(Ti, <Y/P>U→U) Rn=(Tj , V→V)

∆o;Λ`mtype(m, Ti)=U′→U′ R′p=(Ti, U′→U′)
By Lemma 28, ∆n;Λ`mtype(m, [T/X]Ti)=[T/X](U′→U′)

Let R′′p=([T/X]Ti, [T/X]U′→U′)

By Lemma 31, ∆n;[W′/Y]`R′′pvRRp , where W′=[T/X]W.

Case o=+, ∆o;Λ`mtype(m, Tj)=V′→V′0,

R′n=(Tj , V′→V0)
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By Lemma 28,

∆n;Λ`mtype(m, [T/X]Tj)=[T/X](V′→V′)

Let R′′n=([T/X]Tj , [T/X](V′→V′))

By Lemma 31, ∆n;[W′/Y]`R′′nvRRn .

Case o=-,

R′n=[W/Y]Rn .

Let R′′n=[W′/Y]Rn , clearly, ∆n;[W′/Y]`RnvRR
′′
n .

Since none of X appears in Λ, [T/X]Ti=Ti, [T/X]Tj=Tj .

Then let ∆n;Λ`specialize(m, Λd)=〈R′′p ,R′′n〉. By SB-Λ, ∆n;[W′/Y]`〈R′′p ,R′′n〉vΛΛd.

Lemma 30. If ∆1,X<:N,∆2;Λ`specialize(m, Λd)=Λr , ∆1,X<:N,∆2`disjoint(Λr, Λd), ∆1`T<:[T/X]N,

where ∆1`T ok, and none of X appears in ∆1 or Λ, then ∆1,[T/X]∆2;Λ`specialize(m, Λd)=Λ′r ,

and ∆1,[T/X]∆2`disjoint(Λ′p, Λd).

Proof. Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[T/X]∆2

By the definition of specialize,

Λd=〈Rp ,oRn〉 Rp=(Ti, <Y/P>U→U) Rn=(Tj , V→V)

∆o;Λ`mtype(m, Ti)=U′→U′ R′p=(Ti, U′→U′)
By Lemma 28,

∆n;Λ`mtype(m, [T/X]Ti)=[T/X](U′→U′)

Let R′′p=([T/X]Ti, [T/X]U′→U′)

Case o=+, ∆o;Λ`mtype(m, Tj)=V′→V′0,

R′n=(Tj , V′→V0)

By Lemma 28,

∆n;Λ`mtype(m, [T/X]Tj)=[T/X](V′→V′)

Let R′′n=([T/X]Tj , [T/X](V′→V′))
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Case o=-,

R′n=[W/Y]Rn .

Let R′′n=[W′/Y]Rn , clearly, ∆n;[W′/Y]`RnvRR
′′
n .

Since none of X appears in Λ, [T/X]Ti=Ti, [T/X]Tj=Tj . The let ∆n;Λ`specialize(m, Λd)=〈R′′p ,R′′n〉.

The by Lemma 33 and DS-Λ, if there was originally a pair of mutually exclusive range conditions

in Λr , then there is a pair of mutually exclusive range conditions in Λ′r .

Lemma 31 (Substitution Preserves Single Range Containment). If ∆1,X<:N,∆2;[W/Y]`R1vRR2,

∆1`U<:[U/X]N, where ∆1`U ok, and none of X appears in ∆1, none of X appears on Y, then

∆1,[U/X]∆2;[W′/Y]`R1vRR2, where W′=[U/X]W.

Proof. Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[T/X]∆2

By SB-R,

R1=(T1, <X/Q>U→U0) R2=(T2, V→V0)

∆o`T2<:T1 ∆′o=∆o,X<:Q,Y<:P ∆′o;[W/Y]`unify(U0:U, V0:V)
By Lemma 21, ∆n`[U/X]T2<:[U/X]T1

By UNI, [W/Y]U0:U=[W/Y]V0:V, for all Yi∈Y,∆o`Wi≺:YYi

Clearly, [W′/Y]U0:U=[W′/Y]V0:V

By Lemma 32, ∆n`[U/X]Wi≺:YYi for all Wi.

It follows that ∆n;[W′/Y]`unify([W′/Y]U0:U, [W′/Y]V0:V)

Conclusion follows from SB-R.

Lemma 32 (Substitution Preserves Pattern Type Pattern Match). ∆1,X<:N,∆2`W≺:YY, where

∆1`U ok, and none of X appears in ∆1, none of X appears on Y, then ∆1,[U/X]∆2`[U/X]W≺:YY.

Proof. We prove by induction on pattern matching rules PM-*.

Case PM-REFL: Trivial

Case PM-CL: By induction hypothesis.

Case PM-CL-S: By induction hypothesis.
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Case PM-VAR: By inspection of definition of bound, bound∆([U/X]W)=[U/X]bound∆(W). Con-

clusion follows by induction hypothesis.

Case PM-PVARS: By induction hypothesis and inspection of definition of bound, similar to

above case.

Lemma 33 (Substitution Preserves Range Mutual Exclusion). If ∆1,X<:N,∆2`oR1⊗o ′R2,

∆1`U<:[U/X]N, where ∆1`U ok, and none of X appears in ∆1,R1, or R2,

then ∆1,[U/X]∆2`oR1⊗o ′R2.

Proof. Let ∆o=∆1,X<:N,∆2, ∆n=∆1,[T/X]∆2

We prove by case analysis of ME-1 and ME-2.

Case ME-1:

R1=(T, <Y/P>U→U0) R2=(S, <Z/Q>V→V0)

∆o`T<:S or S<:T ∆o
′=∆o,Y<:P,Z<:Q

For all W, ∆o
′;[W/(Y:Z)]`unify(U, V) implies [W/(Y:Z)]U0 6=[W/(Y:Z)]V0

Since X do not appear in R1 or R2, by Lemma 21, ∆n`T<:S or S<:T.

By definition of UNI and the PM-* rules,

for all W, ∆n
′;[W/(Y:Z)]`unify(U, V) implies [W/(Y:Z)]U0 6=[W/(Y:Z)]V0

Case ME-2:

R1=(T, <Y/P>U→U0) R2=(S, <Z/Q>V→V0)

∆o
′=∆o,Y<:P,Z<:Q ∆o

′;[W/(Y:Z)]`R1vRR2

By Lemma 31 and the fact that X do not appear in R1 or R2, ∆n,Y<:P,Z<:Q`R1vRR2.

Lemma 34. If ∆;Λ`mtype(m, T)=U→U0, ∆`S<:T, then ∆;Λ`mtype(m, S)=U→U0.

Proof. By induction on the derivation of ∆`S<:T

Case S-REFL: Trivial.
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Case S-VAR: ∆`X<:∆(X)

MT-VAR-R1 and MT-VAR-R2 do not apply, since m6=η.

By definition, bound∆(X)=∆(X). Conclusion follows from MT-VAR-S.

Case S-TRANS: Easy by induction hypothesis.

Case S-CLASS: T=[T/X]T, S=C<T>

∆;Λ`mtype(m, C<T>)=V→V0 can oly be retrieved via MT-CLASS-* and MT-SUPER-*.

If retrieved using MT-CLASS-R:

CT (C)=class C<X/N>/T { ... M }

Mi=<Y/P>for(Mp;oMf ) S0 η (S x) {↑e;} Mi∈ M

Mp=U0 η (U) : Xi.methods Mf=U′0 η (U′) : Xj.methods

Rp=(Xi, Y/P(U→U0)) Rn=(Xj, U′→U′0)

Λ′=〈Rp ,oRn〉 Λd=[T/X]Λ′

∆;Λ`specialize(m, Λd)=Λr ∆;[W/Y]`ΛrvΛΛd

V=[T/X][W/Y]S V0=[T/X][W/Y]S0

By T-METH-R and the definition of override,

∆′=X<:N,Y<:P ∆′`N,P ok ∆′;Λ′`override(η, T, S→S0)

∆′;Λ′`mtype(η, T)=S→S0 ∆′`validRange(Λ′, T)

What we need to show now is that in all cases of MT-*,

∆′;Λ′`mtype(η, T)=S→S0 implies ∆;Λ`mtype(m, [T/X]T)=[T/X][W/Y](S→S0)

• MT-VAR-R1: ∆′;Λ′`mtype(η, Xi)=S→S0

By definition of specialize,

Λd=〈[T/X]Rp ,[T/X]Rn〉 [T/X]Rp=(Ti, Y/[T/X]P([T/X]U→[T/X]U0))

∆;Λ`mtype(m, Ti)=[T/X](V→V0)
Since Y do not appear in V0 or V, ∆;Λ`mtype(m, Ti)=[T/X][W/Y](V→V0).

By Λ;[W/Y]`ΛrvΛ[T/X]Λd, [W/Y](S0:S)=[W/Y][T/X](V0:V)

• MT-VAR-R2: Using similar technique to MT-VAR-R1. The information we use from the

definition of specialize is when o=+, and ∆;Λ`mtype(m, Tj) is similarly defined.
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• MT-VAR-S: By the fact that if X is not the reflective type of Rp , then Ti is not the reflective

type of [T/X]Rp , either. And conclusion follows from induction hypothesis.

• MT-CLASS-R: ∆′;Λ′`mtype(η, D<Q>)=S→S0.

CT (D)=class D<Z/R>/R { ... M}

Mi∈M Mi=<Y′/P′>for S′0 η (S′ x) { ...}

Λd
′=[Q/Z](reflectiveEnv(Mi)) ∆′;[W′/Y′]`Λ′vΛΛd

′

S=[Q/Z][W′/Y′]S′ S0=[Q/Z][W′/Y′]S0
′

By Lemma 31 and Lemma 20, ∆,[T/X]∆′;[T/X][W′/Y′]`[T/X]Λ′vΛ[T/X]Λ′d

By Lemma 38, ∆,[T/X]∆′;[W′/Y′][W/Y]`ΛrvΛ[T/X]Λd
′

Since Y do not appear anywhere in Λr , or Λd
′, ∆;[W′/Y′][W/Y]`ΛrvΛ[T/X]Λd

′

It follows from MT-CLASS-R that ∆;Λ`mtype(m, [T/X]D<Q>)=[T/X][W/Y](S→S0)

• MT-SUPER-R: By induction hypothesis.

• MT-CLASS-S and MT-SUPER-S: Do not apply.

If retrieved using MT-SUPER-S or MT-SUPER-R, then the conclusion is obvious from these

definitions.

Lemma 35. If ∆;Λ`specialize(m, Λd)=Λr , ∆;[W/Y]`ΛrvΛΛd, and ∆;Λ;Γ`e∈T.

Then ∆;Λ;[W/Y]Γ`[W/Y][m/η]e∈[W/Y]T.

Proof. By induction on the derivation of ∆;Λ;Γ`e∈T

Case T-VAR: Trivial.

Case T-FIELD: ∆;Λ;Γ`e0.fi∈Ti.

∆;Λ;Γ`e0∈T0 ∆`fields(bound∆(T0))=T f

By induction hypothesis, ∆;Λ;[W/Y]Γ`[W/Y][m/η]e0<:[W/Y]T0

By Lemma 26 and Lemma 20, ∆`fields([W/Y]T0)=[W/X]T f, S g.

By T-FIELD, ∆;Λ;[W/Y]Γ`[W/Y][m/η]e0.fi∈[W/Y]Ti

Case T-INVK: ∆;Λ;Γ`e0.n(e)∈T
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∆;Λ;Γ`e0∈T0 ∆;Λ`mtype(n, T0)=T→T ∆;Λ;Γ`e∈S ∆`S<:T

By induction hypothesis, ∆;Λ;[W/Y]Γ`[W/Y][m/η]e∈[W/Y]S

By Lemma 22, ∆`[W/Y]S<:[W/Y]T.

Also by induction hypothesis, ∆;Λ;[W/Y]Γ`[W/Y][m/η]e0∈[W/Y]T0

If n=m, or n=η, [m/η]n=m, by Lemma 36, ∆;Λ`mtype(m, [W/Y]T0)=[W/Y](T→T).

If n=m′, where m′ 6=m, Y do not appear in T or T, thus,

∆;Λ;[W/Y]Γ`mtype(m′, [W/Y]T)=[W/Y](T→T)

In either case, it follows from T-INVK that ∆;Λ;[W/Y]Γ`[W/Y][m/η](e0.n(e))∈[W/Y]T.

Case T-NEW: ∆;Λ;Γ`new C<T>(e)∈C<T>

∆`C<T> ok ∆`fields(C<T>)=U f ∆;Λ;Γ`e∈S ∆`S<:U

By induction hypothesis and Lemma 22,

∆;Λ;[W/Y]Γ`[W/Y][m/η]e∈[W/Y]S ∆`[W/Y]S<:[W/Y]U

By definition of fields and the fact that its definition does not involve any pattern matching

variables, ∆`fields([W/Y]C<T>)=[W/Y]U f

Conclusion follows from T-NEW.

Lemma 36. Suppose ∆;Λ`specialize(m, Λd)=Λr , ∆;[W/Y]`ΛrvΛΛd. If ∆;Λ`mtype(m, T)=S→S,

then ∆;Λ`mtype(m, [W/Y]T)=[W/Y](S→S).

Proof. By induction on the derivation of ∆;Λ`mtype(m, T)=S→S:

Case MT-VAR-R1 and MT-VAR-R2 do not apply.

Case MT-VAR-S: T=X.

If X 6∈Y, then [W/Y]X=X. It is also impossible from method typing rules for Y to appear in the

method definitions of bound∆(X), or its method types. The conclusion follows naturally.

If X∈Y, [W/Y]X=Wi, ∆;Λ`mtype(m, bound∆(Yi))=S→S, ∆;Λ`mtype(m, Yi)=S→S.
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It follows from induction hypothesis and bound∆(Yi)=Pi that,

∆;Λ`mtype(m, [W/Y]Pi)=[W/Y](S→S).

By Lemma 37, ∆`Wi<:[W/Y]Pi.

By Lemma 34, ∆;Λ`mtype(m, Wi)=[W/Y](S→S).

Case MT-CLASS-S, MT-SUPER-S: Eas following type substitution.

Case MT-CLASS-R: Conclusion follows easily from the definition of specialize.

Case MT-SUPER-R: By induction hypothesis.

Lemma 37 (Unification Mapping Preserves Type Variable Bounds). If ∆;[W/Y]`ΛvΛΛ′, and Y do

not appear anywhere in Λ, Λ′=〈R′p ,o ′R′n〉, where R′p=(T, <Y/P>U→U), then ∆`Wi<:[W/Y]Pi, for

all Wi∈W.

Proof. Let Λ=〈Rp ,oRn〉, where Rp=(S, V→V), ∆′=∆,Y<:P.

By SB-R, ∆′;[W/Y]`unify(U:U, V:V).

By UNI, ∆′`Wi≺:YYi for all Wi∈W. We inspect the rules of PM-*:

Since Y cannot appear in W, the first rule that applies is PM-VAR:

bound∆′(Wi)=C<T> ∆′`C<T>≺:Y[C<T>/Yi]bound∆(Yi), where bound∆(Yi)=Pi

We next prove by derivation of ∆′`C<T>≺:Y[C<T>/Yi]Pi

Case PM-REFL: [C<T>/Yi]Pi=C<T>=bound∆′(Wi)

Since Y do not appear in ∆ and consequently, C<T>, ∆`Wi<:C<T>.

Case PM-CL: Let Pi=C<S>. Since Yi do not appear in S after substitution, for T≺:YS, without

loss of generality, we assume all other Y has been substituted, then T=S. Then C<T>=C<S>,

and by S-REFL, conclusion follows.

Case PM-CL-S: Follows from induction hypothesis.

180



Lemma 38 (Single Range Containment is Transitive). If ∆;[W/Y]`R1vRR2, ∆;[Q/Z]`R2vRR3,

then ∆;[W/Y][Q/Z]`R1vRR3,

Proof. By SB-R,

R1=(T1, <X/N>U→U0) R2=(T2, <Y/P>V→V0)

∆`T2<:T1 ∆,X<:N,Y<:P;[W/Y]`unify(U0:U, V0:V)

R3=(T3, <Z/O>V′→V′0)

∆`T3<:T2 ∆,Y<:P,Z<:O;[Q/Z]`unify(V0:V, V′0:V′)
By S-TRANS, ∆`T3<:T1

By UNI,

[W/Y]U0:U=[W/Y]V0:V for all Yi∈Y, ∆,X<:N,Y<:P`Wi≺:YYi

[Q/Z]V0:V=[Q/Z]V′0:V′ for all Zi∈Z, ∆,Y<:P,Z<:O`Qi≺:ZZi
By construction of R1 and R2, no Y appear in U0:U, no Z appear in V0:V.

Thus, U0:U=[W/Y]V0:V , V0:V=[Q/Z]V′0:V′

Then U0:U=[W/Y][Q/Z]V′0:V′

Since no Y appear in V′0:V′, [W/Y][Q/Z]V′0:V′=[([W/Y]Q)/Z]V′0:V′

By inspecting PM-*, and by Lemma 20, it is clear that for all Zi∈Z, ∆,X<:N,Y<:P,Z<:O`[W/Y]Qi≺:ZZi

The conclusion follows.

Lemma 39 (Method Type Lookup Terminates). Method type lookup mtype(n, T) for all T with

a finite chain of reflective dependency either terminates with ∆;Λ`mtype(n, T)=U→U0, or ends

with none of the MT-* rules applicable.

Proof. The chain of reflective dependency is a sequence of types defined to be:

refchain(Object) = Object

refchain(X) = X:refchain(bound∆(X))

refchain(C<T>) = C<T>:refchain(Ti):refchain([T/X]T)

where T=T0,...,Tn

The chain is constructed so that if a reoccurrence of the same type, in any form of instantiation

happens, the chain construction is terminated, and the chain is deemed not finite. Since there

is a finite number of classes, the chain construction either terminates with a finite chain, or a

reoccurrence as described above must happen.
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We define the measure function to be:

measure(mtype(n, T))=length(refchain(T)).

It is simple to see that with each recursive call, the measure must decrease:

Case MT-VAR-S:

measure(mtype(η, X))=length(refchain(X))

measure(mtype(η, bound∆(X)))=length(refchain(bound∆(X)))

Since length(refchain(X))=1+length(refchain())bound∆(X), clearly measure decreases.

Case MT-SUPER-S,

measure(mtype(m, C<T>))=length(refchain(C<T>))

measure(mtype(m, [T/X]N))=length(refchain([T/X]N))

refchain([T/X]N) is embedded in refchain(C<T>) by construction. Thus, the measure de-

creases.

Case MT-CLASS-R:

mtype is recursively invoked through specialize on one of the type parameters of C<T>. By

construction, again, refchain(Ti) is embedded in refchain(C<T>). Thus, again, measure

decreases.

Case MT-SUPER-R: Similar to MT-CLASS-R and MT-SUPER-S.

Since the chains are finite, then the measure function cannot decrease infinitely. Thus, the

recursion must terminate.
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