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SUMMARY

We consider the problem of capacity expansion in telecommunication networks by

firms under uncertain economic conditions with various market structures. We assume

that the price-demand functions for network capacity have constant price-elasticity and

demand functions are parameterized by the index of a general economic condition that is

modeled by a discrete time Markov process. We apply dynamic programming to obtain

a state-dependent capacity expansion strategy that maximizes expected total discounted

cash flow.

Firm’s cost structure incorporates partial reversibility of investment by differentiating

the purchasing cost and the salvage value of the capacity. This partial reversibility makes

the value function non-differentiable and divides the solution space into BUY, KEEP, and

SELL regions. In addition, with the non-differentiable value function, it is hard to obtain an

analytical solution in general. By identifying certain structural properties of the optimal

solution, we perform a series of sensitivity analyses of optimal investment decisions with

respect to other market parameters. Under a typical condition in the telecommunications

market, which states that the level of cost depreciation is larger than that of the downside

movement of the economic condition in each time period, we are able to obtain analytical

expression for the optimal level and reduce the multi-period investment decision problem

into a single-period myopic problem. As a result, optimal capacity increment depends

only on the current economic condition.

We study this problem in both the monopolistic and oligopolistic market structures. In

particular, we investigate investment decisions of two firms in duopoly setting, assuming

that firms follow Cournot competition behaviors. We prove the existence and the unique-

ness of the Cournot equilibrium strategies in the duopolistic capacity investment problem.

In addition, we show how competition between firms affects through total capacity in the

ix



market in usage, capacity price, the consumer surplus, expected time to a certain level of

price reduction, and the expected time to the first investment. We perform an empirical

analysis to test a theoretical prediction obtained from our model through linear regression

utilizing historical market data. By examining several alternative indicies as a proxy to

the economic condition considered in our model, we show that the Civilian Employment

is the best proxy to use in validating the linear relationship between capacity expansion

and economic indicator.
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CHAPTER I

INTRODUCTION

In this chapter, we present the background of our studies, including the motivation, related

previous research results, features of the proposed model, and contributions.

1.1 Motivation

Capital investment planning is one of the key business decision-making processes for almost

all firms. This investment decision includes initiating new projects, expanding existing

business, shrinking or discontinuing current business, and so forth. In any case, decisions

about the size and the timing of the investment is one of the most important assignments

for a managerial team. Specifically, in the telecommunications market and the computer

industry, the size of an expansion and the timing for the investment are crucial to the

health and survival of a firm. For example, the usage of the bandwidth is exponentially

increasing, so Internet service providers must respond to market demand qualitatively and

quantitatively in a timely manner.

The telecommunications industry used to be a regulated monopoly. Without competi-

tion, a firm needed only to find a solution that satisfied the exogenously given demand at a

fixed price. Therefore, relevant research focused on minimizing cost only. As deregulation

occurred, firms began to control prices. Now, a firm must consider the effect of price on

demand and at the same time, maximize profits. Thus, the challenge of the firm changes

to maximizing profits by determining prices and corresponding capital/capacity expansion

strategies from minimizing total cost through determining the capital/capacity expansion

policies only.

Very few papers address the discrete time and multiple time investment decision prob-

lem. When an investment decision problem is solved in a continuous time setting, the

1



resulting path of the capital/capacity movement might be difficult to determine in the

real world. For example, some studies have modeled demand as a geometric Brownian

motion in a continuous time frame, which results in a capital/capacity movement similar

to the demand movement. In that case, the expansion size can be infinitesimal, and thus

multiple expansions in a very short time interval are possible.

Considering the special characteristics of the telecommunications industry, we need to

address the following issues: First, the investment decision should be made recursively to

keep up with increasing demand, so we have to consider multiple-time investments, not a

one-time investment decision; second, the investment decision should be discrete in time,

which makes the size of the expansion lumpy; third, we should recognize that the unit cost

for the capacity expansion depreciates rapidly due to improvements in technology; fourth,

different from other industries, the telecommunications and computer industry demands

that we incorporate trends in market price, which is decreasing and demand, which is

increasing with time; a firm should consider the effect of competition between firms on

its investment decision on its investment decision. Competition behavior among firms

is addressed in several models: the Cournot model, the Bertrand model, the Stackelberg

model, and others. We have adopted the Cournot model to investigate investment behavior

in an oligopolistic market.

1.2 Literature Review

Numerous studies have dealt with the problem of the investment decision, which includes

expanding current business, starting new projects, suspending current production lines

for a certain period of time, and shutting down a company permanently. A traditional

method that deals with such decisions is the min-cost approach. Smith[40] considered

the decision of capacity expansion in terms of the timing of an investment by defining a

cost rate and minimizing this quantity. He showed that the equal timing policy minimizes

the present value of the investment cost. Using this cost rate, Ryan[39] established a

heuristic method that determined expansion times and expansion amounts using the (s,
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S) policy. Bean, Higle, and Smith[7] considered the optimal capacity expansion problem

with stochastic demand. They showed that a stochastic problem could be changed to a

deterministic one using a modified interest rate that was smaller than the original interest

rate and approximately proportional to the uncertainty of demand.

Another big stream of investment-related research applied real option method to de-

termine the timing of investments. This method applies the valuation method of financial

options to estimate the opportunity cost of a investment. Adopting the concept of the ex-

ercise boundary of an American option, they try to pinpoint an optimal value of a project

or prices of a product that must be reached before an investment decision is made. Here,

the value of the project corresponds to the underlying security of the financial option,

and the investment should be made at the early exercise boundary of the option. Dixie

and Pindyck[11] analyzed the investment decision very exhaustively using this real option

analysis. McDonald and Siegel[32], [31] formulated the value of the option to invest in

an irreversible project and showed that this value could be as much as the investment

cost for the reasonable parameter values. They also calculated the value of an option to

shut down a production line temporarily at no cost when variable costs exceed operating

revenues. Even though the real option concept creates a considerable challenge to the

traditional Net Present Value (NPV) analysis, this method has a crucial weakness. When

we consider multiple-time investment decision, the calculation becomes complicated and

time consuming. Hubbard and Lehr[16] considered a two periods model of investment

with real option method. Few papers solve for more than two periods.

The value to wait, which should be added to the opportunity cost, comes from the fact

that the investment decision is totally/partially irreversible. This irreversibility should

be included in the investment decision model so that it can be applied to real world

investment problems. In Arrow[5], the aim of a firm is to maximize the sum of all the cash

flow discounted at the market rate of interest. He analyzed the change in the investment

path when he considered irreversibility in a deterministic and continuous time setting.

Abel and Eberly[2] defined and calculated the user costs of capital associated with the

3



purchase (Cu) and sale (Cl) of capital, given the purchase and sell price of unit capital.

They found the optimality condition, which is, the marginal revenue product of capital

should be in the interval [Cl, Cu]. Bertola and Caballero[8] proposed and solved a model

of sequential irreversible investment and extended the result to the aggregated investment

in a continuous time setting.

As deregulation spreads throughout the electricity and telecommunications industries

the market is changing from monopolistic to duopolistic/oligopolistic. Many research

papers have analyzed changes in optimal investment decisions when market conditions

change. Some papers handle this issue of competitition by changing the price process

from endogenous to exogenous. Others handle this by applying oligopolistic behavior to

a market directly. In the latter case, they try to identify the Nash equilibrium point.

Leahy[26] showed that the option-value thresholds of a monopolistic firm are the same

as the free entry threshold of a competitive firm. Aguerrevere[4] studied the effect of

competitive interactions on investment decisions and on the dynamics of the price of a non-

storable commodity. White and Benson[44] illustrated the structure of the competitive

electricity market. They also showed the trends in total market share and price in several

electricity markets. Chuang, Wu, and Varaiya[9] explained the behavior of the firms in a

generation expansion planning under Cournot, Cournot duopoly, and Cartel assumptions.

Their results support the classic Cournot model. Hay and Liu[15] analyzed the behavior

of a firm in fragmented, dominant firm, and dominant group sectors. They suggested that

fragmented sectors are characterized by noncooperative investment behavior, dominant

group sectors by cooperative behavior, and dominant firm sectors by competitive behavior.

1.3 Features in the Proposed Model

1. Market uncertainty in economic indicator:

Some papers model market demand and/or market price as a stochastic process that

is exogenously given. Abel[1] modeled the price of output as a geometric Brownian

motion. Abel and Eberly[2] modeled demand as a stochastic process which depends

4



on a random variable which evolves exogenously according to a geometric Brownian

motion and in [3], they used Brownian motion to model randomness in technology,

and/or randomness of the variable cost in demand. Aguerrevere[4] and d’Halluin,

Forsyth, and Vetzal[10] modeled the demand as a geometric Brownian motion. But

there are some research going on about network traffic which shows demand is not

well represented by geometric Brownian motion. For more detailed explanation, refer

to Riedi and Ribeiro[38], Ma[29], Nor, Yahya, and Ihsanto[36] and Yang[45]. Kou

and Kou[22] specified two economic indicators: general economic conditions which

are exogenously given, and sector/industry-specific economic conditions which can

be endogenously calculated. They modeled the growth stocks using sector/industry-

specific economic conditions, which can be represented by the total research and

developement labor growth rate in such a sector/industry.

We model the general economic condition as a discrete Markov process, which is

more general than (geometric) Brownian motion. Of course, by using a discrete

Markov process, we can also approximate the geometric Brownian motion but with

more flexibility.

2. Characteristics of demand:

• Constant elasticity: We assume that the price-demand function has a constant

price-elasticity of demand and is parameterized by the index of general economic

conditions, which are modeled by discrete Markov processes. The iso-elastic demand

function is frequently used in the investment model. Abel and Eberly[1], Kou and

Kou[22] Mitra and Wang[35], and Kenyon and Cheliotis[20] also used this iso-elastic

demand function in their papers. In addition, ε > 1 is a common assumption in

the telecommunications industry. Following the work of Lanning, Mitra, Wang, and

Wright[25], we assume elasticity is between 1.28 and 2.84.

3. Market structures:

• Monopolistic market: In a monopolistic market, a company is a price maker.

5



Therefore, it can control the demand by setting the price level. Also, it looks for the

optimal capacity and price together through the price-demand function.

• Oligopolistic market: Firms in the market are non-cooperative competitive. We

adopt the Cournot model to investigate the investment behavior of the firms in an

oligopolistic market. We consider the cases of both of symmetric and asymmetric

firms.

4. Capital/Capacity investment decision:

• Value function: The objective function is a firm’s expected total discounted cash

flow. We try to find an optimal capacity/price that maximizes this objective func-

tion. When the market structure is one of a regulated monopoly, the exogenous

demand model and min-cost models were reasonable. However the recent change

in the industry, featured by relaxed regulation and more competition, forces firms

to consider their combined revenue and costs by influencing the demand through

pricing.

• Partial reversibility of capacity investment: A considerable number of studies deal

with this irreversibility. The real option approach is well known method that ad-

dresses irreversibility in a systematic way. Traditionally, it has been common sense

for a firm to invest in a project when the present value of the project is greater

than or equal to zero. However, recent studied have shown that this present value

analysis can be wrong. When investment is irreversible, the firm should consider

the option of delaying investment, and the option should be properly valued. This

real option approach is simple and well applied when the investment is a one time

decision. However, when a firm has to consider a series of investments, the real op-

tion approach is not appropriate because of exponentially increasing complexity. In

addition, Grenadier[14] showed that option holders (in this case, project managers)

have to consider that the competition between the market players and the value of

waiting for the investment is not considerable in the competitive market and the

6



classical NPV analysis is approximately accurate. Another way to incorporate ir-

reversibility is to consider only incremental investment. In this case, reducing the

present capital is not considered.

We incorporate this irreversibility of the investment by differentiating the purchasing

price and the salvage value. With these two different values, we can consider a

partially reversible investment decision. In addition, this model encompasses the

cases of completely irreversible investment and costlessly reversible investment by

setting the salvage value at zero, and by setting the salvage value to be the same as

the purchase price respectively. By making the difference between the purchase price

and the salvage value broad, we have a broad range of optimal capacity instead of one

optimal point. In other words, we have minimum optimal capacity and maximum

optimal capacity by differentiating the purchase price from the salvage value.

• Discrete and multiple-time expansion: We consider discrete and multiple-time

investment. In other words, investment decisions can be made quarterly or monthly.

Therefore, the resulting capital/capacity path takes a step function form, and the

investment size is lumpy. Because an infinitesimal increment in capacity during an

infinitesimal period is not realistic, particularly in the telecommunications industry,

the discrete time model is more practical than the continuous time model.

1.4 Contributions

The purpose of this thesis is to investigate the investment behavior of a company under

uncertain economic conditions. We formulate the problem as a discrete Markov decision

problem. We obtain the optimal investment strategy, which depends on the states of

the capacity of the previous period and current economic condition. By incorporating a

broad range of state space, the model is applied to entry firms, well-established firms, and

over-invested firms. Furthermore the trade-off between the lost revenue due to current

insufficient capacity and the opportunity cost of a premature investment resulting from

the foregone reduced investment cost due to technology advancement is examined.
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We first examine the monopolistic market. We identify the linear relationship between

the optimal solutions and the general economic condition. Using this linearity, we perform

a series of sensitivity analyses. Under a typical parameter setting in a telecommunications

industry, we obtain analytic expression of the optimal solution. Moreover, we investigate

the price and demand trends in the market and then obtain analytical expressions for

them. The result is consistent to the findings of the previous studies by Kenyon and

Cheliotis[20], [21] and [19]. In addition, we perform a series of sensitivity analyses and

show how the optimal investment decision changes with the parameters.

We then study the firm’s investment behavior in an oligopolistic market. In particular,

we investigate a duopoly model in which two firms follow the Cournot behavior. We show

that the equilibrium point for the two-firm case exists and is unique analytically and

numerically. We also investigate the effect of competition on market properties through

total market capacity under usage, market price, consumer surplus, expected time of a

certain price reduction, and expected time until the first capacity expansion.

Finally, using real market data, we try to show the validity of the proposed model.

1.5 Outline

The remaining dissertation is organized as follows. In chapter 2, we formulate the capacity

investment problem in a monopolistic market 1. We illustrate the structure of the solution

and perform a series of sensitivity analyses. Using the structure of the solution, we find

an analytic expression for the optimal capacity and the price under a typical condition in

the telecommunications market. In addition, we show an optimal capacity trend and the

corresponding price trend. Finally, we perform an experiment with a certain parameter set

and show numerical results. In chapter 3, we consider the capacity investment problem in

an oligopolistic market. By adopting the Cournot model, we illustrate investment behavior

of the firms in a competitive market. We study the existence and the uniqueness of Cournot

equilibrium point in the case of symmetric firms and asymmetric firms. How competition

1This section is based on the work at Bell Labs, where I was a summer intern 2002.
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affects the market properties is explored through total market capacity, market price,

consumer surplus, expected time of a certain price reduction, and expected time until

the first capacity expansion. In chapter 4, using market data from telecommunications

companies, we perform linear regression analysis and validate the proposed model.
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CHAPTER II

THE INVESTMENT STRATEGY OF A MONOPOLISTIC

FIRM

In this section, we study the capacity investment decisions of a monopolistic company.

In a monopolistic market, a company is a price maker and thus controls market demand

by changing the price. We address this investment decision problem in a discrete time

framework with time horizon T . One period can be a year, a quarter, a month, a week,

and so forth, depending on the problem characteristics. At the beginning of each period,

say t period, the firm is given the capacity (xt−1) of the previous period. It then needs to

decide the optimal capacity (x∗
t ) of the current period considering the general economic

condition (ξt).

The increment (or decrement) x̂t = xt − xt−1. Depending on the sign of x̂t, a firm

can choose three different actions, which are buy, sell, and maintain the capacity of the

previous period. Figure 1 shows one possible path of the capacity evolution with time.

If the firm decides to invest in more capacity, it has to pay installation and increased

maintenance costs, but it can collect more revenue due to the increased capacity. If the

firm delays the investment decision and maintains the capacity of the previous period, it

can take advantage of cost depreciation that comes from technology advancement. If the

firm decides to retire some or all of the capacity of the previous period, it might get some

revenue from the selling off of the excess capacity, but it will lose the revenue due to the

reduced capacity. When the firm makes these investment decisions, it needs to consider

the current and expected future economic conditions. The general economic condition is

not deterministic, so we model it as a discrete Markov process.

By rephrasing the problem, it can be defined in the following way. Given two state

variables (xt−1, ξt) at the beginning of t period, we need to solve for the optimal capacity
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Figure 1: Possible Path of Capacity Movement with Time.

(x∗
t ) of the current period by maximizing the company’s expected total discounted cash

flow from time t to time horizon T . This capacity will stay constant until the end of the t

period. At the beginning of t+1 period, we need to determine again the optimal capacity

(x∗
t+1) that will stay constant until the end of the t + 1 period, and so on.

2.1 Model Formulation

We start this section by modeling the features of our problem.

First, we explain the notation we use throughout the chapter.

ξt : general economic condition at the beginning of period t

Pt : market price for period t

Dt: market demand for period t

xt : capacity position at the beginning of period t

Rt: revenue during period t

Ct : total cost occurring during period t

FT: terminal value function

pt(i, j) = P {ξt+1 = ξj |ξt = ξi}: transition probability from ξi at time t

11



to ξj at time t + 1

ηt : cost depreciation coefficient during period t

ε : elasticity of the price-demand function

T : time horizon

r : discount rate periodwise

0+: infinitesimal, can be defined as limn↑∞
1
n .

1. Economic indicator.

As we mentioned in section 1.3, we employ an economic indicator, ξt, to model the

market uncertainty. Specifically, we model ξt as a discrete time Markov process with

a transition probability pt(i, j) from state i at time t to state j at time t + 1.

2. Price-demand function.

We define the price-demand function as

Pt(Dt, ξt) =

(
ξt

Dt

) 1

ε

, (2.1.1)

where Pt and Dt are price and demand at time t, respectively. The price-demand

function is scaled by ξt, which reflects the general economic condition. Also ξt can

be interpreted as the willingness to buy Dt when the price is 1. We call this a general

economic condition or economic indicator afterward. The price-elasticity of demand

is defined as

ε = −
dD/D

dP/P
. (2.1.2)

Here we assume that the price-elasticity of demand is constant, which is a common

assumption in telecommunications-related literature.

Depending on the value of ε, the investment behavior changes.

(a) If ε > 1, a company can increase its revenue by lowering the price and taking

advantage of increased demand.

(b) If ε = 1, the revenue of a company stays unchanged with respect to the price

movement and the corresponding demand change.
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(c) If ε < 1, a company can increase its revenue from a higher price and decreased

demand.

For more explanation of the relationship between ε and revenue, refer to Frank[12]

Kou and Kou[22] used the constant elasticity function with ε > 1. Kenyon and

Cheliotis[20] used equation(2.1.1) as their price-demand function and showed that

the trend of total market capacity is exponentially increasing and the price is expo-

nentially decreasing with time in the telecommunications industry, which confirms

that ε > 1. Therefor, we assume ε > 1 from now on.

3. Revenue.

Rt = PtDt =

(
ξt

Dt

) 1

ε

Dt = ξ
1

ε
t Dt

1− 1

ε = ξ
1

ε
t xt

1− 1

ε ,

where xt is the firm’s capacity at time t. We set the demand equal to the capacity

level. In a monopolistic market, the firm can control the demand by changing the

market price. When the demand is greater than the capacity level, which is possible

under an improved economic condition, the firm can raise the price to decrease the

demand to the capacity level, and vice versa.

4. Cost.

Cost consists of three parts: maintenance cost, expansion cost, and salvage value.

We model these costs to be linear with capacity as follows.

Ct = btxt + at(xt − xt−1)+ − ãt(xt−1 − xt)+,

where (A)+ =







A if A ≥ 0,

0 if A < 0.
(2.1.3)

bt: the coefficient of the unit-maintenance cost at time t.

at: the coefficient of the unit-expansion cost at time t.

ãt: the coefficient of the unit salvage value at time t.

Bertola and Caballero[8] used linear cost structure similar to ours, and the cost coef-

ficient is modeled by geometric Brownian motion and is given exogenously. Kenyon

13



and Cheliotis[20] used a concave cost function considering economies of scale. Abel[1]

used a convex cost function, which is used frequently in the manufacturing industry.

Remark 1. bt, at, and ãt might be a function of the sector/industry-specific growth

rate. As Kou and Kou[22] indicated, the growth rate of the growth stock can be

represented by the industry-specific growth rate. Also, the growth rate is closely

related to the growth rate of the labor force in the research and development (R&D)

department. If the growth rate of the labor forth of the R&D department is large,

the cost coefficient decreases, and if the labor force of the R&D department is small,

then the cost coefficient will stay put with respect to time.

Here we assume that

(a) bt ≥ bt+1, at ≥ at+1 and ãt ≥ ãt+1.

(b) at ≥ ãt

The underlying reason of the assumption (a) is that the unit maintenance cost, unit

installation cost, and the unit salvage value tend to decrease, which reflects technol-

ogy improvement in the telecommunications market. Bertola and Caballero[8] used

a negative value for the drift when they model the cost coefficient as a geometric

Brownian motion. Kenyon and Cheliotis[20] assumed an exponentially decreasing

price/cost trend and in their numerical experiment, the price/cost depreciates by

half in two years.

The reasoning of assumption (b) is to incorporate irreversibility.

(a) If at = ãt, then the investment is totally reversible, which indicates that the

unit purchasing price is the same as the unit salvage value.

(b) If at > ãt, then the investment is partially reversible, which is a dominant

characteristic of the telecommunicationa and computer industry.

(c) If ãt = 0, then the investment is totally irreversible.
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The cost of a period is directly dependent on the investment decision, which falls

into one of the following three categories:

(a) SELL some part or all of the the capacity of the previous period. This will

happen when the economic condition is very bad and/or if there is too much

capacity from the previous period. In this case, we will get ãt(xt−1 − xt) as

our selling off profit and still pay the maintenance cost btxt for the remaining

capacity. Therefore, Ct = btxt − ãt(xt−1 − xt).

(b) KEEP the previous period capacity. This will happen when the economic condi-

tion has not been changed much from the previous period, and we have enough

capacity at hand. In this case, we need to pay the maintenance cost only.

Therefore, Ct = btxt.

(c) BUY some capacity and add to the capacity of the previous period. This case

is dominant among all three cases in the telecommunications industry. This

will happen when the economic condition improves, and we need to keep up

with increased demand from the improved economic condition. It will also

happen when the cost depreciation is steep, which results a drop in price and

corresponding increases in demand. In this case, we need to pay the installation

cost at(xt − xt−1) and the maintenance cost btxt as well. Therefore, Ct =

btxt + at(xt − xt−1).

5. Value Function.

The value function at time t is the maximum of the expected total discounted cash

flow of a firm from time t to time horizon T .

Vt(xt−1, ξt) = Max(xt,xt+1,···xT−1)E

[
T−1∑

m=t

(

e−r(m−t)
(
e−rRt − Ct

))

+ e−r(T−t)FT (xT−1, ξT )

]

,

where r is the expected return in one period and FT (xT−1, ξT ) is the terminal value

function. Here we assume that revenue is collected at the end of each period, and the
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cost is incurred at the beginning of each period, which explains e−r in the front of

Rt in the value function. We want to solve for a series of investment decisions from

time t onwards. At the beginning of each period t, we are given a state (xt−1, ξt),

and we need to solve for the optimal capacity (x∗
t ) of the current period to maximize

the firm’s expected total discounted cash flow from time t to time horizon T .

2.2 Modeling Assumptions

In this section, we summarize all the assumptions that we make in our model.

1. The price elasticity of demand, ε, is constant, and ε > 1.

2. We assume that the market demand is the same as the capacity level of a firm.

3. bt ≥ bt+1, at ≥ at+1, and ãt ≥ ãt+1, which reflects cost depreciation from improve-

ments of technology.

4. at ≥ ãt, which represents the partial reversibility of the investment.

5. ηt is the cost depreciation coefficient at time t with ηt < 1. In addition, maintenance

cost, installation cost, and salvage value depreciate at the same rate as

(bt+1, at+1, ãt+1) = ηt(bt, at, ãt) with ηt < 1 for all t.

6. FT (xT−1, ξT ) is a concave function with respect to xT−1, which guarantees the

concavity of the value function at t. In addition, FT (xT−1, ξT ) is homogeneous, i.e.,

∀η > 0, FT (ηxT−1, ηξT ) = ηFT (xT−1, ξT ) .

With this assumption, the linearity between the optimal capacity and the economic

condition is established.
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2.3 The Structure of the Solution

The value function is the total expected discounted cash flow over time horizon T . Using

Bellman’s equation, the value function at t can be re-written as follows:

Vt(xt−1, ξt) = Max(xt,xt+1,···xT−1)E

[
T−1∑

m=t

(

e−r(m−t)
(
e−rRt − Ct

))

+ e−r(T−t)FT (xT−1, ξT )

]

= Maxxt

[(

e−rξ
1

ε
t x

1− 1

ε
t − (btxt + at(xt − xt−1)+ − ãt(xt−1 − xt)+)

)

+ e−rE
[
(Vt+1 (xt, ξt+1|ξt)

]
]

To solve the problem, at first, let us define the Gb and Gs functions1 as a derivative

of the value function of the BUY xt−1 ≤ xt and SELL xt−1 ≥ xt cases as

Gb(xt, ξt) =

(

e−rξ
1

ε
t

(

1 −
1

ε

)

x
− 1

ε
t − (bt + at)

)

+ e−r dE
[
Vt+1 (xt, ξt+1|ξt)

]

dxt
, and (2.3.1)

Gs(xt, ξt) =

(

e−rξ
1

ε
t

(

1 −
1

ε

)

x
− 1

ε
t − (bt + ãt)

)

+ e−r dE
[
Vt+1 (xt, ξt+1|ξt)

]

dxt
. (2.3.2)

The solution to the above optimization problem belongs to one of the following three

cases.

1. (BUY):

Expand the current capacity. If x∗
t,L is a solution for Gb(xt, ξt) = 0 and if xt−1 ≤ x∗

t,L,

a firm needs to buy more capacity up to x∗
t,L.

2. (SELL)

Cut off the excess capacity. If x∗
t,U is a solution for Gs(xt, ξt) = 0 and if xt−1 ≥ x∗

t,U ,

a firm needs to sell the excess capacity down to x∗
t,U .

3. (KEEP)

Continue with the capacity of the previous period. If x∗
t,L ≤ xt−1 ≤ x∗

t,U , then

x∗
t,K = xt−1.

1The subscript b in Gb means BUY and s in Gs means SELL.
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Here we used the fact x∗
t,L ≤ x∗

t,U , which will be explained in Lemma 2.3.2.

To prove that there is a solution to the above set of equations (2.3.1),(2.3.2) and that

the solutions are unique, we first investigate the behavior of dE[Vt+1(xt,ξt+1|ξt)]
dxt

.

Theorem 2.3.1. If Vt+1 (xt, ξt+1) is a concave function with respect to xt, then Vt (xt−1, ξt)

is a concave function with respect to xt−1.

Also,

ãt+1 ≤
dE
[
Vt+1 (xt, ξt+1|ξt)

]

dxt
≤ at+1.

Proof. See the proof in section 2.7.

Abel[1], Abel and Eberly[2], and Grenadier[14] assumed that the revenue function is

concave, which is consistent to our model. The intuition behind Theorem 2.3.1 is as

follows: If the capacity of the previous period is greater than or equal to x∗
t+1,U , having

one more capacity has an ãt+1 value. If the capacity of the previous period is less than

x∗
t+1,L, having one more capacity has an at+1 value. If the capacity of the previous period

is between x∗
t+1,L and x∗

t+1,U , then the value of the additional capacity in decreasing.

Aguerrevere[4] explained the underlying reason for Theorem 2.3.1 well using the real

option concept. He interpreted dVt+1(xt,ξt+1)
dxt

as the value of a marginal unit of capacity

and/or value of option to purchase an additional unit of capacity with a current capacity

level of xt. The value of the additional capacity is maximal when the current capacity is

not adequate. If we have sufficient capacity, then the value of the additional capacity is

minimal.

Lemma 2.3.2. Solution exist for the equations (2.3.1) and (2.3.2) and they are unique.

In addition, x∗
t,L ≤ x∗

t,U (equality is satisfied when at = ãt).
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Proof. Using the Gb and Gs functions, we can prove that solutions exist:

lim
xt↓0

Gb(xt, ξt) → ∞

lim
xt↑∞

Gb(xt, ξt) ' −bt − at + e−rãt+1 < 0

lim
xt↓0

Gs(xt, ξt) → ∞

lim
xt↑∞

Gs(xt, ξt) ' −bt − ãt + e−rãt+1 < 0

Therefore, solutions exist for the equation (2.3.1) and (2.3.2).

Proposition 2.3.3. Here we use

lim
xt↑∞

dE
[
Vt+1(xt, ξt+1|ξt)

]

dxt
= ãt+1. (2.3.3)

The reason for the above equality is that as the capacity of the previous period goes to ∞,

the decision of this period tends to be SELL.

On the other hand,

lim
xt↓0

dE
[
Vt+1(xt, ξt+1|ξt)

]

dxt
= at+1. (2.3.4)

As the capacity of the previous period goes to zero, the decision of this period tends to be

BUY.

Next, with large enough T , we can ignore the effect of the terminal value function

FT on our investment decision at the current period. Then we can choose any concave

function for FT , say FT (xT−1, ξT |ξT−1) = 0 or FT (xT−1, ξT |ξT−1) = ãT xT−1. Then we can

use theorem 2.3.1 to prove the uniqueness of the solution. If we take the derivative of the

Gb and Gs functions, then we will have

dGb

dxt
=

dGs

dxt
= −

1

ε

(

1 −
1

ε

)

e−rξ
1

ε
t x

− 1

ε
−1

t +
d2E
[
Vt+1(xt, ξt+1|ξt)

]

dx2
t

< 0,

here we used the concavity of the value function. Therefore, Gb(xt, ξt) and Gs(xt, ξt) are

monotonically decreasing functions, which guarantees the uniqueness of the solutions for

the equations (2.3.1) and (2.3.2).

Finally, by using the fact that Gb(xt, ξt) and Gs(xt, ξt), are monotonically decreasing

functions with respect to xt, we can prove that x∗
t,L < (=)x∗

t,U from the assumption

at > (=)ãt.
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Figure 2: Solution space with respect to the capacity of the previous period

As we can see in Figure 2, we can divide the whole space of xt−1 into three pieces as

follows:

1. xt−1 ≤ x∗
t,L: at time t, the firm is in the BUY region, and it needs to increase the

capacity up to x∗
t,L.

2. x∗
t,L ≤ xt−1 ≤ x∗

t,U : at time t, the firm is in the KEEP region, and it maintains the

capacity of the previous period.

3. x∗
t,U ≤ xt−1: at time t, the firm is in the SELL region, and it needs to sell off the

excess capacity down to x∗
t,U .

Remark 2. Assumption (b), which is (at ≥ ãt), explains that the purchase price and the

salvage value are different. This reflects a partially reversible investment. This partial

reversibility divides our solution space into three pieces: BUY, KEEP, and SELL regions.

1. If we set at > ãt 6= 0, then the investment is partially reversible, and we will have

all three regions.

2. If we set at = ãt, then the investment is totally reversible. In this case, there is no

KEEP region in our solution space. Depending on the economic condition, we always

have to buy or sell the capacity.

3. If we set ãt = 0, then we barely sell the current capacity. Therefore, our solution

has no SELL region.

Theorem 2.3.4. For t = 1, ..., T , suppose Vt+1(xt, ξt+1) is homogeneous, i.e.,

∀η > 0, Vt+1(ηxt, ηξt+1) = ηVt+1(xt, ξt+1).
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Then

1. If the lower bound (upper bound) is x∗
t,L(x∗

t,U ) for ξt = ξ, then for ∀η > 0, the lower

bound (upper bound) for ξt = ηξ is ηx∗
t,L(ηx∗

t,U ).

2. Furthermore, Vt(xt−1, ξt) is also homogeneous.

Proof. See the proof in Baryshnicov, Sim, and Wang[6].

According to Theorem 2.3.4, x∗
t,L and x∗

t,U are linear functions of the economic indicator

ξt. Therefore, we can write the optimal solutions as follows:

x∗
t,L(xt−1, ξt) = lt,Lξt

x∗
t,U (xt−1, ξt) = lt,Uξt,

where lt,L, lt,U are the functions of other parameters except the economic indicator (ξt).

Figure 3 illustrates a possible solution structure. In the left-hand graph, the x-axis

represents economic indicator (ξt) at the beginning of period t, the y-axis represents the

capacity (xt−1) of the previous period and z-value represents optimal capacity x∗
t (xt−1, ξt)

at the tth period. The right-hand graph is a projection of the left-hand graph. The figure

shows a clear division of space into three regions: the BUY, KEEP, and SELL regions.

Let us fix the economic indicator. Then, as capacity increases, the region shifts from

BUY to KEEP and from KEEP to SELL. Next, let us fix the capacity. Then as economic

indicator increases, the result changes from SELL to KEEP and from KEEP to BUY, which

is intuitively very accurate.

Remark 3. If we determine the value of the slopes of these two boundary lines, BUY/KEEP,

KEEP/SELL, the optimization problem is solved for every possible state of (xt−1, ξt).

Therefore, this optimization problem has been reduced to the problem of finding these

two slopes.

Lemma 2.3.5. lt,L and lt,U are the slopes for the boundaries of BUY/KEEP and KEEP/SELL,
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Figure 3: Linearity between Optimal Capacity and Economic Indicator

respectively, and these slopes are bounded.

(

e−r(1 − 1
ε )

bt + at − e−rãt+1

)ε

≤ lt,L ≤

(

e−r(1 − 1
ε )

bt + at − e−rat+1

)ε

≤

(

e−r(1 − 1
ε )

bt + ãt − e−rãt+1

)ε

≤ lt,U ≤

(

e−r(1 − 1
ε )

max(bt + ãt − e−rat+1, 0+)

)ε

Proof. Using Theorem 2.3.1 with at ≥ ãt (buy-sell gap) and (bt, at, ãt) ≥ (bt+1, at+1, ãt+1)

(cost depreciation), the proof is straightforward.

The idea behind the limits of the slopes for the boundaries are as follows:

1. When lt,L attains the lower bound: Regardless of the economic condition at t + 1,

the company should be in the BUY region at t and in the SELL region at t + 1.

However, this is very rare case and not very plausible.

2. When lt,L attains the upper bound: Regardless of the economic condition at t + 1,

the company should be in the BUY region at t and in the BUY region at t + 1. In

the telecommunications industry, the unit cost for capacity/capital depreciates quite

rapidly. In this case, the company might purchase more capacity even though the

expectation of the future general economic condition is bad.
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3. When lt,U attains the lower bound: Regardless of the economic condition at t + 1,

the company should be in the SELL region at t and in the SELL region at t + 1. If

in some industries, the unit installation/maintenance cost has an increasing trend,

the company tends to sell the current capacity to take advantage of the increased

salvage value when the general economic condition is bad.

4. When lt,U attains the upper bound: Regardless of the economic condition at t + 1,

the company should be in the SELL region at t and in the BUY region at t + 1.

However, this is very rare case and not very plausible.

2.4 Sensitivity Analysis

From the previous section, we know that the lower and upper optimal capacities have a

linear relationship with the current economic indicator. Therefore, if we find the analytical

form of the slopes, then the problem is solved completely. However, even though there is

no analytical solution for the slopes in general, we can investigate how the slopes change

with respect to the parameters.

2.4.1 Cost Parameters vs. the Values of the Slopes

At first, we study the effect of the cost parameters on the values of the slopes. As we can

expect, the investment decision becomes conservative as the cost parameter increases.

Lemma 2.4.1. Let lower bound (upper bound) be x∗
t,L(x∗

t,U ) for the cost parameters

(bt, at, ãt).

If we scale the cost parameters as (ηbt, ηat, ηãt) for all t ∈ {0, 1, ..., T}, then for ∀η > 0,

the lower bound (upper bound) is η−εx∗
t,L(η−εx∗

t,U ).
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Proof. With the new cost parameters (ηbt, ηat, ηãt), the value function at time t is

V̄t(xt−1, ξt) = Maxxt

[(

e−rξ
1

ε
t x

1− 1

ε
t − (ηbtxt + ηat(xt − xt−1)+ − ηãt(xt−1 − xt)+)

)

+ e−rE
[
V̄t+1 (xt, ξt+1|ξt)

]
]

= Maxxt

[

η

(

e−r
(
η−εξt

) 1

ε x
1− 1

ε
t − (btxt + at(xt − xt−1)+ − ãt(xt−1 − xt)+)

)

+ e−rP {ξt+1|ξt}V̄t+1 (xt, ξt+1)

]

= Maxxt

[

η

(

e−r
(
η−εξt

) 1

ε x
1− 1

ε
t − (btxt + at(xt − xt−1)+ − ãt(xt−1 − xt)+)

)

+ e−rηP
{
η−εξt+1|η

−εξt

}
Vt+1

(
xt, η

−εξt+1

)
]

= ηVt

(
xt−1, η

−εξt

)
.

If the lower (upper) optimal capacity is x∗
t,L(x∗

t,U ) when the economic condition is ξt, then

the lower/upper optimal capacity is η−εx∗
t,L(η−εx∗

t,U ) when the economic condition is η−εξt

because of the linearity between the economic indicator and the optimal capacity.

With η < 1, we have increased the lower and upper bounds and expanded KEEP

region. In addition, the KEEP region is given by (η−εx∗
t,L, η−εx∗

t,U ) = η−ε(x∗
t,L, x∗

t,U ),

which is broader than the original KEEP region with η < 1 and ε > 1. In addition to the

η effect, ε enforces this change. With large ε, the investment decision in more sensitive to

the cost parameters.

Let us explain the intuition behind Lemma 2.4.1. The price is directly related to the

cost parameters. Therefore, the lowered cost leads to the price reduction, which incurs

more demand in the market. Moreover, customers respond more sensitively to the change

of cost parameters with a larger value of ε. Therefore, the demand increases with smaller

η and this increase is enlarged with ε.

Figure 4 shows the changes in slopes with respect to cost changes. In the example, a

cost change is realized as a cost depreciation with time. We used the same cost depreciation

factor ηt = η for all t ∈ {0, 1, ..., T}. Therefore, the cost parameters at time t can be written

as

(bt, at, ãt) = ηt(b0, a0, ã0).
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Figure 4: Movement of the boundaries of the BUY/KEEP and KEEP/SELL regions from
t = 1 to t = 6. The parameters are η = 0.51/8 and ε = 1.5, respectively

At time period 1, the decision is made with cost parameters η(b0, a0, ã0) and at period

2, the decision is made with cost parameters η2(b0, a0, ã0), and so on. For the result, we

used η = 0.5
1

8 and ε = 1.5. The other parameters will be explained in subsection 2.6.2.

Table 1 lists the numerical results with the corresponding analytical values of the

slopes. As will be explained in Theorem 2.5.1, in this case, we can obtain the analytic

value of the slope for the boundary BUY/KEEP, but we do not have analytic expression

for the slope for the boundary KEEP/SELL. Thus, assuming that l1,U is given by the

numerical value, we calculate the slopes of upper bounds in the other periods. Even though

small difference between numerical results and analytical values exists, which results from

the discretization of the state space, these results validate the relationship between cost
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parameters and the slopes.

Table 1: Values of the slopes with cost depreciation
Numerical Results Analytic Results

Period BUY/KEEP KEEP/SELL BUY/KEEP KEEP/SELL

1 0.1999 0.5847 0.2042 .
2 0.2314 0.6768 0.2325 0.6658
3 0.2678 0.7642 0.2648 0.7582
4 0.2953 0.8638 0.3015 0.8635
5 0.3418 1.0000 0.3433 0.9833
6 0.3957 1.1025 0.3910 1.1198

Remark 4. We use ηt = η for all t ∈ {0, 1, ..., T} and same cost depreciation rate to the

installation cost, the maintenance cost, and the salvage value. This use might be true if

the industry is stable and the corresponding industry indicator has upward trend with

small volatility. However, if the growth rate of the industry is not stable but very volatile,

ηt must be dependent on time.

2.4.2 Price Elasticity of Demand vs. the Values of the Slopes

Next, we study the effect of price elasticity of demand ε on the values of the slopes. The

effect of ε cannot be determined in general. Its effect is correlated with cost parameters.

Therefore, we can define several regions of cost parameters that provide different relation-

ship between the values of slopes and ε. The slopes of the boundaries for BUY/KEEP and

KEEP/SELL can be written approximately as

lt,L =

(

A(t)

(

1 −
1

e

))ε

lt,U =

(

B(t)

(

1 −
1

e

))ε

.

Lemma 2.4.2. 1. If A(t) ≥ 1 and B(t) ≥ 1 are satisfied, then the slopes are increasing

functions with ε.

2. If A(t) ≥ 1 and B(t) ≥ 1 are not satisfied, then there exists a maximum point where

ε attains a maximum slope. Let us define a function

g(ε) ≡
εe

1

1−ε

ε − 1
.
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Given A(t) < 1, up to a point, which is given by g−1(A), the slope is increasing and

then is decreasing thereafter.

3. If we consider a possible range for ε, say (εL, εU ) then,

A(t) ≥
εUe

1

1−εU

εU − 1

is the requited condition for the slopes to increase in the given range.

Proof. See the proof in section 2.7.

When we confine 1 ≤ ε ≤ 2.842, then A(t) ≥ 0.896 is satisfactory for the slopes to

increase with respect to ε.

Table 2 shows the numerical results of the relationship between the values of slopes

and ε. In our cost parameter set, A(t) > 1, so the results shows increasing trend only. For

the values of the parameters, refer to subsection 2.6.2.

Table 2: Values of the slopes with ε
ε BUY/KEEP KEEP/SELL

1.2 0.1227 0.2812
1.4 0.1813 0.4810
1.6 0.2204 0.6768
1.8 0.2429 0.8638
2.0 0.2678 1.1025
2.2 0.2812 1.3401
2.4 0.2953 1.6289
2.6 0.3101 1.9799
2.8 0.3256 2.2920

2.4.3 Variance of the Economic Condition vs. the Values of the Slopes

In this section, we establish the relationship between the variance of the economic indicator

and the values of the slopes. In doing so, we explore the effects of variance in the economic

condition on the optimal capacity in two cases: with cost depreciation and with no cost

depreciation. As we addressed in the previous section, with cost depreciation, we can

2for this values for ε, refer to Lanning, Mitra, Wang, and Wright[25]
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delay our investment to take advantage of the reduced cost, but we should consider the

revenue loss due to inadequate capacity in the current period. Therefore, the firm should

decide the investment considering the trade off between cost depreciation and revenue and

the variance of the future economic condition at the same time.

Table 3 shows how the slopes change with the variance in the economic condition. The

parameters are

1.

E

(
ξt+1

ξt

− 1

∣
∣
∣
∣
ξt

)

= 1.025 Var

(
ξt+1

ξt

∣
∣
∣
∣
ξt

)

= 0.0506 v 0.1552

2.

a0 = 4 ã0 = 0.5 · a0 b0 = 0.15 · a0 η = 0.5
1

8 .

For the parameters used here, refer to subsection 2.6.2.

Table 3: Values of the slopes with a variance of economic indicator

Variance With cost depreciation Without cost depreciation
BUY/KEEP KEEP/SELL BUY/KEEP KEEP/SELL

0.0506 0.1897 0.5789 0.2445 0.6224
0.0768 0.1716 0.5919 0.2345 0.6673
0.1029 0.1587 0.5986 0.2187 0.7155
0.1290 0.1501 0.6121 0.2011 0.7461
0.1552 0.1403 0.6189 0.1902 0.7780

In the derivatives of the value function, Gb and Gs, we have the following term:

f(x) ≡
dE
[
Vt+1 (xt, ξt+1|ξt)

]

dxt

∣
∣
∣
∣
x

. (2.4.1)

Using Theorem 2.3.1, which addresses the concavity of the value function, we can

explain the trend of the slopes with the variance of economic condition.

Under cost depreciation, the slope for the boundary BUY/KEEP has a smaller value for

the larger variance, and the slope for the boundary SELL/KEEP does not have deterministic

relationship with the variance of the economic indicator.
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As the variance of ξt+1 increases, function (2.4.1) is likely to decrease at x = x∗
t,L. To

make up this change, the optimal capacity for BUY should shift to lower value. Therefore,

the investment decision becomes more conservative for the BUY case.

Value of function (2.4.1) at x = x∗
t,U does not provide any clear trend with the variance

of economic indicator. Therefor, we can not determine the relationship between the opti-

mal capacity and the variance of economic indicator for the SELL case in general. In this

case, the relationship between the slopes of the boundary SELL/KEEP and the variance of

the economic indicator is determined by how steep the cost depreciation is and the third

derivative of the value function around the point (x∗
t,U , ξt).

Under no cost depreciation, the slope for the boundary BUY/KEEP has a smaller value

for the larger variance and the slope for the boundary SELL/KEEP has a larger value for

the larger variance. In the BUY case, equation (2.4.1) has a lower value at x = x∗
t,L and in

the SELL case, equation (2.4.1) has a higher value at x = x∗
t,U . To make up these changes,

the optimal capacity for BUY and SELL should shift to a lower value and a higher value,

respectively. Therefore, as variance increases, the range of optimal capacity expands. In

other words, the KEEP region expands, which means the investment decision becomes

more conservative as the variance increases.

Figure 5 shows the derivatives of the value function. The left-hand side graph repre-

sents the case with cost depreciation and the right-hand side graph represents the case

without cost depreciation. With cost depreciation, the optimal lower and upper bounds

move to right with time, which explains the change of equation (2.4.1) with the variance of

the economic condition. Without cost depreciation, the optimal lower and upper bounds

stay at the same point, which also explains the change of equation (2.4.1) with the variance

of the economic condition accurately.

Remark 5. Table 3 shows that the no depreciation case has larger slope values for

BUY/KEEP. With cost depreciation, the firm can take advantage of the reduced cost when

it delay the investment. However, without cost depreciation, there is no cost reduction for

an investment in the next period, which leads the firm to invest this period to make more
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Figure 5: Derivative of value function with spline approximation

revenue. With cost depreciation, they want to sell more during this period to earn more

profits and interest from the higher salvage value in this period than the lowered salvage

value in the next period, which explains the smaller slope values for KEEP/SELL in the

case with cost depreciation.

2.5 Incremental Investment with Cost Depreciation

In the telecommunications market, even if the future economic condition is expected to

be bad, the use of bandwidth and the number of mobile phone subscribers might increase

due to the reduced market price, because of improvements in technology, which lower unit

costs. During the last few years, the economic condition has not improved all the time.

However, the number of mobile phone and Internet users has continued to increase. In

fact, according to the World Telecommunication Development Report [17], the number of

mobile phone and Internet users has increased very rapidly worldwide. The data show this

trend regardless of the economic condition. In addition, Kenyon and Cheliotis[21] stated

that the Internet and network bandwidth have had periods of 100% growth every three

or four months and during the past few years, the growth has slowed to 100% per year.

In this section, we investigate the causes of this trend in the market and the relation-

ships between this trend and the investment behavior of firms.
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At first, we examine the conditions under which incremental investment decisions are

made.

Theorem 2.5.1. Let us assume that the cost depreciates exponentially with time as bt+1 =

ηbt, at+1 = ηat, and ãt+1 = ηãt for all t, with η < 1. If ηε ≤ ξt+1

ξt
with probability 1, then

1. We can find an analytical function for the slope of the boundary between BUY/KEEP,

which is

lt,L =

(

e−r(1 − 1
ε )

bt + at − e−rat+1

)ε

.

2. If the firm is in the BUY region in the current period, the firm will be in the BUY

region in the following period regardless of the future economic condition.

3. The investment decision of the current period is not dependent on the investment

decision of the following period.

Proof. The proof is in section 2.7.

Remark 6. Under this assumption:

1. We have an analytic expression for the slope of the boundary of BUY/KEEP, which

is

x∗
t,L =

(

e−r
(
1 − 1

ε

)

at + bt − e−rat+1

)ε

ξt = At)ξt,

where A(t) is deterministic. Therefore, x∗
t,L is a stochastic process that is directly

dependent on the movement of the general economic condition.

2. If ηε ≤ ξt+1

ξt
with probability 1 is true for all t, the investment decision in one period

is independent of the investment decision of the other periods. In this case, this

multiple-time investment problem can be reduced to a one-time period investment

problem.

3. The firm should increase capacity regardless of the future economic condition. In

the extreme case, even if the future economic condition is likely to be bad, the

firm still wants to buy. The increment is stochastic and is dependent only on the
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current economic condition. Therefore, the increment is small if the current economic

condition is bad and large if the current economic condition is good.

4. The driving force for buying comes from ε, the cost depreciation, and the economic

condition of the following period. To satisfy the assumption, we need small η, large

ε, and/or large ξt+1

ξt
for the worst case transition. Small η reduces the cost and forces

the firm to buy more capacity. If ε is large, then the revenue increases with a lower

price and increased capacity, and this effect accelerates with larger ε.

In the telecommunications market, technology improves very rapidly, which drives cost

reductions year after year. Let t 1

2

be the time period during which unit costs reduced to

half, η be the cost reduction in a period, and one period be a quarter,

η
4·t 1

2 = 0.5

η = 0.5

1

4·t 1
2 .

From [20] and [21], we set the possible range of t1/2 between one and two years. From

[35], the traditional elasticity estimate for voice traffic is approximately 1.05 and for data

traffic, in the range of 1.3 - 1.7. Therefore,

0.7448 ≤ ηε ≤ 0.9130

Thus, if the worst possible transition of the general economic condition during one quarter

is more than −9.7%, then the assumption is satisfied.

Table 4 shows numerical results. For the parameters used here, refer to subsection 2.6.2.

We can separate the result into two cases: the first is when ηε < ξt+1

ξt
is satisfied, and the

other is when the condition is not satisfied.

1. η = (0.5)
1

4 , (0.5)
1

6 , (0.5)
1

8 or (0.5)
1

16

• We can observe that the investment decision is independent of the future economic

condition. The values of the slope do not change with the probability of upward

movement.

• If the state is in the BUY region at period 1, then it is in the BUY region at period
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Table 4: Slopes of the boundary of BUY/KEEP with the probability of upward movement

η (0.5)
1

4 (0.5)
1

6 (0.5)
1

8 (0.5)
1

16 (0.5)
1

32 1

At Period 1

p=0 0.1566 0.1813 0.1999 0.2429 0.2204 0.1904

p=0.5 0.1566 0.1813 0.1999 0.2429 0.2678 0.2678

p=1 0.1566 0.1813 0.1999 0.2429 0.2812 0.3101

Analytic Value 0.1586 0.1849 0.2042 0.2462 . .

At Period 2

p=0 0.2099 0.2204 0.2314 0.2678 0.2314 0.1904

p=0.5 0.2099 0.2204 0.2314 0.2678 0.2812 0.2678

p=1 0.2099 0.2204 0.2314 0.2678 0.2812 0.3101

Analytic Value 0.2057 0.2199 0.2325 0.2628 . .

2, too, because l1,Lξ1 < l2,Lξ2 with the worst case of ξ2, which is ξ1(1 + ∆)−1.

• In this case, the numerical result is compatible with analytic values with small

discretization error.

• The slopes of periods 1 and 2 are independent and can be calculated separately.

This independence will continue throughout the other periods.

2. η = (0.5)
1

32 or 1

• The investment decision is very sensitive to future economic conditions.

• For the case η = 1, no depreciation occurs and the slopes do not change with time.

The next two subsections will illustrate the actual movement of the optimal capacity

and the resulting price under the assumption that the cost reduction is steep enough to

satisfy ηε < ξt+1

ξt
for all possible transitions of the economic indicator.

2.5.1 Capacity Trend

Under the condition ηε < ξt+1

ξt
with probability 1 for all t, the capacity increment decisions

fall into one of the following three categories:

1. The company starts with a small capacity at time 0 and increases the capacity to
(

e−r(1− 1

ε
)

b1+a1−a2

)ε

ξ1 at time 1 and continues to increase capacity. The decision depends

only on the realization of the uncertain economic condition with the deterministic
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coefficient. The optimal capacity at time t is

x∗
t,L =

(

e−r(1 − 1
ε )

bt + at − at+1

)ε

ξt = η−(t−1)ε

(

e−r(1 − 1
ε )

b1 + a1 − a2

)ε

ξt.

2. The company starts with a moderate capacity at time 0 and stays in the KEEP region

for a while. After some periods, it falls into the BUY region and keeps increasing

the capacity from period to period. The length of the time of staying in the KEEP

region depends on the actual movement of the economic indicator and the initial

capacity at time 0.

3. The company starts with too much capacity at time 0 but cuts the capacity to l1,Uξ1

at time 1 and stays in the KEEP region for a while. After some period, it falls into

the BUY region and continues to increase capacity from period to period. The length

in the KEEP region depends on the actual movement of the economic indicator.

Figure 6 shows the actual movement of capacity and the price when ηε < ξt+1

ξt
with

probability 1. The solid line represents the analytical value and the o represents numerical

results.

1. According to the first graph, the firm starts lower than the lower optimal capacity.

After one period, it jumps on the KEEP/BUY boundary and continues to follow the

optimal capacity trend.

2. According to the second graph, the firm starts with higher than the lower optimal

capacity but lower than upper optimal capacity. After the firm spends some periods

in KEEP regions, it gets on the KEEP/BUY boundary and continues to follow the

optimal capacity trend.

3. According to the third graph, the firm starts with more than the upper optimal

capacity. After the selling off the excess capacity at period 1, it goes into the KEEP

region. After going through several periods in KEEP region, the firm finally gets

onto the KEEP/BUY boundary and continues to follow the optimal capacity trend.
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2.5.2 Price Trend

Under the condition ηε < ξt+1

ξt
for all possible transitions of the economic indicator, we

can obtain a trajectory of the price. Employing x∗
t,L as our market capacity, the price

function is given by

Pt(x
∗
t,L, ξt) =

(

ξt

x∗
t,L

) 1

ε

with x∗
t,L =

(

e−r(1 − 1
ε )

bt + at − e−rat+1

)ε

ξt.

Therefore,

Pt =

(

bt + at − e−rat+1

e−r(1 − 1
ε )

)

, (2.5.1)

and with constant cost depreciation,

Pt+k = ηk

(

bt + at − e−rat+1

e−r(1 − 1
ε )

)

= (η)k Pt. (2.5.2)

The important thing is this price trend does not depend on the realization of the

economic condition as contrast with the optimal capacity path which is dependent on the

realization of the uncertain economic condition.

Figure 6 shows the actual movement of capacity and the price when ηε < ξt+1

ξt
with

probability 1. After the capacity of a firm reaches the lower optimal capacity, the price

follows equation 2.5.2.

2.6 Numerical Studies

In this section, we want to illustrate how we set up our numerical analysis.

2.6.1 Numerical model

We consider the investment decision of a monopolistic firm with time horizon T .

The set of possible states of the capacity is S, and

St = {x1, x2, ..., xnt} with t = 0, 1, ..., T.

The set of possible states of the economic indicator is E, and

Et = {ξ1, ξ2, ..., ξmt} with t = 0, 1, ..., T.
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The number of possible states of the capacity and the economic indicator might depend

on the time period.

The set of cost parameters at time 0 is (b0, a0, ã0), which includes unit maintenance cost,

unit installation cost and unit salvage value at time 0. These cost parameters depreciate

with time, and the set of cost parameters at time t is (ηtb0, η
ta0, η

tã0), with 0 < η < 1.

The value function at time 1, given the capacity of the previous period (x0) and the

economic condition of the current period (ξ1), is

V1(x0, ξ1) = Maxxi

[(

e−rξ
1

ε

1 x
1− 1

ε

i − (b1xi + a1(xi − x0)+ − ã1(x0 − xi)+)

)

+ e−rE
[
V2 (xi, ξ2|ξ1)

]
]

x0 ∈ S0, xi ∈ S1 , and ξ1 ∈ E1,

with

VT (xT−1, ξT ) = FT (xT−1, ξT ).

We solve for the optimal capacity at time 1, given all possible pairs of (x0, ξ1). Therefore,

we consider all the possible kinds of firms, from the emerging company to the over-invested

company and all the possible economic conditions.

Here, we need to define the transition probability

pt(i, j) = P {ξt+1 = ξj |ξt = ξi} for i = 1, 2, ..., mt and j = 1, 2, ..., mt+1,

with
m(t+1)
∑

j=1

pt(i, j) = 1 for all i.

To solve this problem, we use dynamic programming.

1. First, set the terminal value function FT (xT−1, ξT ). With a large enough T ,

FT (xT−1, ξT ) can be any simple function.

2. Then go back one period to T − 1, and for every possible pair of (xT−2, ξT−1),

calculate

Ṽ (xT−2, xT−1, ξT−1) = e−rξ
1

ε

T−1x
1− 1

ε

T−1 −
(
bT−1xT−1 + aT−1(xT−1 − xT−2)+

− ãT−1(xT−2 − xT−1)+
)

+ e−rE
[
FT (xT−1, ξT |ξT−1)

]

with xT−1 ∈ ST−1.
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3. Choose x∗
T−1 that maximize Ṽ (xT−2, xT−1, ξT−1) and set

V (xT−2, ξT−1) = Ṽ (xT−2, x
∗
T−1, ξT−1).

4. After calculating all the value functions for all the possible states, {(xT−2, ξT−1) :

xT−2 ∈ ST−2 and ξT−1 ∈ ET−1}, go back one period to T − 2.

5. Do the same calculation (2-4) until all the value functions for all the possible states

at time 1 are found.

2.6.2 Numerical Example

The following set represents the parameter values that are used for our numerical results.

1. Time period and finite time horizon (T): in our model, one period corresponds to

one quarter (3 months), and we set T = 40, which corresponds to ten years.

2. Expected return during a period: we expect a 2.5% return in a period and use the

compounded return rate.

3. The possible states of capacity:

S(t) = {x0(1 + ∆)i : i = −50,−49, ..., 0, 1, ..., 50, ∆ = 0.05 and x0 = 1}

With ∆ = 0.05, the minimum increment is 5% and decrement is 4.8% of the current

capacity. This capacity set covers a very broad range of investment decisions. If we

start with x0 capacity, the possible investment increases to x0(1.05)50 = 11.46 · x0

and decreases to x0(1.05)−50 = 0.0872 · x0. The number of possible states is 101 for

all t.

4. The possible states of the economic indicator:

E(t) = {ξ0(1 + ∆)i : i = −n(t),−n(t) + 1, ...n(t), ∆ = 0.05 and ξ0 = 1},

where n(t) = 50 + 2 · t. The number of possible economic conditions increases with

time.
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5. The transition probabilities:

pt(i, j) = P
{
ξt+1 = (1 + ∆)j |ξt = (1 + ∆)i

}
=







p if j = i + 1,

1 − p if j = i − 1.

We allow for two possible transitions (up and down). The expected return of the

economic indicator is E

(

ξt+1

ξt
− 1

∣
∣
∣
∣
ξt

)

= (1 + ∆)p + (1 + ∆)−1q.

6. We set the maintenance cost, installation cost, and the salvage value at time 0 as

a0 = 4P0 = 4

(
ξ0

x0

) 1

ε

, b0 = 0.15a0, and ã0 = 0.5a0.

In our numerical model, one period corresponds to one quarter. By setting a0 =

4P0, the revenue of a firm in a year from an additional capacity is the same as

the installation cost for the additional capacity. By b0 = 0.15a0, we assume the

maintenance teams/companies charge 5% of the installation cost as their monthly

maintenance fee. By ã0 = 0.5a0, we assume that the salvage value of the capacity is

the half of the purchase price.

7. We consider constant cost depreciation with time as

(bt, at, ãt) = ηt(b0, a0, ã0) for all t,

and we set η = 0.5
1

8 , as we discussed before.

With this parameter set, Figures 6 and 7 show the numerical results. Figure 6 shows

the actual movement of capacity and price. Figure 7 shows the average movement of

capacity and price when p = 0.5. The first, second, and third rows correspond to cases 1,

2 and 3, in subsection 2.5.1 respectively. The only difference among them is the starting

point. When the company starts with a small capacity (case 1), it will increase to the

lower optimal capacity (x∗
1,L) at time 1 and continues to increase. When the company

starts with a moderate capacity (case 2), it will stay in the KEEP region for a while and

then fall into the BUY region, and continues to increase. When the company starts with

too much capacity (case 3), it will reduce its capacity to the upper optimal capacity (x∗
1,U )
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Figure 6: Actual movement of price and capacity when ηε < ξt+1

ξt
with probability 1

at time 1, stay in the KEEP region for a while, fall into the BUY region, and continues to

increase.

Tables 5 and 6 are the analytic representation of the movement of capacity and price.

For each case, we consider three different scenarios:

1. p = 0.5: the probabilities that the movement of the economic condition in any

direction are equal.

2. p = 1.0: the probability of upward movement of the economic condition is 1; there-

fore, we expect the economic condition to improve during the following period by

∆, 5%. This corresponds to the upper rim of the triangle in Figure 6.

3. p = 0.0: the probability of downward movement of the economic condition is 1;
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Figure 7: Average Movement of Price and Capacity when ηε < ξt+1

ξt
with Probability 1

therefore, we expect the economic condition to deteriorate during the following pe-

riod by 1 − 1
1+∆ , 4.8%. This corresponds to the lower rim of the triangle in Figure

6.

In the tables,

A =

(

e−r(1 − 1
ε )

b0 + a0 − e−rηa0

)ε

and B =

(

b0 + a0 − e−rηa0

e−r(1 − 1
ε )

)

.

Notice that in all scenarios, the form of the analytical solution for the capacity in

Table 5 is the same, but the real movement, which is illustrated in Figure 6 depends on

the movement of the economic condition. This applies to the price movement with the

same manner in Figure 6. However, for the price movement, after the firm falls into the

BUY region, the price does not depend on the economic condition. The price is fixed to

Bηt once the firm hits the KEEP/BUY boundary.
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When we consider investment decision problem of a matured firm, the firm is likely

to be in the BUY region and continue to increase its capacity. Therefore, the capacity

movement will be pictured by the first row of the Figure 6, and the analytic expression

will be the same as the first column of Table 5.

Table 5: Capacity movement with economic indicator and probability of upward move-
ment

Case 1(BUY) Case 2(KEEP) Case 3(SELL)

p = 0.5 xt = A
(

1

ηε

)t

ξt xt = max

(

x0, A
(

1

ηε

)t

ξt

)

xt = max

(

x1, A
(

1

ηε

)t

ξt

)

p = 1.0 xt = A
(

1

ηε

)t

ξt xt = max

(

x0, A
(

1

ηε

)t

ξt

)

xt = max

(

x1, A
(

1

ηε

)t

ξt

)

= max

(

x0, A
(

1+∆

ηε

)t

ξ0

)

= max

(

x1, A
(

1+∆

ηε

)t

ξ0

)

p = 0.0 xt = A
(

1

ηε

)t

ξt xt = max

(

x0, A
(

1

ηε

)t

ξt

)

xt = max

(

x1, A
(

1

ηε

)t

ξt

)

= max

(

x0, A
(

1

(1+∆)ηε

)t

ξ0

)

= max

(

x1, A
(

1

(1+∆)ηε

)t

ξ0

)

Table 6: Price movement with economic indicator and probability of upward movement

Case 1(BUY) Case 2 & 3(KEEP, SELL)

p = 0.5 Pt = B · ηt Pt = min
(

B · ηt,
(

ξt

xt

)ε)

p = 1.0 Pt = B · ηt Pt = min
(

B · ηt,
(

ξt

xt

)ε)

= min
(

B · ηt,
(

ξ0(1+∆)t

xt

)ε)

p = 0.0 Pt = B · ηt Pt = min
(

B · ηt,
(

ξt

xt

)ε)

= min
(

B · ηt,
(

ξ0

xt(1+∆)t

)ε)

2.7 Proofs

Proof of Theorem 2.3.1. If Vt+1 (xt, ξt+1) is a concave function with respect to xt, then

Vt (xt−1, ξt) is a concave function with respect to xt−1.

Also,

ãt ≤
dE
[
Vt (xt−1, ξt|ξt−1)

]

dxt−1
≤ at.
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First, the value function is

Vt(xt−1, ξt) = Maxxt

[(

e−rξ
1

ε
t x

1− 1

ε
t − (btxt + at(xt − xt−1)+ − ãt(xt−1 − xt)+)

)

+ e−rE
[
Vt+1 (xt, ξt+1|ξt)

]
]

.

1. (BUY): xt−1 < x∗
t,L (BUY)

Vt(xt−1, ξt) =

[(

e−rξ
1

ε
t (x∗

t,L)1−
1

ε − (btx
∗
t,L + at(x

∗
t,L − xt−1))

)

+ e−rE
[
Vt+1

(
x∗

t,L, ξt+1|ξt

)]
]

.

For all xt−1 that is less than x∗
t,L, the optimal solution is x∗

t,L. From the above

equation, we can see that smaller given capacity induces a larger investment cost.

Therefore, as xt−1 increases Vt(xt−1, ξt) increases by at, i.e., dVt(xt−1,ξt)
dxt−1

= at.

2. (SELL): xt−1 > x∗
t,U

Vt(xt−1, ξt) =

[(

e−rξ
1

ε
t (x∗

t,U )1−
1

ε − (btx
∗
t,U − ãt(xt−1 − x∗

t,U ))

)

+ e−rE
[
Vt+1

(
x∗

t,U , ξt+1|ξt

)]
]

.

For all xt−1 that is greater than x∗
t,U , the optimal solution is x∗

t,U . From the above

equation, we can see a larger given capacity leads a larger salvage revenue. Therefore,

as xt−1 increases, Vt(xt−1, ξt) increases by ãt, i.e., dVt(xt−1,ξt)
dxt−1

= ãt.

3. (KEEP): xt−1 = x∗
t,K

Vt(xt−1, ξt) =

[(

e−rξ
1

ε
t (x∗

t,K)1−
1

ε − (btx
∗
t,K)

)

+ e−rE
[
Vt+1

(
x∗

t,K , ξt+1|ξt

)]
]

=

[(

e−rξ
1

ε
t (xt−1)

1− 1

ε − (btxt−1)

)

+ e−rE
[
Vt+1 (xt−1, ξt+1|ξt)

]
]

.

In this case, if Vt+1 (xt−1, ξt+1) is concave with respect to xt−1, then Vt(xt−1, ξt) is

concave, because the sum of the concave functions is concave.

In addition, as xt−1 ↑ x∗
t,U , dVt(xt−1,ξt)

dxt−1
↓ ãt and as xt−1 ↓ x∗

t,L, dVt(xt−1,ξt)
dxt−1

↑ at. If

dVt(xt−1,ξt)
dxt−1

< ãt at some point xt−1, which is less than x∗
t,U ), then x∗

t,U cannot be the

optimal point and x∗
t,U should shift down to the point where

dV ∗

t

dxt−1

∣
∣
∣
∣
x∗

t,U

= ãt and this

is similarly applied to x∗
t,L.
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Therefore, for all cases, the value function is concave.

Second,

dE
[
Vt (xt−1, ξt,i|ξt−1)

]

dxt−1

=
d

dxt−1

{
∑

i

p(ξt−1, ξt,i)Vt (xt−1, ξt,i)

}

=
∑

i

p(ξt−1, ξt,i)
d

dxt−1

{

Vt (xt−1, ξt,i)

}

.

From the above proof, we know that for any i,

ãt ≤
d

dxt−1
Vt (xt−1, ξt,i) ≤ at.

Therefore,

ãt ≤
dE
[
Vt (xt−1, ξt|ξt−1)

]

dxt−1
≤ at.

Proof of Theorem 2.5.1. Let us assume that cost depreciates as bt+1 = ηbt, at+1 = ηat, ãt+1 =

ηãt for all t, then the optimal capacity is given by

xt,L = lt,Lξt

xt+1,L = lt+1,Lξt+1 = η−εlt,Lξt+1

xt+2,L = lt+2,Lξt+2 = η−2εlt,Lξt+2 (2.7.1)

...etc.

Here we used Theorem 2.3.4 of the linearity between the optimal capacity and economic

condition and Lemma 2.4.1 of the relationship between the optimal capacity and scaler of

cost parameters. This equation (2.7.1) satisfies regardless of the economic condition.

In order to satisfy xt+1,L ≥ xt,L,

η−εlt,Lξt+1 ≥ lt,Lξt

η−εξt+1 ≥ ξt. (2.7.2)
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If equation (2.7.2) is satisfied for the worst economic condition at t + 1, it is satisfied

for all possible economic conditions of next period, ξt+1.

In other words, if

ηε ≤
ξt+1

ξt
with probability 1, (2.7.3)

the company will increase the capacity position to lt+1,Lξt+1(= η−εlt,Lξt+1) regardless of

the future economic conditions ξt+2.

Next, we want to prove that under condition (2.7.3) , the slope of the boundary between

BUY/KEEP is given by
(

e−r(1− 1

ε
)

bt+at−e−rat+1

)ε

.

Proof. As we have just shown, under condition (2.7.3), the company will be in the BUY

region at time t + 1. Therefore, the value function for BUY at time t is

Vt(xt−1, ξt) = Maxxt

[(

e−rξ
1

ε
t x

1− 1

ε
t − (btxt + at(xt − xt−1)+ − ãt(xt−1 − xt)+)

)

+ e−rE
[
(Vt+1 (xt, ξt+1|ξt)

]
]

= Maxxt

[(

e−rξ
1

ε
t x

1− 1

ε
t − (btxt + at(xt − xt−1)

)

+ e−rE
[
(Vt+1 (xt, ξt+1|ξt)

]
]

= Maxxt

[(

e−rξ
1

ε
t x

1− 1

ε
t − (btxt + at(xt − xt−1))

)

+ e−r
∑

i

p(ξt, ξt+1,i)
{

Maxxt+1

(
e−rξ

1

ε
t x

1− 1

ε

t+1 − (bt+1xt+1 + at+1(xt+1 − xt))

+ e−rE
[
Vt+2 (xt+1, ξt+2|ξt+1,i)

])}
]

Take derivative Vt(xt−1, ξt) with respect to xt and set it to zero,

(

e−rξ
1

ε
t

(

1 −
1

ε

)

(xt)
− 1

ε − (bt + at)

)

+ e−r
∑

i

p(ξt, ξt+1,i)at+1 = 0.

Therefore, the lower optimal bound is

x∗
t,L =

(

e−r(1 − 1
ε )

bt + at − e−rat+1

)ε

ξt.

Proof of Lemma 2.4.2. Let us define a function as:

f(ε) ≡

(

A(t)

(

1 −
1

ε

))ε

.
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If we take derivative to f(ε),

df(ε)

dε
=

(

A(t)

(

1 −
1

ε

))ε(

log

(

A(t)

(

1 −
1

ε

))

+
1

ε − 1

)

If the following inequality satisfies, f(ε) is an increasing function with respect to ε.

A(t) ≥
εe

1

1−ε

ε − 1
.

Let us define a function again as:

g(ε) =
εe

1

1−ε

ε − 1
,

then dg(ε)
dε > 0, and limε↑∞ g(ε) = 1.

Therefore,

1. If A ≥ 1 is satisfied, then f(ε) is an increasing function with ε.

2. If A ≥ 1 is not satisfied, f(ε) increases until ε reaches to g−1(A(t)) and then decreases

thereafter, where g−1 is the inverse function of g.
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CHAPTER III

THE INVESTMENT BEHAVIOR OF A FIRM IN AN

OLIGOPOLISTIC MARKET

In this section, we consider the capacity investment problem in an oligopolistic market.

The International Telecommunication Union presented how reform from a public, mo-

nopolistic industry to a private, competitive market is taking place all over the world

in the World Telecommunication Development Report, 2002. Eric Lie (2002) illustrated

trends in telecommunication competition and gave guidelines for the telecommunication

regulation and competition law. We want to support their work and assist with efforts to

establish better guidelines by providing the firms’ investment behavior in the competitive

market. We find out if there exists an equilibrium point between firms’ investment deci-

sions at a given economic condition and prove the uniqueness of this equilibrium point.

In addition, we study how the investment behavior of monopolistic firms changes when

there are competitors in the market by investigating how firms in a market respond to the

existence of the other firms. How competition affects the market properties is illustrated

by exploring the relationship between the number of firms in the market and total market

capacity, market price, consumer surplus, expected time to a certain price reduction and

the expected time to the first investment decision.

Competition between firms in a non-cooperative competitive market can be modeled

in three traditional ways: the Cournot model, the Bertrand model and the Stackelberg

model. The main assumption of the Cournot model is that each firm in the market treats

the output of other firms as a fixed number that will not respond to its own production

decisions. The Bertrand model proposes that each firm chooses its price on the assump-

tion that the prices of its competitors will remain fixed. In the Stackelberg model, one

firm assumes that the rival is a naive Cournot duopolist. In our case, the Cournot and
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the Bertrand models procuce the same results, because the price is a function of demand

scaled by the general economic condition. In addition, we treat the firms in the market

equally. In other words, one firm cannot be superior to another in solving the invest-

ment problem. Therefore, among these three models, we choose the Cournot model to

formulate and solve the investment decision problem. In addition, we are interested in

the market structure where big players act simultaneously rather than sequentially. In a

telecommunications industry, a firm’s market share is important and firms in this industry

more likely to choose investment strategies simultaneously rather than sequentially. The

Cournot model is appropriate to study such a simultaneous investment decision between

firms in a competitive market, which leads us to adopt the Cournot model to investigate

the investment decision of a firm in an oligopolistic market.

A considerable number of studies have used the Cournot model to explain market

behavior. One interesting application of the Cournot game is the decision making of

information sharing. Li [27] investigated the equilibrium behavior of firms in exchange

of their information in a Cournot oligopoly. It showed that (1) if there is uncertainty

about a common parameter, referred to as “ the true state of the world,” no information

sharing between firms is the unique Nash equilibrium; (2) if there is uncertainty about

a firm-specific parameter (in this case, the constant marginal cost coefficient), complete

information sharing is dominant over no information sharing. Kamien[18] introduced

an interesting cake division game equivalent to the Cournot game. Using each player’s

reaction function, it showed equivalence between the cake division game and the Cournot

game in several situations, specifically when the algebra to achieve an equilibrium in the

Cournot game is complicated. Wen and David[43] used the Cournot oligopoly model to

determine the equilibrium state of the electricity market. They introduced uncertainty into

the information about the cost functions of competitors. They modeled this incomplete

information in three cases: an estimated cost function, several estimated cost functions

with probabilities for each estimate and an estimated distribution of a cost function for

each of the other players. In addition, by providing an example for each case, they showed
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how market price, total output, and total payoff change. Maiorano, Song, and Trovato[30]

used the Cournot model to explain the behavior of supplies in the electricity market.

They focused on the effect of one firm’s decision on other firms’ profits by showing the

best response curve of a firm with respect to other firms’ actions. Grenadier[14] used the

Cournot-Nash framework and the real option approach to derive equilibrium investment

strategies. He addressed the lack of strategic interaction across option holders in the pre-

existing literature and showed the value of waiting for the investment to converge to zero

as the number of players in the market increases. In this case, the traditional NPV rule

becomes approximately correct even for industries with a few competitors.

The Cournot equilibrium can be defined as follows:

Definition 3.0.1. We consider a market for a single homogeneous goods with inverse

demand function P (·). There are n firms and firm i ∈ {1, 2, ..., n} has a cost function

Ci(·). Then (x∗
1, x

∗
2, ..., x

∗
n) ∈ Rn

+ is a Cournot equilibrium if

P





n∑

j=1

x∗
j



x∗
i − Ci(x

∗
i ) ≥ P





n∑

j=1,j 6=i

x∗
j + x



x − Ci(x)

for all x ≥ 0, for all i ∈ {1, 2, ..., n}.

The Nash equilibrium can be defined as follows:

Definition 3.0.2. If there is a set of strategies with the property that no player can benefit

by changing his or her strategy while the other players do not change their strategies, then

that set of strategies and the corresponding payoffs constitute the Nash Equilibrium.

From the above definitions, we know that if an optimal point is a Cournot equilibrium

point, then the point is also a Nash Equilibrium point.

3.1 Problem Formulation in An Oligopolistic Market

In addition to the monopoly case, we study the problem of multi-period investments under

an uncertain general economic condition in an oligopolistic market. In this section, we

extend the monopolistic investment model to an oligopolistic investment model starting
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with the general formulation of the problem in an oligopolistic market. The oligopolistic

market is assumed to be non-cooperatively competitive. We apply the Cournot model of

oligopolistic behavior to find an optimal strategy for each firm in the market which has

N firms in it.

At the beginning of each period, each firm makes an investment decision based on

its capacity of previous period, the current economic condition, and the expectations of

investment decisions of other firms.

We assume each firm shares all information with other firms, which includes the pre-

vious period capacities and cost structures of other firms and expectations for the future

economic condition. In addition, we assume that all the firms follow the Cournot behavior

for investment decisions.

At the beginning of period t:

1. Firm i has xi,t−1 capacity and knows the current economic condition ξt and the

previous period capacities of other firms, ~X−i,t−1, where ~X−i,t−1 is a vector which

is defined by (x1,t, x2,t, ..., xi−1,t, xi+1,t, ..., xN,t).

2. Firm i has to decide the optimal investment quantity x̂i,t, then x∗
i,t(= x̂i,t + xi,t−1),

which will continue from the beginning to the end of period t.

3. The firm i’s cost parameter is given by (bi,t, ai,t, ãi,t) and the cost occurring in period

t is bi,txi,t + ai,t(xi,t − xi,t−1)+ − ãi,t(xi,t−1 − xi,t)+.

4. The price in period t is given by
(

ξt

xi,t+x−i,t

) 1

ε
, where x−i,t =

∑N
j=1,j 6=i xj . Therefore,

(xi,t + x−i,t) is the total market capacity.

5. The temporary value function of a firm i is given by

Ṽi,t(xi,t−1, ~X−i,t, ξt) = Maxxi,t

{

e−r
(

ξt

xi,t+x−i,t

) 1

ε
xi,t −

(
bi,txi,t + ai,t(xi,t − xi,t−1)+

−ãi,t(xi,t−1 − xi,t)+
)

+ e−rE
[
Vi,t+1(xi,t, x−i,t, ξt+1|ξt)

]
}

i = 1, 2, 3, ..., N.
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6. The optimal value function of a firm i is given by

Vi,t(xi,t−1, ~X−i,t−1, ξt) =

{

e−r
(

ξt

x∗

i,t+x∗

−i,t

) 1

ε
xi,t −

(
bi,tx

∗
i,t + ai,t(x

∗
i,t − xi,t−1)+

− ãi,t(xi,t−1 − x∗
i,t)+

)
+ e−rE

[
Vi,t+1(x

∗
i,t, x

∗
−i,t, ξt+1|ξt)

]
}

i = 1, 2, 3, ..., N.

Notice that Ṽi,t and Vi,t differ. To get the optimal value function for each firm, we

first need to define the temporary value function for each firm. By solving for x∗
i,t that

maximizes Ṽi,t for all i, we can find a optimal capacity vector whose component is the

optimal capacity of each firm as ~X∗
t = (x∗

1,t, x
∗
2,t, ..., x

∗
N,t). Then we substitute this optimal

capacity vector ~X∗
t to the temporary value function to get an optimal value function. In

ordet to find the Cournot equilibrium point in the N -dimensional space, given the previous

period capacity of each firm, we need to maximize the temporary value function of each

firm simultaneously by using the iteration method referred as the “Round Robin Method”

and the procedure of which follows:

1. We choose any value, say zero, of the terminal value function Fi,T (xi,T−1, ~X−i,T−1, ξT )

for i = 1, 2, ...N .

2. At time T − 1, given (x1,T−2, x2,T−2, ..., xn,T−2, ξT−1), we start to determine the

optimal capacity x∗
1,T−1 of firm 1 as follows:

(a) we choose any initial capacity vector ~X−1,T−1 ≡ (x2,T−1, x3,T−1, ..., xn,T−1),

(b) solve the temporary value function Ṽ1,T−1 with the initial vector ~X−1,T−1 and

get a temporary optimal capacity x̃∗
1,T−1.

Update ~XT−1 = (x̃∗
1,T−1, x2,T−1, ..., xn,T−1),

(c) solve the temporary value function Ṽ2,T−1 with the updated ~X−2,T−1 and get a

temporary optimal capacity x̃∗
2,T−1. Update ~XT−1 = (x̃∗

1,T−1, x̃
∗
2,T−1, ..., xn,T−1),

(d) solve the temporary value function Ṽi,T−1 for i = 3, 4, ..., n until we have all

updated values for ~XT−1.
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3. (2) We continue to iterate from (a) to (d) until we find an equilibrium point using

the updated ~XT−1 at each time.

4. Finally we get {Vi,T−1(xi,T−2, ~X−i,T−2, ξT−1), i = 1, 2, ..., N} from

{Ṽi,T−1(xi,T−2, ~X−i,T−1, ξT−1), i = 1, 2, ..., N} and find an optimal point ~X∗
T−1 =

(x∗
1,T−1, x

∗
2,T−1, ..., x

∗
n,T−1) for one given state ( ~XT−2, ξT−1).

5. We do the same thing (2-4) for the entire (N +1)-dimensional capacity and economic

condition space.

6. We go one period back to T − 2 and start loops (2-5) until we find the vector of

optimal capacities, ~X∗
T−2, for all possible states of ( ~XT−3, ξT−2).

7. We do loops (2-5) until we return to period 1 and obtain the vector of optimal

capacities ~X∗
1 , for all possible states of ( ~X0, ξ1).

If we have m1 possible states for the capacity for each firm and m2 possible states for the

economic condition, we need to do the loop (2-4) Nm1 ·m2 times for one period calculation.

Therefore, regardless of the rate of convergence from the temporary value function to the

optimal value function, the calculation time would be huge.

In our proposed model, the cost function is not differentiable. Some other papers

assume that the cost function is differentiable, which leads to this heavy calculation. In

this case, the problem is reduced to finding a solution of a set of differentiable equations,

and the resulting path does not show the KEEP region.

To reduce this calculation load, we first investigate the structure of the solution. By

taking advantage of the structure of the solution, we can save considerable calculation

time.

3.2 Modeling Assumptions

We assume the following throughout the analysis under oligopolistic market structure in

chapter 3 and the experimental analysis in chapter 4.

1. The oligopolistic market is non-cooperatively competitive.

51



2. Each firm shares all information with other firms, which includes the previous period

capacities and cost structures of other firms and expectations for the future economic

condition.

3. The price elasticity of demand, ε, is constant, and ε > 1.

4. We assume that the market demand is the same as the total of the capacity levels

of all firms in the market.

5. bi,t ≥ bi,t+1, ai,t ≥ ai,t+1, and ãi,t ≥ ãi,t+1, which reflects cost depreciation of firm i

due to improvements of technology.

6. ηt is the cost depreciation coefficient at time t with ηt < 1. In addition, all firms

have the same cost depreciation structure. Maintenance cost, installation cost, and

salvage value depreciate at the same rate as

(bi,t+1, ai,t+1, ãi,t+1) = ηt(bi,t, ai,t, ãi,t) with ηt < 1 for all t and all i.

7. ai,t ≥ ãi,t, which represents the partial reversibility of the investment.

8. Fi,T

(

~XT−1, ξT

)

is a concave function with respect to xi,T−1 for all i, which guar-

antees the concavity of the value function at t. In addition, Fi,T

(

~XT−1, ξT

)

is

homogeneous, i.e.,

∀η > 0, Fi,T

(

η ~XT−1, ηξT

)

= ηFi,T

(

~XT−1, ξT

)

.

With this assumption, the linearity between the optimal capacity and the economic

condition is established.

9. All firms have the same cost parameters in the symmetric case. Namely

(bi,t, ai,t, ãi,t) = (bt, at, ãt) for all i ∈ {1, ..., N}.

Each firm can have different cost parameters in the asymmetric case.

(bi,t, ai,t, ãi,t) 6= (bj,t, aj,t, ãj,t) for all different pair of i, j ∈ {1, ..., N}.
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10. We allow each firm to have different capacity in the previous period.

xi,t−1 6= xj,t−1 for all different pair of i, j ∈ {1, ..., N}.

3.3 General Structure of the Solution

Similarly to the monopoly case, we can define the value function at every period as a

vector. Each component of the vector is the optimal value function of each firm:

~Vt(x1,t−1, x2,t−1, ..., xn,t−1, ξt) =
(
V1,t(x1,t−1, x−1,t−1, ξt), ..., VN,t(xN,t−1, x−N,t−1, ξt)

)
.

The component of this vector corresponds to each firm’s optimal value function. In other

words, we have already found the optimal capacity expansion for all firms at time t and

obtained the optimal capacity trajectory from time t − 1 to t.

As we can see from the above vector of value functions, we need to find the solution

given the information of the previous period. Given the capacities of all other firms in the

previous period , a firm needs to decide the optimal capacity of the current period based

on its capacity of previous period and the economic condition.

Using this vector of optimal capacity of each firm, we investigate if the solution struc-

ture of the monopolistic case still applies to the oligopolistic case.

� Linear relationship between firms’ optimal capacities and the economic condition.

As we illustrated in Theorem 2.3.4, economic condition and both the optimal lower and

optimal upper bounds have a linear relationship in the case of monopolistic market. This

theorem can be extended to the case of N firms in an oligopolistic market with a minor

change in the proof.

Corollary 3.3.1. For t = 1, ..., T , suppose ~Vt+1(x1,t, x2,t, ..., xN,t, ξt+1) is homogeneous,

i.e., ∀η > 0,

~Vt+1(ηx1,t, ηx2,t, ..., ηxN,t, ηξt+1)

= (V1,t+1(ηx1,t, ηξt+1), V2,t+1(ηx2,t, ηξt+1), ..., VN,t+1(ηxN,t, ηξt+1))

= (ηV1,t+1(x1,t, ξt+1), ηV2,t+1(x2,t, ξt+1), ..., ηVN,t+1(xN,t, ξt+1))

= ηVt+1(x1,t, x2,t, ..., xN,t, ξt+1).
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Then

1. If the optimal policy at (x1,t−1, x2,t−1, ..., xN,t−1, ξt) is (x∗
1,t, x

∗
2,t, ..., x

∗
N,t),

then for ∀η > 0, the optimal policy at (ηx1,t−1, ηx2,t−1, ..., ηxN,t−1, ηξt) is

(ηx∗
1,t, ηx∗

2,t, ..., ηx∗
N,t).

2. Furthermore, ~Vt(x1,t−1, x2,t−1, ..., xN,t−1, ξt) is also homogeneous.

Proof. See the proof in section 3.6.

From Corollary 3.3.1, we know that a linear relationship between the economic con-

dition and the optimal capacity is still satisfied in the case of N firms. When we scale

the given capacities and the economic condition, the resulting optimal capacity for each

company is scaled. Using this characteristic, we can reduce one dimension in our calcu-

lation. After getting solutions for a particular value of the current economic condition

with all possible capacity vectors of the previous period, we can get a solution for the

entire state space. Figure 8 shows one possible solution when we consider two firms in the

market assuming a very simple solution. As we can see in Figure 8, once we have optimal

capacity vectors for one fixed economic condition, we can get optimal capacity vectors for

any other economic condition. The inside of the square cone is the (KEEP, KEEP) region

for firms 1 and 2.

� The relationship between firms optimal capacities and the cost parameters.

Corollary 3.3.2. If the vector of optimal capacities of firms with the cost parameters

(bi,t, ai,t, ãi,t) is ~X∗
t , then for ∀η > 0, the vector of optimal capacities of firms for the cost

parameters (ηbi,t, ηai,t, ηãi,t) is η−ε ~X∗
t

Proof. The proof is similar to the proof of Lemma 2.4.1.

3.4 Symmetric Firms in an Oligopolistic Market

In order to find the optimal investment strategy, we need to prove the existence of an

equilibrium point beforehand. William [37] provided some general conditions for the

existence of the equilibrium in the Cournot model. Long[28] provided sufficient conditions
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for the existence and the uniqueness of a Cournot equilibrium by applying the contraction

mapping approach. However, the conditions in there two papers, specifically P (xt) = 0

for some value of xt, do not match those of our model. Thus we try to find the equilibrium

point and prove its uniqueness in our model.

First, we study the investment decisions of a firm in an oligopolistic market when the

firms in the market have same cost structures. For any firm i, the cost occurring at time

t is

Ci,t(xi,t−1, xi,t) = bi,txi,t + ai,t(xi,t − xi,t−1)+ − ãi,t(xi,t−1 − xi,t)+,

where (bi,t, ai,t, ãi,t) = (bt, at, ãt) for all i ∈ {1, ..., N}.

However, we allow each firm to have different capacity of the previous period. Therefore,

at time t, we allow xi,t−1 6= xj,t−1 for all different pair of i, j ∈ {1, ..., N}.

In the next subsections, we will investigate the existence and the uniqueness of the

equilibrium point. In subsection 3.4.1, we will consider a duopoly market and we will

extend the results of it to the case of N symmetric firms in subsection 3.4.2.

3.4.1 Two Symmetric Firms in a Duopoly Market

In this subsection, we consider two symmetric firms in a duopoly market. Similar to those

in the monopoly case, the possible decisions for each company are BUY, KEEP and SELL.

Therefore, with two companies in the market, nine different decisions are possible. We

will study the existence of optimal capacity and the uniqueness of the solution for each

case. First, we explain the notations that will be used throughout this chapter. x∗
i,AB

is

the optimal capacity of firm i when firm 1 is in the A region and firm 2 is in the B region.

For example, x∗
1,BB

is the optimal solution of firm 1 when firm 1 is in the BUY region and

firm 2 is in the BUY region. To make the notation simple, we ignore period subscript (t)

and this can be well understood in the context.

Before starting to prove the existence and uniqueness of the Cournot equilibrium point,

we define the Gi,b and Gi,s functions as a derivative of the temporary value functions of

firm i for each case of BUY and SELL.
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The temporary value function and the corresponding Gi,b function of company i at

time t for the BUY case are

Ṽi,t(xi,t−1, x−i,t, ξt) = Maxxi,t

{

e−r

(
ξt

xi,t + x−i,t

) 1

ε

xi,t −
(
btxi,t + at(xi,t − xi,t−1)

)

+ e−rE
[
Vi,t+1(xi,t, x−i,t, ξt+1|ξt)

]
}

for i ∈ {1, 2}, and

Gi,b(xi,t, x−i,t, ξt) = e−rξ
1

ε
t

(
1

xi,t + x−i,t

) 1

ε
(

1 −
xi,t

ε(xi,t + x−i,t)

)

− bt − at

+ e−r dE
[
Vi,t+1(xi,t, x−i,t, ξt+1|ξt)

]

dxi,t
for i ∈ {1, 2}.

The temporary value function and the corresponding Gi,s function of company i at

time t for the SELL case are

Ṽi,t(xi,t−1, x−i,t, ξt) = Maxxi,t

{

e−r

(
ξt

xi,t + x−i,t

) 1

ε

xi,t −
(
btxi,t − ãt(xi,t−1 − xi,t)

)

+ e−rE
[
(Vi,t+1(xi,t, x−i,t+1, ξt+1|ξt)

)]
for i ∈ {1, 2}, and

Gi,s(xi,t, x−i,t, ξt) = e−rξ
1

ε
t

(
1

xi,t + x−i,t

) 1

ε
(

1 −
xi,t

ε(xi,t + x−i,t)

)

− bt − ãt

+ e−r dE
[
Vi,t+1(xi,t, x−i,t+1, ξt+1|ξt)

]

dxi,t
for i ∈ {1, 2}.

1. (BUY, BUY): Let (x∗
1,BB

, x∗
2,BB

(= x∗
1,BB

)) be the solution of a system of equations,

{Gi,b(x1,t, x2,t, ξt) = 0, i = 1, 2}. If x1,t−1 ≤ x∗
1,BB

and x2,t−1 ≤ x∗
2,BB

, then both

firms 1 and 2 increase their capacity to x∗
1,BB

and x∗
2,BB

, respectively.

� Existence. Using the fact that x∗
1,BB

= x2,BB, we can only consider the case of

x1,t = x2,t.

G1,b(x
∗
1,BB, x∗

2,BB, ξt) = G2,b(x
∗
1,BB, x∗

2,BB, ξt)

= e−rξ
1

ε
t

(

1

2x∗
1,BB

) 1

ε (

1 −
1

ε

)

− bt − at + e−r dE
[
V1,t+1(x1,t, x2,t, ξt+1|ξt)

]

dx1,t

lim
x∗

1,BB
↓0

G1,b(x
∗
1,BB, x∗

2,BB, ξt) = ∞, and

lim
x∗

1,BB
↑∞

G1,b((x
∗
1,BB, x∗

2,BB, ξt) ' −bt − at + e−rãt+1 < 0,
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where we used Proposition 2.3.3 that will be used to prove the existence of the

solution in other cases. Therefore, there is a solution (x∗
1,BB

, x∗
2,BB

) that satisfies

G1,b(x
∗
1,BB

, x∗
2,BB

, ξt) = 0.

� Uniqueness.

Lemma 3.4.1.

dGi,b(x1,t, x2,t, ξt)

dxi,t
< 0 for i ∈ {1, 2},

and therefore, Gi,b is a monotonically decreasing function with respect to xi,t.

Proof. If we take derivative to G1,b(x1,t, x2,t, ξt) with respect to x1,t,

dG1,b(x1,t, x2,t, ξt)

dx1,t
= −

1

ε
(x1,t + x2,t)

− 1

ε
−2

((

1 −
1

ε

)

x1,t + 2x2,t

)

+
d2E
[
V1,t+1(x1,t, x2,t, ξt+1|ξt)

]

dx2
1,t

.

Because V1,t+1(xt, xt, ξt+1|ξt) is concave with x1,t,
d2EV1,t+1(x1,t,x2,t,ξt+1|ξt)

dx2
1,t

< 0. There-

fore, G1,b(x1,t, x2,t, ξt) is a monotonically decreasing function in x1,t. In addition,

dG2,b(x1,t,x2,t,ξt)
dx2,t

< 0 with the same calculation. Hence, (x∗
1,BB

, x∗
2,BB

) is a unique

solution for the (BUY, BUY) case.

2. (SELL, SELL): Let (x∗
1,SS

, x∗
2,SS

(= x∗
1,SS

)) be the solution of a system of equations,

{Gi,s(x1,t, x2,t, ξt) = 0, i = 1, 2}. If x1,t−1 ≥ x∗
1,SS

and x2,t−1 ≥ x∗
2,SS

, then both of

firms 1 and 2 reduce their capacity to x∗
1,SS

and x∗
2,SS

, respectively.

� Existence. Using the fact that x∗
1,SS

= x2,SS, we can only consider the case of

x1,t = x2,t

G1,s(x
∗
1,SS, x

∗
2,SS, ξt) = G2,s(x

∗
1,SS, x

∗
2,SS, ξt)

= e−rξ
1

ε
t

(

1

2x∗
1,SS

) 1

ε (

1 −
1

ε

)

− bt − ãt + e−r dE
[
V1,t+1(x1,t, x2,t, ξt+1|ξt)

]

dx1,t

lim
x∗

1,SS
↓0

G1,s(x
∗
1,SS, x

∗
2,SS, ξt) = ∞

lim
x∗

1,SS
↑∞

G1,s(x
∗
1,SS, x

∗
2,SS, ξt) ' −bt − ãt + e−rãt+1 < 0.
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Therefore, there is a solution (x∗
1,SS

, x∗
2,SS

) that satisfies G1,s(x
∗
1,SS

, x∗
2,SS

, ξt) = 0.

� Uniqueness:

dGi,s(x1,t,x2,t,ξt)
dxi,t

< 0 for i ∈ {1, 2} guarantees the uniqueness of the solution.

3. (SELL, BUY): Let (x∗
1,SB

, x∗
2,SB

) be the solution for a system of equations,

{G1,s(x1,t, x2,t, ξt) = 0, G2,b(x1,t, x2,t, ξt) = 0}. If x1,t−1 ≥ x∗
1,SB

and x2,t−1 ≤ x∗
2,SB

,

then firm 1 sells off the excess capacity down to x∗
1,SB

and firm 2 buys more capacity

up to x∗
2,SB

.

� Existence:

From the symmetry of the two firms, we know x∗
1,SB

> x∗
2,SB

.

(1) limx1,t↓x∗

2,SB
G1,s = e−rξ

1

ε
t

(

1

2x∗
2,SB

) 1

ε (

1 −
1

2ε

)

−bt − ãt + e−r
dE
[
V1,t+1(x1,t, x

∗
2,SB, ξt+1|ξt)

]

dx1,t

∣
∣
∣
∣
x∗

2,SB

>
︸︷︷︸

want it to be

0.

(2) limx1,t↑∞ G1,s = −bt − ãt + e−rãt+1 < 0.

(3) limx2,t↓0 G2,b = e−rξ
1

ε
t

(
1

x1,t

) 1

ε

− bt − at + e−rat+1 >
︸︷︷︸

want it to be

0.

(4) limx2,t↑x∗

1,SB
G2,b = e−rξ

1

ε
t

(

1

2x∗
1,SB

) 1

ε (

1 −
1

2ε

)

−bt − at + e−r
dE
[
V1,t+1(x

∗
1,SB, x2,t, ξt+1|ξt)

]

dx2,t

∣
∣
∣
∣
x∗

1,SB

<
︸︷︷︸

want it to be

0.

The positivity of equation (1) comes from the fact that G1,s is a decreasing function

and x∗
2,SB

< x∗
2,SS

. Otherwise, x∗
1,SB

> x∗
2,SB

> x∗
2,SS

, which means (x∗
1,SS

, x∗
2,SS

) is

not an optimal point for the (SELL, SELL) case.

The negativity of equation (4)comes from the fact that G2,b is a decreasing function

and x∗
1,SB

> x∗
1,BB

. Otherwise, x∗
1,BB

> x∗
1,SB

> x∗
2,SB

, which means (x∗
1,BB

, x∗
2,BB

) is

not an optimal point for the (BUY, BUY) case.

In order for equation (3) to be positive x1,t should satisfy the following equation:

x∗
1,SB <

(
e−r

bt + at − e−rat+1

)ε

ξt. (3.4.1)
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The right-hand side of equation 3.4.2 is the limiting value of the total market capacity

when all firms in the market are in the BUY region1. Therefore, in order for firm 2

to be viable, the competitive output of firm 1 must not exceed the limiting value of

the total market capacity when all firms in the market are in the BUY region.

If x∗
1,SB

does not satisfy the above equation, then

x∗
1,SB >

(
e−r

bt + at − e−rat+1

)ε

ξt >

(

e−r
(
1 − 1

ε

)

bt + at − e−rat+1

)ε

ξt

︸ ︷︷ ︸

monopolistic firm’s optimal capacity in the BUY case.

.

Hence, if the competitive output of firm 1 does not exceed the monopolistic firm’s

optimal capacity in the BUY case, then firm 2 is viable, . If x1,t does not satisfy

equation (3.4.2), then x2,t = 0 and the problem goes back to the monopolistic case.

The implication of this inequality is that, if the optimal capacity of firm 1 is very

large, then it is not profitable firm 2 to either enter or stay in the market. In addition,

if the cost coefficients of firms are small, the right-hand side of equality 3.4.2 tends

to be large, and the equality 3.4.2 has more possibility to satisfy. Therefore, we

conclude that in an duopolistic market, firms are more likely to survive with efficient

cost structure than with inefficient cost structure. � Uniqueness:

dG1,s(x1,t,x2,t,ξt)
dx1,t

< 0 and
dG2,b(x1,t,x2,t,ξt)

dx2,t
< 0 guarantee the uniqueness of the solution.

4. (KEEP, BUY): Starting from (x1,t−1, x2,t−1) = (x∗
1,BB

, x∗
2,BB

), as x1,t−1 increases be-

yond x∗
1,BB

, firm 1 goes into the KEEP region. The optimal capacity in this region is

(x∗
1,t, x

∗
2,t) = (x1,t−1, x

∗
2,KB

) ≡ (x∗
1,KB

, x∗
2,KB

). Therefore, if x2,t−1 < x∗
2,KB

, then firm

2 buys more capacity up to x∗
2,KB

and firm 1 maintains its current capacity with

x∗
1,BB

< x1,t−1 < x∗
1,SB

.

� Existence:

At first, we know that x∗
1,KB

> x∗
1,BB

(= x∗
2,BB

) because x∗
1,KB

> x∗
2,KB

. Otherwise,

x∗
2,KB

> x∗
1,KB

> x∗
2,BB

and x∗
1,KB

> x∗
1,BB

, which means (x∗
1,BB

, x∗
2,BB

) is not an

1Refer to subsection 3.4.3 to get this limiting value of the total market capacity when all firms in the
market are in the BUY region
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optimal solution for the (BUY, BUY) case.

(1) limx2,t↓0 G2,b = e−rξ
1

ε
t

(

1

x∗
1,KB

) 1

ε

− bt − at + e−rat+1 >
︸︷︷︸

want it to be

0.

(2) limx2,t↑x∗

1,KB
G2,b = e−rξ

1

ε
t

(

1

2x∗
1,KB

) 1

ε (

1 −
1

2ε

)

−bt − at + e−r
dE
[
V2,t+1(x

∗
1,KB, x2,t, ξt+1|ξt)

]

dx2,t

∣
∣
∣
∣
x∗

1,KB

< 0.

In order for the above equation (1) to be positive, x∗
1,KB

should satisfy the following

equation:

x∗
1,KB <

(
e−r

bt + at − e−rat+1

)ε

ξt. (3.4.2)

This is the same condition for the existence condition for the (SELL, BUY) case;

thus, if there is a solution for the case of (BUY, BUY), then there is a solution for

the case of (SELL, BUY). If x∗
1,KB

does not satisfy equation(3.4.2), then x2,t = 0 and

the problem goes back to the monopolistic case. In addition, the solution starts at

the point, (x∗
1,BB

, x∗
2,BB

) and ends at the point, (x∗
1,SB

, x∗
2,SB

).

The negativity of equation (2) comes from the fact that

(a) G2,b(x1,t, x2,t, ξt) is a decreasing function with respect to x2,t,

(b) G2,b(x
∗
1,BB

, x∗
2,BB

, ξt) = 0 and x∗
1,KB

> x∗
2,BB

, and

(c) equation (1) can be re-written as

lim
x2,t↑x∗

1,KB

G2,b(x
∗
1,KB, x2,t, ξt) = G2,b(x

∗
1,KB, x∗

2,KB, ξt) < G2,b(x
∗
1,BB, x∗

2,BB, ξt) = 0.

� Uniqueness:

dG2,b(x1,t,x2,t,ξt)
dx2,t

< 0 guarantees the uniqueness of the solution.

� Shape:

The shape of the (KEEP, BUY) line, which starts at (x∗
1,BB

, x∗
2,BB

) and ends at

(x∗
1,SB

, x∗
2,SB

), is interesting.2.

2Refer to Figure 9 for more accurate understanding
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Under the condition that

ηε <
ξt+1

ξt
with probability 1, (3.4.3)

we can determine how x∗
2,KB

behaves as x∗
1,KB

increases from x∗
1,BB

.

Lemma 3.4.2. In the (KEEP, BUY) case, x∗
2,KB

decreases as x∗
1,KB

increases. In

addition, function x∗
2,KB

(x∗
1,KB

) is concave.

Proof. The optimal solution (x∗
1,KB

, x∗
2,KB

) should satisfy the following equation:

G2,b(x
∗
1,KB, x∗

2,KB) = e−rξ
1

ε
t

(

1

x∗
1,KB

+ x∗
2,KB

) 1

ε
(

1 −
x∗

2,KB

ε(x∗
1,KB

+ x∗
2,KB

)

)

− bt − at

+ e−r
dE
[
V2,t+1(x

∗
1,KB, x2,t, ξt+1|ξt)

]

dx2,t

∣
∣
∣
∣
∣
x∗

2,KB

= 0 (3.4.4)

Considering cost depreciation with time, we can set

dE
[
V2,t+1(x

∗
1,KB, x2,t, ξt+1|ξt)

]

dx2,t

∣
∣
∣
∣
∣
x∗

2,KB

= a2,t+1.

Then, the equation (3.4.4) changes to a simple function:

e−rξ
1

ε
t

(

1

x∗
1,KB

+ x∗
2,KB

) 1

ε
(

1 −
x∗

2,KB

ε(x∗
1,KB

+ x∗
2,KB

)

)

−
(
bt + at − e−rat+1

)
= 0.

(3.4.5)

Taking the derivative of equation (3.4.5) with respect to x∗
1,t, we get

dx∗
2,KB

dx∗
1,KB

= −
x∗

1,KB
−

x∗

2,KB

ε

2x∗
1,KB

+
(
1 − 1

ε

)
x∗

2,KB

, (3.4.6)

which is always negative in the (KEEP, BUY) case, because x∗
1,KB

> x∗
2,KB

.

Taking the derivative of equation (3.4.6) again with respect to x∗
1,KB

,we get

d2x∗
2,KB

d(x∗
1,KB

)2
= −

(
1

ε
+ 1

)
x∗2

1,KB
+
(
2 − 1

ε

)
x∗

1,KB
x∗

2,KB
+
(
1 − 1

ε

)
x∗2

2,KB
(

2x∗
1,KB

+
(
1 − 1

ε

)
x∗

2,KB

)3 , (3.4.7)

which is always negative.

Therefore, x∗
2,t is a concave function with respect to x∗

1,t and decreases.
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This can be explained from point (x∗
1,t, x

∗
2,t) = (x∗

1,BB
, x∗

2,BB
). From this point, if firm

1 increases capacity, firm 2 cannot buy much capacity, which might be disadvanta-

geous to both firms. Therefore, the optimal capacity for firm 2 is less than x∗
2,BB

. In

this case, the total market capacity is more than 2 · x∗
2,BB

because equation (3.4.6)

> −1.

Combining with the implication of equation 3.4.2 in the case of (SELL, BUY), we

can explain the implication of the shape of the line of (KEEP, BUY). If firm 2 has a

very big amount of capacity, then firm 1 cannot enter the market. However, as the

amount of capacity of firm 2 decreases, firm 1 can enter the market and increases

its capacity.

5. (SELL, KEEP): Starting from point (x1,t−1, x2,t−1) = (x∗
1,SS

, x∗
2,SS

), as x2,t−1 decreases

below x∗
2,SS

, firm 2 goes into the KEEP region. The optimal capacity in this region

is (x∗
1,t, x

∗
2,t) = (x∗

1,SK
, x2,t−1) ≡ (x∗

1,SK
, x∗

2,SK
). Therefore, if x1,t−1 > x∗

1,SK
, then firm

1 sells the excess capacity down to x∗
1,SK

and firm 2 maintains current capacity with

x∗
2,SB

< x2,t−1 < x∗
2,SS

.

� Existence:

First, we know that x∗
1,SK

> x∗
2,SK

because x∗
2,SK

< x∗
2,SS

(= x∗
1,SS

). Otherwise,

x∗
1,SK

< x∗
2,SK

< x∗
1,SS

and x∗
2,SK

< x∗
2,SS

, which means (x∗
1,SS

, x∗
2,SS

) is not an optimal

solution for the (SELL, SELL) case.

(1) limx1,t↓x∗

2,SK
G1,s = e−rξ

1

ε
t

(

1

2x∗
2,SK

) 1

ε (

1 −
1

2ε

)

−bt − ãt + e−r
dE
[
V1,t+1(x1,t, x

∗
2,SK, ξt+1|ξt)

]

dx1,t

∣
∣
∣
∣
x∗

2,SK

>
︸︷︷︸

want it to be

0,

(2) limx1,t↑∞ G1,s = −bt − ãt + e−rãt+1 < 0.

The positivity of equation (1) comes from the fact that

(a) G1,s(x1,t, x2,t, ξt) is a decreasing function with respect to x1,t,

(b) G1,s(x
∗
1,SS

, x∗
2,SS

, ξt) = 0 and x∗
2,SK

< x∗
2,SS

.
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(c) equation (1) can be re-written as

lim
x1,t↑x∗

2,SK

G1,s(x1,t, x
∗
2,SK, ξt) = G1,s(x

∗
1,SK, x∗

2,SK, ξt) > G1,s(x
∗
1,SS, x

∗
2,SS, ξt) = 0.

� Uniqueness:

dG1,s(x1,t,x2,t,ξt)
dx1,t

< 0 guarantees the uniqueness of the solution.

6. (BUY, SELL): Same as the case of (SELL, BUY) by exchanging firm 1 with firm 2.

7. (BUY, KEEP): Same as the case of (KEEP, BUY)by exchanging firm 1 with firm 2.

8. (KEEP, SELL): Same as the case of (SELL, KEEP) by exchanging firm 1 with firm 2.

Figure 9 illustrates a solution of the case of two symmetric firms with a fixed economic

condition. As explained in Lemma 3.4.2, the line for the (KEEP, BUY) shows decreasing

trend as x1,t−1(= x∗
1,KB

) increases. In addition, the line for the (KEEP, BUY) shows

concavity, but some discretization error exists. This graph corresponds to the horizontal

plain in Figure 8.

3.4.2 N Symmetric Firms in an Oligopolistic Market

In this subsection, we want to investigate the investment behavior of a firm when more

than two firms occupy the market and study the existence of the Cournot equilibrium

point and the uniqueness of the point. Let N be the number of firms in the market.

Then for each firm i, three different investment decisions, BUY, KEEP, and SELL, can be

reached, depending on the decision of other firms and the general economic condition.

Again, we consider BUY, KEEP, and SELL cases for a firm separately.

1. (BUY): Let x∗
i,B be the solution for Gi,b(xi,t, ~X−i,t, ξt) = 0 given ~X−i,t. If xi,t−1 ≤ x∗

i,B,

then firm i buys more capacity up to x∗
i,B.

� Existence:

lim
xi,t↓0

Gi,b(xi,t, ~X−i,t, ξt) = e−rξ
1

ε
t

(
1

x−i,t

) 1

ε

− bt − at + e−rat+1 >
︸︷︷︸

want it to be

0.

lim
xi,t↑∞

Gi,b(xi,t, ~X−i,t, ξt) ' −bt − at + e−rãt+1 < 0.
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In order for limxi,t↓0 Gi,b(xi,t, x−i,t, ξt) to be positive, x−i,t should satisfy the following

inequality:

x−i,t <

(
e−r

bt + at − e−rat+1

)ε

ξt. (3.4.8)

The right side of the inequality is the limiting value of total market capacity when

all N firms are in the BUY region3.

Therefore, if all the firms are in the BUY region, there is a solution for firm i. If it

does not satisfy the inequality, then xi,t = 0, and we have to solve the problem again

with N − 1 firms. The implication of this inequality is that, if the total capacity of

other firms is very large, then it is not profitable for firm i to either enter or stay in

the market. In addition, if the cost parameters of firms are very small, then firm i can

enter the market very easily. Therefore, we conclude that in an oligopolistic market,

firms are more likely to survive with efficient cost structure than with inefficient cost

structure.

2. (SELL): Let x∗
i,S be the solution for Gi,s(xi,t, x−i,t, ξt) = 0 given x−i,t. If xi,t−1 ≥ x∗

i,S,

then firm i sells off the excess capacity down to x∗
i,S.

� Existence:

lim
xi,t↓0

Gi,s(xi,t, ~X−i,t, ξt) = e−rξ
1

ε
t

(
1

x−i,t

) 1

ε

− bt − ãt + e−rat+1 >
︸︷︷︸

want it to be

0.

lim
xi,t↑∞

Gi,s(xi,t, ~X−i,t, ξt) ' −bt − ãt + e−rãt+1 < 0.

In order for limxi,t↓0 Gi,s(xi,t, ~X−i,t, ξt) to be positive, x−i,t should satisfy the follow-

ing inequality:

x−i,t <

(
e−r

max(bt + ãt − e−rat+1, 0+)

)ε

ξt.

The right-hand side of this equality is larger than that of equality 3.4.8. Therefore,

if there is a solution for the (BUY) case, the solution for the (SELL) case exists. In

addition, the right side of the inequality is the limiting value of the upper bound for

3Refer to subsection 3.4.3 to get the total market capacity when all N firms are in the BUY region.
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the total market capacity with all N firms. Therefore, the SELL case always has a

solution.

3. (KEEP): x∗
i,K = xi,t−1 with x∗

i,B < xi,t−1 < x∗
i,S.

3.4.3 The Effect of Competition on Market Properties with Cost Deprecia-

tion

As in the monopolistic case, we consider incremental investment with cost depreciation.

Using the linear relationship between the optimal capacity at each period and the economic

condition, we can write

x∗
i,t,L = li,t,Lξt for all t and for all i.

Here x∗
i,t,L is the lower optimal capacity of the firm i at time t, li,t,L is the slope of the

boundary of KEEP/BUY, and ξt is the economic condition at time t.

By assuming that cost depreciates exponentially with constant cost depreciation factor

η as

(bt, at, ãt) = η(bt−1, at−1, ãt−1) with η < 1,

we establish a relationship between the slope at time t (li,t,L) and the slope at time t + 1

(li,t+1,L), which is

li,t+1,L = η−εli,t,L.

Therefore, the sufficient condition for the incremental investment is

ηε <
ξt+1

ξt
with probability 1. (3.4.9)

Under this condition, we have x∗
i,t+1,L > x∗

i,t,L.

Using this condition for the incremental investment, the Gi,b function changes to

Gi,b(xi,t, ~X−i,t, ξt) = e−rξ
1

ε
t

(
xi,t

xi,t + x−i,t

) 1

ε
(

1 −
1

ε(xi,t + x−i,t)

)

−
(
bt + at − e−rat+1

)
.

By setting Gi,b = 0 for all i, we obtain the analytic expression of the lower optimal capacity

and the slope, which are

x∗
1,t,L = x∗

2,t,L = ... = x∗
N,t,L =




e−r

(

N− 1

ε
−1
(
N − 1

ε

))

bt + at − e−rat+1





ε

ξt,
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li,t,L =




e−r

(

N− 1

ε
−1
(
N − 1

ε

))

bt + at − e−rat+1





ε

.

Remark 7. The sufficient condition for the incremental investment (equation (3.4.9)) is

irrelevant to the number of firms in the market.

Under the condition ηε < ξt+1

ξt
with probability 1, we can investigate the effect of

competition on the market properties.

� Total market capacity vs. the number of firms in the market.

The optimal capacity of the firm i at time t is

x∗
i,t,L =




e−r

(

N− 1

ε
−1
(
N − 1

ε

))

bt + at − e−rat+1





ε

ξt, with N firms in the market.

The total market capacity at time t is

N∑

i=1

x∗
i,t,L ≡ Xt(N) = N




e−r

(

N− 1

ε
−1
(
N − 1

ε

))

bt + at − e−rat+1





ε

ξt

=

(

e−r
(
1 − 1

Nε

)

bt + at − e−rat+1

)ε

ξt.

As the above equation shows, we can see the competition causes the total market capacity

to increase.

We can compare the optimal capacity of a firm in a duopoly market with that in a

monopolistic market as follows:

(

e−r2−
1

ε
−1
(
2 − 1

ε

)

bt + at − e−rat+1

)ε

ξt >

(

e−r
(
1 − 1

ε

)

bt + at − e−rat+1

)ε

ξt,

Therefore, the total capacity in a duopoly market is more than double of that in a mo-

nopolistic market.

In addition, we obtain the limiting value of total market capacity.
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As N ↑ ∞, the total capacity in the market is

∞∑

i=1

x∗
i,t = Xt = lim

N↑∞
N




e−r

(

N− 1

ε
−1
(
N − 1

ε

))

bt + at − e−rat+1





ε

ξt

=

(
e−r

bt + at − e−rat+1

)ε

ξt

=

(

1 −
1

ε

)−ε
(

e−r
(
1 − 1

ε

)

bt + at − e−rat+1

)ε

ξt

︸ ︷︷ ︸

optimal capacity of monopolistic firm

.

As the number of firms in the market increases, the total market capacity increases

up to the limiting point. With a small number of firms in the market, the total market

capacity almost reaches this limiting value. Therefore, adding more firms to the market

does not significantly change market property when several firms are already in the mar-

ket. This limiting value is
(
1 − 1

ε

)−ε
times the optimal capacity of the monopolistic firm.

(
1 − 1

ε

)−ε
ranges from e (=2.7183 approximately) to ∞ as ε goes from 1 to ∞. With our

assumption that ε ranges from 1.28 to 2.84,
(
1 − 1

ε

)−ε
ranges from 3.4304 to 6.9963.

In Figure 10, the graph at the upper right-hand corner illustrates the relationship

between market capacity and the number of firms in the market with a limiting value.

Notice that a dramatic change occurs when a monopolistic market changes to a duopoly

market. � Market price vs. number of firms in the market.

The market price with N firms and the limiting value are

Pt(N) =
N

N − 1
ε

er
(
bt + at − e−rat+1

)
,

lim
N↑∞

Pt(N) = er(bt + at − e−rat+1).

As N increases, the total market capacity increases. The corresponding market price

decreases and the limiting value for the market price depends on neither ε nor the number

of firms in the market. In addition, the price depreciation trend of the price is the same

as the depreciation trend of the cost. If the trend of the price is different from that of the

cost, the firms in the market either take the huge price advantage or shut down their firm

because the price might be lower than the cost. Therefore, the market price and the cost
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should eventually show the same trend.

� Consumer surplus and producer surplus vs. number of firms in the market.

Figure 11 shows consumer surplus and producer surplus in some cases. The first one (upper

left-hand corner) illustrates the definition of consumer surplus and producer surplus with

increasing marginal cost function and linearly decreasing price function. The second one

(upper right-hand corner) depicts the consumer surplus of our model. The third one (lower

left-hand corner) and the fourth one (lower right-hand corner) represent the consumer

surplus and producer surplus of two other relevant cost structures.

In our model, the cost is linear with the capacity, which leads to a constant marginal

cost. Therefore, the producer surplus is always zero. As the number of firms in the market

increases, market price and cost factors decrease. Therefore, the horizontal line becomes

lower as the number of firms increases, causing consumer surplus to increase. The analytic

form is as follows:

CSt(N) =

∫ ∞

Pt(N)

ξt

Pt(N)ε
dPt(N) = ξt

1

ε − 1
Pt(N)−ε+1, and

lim
N↑∞

CSt(N) = ξt
1

ε − 1

(
er(bt + at − e−rat+1)

)−ε+1
.

In addition to our constant marginal cost function, we considere two other relevant

cost structures: quadratic and exponential forms, as many studies utilize these two cost

structures.

This quadratic cost function is frequently used in manufacturing industry. For example,

if the demand function and the supply function are given by

Pt(N) =

(
ξt

Dt(N)

) 1

ε

, Dt(N) = AtPt(N) with a function At.

Then the consumer surplus and producer surplus are

CSt(N) =

∫ ∞

Pt(N)

ξt

Pt(N)ε
dPt(N) = ξt

1

ε − 1
Pt(N)−ε+1, and

PSt(N) =
1

2
AtPt(N) · Pt(N) =

1

2
AtPt(N)2.
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Therefore, in this case, as the number of firms increases, consumer surplus increases and

producer surplus decreases.

The last one to consider is the exponential form4 of the cost function. If a company can

take advantage of the scale of economy, the cost function might be given as an exponential

form. For example, if the cost function is

Ct(Dt(N)) = Dt(N)e−AtDt(N) with a function At,

then the supply function is

Pt(N) = (1 − AtDt(N))e−AtDt(N).

This supply function, which is a decreasing function with Dt(N), is convex, which leads

producer surplus to be negative. In this case, as the number of firms increases, consumer

surplus increases and producer surplus decreases.

� Time to x% price reduction vs. number of firms in the market.

The market price is

Pt(N) =
N

N − 1
ε

er
(
bt + at − e−rat+1

)
,

and the price decreases as the number of firms in the market increases. In addition, we

know that the cost factor depreciates and is reflected directly in market price. Then, how

does the price depreciation relate to the number of firms in the market? We answer this

question here. Let us assume that the cost factor depreciates exponentially as

(bt, at, ãt) = η(bt−1, at−1, ãt−1) with η < 1 for all t.

Then,

Pt+1(N) =
N

N − 1
ε

er
(
bt+1 + at+1 − e−rat+2

)

=
N

N − 1
ε

erη
(
bt + at − e−rat+1

)

= ηPt(N).

4Kenyon and Cheliotis[20] used an exponential form of the cost function to reflect of the scale of
economy.

69



The above equation shows that price reduction is only dependent on η and not on the

number of firms in the market. Therefore, the time taken until x% price reduction is

n = inf
k
{x > ηk, k ∈ N}

The underlying reason for this phenomenon is the following. As we discussed when we

considered the relationship between market price and the number of firms in the market,

the cost is directly reflected in the market price. In our model, cost depreciation, which is

driven by technology improvement, is given as a function of t, not as a function of number

of firms in the market. Therefore, the market price reduction is not dependent on the

number of firms in the market, and the resulting depreciation pattern of price should be

the same as that of cost. If we model cost depreciation to be dependent on the number of

firms in the market, the price reduction should also be dependent on the number of the

firms in the market.

� Expected number of periods until first expansion vs. number of firms in the market.

Let us assume that the firms in the market have 1
N K capacity at time 0 with constraints

xi,0,L ≤
1

N
K ≤ xi,0,U for all of i. (3.4.10)

Under this constraint, the total market capacity is K, and each firm in the market has

1
N K market share. In addition, every firm is in the KEEP region.

Now we will establish how the number of firms in the market affects the expected

time to first expansion of firms. Let τ(N, K) be the expected waiting time of the first

expansion. Then,

τ(N, K) = E

[

inf
t

(

e−rN− 1

ε
−1
(
N − 1

ε

)

bt + at − e−rat+1

)ε

ξt >
1

N
K

]

= E

[

inf
t

η−tεξt > C
K

(
1 − 1

Nε

)ε

]

,

where C = er(b0 + a0 − e−ra1)
ε.

From the above equation, we know the expected number of periods until first expansion

decreases as the number of firms in the market increases. However, t is integer valued and
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K is any real number that satisfies equation (3.4.10). To the best of our knowledge, there

is no analytical expression for the expected waiting time for the first expansion in this

case. By approximating the Markov process as a geometric Brownian motion, we do have

an analytic expression for the expected waiting time and thus have some idea about how

the number of firms in the market affects the expected waiting time of the first expansion.

First, we define a Wiener process as

Y (t) = µt + σB(t),

where B(t) is a standard Brownian motion, µ is drift term, and σ is a standard deviation

term. Then we define the approximated geometric Brownian motion as

ξ̃t = ξ0e
Y (t).

The first two moments of ξt and ξ̃t are

E
[
ξt

]
= η−tε(pu + (1 − p)d), and

E
[
ξ2
t

]
= η−2tε(pu2 + (1 − p)d2),

and

E
[
ξ̃t

]
= eµt+σ2t/2, and

E
[
ξ̃2
t

]
= e2µt+2σ2t,

where we used discrete Markov provess with upward movement and downward movement

to model the economic condition as we modeled it in subsection 2.6.2. By matching the

first two moments of ξt and ξ̃t and changing of the parameters as µ = µ́−ε log η, we obtain

the following two equations.

e−tε log η(pu + (1 − p)d) = eµ́−ε log ηt+σ2t/2, and

e−2tε log η(pu2 + (1 − p)d2) = e2µ́−ε log η+2σ2t,

Using the above equations, we can easily get expressions for µ́ and σ of p, u, and d. We

can then approximate ξt as a geometric Brownian motion with drift (µ = µ́− ε log η) and

variance (σ2).
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The approximated expected waiting time for the first expansion is

τ(N, K) =







1
µ́−ε log η log

(

C K
ξ0(1− 1

Nε)
ε

)

if µ́ − ε log η > 0,

∞ if µ́ − ε log η ≤ 0.

For the calculation to obtain the above equation, see section 3.6.

As we can see from the above equation, the expected time of the first expansion

decreases as the number of firms in the market increases. In addition, with η < 1, log η

is negative, which shortens the expected time of the first expansion. Smaller η represents

steeper cost depreciation, which boosts the firms in the market to invest in additional

capacity.

3.5 Asymmetric Firms in an Oligopolistic Market

In this section, we study the investment decisions of a firm in an oligopolistic market when

the firms in the market have different cost structures. We assume the basic cost structure

is the same in all firms. In other words, for any firm i, the cost occurring at time t is

Ci,t(xi,t−1, xi,t) = bi,txi,t + ai,t(xi,t − xi,t−1)+ − ãi,t(xi,t−1 − xi,t)+.

The cost function still has the same form as that in the case of the monopolistic firm and

in the case of N symmetric oligopolistic firms case. However in this case, the assumption

(bi,t, ai,t, ãi,t) = (bt, at, ãt) for all i ∈ {1, ..., N}

is not made, and we allow

(bi,t, ai,t, ãi,t) 6= (bj,t, aj,t, ãj,t) for all different pair of i, j ∈ {1, ..., N}.

More specifically, one firm might have a smaller maintenance cost but a larger installa-

tion cost (and/or salvage value) than the other firms. In addition, as we discussed be-

fore, bi,t, ai,t, and ãi,t are functions of t, which might reflect cost depreciation and/or

functions of the number of firms in the market. In addition, we allow each firm to

have different capacity of the previous period. Therefore, at time t, we allow xi,t−1 6=

xj,t−1 for all different pair of i, j ∈ 1, ..., N.
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In the next subsections, we will investigate the existence of the equilibrium and the

uniqueness of the equilibrium point. In section 3.5.1, we will consider a duopoly market

and in section 3.5.2, we will extend the results of section 3.5.1 to the case of N asymmetric

firms.

3.5.1 Two Asymmetric Firms in a Duopoly Market

In this subsection, we consider two firms in a duopoly market. We assume that they

have different cost factors and different capacity position in the previous period. We

will examine the existence of the Cournot equilibrium point and the uniqueness of the

point. As in the monopoly case, the possible decisions for each company are BUY, KEEP,

and SELL. Therefore, with two companies in the market, nine different decisions can be

considered.

The Gi,b and Gi,s functions are derivatives of the temporary value functions for each

case of BUY and SELL.

Gi,b(xi,t, x−i,t, ξt) = e−rξ
1

ε
t

(
1

xi,t + x−i,t

) 1

ε
(

1 −
xi,t

ε(xi,t + x−i,t)

)

− bi,t − ai,t

+ e−r dE
[
Vi,t+1(xi,t, x−i,t, ξt+1|ξt)

]

dxi,t
for i ∈ {1, 2}.

Gi,s(xi,t, x−i,t, ξt) = e−rξ
1

ε
t

(
1

xi,t + x−i,t

) 1

ε
(

1 −
xi,t

ε(xi,t + x−i,t)

)

− bi,t − ãi,t

+ e−r dE
[
Vi,t+1(xi,t, x−i,t+1, ξt+1|ξt)

]

dxi,t
for i ∈ {1, 2}.

1. (BUY, BUY): Let (x∗
1,BB

, x∗
2,BB

) be the solution for a system of equations,

{Gi,b(x1,t, x2,t, ξt) = 0, i = 1, 2}. If x1,t−1 ≤ x∗
1,BB

and x2,t−1 ≤ x∗
2,BB

, then both

firms 1 and 2 increase their capacity to x∗
1,BB

and x∗
2,BB

, respectively.
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� Existence.

lim
x1,t↓0

G1,b(x1,t, x2,t, ξt) = e−rξ
1

ε
t

(
1

x2,t

) 1

ε

− b1,t − a1,t + e−ra1,t+1 >
︸︷︷︸

want it to be

0.

lim
x1,t↑∞

G1,b(x1,t, x2,t, ξt) ' −b1,t − a1,t + e−rã1,t+1 < 0.

lim
x2,t↓0

G2,b(x1,t, x2,t, ξt) = e−rξ
1

ε
t

(
1

x1,t

) 1

ε

− b2,t − a2,t + e−ra2,t+1 >
︸︷︷︸

want it to be

0.

lim
x2,t↑∞

G2,b(x1,t, x2,t, ξt) ' −b2,t − a2,t + e−rã2,t+1 < 0.

In order for limx1,t↓0 G1,b(x1,t, x2,t, ξt) and limx2,t↓0 G2,b(x1,t, x2,t, ξt) to be positive,

x1,t and x2,t should satisfy the following inequalities.

x2,t <

(
e−r

b1,t + a1,t − e−ra1,t+1

)ε

ξt (3.5.1)

and

x1,t <

(
e−r

b2,t + a2,t − e−ra2,t+1

)ε

ξt. (3.5.2)

Otherwise,

x2,t >

(
e−r

b1,t + a1,t − e−ra1,t+1

)ε

ξt









>

(

e−r
(
1 − 1

ε

)

b2,t + a2,t − e−ra2,t+1

)ε

ξt

︸ ︷︷ ︸

optimal capacity of a monopolisitc firm.









x1,t >

(
e−r

b2,t + a2,t − e−ra2,t+1

)ε

ξt









>

(

e−r
(
1 − 1

ε

)

b1,t + a1,t − e−ra1,t+1

)ε

ξt

︸ ︷︷ ︸

optimal capacity of a monopolisitc firm.









.

The second inequality is satisfied because the following two inequalities are satis-

fied.5.

2∑

i=1

(
bi,t + ai,t − e−rai,t+1

)
−
(
b1,t + a1,t − e−ra1,t+1

)
(

2 −
1

ε

)

> 0, and

2∑

i=1

(
bi,t + ai,t − e−rai,t+1

)
−
(
b2,t + a2,t − e−ra2,t+1

)
(

2 −
1

ε

)

> 0

5See Lemma 3.5.1
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Therefore, if x2,t does not satisfy the above inequality, then x1,t = 0 and firm 2

becomes a monopolistic firm. Also, if x1,t does not satisfy the above inequality, then

x2,t = 0, and firm 1 becomes a monopolistic firm.

The implication of the above inequalities is that, if the optimal capacity of firm

1 (firm 2) is very large, firm 2 (firm 1) is not allowed to enter the market. In

addition, if the cost coefficients of firm 1 (firm 2) is small, the right-hand side of

equality 3.5.1(3.5.2) tends to be large, and the equality has more possibility to

satisfy. Therefore, we conclude that if a firm in duopolistic market has efficient cost

structures, the firm is more likely to survive.

2. (SELL, SELL): Let (x∗
1,SS

, x∗
2,SS

) be the solution for a system of equations,

{Gi,s(x1,t, x2,t, ξt) = 0, i = 1, 2}. If x1,t−1 ≥ x∗
1,SS

and x2,t−1 ≥ x∗
2,SS

, then both of

firms 1 and 2 reduce their capacity down to x∗
1,SS

and x∗
2,SS

, respectively.

� Existence.

lim
x1,t↓0

G1,s(x1,t, x2,t, ξt) = e−rξ
1

ε
t

(
1

x2,t

) 1

ε

− b1,t − ã1,t + e−ra1,t+1 >
︸︷︷︸

want it to be

0.

lim
x1,t↑∞

G1,s(x1,t, x2,t, ξt) ' −b1,t − ã1,t + e−rã1,t+1 < 0.

lim
x2,t↓0

G2,s(x1,t, x2,t, ξt) = e−rξ
1

ε
t

(
1

x1,t

) 1

ε

− b2,s − ã2,t + e−ra2,t+1 >
︸︷︷︸

want it to be

0.

lim
x2,t↑∞

G2,b(x1,t, x2,t, ξt) ' −b2,t − ã2,t + e−rã2,t+1 < 0.

In order for limx1,t↓0 G1,s(x1,t, x2,t, ξt) and limx2,t↓0 G2,s(x1,t, x2,t, ξt)to be positive,

x1,t and x2,t should satisfy the following inequalities:

x2,t <

(
e−r

max(b1,t + ã1,t − e−ra1,t+1, 0+)

)ε

ξt (3.5.3)

and

x1,t <

(
e−r

max(b2,t + ã2,t − e−ra2,t+1, 0+)

)ε

ξt. (3.5.4)
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Otherwise,

x2,t >

(
e−r

max(b1,t + ã1,t − e−ra1,t+1, 0+)

)ε

ξt








>

(
e−r

b1,t + a1,t − e−ra1,t+1

)ε

ξt

︸ ︷︷ ︸

constraint for (BUY, BUY) case.








x1,t >

(
e−r

max(b2,t + ã2,t − e−ra2,t+1, 0+)

)ε

ξt








>

(
e−r

b2,t + a2,t − e−ra2,t+1

)ε

ξt

︸ ︷︷ ︸

constraint for (BUY, BUY) case.








.

Therefore, if there is a solution for the (BUY, BUY) case, then there is a solution for

(SELL, SELL). If x2,t does not satisfy the above inequality, then x1,t = 0, and firm

2 becomes a monopolistic firm. Also, if x1,t does not satisfy the above inequality,

then x2,t = 0, and firm 1 becomes a monopolistic firm.

3. (SELL, BUY): Let (x∗
1,SB

, x∗
2,SB

) be the solution for a system of equations,

{G1,s(x1,t, x2,t, ξt) = 0, G2,b(x1,t, x2,t, ξt) = 0}. If x1,t−1 ≥ x∗
1,SB

and x2,t−1 ≤ x∗
2,SB

,

then firm 1 sells off the excess capacity down to x∗
1,SB

, and firm 2 buys more capacity

up to x∗
2,SB

.

� Existence.

lim
x1,t↓0

G1,s(x1,t, x2,t, ξt) = e−rξ
1

ε
t

(
1

x2,t

) 1

ε

− b1,t − ã1,t + e−ra1,t+1 >
︸︷︷︸

want it to be

0.

lim
x1,t↑∞

G1,s(x1,t, x2,t, ξt) ' −b1,t − ã1,t + e−rã1,t+1 < 0.

lim
x2,t↓0

G2,b(x1,t, x2,t, ξt) = e−rξ
1

ε
t

(
1

x1,t

) 1

ε

− b2,t − a2,t + e−ra2,t+1 >
︸︷︷︸

want it to be

0.

lim
x2,t↑∞

G2,b(x1,t, x2,t, ξt) ' −b2,t − a2,t + e−rã2,t+1 < 0.

The conditions for the existence of the solution are inequalities 3.5.3 and 3.5.2.

Therefore, if there are solutions for the cases of (SELL, SELL) and (BUY, BUY), then

the solution for (SELL, BUY) exists.

4. (KEEP, BUY): As x1,t−1 increases beyond x∗
1,BB

, firm 1 goes into the KEEP region.

The optimal capacity in this region is (x∗
1,t, x

∗
2,t) = (x1,t−1, x

∗
2,KB

) ≡ (x∗
1,KB

, x∗
2,KB

).

76



Therefore, if x2,t−1 < x∗
2,KB

, then firm 2 buys more capacity up to x∗
2,KB

and firm 1

maintains its current capacity with x∗
1,BB

< x1,t−1 < x∗
1,SB

.

� Existence.

lim
x2,t↓0

G2,b(x1,t, x2,t, ξt) = e−rξ
1

ε
t

(
1

x1,t

) 1

ε

− b2,t − a2,t + e−ra2,t+1 >
︸︷︷︸

want it to be

0.

lim
x2,t↑∞

G2,b(x1,t, x2,t, ξt) ' −b2,t − a2,t + e−rã2,t+1 < 0.

The condition for the existence of the solution is inequality 3.5.2. Therefore, if there

is a solution for the case of (BUY, BUY), the solution for (KEEP, BUY) exists.

� Shape

Using Lemma 3.4.2, we can illustrate the shape of the solution (x∗
1,t, x

∗
2,t). The only

difference in the value functions between the case of identical firms and that of the

different firms is the cost coefficient. However, after taking the second derivative

of the value function, the cost coefficient disappears. Therefore the first and the

second derivatives of the G function have the exact same form in the cases of both

identical firms and different firms, which allows us to use the equations (3.4.6) and

(3.4.7) with no changes. However, in this case, the optimal capacities of firms 1 and

2 of the (BUY, BUY) case differ, which, in turn, causes slight difference between the

shape of the (KEEP, BUY) line of the identical firms and the different firms.

To investigate the shape of the (KEEP, BUY) line, we write the derivative again as

follows:

dx∗
2,t

dx∗
1,t

= −
x∗

1,t −
x∗

2,t

ε

2x∗
1,t +

(
1 − 1

ε

)
x∗

2,t

. (3.5.5)

The numerator is x∗
1,t −

x∗

2,t

ε which can be positive or negative depending on the

solution pair (x∗
1,BB

, x∗
2,BB

). Without loss of generality, we assume that the cost

structure of firm 2 is more efficient than that of firm 1, which results in x∗
1,BB

< x∗
2,BB

.

However, how much bigger x∗
2,BB

is than x∗
1,BB

depends on the cost difference between

the two firms and ε.

(a) x∗
1,BB

>
x∗

2,BB

ε , which is attained when the cost difference is small and/or when

ε is large:
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In this case, x∗
2,t decreases as x∗

1,t increases. Under this condition, x∗
1,t −

x∗

2,t

ε is

always positive and equation (3.5.5)is always negative. When the cost difference

is not significant, the shape of the (KEEP, BUY) line is similar to that of the

case of identical firms.

(b) x∗
1,BB

<
x∗

2,BB

ε , which is attained when the cost difference is significant and/or ε

is small:

In this case, x∗
2,t increases at first and decreases later as x∗

1,t increases. Under

this condition, x∗
1,t −

x∗

2,t

ε is negative at (x∗
1,t, x

∗
2,t) ' (x∗

1,BB
, x∗

2,BB
). As x∗

1,t

increases, x∗
1,t −

x∗

2,t

ε becomes positive because

∣
∣
∣
∣

dx∗

2,t

dx∗

1,t

∣
∣
∣
∣
< 1, and equation (3.5.5)

becomes negative.

These changes can be explained from point (x∗
1,t, x

∗
2,t) = (x∗

1,BB
, x∗

2,BB
). From

that point, if firm 1 increases the capacity, which is still less than
x∗

2,t

ε , then firm

2 increases its capacity. As firm 1 continues to increase the capacity which is

larger than
x∗

2,t

ε , the firm 2 decreases its capacity. Therefore, we can conclude

that if the initial capacity of firm 1 is small, firm 2 can increase its capacity

taking cost advantage, but if the initial capacity of firm 1 is too large which

indicates that the firm 1 has occupied a large portion of the market, then firm

2 cannot buy much capacity, which might be disadvantageous to both firms.

Figure 9 illustrates a solution of the case of two asymmetric firms with a fixed eco-

nomic condition. The line for the (KEEP, BUY) shows increasing and then decreasing

trend as x1,t−1(= x∗
1,KB

) increases. In addition, the line for the (KEEP, BUY) shows

concavity with a maximum point.

Remark 8. Notice that concavity is maintained in both cases. However, the shape

in the case of (KEEP, BUY) has a pick point, but the shape in the case of ( BUY,

KEEP) does not.

5. (SELL,KEEP): As x2,t−1 decreases below x∗
1,SS

, firm 2 goes into the KEEP region.

Firm 1 sells the excess capacity and firm 2 maintains its given capacity. The optimal
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capacity in this region is (x∗
1,t, x

∗
2,t) = (x∗

1,SK
, x2,t−1) ≡ (x∗

1,SK
, x∗

2,SK
). If x1,t−1 ≥

x∗
1,SK

, then firm 1 sells off the excess capacity down to x∗
1,SB

and firm 2 maintains

its current capacity with x∗
2,SB

< x2,t−1 < x∗
2,SS

.

� Existence.

lim
x1,t↓0

G1,s(x1,t, x2,t, ξt) = e−rξ
1

ε
t

(
1

x2,t

) 1

ε

− b1,t − ã1,t + e−ra1,t+1 >
︸︷︷︸

want it to be

0.

lim
x1,t↑∞

G1,s(x1,t, x2,t, ξt) ' −b1,t − ã1,t + e−rã1,t+1 < 0.

The conditions for the existence of the solution is inequality 3.5.3. Therefore, if

there is a solution for the cases of (SELL, SELL), then the solution for (SELL, KEEP)

exists.

6. (BUY, KEEP): Same to the case of (KEEP, BUY) by exchanging firm 1 with firm 2.

� Shape.

dx∗
1,t

dx∗
2,t

= −
x∗

2,t −
x∗

1,t

ε

2x∗
2,t +

(
1 − 1

ε

)
x∗

1,t

is always negative because x∗
2,BB

≥ x∗
1,BB

. Therefore, x∗
1,t is a concave function with

respect to x∗
2,t but with no maximum point, and x∗

1,t is a decreasing function with

respect to x∗
2,t.

7. (BUY, SELL): Same to the case of (BUY, SELL) by exchanging firm 1 with firm 2.

8. (KEEP,SELL): Same to the case of (SELL, KEEP) by exchanging firm 1 with firm 2.

3.5.2 N Asymmetric Firms in an Oligopolistic Market

In this subsection, we want to investigate the investment behavior of a firm when more

than two firms occupy the market and study the existence of the Cournot equilibrium

point and the uniqueness of the point. Let N be the number of firms in the market. Then

for each firm i, there can be three different investment decisions, BUY, KEEP, and SELL,

can be reached, depending on the decision of the other firms and the general economic

condition.

Again, we consider the BUY, KEEP, and SELL cases for a firm separately.
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1. (BUY): Let x∗
i,B be the solution of Gi,b(xi,t, ~X−i,t, ξt) = 0, given x−i,t. If xi,t−1 ≤ x∗

i,B,

then firm i buys more capacity up to x∗
i,B.

� Existence:

lim
xi,t↓0

Gi,b(xi,t, x−i,t, ξt) = e−rξ
1

ε
t

(
1

x−i,t

) 1

ε

− bi,t − ai,t + e−rai,t+1 >
︸︷︷︸

want it to be

0.

lim
xi,t↑∞

Gi,b(xi,t, x−i,t, ξt) ' −bi,t − ai,t + e−rãi,t+1 < 0.

In order for limxi,t↓0 Gi,b(xi,t, x−i,t, ξt) to be positive, x−i,t should satisfy the following

inequality:

x−i,t <

(
e−r

bi,t + ai,t − e−rai,t+1

)ε

ξt.

Otherwise,

x−i,t >

(
e−r

bi,t + ai,t − e−rai,t+1

)ε

ξt

(

>

(

e−r
(
N − 1 − 1

ε

)

∑N
j=1,j 6=i(bi,t + ai,t − e−rai,t+1)

)ε

ξt

)

.

The inequality in parentheses is from Lemma 3.5.1 and the amount in the parentheses

is the total market capacity when all N−1 firms are in the BUY region. Therefore, if

all the firms are in the BUY region, there is a solution for firm i. If it does not satisfy

the inequality, then xi,t = 0 and we have to solve the problem again with N−1 firms.

The implication of this inequality is that, if the total capacity of other firms is very

large, firm i is not allowed to enter the market. In addition, if the cost parameters

of firm i is very small, then firm i can enter the market very easily. Therefore, we

conclude that if firms in oligopolistic market have efficient cost structures, all firms

are more likely to survive.

2. (SELL): Let x∗
i,S be the solution of Gi,s(xi,t, x−i,t, ξt) = 0, given x−i,t. If xi,t−1 ≥ x∗

i,S,

then firm i sells off the excess capacity down to x∗
i,S.

� Existence:

lim
xi,t↓0

Gi,s(xi,t, x−i,t, ξt) = e−rξ
1

ε
t

(
1

x−i,t

) 1

ε

− bi,t − ãi,t + e−rai,t+1 >
︸︷︷︸

want it to be

0.

lim
xi,t↑∞

Gi,s(xi,t, x−i,t, ξt) ' −bi,t − ãi,t + e−rãi,t+1 < 0.
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In order for limxi,t↓0 Gi,s(xi,t, x−i,t, ξt) to be positive, x−i,t should satisfy the following

inequality:

x−i,t <

(
e−r

max(bi,t + ãi,t − e−rai,t+1, 0+)

)ε

ξt.

Therefore, if there is a solution for the (BUY) case, the solution for the (SELL) case

exists. In addition, the right side of the inequality is the limiting value of the upper

bound for the total market capacity with all N firms. Therefore, the SELL case

always has a solution.

3. KEEP: x∗
i,K = xi,t−1 with x∗

i,B < xi,t−1 < x∗
i,S.

3.5.3 The Effect of Competition on Market Properties with Cost Deprecia-

tion

As in the previous case, we consider incremental investment with cost depreciation. Adopt-

ing the reasoning in section 2.5, under the condition that ηε ≤ ξt+1

ξt
for the worst economic

condition transition, we can write Gi,b as follows:
{

Gi,b = e−rξ
1

ε

t

(
1

xi,t + x
−i,t

) 1

ε

(

1 −
xi,t

ε(xi,t + x
−i,t)

)

−
(
bi,t + ai,t − e−rai,t+1

)
, i = 1, ..., N

}

.

Then, we can obtain a solution vector for the above set of N equations. The ith component

of the solution vector is

xi,t = ε

(

1 − erξ−
1

ε

(
bi,t + ai,t − e−rai,t+1

)
X

1

ε
t

)

Xt,

with constraints xi,t > 0 for all i ∈ {1, ..., N},

and Xt is the total market capacity given by
N∑

i=1

xi,t = Xt(N) =

(

N − 1
ε

er
∑N

i=1 (bi,t + ai,t − e−rai,t+1)

)ε

ξt.

If there is any i for which xi,t < 0, then set xi,t = 0 and take firm i out of consideration

and solve a set of (N − 1) equations. The equivalent condition for xi,t > 0 is as follows.

Lemma 3.5.1. The equivalent condition for xi,t > 0 for all i ∈ {1, ..., N} is

N∑

j=1

(
bj,t + aj,t − e−raj,t+1

)
−
(
bi,t + ai,t − e−rai,t+1

)
(

N −
1

ε

)

> 0 for all i ∈ {1, ..., N}

(3.5.6)

This condition is also satisfied componentwise.
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Proof. The proof is straightforward.

This condition indicates that any firm with a large cost structure will be out of the

market. Therefore, if one company enters an oligopolistic market with very small cost

coefficients, the incumbent company with largest cost might be out of the market; other-

wise, the incumbent firms should consider the way to decrease the cost.

� Total market capacity vs. the number of firms in the market.

Does any case in which adding an additional firm to the market causes the total market

capacity to decrease exist? For such a situation occur, the following inequality must be

satisfied.

(

N − 1
ε

er
∑N

i=1 (bi,t + ai,t − e−rai,t+1)

)ε

ξt >

(

N + 1 − 1
ε

er
∑N+1

i=1 (bi,t + ai,t − e−rai,t+1)

)ε

ξt. (3.5.7)

Proposition 3.5.2. The equivalent condition for the inequality 3.5.7 is

N+1∑

j=1

(
bj,t + aj,t − e−raj,t+1

)
−
(
bN+1,t + aN+1,t − e−raN+1,t+1

)
(

N + 1 −
1

ε

)

< 0.

This violates the necessary condition of xN+1,t > 0. Therefore, we conclude that the

total market capacity increases as the number of firms in the market increases.

With sufficiently large N ,

Xt(N) =

(

N

er
∑N

i=1 (bi,t + ai,t − e−rai,t+1)

)ε

ξt

(

'

(
e−r

bt + at − e−rat+1

)ε

ξt

)

.

Therefore the case of identical firms is a special case of different firms in which

1

N

N∑

i=1

(
bi,t + ai,t − e−rai,t+1

)
=
(
bt + at − e−rat+1

)
.

� Market price vs. the number of firms in the market.

Pt(N) =
N

N − 1
ε

er 1

N

N∑

i=1

(
bi,t + ai,t − e−rai,t+1

)

= er 1

N

N∑

i=1

(
bi,t + ai,t − e−rai,t+1

)
with very large N.
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Again, the case of symmetric firms is a special case of asymmetric firms. Because of

increasing capacity, the market price decreases as the number of firms in the market

increases.

� Consumer surplus and producer surplus vs. number of firms in the market.

As discussed in subsection 3.4.3, the producer surplus is zero regardless of the number of

firms in the market.

The consumer surplus is given by

CSt(N) =

∫ ∞

Pt(N)

ξt

Pt(N)ε
dPt(N) = ξt

1

ε − 1
Pt(N)−ε+1.

CSt(N) is an increasing function with respect to the number of firms in the market

with a limiting value of

lim
N↑∞

CSt(N) = ξt
1

ε − 1

(
erC̄

)−ε+1
,

where C̄ = limN↑∞
1
N

∑N
i=1 (bi,t + ai,t − e−rai,t+1).

� Time to an x% price reduction vs. number of firms in the market.

This is the same as the case of identical firms. We can write the relationship between the

market price with N firms and N + 1 firms as follows:

Pt(N) =
N

N − 1
ε

er 1

N

N∑

i=1

(
bi,t + ai,t − e−rai,t+1

)
,

Pt+1(N) =
N

N − 1
ε

er 1

N

N∑

i=1

(
bi,t+1 + ai,t+1 − e−rai,t+2

)

=
N

N − 1
ε

er 1

N

N∑

i=1

(
η(bi,t + ai,t − e−rai,t+1)

)

= ηPt(N) with cost depreciation factor η.

Therefore, for an x% price reduction, we need at least n periods which satisfy,

n = inf
k
{x > ηk, k ∈ N},

regardless of the number of firms in the market.

� Expected number of periods until the first expansion vs. the number of firms in the
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market.

Let us assume that the firms in the market have 1
N K capacity at time 0 with

xi,0,L ≤
1

N
K ≤ xi,0,U for all of i. (3.5.8)

Under this constraint, the total market capacity is K and each firm in the market has

1
N K market share. In addition, all firms are in the KEEP region.

We want to know how the number of firms in the market affects the expected time to

the first expansion.

Let τi(N, K) be the expected waiting time of the first expansion of firm i. Then,

τi(N, K) = E

[

inf
t

ε

(

1 − erξ−
1

ε

(
bi,t + ai,t − e−rai,t+1

)
X

1

ε
t

)

Xt >
1

N
K

]

.

However, we cannot obtain an analytic form for τi(N, K) in this case. Unlike in the case

of symmetric firms, the lower optimal capacity of one firm reaches 1
N K faster and that of

the other firm reaches 1
N K later, which makes it hard to determine total market capacity

(Xt) at time τi(N, K). In addition, τi(N, K) is a function of the cost coefficients of firm

i as well as the cost coefficients of other firms, so it will behave differently when we add

another firm in the market, depending on the cost structure of the ith firm, and the cost

structure of the entering firm.

To have some idea of how the expected waiting time of the first expansion of firm i is

related to the number of firms in the market, we investigate the behavior of the following

function.
(

1 −
Ci(t)

(
N − 1

ε

)

er
∑N

i=1 (bi,t + ai,t − e−rai,t+1)

)(

N − 1
ε

er
∑N

i=1 (bi,t + ai,t − e−rai,t+1)

)ε

ξt −
1

N
K

(3.5.9)

From the result of the case of the symmetric firms, we can expect that equation (3.5.9) is

an increasing function with respect to N for all of t ∈ {1, 2, ..., T}.

Using Ci(t) = bi,t + ai,t − e−rai,t+1 = η0η1 · · · ηt−1(bi,0 + ai,0 − e−rai,0), equation 3.5.9

can be written as
(

1 −
Ci(0)

(
N − 1

ε

)

er
∑N

i=1 (bi,0 + ai,0 − e−rai,1)

)(

N − 1
ε

er
∑N

i=1 (bi,0 + ai,0 − e−rai,1)

)ε( t−1∏

m=0

ηε
m

)

ξt −
1

N
K,

(3.5.10)
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and this equation is expected to increase with respect to N , regardless of the functional

form ηt, because we assumed that deprecation applied to the all firms in the market in

the same manner.

Nevertheless, unlike the result of the case of symmetric firms, the property of equation

(3.5.10) depends on the cost factors of (N + 1) th firm.

The sufficient condition for equation (3.5.10) to increase with N is

N+1∑

i=1

Ci(t) − Cj

(

N + 1 −
1

ε

)

>
N∑

i=1

Ci(t) − Cj

(

N −
1

ε

)

.

Therefore,

1. if CN+1(t) > Ci(t) for all i, then the function (3.5.10) has more possibility to increase

when we add (N + 1) th firm to the market, and

2. if CN+1(t) > Ci(t) for some i, then the function (3.5.10)has more possibility to in-

crease only for those i when we add (N + 1) th firm to the market but it remains

undetermined for the other firms.

3.6 Proofs

Proof of Theorem 3.3.1. The value function at the new point

(ηx1,t−1, ηx2,t−1, ..., ηxn,t−1, ηξt) is

Vi,t(η ~Xt−1, ηξt)

=

{

e−r

(

ηξt

x̄∗
i,t + x̄∗

−i,t

) 1

ε

x̄∗
i,t −

(
bi,tx̄

∗
i,t + ai,t(x̄

∗
i,t − ηxi,t−1)+ − ãi,t(ηxi,t−1 − x̄∗

i,t)+
)

+e−r
(∑

p(ηξt, ηξt+1)Vi,t+1

(
x̄∗

i,t, ηξt+1

))
}

for all i ∈ {1, 2, ..., N},
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and the optimal vector ~̄ ∗
Xt ≡ (x̄∗

1,t, x̄
∗
2,t, ..., x̄

∗
N,t) is a solution for a set of equations,

{Ṽi,t(ηxi,t−1, η ~X−i,t, ηξt), i = 1, 2, ..., N}. Then Vi,t(η ~Xt−1, ηξt) can be re-written as

Vi,t(ηxi,t−1, ηξt)

= η ·

{

e−r

(

ξt
1
η x̄∗

i,t + 1
η x̄∗

−i,t

) 1

ε 1

η
x̄∗

i,t

−

(

bi,t
1

η
x̄∗

i,t + ai,t(
1

η
x̄∗

i,t − xi,t−1)+ − ãi,t(xi,t−1 −
1

η
x̄∗

i,t)+

)

+e−r

(
∑

p(ξt, ξt+1)Vi,t+1

(
1

η
~̄ ∗
Xt, ξt+1

))}

= ηVi,t(xi,t−1, ξt), with
1

η
x̄∗

i,t = x∗
i,t for all i,

where we used the homogeneity of Vi,t+1 and p(ηξt, ηξt+1) = p(ξt, ξt+1).

Therefore,

x̄∗
i,t = ηx∗

i,t for all i ∈ {1, 2, ..., N}.

In addition, we get equation Vi,t(η ~Xt−1, ηξt) = ηVi,t( ~Xt−1, ξt), which confirms the homo-

geneity of Vi,t.

The waiting time for the geometric Brownian motion. Let X(t) be a Brownian motion

with drift parameter µ and variance parameter σ2. Let us suppose that X(0) = x and

a < x and b > x are fixed quantities. In addition we define a hitting time as

Tab = min{t ≥ 0; X(t) = a or X(t) = b}

Then,

u(x) ≡ P {X(Tab) = b|X(0) = x} =
e−2µx/σ2

− e−2µa/σ2

e−2µb/σ2 − e−2µa/σ2
. (3.6.1)

In addition,

ν(x) ≡ E
[
Tab|X(0) = x

]
=

1

µ
[u(x)(b − a) − (x − a)] . (3.6.2)

In our case, a = −∞, b = log

(

C K
ξ0(1− 1

Nε)
ε

)

and x = 0 with µ = µ́ − ε log η. Therefore,

the expected waiting time is,

τ(N, K) =







1
µ́−ε log η log

(

C K
ξ0(1− 1

Nε)
ε

)

if µ́ − ε log η > 0,

∞ if µ́ − ε log η ≤ 0.
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Here we want to prove equation (3.6.1) and equation (3.6.2).

At time ∆t,

X(∆t) = X(0) + ∆X = x + ∆X,

where we assume that ∆t is very small so that exiting the interval (a, b) before ∆t can be

neglected.

The conditional probability of exiting at the upper point b is

u(x + ∆X) = P {X(Tab = b|X(∆t) = x + ∆X}

u(x) = P {X(Tab) = b|X(0) = x}

= E
[
P {X(Tab) = b|X(0) = x, X(∆t) = x + ∆X}

]

= E
[
P {X(Tab) = b|X(∆t) = x + ∆X}

]

= E
[
u(x + ∆X)

]

Next, expend u(x + ∆X) in a Taylor series,

u(x + ∆X) = u(x) + u
′

(x)∆X +
1

2
u

′′

(x)(∆X)2 + o(∆X)2

u(x) = E
[
u(x + ∆X)

]

= u(x) + u
′

(x)E
[
∆X

]
+

1

2
u

′′

(x)E
[
(∆X)2

]
+ E

[
o(∆t)

]

= u(x) + u
′

(x)µ∆t +
1

2
u

′′

(x)σ2∆t + E
[
o(∆t)

]

0 = µu
′

(x) +
1

2
σ2u

′′

(x) (3.6.3)

The solution to equation (3.6.3) is

u(x) = Ae−2µx/σ2

+ B

Using boundary conditions u(a) = 0, u(b) = 1, we get the equation (3.6.1).

Next, let us prove the expression for ν(x).

At time ∆t,

X(∆t) = X(0) + ∆X = x + ∆X,
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where we again assume that ∆t is very small so that exiting the interval (a, b) before ∆t

can be neglected.

The conditional mean time to exit the interval is now

∆t + ν(∆t)

ν(x) = E
[
Tab|X(0) = x

]

= E
[
∆t + ν(x + ∆t)|X(∆t) = x + ∆X

]

= ∆t + E
[
ν(x + ∆t)

]

Next, expend ν(x + ∆X) in a Taylor series,

ν(x + ∆X) = u(x) + ν
′

(x)∆X +
1

2
ν

′′

(x)(∆X)2 + o(∆X)2

ν(x) = ∆t + E
[
ν(x + ∆X)

]

= ∆t + ν(x) + u
′

(x)E
[
∆X

]
+

1

2
ν

′′

(x)E
[
(∆X)2

]
+ E

[
o(∆X)2

]

= ∆t + ν(x) + ν
′

(x)µ∆t +
1

2
ν

′′

(x)σ2∆t + o(∆t)

−1 = µν
′

(x) +
1

2
σ2ν

′′

(x) (3.6.4)

The solution to equation (3.6.4) is

ν(x) = Au(x) −
x

µ
+ B

Using boundary conditions u(a) = 0, u(b) = 0, we get the equation (3.6.2).
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Figure 8: The linearity between the optimal capacities of two firms and the economic
indicator in a duopolistic market
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Figure 9: Optimal capacities of two symmetric firms with a fixed economic indicator
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Figure 10: Optimal capacity of a firm, total market capacity, market price, consumer
surplus, expected number of periods until certain price reduction and expected waiting
time for the first expansion with the number of firms in the market
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CHAPTER IV

AN EXPERIMENTAL ANALYSIS OF CAPACITY

INVESTMENT IN AN OLIGOPOLISTIC MARKET

4.1 The Relationship Between The Optimal Capacity of a

Firm and Economic Condition

In this section, our goal is to establish a relationship between the investment behaviors

of firms in a market employing a set of real market data. From the previous section, we

know the optimal capacity at time t is

xi,t = ε

(

1 − erξ−
1

ε

(
bi,t + ai,t − e−rai,t+1

)
X

1

ε
t

)

Xt for all i ∈ {1, ..., N},

with Xt, the total market capacity, given by
N∑

i=1

xi,t = Xt =

(

N − 1
ε

er
∑N

i=1 (bi,t + ai,t − e−rai,t+1)

)ε

ξt.

After some calculation, it yields

xi,t = ε

(

1 − Ci(t)
N − 1

ε
∑N

j=1 Cj(t)

)(

N − 1
ε

er
∑N

j=1 Cj(t)

)ε

ξt,

where Ci(t) = bi,t + ai,t − e−rai,t+1. Ci(t) might depend on the number of firms in the

industry. With our assumption that the cost depreciates exponentially, we can write

Ci(t + 1) = ηtCi(t) for all i ∈ {1, ..., N} and for all t ∈ {0, ..., T − 1}.

We assume that (1) all companies have the same cost depreciation structure, and (2)

maintenance cost, installation cost, and salvage value depreciate at the same rate. As

defined in section 2.5, ηt is a cost depreciation coefficient applicable to the entire industry,

which is dependent on improvements of technology in corresponding sectors/industries,

suggested by Kou and Kou[22].
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The equation yields

xi,t+k = ε

(

1 − Ci(t)
N − 1

ε
∑N

j=1 Cj(t)

)


N − 1

ε

er
∑N

j=1

(
∏t+k−1

m=t ηm

)

Cj(t)





ε

ξt+k

= ε

(

1 − Ci(t)
N − 1

ε
∑N

j=1 Cj(t)

)(

N − 1
ε

er
∑N

j=1 Cj(t)

)ε(t+k−1∏

m=t

ηm

)−ε

ξt+k

for all k = 0, 1, ..., T − t and for all i ∈ {1, ..., N}.

Substituting

xi,t+k = xi,t +
k∑

m=1

x̂i,t+m for all i ∈ {1, ..., N},

the above equation yields

k∑

m=1

x̂i,t+m = −xi,t + ε

(

1 − Ci(t)
N − 1

ε
∑N

j=1 Cj(t)

)(

N − 1
ε

er
∑N

j=1 Cj(t)

)ε(t+k−1∏

m=t

ηm

)−ε

ξt+k.

Finally, we have an equation of a time series. If we fix a time t, then the equation

looks like
k∑

m=1

x̂i,t+m = −xi,t + A(t) · B(k)ξt+k with k = 0, 1, ..., T − t,

where B(k) = (ηtηt+1 · · · ηt+k−1)
ε.

If we assume ηm = η for all m = t, t + 1, ..., t + k − 1, the above equation changes to

k∑

m=1

x̂i,t+m = −xi,t + A(t) · η−kεξt+k with k = 0, 1, ..., T − t. (4.1.1)

In the next subsection, using market data, we establish a linear relationship between

∑k
m=1 x̂i,t+m and η−kεξt+k, i.e., between the sum of capacity increments of a firm and

economic indicators scaled by the cost depreciation factor, as time goes from t to t + k.

4.2 Experimental Analysis of Telecommunications Market

Data

As our target is the telecommunications market, we choose “Communications Services”

as our specific industry in “Services” sector. In addition, we consider only United States

firms in forming the data set. We consider top-ranked firms in the communications services

industry based on market capitalization.

To perform the empirical analysis, we require market data for capacity/capital incre-

ments for the chosen companies and the economic indicator.
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4.2.1 Basic Statistics of the Capacity Expenditures

Capacity/capital purchase/sale contracts between firms are confidential and not publicly

known. Therefore, we need a proxy for the capacity/capital increment.

Every firm has three financial statements, an Income Statement, a Balance Sheet, and

a Cash Flow Statement that are available to the public. We choose “Capital Expenditures”

in Cash Flow as our proxy for the capacity/capital investment.

In addition, we want to split telecommunications companies into wireless companies

and wireline companies. If wireless companies invest in a previously no-coverage area,

the actual demand can grow more than proportionally to the capacity increment because

of the network effect. Therefore, we decide to apply our model to wireline-dedicated

companies only. However, most telecommunications companies provide a combination of

wireless and wireline services, we need to extract wireline-related investment from Capital

Expenditures. Because capital investment for wireline capacity is not available, we have

analyzed the revenue/profit of companies.

Under the following assumptions:

1. The revenue/profit ratio between wireline and other assets is the same as the capital

expenditure ratio between the two.

2. Without any big changes in a company, it has continued to maintain this ratio

constant for the past several years.

We obtain proxies of capital investment committed to wireline facilities and we used the

quarterly data of Capital Expenditures for the following firms1 from 4th quarter of 1999

to the 3rd quarter of 2004. Table 7 shows the names, market capitalization and wireline

portion of the companies. The letters in parentheses represent the ticker symbols for

each company. (We will use this ticker symbol instead of the full name of the firm from

now on.) As we stated before, we need data for revenues/profits from wireline services

1We choose the top seven firms in the communications services industry. Out of these firms, we eliminate
the Sprint Corp.(FON) due to an insufficient amount of data.
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Table 7: Name, market cap., and wireline service portion of the companies considered

Company Name Market Cap. Wireline Portion

Verizon Communications (VZ) 114.16B 64.1 %
SBC Communications Inc. (SBC) 83.45B 75 %
BellSouth Corporation (BLS) 49.13B approximately 100 %
Nextel Communications (NXTL) 31.63B approximately 0 %
Alltel Corporation (AT) 17.22B 40.2 %
AT&T Corp (T) 14.56B 75% / 100 %
Qwest Communications International Inc.(Q) 7.26B 100 %

only. From S&P 500 corporation record[41], we can find similar data for some companies.

The percentages refer to the revenue/profit portion that comes from the wireline services.

AT&T includes a spin-off of AT&T wireless on July 9th 2001, which corresponds to 25%

of the total capital. Therefore, until the 2nd quarter of 2001 , the wireline services reach

75% and from the 3rd quarter of 2001, these reach approximately 100%. For BLS and

Q, we ignored information services and directory advertising & publishing, and wireless

services which comprise less than 10% of the revenue/profit.

From the wireline and other asset data, we eliminate NXTL from this analysis, con-

fining our study to VZ, SBC, BLS, AT, T, and Q.

First, we perform basic data analysis that includes descriptive statistics and bivariate

correlation coefficients. Tables 8 and 9 show basic descriptive statistics of the capital

Table 8: Descriptive statistics of the capital expenditures of firms

VZ SBC BLS AT T Q

Mean 2270.87 1701.19 1186.95 199.30 1674.63 1414.92
Standard Deviation 642.99 904.29 462.51 308.43 1113.72 1477.75
Range 2165.94 3499.50 1467.00 1411.70 3711.00 6207.00
Minimum 1521.73 672.75 588.00 57.53 441.00 418.00
Maximum 3687.67 4172.25 2055.00 1469.23 4152.00 6625.00
Ratio(Range/Mean) 0.95 2.06 1.24 7.08 2.22 4.39
Ratio(Std./Mean) 0.28 0.53 0.39 1.55 0.67 1.04

expenditures of each firm and bivariate correlation coefficient between firms, respectively.

AT has the largest std./mean ratio and largest range/mean ratio. Thus we can conclude
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Table 9: Pairwise correlation coefficient between firms

VZ SBC BLS AT T Q

VZ correlation 1.000 0.477 0.677 -0.186 0.404 0.139
Sig. (2-tailed) . 0.034 0.001 0.433 0.077 0.559

SBC correlation 0.477 1.000 0.883 -0.080 0.856 0.849
Sig. (2-tailed) 0.034 . 0.000 0.739 0.000 0.000

BLS correlation 0.677 0.883 1.000 -0.136 0.760 0.686
Sig. (2-tailed) 0.001 0.000 . 0.569 0.000 0.001

AT correlation -0.186 -0.080 -0.136 1.000 0.021 -0.141
Sig. (2-tailed) 0.433 0.739 0.569 . 0.929 0.554

T correlation 0.404 0.856 0.760 0.021 1.000 0.627
Sig. (2-tailed) 0.077 0.000 0.000 0.929 . 0.003

Q correlation 0.139 0.849 0.686 -0.141 0.627 1.000
Sig. (2-tailed) 0.559 0.000 0.001 0.554 0.003 .

that AT is very volatile. The capital investment of AT is negatively correlated with that

of VZ, SBC, BLS, and Q and it is positively correlated with that of T. However, none of

the correlation coefficients of AT with other firms is significant. Therefore, we can assume

that AT behaves independently of other firms, and the investment behavior of AT is very

different from that of other firms. Thus, we eliminate AT from our experimental analysis.

Quite different from AT, VZ is a very stable firm and investment decisions are con-

sistent throughout the period and its range/mean ratio of the capital expenditure is the

smallest, indicating the amount of investment does not change much during the period.

In addition, Table 9 shows that VZ, SBC, and BLS are positively correlated with

95% confidence. SBC, BLS, T, and Q are positively correlated with 95%(99%) confi-

dence. Therefore, we can assume that all the firms, except AT, exhibit similar investment

behavior.

4.2.2 Basic Statistics of the Economic Indicators

In an effort to determine our economic indicator, we choose three candidates: Civil Em-

ployment, the Consumer Confidence Index, and the Nasdaq Telecommunications Index

(IXUT). Again, IXUT is a ticker symbol for the Nasdaq Telecommunications Index. (We

will use this ticker instead of the full name.) The first and second are general economic

97



indicators and the third is a sector/industry-specific economic indicator.

From Economic Indicators [42], the indices on the Gross Domestic Product, the Real

Gross Domestic Product and other factors2 all serve as general economic indicators.

Among these economic indicators, we choose Civilian Employment (Employment) as a

possible proxy of an economic indicator for the telecommunications market. Our rationale

is that as employment increases, both Internet usage at work and the number of mobile

phone subscribers increase, and thus the demand for additional capacity increases. The

reason we select the Consumer Confidence Index as a candidate as a proxy of an economic

indicator is similar to the reason why we select Employment. As consumers often expect

better future economic conditions, they increase their spending, which will affect Inter-

net/mobile phone usage. For IXUT, we choose it because it is a strong indicator of the

telecommunications market.

We take the quarterly data from the 3th quarter of 1996 to the 3rd quarter of 2004

and compute the basic statistics, and list them in Tables 10 and 11.

Figure 13 shows the trend of these three economic indicators. Employment shows

clearly the increasing trend with small volatility of the three indicators. Consumer Con-

fidence Index does not show any clear drift, but has a larger variation than Employment.

IXUT does not show any trend, but clearly indicates when the Internet bubble existed.

The graph shows that Internet bubble started around the beginning of 1998 and ended

at the beginning of 2002. During this period, numerous telecommunications firms were

established and then became defunct.

The trend is well explained in Table 10, which shows basic descriptive statistics. In

addition to the basic statistics of the data, it shows the basic statistics of the return

( ξt

xit−1
− 1) of that period. In the prediction of future economic conditions, the value of

return reflected in the economic indicator is more meaningful than the bare number.

Table 11 shows the bivariate correlation coefficients of economic indicators. When

2See Economic Indicators [42] for the full list of the economic indicators
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Figure 13: Trend of economic indicators and bivariate matrix graphs between economic
indicators

we compare the return, with 95% confidence, we cannot determine if they are posi-

tively/negatively correlated. However, we can say Employment and the Consumer Con-

fidence Index are negatively correlated and the Consumer Confidence Index and IXUT

are positively correlated with 95% (99%) confidence. Therefore, we can expect a nega-

tively correlated trend between Employment and the Consumer Confidence Index and a

positively correlated trend between the Consumer Confidence Index and IXUT.

As shown in Figure 13, Employment and the Consumer Confidence Index are nega-

tively correlated and the Consumer Confidence Index and IXUT are positively correlated.

However, when we compare the returns, we find no clear relationship, but instead com-

pletely independent behavior.

The matrix scatter plot in Figure 13 illustrates this relationship very well. The trend
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between Employment and the Consumer Confidence Index is downward sloping and the

trend between the Consumer Confidence Index and IXUT is curved and upward sloping.

In addition, the relationship between Employment and IXUT appears to be random.

Table 10: Descriptive statistics of the economic indicators

Employment CCI IXUT
return return return

Mean 134254.88 0.0029 114.72 0.0019 360.90 0.0133
Standard Deviation 3320.02 0.0044 22.0 0.1177 248.24 0.1914
Range 12232.00 0.0226 81.10 0.5991 890.89 0.8151
Minimum 127248.00 -0.0070 61.40 -0.2392 96.55 -0.3626
Maximum 139480.00 0.0156 142.50 0.3599 987.44 0.4525
Ratio (Std./Mean) 0.02473 1.5410 0.1919 61.2154 0.6878 14.3421

Table 11: Pairwise correlation coefficients of the economic indicators

Return
Emt. CCI IXUT Emt. CCI IXUT

Emt. correlation 1.000 -0.541 -0.082 1.000 0.314 0.232
Sig. (2-tailed) . 0.001 0.650 . 0.080 0.200

CCI correlation -0.541 1.000 0.739 0.314 1.000 0.206
Sig. (2-tailed) 0.001 . 0.000 0.080 . 0.259

IXUT correlation -0.082 0.739 1.000 0.232 0.206 1.000
Sig. (2-tailed) 0.650 0.000 . 0.200 0.259 .

From this basic statistical analysis, we conclude that Employment is the most stable

variable, which might lead us to choose Employment as our economic indicator. To con-

firm that Employment is best best economic indicator for our model, we perform linear

regression on all three economic indicators and the capital increments of the firms in the

next subsection.
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4.2.3 Regression Analysis between the Capacity Expenditure of Firms and

the Economic Indicators

From the previous basic analysis, we briefly examine the characteristics of our data. We

expect that AT will behave differently from VZ, SBC, BLS, T, and Q, so we exclude

AT from our analysis for this reason. In addition, we consider Employment is the most

appropriate economic indicator. To confirm these two decisions, we perform basic linear

regression analysis on all three economic indicators and the capital increments of the firms.

To perform a linear regression, we assume ηi = (0.5)1/8 for all i = t, t + 1, ..., t + k,

ε = 1.5. The results appear in Table 12.

Table 12: The results of regression analysis on capacity movement of firms and employ-
ment, the Consumer Confidence Index, and the IXUT

Employment

R2 Intercept p-value Slope p-value

VZ 0.9696 2687.5 0.2864 0.0677 0.0000
SBC 0.9130 9950.2 0.0012 0.0410 0.0000
BLS 0.9273 5451.1 0.0059 0.0306 0.0000
T 0.8673 12206.0 0.0009 0.0385 0.0000
Q 0.8134 14450 0.0000 0.0261 0.0000

Consumer Confidence Index

VZ 0.8884 1117.9 0.8234 100.51 0.0000
SBC 0.8143 9395.2 0.0297 60.14 0.0000
BLS 0.8329 4961.4 0.0924 44.96 0.0000
T 0.7425 12246.0 0.0141 55.22 0.0000
Q 0.7079 14325 0.0005 37.77 0.0000

Nasdaq Telecommunications Index

VZ 0.2783 9349.3 0.5894 35.97 0.0168
SBC 0.1856 17919.5 0.1301 18.36 0.0579
BLS 0.2054 10706.7 0.2107 14.28 0.0448
T 0.1370 21990.8 0.0648 15.16 0.1082
Q 0.0974 22597 0.0113 8.9599 0.1803

Of the three economic indicators, Employment has the best fit for linear regression.

Employment and the Consumer Confidence Index shows similar results, with similar order

of the firms in intercept, slope and respective p-values. Therefore, Employment and the

Consumer Confidence Index show similar interpretation for the firms in cost structures

101



and pre-existing capacities of the firms at the beginning of the period considered. As we

explained before, the telecommunication companies can use Employment and/or the Con-

sumer Confidence Index as their general economic indicators. Because telecommunication

companies can expect more customers as Employment is increasing. The same if true for

the Consumer Confidence Index. However, sector/industry-specific economic indicator,

IXUT in our case, instead revealing how this industry does in the market, can be used to

measure the performance of the industry.

The residual graphs show a trend. Figure 14 shows a significant trend in residuals

with respect to Employment. The first half of the graph shows an upward trend and the

last half of a the graph shows downward trend.
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Figure 14: Residual graphs of the capacity movement of firms and Employment
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The underlying reason for these findings can be found in the trend of the sector/industry-

specific variable, IXUT. The movement of IXUT during this period is illustrated in Figure

14 for comparison.

Until the 4th quarter of 2001(or close to it), IXUT decreases very rapidly, and the

residual graphs might reflect it. Therefore, we can infer from the residual graphs that the

first half of the period reflects the Internet boom and over invested telecommunication

and the last half of the period reflects the failure of some of the firms or the adjustments

in the invested capital of the surviving firms.

In subsections 4.2.4 and 4.2.5, we will consider the Internet bubble phenomenon in our

model and attempt to fix this curved residual graphs.

4.2.4 Regression Analysis between the Capacity Expenditures of Firms and

the Economic Indicator by Incorporating of Industry-Specific Economic

Conditions

One way to fix the residual trend can be to incorporate a sector/industry-specific variable

to cost depreciation. As Kou and Kou[22] mentioned, the growth rate of an industry can

be represented by the labor force of the R&D department, which might be directly related

to technology improvement and cost depreciation. We change the cost depreciation factor

η(·) as a function of the sector/industry-specific variable. Here, we used IXUT as our

sector/industry-specific variable. When IXUT is high-valued, firms experience consider-

able cost depreciation and when IXUT is low-valued, firms have small cost depreciation.

This concept is used to calculate the cost depreciation employing IXUT.

We use a Simple Moving Average (SMA) of the historical returns of IXUT. Moving

average is widely used estimating the future trends of a financial asset. In addition,

the return of IXUT in the period is so volatile that it cannot sufficiently explain the

cost depreciation trend in the market. Also, when IXUT is high-valued, firms in the

telecommunication industry do well and thus may invest more in research, which will lead

to later improvements in technology.
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We use a 12-period (3 years each) SMA to calculate ηt. We use

ηt = 0.5

SMAt
1
n

∑n
j=1

SMAj

16
+ 1

16 (4.2.1)

as the cost depreciation for the period t. Here 1
n

∑n
j=1 SMAj is the average of the SMAs

during the considered period. By dividing the ratio of the value to the average by 16

and adding 1
16 , we lessen the effect of volatility. With SMAt, which is the same as the

mean of the SMAs, we have the same cost depreciation as in the case of the constant cost

depreciation.

Table 13: The result of regression analysis on the capacity movement of firms and
Employment with different cost depreciation during each period

R2 Intercept p-value Slope p-value

VZ 0.9918 -1613 0.2855 0.0702 0.0000
SBC 0.9601 7202 0.0022 0.0431 0.0000
BLS 0.9689 3438 0.0178 0.0320 0.0000
T 0.9350 9239 0.0016 0.0412 0.0000
Q 0.8816 12716 0.0000 0.0276 0.0000

Table 13 presents the results, which show a better fit than the case with same cost

depreciation for all the periods and improved residual graphs. The table reflects higher

R2 values for all firms than those of the same cost depreciation case. The intercept values

are still positive, indicating that the residual graphs are still curved.

4.2.5 Regression Analysis between the Capacity Expenditures of Firms and

the Economic Indicator with a Smaller Set of Data

As we explained in subsection 4.2.3, we can divide the data set into two parts. The first

belongs to the Internet bubble and the last half corresponds to the adjustment period.

We deleted the first half and perform linear analysis on the remaining data set.

Table 14, which shows the regression results for only the last half of the data, includes

only 10 data sets from the 2nd quarter of 2002 to the 4th quarter of 2004. We performed

linear regression with constant cost depreciation and with different cost depreciation for

each period using the equation (4.2.1). The results show better fit in both cases, and the
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Table 14: The result of regression analysis between the Capacity Movement of firms and
Employment with the data set after the Internet bubble

With Constant Cost Depreciation Factor

R2 Intercept p-value Slope p-value

VZ 0.9971 -10346 0.0000 0.085 0.0000
SBC 0.9917 -4543 0.0000 0.043 0.0000
BLS 0.9949 -3657 0.0000 0.033 0.0000
T 0.9338 -887 0.3907 0.032 0.0000
Q 0.9725 -38493 0.0000 0.211 0.0000

With Different Cost Depreciation Factor

VZ 0.9981 -15668 0.0000 0.1099 0.0000
SBC 0.9963 -7258 0.0000 0.0552 0.0000
BLS 0.9976 -5758 0.0000 0.0431 0.0000
T 0.9666 -3249 0.0044 0.0429 0.0000
Q 0.9975 -3907 0.0000 0.0280 0.0000

residuals appear to be random. Again, we obtain better result when we incorporate the

sector/industry-specific variable in cost depreciation.

From the result, we can deduce some relationship between the cost structure and the

capacity position of the firms at the beginning of the period. We analyze the results of

the case with different cost depreciation.

First of all, let us compare the intercept of the regression analysis result. The negative

value of the intercept represents the capacity position at the beginning of the period,

which is, in this case, at the end of the 1st quarter of 2002. This negative value of the

intercept initially decreases to T and slightly increases at Q. We do not have any available

data set that provides the exact capacity position at the beginning of the period. On

the Balance Sheet of each firm, the “Net Fixed Asset (Property Plant and Equipment)”

provides a proxy for the capacity position during that period. By doing some calculations

with the revenue/profit portion of the wireline, we obtain the data for the Net Fixed Asset

dedicated to wireline services. Although the data in Table 15 do not match the intercept

from the regression result exactly, they do not differ significantly. In addition, AT&T does

not have publish, print and advertising services, but BLS and Q have that these services,

which can translate into a higher value intercept in the regression analysis. Therefore,
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Table 15: Capacity position at the end of 4th quarter of 2001

VZ SBC BLS T Q

47703 37370 24943 26803 29479

even though the negative value of the intercept of BLS has a larger value than that of T,

it does not mean the capital/capacity position of the wireline of BLS is larger than that

of AT&T. Therefore, we can conclude that the intercept accurately explains the initial

capacity of the firms.

Next, let us compare the slopes of the regression result. The slope is the form of

(1 − Ci · A) with constant A. According to Lemma 3.5.1, this value should be always

positive. In addition, if a firm has an efficient cost structure, this slope has a large value,

and if a firm has a poor cost structure, the slope has a small value. From VZ to Q, the

slope shows a constantly decreasing trend. Possible interpretations of this result are that

if the firm has larger assets, then it has a more efficient cost structure.

106



CHAPTER V

DISCUSSION AND FUTURE WORK

5.1 Summary of the Theoretical and Numerical Findings

and Strategic Implications

We investigate the investment behavior of a firm in a telecommunications industry under

uncertain economic condition. We formulate the investment decision problem as a discrete

Markov process. By differentiating the purchase price and resale value of the capacity, we

incorporate partial reversibility of an investment that presents a range of optimal capacity

with a lower bound and an upper bound. In addition, the optimal strategy is one of the

threshold type. We are able to characterize the optimal policy regions as buying new

capacity, maintaining status quo, and divesting capacity.

By using the linearity between the optimal capacity and the economic condition, the

problem has been reduced to finding the slopes of the boundaries of BUY/KEEP and

KEEP/SELL. We perform a series of sensitivity analyses which show the relationship be-

tween the slopes of the boundaries of BUY/KEEP and KEEP/SELL and the parameters

as follows. • As cost coefficients decrease, the values of the slopes increase. If a firm’s

cost parameters become smaller, the size of capacity investment increases. In addition,

this investment behavior is amplified by large ε values because a large ε implies that the

demand for capacity is more sensitive to the price.

• As the variance of future economic condition increases, the slope of the boundary of

BUY/KEEP decreases in the case with cost depreciation. In the case without cost de-

preciation, an increase in the variance of future economic condition causes the slopes of

BUY/KEEP and KEEP/SELL boundaries to decrease and increase, respectively. As the

variance of future economic condition increases, a firm’s investment decision becomes con-

servative, which means that the activity for buying new capacity and selling off the current
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capacity is reduced which is illustrated by the increased KEEP region in the solution space.

Moreover, with cost depreciation, a firm tends to delay the investment decision for BUY to

take advantage of the cost reduction in the next period, and it tends to sell more capacity

to take advantage of a higher salvage value in this period.

• As the elasticity parameter, ε, increases, the slopes of the BUY/KEEP boundaries increase

at first and then decrease. However, within a reasonable range of ε, the slopes tend to

increase, a fact of which agrees with our intuition about a firm’s investment behavior when

the demand elasticity is large. With a large ε value, a firm can earn more revenue from

increasing capacity by lowering price as stated in the general theory in microeconomics.

With cost depreciation and a dynamics of moderately changing economic condition,

we find analytic expression for the BUY/KEEP boundaries, which establish independence

between investment decisions in adjacent period. Therefore, the multiple-time investment

problem is reduced to a one-time investment problem. In this case, the optimal increment

is determined by the realization of uncertain economic conditions. Moreover, using this

analytic expression between capacity investment and exogenous economic indicators, we

obtain a capital investment trajectory by observing the realization of an uncertain eco-

nomic indicator. In addition, the corresponding price trajectory is obtained through the

price-demand function, given the capacity movement. The resulting trajectories of the

capacity and price movement shows that market price decreases exponentially and market

demand increases exponentially. These results are consistent with the findings in existing

work by Kenyon and Cheliotis[20] and [21] and Lanning, Mitra, Wang, and Wright[25].

Next, we consider the investment behavior of a firm in an oligopolistic market. We

formulated investment decision behavior within the Cournot framework. We consider this

problem in two cases: one with symmetric firms and the other with asymmetric firms. For

each case, we show the existence and the uniqueness of the Cournot equilibrium point, and

we derive some conditions under which the solutions exist. In doing so, we investigate the

investment behavior of a firm in a competitive market and obtain the following results:

• If a firm already had a very large capacity, then a new firm is hard to enter the market
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unless the new firm’s cost structure is very efficient.

• If a firm already a considerable capacity position, then a new firm can enter the market

with smaller capacity than the incumbent firm’s capacity. However, the market share of

the new firms increases with time to that of incumbent firm then they have the same cost

structures. In the case of asymmetric firms, the new firms increases its market share with

time, but the ration of the market share between the firms in the market is dependent on

the cost structure of each firm.

In the case of asymmetric firms, we identify the condition under which a firm can enter

the market: the new firm can not have large cost factors compared with other firms. In

addition, if an incumbent firm has large cost factors compared with the new entry firm, the

incumbent firm has to restructure the system to lower the cost; otherwise, the incumbent

firm will be forced out of the market.

In both cases, we illustrate various aspects of market properties with the number of

firms in the market as follows:

• Total market capacity in use, which increases with the number of firms in the market.

• Market price, which decreases with the number of firms in the market.

• Consumer surplus, which increases with the number of firms in the market.

• Time to certain percentage of price reduction, which does not depend on the number of

firms in the market.

• Expected number of periods until first expansion, which decreases with the number of

firms in the market.

We find an analytic expression for total market capacity, market price, consumer sur-

plus, and time to a certain percentage of price reduction with limiting values as the number

of firms goes to infinity. For the expected number of periods until the first expansion, we

find an analytic expression by approximating to geometric Brownian motion. In addi-

tion, dramatic changes occur when the market structure changes from a monopoly to a

duopoly. For example, total market capacity in use is more than doubled. However, when

the number of firms in the market changes from two to more, little change takes place.
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The results are reasonable in that:

• Competition increases the supply and demand of the capacity by lowering the price.

• competition increases consumer surplus and social welfare, which much of the literature

addresses.

• Price reduction is directly related to cost depreciation, which is not modeled to be

dependent on the number of firms in the market. Therefore, the price reduction is not

dependent on the number of firms in the market.

• As competition increases, the time until the first expansion shortens.

Employing market data from the telecommunications service industry, we have carried

out a series of empirical analyses. When we incorporate sector/industry-specific economic

conditions into cost depreciation, we obtain a better fit from regression analysis than

when we use constant cost depreciation. This result is consistent with the result of the

previous work of Kou and Kou[22], who showed the growth rate of growth stock can

be represented by the R&D labor force in the market. In our case, we use the Nasdaq

Telecommunications Index as our sector/industry-specific economic condition. Its growth

rate is positively related to the R&D labor force in the telecommunications market, which

leads to technology improvement and corresponding cost depreciation. Therefore, uti-

lizing the sector/industry-specific index to calculate cost depreciation provides a better

understanding of the investment behavior of firms than simply adopting a constant cost

depreciation factor throughout the period.

For our general economic indicator, we choose Civilian Employment (Employment).

The regression result shows Employment should be a strong candidate for the economic

indicator in the proposed model. Due to the clear increasing trend with moderate volatility

of Employment, firms in the market continue to invest in capital/capacity. However,

Employment is not directly related to the telecommunications industry, but indirectly

related to it, as personal and work related Internet/mobile phone usage normally increases

as employment increases.

When we consider the data set that belongs to after-Internet-bubble period, results
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accurately explain the cost structure and the capacity position of firms at the beginning

of the period. However, the amount of data is very small, so we must continue to examine

the accuracy of this result.

From this result, we can also conclude that firms have different cost structures which

relate to the size of the firm with regard to market capitalization and assets. This rela-

tionship of cost structure to the size of the firm is intuitively correct, as larger firms are

more likely to have an efficient cost structure. In addition, we obtain all positive values for

the slopes from the regression analysis, confirming Lemma 3.5.1, which indicates that the

cost structure of a firm is not much different from that of the other firms in the market.

5.2 Future Work

In our model, we did not consider depreciation of capital/capacity, which has been con-

sidered in other literature. We believe that depreciation of the capital/capacity can be

incorporated in the proposed model without much effort. In addition, we did not consider

the lead time of the facility, so our model can easily be applied to cases in which the lead

time is very short. For example, an incumbent local phone company can use the copper

line to provide ADSL service by deploying some equipment. In addition, an Internet ser-

vice provider can purchase some fiber optic lines from a vender that already has dark fiber

underground and sells it by lighting it up, but this would not apply to a firm that lays

the new fiber optic lines and waits for the completion of the work.

Finally, we assumed that the cost depreciation can be a function of the sector/industry-

specific parameter, but we ignored the fact that this cost depreciation can differ depending

on the characteristics of a firm. If wireline service providers do not invest much in research

fund or purchase the equipment in the market, this uniform cost depreciation assumption

could prove to be true to all firms. However, if a firm spend invest a large amount of

money in research and makes technological improvements within the firm, then the cost

depreciation factor for the firm will differ from that of other firms.
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If we consider the factors of depreciation, lead time lag, and firm-specific cost depreci-

ation, the research will be more general and thus more applicable to real world investment

problems.
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