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SUMMARY

We analyze the problem of distributing units of a product from one storage location (de-

pot) to multiple retailers, which face stochastic demand. A capacitated vehicle is employed

to transport the product from the depot to the retailers. We assume that the decision maker

has available current inventory levels of the retailers and that of the vehicle. Moreover, the

vehicle can travel freely between inventory locations. Whenever a retailer is visited, the

decision maker must decide how many units of the product to leave and which location to

visit next. Because of the stochastic demand and centralized inventory control, we refer to

this problem as the stochastic vendor managed inventory(SVMI) problem.

We formulate the SVMI problem as a finite horizon non-homogeneous Markov decision

process. Based on the single-crossing property, we show how a particular retailer continues

to be a vehicle’s optimal destination as inventory levels of the retailers vary. Furthermore,

based on the super-additive and sub-additive properties, an optimal number of units of the

product to deposit at the current retailer is shown to have monotone relations with the inven-

tory levels. We provide conditions on the problem parameters that are sufficient for these

structural results. The multiperiod SVMI problem and the infinite horizon SVMI problem

with periodic reward and transition structures are analyzed. For computational efficiency,

we develop three suboptimal solution procedures, including one that takes advantage of

the structural results. Additionally, we present a numerical study of the performance mea-

sures in the SVMI problem and a case study, which involves a distribution problem at the

Coca-Cola Enterprises, Inc.

We consider four variations of the SVMI problem. These variations differ in either one

or both of the available state information and the vehicle routing procedure. Analytically,

x



we compare the optimal expected total rewards for the SVMI problem and its variations.

Our computational experience suggests a complementary relationship between the quality

of state information and the size of the set of retailers that the vehicle can visit.
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CHAPTER I

INTRODUCTION

We consider a distribution system that has a depot and multiple retailers and is managed

by a single vendor. We assume that there is only one vehicle used to distribute units of

one product from the depot to the retailers. The demand processes for the product at the

retailers are assumed to be independent of each other. At each retailer, the demand process

is stochastic, time-dependent, and history-independent. The vehicle is allowed to travel

freely between inventory locations. Once the vehicle arrives at an inventory location (the

depot or one of the retailers), the decision maker is informed of the current inventory levels

of the retailers and that of the vehicle. The decision maker then decides how many units

of the product to deposit at the current retailer, or pick up at the depot, and which location

to visit next. We refer to this problem as the stochastic vendor managed inventory(SVMI)

problem.

We formulate the SVMI problem as a finite horizon non-homogeneous Markov decision

process. Subsequently, we establish monotone relations between the optimal vehicle rout-

ing and inventory actions and inventory levels of the retailers. These results are extended

to the multiperiod SVMI problem and to the infinite horizon SVMI problem with periodic

reward and transition structures. To make the SVMI problem less computationally demand-

ing, we develop a heuristic solution procedure based on the structural results for inventory

control. There is also a heuristic procedure where the inventory decisions are based on a

base-stock inventory policy. Additionally, myopic solutions of the infinite horizon SVMI

problem are discussed. We present a numerical analysis of the performance measures in

the SVMI problem. There is also a case study, which involves a distribution problem at

the Coca-Cola Enterprises, Inc. For the case study, we establish structural results similar to
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those for the SVMI problem.

It is interesting to analyze how the quality of state information and the flexibility in

vehicle routing procedure can affect the operating performance of the distribution system.

To that goal, we consider four variations of the SVMI problem and present an analytical

comparison of their optimal expected total rewards. Based on the theoretical results, the

optimal expected total reward increases as the state information improves and/or the vehi-

cle routing procedure becomes more flexible (there are more retailers that the vehicle can

visit next). Furthermore, sample numerical results suggest a complementary relationship

between the quality of state information and the size of the set of locations that may be

visited next.

The contributions presented in this dissertation are as follows. We determine the ex-

istence of monotone optimal policies for the SVMI problem based on the single-crossing,

super-additive, and sub-additive properties. An analytical comparison of the optimal ex-

pected total rewards for different Markov decision process (MDP) models is included. The

SVMI problem has several potential applications, which we shall mention later. Further-

more, computationally useful procedures are presented. These include a heuristic solution

procedure based on the structural results and alternative value iteration algorithms for mul-

tiperiod and infinite horizon periodic Markov decision problems. Finally, further insights

for the SVMI problem are gained from the numerical study of some performance measures

in the SVMI problem.

The sections of this chapter begin with some preliminary remarks and related appli-

cations. Then there is a preview of subsequent chapters, which are the SVMI problem,

infinite horizon periodic Markov decision processes, suboptimal solutions and then varia-

tions of the SVMI problem, the case study, and the numerical study. Finally, we present

the literature review.

2



1.1 Preliminary Remarks

Integrating transportation and inventory problems in distribution logistics is not a new re-

search topic. Over twenty years ago, the two problems were treated mostly separately.

Since then the focus has shifted toward the integration of the two problems. However,

much of the obtained results are based on deterministic models. Heuristic algorithms are a

common path to the solutions, such as optimal lot sizes and shipping frequencies. On the

other hand, we study the problem in a relatively high level of detail. Our solutions specify

optimal inventory and vehicle routing actions at each decision epoch, which may occur

frequently.

The MDP model of the SVMI problem becomes much more computationally demand-

ing as the problem size increases. In this case, the growth in size of the problem comes

primarily from the increases in the number of retailers and in the capacities of the retail-

ers and the vehicle. Meanwhile, a longer planning horizon also induces more computa-

tional requirements, though not as significantly as the aforementioned factors. Despite

these computational implications, we believe the results we present here are widely appli-

cable. A vendor may have a significant number of retailers to manage; however, it likely

has also several depots or distribution centers. In that case, we may decompose the original

problem into subproblems, in which each depot serves only a limited number of retailers.

Furthermore, the vehicle routing procedure in the SVMI problem is very flexible. In many

instances, this may imply less need for the retailers to have high capacities.

In the next chapter, we show that monotone backward induction algorithms based on

the structural results reduce the run time in solving the SVMI problem by almost50%.

Furthermore, in Chapter 4, heuristic solution procedures are shown to further improve

the computational efficiency while, especially for the first heuristic algorithm, maintaining

great quality of the resulting solutions. Specifically, the expected total reward of the best

heuristic solution is only0.3% less than that of the optimal one. This suggests that more

aggressive use of the theoretical basis for that solution approach is still a viable option.
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For a distribution problem with multiple vehicles, it is reasonable to assume that we

can assign the vehicles to non-intersecting groups of retailers. The result is multiple SVMI

problems. In fact, the finite horizon in the SVMI problem is intended to represent a working

day. In some instances, two or more vehicles are not needed to service a retailer in such a

short period of time. One way to decompose the distribution problem with multiple vehicles

into multiple one-vehicle problems is to solve an instance of the assignment problem in

combinatorial optimization. This approach may not be optimal for the expected total reward

criterion. However, it allows the decision maker to consider other factors, such as travel

distances and drivers’ hours, when he or she assigns the retailers to each vehicle.

In the SVMI problem and most of its variations, we assume that current inventory infor-

mation is available. Given the current state of technology, we believe that this is a reason-

able assumption. Researchers of supply chains made this assumption as far back as several

years ago. Among other tools, electronic data interchange (EDI) has been mentioned fre-

quently in research papers as the provider of up-to-date demand information. References

include Hammond (1993) and Srinivasan et al. (1994), which discuss the benefits of EDI

in the apparel industry and manufacturing sector, respectively.

1.2 Related Applications

Possible applications of the SVMI problem include deliveries of liquids or gases to multiple

tanks at various locations. It is undesirable or even dangerous to store too much of these

products at a single location. This is especially true for a residential area or university

campus, where such storage tanks are often used. The vendor can use sophisticated gauges

to remotely monitor inventory levels of these tanks. As a result, timely deliveries of the

products to these tanks are possible.

A soft-drink company may also be interested in applying the results that we have ob-

tained for the SVMI problem. We are aware of available technology that helps the company

monitor inventory levels of vending machines and soft-drink retailers. According to Gillies

4



et al. (1997), Coca-Cola Enterprises, Inc., considered implementing such technology from

Harvest Electronics (U.S.A.) in 1996. Clearly, it is desirable for the company to avoid ex-

periencing stock-outs or having expired soda cans. With such monitoring system in place,

the vendor can profitably manage the inventory levels of soft-dink products at the retail

locations.

The SVMI problem can also be applied on a factory floor. A certain part may be needed

in multiple manufacturing cells. Because of its confined space, only a limited number of

units of the part can be stored in each cell. As a result, deliveries of the part to these cells

are necessary. It is reasonable to assume that current inventory information is available. In

this case, the uncertainty in productivity levels in the manufacturing cells gives rise to the

randomness in demand rates for the part.

Another application of the SVMI problem is in the distribution of money to banks and

automated teller machines. In this setting, current inventory levels can be made readily

available. Because of security concerns, a limited amount of money should be kept at

these retail locations. On the other hand, customers must be able to access their money on

demand. Therefore, timely deliveries of the money to these retail locations are necessary.

This distribution problem can be formulated as an instance of the SVMI problem.

1.3 Preview of the Chapters

In this section, we briefly introduce each of the upcoming chapters. The primary problem is

introduced first. It is followed by the infinite horizon periodic Markov decision processes,

suboptimal solutions, and then variations of the SVMI problem. We then preview our case

study and, finally, introduce the numerical analysis.

5



1.3.1 The Stochastic Vendor Managed Inventory Problem

The SVMI problem presented and analyzed in Chapter 2 is essentially a stochastic opti-

mization problem that integrates the vehicle routing and inventory control. Physical com-

ponents of the problem include a depot and multiple retailers. A single vehicle transports

units of a product from the depot to the retailers. We assume that the depot holds a count-

ably infinite number of units of the product. The retailers and the vehicle have finite capac-

ities. Demands at the retailers are independent and, at each retailer, demand is stochastic

and time-dependent. We formulate the SVMI problem as a finite horizon non-homogeneous

Markov decision process. At each decision epoch, the information available to the decision

maker includes current inventory levels of the retailers, the vehicle’s location, and its in-

ventory level. The decision maker decides how many units of the product to drop off at the

current retailer, or pick up at the depot, and which inventory location (the depot or one of

the retailers) the vehicle will travel to next. The vehicle can stay at its current location. Af-

ter the vehicle has arrived at its destination and current state information becomes known,

another decision epoch occurs. The problem objective is to maximize the expected total

reward, which takes both inventory and transportation costs into account.

Theoretical results for the SVMI problem include structural results for both the vehi-

cle routing and inventory control. Precisely, assuming equal travel times and a relatively

weak condition on the demand distributions, a particular retailer continues to be an optimal

vehicle’s destination (from the depot) as inventory level of that retailer decreases and/or

inventory levels of the other retailers increase. This result is based on the single-crossing

property. With regard to inventory control, we establish monotone relations between an

optimal number of units of the product to deposit at the current retailer and inventory levels

of all retailers. The assumption on travel times is not required for the results on inventory

control. Our numerical examples show that the structural results for vehicle routing and

inventory control help reduce the run time in solving the SVMI problem by almost50%.
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1.3.2 Infinite Horizon Periodic Markov Decision Processes

In Chapter 2, the SVMI problem is formulated as a finite horizon non-homogeneous Markov

decision process. By assuming that this stochastic process repeats itself infinitely, we ob-

tain the infinite horizon periodic Markov decision process. In Chapter 3, we describe this

class of Markov decision processes and study the existence and convergence of their solu-

tions. Results for the infinite horizon SVMI problem are included. In particular, we extend

the algorithms and structural results for the SVMI problem to the infinite horizon version

of the problem. Here only the expected total discounted reward criterion is considered. It

is relatively straightforward to show that the structural results for the SVMI problem are

applicable in the multiperiod SVMI problem.

1.3.3 Suboptimal Solutions of the SVMI Problem

In Chapter 4, we present three heuristic solution procedures for the SVMI problem. The

first is a solution approach based on the structural results for inventory control that we have

previously established. It gives us near-optimal solutions and reasonable computational

efficiency in solving our sample problems. In the second heuristic, inventory actions are

chosen according to a base-stock policy. The base-stock inventory levels are determined

according to a formula equivalent to that of the Newsvender’s problem. This approach

provides greater computational efficiency but lower expected total rewards of the solutions

than the first heuristic. Finally, we study the performance of myopic policies in the infinite

horizon SVMI problem.

1.3.4 Variations of the SVMI Problem

Four variations of the SVMI problem are investigated in Chapter 5. The distinguishing

features between these variations are the available state information and how the vehicle

route is selected. In particular, the first variation is the case in which there is a delay in

obtaining state information and the vehicle visits the retailers in a fixed order. The second

7



variation is similar to the first one but without the delay in state information. Meanwhile,

in the third variation, the order of the retailers may be varied but only before the vehicle

departs the depot at the start of each round of service. In all three variations, at each non-

final retailer, the vehicle has the option of making a stop at the depot for replenishment

before travelling to the next retailer in the order. Finally, we study a variation of the SVMI

problem featuring an intersection between each pair of inventory locations. At each inter-

section, the decision maker receives current state information and determines which of the

two inventory locations accessible from that intersection to visit next.

Analytically, we compare the optimal expected total rewards for the SVMI problem

and its four variations. The results are intuitive and sample numerical results confirm our

findings. Altogether, the theoretical results imply that the optimal expected total reward

increases as the state information improves and/or the vehicle routing procedure becomes

more flexible (more choices of retailers for the vehicle to visit next). Based on our com-

putational experience, we propose a hypothesis that there is a complementary relationship

between the quality of state information and the flexibility in vehicle routing procedure

towards improving the operating performance of the distribution system.

1.3.5 The Coca-Cola Distribution Problem: A Case Study

Based on our telephone conversations with the logistics team at the Coca-Cola Enterprises,

Inc., we decided to study a distribution problem facing the company. This problem shares

some characteristics with the SVMI problem and its variations. In particular, it involves

the production and packaging of soda cans at the cannery and transporting the products

to the distribution centers, which face stochastic demand. We simplify the vehicle routing

by considering only one distribution center. For the inventory control, we establish mono-

tone relations between the optimal delivery actions and inventory levels of the soft-drink

products at the distribution center.
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1.3.6 A Numerical Study of the Performance Measures in the SVMI Problem

In Chapter 7, we study how certain parameters in the SVMI problem affects the customer

service level and the optimal expected total reward. Both of these performance measures

are important in many businesses in the retail industry. The problem parameters that we

study include reward parameters, such as revenue and costs per unit, demand variance, and

distance from the depot. In order to better represent real problems, we solve almost one

thousand instances of the SVMI problem in that chapter. The results obtained are gener-

ally intuitive. In particular, we observe a positive correlation between profit margin and

customer service level. Meanwhile, demand variance has both positive and negative cor-

relations with the optimal expected total reward. Additionally, as expected, our numerical

results show that longer distance from the depot reduces both customer service level and

the optimal expected total reward.

1.4 Literature Review

Review of related literature is as follows. The structural results that we establish in Chapter

2 are based primarily on results found in Section 4.7 of Puterman (1994). In Puterman’s

book, it is shown that the optimality of monotone policies follows from the super-additive

property of the reward function. The paper by Serfozo (1976) provides the basis for this

result. Meanwhile, the single-crossing property of multivariate functions, also essential

in our structural results, belongs to the book by Topkis (1998). White and White (1989)

present a helpful review of Markov decision processes.

The paper by Yang et al. (2000) is a recent study on the stochastic vehicle routing prob-

lem that has some characteristics similar to our SVMI problem. In the distribution problem

investigated by the authors, which is referred to as the stochastic vehicle routing problem

(SVRP) with restocking, physical components include a depot and multiple retailers. The

problem objective is to determine an optimal route for the vehicle to visit the retailers and,
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in that route, the time(s) at which the vehicle goes back to the depot for replenishment be-

fore proceeding to the next retailer. Costs under consideration are the transportation cost,

the replenishment cost, and the cost of emergency replenishment when the vehicle inven-

tory is exhausted. Heuristics algorithms to identify superior routes are developed for the

single-vehicle and the multiple-vehicle cases.

The differences between the SVRP with restocking and our SVMI problem are in the

available state information and the way vehicle routes are selected. In the SVRP, the vehicle

route, which includes trip(s) to the depot for replenishment, is specified before the vehicle’s

first departure from the depot. On the other hand, in our SVMI problem, from its current

location, the vehicle is allowed to travel to any inventory location. Furthermore, current

inventory levels of all retailers are available at each decision epoch, as suppose to only that

of the current retailer in the SVRP with restocking.

The SVRP is a special case of the well-studied vehicle routing problem (VRP). Unlike

our SVMI problem, the VRP generally focuses on designing optimal delivery or collec-

tion routes, where vehicles originate from a single depot and visit multiple geographically

scattered locations. The inventory problem is usually either ignored or simplified. De-

terministic models of the VRP are investigated in Christofides (1985), Golden and Assad

(1988), and Laporte (1992). In Bertsimas (1992), the stochastic VRP is considered. In the

paper, demands are assumed to be random and the objective is to find the vehicle route that

minimizes the total distance traveled. The solution technique involves updating the vehicle

route as demand information becomes available, without re-optimization. Computational

approaches for the stochastic VRP are discussed in Bertsimas et al. (1995).

Gendreau et al. (1995) solve the stochastic VRP, in which each customer is randomly

present and has random demand. Before the set of customers is known, planned collection

routes are chosen. Then, in each collection route, absent customers are simply skipped. The

stochastic VRP is formulated as a mixed integer program and solved by an integer L-shaped

method. A tabu-search heuristic algorithm is developed for the problem in the follow-up
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paper, Gendreau et al. (1996). In a recent paper, Kleywegt et al. (2002), a variation of the

VRP, which is referred to as the inventory routing problem (IRP), is formulated as a Markov

decision process. Approximation methods for solving the stochastic IRP are proposed. For

the case that only one customer is visited on a vehicle route, namely the stochastic IRP

with direct deliveries, computational results are presented.

Previous studies of integrated inventory and transportation problems focus on deter-

ministic models. We shall refer interested readers to the survey by Bertazzi and Speranza

(1999). In the survey, the authors classify these problems into continuous-time and discrete-

time models. Further classifications are based on the numbers of origins and destinations

in the logistics problems. For instance, the SVMI problem would be regarded as a discrete

time, one origin-multiple destinations case.

The paper by Federgruen and Zipkin (1984a) was among the first studies on stochastic

models of the integrated inventory and transportation problems. In that setting, demand is

random. Results presented in the paper include an algorithm that solves the inventory and

routing problems separately and later combines the two solutions. The inventory allocation

problem is formulated as a constrained non-linear optimization problem. This problem is

solved repeatedly as part of the algorithm that solves the original integrated inventory and

transportation problem.

Chien et al. (1989) study a combined inventory allocation and vehicle routing problem

as a mixed integer program. This is the problem of delivering a limited amount of inven-

tory from a single depot to multiple customers using a fleet of vehicles. A Lagrangian-

relaxation-based procedure is developed to solve the mixed integer program. According to

the authors, the heuristic algorithm performs well in several cases.

In the paper by Cetinkaya and Lee (2000), a renewal model is used in the study of

stock replenishment and shipment scheduling for vendor managed inventory systems. In

that setting, customer demand is random. The objective is to determine the replenishment

quantity and shipment-release policy. The vehicle routing is not considered. Therefore, the
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distribution problem studied in the paper is simpler than our SVMI problem.

An application of integrated inventory and transportation problems is presented in the

paper by Dror and Ball (1987). In the paper, the authors investigate the problem of dis-

tributing heating oil among customers using a fleet of vehicles. The problem objective is

to minimize the annual delivery and stock-out costs. Both the deterministic and stochastic

demand cases are studied. A heuristic algorithm was developed based on an interchange

procedure and an LP-based assignment algorithm. According to the authors, the algorithm

provides an increase in performance of 25 percent over a previous one.

Review of relatively recent literature on the effect of information sharing in supply

chains is as follows. Gavirneni et al. (1999) consider a two-echelon capacitated supply

chain model with three levels of information sharing between the supplier and retailer.

Numerical results are used to study the relationships between the value of information

and the supplier’s capacity, inventory, and information, and the retailer’s order quantity

and demand distribution. In Lee et al. (2000), analytical results for a two-level supply

chain show that the benefits of information sharing can be significantly high when demand

is correlated over time. Cachon and Fisher (2000) study the inventory model with one

supplier and multiple retailers. Each retailer faces stationary stochastic demand. Their

numerical results suggest that information is significantly more valuable when it is used to

reduce lead time and batch size than when it is simply shared with the supplier. There are

numerous other papers on supply chains with one depot and multiple retailers. However,

none that we know of has studied the relationship between state information quality and

vehicle routing strategy in improving the operating performance of the distribution system.
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CHAPTER II

THE STOCHASTIC VENDOR MANAGED

INVENTORY PROBLEM

The integrated vehicle routing and inventory control problem that we study involves a de-

pot, multiple retailers, and a single vehicle. The vehicle is used to transport units of a

product from the depot to the retailers. We assume that the demand processes for the prod-

uct at the retailers are independent of each other. At each retailer, the demand process is

history-independent, stochastic, and time-dependent. We shall study five different models

of this distribution problem. These models differ in the available state information and/or

how the vehicle route is selected. The primary model is the topic of this chapter. In this

setting, we assume that, at each decision epoch, the decision maker has available current

inventory levels of the retailers and that of the vehicle. Furthermore, the vehicle can travel

freely between all inventory locations (the depot and the retailers). We refer to this problem

as the stochastic vendor managed inventory(SVMI) problem.

In the next two sections, we describe and formulate the SVMI problem. Preliminary

results are presented in Section 2.3. In the two sections that follow, we establish structural

results for the vehicle routing and inventory control. Sufficient conditions on the problem

parameters are provided for both sets of structural results. In Section 2.6, we mention some

applications of the structural results. Numerical examples are presented in Section 2.7.

Subsequently, we briefly discuss distribution problems with multiple vehicles.

2.1 Problem Description

We assume that the depot holds a countably infinite number of units of the product. The

vehicle and the retailers have finite capacities. A decision epoch occurs when the vehicle
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arrives at an inventory location (the depot or one of the retailers). The time between the

current and the next decision epochs equals the time required for the vehicle to travel from

its current location to its chosen destination. If the vehicle’s destination is its current loca-

tion, then the next decision epoch occurs one time unit from the current time. We assume

that the travel time between any two inventory locations is deterministic.

At each decision epoch, the decision maker is assumed to have available the demand

distribution for each retailer. These demand distributions depend only on the current time

and the time until the next decision epoch. The sufficient conditions for the structural

results to be established later in this chapter are based on this assumption. To satisfy this

assumption, the number of orders that arrive at each retailer between any two successive

decision epoches must be history-independent.

By definition, the SVMI problem has history-independent demand processes. In par-

ticular, the demand at each retailer is such that the demands in disjoint time intervals are

independent (the demands have independent increments that need not be stationary). This

allows the demand in an interval to depend on the location of the interval in time as well

as the length of the interval. For instance, the demand might be a time-dependent Poisson

process or time-dependent compound Poisson process. Our assumption rules out renewal

processes since they do not have independent increments. In Appendix B, we claim that

any demand processes that have independent increments are history-independent. We re-

mark that the history-independent property of the demand processes also implies that the

SVMI problem is Markovian.

We assume that over the finite problem horizon, the (capacitated) vehicle picks up units

of the product at the depot and deposits them at the retailers. The vehicle is not allowed

to pick up units of the product at the retailers. At each decision epoch, the decision maker

selects two actions:

1. the amount of inventory to leave (if the vehicle is at a retailer) or pick up (if the

vehicle is at the depot);
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2. the location to visit next.

We refer to the two actions above as the inventoryaction and the vehicle routingaction,

respectively. The decision maker selects these actions based on the current location of

the vehicle, the vehicle’s current inventory level, and the current inventory levels of the

retailers. Before the end of the problem horizon, at each decision epoch, we assume that

the vehicle can stay at its current location or travel to any one of the retailers or to the

depot. Thus, a vehicle routing action prior to the end of the horizon can be any one of the

locations. After the end of the horizon, the vehicle must return to the depot.

The net reward accrued between two successive decision epochs is the sum of the net

rewards for the retailers minus the transportation cost for the vehicle. The costs and revenue

generated at each retailer include a holding cost for current inventory, a revenue from filling

orders, and a penalty cost for lost orders. There is no backlogging. In Appendix A, we

discuss how our theoretical results would change if unfilled orders are backlogged. The

retailer also incurs a per-unit procurement cost when the vehicle drops off non-zero units

of the product. The net reward for each retailer is defined as the revenue minus the sum of

the penalty cost, the holding cost, and, where applicable, the procurement cost. There is no

discounting in the finite horizon problem.

2.2 Problem Formulation

We formulate the SVMI problem as follows. We assume that the depot holds a countably

infinite number of units of the product. There areN retailers, each of which has finite

capacity, and a vehicle, also with finite capacity. We defineK = {0, 1, 2, ..., N} as the

set of all inventory locations, where location0 represents the depot and locationi > 0

represents retaileri. Let qi, for i = 1, 2, ..., N , be the capacity of retaileri. Also, let qv

denote the capacity of the vehicle.

We assume that there is a route between each pair of the locations. Assume that the

problem horizon is finite and of lengthT . Let tj be the time of thejth decision epoch,
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wheret1 = 1. Let J be the random integer such thattJ ≤ T and tJ+1 > T . We note

that if the vehicle is at locationl at timetj and, from there, it travels to locationk, then

tj+1 = tj + dlk, wheredlk is the time required for the vehicle to travel froml to k. We

assume that0 < dlk < ∞, for all l, k ∈ K.

We define the state at timet asst = (x, xv, l), wherex is the vector of current inventory

levels of the retailers,xv is the current inventory level of the vehicle, andl is the current

location of the vehicle. Thus,x = (x1, x2, ..., xN), in which xi, for i = 1, 2, ..., N , is

the inventory level of retaileri. Also, l ∈ K = {0, 1, 2, ..., N}. We have thatxv ∈
Xv = {0, 1, 2, ..., qv} andx ∈ X = X1 × X2 × ... × XN , where, fori = 1, 2, ..., N ,

Xi = {0, 1, 2, ..., qi}.
Suppose the vehicle arrives at locationl at timet. The state information is immediately

revealed and the inventory and vehicle routing decisions are then made. Let integera

represent the inventory action. Ifa > 0, thena units of inventory are removed from the

vehicle and dropped off at the current location, which must be one of the retailers. No

inventory action is taken ifa = 0. On the other hand, ifa < 0, then−a units of inventory

are picked up by the vehicle at the current location, which must be the depot. We assume

that inventory cannot be removed from the retailers. We defineAt(x, xv, l) as the set of

inventory actions available at a decision epoch at timet, given that the state of the system

is st = (x, xv, l). It follows that, forl = 0,

At(x, xv, l) = {a : −(qv − xv) ≤ a ≤ 0}

and, forl > 0,

At(x, xv, l) = {a : 0 ≤ a ≤ min{ql − xl, xv}}.

The corresponding set of vehicle routing actions isKt(x, xv, l). Since the vehicle can travel

to any location,Kt(x, xv, l) = K, for t = 1, 2, ..., T . At a decision epoch after timeT , the

vehicle must return directly to the depot.

Let t be a decision epoch. We definert((x, xv, l), a, k) as the reward accrued between
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time t and timet + dlk, wherea is the inventory action taken at timet, andk is the next

location to visit. Letri
t(xi, l, k) and r̃l

t(xl, l, a, k) be the net rewards for the non-current

retaileri and the current retailerl, respectively. Forl = 0,

rt((x, xv, l), a, k) =
∑

1≤i≤N

ri
t(xi, l, k)− clk,

whereclk represents the cost of travelling froml to k, for l, k ∈ K. If l > 0,

rt((x, xv, l), a, k) = r̃l
t(xl, l, a, k) +

∑

i∈K\{0,l}
ri
t(xi, l, k)− clk.

Additional parameters are defined as follows. Fori = 1, 2, ..., N , hi is the inventory holding

cost per unit per unit time,b1
i is the revenue per unit sold,b2

i is the penalty cost per unfilled

order, andb3
i is the procurement cost per unit. We assume thathi, b

1
i , b

2
i , b

3
i > 0. Let Dl,k

t,i ,

a random variable with known distribution, represent the number of units demanded at

retaileri between timet and timet + dlk. Then,

ri
t(xi, l, k) = −hidlkxi + b1

i E[min{Dl,k
t,i , xi}]− b2

i E[max{0, Dl,k
t,i − xi}]

and, wherẽxl = xl + a,

r̃l
t(xl, l, a, k) = −hldlkx̃l + b1

l E[min{Dl,k
t,l , x̃l}]− b2

l E[max{0, Dl,k
t,l − x̃l}]− b3

l a.

By convention, we denote any timet > T by T + 1. The time-invariant terminal reward

accrued at timeT + 1 is

r̄T+1(x, xv, l) =
∑

1≤j≤N

(ej − hjτ)xj − cl0,

whereej is the per unit salvage value at retailerj, τ is the holding period before salvage

values are realized, andcl0 is the the transportation cost for the vehicle to return to the depot

from its current location. We assume thatej ≥ hjτ , for j = 1, 2, ..., N .

The transition structure is as follows. Forx = (x1, x2, ..., xN), y = (y1, y2, ..., yN) and

a decision epoch at timet < T , we definept(y|(x, xv, l), a, k) as the probability that the

17



vector of inventory levels of the retailers at timet + dlk is y, given that the state at timet is

st = (x, xv, l) and actionsa andk are taken. By independence, forl = 0,

pt(y|(x, xv, l), a, k) =
∏

1≤i≤N

pi
t(yi|xi, l, k).

For l > 0,

pt(y|(x, xv, l), a, k) = pl
t(yl|xl + a, l, k)

∏

i∈K\{0,l}
pi

t(yi|xi, l, k).

In these two equations, forj = 1, 2, ..., N , pj
t(y

′
j|x′j, l, k) is the probability that the inventory

level at retailerj at time t + dlk is y′j, given that the inventory level at this retailer after

inventory action is taken at timet is x′j. This probability can be determined from the

distribution ofDl,k
t,j . In particular, given that actionsa andk are taken at timet,

xl(t + dlk) = max{xl(t) + a−Dl,k
t,l , 0},

and fori ∈ K\{0, l},
xi(t + dlk) = max{xi(t)−Dl,k

t,i , 0}.

We note thatDl,k
t,i is history-independent. It follows that this model of the SVMI problem

is Markovian.

We callδt : X ×Xv ×K → Ãt × K̃, a decision rule, wherẽAt =
⋃

x,xv ,lAt(x, xv, l)

andK̃t =
⋃

x,xv,lKt(x, xv, l). A policy π is defined as a sequence of decision rules,π =

{δ1, δ2, ..., δT}. Any policy π ∈ Π, whereΠ is the set of all deterministic Markov policies.

Because the state and action sets are finite and the model is Markovian, we can restrict our

attention to only this set of policies. For a proof, see Section 4.4 of Puterman (1994). We

define the problem criterion as follows:

vπ
T (s1) = Eπ

s1
{
∑

1≤j≤J
rtj(stj , atj , ktj) + r̄T+1(sT+1)}

That is,vπ
T (s1) is the expected total reward over the finite time horizon, given that policy

π is followed and that the state at timet = 1 is s1. We say that a policyπ∗ is optimal if

vπ∗
T (s1) ≥ vπ

T (s1), for all π ∈ Π.
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2.3 Preliminaries

By convention, we denote any timet > T by T + 1. We write the optimality equations,

including the boundary condition, for the SVMI problem as follows:

for t ≤ T ,

ut((x, xv, l), k) = maxa∈At(x,xv,l){rt((x, xv, l), a, k)

+
∑

y

pt(y|(x, xv, l), a, k)u∗t+dlk
(y, xv − a, k)}

u∗t (x, xv, l) = maxk∈K{ut((x, xv, l), k)}

for anyt > T ,

u∗T+1(x, xv, l) = r̄T+1(x, xv, l) =
∑

1≤j≤N

(ej − hjτ)xj − cl0.

From above, we may conclude that the value function of the problem satisfies the optimality

equations. We shall refer to an optimal inventory action in the first optimality equation as

a∗(k) for the state(x, xv, l). For i ∈ {1, 2, ..., N}, let xi be the inventory level of interest.

We may writex asx = (xi, x
c
i), wherexc

i is the row vector of inventory levels at retailers

j ∈ {1, 2, ..., N}, j 6= i. As a result, the first two equations above may be written as

follows:

ut(((xi, x
c
i), xv, l), k) = maxa∈At((xi,xc

i ),xv ,l){rt(((xi, x
c
i), xv, l), a, k)

+
∑

(yi,yc
i )

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k)u∗t+dlk

((yi, y
c
i ), xv − a, k)}

(2.3.1)

u∗t ((xi, x
c
i), xv, l) = maxk∈K{ut(((xi, x

c
i), xv, l), k)} (2.3.2)

Since the ranges ofyi andyc
i are independent, we may write equation 2.3.1 as

ut(((xi, x
c
i), xv, l), k) = maxa∈At((xi,xc

i ),xv ,l){rt(((xi, x
c
i), xv, l), a, k)

+
∑
yc

i

∑
yi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k)u∗t+dlk

((yi, y
c
i ), xv − a, k)}.

(2.3.3)
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Let wt(((xi, x
c
i), xv, l), a, k) be defined as follows:

wt(((xi, x
c
i),xv, l), a, k) = rt(((xi, x

c
i), xv, l), a, k)

+
∑
yc

i

∑
yi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k)u∗t+dlk

((yi, y
c
i ), xv − a, k)

Consequently, equation 2.3.3 is the same as

ut(((xi, x
c
i), xv, l), k) = maxa∈At((xi,xc

i ),xv,l){wt(((xi, x
c
i), xv, l), a, k)}. (2.3.4)

For the rest of this section, we state definitions, properties, and concepts that will be

important in establishing the structural results for the SVMI problem. We say that¹ is a

binary relation on a setV if, for all v′, v′′ ∈ V , the statementv′ ¹ v′′ is either true or false.

If v′ ¹ v′′ andv′ 6= v′′, we writev′ ≺ v′′. A partially ordered set is defined next.

Definition 2.3.1. A partially ordered setis a setV on which there is a binary relation¹
that has the following properties:

1. v ¹ v, for all v ∈ V ,

2. v′ ¹ v′′ andv′′ ¹ v′ imply thatv′ = v′′, for all v′, v′′ ∈ V , and

3. v′ ¹ v′′ andv′′ ¹ v′′′ imply thatv′ ¹ v′′′, for all v′, v′′, v′′′ ∈ V .

The single-crossing property is defined next. This definition is derived from the one in

Topkis (1998). LetR denote the set of real numbers.

Definition 2.3.2. (Topkis) Assume thatV ,T are partially ordered sets with binary relations

¹1 and¹2, respectively. Letf(v, t) be a function from subsetS of V × T into R. Then

f(v, t) satisfies the single-crossing propertyin (v, t) on S if and only if, for allv′, v′′ ∈ V

and t′, t′′ ∈ T with v′ ≺1 v′′ and t′ ≺2 t′′, and{v′, v′′} × {t′, t′′} being a subset ofS, the

following two conditions hold:

f(v′, t′) ≤ f(v′′, t′) ⇒ f(v′, t′′) ≤ f(v′′, t′′)

f(v′, t′) < f(v′′, t′) ⇒ f(v′, t′′) < f(v′′, t′′)
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We may write the two conditions above as follows:

f(v′, t′) ≤ (<)f(v′′, t′) ⇒ f(v′, t′′) ≤ (<)f(v′′, t′′),

which is equivalent to

f(v′, t′′) ≥ (>)f(v′′, t′′) ⇒ f(v′, t′) ≥ (>)f(v′′, t′).

Throughout the next section and beyond, we refer to the super-additive property, which

is defined below. This definition is the same as the one given in Section 4.7 of Puterman

(1994).

Definition 2.3.3. (Puterman) Assume thatV ,T are partially ordered sets with binary rela-

tions¹1 and¹2, respectively. Letg(v, t) be a function fromV × T into R. We say that

g(v, t) is super-additivein (v, t) on V × T if and only if, for allv′, v′′ ∈ V and t′, t′′ ∈ T

with v′ ≺1 v′′ andt′ ≺2 t′′,

g(v′, t′) + g(v′′, t′′) ≥ g(v′, t′′) + g(v′′, t′). (2.3.5)

When the inequality 2.3.5 is reversed, we say thatg(v, t) is sub-additivein (v, t) on

V × T . Clearly, the inequality 2.3.5 is the same as

g(v′′, t′′)− g(v′, t′′) ≥ g(v′′, t′)− g(v′, t′).

This proves the following lemma.

Lemma 2.3.4.If g(v, t) is super-additive in(v, t) onV ×T , theng(v, t) satisfies the single-

crossing property in(v, t) onV × T .

The following lemma establishes useful results on the single-crossing property and the

super-additive property.

Lemma 2.3.5. Assume thatV and T are partially ordered sets with binary relations¹1

and¹2, respectively. LetA be a finite set. Also, assume that the functionf : (V ×T ) → R

has the single-crossing property in(v, t) on V × T . Finally, assume that the function

g : (V × T ) → R is super-additive in(v, t) onV × T . Then,
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1. αf(v, t), with α > 0, and

2. f(v, t) + g(v, t),

have the single-crossing property in(v, t) onV × T .

Proof. First,αf(v, t), with α > 0, has the single-crossing property. This follows from the

definition of single-crossing property.

We now show thatf(v, t) + g(v, t) has the single-crossing property. Becausef(v, t) has

the single-crossing property, the following conditions hold forv′, v′′ ∈ V andt′, t′′ ∈ T

such thatv′ ≺1 v′′ andt′ ≺2 t′′:

f(v′, t′) ≤ f(v′′, t′) ⇒ f(v′, t′′) ≤ f(v′′, t′′) (2.3.6)

f(v′, t′) < f(v′′, t′) ⇒ f(v′, t′′) < f(v′′, t′′) (2.3.7)

Also, g(v, t) is super-additive in(v, t) onV ×T means that the following inequality holds:

g(v′, t′) + g(v′′, t′′) ≥ g(v′, t′′) + g(v′′, t′) (2.3.8)

This is equivalent to

g(v′′, t′)− g(v′, t′) ≥ g(v′′, t′′)− g(v′, t′′). (2.3.9)

Conditions (2.3.6) and (2.3.9) imply the following result:

f(v′, t′) + g(v′, t′) ≤ f(v′′, t′) + g(v′′, t′) ⇒ f(v′, t′′) + g(v′, t′′) ≤ f(v′′, t′′) + g(v′′, t′′)

(2.3.10)

Similarly, (2.3.7) and (2.3.9) imply the next result:

f(v′, t′) + g(v′, t′) < f(v′′, t′) + g(v′′, t′) ⇒ f(v′, t′′) + g(v′, t′′) < f(v′′, t′′) + g(v′′, t′′)

(2.3.11)

From the last two results, it follows thatf(v, t) + g(v, t) has the single-crossing property.

22



Lemma 2.3.6 and Lemma 2.3.7 state the key results of super-additive property and

sub-additive property, respectively. The following lemma is a variation of Lemma 4.7.1 in

Puterman (1994).

Lemma 2.3.6. Let V and T be partially ordered sets with binary relations¹1 and¹2,

respectively. Furthermore, the setT is finite. Assume thatg(v, t) is a function fromV × T

into R and thatg(v, t) has super-additive property in(v, t) on V × T . For eachv ∈ V ,

assume thatmaxt∈T g(v, t) exists. Then

max{argmaxt∈T g(v′′, t)} ≥ max{argmaxt∈T g(v′, t)},

for all v′ ¹1 v′′, v′, v′′ ∈ V .

Proof. Since the setT is finite,max{argmaxt∈T g(v, t)} exists for allv ∈ V . Let f(v) =

max{argmaxt∈T g(v, t)}. Forv′ ¹1 v′′ andt′ ¹2 f(v′), by the super-additive property of

g(v, t), we have that

g(v′, f(v′))− g(v′, t′) ≥ 0

and that

g(v′, t′) + g(v′′, f(v′)) ≥ g(v′, f(v′)) + g(v′′, t′).

The second inequality is the same as

g(v′′, f(v′)) ≥ [g(v′, f(v′))− g(v′, t′)] + g(v′′, t′).

From the first inequality above, it follows that

g(v′′, f(v′)) ≥ g(v′′, t′),

for all t′ ¹2 f(v′). As a result,f(v′′) ≥ f(v′). This is the same as the assertion of the

lemma.

Lemma 2.3.7. Let V and T be partially ordered sets with binary relations¹1 and¹2,

respectively. Furthermore, the setT is finite. Assume that̃g(v, t) is a function fromV × T
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into R and thatg̃(v, t) has sub-additive property in(v, t) on V × T . For eachv ∈ V ,

assume thatmaxt∈T g̃(v, t) exists. Then

min{argmaxt∈T g̃(v′, t)} ≥ min{argmaxt∈T g̃(v′′, t)},

for all v′ ¹1 v′′, v′, v′′ ∈ V .

Proof. Without loss of generality, let̃g(v, t) = −g(v, t), whereg(v, t) is defined in the

previous lemma. By an analogous proof to that of the previous lemma, the desired result

holds.

As shown below, the ordering of vehicle destinations, excluding the depot, is defined

with respect to a particular retailer.

Definition 2.3.8. For eachi ∈ {1, 2, ..., N} andk′, k′′ ∈ K\{0}, we say thatk′ ≺i k′′ if

and only ifk′ ∈ K ′
i andk′′ ∈ K ′′

i , whereK ′
i = {i} andK ′′

i = K\{0, i}.

The following definition of the single-crossing property shall be used in the structural

results for vehicle routing.

Definition 2.3.9. For eachi ∈ {1, 2, ..., N}, we say that a functionf : K ×Xi → R has

single-crossing property w.r.t. retaileri in (k, xi) on K × Xi if and only if, for each pair

of k′, k′′ ∈ K such thatk′ ≺i k′′ and for each pair ofx′i, x
′′
i ∈ Xi such thatx′i ≤ x′′i , the

following condition holds:

f(k′, x′i) ≤ (<)f(k′′, x′i) ⇒ f(k′, x′′i ) ≤ (<)f(k′′, x′′i ).

The following well-known lemma, from Section 4.7 of Puterman (1994) among others,

will be referred to frequently later in this chapter.

Lemma 2.3.10.Assume thatvi+1 ≥ vi, for i = {1, 2, ..., M − 1} and that, for real-valued

and non-negative sequencesαi andα′i,
∑

k≤i≤M αi ≥
∑

k≤i≤M α′i, for all k, with equality

holding fork = 0. Then
∑

1≤i≤M αivi ≥
∑

1≤i≤M α′ivi.
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Finally, we define a property that will be part of the sufficient conditions for a structure

in the optimal inventory actions.

Definition 2.3.11. For a discrete random variableZ having {0, 1, 2, ...} as its domain

space, we say thatZ has non-increasing probability mass function if and only if, for any

non-negative integersz1, z2 such thatz1 ≤ z2, Pr(Z = z1) ≥ Pr(Z = z2).

2.4 Structural Results for Vehicle Routing

We now examine how the optimal destination of the vehicle varies with inventory levels

of the retailers, assuming all travel times are identical. We begin by making the following

assumption.

Assumption 2.4.1.For all l, k ∈ K, dlk = 1.

We remark that there is no loss of generality between this assumption and the assump-

tion that, for alll, k ∈ K, dlk = τ̄ , whereτ̄ is a positive real number. Assumption 2.4.1

applies to this section only. Numerical examples that suggest the importance of this as-

sumption in the structural results for vehicle routing are presented in Appendix C.

Next we establish an interesting relation between the optimal destination of the vehicle

(from the depot) and inventory levels of the retailers. First, in Subsection 2.4.1, the struc-

tural results and their sufficient conditions are presented. Then, in Subsection 2.4.2, we

show how these conditions hold in terms of the parameters of the SVMI problem. Finally,

we summarize the results of the first two subsections.

2.4.1 Sufficient Conditions for the Structural Results

Proposition 2.4.2 specifies the property of the optimal value function which implies the

desired structure in the optimal vehicle routing actions when the vehicle is at the depot.

Proposition 2.4.2.Let i ∈ {1, 2, ..., N} and l = 0, assume thatut(((xi, x
c
i), xv, l), k) has

the single-crossing property w.r.t. retaileri in (k, xi) on K × Xi. At the depot, if an
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optimal (vehicle routing) action for the states′′t = ((x′′i , x
c
i), xv, l) is to go to retaileri, then

an optimal action for states′t = ((x′i, x
c
i), xv, l), in whichx′i ≤ x′′i , is to go to retaileri or

the depot.

Proof. By assumption, for each pair ofx′i, x
′′
i ∈ Xi such thatx′i ≤ x′′i and for each pair of

k′, k′′ ∈ K\{0} such thatk′ ≺i k′′, the following condition holds:

ut(((x
′′
i , x

c
i), xv, l), k

′) ≥ (>)ut(((x
′′
i , x

c
i), xv, l), k

′′)

⇒ ut(((x
′
i, x

c
i), xv, l), k

′) ≥ (>)ut(((x
′
i, x

c
i), xv, l), k

′′),

wherek′ = i andk′′ ∈ K\{0, i}. That is, retaileri is still preferred to other retailers, as

the vehicle’s destination, when its inventory level decreases. The depot is not part of this

argument. So it could still be an optimal destination.

The next proposition specifies the structural result for vehicle routing when the optimal

value function has the single-crossing property w.r.t. all retailers.

Proposition 2.4.3.For l = 0 and for alln ∈ {1, 2, ..., N}, assume thatut(((xn, xc
n), xv, l), k)

has the single-crossing property w.r.t. retailern in (k, xn) onK ×Xn. At the depot, if, for

an i ∈ {1, 2, ..., N}, an optimal (vehicle routing) action for the states̃t = ((x̃i, x̃
c
i), xv, l)

is to go to retaileri, then an optimal action for statest = ((xi, x
c
i), xv, l), in whichxi ≤ x̃i

andxj ≥ x̃j, for all j ∈ {1, 2, ..., N}, j 6= i, is to go to retaileri or the depot.

Proof. By assumption, for alln ∈ {1, 2, ..., N}, for each pair ofx′n, x
′′
n ∈ Xn such that

x′n ≤ x′′n and for each pair ofk′, k′′ ∈ K\{0} such thatk′ ≺n k′′, the following condition

holds:

ut(((x
′
n, x

c
n), xv, l), k

′) ≤ (<)ut(((x
′
n, xc

n), xv, l), k
′′)

⇒ ut(((x
′′
n, xc

n), xv, l), k
′) ≤ (<)ut(((x

′′
n, xc

n), xv, l), k
′′)

Equivalently, we may write the above condition as

ut(((x
′′
n, xc

n), xv, l), k
′) ≥ (>)ut(((x

′′
n, xc

n), xv, l), k
′′)

⇒ ut(((x
′
n, x

c
n), xv, l), k

′) ≥ (>)ut(((x
′
n, x

c
n), xv, l), k

′′).
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Let n = j, for all j ∈ {1, 2, ..., N}, j 6= i, in the first condition above, and letn = i

in the second condition. Let us recall thatk′ ≺n k′′ if and only if k′ = n and k′′ ∈
K ′′

n = K\{0, n}. This implies that, fori, j ∈ {1, 2, ..., N}, ⋂
j 6=i K

′′
j = {i}. Precisely, the

first condition states that as inventory levels of retailersj ∈ {1, 2, ..., N}, j 6= i increase,

retaileri is still preferred to other retailers as the vehicle’s destination. From the second

condition, in whichn = i, it follows that retaileri continues to be the preferred destination

as inventory level of retaileri decreases. The depot is not part of these arguments. So it

could still be an optimal destination.

Proposition 2.4.4 specifies sufficient conditions for the optimal value function to be

non-decreasing inxi. This result is equivalent to Proposition 4.7.3 in Puterman’s book.

Proposition 2.4.4.Let i ∈ {1, 2, ..., N}, assume that the following conditions are satisfied:

1. rt(((xi, x
c
i), xv, l), k) is non-decreasing inxi, for all a ∈ At((xi, x

c
i), xv, l), for all

k ∈ K, and fort = 1, 2, ..., T ,

2. r̄T+1((xi, x
c
i), xv, l) is non-decreasing inxi, and

3.
∑

m≤yi≤qi
pt((yi, y

c
i )|((xi, x

c
i), xv, l), a, k) is non-decreasing inxi, for all m ∈ Xi,

for all a ∈ At((xi, x
c
i), xv, l), for all k ∈ K, for all yc

i , and fort = 1, 2, ..., T .

Thenu∗t ((xi, x
c
i), xv, l) is non-decreasing inxi, for t = 1, 2, ..., T .

Proof. We use induction to prove the proposition. At the end of the horizon,

u∗T+1((xi, x
c
i), xv, l) = r̄T+1((xi, x

c
i), xv, l).

By (2), u∗T+1((xi, x
c
i), xv, l) is non-decreasing inxi. Assume thatu∗n((xi, x

c
i), xv, l) is non-

decreasing inxi, for n = T, T − 1, ..., t + 1. We shall show thatu∗t ((xi, x
c
i), xv, l) is

non-decreasing inxi. This will complete the proof of the proposition.

Let us recall the optimality equations 2.3.3 and 2.3.4. If we can show thatut(((xi, x
c
i), xv, l), k)

is non-decreasing inxi, for all k ∈ K, thenu∗t ((xi, x
c
i), xv, l) is non-decreasing inxi. Let
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a∗(k) ∈ At((xi, x
c
i), xv, l) be such that the following equation holds:

ut(((xi, x
c
i), xv, l), k) = rt(((xi, x

c
i), xv, l), a

∗(k), k)

+
∑
yc

i

∑
yi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a

∗(k), k)u∗t+1((yi, y
c
i ), xv − a∗(k), k)

Condition (3) states that
∑

m≤yi≤qi
pt((yi, y

c
i )|((xi, x

c
i), xv, l), a, k) is non-decreasing inxi,

for all m ∈ Xi anda ∈ At((xi, x
c
i), xv, l). From the induction hypothesis,u∗t+1((xi, x

c
i), xv, l)

is non-decreasing inxi, for all k ∈ K. Lemma 2.3.10 then implies that

∑
yi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a

∗(k), k)u∗t+1((yi, y
c
i ), xv − a∗(k), k)

is non-decreasing inxi. Since this result holds for allyc
i , it follows that

∑
yc

i

∑
yi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a

∗(k), k)u∗t+1((yi, y
c
i ), xv − a∗(k), k)

is non-decreasing inxi. Because the sum of two non-decreasing functions is non-decreasing,

this result and condition (1) above imply thatut(((xi, x
c
i), xv, l), k) is non-decreasing inxi,

for all k ∈ K. This completes the proof of the proposition.

We now show why the vehicle should be replenished to its full capacity. This result is

important in establishing the single-crossing property (w.r.t. retaileri in (k, xi) onK×Xi)

of ut(((xi, x
c
i), xv, l), k), for l = 0. We remark that this result holds without Assumption

2.4.1.

Proposition 2.4.5.At the depot, it is always optimal to refill the vehicle to its full capacity.

Proof. We note that, fori ∈ {1, 2, ..., N},

1. rt(((xi, x
c
i), xv, l), a, k),

2. r̄T+1((xi, x
c
i), xv, l), and

3.
∑

m≤yi≤qi
pt((yi, y

c
i )|((xi, x

c
i), xv, l), a, k), for all yc

i ,
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are independent inxv. These results can be verified by inspecting the definitions of

rt(((xi, x
c
i), xv, l), a, k), r̄T+1((xi, x

c
i), xv, l), and pt((yi, y

c
i )|((xi, x

c
i), xv, l), a, k) in Sec-

tion 2.2. Furthermore, forl > 0, the setAt((xi, x
c
i), xv, l) is non-decreasing inxv. In

particular, forx′′v ≥ x′v,

At((xi, x
c
i), x

′
v, l) ⊆ At((xi, x

c
i), x

′′
v, l).

At the depot, the quantities in (1), (2), and (3) are independent ofa. For these reasons, it is

relatively straight-forward to show, by induction, thatu∗t ((xi, x
c
i), xv, l) is non-decreasing

in xv, for t = 1, 2, ..., T .

Consider the first optimality equation forl = 0. At the depot, the quantities in (1), (2), and

(3) are independent ofa. Furthermore,u∗t+dlk
(y, xv−a, k) is non-decreasing inxv−a. The

assertion of the proposition follows.

The next theorem specifies the sufficient conditions that imply the desired structural

result in the vehicle routing problem.

Theorem 2.4.6.Let i ∈ {1, 2, ..., N} and l = 0, assume that the conditions of Proposi-

tion 2.4.4 hold. Furthermore, assume thatrt(((xi, x
c
i), xv, l), a, k) has the single-crossing

property w.r.t. retaileri in (k, xi) on K ×Xi, for all a ∈ At((xi, x
c
i), xv, l). If an optimal

(vehicle routing) action for the states′′t = ((x′′i , x
c
i), xv, l) is to go retaileri, then an optimal

action for states′t = ((x′i, x
c
i), xv, l), in whichx′i ≤ x′′i , is to go to retaileri or the depot.

Proof. Consider the optimality equation 2.3.4. If we can show thatwt(((xi, x
c
i), xv, l), a, k)

has the single-crossing property w.r.t. retaileri in (k, xi) onK×Xi, for all a ∈ At((xi, x
c
i), xv, l),

thenut(((xi, x
c
i), xv, l), k) has the same property. This is because, by Proposition 2.4.5, the

only optimal inventory action at the depot is−(qv − xv), which is independent ofk andxi.

The assertion of the theorem then follows from Proposition 2.4.2.

When its conditions are satisfied, Proposition 2.4.4 implies thatu∗t ((xi, x
c
i), xv, l) is non-

decreasing inxi, for t = 1, 2, ..., T . Furthermore, by Assumption 2.4.1,

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k)
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is independent ink. It can be shown that these two results and Lemma 2.3.10 imply that

∑
yc

i

∑
yi

pt((yi, y
c
i )|(xi, x

c
i), xv, l), a, k)u∗t+1((yi, y

c
i ), xv − a, k)

is super-additive in(k, xi) onK ×Xi.

By assumption,rt((xi, x
c
i), xv, l), a, k) has the single-crossing property w.r.t. retaileri in

(k, xi) onK×Xi, for all a ∈ At((xi, x
c
i), xv, l). By Lemma 2.3.4 and Lemma 2.3.5(2), we

have thatwt(((xi, x
c
i), xv, l), a, k) has the single-crossing property w.r.t. retaileri in (k, xi)

onK ×Xi, for all a ∈ At((xi, x
c
i), xv, l). This completes the proof of the theorem.

When the conditions of Theorem 2.4.6 are satisfied for alli ∈ {1, 2, ..., N}, the condi-

tions of Proposition 2.4.3 hold and its result follows. Theorem 2.4.7, stated here without

proof, formalizes this statement.

Theorem 2.4.7.For l = 0, assume that the conditions of Proposition 2.4.4 hold for alli ∈
{1, 2, ..., N}. Furthermore, assume that, for alli ∈ {1, 2, ..., N}, rt(((xi, x

c
i), xv, l), a, k)

has the single-crossing property w.r.t. retaileri in (k, xi) onK×Xi, for all a ∈ At((xi, x
c
i), xv, l).

If an optimal (vehicle routing) action for the statẽst = ((x̃i, x̃
c
i), xv, l) is to go retaileri,

then an optimal action for statest = ((xi, x
c
i), xv, l), in whichxi ≤ x̃i andxj ≥ x̃j, for all

j ∈ {1, 2, ..., N}, j 6= i, is to go to retaileri or the depot.

2.4.2 Sufficient Conditions on the Problem Parameters

We have presented sufficient conditions for the structural results for vehicle routing. It is

relatively straightforward to show that, with few additional assumptions, the parameters of

the SVMI problem satisfy these conditions. The following corollary shows that the reward

structure of the SVMI problem has the super-additivity property.

Corollary 2.4.8. For all i ∈ {1, 2, ..., N}, rt(((xi, x
c
i), xv, l), a, k) is super-additive in

(k, xi) onK ×Xi, for all a ∈ At((xi, x
c
i), xv, l), for all k ∈ K, and fort = 1, 2, ..., T .
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Proof. For l = 0,

rt(((xi, x
c
i), xv, l), a, k) =

∑
1≤j≤N

rj
t (xj, l, k)− clk,

and forl > 0,

rt(((xi, x
c
i), xv, l), a, k) = r̃l

t(xl, l, a, k) +
∑

j∈K\{0,l}
rj
t (xj, l, k)− clk.

By Assumption 2.4.1,rj
t (xj, l, k) andr̃l

t(xl, l, a, k) are independent ink. Moreover,clk is

independent ofxi. Therefore,rj
t (xj, l, k), r̃l

t(xl, l, a, k), and−clk have the super-additive

property and, as a result, so does their sum. The assertion of the proposition follows.

Note that, by Lemma 2.3.4, the above result implies thatrt(((xi, x
c
i), xv, l), a, k) has the

single-crossing property in(k, xi) onK×Xi. The next three results, i.e., Proposition 2.4.9,

Corollary 2.4.10, and Corollary 2.4.11, hold without Assumption 2.4.1. LetF̄ l,k
t,i (xi) = 1−

F l,k
t,i (xi), for xi ∈ Xi, whereF l,k

t,i denotes the cumulative probability distribution function of

Dl,k
t,i . The following proposition specifies a sufficient condition forrt(((xi, x

c
i), xv, l), a, k)

to be non-decreasing inxi.

Proposition 2.4.9. Let i ∈ {1, 2, ..., N}, assume that(b1
i + b2

i )F̄
l,k
t,i (qi) ≥ hidlk. Then,

rt(((xi, x
c
i), xv, l), a, k) is non-decreasing inxi, for all a ∈ At((xi, x

c
i), xv, l).

Proof. We shall show that if(b1
i + b2

i )F̄
i
t,k(qi) ≥ hidlk, thenri

t(xi, l, k) andr̃i
t(xi, l, a, k) are

non-decreasing inxi. From this and the definition ofrt(((xi, x
c
i), xv, l), a, k), the assertion

of the proposition then follows. Letρ(d) be the probability that the number of orders that

arrive at retaileri, from timet to timet + dlk, is d. Then,

ri
t(xi, l, k) = −hidlkxi + b1

i E[min{Dl,k
t,i , xi}]− b2

i E[max{0, Dl,k
t,i − xi}]

= −hidlkxi + b1
i

∑

0≤d<∞
ρ(d)(min{d, xi})− b2

i

∑

0≤d<∞
ρ(d)(max{0, d− xi})

= −hidlkxi + b1
i

∑

0≤d<∞
ρ(d)[min{d, xi} − (b2

i /b
1
i )max{0, d− xi}]

= −hidlkxi + b1
i

∑

0≤d<∞
ρ(d)[min{d, xi} −max{0, (b2

i /b
1
i )(d− xi)}],
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and

ri
t(xi + 1, l, k)− ri

t(xi, l, k) = b1
i

∑

xi≤d<∞
ρ(d)[1 + (b2

i /b
1
i )]− hidlk

= (b1
i + b2

i )
∑

xi≤d<∞
ρ(d)− hidlk

= (b1
i + b2

i )F̄
l,k
t,i (xi)− hidlk.

Note that if (b1
i + b2

i )F̄
l,k
t,i (qi) ≥ hidlk, then(b1

i + b2
i )F̄

l,k
t,i (xi) ≥ hidlk, for all xi ∈ Xi.

Therefore,ri
t(xi+1, l, k)−ri

t(xi, l, k) ≥ 0, for all xi ∈ Xi. That is,(b1
i +b2

i )F̄
l,k
t,i (qi) ≥ hidlk

implies thatri
t(xi, l, k) is non-decreasing inxi. Similarly, it can be shown that

r̃i
t(xi + 1, l, a, k)− r̃i

t(xi, l, a, k) = (b1
i + b2

i )F̄
l,k
t,i (xi)− hidlk.

So the same condition applies here. This completes the proof of the proposition.

To interpret the condition of Proposition 2.4.9, we rewrite it as

F̄ l,k
t,i (qi) ≥ hidlk/(b

1
i + b2

i ).

We observe that the left hand side of the above inequality is the probability that the demand

at retaileri from timet to timet+dlk exceeds the capacity of the retailer. On the right hand

side, the numerator and denominator represents the potential cost and reward, respectively,

of having one more unit of inventory at retaileri. In general, the quantity on the right hand

side is very small.

Corollary 2.4.10 shows that the transition structure of the SVMI problem has the desired

property.

Corollary 2.4.10. For all i ∈ {1, 2, ..., N}, ∑
m≤yi≤qi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k) is

non-decreasing inxi, for all a ∈ At((xi, x
c
i), xv, l), k ∈ K, yc

i , m, and fort = 1, 2, ..., T .

Proof. For i ∈ K\{0, l}, it can be shown that

∑
m≤yi≤qi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k) = F l,k

t,i (xi −m).
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Similarly, for the casei = l,

∑
m≤yi≤qi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k) = F l,k

t,i (xi + a−m).

Clearly, in both cases, the result follows.

The following corollary proves the non-decreasing property of the terminal reward.

Corollary 2.4.11. r̄T+1((xi, x
c
i), xv, l) is non-decreasing inxi.

Proof. By definition,r̄T+1((xi, x
c
i), xv, l) =

∑
1≤j≤N(ej−hjτ)xj− cl0. The result follows

from the assumptionej ≥ hjτ , for all j ∈ {1, 2, ..., N}.

Given that its condition is satisfied, Proposition 2.4.9, along with Corollary 2.4.10, and

Corollary 2.4.11 imply the conditions of Proposition 2.4.4. This result and Corollary 2.4.8

then imply the conditions of Theorem 2.4.6. We may conclude that, with few additional

assumptions, the parameters of the SVMI problem satisfy the sufficient conditions for the

structural results for vehicle routing.

2.4.3 Summary of the Structural Results

Theorem 2.4.12 summarizes the structural results for vehicle routing. This result is based

on Assumption 2.4.1, and the results in Subsection 2.4.1 and Subsection 2.4.2.

Theorem 2.4.12.For all l, k ∈ K, let dlk = 1. Furthermore, for alln ∈ {1, 2, ..., N},
assume that

(b1
n + b2

n)F̄ l,k
t,n(qn) ≥ hndlk,

for all l, k ∈ K, and for t = 1, 2, ..., T . At the depot, if, for ani ∈ {1, 2, ..., N}, an

optimal (vehicle routing) action for the statẽst = ((x̃i, x̃
c
i), xv, l) is to go to retaileri, then

an optimal action for statest = ((xi, x
c
i), xv, l), in whichxi ≤ x̃i and xj ≥ x̃j, for all

j ∈ {1, 2, ..., N}, j 6= i, is to go to retaileri or the depot.
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In summary, the main structural result for vehicle routing states (informally) that, when

the vehicle is at the depot, a particular retailer continues to be preferred to other retailers

as the vehicle’s destination if the inventory level of that retailer decreases and/or inventory

levels of the other retailers increase.

2.5 Structural Results for Inventory Control

We now establish monotone relations between the optimal inventory action and inventory

levels of the retailers. In particular, we show that the optimal number of units to deposit at

the current retailer is non-decreasing in inventory levels of the other retailers. Additionally,

with a stronger assumption on the demand distribution at the current retailer, the optimal

inventory action is shown to be non-increasing in inventory level of the current retailer.

Note that Assumption 2.4.1 is not applied here, and hence, forl, k ∈ K, we allow the

travel time from locationl to locationk, dlk, to be dependent onl andk.

We first present sufficient conditions for the structural results for inventory control. In

the subsection that follows, we show how the parameters of the SVMI problem satisfy these

conditions. Finally, in Subsection 2.5.3, we summarize the structural results for inventory

control.

2.5.1 Sufficient Conditions for the Structural Results

The following proposition establishes the first structural result for inventory control.

Proposition 2.5.1. Let l ∈ {1, 2, ..., N}, assume thatwt(((xi, x
c
i), xv, l), a, k) is super-

additive in(xi, a) onXi × At((xi, x
c
i), xv, l), for an i ∈ K\{0, l}. Then there existsa∗(k)

for the statest = ((xi, x
c
i), xv, l) which is non-decreasing inxi.

Proof. By assumption, for each pair ofx′i, x
′′
i ∈ Xi such thatx′i ≤ x′′i and for each pair of

ã, a ∈ {At((x
′
i, x

c
i), xv, l) ∩ At((x

′′
i , x

c
i), xv, l)} such that̃a ≥ a, the following inequality
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holds:

wt(((x
′′
i , x

c
i), xv, l), ã, k)− wt(((x

′′
i , x

c
i), xv, l), a, k)

≥ wt(((x
′
i, x

c
i), xv, l), ã, k)− wt(((x

′
i, x

c
i), xv, l), a, k)

By Lemma 2.3.6, for allx′′i ≥ x′i,

max{argmaxa∈At((x′′i ,xc
i ),xv ,l)wt(((x

′′
i , x

c
i), xv, l), a, k)}

≥ max{argmaxa∈At((x′i,x
c
i ),xv,l)wt(((x

′
i, x

c
i), xv, l), a, k)}.

Note thatAt((x
′
i, x

c
i), xv, l) = At((x

′′
i , x

c
i), xv, l). The assertion of the proposition follows.

Corollary 2.5.2, stated here without proof, follows from Proposition 2.5.1 when its

condition holds for alli ∈ K\{0, l}.

Corollary 2.5.2. Letl ∈ {1, 2, ..., N}, assume thatwt(((xi, x
c
i), xv, l), a, k) is super-additive

in (xi, a), for all i ∈ K\{0, l}. Then there existsa∗(k) for the statest = ((xi, x
c
i), xv, l)

which is non-decreasing inxc
i .

Proposition 2.5.3 specifies the sufficient conditions for the optimal value function,

u∗t ((xi, x
c
i), xv, l), to be non-decreasing inxi. This result is analogous to Proposition 4.7.3

in Puterman (1994).

Proposition 2.5.3.Let i ∈ {1, 2, ..., N}, assume that the following conditions are satisfied:

1. rt(((xi, x
c
i), xv, l), k) is non-decreasing inxi, for all a ∈ At((xi, x

c
i), xv, l), for all

k ∈ K, and fort = 1, 2, ..., T ,

2. r̄T+1((xi, x
c
i), xv, l) is non-decreasing inxi, and

3.
∑

m≤yi≤qi
pt((yi, y

c
i )|((xi, x

c
i), xv, l), a, k) is non-decreasing inxi, for all m ∈ Xi,

for all a ∈ At((xi, x
c
i), xv, l), for all k ∈ K, for all yc

i , and fort = 1, 2, ..., T .

Thenu∗t ((xi, x
c
i), xv, l) is non-decreasing inxi, for t = 1, 2, ..., T .
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Proof. The proof is analogous to that of Proposition 2.4.4. In particular, Assumption 2.4.1

is not required in the proof of Proposition 2.4.4.

The above result is needed in the following theorem, whose result follows from Propo-

sition 2.5.1. Theorem 2.5.4 is similar to Theorem 4.7.4 in Puterman’s book.

Theorem 2.5.4.Let l ∈ {1, 2, ..., N}, assume that the conditions of Proposition 2.5.3 hold

for an i ∈ K\{0, l}. Furthermore, assume that, for alla ∈ At((xi, x
c
i), xv, l), for all

k ∈ K, and fort = 1, 2, ..., T ,

1. rt(((xi, x
c
i), xv, l), a, k) is super-additive in(xi, a),

2.
∑

yc
i

∑
m≤yi≤qi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k), for all m, is super-additive in(xi, a).

Then there existsa∗(k) for the statest = ((xi, x
c
i), xv, l) which is non-decreasing inxi.

Proof. By definition,

wt(((xi, x
c
i), xv, l), a,k) = rt(((xi, x

c
i), xv, l), a, k)

+
∑
yc

i

∑
yi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k)u∗t+dlk

((yi, y
c
i ), xv − a, k).

Given that its conditions hold fori, Proposition 2.5.3 implies thatu∗t ((xi, x
c
i), xv, l) is non-

decreasing inxi, for t = 1, 2, ..., T . This result along with condition (2) and Lemma 2.3.10

then imply that

∑
yc

i

∑
yi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k)u∗t+dlk

((yi, y
c
i ), xv − a, k)

is super-additive in(xi, a). Because the sum of super-additive functions is super-additive,

condition (1) then imply thatwt(((xi, x
c
i), xv, l), a, k) is super-additive in(xi, a). The result

of the theorem follows from Proposition 2.5.1.

When the conditions of Theorem 2.5.4 hold for alli ∈ K\{0, l}, the result of the

following theorem, stated here without proof, follows from Corollary 2.5.2.
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Theorem 2.5.5.Let l ∈ {1, 2, ..., N}, assume that the conditions of Proposition 2.5.3 hold

for all i ∈ K\{0, l}. Furthermore, assume that, for alla ∈ At((xi, x
c
i), xv, l), for all

k ∈ K, and fort = 1, 2, ..., T ,

1. rt(((xi, x
c
i), xv, l), a, k) is super-additive in(xi, a),

2.
∑

yc
i

∑
m≤yi≤qi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k), for all m, is super-additive in(xi, a).

Then there exitsa∗(k) for the statest = ((xi, x
c
i), xv, l) which is non-decreasing inxc

i .

In the next proposition, we show how the optimal number of units to deposit at the

current retailer can be non-increasing in inventory level of the retailer. This is the second

structural result for inventory control.

Proposition 2.5.6.Letl ∈ {1, 2, ..., N}, assume thatwt(((xl, x
c
l ), xv, l), a, k) is sub-additive

in (xl, a). Then there existsa∗(k) for the statest = ((xl, x
c
l ), xv, l) which is non-increasing

in xl.

Proof. By assumption,wt(((xl, x
c
l ), xv, l), a, k) is sub-additive in(xl, a). That is, for each

pair of x′l, x
′′
l ∈ Xi such thatx′l ≤ x′′l and for each pair of̃a, a ∈ {At((x

′
l, x

c
l ), xv, l) ∩

At((x
′′
l , x

c
l ), xv, l)} such that̃a ≥ a, the following inequality holds:

wt(((x
′
l, x

c
l ), xv, l), ã, k)− wt(((x

′
l, x

c
l ), xv, l), a, k)

≥ wt(((x
′′
l , x

c
l ), xv, l), ã, k)− wt(((x

′′
l , x

c
l ), xv, l), a, k)

By Lemma 2.3.7,

min{argmaxa∈At((x′l,x
c
l ),xv,l)wt(((x

′
l, x

c
l ), xv, l), a, k)}

≥ min{argmaxa∈At((x′′l ,xc
l ),xv ,l)wt(((x

′′
l , x

c
l ), xv, l), a, k)}.

Note thatAt((x
′′
l , x

c
l ), xv, l) ⊆ At(x

′
l, x

c
l ), xv, l). The result of the proposition follows.

Theorem 2.5.7 specifies sufficient conditions that imply the conditions and, therefore,

result of Proposition 2.5.6.
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Theorem 2.5.7.Let l ∈ {1, 2, ..., N}, assume that the conditions of Proposition 2.5.3 hold

for i = l. Furthermore, assume that, for allk ∈ K,

1. rt(((xl, x
c
l ), xv, l), a, k), and

2.
∑

yc
l

∑
m≤yl≤ql

pt((yl, y
c
l )|((xl, x

c
l ), xv, l), a, k), for all m,

are sub-additive in(xl, a). Then there existsa∗(k) for the statest = ((xl, x
c
l ), xv, l) which

is non-increasing inxl.

Proof. By assumption,rt(((xl, x
c
l ), xv, l), a, k) is sub-additive in(xl, a). Proposition 2.5.3

implies thatu∗t+dlk
((yl, y

c
l ), xv − a, k) is non-decreasing inyl, for all yc

l , for t = 1, 2, ..., T .

By Lemma 2.3.10 and assumption (2) above, we have that

∑
yc

i

∑
yl

pt((yl, y
c
l )|((xl, x

c
l ), xv, l), a, k)u∗t+dlk

((yl, y
c
l ), xv − a, k)

is sub-additive in(xl, a). Since the sum of sub-additive functions is sub-additive, it follows

that wt(((xl, x
c
l ), xv, l), a, k) is sub-additive in(xl, a). The result of the theorem follows

from Proposition 2.5.6.

Combining Theorem 2.5.5 and Theorem 2.5.7 gives us the following result.

Theorem 2.5.8.Let l ∈ {1, 2, ..., N}, assume that the conditions of Proposition 2.5.3 hold

for all i ∈ K\{0, l}. Furthermore, assume that, for alla ∈ At((xi, x
c
i), xv, l), for all

k ∈ K, and fort = 1, 2, ..., T + 1,

1. rt(((xi, x
c
i), xv, l), a, k) is super-additive in(xi, a),

2.
∑

yc
i

∑
m≤yi≤qi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k), for all m, is super-additive in(xi, a),

3. rt(((xl, x
c
l ), xv, l), a, k) is sub-additive in(xl, a), and

4.
∑

yc
l

∑
m≤yl≤ql

pt((yl, y
c
l )|((xl, x

c
l ), xv, l), a, k), for all m, is sub-additive in(xl, a).

Then there existsa∗(k) for the statest = ((xl, x
c
l ), xv, l) which is non-decreasing inxc

i and

non-increasing inxl.
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2.5.2 Sufficient Conditions on the Problem Parameters

One of the sufficient conditions for the first structural result for inventory control is that

rt(((xi, x
c
i), xv, l), a, k) is super-additive in(xi, a), in which i ∈ K\{0, l}. Corollary 2.5.9

shows that this is the case.

Corollary 2.5.9. For all l ∈ {1, 2, ..., N}, rt(((xi, x
c
i), xv, l), a, k) is super-additive in

(xi, a), for all i ∈ K\{0, l}, for all k ∈ K, and fort = 1, 2, ..., T .

Proof. For l ∈ {1, 2, ..., N},

rt(((xi, x
c
i), xv, l), a, k) = r̃l

t(xl, l, a, k) + ri
t(xi, l, k) +

∑

j∈K\{0,l,i}
rj
t (xj, l, k)− clk.

Sinceri
t(xi, l, k) is independent ofa, it is super-additive in(xi, a). Similarly, r̃l

t(xl, l, a, k)

is independent ofxi and, thus, super-additive in(xi, a). The last two terms on the right hand

side of the above equation need not be considered because both of them are independent of

xi anda. Since the sum of super-additive functions is super-additive, the result follows.

The next result shows that the transition structure has the super-additive property.

Corollary 2.5.10. For all l ∈ {1, 2, ..., N},
∑
yc

i

∑
m≤yi≤qi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k)

is super-additive in(xi, a), for all i ∈ K\{0, l}, for all m, for all k ∈ K, and for t =

1, 2, ..., T .

Proof. It can be shown that

∑
yc

i

∑
m≤yi≤qi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k) =

∑
m≤yi≤qi

pi
t(yi|xi, l, k)

= F l,k
t,i (xi −m).

F l,k
t,i (xi−m) is independent ofa and, thus, super-additive in(xi, a). The result follows.
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Assumption 2.4.1 is not required in the proofs of Proposition 2.4.9, Corollary 2.4.10,

and Corollary 2.4.11. These results are as follows:

1. let i ∈ {1, 2, ..., N}, assume that(b1
i +b2

i )F̄
l,k
t,i (qi) ≥ hidlk. Then,rt(((xi, x

c
i), xv, l), a, k)

is non-decreasing inxi, for all a ∈ At((xi, x
c
i), xv, l);

2. for all i ∈ {1, 2, ..., N}, ∑
m≤yi≤qi

pt((yi, y
c
i )|((xi, x

c
i), xv, l), a, k) is non-decreasing

in xi, for all a ∈ At((xi, x
c
i), xv, l), k ∈ K, yc

i , m, and fort = 1, 2, ..., T ;

3. r̄T+1((xi, x
c
i), xv, l) is non-decreasing inxi, for all i ∈ {1, 2, ..., N}.

For the second structural result for vehicle routing, the next corollary establishes the

sub-additive property of the reward function.

Corollary 2.5.11. For all k ∈ K, rt(((xl, x
c
l ), xv, l), a, k) is sub-additive in(xl, a).

Proof. For l ∈ {1, 2, ..., N},

rt(((xl, x
c
l ), xv, l), a, k) = r̃l

t(xl, l, a, k) +
∑

j∈K\{0,l}
rj
t (xj, l, k)− clk.

It can be shown that

r̃l
t(xl + 1, l, a, k)− r̃l

t(xl, l, a, k) = −hldlk + (b1
l + b2

l )F̄
l,k
t,l (xl).

Because this quantity is independent ofa, we have thatrt(((xl, x
c
l ), xv, l), a, k) is sub-

additive in(xl, a).

In Proposition 2.5.12, we show how the sub-additive property of the transition proba-

bility at the current retailer follows from the non-increasing property of the demand distri-

bution. The latter property was first introduced in Definition 2.3.11.

Proposition 2.5.12.Assume that, for allk ∈ K, the demand at retailerl between timet

andt + dlk, that isDl,k
t,l , has non-increasing probability mass function. Then

∑
yc

l

∑
m≤yl≤ql

pt((yl, y
c
l )|((xl, x

c
l ), xv, l), a, k)

is sub-additive in(xl, a), for all m.
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Proof. It can be shown that

∑
m≤yl≤ql

pt((yl, y
c
l )|((xl, x

c
l ), xv, l), a, k) = F l,k

t,l (xl + a−m),

whereF l,k
t,l is the cumulative probability distribution function ofDl,k

t,l . By assumption,Dl,k
t,l

has non-increasing probability mass function. As a result, it can be shown that

F l,k
t,l (xl + a + 1−m)− F l,k

t,l (xl + a−m)

is non-increasing inxl. Thus,

∑
yl

pt((yl, y
c
l )|((xl, x

c
l ), xv, l), a, k)

is sub-additive in(xl, a), for all yc
l . The assertion of the proposition follows.

2.5.3 Summary of the Structural Results

Based on the results of Subsections 2.5.1 and 2.5.2, we summarize the two main structural

results for inventory control in Theorem 2.5.13 and Theorem 2.5.14. In Theorem 2.5.13, an

optimal inventory action at a particular retailer is shown to be non-decreasing in inventory

levels of the other retailers.

Theorem 2.5.13.For all n ∈ {1, 2, ..., N}, assume that

(b1
n + b2

n)F̄ l,k
t,n(qn) ≥ hndlk,

for all l, k ∈ K, and for t = 1, 2, ..., T . Then there exitsa∗(k) for the statest =

((xi, x
c
i), xv, l) which is non-decreasing inxc

i .

The next theorem summarizes the sufficient conditions for an optimal inventory action

to be non-increasing in inventory level of the current retailer.

Theorem 2.5.14.For all n ∈ {1, 2, ..., N}, assume that

(b1
n + b2

n)F̄ l,k
t,n(qn) ≥ hndlk,
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for all l, k ∈ K, and for t = 1, 2, ..., T . Furthermore, assume that, for allk ∈ K, the

demand at retailerl between timet andt+ dlk, that isDl,k
t,l , has non-increasing probability

mass function. Then there existsa∗(k) for the statest = ((xl, x
c
l ), xv, l) which is non-

decreasing inxc
i and non-increasing inxl.

2.6 Applications of the Structural Results

We have presented the structural results for vehicle routing and inventory control in the

SVMI problem. It is often the case that structural results lead to computational simplifi-

cations. We can now develop monotone backward induction algorithms to solve several

instances of the SVMI problem. In the next section, we show how effective the algorithms

are and how the effectiveness varies with the problem size and its specifications.

For larger problems, heuristic solution procedures based on the structural results that

we have obtained can be developed. One such method assumes that the monotone relations

in the optimal inventory actions are piecewise linear. We investigate this solution technique

and present our findings in Chapter 4. The heuristic solution procedure helps reduce the

computational requirement in solving the SVMI problem noticeably.

Other potential benefits of the structural results include the insight and intuition for

management. This would help the decision makers improve the operating performance of

their distribution systems. Practically, structured policies are relatively easy to implement.

This, by itself, may have important implications in reducing operating costs for the vendor.

2.7 Numerical Results

In this section, we first present a set of optimal vehicle routing and inventory actions for a

sample SVMI problem with two retailers. The parameters for this sample problem satisfy

the sufficient conditions for both sets of structural results. In this case, each of the two

retailers has ten-unit capacity. Demands for the product at the two retailers have the same

distribution (a discrete version of an exponential distribution). We define the revenue and
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cost parameters such that the second retailer is much more profitable than the first one.

Table 1 presents optimal vehicle routing actions for different inventory levels of the

retailers (x1 andx2), when the vehicle is at the depot and its capacity level is 20 units. The

structural result for vehicle routing holds here. In particular, each retailer continues to be

an optimal destination for the vehicle as its inventory level decreases and/or inventory level

of the other retailer increases. Here we also observe the effect of each retailer’s profitability

on whether or not the retailer is an optimal destination. If the revenue and cost parameters

for both retailers are the same, then, as we have verified, the results in Table 1 will be

symmetric.

Table 1: The vehicle’s optimal destinations from the depot for the two-retailer SVMI
problem

x1\x2 0 1 2 3 4 5 6 7 8 9 10

10 2 2 2 2 2 2 2 2 2 2 2
9 2 2 2 2 2 2 2 2 2 2 2
8 2 2 2 2 2 2 2 2 2 2 2
7 2 2 2 2 2 2 2 2 2 2 1
6 2 2 2 2 2 2 2 2 2 1 1
5 2 2 2 2 2 2 2 2 1 1 1
4 2 2 2 2 2 2 2 1 1 1 1
3 2 2 2 2 2 2 1 1 1 1 1
2 2 2 2 2 2 2 1 1 1 1 1
1 2 2 2 2 2 1 1 1 1 1 1
0 2 2 2 2 2 1 1 1 1 1 1

Optimal inventory actions are presented in Table 2. In this case, the vehicle, with 14

units of inventory, is currently at the first retailer and the decision maker is considering

the second retailer as a destination. It is easy to verify that the first and second structural

results for inventory control hold in Table 2. Specifically, an optimal inventory action is

non-decreasing in inventory level of the second retailer and non-increasing in the inventory

level of the first retailer.
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Table 2: Optimal inventory actions for the two-retailer SVMI problem
x1\x2 0 1 2 3 4 5 6 7 8 9 10

10 0 0 0 0 0 0 0 0 0 0 0
9 1 1 1 1 1 1 1 1 1 1 1
8 2 2 2 2 2 2 2 2 2 2 2
7 3 3 3 3 3 3 3 3 3 3 3
6 4 4 4 4 4 4 4 4 4 4 4
5 4 5 5 5 5 5 5 5 5 5 5
4 4 5 5 6 6 6 6 6 6 6 6
3 4 5 6 6 7 7 7 7 7 7 7
2 4 5 6 6 7 8 8 8 8 8 8
1 5 5 6 7 7 8 9 9 9 9 9
0 5 6 6 7 8 8 9 9 10 10 10

Next we examine the direct computational advantage of the structural results in back-

ward induction (BI) algorithms. The computational measures of interest include the num-

ber of vehicle routing actions evaluated, the number of inventory actions evaluated, and

the run time (CPU time). In addition, we study how the computational advantage of struc-

tured solutions varies with certain parameters of the problem. These parameters include

the number of retailers, the capacities of the retailers, and the capacity of the vehicle.

In Table 3, we show how each structural result improves the computational measures of

interest. The numerical examples were done on a SUN Ultra 60 workstation. Let us recall

that Theorem 2.4.7 establishes the structure in the optimal vehicle routing actions (SV).

Meanwhile, Theorem 2.5.5 and Theorem 2.5.7, specifies the first and second structural re-

sults for inventory control (SIA and SIB), respectively. Theorem 2.5.8 combines these two

results (SI). Based on the numerical results, we may conclude that each of these structures

reduces run time by about a third. When they are applied simultaneously, these structures

reduce run time by about one half.

Table 4 illustrates how the computational advantage of the structural result for vehicle

routing varies with the number of retailers. We present numerical results for the SVMI

problems with two, three, and four retailers. In this case, the run time reduction varies from
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Table 3: Computational measures for the SVMI problem with three retailers
Inventory
actions
(x1000)

Vehicle
routing
actions
(x1000)

Actions
(x1000)

Run time
(seconds)

Run time
reduction

BI 4,125 598 4,723 817 -
BI-SV 2,659 345 3,004 540 33.90%
BI-SIA 2,789 598 3,387 551 32.56%
BI-SIB 2,794 598 3,393 561 31.33%
BI-SI 2,595 598 3,198 524 35.86%
BI-SV-SI 2,096 336 2,432 433 47.00%

28 percent to 33 percent and, finally, to 48 percent. We may conclude that the computational

advantage increases with the number of retailers.

Table 4: Computational measures for the SVMI problems with two, three, and four retail-
ers

Number
of retail-
ers

Solution
procedure

Inventory
actions
(x1000)

Vehicle
routing
actions
(x1000)

Actions
(x1000)

Run time
(seconds)

Run time
reduction

2 BI 435 50 484 12.27 -
2 BI-SV 357 38 395 8.81 28.20%
3 BI 4,125 598 4,723 817 -
3 BI-SV 2,659 345 3,004 540 33.90%
4 BI 35,759 5,988 41,746 63,788 -
4 BI-SV 19,697 2,971 22,698 38,049 40.35%

The capacities of the vehicle and the retailers directly affect the computational advan-

tage of the structural results for inventory control. Table 5 presents supporting numerical

examples. From the table, it is clear that the computational efficiency increases with these

capacities. Specifically, as the capacities get larger, the run time reduction varies from 34

percent to 36 percent and, finally, to 38 percent.
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Table 5: Computational measures for the SVMI problems with three retailers and different
capacities

Retailer
capacity

Vehicle
capacity

Solution
proce-
dure

Inventory
actions
(x1000)

Vehicle
routing
actions
(x1000)

Actions
(x1000)

Run
time
(sec-
onds)

Run
time re-
duction

3 12 BI 510 110 620 209 -
3 12 BI-SI 329 110 439 137 34.45%
5 20 BI 4,125 598 4,723 1,689 -
5 20 BI-SI 2,595 598 3,193 1,082 35.94%
7 28 BI 17,910 1,960 19,870 7,436 -
7 28 BI-SI 11,106 1,960 13,066 4,585 38.34%

2.8 Distribution Problems with Multiple Vehicles

Actual distribution problems normally involves multiple vehicles. It is reasonable to solve

such problems in two stages. First, the vehicles are assigned to non-intersecting groups of

retailers. In other words, each retailer is assigned to a vehicle and no retailer is assigned

to more than one vehicle. This is an instance of the assignment problem in combinatorial

optimization. After it is solved, we will have multiple SVMI problems and each can be

solved by the approach that we have discussed in this chapter. Balinski (1986) and Gold-

farb (1985) present polynomial-time dual network simplex algorithm for the assignment

problem. This approach may not be optimal for the expected total reward criterion. How-

ever, it allows the decision maker to consider other factors, such as travel distances and

drivers’ hours, when he or she assigns the retailers to each vehicle.

2.9 Conclusions and Future Research

We have formulated and analyzed an MDP model of the SVMI problem. By assuming cer-

tain conditions on the demand distributions at the retailers, we established structural results

for vehicle routing and inventory control. These results helped reduce the computational

requirement in solving the problem noticeably. In the next chapter, we extend the struc-

tural results, plus the algorithms, to the multiperiod SVMI problem and the infinite horizon
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SVMI problem.

An interesting extension of the SVMI problem is the case in which the vehicle is al-

lowed to pick up the product at the retailers. This increases the replenishment flexibility.

For geographical reasons, it might be less expensive to replenish inventory at a retailer with

units of the product from a nearby retailer than by requiring the vehicle to return to the de-

pot. This extension of the SVMI problem is suitable for a distribution system with multiple

clusters of retailers.

It is interesting to see how suboptimal solution procedures perform for the SVMI prob-

lem. These solution techniques may include myopic policies, base-stock inventory policies,

and heuristic solution procedures based on the structural results for inventory control that

we have obtained. We investigate these alternative solution approaches and present our

findings in Chapter 4.

We also study the operating performance of variations of the SVMI problem. These

variations differ in the available state information and how the vehicle route is selected. We

are particularly interested in how the quality of state information and the flexibility in the

vehicle routing procedure (or the size of the set of inventory locations that the vehicle can

visit next) help improve the operating performance of the distribution system. The results

are presented in Chapter 5.
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CHAPTER III

INFINITE HORIZON PERIODIC MARKOV DECISION

PROCESSES

In the preceding chapter, we formulate the stochastic vendor managed inventory (SVMI)

problem as a finite horizon non-homogeneous Markov decision process. By assuming peri-

odic reward and transition structures in the infinite problem horizon, we obtain an instance

of the infinite horizon periodic Markov decision process. This class of stochastic processes

is the topic of this chapter. In particular, we formulate the infinite horizon periodic Markov

decision problem and study the existence and convergence of its solutions. We focus on the

expected total discounted reward criterion. Relevant results for the infinite horizon SVMI

problem (with periodic reward and transition structures) are emphasized. Subsequently, we

discuss how the structural results and algorithms for the SVMI problem can be extended to

the multiperiod and infinite horizon versions of the problem.

The finite horizon non-homogeneous Markov decision problem and the infinite hori-

zon periodic Markov decision problem are formulated next. For the latter, we show that

there is an equivalent infinite horizon stationary Markov decision problem. In Section 3.3,

we present theoretical results for the expected total discounted reward model of the infi-

nite horizon periodic Markov decision problem. A discussion on the infinite horizon and

multiperiod SVMI problems then follows in Section 3.4.

3.1 Finite Horizon Non-Homogeneous Markov Decision Prob-
lem

We defineS as the set of states andT as the length of the problem horizon. The process

is {s(t), t = 1, 2, ..., T}, wheres(t) ∈ S. We assume thatS is a finite set andT is finite.
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The transition structure of the Markov process is described by the following conditional

transition probabilities:

pt(j|i, a) = Pr[s(t + 1) = j|s(t) = i, a(t) = a],

wherea ∈ At(i). We defineAt(i) as the set of actions available at timet if the state at time

t is i. For t = 1, 2, ..., T , At(i) ⊆ A, whereA is the finite set of actions. We definert(i, a)

as the reward accumulated from timet to timet + 1 if the state at timet is i and actiona is

chosen at timet. Additionally, r̂T+1(i) is defined as the terminal reward to be accumulated

at timeT + 1 if the state at timeT + 1 is i.

A decision ruledt specifies an action to take at timet, given the state of the system. That

is, dt is a mapping fromS to A. A policy δ is a sequence of decision rules from timet = 1

to timet = T , δ = (d1, d2, ..., dT ). We define∆ as the set of deterministic Markov policies

for the finite horizon non-homogeneous Markov decision problem. Because of the finite

state and action sets, we can restrict our attention to this type of policies. The optimality

criterion for the problem is the expected total reward accumulated from timet = 1 to time

t = T + 1:

V δ
T (i) = Eδ

i

∑
1≤t≤T

rt(s(t), a(t)) + r̂T+1(s(T + 1)).

That is,V δ
T (i) is the expected total reward if the state at timet = 1 is i and policyδ is

followed. The problem objective is to find a policy from the set∆ that maximizes the

optimality criterion.

3.2 Infinite Horizon Periodic Markov Decision Problem

Unless specified otherwise, the parameters that appear here are defined as in the previ-

ous section. The process is{s(t), t = 1, 2, ...}, wheres(t) ∈ S. The reward function,

rt(i, a), and the transition probability,pt(j|i, a), are defined as in the finite horizon non-

homogeneous Markov decision problem. We assume that, forn = 1, 2, ..., rt(i, a) =

rnT+t(i, a), pt(j|i, a) = pnT+t(j|i, a), andAt(i) = AnT+t(i). Furthermore, after everyT
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time periods, there is a reward accrued as a function of the state of the system. We de-

note this reward bȳrnT+1(i), for n = 1, 2, ..., and remark that it may be different from the

terminal reward̂rT+1(i) for the finite horizon non-homogeneous Markov decision problem.

Because of the periodicity in the reward and transition structures, we can formulate an

equivalent infinite horizon stationary Markov decision problem. Forn = 1, 2, ..., let Ân be

the set of actions for the stationary problem. In this case, an action isâ, whereâ ∈ Ân. We

note that this action is a policy for the finite horizon non-homogeneous Markov decision

problem. The reward and transition structures for the stationary process are as follows:

Rn(i, â) =
∑

1≤t≤T

rnT+t(s(nT + t), a(nT + t)) + r̄(n+1)T+1(s((n + 1)T + 1))

Pn(j|i, â) = Pr[s((n + 1)T ) = j|s(nT ) = i, â(nT ) = â]

Clearly, these two parameters can be determined from the relevant parameters of the finite

horizon non-homogeneous Markov decision process. Because of the periodic reward and

transition structures, forn = 1, 2, ..., we have thatÂn(i) = Â, Rn(i, â) = R(i, â), and

Pn(j|i, â) = P (j|i, â). We assume that|R(i, â)| < ∞, for all i ∈ S andâ ∈ Â.

A policy π is defined asπ = (â1, â2, ...). We have thatπ ∈ Π, whereΠ is the set

of all deterministic Markov policies for this problem. Letβ be the discount factor, where

0 ≤ β < 1. Given thats(1) = s, the expected total discounted reward criterion is

V π
β,T (s) = Eπ

s {
∑

0≤n<∞
βnR(s(nT ), â(nT ))}.

Under this criterion, we say that a policyπ∗ is optimal if, for alls ∈ S and allπ ∈ Π,

V π∗
β,T (s) ≥ V π

β,T (s).

Given thats(1) = s, the average reward criterion is

gπ(s) = limN→∞(1/N)V π
N (s),

where

V π
N (s) = Eπ

s {
∑

0≤n≤N

R(s(nT ), â(nT ))}.
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We say that a policyπ∗ is optimal if, for alls ∈ S and allπ ∈ Π,

liminfN→∞(1/N)V π∗
N (s) ≥ limsupN→∞(1/N)V π

N (s).

3.3 Theoretical Results

In this section, we present the theoretical results for the infinite horizon periodic Markov

decision process, particularly for the expected total discounted reward criterion.

By assumption, we have that0 ≤ β < 1 and|R(i, â)| < ∞, for all i ∈ S anda ∈ Â.

The setsS and Â are finite. The optimality equation for the infinite horizon stationary

Markov decision problem is as follows:

v(i) = maxâ∈Â{R(i, â) + β
∑

j

P (j|i, â)v(j)}

Standard value iteration algorithm, such as Algorithm 3.2.1 below, is a common ap-

proach to solve the optimality equations in the above form. We defineV as the set of

bounded real-valued functions onS. Additionally, ‖v‖ = maxi∈S{v(i)} and dε is the

ε-optimal decision rule.

For this problem, the set̂A could be very large and, thus, render the algorithm compu-

tationally intractable. We propose an alternative value iteration algorithm, i.e., Algorithm

3.2.2. Heredt
ε is theε-optimal decision rule at timet. It follows thatdε = (d1

ε , d
2
ε , ..., d

T
ε ).

We now show that Algorithm 3.2.1 and Algorithm 3.2.2 are equivalent.

Theorem 3.3.1.The value iteration algorithm and the alternative value iteration algorithm

for the infinite horizon stationary Markov decision problem are equivalent.

Proof. To show that the two algorithms are equivalent is the same as showing that, for

n = 1, 2, ..., vn = un
1 . Theorem 4.5.1(b) in Puterman (1994) states that a policy consisting

of the optimal decision rules, as determined by backward induction, for a finite horizon

Markov decision process is optimal. By definition,v0 = u0
1. It follows from the theorem

thatv1 = u1
1, and thenv2 = u2

1, and so on.
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Algorithm 3.3.1 Value iteration algorithm
0. Selectv0 ∈ V and setn = 0. Also, specifyε > 0.

1. For eachi ∈ S, compute

vn+1(i) = maxâ∈Â{R(i, â) + β
∑

j

P (j|i, â)vn(j)}.

2. If ‖vn+1 − vn‖ < ε(1− β)/(2β), go to step 3.

Otherwise, setn = n + 1 and go to step 1.

3. For eachi ∈ S, choose

dε(i) = argmaxâ∈Â{R(i, â) + β
∑

j

P (j|i, â)vn+1(j)}.

Algorithm 3.3.2 Alternative value iteration algorithm
0. Setn = 0 and selectu0

1 = v0 ∈ V . Specifyε > 0.

1. Computeun+1
T+1(i) = r̄T+1(i) + βun

1 (i), for eachi ∈ S.

2. Fort = T, T − 1, ..., 1, and for eachi ∈ S, compute

un+1
t (i) = maxa∈At(i){rt(i, a) +

∑
j∈S

pt(j|i, a)un+1
t+1 (j)}.

3. If ‖un+1
1 − un

1‖ < ε(1− β)/(2β), go to step 4.

Otherwise, setn = n + 1 and return to step 1.

4. Fort = 1, 2, ..., T , and for eachi ∈ S, select

dt
ε(i) = argmaxa∈At(i){rt(i, a) +

∑
j∈S

pt(j|i, a)un+1
t+1 (j)}.

3.4 Multiperiod and Infinite Horizon SVMI Problems

We intend the horizon of the SVMI problem to represent a working day. (There are other

possibilities.) Let us refer to the length of the horizon as period. Then multiperiod SVMI
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problems have a horizon that spans two or more days. We may solve these problems by

a value iteration algorithm that finds the optimal set of decision rules for one period at a

time. In fact, the step in the value iteration algorithm that solves each period of the problem

is essentially the same as the backward induction algorithm for the SVMI problem. It is

relatively straightforward to show that the structural results that we have presented apply

to each period of the multiperiod SVMI problem.

In Chapter 2, we formulate the SVMI problem as a finite horizon non-homogeneous

Markov decision process. By assuming periodic reward and transition structures in the

infinite problem horizon, we have that the infinite horizon SVMI problem is an instance of

the infinite horizon periodic Markov decision problem that we have studied in this chapter.

The expected total discounted reward criterion and, thus, the results in the previous section,

are applicable to the infinite horizon SVMI problem.

We have some remarks on the expected total discounted reward criterion. We use the

finite horizon to represent a working day. This implies that, when the expected total dis-

counted reward criterion is used in the problem formulation of the infinite horizon SVMI

problem, the discount factor should be very close to unity. In our model of the SVMI

problem, the finite horizon represents a working day. Time-value of reward can be signif-

icant when the problem horizon in the infinite horizon SVMI problem spans over several

months. In that case, the expected total discounted reward criterion should be preferred to

the average reward criterion.

In the previous section, we use the backward induction algorithm for the finite horizon

non-homogeneous Markov decision problem to develop the value iteration algorithm for

the infinite horizon periodic Markov decision problem. We obtain the alternative value

iteration algorithms for the expected total discounted reward model. These results directly

apply to the MDP model of the infinite horizon SVMI problem.

Let us consider the alternative value iteration algorithms. Assume that the sufficient

conditions for the structural results in the (finite horizon) SVMI problem are satisfied. From
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the periodicity in the reward and transition structures, it follows that these structural results

also hold in the infinite horizon SVMI problem. This can be shown by direct reasoning

or induction. Therefore, we can use the monotone value iteration algorithms based on

the structural results in Chapter 2 to solve the MDP model of the infinite horizon SVMI

problem.

3.5 Conclusions

In this chapter, we have described the infinite horizon periodic Markov decision processes

and present relevant theoretical results. By assuming periodicity in the reward and transi-

tion structures, we have that the MDP model of the infinite horizon SVMI problem belongs

to this class of stochastic processes. For the infinite horizon periodic Markov decision prob-

lem, we developed an alternative value iteration algorithm that is based on the backward

induction algorithm for the finite horizon non-homogeneous Markov decision problem.

This allows us to extend the structural results and algorithms for the MDP model of the

(finite horizon) SVMI problem to the MDP model of the infinite horizon version of the

problem.
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CHAPTER IV

SUBOPTIMAL SOLUTIONS OF THE SVMI PROBLEM

In this chapter, we develop suboptimal solution procedures for the SVMI problem and study

their computational advantages over the optimal one. Detailed description of the SVMI

problem can be found in Chapter 2. Three suboptimal solution procedures (or heuristics)

are considered. First, we develop a heuristic based on the structural results for inventory

control. These previously established structural results specify monotone relations between

the optimal inventory action and inventory levels of the retailers. The second heuristic has

base-stock inventory policy. In this case, the base-stock inventory levels are determined via

a formula equivalent to that of the Newsvendor’s problem. Finally, we study how myopic

policies perform in the infinite horizon SVMI problem. As the name implies, we define

myopic policy as the result of solving the infinite horizon SVMI problem one finite horizon

(or period) at a time.

The first and second heuristic solution procedures are investigated in Section 4.1 and

Section 4.2, respectively. In Section 4.3, we study myopic solutions of the infinite horizon

SVMI problem. We include sample numerical results in each of the three sections on

suboptimal solution procedures.

4.1 Suboptimal Solutions Based on the Structural Results
for Inventory Control

In Chapter 2, we establish the structural results for vehicle routing and inventory control

in the SVMI problem. The structural results for inventory control are restated below, with

the sufficient conditions on the problem parameters included. Unless stated otherwise, the

parameters in this chapter are defined as in Chapter 2. Let us recall thatF̄ l,k
t,i = 1 − F l,k

t,i ,
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whereF l,k
t,i is the cumulative probability distribution ofDl,k

t,i . Also, note that we can write

the vectorx asx = (xi, x
c
i), for i = 1, 2, ..., N . Theorem 4.1.1 specifies monotone relations

between the optimal inventory action at the current retailer and inventory levels of the non-

current retailers.

Theorem 4.1.1. (Inventory control) Fort = 1, 2, ..., T , an l ∈ {1, 2, ..., N}, an i ∈
K\{0, l}, and allk ∈ K, assume that

(b1
i + b2

i )F̄
l,k
t,i (qi) ≥ hidlk.

Then there existsa∗(k) for the statest((xi, x
c
i), xv, l) which is non-decreasing inxi.

In this section, we develop a heuristic solution procedure based on the monotone re-

lations between the optimal inventory action and inventory levels of the retailers. The

solution approach is described next. Subsequently, we present sample numerical results.

4.1.1 Solution Approach

Consider a structural result which states that the optimal inventory action,a∗, is non-

decreasing in inventory level of retaileri, denoted byxi. Based on this result, we can

develop a heuristic in which optimal inventory actions are determined for states with cer-

tain values ofxi. Inventory actions for states with the remaining values ofxi are selected by

assuming piecewise-linear relationship betweena∗ andxi. We expect the resulting policy

to have the expected total reward that is closer to that of the optimal one as we increase the

number of inventory actions optimally determined.

For the SVMI problem, Theorem 4.1.1 provides us with the monotone relations be-

tween the optimal inventory action and inventory levels of the retailers that we can use

in the heuristic solution procedure as described above. Computational results for some

sample problems are presented next. For this heuristic, it is obvious that the more linear

sections used in the solution the better the solution will be. On the other hand, increasing

the number of linear sections in the heuristic solution requires longer computational time.
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4.1.2 Numerical Results

Numerical results for the heuristic solution procedure are presented in Table 6 and Table

7. To measure the computational efficiency of the heuristic, we set the efficiency of the

optimal solution (by direct backward induction) to be0% and that of the efficient solution

to be100%. The efficient solution gives a lower bound on the run time by randomly as-

signing inventory and vehicle routing actions at each decision epoch. However, as in the

heuristic solution, when the vehicle is at the depot, inventory and vehicle routing actions

are optimally computed.

Table 6: Solutions based on the structural results for Problem I
Expected
total
reward

Quality Run time
(min.)

Efficiency

Optimal
solution

9,220.42 100% 1,571 0%

Efficient
solution

- - 867 100%

Solution
I-A

9,190.78 99.68% 1,120 64.06%

Solution
I-B

9,193.74 99.71% 1,141 61.08%

Table 7: Solutions based on the structural results for Problem II
Expected
total
reward

Quality Run time
(sec.)

Efficiency

Optimal
solution

571.14 100% 5,443 0%

Efficient
solution

- - 2,699 100%

Solution
II-A

564.80 98.89% 3,786 60.38%

Solution
II-B

564.80 98.89% 3,862 57.62%
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The results in Table 6 are for a four-retailer SVMI problem (Problem I). The two heuris-

tic solutions for Problem I are referred to as solutions I-A and I-B. In solution I-A, one in

ten inventory actions are optimal. In solution I-B, the ratio is two in ten. That is, solution

I-B has twice as many linear sections as solution I-A. From the results, it is clear that both

heuristic solutions are near optimal, with the first solution slightly better than the second.

The efficiency measures for solutions I-A and I-B are about64% and61%, respectively.

In Table 7, we present the corresponding results for Problem II, which is a three-retailer

SVMI problem. It is worth noting that solution II-A gives the same expected total reward

as solution II-B. That is, for this example, a change in the number of optimal inventory

actions computed does not affect the quality of the heuristic solution.

4.2 Suboptimal Solutions with Base-Stock Inventory Policy

Base-stock inventory policy is attractive to practitioners of inventory control because it

is relatively easy to implement and yet optimal in various situations. In this section, we

first describe how a base-stock policy can be used in the SVMI problem. Computational

examples then follow.

4.2.1 Determination of Base-Stock Inventory Levels

In the SVMI problem, it is not clear when the vehicle will return to the current retailer

since the vehicle’s next destination is optimally determined at each decision epoch. At the

current decision epoch at timet, assume that we know the time until the next visit to the

current retailer (retailerl). Furthermore, let us suppose that the optimal inventory action

is base-stock in nature. That is, there is a target inventory levelSl
t such that the optimal

inventory action is

a∗ = min{xv, max{0, Sl
t − xl}}.
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Then the inventory control problem is a variation of the classic Newsvendor’s problem.

Consequently, the target inventory levelSl
t can be determined based on the demand distri-

bution at the current retailer.

We shall proceed to identify the target inventory level as follows. Forl ∈ {1, 2, ..., N},
assume that the time until the next visit to this retailer is known to beδ. Then, the expected

reward for the current retailerl from timet until time t + δ is

gt(x̃l, xl) = −hlδx̃l + b1
l E[min{Ql

t, x̃l}]− b2
l E[max{0, Ql

t − x̃l}]− b3
l (x̃− xl),

wherex̃l = xl + a andQl
t is the demand at retailerl from time t until time t + δ. It will

later be shown thatgt(x̃l, xl) is concave iñxl.

Solely for the purpose of determining the target inventory level, it is reasonable to

estimate the time until the next visit to the current retailer. LetH̄ l
t = 1 − H l

t, whereH l
t

is the cumulative demand distribution at the current retailer from timet until the next visit

to this retailer. The following theorem provides us with the formula to compute the target

inventory level,Sl
t.

Theorem 4.2.1.Assume thatH l
t and gt(x̃l, xl) are known. Then the optimal base-stock

inventory level for this retailer,Sl
t, is such that

H̄ l
t(S

l
t) = (hlδ + b3

l )/(b
1
l + b2

l ).

Proof. Let ρ(d) be the probability thatQl
t = d. The expected reward for the current retailer

l from timet until the next visit is

gt(x̃l, xl) = −hlδx̃l + b1
l E[min{Ql

t, x̃l}]− b2
l E[max{0, Ql

t − x̃l}]− b3
l (x̃− xl)

= −hlδx̃l + b1
l

∑

0≤d<∞
ρ(d)(min{d, x̃l})− b2

l

∑

0≤d<∞
ρ(d)(max{0, d− x̃})− b3

t (x̃− xl)

= −hlδx̃l + b1
l

∑

0≤d<∞
ρ(d)[min{d, x̃} − (b2

l /b
1
l )max{0, d− x̃l}]− b3

l (x̃− xl)

= −hlδx̃l + b1
l

∑

0≤d<∞
ρ(d)[min{d, x̃} −max{0, (b2

l /b
1
l )(d− x̃l)}]− b3

l (x̃− xl).
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It follows that

gt(x̃l + 1, xl)− gt(x̃l, xl) = b1
l

∑

x̃l≤d<∞
ρ(d)(1 + (b2

l /b
1
l ))− hlδ − b3

l

= (b1
l + b2

l )
∑

x̃l≤d<∞
ρ(d)− hlδ − b3

l

= (b1
l + b2

l )H̄
l
t(x̃l)− hlδ − b3

l .

This quantity is non-increasing iñxl. Thus,gt(x̃l, xl) is concave iñxl. As a result, the value

of x̃l such that the above quantity is zero maximizesgt(x̃l, xl). Let Sl
t be this value of̃xl.

The assertion of the proposition follows.

Note that, sinceQl
t is a discrete random variable, there is almost always noSl

t that

satisfies the equation in the above theorem. Therefore, we may choose the value ofSl
t such

thatH̄ l
t(S

l
t) is closest to(hlδ + b3

l )/(b
1
l + b2

l ).

It can be shown that the result of Theorem 4.2.1 is equivalent to that of the Newsven-

dor’s problem with the following underage cost,cu, and overage cost,co:

cu = b1
l + b2

l − hlδ − b3
l ,

and

co = hlδ + b3
l .

Algorithm 4.2.1 Base-stock inventory algorithm
1. At current timet, estimate the time until the next visit to current retailerl and call itδ.

2. Compute the cumulative distribution ofQl
t, namelyH l

t.

3. DetermineSl
t such that

H̄ l
t(S

l
t) ≈ (hlδ + b3

l )/(b
1
l + b2

l ).

4. The base-stock inventory action isa(Sl
t) = min{xv, max{0, Sl

t − xl}}.

Algorithm 4.2.1 summarizes how we apply the result of Theorem 4.2.1 to determine

the base-stock inventory actions in the SVMI problem.
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4.2.2 Numerical Results

We present numerical results for the heuristic solution procedure in Table 8 and Table 9.

The results in Table 8 are for the same three-retailer SVMI problem as that in Table 7

(Problem II). This allows us to compare the performance of this heuristic with the previous

one, which is based on the structural results for inventory control. In Table 8, the solution

quality varies noticeably with the base-stock inventory level. The highest quality level is

almost94%. Meanwhile, the computational efficiency at around81% is good. Note that

the efficiency levels for the three solutions are the same because they involve the same

procedure.

Let us recall that, in the algorithm for this heuristic, we first estimate the time until the

next visit to this retailer. In this three-retailer case, we assume thatdlk = 1, for all l, k ∈ K,

wheredlk is the travel time from locationl to locationk. At current timet, we assume that

the vehicle visits the current retailer again at timet + 4. This implicitly assumes that the

vehicle visits the depot once during a round of service in which all retailers are visited.

From the numerical results, the quality level increases with the base-stock inventory level.

This implies that we may have underestimated the time until the next visit to the current

retailer. That is, the vehicle may visit the depot more than once during each round of

service.

When we compare Table 8 with Table 7, it is clear that the solution quality of this

heuristic is less than that of the first one. On the other hand, the computational efficiency of

this heuristic is better than that of the first one. These observations are intuitive. In partic-

ular, once based-stock inventory levels are known, inventory actions are easily determined.

But this convenience comes with a loss in the quality of the solution.

Table 9 presents the corresponding results for a two-retailer SVMI problem (Problem

III). Clearly, the quality and efficiency measures are quite similar to those in the previous

table. This may imply that the performance of this heuristic is independent of the number

of retailers.
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Table 8: Solutions with base-stock inventory policy for Problem II
Expected
total
reward

Quality Run time
(sec.)

Efficiency Base-
Stock
level

Optimal
solution

517.14 100% 5,443 0% -

Efficient
solution

- - 2,699 100% -

Solution
II-C

514.34 90.05% 3,216 81.16% 7

Solution
II-D

488.55 85.54% 3,217 81.12% 6

Solution
II-E

534.54 93.59% 3,217 81.12% 8

Table 9: Solutions with base-stock inventory policy for Problem III
Expected
total
reward

Quality Run time
(sec.)

Efficiency Base-
Stock
level

Optimal
solution

477.96 100% 20.96 0% -

Efficient
solution

- - 10.75 100% -

Solution
III-A

433.24 90.05% 12.81 79.48% 6

Solution
III-B

418.31 87.52% 12.78 79.78% 5

Solution
III-C

439.45 91.94% 12.77 79.88% 7

4.3 Myopic Solutions of the Infinite Horizon SVMI Problem

In this section, we study how well myopic solutions perform in the infinite horizon SVMI

problem under the average reward criterion. Next we describe how we compute the myopic

reward and the optimal average reward. Relevant numerical results then follow.
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4.3.1 Myopic Reward vs. Optimal Average Reward

We assume that the infinite horizon SVMI problem has periodic reward and transition struc-

tures. To study how well myopic solutions perform in the infinite horizon SVMI problem,

we compare the optimal average reward of the infinite horizon SVMI problem with the

optimal expected total reward for the finite horizon SVMI problem. The latter quantity

represents the average reward for the infinite horizon SVMI problem when it is solved

myopically (i.e., one finite horizon at a time). Therefore, standard backward induction al-

gorithm can be used to compute the myopic reward. To obtain the optimal average reward,

we use an equivalent of Algorithm 3.3.2. The parameters of these numerical examples are

chosen such that the algorithm converges. In both cases, we assign different salvage value

functions and observe how they affect the relative performance of the myopic policies.

4.3.2 Numerical Results

We present computational results for the myopic solutions of an instance of the infinite

horizon SVMI problem with two retailers (Problem IV) in Table 10. Heree represents

the unit salvage value at the retailers,h is the unit holding cost per unit time,c is the

unit procurement cost, andτ is the time until the salvage value of remaining inventory is

realized from the end of the horizon. In this case, we assume thathτ ≤ 0.5c.

For the myopic policy, by definition, the salvage value is included in the average re-

ward. On the other hand, in calculating the optimal average reward, the salvage value is

realized only once at the end of the infinite horizon. This difference gives rise to the bias

towards myopic policy and this bias becomes greater as the salvage value increases. Table

10 illustrates this behavior. The casese = hτ ande = c represent low and high salvage val-

ues, respectively. When the salvage value is what we would expect, in particulare = 0.5c,

the quality level of myopic policy for the sample problem is close to93%. Based on our

computational experience, there is another interesting observation which is not shown here.

In particular, when myopic policy is employed and the salvage value is in normal range,

63



there tend to be less inventory left at the retailers at the end of each finite horizon.

Table 10: Infinite horizon myopic solutions for Problem IV
Myopic average
reward

Optimal average
reward

Quality

e = hτ 1,135.00 1,234.79 91.92%
e = 0.5c 1,147.05 1,237.82 92.67%
e = c 1,181.86 1,246.64 94.80%

The computational efficiency of myopic solutions depends on how many iterations are

required by the algorithm that determines the optimal policy. Only one iteration is needed

to find the best myopic policy. However, the procedure needs to be done every period. On

the other hand, computing the optimal policy takes several iterations but, theoretically, this

is done only once. In general, a multi-period problem is solved myopically because data for

future periods are difficult to obtain. Reducing the computational requirement in solving

the problem is rarely a reason for using the solution approach. For these reasons, we shall

not discuss the computational efficiency of myopic solutions.

4.4 Conclusions and Future Research

In this chapter, we have presented three heuristic solution procedures for the SVMI prob-

lem. First, the heuristic based on the structural results for inventory control, gives us great

solution quality and reasonable computational efficiency in solving our sample problems.

Meanwhile, the second heuristic, which has base-stock inventory policy, provides greater

efficiency but less quality than the first one. Finally, we studied the performance of myopic

solutions in the infinite horizon SVMI problem and illustrate the potential bias towards

these solutions as a result of the salvage value of remaining inventory at the retailers.

Though the reductions in computational requirement by the suboptimal solution pro-

cedures for the SVMI problems are significant, more may be needed. One promising idea

involves more aggressive partition of the state space according to strong structural results.

Based on our numerical examples, the suboptimal solutions based on the structural results
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for inventory control still maintain great quality. This implies that further use of the struc-

tures may still be beneficial. We plan to investigate this idea further.
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CHAPTER V

VARIATIONS OF THE SVMI PROBLEM

5.1 Introduction

Many supply chains have as their components a depot, multiple retailers, and a vehicle,

which transports units of a product from the depot to the retailers. A distribution prob-

lem with more than one vehicles can be transformed into multiple one-vehicle problems

by, for example, solving an instance of the assignment problem in combinatorial optimiza-

tion. In this chapter, we consider a distribution system of this nature and study how state

information quality and vehicle routing strategy affect the operating performance of the

distribution system. To do so, we first formulate the SVMI problem and its four varia-

tions as finite horizon non-homogeneous Markov decision processes. Then we compare

their optimal expected total rewards analytically. For the five problems, the quality of state

information ranges from one with delay to one that is current and almost always avail-

able. The vehicle route varies from one with a fixed order of retailers to one that can be

determined at intersections between inventory locations. Demands for the product at the re-

tailers are independent and random with known distributions. Furthermore, these demands

are time-dependent. We use the finite horizon to represent a working day. Thus, the time

dependency of demand represents the varying rate of order arrivals throughout the day.

In the SVMI problem, we assume that current inventory levels of the retailers and the

vehicle are available at each decision epoch. The decision maker then decides how many

units of the product to drop off at the current retailer, or pick up at the depot, and which

inventory location (the depot or one of the retailers) the vehicle will visit next. The vehicle

can travel to any one of the inventory locations or stay where it is. Inventory costs under

consideration include the holding cost, penalty cost for lost order, and procurement cost.
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There is also a transportation cost for the vehicle to travel from one inventory location to

another. Finally, revenue is accrued for each filled order.

We investigate four variations of the SVMI problem. The distinguishing features among

these variations are the available state information, particularly the inventory levels of the

retailers, and how the vehicle route is selected. In particular, the first variation is the case

in which there is a delay in obtaining state information and the vehicle visits the retailers in

a fixed order. The second variation is similar to the first one but without the delay in state

information. Meanwhile, in the third variation, the order of the retailers may be varied but

only before the vehicle departs the depot at the start of each round of service. In these three

variations, the vehicle has the option of making a stop at the depot for replenishment before

travelling to the next retailer in the order. Finally, we study a variation of the SVMI problem

featuring an intersection between each pair of inventory locations. At each intersection,

the decision maker receives current state information and determines which of the two

inventory locations accessible from that intersection to visit next.

In Chapter 2, we establish monotone relations between the optimal vehicle routing and

inventory actions and inventory levels of the retailers in the SVMI problem. In this chap-

ter, for the first two variations, we show how the optimal replenishment decision varies

with inventory level of the vehicle. Then, analytically, we compare the optimal expected

total rewards for the SVMI problem and its variations. As expected, improved state in-

formation and/or higher flexibility in the vehicle routing procedure increase the optimal

expected total reward. Numerical results confirm our findings. Subsequently, we introduce

the following notion of complementarity, as defined in Topkis (1998): two products are

considered complementaryif having more of one product increases the marginal value of

having more of the other product. Based on our numerical results, we discuss the hypothe-

sis that suggests a complementary relationship between the quality of state information and

the flexibility in vehicle routing procedure towards improving the operating performance

of the distribution system.
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Given the current state of information technology, it is reasonable to assume that the

vendor has access to current state information before inventory and transportation deci-

sions are made. There has not been much study on the effects of state information quality

and vehicle routing strategy on the operating performance of the distribution system. We

expect this topic to be increasingly relevant as information technology keeps improving

and companies thrive for even higher levels of efficiency.

This chapter is organized as follows. In the next four sections, variations of the SVMI

problem are formulated and relevant theoretical results presented. Section 5.6 has the nu-

merical results. Our discussion on the numerical results then follows in Section 5.7.

5.2 Variation I: The SVMI Problem with Fixed Vehicle Route
and Delayed State Information

For this variation, we assume that there is a delay of one period in the state information and

the vehicle visits the retailers in a fixed order. Specifically, the vehicle routing procedure

is simplified as follows. At the beginning of the trip, the vehicle departs the depot for

the first retailer. From each of the non-final retailers, the vehicle can either proceed to

the next retailer directly or make a stop at the depot for replenishment before doing so.

The vehicle returns to the depot once the final retailer is visited. Another round of service

then begins. Next we formulate the problem and present some theoretical results. Unless

specified otherwise, the parameters that appear in this section are defined as in the problem

formulation of the SVMI problem, which is included in Chapter 2.

5.2.1 Problem Formulation

The state at a decision epoch at timet is st = (x̃, l̃, xv, l, z), wherest ∈ S = X×K×Xv×
K×Z. We definẽx as the row vector of inventory levels of the retailers after the inventory

action was taken at the previous decision epoch. This reflects the one-period delay in the

state information available to the decision maker. We letl̃ denote the vehicle’s location at

the previous decision epoch. As in the SVMI problem,xv andl are the current inventory
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level and current location of the vehicle, respectively. We definez as the number of retailers

that have been visited on the current trip. It follows thatz ∈ Z = {0, 1, 2, ..., N}.
The set of inventory actions is as follows: forl = 0,

At(x̃, l̃, xv, l, z) = {a : −(qv − xv) ≤ a ≤ 0},

and forl > 0,

At(x̃, l̃, xv, l, z) = {a : 0 ≤ a ≤ min{ql − x̃l, xv}}.

The set of vehicle routing actions is such that, at the depot, forz = 0, Kt(x̃, l̃, xv, l, z) =

{1}, and for z > 0, Kt(x̃, l̃, xv, l, z) = {z + 1}. At the retailers, for1 ≤ l < N ,

Kt(x̃, l̃, xv, l, z) = {0, z + 1}, and forl = N , Kt(x̃, l̃, xv, l, z) = {0}.
We definept(x|x̃, l̃, l) as the probability that the vector of current inventory levels of

the retailers at timet is x = (x1, x2, ..., xN), given that the vector of inventory levels

after inventory action was taken at the previous decision epoch (timet − dl̃l) was x̃ =

(x̃1, x̃2, ..., x̃N). By independence, it follows that

pt(x|x̃, l̃, l) =
∏

1≤i≤N

pi
t(xi|x̃i, l̃, l),

wherepi
t(xi|x̃i, l̃, l), for i = 1, 2, ..., N , is the transition probability for retaileri. This

probability can be determined from the distribution of demand at retaileri during the time

between the previous and current decision epochs.

Conditioning on the current inventory levels of the retailers and the vehicle, the reward

structure for this problem is equivalent to that of the SVMI problem. In particular, assume

that the vector of current inventory levels of the retailers isx = (x1, x2, ..., xN). Then, for

l = 0,

rt((x, xv, l), a, k) =
∑

1≤i≤N

ri
t(xi, l, k)− clk,

and forl > 0,

rt((x, xv, l), a, k) = r̃l
t(xl, l, a, k) +

∑

i∈K\{0,l}
ri
t(xi, l, k)− clk.
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By convention, we denote any timet > T by T + 1. The time-invariant terminal reward is

r̄T+1(x̃, xv, l, z) = −cl0.

The parameters in the reward structure are defined as in the SVMI problem.

We define a decision ruleδt as δt : X × K × Xv × K × Z → Ãt × K̃t, where

Ãt =
⋃

x̃,l̃,xv ,l,z At(x̃, l̃, xv, l, z) andK̃t =
⋃

x̃,l̃,xv,l,zKt(x̃, l̃, xv, l, z). A policy π is defined

asπ = (δ1, δ2, ..., δT ). Hereπ ∈ ΠA, whereΠA is the set of all deterministic Markov

policies for this problem. The objective is to find a policy that maximizes the criterion:

vπ
A(s̃1) = Eπ

s̃1
{

∑
1≤j≤J

rtj(gtj , atj , ktj) + r̄T+1(sT+1)},

where s̃1 is the state at timet = 1 (or t1) andgt, for t = 1, 2, ..., T + 1, is the vector

(x, l, xv, l, 0). To compute the value of the criterion, we need the conditional probability of

x givenx̃, that ispt(x|x̃, l̃, l).

5.2.2 Theoretical Results

Letx′ andz′ be the updated value ofx as a result of the inventory action being evaluated and

the updated value ofz as a result of the vehicle routing action being evaluated, respectively.

The optimality equations, including the boundary condition, for this problem are as follows:

ũA
t ((x̃, l̃, xv, l, z), k) = maxa∈At(x̃,l̃,xv,l,z){

∑
x

pt(x|x̃, l̃, l)fA
t ((x, l̃, xv, l, z), a, k)},

where

fA
t ((x, l̃, xv, l, z), a, k) = rt((x, xv, l), a, k) + uA

t+dlk
(x′, l, xv − a, k, z′),

uA
t (x̃, l̃, xv, l, z) = maxk∈Kt(x̃,l̃,xv ,l,z){ũA

t ((x̃, l̃, xv, l, z), k)},

and

uA
T+1(x̃, l̃, xv, l, z) = −cl0.

Next we show that the optimal value function is non-decreasing in the vehicle’s inven-

tory level. The subsequent corollary then shows that, at the depot, the vehicle is always

70



replenished to its full capacity. In the theorem that follows, we establish a desirable struc-

ture for the vehicle routing problem in this variation.

Proposition 5.2.1.uA
t (x̃, l̃, xv, l, z) is non-decreasing inxv, for t = 1, 2, ..., T + 1.

Proof. Consider the following optimality equation:

ũA
t ((x̃, l̃, xv, l, z), k) = maxa∈At(x̃,l̃,xv,l,z){

∑
x

pt(x|x̃, l̃, l)fA
t ((x, l̃, xv, l, z), a, k)},

where

fA
t ((x, l̃, xv, l, z), a, k) = rt((x, xv, l, z), a, k) + uA

t+dlk
(x′, l, xv − a, k, z′).

SinceuA
T+1(x̃, l̃, xv, l, z) = −cl0, it is non-decreasing inxv, for all x̃, l̃, xv, l andz. Assume

that uA
n (x′, l, xv − a, k, z′) is non-decreasing inxv, for n = T, T − 1, T − 2, ..., t + 1.

We now show thatuA
t (x̃, l̃, xv, l, z) is non-decreasing inxv. By definition, for all a ∈

At(x̃, l̃, xv, l, z), rt((x, xv, l, z), a, k) is independent and, therefore, non-decreasing inxv.

Also, pt(x|x̃, l̃, l) is independent ofxv. Furthermore, the setAt(x̃, l̃, xv, l, z) is such that,

for x′′v ≥ x′v, there existsa′′ ∈ At(x̃, l̃, x′′v, l, z) such thatx′′v − a′′ ≥ x′v − a′, for all

a′ ∈ At(x̃, l̃, x′v, l, z). It follows thatũA
t ((x̃, l̃, xv, l, z), k) is non-decreasing inxv, for all k.

This completes the induction. The desired result follows.

The next corollary establishes an intuitive result that follows from Proposition 5.2.1.

Corollary 5.2.2. At the depot, it is always optimal to replenish the vehicle to its full capac-

ity.

Proof. Consider the following optimality equation:

ũA
t ((x̃, l̃, xv, l, z), k) = maxa∈At(x̃,l̃,xv,l,z){

∑
x

pt(x|x̃, l̃, l)fA
t ((x, l̃, xv, l, z), a, k)},

where

fA
t ((x, l̃, xv, l, z), a, k) = rt((x, xv, l), a, k) + uA

t+dlk
(x′, l, xv − a, k, z′).
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By Proposition 5.2.1, it follows thatuA
t+dlk

(x′, l, xv − a, k, z′) is non-decreasing inxv − a.

Furthermore, at the depot,rt((x, xv, l), a, k) is independent ofa. As a result,
∑

x pt(x|x̃, l̃, l)fA
t ((x, l̃, xv, l, z), a, k) is non-decreasing inxv − a. The assertion of the

proposition follows.

The result of Corollary 5.2.2 can be shown to hold in the SVMI problem. Theorem

5.2.3 establishes the relationship between the optimal destination of the vehicle, when it is

at one of the non-final retailers, and its inventory level.

Theorem 5.2.3.For the statest = (x̃, l̃, xv, l, z), in whichl ∈ K\{0, N}, assume that it is

optimal for the vehicle to proceed directly to the next retailer, instead of making a stop at

the depot for replenishment first. Then for the states′t = (x̃, l̃, x′v, l, z), in whichx′v ≥ xv,

it is also optimal for the vehicle to proceed directly to the next retailer.

Proof. For1 ≤ l < N , Kt(x̃, l̃, xv, l, z) = {0, z + 1}. Therefore,

uA
t (x̃, l̃, xv, l, z) = max{ũA

t ((x̃, l̃, xv, l, z), 0), ũA
t ((x̃, l̃, xv, l, z), z + 1)}.

Corollary 5.2.2 states that, at the depot, the vehicle is always replenished to its full capacity.

Thus, we may write

ũA
t ((x̃, l̃, xv, l, z), 0) = maxa∈At(x̃,l̃,xv ,l,z){

∑
x

pt(x|x̃, l̃, l)w0
t ((x, l̃, xv, l, z), a, 0)},

where

w0
t ((x, l̃, xv, l, z), a, 0) = rt((x, xv, l), a, 0) +

∑
y

pt(y|x, l, 0)w̃0
t (y, l, qv, 0, z),

in which

w0
t (y, l, qv, 0, z) = rt+dl0

((y, qv, 0), qv − xv + a, z + 1) + uA
t+dl0

(y, l, qv, z + 1, z + 1).

Meanwhile,

ũA
t ((x̃, l̃, xv, l, z), z + 1) = maxa∈At(x̃,l̃,xv ,l,z){

∑
x

p(x|x̃, l̃, l)w1
t ((x, xv, l, z), a, z + 1)},
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where

w1
t ((x, xv, l, z), a, z + 1) = rt((x, xv, l), a, z + 1) + uA

t+dl(z+1)
(x′, l, xv − a, z + 1, z + 1),

in which x′ is the updated value ofx as a result of the inventory action being evaluated. It

can be shown that, for alla ∈ At(x̃, l̃, xv, l, z), ũA
t ((x̃, l̃, xv, l, z), z+1) is non-decreasing in

xv andũA
t ((x̃, l̃, xv, l, z), 0) is independent ofxv. The assertion of the theorem follows.

5.3 Variation II: The SVMI Problem with Fixed Vehicle Route

This variation is similar to the previous one except that, in this case, there is no delay

in state information. We first formulate the problem and then present theoretical results.

Similar results to those for Variation I are included. Additionally, we compare the optimal

expected total rewards for the two variations. Unless specified otherwise, the parameters

that appear in this section are defined as in the problem formulation of the SVMI problem.

5.3.1 Problem Formulation

The state at a decision epoch at timet is st = (x, xv, l, z), wherest ∈ S = X × Xv ×
K×Z. As in the SVMI problem,x is the vector of current inventory levels of the retailers.

Furthermore,xv and l are the current inventory level and current location of the vehicle,

respectively. As in Variation I,z is the number of retailers that have been visited on the

current trip, wherez ∈ Z = {0, 1, 2, ..., N}.
The inventory and vehicle routing action sets,At(x, xv, l, z) andKt(x, xv, l, z), respec-

tively, are as follows. Forl = 0,

At(x, xv, l, z) = {a : −(qv − xv) ≤ a ≤ 0},

and forl > 0,

At(x, xv, l, z) = {a : 0 ≤ a ≤ min{ql − xl, xv}}.

At the depot, forz = 0, Kt(x, xv, l, z) = {1} and, forz > 0, Kt(x, xv, l, z) = {z + 1}.
At the last retailer,Kt(x, xv, l, z) = {0}. Finally, for l ∈ K\{0, N}, Kt(x, xv, l, z) =
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{0, z + 1}.
The reward and transition structures are independent ofz. So they are the same as those

for the SVMI problem. In particular, forl = 0,

rt((x, xv, l), a, k) =
∑

1≤i≤N

ri
t(xi, l, k)− clk,

and, forl > 0,

rt((x, xv, l), a, k) = r̃l
t(xl, l, a, k) +

∑

i∈K\{0,l}
ri
t(xi, l, k)− clk.

Let T + 1 denote any timet > T . The terminal reward is

r̄T+1(x, xv, l, z) = −cl0.

The transition probability is such that, forl = 0,

pt(y|(x, xv, l), a, k) =
∏

1≤i≤N

pi
t(yi|xi, l, k),

and forl > 0,

pt(y|(x, xv, l), a, k) = pl
t(yl|xl + a, l, k)

∏

i∈K\{0,l}
pi

t(yi|xi, l, k).

Let δt be a decision rule, whereδt : X×Xv×K×Z → Ãt×K̃t, Ãt =
⋃

x,xv ,l,zAt(x, xv, l, z),

and K̃t =
⋃

x,xv ,l,zKt(x, xv, l, z). A policy π is defined asπ = (δ1, δ2, ..., δT ), where

π ∈ ΠB. We defineΠB as the set of all deterministic Markov policies for this problem.

The objective is to find a policy that maximizes the expected total reward:

vπ
B(s1) = Eπ

s1
{

∑
1≤j≤J

rtj(stj , atj , ktj) + r̄T+1(sT+1)},

wheres1 is the state at timet = 1 (or t1).

5.3.2 Theoretical Results

Let z′ be the updated value ofz as a result of the vehicle routing action being evaluated.

The optimality equations for this problem are as follows:

ũB
t ((x, xv, l, z), k) = maxa∈At(x,xv,l,z){rt((x, xv, l), a, k)

+
∑

y

pt(y|(x, xv, l), a, k)uB
t+dlk

(y, xv − a, k, z′)},
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uB
t (x, xv, l, z) = maxk∈Kt(x,xv ,l,z){ũB

t ((x, xv, l, z), k)},

and

uB
T+1(x, xv, l, z) = r̄T+1(x, xv, l, z) = −cl0.

Next we state the theoretical results similar to those for Variation I. Their proofs are

also similar and, thus, omitted.

Proposition 5.3.1.uB
t (x, xv, l, z) is non-decreasing inxv, for t = 1, 2, ..., T .

Corollary 5.3.2. At the depot, it is always optimal to replenish the vehicle to its full capac-

ity.

Theorem 5.3.3.For the statest = (x, xv, l, z), in which l ∈ K\{0, N}, assume that the

optimal destination of the vehicle is the next retailer, instead of the depot. Then the optimal

destination of the vehicle for the states′t = (x, x′v, l, z), in whichx′v ≥ xv, is also the next

retailer.

We definex̃ as the row vector of inventory levels of the retailers after inventory action

was taken at the previous decision epoch. Also,l̃ denotes the vehicle’s previous location.

We definewA
t (x̃, l̃, xv, l, z) as the optimal expected reward from timet to the end of the

horizon for Variation I. It follows that

wA
t (x̃, l̃, xv, l, z) = uA

t (x̃, l̃, xv, l, z).

Let wB
t (x̃, l̃, xv, l, z) be the optimal expected reward from timet to the end of the horizon

for Variation II, givenx̃ and l̃. Since current inventory levels of the retailers are available

in Variation II, we have that

wB
t (x̃, l̃, xv, l, z) =

∑
x

pt(x|x̃, l̃, l)uB
t (x, xv, l, z).

The following proposition compareswA
t (x̃, l̃, xv, l, z) andwB

t (x̃, l̃, xv, l, z).
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Proposition 5.3.4.For t = 1, 2, ..., T, T + 1,

wA
t (x̃, l̃, xv, l, z) ≤ wB

t (x̃, l̃, xv, l, z),

for all x̃, l̃, xv, l, andz.

Proof. We shall prove this proposition by induction. At timeT + 1, both quantities are the

same, so the inequality holds. Assume that the inequality holds for timesT, T −1, ..., t+1,

we will show that it also holds at timet. Let x′ and z′ be the updated value ofx as a

result of the inventory action being evaluated and the updated value ofz as a result of the

vehicle routing action being evaluated, respectively. By their definitions, we may write

wA
t (x̃, l̃, xv, l, z) andwB

t (x̃, xv, l, z) as follows:

wA
t (x̃, l̃, xv, l, z) = maxk∈Kt(x̃,l̃,xv ,l,z){maxa∈At(x̃,l̃,xv ,l,z){

∑
x

pt(x|x̃, l̃, l)gA
t ((x, xv, l, z), a, k)}},

(5.3.1)

where

gA
t ((x, xv, l, z), a, k) = rt((x, xv, l), a, k) + wA

t+dlk
(x′, l, xv − a, k, z′)

and

wB
t (x̃, l̃, xv, l, z) =

∑
x

pt(x|x̃, l̃, l)[maxk∈Kt(x,xv ,l,z){maxa∈At(x,xv,l,z){gB
t ((x, xv, l, z), a, k)}}],

(5.3.2)

where

gB
t ((x, xv, l, z), a, k) = rt((x, xv, l), a, k) + wB

t+dlk
(x′, xv − a, k, z′).

For the induction hypothesis, it follows that

gA
t ((x, xv, l, z), a, k) ≤ gB

t ((x, xv, l, z), a, k),

for all

k ∈ {Kt(x̃, l̃, xv, l, z) ∩Kt(x, xv, l, z)},
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and all

a ∈ {At(x̃, l̃, xv, l, z) ∩ At(x, xv, l, z)}.

We note that

Kt(x̃, l̃, xv, l, z) = Kt(x, xv, l, z),

and

At(x̃, l̃, xv, l, z) ⊆ At(x, xv, l, z).

By inspecting equation 5.3.1 and equation 5.3.2, we have that

wA
t (x̃, l̃, xv, l, z) ≤ wB

t (x̃, l̃, xv, l, z).

This completes the induction.

By definition,vπ∗
B (x, xv, l, z) is the optimal expected total reward for Variation II, given

that the current state of the system at the beginning of the horizon (t=1) is(x, xv, l, z).

Let the same quantity for Variation I bevπ∗
A ((x̃, l̃, xv, l, z)|x). In these two quantities,x

is the vector of inventory levels of the retailers at the beginning of the horizon andx̃ is

the vector of inventory levels of the retailers before the beginning of the horizon (t=0).

Also, we definew̄B
1 ((x̃, l̃, xv, l, z)|x) as the previously defined quantitywB

1 (x̃, l̃, xv, l, z),

given that the vector of inventory levels of the retailers at timet = 1 is x. Similarly, let

w̄A
1 ((x̃, l̃, xv, l, z)|x) denote the quantitywA

1 (x̃, l̃, xv, l, z), given that the vector of inventory

levels of the retailers att = 1 is x. Theorem 5.3.5 compares the optimal expected total

rewards for Variation I and Variation II.

Theorem 5.3.5.Given the same state at the beginning of the horizon, the optimal expected

total reward for Variation I is not greater than that for Variation II.

Proof. It can be shown that

vπ∗
B (x, xv, l, z) = w̄B

1 ((x̃, l̃, xv, l, z)|x),
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and that

vπ∗
A ((x̃, l̃, xv, l, z)|x) = w̄A

1 ((x̃, l̃, xv, l, z)|x).

From Proposition 5.3.4, it follows that

w̄A
1 ((x̃, l̃, xv, l, z)|x) ≤ w̄B

1 ((x̃, l̃, xv, l, z)|x).

Consequently,

vπ∗
A ((x̃, l̃, xv, l, z)|x) ≤ vπ∗

B (x, xv, l, z).

This is exactly the assertion of the theorem.

5.4 Variation III: The SVMI Problem with Pre-Determined
Vehicle Route

This variation is similar to Variation II except that, in this case, the order of the retailers

is not always fixed. In particular, the order of the retailers is chosen and then fixed before

the vehicle departs the depot at the beginning of each round of service. The problem for-

mulation is presented next. Then, we compare the optimal expected total reward of this

variation with those of Variation II and the SVMI problem. Unless specified otherwise,

the parameters that appear in this section are defined as in the problem formulation of the

SVMI problem.

5.4.1 Problem Formulation

The state at a decision epoch at timet is st = (x, xv, l, z), wherest ∈ S = X × Xv ×
K×Z. As in the SVMI problem,x is the vector of current inventory levels of the retailers.

Additionally, xv and l are the current inventory level and current location of the vehicle,

respectively. We definez as the number of retailers that have been visited during the current

round of service, wherez ∈ Z = {0, 1, 2, ..., N}.
The set of inventory actions,At(x, xv, l, z), is such that, forl = 0,

At(x, xv, l, z) = {a : −(qv − xv) ≤ a ≤ 0},
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and forl > 0,

At(x, xv, l, z) = {a : 0 ≤ a ≤ min{ql − xl, xv}}.

To specify the set of vehicle routing actions, we first definek̂ as a permissible sequence

of retailers. Let̂k(i) denote theith retailer in sequencêk. The set of̂k is

K̂ = {k̂ = (k̂(1), k̂(2), ..., k̂(N))|k̂(i) ∈ {1, 2, ..., N},∀i; k̂(i) 6= k̂(j), ∀i 6= j}.

Practically, the set̂K could be much smaller than what the definition implies because cer-

tain sequences may be ruled out for various reasons. LetK̂t(x, xv, l, z) be the set of all

permissible sequences for state(x, xv, l, z). The sequence of retailers is determined be-

fore the vehicle departs the depot for each round of service. Therefore, forl = z = 0,

K̂t(x, xv, l, z) = K̂. Otherwise,K̂t(x, xv, l, z) = ∅. The set of vehicle routing actions,

which clearly depends on̂k, is as follows. Forl = z = 0, Kt((x, xv, l, z), k̂) = {k̂(1)}. For

l = 0 andz > 0, Kt((x, xv, l, z), k̂) = {k̂(z + 1)}. Meanwhile,Kt((x, xv, l, z), k̂) = {0},
for l = k̂(N). Finally,Kt((x, xv, l, z), k̂) = {0, k̂(z + 1)}, for l ∈ K\{0, k̂(N)}.

The reward and transition structures are independent ofz andk̂. So they are similar to

those for the SVMI problem. In particular, forl = 0,

rt((x, xv, l), a, k) =
∑

1≤i≤N

ri
t(xi, l, k)− clk,

and forl > 0,

rt((x, xv, l), a, k) = r̃l
t(xl, l, a, k) +

∑

i∈K\{0,l}
ri
t(xi, l, k)− clk.

We denote any timet > T by T + 1. The terminal reward is

r̄T+1(x, xv, l, z) = −cl0.

The transition probability is as follows: forl = 0,

pt(y|(x, xv, l), a, k) =
∏

1≤i≤N

pi
t(yi|xi, l, k),
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and forl > 0,

pt(y|(x, xv, l), a, k) = pl
t(yl|xl + a, l, k)

∏

i∈K\{0,l}
pi

t(yi|xi, l, k).

Let δt be a decision rule, whereδt : X×Xv×K×Z → Ãt×K̃t, Ãt =
⋃

x,xv ,l,zAt(x, xv, l, z),

andK̃t =
⋃

x,xv,l,z,k̂Kt((x, xv, l, z), k̂). A policy π is defined asπ = (δ1, δ2, ..., δT ). Let

π ∈ ΠC , whereΠC is the set of all deterministic policies for this problem. The objective is

to find a policy that maximizes the expected total reward:

vπ
C(s1) = Eπ

s1
{

∑
1≤j≤J

rt(stj , atj , ktj) + r̄T+1(sT+1)},

wheres1 is the state at timet = 1.

5.4.2 Theoretical Results

Let z′ be the updated value ofz as a result of the vehicle routing action evaluated. We now

present the optimality equations for this variation. Forl ∈ K\{0, k̂(N)},

ũC
t ((x, xv, l, z), k̂, k) = maxa∈At(x,xv ,l,z){w̄t((x, xv, l, z), k̂, k, a)},

where

w̄t((x, xv, l, z), k̂, k, a) =rt((x, xv, l), a, k)

+
∑

y

pt(y|(x, xv, l), a, k)ūC
t+dlk

((y, xv − a, k, z′), k̂),

and

ūC
t ((x, xv, l, z), k̂) = maxk∈Kt((x,xv ,l,z),k̂){ũC

t ((x, xv, l, z), k̂, k)}.

For l = k̂(N),

ũC
t ((x, xv, l, z), k̂, k) = maxa∈At(x,xv ,l,z){wt((x, xv, l, z), k̂, k, a)},

where

wt((x, xv, l, z), k̂, k, a) = rt((x, xv, l), a, k)+
∑

y

pt(y|(x, xv, l), a, k)uC
t+dlk

(y, xv−a, k, z′),
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and

ūC
t ((x, xv, l, z), k̂) = maxk∈Kt((x,xv ,l,z),k̂){ũC

t ((x, xv, l, z), k̂, k)}.

Finally, for l = 0,

ũC
t ((x, xv, l, z), k̂, k) = maxa∈At(x,xv ,l,z){w̄t((x, xv, l, z), k̂, k, a)},

ūC
t ((x, xv, l, z), k̂) = maxk∈Kt((x,xv ,l,z),k̂){ũC

t ((x, xv, l, z), k̂, k)},

and

uC
t (x, xv, l, z) = maxk̂∈K̂t(x,xv ,l,z){ūC

t ((x, xv, l, z), k̂)}.

At the end of the horizon,

uC
T+1(x, xv, l, z) = ūC

T+1((x, xv, l, z), k̂) = r̄T+1(x, xv, l, z) = −cl0.

Next we compare the optimal expected total reward for this variation with that for Vari-

ation II and the SVMI problem.

Theorem 5.4.1.Given the same state at the beginning of the horizon, the optimal expected

total reward for Variation II is not greater than that for Variation III.

Proof. For eachπ ∈ ΠB, there exists an equivalent policyπ′ ∈ ΠC . That is,ΠB ⊆ ΠC .

One way to show this is to let̂Kt(x, xv, l, z) = {(1, 2, ..., N)}, for l = z = 0 in Variation

III. That is, the vehicle visits the same (fixed) order of retailers as in Variation II. The

assertion of the proposition follows.

Theorem 5.4.2.Given the same state at the beginning of the horizon, the optimal expected

total reward for Variation III in not greater than that for the SVMI problem.

Proof. It can be shown that the the sets of inventory actions for both problems are the same.

However, the set of vehicle routing actions for Variation III is a subset of that for the SVMI

problem. As a result,ΠC ⊆ Π. The result follows.
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5.5 Variation IV: The SVMI Problem with Route-Variable
Intersections

In this setting, we assume that there is an intersection between each pair of inventory lo-

cations. When the vehicle is at each intersection, current inventory levels of the retailers

are available. The decision maker then decides where the vehicle will travel to next. This

must be one of the two inventory locations accessible from the intersection. No inventory

is taken at an intersection. Current inventory levels are also available when the vehicle is

at each of the inventory locations. Here inventory action is taken and then the vehicle can

travel to any one of the intersections. The problem formulation is presented next. Sub-

sequently, we compare the optimal expected total reward of this variation with that of the

SVMI problem. Unless specified otherwise, the parameters that appear in this section are

defined as in the problem formulation of the SVMI problem.

5.5.1 Problem Formulation

The state at a decision epoch at timet is st = (x, xv, l), wherest ∈ S = X ×Xv × L. As

in the SVMI problem,x is the vector of current inventory levels of the retailers. Moreover,

xv andl are the current inventory level and current location of the vehicle, respectively. We

define the set of locations asL = K ∪ I, whereK is the set of inventory locations and

I is the set of intersections. We assume that there is an intersection between each pair of

inventory locations. In particular,I = {ijk|j, k ∈ K}.
Based on the vehicle’s location, there are two types of decision epochs. To help us

distinguish them, we definetj as the time of thejth decision epoch at which the vehicle is

at an inventory location. Lett′j, wheretj < t′j < tj+1, be the time of thejth decision epoch

at which the vehicle is at an intersection. Let us recall thatdlk, for l, k ∈ K, is the travel

time from inventory locationl to inventory locationk. Thus, if the vehicle is at inventory

locationl at timetj, then, at timet′j, it will be at an intersection. If, at timet′j, inventory

locationk is chosen as the vehicle destination, then the next decision epoch will occur at
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time tj+1 = t + dlk.

Beyond this point, a decision epoch that occurs at timet implies that the vehicle is

at one of the inventory locations. Furthermore, from timet, the next decision epoch will

occur at timet′ and the vehicle will be at an intersection. LetJ be the random integer

such thattJ ≤ T andtJ+1 > T . Consequently, the decision epochs for this problem are

t1, t
′
1, t2, t

′
2, ..., tJ , t′J .

We now specify the action sets. Since no inventory action is taken at an intersection,

for l ∈ I, we have thatAt′(x, xv, l) = ∅. For l ∈ K, if l = 0,

At(x, xv, l) = {a : −(qv − xv) ≤ a ≤ 0},

and if l > 0,

At(x, xv, l) = {a : 0 ≤ a ≤ min{ql − xl, xv}}.

For l ∈ K, the set of vehicle routing actions isKD
t (x, xv, l) = I. We assume that the

vehicle returns to the depot at timetJ+1. When the vehicle is at an intersection, sayl =

ijk ∈ I, then the set vehicle routing actions isKD
t′ (x, xv, l) = {j, k}. That is, from an

intersection, the vehicle can travel to only the two inventory locations associated with that

intersection.

Let us recall thatclk, for l, k ∈ K, denotes the transportation cost for the vehicle to

travel from inventory locationl to inventory locationk. We make the following assumption

regardingclk anddlk, for l, k ∈ K.

Assumption 5.5.1.For all j, k, l ∈ K, suppose that the vehicle travels from inventory

locationl to intersectionijk. Thenclj = clk anddlj = dlk.

Suppose the vehicle is at inventory locationl at timetj. By the above assumption, the

vehicle routing action taken at the subsequent intersection (at timet′j) does not affect the

reward accrued during the current interval (between timetj and timetj+1). So we may

assume that this reward is accrued before the vehicle arrives at the intersection. As a result,

83



the reward structure for this problem is similar to that for the SVMI problem. In partic-

ular, from inventory locationl, if intersectionijk is visited next, then the reward accrued

during the interval isrt((x, xv, l), a, k) = rt((x, xv, l), a, j). As in the SVMI problem,

rt((x, xv, l), a, k) is the reward accrued between timet and timet + dlk, wherea is the

inventory action taken at timet, andk is the next inventory location to visit. Forl = 0,

rt((x, xv, l), a, k) =
∑

1≤i≤N

ri
t(xi, l, k)− clk.

For l > 0,

rt((x, xv, l), a, k) = r̃l
t(xl, l, a, k) +

∑

i∈K\{0,l}
ri
t(xi, l, k)− clk.

By convention, we denote any timet > T asT + 1. The terminal reward is

r̄T+1(x, xv, l, z) = −cl0.

For l ∈ K, we definep1
t (y|(x, xv, l), a, k) as the probability that the vector of inven-

tory levels of the retailers at timet′ is y, given that the state at timet is (x, xv, l) and

inventory actiona and vehicle routing actionk (an intersection) are taken. Meanwhile,

p2
t′(y|(x, xv, l), k), in which l ∈ I, is defined as the probability that, at timet + dlk, the

vector of inventory levels of the retailers isy, given that the state at timet′ is (x, xv, l) and

vehicle routing actionk (an inventory location) is chosen. Forl = 0,

p1
t (y|(x, xv, l), a, k) =

∏
1≤i≤N

pi
t(yi|xi, l, k),

wherepi
t(yi|xi, l, k) is the transition probability at retaileri from timet to timet′. Forl > 0,

p1
t (y|(x, xv, l), a, k) = pl

t(yl|xl + a, l, k)
∏

i∈K\{0,l}
pi

t(yi|xi, l, k),

wherepl
t(yl|xl + a, l, k) is the transition probability at the current retailer from timet to

time t′. Meanwhile,

p2
t′(y|(x, xv, l), k) =

∏
1≤i≤N

pi
t′(yi|xi, l, k),
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wherepi
t′(yi|xi, k) is the transition probability for retaileri from timet′ to timet + dlk.

Let δt : X × Xv × K → Ãt × K̃t be a decision rule for the decision epoch at which

the vehicle is at an inventory location. In this case,Ãt =
⋃

x,xv,lAt(x, xv, l) and K̃t =

⋃
x,xv ,lK

D
t (x, xv, l). A decision rule for the decision epoch at which the vehicle is at an

intersection is defined asδt′ : X × Xv × I → K̃t′, whereK̃t′ =
⋃

x,xv ,l K
D
t′ (x, xv, l). A

policy π is defined as

π = (δ1, δ1′ , δ2, δ2′ , ..., δT , δT ′).

Let π ∈ ΠD, whereΠD is the set of all deterministic Markov policies for this problem. The

objective is to find a policy that maximize the following criterion:

vπ
D(s1) = Eπ

s1
{

∑
1≤j≤J

rtj(stj , atj , ktj) + r̄T+1(sT+1)},

wheres1 is the state at timet = 1 (or t1).

5.5.2 Theoretical Results

We now present the optimality equations for this problem. Forl ∈ K,

ũD
t ((x, xv, l), ijk) = maxa∈At(x,xv ,l){rt((x, xv, l), a, j)

+
∑

y

p1
t (y|(x, xv, l), a, ijk)u

D
t′ (y, xv − a, ijk)},

and

uD
t (x, xv, l) = maxijk∈KD

t (x,xv ,l){ũD
t ((x, xv, l), ijk)}.

For l ∈ I,

ũD
t′ ((x, xv, l), k) =

∑
y

p2
t′(y|(x, xv, l), k)uD

t+dlk
(y, xv, k),

and

uD
t′ (x, xv, l) = maxk∈KD

t′ (x,xv ,l){ũD
t′ ((x, xv, l), k)}.

At the end of the horizon,

uD
T+1(x, xv, l) = r̄T+1(x, xv, l) = −cl0.
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The following theorem compares the optimal expected reward for Variation IV with

that for the SVMI problem.

Theorem 5.5.2.Given the same state at the beginning of the horizon, the optimal expected

total reward for Variation IV in not less than that for the SVMI problem.

Proof. Let us refer tou∗t (x, xv, l) in the optimality equations for the SVMI problem. We

shall prove that, fort = 1, 2, ..., T + 1,

u∗t (x, xv, l) ≤ uD
t (x, xv, l).

This implies the assertion of the theorem. We shall prove the inequality by induction. By

the boundary conditions for both problems, the inequality holds for timeT + 1. Assume

that it holds for timesT, T − 1, ..., t + 1. We shall prove that the inequality is true for time

t. We may writeu∗t (x, xv, l) as

u∗t (x, xv, l) = maxk∈Kt(x,xv ,l){maxa∈At(x,xv ,l){wt((x, xv, l), a, k)}},

where

wt((x, xv, l), a, k) = rt((x, xv, l), a, k) +
∑

y

pt(y|(x, xv, l), a, k)u∗t+dlk
(y, xv − a, k).

Meanwhile,

uD
t (x, xv, l) = maxijk∈KD

t (x,xv ,l){maxa∈At(x,xv ,l){wD
t ((x, xv, l), a, ijk)},

where

wD
t ((x, xv, l), a, ijk) = rt((x, xv, l), a, k) +

∑

x′
p1

t (x
′|(x, xv, l), a, ijk)g

D
t (x′, xv − a, ijk),

in which

gD
t (x′, xv−a, ijk) = maxk∈KD

t′ (x
′,xv−a,ijk){

∑
y

p2
t′(y|(x′, xv−a, k), ijk)u

D
t+dlk

(y, xv−a, k)}.

86



Because no inventory action is taken at an intersection,

pt(y|(x, xv, l), a, k) =
∑

x′
p1

t (x
′|(x, xv, l), a, k)p2

t′(y|(x′, xv − a, k′), k).

The induction hypothesis and the above results imply that

wt((x, xv, l), a, k) ≤ max{wt((x, xv, l), a, j), wt((x, xv, l), a, k)} ≤ wD
t ((x, xv, l), a, ijk),

for all ijk ∈ KD
t (x, xv, l).

It follows that

u∗t (x, xv, l) ≤ uD
t (x, xv, l).

This completes the induction.

5.6 Numerical Results

In this section, we present numerical results that compare the optimal expected total re-

wards for the SVMI problem and its variations. In all five problems, we consider a dis-

tribution system with three retailers. Two demand distributions are applied. They are the

uniform and discrete normal distributions. We present the optimal expected total rewards

for the five problems in Table 11 and Figure 1.

Table 11: Optimal expected total rewards for the SVMI problem and its variations
Optimal expected to-
tal reward for uni-
form demand

Optimal expected to-
tal reward for dis-
crete normal demand

Variation I 3,323.25 3,055.15
Variation II 4,149.50 3,868.70
Variation III 4,156.27 3,869.14
SVMI Problem 4,605.36 4,276.06
Variation IV 4,716.38 4,337.65

From the numerical results, the optimal expected total rewards for the five problems

rank in the order that we expected. In particular, in ascending order, there are the optimal

expected total rewards for Variation I, Variation II, Variation III, the SVMI problem, and
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Figure 1: Optimal expected total rewards for the SVMI problem and its variations

Variation IV. This supports our analytical results which imply that the optimal expected

total reward increases as the quality of state information and/or the flexibility in vehicle

routing procedure increase.

There is another interesting observation of the numerical results: the difference between

the rewards for Variation I and Variation II and the difference between the rewards for

Variation III and the SVMI problem are relatively large. We shall discuss this observation

further in the next section. For each of the five problems, the optimal expected total reward

for the uniform demand is greater than that for the discrete normal demand. This supports

the generally-true hypothesis for inventory problems that the optimal expected total reward

is non-increasing in the demand variability.∗

∗Exceptions to this hypothesis are rare. For interested readers, Ridder et al. (1998) present sufficient
conditions for the cost to decrease as the demand variability increases in the Newsvendor’s problem.
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5.7 Discussion

Based on the above numerical results, we shall attempt to establish a qualitative relationship

between state information quality and vehicle routing strategy in the distribution system

that we have described. Let us propose the following hypothesis: in general, the greater

use of improved state information, particularly by adding more flexibility to the vehicle

routing procedure, results in increasingly better operating performance of the distribution

system. In this case, we use the optimal expected total reward as the measure of operating

performance of the distribution system.

The numerical results are used as evidence that supports, but does not proves, the above

hypothesis. From Figure 1, the difference between the optimal expected total rewards for

Variation II and Variation III is small relative to the difference between those for Variation

III and the SVMI problem. In all four problems, current inventory levels of the retailers are

available at each decision epoch. Meanwhile, the vehicle routing procedure in the SVMI

problem is much more flexible than that in Variation III, which is slightly more flexible than

that in Variation II. This shows that our numerical examples supports the above hypothesis.

Even though the vehicle routing procedure in Variation IV is somewhat more flexible

than that of the SVMI problem, the difference between the optimal expected total rewards

for the two problems are relatively small. This represents a limit in the use of better state

information to improve the operating performance of the distribution system. In practice,

whether or not Variation IV will be implemented would depend on the projected operating

costs and benefits.

Finally, it can be argued that eliminating the delay in state information improves the op-

erating performance of the distribution system significantly. This is because of the marked

difference between the optimal expected total reward for Variation I and that for Variation

II. In this case, a delay of one period in the state information has strong negative impact on

the value of the optimality criterion.
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5.8 Conclusions and Future Research

In this chapter, we have shown how state information quality and vehicle routing strategy

affect the operating performance of a distribution system. In particular, improved state

information and increased flexibility in the vehicle routing procedure both result in higher

optimal expected total reward for the distribution problem. Furthermore, based on our

numerical results, it can be argued that there is a complementary relationship between the

two factors. However, there is a limit to the use of better state information to increase

the optimal expected total reward via increased flexibility in the vehicle routing procedure.

Finally, our numerical examples implies that delay in state information has strong negative

impact on the operating performance of the distribution system.

More numerical examples are needed to support our hypothesis. It is interesting to find

out if we can prove this result analytically. Another interesting question is how significant

our theoretical results will be in actual distribution systems. In practice, we expect to expe-

rience issues beyond those considered in our study that affect management’s decisions on

the appropriate state information system and vehicle routing strategy for their distribution

system.
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CHAPTER VI

THE COCA-COLA DISTRIBUTION PROBLEM: A

CASE STUDY

Although the stochastic vendor managed inventory (SVMI) problem is rather general and

applicable in practice, we believe it is important that an actual distribution problem is in-

cluded in our study. We are particularly interested in showing that structural results similar

to those for the SVMI problem can be established in an actual distribution problem. This

led us to consider local companies that could provide us with such example. Subsequently,

we had telephone conversations with the logistics team at the Coca-Cola Enterprises, Inc.

about their distribution problems. One of the problems facing the company shares some

characteristics with the SVMI problem and its variations. The problem is studied in this

chapter. In particular, we consider the problem of producing soft-drink products at the can-

nery and then delivering them to the distribution centers, which face stochastic demands.

We formulate the problem as a finite horizon non-homogeneous Markov decision process.

The problem objective is to find a policy that maximizes the expected total reward, which

includes revenue, transportation cost, and inventory costs. We simplify the vehicle routing

procedure by considering only one distribution center. For the inventory control, we show

that the optimal delivery actions vary monotonically with inventory levels of the products

at the distribution center.

This chapter is organized as follows. First, we provide more details of the problem in

Section 6.1. Section 6.2 is the problem formulation. In the subsequent sections, we present

theoretical results, which include the optimality equations and structural results for delivery

control.
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6.1 Problem Description

There is a cannery, where soda cans are produced and packaged into six-packs and twelve-

packs. We shall restrict our attention to only the two types of products. From the cannery,

a vehicle transports the products to the distribution center. In practice, a cannery serves

multiple distribution centers. However, for reasons to be specified later, we will include

only one distribution center in our analysis. Demand for each product (from retail outlets)

at the distribution center is history-independent, stochastic, and time-dependent.

The actual distribution problem facing the company also involves the delivery of prod-

ucts to the retail outlets. However, because of the following reasons, we shall not consider

this part of the problem. First of all, each retailer manages its own inventory and indepen-

dently incurs the associated costs. Also, as we were told, the vehicle that delivers soft-drink

products to the retailers usually follows a fixed route and pre-determined replenishment

times. Finally, the vehicle operator knows in advance the order quantities for the products

from each retailer. As a result, we shall focus our attention on the two-level supply chain,

consisting of the cannery and the distribution center.

Based on our conversations with the company’s logistics team, deliveries of the six-

packs and twelve-packs from the cannery to the distribution centers are made on a periodic

basis. In particular, each distribution center receives a shipment every few days and the

delivery vehicle follows a fixed route. Because of this predictability, we can simplifly the

problem by including only one distribution center in the problem formulation. This is

a reasonable assumption because, from the decision maker’s perspective, the distribution

centers are treated almost identically. The assumption helps us focus our attention on the

inventory decisions. In particular, the resulting problem involves managing the inventories

of soda cans at the cannery, soft-drink products at the cannery, and soft-drink products at

the distribution center.

We now describe the series of events in each time period. At the cannery, the decision
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maker decides whether or not to begin production of soda cans in the current period. Pro-

duction occurs in a fixed lot size and takes less than one period to complete. We refer to

the required amount of time as the production delay. From the available soda cans, deci-

sions are made on how many six-packs and twelve-packs to be packaged and how many

units of each product to deliver to the distribution center. Packaging and delivery take less

than one period to complete. We refer to the lead times as packaging and delivery delays,

correspondingly.

6.2 Problem Formulation

Because of the production, packaging, and delivery delays, the state for the Coca-Cola dis-

tribution problem includes the numbers of cans being produced, units of each product being

packaged, and units of each product being delivered to the distribution center. We define

the state at timet asst = (̂i, q̂), wherêi = (icc, i
c
6, i

c
12, i

d
6, i

d
12) andq̂ = (qc

c, q
p
6, q

p
12, q

d
6 , q

d
12).

Hereicc is the inventory level of soda cans at the cannery,ic6 (ic12) is the inventory level of

six-packs (twelve-packs) at the cannery, andid6 (id12) is the inventory level of the six-packs

(twelve-packs) at the distribution center. Meanwhile,qc
c is the number of soda cans being

produced,qp
6 (qp

12) is the number of six-packs (twelve-packs) being packaged at the cannery,

andqd
6 (qd

12) is the number of six-packs (twelve-packs) being delivered to the distribution

center.

We defineMy
x , for x ∈ {c, 6, 12} and y ∈ {c, d}, as the capacity for productx at

locationy. Specifically, as in the definitions ofî and q̂, productc means the soda cans,

product6 means the six-packs, and product12 means the twelve-packs. Meanwhile, lo-

cation c is the cannery and locationd is the distribution center. Let(̂i, q̂) ∈ I × Q,

whereI = Ic
c × Ic

6 × Ic
12 × Id

6 × Id
12. HereIc

c = {0, 1, 2, ..., M c
c}, Ic

6 = {0, 1, 2, ...,M c
6},

Ic
12 = {0, 1, 2, ..., M c

12}, Id
6 = {0, 1, 2, ...,Md

6 }, andId
12 = {0, 1, 2, ...,Md

12}. Meanwhile,

Q = {0, b} × Qp
6 × Qp

12 × Qd
6 × Qd

12, whereb is the fixed production lot size,Qp
6 = Ic

6,

Qp
12 = Ic

12, Qd
6 = Id

6 , andQd
12 = Id

12.
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Inventory decisions are made at the cannery. They are the production (canning), pack-

aging, and delivery actions. Leta1 be a production action. Precisely,a1 = 1 (a1 = 0)

means production starts (does not start) in the current period. We assume that production

occurs in a fixed lot size ofb soda cans. Let us recall thatM c
c denotes the maximum ca-

pacity for the soda cans at the cannery. The set ofa1, denoted byA1
t (̂i, q̂), is such that

A1
t (̂i, q̂) = {0, 1}, if qc

c = 0 andicc ≤ M c
c − b. Otherwise,A1

t (̂i, q̂) = {0}. We definea2

(b2) as the number of six-packs (twelve-packs) to be packaged at the cannery. As afore-

mentioned,M c
6 (M c

12) represents the storage capacity for the six-packs (twelve-packs) at

this location. The set of packaging actions are as follows:

a2 ∈ A2
t (̂i, q̂) = {0, 1, 2, ..., min{bicc/6c,M c

6 − ic6 − qc
6}},

and

b2 ∈ B2
t (̂i, q̂, a2) = {0, 1, 2, ..., min{b(icc − a2)/12c,M c

12 − ic12 − qc
12}}.

Note thatB2
t is dependent ona2. Let a3 (b3) be the number of six-packs (twelve-packs)

to be delivered from the cannery to the distribution center. We have definedMd
6 (Md

12) as

the storage capacity for the six-packs (twelve-packs) at the distribution center. The sets of

delivery actions are

a3 ∈ A3
t (̂i, q̂) = {0, 1, 2, ..., min{ic6,Md

6 − id6 − qd
6}},

and

b3 ∈ B3
t (̂i, q̂) = {0, 1, 2, ...,min{ic12,M

d
12 − id12 − qd

12}}.

Costs (per unit) under consideration include the production cost (c), packaging costs

(g6, g12), delivery costs (d6, d12), holding costs (hc
c, h

c
6, h

c
12, h

d
6, h

d
12), and shortage costs

(s6, s12). Revenues per unit for the six-packs and twelve-packs are denoted byw6 andw12,

respectively. Given that the state at timet is (̂i, q̂) and the set of actionŝa = (a1, a2, b2, a3, b3)
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is taken, the reward accrued between timet and timet + 1 is

rt((̂i, q̂), â) =− ca1 − g6a2 − g12b2 − d6a3 − d12b3 − hc(i
c
c + qc

c − 6a2 − 12b2)

− hc
6(i

c
6 + qp

6 − a3)− hc
12(i

c
12 + qp

12 − b3)− hd
6(i

d
6 + qd

6)− hd
12(i

d
12 + qd

12)

+ w6E[min{(id6 + qd
6), D

6
t }] + w12E[min{(id12 + qd

12), D
12
t }]

− s6E[max{D6
t − (id6 + qd

6), 0}]− s12E[max{D12
t − (id12 + qd

12), 0}],

whereâ = (a1, a2, b2, a3, b3) and a random integer variableD6
t (D12

t ) is the number of six-

packs (twelve-packs) demanded at the distribution center between timet and timet+1. At

the end of the horizon, the terminal reward is

r̄T+1(̂i, q̂) = ec
ci

c
c + ec

6i
c
6 + ec

12i
c
12 + ed

6i
d
6 + ed

12i
d
12,

whereey
x, for x ∈ {c, 6, 12} andy ∈ {c, d}, is the per-unit salvage value for productx at

locationy.

Let ĵ = (jc
c , j

c
6, j

c
12, j

d
6 , j

d
12). We definept(ĵ|(̂i, q̂), â) as the probability that the vector

of inventory levels at timet + 1 is ĵ, given that the state at timet is (̂i, q̂) and the set

of actionsâ = (a1, a2, b2, a3, b3) is taken. The transitions of̂q and some elements in̂j

are deterministic. In particular, at timet + 1, qc
c = a1b, qc

6 = a2, qc
12 = b2, qd

6 = a3, and

qd
12 = b3. Furthermore,jc

c = icc+qc
c−6a2−12b12, jc

6 = ic6+qp
6−a3, andjc

12 = ic12+qp
12−b3.

Because orders for the two products arrive at the distribution center, we have that

pt(ĵ|(̂i, q̂), â) = p̃t(j
d
6 |id6 + qd

6)p̃t(j
d
12|id12 + qd

12),

wherep̃t(j
d
6 |id6 + qd

6) andp̃t(j
d
12|id12 + qd

12) are the transition probabilities at the distribution

center of the six-packs and twelve-packs, respectively.

Let d̂t : I ×Q → A be a decision rule, where

A =
⋃

t,̂i,q̂

A1
t (̂i, q̂)× A2

t (̂i, q̂)×B2
t (̂i, q̂)× A3

t (̂i, q̂)×B3
t (̂i, q̂).

In particular,d̂t(̂i, q̂) = (dta1, dta2, dtb2, dta3, dtb3), wheredta1 specifiesa1 (the produc-

tion action),dta2 specifiesa2 (the packaging action for the six-packs), and so on. A policy
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π is defined asπ = (d̂1, d̂2, ..., d̂T ). An optimal policy maximizes the following criterion:

given that the state at timet = 1 is (̂i1, q̂1),

vπ
T (̂i1, q̂1) =

∑
1≤t≤T

rt((̂it, q̂t), ât) + r̄T+1(̂iT+1, q̂T+1).

It follows from the history-indenpendent property of the demands that the model is Marko-

vian. Furthermore, the state space and the action sets are finite. As a result, we can restrict

our attention to deterministic Markov policies.

6.3 Preliminary Results

Let q̂′ be the updated value of̂q for the next period. The optimality equations for this

problem are as follows:

u3
t ((̂i, q̂), a1, a2, b2) = max(a3,b3)∈A3

t (̂i,q̂)×B3
t (̂i,q̂){rt((̂i, q̂), â) +

∑

ĵ

pt(ĵ|(̂i, q̂), â)u1
t+1(ĵ, q̂

′)}

u2
t ((̂i, q̂), a1) = max(a2,b2)∈A2

t (̂i,q̂)×B2
t (̂i,q̂,a2){u3

t ((̂i, q̂), a1, a2, b2)}

u1
t (̂i, q̂) = maxa1∈A1

t (̂i,q̂){u2
t ((̂i, q̂), a1)}

u1
T+1(̂i, q̂) = r̄T+1(̂i, q̂) = ec

ci
c
c + ec

6i
c
6 + ec

12i
c
12 + ed

6i
d
6 + ed

12i
d
12

We shall denote an optimal pair of delivery actions, which are determined in the first

optimality equation, asa∗3((̂i, q̂), a1, a2, b2) andb∗3((̂i, q̂), a1, a2, b2). Similarly,a∗2((̂i, q̂), a1)

andb∗2((̂i, q̂), a1) represent optimal packaging actions for the six-packs and twelve-packs

in the second optimality equation. Finally,a∗1(̂i, q̂) denotes an optimal production action as

determined in the third optimality equation. Let

w3
t ((̂i, q̂), â) = rt((̂i, q̂), â) +

∑

ĵ

pt(ĵ|(̂i, q̂), â)u1
t+1(ĵ, q̂

′).

It follows that

u3
t ((̂i, q̂), a1, a2, b2) = max(a3,b3)∈A3

t (̂i,q̂)×B3
t (̂i,q̂){w3

t ((̂i, q̂), â)}.
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Because the demands for the two products at the distribution center are independent,

a∗3((̂i, q̂), a1, a2, b2) andb∗3((̂i, q̂), a1, a2, b2) are independent of each other. Therefore, they

can be determined independently. On the other hand,a∗2((̂i, q̂), a1) and b∗2((̂i, q̂), a1) are

dependent because a packaging action for the six-packs affects the set of packaging actions

for the twelve-packs. Finally, optimal packaging and delivery actions affect the production

decision. We shall not attempt to establish structural result for production control as there

are only two possible production actions.

6.4 Structural Results for Delivery Control

In this section, we show how the optimal delivery actionsa∗3 andb∗3 vary with id6 andid12, re-

spectively. The structural results and their sufficient conditions are presented in Subsection

6.4.1. Then, in Subsection 6.4.2, we show how the parameters of the distribution problem

satisfy these sufficient conditions. Finally, we summarize the structural results for delivery

control in Subsection 6.4.3.

6.4.1 Sufficient Conditions for the Structural Results

Proposition 6.4.1 specifies how optimal delivery actions vary with inventory levels of the

products at the distribution center, given that a condition onw3
t ((̂i, q̂), â) is satisfied.

Proposition 6.4.1. Assume thatw3
t ((̂i, q̂), â) is sub-additive in(id6, a3). Then there exists

a∗3((̂i, q̂), a1, a2, b2) which is non-increasing inid6.

Proof. By assumption, for each pair ofid6 = i′ andid6 = i′′ such thati′′ ≥ i′ and for each

pair of

a′3, a
′′
3 ∈ {A3

t ((i
c
c, i

c
6, i

c
12, i

′, id12), q̂) ∩ A3
t ((i

c
c, i

c
6, i

c
12, i

′′, id12), q̂)}

such thata′′3 ≥ a′3, we have that

w3
t (((i

c
c, i

c
6, i

c
12, i

′, id12), q̂), a1, a2, b2, a
′′
3, b3)− w3

t (((i
c
c, i

c
6, i

c
12, i

′, id12), q̂), a1, a2, b2, a
′
3, b3)

≥ w3
t (((i

c
c, i

c
6, i

c
12, i

′′, id12), q̂), a1, a2, b2, a
′′
3, b3)− w3

t (((i
c
c, i

c
6, i

c
12, i

′′, id12), q̂), a1, a2, b2, a
′
3, b3).
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By Lemma 2.3.7,

min{argmaxa3∈A3
t ((icc,ic6,ic12,i′,id12),q̂)

w3
t (((i

c
c, i

c
6, i

c
12, i

′, id12), q̂), a1, a2, b2, a3, b3)}

≥ min{argmaxa3∈A3
t ((icc,ic6,ic12,i′′,id12),q̂)

w3
t (((i

c
c, i

c
6, i

c
12, i

′′, id12), q̂), a1, a2, b2, a3, b3)}.

We note that

A3
t ((i

c
c, i

c
6, i

c
12, i

′′, id12), q̂) ⊆ A3
t ((i

c
c, i

c
6, i

c
12, i

′, id12), q̂).

Furthermore, as aforementioned,a∗3((̂i, q̂), a1, a2, b2) andb∗3((̂i, q̂), a1, a2, b2) can be deter-

mined independently. It follows that the arguments in this proof hold regardless of the value

of b3. The assertion of the proposition follows.

Let ĵ = (jc
c , j

c
6, j

c
12, j

d
6 , j

d
12). Theorem 6.4.2 states the sufficient conditions for the above

structural result on the reward and transition structures of the distribution problem. This

result is comparable to Theorem 4.7.4 in Puterman’s book.

Theorem 6.4.2.Assume that the following conditions hold:

1. rt((̂i, q̂), â) is non-decreasing inid6, for all a3, for t = 1, 2, ..., T ,

2.
∑

k≤jd
6≤Md

6
pt(ĵ|(̂i, q̂), â) is non-decreasing inid6, for all k, for all a3, for t = 1, 2, ..., T ,

3. r̄T+1(̂i, q̂) is non-decreasing inid6,

4. rt((̂i, q̂), â) is sub-additive in(id6, a3), for t = 1, 2, ..., T , and

5.
∑

k≤jd
6≤Md

6
pt(ĵ|(̂i, q̂), â) is sub-additive in(id6, a3), for all k, for t = 1, 2, ..., T .

Then there existsa∗3((̂i, q̂), a1, a2, b2) which is non-increasing inid6.

Proof. First, by induction ont, we show thatu1
t (ĵ, q̂

′) is non-decreasing inid6. By (iii),

u1
T+1(̂i, q̂) is non-decreasing inid6. Assume that this is true for timesT, T−1, T−2, ..., t+1.

This with condition (ii) and Lemma 2.3.10 in Chapter 2 imply that
∑

ĵ pt(ĵ|(̂i, q̂), â)u1
t+1(ĵ, q̂

′) is non-decreasing inid6. Condition (i) then implies thatu1
t (ĵ, q̂

′)

is non-decreasing inid6. By this result, condition (v), and Lemma 2.3.10 in Chapter 2, we
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have that the second term in the definition ofw3
t ((̂i, q̂), â) is sub-additive in(id6, a3). This

and condition (iv) then implies thatw3
t ((̂i, q̂), â) is sub-additive in(id6, a3). The result of the

theorem follows from Proposition 6.4.1.

The following results establish monotone relations between the optimal delivery action

for the twelve-packs,b∗3, and inventory level of the twelve-packs at the distribution center,

id12. Proposition 6.4.3 and Theorem 6.4.4 are equivalent to Proposition 6.4.1 and Theorem

6.4.2, respectively. Their proofs are analogous and, thus, omitted.

Proposition 6.4.3.Assume thatw3
t ((̂i, q̂), â) is sub-additive in(id12, b3). Then there exists

b∗3((̂i, q̂), a1, a2, b2) which is non-increasing inid12.

Theorem 6.4.4.Assume that the following conditions hold:

1. rt((̂i, q̂), â) is non-decreasing inid12, for all b3, for t = 1, 2, ..., T ,

2.
∑

k≤jd
12≤Md

12
pt(ĵ|(̂i, q̂), â) is non-decreasing inid12, for all k, for all b3, for t =

1, 2, ..., T ,

3. r̄T+1(̂i, q̂) is non-decreasing inid12,

4. rt((̂i, q̂), â) is sub-additive in(id12, b3), for t = 1, 2, ..., T , and

5.
∑

k≤jd
12≤Md

12
pt(ĵ|(̂i, q̂), â) is sub-additive in(id12, b3), for all k, for t = 1, 2, ..., T .

Then there existsb∗3((̂i, q̂), a1, a2, b2) which is non-increasing inid12.

6.4.2 Sufficient Conditions on the Problem Parameters

Here we establish the sufficient conditions on the problem parameters that imply the con-

ditions of Theorem 6.4.2. Similar conditions for Theorem 6.4.4 can also be established

and shall be omitted here. It is relatively straightforward to show thatr̄T+1(̂i, q̂) is non-

decreasing inid6. The following corollary shows that, with a condition on the demand

distribution,rt((̂i, q̂), â) is non-decreasing inid6. Let F̄ 6
t (id6) = 1 − F 6

t (id6), whereF 6
t (id6)
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is the cumulative demand distribution for the six-packs at the distribution center between

time t and timet + 1.

Corollary 6.4.5. Assume that̄F 6
t (Md

6 ) ≥ hd
6/(w6+s6). Then,rt((̂i, q̂), â) is non-decreasing

in id6.

Proof. Consider the expression forrt((̂i, q̂), â). Let ft(i
d
6) = rt((̂i, q̂), â), with other pa-

rameters besidesid6 fixed. It can be shown that

ft(i
d
6 + 1)− ft(i

d
6) = (w6 + s6)F̄

6
t (id6 + qd

6)− hd
6.

When the condition of the corollary holds, the left hand side of the above equation is non-

negative. The assertion of the proposition follows.

The next corollary proves that condition (ii) of Theorem 6.4.2 holds.

Corollary 6.4.6.
∑

k≤jd
6≤Md

6
pt(ĵ|(̂i, q̂), â) is non-decreasing inid6, for all k.

Proof. It can be shown that

∑

k≤jd
6≤Md

6

pt(ĵ|(̂i, q̂), â) =
∑

k≤jd
6≤(id6+qd

6)

pt(ĵ|(̂i, q̂), â) = F 6
t (id6 + qd

6 − k).

The assertion of the corollary follows.

Corollary 6.4.7 and 6.4.8 prove the sub-additive property of the reward and transition

structures, respectively.

Corollary 6.4.7. rt((̂i, q̂), â) is sub-additive in(id6, a3), for t = 1, 2, ..., T .

Proof. From the proof of Corollary 6.4.5, we have that

ft(i
d
6 + 1)− ft(i

d
6) = (w6 + s6)F̄

6
t (id6 + qd

6)− hd
6.

Because the above quantity is independent ofa3, the result follows.

Corollary 6.4.8.
∑

k≤jd
6≤Md

6
pt(ĵ|(̂i, q̂), â) is sub-additive in(id6, a3), for all k, for t =

1, 2, ..., T .
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Proof. From the proof of Corollary 6.4.6, we have that

∑

k≤jd
6≤Md

6

pt(ĵ|(̂i, q̂), â) =
∑

k≤jd
6≤(id6+qd

6)

pt(ĵ|(̂i, q̂), â) = F 6
t (id6 + qd

6 − k).

And sinceF 6
t (id6+1+qd

6−k)−F 6
t (id6+qd

6−k) is independent ofa3. The result follows.

6.4.3 Summary of the Structural Results

In summary, the structural results for delivery control state (informally) that less units of

each product are to be delivered to the distribution center as the inventory level of the

product at the distribution center increases. This result applies to both the six-packs and

twelve-packs. Based on the above results, theorem and Theorem summarize the structural

results for delivery control for the six-packs and twelve-packs, respectively.

Theorem 6.4.9.Assume that̄F 6
t (Md

6 ) ≥ hd
6/(w6+s6), for t = 1, 2, ..., T . Then there exists

a∗3((̂i, q̂), a1, a2, b2) which is non-increasing inid6.

Theorem 6.4.10.Assume that̄F 12
t (Md

12) ≥ hd
12/(w12 + s12), for t = 1, 2, ..., T . Then there

existsb∗3((̂i, q̂), a1, a2, b2) which is non-increasing inid12.

6.5 Conclusions and Future Research

In this chapter, we have shown that structural results similar to those for the SVMI problem

can be established in an actual distribution problem, despite the different settings. Further-

more, the resulting sufficient conditions on the problem parameters for the two problems

are similar. This allows us to conclude that the approach we use in proving the structural

results for the SVMI problem, especially those for the inventory control, is robust in the

sense that it can be applied to different distribution problems.

Other research questions were proposed during our conversations with the logistics

team at the Coca-Cola Enterprises, Inc. For instance, we proposed a study on the the ef-

fects of information sharing on the operating performance of the distribution system. In
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particular, under full information sharing environment, we planned to study the improve-

ment in the operating performance of a new distribution system in which the packaging

of soft-drink products is done at the distribution center (instead of the cannery). Another

research question involves how the company can best increase the flexibility of its vehicle

routing procedure. Because of the currently gloomy state of the economy, the company’s

priorities have changed and these research topics are not being attended to. In our view,

these questions will be an important part of any future research on the distribution strategy

of the company.
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CHAPTER VII

A NUMERICAL STUDY OF THE PERFORMANCE

MEASURES IN THE SVMI PROBLEM

In this chapter, we illustrate, by numerous examples, how some problem parameters affect

the customer service level and the optimal expected total reward in the SVMI problem.

These problem parameters include the revenue and costs per unit (reward parameters), de-

mand variance, and distance from the depot. Specifically, we first show how the ratio of

the sum of the revenue and penalty cost to the holding cost affects customer service level.

Then we examine the effect of demand variance on the optimal expected total reward. Ad-

ditionally, we study how the distance from the depot affects both the customer service level

and the optimal expected total reward.

Besides profits, customer service level is very important for many supply chain vendors.

In this chapter, we consider both the optimal expected total reward and customer service

level as the performance measures in our numerical study. In a distribution system with

stochastic demand, the system’s capability to fill customer orders depends largely on the

capacities of the retailers and the vehicle and on the distances between the depot and the

retailers. Meanwhile, reward parameters can determine an optimal customer service level

for the distribution system. Let us recall that, in the SVMI problem, the decision maker

maximizes the expected total reward. In all of our numerical examples, the optimality

criterion is still the optimal expected total reward. Customer service level is just another

performance measure. We solved all of our numerical examples by standard backward

induction algorithms.

The optimal expected total reward for a distribution system depends on the demand
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distribution, e.g., its variance, and the distances from the depot to the retailers. The latter

determines how often the retailers can be replenished, which directly affects the optimal

expected total reward. Our numerical examples will show this relationship. Additionally,

we shall present the numerical results that illustrate both positive and negative correlations

between demand variance and the optimal expected total reward. The positive correlation

occurs when the profit margin of filling an order is very high.

This chapter is organized as follows. The four sections of numerical analysis are pre-

sented in the order described in the first paragraph above. In each of these sections, we

present and discuss our numerical results. In Section 7.5, we add some remarks and sum-

marize the numerical study.

7.1 The Effect of Reward Parameters on Customer Service
Level

For various businesses in the retail industry, customer service level is very important, es-

pecially for highly substitutable products. In this section, we illustrate the relationship

between customer service level and the reward parameters in the SVMI problem. These

parameters include the holding cost, revenue, and penalty cost.

Based on the reward functions first described in Chapter 2, the vendor receives a rev-

enue and avoids a penalty cost for filling an order that arrives at a retailer. This can be

considered as the benefit of having one more unit of inventory. Meanwhile, having an addi-

tional unit of inventory incurs a holding cost. For these reasons, an appropriate parameter

of interest is the ratio of the sum of revenue and penalty cost to the holding cost. We shall

refer to this ratio as the margin ratioand denote it bymr. That is,

mr = (b1 + b2)/h,

whereb1 is the revenue per filled order,b2 is the penalty cost per lost order, andh is the

holding cost per unit of inventory per period.
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We define customer service level (CSL) as the ratio of the expected total number of

customers served (ENCS) to the sum ofENCS and the expected total number of cus-

tomers lost (ENCL). That is,

CSL = ENCS/(ENCS + ENCL),

whereENCS andENCL are computed in a similar manner to the expected total reward.

That is, the computations of these parameters in the backward induction algorithm are

based on the inventory levels, the inventory action, the realized demand values, and the

probability of those demand values. In particular, let the demand at a (non-current) retailer

i between the current and next decision epochs be represented by a random variableDi.

Then, at retaileri, the number of customers served (NCSi) and the number of customers

lost (NCLi) between the current and next decision epochs are as follows:

NCSi = min{Di, xi},

and

NCLi = max{Di − xi, 0},

wherexi is the inventory level of retaileri. At the current retailerl,

NCSl = min{Dl, xl + a},

and

NCLl = max{Dl − (xl + a), 0},

wherea is the number of units of inventory added to the current retailer.

To obtain the expected total number of customer served (ENCS) and the expected total

number of customers lost (ENCL), we consider the demand distributions at each retailer

(to get the expected values of the numbers of customers served and lost for that retailer).

Then we consider all retailers together and keep track of these parameters for the entire

length of the problem horizon.
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For the rest of this section, we show, by examples, how the margin ratio affects the cus-

tomer service level, as the decision maker continues to maximize the expected total reward.

The parameters that we use include four sets of demand distributions (four combinations

of discretized uniform and normal distributions), four sets of distances between inventory

locations (four combinations of one and two unit distances), three numbers of retailers

(N ∈ {1, 2, 3}), and five margin ratios (mr ∈ {0.15, 1.5, 15, 37.5, 75}). In order to study

the effect of reward parameters on customer service level, we do not restrict ourselves to

common values of margin ratio. Instead, we use a wide range of values of margin ratio.

This idea is comparable to that for the numerical examples presented in Federgruen and

Zipkin (1984b). We solved all possible combinations of these parameters and measured

the customer service level.

Since the SVMI problem has finite horizon (15 time periods in our examples), the start-

ing state affects the customer service level. Therefore, we present our numerical examples

for both the empty starting state (all retailers are empty, Table 12) and full starting state

(all retailers are full, Table 13). This will allow us to make conclusive statements about our

numerical results. In each of the tables presented in this chapter, we define the meanas the

average value of the performance measure of interest for all 240 cases solved in that table.

Table 12: The effect of margin ratio on customer service level (empty starting state)
Margin ratio Cases Customer service

level
Percent of mean

0.15 48 0 0
1.5 48 0.15 33
15 48 0.70 156
37.5 48 0.70 156
75 48 0.70 156
All cases 240 0.45 100

In Table 12, we note that customer service level increases with the margin ratio. The

customer service level of 0 for the margin ratio of 0.15 implies that no inventory is added

to the retailer(s). For the margin ratios of 15, 37.5 and 75, the customer service level at

106



0.70 is limited by the distribution system’s capability to replenish the retailer(s) and by the

empty starting state. For the second margin ratio of 1.5, the customer service level of 0.15

implies that units of inventory are added to the retailer(s) in those 48 cases.

Table 13: The effect of margin ratio on customer service level (full starting state)
Margin ratio Cases Customer service

level
Percent of mean

0.15 48 0.83 91
1.5 48 0.83 91
15 48 0.98 106
37.5 48 0.98 106
75 48 0.98 106
All cases 240 0.92 100
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Figure 2: The effect of margin ratio on customer service level

The results in Table 13 are somewhat similar to those in Table 12. Here the margin

ratio also has a positive correlation with customer service level. For the margin ratios of

15, 37.5, and 75, the full starting state helps improve the customer service level to 0.98.
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Additionally, the full starting state also maintains the customer service level for the first two

margin ratios at 0.83, even though no inventory may not have been added to the retailer(s).

Figure 2 illustrates the results in Table 12 and Table 13.

7.2 The Effect of Demand Variance on the Optimal Expected
Total Reward

In this section, we study how the variance of the demand at the retailers affects the optimal

expected total reward. Three numbers of retailers are considered (N ∈ {1, 2, 3}). In each

of the cases below, we assume that the demand distributions at the retailers are the same

discretized normal distribution. Five different demand distributions are used (same mean

but different variances). The mean is two units and the variances are as stated in Table 14.

We state the the mean and the variance for a one-period interval, where an interval is the

time between two successive decision epochs. If an interval is longer than one period, the

appropriate convolution of the demand distribution is computed and applied. To expand

our sample set, we consider four different sets of distances between the inventory locations

and four different sets of reward parameters. As in the previous section, all possible com-

binations of these sets of parameters are solved. We present the numerical results in Table

14 and Figure 3.

Table 14: The effect of demand variance on the optimal expected total reward
Demand variance Cases Optimal expected

total reward
Percent of mean

0 48 988.5 62
2 48 1476.7 92
4 48 1820.9 113
6 48 1884.5 118
8 48 1844.6 115
All cases 240 1603.04 100

For each of the above cases, we computed the optimal expected total reward by aver-

aging the optimal expected total rewards for all possible starting states. At first, the results
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Figure 3: The effect of demand variance on the optimal expected total reward

in Table 14 seem surprising. In particular, for the first four variances, the optimal expected

total reward increases with demand variance. In general, higher demand variance reduces

the effectiveness of the decision maker in making inventory decisions. In our examples,

we set the reward parameters so that the profit margin for filling an order is very high. As

demand variance increases, there is a higher probability that more orders are filled and,

consequently, this increases the optimal expected total reward. However, when the demand

variance increases from 6 to 8, we begins to observe the negative correlation between de-

mand variance and the optimal expected total reward that we initially expected. Some

readers might wonder why our numerical results do not follow the main theoretical result

in White and Harrington (1980), which states that larger demand variance reduces the op-

timal expected total reward. The reason is that the premise of the theoretical result does

not hold in the SVMI problem. Specifically, we do not have a concave expected cost-to-go

function. As a result, our numerical results are different from what the paper implies. This
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is what makes Table 14 interesting.

7.3 The Effect of Distance from the Depot on Customer Ser-
vice Level

How far a retailer is from the depot affects the customer service level at the retailer. In

order to study this relationship, we consider five different distances from the depot. In our

sample sets, three numbers of retailers are used (N ∈ {1, 2, 3}). In each of the two-retailer

and three-retailer cases, we assume that the retailers are at the same distance from the

depot. Furthermore, our parameters include four different sets of reward parameters and

four different sets of demand distributions (four combinations of discretized uniform and

normal distributions). All combinations of these sets of parameters are solved. We present

the numerical results in Table 15 and Figure 4.

Table 15: The effect of distance from the depot on customer service level
Distance Cases Customer service

level
Percent of mean

1 48 0.78 129
2 48 0.75 124
3 48 0.60 99
4 48 0.48 79
5 48 0.42 69
Total 240 0.61 100

In Table 15, we observe a negative correlation between distance from the depot and

customer service level. A direct result of longer distance from the depot to the retailer(s) is

the longer time it takes the vehicle to travel from the depot to the retailer(s) for replenish-

ment. Consequently, more orders are lost. This directly results in lower customer service

level. We would like to point out that, in order to increase the computational efficiency, we

reduced the capacities of the retailers (from 10 units to 7 units) and the vehicle (from 30

units to 21 units) in our sample problems from their original values. This resulted in the

highest customer service level in Table 15 being only 0.78.
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Figure 4: The effect of distance from the depot on customer service level

7.4 The Effect of Distance from the Depot on the Optimal
Expected Total Reward

In this section, we present the numerical examples that illustrate how distance from the

depot affects the optimal expected total reward. We use the same sets of parameters as

in the previous section. In particular, the sets of parameters that we use include three

numbers of retailers (N ∈ {1, 2, 3}), four sets of demand distributions, four sets of reward

parameters, and five distances from the depot. The results are presented in Table 16 and

Figure 5.

As in Section 7.2, for each of the above cases, we computed the optimal expected total

reward by averaging the optimal expected total rewards for all possible starting states. The

results in Table 16 are intuitive. Long distance from the depot limits the replenishment

capability of the vehicle. This results in less orders being filled and, ultimately, lower

optimal expected total reward. What may be surprising is the somewhat small (percentage)
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Table 16: The effect of distance from the depot on the optimal expected total reward
Distance Cases Optimal expected

total reward
Percent of mean

1 48 49,903.81 109
2 48 46,576.83 102
3 48 45,492.65 99
4 48 44,033.42 97
5 48 42,064.25 93
All cases 240 45,614.19 100
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Figure 5: The effect of distance from the depot on the optimal expected total reward

reductions in the optimal expected total reward as the distance from the depot increases. In

Table 16, as the distance from the depot doubles (from 2 to 4 units), the optimal expected

total reward decreases by only 5 percentage points (from 102 to 97 percent of the mean

value). This could be because the optimal inventory levels at the retailers are relatively

low. Therefore, the longer distance from the depot does not severely limit the vehicle from

maintaining those inventory levels at the retailers.
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7.5 Conclusions

In general, the numerical results presented in this chapter are intuitive. Specifically, higher

profit margin leads to more orders being filled and, consequently, higher customer service

level. We also observed that high profit margin can lead to the positive correlation between

demand variance and the optimal expected total reward. Additionally, as one would ex-

pect, longer distance from the depot reduces both customer service level and the optimal

expected total reward.

We limited our numerical examples to the SVMI problems with one, two, and three

retailers because of computational reasons. Four-retailer SVMI problems were solved in

Chapter 2 and Chapter 4. It took almost 18 hours of CPU time to solve that problem by

standard backward induction algorithm. Given the number of problems we wanted to solve

in the numerical study, it is simply not practical to include larger problems. For even larger

problems, there is also a coding difficulty. In particular, we used arrays to represent the set

of states. As the problem gets larger, the arrays need to be bigger and this causes a memory

problem in the computer.

The theoretical results that we present in earlier chapters apply to SVMI problems with

any (integral) number of retailers. Some might wonder how the qualitative results of the

numerical study will hold in the SVMI problems with more than three retailers. Our argu-

ment goes as follows. In any SVMI problem, all retailers are similar in the sense that they

are all cost centers. The number of retailers does not change how inventory and vehicle

routing decisions are made. How the reward and cost are computed also remains the same.

There is no reason to expect the qualitative implications of our numerical study to change

significantly as the problem gets larger.

Based on our computational experience, customer service level is not quite as interest-

ing as we first thought. In particular, it is a matter of yes or no but not how much. That is, if

servicing a customer is profitable, the decision maker will do anything to service as many

customers as possible. This is the same thing as maximizing the expected total reward.
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CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH

We have presented our study of the stochastic vendor managed inventory (SVMI) problem,

its variations, a related case study, and a numerical study. Specifically, in Chapter 2, we

formulated the finite horizon SVMI problem and showed that the optimal vehicle routing

and inventory actions vary monotonically with inventory levels of the retailers. These re-

sults and the algorithms were extended to the infinite horizon SVMI problem in Chapter 3.

Suboptimal solutions of the SVMI problem are the topic of Chapter 4. These heuristic so-

lution procedures include one based on the structural results for inventory control, another

with base-stock inventory policy, and myopic solutions of the infinite horizon SVMI prob-

lem. In Chapter 5, we investigated four variations of the SVMI problem. Our analytical

results imply that the optimal expected total reward increases as the available state infor-

mation improves and/or the vehicle routing procedure becomes more flexible. In Chapter

6, we presented a case study involving the distribution problem at the Coca-Cola Enter-

prises, Inc. The previous chapter contains a numerical study of the performance measures

in the SVMI problem. In this chapter, we first summarize important results and state our

concluding remarks. Subsequently, some future research questions are proposed.

8.1 Conclusions

The SVMI problem consists of a depot, multiple retailers, and a vehicle. The vehicle is

used to distribute units of a product from the depot to the retailers, which face stochastic

demand. Our primary objective was to study how to manage the integrated vehicle routing

and inventory control problem such that the expected total reward is maximized. To do so,

we formulated the SVMI problem as a finite horizon non-homogeneous Markov decision
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process. Then we established the structural results that would help the decision makers

improve the operating performance of the distribution system. Also important is the com-

putational advantage that these monotone relations provide. Most of the structures for the

inventory control in the SVMI problem invoke relatively weak sufficient conditions on the

problem parameters. Based on our computational experience, these structures help reduce

the run time in solving the SVMI problem by almost50%.

For the vehicle routing, we showed that the optimal destination of the vehicle (from the

depot) varies monotonically with inventory levels of the retailers. In particular, the main

structural result for vehicle routing states (informally) that a particular retailer continues

to be preferred to other retailers as the vehicle’s destination if the inventory level of that

retailer decreases and/or inventory levels of the other retailers increase. This result is in-

tuitive and its sufficient conditions require the assumption on travel times and a moderate

condition on the demand distributions. In our numerical examples, applying the mono-

tone structure in the backward induction algorithms helps reduce the run time by about one

third.

Optimal inventory actions also have monotone relations with inventory levels of the

retailers. In particular, as inventory levels of the non-current retailers increase, more units

are to be deposited at the current retailer. This result holds with relatively weak sufficient

conditions on the demand distributions. Assuming a stronger condition on the demand at

the current retailer, more units are to be added to the current retailer as inventory level of

the current retailer decreases. When applied simultaneously, these two results help reduce

the run time by about40%.

Assuming periodicity in the reward and transition structures, we formulated the infi-

nite horizon SVMI problem as an infinite horizon periodic Markov decision process. We

showed that this stochastic process has an equivalent infinite horizon stationary Markov de-

cision process. Previously established results for the SVMI problem, plus the algorithms,

were extended to the infinite horizon SVMI problem (with the expected total discounted

115



reward criterion). We also discussed the multiperiod SVMI problem, to which most of the

theoretical results for the SVMI problem directly apply.

To further study the computational requirements in solving the SVMI problem, we

developed three heuristic solution procedures. First, based on the structural results for

inventory control, we further assumed that the optimal inventory actions were piecewise

linear in inventory levels of the retailers. The resulting algorithm maintains great solution

quality and provides good computational efficiency in our numerical examples. The sec-

ond heuristic solution has base-stock inventory policy. In this case, the target inventory

levels are determined in a similar manner to that for the Newsboy’s problem. This results

in a more efficient algorithm than the previous heuristic but with less solution quality. Fi-

nally, we studied myopic solutions of the infinite horizon SVMI problem and illustrated the

bias towards myopic policies as a result of the salvage value of remaining inventory at the

retailers.

There are certain characteristics of the SVMI problem that may not be true in practice.

First of all, current state information may not be available. For instance, it could take a

significant amount of time to gather data. The result is a delay in the state information

available to the decision maker. Moreover, in practice, the vehicle routes in many distribu-

tion systems are not allowed to vary as much as that in the SVMI problem. On the other

hand, it is also possible that, with currently available inventory information, the vehicle can

change its route after it has departed an inventory location but not yet arrived at its original

destination. To capture these scenarios, we studied four variations of the SVMI problem

and compared their performances.

We formulated the four variations of the SVMI problem as finite horizon non-homogeneous

Markov decision processes. Then we compared the optimal expected total rewards for the

four variations and the SVMI problem analytically. The results are intuitive and they imply

that if the quality of state information, especially its timeliness and availability, improves

and/or the vehicle routing procedure becomes more flexible, then the optimal expected total
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reward increases. Based on our computational experience, we proposed the hypothesis on

a complementary relationship between the quality of state information and the flexibility in

vehicle routing procedure towards improving the operating performance of the distribution

system.

The distribution problem at the Coca-Cola Enterprises, Inc. gave us an opportunity to

study an actual problem that has some similarities with the SVMI problem and its vari-

ations. In particular, this is a problem of producing soft-drink products at the cannery

and distributing them to the distribution center. By a similar approach to that used in the

SVMI problem, we showed that the optimal delivery actions have monotone relations with

inventory levels of the products at the distribution center.

In Chapter 7, we presented our numerical study of the performance measures in the

SVMI problem. In particular, by solving a large number of instances of the SVMI prob-

lem, we observed the relationship between certain problem parameters and two perfor-

mance measures, which are customer service level and the optimal expected total reward.

Our numerical results are generally intuitive. Precisely, we observed a positive correlation

between the margin ratio and customer service level. Additionally, our numerical exam-

ples illustrate the inverse effects that distance from the depot has on customer service level

and the optimal expected total reward. Meanwhile, demand variance has both positive and

negative correlations with the optimal expected total reward.

8.2 Future Research

For the SVMI problem, the structural results that we have established can provide the in-

sight and intuition for decision makers and the computational benefits for problem solvers.

Even though applying these results reduces the run time by about one half, more savings

may be needed. We believe this can be achieved by some heuristic methods based on the

structural results that we obtained. Further study is needed to determine how best to use

these results to develop new solution techniques.
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We can extend the SVMI problem to allow the vehicle to pick up the product at the

retailers. This increases the replenishment flexibility. In many instances, tt might be less

expensive to replenish inventory at a retailer with units of the product from a nearby retailer

than by requiring the vehicle to return to the depot. We believe that this is an interesting ex-

tension of the SVMI problem and it may be suitable for a distribution system with multiple

clusters of retailers.

Several real-world problems can be modelled as a SVMI problem or one of its varia-

tions. Other researchers will find our results helpful when they study actual distribution

systems or supply chains that have similar characteristics. Future research problems in-

clude the applications that we have mentioned such as industrial gas distribution, money

distribution to banks and automated teller machines, material or part handling on plant

floor, and so on.

Performance comparisons between competing operating strategies are an aspect of our

study that has great potential. When a company decides on its inventory information sys-

tem and vehicle routing strategy, theoretical and numerical results on different operating

strategies similar to ours can be very useful. Based on our numerical results, a delay in the

available state information and certain restrictions on the vehicle route have strong negative

impact on the expected total reward. This observation prompts further study, especially in

quantifying the effects for different distribution systems.
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APPENDIX A

THE SVMI PROBLEM WITH BACKLOGGING

In the SVMI problem that we analyzed in Chapter 2, orders that arrive at an empty store are

lost. In this appendix, we shall consider a variation of the SVMI problem in which unfilled

orders at each retailer are backlogged and then satisfied as units of the product become

available at the retailer. Our primary objective is to identify what the sufficient conditions

on the problem parameters are for the structural results for vehicle routing and inventory

control. We begin by stating the following assumption on the number of orders that can be

backlogged at each retailer.

Assumption A.0.1. For eachi ∈ {1, 2, ..., N}, the maximum number of orders that can be

backlogged at retaileri is Bi, where0 < Bi < ∞.

This is a reasonable assumption because it is unrealistic for a retailer with finite capac-

ity, and which is replenished by a vehicle with finite capacity, to satisfy an extremely large

number of orders. Because backlogging is allowed, the inventory level at each retailer can

be negative. However, from the above assumption, it follows that the state space for this

variation of the SVMI problem remains finite. As a result, most of the analyses in Chapter

2 are applicable. Those that may change will be discussed later in the appendix.

Section A.1 is the problem formulation. In Section A.2 and Section A.3, we present the

structural results for vehicle routing and inventory control, respectively. In the latter two

sections, sufficient conditions on the problem parameters are included. In all three sections,

we shall focus on parts of the analyses in Chapter 2 that change as a result of backlogging.

Unless specified otherwise, the parameters that appear here are as defined as in Chapter 2.
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A.1 Problem Formulation

The state at timet is st = (x, xv, l), wherex = (x1, x2, ..., xN). In this case, fori =

1, 2, ..., N , xi ∈ Xi, whereXi = {−Bi,−Bi + 1, ...,−1, 0, 1, ..., qi}. By allowing unfilled

orders to be backlogged, the state space becomes significantly bigger. The set of inventory

actions and the set of vehicle routing actions are as previously defined.

Let us recall the following definition of the current reward function. Forl = 0,

rt((x, xv, l), a, k) =
∑

1≤i≤N

ri
t(xi, l, k)− clk,

and forl > 0,

rt((x, xv, l), a, k) = r̃l
t(xl, l, a, k) +

∑

i∈K\{0,l}
ri
t(xi, l, k)− clk.

If xi < 0, then

ri
t(xi, l, k) = −b2

i E[Dl,k
t,i ].

Otherwise, the original definition is true. That is, forxi ≥ 0,

ri
t(xi, l, k) = −hidlkxi + b1

i E[min{Dl,k
t,i , xi}]− b2

i E[max{0, Dl,k
t,i − xi}].

Similarly, for x̃l > 0, wherex̃l = xl + a,

r̃l
t(xl, l, a, k) = −hldlkx̃l + b1

l E[min{Dl,k
t,l , x̃l}]− b2

l E[max{0, Dl,k
t,l − x̃l}]− b3

l a.

If x̃ < 0, then

r̃l
t(xl, l, a, k) = −b2

l E[Dl,k
t,l ]− b3

l a.

The terminal reward is modified as follows:

r̄T+1(x, xv, l) =
∑

1≤j≤N

(ej − hjτ)max{xj, 0} − cl0.

The definition ofpt(y|(x, xv, l), a, k) remains the same. However, the state transitions

change such that, given that actionsa andk are taken at timet,

xl(t + dlk) = max{xl(t) + a−Dl,k
t,l ,−Bl},
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and fori ∈ K\{0, l},

xi(t + dlk) = max{xi(t)−Dl,k
t,i ,−Bi}.

The decision rule, policy, and optimality criterion are as previously defined. We note that,

since the model is Markovian and the state space and action sets are finite, we can restrict

our attention to deterministic Markov policies.

A.2 Structural Results for Vehicle Routing

Backlogging of unfilled orders does not affect the optimality equations for the SVMI prob-

lem. Furthermore, the theoretical results in Subsection 2.4.1 remain valid for the SVMI

problem with backlogging. Finally, the sufficient conditions on the problem parameters, as

presented in Subsection 2.4.2 are not significantly affected by backlogging. We shall dis-

cuss these results one by one next. Subsequently, we shall summarize the structural results

for vehicle routing in the SVMI problem with backlogging.

The proof of Corollary 2.4.8 is still true for the backlogging model. Therefore, this re-

sult remains valid. Similarly, Corollary 2.4.10 still holds for the case of backlogging. Fur-

thermore, for the SVMI problem with backlogging, it can be shown thatr̄T+1((xi, x
c
i), xv, l)

is non-decreasing inxi, for all i ∈ {1, 2, ..., N}.
From Proposition 2.4.9, forxi ≥ 0, wherei ∈ {1, 2, ..., N} and i 6= l, assume that

(b1
i + b2

i )F̄
l,k
t,i (qi) ≥ hidlk. Then,rt(((xi, x

c
i), xv, l), a, k) is non-decreasing inxi, for all

a ∈ At((xi, x
c
i), xv, l). Forxi ≤ 0,

ri
t(xi, l, k) = −b2

i E[Dl,k
t,i ],

which is independent inxi. Thus, no additional condition is required forrt(((xi, x
c
i), xv, l), a, k)

to be non-decreasing inxi. In conclusion, we may state that if(b1
i + b2

i )F̄
l,k
t,i (qi) ≥ hidlk,

then,rt(((xi, x
c
i), xv, l), a, k) is non-decreasing inxi, for all a ∈ At((xi, x

c
i), xv, l). Simi-

larly, because, forxl < 0,

r̃l
t(xl, l, a, k) = −b2

l E[Dl,k
t,l ]− b3

l a,

121



the above arguments apply for the casei = l.

In conclusion, the sufficient conditions on the problem parameters remain valid in the

backlogging model. We summarize the structural results for the vehicle routing in the

SVMI problem with backlogging in Theorem A.2.1.

Theorem A.2.1. For all l, k ∈ K, let dlk = 1. Furthermore, for alln ∈ {1, 2, ..., N},
assume that

(b1
n + b2

n)F̄ l,k
t,n(qn) ≥ hndlk,

for all l, k ∈ K, and for t = 1, 2, ..., T . At the depot, if, for ani ∈ {1, 2, ..., N}, an

optimal (vehicle routing) action for the statẽst = ((x̃i, x̃
c
i), xv, l) is to go to retaileri, then

an optimal action for statest = ((xi, x
c
i), xv, l), in whichxi ≤ x̃i and xj ≥ x̃j, for all

j ∈ {1, 2, ..., N}, j 6= i, is to go to retaileri or the depot.

A.3 Structural Results for Inventory Control

It is relatively straight-forward to verify that the results in Subsection 2.5.1 are applica-

ble to the SVMI problem with backlogging. This is because none of the proofs requires

the inventory levels of the retailers to be non-negative. We shall consider the results in

Subsection 2.5.2 as follows. Corollary 2.5.9 remains valid in this case. That is, for all

l ∈ {1, 2, ..., N}, rt(((xi, x
c
i), xv, l), a, k) is super-additive in(xi, a), for all i ∈ K\{0, l},

for all k ∈ K, and fort = 1, 2, ..., T . This result requires no condition on the problem

parameters. The proof of Corollary 2.5.10 is true for the backlogging model. Similarly,

it can be shown that Corollary 2.5.11 and Proposition 2.5.12 are still valid. Consequently,

we may conclude that the sufficient conditions on the problem parameters for the structural

results for inventory control are not affected by the backlogging unfilled orders.

Theorem A.3.1 and Theorem A.3.2 summarize the structural results for the SVMI prob-

lem with backlogging.
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Theorem A.3.1. For all n ∈ {1, 2, ..., N}, assume that

(b1
n + b2

n)F̄ l,k
t,n(qn) ≥ hndlk,

for all l, k ∈ K, and for t = 1, 2, ..., T . Then there exitsa∗(k) for the statest =

((xi, x
c
i), xv, l) which is non-decreasing inxc

i .

Theorem A.3.2. For all n ∈ {1, 2, ..., N}, assume that

(b1
n + b2

n)F̄ l,k
t,n(qn) ≥ hndlk,

for all l, k ∈ K, and for t = 1, 2, ..., T . Furthermore, assume that, for allk ∈ K, the

demand at retailerl between timet andt+ dlk, that isDl,k
t,l , has non-increasing probability

mass function. Then there existsa∗(k) for the statest = ((xl, x
c
l ), xv, l) which is non-

decreasing inxc
i and non-increasing inxl.
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APPENDIX B

APPLICABLE DEMAND PROCESSES

In this appendix, we discuss the properties of the demand processes that are sufficient for

the SVMI model to be Markovian. Additionally, we refer to additional properties of the

demand processes that are sufficient conditions for the structural results for vehicle routing

and inventory control. The following definitions are generally well-known. We remark that

Definition B.0.4 is a similar to that for a continuous time stochastic process presented in

Ross (1996).

Definition B.0.3. A discrete time stochastic process{X(t), t = 1, 2, ...} is said to be

Markovianif

Pr{X(t + 1) = j|X(t) = i,X(t− 1) = i1, X(t− 2) = i2, ..., X(1) = it−1} = Pij.

Definition B.0.4. A discrete time stochastic process{Y (t), t = 1, 2, ...} is said to have

independent incrementsif, for all t0 < t1 < ... < tn, the random variables

Y (t1)− Y (t0), Y (t2)− Y (t1), ..., Y (tn)− Y (tn−1)

are independent.

For the SVMI problem, we assume that demand processes at the retailers are inde-

pendent of each other. At each retailer, the demand process is assumed to be history-

independent. For this assumption to be satisfied, it is sufficient that the stochastic pro-

cess{Yi(t), t = 1, 2, ...}, whereYi(t) is the number of orders that arrive at retaileri from

time t = 1 to time t, has independent increments. If the demand processes are history-

independent, then it follows that the state transitions of the SVMI problem are history-

independent. That is, the SVMI model is Markovian.
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In Chapter 2, we establish the structural results for the SVMI problem by specifying

additional properties of the demand processes that are sufficient for those structural results.

In Subsection 2.4.3 (Subsection 2.5.3), we summarize the structural results for vehicle

routing (the structural results for inventory control). Sufficient conditions on the demand

distributions are also included in the two subsections.
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APPENDIX C

ADDITIONAL NUMERICAL EXAMPLES

To consider the importance of Assumption 2.4.1 in the main structural result for vehicle

routing, we now present additional numerical examples. Let us recall that Assumption 2.4.1

implies equal travel times between all pairs of retailers. We consider a simple instance of

the SVMI problem with two retailers, each of which has five-unit capacity. The demand

distributions at the two retailers are the same (time-invariant and uniform between 0 and 6).

Tables 17 and 18 present the optimal vehicle’s destinations for different inventory levels of

the two retailers. In this case, the vehicle’s current location is the depot and its inventory

level is 20 units (its capacity). The decision epoch of interest occurs 10 time units before

the end of the problem horizon.

For the example in Table 18, we assume that the travel time from the depot to the second

retailer is two time units. Other travel times for this example and all travel times for the

example in Table 17 are assumed to be one time unit. Consequently, Assumption 2.4.1

holds in the example in Table 17 but not in the example in Table 18. Both examples have

the same the reward structure. We define the revenue and cost parameters such that the

second retailer is significantly more profitable than the first one.

Table 17: The vehicle’s optimal destinations from the depot for the two-retailer SVMI
problem with Assumption 2.4.1

x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5

x1 = 5 2 2 2 2 2 2
x1 = 4 2 2 2 2 2 2
x1 = 3 2 2 2 2 2 1
x1 = 2 2 2 2 2 2 1
x1 = 1 2 2 2 2 1 1
x1 = 0 2 2 2 2 1 1
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Table 18: The vehicle’s optimal destinations from the depot for the two-retailer SVMI
problem without Assumption 2.4.1

x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5

x1 = 5 2 2 2 2 2 2
x1 = 4 2 2 2 2 2 2
x1 = 3 2 2 2 2 2 2
x1 = 2 2 2 2 2 2 2
x1 = 1 1 1 1 1 1 2
x1 = 0 1 1 1 1 1 1

In Table 17, it is easy to verify that the structural result for vehicle routing holds. In

particular, each retailer continues to be an optimal destination for the vehicle as its inven-

tory level decreases and/or inventory level of the other retailer increases. Meanwhile, there

is a contradiction to the structural result in Table 18. In particular, the optimal destination

of the vehicle changes from retailer 1 to retailer 2, as inventory level of retailer 2 increases

from 4 to 5 units and inventory level of retailer 1 stays at 1 unit. This contradiction suggests

the importance of Assumption 2.4.1 in the structural result for vehicle routing.
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APPENDIX D

PARAMETERS FOR THE NUMERICAL EXAMPLES

We have used numerous numerical examples in this work to support and extend our the-

oretical results. In some cases, the numerical results are significant by themselves. For

reference, the parameters that were used in our numerical examples are summarized here.

The parameters for the numerical results in Chapter 2 (and Appendix C), Chapter 4, Chap-

ter 5, and Chapter 7 are presented in Section D.1, Section D.2, Section D.3, and Section

D.4, respectively. Unless stated otherwise, the parameters in this appendix are defined as

in the chapters that they first appeared.

D.1 Parameters for the Numerical Examples in Chapter 2
and Appendix C

In Table 1 and Table 2, we illustrated the structural results for vehicle routing and inventory

control for the SVMI problem. The following parameters were used:

1. Number of retailer is 2.

2. Demand distribution is the following (the discrete version of an exponential distribu-

tion):

P [0] = 0.3, P [1] = 0.2, P [2] = P [3] = P [4] = P [5] = 0.1, P [6] = P [7] = ... =

P [15] = 0.01.

3. Capacities of the retailers and the vehicle are 10 units and 20 units, respectively.

4. Time horizon length is 15 periods.
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5. The travel distances (or travel times) between all pairs of inventory locations are 1

unit.

6. The reward parameters are as follows:ej = 30, hj = 0.5, b1
1 = 90, b1

2 = 200,

b2
j = 10, andb3

j = 5, for j ∈ {1, 2}.

In Table 3, Table 4, and Table 5, we showed how the structural results for the SVMI

problem help improve the computational efficiency. These numerical examples share the

following parameters:

1. Capacities of the retailers and the vehicle are 5 units and5 ∗ N units, respectively.

(N denotes the number of retailers in each example.)

2. Demand distribution is the discrete version ofU [0, 6].

3. Time horizon length is 15 periods.

4. The travel distances (or travel times) between all pairs of inventory locations are 1

unit.

5. The reward parameters are as follows:ej = 30, hj = 0.5, b1
j = 100, b2

j = 10, and

b3
j = 5, for j ∈ {1, 2, ..., N}.

Other parameters for the numerical examples in each table are explicitly stated in that table.

Table 17 and Table 18, in Appendix C, present an example of the case when the struc-

tural result for vehicle routing does not hold, when the assumption on travel distances

between inventory locations is not satisfied. We used the following parameters in the ex-

ample:

1. Number of retailers is 2.

2. Demand distribution is the discrete version ofU [0, 6].

3. Capacities of the retailers and the vehicle are 5 units and 20 units, respectively.
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4. Time horizon length is 15 periods.

5. The travel distances (or travel times) between the inventory locations are as stated in

Appendix C.

6. The reward parameters are as follows:ej = 30, hj = 0.5, b1
1 = 90, b1

2 = 200,

b2
j = 10, andb3

j = 5, for j ∈ {1, 2}.

D.2 Parameters for the Numerical Examples in Chapter 4

In Chapter 4, we present some heuristics for solving the SVMI problem. For Table 6

and Table 7, which show the computational efficiency of the first heuristic, the following

parameters were used in Problem I:

1. Number of retailers is 4.

2. Capacities of the retailers and the vehicle are 10 units and 24 units, respectively.

3. Demand distribution is the discrete version ofU [0, 11].

4. The travel distances (or travel times) between all pairs of inventory locations are 1

unit.

5. Time horizon length is 15 units.

6. The reward parameters are as follows:ej = 15, hj = 1, b1
j = 24, b2

j = 2, andb3
j = 5,

for j ∈ {1, 2, 3}.

In Problem II, the parameters are as follows:

1. Number of retailers is 3.

2. Capacities of the retailers and the vehicle are 10 units and 30 units, respectively.

3. Demand distribution is the discrete version ofU [0, 11].
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4. The travel distances (or travel times) between all pairs of inventory locations are 1

unit.

5. Time horizon length is 15 units.

6. The reward parameters are as follows:ej = 15, hj = 1, b1
j = 24, b2

j = 2, andb3
j = 5,

for j = {1, 2, 3}.

The numerical results in Table 8 involves solving Problem II, with the above parameters

by the second heuristic. The following parameters were used for Problem III in Table 9:

1. Number of retailers is 2.

2. Capacities of the retailers and the vehicle are 10 units and 20 units, respectively.

3. Demand distribution is the discrete version ofU [0, 11].

4. The travel distances (or travel times) between all pairs of inventory locations are 1

unit.

5. Time horizon length is 15 units.

6. The reward parameters are as follows:ej = 15, hj = 1, b1
j = 24, b2

j = 2, andb3
j = 5,

for j ∈ {1, 2, 3}.

In Table 10, we solved the infinite horizon SVMI problem. The parameters for this

problem are as follows:

1. Number of retailers is 2.

2. Capacities of the retailers and the vehicle are 5 units and 10 units, respectively.

3. The travel distances (or travel times) between all pairs of inventory locations are 1

unit.

4. Demand distribution is the discrete version ofU(0, 6).
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5. The reward parameters are as follows:cj = b2
j = 10, hj = 5, b1

j = 100, andb3
j = 50,

for j ∈ {1, 2}. (The unit salvage values at the two retailers are as stated in Table 10.)

D.3 Parameters for the Numerical Examples in Chapter 5

In Table 11, we compare the optimal expected total rewards of different variations of the

SVMI problem. The following parameters were used in these numerical results:

1. Number of retailers is 3.

2. Capacities of the retailers and the vehicle are 5 units and 20 units, respectively.

3. Demand distribution is the discrete version ofU [0, 7].

4. The travel distances (or travel times) between all pairs of inventory locations are 1

unit.

5. Time horizon length is 15 units.

6. The reward parameters are as follows:ej = 30, hj = 0.5, b1
j = 100, b2

j = 10, and

b3
j = 5, for j ∈ {1, 2, 3}.

D.4 Parameters for the Numerical Examples in Chapter 7

The numerical examples in this chapter share some of the parameters. In particular, the

capacities of the retailers and the vehicle are 10 units andN ∗ 10 units, respectively. Note

thatN is the number of retailers in each example. We use the time horizon length of 15

periods in each of our numerical examples.

Table 12 and Table 13 present the effect of margin ratio on customer service level. The

parameters used in these two tables are as follows:

1. Numbers of retailers are 1,2, and 3.
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2. Sets of distances (or travel times) between inventory locations are{dij = 1, i, j ∈
0, 1, 2, 3}, {d00 = 1, d01 = 2, d02 = 1, d03 = 1, d11 = 1, d12 = 1, d13 = 1, d22 =

1, d23 = 1, d33 = 1}, {d00 = 1, d01 = 2, d02 = 2, d03 = 1, d11 = 1, d12 = 1, d13 =

1, d22 = 1, d23 = 1, d33 = 1}, and{d00 = 1, d01 = 2, d02 = 2, d03 = 1, d11 =

1, d12 = 2, d13 = 1, d22 = 1, d23 = 1, d33 = 1}. Note that, forl, k ∈ {0, 1, 2, 3},
dlk = dkl.

3. Sets of demand distributions are (the discrete versions of), whereQi denotes the

demand distribution at retaileri, {Q1 = U [0, 1∗d], Q2 = U [0, 1∗d], Q3 = U [0, 1∗d]},
{Q1 = N [0.5 ∗ d, 0.5 ∗ d], Q2 = N [0.5 ∗ d, 0.5 ∗ d], Q3 = N [0.5 ∗ d, 0.5 ∗ d]},
{Q1 = U [0, 1 ∗ d], Q2 = N [0.5 ∗ d, 0.5 ∗ d], Q3 = U [0, 1 ∗ d]} and{Q1 = N [0.5 ∗
d, 0.5 ∗ d], Q2 = U [0, 1 ∗ d], Q3 = N [0.5 ∗ d, 0.5 ∗ d]}. Hered denotes the travel time

between the current and next inventory location of the vehicle.

4. The margin ratios are 0.15 (b1
j = 2, b2

j = 1), 1.5 (b1
j = 20, b2

j = 10), 15 (b1
j =

200, b2
j = 100), 37.5 (b1

j = 500, b2
j = 250), and 75 (b1

j = 1000, b2
j = 500). Other

reward parameters areej = 5, hj = 20, andb3
j = 7, for j ∈ {1, 2, 3}.

In Table 14, the following parameters were used to show the effect of demand variance

on the optimal expected total reward:

1. Numbers of retailers are 1, 2, and 3.

2. Sets of distance (or travel times) between inventory locations are{dij = 1, i, j ∈
0, 1, 2, 3}, {d00 = 1, d01 = 2, d02 = 1, d03 = 1, d11 = 1, d12 = 1, d13 = 1, d22 =

1, d23 = 1, d33 = 1}, {d00 = 1, d01 = 2, d02 = 2, d03 = 1, d11 = 1, d12 = 1, d13 =

1, d22 = 1, d23 = 1, d33 = 1}, and{d00 = 1, d01 = 2, d02 = 2, d03 = 1, d11 =

1, d12 = 2, d13 = 1, d22 = 1, d23 = 1, d33 = 1}. Note that, forl, k ∈ {0, 1, 2, 3},
dlk = dkl.

3. Sets of reward parameters are{b1
j = 10, b2

j = 5, b3
j = 7, ej = 5, hj = 1}, {b1

j =
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50, b2
j = 5, b3

j = 7, ej = 5, hj = 1}, {b1
j = 100, b2

j = 10, b3
j = 7, ej = 5, hj = 1},

and{b1
j = 100, b2

j = 50, b3
j = 7, ej = 5, hj = 1}, for j ∈ {1, 2, 3}.

4. Demand distributions are the discrete versions ofN [1 ∗ d, 0 ∗ d], N [1 ∗ d, 1 ∗ d],

N [1 ∗ d, 2 ∗ d], N [1 ∗ d, 3 ∗ d], andN [1 ∗ d, 4 ∗ d]. Hered denotes the travel time

between the current and next inventory location of the vehicle.

Table 15 and Table 16 show the effect of distance from the depot on customer service

level and on the optimal expected total reward, respectively. The parameters for those

numerical results are as follows:

1. Numbers of retailers are 1, 2, and 3.

2. Sets of demand distributions are (the discrete versions of), whereQi denotes the

demand distribution at retaileri, {Q1 = U [0, 1∗d], Q2 = U [0, 1∗d], Q3 = U [0, 1∗d]},
{Q1 = N [0.5 ∗ d, 0.5 ∗ d], Q2 = N [0.5 ∗ d, 0.5 ∗ d], Q3 = N [0.5 ∗ d, 0.5 ∗ d]},
{Q1 = U [0, 1 ∗ d], Q2 = N [0.5 ∗ d, 0.5 ∗ d], Q3 = U [0, 1 ∗ d]} and{Q1 = N [0.5 ∗
d, 0.5 ∗ d], Q2 = U [0, 1 ∗ d], Q3 = N [0.5 ∗ d, 0.5 ∗ d]}. Hered denotes the travel time

between the current and next inventory location of the vehicle.

3. Sets of reward parameters are{b1
j = 200, b2

j = 100, b3
j = 7, ej = 5, hj = 1},

{b1
j = 250, b2

j = 100, b3
j = 7, ej = 5, hj = 1}, {b1

j = 500, b2
j = 200, b3

j = 7, ej =

5, hj = 1}, and{b1
j = 500, b2

j = 250, b3
j = 7, ej = 5, hj = 1}, for j ∈ {1, 2, 3}.

4. Sets of distances (or travel times) between inventory locations are{dij = 1, i, j ∈
0, 1, 2, 3}, {d00 = 1, d01 = 2, d02 = 2, d03 = 2, d11 = 1, d12 = 1, d13 = 1, d22 =

1, d23 = 1, d33 = 1}, {d00 = 1, d01 = 3, d02 = 3, d03 = 3, d11 = 1, d12 = 1, d13 =

1, d22 = 1, d23 = 1, d33 = 1}, {d00 = 1, d01 = 4, d02 = 4, d03 = 4, d11 = 1, d12 =

1, d13 = 1, d22 = 1, d23 = 1, d33 = 1}, and{d00 = 1, d01 = 5, d02 = 5, d03 =

5, d11 = 1, d12 = 1, d13 = 1, d22 = 1, d23 = 1, d33 = 1}. Note that, forl, k ∈
{0, 1, 2, 3}, dlk = dkl.
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