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SUMMARY

This dissertation focuses on issues associated with the value of information in models of

sequential decision making under uncertainty. All of these issues are motivated by inventory

management problems. First, we study the effect of the accuracy of inventory counts on

system performance when using a zero-memory controller in an inventory system that is

modeled as a partially observed Markov decision process (POMDP). We derive conditions

for which improving the accuracy of inventory counts will either (i) improve system perfor-

mance, (ii) degrade system performance or (iii) will not affect system performance. With

a computational study, we determine the range of profitability impacts that result from

inaccurate inventory counts when using reasonable zero-memory control policies.

Second, we assess the value of demand observation quality in an inventory system with

Markovian demand and lost sales. Again, the POMDP serves as a problem model, and we

develop computationally tractable suboptimal algorithms to enable the computation of ef-

fective lower bounds on system profitability when demand observations are noise-corrupted.

We then extend our results to consider the effects that product substitution has on system

performance. We show that systems with low demand variability, high holding cost levels,

and high levels of substitution benefit more from demand observability than systems with

high demand variability, low holding cost levels, and low levels of substitution.

Third, to enhance our understanding of sequential inventory control with substitutable

products, we analyze a two-item inventory problem with known deterministic primary de-

mand, but stochastic one-way substitution. We model this problem as a MDP and show

that a decision rule that minimizes the single period cost function, when applied at every

decision epoch over the infinite horizon, is an optimal policy for the infinite horizon prob-

lem. A definition of increased substitutability is presented, and it is shown that increased

substitutability never increases optimal expected total discounted cost.

xi



CHAPTER I

INTRODUCTION

Sequential decision making under uncertainty is a complex and fascinating area of study

that has captured the interest of many researchers. Techniques based on Markov Deci-

sion Processes (MDP) and Stochastic Programming, among others, have been proposed

as alternative ways to address the problem of making sequential decisions in a stochastic

environment. A very common assumption for most of these approaches is that random

realizations of the associated stochastic process can be observed with perfect accuracy.

However, in many realistic problem settings, such as the ones described and studied in

this dissertation, perfect state observation quality may not exist. Decision makers need to

therefore identify strategies that deal with both the stochastic environment as well as with

inaccurate observations of the actual underlying process.

This dissertation focuses primarily on problems of sequential decision making under un-

certainty where the realization of the underlying stochastic process is partially observed.

The models we use are the MDP and the Partially Observed Markov Decision Process

(POMDP), an extension of the traditional MDP that explicitly models inaccurate state

observations. We propose general models and algorithms and derive results that have a

potentially wide range of applications. Inventory systems represent our primary motiva-

tion, where we consider cases in which realized demand and inventory levels are partially

observed.

Much of our research is motivated by the common practice of using traditional models

that assume perfect observation of the underlying stochastic process in contexts where only

noise-corrupted observations are available to the decision maker. These noise-corrupted

observations are then used in the process of estimating model inputs or applying policies

obtained by solving the corresponding model with perfect state observability. For instance,

it is common in retailing applications to use sales as true observations of demand, in order
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to estimate demand parameters of inventory models that are then solved to define order

quantities, reorder points, etc. In this dissertation we examine the validity of this approach

and aim at assessing the value of improving the accuracy of the corrupted observations. Note

that, most efforts undertaken by the research community focus on traditional approaches

that assume perfect observability; comparatively, very limited literature exists on the topic

of decision making for partially observed stochastic processes. In this research we make

several contributions to the latter area of study.

It seems reasonable that decision makers might be willing to pay an extra cost in order

to improve the accuracy of their observations if this indeed leads to more profitable decisions

when applying a traditional decision model. In Chapter 2 we determine if decisions made

with traditional models, assuming that corrupted observations are true observations, im-

prove as the accuracy of the observations also improve. We show that this intuitive result is

not always true; i.e., in general improving the quality of the observation does not necessarily

lead to better solutions. We also identify conditions under which improved observability

does always lead to better decisions. More specifically, Chapter 2:

• Investigates the impact of improving state observation quality on policies that are a

function of only the most recent observation of the POMDP (zero-memory policy),

– Providing conditions for a zero-memory policy to be adaptive, meaning that

investing in improving the quality of the state observation will not degrade the

performance of the policy;

– Determining the existence of non adaptive zero-memory policies; and

– Providing conditions in which improving state observation quality will not affect

system performance when using a given zero-memory policy;

• Develops a POMDP decision model for a single item inventory problem with i.i.d

demand and inaccurate inventory counts; and

• Provides a computational study assessing the value of improving inventory accuracy
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when using a zero-memory policy that is equivalent to an optimal policy of the Com-

pletely Observed Counterpart (COC) of the POMDP, where the COC of the POMDP

is the MDP that results when observations are assumed to be perfect.

We show in Chapter 2 that the expected total discounted reward accrued over the infinite

horizon for a zero-memory policy, v, is the inner product of the current state probability

mass vector x and a vector γ , i.e., v = xγ , where γ only depends on the most recent state

observation. Further, γ can be represented as a power series in ε, where ε is the probability

of a state observation error. Thus, for small ε, v can be approximated by x(α0 + εα1),

which implies that whether or not improved state observation quality improves system

performance is dependent on the signs of the scalar elements of the vector α1. We show

that if γ is generated by an optimal policy for the COC, then all scalar elements of α1

are non-positive; therefore, decreasing ε, i.e., improving state observation quality, does not

decrease v, i.e., does not degrade system performance. We show by example that a near-

optimal COC zero-memory policy can produce a vector α1 with all positive scalar elements.

Thus, it is possible that what appears to be a good suboptimal design can degrade system

performance, given improved state observation quality.

In Chapter 2 we also investigate, by means of a computational study of an inventory

system where inventory level observations are noise corrupted, the value obtained from

improved accuracy of inventory counts. We vary three problem characteristics: (1) de-

mand variability measured as the coefficient of variation of the demand process, (2) the

contribution of holding cost relative to overall cost and (3) variability of the observation

process measured as the maximum absolute error of the observation quantity. Our nu-

merical results indicate that systems with higher inventory holding costs can benefit more

from improved inventory accuracy than systems with lower holding cost levels. Demand

variability seems to have a significant effect on the potential benefit of improved accuracy

of inventory counts. Variability in the observation process has a significant effect on the

value of improved inventory accuracy, as one might expect.

Chapter 3 studies the problem of estimating the value of demand observability in a single

product periodic review inventory system with lost sales, where the decision maker selects
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a replenishment quantity at each decision epoch with the objective of maximizing expected

total discounted profit over a finite planning horizon. We assume that the inventory levels

at all decision epochs are completely observed but that demand observations may be noise

corrupted. Further, demand is modeled using an exogenous Markov chain. In this chapter

we develop a methodology to assess the maximum expected increment in system profitability

due to improved demand observability. Chapter 3:

• Develops a POMDP decision model for a single product inventory control system with

Markovian demand and lost sales, where demand is partially observed via sales and

perhaps some other market signal data;

• Presents an algorithm for determining the optimal policy and the optimal expected

total discounted profit;

• Develops three computationally attractive heuristic algorithms, the third of which

is based on a non-standard sufficient statistic that enables relatively easy software

development;

• Develops a methodology for assessing the maximum potential value of improved de-

mand observability; and

• Quantifies the value of improved demand observability via computational study.

In the computational study, we examine the effect of two problem characteristics on the

value of demand observability: (1) variability of the demand process and (2) the contribution

of holding cost relative to overall cost. We show that the maximum value of observability

can vary significantly with these characteristics, from a minimum of 2% to a maximum of

nearly 35%. Scenarios with high relative holding costs benefited the most from improved

demand observability. In general, we observed that systems with low demand variability

benefit more from improved demand observability than systems with higher levels of demand

variability.

Chapters 4 and 5 study demand substitution in inventory systems. Chapter 4 extends

the methodology for assessing the value of demand observability developed in Chapter 3

4



to a problem setting with one-way demand substitution between two products. Substitu-

tion demand from product 1 to product 2 is only generated during a stockout of product

1. Demand substitution further contributes to hinder true demand observability because

sales data for a product may be the result of its true underlying demand process and the

substitution demand from the other product. Chapter 4:

• Develops a POMDP decision model for a two product inventory control system with

one way substitution and lost sales, where demand is partially observed via sales and

perhaps some other market signal data;

• Presents an algorithm for determining the optimal policy and the optimal expected

total discounted profit;

• Develops heuristics based on a suboptimal design that provide near-optimal replen-

ishment policies;

• Develops a methodology for assessing the maximum potential value of improved de-

mand observability; and

• Quantifies the value of improved demand observability via computational study.

Numerical results suggest that the potential benefit of improving demand observability

is higher in systems with high levels of substitution than in systems with lower demand

substitutability levels. The proposed suboptimal design was observed to perform fairly well

in systems with similar products and not as well in systems in which product characteristics

(most notably, price) are very different.

In Chapter 5 we study the effects of substitution in inventory systems with perfect

observability. Specifically we consider the problem of determining an optimal replenishment

policy for a two-item inventory system with deterministic primary demand and stochastic

one-way substitution demand generated only after a stockout of product 1. Chapter 5:

• Proves the existence of an optimal myopic policy for the infinite horizon problem, a

result that motivates an in-depth examination of the single period cost function;
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• Develops conditions that guarantee that the minimum of the single period cost func-

tion is such that zero replenishment of item 1 is always optimal, and examines these

conditions in the context of two substitutability distributions, the uniform and the

binomial distributions;

• Develops an algorithm for determining the policy that minimizes the single period

cost function;

• Determines the effect of substitutability on the optimal expected cost, and shows that

greater substitutability will not increase optimal expected cost; and

• Provides upper and lower bounds on the optimal expected cost.

Finally, we summarize our results and present topics for future research in Chapter 6.

6



CHAPTER II

ADAPTIVITY AND ZERO-MEMORY POLICIES FOR PARTIALLY

OBSERVED MARKOV DECISION PROCESSES

2.1 Introduction

For a given zero-memory policy, we investigate the relationship between state observation

quality and system performance for a system modeled as a partially observed Markov de-

cision process having reasonably accurate state observations. We present conditions that

imply that a zero-memory policy, given improved state observation quality, (i) will improve

system performance, (ii) will degrade system performance, or (iii) will not affect system per-

formance. The intent of these results is to provide insights into whether or not investment

in improved state observation quality is beneficial.

It is a common assumption that more accurate state observations will result in improved

system performance. For example, it is typically assumed that more accurate inventory

counts will reduce inventory holding costs and/or the profit loss due to stock outs. We

show that this common assumption does not hold in general for zero-memory policies. For

example, there are situations when higher quality inventory counts will degrade expected

system performance. Thus, the inventory manager, who may want to initially ask “will

better performance due to a more accurate inventory count justify the investment needed

to improve the quality of the count?”, should first ask ”are we sure that inventory system

performance will improve if the inventory is more accurately counted?”.

The intent of this research is to address the question: when state observations are

reasonably accurate, under what conditions will a zero-memory policy provide better system

performance if given more accurate state observations? Our initial motivation for addressing

this question was inventory control. Inventory levels are usually observed accurately, but

not perfectly, which justifies our interest in situations where state observation error is small.

Our interest in zero-memory policies is due to the fact that such policies can serve as
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good, easily computed sub-optimal designs for the class of models of sequential decision

making under uncertainty that serves as the basis for our analysis. We use the infinite

horizon, total discounted reward, partially observed Markov decision process (POMDP) as

the basis for analysis since the POMDP, an extension of the (standard) MDP, can model

noise corrupted, incomplete, or costly observations of the state process. The MDP assumes

the system state is perfectly observed without cost and hence is an inadequate model for

our investigation.

The superior modeling validity of the POMDP, relative to the MDP, is in contrast to

the superior tractability of the MDP, relative to the POMDP. Although not the focus of

the research reported in this chapter, the determination of optimal or good sub-optimal

policies for the POMDP has been a source of considerable interest. It is well-known that

the probability mass vector over the current underlying state, conditioned on all current

and former state observations and all former actions, represents a sufficient statistic for the

POMDP (e.g., Striebel [49], Astrom [3]). Unfortunately, the state space of this sufficient

statistic is uncountable. Smallwood and Sondik (Sondik [47], Smallwood and Sondik [45],

and Sondik [48]) were the first to show that the optimal expected reward-to-go function

for the finite-horizon POMDP is piecewise linear and concave in this sufficient statistic and

hence has a finite representation. Related procedures for determining an optimal policy

for the POMDP can be found in White [54], White and Scherer [56], Hansen [17], Lovejoy

[30] and Monahan [33]. Cassandra [10] showed that determining an optimal policy for the

POMDP is PSPACE-hard, with exact algorithms running in exponential time and polyno-

mial space in the number of state variables and observations, a fact that has motivated a

myriad of numerically less taxing, sub-optimal design approaches for the POMDP. These

include approaches found in Cassandra [10] and Parr and Russell [38], a genetic algorithmic

approach (Lin at el. [28]), grid techniques (e.g., Brafman [9], Bonet [7], Lovejoy [29]), value

function approximations (Hauskrecht [18]) reinforcement learning (Jaakkola and at el. [20],

Suematsu and Hayashi [50]), factored representations (Sallans [42]), Monte Carlo methods

(Thrun [51]), and finite-memory approaches (White and Scherer [57], Meuleau at el. [32],

Aberdeen [1]).
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In spite of the fact that inventory counts are rarely perfect, the MDP, rather than the

POMDP, has served until recently as the basis for analysis for inventory control problems

because of, in part, the aforementioned tractability of the MDP, relative to the POMDP.

This tractability advantage is further amplified for inventory problems by the optimality of

the computationally useful (s, S), continuous review (Q, R), and order-up-to policy struc-

tures for large classes of inventory control problems, policy structures that appear to have

no counterparts for the POMDP. There has been, however, growing recent interest in inven-

tory control with inaccurate records. Lee and Ozer [27], provide an excellent introduction to

this area, from the viewpoint of attempting to understand the benefits that radio-frequency

identification (RFID) technology may hold for supply chain inventory management. In the

following paragraphs we summarize a sample of research in this area.

Discrepancies between physical inventory levels and inventory records are commonly

found in retailing. As reported in Fisher at el. [15], a common practice known as the

zero-balance walk is used to reconcile these quantities. When inventory records for a stock

keeping unit (SKU) reach the zero level, employees walk through the facility to verify a

true stockout. Bensoussan at el. [6] formulate and analyze a zero-balance walk POMDP

model by assuming that an accurate inventory count is only available when its level is zero.

Nonzero inventory counts are assumed to be known only in distribution. The paper develops

and analyzes a periodic review inventory control model in this setting, where unsatisfied

demand each period is lost and the objective is to minimize total discounted cost over an

infinite horizon. An approximately optimal feedback control is developed for the model.

Kang and Gershwin [21] study an important cause of inventory record inaccuracy known

as stock loss or shrinkage. When stock loss is undetected (e.g., due to theft), it is clear that

recorded inventory will overestimate available inventory. The paper considers continuous

review (Q,R) inventory policies, and shows via simulation that stockout likelihoods grow

substantially in the presence of undetected stock loss; e.g., an increase of stock loss from

zero to one percent leads to an increase in stockout likelihood from 0.5% to 15%, and the lost

sales percentage due to stock loss can be substantially higher than the stock loss percentage

itself. Furthermore, the paper shows that the harmful effects of stock loss are greater in
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systems that have short lead times and small order quantities, such as those found in lean

supply chain environments. To manage inventory record inaccuracies, the paper proposes

several compensation strategies and assesses the benefit of each via comparative simulation.

Uckun at el. [53] consider a single period replenishment problem in a two level supply

chain consisting of a retailer and a supplier with multiple warehouses. This research investi-

gates investing to decrease inventory record inaccuracy, under the assumption that investing

in technology eliminates inaccuracy. The decision problem then is to determine how many

warehouses to outfit with technology, with the objective of maximizing total profit. The

primary conclusions obtained from their analysis are that technology investment is much

more significant when warehouses do not share inventory, and that investment levels should

decrease as demand variance increases.

Kok and Shang [23] propose a model that considers both inventory replenishment and

audit costs. The objective is to find a joint replenishment and audit policy that minimizes

total cost in a finite horizon. For single period problems, the paper shows the existence of an

optimal threshold policy for the audit decision, and a base-stock policy for replenishment.

Multiple period problems are addressed using a revised dynamic programming formulation

with a cost approximation, and a near-optimal heuristic based on this approximation is

proposed. Numerical results indicate that effective policies can substantially reduce the

costs of inventory inaccuracies.

Finally, in DeHoratios at el. [12], a Bayesian approach is proposed to address the

multiperiod inventory management problem of a single item with uncertain inventory levels.

The paper shows that the probability distribution on inventory levels is a sufficient statistic

for a dynamic programming formulation of the problem. Using simulations, the paper

shows that heuristic Bayesian inventory ordering policies perform well, and that better

audit-triggering policies than the traditional zero-walk can be found.

This chapter is outlined as follows. In Sections 2.2 and 2.3 we define the POMDP and

present preliminary results. We then present a class of policies for the POMDP, the zero-

memory policies, in Section 2.4. A zero-memory policy selects actions on the basis of the

most recent state observation. For a zero-memory policy, the expected total discounted
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reward to be accrued over the infinite horizon, v, is shown to be the inner product of the

current state probability mass vector x and a vector γ , i.e., v = xγ , where γ only depends

on the most recent state observation.

We then show in Section 2.5 that γ can be represented as a power series in ε, where ε

is the probability of a state observation error. Thus, for small ε, v can be approximated by

x(α0 +εα1), which implies that whether or not improved state observation quality improves

system performance is dependent on the signs of the scalar elements of the vector α1. We

show that if γ is generated by an optimal policy for the completely observed counterpart

(COC) of the POMDP, then all scalar elements of α1 are non-positive; therefore, decreasing

ε, i.e., improving state observation quality, does not decrease v, i.e., does not degrade

system performance. Further, we show that if the zero-memory policy does not depend on

the most recent state observations , then α1 = 0; hence, system performance is independent

of state observation quality for observation invariant policies.

We show by example in Section 2.6 that a near-optimal COC zero-memory policy can

produce a vector α1 with all positive scalar elements. Thus, it is possible that what appears

to be a good sub-optimal design can degrade system performance, given improved state

observation quality. A second example shows that it is possible for the vector α1 to have

both positive and negative scalar elements, indicating that the impact of improved state

observation quality on system performance may depend on x.

In Section 2.7 we consider a single item inventory problem in which inventory obser-

vations are assumed to be noise corrupted. We provide the POMDP formulation and its

COC. Further, we develop a simulation model to assess the potential benefit of improving

accuracy of inventory counts when zero-memory policies are implemented. We conclude

this section with a computational analysis.

2.2 Problem Definition

Let {s(t), t = 0, 1, · · · }, {z(t), t = 1, 2, · · · }, and {a(t), t = 0, 1, · · · } be the state, observation,

and action processes respectively. Assume that the state space S, the observation space Z,

and the action space A are each finite and that these three processes are related by the

11



given probabilities

pij(z, a) = P [z(t + 1) = z, s(t + 1) = s|s(t) = i, a(t) = a],

where P (z, a) = {pij(z, a)}, a sub-stochastic matrix which is such that
∑

z P (z, a) is stochas-

tic.

We assume the problem horizon is countably infinite and that for decision epoch t ∈
{0, 1, · · · }, action a(t) can be selected based on h(t) = {z(t), · · · , z(1), a(t−1), · · · , a(0), x(0)},
where x(t) = {xi(t)} is a probability mass vector (pmv) and where xi(t) = P [s(t) = i|h(t)].

Note, x(0) is an a priori pmv. A policy at decision epoch t is a function δt : {d(t)} → A; a

strategy is an ordered sequence of policies π = {δt, t = 0, 1, · · · }.
Let r(i, a) be the reward accrued at decision epoch t, given s(t) = i and a(t) = a. The

criterion is

Ex(0) =

{ ∞∑

t=0

βtr[s(t), a(t)]

}
,

where Ex is the expectation operator, conditioned on pmv x. In order to insure that the

criterion is well defined, assume throughout that β < 1 and there is an M such that

|r(i, a)| ≤ M for all i and a (Puterman [40]). The problem objective is to determine a

strategy that maximizes the criterion.

2.3 Preliminary Results

It is well-known that {x(t), t = 0, 1, · · · } is a sufficient statistic for the POMDP (Astrom

[3]). Let X = {x ≥ 0 :
∑

i∈S xi = 1}, ‖ · ‖ be the supremum norm on X, and V be the set

of all bounded, real-valued functions on X. Define Hδ : V → V and H : V → V as follows:

[Hδv](x) = xr[δ(x)] + β
∑

z

σ(z, x, δ(x))v[λ(z, x, δ(x)],

[Hv] (x) = max
a∈A

{
xr(a) + β

∑
z

σ(z, x, a)v[λ(z, x, a)]

}
,

where y1=
∑

i yi, σ(z, x, a) = xP (z, a)1, and λ(z, x, a) = xP (z, a)/σ(z, x, a) when σ(z, x, a)6=
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0. We remark that x(t + 1) = λ[z(t + 1), x(t), a(t)] and σ(z, x, a) = P (z(t + 1) = z|x(t) =

x, a(t) = a). We remark that Hv = supδ Hδv.

It is shown in (Puterman [40]) and elsewhere that H and Hδ are contraction operators

on the Banach space (V, ‖ · ‖). Thus, there exists a unique v∗ ∈ V such that v∗ = Hv∗ and

limn→∞ ‖vn − v∗‖ = 0 for vn+1 = Hvn, for v0 ∈ V . (An analogous statement can be made

about v∗δ for each δ). Further, if Hδv
∗ = Hv∗, then the (stationary) strategy π = {δ, δ, · · · }

is an optimal strategy.

2.4 Zero-Memory Policy

We define a zero-memory policy at decision epoch t as δt composed of decision rules of the

form δt : Z → A such that a(t) = δt(z(t)). That is at each decision epoch the decision rule

is based on the most current state observation. We remark that (z(t), a(t− 1), x(t− 1)) is

a sufficient statistic.

For stationary zero-memory strategy π = {δ, δ · · · }, we note (with a slight abuse of

notation) that

[Hδv](z, a′, x′) = xr(δ(z)) + β
∑

k

σ(k, x, δ(z))v[k, δ(z), x],

where x′ = x(t− 1), x = x(t) = λ(z, x′, a′), z = z(t), and a′ = a(t− 1). A simple induction

argument, based on the fact that limn→∞ ‖vn
δ − v∗δ‖ = 0, implies the following preliminary

result.

Lemma 1 There exists a vector γ such that v∗δ (z, a′, x′) = λ(z, x′, a′)γ(z), where γ is the

(unique) solution of

γ(z) = r(δ(z)) + β
∑

k

P (k, δ(z))γ(k)

for stationary, zero-memory policy δ.

2.5 Policy Performance and Observation Quality

We now investigate the impact of state observation quality on zero-memory policy perfor-

mance. Henceforth, assume S = Z, the observation probability q(z|j, i, a) = P [z(t + 1) =
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z|s(t + 1) = j, s(t) = i, a(t) = a] is independent of i and a and

q(z|j) =





1− ε if z = j

σjzε if z 6= j
,

where σjz ≥ 0, σjj = 0, and
∑

z σiz = 1 for all j, and ε > 0 represents the probability of an

inaccurate state observation.

We remark that the stochastic matrix {q(z|j)} represents better state observation quality

if it depends on ε rather than ε′ and ε < ε′. See (White and Harrington [55]) for another

closely related description of state observation quality.

Note that pij(z, a) = q(z|j)pij(a), where pij(a) =
∑

z pij(z, a) = P [s(t + 1) = j|s(t) =

i, a(t) = a] which is often referred to as the transition probability.

Intuitively, we would expect v∗δ (z, a′, x′) to increase (or at least not decrease) as ε gets

smaller. We show below that this characteristic is not in general true but present conditions

that guarantee it holds. We now show that for small ε, the expected total discounted reward

for a zero-memory stationary strategy can be represented by a power series in ε.

Proposition 1 Assume ε < (1−β)
2β . Then, γ(z) =

∑∞
l=0 εlαl(z), where:

α0(i, z) = r(i, δ(z)) + β
∑

j

pij(δ(z))α0(j, j),

∆l(i, z) = β
∑

j

pij(δ(z))


∑

z 6=j

σjzα
l(j, z)− αl(j, j)


 , l ≥ 0

αl(i, z) = ∆l−1(i, z) + β
∑

j

pij(δ(z))αl(j, j), l ≥ 1.

Proof: By successive approximations. It follows from Lemma 1 that

limn→∞‖γn(z)− γ(z)‖ = 0, where

γn+1(z) = r(δ(z)) + β
∑

k

P (k, δ(k))γn(k),

and where γ0 = 0. It follows from the definition of q(z|j) that
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γn+1(i, z) = r(i, δ(z)) + β
∑

j

pij(δ(z))γn(j, j) + ε∆n(i, z),

where

∆n(i, z) = β
∑

j

pij(δ(z))


∑

k 6=j

σjkγn(j, k)− γn(j, j)


 .

It is then straightforward to show that γn(i, z) =
∑n

l=0 εlαl
n(i, z), where:

α0
n+1(i, z) = r(i, δ(z)) + β

∑

j

pij(δ(z))α0(j, j)

αl
n+1(i, z) = ∆l−1

n (i, z) + β
∑

j

pij(δ(z))αl
n(j, j)

for l = 1, · · · , n, where αn+1
n+1(i, z) = ∆n

n(i, z), and for l = 0, · · · , n,

∆l
n(i, z) = β

∑

j

pij(δ(z))


∑

k 6=j

σjkα
l
n(j, k)− αl

n(j, j)


 .

Letting n →∞ gives the result, assuming limn→∞
∑n

l=0 εlαl
n(i, z) exists.

We now show that the infinite sum is well-defined if ε < (1−β)
2β . Since |r(i, a)| ≤ M

for all i and a, it follows that ‖α0‖ ≤ M
1−β , where ‖ · ‖ is the supremum norm. A similar

argument implies that for l ≥ 1, ‖αl‖ ≤ ‖∆l−1‖
1−β , where we note that ‖∆l−1‖ ≤ 2β‖αl−1‖.

Thus, ‖αl‖ ≤ [ 2β
1−β ]l( M

1−β ). Convergence of the infinite series is then guaranteed if 2βε
1−β < 1.

¥

We note that determining α0 is computationally identical to computing the expected

total discounted reward to be accrued over the infinite horizon generated by δ for the com-

pletely observed (i.e., COC) case. Computing ∆l−1 and αl, for each l ≥ 1, has substantially

more modest computational requirements.

Our numerical results thus far indicate that ‖αl‖ approaches zero quickly as l grows large.

Thus, 1−β
2β appears to be a very conservative upper bound on ε in order to guarantee that the

limit limn→∞
∑n

l=0 εlαl exists. Further, for small ε (i.e., reasonably accurate observation

quality), α0 + εα1 appears to be a good approximation of γ. Recall by Lemma 1 that the
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expected total discounted reward over the infinite horizon, v, is such that v = λγ, where

λ is a pmv. Hence, if α1 ≤ 0(α1 ≥ 0), then v is non-decreasing (non-increasing) as ε gets

smaller. Thus, if the finite-memory policy is such that α1 ≤ 0, then there may be value

in improving state observation quality in order to improve expected system performance.

However, if α1 ≥ 0, then improving state observation quality will never improve, and may

degrade expected system performance. If α1 is neither non-positive nor non-negative, then

whether there is value in improving state observation quality depends on the sign of λα1

and hence the value of λ.

We now present a zero-memory policy that guarantees α1 ≤ 0. This policy is identical

to the optimal policy for the case where ε = 0 (i.e., the perfect state observation case and

hence is a COC), and is thus relatively easy to calculate and implement.

Corollary 1 Let δ∗ : Z → A be a policy that achieves the maximum in

α∗(i) = max
a∈A



r(i, a) + β

∑

j

pij(a)α∗(j)



 .

Then, α∗(i) = α0(i, i) ≥ α0(i, z), for all i and z, and hence α1(i, z) ≤ 0 for all i and z.

Proof: Let {α∗n} and {δ∗n} be such that

α∗n+1(i) = max
a∈A



r(i, a) + β

∑

j

pij(a)α∗n(j)





= r(i, δ∗n(i)) + β
∑

j

pij(δ∗n(i))α∗n(j),

where α∗0(i) = 0. Then, limn→∞ ‖α∗n − α∗‖ = 0 and hence α∗(i) = α0(i, i). It then follows

from Proposition 1 that for the case where z(t) = z 6= i, that

α0(i, z) = r(i, δ∗(z)) + β
∑

j

pij(δ∗(z))α∗(j)

≤ r(i, δ∗(i)) + β
∑

j

pij(δ∗(i))α∗(j) = α∗(i).

Clearly, α0(i, z) = α∗(i, z). The fact that α1(i, z) ≤ 0 follows from the definition of α1

in terms of ∆0 and hence in terms of α0.
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We remark that we showed in the proof of Corollary 1 that α∗(i) is an upper bound on

α0(i, z) for any z, where α0 is generated using δ∗. More generally, α∗ is an upper bound on

α0 for any z and any zero-memory policy, which is true due to the fact that for the COC

decision process (where z(t) = s(t)), s(t) is a sufficient statistic for z(t). We also remark

that if we select δ∗ to achieve the minimum, rather than the maximum, in the optimality

equation in Corollary 1, then α1(i, z) ≥ 0 for all i and z. Thus, as we are assured that there

exists a zero-memory policy whose performance will not degrade as state observation quality

improves, we are also assured that there exists a zero-memory policy whose performance

will not improve as state observation quality improves.

We now examine a class of policies, history invariant policies, and show that such policies

are independent of state observation quality. Thus, improving or degrading state observation

quality will have no effect on the performance of a stationary history invariant policy.

Corollary 2 Assume δ is a such that δ(z) = a for all z. Then αl = 0 for all l ≥ 1 and

hence the expected total discounted reward is independent of ε.

Proof: If δ(z) = a for all z, then α0 = (I − βP (a))−1r(a), where P (a) = {pij(a)} and

r(a) = {r(i, a)}. Thus, α0 is independent of z, which implies ∆0 = 0 and hence α1 = 0. An

induction argument then implies that ∆l−1 = 0 and hence αl = 0 for all l ≥ 1.

¥

2.6 Examples

We now present two inventory control examples that only differ in the observation proba-

bility distribution. Let the per unit per period holding cost h = 1999, the per unit ordering

cost c = 1000, the per unit selling price p = 3000 and the discount factor β = 0.9. Thus

r(i, a) = −hi − ca + p[
∑

j≤i+a jP (j) +
∑

j>i+a(i + a)P (j)], where P (j) is the demand

probability distribution and is given by:
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P (j) =





0.5 if j = 1

0.45 if j = 2

0.05 if j = 10

0 otherwise

For the first example, the observation probability matrix is

q(z|j) =





1− ε if z = j

ε
3|j−z| if 2 ≤ j ≤ 8, z 6= j, j − 2 ≤ z ≤ j + 2

ε
3|j−z| if j = 1, 2 ≤ z ≤ 3

1
2ε if j = 1, z = 0

2ε
3|j−z| if j = 0, 1 ≤ z ≤ 2

ε
3(j−z) if j = 9, 7 ≤ z ≤ 8

1
2ε if j = 9, z = 10

2ε
3(j−z) if j = 10, 8 ≤ z ≤ 9

0 otherwise

We now examine the behavior of zero-memory policies of the following form:

δ(z) =





k − z if z ≤ k

0 otherwise
.

Numerical calculations imply that α1(i, j) ≤ 0 for all i, j for k ∈ {0, 1, 2}, implying

that these policies improve system performance as state observation quality increases for

sufficiently small ε. We also observe that α1(i, j) ≥ 0 for all i, j for k ∈ {9, 10}, implying

that these policies decrease system performance as state observation accuracy increases. For

k ∈ {3, 4, 5, 6, 7, 8} we observe α1(i, j) ≤ 0 for some i, j and we also observe α1(i, j) ≥ 0 for

other i and j implying that the impact of these policies, given improved state observation

accuracy, is inconclusive. We remark that the optimal completely observed MDP order-up-

to level is 2, which is consistent with Corollary 1. We also note that α1(i, j) = 0 for all i, j

for k = 0 which is consistent with Corollary 2.
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We now consider the same parameter values except that the observation probability

matrix is given by:

q(z|j) =





1− ε if z = j

ε
10 otherwise

For this example we examine policies of the same form described above. Numerical

calculations imply that α1(i, j) ≤ 0 for all i, j for all k ∈ {0, 1, 2}, implying that the system

performance of these policies improves with improved observation quality for sufficiently

small ε. We also observe that α1(i, j) ≥ 0 for all i, j for all k ≥ 3, implying that these

policies will degrade system performance if given improved state observation quality. We

remark that the optimal completely observed order-up-to level is again 2. We also note that

α1(i, j) = 0 for all i, j for k = 0.

We recall from Corollary 1, the “order-up-to 2” policy is guaranteed to improve systems

performance if given improved state observation quality. Since state observations may

be inaccurate, it would seem reasonable to use an “order-up-to Y ” policy for some Y > 2.

Interestingly, our numerical results indicate that if we did so, then the resulting policy would

be guaranteed not to improve systems performance if given improved state observation

quality.

2.7 Computational Study of Zero-Memory Policies for Inventory Sys-
tems

We have already shown that a zero-memory policy for the POMDP that is equivalent to an

optimal policy for the COC is adaptive (i.e., system performance will not degrade as the

observation quality improves) when the probability of the observation error is sufficiently

small. The main objective of this section is to quantify the potential benefit of improving

the accuracy of state observability when this type of zero-memory policy is employed in the

context of inventory management. Specifically, we consider a single item periodic review

inventory system with inaccurate inventory counts, stochastic demand, and lost sales.

Inventory systems with perfectly accurate counts face only variability associated with

the demand process. In the presence of inaccurate inventory counts there is another source
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of variability due to this inaccuracy. There are two alternative approaches to hedge against

the added variability due to the imperfect inventory counts: (1) invest in improving the

accuracy of the counts and (2) increasing stocking levels. We will investigate two different

types of zero-memory policies that capture these two alternatives.

2.7.1 Model Formulation

Consider a single product periodic review inventory system in which a decision maker se-

lects a replenishment quantity at each decision epoch in order to maximize expected total

discounted profit over an infinite planning horizon. At the beginning of each decision epoch,

an observation of the current inventory level becomes available to the decision maker; this

observation may be noise corrupted. Selection of the replenishment quantity at the current

epoch is based on all past and present inventory observations and all past ordering decisions.

We assume that the quantity ordered is received immediately (no leadtime), no backlogging

is permitted and that demand in any given period is stochastic, independent and identically

distributed with known probability distribution.

More precisely, let s(t) be the inventory level at decision epoch t just prior to the

selection of the replenishment decision a(t). Let d(t) be the demand realized between time

t − 1 and time t and let P (i) = P (d(t) = i) for i ∈ {0, · · · , D} and for all t. We assume

replenishment decisions are made for each t ∈ {0, 1, · · · }. Let z(t) be the partially noise

corrupted observation of the inventory level that is available to the decision maker just

prior to the selection of a(t) and let h(t) = {z(t), · · · z(1), a(t − 1), · · · , a(0), x(0)}, where

x(0) = {xi(0)} and xi(0) = P (s(0) = i). Thus, x(0) ∈ X =
{

x ≥ 0 :
∑D

i=0 xi = 1
}

is

the a priori probability distribution of s(0). Note that h(t) represents all the information

available to the decision maker prior to the selection of a(t).

The observation probabilities are assumed to be dependent of parameters k and ε as

follows:
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P k(z|j) =





ε
min{D,j+k}−(j−k)+

z 6= j, (j − k)+ ≤ z ≤ min{D, j + k}
1− ε z = j

0 otherwise

, (1)

where ε is the probability of an inaccurate observation and k the maximum possible differ-

ence between the observed and the true inventory level.

Let p, c and h be the per unit selling price, per unit ordering cost and per unit per

period holding cost respectively. We assume that the holding cost from time t to t + 1 is

given by hs(t).

The Inaccurate Inventory Replenishment Problem (IIRP) is to find a strategy that

maximizes the following criterion:

Eπ
x(0) =

{ ∞∑

t=0

βtr[s(t), a(t)]

}
,

where Eπ
x(0) is the expectation operator conditioned on x(0) and use of strategy π. Param-

eter β represents the discount factor and r[s(t), a(t)] = −hs(t) − ca(t) + pE
{

min{d(t +

1), s(t)}
}

.

The optimality equation is then:

v(x) = max
a

{∑

i

xir(i, a) + β
∑

z

σ(z, x, a)v(λ(z, x, a))

}
,

where

σ(z, x, a) =
∑

i

xi

∑

j

P (z|j)P (j|i, a) 6= 0,

λ(z, x, a) =
{

λj(z, x, a) =
∑

i xiP (z|j)P (j|i, a)
σ(z, x, a)

}
,

and

P (j|i, a) =





0 if j > i + a

P (i + a− j) if 1 ≤ j ≤ i + a

∑
k≥i+a P (k) if j = 0

.
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2.7.2 Two Zero-Memory Policies

We investigate the performance of two classes of zero-memory policies, (i) the optimal

policy for the COC problem denoted by (COC∗), and (ii) a policy that we refer to as COC

overstocking zero-memory policy. The COC∗ policy for the IIRP is given by the following

optimality equation:

vC(i) = max
a



r(i, a) + β

∑

j

P (j)vC([i + a− j]+)





We remark that an optimal policy COC∗ is an order-up-to policy. That is, there exists an

integer y such that:

a(i) =





y − i if i ≤ y

0 otherwise
.

We define the COC overstocking zero-memory policy denoted by COCo(γ) as follows:

Let π = {δ} be the COC∗ zero-memory policy where a = δ(z), then πo(γ) = {δo
γ} is the

COCo(γ) zero-memory policy where a = δo
γ(z) = δ(z) + γ and γ > 0.

2.7.3 Numerical Experiments

In this section, we present the results of numerical experimentation using both the COC∗

and the COCo(γ) policies for the IIRP. Specifically, we want to understand the impact of

three problem features on the value of improved inventory accuracy: (1) demand variability

measured as the coefficient of variation of the demand process, (2) the relative contribution

of holding cost to overall cost and (3) variability of the observation process measured as the

maximum absolute error of the observation quantity which is represented by parameter k

(see Equation 1).

We use the value iteration method to solve the COC of the IIRP problem. In order to

evaluate system performance for any zero-memory policy we employ steady state simula-

tion. Based on initial pilot runs, it was estimated that these systems need 1250 periods of

simulation warm-up to reach steady state. Therefore, in each replication a total of 2500

periods are simulated, and statistics are generated only over the final 1250 periods. Results
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from the pilot runs suggest that a total of 30 replications are required to reach a relative

error of 0.01 for a confidence level of 99% (see Law and Kelton [25], Chapter 9).

Scenarios are generated with the per unit ordering cost and per unit selling price set to

be c = 160 and p = 200. The per period per unit holding cost h is varied among scenarios

and is selected from the set {1.6, 8, 16}. The per period demand B(n, ρ) is assumed to be

Binomially distributed with n = 20 and ρ selected from the set {0.2, 0.5, 0.8}. The discount

factor is assumed to be β = 0.99. The levels of inaccuracy ε are selected from the set

{0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625, 0}, and the parameter k used to generate

the observation probabilities is selected from the set {2, 5, 10, 20}. The order-up-to levels of

the COC∗ policy for each scenario are shown in Table 1. The value of γ for the COCo(γ)

zero-memory policy is set equal to 2 in all scenarios. We measure the potential value of

improve inventory accuracy as the Percentage Reduction in System Profit due to inaccurate

counts (PRSP ), defined as the difference between the profit obtained under perfect accuracy

and the profit obtained under inaccuracy, divided by the former value.

Table 1: Optimal Order-up-to Levels of COC∗

ρ 0.2 0.2 0.2 0.5 0.5 0.5 0.8 0.8 0.8
h 1.6 8 16 1.6 8 16 1.6 8 16

Order-up-to Level 7 6 5 13 12 11 18 18 17

First, the empirical results match what is predicted theoretically. In all scenarios we

observe that the COC∗ zero-memory policy is adaptive for small values of ε. Furthermore,

the computational results indicate that the policy remains adaptive for large values of ε.

Figure 1 and Figure 2 graphically depict this result; as information quality improves from

right to left, the profit loss due to inaccurate counts decreases.

In all instances the ratio PRSP to ε was observed to be always smaller than 1, indicating

that an increase in inaccuracy counts of x% will degrade the system performance by no more

than that percentage. We also observed that this ratio increases as the inventory holding

increases, indicating that systems with higher inventory holding costs can benefit more from

improving accuracy of inventory counts than systems with lower inventory holding costs.

The experiments indicate that demand variability has a significant impact on the benefit
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Figure 1: Percentage Reduction in Expected Profit Due to Inaccurate Inventory Counts
for Small Values of ε and Different Levels Holding Costs (ρ = 0.2, k = 5)
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Figure 2: Percentage Reduction in Expected Profit Due to Inaccurate Inventory Counts
for Different Levels Holding Costs (ρ = 0.2, k = 5)
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of improving inventory accuracy. For a fixed inventory holding cost h and fixed value of

k, numerical results show that the benefit of improving inventory accuracy increases as

demand variability increases. This behavior is more pronounced as the value of k decreases.

This result suggests that as the variability of the observation process (k) decreases, the

effect that demand variability has on the benefit of improving inventory accuracy is more

significant. Figure 3 depicts this result; each graph exhibits the PRSP for the three levels

of demand variability, a fixed value of k and h = 16. Similar results are observed for other

holding cost values.
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Figure 3: Percentage Reduction in Expected Profit Due to Inaccurate Inventory Counts
for Different Levels of Demand Variability and Observation Variability (h = 16)

Variability in the inaccuracy of the observation process seems to have a significant effect

on the benefit of improving inventory counts. As expected, as this variability increases the

benefit of improved accuracy also increases (see Figure 4). Furthermore, for the lowest level

of inaccurate observation variability (k = 2), the COC∗ zero-memory policy outperformed

the COCo(2) zero-memory policy for every level of inaccuracy. However, the percentage

25



difference in the performance of the two policies for this case is not very significant (see

Figure 5).
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Figure 4: Percentage Reduction in Expected Profit Due to Inaccurate Inventory Counts
for Different Levels of Observation Variability (ρ = 0.5, h = 8)

In contrast, for systems with higher levels of observation variability when ε ≤ 0.10 either

the COC∗ zero-memory policy outperformed the COCo(2) zero-memory policy (in systems

with h ≥ 8) or the relative benefit of the COCo(2) policy was less than 1% (in systems with

h=1.6). In each scenario, we found that there is a break point in the value of ε after which

the COCo(2) starts to outperform the COC∗ zero-memory policy; as the value of holding

cost increases, the break point value increases (see Figure 6). This result is intuitively clear

since there is a tradeoff between the benefit obtained by hedging against the variability due

to inaccurate counts by overstocking and the cost of stocking more. Finally, we found that

the COCo(2) zero-memory policy was not always adaptive; Figure 7 clearly demonstrates

this fact for the scenarios with parameters h = 8, k = 2 and ρ = 0.8.
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CHAPTER III

BOUNDING THE VALUE OF IMPROVING DEMAND

OBSERVABILITY FOR A SINGLE ITEM INVENTORY CONTROL

WITH MARKOVIAN DEMAND AND LOST SALES

3.1 Introduction

Profitably supplying product to meet customer demand is a crucial objective of virtually all

supply chains. Decision models for the sequential control of supply chain systems usually

require models of demand and demand observation. In this chapter, we consider periodic

inventory control decisions for systems where unsatisfied customer demand is not necessarily

completely observed and is lost (i.e., no backlogging). Although true demand may not be

observed, we assume that customer sales data, inferred from inventory levels, are perfectly

observed.

Perfectly observed sales data may provide censored observations of demand. For a firm

selling a single product, if the inventory level remains positive during a period, then sales

during that period provide an observation of actual demand. However, if the inventory

level drops to zero, sales are a lower bound on actual demand. When firms supply multiple

products to customers who may substitute if their first choice is unavailable, the situation

is more complex, since sales may represent an artificially inflated observation of demand for

a product that customers purchase as a substitute for an unavailable product.

Since sales data alone may provide only partial information about customer demand,

many firms develop additional mechanisms aimed at improving understanding of demand.

Effective demand sensing programs that identify and interpret certain market signals may

provide valuable input to the production and inventory control activities of a firm. Examples

of such market signals include web hit data for product-specific pages at a firm’s internet

site or the number of phone inquiries about a specific product to a sales call center. Note

that demand sensing data may not only be useful for forecasting future product demand,
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but also for improving true demand observability during periods with potential lost sales.

Demand sensing programs have a cost, and thus it is important to understand their

potential benefit. In this chapter, we focus on understanding the value of improved demand

observability for inventory control. To initiate such a study, we consider a very simple

supply system for a single product where a single capacity-constrained production site sup-

plies a single consumption site. The consumption site operates a periodic review inventory

control system, where orders placed at the end of a period are available at the beginning

of the following period. The demand process d(t) for product at the consumption site is

non-stationary and discrete, and assumed to be described by a stationary Markov chain

with known transition probabilities P{d(t + 1) = j | d(t) = i} (we remark that such prob-

abilities may not be known precisely, and as a result, we treat them as parameters in the

numerical analysis presented later). Using a Markov process to model demand is natural

when demands may be correlated in time.

For such a supply system, prior period demand is observed completely only when no

inventory shortage occurs, and therefore we develop a partially-observed Markov decision

process (POMDP) control model. Sales and inventory quantities are assumed to be perfectly

observed; thus, this information provides a censored observation of true demand d(t). In

addition, we assume that we also receive direct demand observations from a demand sensing

program; we summarize the (possibly noise corrupted) observation information provided by

demand sensing using the notation z(t).

We first develop a general mathematical model for the inventory control problem with

partially-observed Markovian demand and lost sales and present an algorithm for deter-

mining an optimal policy. Since this model is intractable for reasonable problem sizes, we

next propose three computationally attractive heuristic solution procedures for this problem

that produce near-optimal decisions, the third of which is based on a non-standard sufficient

statistic with characteristics unique to this problem. We then analyze two extreme cases

of the POMDP model, the completely-observed case and the sales-only-observed case, and

use them to determine the expected maximum added value of improved demand observabil-

ity. Finally, we conduct a computational study using these extreme cases in an attempt to
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obtain computational evidence regarding the maximum value of demand observability for

realistic problem settings.

3.2 Related Literature

Inventory control problems for supply chain systems facing uncertain demands have been

studied extensively in the research literature; see Lee and Nahmias [26] for a comprehensive

review of single product, single-location inventory models. Demand is usually assumed to

be completely observable, even in periods with inventory stockouts; backorders are gener-

ated, or lost sales are penalized. Furthermore, most research assumes that demand can be

modeled as a stationary and independent process with a known probability distribution.

In other cases (for example, when a new product is introduced to the market), researchers

assume that this stationary distribution has unknown parameters and use statistical tech-

niques to estimate them; Bayesian approaches for such problems were first proposed and

refined by Scarf ([43] and [44]), Karlin [22], Iglehart [19] and later generalized by Azoury

[4].

Fewer models consider the case where lost demand is not observed, although many

supply chains that serve end consumers share this characteristic. Fisher at el. [15] note

that this is a common dilemma faced by retail supply chains, and discuss how ignoring lost

sales makes it difficult to set optimal inventory levels, leading to extra current costs and

potentially additional lost sales in the future. When lost sales are not observed, the problem

of determining the true underlying demand distribution becomes more difficult since the

data is censored. Two approaches in the literature use focus on this problem using classical

statistical estimation: Nahmias [35] estimates parameters of a normal demand distribution

from sales observations assumed to form a right-censored sample, while Agrawal and Smith

[2] extends this work to the case of a negative binomial demand distribution.

Other work on problems with unobserved lost sales focuses on the joint problem of

distribution parameter estimation and optimal stocking policy determination. Lariviere

and Porteus [24] develops a tractable Bayesian approach for updating an a priori demand

distribution in this setting by extending the results of Scarf [44] and Azoury [4] using the
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newsvendor distribution framework developed in Braden and Freimer [8]. Using an example

with perishable inventory and exponentially-distributed demand with a gamma conjugate

prior, they show that it is often optimal to “stalk” demand information by overstocking,

and that a product can be a victim of its own success if its sales popularity prevents the

retailer from maintaining enough stock to accurately assess true demand. Ding at el. [13]

generalize these ideas using a Bayesian Markov decision process (BMDP) for a similar multi-

period newsvendor problem setting, and obtain similar insights: stocking levels should be at

least as high as those when lost sales are observed, and early period stocking levels should

be higher to gather more information regarding true demand. Similar to the POMDP,

the BMDP used by the researchers utilizes a probability-distribution-valued state variable,

and thus has tractability issues for more complex problem settings. Finally, in another

related work, Godrey and Powell [16] consider again the multi-period newsvendor setting

with unobserved lost sales, and propose an approximate dynamic programming approach

based on sampling to set nearly-optimal stock levels; the approach does not attempt to

characterize the demand distribution, and focuses solely on generating near-optimal stock

decisions by iteratively updating an approximation of the true expected profit objective

function.

Here, we study a different, but related, problem class with non-perishable inventories.

We assume that demands are non-stationary, but correlated across decision periods, such

that the demand distribution in period t + 1 depends on the demand level in period t, and

thus we can model the demand process as a Markov chain. Furthermore, we assume that

the process structure is known, i.e., we know the transition matrix for the Markov chain.

Since, however, we assume that lost sales are not observed, what is not known is the actual

demand d(t) in a period when a stockout occurs. Additionally, we assume we are also able

to observe some additional market data, summarized by z(t), that may help to identify d(t).

Since the relationship between z(t) and d(t) is only known probabilistically, we develop a

POMDP model. Since the direct model is intractable for reasonable instance sizes, we

consider heuristic solution algorithms similar to the limited look ahead policies proposed

by Treharne and Sox [52] for a related problem with perfect (non-censored) observations of
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demand and backordering. In their work, Treharne and Sox [52] assume that the demand

in each period t is generated by some demand distribution dt from a finite family, and

that the distributions change from one period to the next according to a Markov chain

with known transition probabilities. However, the state of the process {dt} is not observed

directly at any time; instead, only the demand outcomes {wt} from distributions {dt} are

observed. Unlike our work, the authors focus primarily on methods for determining near-

optimal stocking policies for such environments, and do not address the value of improving

the observability of the demand distribution in a period.

3.3 Inventory Control with Partially Observed Markovian Demand

Consider a single product supply chain system where a single decision maker selects a

replenishment quantity at each of a discrete, predefined and finite set of decision epochs

in order to maximize expected total discounted profit over the problem horizon. Just

prior to each decision epoch, the decision maker observes the current inventory level and

the demand that has occurred since the last decision epoch. We assume that the inventory

level is completely observed, but that the demand observation is potentially noise-corrupted,

i.e., obtained only via an observation of prior period sales and possibly augmented by noisy

market signal data. Selection of the replenishment quantity at the current epoch is based

on all past and present inventory and demand sensing observations and all past ordering

decisions. We assume that the quantity ordered is received for use immediately and that

demand is described by a control-independent (exogenous) Markov chain.

More precisely, let x(t) be the completely observed inventory level at time (or decision

epoch) t, just prior to the selection of the replenishment decision a(t). Let d(t) be the

demand realized between time t − 1 and time t. We assume replenishment decisions are

made at each t ∈ {0, 1, · · · , T − 1}, where T < ∞; thus, the planning horizon is finite.

Demand in excess of on-hand inventory is lost, and hence

x(t + 1) = max{0, x(t) + a(t)− d(t + 1)}. (2)

Note that these assumptions imply that sales are also observed, since the sales between
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t and t + 1 are simply x(t) + a(t)− x(t + 1).

Let z(t) be the noise-corrupted observation of demand (independent of sales) that is

available just prior to the selection of a(t), and assume probabilities of the form P (z, j|i) =

P (z(t + 1) = z, d(t + 1) = j|d(t) = i) are given. Note that we use z(t) to summarize

information that may be obtained from demand sensing programs. We note that P (z, j|i) =

P (z|j, i)P (j|i) where P (j|i) =
∑

z P (z, j|i) = P (d(t + 1) = j|d(t) = i) and

P (z|j, i) =
P (z, j|i)
P (j|i) = P (z(t + 1) = z|d(t + 1) = j, d(t) = i),

assuming P (j|i) 6= 0. The probabilities P (j|i) and P (z|j, i) are appropriately referred

to as transition and observation probabilities, respectively. We assume that D is the

maximum demand per period, and hence d(t) ∈ {0, 1, · · · , D}. Similarly, we assume

z(t) ∈ {0, 1, · · · , D}.
We will have particular interest in two extreme cases of the observation probabilities.

We note that z(t) = d(t) w.p.1 for all t is equivalent to P (z|j, i) = 1 if and only if z = j

for all i. In this case, we say that demand is completely (or perfectly) observed by the

observation process {z(t), t = 1, 2, · · · }. If P (z|j, i) is independent of i and j, then the

observation process provides no information about demand, and hence we say that demand

is completely unobserved by the observation process. We remark that when the observation

process provides no information about the demand process, information about the demand

process can be inferred only from the inventory process, or equivalently, sales data, which

will be described in section 3.4.

Selection of a(t) is made with knowledge of the information set at time t, I(t), where

I(t) =
{

z(t), · · · , z(1), x(t), · · · , x(0), a(t− 1), · · · , a(0), ξ(0)
}

, ξ(0) =
{

ξi(0)
}

, and ξi(0) =

P (d(0) = i). Thus, ξ(0) ∈ Ξ =
{

ξ ≥ 0 :
∑D

i=0 ξi = 1
}

. Hence, the amount of replen-

ishment ordered at epoch t, a(t), is allowed to depend on all past and present (possibly

noise-corrupted) observations of demand, all past and present inventory levels, all former

replenishment orders, and a priori demand information.

Let p, p̄, c, and h be the per unit selling price, salvage value, order cost, and per

period inventory holding cost, respectively. We assume that holding cost from t to t + 1 is
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determined on the basis of x(t).

A policy π is a rule that determines an action on the basis of the information currently

available. Thus, a(t) = π(t, I(t)) for all t ∈ {0, 1, · · · , T − 1}.
The Inventory Replenishment Demand Sensing Problem (IRDSP) is to find a policy

that maximizes the following criterion with respect to all policies:

Eπ
ξ(0) =

{
T−1∑

t=0

βtr [s(t), a(t)] + βT r̄ [s(T )]

}
, (3)

where Eπ
ξ(0) is the expectation operator conditioned on ξ(0) and use of policy π, β is the

discount factor, and where s(t) = (x(t), d(t)), r [s(t), a(t)] = −hx(t)−ca(t)+pE
{

min{d(t+

1), x(t) + a(t)}
}

and r̄ [s(T )] = p̄x(T ). Note that min{d(t + 1), x(t) + a(t)} represents sales

between t and t + 1.

It is easy to see that an optimal policy for the IRDSP will always select values of a(t)

such that a(t) ≤ D−x(t) given that there are no fixed ordering costs and no replenishment

lead time in this problem setting.

3.4 Preliminary Results

The following observations result from equation (2):

1. If x(t + 1) > 0, then d(t + 1) = x(t) + a(t)− x(t + 1), and hence d(t + 1) is completely

observed.

2. If x(t + 1) = 0, then all we can infer about d(t + 1) from x(t + 1), x(t), and a(t) is

that d(t + 1) ≥ x(t) + a(t).

It follows from Smallwood and Sondik [45] that (x(t), ξ(t)) represents a sufficient statistic

for the IRDSP, where ξ(t) = {ξi(t)} ∈ Ξ and ξi(t) = P (d(t) = i|I(t)). This fact, coupled

with the above two observations, imply that there are two general states of interest:

1. (x, ei), when x > 0, where the jth element of the vector ei is 1 if i = j and 0 otherwise.

2. (0, ξ) for any probability mass vector ξ on the demand state.
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Let

σ̃(z, (x, ξ), a) =
∑

j≥x+a

∑

i

ξiP (z, j|i)

λ̃j(z, (x, ξ), a) =





0 j < x + a
∑

i ξiP (z,j|i)
σ̃(z,(x,ξ),a) j ≥ x + a

,

where σ̃(z, (x, ξ), a) 6= 0, and λ̃(z, (x, ξ), a) =
{

λ̃j(z, (x, ξ), a)
}

. Note that σ̃(z, (x, ξ), a) =

P
(
z(t + 1) = z, x(t + 1) = 0|x(t) = x, ξ(t) = ξ, a(t) = a

)
and that λ̃j(z, (x, ξ), a) =

P
(
d(t + 1) = j|z(t + 1) = z, x(t + 1) = 0, x(t) = x, ξ(t) = ξ, a(t) = a

)
. Thus, assuming

(x(t), ξ(t)) = (x, ξ):

1. if x(t + 1) > 0, then ξ(t + 1) = ei, where d(t + 1) = x(t) + a(t)− x(t + 1) = i.

2. if x(t + 1) = 0, then ξ(t + 1) = λ̃(z, (x, ξ), a) with probability σ̃(z, (x, ξ), a), where

a(t) = a and z(t + 1) = z.

Based on results in Smallwood and Sondik [45], we now develop optimality equations

for the x > 0 and x = 0 cases. In both cases, vT (x, ξ) = p̄x.

If x > 0, then:

vt(x, ei) = max
a≥0



−hx− ca + p

∑

j

min(j, x + a)P (j|i)

+β
∑

j<x+a

P (j|i)vt+1(x + a− j, ej)

+ β
∑

z

σ̃(z, (x, ei), a)vt+1

(
0, λ̃(z, (x, ei), a)

)}
.

If x = 0, then:

vt(0, ξ) = max
a≥0



−ca + p

∑

i

ξi

∑

j

min(j, a)P (j|i)

+β
∑

j<a

∑

i

ξiP (j|i)vt+1(a− j, ej)

+ β
∑

z

σ̃(z, (0, ξ), a)vt+1

(
0, λ̃(z, (0, ξ), a)

)}
.
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We observe that σ̃ and λ̃ depend on x and a only through x + a. For y = x + a, define:

σ(z, ξ, y) = σ̃(z, (x, ξ), a)

λ(x, ξ, y) = λ̃(z, (x, ξ), a)

L(ξ, y) = p
∑

i

ξi

∑

j

min(j, y)P (j|i).

Note, L(ξ, y) =
∑

i ξiL(ei, y). Also let

h(ξ, y, v) = −cy + L(ξ, y) + β
∑

j<y

[∑

i

ξiP (j|i)
]

v(y − j, ej)

+β
∑

z

σ(z, ξ, y)v (0, λ(z, ξ, y))

and

[Hv](x, ξ) = (c− h)x + max
y≥x

h(ξ, y, v).

Then, the optimality equation is vt = Hvt+1, where vT (x, ξ) = p̄x.

Results in Smallwood and Sondik [45] imply that:

1. vt(x, ξ) is the optimal expected reward to be accrued from t until T , given x(t) = x

and ξ(t) = ξ.

2. An action that causes the maximum in the optimality equation to be attained is an

optimal action for the concomitant state.

3.5 Numerical Algorithms

We now present two general approaches for determining optimal policies and three heuristic

algorithms for determining a sub-optimal policy for the IRDSP and the expected value

accrued over the planning horizon. The approaches differ on the basis of the sufficient

statistic used.
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3.5.1 Approach 1

The first optimal algorithm uses (x(t), ξ(t)) as a sufficient statistic for I(t) and takes ad-

vantage of the fact that for each t, there is a finite set of vectors, Γt, such that vt(0, ξ) =

max {ξγ : γ ∈ Γt}; that is, vt(0, ξ) is piecewise linear and convex in ξ for finite T . Thus,

although the set of all probability mass vectors ξ is uncountably infinite, vt(0, ·) has a finite

representation (see Smallwood and Sondik [45]) .

Following arguments in Smallwood and Sondik [45], Γt can be constructed from Γt+1 as

follows. Note vT (0, ξ) = 0 for all ξ; Thus, ΓT = {0}. Then,

vt(0, ξ) = max
y≥0



−cy + L(ξ, y) + β

∑

j<y

[∑

i

ξiP (j|i)
]

vt+1(y − j, ej)

+ β
∑

z

σ(z, ξ, y)max {λ(z, ξ, y)γ : γ ∈ Γt+1}
}

= max
y≥0

max
γ0

· · ·max
γZ



−cy + L(ξ, y) + β

∑

j<y

[∑

i

ξiP (j|i)
]

vt+1(y − j, ej)

+ β
∑

z

σ(z, ξ, y)λ(z, ξ, y)γz

}
.

It follows that σ(z, ξ, y)λ(z, ξ, y)γz =
∑

j≥y [
∑

i ξiP (z, j|i)] γz
j , and hence

vt(0, ξ) = max
y≥0

max
γ0

· · ·max
γZ





∑

i

ξi


−cy + L(ei, y) + β

∑

j<y

P (j|i)vt+1(y − j, ej)

+ β
∑

z

∑

j≥y

P (z, j|i)γz
j






 .

Thus, Γt is composed of vectors γ′ = {γ′i} of the form,

γ′i = −cy + L(ei, y) + β
∑

j<y

P (j|i)vt+1(y − j, ej) + β
∑

z

∑

j≥y

P (z, j|i)γz
j .

We observe that if all of the vectors γ′ are contained in Γt, then |Γt| = (D+1)×|Γt+1|(D+1);

hence the finite representation of vt(0, ξ) expands geometrically as T increases if no attempt
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is made to remove unnecessary members of Γ. Let Purge(Γ) ⊆ Γ be the subset of Γ having

the smallest cardinality such that max{ξγ : γ ∈ Purge(Γ)} = max{ξγ : γ ∈ Γ} for all ξ. See

Lin at el. [28] for results regarding the existence of Purge(Γ) and computationally efficient

ways to compute Purge(Γ), given Γ.

This discussion suggests that a finite representation of vt is (v̂t, Γt), where vt(x, ei) =

v̂t(x, i) for all i and x > 0 and vt(0, ξ) = max{ξγ : γ ∈ Γt}. Define the operators H1 and

H2 as follows:

H1(v̂, Γ)(x, i) = [Hv](x, ei),

for all x > 0 and all i, and

H2(v̂, Γ)(ξ) = [Hv](0, ξ),

for all ξ, where v(x, ei) = v̂(x, i) for all x > 0 and all i and v(0, ξ) = max{ξγ : γ ∈ Γ} for

all ξ. Then, v̂t = H1(v̂t+1, Γt+1) and Γt = H2(v̂t+1, Γt+1).

Sub-Optimal Design

Although the Purge operator can be useful, |Purge(Γt)| may still grow prohibitively

large as T gets large. We now consider a sub-optimal design that guarantees the cardinality

of Γt will never exceed a computable upper bound.

Recalling that D is the maximum demand, select a(t) = D, independent of ξ, at time

t if x(t) = x(t − 1) = · · ·x(t − K) = 0 and x(t − K − 1) > 0 for a fixed integer K ≥ 0.

Otherwise, select a(t) ≤ D that obtains the maximum value in the optimality equation.

In the former case, once a(t) is selected, the inventory level at the next decision epoch is

guaranteed to be either greater than zero or a special case of zero inventory that allows

complete demand observability. That is, note from equation 2 that if a(t) = D, x(t) = 0,

and x(t + 1) = 0, then d(t + 1) = D.

We define:

• vK
t (x, ei) as the expected reward to be accrued from t until T under the sub-optimal

design policy with parameter K given ξ(t) = ei and x(t) = x where x > 0.

40



• vk
t (0, ξ) ∀ k = 1, · · · ,K as the expected reward to be accrued from t until T under

the sub-optimal design with parameter K given ξ(t) = ξ, x(t) = x(t − 1) = · · · =

x(t−K − k) = 0 and x(t−K − k − 1) > 0.

• v0
t (0, ξ) as the expected reward to be accrued from t until T under the sub-optimal

design with parameter K given ξ(t) = ξ, x(t) = x(t− 1) = · · · = x(t−K) = 0.

• Γk
t ∀ k = 0, · · · ,K as the set of gamma vectors such that vk

t (0, ξ) = maxγ∈Γk
t
{ξγ}.

Assume vK
T (x, ξ) = p̄x and hence ΓK

T = {γ0
T }, where γ0

T = 0. Furthermore, let

γ0
it = −cy∗ + L(ei, y

∗) + β
∑

j<y∗
P (j|i)vK

t+1(y
∗ − j, ej) + β

∑

j≥y∗
P (j|i)γ0

j t+1. (4)

Let vK
t = vt, t = T −K, · · · , T .

Algorithm 1

For t < T − K, assume the array (vK
t+k, k = 1, · · ·K, ΓK

t+1, γ
0
t+K) is given, where

vK
t+k = {vK

t+k(x, ei) : x > 0}, k = 1, · · · , K. We remark that this array fully determines

vK
t+1(x, ξ) for all x and ξ. We determine (vK

t+k, k = 0, · · ·K − 1, ΓK
t , γ0

t+K−1) as follows:

(i) γ0
t+K−1 is determined from vK

t+K and γ0
t+K .

(ii) vK
t = H1(vK

t+1, Γ
K
t+1).

(iii) ΓK−k
t+k = H2(vK

t+k+1, Γ
K−k−1
t+k+1 ) for k = 0, · · · ,K − 1.

We note that the cardinality of the array (vK
t+k, k = 0, · · ·K − 1, ΓK

t , γ0
t+K−1) is K ×

D × (D + 1) + |ΓK
t | + 1, where |Γ0

t | = 1 and |Γk
t | ≤ (D + 1) × |Γk−1

t+1 |(D+1). Further, we

note that transition from (vK
t+1, · · · , γt+K) to (vK

t , · · · , γt+K−1) requires application of the

H2 operator K times.

We explain the use of the γ0
t vector as follows. For simplicity, let K = 0; that is, assume

we order y∗ items whenever the inventory goes to zero, irrespective of ξ (in reality not a

particularly clever sub-optimal design). Let v0
t be the resulting expected value to be accrued

from t until T . Then,

41



v0
t (0, ξ) = −cy∗ + L(ξ, y∗) + β

∑

j<y∗

[∑

i

ξiP (j|i)
]

v0
t+1(y

∗ − j, ej)

+β
∑

z

σ(z, ξ, y∗)v0
t+1(0, λ(z, ξ, y∗)).

We recall that v0
T (0, ξ) = 0; hence, Γ0

T = {0}. Assume Γ0
t+1 is also a singleton; i.e.,

Γ0
t+1 = {γ0

t+1}. Then,

∑
z

σ(z, ξ, y∗)v0
t+1(0, λ(z, ξ, y∗)) =

∑
z

σ(z, ξ, y∗)λ(z, ξ, y∗)γ0
j t+1

=
∑

z

∑

j≥y∗

[∑

i

ξiP (z, j|i)
]

γ0
j t+1

=
∑

j≥y∗

[∑

i

ξiP (j|i)
]

γ0
j t+1,

where the last equality is due to the fact that
∑

z P (z, j|i) = P (j|i) and that γ0
t+1 is

independent of z. Thus, if Γ0
t+1 is a singleton and the action taken is ξ-invariant, then Γ0

t

is also an (easily computed) singleton.

It seems reasonable that vK+1
t would be at least as good an approximation as vK

t , which

we now show.

Proposition 2 For all t, vK
t ≤ vK+1

t ≤ vt.

Proof: Clearly, for any K, vK
t ≤ vt for all t. Hence, it is sufficient to show that vK

t ≤ vK+1
t .

By definition vK
T−k = vK+1

T−k = vT−k for k = 0, · · · ,K, and vK+1
t−k = vT−k for k = K + 1.

Thus, vK
t ≤ vK+1

t for t = T − K − 1. For any t < T − K − 1, assume vK
t+k ≤ vK+1

t+k ,

for k = 1, · · · , T − t. The monotonicity of the operators H1 and H2 guarantee that

H1(vK
t+1,Γ

K
t+1) ≤ H1(vK+1

t+1 , ΓK+1
t+1 ) and vK

t (0, ξ) ≤ vK+1
t (0, ξ) for all ξ, if vK−1

t+1 (0, ξ) ≤
vK
t+1(0, ξ) for all ξ. It is then straightforward to show that v0

t+K(0, ξ) ≤ v1
t+K(0, ξ). The

monotonicity of H2 then implies vK−1
t+1 ≤ vK

t+1, and the result follows by induction.
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¥

We now present an alternative approach for determining vK
t .

Algorithm 2

For t < T−K assume the array (vK
t+1,Γ

k
t+1, k = 0, · · · ,K) is given, where vK

t+1 = {vK
t+1(x, ei) :

x > 0}. We remark that this array fully determines vK
t+1(x, ξ) for all x and ξ. We determine

(vK
t , Γk

t , k = 0, · · · ,K) as follows:

(i) γ0
t is determined from vK

t+1 and γ0
t+1.

(ii) vK
t = H1(vK

t+1, Γ
K
t+1).

(iii) Γk
t = H2(vK

t+1, Γ
k−1
t+1 ) for k = 1, · · · ,K.

We note that the cardinality of the array (vK
t , Γk

t , k = 0, · · · ,K) is D × (D + 1) +
∑K

k=0 |Γk
t |, where |Γ0

t | = 1 and |Γk
t | ≤ (D + 1) × |Γk−1

t+1 |(D+1). Further, we note that tran-

sition from (vK
t+1, Γ

k
t+1, k = 0, · · · ,K) to (vK

t , Γk
t , k = 0, · · · ,K) requires application of the

H2 operator K times.

We remark that on the basis of operations count, Algorithm 1 would be preferred to,

Algorithm 2. However, as we will now show, Algorithm 2 suggests an algorithm, Algorithm

3 presented below, that is based in a non-standard sufficient statistic offering a significantly

simpler approach for software development.

3.5.2 Approach 2

The first approach for constructing an optimal policy for the IRDSP was based on the

fact that for finite T , vt(0, ξ) has a finite representation, Γt, although ξ is a member of

an uncountably infinite set. The second approach for constructing an optimal policy is

based on the fact that |I(t)| is finite for finite t. We also make use of the fact that there

exists a set I ′ ⊆ I(t) that can also serve as a sufficient statistic for the IRDSP, where

I ′(t) = {z(t), · · · , z(t− τ + 1), a(t− 1), · · · , a(t− τ), x(t− τ), d(t− τ)}, and where τ is such
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that x(t) = x(t− 1) = · · · = x(t− τ +1) = 0 and x(t− τ) > 0. Proof of the following result,

which justifies the claim that I ′ is a sufficient statistic, is due to the fact that x(t) > 0

implies d(t) is completely observed.

Proposition 3 For all t, P (d(t) = i|I ′(t)) = P (d(t) = i|I(t)).

Let I0 =
{
(x, ei) : x > 0, i ∈ {0, 1, · · · , D}}, I1 = {λ(z, ξ, y) : (x, ξ) ∈ I0, y ∈

{x, x + 1, · · · , D}, z ∈ {0, 1, · · · , D}} and for k ≥ 1 let Ik+1 =
{
λ(z, ξ, y) : ξ ∈ Ik, z, y ∈

{0, · · · , D}}. We remark that Ik is equivalent to I ′(t), given τ = k. Note, that |I0| = D(D+

1) and |Ik| ≤ D(D+1)2k+1

2 for k ≥ 1. As a slight abuse of notation, let H1(v, ṽ) = H1(v, Γ)

and H2(v, ṽ) = H2(v, Γ) if ṽ(0, ξ) = max{ξγ : γ ∈ Γ}. We now present an algorithm for

determining vK
t (x, ξ) for all (x, ξ) ∈ I0 and vK−k+1

t (0, ξ) for all k = 1, · · · ,K + 1 and for

all (0, ξ) such that ξ ∈ Ik.

Algorithm 3

For t < T −K, assume vK
t+1(x, ξ) is given, for all (x, ξ) ∈ I0 and vK−k+1

t (0, ξ) is given

for all k = 1, · · · ,K + 1 and for all (0, ξ) such that ξ ∈ Ik, where v0
t+1(0, ξ) = ξγ0

t+1 for

all ξ ∈ IK+1 and γ0
t+1 is given. Assume vt+1 = {vK

t+1(x, ξ) : (x, ξ) ∈ I0}. We determine

vK
t (x, ξ) for all (x, ξ) ∈ I0 and vK−k+1

t (0, ξ) for all k = 1, · · · ,K + 1 and for all (0, ξ) such

that ξ ∈ Ik, where v0
t (0, ξ) = ξγ0

t for ξ ∈ IK+1 as follows:

(i) vK
t (x, ξ) = H1(vt+1, v

K
t+1(0, ·))(x, ξ) for all (x, ξ) ∈ I0 where

vt+1(0, ·) = {vK
t+1(0, ξ) : ξ ∈ I1}.

(ii) vK−k+1
t (0, ξ) = H2(vt+1, v

K−k
t+1 (0, ·))(0, ξ) for all ξ ∈ Ik, where

vK−k
t+1 (0, ·) = {vK−k

t+1 (0, ξ) : ξ ∈ Ik+1}, k = 1, · · · ,K.

(iii) v0
t (0, ξ) = ξγ0

t , where

γ0
it =−cy∗+L(ei, y

∗)+β
∑

j<y∗P (j|i)vK
t+1(y − j, ej)+β

∑
j≥y∗P (j|i)γ0

j t+1.

We remark that Algorithm 2 and 3 are nearly identical, differing only as follows:
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(i) The algorithms use different representations of the vk
t (0, ·) functions, where the rep-

resentation in Algorithm 3 is significantly simpler for software implementation than

is the representation in Algorithm 2.

(ii) Algorithm 3 holds for all (x, ξ) ∈ I0 and all (0, ξ) such that ξ ∈ I1
⋃ · · ·⋃ IK , whereas

Algorithm 2 holds for all (x, ξ) ∈ I0 and for all (0, ξ) such that ξ ∈ Ξ.

3.6 A Method for Bounding the Value of Demand Observability

We now present a procedure that uses the previously described model and solution ap-

proaches to bound the maximum value of improved demand observability for the IRDSP.

To do so, we consider two extreme cases that we call completely-observed and sales-only-

observed. In the completely-observed case, we assume that the observation process provides

a perfect observation of demand in the prior period, even when x(t) = 0. Let V ∗
o (x, ξ) de-

note the value of maximum expected profit over some fixed planning horizon for this case,

given x(0) = x and ξ(0) = ξ. At the other extreme, the sales-only-observed case assumes

that the observation process provides no additional information about demand. Therefore,

the decision maker bases his or her decision only on the information obtained from sales

data. Since this case corresponds to the situation in which the use of demand sensing

techniques to improve observability provides no benefit, it should be useful for developing

a lower bound. Let V ∗
s (x, ξ) denote the value of maximum expected profit in this case,

again given x(0) = x and ξ(0) = ξ. Results in White and Harrington [55] guarantee that

V ∗
o (x, ξ) ≥ V ∗

s (x, ξ), for all (x, ξ).

Clearly, the gap between these two values, V ∗
o (x, ξ)− V ∗

s (x, ξ) corresponds to the maxi-

mum added expected benefit that can result through the application of techniques that aim

at improving demand observability.

As described earlier, the complicating feature of the operator H is due to the partial

observability of the demand. Therefore, determining an optimal policy and the resultant

maximum expected profit for the completely-observed case does not require the use of sub-

optimal techniques for problem settings of reasonable size. On the other hand, it will usually

be computationally prohibitive to determine an optimal policy for the sales-only-observed
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case, so instead we turn to the suboptimal solution approaches developed in Section 3.5.

Let V
LB(K)
s (x, ξ) denote a lower bound for V ∗

s (x, ξ), obtained by applying the suboptimal

design with parameter K. Thus,

V ∗
o (x, ξ)− V LB(K)

s (x, ξ) (5)

corresponds to an upper bound on the maximum added value that can be obtained from

improving demand observability. Of course, larger values of K lead to tighter lower bounds

V
LB(K)
s (x, ξ) which in turn lead to tighter upper bounds on the maximum value due to

improved demand observability.

3.6.1 Completely-Observed Case

To model the completely-observed case of the IRDSP, we simply assume that P (z|j, i) = 1

if and only if z = j. Thus, z(t) is a perfect observation of d(t) (independent of the value of

x(t)). Hence, the only general state of interest is now (x, ei), x ≥ 0. Let

h′(i, y, v) = −cy + L(ei, y) +
∑

j<y

P (j|i)v(y − j, j) +
∑

j≥y

P (j|i)v(0, j)

and

[H ′v′](x, i) = (c− h)x + max
y≥x

h′(i, y, v).

Then,

v′t = H ′v′t+1 (6)

is the optimality equation for the completely-observed case where the boundary condition

is v′T (x, i) = (p̄)x.

Noting results in Cheng and Sethi [11] and elsewhere, it is easy to show that there exists

an optimal policy in this case that is an order-up-to-policy. That is, there are integers

{y∗i (t)} such that
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a(t) =





y∗i (t)− x if x ≤ y∗i (t)

0 otherwise

represents an optimal action at time t, where x(t) = x and d(t) = i.

3.6.2 Sales-Only-Observed Case

To model the case where demand is only observable through sales data, we assume that

P (z|j, i) is independent of i and j. Thus, z(t) contains no information about the value of

d(t). The general optimality equation now becomes v′′t = H ′′v′′t+1, v′′T (x, ξ) = p̄x, where:

H ′′v′′ = (c− h)x + max
y≥x

h′′(x, ξ, y, v),

h′′(x, ξ, y, v) = −cy + L(ξ, y) +
∑

j<y

[∑

i

ξiP (j|i)
]

v(y − j, ej) + σ′′(ξ, y)v(0, λ′′(ξ, y)),

σ′′(ξ, y) =
∑

j≥y

∑
i ξiP (j|i) and for σ′′(ξ, y) 6= 0,

λ′′j (ξ, y) =





0 j < y
∑

i ξiP (j|i)
σ′′(ξ,y) j ≥ y.

3.6.3 Computing a Bound

For the completely-observed case, we use recursive expression (6) to determine V ∗
o (x, ξ) =

v′0(x, ξ) for all potential initial states. It is important to note that these states include all

(x, ξ) ∈ I0, as well as states (0, ei) for i = 0, 1, · · · , D. For the sales-only-observed case,

we use suboptimal Algorithm 3 to determine V
LB(K)
s (x, ξ) ≤ v′′0(x, ξ) because it is easier

to implement in software relative to Algorithms 1 and 2. In this case, the potential initial

states again include all (x, ξ) ∈ I0, but we restrict the zero inventory states to those that

might be visited by Algorithm 3; i.e., , all states (0, ξ) such that ξ ∈ I ′′1
⋃ · · ·⋃ I ′′K+1, where

I ′′1 = {λ′′(ξ, y) ∀ (x, ξ) ∈ I0, y ∈ {x, x + 1, · · · , D}} and I ′′k+1 = {λ(ξ, y) ∀ ξ ∈ Ik, y ∈
{0, 1, · · · , D}} for 1 ≤ k ≤ K.
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Given an initial state (x, ξ) ∈ I0 that is shared by both cases, it is possible to calculate a

bound on the expected added benefit of demand observability using V ∗
o (x, ξ)−V

LB(K)
s (x, ξ).

For initial states (0, ξ), a similar bound can be computed by blending the value function

using the prior distribution. To do so, let V ∗
o (0, ξ) =

∑
i ξiv

′
0(0, ei). Then V ∗

o (0, ξ) −
V

LB(K)
s (0, ξ) again represents a bound.

Since it may be useful to determine a measure for the potential value of observability that

is independent of the initial state, we note that a reasonable approach may be to compare

a weighted sum of the state-wise maximum percentage potential gains due to improved

demand observability, where the weights given to each state correspond to its likelihood of

visitation. Given scalar weights wξ ≥ 0 for all ξ ∈ I ′′1
⋃ · · ·⋃ I ′′K+1 and wx,ξ ≥ 0 for all

(x, ξ) ∈ I0 such that
∑

wξ +
∑

wx,ξ = 1, such a weighted statistic is given by the following

expression:

GUB(K)(w) =
∑

ξ∈I′′1
⋃···⋃ I′′K+1

wξ

(
V ∗

o (0, ξ)− V
LB(K)
s (0, ξ)

)

V
LB(K)
s (0, ξ)

(7)

+
∑

(x,ξ)∈I0

wx,ξ

(
V ∗

o (x, ξ)− V
LB(K)
s (x, ξ)

)

V
LB(K)
s (x, ξ)

.

3.7 Computational Analysis

We now apply our approach for bounding the value of demand observability to a set of

example finite horizon problem scenarios. The goal of the analysis presented below is to

develop a better understanding of the impact of two important problem features on the

value of observability: (1) the characteristics of the stochastic demand process, and (2) the

relative contribution of holding cost to overall supply chain cost. Scenarios are generated

by varying these two features, while holding remaining problem parameters constant.

Scenarios were generated for analysis using the following parameters, chosen to be rep-

resentative of many typical real-world supply networks. The per unit ordering cost and

selling price are set to be c = 12 and p = 14, and the end-of-horizon inventory salvage value

p̄ was set to zero. The per period holding cost h is varied between scenarios, and is selected
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from the set {0.2, 0.3, 0.5, 1, 2}. Note that in the scenarios with the smallest holding cost

(h = 0.2), the per unit product contribution p− c = 2 erodes to zero after holding the unit

for 10 periods and that in the scenarios with highest holding cost (h = 2), this contribution

erodes after only holding the unit for one period in inventory. The discount factor chosen

was β = 0.95.

To mitigate initial effects, we used a long maximum planning horizon of T = 1000

periods for each scenario. In practice, the value function estimates tend to converge much

more rapidly. For the recursive algorithms used to solve the completely-observed and sales-

only-observed special cases, we use the following stopping criterion: stop at iteration t∗,

where t∗ is the minimum t satisfying 1 ≤ t ≤ T and is such that the maximum state-wise

absolute difference between the expected profit to be accrued from T − t to T and the

expected profit to be accrued from T − t + 1 to T is less than or equal to a predefined

value ε (i.e., t∗ is the minimum t such that maxx,ξ |v∗T−t+1(x, ξ) − v∗T−t(x, ξ)| ≤ ε). If such

t∗ does not exist, stop at iteration T . In our computational study we set ε = 10−6. The

maximum number of iterations required to solve the scenarios presented in this section was

326 (< T ). Therefore, it is also true that the stationary policies (and their resultant state-

wise expected profits) obtained in the final iteration are good approximations of the infinite

horizon version of the problem.

Each scenario uses a Markovian demand process dependent on two parameters, ζ and

r. Parameter ζ is the probability that the demand level in period t + 1 is the same as the

demand in period t. The maximum amount by which the demand level may change from

one period to the next is a function of parameter r; that is, d(t + 1) takes values in the

interval [max{0, d(t)− r}, min{D, d(t) + r}], where r is assumed to be less than or equal to

D
2 . For 1 ≤ d(t) ≤ D − 1 we assume that P (d(t + 1) > d(t)) = P (d(t + 1) < d(t)) = 1−ζ

2 .

When d(t) = 0 the probability of an increment in demand in period t+1 is 1− ζ. Similarly

when d(t) = D the probability of a decrement in demand in period t + 1 is 1− ζ.

If d(t)− r ≥ 0 and d(t) + r ≤ D then demand in period t +1 has a symmetrical discrete

triangular distribution around d(t) according to expression:
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P (d(t + 1) = d(t) + j) = P (d(t + 1) = d(t)− j) =
(1− ζ)
r(r + 1)

(r + 1− j) (8)

for 1 ≤ j ≤ r.

If d(t) = 0 then demand in period t + 1 has a discrete triangular distribution according

to expression:

P (d(t + 1) = j) = 2
(1− ζ)
r(r + 1)

(r + 1− j)

for 1 ≤ j ≤ r. Similarly, when d(t) = D then

P (d(t + 1) = D − j) = 2
(1− ζ)
r(r + 1)

(r + 1− j)

for 1 ≤ j ≤ r.

If 1 ≤ d(t) ≤ r − 1 then demand in period t + 1 has a discrete triangular distribution

around d(t) where

P (d(t + 1) = d(t)− j) =
(1− ζ)

d(t)(d(t) + 1)
(d(t) + 1− j)

for 1 ≤ j ≤ d(t) and right tail distributed according to expression (8). On the other hand if

D−r+1 ≤ d(t) ≤ D, then the demand in period t+1 has a discrete triangular distribution

around d(t) where

P (d(t + 1) = d(t) + j) =
(1− ζ)

(D − d(t))(D − d(t) + 1)
(D − d(t) + 1− j)

for 1 ≤ j ≤ d(t) and left tail distributed according to expression (8). Note that the

probability that demand changes decreases as the magnitude of the change increases.

By varying parameters ζ and r, we can control the volatility of the demand process.

We define P (ζ, r) to be at least as volatile as P (ζ ′, r′) if and only if ζ ≤ ζ ′ and r ≥ r′. As

the value of ζ approaches 1 and the value of r approaches 0, the process is less volatile.

In our computational experiments, we consider various levels of demand volatility in order

to observe its effect on the value of demand observability. To generate scenarios with

different demand volatility for each inventory holding cost, we develop a separate scenario
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with demand process P (ζ, r) for each combination of parameter values r ∈ {1, 2, 3, 4, 5} and

ζ ∈ {0.6, 0.7, 0.8, 0.9, 0.925, 0.95, 0.975, 0.99}. Further, we set D = 10.

For each problem scenario, we calculate state-wise expected profits for the completely-

observed case V ∗
o (x, ei) for all x ≥ 0 and i ∈ {0, · · · , D} using equation 6. Next, we use

suboptimal Algorithm 2 with parameter K = 2 to determine V
LB(2)
s (x, ξ) for all (x, ξ) ∈ I0

and (0, ξ) such that ξ ∈ I ′′1
⋃ · · ·⋃ I ′′K+1. For all (x, ξ) ∈ I0 and (0, ξ) such that ξ ∈

I ′′1
⋃ · · ·⋃ I ′′K+1 let:

• aLB
t (x, ξ) be the decision rule at time t found using the sub-optimal design in the

sales-only-observed case, given x(t) = x and ξ(t) = ξ;

• P t
(x,ξ),(x,ξ)

(aLB
t (x, ξ)) = P (x(t + 1) = x, ξ(t + 1) = ξ|x(t) = x, ξ(t) = ξ, a(t) =

aLB
t (x, ξ)) be the transition probability from state (x, ξ) to state (x, ξ) at time t

given the sub-optimal decision rule;

• and P (t) = {P t
(x,ξ),(x,ξ)

(aLB
t )} be the corresponding transition probability matrix for

time t given the sub-optimal decision rule.

As mentioned earlier, due to the length of the planning horizon and the utilized stopping

criterion, a good approximation of the steady-state probabilities for all (x, ξ) ∈ I0 and (0, ξ)

such that ξ ∈ I ′′1
⋃ · · ·⋃ I ′′K+1 is obtained by calculating the steady-state probabilities of the

Markov chain associated with the stochastic matrix P (0). We then use these steady-state

probabilities as the weights wξ to compute the maximum percentage value statistic given

by (7).

Before we present results on the maximum value of observability, it is first interest-

ing to briefly discuss the characteristics of the state-dependent replenishment quantities

a0 determined by suboptimal Algorithm 2 for the sales-only-observed case. Of particular

interest are the quantities determined for states in which a stockout has occurred, i.e.,

(x, ξ) = (0, ξ) where ξ ∈ I ′′1
⋃ · · ·⋃ I ′′K+1. For the scenarios considered in this study, there

is evidence that the average order quantity tends to increase as the number of stockouts in

a row increases. One approach to display this phenomenon graphically is to consider, for a
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given scenario, the order quantities selected in states (0, ξ) ∈ I ′′1 versus the order quantities

selected in comparable states (0, ξ) ∈ I ′′2 . Since the two sets I ′′1 and I ′′2 will for the most

part consist of different elements ξ, we define two states (0, ξ1) and (0, ξ2) to be comparable

if E[ξ1] = E[ξ2]. Figure 8 provides such comparative plots of a0(0, ξ) versus E[ξ], for the

scenario with h = 0.5, ζ = 0.7, and r = 3. In this figure, note that for any ξ ∈ I ′′1 and for

any ξ′ ∈ I ′′2 such that a0(0, ξ) = a0(0, ξ′) it can be observed that E(ξ′) ≤ E(ξ). Such order-

ing patterns are quite intuitive: when an order quantity of a certain level implemented after

occurrence of a stockout results in yet another stockout, the quantity should be increased

(given positively correlated demand) to increase the likelihood that demand may be served

in the following period. Another way to interpret this behavior is that increasing the order

quantity for a given expected demand level each time a stockout occurs is an attempt to

“stalk” information about true demand and improve profitability; note that this argument

does not depend on the demand correlation structure.

Order Quantities for (0,x ) in I ''1
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Figure 8: Comparison of Order Quantities for Stockout States in the Sales-Only-Observed
Case: I ′′1 versus I ′′2 for h = 0.5, ζ = 0.7, and r = 3

We now summarize the results of the experiments. First, it is important to mention

that the maximum percentage value statistics calculated using (7) varied widely across the

scenarios, from a minimum of approximately 2% to a maximum of nearly 35%. To develop

an understanding of how the parameters of a scenario affected this measure, we begin by

discussing the impact of demand volatility. In general, scenarios with low demand volatility

benefit more from demand observability than scenarios with higher demand volatility. This
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result is quite intuitive, since it is natural to believe that demand sensing may be an effec-

tive approach for improving profitability when demand is fairly stable and therefore more

predictable. Of course, there is a limit to this argument since when demand is completely

predictable, there should be very little additional value to increasing its observability.

Figures 9, 10, and 11 present the maximum value of demand observability statistics

for three different holding cost levels, across a wide range of demand parameters. Figure

9 presents results for scenarios with a low holding cost value h = 0.2, Figure 10 presents

results for a medium holding cost value h = 0.5, and Figure 11 presents results for a high

holding cost value h = 1.0. We can observe from these figures that in general, for a constant

value of r the percentage increase in profitability increases as the value of ζ increases. It is

also interesting to observe that for a fixed value of h and high values of ζ (i.e., ζ ≥ 0.9), the

value of demand observability increases as r decreases. Thus, in these cases, lower demand

volatility leads to greater value of observability.

Figures 9, 10, and 11 also show that decreasing volatility does not always lead to an

increase in the relative value of observability. For example, in the case with the lowest

holding cost h = 0.2, the value of observability tends to grow slightly with r (and thus

increases with increasing volatility) for the lowest values of ζ. Figure 12 graphically depicts

the results for scenarios with medium holding cost h = 0.5, and it is easy to see that

increasing volatility due to increasing values of parameter r has different effects on the

value of observability for different values of ζ. There is also evidence in other scenarios

that decreasing volatility due to increasing ζ does not always lead to increasing value of

observability. Figure 13 depicts the weighted percentage gains as a function of ζ for a fixed

low holding cost h = 0.2 and fixed r = 2. While the potential gain increases with ζ at lower

values of ζ, it does begin to decrease again for the highest value of ζ.

Next, we investigate the impact of the relative contribution of holding cost to total

system cost on the maximum value of improving demand observability. The computational

results indicate that the value of the per unit per period holding cost h has a significant effect

on the value of observability. In general, as h increases the value increases when all other

parameters are held constant. Figures 14 and 15 graphically depict this observation for all
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Figure 9: Weighted Maximum Percentage Improvement in Profitability Given Demand
Observability (GUB(2)) for Low Holding Cost Scenarios (h = 0.2)

scenarios with r = 3. That increased holding cost rates lead to an increase in the value of

demand observability is again consistent with intuition. Increased holding cost rates tend

to drive a system to carry less inventory, and systems with less inventory are more likely

to incur stockouts that screen observations of true demand when only sales are observed.

Averaging the potential percentage gains over all scenarios with low inventory holding cost

rates h ∈ {0.2, 0.3, 0.5}, we find an average value of observability of about 5%. When

averaging over scenarios with high inventory cost rates h ∈ {1.0, 2.0}, the average value is

about 13%. It is important to note, however, that our state-wise bounds on the maximum

value of observability are likely to be looser for high values of h than for low values. The

suboptimal algorithm used to determine V
LB(2)
s will clearly lead to worse results when the

inventory holding cost rate is higher, since the policy of ordering the maximum demand D
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Figure 10: Weighted Maximum Percentage Improvement in Profitability Given Demand
Observability (GUB(2)) for Medium Holding Cost Scenarios (h = 0.5)

once we have observed three consecutive stockouts may lead to high holding costs.
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Figure 11: Weighted Maximum Percentage Improvement in Profitability Given Demand
Observability (GUB(2)) for High Holding Cost Scenarios (h = 1.0)
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Observability (GUB(2)) for Holding Cost h = 0.2 and r = 2
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Observability (GUB(2)) for Low Holding Cost Rates and r = 3
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CHAPTER IV

BOUNDING THE VALUE OF IMPROVING DEMAND

OBSERVABILITY FOR TWO ITEM INVENTORY CONTROL WITH

DEMAND SUBSTITUTION AND LOST SALES

4.1 Introduction

In this chapter we develop and analyze an extension of the model considered in Chapter

3. As illustrated earlier, sales data provide censored observations of demand in single

product inventory systems. Consider now a scenario with multiple products, and suppose

that some of the products are substitutes (imperfect) but that customers only substitute

if their preferred product is unavailable. In such cases, sales data for a specific product

may underestimate true demand in periods of shortage, but may overestimate in periods

of surplus if customers are purchasing the product as a substitute for another unavailable

product.

The main objective of this chapter is to understand the value of improved demand ob-

servability for inventory control systems with product substitution. We focus on a simple

supply chain where a single capacity-constrained production site supplies a single consump-

tion site. The consumption site operates a periodic review inventory control system where

orders placed at the end of a period are available at the beginning of the next period. De-

mand of product 1 at the consumption site is non-stationary and discrete and is assumed to

be described by a stationary Markov chain with known transition probabilities. Demand of

product 2 at the consumption site is assumed to be stationary and discrete with a known

probability distribution. Further, in case of a stockout of product 1, customers may use

product 2 as a substitute if it is available, and the conditional distribution of this substitu-

tion demand is known. Since product 1 does not substitute for product 2, we call this one

way substitution.

We develop a POMDP control model for this system. Sales and inventory levels are
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assumed to be perfectly observed. In addition, we assume that we also receive information

from a demand sensing program that may help to further identify true demand values.

In this chapter we first present this POMDP model, and develop an algorithm for

determining an optimal policy for the expected total discounted profit. Again, since this

optimal approach is likely to be intractable, we develop three heuristic algorithms, the third

of which is based in a non-standard sufficient statistic that enables relatively easy software

implementation. We then analyze two extreme cases of the POMDP model, the completely-

observed case and the sales-only case, and use them to determine a bound of the value

of improved demand observability in this setting. Finally, we demonstrate the bounding

technique for a set of example problem scenarios and investigate the impact of scenario

characteristics on the value of improved demand observability. Our numerical results suggest

that systems with high levels of substitutability can benefit more from demand observability

than systems with lower substitution levels.

4.2 Related Literature

Literature on inventory control with substitution can be roughly categorized into four

classes. Research considers both single and multi-period problems, with either two products

or multiple (> 2) products. Most literature in this area focuses on single period problems

with two products. To our knowledge, the two-product multi-period inventory problem

with substitution and unobservable demand that we will consider in this dissertation has

not been previously considered. Below, we summarize a sample of the research literature

on inventory control with demand substitution.

Parlar and Goyal [37] consider a single period inventory model with two products and two

way substitution when stockouts occur. Each product demand is assumed to be stochastic

and independent with known probability distribution. Further, the proportion of unsatisfied

customers that decides to substitute is assumed to be fixed and known for each product.

The objective is to maximize expected profit where initial inventory levels are assumed to be

zero. Also, the salvage value and lost sales penalty are assumed to be equal to zero. Under

these assumptions, they show that the expected profit is a strictly concave function in the
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order quantity decision variables for certain values of selling prices and provide necessary

and sufficient optimality conditions for these cases.

Pasternack and Drezner [39] study a two product single period inventory system where

in the case of a stockout substitution occurs with probability one, but at a different revenue

level. They show that the expected profit function is concave and provide formulas for the

optimal order quantities. Further, they prove that if the revenue available from substitution

of one product for another increases, one will order more of that product and less of the

other. For the case of one way substitution, they show that as the transfer revenue increases,

the optimal stocking level of the product that can be use as a substitute will increase

while the other product’s optimal inventory level will decrease. They compare the one way

substitution case and the no substitution case and show that the optimal inventory level of

the product that serves as a substitute in the one way substitution case will be greater than

if substitution were not possible, while the optimal stocking quantity for the good for which

substitution occurs will be less than in the case of no substitution. They further show that

the total optimal stocking levels when substitution is allowed can either be higher or lower

than the total optimal stocking levels when substitution is not allowed.

Zhand and Chen [58] study the optimal joint replenishment policy for a single period

two product inventory system with stochastic demands and one way substitution. Assuming

a fixed setup cost, the objective is to maximize the expected profit. They prove that the

profit function is convex and supermodular and provide the structure of the optimal joint

replenishment policy.

Nagarajan and Rajagopalan [34] consider an inventory system where total demand is

fixed and known, but demand of each product is random. They first study the single

period two product case with negative correlated demand where substitution occurs at a

fixed proportion, assuming the same cost parameters for both products. For certain levels

of substitution, closed-form formulas for the optimal inventory levels are provided; they

further prove that the base stock level of one product is independent of the inventory level

of the other, referring to this case as a “partially decoupled” policy. They present the finite

horizon case and prove that the profit function is concave. For this case and for some
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levels of substitution, “partially decoupled” policies are also optimal and the order-up-to

level is shown to be monotonically increasing in the number of periods until the end of

the horizon. They also consider the infinite horizon case, where they show that for certain

levels of substitution the optimal stationary policy is a base stock level policy and partially

decoupled. Next, they consider the N -product single period model with identical cost

parameters for all products. Each customer has a first choice product and a fixed proportion

of unsatisfied customers will take any other product as a substitute (i.e., indifferent second

choice). The profit function is proven to be concave and for certain levels of substitution

a close form for the optimal stock level was provided. They consider a “duopoly” model,

in which they examine two retailers with identical cost structure competing in a market

where total demand is D. They characterize the equilibrium decisions of the two players

in a single period model and show that under certain conditions the equilibrium quantities

are such that each player ignores the strategy of its opponent. Further, they extend the

model to a finite horizon multi-period version and show that under certain circumstances

the equilibrium quantities are obtained by solving a multi-period single product inventory

model for each player.

Ernst and Kouvelis [14] consider a single period inventory system with two products

that are sold either independently or in a package containing one of each. There is no sub-

stitution between individual products, but there is substitution in any direction between

individual products and the package. A fixed and known proportion of unsatisfied customers

of an individual product will accept the package as a substitute, and a fixed and known

proportion of customers that have as first option the package will substitute for either one

or both individual products. They show that the expected profit function is concave and

continuously differentiable, sufficient and necessary optimality conditions and a numerical

search procedure for obtaining optimal stocking levels are provided. An extensive compu-

tational study is performed to compare optimal stocking policies with simple independent

newsboy policies, and to determine effects on demand correlation and fraction of substi-

tution. The main conclusions obtained from this computational study are: (1) the use of

independent newsboy policies leads to suboptimal stocking policies, (2) positive correlation
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of demand tends to increase the stocking level of the package, (3) demand correlation results

in higher profitability of inventory systems as compared with uncorrelated systems and (4)

the stronger the substitution pattern the higher the optimal stocking levels of the package.

Bassok et al. [5] present a single period multi-product inventory system with random

demand. They consider N products and N demand classes with full downward demand

substitution (i.e., excess demand for class i can be satisfied using product j where i ≥
j). They assume a substitution cost that is proportional to the quantity substituted and

propose a two stage model where first they make ordering decisions and then allocation

decisions (i.e., allocation of excess inventory of class k among unsatisfied demands of classes

k+1, k+2, · · ·N). They prove that the profit function is concave and submodular and that

the optimal policy is an order-up-to level policy. A computational study is performed for

the two product case and profit gain between the optimal solution with the profits obtained

when order points are derived using the standard newsvendor model is compared. They

conclude that most gains accrue in a problem with high salvage value of products, high

demand variability, low profit margins and similarity of products in terms of prices and

costs.

Smith and Agrawal [46] consider a single period multi-product inventory policy that

maximizes the expected profit subject to a variety of constraints, which may include floor

space, budget and assortment size; the policy specifies both the items to be stocked and the

initial inventory level of each item. Demand of each item is random and in case of a stockout,

a customer selects a substitute randomly with known probabilitys from a choice set. They

determine order quantities of each product based on a predefined service level. The focus

of the paper is the estimation of the demand of each item taking into consideration that

demand is affected by substitution.

Netessine and Rudi [36] consider a multi-product single period inventory system where

unsatisfied demand of a product flow to other products in deterministic proportions. They

compare centralized inventory management with inventory management under competition

(i.e., decentralized system where each product is managed by a an independent decision

maker maximizing the expected profit generated by this specific product while interacting
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strategically with other decision makers) and show that there are situations in which the

optimal stocking quantity of an item is higher in the centralized system than in the decen-

tralized system. However, there exists at least one product for which the optimal stocking

quantity is lower in the centralized system than in the decentralized system. They also show

that if costs and revenues are symmetric among firms, demands are i.i.d and customers are

equally likely to switch to any product, the stocking quantities of the decentralized systems

are at least as high as the stocking quantities of the centralized system.

Rao at el. [41] present a single period multi-product inventory model with downward

substitution and set up costs. They formulate the problem as a two stage integer stochastic

program with recourse where the first stage variables determine which products to pro-

duce and production quantities, and the second stage variables determine the allocation of

products to satisfy the realized demand. An efficient solution technique is presented.

Literature on multi-period and multi-product inventory systems with substitution is

scarce. McGillivray and Silver [31] study a (R,S) inventory control system for N products

with identical cost parameters where demands are independent and normally distributed.

A fixed and known proportion aij of unsatisfied customers whose first choice was product

i will take product j as a substitute. To determine potential savings due to substitution,

they consider two extreme cases: (i) no substitution (aij = 0 for all i, j) and (ii) complete

substitution (aij = 1 for all i, j); based on the comparison of these cases, they conclude that

accounting for substitution can lead to significant savings, especially when the number of

items is high. Simulation is used to solve the general case (i.e., 0 < aij < 1) ) for two items,

results obtained suggest that when one of the substitution probabilities is close to 1, the

optimal stocking rule is substantially different from the case where the items are treated

independently.

4.3 Two Product Inventory Control with One Way Demand Substitu-
tion

Consider a two product supply chain system with one way demand substitution in which

a single decision maker selects replenishment quantities at each of a discrete, predefined

and finite set of decision epochs. The objective is to maximize total expected discounted
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profit over the problem horizon. Just prior to each decision epoch, the decision maker

observes current inventory levels and the demands that have occurred since the last decision

epoch. We assume that the inventory levels are completely observed but that the demand

observations may be noise corrupted. Selection of the replenishment quantities at the

current epoch are based on all past and present inventory and demand observations and all

past ordering decisions. We assume that the ordered quantities are received immediately

after order. Furthermore, demand of product type 1 is assumed to be described by a control-

independent (exogenous) Markov chain, and demand of product type 2 is assumed to be

independent and identically distributed with a known probability distribution function.

Substitution may occur if there is a stockout of product type 1. Specifically, each unsatisfied

unit demand of product type 1 may be substituted with an available unit of product type

2 with probability α.

More precisely, let xi(t) be the completely observed inventory level of product type i at

time (or decision epoch) t, just prior to the selection of replenishment decisions a1(t) and

a2(t), i = 1, 2. Let di(t) be the primary demand of product type i realized between time

t−1 and time t for i = 1, 2. Let d′2(t) be the secondary demand of product type 2 generated

by substitution realized between time t− 1 and time t. Note that (d′2(t)|d1(t), x1(t), a1(t))

follows a Binomial distribution with parameters [d1(t)− x1(t)− a1(t)]+ and α. We assume

replenishment decisions are made at each t ∈ {0, 1, · · · , T − 1}, where T < ∞. Thus, the

planning horizon is finite. No backlogging is permitted, and hence

x1(t + 1) = max{0, x1(t) + a1(t)− d1(t + 1)} (9)

and

x2(t + 1) = max{0, x2(t) + a2(t)− d2(t + 1)− d′2(t + 1)}. (10)

Let z1(t) be the noise-corrupted observation of type 1 demand that is available just prior

to the selection of replenishment decisions, and assume probabilities of the form P (z, j|i) =

P (z1(t + 1) = z, d1(t + 1) = j|d1(t) = i) are given. We note that P (z, j|i) = P (z|j, i)P (j|i)
where P (j|i) =

∑
z P (z, j|i) = P (d1(t + 1) = j|d1(t) = i) and
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P (z|j, i) =
(z, j|i)
P (j|i) = P (z1(t + 1) = z|d1(t + 1) = j, d1(t) = i),

assuming P (j|i) 6= 0. The probabilities P (j|i) and P (z|j, i) are referred to as transition and

observation probabilities, respectively. Further, the known demand distribution function

for product type 2 is given by P (i) = P (d2(t) = i). We remark that given that demand of

product 2 is assumed to be i.i.d., there is no need to attempt to improve its observability

since its distribution in a given period is always known. We assume that Di is the maximum

demand per period for product i, and hence di(t) ∈ {0, 1, · · · , Di}. Similarly, we assume

that z1(t) ∈ {0, 1, · · · , D1}.
We will have particular interest in two special cases of the type 1 observation probabil-

ities. We note that

z1(t) = d1(t)

w.p.1 for all t is equivalent to

P (z|j, i) =





1 if z = j

0 otherwise
∀ i

For observation processes with this characteristic, we say that type 1 demand is com-

pletely (or perfectly) observed by the observation process {z1(t), t = 1, 2, · · · }. Alternatively,

if P (z|j, i) is independent of i and j, then the observation process provides no information

about demand of product type 1, and hence we say that demand type 1 is completely unob-

served by the observation process. We remark that when the observation process provides

no information about the demand process, information about the demand process of prod-

uct type 1 can be inferred from the inventory processes, or equivalently, from sales data of

both products, which will be described in section 4.4.

Selection of a(t) = {a1(t), a2(t)} are made with knowledge of the information set

at time t, H(t), where H(t) =
{

z1(t), · · · , z1(1), x1(t), · · · , x1(0), x2(t), · · · , x2(0), a1(t −
1), · · · , a1(0), a2(t − 1), · · · , a2(0), ξ1(0)

}
, ξ1(0) =

{
ξ1
i (0)

}
, and ξ1

i (0) = P (d1(0) = i).

(Note that ξ1(0) ∈ Ξ1 =
{

ξ1 ≥ 0 :
∑D1

i=0 ξ1
i = 1

}
). Hence, the order at epoch t, a(t), is
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allowed to depend on all past and present (possibly corrupted) observations of demand type

1, all past and present inventory levels, all former replenishment orders, and an a priori

type 1 demand information.

Let pi, p̄i, ci, and hi be the per unit selling price, salvage value, ordering cost, and per

period inventory holding cost, of product type i. We assume that holding costs accrued

from t to t + 1 are determined on the basis of inventory levels at time t, x1(t) and x2(t).

A policy π is a rule that determines actions a1 and a2 on the basis of the information

currently available. Thus, [a1(t), a2(t)] = π(t,H(t)) for all t ∈ {0, 1, · · · , T − 1}.
The Inventory Replenishment Problem with Demand Substitution (IRPDS) objective is

to find a policy that maximizes the following criterion with respect to all policies:

Eπ
ξ1(0) =

{
T−1∑

t=0

βtr [s(t), a(t)] + βT r̄ [s(T )]

}
, (11)

where a(t) = [a1(t), a2(t)], s(t) = [x1(t), x2(t), d1(t)] and Eπ
ξ1(0) is the expectation operator

conditioned on ξ1(0) and use of policy π, β is the discount factor, and where r [s(t), a(t)] =

−h1x1(t)−h2x2(t)−c1a1(t)−c2a2(t)+p1E
{

min{d1(t+1), x1(t)+a1(t)}
}

+p2E
{

min{d2(t+

1)+d′2(t+1), x2(t)+a2(t)}
}

and r̄ [s(T )] = p̄1x(T )+p̄2x(T ). Note that min{d1(t+1), x1(t)+

a1(t)} and min{d2(t+1)+d′2(t+1), x2(t)+a2(t)} represent sales of product 1 and 2 between

t and t + 1 respectively.

We observe that given that there are no fixed ordering costs and no replenishment lead

times in the IRPDS setting, an optimal policy will always select values of a(t) such that

a1(t) ≤ D1− x1(t), a2(t) ≤ D1 + D2− x2(t) and a1(t) + a2(t) ≤ D1 + D2− x1(t)− x2(t) for

all t ∈ {0, · · · , T − 1}

4.4 Preliminary Results

The following observations result from equations (9) and (10):

(i) If x1(t + 1) > 0, then d1(t + 1) = x1(t) + a1(t)− x1(t + 1) and d′2(t + 1) = 0. Hence,

d1(t+1) is completely observed and there is no substitution between time t and t+1.

(ii) If x1(t+1) = 0 and x2(t+1) = x̄2 > 0, given d2(t+1) ≤ D2 then at least [x2(t)+a2(t)−
x̄2 − D2]+ type 1 customers should buy product type 2 as a substitute. Therefore,
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d1(t + 1) ≥ x1(t) + a1(t) + [x2(t) + a2(t)− x̄2−D2]+ and [x2(t) + a2(t)− x̄2−D2]+ ≤
d′2(t + 1) ≤ d1(t + 1) − a1(t) − x1(t). Additionally, x2(t + 1) = x̄2 > 0 implies no

stockouts of product type 2. Therefore d2(t + 1) + d′2(t + 1) = x2(t) + a2(t)− x̄2.

(iii) If x1(t+1) = 0 and x2(t+1) = 0, given d2(t+1) ≤ D2 then at least [x2(t)+a2(t)−D2]+

type 1 customers should buy product type 2 as a substitute. Therefore, d1(t + 1) ≥
x1(t) + a1(t) + [x2(t) + a2(t) −D2]+ and [x2(t) + a2(t) −D2]+ ≤ d′2(t + 1) ≤ d1(t +

1) − x1(t) − a1(t). In this case, as opposed to case (ii), there could be stockouts of

product type 2. Therefore, d2(t + 1) + d′2(t + 1) ≥ x2(t) + a2(t).

The above observations imply that in case (i) there is perfect demand observability,

while in cases (ii) and (iii) only partial demand observability is available. However, in case

(ii) more information about demand is provided than in case (iii).

It follows from Smallwood and Sondik [45] that (x1(t), x2(t), ξ1(t)) represents a sufficient

statistic for the IRPDS, where ξ1(t) = {ξ1
i (t)} ∈ Ξ1 and ξ1

i (t) = P (d1(t) = i|H(t)). This

fact, coupled with the above observations, imply that there are three general states of

interest:

(i) (x1, x2, ei) for x1 > 0 and for any x2, where the jth element of the vector ei is 1 if

i = j and 0 otherwise.

(ii) (0, x2, ξ
1) for x2 > 0 and for any probability mass vector ξ1 for the type 1 demand

state.

(iii) (0, 0, ξ1) for any probability mass vector ξ1 for the type 1 demand state.

For x > 0 let

σ̃1(z, (x1, x2, ξ), a1, a2, x) =
∑

j≥J̃1

L̃2∑

l=L̃1

P (x2 + a2 − x− l)B(j, l, α)
∑

i

ξiP (z, j|i),

where J̃1 = x1 + a1 + [x2 + a2 − x−D2]+, L̃1 = [x2 + a2 − x−D2]+ and

L̃2 = min{j − a1 − x1, x2 + a2 − x}. If j ≥ J̃1, let
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λ̃1
j (z, (x1, x2, ξ), a1, a2, x) =

∑L̃2

l=L̃1
P (x2 + a2 − x− l)B(j, l, α)

∑
i ξiP (z, j|i)

σ̃1(z, (x1, x2, ξ), a1, a2, x)
.

Otherwise, λ̃1
j (z, (x1, x2, ξ), a1, a2, x) = 0, where σ̃1(z, (x1, x2, ξ), a1, a2, x) 6= 0,

λ̃1(z, (x1, x2, ξ), a1, a2, x) = {λ̃1
j (z, (x1, x2, ξ), a1, a2, x)} and B(j, l, α) =

(
j
l

)
αl(1− α)j−l.

Also, let

σ̃2(z, (x1, x2, ξ), a1, a2) =
∑

j≥J̃2

L̃4∑

l=L̃3

∑

m≥[x2+a2−l]+

P (m)B(j, l, α)
∑

i

ξiP (z, j|i),

where J̃2 = x1 + a1 + [x2 + a2 −D2]+, L̃3 = [x2 + a2 −D2]+ and L̃4 = j − x1 − a1.

If j ≥ J̃2, let

λ̃2
j (z, (x1, x2, ξ), a1, a2) =

∑L̃4

l=L̃3

∑
m≥[x2+a2−l]+ P (m)B(j, l, α)

∑
i ξiP (z, j|i)

σ̃2(z, (x1, x2, ξ), a1, a2)
.

Otherwise, λ̃2
j (z, (x1, x2, ξ), a1, a2) = 0, where σ̃2(z, (x1, x2, ξ), a1, a2) 6= 0 and

λ̃2(z, (x1, x2, ξ), a1, a2) = {λ̃2
j (z, (x1, x2, ξ), a1, a2)}.

Let ψt(a1, a2, x1, x2, ξ) = {a1(t) = a1, a2(t) = a2, x1(t) = x1, x2(t) = x2, ξ
1(t) = ξ}, and

note that:

• σ̃1(z, (x1, x2, ξ), a1, a2, x) = P




x1(t + 1) = 0,

z1(t + 1) = z

∣∣∣∣∣
ψt(a1, a2, x1, x2, ξ),

x2(t + 1) = x




• σ̃2(z, (x1, x2, ξ), a1, a2, x) = P




x1(t + 1) = 0,

z1(t + 1) = z

∣∣∣∣∣
ψt(a1, a2, x1, x2, ξ),

x2(t + 1) = 0



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• λ̃1
j (z, (x1, x2, ξ), a1, a2, x) = P


d1(t + 1) = j

∣∣∣∣∣
ψt(a1, a2, x1, x2, ξ), x1(t + 1) = 0,

x2(t + 1) = x, z1(t + 1) = z




• λ̃2
j (z, (x1, x2, ξ), a1, a2) = P


d1(t + 1) = j

∣∣∣∣∣
ψt(a1, a2, x1, x2, ξ), x1(t + 1) = 0,

x2(t + 1) = 0, z1(t + 1) = z


.

Thus, assuming (x1(t), x2(t), ξ1(t)) = (x1, x2, ξ):

(i) If x1(t + 1) > 0 then ξ1(t + 1) = ei, where d1(t + 1) = x1(t) + a1(t)− x1(t + 1) = i.

(ii) If x1(t + 1) = 0 and x2(t + 1) = x > 0 then ξ1(t + 1) = λ̃1(z, (x1, x2, ξ), a1, a2, x) with

probability σ̃1(z, (x1, x2, ξ), a1, a2, x) where a1(t) = a1, a2(t) = a2 and z1(t + 1) = z.

(iii) If x1(t + 1) = 0 and x2(t + 1) = 0 then ξ1(t + 1) = λ̃2(z, (x1, x2, ξ), a1, a2) with

probability σ̃2(z, (x1, x2, ξ), a1, a2) where a1(t) = a1, a2(t) = a2 and z1(t + 1) = z.

We now present optimality equations for the three cases. In all cases, vT (x1, x2, ξ) =

p̄1x1 + p̄2x2 for all ξ.

If x1 > 0, then:

vt(x1, x2, ei) = max
a1≥0
a2≥0

{
−

2∑

i=1

(hixi + ciai) + p1

D1∑

k=0

min{k, x1 + a1}P (k|i)+

p2




D1+D2∑

k=0

min{k, x2 + a2}

 ∑

r≤a1+x1

P (k)P (r|i)+

∑
r>a1+x1

k∑

l=k−r+
x1+a1

B(r − x1 − a1, k − l, α)P (l)P (r|i)





 +

β
∑

j<x1+a1

∑

k

P (k)P (j|i)vt+1(x1 + a1 − j, [x2 + a2 − k]+, ej) +

β
∑

z

x2+a2∑

x=1

σ̃1(z, (x1, x2, ei), a1, a2, x)vt+1(0, x, λ̃1(z, (x1, x2, ei), a1, a2, x))+

β
∑

z

σ̃2(z, (x1, x2, ei), a1, a2)vt+1(0, 0, λ̃2(z, (x1, x2, ei), a1, a2))

}
.

If x1 = 0 and x2 > 0, then:
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vt(0, x2, ξ) = max
a1≥0
a2≥0

{
−h2x2 −

2∑

i=1

(ciai) + p1

D1∑

k=0

min{k, a1}
∑

i

ξiP (k|i)+

p2




D1+D2∑

k=0

min{k, x2 + a2}

∑

r≤a1

P (k)
∑

i

ξiP (r|i)+

∑
r>a1

k∑

l=k−r+a1

B(r − a1, k − l, α)P (l)
∑

i

ξiP (r|i)




 +

β
∑

j<a1

∑

k

P (k)
∑

i

ξiP (j|i)vt+1(a1 − j, [x2 + a2 − k]+, ej) +

β
∑

z

x2+a2∑

x=1

σ̃1(z, (0, x2, ξ), a1, a2, x)vt+1(0, x, λ̃1(z, (0, x2, ξ), a1, a2, x)) +

β
∑

z

σ̃2(z, (0, x2, ξ), a1, a2)vt+1(0, 0, λ̃2(z, (0, x2, ξ), a1, a2))

}
.

If x1 = 0 and x2 = 0, then:

vt(0, 0, ξ) = max
a1≥0
a2≥0

{
−

2∑

i=1

(ciai) + p1

D1∑

k=0

min{k, a1}
∑

i

ξiP (k|i)+

p2




D1+D2∑

k=0

min{k, a2}

∑

r≤a1

P (k)
∑

i

ξiP (r|i)+

∑
r>a1

k∑

l=k−r+a1

B(r − a1, k − l, α)P (l)
∑

i

ξiP (r|i)




 +

β
∑

j<a1

∑

k

P (k)
∑

i

ξiP (j|i)vt+1(a1 − j, [a2 − k]+, ej) +

β
∑

z

a2∑

x=1

σ̃1(z, (0, 0, ξ), a1, a2, x)vt+1(0, x, λ̃1(z, (0, 0, ξ), a1, a2, x)) +

β
∑

z

σ̃2(z, (0, 0, ξ), a1, a2)vt+1(0, 0, λ̃2(z, (0, 0, ξ), a1, a2))

}
.

For yi = xi + ai define:
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σ1(z, ξ, y1, y2, x) = σ̃1(z, (x1, x2, ξ), a1, a2, x)

σ2(z, ξ, y1, y2) = σ̃2(z, (x1, x2, ξ), a1, a2)

λ1(z, ξ, y1, y2, x) = λ̃1(z, (x1, x2, ξ), a1, a2, x)

λ2(z, ξ, y1, y2) = λ̃2(z, (x1, x2, ξ), a1, a2)

L1(ξ, y1) = p1

∑

i

ξi

D1∑

k=0

min{k, y1}P (k|i)

L2(ξ, y1, y2) = p2

∑

i

ξi

D1+D2∑

k=0

min{k, y2}

∑

r≤y1

P (k)P (r|i)

+
∑
r>y1

k∑

l=k−r+y1

B(r − y1, k − l, α)P (l)P (r|i)

 .

Note that L1(ξ, y1) =
∑

i ξiL1(ei, y1) and L2(ξ, y1, y2) =
∑

i ξiL2(ei, y1, y2). Also let:

h(ξ, y1, y2, v) = −
∑

i

ciyi + L1(ξ, y1) + L2(ξ, y1, y2)

+β
∑

j<y1

∑

i

ξi

∑

k

P (k)P (j|i)v(y1 − j, [y2 − k]+, ej)

+β
∑

z

y2∑

x=1

σ1(z, ξ, y1, y2, x)v(0, x, λ1(z, ξ, y1, y2, x))

+β
∑

z

σ2(z, ξ, y1, y2)v(0, 0, λ2(z, ξ, y1, y2))

and

[Hv](x1, x2, ξ) =
∑

i

(ci − hi)xi + max
y1≥x1
y2≥x2

h(ξ, y1, y2, v).

Then the optimality equation is vt = Hvt+1, where vT (x1, x2, ξ) = p̄1x1 + p̄2x2 for all ξ

and:

(i) vt(x1, x2, ξ) is the optimal expected reward to be accrued from t until T given x1(t) =

x1, x2(t) = x2 and ξ1(t) = ξ.

(ii) A set of actions that causes the maximum in the optimality equation to be attained

are optimal actions for the concomitant state.
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4.5 Numerical Algorithms

We now present two general approaches for determining optimal policies and three heuristic

algorithms for determining a sub-optimal policy for the IRPDS and the expected value

accrued over the planning horizon. The approaches differ on the basis of the sufficient

statistic used.

4.5.1 Approach 1

The first optimal algorithm uses (x1(t), x2(t), ξ(t)) as a sufficient statistic for H(t) and takes

advantage of the fact that for each t and x2, there is a finite set of vectors, Γt(x2), such that

vt(0, x2, ξ) = max {ξγ : γ ∈ Γt(x2)}; that is, vt(0, x2, ξ) is piecewise linear convex in ξ for

all x2 for finite T . Thus, although the set of all probability mass vectors ξ is uncountably

infinite, vt(0, x2, .) has a finite representation.

Γt(x2) can be constructed from {Γt+1(0), · · · , Γt+1(D1 + D2)} as follows. Note

vT (0, 0, ξ) = 0 for all ξ and vT (0, x2, ξ) = p̄2x2 for all x2 > 0 and for all ξ. Thus, ΓT (0) = {0}
and ΓT (x2) = {p̄2x21} for all x2, where 1 is the (D1 +1)-dimensional vector of ones. Then,
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vt(0, x2, ξ) = (c2 − h2)x2 + max
y1≥0
y2≥x2



−

∑

j

cjyj + L1(ξ, y1) + L2(ξ, y1, y2)+

β
∑

j<y1

∑

i

ξi

∑

k

P (k)P (j|i)v(y1 − j, [y2 − k]+, ej) +

β
∑

z

y2∑

x=1

σ1(z, ξ, y1, y2, x)max{λ1(z, ξ, y1, y2, x)γ(x) : γ(x) ∈ Γt+1(x)}+

β
∑

z

σ2(z, ξ, y1, y2)max{λ2(z, ξ, y1, y2)γ(0) : γ(0) ∈ Γt+1(0)}
}

= max
y1≥0
y2≥x2

max
γ(0)0

· · ·max
γ(0)Z

· · · max
γ(y2)0

· · · max
γ(y2)Z



(c2 − h2)x2 −

∑

j

cjyj+

L1(ξ, y1) + L2(ξ, y1, y2) +

β
∑

j<y1

∑

i

ξi

∑

k

P (k)P (j|i)v(y1 − j, [y2 − k]+, ej) +

β
∑

z

y2∑

x=1

σ1(z, ξ, y1, y2, x)λ1(z, ξ, y1, y2, x)γ(x)z +

β
∑

z

σ2(z, ξ, y1, y2)λ2(z, ξ, y1, y2)γ(0)z

}
.

It follows that:

σ1(z, ξ, y1, y2, x)λ1(z, ξ, y1, y2, x)γ(x)z =
∑

j≥J1

L2∑

l=L1

P (y2−x−l)B(j,l,α)
∑

i

ξiP (z, j|i)γj(x)z

and

σ2(z, ξ, y1, y2)λ2(z, ξ, y1, y2)γ(0)z =
∑

j≥J2

L4∑

l=L3

D2∑

m=y2−l

P (m)B(j, l, α)
∑

i

ξiP (z, j|i)γj(0)z

where J1 = y1 + [y2 − x − D2]+, J2 = y1 + [y2 − D2]+, L1 = [y2 − x − D2]+,L2 =

min{j − y1, y2 − x}, L3 = [y2 −D2]+ and L4 = j − y1. Hence,
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vt(0, x2, ξ) = max
y1≥0
y2≥x2

max
γ(0)0

· · ·max
γ(0)Z

· · · max
γ(y2)0

· · · max
γ(y2)Z





∑

i

ξi


(c2 − h2)x2 −

∑

j

cjyj+

L1(ei, y1)+L2(ei, y1, y2)+
∑

j<y1

∑

k

P (k)P (j|i)v(y1 − j, [y2 − k]+, ej) +

β
∑

z

y2∑

x=1

∑

j≥J1

L2∑

l=L1

P (y2 − x− l)B(j, l, α)P (z, j|i)γj(x)z +

β
∑

z

∑

j≥J2

L4∑

l=L3

D2∑

m=y2−l

P (m)B(j, l, α)P (z, j|i)γj(0)z






 .

Thus, Γt(x2) is composed of vectors γ′(x2) = {γ′i(x2)} of the form,

γ′i(x2) = (c2−h2)x2 −
∑

j

cjyj+L1(ei, y1)+L2(ei, y1, y2)

+β
∑

j<y1

∑

k

P (k)P (j|i)v(y1 − j, [y2 − k]+, ej)

+β
∑

z

y2∑

x=1

∑

j≥J1

L2∑

l=L1

P (y2 − x− l)B(j, l, α)P (z, j|i)γj(x)z

+β
∑

z

∑

j≥J2

L4∑

l=L3

D2∑

m=y2−l

P (m)B(j, l, α)P (z, j|i)γj(0)z.

We observe that if all of the vectors γ′(x2) are contained in Γt(x2), then |Γt(x2)| = (D1 +

1)×∑D1+D2
i=0 (D1 + D2 + 1−max{x2, i})|Γt+1(i)|(D1+1). Hence the finite representation of

vt(0, x2, ξ) expands geometrically as T increases..

This discussion suggests that a finite representation of vt is (v̂t, Γt(0), · · · , Γt(D1 +D2)),

where vt(x1, x2, ei) = v̂t(x1, x2, i) for all i, x2 and x1 > 0 and vt(0, x2, ξ) = max{ξγ : γ ∈
Γt(x2)} for all x2 and for all ξ. Define the operators H1 and H2 as follows:

H1(v̂, Γ(0), · · · , Γ(D1 + D2))(x1, x2, i) = [Hv](x1, x2, ei),

for all i, x2 and x1 > 0, and
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H2(x2)(v̂, Γ(0), · · · , Γ(D1 + D2))(ξ) = [Hv](0, x2, ξ),

for all ξ and for all x2, where v(x1, x2, ei) = v̂(x1, x2, i) for all i, x2 and for all x1 > 0 and

v(0, x2, ξ) = max{ξγ : γ ∈ Γ(x2)} for all ξ and for all x2. Then,

v̂t = H1(v̂t+1,Γt+1(0), · · · , Γt+1(D1 + D2))

and

Γt(x2) = H2(x2)(v̂t+1, Γt+1(0), · · · , Γt+1(D1 + D2)).

Sub-Optimal Design

Although there is a finite representation of vt, the cardinality of the sets of γ-vectors

may still grow prohibitively large as T gets large. We now consider a sub-optimal design

that guarantees the cardinality of Γt(x2) will never exceed a computable upper bound for

all x2.

Recalling that D1 is the maximum demand of product 1, let a1(t) = D1, independent of ξ

and x2, that is selected at time t if x1(t) = x1(t−1) = · · ·x1(t−K) = 0 and x1(t−K−1) > 0

for a fixed integer K ≥ 0 and select a2(t) using the optimality equation with a1(t) = D1.

Otherwise select both actions that cause the maximum to be obtained in the optimality

equation. Thus, once a1(t) is selected, the inventory level of product 1 at the next decision

epoch is guaranteed to be either greater than zero or a special case of zero inventory that

allows complete demand observability. That is, note from Equation 9 that if a1(t) = D1,

x1(t) = 0, and x1(t + 1) = 0, then d1(t + 1) = D1. Further, demand substitution at the

next decision epoch is guaranteed to be 0.

We define:

• vK
t (x1, x2, ei) as the expected reward to be accrued from t until T under the sub-

optimal design policy with parameter K given ξ(t) = ei, x1(t) = x1 and x2(t) = x2

where x1 > 0.
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• vk
t (0, x2, ξ) ∀ k = 1, · · · ,K and ∀ x2 = 0, · · · , D1 + D2 as the expected reward

to be accrued from t until T under the sub-optimal design with parameter K given

ξ(t) = ξ, x2(t) = x2, x1(t) = x1(t−1) = · · · = x(t−K+k) = 0 and x(t−K+k−1) > 0.

• v0
t (0, x2, ξ) as the expected reward to be accrued from t until T under the sub-optimal

design with parameter K given ξ(t) = ξ, x2(t) = x2, x1(t) = x1(t − 1) = · · · =

x1(t−K) = 0.

• Γk
t (x2) ∀ k = 0, · · · , K and ∀ x2 = 0, · · · , D1 + D2 as the set of gamma vectors

such that vk
t (0, x2, ξ) = maxγ∈Γk

t (x2){ξγ}.

Assume vK
T (x1, x2, ξ) = p̄1x1 + p̄2x2 and hence ΓK

T (x2) = {γ0
T (x2)}, where γ0

T (x2) =

p̄2x21. Furthermore, let

γ0
it(x2) = max

y2≥x2





(c2−h2)x2 − c1y
∗
1 − c2y2 + L1(ei, y

∗
1) + L2(ei, y

∗
1, y2)

+β
∑

j<y∗1

∑

k

P (k)P (j|i)v(y∗1 − j, [y2 − k]+, ej) (12)

+β

y2∑

x=1

∑

j≥J∗1

L
∗
2∑

l=L1

P (y2 − x− l)B(j, l, α)P (j|i)γ0
j t+1(x)

+β
∑

j≥J∗2

L
∗
4∑

l=L3

D2∑

m=y2−l

P (m)B(j, l, α)P (j|i)γ0
j t+1(0)



 ,

where J∗1 = y∗1 + [y2 − x − D2]+, J∗2 = y∗1 + [y2 − D2]+ ,L∗2 = min{j − y∗1, y2 − x}, and

L∗4 = j − y∗1.

Let vK
t = vt, t = T −K, · · · , T .

Algorithm 4

For t<T −K, assume the array

(vK
t+k, k = 1, · · ·K, ΓK

t+1(0), · · · , ΓK
t+1(D1 + D2), γ0

t+K(0), · · · , γ0
t+K(D1 + D2))
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is given, where vK
t+k = {vK

t+k(x1, x2, ei) : x1 > 0}, k = 1, · · · ,K. We remark that this array

fully determines vK
t+1(x1, x2, ξ) for all x1, x2 and ξ. We determine

(vK
t+k, k = 0, · · ·K − 1, ΓK

t (0), · · · , ΓK
t (D1 + D2), γ0

t+K−1(0), · · · , γ0
t+K−1(D1 + D2))

as follows:

(i) γ0
t+K−1(x) is determined from vK

t+K and γ0
t+K(0), · · · , γ0

t+K(D1 + D2).

(ii) vK
t = H1(vK

t+1, Γ
K
t+1(0), · · · , ΓK

t+1(D1 + D2)).

(iii) ΓK−k
t+k (x) = H2(x)(vK

t+k+1, Γ
K−k−1
t+k+1 (0), · · · , ΓK−k−1

t+k+1 (D1 + D2)) for k = 0, · · · , K − 1.

We note that the cardinality of the array (vK
t+k, k = 0, · · ·K − 1, ΓK

t (0), · · · , ΓK
t (D1 +

D2), γ0
t+K−1(0), · · · , γ0

t+K−1(D1+D2)) is K×D1×(D1+1)×(D1+D2+1)+
∑D1+D2

i=0 |ΓK
t (i)|+

(D1 +D2 +1), where |Γ0
t (x)| = 1 for all x, and |Γk

t (x)| ≤ (D1 +1)×∑D1+D2
i=0 (D1 +D2 +1−

max{x, i})|Γk−1
t+1 (i)|(D1+1). Further, we note that transition from (vK

t+1, · · · , γt+K(D1 + D2))

to (vK
t , · · · , γt+K−1(D1 + D2)) requires application of the H2 operator K × (D1 + D2 + 1)

times.

We explain the use of the γ0
t (x) vector as follows. For simplicity, let K = 0; that is,

assume we order y∗1 items of product 1 whenever its inventory goes to zero, irrespective of

ξ and x2 (in reality not a particulary clever sub-optimal design). Let v0
t be the resulting

expected value to be accrued from t till T . Then,

v0
t (0, x2, ξ) = max

y2≥x2

{
(c2 − h2)x2 − c1y

∗
1 − c2y2 + L1(ei, y

∗
1) + L2(ei, y

∗
1, y2) +

β
∑

j<y∗1

∑

i

ξi

∑

k

P (k)P (j|i)v(y∗1 − j, [y2 − k]+, ej) +

β
∑

z

y2∑

x=1

σ1(z, ξ, y∗1, y2, x)v0
t+1(0, x, λ1(z, ξ, y∗1, y2, x)) +

β
∑

z

σ2(z, ξ, y∗1, y2)v0
t+1(0, 0, λ2(z, ξ, y∗1, y2))

}
.

We recall that v0
T (0, x2, ξ) = p̄2x2; hence, Γ0

T (x2) = {p̄2x21}. Assume Γ0
t+1(x2) is also a

singleton for all x2; i.e., Γ0
t+1(x2) = {γ0

t+1(x2)} for all x2. Then,
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∑
z

y2∑

x=1

σ1(z, ξ, y∗1, y2, x)v0
t+1(0, x, λ1(z, ξ, y∗1, y2, x)) =

∑
z

y2∑

x=1

σ1(z, ξ, y∗1, y2, x)λ1(z, ξ, y∗1, y2, x)γ0
t+1(x)

=
∑

z

y2∑

x=1

∑

j≥J∗1

L
∗
2∑

l=L1

P (y2−x− l)B(j,l, α)
∑

i

ξiP (z, j|i)γ0
j t+1(x)

=
y2∑

x=1

∑

j≥J∗1

L
∗
2∑

l=L1

P (y2 − x− l)B(j, l, α)
∑

i

ξiP (j|i)γ0
j t+1(x),

where the last equality is due to the fact that
∑

z P (z, j|i) = P (j|i) and that γ0
t+1(x) is

independent of z. Similarly,

∑
z

σ2(z, ξ, y∗1, y2, )v0
t+1(0, 0, λ2(z, ξ, y∗1, y2)) =

∑
z

σ2(z, ξ, y∗1, y2, )λ2(z, ξ, y∗1, y2)γ0
t+1(0)

=
∑

z

∑

j≥J∗2

L
∗
4∑

l=L3

D2∑

m=y2−l

P (m)B(j, l, α)
∑

i

ξiP (z, j|i)γ0
j t+1(0)

=
∑

j≥J∗2

L
∗
4∑

l=L3

D2∑

m=y2−l

P (m)B(j, l, α)
∑

i

ξiP (j|i)γ0
j t+1(0).

Thus, if Γ0
t+1(x) is a singleton for all x and the action a1 taken is ξ-invariant, then Γ0

t (x)

is also an (easily computed) singleton for all x. It seems reasonable that vK+1
t would be at

least as good an approximation as vK
t , as stated in Proposition 4 (proof can be found in

Appendix ??).

Proposition 4 For all t, vK
t ≤ vK+1

t ≤ vt.

We now present an alternative approach for determining vK
t .
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Algorithm 5

For t < T −K assume the array (vK
t+1,Γ

k
t+1(x), k = 0, · · · ,K, x = 0, · · · , (D1 + D2)) is

given, where vK
t+1 = {vK

t+1(x1, x2, ei) : x1 > 0}. We remark that this array fully determines

vK
t+1(x1, x2, ξ) for all x1, x2 and ξ. We determine (vK

t , Γk
t (x), k = 0, · · · ,K, x = 0, · · · , (D1 +

D2)) as follows:

(i) γ0
t (x) is determined from vK

t+1 and γ0
t+1(0), · · · , γ0

t+1(D1 + D2).

(ii) vK
t = H1(vK

t+1, Γ
K
t+1(0), · · · , ΓK

t+1(D1 + D2)).

(iii) Γk
t (x) = H2(x)(vK

t+1, Γ
k−1
t+1 (0), · · · , Γk−1

t+1 (D1 + D2)) for k = 1, · · · ,K.

We note that the cardinality of the array (vK
t , Γk

t (x), k = 0, · · · ,K, x = 0, · · ·D1 + D2)

is D1 × (D1 + D2 + 1) × (D1 + 1) +
∑K

k=0

∑D1+D2
x=0 |Γk

t (x)|, where |Γ0
t | = 1 and |Γk

t (x)| ≤
(D1 + 1)×∑D1+D2

i=0 (D1 + D2 + 1−max{x, i})|Γk−1
t+1 (i)|(D1+1). Further, we note that transi-

tion from (vK
t+1, Γ

k
t+1(x), k = 0, · · · ,K, x = 0, · · · , D1 +D2) to (vK

t , Γk
t (x), k = 0, · · · , K, x =

0, · · · , D1 + D2) requires application of the H2 operator K × (D1 + D2 + 1) times.

We remark that on the basis of operations count, Algorithm 4 would be preferred to,

Algorithm 5. However, as we will now show, Algorithm 5 suggests an algorithm, Algorithm

6 presented below, that is based on a non-standard sufficient statistic offering a significantly

simpler approach for software development.

4.5.2 Approach 2

The first approach for constructing an optimal policy for the IRPDS was based on the fact

that for finite T , vt(0, x2, ξ) has a finite representation, {Γt(0), · · · , Γt(D1 + D2)}, although

ξ is a member of an uncountably infinite set. The second approach for constructing an

optimal policy is based on the fact that |H(t)| is finite for finite t. We also make use of

the fact that there exists a set H′(t) ⊆ H(t) that can also serve as a sufficient statistic

for the IRPDS, where H′(t) = {z1(t), · · · , z1(t − τ + 1), a1(t − 1), · · · , a1(t − τ), a2(t −
1), · · · , a2(t − τ), x2(t), · · · , x2(t − τ + 1), x1(t − τ), d1(t − τ)}, and where τ is such that
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x1(t) = x1(t− 1) = · · · = x1(t− τ + 1) = 0 and x1(t− τ) > 0. Proof of the following result,

which justifies the claim that H′ is a sufficient statistic, is due to the fact that x1(t) > 0

implies d1(t) is completely observed.

Proposition 5 For all t, P (d1(t) = i|H′(t)) = P (d1(t) = i|H(t)).

Let H0 =
{
(x1, x2, ei) : x1 > 0, i ∈ {0, · · · , D1}, x2 ∈ {0, · · · , D1 + D2}

}
, H1(0) =

{λ2(z, ξ, y1, y2) : (x1, x2, ξ)∈H0, y1∈{x1,· · ·, D1}, y2∈{x2, · · · , D1+D2}, z ∈ {0, 1, · · · , D1}}
and H1(x) = {λ1(z, ξ, y1, y2, x) : (x1, x2, ξ)∈H0, y1∈{x1,· · ·, D1}, y2∈{x2,· · ·, D1 + D2}, z∈
{0, 1,· · ·, D1}} for all x∈{1, · · · , D1+D2}. For k ≥ 1, let Hk+1(x) =

{
λ1(z, ξ, y1, y2, x) : ξ ∈

⋃
iHk(i), z, y1 ∈ {0, · · · , D1}, y2 ∈ {i, · · · , D1 + D2}

}
for all x ∈ {1, · · · , D1 + D2}. Also

let, Hk+1(0) =
{
λ2(z, ξ, y1, y2) : ξ ∈ ⋃

iHk(i), z, y1 ∈ {0, · · · , D1} ; y2 ∈ {i, · · · , D1 + D2}
}
.

Further, let Hk =
⋃

xHk(x). We remark that Hk is equivalent to H′(t), given τ = k. As a

slight abuse of notation, let H1(v, ṽ(0, 0, ·),· · ·, ṽ(0, D1+D2, ·)) = H1(v, Γ(0),· · ·,Γ(D1+D2))

and H2(x)(v, ṽ(0, 0, ·), · · · , ṽ(0, D1 + D2, ·)) = H2(x)(v, Γ(0), · · · ,Γ(D1 + D2)) if ṽ(0, x, ξ) =

max{ξγ : γ ∈ Γ(x)}. We now present an algorithm for determining vK
t (x1, x2, ξ) for all

(x1, x2, ξ) ∈ H0 and vK−k+1
t (0, x, ξ) for all k = 1, · · · ,K +1, for all x = 0, · · · , D1 +D2 and

for all (0, x, ξ) such that ξ ∈ Hk(x).

Algorithm 6

For t < T−K, assume vK
t+1(x1, x2, ξ) is given, for all (x1, x2, ξ) ∈ H0 and vK−k+1

t+1 (0, x2, ξ)

is given for all k = 1, · · · , K + 1, for all x2 = 0, · · · , D1 + D2 and for all (0, x2, ξ) such

that ξ ∈ Hk(x2), where v0
t+1(0, x2, ξ) = ξγ0

t+1(x2) for all ξ ∈ HK+1(x2) and for all x2 =

0, · · · , D1 + D2, also assume γ0
t+1(x2) is given for all x2 = 0, · · · , D1 + D2. Let vt+1 =

{vK
t+1(x1, x2, ξ) : (x1, x2, ξ) ∈ H0}. We determine vK

t (x1, x2, ξ) for all (x1, x2, ξ) ∈ H0 and

vK−k+1
t (0, x2, ξ) for all k = 1, · · · ,K + 1, for all x2 = 0, · · · , D1 + D2 and for all (0, x2, ξ)

such that ξ ∈ Hk(x2), where v0
t (0, x2, ξ) = ξγ0

t (x2) for ξ ∈ HK+1(x2) as follows:

(i) vK
t (x1, x2, ξ) = H1(vt+1, v

K
t+1(0, 0, ·), · · · , vK

t+1(0, D1 + D2, ·))(x1, x2, ξ)

for all (x1, x2, ξ) ∈ H0 where vt+1(0, x, ·) = {vK
t+1(0, x, ξ) : ξ ∈ H1(x)}.
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(ii) vK−k+1
t (0, x2, ξ) = H2(vt+1, v

K−k
t+1 (0, 0, ·), · · · , vK−k

t+1 (0, D1 + D2, ·))(0, x2, ξ)

for all ξ ∈ Hk(x2), where vK−k
t+1 (0, x, ·) = {vK−k

t+1 (0, x, ξ) : ξ ∈ Hk+1(x)} for

k = 1, · · · ,K and x2 = 0, · · · , D1 + D2.

(iii) v0
t (0, x2, ξ) = ξγ0

t (x2), where γ0
it(x2) is obtain using equation (12).

We remark that Algorithm 5 and 6 are nearly identical, differing only as follows:

(i) The algorithms use different representations of the vk
t (0, x2, ·) functions, where the

representation in Algorithm 6 is significantly simpler for software implementation

than is the representation in Algorithm 5

(ii) Algorithm 6 holds for all (x1, x2, ξ) ∈ H0, for all x2 = 0, · · · , D1 + D2 and for all

(0, x2, ξ) such that ξ ∈ H1(x2)
⋃ · · ·⋃HK(x2) whereas Algorithm 5 holds for all

(x1, x2, ξ) ∈ H0, for all x2 = 0, · · · , D1 + D2 and for all (0, x2, ξ) such that ξ ∈ Ξ.

4.6 A Method for Bounding the Value of Demand Observability

We now present a procedure that uses the previously described model and solution ap-

proaches to bound the maximum value of improved demand observability for the IRPDS.

To do so, we consider two extreme cases that we call completely-observed and sales-only-

observed. In the completely-observed case, we assume that the observation process provides

a perfect observation of demand of product 1 in the prior period, even when x1(t) = 0.

Let V ∗
o (x1, x2, ξ) denote the value of maximum expected profit over some fixed planning

horizon for this case, given x1(0) = x1, x2(0) = x2 and ξ1(0) = ξ. At the other extreme,

the sales-only-observed case assumes that the observation process provides no additional

information about demand of product 1. Therefore, order decisions are made using only

information obtained from sales data. Since this case corresponds to the situation in which

improving demand observability provides no benefit, it will be useful for developing a lower

bound. Let V ∗
s (x1, x2, ξ) denote the value of maximum expected profit in this case, again

given x1(0) = x1, x2(0) = x2 and ξ1(0) = ξ. Results in White and Harrington [55] guarantee

that V ∗
o (x1, x2, ξ) ≥ V ∗

s (x1, x2, ξ), for all (x1, x2, ξ).
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Clearly, the gap between these two values, V ∗
o (x1, x2, ξ) − V ∗

s (x1, x2, ξ) corresponds to

the maximum added expected benefit that can result through the application of techniques

that aim at improving demand observability.

As described earlier, the complicating feature of the operator H is due to the partial

observability of the demand of product 1. Therefore, determining an optimal policy and

the resultant maximum expected profit for the completely-observed case does not require

the use of suboptimal techniques for problem settings of reasonable size. On the other

hand, it will usually be computationally prohibitive to determine an optimal policy for the

sales-only-observed case, so instead we use the suboptimal solution approaches developed

in Section 4.5. Let V
LB(K)
s (x1, x2, ξ) denote a lower bound for V ∗

s (x1, x2, ξ), obtained by

applying the suboptimal design with parameter K. Thus,

V ∗
o (x1, x2, ξ)− V LB(K)

s (x1, x2, ξ) (13)

corresponds to an upper bound on the maximum added value that can be obtained from

improving demand observability. Of course, larger values of K lead to tighter lower bounds

V
LB(K)
s (x1, x2, ξ) which in turn lead to tighter upper bounds on the maximum value due

to improved demand observability.

4.6.1 Completely-Observed Case

To analyze the completely-observed case of the IRPDS, we simply assume that P (z|j, i) = 1

if and only if z = j. Thus, z1(t) is a perfect observation of d1(t) (independent of the value

of x1(t) and x2(t)). Hence, the only general state of interest is now (x1, x2, ei), x1 ≥ 0 and

x2 ≥ 0. Let
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h′(i, y1, y2, v) = −
∑

j

cjyj + L1(i, y1) + L2(i, y1, y2)

+β
∑

j<y1

∑

k

P (k)P (j|i)v(y1 − j, [y2 − k]+, j)

+β

y2∑

x=1

∑

j≥J1

L2∑

l=L1

P (y2 − x− l)B(j, l, α)P (j|i)v(0, x, j)

+β
∑

j≥J2

L4∑

l=L3

∑

m≥[y2−l]+

P (m)B(j, l, α)P (j|i)v(0, 0, j)

and

[H ′v′](x1, x2, i) =
∑

j

(cj − hj)xj + max
y1≥x1
y2≥x2

h′(i, y1, y2, v).

Then,

v′t = H ′v′t+1 (14)

is the optimality equation for the completely-observed case, where the boundary condition

is v′T (x1, x2, i) = p̄1x1 + p̄2x2 for all i.

4.6.2 Sales-Only-Observed Case

To analyze the case where demand is only observable through sales data, we assume that

P (z|j, i) is independent of i and j. Thus, z1(t) contains no information about the value of

d1(t). The general optimality equation now becomes v′′t = H ′′v′′t+1, v′′T (x1, x2, ξ) = p̄1x1 +

p̄2x2 for all ξ, where:

[H ′′v′′](x1, x2, ξ) =
∑

j

(cj − hj)xj + max
y1≥x1
y2≥x2

h′′(ξ, y1, y2, v),

84



h′′(ξ, y1, y2, v) = −
∑

i

ciyi + L1(ξ, y1) + L2(ξ, y1, y2) +

β
∑

j

< y1

∑

i

ξi

∑

k

P (k)P (j|i)v(y1 − j, [y2 − k]+, j) +

β

y2∑

x=1

σ1(ξ, y1, y2, x)v(0, x, λ
1(ξ, y1, y2, x)) +

βσ2(ξ, y1, y2)v(0, 0, λ
2(ξ, y1, y2)),

σ1(ξ, y1, y2, x) =
∑

j≥J1

L2∑

l=L1

P (y2 − x− l)B(j, l, α)
∑

i

ξiP (j|i),

λ
1
j (ξ, y1, y2, x) =

∑L2

l=L1
P (y2 − x− l)B(j, l, α)

∑
i ξiP (j|i)

σ1(ξ, y1, y2, x)
ifj ≥ J1,

and λ
1
j (ξ, y1, y2, x) = 0 otherwise.

σ2(ξ, y1, y2) =
∑

j≥J2

L4∑

l=L3

∑

m≥[y2−l]+

P (m)B(j, l, α)
∑

i

ξi, P (j|i),

λ
2
j (ξ, y1, y2) =

∑L4

l=L3

∑
m≥[y2−l]+ P (m)B(j, l, α)

∑
i ξiP (j|i)

σ2(ξ, y1, y2)
ifj ≥ J2,

and λ
2
j (ξ, y1, y2) = 0 otherwise.

4.6.3 Computing a Bound

For the completely-observed case, we use expression (14) to determine V ∗
o (x1, x2, ξ) =

v′0(x1, x2, ξ) for all potential initial states. It is important to note that these states in-

clude all (x1, x2, ξ) ∈ H0, as well as states (0, x2, ei) for i = 0, · · · , D1 and for x2 =

0, · · · , D1 + D2. For the sales-only-observed case, we use suboptimal Algorithm 6 to deter-

mine V
LB(K)
s (x1, x2, ξ) ≤ v′′0(x1, x2, ξ) because it is easier to implement in software relative

to Algorithms 4 and 5. In this case, the potential initial states again include all (x1, x2, ξ) ∈
H0, but we restrict the zero inventory states to those that might be visited by Algorithm

6; i.e., all states (0, x2, ξ) such that ξ ∈ H′′1
⋃ · · ·⋃H′′K+1, where H′′k =

⋃
iH′′(i)k, H′′1(0) =

{λ2(ξ, y1, y2) : (x1, x2, ξ) ∈ H0, y1 ∈ {x1, · · · , D1}, y2 ∈ {x2, · · · , D1 + D2}}, H′′k+1(0) =
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{λ2(ξ, y1, y2) : ξ ∈ ⋃
iHk(i), y1 ∈ {0, · · · , D1}, y2 ∈ {i, · · · , D1 + D2}}, and for x > 0,

H′′1(x) = {λ1(ξ, y1, y2, x) : (x1, x2, ξ) ∈ H0, y1 ∈ {x1, · · · , D1}, y2 ∈ {x2, · · · , D1 + D2}} and

H′′k+1(x) = {λ1(ξ, y1, y2, x) : ξ ∈ ⋃
iHk(i), y1 ∈ {0, · · · , D1}, y2 ∈ {i, · · · , D1 + D2}}.

Given an initial state (x1, x2, ξ) ∈ H0 that is shared by both cases, it is possible

to calculate a bound on the expected added benefit of improving demand observability

using V ∗
o (x1, x2, ξ) − V

LB(K)
s (x1, x2, ξ). For initial states (0, x2, ξ), a similar bound can

be computed by blending the value function using the prior distribution. To do so, let

V ∗
o (0, x2, ξ) =

∑
i ξiv

′
0(0, x2, ei). Then V ∗

o (0, x2, ξ) − V
LB(K)
s (0, x2, ξ) again represents a

bound.

Since it may be useful to determine a measure for the potential value of observability that

is independent of the initial state, we note that a reasonable approach may be to compare

a weighted sum of the state-wise maximum percentage potential gains due to improved

demand observability, where the weights given to each state correspond to its likelihood of

visitation. Given scalar weights wx2,ξ ≥ 0 for all ξ ∈ H′′1
⋃ · · ·⋃H′′K+1 and wx1,x2,ξ ≥ 0 for

all (x1, x2, ξ) ∈ H0 such that
∑

wx2,ξ +
∑

wx1,x2,ξ = 1, such a weighted statistic is given by

the following expression:

GUB(K)(w) =
∑
x2

∑

ξ∈H′′1 (x2)
⋃···⋃H′′K+1(x2)

wx2,ξ

(
V ∗

o (0, x2, ξ)− V
LB(K)
s (0, x2, ξ)

)

V
LB(K)
s (0, x2, ξ)

(15)

+
∑

(x1,x2,ξ)∈H0

wx1,x2,ξ

(
V ∗

o (x1, x2, ξ)− V
LB(K)
s (x1, x2, ξ)

)

V
LB(K)
s (x1, x2, ξ)

.

4.7 Computational Analysis

Now we apply our methodology for bounding the value of demand observability to a set

of problem scenarios. The main objective of the analysis presented in this section is to

develop a better understanding of the impact that product substitution has on the value of

improved demand observability. Our experiments also examine the effect of two problem

characteristics on the performance of the suboptimal policy for the sales-only-observed case:

(1) similarity of the products, measured by the ratio of their profits, and (2) the value of
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the parameter K in the suboptimal design.

Three sets of scenarios were generated in order to address the objectives of this study.

In all scenarios, we assume that product type 2 is preferred over product type 1, but is

more expensive. Thus, customers who originally would like to purchase product type 1 do

so because of budget concerns, and may be willing to substitute preferred product type 2

at higher cost.

To mitigate the impact of initial conditions on the experiments, we employ a long

maximum planning horizon of T = 1000 periods for each scenario, and the same stopping

criteria described in Section 3.7 of Chapter 3. The maximum number of iterations required

to solve the scenarios presented in this section was 343 (< T ). Therefore, it is also true

that the stationary policies (and their resultant state-wise expected profits) obtained in the

final iteration are good approximations of the results that would be found for the infinite

horizon problem formulations.

In all scenarios, the Markovian demand process for product type 1 is dependent on two

parameters, ζ and r. Parameter ζ is the probability that the demand level in period t + 1

is the same as the demand in period t, and the maximum amount by which the demand

level may change from one period to the next is a function of parameter r. See Section 3.7

of Chapter 3 for a complete description of these parameters. The demand distribution for

product type 2 is assumed to be discrete uniform on the interval [0, D2]. The end-of-horizon

inventory salvage values p̄1 and p̄2 where set to zero.

For each problem scenario, we calculate state-wise expected profit for the completely-

observed case V ∗
o (x1, x2, ei) for all x1, x2 ≥ 0 and i ∈ {0, · · · , D1} using equation 14. Next

we use suboptimal Algorithm 6 with parameter K to determine V L
s B(K)(x1, x2, ξ) for all

(x1, x2, ξ) ∈ H0 and all (0, x, ξ) such that ξ ∈ H′′1
⋃ · · ·⋃H′′K+1. For all (x1, x2, ξ) ∈ H0 and

(0, x, ξ) such that ξ ∈ H′′1
⋃ · · ·⋃H′′K+1 let:

• aLB
t (x1, x2, ξ) be the decision rule at time t found using the sub-optimal design in the

sales-only-observed case, given x1(t) = x1, x2(t) = x2 and ξ(t) = ξ;

• P t
(x1,x2,ξ),(x1,x2,ξ)

(aLB
t (x1, x2, ξ)) = P (x1(t+1) = x1, x2(t+1) = x2, ξ(t+1) = ξ|x1(t) =
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x1, x2(t) = x2, ξ(t) = ξ, a(t) = aLB
t (x1, x2, ξ)) be the transition probability from state

(x1, x2, ξ) to state (x1, x2, ξ) at time t given the sub-optimal decision rule;

• and P (t) = {P t
(x1,x2,ξ),(x1,x2,ξ)

(aLB
t )} be the corresponding transition probability ma-

trix for time t given the sub-optimal decision rule.

As mentioned earlier, due to the length of the planning horizon and the utilized stop-

ping criterion, a good approximation of the steady-state probabilities for all (x1, x2, ξ) ∈ H0

(observe that (x1, x2, ξ) ∈ H0 implies ξ ∈ {e0, · · · , eD1}) and (0, x, ξ) such that ξ ∈
H′′1

⋃ · · ·⋃H′′K+1 is obtained by calculating the steady-state probabilities of the Markov

chain associated with the stochastic matrix P (0). We use these steady-state probabilities

as the weights wx1,x2,ξ and wx2,ξ to compute the maximum percentage value statistic given

by (15).

The objective of the first experiment is to determine the impact that product similarity

has on the performance of our suboptimal policy. Product similarity is measured as the

ratio between the per unit profit of product 1 and the per unit profit of product 2, p1−c1
p2−c2

,

which we refer to as Product Similarity Ratio (PSR). The per unit ordering cost, selling

price and holding cost of product type 2 are set to be c2 = 160, p2 = 200 and h2 = 5

respectively. Maximum demands for products type 1 and type 2 are set to be D1 = 4 and

D2 = 2 respectively. The discount factor and the parameters of the Markovian demand

process of product type 1 are set to be β = 0.95, r = 2 and ζ = 0.85. Different levels

of substitution are considered, and the probability of substitution α is selected from the

set {0, 0.2, 0.25, 0.3, 0.5, 0.6, 0.75, 0.8, 0.9, 1}. The parameter value for the suboptimal policy

chosen was K = 2. The per unit ordering cost, selling price and holding cost of product

type 1 is varied (see Table 2) in order to account for different levels of product similarity.

Our numerical experiments indicate that product similarity has a significant effect on

the quality of the bound of the value of improved demand observability. As depicted in

Figure 16, for a specific level of substitutability (α) the bound on the value of increased

demand observability increases as PSR decreases. Further, for any given level of PSR,

there exists a breakpoint value α such that the maximum percentage improvement due to
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increased demand observability increases significantly to the right of the breakpoint. For

instance, when PSR = 0.25, this breakpoint occurs at α = 0.3. This suggests that for

every level of PSR, the suboptimal policy performs well only up to some critical value of

α. For a given level of similarity (PSR), the optimal ordering amount of product type 1

should decrease as substitutability (α) increases. Since the suboptimal policy will choose

to order a large quantity after a few successive periods of product 1 stockout, it should be

clear that the quality of the solution given by the suboptimal policy degrades as α increases.

In this experiment, we observe that the proposed suboptimal policy performs reasonably

well in systems in which demand substitutability is smaller than PSR. We remark that

most typical real-world supply chain systems should have such characteristics. It is very

unlikely to find a high percentage of customers willing to substitute their initial choice with

a product with a significantly higher price.

The objective of the second experiment is to understand the effect that parameter K has

on the performance of the suboptimal policy. We focus our analysis in a system with level

of substitutability α = 0.8 and two levels of PSR, 0.75 and 0.25. The maximum demand

of products type 1 and type 2 are set to be D1 = 2 and D2 = 2 respectively. The discount

factor and the parameters of the Markovian demand process of product type 1 are set to

be β = 0.95, r = 1 and ζ = 0.85. The value of the parameter of the suboptimal policy K

is varied between scenarios, and is selected from the set {1, 2, 3, 4}. The per unit ordering

cost and the holding cost of products type 1 and type 2 are set to be c1 = 120, h1 = 3,

c2 = 160, and h2 = 5. The selling price of product type 2 is set to be p2 = 200. The selling

price of product type 1 is selected form the set {150, 130}.
From the numerical experiments we observe that when PSR = 0.75 the value of K does

Table 2: Parameters for Product Type 1
c1 p1 h1 PSR

120 120 0.000001 0
120 130 1 0.25
120 140 2 0.5
120 150 3 0.75
120 160 4 1
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Figure 16: Weighted Maximum Percentage Improvement in Profitability Given Demand
Observability (GUB(2)) for Different Levels of Product Similarity

not have a significant effect on the performance of the suboptimal policy. It can be seen in

Figure 17 that as K increases, V
LB(K)
s is also observed to increase; Proposition 4 predicts

this behavior. However, the percentage difference between V
LB(4)
s and V

LB(1)
s is only about

0.2%. Thus, the results obtained in the first experiment do not appear to be significantly

affected by the chosen value of K = 2 for cases where α is approximately equal to or lower

than PSR. In contrast, when PSR = 0.25 the value of K has a significant effect on the

performance of the suboptimal policy (see Figure 18), the percentage difference between

V
LB(4)
s and V

LB(1)
s is about 13%. Thus, the results obtained in the first experiment are

significantly affected by the chosen value of K = 2 for cases where α is significantly larger

than PSR. Once again suggesting that for computationally tractable values of K the sub-

optimal policy does not perform very well in systems with high substitutability and low

PSR levels.
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Figure 17: Expected Profit of the Sales-Only-Observed Case (V LB(K)
s ) for Different Levels

of K and the Completely-Observed Case V ∗
O (PSR = 0.75)

The objective of the third experiment is to obtain insights on the effect that the level of

substitutability has on the value of improved demand observability. The maximum demand

of products type 1 and type 2 are set to be D1 = 4 and D2 = 2 respectively. The discount

factor and the parameter K chosen were β = 0.95 and K = 2. The parameter r of the

Markovian demand process of product type 1 is set to 1, but the parameter ζ is varied

between scenarios, and is selected from the set {0.75, 0.85, 0.95}. The per unit ordering

cost, selling price and holding cost of products type 1 and type 2 is set to be c1 = 145,

p1 = 110, h1 = 2.5, c2 = 160, p2 = 200 and h2 = 3, thus the PSR = 0.875.

This experiment suggests, that type 1 demand variability does not have a significant

effect on the value of improved demand observability (see Figure 19). It can also be observed

in Figure 19 that substitution has a significant effect in the value of improved demand

observability. As the substitution likelihood α increases, the value of improved demand

observability also increases. Note that as α grows from zero to one, the average value of
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Figure 18: Expected Profit of the Sales-Only-Observed Case (V LB(K)
s ) for Different Levels

of K and the Completely-Observed Case V ∗
O (PSR = 0.25)

observability more than doubles from 4.4% to 10.85%.
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CHAPTER V

AN INFINITE HORIZON, TWO-ITEM INVENTORY PROBLEM

WITH SUBSTITUTABILITY

5.1 Introduction

We consider the problem of determining an optimal replenishment policy for a two-item, in-

finite horizon inventory problem. Demand for each item during each period is deterministic.

Replenishment decisions occur at each period and replenishment is instantaneous. Profit

per item sold, wholesale cost per item, and holding cost per item per period, for each of the

two items, are used to construct the single period cost function. The criterion of interest is

the infinite horizon, expected total discounted cost criterion.

We allow no backlogging. However, substitutability is allowed. We assume that a

customer who wishes to purchase item 1 and finds item 1 stocked out may be willing to

purchase item 2 if item 2 is available and that a customer who wishes to purchase item

2 and finds item 2 has stocked out has no interest in purchasing item 1. Substitutability

is modeled by the conditional probability P (d′|d), where d is the number of customers

who wish to purchase item 1 but find item 1 stocked out, and d′ is the number of these

customers who wish to purchase item 2. Literature related to inventory control systems

with substitution can be found in Section 4.2 of Chapter 4.

This chapter is outlined as follows. In Sections 5.2 and 5.3, we formulate the problem and

present preliminary results. These results include the optimality equation for the problem.

Section 5.4 is focused on the single period cost function, f , which is a function of the

inventory levels of both products. In Section 5.4.1 we present a useful partition generated by

f and show that the minimum of f is restricted to one of the elements of this partition. We

then determine conditions that guarantee the minimum of f is such that zero replenishment

of item 1 is always optimal and examine these bounds in the context of two distributions

of substitutability, the uniform and the binomial distributions. We present an algorithm
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in Section 5.4.3 that determines the policy that minimizes f . We show that for a fixed

inventory level for item 1 f is convex in the inventory level of item 2 and give conditions

that imply f is convex in the inventory level of item 1 for fixed inventory level for item 2.

When these two convexity conditions hold, the algorithm returns an optimal policy that is

a generalization of the order-up-to policy associated with the single item special case. We

show that this algorithm simplifies significantly when conditions hold for the existence of

an optimal zero replenishment policy for item 1.

We present two results in Section 5.5. We first show that greater substitutability will not

increase optimal expected cost and use this result to generate upper and lower bounds on

optimal expected cost. We then show that a decision rule that minimizes f , when applied at

every decision epoch over the infinite horizon, is an optimal (myopic) policy for the infinite

horizon problem.

5.2 Problem Formulation

Let xi(t) be the number of items of product i in inventory at the beginning of period t,

i = 1, 2. Based on these inventory levels, the decision maker orders ai(t) items of product i,

i = 1, 2, which immediately are added to the inventories. Thus, there are yi(t) = xi(t)+ai(t)

items of product i, i = 1, 2, in inventory at the beginning of period t.

Let di be the demand for item i during each period. Note that if d1 > y1(t), then

product 1 stocks out during period t and the unmet demand for product 1 is d = d1−y1(t).

Of these d customers, let d′2(t) ≤ d be the number of customers willing to purchase product

2, and let P (d′|d) be the probability that d′2(t) = d′.

We assume no backlogging. Thus,

x1(t + 1) = max{0, y1(t)− d1}

x2(t + 1) = max{0, y2(t)− d2 − d′2(t)},

where d′2(t) = d′ with probability P (d′|d) and d = max{0, d1 − y1(t)}.
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For a single item of product i, let ci be its wholesale cost, hi be its single period holding

cost, and pi be the profit accrued by selling it. Then, the single period total cost is:

∑

i

ciai(t) +
∑

i

hiyi(t)− p1 min{d1, y1(t)} − p2 min{d2 + d′2(t), y2(t)}.

A (stationary) policy maps the set of inventory levels, [0, 1, · · · )2, into the set of actions

(or replenishment levels), [0, 1, · · · )2. The problem objective is to determine a policy, called

an optimal policy, that minimizes the expected total discounted cost criterion over the

infinite horizon. See (Puterman [40], Chapter 6) for further details.

5.3 Preliminary Results

For notational simplicity, we now drop explicit dependence on t. The optimality equation

for discount factor β < 1 then becomes:

v(x1, x2) = min
ai≥0

{∑

i

ciai +
∑

i

hiyi − p1 min{d1, y1}

−p2

∑

d′2

P (d′2|max{0, d1 − y1})min{d2 + d′2, y2}

+β
∑

d′2

P (d′2|max{0, d1 − y1})v
[
max{0, y1 − d1}, max{0, y2 − d2 − d′2}

]


.

Replace ai with yi−xi, let v(x1, x2) = v(x1, x2)+
∑

i cixi, and note that for any constant

k, y = min{k, y}+max{0, y−k}. Straightforward algebraic manipulation then implies that

the optimality equation can be re-stated as v = Hv, where:

[Hv](x1, x2) = min
yi≥xi

{
[H̃v](y1, y2)

}
, (16)

[H̃v](y1, y2) = f(y1, y2) +

β
∑

d′2

P (d′2|max{0, d1−y1})v
[
max{0, y1−d1},max{0, y2−d2−d′2}

]
,

and
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f(y1, y2) =
∑

i

h̄iyi − p̄1 min{d1, y1}

−p̄2

∑

d′2

P (d′2|max{0, d1 − y1})min{d2 + d′2, y2},

where the sums with respect to d′2 are such that d′2 = 0, 1, · · · , max{0, d1 − y1} and h̄i =

hi + (1− β)ci and p̄i = pi − βci, i = 1, 2.

Throughout, we assume that p̄i ≥ h̄i ≥ 0 for i = 1, 2.

Results in (Puterman [40], Chapter 6) imply that there exists a unique solution to

v = Hv; let v∗ represent this unique solution. Then, v(x1, x2) = v∗(x1, x2) −
∑

i cixi

represents the minimum expected total infinite horizon discounted cost. Furthermore, let

v0 be any bounded, real-valued function, and define the sequence {vn} by vn+1 = Hvn.

Then, {vn} converges to v∗ in the sense that limn→∞ ‖vn − v∗‖ = 0, where ‖ · ‖ is the

supremum norm. Further, an action selection rule that selects a1 and a2 so as to cause

the minimum in Equation (16) to be attained, as a function of (x1, x2), is an optimal

(stationary) policy.

5.4 Structural Properties of f

We now investigate important structural properties of the function f . We begin by pre-

senting a useful partition generated by f and show that the minimum of f is restricted

to one of the elements of this partition. We then determine conditions that guarantee the

minimum of f is such that zero replenishment of item 1 is always optimal and examine

these in the context of two distributions of substitutability, the uniform and the binomial

distributions. We then present an algorithm that determines a decision rule that minimizes

f . We show that for a fixed inventory level for item 1, f is convex in the inventory level

of item 2 and give conditions that imply f is convex in the inventory level of item 1 for a

fixed inventory level for item 2. When these two convexity conditions hold, the algorithm

returns an optimal policy that is a generalization of the order-up-to policy associated with

the single item special case. We then show that this algorithm simplifies significantly when

conditions hold for the existence of an optimal zero replenishment policy for item 1.
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5.4.1 A Partition of the Inventory Levels

We now present a useful partition generated by f and show that the minimum of f is

restricted to one of the elements of this partition. There are five areas within {(y1, y2), yi ≥
0} that are of interest:

P(1) = {(y1, y2) : y1 ≥ d1, y2 ≥ d2}

P(2) = {(y1, y2) : y1 ≥ d1, y2 ≤ d2}

P(3) = {(y1, y2) : y1 ≤ d1, y2 ≤ d2}

P(4) = {(y1, y2) : y1 ≤ d1, y2 ≥ d2 + (d1 − y1)}

P(5) = {(y1, y2) : y1 ≤ d1, d2 ≤ y2 ≤ d2 + (d1 − y1)},

which are depicted in Figure 20. We note that f is:

(i) isotone (monotonically non-decreasing) in y1 and y2 on P(1)

(ii) isotone in y1 and antitone (monotonically non-increasing) in y2 on P(2)

(iii) antitone in y1 and y2 on P(3)

(iv) isotone in y2 on P(4).

Assume, for a moment, that there is no substitutability, i.e., assume P (0|d) = 1 for all

d. Then, f is identical on both P(4) and P(5) and is antitone in y1 and isotone in y2. Thus,

for the P (0|d) = 1 case, f(d1, d2) ≤ f(y1, y2) for all (y1, y2).

Sufficiently strong substitutability, however, can change f on P(4) from antitone in y1

and isotone in y2 to isotone in both y1 and y2, leaving the structure of f on P(1), P(2), and

P(3) unaffected. In such a situation, a point in P(5) other than (d1, d2) might represent a

minimum of f , as the following example demonstrates.

Example 1 Let: c1 = 160, c2 = 200, h1 = 6, h2 = 20, p1 = 200, p2 = 300, d1 = 4,

d2 = 2 and β = 0.95. The conditional probability distributions P (d′2|max{0, y1−d1}) for all
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Figure 20: Partition of {(y1, y2) : yi ≥ 0}

Table 3: P (d′2|max{0, y1 − d1})
d′2

0 1 2 3 4 > 4
P (d′2|0) 1 0 0 0 0 0
P (d′2|1) 1

2
1
2 0 0 0 0

P (d′2|2) 1
4

1
2

1
4 0 0 0

P (d′2|3) 1
8

1
4

1
2

1
8 0 0

P (d′2|4) 3
16

1
4

3
8

1
8

1
16 0

0 ≤ max{0, y1 − d1} are given in Table 3. The point that minimizes f is (y∗1, y2∗) = (1, 4)

where f(1, 4) = −299 see Figure 21.

¥

5.4.2 Zero Replenishment

We now determine conditions that guarantee the minimum of f is such that zero replenish-

ment of item 1 is always optimal and examine these bounds in the context of two distribu-

tions of substitutability, the uniform and the binomial distributions.
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Figure 21: f(y1, y2)

Theorem 1 Let (x1, x2) ∈ P(5), and assume that f(y1, y2) ≥ f(y1 − 1, y2 + 1) for all

(y1, y2) ∈ P(5). Then,

min
y2≥x2

f(x1, y2) = min
yi≥xi

f(y1, y2).

Proof: Assume (y∗1, y
∗
2) are such that f(y∗1, y

∗
2) = miny1≥x1 miny2≥x2 f(y1, y2) and y∗1 6= x1.

By assumption, f(y∗1, y
∗
2) ≥ f(y∗1−1, y∗2 +1) ≥ · · · ≥ f(x1, y

∗
2 +y∗1−x1) ≥ miny2≥x2 f(x1, x2).

We remark that if (y∗1, y
∗
2) is in P(5), then so is (y∗1 − k, y∗2 + k), k = 1, · · · , y∗1 − x1. Let y′2

be such that f(x1, y
′
2) = miny2≥x2 f(x1, y2). If all of the inequalities in the above string of

inequalities are equalities, then (x1, y
′
2) is also an optimal solution. If any of the inequalities

is strict, then we have a contradiction to the claim that y∗1 6= x1 is optimal.

¥

We remark that f(y1, y2) ≥ f(y1−1, y2 +1) for all (y1, y2) ∈ P(5) implies that we would

prefer to replace a unit of item 1 with a unit of item 2. Further, this assumption implies

that f(d1, d2) ≥ f(0, d1 + d2) and hence that f(y1, y2) is isotone in both y1 and y2 on P(4).

We now present a condition on the cost structure and on P that guarantees the hypoth-

esis of Theorem 1 holds. Proof is straightforward. Let
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σ(d1, d2, y1, y2) =
y2−d2+1∑

d′2=0

P (d′2|d1 − y1 + 1)(d2 + d′2)

+
d1−y1+1∑

d′2=y2−d2+2

P (d′2|d1 − y1 + 1)(y2 + 1)

−



y2−d2∑

d′2=0

P (d′2|d1 − y1)(d2 + d′2) +
d1−y1∑

d′2=y2−d2+1

P (d′2|d1 − y1)y2


 .

Lemma 2 Assume (y1, y2) ∈ P(5). Then, f(y1, y2) ≥ f(y1 − 1, y2 + 1) if and only if

σ(d1, d2, y1, y2)p̄2 − h̄2 ≥ p̄1 − h̄1.

We now consider two conditional distributions, the uniform and the binomial, and de-

termine their values of σ. We then determine lower bounds on σ, which are sufficient

conditions for zero replenishment of product 1 to be optimal. We begin by putting σ into

a more useful form.

Let m and n, m ≤ n, be such that y2 = d2 + m and y1 = d1 − n. Then,

σ(d1, d2, d1 − n, d2 + m) =
m+1∑

k=0

(k + d2)P (k|n + 1) +
n+1∑

k=m+2

(d2 + m + 1)P (k|n + 1)

−
m∑

k=0

(k + d2)P (k|n)−
n∑

k=m+1

(d2 + m)P (k|n).

Since
∑n

k=0 P (k|n) =
∑n+1

k=0 P (k|n + 1) = 1, dependence on d2 sums to zero on the right

hand side of the above equation. Note also that,

m∑

k=0

kP (k|n) + m
n∑

k=m+1

P (k|n) = E(n)−
n∑

k=m+1

(k −m)P (k|n),

where E(n) =
∑n

k=0 kP (k|n). Thus, σ(n,m) = σ(d1, d2, d1 − n, d2 + m) can be written as:

σ(n,m) = E(n + 1)−E(n) +
n∑

k=m+1

(k −m)[P (k|n)− P (k + 1|n + 1)].
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Let P (k|n) = 1
(n+1) for all k = 0, 1, · · · , n, which we call the uniform distribution.

Thus, if n customers who want to purchase product 1 find that product 1 has stocked out,

then k of these customers will want to purchase product 2 with probability 1
(n+1) , for all

k = 0, 1, · · · , n.

Proof of the following result is straightforward.

Lemma 3 For m = 0, 1, . . . , n, σ(n,m) = 1
2 + (n−m)(n−m+1)

2(n+1)(n+2) , where P (k|n) = 1
(n+1) , k =

0, 1, · · · , n.

Thus, σ(n, m) ≥ 1
2 for the uniform distribution for all m and n, m ≤ n, implying the

following result.

Lemma 4 For the uniform distribution, if

p̄2

2
− h̄2 ≥ p̄1 − h̄1,

then for all (x1, x2) ∈ P(5),

min
y2≥x2

f(x1, y2) = min
yi≥xi

f(y1, y2).

Let P (k|n) =
(
n
k

)
ρk(1 − ρ)n−k for all k = 0, 1, · · · , n, which we call the binomial dis-

tribution. We interpret ρ to be the probability that any customer who wants to purchase

product 1 and finds product 1 stocked out will want to purchase product 2. The binomial

distribution assumes that all such customers act independently.

Proof of the following preliminary result is due to straightforward induction arguments

and algebraic manipulation.

Lemma 5 Let P (k|n) =
(
n
k

)
ρk(1− ρ)n−k for ρ ∈ [0, 1]. Then, E(n) = ρn and:

(i)
∑n

k=m[P (k|n)− P (k + 1|n + 1)] = (1− ρ)P (m|n)

(ii)
∑n

k=m+1(k −m)[P (k|n)− P (k + 1|n + 1)] = (1− ρ)
∑n

k=m+1 P (k|n)

(iii)
∑n

k=m+1(k −m)P (k|n)−∑n+1
k=m+1(k −m)P (k|n + 1) =

(1− ρ)
∑n

k=m+1 P (k|n)−∑n+1
k=m+1 P (k|n + 1)
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(iv)
∑n

k=m+1 P (k|n)−∑n+1
k=m+1 P (k|n + 1) = (1− ρ)P (m + 1|n)− P (m + 1|n + 1).

Proof of the next result follows from Lemma 5.

Lemma 6 For m = 0, 1, · · · , n, σ(n,m) = ρ + (1 − ρ)
∑n

k=m+1 P (k|n), where P (k|n) =
(
n
k

)
ρk(1− ρ)n−k, k = 0, 1, · · · , n.

Thus, σ(n,m) ≥ ρ for the binomial distribution for all m = 0, 1, · · · , n, implying the

following result.

Lemma 7 For the binomial distribution, if

ρp̄2 − h̄2 ≥ p̄1 − h̄1,

then for all (x1, x2) ∈ P(5),

min
y2≥x2

f(x1, y2) = min
yi≥xi

f(y1, y2).

5.4.3 Optimal Policy Structure

We observe that P(5) contains N = (d1+1)(d1+2)
2 points. We order these points as follows:

f(yn) ≤ f(yn+1). Define Pn as follows, where for each n, Pn ⊆ P = P(3)
⋃P(5):

0. Let P1 = {x : x ≤ y1}; set n = 1.

1. If yn+1 ∈ ⋃n
m=1 Pm, then set Pn+1 = ∅. Otherwise, let Pn+1 = {x ∈ P ∼ ⋃n

m=1 Pm :

x ≤ yn+1}.

2. Set n = n + 1; go to 1.

Example 2 Let: c1 = 160, c2 = 200, h1 = 6, h2 = 20, p1 = 200, p2 = 300, d1 = 4, d2 = 2,

β = 0.95 and P (d′2|d) =
(

d
d′2

)
ρd′2(1− ρ)d−d′2 where ρ = 0.5. There are 15 points in P(5), see

Figure 22. The sets Pn are shown in Figure 23. P5 = P6 = P9 = P10 = P12 = P13 =

P14 = P15 = ∅.

¥
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Define g(x) = min{f(y) : x ≤ y} and δ(x) = argmin{f(y) : x ≤ y}, and note that:

(i) if x ∈ Pn, then g(x) = f(yn) and δ(x) is “order up to yn”, n = 1, · · · , N ,

(ii) if x ∈ P(1) then g(x) = f(x) and δ(x) is “do not order”,

(iii) if x ∈ P(2), then g(x1, x2) = f(x1, d2) and δ(x) is “do not order item 1 but order item

2 up to d2”,
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(iv) if x ∈ P(4), then

(a) g(x) = f(x) and δ(x) is “do not order” if f(0, d1 + d2) ≤ f(d1, d1 + d2)

(b) g(x1, x2) = f(d1, x2) and δ(x) is “order item 1 up to d1 and do not order item

2” otherwise.

We remark that if P is a singleton, then “order up to yn” is equivalent to “do not

order”. We elaborate on this remark by showing f(y1, y2) is convex in y2 for fixed y1 on

P(5), presenting sufficient conditions for f(y1, y2) to be convex in y1 on [0, d1] for fixed

y2 ∈ [d2, d1 + d2], and then using these two convexity results to simplify the algorithm once

a Pn is determined that is a singleton.

Lemma 8 For each y1, f(y1, y2) is convex in y2.

Proof: The result is clearly true for y1 ≥ d1. Assume y1 ≤ d1. It is sufficient to show that

f(y1, y2 + 2)− f(y1, y2 + 1) ≥ f(y1, y2 + 1)− f(y1, y2). (17)

This inequality clearly holds when y2 +2 ≤ d2 or d2 +(d1− y1) ≤ y2. There are three other

cases:

(i) y2 = d2 + (d1 − y1)− 1,

(ii) y2 = d2 − 1,

(iii) d2 ≤ y2 ≤ d2 + (d1 − y1)− 2.

We now consider case (i); cases (ii) and (iii) follow in a similar fashion.

Let n = d1 − y1. Then, it is easily shown that:

f(y1, d2 + n− 1) = (h̄1 − p̄1)y1 + h̄2(d2 + n− 1)− p̄2[d2 + E(n)− P (n|n)],

f(y1, d2 + n) = (h̄1 − p̄1)y1 + h̄2(d2 + n)− p̄2[d2 + E(n)],

and
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f(y1, d2 + n + 1) = (h̄1 − p̄1)y1 + h̄2(d2 + n + 1)− p̄2[d2 + E(n)].

Algebraic manipulation then shows that the inequality in (17) is equivalent to p̄2P (n|n)(d2+

n) ≥ 0.

¥

We now present conditions that imply f(y1, y2) is convex in y1 on [0, d1] for fixed y2.

Let m and n be such that y1 = d1−n and y2 = d2 +m. Thus, for y ∈ P(5), 0 ≤ m ≤ n ≤ d1

and

f(d1 − n, d2 + m) = K + (p̄1 − h̄1)n + h̄2m− p̄2F (n,m),

where:

K =
∑

i

di(h̄i − p̄i),

and

F (n,m) =
m∑

k=0

kP (k|n) + m
n∑

k=m+1

P (k|n)

= E(n)−
n∑

k=m+1

(k −m)P (k|n).

Lemma 9 Assume E(n+2)−E(n+1) = E(n+1)−E(n) for all n such that d1−2 ≥ n ≥ 0.

Assume also that for all n and m such that d1 − 2 ≥ n ≥ m ≥ 0,

n+1∑

k=m+1

(k−m)P (k|n+1)−
n+2∑

k=m+1

(k−m)P (k|n+2) ≤
n∑

k=m+1

(k−m)P (k|n)−
n+1∑

k=m+1

(k−m)P (k|n+1).

Then, for fixed y2 ∈ [d2, d1 + d2], f(y1, y2) is convex in y1 on [0, d1].

Proof: It is sufficient to show:

(i) for all n and m such that d1 ≥ n ≥ m ≥ 0,

f(n + 2,m)− f(n + 1,m) ≥ f(n + 1,m)− f(n,m)
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(ii) for all m such that d1 − 1 ≥ m ≥ 0,

f(m + 1,m)− f(m,m) ≥ f(m,m)− f(d1 −m + 1, d2 + m),

where

f(d1 −m + 1, d2 + m) = K + (p̄1 − h̄1)(m− 1) + h̄2m− p̄2E(m− 1).

Case (i) follows by straightforward algebraic manipulation. Case (ii) follows from the

fact that P (m + 1|m + 1) ≥ 0.

¥

We remark that it is straightforward to show that both the uniform distribution and

the binomial distribution (using Lemma 5) satisfy the conditions of Lemma 9.

Lemma 10 Assume x ∈ P(5) and min{f(y) : x ≤ y} = f(x). Then,

(i) f(x1, x2) ≤ f(x1 + 1, x2) implies min{f(y) : x′1 ≤ y1, x2 ≤ y2} = f(x′1, x2) for all

x′1 ≥ x1, assuming f(y1, y2) is convex in y1 for any given y2

(ii) f(x1, x2) ≤ f(x1, x2 + 1) implies min{f(y) : x1 ≤ y1, x
′
2 ≤ y2} = f(x1, x

′
2) for all

x′2 ≥ x2.

We now examine the algorithm under the assumption that f(y1, y2) ≥ f(y1−1, y2+1) in

P(5). Let R(y1) be such that f(y1, R(y1)) ≤ f(y1, y2) for all y2. We note that f(y1, R(y1))

is isotone since f(y1 + 1, R(y1 + 1)) ≥ f(y1, R(y1 + 1) + 1) ≥ f(y1, R(y1)), for all y1. We

now present sufficient conditions for R(y1) to be antitone.

Lemma 11 Assume for n ≤ n′

∑

k≥m

P (k|n) ≤
∑

k≥m

P (k|n′),

for all m ≤ n. Then R(y1) is antitone.
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Proof: The result holds for y1 ≥ d1; assume y1 ≤ d1. It is shown in (Puterman [40]; Lemma

4.7.1, p. 104) that R(y1) is antitone if f is superadditive; i.e., y1 ≤ y′1 and y2 ≤ y′2 imply

f(y1, y2)− f(y′1, y2) ≥ f(y1, y
′
2)− f(y′1, y

′
2). (18)

Without loss of generality, let y1 = d1−n, y′1 = d1−n′, n′ = n−1, y2 = d2+m, y′2 = d2+m′,

and m′ = m + 1.

Algebraic manipulation indicates that Equation (18) is equivalent to:

n∑

k=m+1

(k−m)P (k|n)−
n−1∑

k=m+1

(k−m)P (k|n−1) ≥
n∑

k=m+2

(k−m−1)P (k|n)−
n−1∑

k=m+2

(k−m−1)P (k|n−1),

and hence

n∑

k=m+1

P (k|n) ≥
n−1∑

k=m+1

P (k|n− 1).

¥

It is easily shown that both the uniform and the binomial (where the right hand side of

the above inequality equals (1− ρ)P (m + 1|n− 1); see Lemma 5) distributions satisfy this

inequality and hence f is superadditive for both distributions.

Assume that R(y1) is antitone and f(y1, R(y1)) is isotone. Then the algorithm reduces

to:

(i) if (x1, x2) is such that x2 ≤ R(x1), then g(x1, x2) = f(x1, R(x1)) and δ(x1, x2) = “do

not order item 1 and order up to R(x1) of item 2”.

(ii) if (x1, x2) is such that x2 ≥ R(x1), then g(x1, x2) = f(x1, x2) and δ(x1, x2) = “order

neither item 1 nor item 2”.

5.5 Infinite Horizon Case

We now present two results for the infinite horizon case. The first result is that increased

substitutability will never increase optimal expected discounted cost. The second result is
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that an optimal decision rule for the single-stage case, when applied at every decision epoch

over the infinite horizon, is an optimal policy for the infinite horizon case.

5.5.1 Substitutability and Bounds

We now present a definition of increased substitutability. We say P ′ has increased substi-

tutability, relative to P , if and only if for each d and each k = 0, · · · , d,

∑

d′≥k

P (d′|d) ≤
∑

d′≥k

P ′(d′|d).

We remark that this concept is related to conditions that imply the existence of optimal

monotone policies, as presented in (Puterman [40]; Chapter4, Section 7).

Increasing the parameter ρ in the binomial distribution leads to increased substitutabil-

ity, as we now show.

Lemma 12 Let P (k|n) =
(
n
k

)
ρk(1− ρ)n−k, and let P ′(k|n) equal P (k|n) with ρ replaced by

ρ′. Then ρ ≤ ρ′ implies P ′ has increased substitutability, relative to P .

Proof: The cumulative distribution function of the binomial distribution can be expressed

in terms of the incomplete beta function as follows:

m−1∑

k=0

(
d

k

)
ρk(1− ρ)d−k = I1−ρ(d− k + 1, k)

where

Ix(a, b) =

∫ x
0 ta−1(1− t)b−1dt∫∞

0 ta−1(1 + t)−(a+b)dt

it follows then that I1−ρ(d− k + 1, k) ≥ I1−ρ′(d− k + 1, k).

¥

Let the operators H̃ ′ and H ′ be defined identically to H̃ and H with P replaced by P ′,

and assume v and v′ are the fixed points of the operators H and H ′, respectively. We now

present our main result for this section.
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Theorem 2 Assume P ′ has increased substitutability, relative to P . Then, v ≥ v′.

Proof: It is sufficient to show that [H̃v](y1, y2) ≥ [H̃ ′v](y1, y2) for any v(x1, x2) that is

isotone and convex in x2 for all x1. We remark that for any v, Hv is isotone and hence

H has an isotone fixed point. Thus, it is without loss of generality that we assume v is

isotone. Referring to the definition of [H̃v](y1, y2), we note that −min{d2 + d′2, y2} and

max{0, y2 − d2 − d′2} are both antitone in d′2 and hence

p̄2(−min{d2 + d′2, y2}) + βv[max{0, y1 − d1}, max{0, y2 − d2 − d′2}]

is antitone in d′2. The sufficient condition and hence the result follows from Lemma 4.7.2

(Puterman [40], p. 106).

¥

Let Pm(d′|d) = 1 if and only if d′ = 0. Note that any P has increased substitutability,

relative to Pm. Let PM (d′|d) = 1 if and only if d′ = d. Then, PM has increased substi-

tutability, relative to any P . Let the operators Hm (HM ) be defined as the operator H

with Pm (PM ) replacing P , and let vm (vM ) be the fixed point of Hm (HM ). The next

result then follows directly from Theorem 2.

Corollary 3 vm ≥ v ≥ vM .

We remark that vm is relatively easy to determine. Proof of the next result follows

directly from the optimality equation.

Theorem 3 There exit functions vm
1 (x1) and vm

2 (x2) such that vm(x1, x2) = vm
1 (x1) +

vm
2 (x2), where vm

i (xi) is the fixed point of the operator Hm
i , [Hm

i v](xi) = minyi≥xi [H̃
m
i v](yi),

and

[H̃m
i v](yi) = h̄iyi − p̄i

∑

di

Pi(di)min{di, yi}+ βv[max{0, yi − di}].
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5.5.2 Myopic Optimal Policies

Given f , we have determined the collection of sets {Pn} and vectors {yn} that characterize

an optimal decision rule for the single stage problem. We now show that this decision rule,

used at each decision epoch for the infinite horizon problem, is optimal. We present this

result, following preliminary definitions.

Let V ∗ be the set of all real-valued functions on {(y1, y2) : y ≥ 0} defined as follows:

v ∈ V ∗ if and only if v is isotone and constant for all y ≤ y1.

Let V ∗∗ be the set of all real-valued functions on {(y1, y2) : y ≥ 0} defined as follows:

v ∈ V ∗∗ if and only if v is

(i) isotone on P(1)

(ii) isotone in y1 and antitone in y2 on P(2)

(iii) antitone on P(3)

(iv) isotone in y2 on P(4)

(v) v(yn) ≤ v(yn+1), n = 1, · · · , N − 1.

We note that f ∈ V ∗∗ and g ∈ V ∗.

We now show that there exists an optimal myopic policy.

Theorem 4 Assuming d1 ≤ y1
2,

(i) if v ∈ V ∗, then H̃v ∈ V ∗∗

(ii) if H̃v ∈ V ∗∗, then Hv ∈ V ∗

(iii) if v∗ is the fixed point of H, then v∗ ∈ V ∗

(iv) argmin{f(y) : x ≤ y} = argmin{[H̃v∗](y) : x ≤ y} and hence there exists an optimal

policy that is myopic.
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Proof: We note that (ii) holds by the construction of V ∗∗ and V ∗. Regarding (iii), if v ∈ V ∗

implies Hv ∈ V ∗, then v∗ ∈ V ∗ since vn converges to v∗, vn+1 = Hvn, where we can choose

v0 ∈ V ∗. We note (iv) holds if (ii) and (iii) hold.

We now show that (i) holds. Note that for y ∈ P(5),

v[max{0, y1 − d1}, max{0, y2 − d2 − k}] =





v(0, y2 − d2 − k) for k ≤ y2 − d2

v(0, 0) for k ≥ y2 − d2

.

Now, y2 − d2 − k ≤ y2 − d2 ≤ d1 − y1 ≤ y1
2 − y1 ≤ y1

2. By definition, v(0, z) = v(y1) for

all z ≤ y1
2. Thus, [H̃v](y) = f(y) + βv(y1). Clearly, v ∈ V ∗∗ implies v + c ∈ V ∗∗ for any

constant c. Hence H̃v ∈ V ∗∗.

¥
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

This dissertation investigates the implications of having inaccurate observations of the ran-

dom realizations of the stochastic process when making decisions under uncertainty in the

context of inventory theory. Additionally, the thesis investigates a fundamental problem in

inventory management for substitutable products that arose during the study.

Chapter 2 studies the relationship between observation quality and system performance

when using zero-memory policies. For zero-memory policies, conditions that imply that im-

proved observation quality (i) will improved system performance, (ii) will degrade system

performance, or (iii) will not affect system performance are presented. A computational

study of the use of zero-memory policies in a periodic review single item inventory control

system with inaccurate counts is presented. Numerical results suggests that inventory sys-

tems with high holding cost levels tend to benefit more form improved inventory counts than

inventory systems with lower holding cost levels. A natural extension for future research is

the behavior of finite-memory policies in this context.

Chapter 3 investigates the maximum value of improving demand observability for periodic-

review, single-product inventory systems with unobserved lost sales and Markovian demand.

A partially observed Markov decision process model for this system is developed. An al-

gorithm for determining an optimal policy and three computationally attractive heuristics

based on a sub-optimal design are presented. A methodology based on the analysis of two

extreme cases of the model is used to bound the value of improving observability. A compu-

tational study demonstrates the technique, and shows that the bound on profitability gain

varies from 2% to over 30% depending on problem characteristics. The sub-optimal design

presented in this chapter may overestimate the value of improved demand observability

when the inventory holding cost rate is high, since the decision of ordering the maximum

possible demand after a certain number of consecutive stockouts may lead to high holding
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costs. An interesting future research topic is to consider alternative suboptimal algorithms

that may mitigate this effect by slowly increasing the ordering quantity each period a stock-

out is observed, up to a maximum value.

Chapter 4 presents an extension of the bounding methodology proposed in Chapter

3 for a two item inventory control system with one way demand substitution. The pro-

posed bounding technique is observed to work fairly well for systems with similar products;

however, in the case of high substitutability and high product dissimilarity, the proposed

technique appears to overestimate the value of improved demand observability. Numerical

results suggest that systems with higher levels of substitution tend to benefit more from

improved demand observability than systems with lower levels of substitution. In future

research, it would be interesting to consider the effect of improved demand observability in

systems with two way substitution.

Chapter 5 presents a two-item inventory system with one way substitution. The system

presented assumes deterministic demand, no backlogging, periodic instantaneous replenish-

ment and stochastic substitution. It is shown that a decision rule that minimizes the single

period cost function, when applied at every decision epoch over the infinite horizon, is an

optimal (myopic) policy for the infinite horizon problem. An in-depth examination of the

single period cost function is therefore presented. An algorithm for determining an order-up-

to decision rule that minimizes the single period cost function is developed and conditions

that imply that the single period cost function is convex in both inventory levels are de-

termined in order to reduce the computational demand of the algorithm. A definition of

increased substitutability is presented, and it is shown that increased substitutability never

increases optimal expected total discounted cost. The problem presented in this chapter

assumes stochastic one way substitution and deterministic demand. Future research could

consider systems that faced not only stochastic substitution but also stochastic per period

demand.
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