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SUMMARY

The ubiquitous nature of software demands that software is released without

faults. However, software developers inadvertently introduce faults into software dur-

ing development. To remove the faults in software, one of the tasks developers perform

is debugging. However, debugging is a difficult, tedious, and time-consuming process.

Several semi-automated techniques have been developed to reduce the burden on the

developer during debugging. These techniques consist of experimental, statistical,

and program-structure based techniques. Most of the debugging techniques address

the part of the debugging process that relates to finding the location of the fault,

which is referred to as fault localization. The current fault-localization techniques

have several limitations. Some of the limitations of the techniques include (1) prob-

lems with program semantics, (2) the requirement for automated oracles, which in

practice are difficult if not impossible to develop, and (3) the lack of theoretical basis

for addressing the fault-localization problem.

The thesis of this dissertation is that statistical causal analysis combined with

program analysis is a feasible and effective approach to finding the causes of software

failures. The overall goal of this research is to significantly extend the state of the art

in fault localization. To extend the state-of-the-art, a novel probabilistic model that

combines program-analysis information with statistical information in a principled

manner is developed. The model known as the probabilistic program dependence

graph (PPDG) is applied to the fault-localization problem. The insights gained from

applying the PPDG to fault localization fuels the development of a novel theoretical

framework for fault localization based on established causal inference methodology.

xiii



The development of the framework enables current statistical fault-localization met-

rics to be analyzed from a causal perspective. The analysis of the metrics show that

the metrics are related to each other thereby allowing the unification of the metrics.

Also, the analysis of metrics from a causal perspective reveal that the current statis-

tical techniques do not find the causes of program failures instead the techniques find

the program elements most associated with failures. However, the fault-localization

problem is a causal problem and statistical association does not imply causation.

Several empirical studies are conducted on several software subjects and the results

(1) confirm our analytical results, (2) demonstrate the efficacy of our causal tech-

nique for fault localization. The results demonstrate the research in this dissertation

significantly improves on the state-of-the-art in fault localization.

xiv



CHAPTER 1

INTRODUCTION

1.1 Motivation

The pervasiveness and increase in complexity of software in our lives requires that

software developers engineer high-quality software. However, software development

is a human process and developers inadvertently introduce faults into software. Ac-

cording to the National Institute of Standards and Technology (NIST), software faults

costs the U.S. economy an estimated 59.5 billion dollars a year [66]. The process by

which faults are located and fixed when they cause failures is called debugging, and

it is one of the ways of improving the quality of software. However, debugging is a

difficult and time consuming process that is often performed manually. One of the

important activities of debugging is fault localization, which is the task of finding

the locations of causes of the software failures. Because fault localization is a labo-

rious and time-consuming task, automated techniques have been developed with the

goal of reducing the burden on developers during debugging. Such automatic fault-

localization techniques will lead to quicker bug fixes and higher software quality.

1.2 Existing Fault-Localization Techniques

In recent years, a considerable number of fault-localization techniques have been de-

veloped. These techniques include statistical and machine-learning techniques (e.g.,

[1, 14, 15, 37, 38, 42, 43, 70]), slicing techniques (e.g., [2, 18, 28, 69, 74]), and state-

altering techniques (e.g., [16, 35, 72, 73]). Figure 1 shows the time line of the de-

velopment of the techniques. The horizontal axis shows approximately the year the

technique was developed and the vertical axis shows the level of improvement of each

1



Figure 1: Time line of major fault localization approaches.

approach. Research in several published results indicate that statistical techniques in

many cases perform better than slicing and state-altering techniques in terms of the

amount of code the developer must examine to find the fault. However, research is

still ongoing in each of the areas.

1.2.1 Statistical and Machine Learning Techniques

To locate the fault, statistical fault-localization techniques require execution data

usually consisting of information about both passing and failing executions. The

execution data typically contain the coverage of program entities and the outcome

(success or failure) of the program. To determine which program entity is responsi-

ble for a given failure, the techniques assign a suspiciousness score to each program

entity; this score is a quantity that measures the likelihood that a particular entity

is responsible for the failure. The techniques rank the program entities based on the

suspiciousness scores. The program entities are ordered in decreasing order of suspi-

ciousness scores for the developer to examine because the assumption is that faulty

program entities will have higher scores than non-faulty program entities.

2



Jones, Stasko, and Harrold developed a fault-localization technique called Taran-

tula, and Jones and Harrold [37] compared it to other fault-localization techniques

that existed at the time. Tarantula consists of both a statistical component and a

visualization component. The statistical component consists of a metric that Taran-

tula uses to rank statements in a program. The intuition is that statements executed

primarily by failing test cases are more likely to be faulty than statements executed

primarily by passing test cases. Tarantula also provides a visualization component

that presents the results of the statistical component graphically to the developer us-

ing different color schemes. Abreu, Zoeteweij, and van Gemund [1] applied the Ochiai

metric to the fault-localization problem; they also conducted a number of studies that

compare different statistical fault-localization metrics. Their results show that the

Ochiai metric performs better than the Tarantula metric in certain cases. Lucia and

colleagues [44] perform an extensive set of empirical studies that compare many sta-

tistical fault-localization metrics. Lucia and colleagues use the Tarantula metric and

the Ochiai metric as the baselines in their studies. They found that the Tarantula

and Ochiai metrics perform almost the same. The also found that the other statistical

metrics did not perform as well as the Tarantula or Ochiai metrics. Liblit and col-

leagues [42] introduced the Cooperative Bug Isolation (CBI) approach to debugging.

The goal of the technique is to gather dynamic information from programs executing

in the field for debugging. The metric used by the CBI approach places an emphasis

on the association between a predicate being true and program failure. Liu and col-

leagues [43] also introduced a technique called SOBER, which addresses a limitation

of CBI by analyzing whether a predicate is true or false. The intuition behind Liu and

colleagues’ technique is that there is an underlying statistical distribution governing

the correct and incorrect executions and that the greater the divergence between the

correct and incorrect statistical distributions with respect to a predicate the more

relevant the predicate is to the fault. Wong and colleagues [70] present a statistical

3



technique that is based on the assumption that different test cases contribute differ-

ently if computing the suspiciousness of a program entity. Wong and colleagues assign

different weights to different sets of test cases and then estimate the suspiciousness

of statements in the program.

Jiang and Su [36] contend that the statistical techniques that use predicates as

program entities may be ineffective when the fault is not associated with a predicate.

Jiang and Su present a machine-learning technique that uses feature selection, cluster-

ing, and branch prediction to construct faulty control-flow paths that contain enough

contextual information to help the developer understand and locate the faulty pro-

gram entity. Cheng and colleagues [15] present a fault-localization technique based

on using discriminative graph mining to extract the top subgraphs that may con-

tain the fault. The intuition behind their work is that fault-localization techniques

that provide the developer with a ranked list of program entities do not provide the

developer with enough contextual information. Burnell and Horvitz [13] use belief

networks (Bayesian networks [49]) for finding the location of faults in mainframe

assembler programs. Their technique constructs belief networks using information

obtained from experts in their targeted domain. A limitation specific to their tech-

nique is that the information used to construct the belief networks can be expensive to

obtain and fraught with inaccuracies. Naish, Lee, and Ramamohanarao [48] present

a model-based analysis of many statistical metrics and find that many of the metrics

are similar in performance. They also provide optimal ranking metrics that can be

used for fault localization regardless of the number of test cases.

In general, all these statistical fault-localization techniques have several limita-

tions. First, the techniques ignore the semantic relationships between program entities

that are potentially induced by syntactic dependences [56]. For example, most of the

techniques ignore variable definitions and where they are used in programs. Second,

although the goal of statistical techniques is to find the cause of program failures the
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techniques are actually estimating the program entity most correlated with failure.

However, statistical correlation does not imply causation [31, 68]. Third, the statis-

tical techniques do not provide any theoretical basis for fault localization. Therefore

it is difficult to evaluate the efficacy of the techniques and which technique to use for

fault localization.

1.2.2 State-Altering Techniques

State-altering techniques alter the states of an executing program to attempt to isolate

the location of the faulty program entity. Zeller [72] developed the delta debugging

technique, which requires one passing and one failing execution that are identical in

terms of the program paths. The intuition behind this technique is that any difference

between the two identical executions is probably the cause of the failure. The goal

of delta debugging is to isolate the differences between passing and failing executions

by swapping states between the passing and failing execution until the smallest state

difference that causes the program to fail is found. This small state difference (δ) is

the cause of the failure.

Zhang, Gupta, and Gupta [73] developed a variant of delta debugging called pred-

icate switching that also alters the states of predicates during program execution.

Given a failing execution, the goal of predicate switching is to find the predicate that

if switched (i.e., from false to true or true to false) causes the program to execute

successfully. Zhang, Gupta, and Gupta call such predicates critical predicates. The

technique computes a bidirectional slice from the critical predicate to find the faulty

statement. The intuition behind the technique is that the program entity that caused

the failure will be in the bidirectional slice. The limitation of predicate switching

is that the slice can contain many program entities. Moreover, unlike the statistical

techniques, predicate switching does not provide a ranking of the program entities.

Jeffrey, Gupta, and Gupta [35] introduce another variant of delta debugging, value
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replacement, that alters the states of variable values at program statements. Their

technique subsumes the predicate-switching technique. Given a failing execution, the

goal of the technique is to systematically alter the variable values at statement in-

stances in the execution one at a time, and determine whether the output of the

execution changes from failure to success. If there is an output change from failure to

success then an Interesting value mapping Pair (IVMP) has been found. Unlike the

predicate-switching technique, value replacement provides a ranking of program enti-

ties and presents it to the developer. Burger and Zeller [12] combine delta debugging,

record and replay of failing executions, and slicing to localize the fault statements.

The first limitation of state-altering techniques is that they do not deal with the

problem of semantic consistency because by altering a program state, the techniques

do not guarantee that the new execution is an actual execution. Here, actual exe-

cution means that there is an input that can produce that execution. For example,

if a memory location in a passing execution is replaced with one from a failing exe-

cution, there is no guarantee that the memory location will be valid in the context

of the passing execution. Delta debugging [72] attempts to deal with the semantic-

consistency problem by using memory graphs. A memory graph is a program state,

which consists of all values and variables in a program but also represents operations

such as pointer dereferencing. None of the other techniques handle this problem. The

second limitation of state-altering techniques is that they require the execution of the

program each time a state is altered. However, repeated executions of the program

can be expensive. The third limitation of state-altering techniques is that they re-

quire the presence of an oracle (ideally automated) that is queried to determine the

outcome of the executing program every time a state is altered and the program is

executed. In practice, it is difficult to develop automated oracles and the absence

of oracles can increase the burden on the developer during fault localization if the

developer must act as an oracle.
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1.2.3 Slicing Techniques

The goal of program slicing is to find the set of program entities that potentially

affects the computation at a given program point (slice criterion). There are two

kinds of slicing techniques: static program slicing and dynamic program slicing. In

static slicing, the slice set contains program entities that may affect the computation

at a given program point whereas in dynamic slicing, the slice set contains program

entities that actually affect the computation at a given program point.

Weiser [69] defined program slicing and applied it to debugging. The drawback

of Weiser’s technique is that the slice set often contains many program entities (in

some cases the whole program). The developer is thus, forced to examine many pro-

gram entities. Agrawal’s thesis [2] presents a number of dynamic-slicing algorithms

for fault localization. Gyimóthy, Beszédes, and Forgács present relevant slicing [28],

an extension of dynamic slicing. Relevant slicing extends dynamic slicing by adding

to the slice computed by a dynamic slicing program those entities that may have af-

fected the slice criterion had those program entities been evaluated differently. Zhang,

Gupta, and Gupta [74] present a technique that uses a threshold to prune the back-

ward slice computed for a particular program entity. By pruning the backward slice,

their technique can reduce the size of the computed slice set.

The first limitation of the above slicing techniques is that they do not account

for the strength of the dependences between program entities and how likely each

program entity is the cause of the failure. The second limitation of these techniques

is that the slice sets can sometimes be very large. The third limitation is that the

techniques do not provide the developer with information on how to start searching for

the fault. The fourth limitation is that the techniques only compute program entities

that are associated with failures instead of finding program entities that caused the

failure.

DeMillo, Pan, and Spafford present a slicing technique called critical slicing [18]
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and apply it to fault localization. Critical slicing combines the statement deletion

mutation operator technique with Executed Static Program Slicing (ESPS) to produce

a slice set containing fewer program entities. The slice set computed by ESPS is the

set of statements in a static slice that are executed when the program is executed

with a given test case. To determine the impact of a statement s in the ESPS slice

set, their technique executes the program with s deleted from the program (using the

statement-deletion-mutation-operator technique). If the statement does not have an

impact on the failure of the program, it is removed from the slice set. The technique

inherits the limitations of the slicing and state-altering techniques.

1.2.4 Other Fault-Localization Techniques

Static-analysis based fault-localization techniques (e.g., [20, 21, 24, 32]) have been

developed. These technique rely on specifications of potential faults to find potentially

faulty program entities. Engler and colleagues [20] present a technique that enables

the incorporation of program rules and checkers into a compiler. The checkers are used

by the compiler to determine whether the program violates the rules. An example

of a rule is “never to use memory that has been freed”. In later work, Engler and

colleagues [21] extend their previous work [20] by automatically collecting sets of

programmer beliefs from the source code instead of manually specifying programming

rules. Hovemeyer and Pugh [32] present a technique based on bug patterns for finding

the location of faults in Java programs. Bug patterns are error-prone coding practices.

Java codes that conform to the bug patterns are flagged as errors through the use

of bug-pattern detectors. Their technique is similar to Engler and colleagues’ work

in spirit. However, it is specifically applicable to Java programs. Flannagan and

colleagues [24] also present the ESC/Java technique. Their technique provides an

annotation language in which the developer can express design decisions formally.

ESC/Java then checks the annotation against the actual program and reports any
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inconsistencies in the program.

The limitation of fault-localization techniques that rely on specifications of faults

is that it is difficult, if not impossible, to provide the specifications of all faults that

can occur in software. For example, the techniques are ineffective against semantic

faults because semantic faults cannot be specified easily. Also, the techniques produce

large numbers of false positives, which serve as a deterrent to using the techniques. In

general, determining whether a program contains a fault is an undecidable problem.

Hangal and Lam [29] present a technique called DIDUCE that uses dynamic invari-

ants to automatically detect potentially faulty program statements. The technique

initially hypothesizes a strict set of invariants and as the program executes relaxes the

invariants as violations are detected. Their technique essentially combines anomaly

detection and fault localization. The limitation of their technique is that an anomaly

at a program statement does not imply that the statement is faulty. Their technique,

however, adds significant overhead to the executing program and also it is prone to

producing many false positives.

Renieris and Rice [60] present a fault-localization technique that uses one passing

and failing execution to find the faulty program statement. Given a passing and failing

execution that are similar their technique computes the set difference between the

two executions. The intuition is that the result of the set difference consists of faulty

statements. The limitation of their technique is that the set difference mostly contains

statements that are associated with the failure instead of the statement that caused

the failure. Their technique is similar to slicing in that the developer potentially

must examine many statements before locating the fault. Another limitation of their

technique is that it provides no direction as to how to search for the faulty statement.

Empirical results have shown that current statistical techniques perform significantly

better their technique.

Banerjee and colleagues [8] present a fault localization technique that assumes
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the availability of a golden (non-faulty) implementation. Given a fault as the slicing

criterion, their approach computes the dynamic slice from the criterion for both the

golden implementation and the faulty program. The weakest precondition, which

is a conjunction of predicates, is also computed in conjunction with the dynamic

slices for both programs. The weakest preconditions for the two programs are then

compared and if there is a predicate in one formula that is not implied in the other

formula that predicate is marked as suspicious. The limitation of their approach is

that they require the existence of a golden implementation of the faulty program.

Barnejee and colleagues’ technique improves on the technique, DARWIN, introduced

by Qi and colleagues [57]. Given two program versions (where one of versions is a

stable version and the other version a modification of the stable version) DARWIN

computes the path conditions executed by the failing execution for both the versions

using dynamic symbolic execution. Differences in the path conditions are then marked

as suspicious. DARWIN is able to deal with branch errors whereas Banerjee and

colleagues’ approach is able to handle both branch and assignment errors. Jose and

Majumdar [39] introduce a technique that constructs a boolean formula in conjunctive

normal form using a failing test case and the faulty program. The boolean formula is

then partially solved using MAX-SAT solver to find the set of possible clauses that if

altered will fix the failing program. Their approach is expensive and also it is difficult

to determine whether their approach will work on more complex faults instead of

faults such as off-by-one errors.

1.3 Summary of Limitations

The limitations exhibited by statistical, slicing, and state-altering techniques reveal an

information gap between the slicing techniques and the statistical fault-localization

techniques. The slicing techniques use program dependence information for fault

localization. Statistical techniques use statistical information derived from passing
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and failing executions for fault localization and ignore program dependences. State-

altering techniques do not use any statistical or program dependence information

but instead rely on the computation that occurs at a program entity and how that

computation affects the failure of the program.

1.4 Thesis Statement

This dissertation presents a novel approach to statistical fault localization that signif-

icantly improve on the state-of-the-art by addressing the problem from a statistical

causal-analysis perspective. The dissertation addresses several limitations of statisti-

cal, slicing, and state-altering fault-localization techniques. The thesis statement is

the following:

Statistical causal analysis combined with program analysis is a feasible and ef-

fective approach for finding the causes of software failures.

1.5 Contributions

This dissertation makes the following five contributions to the body of knowledge in

software engineering:

1. The probabilistic program dependence graph (PPDG): A novel program struc-

ture that combines program dependence graphs with statistical information

derived from program executions to fascilitate arbitrary probabilistic reasoning

over program behaviors. Empirical results that demonstrate the effectiveness

of algorithms that utilize the PPDG.

2. A theoretical causal framework for fault localization that combines program-

analysis information with causal inference methodology for observational stud-

ies;
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3. A unification of the metrics used in current statistical fault-localization tech-

niques and an assessment of the limitations inherent in the metrics from a causal

perspective;

4. Fault-localization techniques based on the causal framework that use different

combinations of program-analysis information;

5. Empirical studies on several software subjects that demonstrates the effective-

ness and practicality of the causal framework.

The first contribution of the research is a probabilistic program dependence graph

(PPDG), which is a probabilistic representation of a program that augments program

dependence graphs with statistical information, and thus, leverages the strengths of

both static and dynamic analysis of programs for effective fault localization. The

PPDG provides a unifying framework that enables arbitrary reasoning (probabilis-

tic or causal) over a program’s behavior. The dissertation demonstrates empirically

the effectiveness of algorithms that utilize the PPDG and in general the benefits of

combining statistical information with program dependence graphs. The second con-

tribution of the research is the first theoretically-based statistical fault-localization

technique that actually addresses the fault localization problem from a causal perspec-

tive. This contribution was motivated by insights gained from the PPDG. Because

the approach is theoretically motivated, it provides developers with guarantees that

cannot be provided by current statistical techniques. For example, by providing a

theoretically-based approach this research will ensure that the results produced are

not susceptible to severe external validity problems. By providing a theoretically-

motivated approach, the research provides the foundation upon which to build future

fault-localization techniques. This contribution will extend the current state of the art

in automatic software fault localization by providing more accurate fault-localization

results. More accurate fault localization will reduce the time spent by developers
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during debugging, which, in turn, will lead to higher software quality. The third con-

tribution of the research is an analysis of current statistical fault-localization metrics

from a causal perspective. The research shows that the metrics are similar to each

other thereby unifying the metrics and providing insights to the limitations inherent

in the metrics. The insights provided by the unification and inherent limitations of the

metrics will direct future techniques to avoid pitfalls of the current techniques. The

fourth contribution of the research is a demonstration of the importance of combining

control dependences and data dependences in the causal model. This contribution

bridges the gap that exists between fault-localization techniques that rely solely on

statistical information and fault-localization techniques that rely solely on program

analysis information.(e.g., slicing techniques).

The fifth contribution of the research presents empirical results that demonstrate

the feasibility and efficacy of this research for finding the causes of software failures.

1.6 Overview of the Dissertation

Chapter 2 presents the necessary background material to understand the remaining

chapters. Chapter 3 discusses the probabilistic program dependence graph (PPDG),

a novel model that demonstrates in a principled way the importance of combining

statistical information with program-analysis information. The PPDG is applied to

the problem of fault localization and results are presented and discussed. Chapter 4

discusses a novel causal framework for finding the causes of software failures and also

discusses how models can be instantiated from the framework. Chapter 5 presents an

analysis of current statistical fault-localization metrics that unifies the metrics from

the perspective of the causal framework. Empirical evidence is also presented that

supports the analysis. Chapter 6 discusses a classical technique called matching and

how it is used in conjunction with the causal framework for effective causal analysis.

Finally, Chapter 7 presents the conclusion, merit, and future work of this dissertation.
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CHAPTER 2

BACKGROUND

This research builds on work in the areas of probabilistic graphical models [11], Pearl’s

Structural Causal Model [53], Neyman and Rubin’s potential outcome model [51, 62],

and program analysis [22]. This chapter presents the necessary background material.

2.1 Dependences and Dependence Graphs

This section presents the different types of dependence graphs used in this work. The

dependence graphs provide structural abstractions of a program.

Definition 1. A directed graph Gd is a pair (N,E) where

1. N is a finite set whose elements are called nodes or vertices, and

2. E is a finite set consisting of pairs of nodes called directed edges.

If (u, v) is a directed edge in E, then there is an arrow from u to v. v is said to be

a direct successor of u and u is said to be a direct predecessor of v. The out-degree

of a node n in Gd is the number of edges leaving n. Two nodes u and v are said to be

adjacent if there is an edge between them.

Definition 2. A path of length k from node n to n′ in Gd is a sequence < v0, v1, ..., vk >

such that n = v0 and n′ = vk, and (vi−1, vi) ∈ E for i = 1, 2, ..., k.

A path p = < v0, v1, ..., vk > in Gd forms a cycle if v0 = vk.

Definition 3. A directed acyclic graph is a directed graph with no cycles.

Definition 4. A control flow graph (CFG) for a program P is a directed graph

Gcfg = (N,E, ns, ne, ̺) where
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(a) Procedure Max. (b) CFG of Max.

(c) PDG of Max.

Figure 2: Function max with its control flow graph (CFG) and pro-
gram dependence graph (PDG).

1. N is a set of nodes representing statements and predicates in P,

2. E is a set of directed edges representing the flow of control between statements

in P,

3. ns ∈ N is the entry to P and has no predecessors,

4. ne ∈ N is the exit from P and has no successors, and

5. ̺ is a function that maps E to true (T) or false (F)—“outcomes of predicates”,
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or ǫ (̺ : E → {T, F, ǫ}).

Figure 2(a) shows a procedure1 Max, which prints the maximum of two integers.

The left column of Figure 2(a) shows the line numbers for the procedure and the right

column shows the statements. Figure 2(b) shows the control flow graph. Each node

in the control flow graph corresponds to a statement in the program; a node is labeled

with the statement’s line number. For example, node 1 represents the statement at

line 1. Nodes labeled ENTRY and EXIT represent the entry to and exit from

the program, respectively. Edges between nodes in the control flow graph represent

the flow of control in Max. Node 3 is a predicate node and has two outgoing edges

labeled “T” for true and “F” for false. If the condition at the statement at line 3 in

the program evaluates to true, edge (3,7) is taken; if the condition evaluates to false,

edge (3,4) is taken.

Definition 5. A node u in Gcfg dominates a node v in Gcfg if and only if

1. every path from ns (program entry) to v contains u and

2. u dominates itself.

Definition 6. A node v in Gcfg post-dominates a node u in Gcfg if and only if

every path from u to ne (program exit) contains v.

For example, in Figure 2(b) node 3 dominates nodes 4, 5, 6, 7, and EXIT and

node 3 post-dominates nodes 1, 2, and ENTRY .

Definition 7. A node n2 in Gcfg is control dependent on node n1 with label L

(“T” or “F”), if

1. there exists a path p from n1 to n2 in Gcfg,

2. n2 post-dominates every node in p except n1, and

1We will use procedure and program interchangeably.

17



3. n2 does not post-dominate n1.

The definition means that node n1 has two outgoing edges and all paths to the

program exit along one edge contain n2 and at least one path along the other edge

does not contain n2. For example, in Figure 2(b) nodes 1, 2, 3, and EXIT are

control dependent on node ENTRY with labels ”T” and nodes 4, 5, and 7 are

control dependent on node 3.

Definition 8. A node n2 is forward control dependent on a node n1 if n2 is

control dependent on n1 and n2 does not dominate n1.

Intuitively, forward control dependences are control dependences that can be real-

ized during the execution of a program without necessarily executing the dependent

node (n2) more than once.

Definition 9. In a control flow graph Gcfg, node n2 is data dependent on node n1,

if

1. n1 defines a variable v,

2. there is a path in Gcfg from n1 to n2 that does not redefine v, and

3. n2 uses v.

For example, in Figure 2(b), nodes 3 and 4 are data dependent on node 1 and

node 7 is data dependent on node 2. A program dependence graph is defined using

control dependence and data dependence [22].

Definition 10. A program dependence graph (PDG) is a directed graph whose

nodes are the nodes of the Gcfg and the edges between the nodes represent control and

data dependences.

Figure 2(c) shows the program dependence graph of Max. The nodes in the graph

are labeled with the line numbers of the statements in Max. The solid edges represent

control-dependence edges and dashed edges represent data-dependence edges.
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Definition 11. The dynamic program dependence graph (Dynamic-PDG) is

a directed graph constructed from a set of program executions in which nodes repre-

sent executed statements and edges represent executed control dependences and data

dependences.

Definition 12. A statement s1 is a dynamic forward-control-dependence pre-

decessor of s2 if s1 is a forward control-dependence predecessor of s2 in the Dynamic-

PDG.

The Dynamic-PDG, which is a subgraph of the PDG, is similar to the graph

obtained with Agrawal and Horgan’s [3] technique (Approach 1) for dynamic slic-

ing. However, the latter is created using one execution whereas the Dynamic-PDG

described here is created using a set of executions.

Definition 13. The dynamic forward-control-dependence subgraph is a subgraph of

the Dynamic-PDG that contains only forward control-dependence edges.

2.2 Dependency Networks

In this section, we present dependency networks. Dependency networks [30] are anno-

tated graphs that capture the probabilistic relationships between random variables.

Various kinds of probabilistic inferences (e.g., prediction) can be performed on the

graph using sampling-based algorithms.

Definition 14. A dependency network [30] is a triple (S,G,Ω) where S represents

a set of random variables, G = (N,E) is a possibly cyclic directed graph, and Ω

represents a set of conditional probability distributions. N and E are the set of nodes

and the set of directed edges in G, respectively, with nodes in G corresponding to

random variables in S and edges in G representing dependences among the random

variables.
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A

C

D
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P(A | D)
P(B)

P(C | A, D)

P(D | B, E)

P(E | C, D)

Figure 3: An example of a dependency network.

Definition 15. Two random variables Xi and Xj are said to be conditionally in-

dependent given Xk, if the probability distribution of Xi does not depend on Xj given

that the value of Xk is known, that is, P(Xi|Xj, Xk) = P(Xi|Xk).

Suppose S = {X1, · · · , Xn} is a set of random variables. Each node in G corre-

sponds to a variable Xj ∈ S, and directed edges between nodes represent dependences

between the variables in S. Intuitively, the structure of G captures the way in which

the variables in S are related to each other. In this discussion, we use Xj to denote a

random variable and its corresponding node in G. The set Pa(Xj) (parents of node

Xj) is the set of nodes Xi for which there is an edge (Xi, Xj) in G. A node in a de-

pendency network is required to be conditionally independent of its nondescendants,

given the states of its parents. We assume each Xj has a set of mutually exclusive dis-

crete states x = {x1, · · · , xk}. Thus, Xj cannot assume two states at the same time.

Each node Xj in G has a conditional probability distribution, P(Xj|Pa(Xj))∈ Ω, re-

lating the states of Xj to the states of its parents Pa(Xj). Conditional probability

tables are used to represent the conditional probability distributions. The parameters

of the network are the probabilities in the conditional probability tables, which are

estimated from data.

Figure 3 shows an example of a dependency network that consists of five nodes

(random variables): A, B, C, D, and E (i.e., S={A, B, C, D, E}). The figure also shows

the conditional probability distributions for each node. The conditional probability
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distribution for A, B, C, D, and E are P(A | D), P(B), P(C | A, D), P(D | B, E),

and P(E | C, D), respectively. The nodes in the graph are conditionally independent

of their non-descendants given their parents (i.e., the graph satisfies the Markov

condition [49]). For example, node E is conditionally independent of {B} given its

parents {C, D}.

2.3 Potential Outcome Framework

Many everyday activities in which people are engaged involve thinking causally; ask-

ing “what if” questions. For example, “will a particular diet product cause me to lose

weight.” In computer programs, we are interested in answering causal questions such

as “what caused the program to fail” or “what is causing the program to run slowly”.

To answer such causal “what if” questions, several models have been developed. The

potential outcome model is one such model. The potential outcome model of causality

was pioneered by Neyman [51] and Rubin [62] and it has been influential in a number

of fields, including economics, epidemiology, and social science [46]. For the purpose

of exposition, we shall use a binary causal variable but the model is applicable to

multi-causal variables. We first define a few terms.

Definition 16. A treatment is an intervention an investigator may apply to a set

of units to assess its effects relative to no intervention (i.e., the control).

Definition 17. A unit is a person or object on which the treatment is applied to

assess the effects of the treatment or no treatment.

Definition 18. The potential outcome is the potential response of a unit to treat-

ment or no treatment.

For a binary causal variable, the potential-outcome model defines two states to

which each unit (member) of the population could be exposed; the states are called

treatment and control. These states correspond to the values of a causal random
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variable, which we denote by T (treatment variable):

T =















1, for treated units

0, for untreated units

(1)

For example, suppose a researcher wants to investigate the effects of class attendance

on test scores. Under the potential outcome model the causal variable indicates class

attendence and the potential outcomes are test scores. The causal variable T has two

states: “attend class” and “do not attend class” where the treatment state is “attend

class” and the control state is “do not attend class”. The units in this example are

students. The state of a unit i is represented by ti. If i is treated then ti = 1, if i

is untreated then ti = 0. Also, treated units are said to be in the treatment group

and untreated units are said to be in the control group. The relation between the

observed outcome (Y ) and the potential outcomes (Y 1, Y 0) of units exposed to either

the treatment state or control state is:

Y = Y 0 + (Y 1 − Y 0)T (2)

Y =















Y 1, if T = 1

Y 0, if T = 0

(3)

Equation (2) provides a compact representation of the observed outcome (Y ) and

the two potential outcomes: Y 1 and Y 0. The random variables Y 1 and Y 0 represent

the population level potential outcomes for the treatment group (attend classes) and

control group (do not attend classes), respectively. The population-level estimates

are estimates that are derived from the entire population as opposed to being derived

from a subset of the population. We represent the actual outcomes for a treated unit

i and an untreated unit as y1i and y0i , respectively. If i is treated (i.e, attend class)

then y0i is referred to as a counterfactual because it represents what the test score
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would have been had unit i not attended classes. Similarly, if unit i does not attend

classes (i.e, Y 0 = y0i ) then (y1i ) represents what i’s test score would have been had i

attended class. For a given unit i Equation (2) is:

yi = y0i + (y1i − y0i )ti (4)

From Equation (4), the causal effect for unit i is the difference y1i − y0i . Equation

(4) also shows that for a given unit i it is not possible to observe both outcomes y1i

and y0i at the same time; this problem is referred to as the fundamental problem of

causal inference [31, 46]. The inability to observe both outcomes means that it is not

possible to compute the unit-level causal effect of a unit i. For example, if a student

attends class the researcher can only know what the test score is under treatment

but the researcher cannot know what the test score would have been had the student

not attended class (control). Although it is not possible to compute unit-level causal

effects, average treatment effects or average causal effects can be estimated. (We

use “mean” and “average” interchangeably.) There are two approaches by which

average treatment effects are estimated: through randomized controlled experiments

or through observational studies. We discuss randomized-controlled experiments and

then observational studies.

2.3.1 Randomized Controlled Experiments

Randomized controlled experiments are considered the “gold standard” for estimating

treatment (causal) effects. In a randomized experiment, the experimenter randomly

assigns units to the treatment state and control state. Each unit should have nonzero

probabilities of being assigned to both treatment and control; that is, the assignment

mechanism must be stochastic. In our class attendance and test scores example, ev-

ery student should have a nonzero probability of being assigned to attending class.

An example of a random assignment mechanism is for the experimenter to choose

P (ti = 1) = 1/2; that is each unit has equal chance of being exposed to either

23



treatment or control. When assignment of members to treatments are random the

treatment variable T is independent of the potential outcomes; the treatment assign-

ment is considered ignorable [46] and the treatment and control groups are considered

exchangeable.

(Y 1, Y 0) ⊥⊥ T (5)

Random treatment assignments tend to ensure that the treatment and control groups

are balanced. This balance means that the units in the treatment group have similar

characteristics to units in the control group. Additionally, if the units are assigned

randomly then knowing whether a unit is assigned to treatment or control provides

no information about the outcomes (y1i ) or (y
0

i ) of the units. Equation (6) presents

the average treatment effect under random treatment assignment (here we assume

that the population size is infinite and there is no estimation error).

τ = E[Y 1]− E[Y 0] (6)

Equation (7) shows the population-level estimate of the sample average treatment

effect.

τ = E[Y |T = 1]− E[Y |T = 0] (7)

where E[·] denotes the expectation operator. In practice, the population size is finite

and average treatment effect is computed from a sample of the population. Suppose

an observed sample of S units is selected from a population of size N where N is

large and S = S1 +S0 where S1 and S0 are the number of units in the treatment and

control groups, respectively. Equation (8) shows the sample version of the average

treatment effect.

τsample =
1

|S1|

∑

i∈S1

yi −
1

|S0|

∑

i∈S0

yi (8)

The sample average-treatment effect is computed by exposing some units from the
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population to treatment and control groups and taking the difference between the

outcomes. The average treatment effect is then the effect each unit would experience

if exposed to the treatment state. In our example, some students are randomly

assigned to attend class (S1) or not to attend class (S0). The average difference in

test scores of the two groups is then the sample average treatment effect.

The right side of Equation (7) consists of two components, which are the population-

level estimates of their sample level counterparts in Equation (8). The sample

treatment effects converge in probability to their population-level treatment effects,

which is given in Equations (9) and (10). In statistics, a sequence of random vari-

ables {Xn} converges to X (true value of the random variable) in probability if

lim
i→∞

P (|X −Xi| ≥ ε) = 0, where ε is some error.

1

|S1|

∑

i∈S1

yi
p
−→ E[Y |T = 1] (9)

1

|S0|

∑

i∈S0

yi
p
−→ E[Y |T = 0] (10)

The first component E[Y |T = 1] of Equation (7) represents the average potential

outcome of the units exposed to the treatment state and E[Y |T = 0] represents the

average potential outcome of the units exposed to the control state.

Although using randomized controlled experiments is the ideal approach for es-

timating average treatment effects, in practice it is often not possible to perform

randomized experiments (e.g., because of ethical issues). For example, the experi-

menter cannot force students to attend or not to attend class. Therefore, researchers

must rely on data from observational studies to estimate average treatment effects.

2.3.2 Observational Studies

The purpose of observational studies as defined by Cochran [17] is to explain cause

and effect relationships from data for which it is not feasible to use randomized

experiments. An observational study differs from a randomized experiment in that
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the investigator has no control over the assignment mechanism. Units in the treatment

or control group may have ended in the groups based on a variety of factors. The

factors may include a common cause of the treatment (T ) and the outcome (Y ). To

estimate causal effects from observational studies, researchers must deal with those

factors known as confounding covariates (or confounders) when estimating causal

effects in an observational study.

Definition 19. A confounding covariate or confounder is a variable that influences

both the treatment variable (T) and the outcome variable (Y).

If confounders are not accounted for when estimating the average treatment effect

in observational studies, Equation (7) becomes a biased and inconsistent estimate

of the average treatment effect as shown in Equation (11). In our class attendance

example, factors such as socio-economic backgrounds, age, and gender of the students

can be considered confounders because they might dictate who attends class.

τbiased = E[Y 1|T = 1]− E[Y 0|T = 0] (11)

SupposeN is potentially infinite and π is the proportion of units assigned to treatment

then 1 − π is the proportion assigned to control. Equation (12) shows a weighted

decomposition of the average treatment effect (τ).

τ = {πE[Y 1|T = 1] + (1− π)E[Y 1|T = 0]}

− {πE[Y 0|T = 1] + (1− π)E[Y 0|T = 0]} (12)

By performing some algebraic manipulations, the bias inherent in τbiased is shown in

Equation (13),

τbiased = τ + {E[Y 0|T = 1]− E[Y 0|T = 0]}

+ (1− π){E[Y 1 − Y 0|T = 1]− E[Y 1 − Y 0|T = 0]} (13)
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The two components on the right side of Equation (12) show the bias inherent in

Equation (11). The first component {E[Y 0|T = 1] − E[Y 0|T = 0]} is referred to as

the baseline bias [46] or selection bias [5]. The baseline bias is the difference in mean

potential outcome of units exposed to treatment had they not been exposed to the

treatment and the mean potential outcome of units not exposed to the treatment.

The second source of bias is (1 − π){E[Y 1 − Y 0|T = 1] − E[Y 1 − Y 0|T = 0], which

is referred to as the differential treatment-effect bias. This bias is the result of the

difference in the treatment effects between those in the treatment group and those in

the control group. For example, suppose students who attend class have higher test

scores, there are three possible reasons. The first reason is that students who attend

classes may attain high test scores; this is represented by the average treatment effect

τ . The second reason is that students who attend class may naturally have high

test scores had they not attended class (maybe high intelligent quotient (IQ)); this

is represented by the baseline bias. The third reason is that students who attended

classes may attain high test scores than students who did not attend classes had the

students attended classes; this is represented by the differential treatment-effect bias.

In practice the most important bias is the baseline bias; if τbiased is to be unbiased

and consistent the treatment (T ) must be independent of the outcome (Y ). To esti-

mate average treatment effects from observational data, the conditional independence

assumption is employed [5].

Definition 20. The conditional independence assumption (CIA) also known as se-

lection on the observables asserts that conditional on a set of confounding covariates

(X), the treatment (T ) is independent of the potential outcomes (Y 1, Y 0).

(Y 1, Y 0) ⊥⊥ T | X (14)

Equation (14) reads: the potential outcomes are independent of the treatment T given

a set of covariates X. CIA brings some of the properties of randomized experiments
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to bear on observational studies by ensuring that the units involved in the causal

analysis have similar characteristics, ensuring that the data is balanced. Therefore

for an observational study, Equation (12) is represented as,

τ = {πE[Y 1|X,T = 1] + (1− π)E[Y 1|X,T = 0]}

− {πE[Y 0|X,T = 1] + (1− π)E[Y 0|X,T = 0]} (15)

If the set of covariates X is not sufficient to render T independent of Y , then from

Equation (15) the bias of the average treatment effect in observational studies is,

τbiased = E[Y 1|X,T = 1]− E[Y 0|X,T = 0]

= τ + {E[Y 0|X,T = 1]− E[Y 0|X,T = 0]}

+ (1− π){E[Y 1 − Y 0|X,T = 1]− E[Y 1 − Y 0|X,T = 0]} (16)

If conditioning on a set of covariates X is sufficient to render T independent of Y ,

then Equation (16) becomes,

τ = E[Y 1 | X,T = 1]− E[Y 0 | X,T = 0]

= E[Y 1 | X]− E[Y 0 | X] (17)

Because E[·|X,T ] = E[·|X] the baseline bias and the differential treatment-effect bias

evaluates to zero.

2.3.3 Regression and Causality

In practice, a regression model is sometimes used to estimate the average treatment

effect in observational studies. Equation (18) shows a linear regression model that

can be used to estimate the average treatment effect (τ), assuming that Y and T are

conditionally independent given X and that the model is correct.

Y = α + τT + βX + ε (18)

In the regression model, Y represents the potential outcome variables Y = (Y 1, Y 0),

T is the treatment variable, X is a set of covariates, α is an intercept, τ and β are
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coefficients of T and X respectively, and ε is an error term that is uncorrelated with

T . A linear model like Equation (18) is by no means the only choice, or necessarily

the best choice for estimating the average treatment effect. Some other alternatives

include a logistic regression model [11], and very sophisticated nonparametric and

semiparametric models [34].

2.4 Structural Causal Model

Causal structures are at the heart of Pearl’s Structural Causal Model (SCM), be-

cause they are used to clearly represent both (1) the causal assumptions that permit

statistical techniques to be used with observational data to make inferences about

causality, not just about associations, and (2) changes such as treatments and exter-

nal interventions.

2.4.1 Causal Graphs and Models

Definition 21. A causal graph is a directed acyclic graph G whose nodes V repre-

sent random variables (corresponding to causes and effects) and whose edges represent

causal relationships.

An edge Xi → Xj in G with i 6= j indicates that Xi (potentially) causes Xj .

Each random variable Xi ∈ V has a probability distribution P (Xi), whose form may

or may not be known. (We denote the values of random variables by corresponding

lowercase letters, that is Xi’s value is represented by xi.) Variables without parents

in the causal graph are termed exogenous variables whereas variables with parents

are termed endogenous variables.

Figure 4 is an example of a causal graph with five nodes S,X, Y, V, and Z. Given

a causal graph, there are three basic patterns of causal relationships that can exist

between any three connected random variables. The three patterns determine how

a random variable causally affects another random variable. Figure 5 shows the

29



Z

X

S

Y

V

Figure 4: Causal Graph

three patterns: mediation (chain), mutual dependence (fork), and mutual causation

(collider). In Figure 5(a) the variable X affects Y because X causes Z and Z causes

Y . X and Y are unconditionally associated and Y is rendered independent of X if

the value of Z is fixed (i.e, Z = z). In Figure 5(b) variables X and Y share a common

cause Z. X and Y are unconditionally associated, however X and Y are rendered

independent of each other if the value of Z is fixed. In Figure 5(c), variable Z has

two causes X and Y . This particular structure is different from the others because

X and Y are conditionally associated given that the value of Z is known.

All causal effects associated with the causal model M = (G, P ) are identifiable

(can be estimated) if M is Markovian, which means that each random variable Xi

is conditionally independent of all its nondescendants, given the values of its par-

ents (immediate predecessors) PAi in G (parental Markov condition) [53]. If M is

Markovian then the joint distribution of the random variables can be factored as

follows:

P (x1, x2, ..., xn) =
∏

i

P (xi|pai) (19)

Here, the probability distribution P is compatible with G in that the independences

expressed in G are admitted in P . Pearl and Verma [55] proved thatM will satisfy

the parental Markov condition if it corresponds to a functional causal model, in the

sense that for each node Xi ∈ G, the relationship between Xi and its parents can be
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Figure 5: Three main causal structures given three nodes X, Y , and
Z.

described by a structural equation of the form

xi = fi(pai, ui) (20)

Here fi, which represents a causal process, may be any function, and for i = 1, ..., n the

random variables Ui, which represent random errors due to unobserved variables, are

independent of each other. Equation (20) is also known as a functional causal model.

(If Xi has no parents, we write xi = fi(ui).) Put another way,M is Markovian if it

represents functional relationships among a set of random variables and if any external

sources of error are mutually independent. For the purposes of causal inference, the

functions fi and the distributions of the error variables Ui need not be known. In

this sense,M is nonparametric. Moreover, the Ui need not be explicitly represented

in G. For example, the causal model in Figure 4 is Markovian therefore the joint

distribution factors into P (s, v, x, y, z) = P (y|s, x, z) ·P (z|s, v) ·P (x|v, z) ·P (s) ·P (v).

2.4.2 Back-door Criterion

Suppose the causal effect of variable X on Y in Figure 4 is to be estimated, then

the causal effect will be biased because of the presence of covariates V and Z (i.e.,

variables that influence both the cause (X) and the effect (Y )). To facilitate the

estimation of a causal effect without bias, Pearl introduces the concept of the Back-

Door Criterion. Pearl’s Back-Door Criterion [53] defines, in terms of causal graphs,

the characteristics that make a set of confounding covariates sufficient to adjust for
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confounding bias. Before presenting the Back-Door Criterion, we must first define the

concepts of “blocking” and “d-separation” [53]. Note that, contrary to usual directed

graph terminology, this definition refers to causal graph “paths” whose arrows (edges)

may be directed either forward or backward along the path.

Definition 22. A set S of nodes in a causal graph G is said to block a path p if

either (1) p contains a chain U → M → V or a fork U ← M → V whose middle

node M is in S, or (2) p contains at least one collider U → M ← V such that the

middle node M is not in S and no descendant of M is in S. If S blocks all paths

from A to B, it is said to d-separate A and B.

Pearl showed that if S d-separates X and Y then X and Y are conditionally

independent given S, that is, P (Y |X,S) = P (Y |S). For example in Figure 4, the

variable V is d-separated from Y given {X,Z, S}. Conditioning only on {X,Z} does

not d-separate V from Y because by conditioning on Z, V and Y become dependent

because Z is a collider and the path V → Z → S → Y becomes open.

Definition 23. A set S of nodes satisfies the Back-Door Criterion relative to a

pair of nodes A, B in a causal graph G if

1. No node in S is a descendant of A; and

2. S blocks every path between A and B that contains an edge into A.

Similarly, if A and B are two disjoint subsets of nodes in G, then S is said to satisfy

the Back-Door Criterion relative to A, B if it satisfies the criterion relative to any

pair Ai ∈ A, Bj ∈ B.

The name of the Back-Door Criterion comes from condition (2), which requires

that paths that enter A through the “back door” be blocked. For example in Figure

4, to estimate the causal effect of X on Y all back-door paths from X to Y must be

blocked. There are four back-door paths from X to Y : {X → Z → Y }, {X → Z →
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S → Y }, {X → V → Z → Y }, and {X → V → Z → S → Y }. To block all the

back-door paths the sets {V , Z, S} or {Z, S} must be conditioned on.

The Back-Door Criterion unifies a number of strategies including conditioning,

stratification, and matching [46]. In general if a set of variables blocks all back door

paths in a causal graph between a treatment indicator T (X is the treatment indicator

in Figure 4) and an outcome variable Y , then those paths do not contribute to the

association between T and Y [46]. Conditioning on the covariates that block all back-

door paths, the average treatment effect of T upon Y can in principle be estimated

without confounding bias. In practice, the causal model may be contingent, and one

may not be certain that a given set of covariates blocks all back-door paths between

T and Y .
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CHAPTER 3

PROGRAM DEPENDENCES AND STATISTICAL

INFORMATION

A variety of graphical models have been used in software-engineering applications

to abstract relevant relationships between program elements, and thereby, facilitate

program analysis and understanding. These models include control flow graphs, call

graphs, finite-state automata, and program dependence graphs. Graphical models

produced by static analysis generally indicate that certain occurrences are possible at

runtime (e.g., control transfers, calls, state occurrences, state transitions, and infor-

mation flows), whereas models produced by dynamic analysis indicate what actually

does occur during one or more executions. However, commonly used graphical models

of internal program dynamics do not support making inferences about the likelihood

of a particular program behavior. The lack of support severely limits their utility

for reasoning about the causes and effects of inherently uncertain program behaviors,

such as runtime failures.

Program dependence graphs (PDGs) [22], which have proven useful in software-

engineering applications, such as testing [10], debugging [69], and maintenance [26],

model potential semantic dependences [56] between program elements. However, they

do not model the strengths of any corresponding statistical dependences between the

program elements. Probabilistic graphical models have been useful in several fields

(e.g., medicine [25] and robotics [67]) because of their ability to model both the pres-

ence of certain dependences between variables of interest and the way in which the

variables are probabilistically conditioned on other variables. A probabilistic graph-

ical model derived from a program dependence graph provides a natural framework
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Figure 6: Steps in the construction of a PPDG.

for modeling both the presence of dependences and their statistical strengths.

In this chapter, we show how augmenting program dependence graphs with sta-

tistical dependence (and independence) information in the principled way provided

by probabilistic graphical models [47] can substantially increase the utility of pro-

gram dependence graphs in some software-engineering applications. The probabilistic

model captures the conditional statistical dependence and independence relationships

among program elements in a way that facilitates making probabilistic inferences

about program behaviors. We call this model a Probabilistic Program Dependence

Graph (PPDG). The technique produces the PPDG for a program by augmenting its

program dependence graph automatically. The technique associates a set of abstract

states with each node in the PPDG. Each abstract state represents a (possibly large)

set of concrete nodes states, in a way that is chosen to be relevant to one or more

applications of PPDGs. Each node has a conditional probability distribution that

relates the states of the node to the states of its parent nodes. The technique esti-

mates the parameters of the probability distribution by analyzing executions of the

program, which are induced by a set of test cases or captured program inputs.

The ability of PPDGs to facilitate probabilistic reasoning about program behaviors

makes them potentially valuable for software-engineering tasks. For example, (1) the

PPDG can be used as a knowledge base from which contextual information can be

generated to facilitate program understanding (2) To reason about the likely causes

of software failures, and to enable software testing tools generate useful test cases.
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In this dissertation, we focus on the fault-localization problem. We present evidence

indicating that PPDGs can be useful for fault localization. Intuitively, PPDGs are

potentially well suited for finding the causes of software failures because they can

indicate how a failing execution differs from successful ones, both structurally and

statistically.

3.1 The Probabilistic Program Dependence Graph

The probabilistic program dependence graph (PPDG) is a general statistical model of

a program that combines a program’s program dependence graph (PDG) and statisti-

cal information obtained from dynamic analysis of the program. The model captures

the conditional statistical dependence and independence relationships among program

statements. In theory, the model facilitates arbitrary probabilistic reasoning about

program behaviors, such as reasoning about cause and effects of program failures.

There are different types of probabilistic program dependence graphs that can be

constructed based on probabilistic graphical models. In this work, we construct the

PPDG by transforming the PDG of a program into a dependency network [30]. A

dependency network is used because it permits directed cycles, which are present in

the PDGs of typical programs because of loops. Henceforth, the terms “loop” and

“cycle” are used interchangeably.

The process of producing a PPDG consists of five main steps, as illustrated in

Figure 6. First, the PDG-generation step generates the PDG of the input program

P . Second, the PDG-transformation step takes the PDG, and transforms it by struc-

turally changing the PDG and specifying states at nodes in the PDG, which results in

a transformed PDG. Third, the Instrumentation step inserts probes into P to gather

the execution data needed to estimate the parameters of the PPDG, and produces

the instrumented program P ′. Fourth, the Execution step executes P ′ with its test

suite TP to generate the execution data. Finally, the Learning step generates a PPDG

36



(a) findmax

1

3

2

4

5�6�

7�

8�

10

i�

i�

n�

i�

max�

v�

v�

T�
T�

T�

T�

i�

T�

max�

max�

max�

(b) PDG

Figure 7: Example program findmax (a) and its PDG (b).

based on the execution data and the transformed PDG by estimating the parameters

of the PPDG. The resulting PPDG is formally defined as follows.

Definition 24. A Probabilistic Program Dependence Graph (PPDG) for pro-

gram P is a triple (G,S,Q) where

1. G = (N,E) is the transformed PDG of P, N is a set of nodes representing

statements in P and E is a set of directed edges representing control and data

dependences between statements in P,

2. S : N → states, represents mappings from nodes to states, where states are

discrete abstractions of program behaviors, and

3. Q : N → CPDs, represents mappings from nodes to conditional probability

distributions (CPDs).

We use the example program findmax in Figure 7(a) to facilitate the discussion of

the PPDG. The next Section presents detailed steps of the PPDG-generation process

that are novel for the technique: PDG Transformation and Learning. We refer the
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reader to Ferrante, Ottenstein, and Warren [22] for a detailed discussion on how the

PDG is constructed.

3.1.1 PDG Transformation

During this step, the technique (1) structurally transforms the PDG into a dependency

network by adding nodes and edges to it and (2) specifies the states of the nodes.

We call the graph that results after transforming the PDG the transformed PDG.

The technique assigns to each node in a program’s transformed PDG a finite set of

discrete abstract states, each of which represents a set of related concrete states of the

corresponding statement. Hereafter, the term “state” refers to an abstract state. The

states of a node must be mutually exclusive (i.e., a node cannot be in two different

states at the same time). The technique initially assigns a default state denoted by

the symbol ⊥ to each node. The ⊥ state is the state a node assumes when it has not

been executed. When a node is executed, it is assigned a state distinct from ⊥.

The state of a PPDG node abstracts a part of the program’s state that pertains to

the node when the program executes. There are different ways to model this “local”

concrete state. In this work, we model it in one or both of two ways depending on

whether the node represents a branch predicate, a statement that uses one or more

variables, or both. These characterizations are intended to reflect certain aspects of

a node’s concrete state that are relevant to applications, such as fault localization.

(Other aspects may also be relevant, but we shall not consider them in this work.)

The technique characterizes the state of a node representing a branch predicate

by the outcome of the predicate. The technique characterizes the state of a node

representing a statement s that uses one or more variables by the set of variable

definitions that reach those uses during execution (i.e., by the definitions on which s

is dynamically data dependent.)
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Figure 8: Structurally transforming PDG of findmax.

Definition 25. A statement s is dynamically data dependent on a set of defini-

tions if, during the program’s execution, the definitions actually reach s and are used

at s.

Dynamic data dependences are a subset of static data dependences. The technique

transforms all predicates into simple predicates.

Definition 26. A simple predicate is a predicate of the form “v1 relop v2” where

v1 and v2 are program variables.

The technique assumes that all conditions with compound predicates (i.e., con-

junctions or disjunctions of simple predicates) are transformed into conditions with

simple predicates. If a condition (e.g., “if (v1)”) consists of a single variable (i.e.,

v1), the technique treats the condition as “if(v1 == 0)”. Hence, the predicate for

the condition is “v1 == 0” (i.e., v2 is 0). Transforming all predicates into simple

predicates simplifies the transformation of the PDG.
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3.1.2 Structural Transformation

The technique adds nodes and edges to the PDG in two cases: (1) if a node has two

state components (i.e., a predicate component and a data-dependence component) or

(2) if there are self-loops (i.e., nodes that are control or data dependent on themselves)

in the PDG.

3.1.2.1 Transforming Nodes With Two State Components

The state of a predicate node can be characterized by both a predicate outcome and

a set of dynamic data dependences. Thus, the state of a predicate node may have

two state components (i.e., a predicate component and a data-dependence compo-

nent). If so, the technique introduces a new node into the PDG and assigns the

data-dependence component to the new state (removing it from the predicate node).

The technique makes the new node the immediate successor of the predicate node’s

immediate predecessors, and makes the original predicate node an immediate suc-

cessor of the new node. Note that the predicate node retains its connection to its

immediate successors.

For example, the predicates “i < n” and “v > max” at nodes 4 and 6, respectively,

in Figure 7(b), each have two state components. Predicate “i < n” has two state

components because of the predicate computation at the node and because of its

dynamic data dependences on nodes 1, 2, and 8. Predicate “v > max” has two state

components because of the predicate computation at the node and because of its

dynamic data dependences on nodes 3, 5, and 7. Figure 8(a) shows the results of the

structural transformation of the PDG of findmax that introduces new nodes D4 and

D6.

3.1.2.2 Transforming Self Loops

Loops in a program may cause the program’s PDG to contain self-loops. However,

self-loops are not permitted in the dependency network formalism on which PPDGs
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are based. Therefore, the technique eliminates self-loops from a PDG by introducing

new nodes and edges. A self-loop in a PDG may involve either a control dependence

or a data dependence. If a node n is data dependent on itself, with respect to a

program variable v, the technique removes the self-loop and adds a new node. The

new node is made an immediate predecessor of n. The edge from the new node to n

is a data-dependence edge with respect to variable v. For example, in Figure 7(b),

node 8 is data dependent on itself. The self-loop is removed and a new node L8 is

introduced. L8 is made the immediate predecessor of node 8 (i.e., node 8 becomes

data dependent on L8 with the data-dependence variable being i). Figure 8(b) shows

the result of the self-loop transformation.

If a node is control dependent on itself and the predicate at the node has two

state components, the technique does not add a new node to the PDG. Because

the predicate node had two state components, in the previous step it was already

transformed and a node was added. The technique removes the self-loop and connects

a control-dependence edge from the original predicate node to the node added in the

previous step. For example, Figure 8(a) shows that node 4 is control dependent on

itself. However, a new node is not added because the predicate at the node has two

state components and has therefore already been transformed. Instead, the technique

adds a control-dependence edge from node 4 to node D4. Figure 8(b) shows the result

of this transformation.

Figure 8(b) shows the result of structurally transforming the PDG of example

program findmax in Figure 7(b). This graph structure forms the structure of the

PPDG (a dependency network).

3.1.3 State Specification

The technique models states at each of the nodes after the PDG of the program has

been structurally transformed. The techniques assigns states to all statements in the
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program, which we partition into predicate nodes and non-predicate nodes.

3.1.3.1 Predicate Nodes

The technique models the states at all predicate nodes in the transformed PDG using

predicate outcomes. The predicate outcomes depend on how the program variables

involved in the predicate computation relate to each other in terms of the relational

operators (i.e., <, >, ≤, ≥, ==, and 6=). The technique places the simple predicates

into two categories based on the state assignments.

1. For nodes whose predicates involve primitive variables (e.g., (v1 relop v2) where

v1 and v2 are char, int, float, or double variables) and relop is a relational

operator, the outcomes of the predicate computation are based on how v1 relates

to v2. The technique assigns <, >, ==, and ⊥ as the set of states to each

predicate node whose operands are primitive variables. Given concrete values

of v1 to v2, the technique compares the values to determine the kind of relop

that is satisfied. The relop that satisfies the comparison becomes the predicate

outcome or state of the predicate node. For example, Figure 8(b) represents a

predicate “v > max” at node 6. If v = 2 and max = 7 when node 6 is executed,

the predicate outcome is <.

2. If the variables involved in the predicate are pointers or references, the technique

introduces states that model pointer or reference equality and inequality, and

thus assigns the states ==, 6=, and ⊥ to the node.

3.1.3.2 Non-Predicate Nodes

The characterization of the states of non-predicate nodes that are dynamically data-

dependent on other nodes is based on a data-flow modeling technique proposed by

Laski and Korel [41] as a guide to program testing. Laski and Korel first define the

data environment of a statement s.
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Table 1: Nodes in transformed PDG with corresponding states.

Nodes States

1, 2, 3, 5, L8 ⊤, ⊥
D4 (d1(i), d2(n)), (d8(i), d2(n)), ⊥
4, 6 <, >, ==, ⊥
D6 (d5(v), d3(max)), (d5(v), d7(max)), ⊥
7 (d5(v)), ⊥
8 (d1(i)), (dL8(i)), ⊥
10 (d3(max)), (d7(max)), ⊥

Definition 27. The data environment of a statement s is the set of variable

definitions that reach s, along any paths, and are used at s.

To more precisely model potential dynamic data flows, Laski and Korel introduced

the concepts of elementary data context and data context for a statement s.

Definition 28. An elementary data context of a statement s is the set of defini-

tions that reach and are used at a given occurrence of s along some path.

Definition 29. The data context of a statement s is the set of all elementary data

contexts of s.

To illustrate, consider Figure 8(b), and suppose di(x) denotes a definition of a

variable x at node i. For node 10, the data environment is {d3(max), d7(max)}

because the definitions of max at nodes 3 and 7 are potentially used at node 10. The

elementary data contexts of node 10 are {d3(max)} and {d7(max)} because only one

of the definitions can reach node 10 at a time in an execution. The data context,

which is the set of its elementary data contexts, is {{d3(max)}, {d7(max)}}. For

node D6, the data environment and data context are {d3(max), d7(max), d5(v)}

and {{d3(max), d5(v)}, {d7(max), d5(v)}}, respectively. The data contexts of nodes

D4, 7, and 8 are {{d1(i), d2(n)}, {d8(i), d2(n)}}, {d5(v)}, and {{d1(i)}, {dL8(i)}},

respectively.
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The set of states for a non-predicate node that is dynamically data-dependent on

other nodes corresponds to the data context of that node, augmented with the ⊥

state. (Recall that ⊥ means that the node was not executed in a given execution.) If

a non-predicate node is not dynamically data-dependent on any node, then by default

the technique assigns {⊤} as its data context. Hence, the states of the node are ⊤

and ⊥. The state ⊤ means that during a given execution the node was executed. For

example, nodes 1, 2, 3, 5, and L8 in Figure 8(b) are not dynamically data-dependent

on any node. Hence, the nodes have the states ⊤ and ⊥. Table 1 shows the nodes in

the transformed PDG with their corresponding states.

3.1.4 Learning

During this step, the technique estimates the parameters of the PPDG from the set of

execution data (D = {Dk}
n
k=0

) generated by executing the instrumented program P ′

with its test suite TP . Each Dk ∈ D corresponds to a test case in TP . Different kinds

of execution data (e.g., coverage or trace information) might be used to estimate the

parameters of the PPDG. In this work, the technique uses node-state traces. There-

fore, the execution data D is the set of all node-state traces generated by executing

P ′ with TP .

Definition 30. A node-state trace1 is a sequence of executed nodes, along with

their active states, in the transformed PDG.

The technique uses node-state traces to estimate the parameters of the PPDG so

that the PPDG will capture some of the temporal behaviors of the program. Each

Dk ∈ D is a node-state trace. A node can appear multiple times in the trace, and

the states that the node assumes can be different. To learn the parameters of the

PPDG, we present a batch-learning algorithm, LearnParam (Figure 9). However,

the algorithm can be modified easily to an on-line learning algorithm.

1We denote each node-state in the trace as “(node:state)”.
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Input: D = {Dk}
n
k=1, transformed PDG

Output: PPDG
1 foreach Dk ∈ D do
2 for j = 1 to Length(Dk) do
3 if Pa(Xj) = ∅ then
4 increment n(Xj = xji) by 1, where xji is the current

state of Xj;

5 else
6 increment n(Xj = xji, Pa(Xj) = paji) by 1, where xji is

the current state of Xj; and where paji represents the
current state configuration of the parents of Xj;

7 end

8 end

9 end
10 Compute probabilities of Xj using Equations (21) and (22);

Figure 9: The LearnParam algorithm

3.1.4.1 Estimating Parameters of the PPDG

Learning the parameters of the PPDG consists of estimating conditional probability

distributions, which are represented as tables, called conditional probability tables

(CPTs), because the states of the nodes in the transformed PDG are discrete. Suppose

X = {X1, · · · , Xn} denotes the set of nodes in the transformed PDG. We denote the

ith state associated with node Xj by xji, the parents (immediate predecessors) of a

node Xj by Pa(Xj), and the ith assignment of states to the parents of Xj by paji.

For a node with no parents, the technique estimates the probabilities (p(Xj = xji))

of the nodes as

p(Xj = xji) =
n(Xj = xji)

n(Xj)
(21)

where n(Xj = xji) is the number of times node (Xj) is in state xji across all node-

state traces and n(Xj) is the number of times the node Xj occurs across all node-state

traces. For a node with parents, the technique estimates the probabilities (p(Xj =
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Table 2: Nodes in transformed PDG with corresponding conditional
probability distributions.

Nodes Conditional probability distributions

1, 2, 3, L8 P(1), P(2), P(3), and P(L8)
D4 P(D4 | 1, 2, 8)
4 P(4 | D4)
5 P(5 | 4)
D6 P(D6 | 3, 4, 5, 7)
6 P(6 | D6)
7 P(7 | 5, 6)
8 P(8 | 1, 4, L8)
10 P(10 | 3, 7)

xji|Pa(Xj) = paji)) of the node as

p(Xj = xji|Pa(Xj) = paji) =
n(Xj = xji, Pa(Xj) = paji)

n(Pa(Xj) = paji)
(22)

where n(Xj = xji, Pa(Xj) = paji) is the number of times node Xj and its parents

assume a specific state configuration across all node-state traces, and n(Pa(Xj) =

paji) is the number of times Pa(Xj) = paji across all node-state traces. A state

configuration is a set of states assigned to a set of nodes in the PPDG. The CPTs

of the nodes must satisfy Equation 23, which means that the sum over the states of

node Xj given that its parents are in a specific state configuration paji must equal

1.0.
xjn
∑

s=xj1

P (Xj = s|Pa(Xj) = paji) = 1.0 (23)

3.1.4.2 Learning Algorithm (LearnParam)

Figure 9 shows LearnParam, which estimates the parameters of a PPDG. The al-

gorithm takes as input the set of all node-state traces D (execution data), generated

by executing an instrumented program P ′ with its test suite TP , and the program’s

transformed PDG. The algorithm outputs the PPDG of the program. LearnParam

traverses eachDk ∈ D from the beginning of the node-state trace to the end, updating
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Table 3: Example input for program findmax with corresponding
node-state trace.

Input Node-state trace

n=1, v={1} 1: ⊤, 2: ⊤, 3: ⊤, D4: {d1(i), d2(n)}, 4: <, 5: ⊤,
D6: {d5(v), d3(max)}, 6: >, 7: d5(v), 8: d1(i),
L8: ⊤, D4: {d8(i), d2(n)}, 4: ==, 10: d7(max)

the parent states of nodes and the necessary counts depending on whether a node in

a trace has parents (lines 1 to 9). After LearnParam processes D, it computes the

conditional probabilities of each node in the transformed PDG (line 10). Finally, it

outputs the PPDG. Table 2 shows the conditional probabilities distribution represen-

tations of each node in the transformed PDG of the example program (findmax ). For

example, the conditional probability distribution for node 6 in Figure 8(b) is denoted

as P(6 | D6) because node 6 is dependent on node D6. Thus, the technique estimates

the probabilities of the states of node 6 given the states of its parent node D6.

3.1.4.3 Worst-Case Space and Execution Time of LearnParam

Suppose |N | is the number of nodes in the transformed PDG and Ni represents any

node in the transformed PDG. Suppose Ni has Si states and it has |K| parents

with the k-th parent having Pk states. The space required to store all the CPTs is

O(
∑|N |

i=1
(Si ×

∏|K|
k=1

(Pk))). Suppose the number of edges is |E| then the worst-case

space required to store the PPDG is O(E +N +
∑|N |

i=1
(Si×

∏|K|
k=1

(Pk))). Suppose |T |

represents the total number of test cases then, the worst time required to learn the

CPTs is O(
∑|T |

k=1
Dk).

3.1.4.4 Learning Example

Suppose the example program findmax (Figure 7(a)) receives the following inputs:

(n = 1, v = {1}), (n = 2, v = {1,−1}), (n = 2, v = {−1, 1}), and (n = 1, v = {0}).
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Table 4: CPT of node 6.

D6 6

(d5(v), d3(max))
(d5(v), d7(max))
⊥

<
1/5
1/2
0.0

>
3/5
1/2
0.0

==
1/5
0.0
0.0

⊥
0.0
0.0
1.0

These inputs cause findmax to execute correctly. Table 3 shows an example node-

state trace. The first column shows the inputs to findmax, where n is the number of

inputs that findmax reads at line 5 and v is the set of integers input into findmax. The

second column shows the corresponding trace. To estimate the probabilities in the

conditional probability tables, LearnParam processes the traces from the beginning

of the trace until the end, updating the states of nodes and their parent states.

We use the node-state trace in Table 3 to illustrate how LearnParam esti-

mates the CPT of node 6. Note that node 6 is dependent on node D6 in the

transformed PDG as shown in Figure 8(b). For the node-state trace shown in Ta-

ble 3, the first occurrence of node 6 has the state “>” and the state of node 6’s

parent at that occurrence is (d5(v),d3(max)). Therefore, the algorithm increments

n(6=“>”, D6=(d5(v),d3(max))) by 1. LearnParam continues processing the trace

until it reaches the end. After all the traces have been processed, LearnParam

normalizes the counts to produce the probabilities. Table 4 shows the conditional

probability table for node 6. The first column shows the states of node D6 and

the second column shows the states of node 6. For example, the table shows that

P(6=“>”|D6=(d5(v), d3(max)) is 3/5, which means that the probability of node 6

assuming the state “>” given that node D6 has assumed the state (d5(v), d3(max) is

3/5. As Table 4 shows, the sum of the probabilities for each row in the CPT for node

6 satisfies Equation 23.
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Input: Node-State-Trace: {Xj : xji}
n
j=1, PPDG

Output: Ranked Nodes
1 for j = 1 to n do
2 prob = p(Xj = xji | Pa(Xj) = paji);
3 if prob < lowest prob(Xj) then
4 lowest prob(Xj) = prob;
5 index(Xj) = j;
6 configuration(Xj) = {xji ∪ paji};

7 end

8 end
9 Rank nodes in ascending order, break ties using indices;

Figure 10: The RankCP algorithm

3.1.4.5 Fault Localization Algorithm (RankCP)

Figure 10 shows RankCP, which analyzes a single failing execution at a time, and

ranks nodes in the PPDG according to how likely the nodes are to be faulty. RankCP

ranks nodes based on the conditional probabilities of nodes given the states of their

parent nodes (i.e., p(Xj = xji|Pa(Xj) = paji)), which reflect how the parents influence

their children.

The hypothesis behind RankCP is that RankCP will often detect the first place

in a failing execution where a node (Xj) assumes an unusual state, given the states

of its parents, thus indicating a possible cause of the failure. RankCP ranks a node

Xj that has a state whose probability is low, given the states of Xj’s parents, as

highly suspicious. The choice of this conditional probability as an inverse measure of

suspiciousness is based on preliminary studies we conducted that showed that faults

tend to be associated with low probability nodes. The intuition here is that because

the PPDG is trained with only passing executions, states that are executed mostly

in failing executions will tend have very low probabilities.

For a given program, RankCP inputs its PPDG and a node-state trace generated
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by a failing execution, and it returns a list of nodes ranked from most suspicious to

least suspicious. Each node is also associated with a node-parent state configuration.

RankCP processes a trace from beginning to end. As it processes the trace (line

1), it computes the conditional probability of a node’s current state (xji) given the

current state configuration (paji) of its parents (i.e., p(Xj = xji|Pa(Xj) = paji))

(line 2). Then, RankCP records for each node, the lowest value lowest prob of this

probability (lines 3 and 4). Note that RankCP computes p(Xj = xji|Pa(Xj) = paji)

using the conditional probability table for node Xj. RankCP also keeps track of the

index of a node in the trace in the index variable (line 5). RankCP associates a

node-parent state configuration with a node using the configuration variable (line

6). After RankCP has processed the trace, it ranks the nodes by their lowest prob

values, and if two nodes have the same lowest prob values, the algorithm ranks the

node with the lower index value higher (line 10). The algorithm ranks lower indices

higher because the lower indices potentially indicate where the deviation from normal

program behavior occurred, hence most likely to be faulty. Finally RankCP ouputs

the ranked nodes.

To test the hypothesis underlying RankCP, in Study 1 of Section 3.2.2.2, we com-

pare RankCP to existing fault-localization techniques. In Study 2 of Section 3.2.2.3

and Study 4 of Section 3.2.4.2, we compare RankCP to two variants that respec-

tively use marginal and joint probabilities, instead of conditional probabilities, to

rank nodes.

3.1.4.6 Worst-Case Space and Execution Time of RankCP

This section presents the worst-case space and execution time for the RankCP al-

gorithm. Suppose |N | is the number of nodes in the node-state trace and R is the

cost of sorting the nodes in descending order of probabilities. The execution-time

cost of RankCP is (|2N |+R) with complexity being O(|N |+R). The space cost of
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RankCP is O(|2N |) because the algorithm needs to store the N sorted nodes and

their probabilities. Therefore the space complexity of RankCP is O(N).

3.2 Empirical Studies

In this Section, we demonstrate the importance of combining program dependences

with statistical information by evaluating the effectiveness of the PPDG for fault

localization. To evaluate the PPDG, we implemented it and performed several fault-

localization studies. This section first describes the implementation of the technique

and then presents the fault-localization studies.

3.2.1 Implementation

We used the CIL framework [50] to analyze the source files of C programs. CIL

analyzes ANSI C programs, and it provides tools to compute the control-flow graph

and to extract data-flow information from C programs. The implementation uses

this control-flow graph and the data-flow information to compute the PDG of the

C programs. CIL also transforms all conditions that contain compound predicates

(i.e., conjunctions or disjunctions of simple predicates) into conditions with simple

predicates. If a predicate in a condition consists of a function call, CIL evaluates the

function separately and stores the return value in a temporary variable, which is then

used in the predicate.

The implementation uses CIL to instrument the source files of the C programs.

For each statement, a probe is inserted to capture the data flows from statement to

statement. For each simple predicate, a probe is inserted to capture the values of the

variables used in the predicate. The implementation uses the values of the variables to

compute the predicate outcomes. Note that information about the new nodes in the

PPDG are not in the original trace. The implementation inserts the node information

in the trace and computes predicate outcomes on-the-fly when processing the trace

during the learning phase.
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Table 5: Subjects used for empirical studies.

Program Faulty versions LOC PPDG size Test cases Description

Print-tokens 7 472 930 4130 lexical analyzer
Print-tokens2 10 399 290 4115 lexical analyzer

Replace 32 512 397 5542 pattern replacement
Schedule 9 292 201 2710 priority scheduler
Schedule2 10 301 212 2650 priority scheduler

Tcas 41 141 130 1608 altitude separation
Tot-info 23 440 252 1052 information measure

For this implementation, we did not perform precise pointer analysis. Thus, the

data-flow information the implementation computes is an under-approximation of the

actual data flow in the program. We implemented all the algorithms used to construct

the PPDG in the Objective Caml language.

3.2.2 Fault Localization

To evaluate the effectiveness and efficiency of the PPDG when applied to the fault-

localization problem, We performed two fault-localization studies (presented in Sec-

tions 3.2.2.2 and 3.2.2.3 and one efficiency study (presented in Section 3.2.3). To eval-

uate the effectiveness of the PPDG on larger software subjects, we also performed a

scalability case study (presented in Section 3.2.4). For the fault-localization studies,

we evaluated RankCP’s hypothesis by comparing it to other fault-localization tech-

niques (Study 1 in Section 3.2.2.2). We also evaluated the hypothesis by comparing

RankCP to a ranking algorithm based on marginal probabilities (RankM) and to an

algorithm based on joint probabilities (RankJ) (Study 2 in Section 3.2.2.3 and Study

4 of Section 3.2.4).

3.2.2.1 Empirical Setup

We used the Siemens suite [33] as the subject programs for Studies 1, 2, and 3. This

set of subjects has been used often to study the effectiveness of fault-localization

techniques. Table 5 shows the characteristics of the seven Siemens programs: the
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name of the program, the number of faulty versions, the number of lines of code

(LOC), the size of the PPDG in terms of its nodes, the number of test cases, and a

description of the program. There are 132 faulty versions in total and each program

is associated with a matrix that indicates which test cases pass and which test cases

fail. Each faulty version has exactly one fault.

For the experiments, we omitted eight versions: versions 8, 14, and 32 of Replace,

versions 4 and 6 of Print-tokens, version 9 of Schedule, version 9 of Schedule2, and

version 38 of Tcas. The versions were eliminated because (1) there were no syntactic

differences between the C file of the correct version and the faulty versions of the

program (e.g., change in header file), (2) no traces could be gathered because the

faulty versions had segmentation faults when executed on their test suite, or (3) none

of the test cases failed when executed on the faulty version of the program.

For fault localization, the technique builds a PPDG for each faulty version of

the program. The technique uses the traces of passing test cases to estimate the

parameters of the PPDG. Using passing test cases enables the PPDG to capture the

correct behaviors of the program. After building the PPDG, we ran the RankCP

algorithm on the trace of each failing test case. (Recall that RankCP analyzes a

single trace at a time.)

3.2.2.2 Study 1: Effectiveness of RankCP Compared to Other Techniques

The goal of this study is to compare the effectiveness of RankCP to existing fault-

localization techniques: SOBER [43], Tarantula [38], and Cause Transitions (CT)

[16]. We obtained the fault localization results for Tarantula, CT, and SOBER from

published papers [16, 37, 43].

To compare the effectiveness of RankCP to the other fault-localization techniques,
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Table 6: Percentage of faults found to the percentage of code exam-
ined.

Score RankCP-best RankCP-worst RankCP-median Tarantula CT SOBER

0-1% 41.94 17.74 30.65 13.93 4.65 8.46
1-10% 31.45 27.42 33.06 41.80 21.71 43.84
10-20% 13.71 25.81 17.74 5.74 11.63 21.54
20-30% 2.42 4.84 6.45 9.84 13.18 3.85
30-40% 2.42 4.84 3.23 8.20 1.55 4.62
40-50% 5.65 8.06 2.42 7.38 6.98 0.77
50-60% 1.61 2.42 3.23 0.82 3.10 0.77
60-70% 0.0 5.65 2.42 0.82 7.75 2.31
70-80% 0.8 2.42 0.8 4.10 4.65 2.31
80-90% 0.0 0.81 0.0 7.38 6.98 2.31
90-100% 0.0 0.0 0.0 0.00 17.83 9.23

we use the metric Score used by References [16, 37, 60]. Score represents the percent-

age of nodes 2 that must be examined by the developer to find the fault, assuming

the developer starts from the highest ranked suspicious node and examines nodes

in decreasing order of suspiciousness until the faulty node is found. We use per-

centages instead of raw counts because we would like to present the results of the

various subjects on the same graph. However, raw counts can be computed from the

percentages.

For example, a Score range of 0%−1% means that the developer needs to examine

less than 1% of the code to find the fault. The score is computed as

Score =
| N |

| PPDG |
× 100 (24)

where | N | is the number of nodes examined to find faulty node and | PPDG | is the

number of nodes in the PPDG. Because RankCP analyzes a single failing trace at

a time, we show its best, worst, and median case performances on the set of failing

test cases for each faulty version. For example, for version 31 of Replace, there are

210 failing test cases. For 95.3% (i.e., approximately 200) of the failing test cases,

2We assume that each node corresponds to a single statement in a program.
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less than 1% of the code must be examined to find the faulty statement. For the

remaining 4.7% (i.e., approximately 10) of the failing test cases, between 1% and

10% (exclusive) of the code must be examined. This result implies the best score

range for RankCP for the faulty version is 0%− 1% and the worst is 1%− 10%.

Table 6 shows the percentage of faults found at each score range for each of the

techniques. RankCP-best, RankCP-worst, and RankCP-median represent the best,

worst, and median performance of RankCP, respectively. Under RankCP-best, for

41.94% of the faulty versions, less than 1% of the program must be examined to

locate the faulty statement. Under RankCP-worst, for 17.74% of the faulty versions,

less than 1% of the program must be examined to find the faulty statement. For

RankCP-median, for 30.65% of the faulty versions, less than 1% of the code has to

be examined to find the faulty statement. When less than 1% of the code must be

examined under RankCP-best, the technique is approximately 9, 5, and 3 times more

effective than CT, SOBER, and Tarantula, respectively. Under RankCP-worst, the

technique is approximately 4, 2 and 1.2 times more effective than CT , SOBER, and

Tarantula respectively.

Figure 11 shows the cumulative results of Table 6. The horizontal axis represents

the percentage of a program’s statements that must be examined to find the fault

it contains and the vertical axis represents the percentage of faulty versions that are

found given a score on the horizontal axis. Note that the vertical axis can also be

interpreted as the percentage of faults found if no more than a given percentage of

the program is examined. The legend lists the fault-localization techniques. Figure

11 shows that RankCP-best and RankCP-worst are more effective than CT. This is

significant because RankCP and CT both analyze a single failing execution at a time.
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Figure 11: Cumulative comparison with other techniques on the
Siemens subjects.

3.2.2.3 Study 2: Effectiveness of RankCP Compared to Other Probability Rank-
ings

The goal of this study is to compare RankCP’s effectiveness to RankM and RankJ

algorithms that are based on marginal and joint probabilities, respectively. Intuitively,

RankM indicates the first place in a failed execution where a node assumes a suspicious

state, and RankJ indicates the first place where a node and its parents assume a

suspicious configuration of states. We computed the marginal and joint probabilities

directly from the node-state trace information generated by the passing executions.

We computed the joint probability estimates for nodes and their parents, because

we wanted to capture their joint behavior. For a node (Xj) in a given state xji, we

estimated its marginal probability as

p(Xj = xji) =
n(Xj = xji)

n(Xj)
(25)
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where n(Xj = xji) is the number of times node Xj is in state xji and n(Xj) is the

number of times node Xj occurs across all node-state traces. We also estimated joint

probabilities as

p(Xj = xji, Pa(Xj) = paji) =
n(Xj = xji, Pa(Xj) = paji)

n(Xj , Pa(Xj))
(26)

where n(Xj = xji, Pa(Xj) = paji) is the number of times that the node Xj and its

parents assume a specific state configuration and n(Xj , Pa(Xj)) is the number times

that the node and its parents occur across all the node-state traces.

Figures 12, 13, and 14 show the results of the comparisons between RankCP,

RankM, and RankJ. Figures 12, 13, and 14 show the best, median, and worst per-

formances of the ranking approaches respectively. We used equation 24 to compute

the scores for each approach. As before, the horizontal axes represent the percent-

age of program statements that must be examined to find the fault and the vertical

axes represent the percentage of faulty versions that are found given a score on the

horizontal axes.

As the figures show, RankCP performed best, followed by RankM, with RankJ

being the least effective. RankCP performed best apparently because it often indicates

the first statement where something unusual happened. It may be that the score

metric is somewhat unfair to RankJ. With RankCP and RankM, the developer is

expected to examine one node at a time. But with RankJ the developer is expected

to examine a node and its parents at the same time. RankJ provides more contextual

information than RankCP and RankM, but the score metric does not account for

this. Hence, RankJ seems to be least effective.

3.2.2.4 Relationship between RankCP, RankM, and RankJ

In this section, we explore the relationship between RankCP, RankM, and RankJ. Sup-

pose node Xj is in state xji and its parents Pa(Xj) are in state configuration paji.
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Figure 12: Best cumulative comparison of RankCP, RankM, and
RankJ on the Siemens subjects.
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Figure 13: Median cumulative comparison of RankCP, RankM, and
RankJ on the Siemens subjects.
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Figure 14: Worst cumulative comparison of RankCP, RankM, and
RankJ on the Siemens subjects.

Equation 28 shows the relationship between RankCP and RankJ.

RankCP =
n(Xj = xji, Pa(Xj) = paji)

n(Pa(Xj) = paji)
(27)

=
n(Xj = xji, Pa(Xj) = paji)

n(Pa(Xj) = paji)
×

n(Xj, Pa(Xj))

n(Xj, Pa(Xj))

= RankJ ×
n(Xj , Pa(Xj))

n(Pa(Xj) = paji)

RankCP = RankJ ×
n(Xj , Pa(Xj))

n(Pa(Xj) = paji)
(28)

From Equation 28, n(Xj , Pa(Xj)) = n(Xj). Therefore, Equation 28 is

RankCP = RankJ ×
n(Xj)

n(Pa(Xj) = paji)

RankCP = RankJ ×
n(Xj)

n(Pa(Xj) = paji)
×

n(Xj = xji)

n(Xj = xji)

RankCP =
RankJ

RankM
×

n(Xj = xji)

n(Pa(Xj = paji))
(29)
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Equation 29 shows that RankCP is directly propotional to RankJ and inversely pro-

portional to RankM.

3.2.3 Study 3: Efficiency of the Technique

The goal of this study is to evaluate the efficiency of the technique and to compare

it to the efficiency of other fault-localization techniques. We conducted efficiency

experiments on a 3.2 GHz Intel Pentium-4 PC with 2 GB of memory. We obtained

timings for Tarantula and CT from published results [16, 37]. Note that because

of differences in hardware, the comparing the various techniques may be difficult,

however, the timings still show how efficient our approach can be.

Table 7 summarizes the results of the study. The columns show the programs, the

average time taken to process all traces and build the PPDG, the average computation

time taken by RankCP to analyze a single failing execution, the computation time

of Tarantula, and the average computation time of CT, respectively. All the timings

are in seconds.

As the results show, the time required to process all traces and build the PPDG,

along with the computation time required by RankCP to localize the fault in a given

failing execution, is less than the computation time of CT. For example, for Replace,

the technique requires, on average, less than 6 minutes to process all traces and

build the PPDG. The computation time for CT for Replace is approximately 1 hour.

However, the computation time for RankCP is, on average, 0.0327 seconds. The

timings are signficant because both CT and RankCP analyze a single failing execution

at a time. Of all the techniques, Tarantula is the most efficient. Note that both

RankCP and Tarantula take milliseconds to finish their fault-localization analysis.

Therefore, in practice the improvement in the efficiency of Tarantula might not be

significant from a user’s perspective when compared to RankCP. Note that none of

the implementations have been optimized. Furthermore, differences in computing
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Table 7: Efficiency of technique in seconds.

Program PPDG RankCP Tarantula CT
(Process (Compu- (Compu- (Compu-
traces & tation tation tation
build) time) time) time)

print tokens 846.5 0.2176 0.0040 2590.1
print tokens2 243.6 0.0574 0.0037 6556.5

replace 335.3 0.0327 0.0063 3588.9
schedule 77.3 0.0082 0.0032 1909.3
schedule2 199.5 0.0217 0.0030 7741.2

tcas 1.7 0.0003 0.0025 184.8
tot info 97.6 0.0605 0.0031 521.4

environments (e.g., operating systems and programming languages) might affect the

results. Therefore, the efficiency results should not be viewed as definitive.

3.2.4 Scalability of PPDG

To further explore RankCP’s hypothesis and also the scalability of the PPDG on

larger subjects, we applied the technique to three additional software subjects: Sed,

Grep and Space, and we compared it to RankM and RankJ.

3.2.4.1 Empirical Setup

For the scalability study, we used Sed, Grep and Space. we obtained the subjects

from the Software-artifact Infrastructure Repository [19]. Each of the three subjects

comes with a fault matrix that indicates the test cases that pass and the test cases

that fail.

Sed is a stream editing utility for the Unix Operating System platform that con-

tains 14K lines of code. Sed has seven versions, each with a number of seeded faults

that can be activated individually. For the study, we randomly chose versions 4, 5,

and 6. We activated all faults in the versions individually, which resulted in 14 faulty

versions of Sed. Each faulty version had a single fault. Out of the 14 faulty versions,

we omitted three versions because none of the test cases failed on them. The number
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of test cases was between 360 and 370 for each of the versions.

Grep is a text-search utility on the Unix platform that contains about 10K lines

of code and 146 procedures. Grep has five versions seeded with faults and 470 test

cases. We used three versions of Grep because many of the versions had no failing

executions when their seeded faults were activated.

Space is a software subject developed by the European Space Agency that has

6K lines of code with 136 procedures and 13585 test cases. Space also comes with

different types of test suites. We used testplans.bigcov, which contains 1000 test suites

that achieve branch coverage. We randomly picked a test suite from testplans.bigcov

and executed it on Space. The number of test cases in the test suites selected ranged

from 4312 to 4407. Space also has a total of 38 fault-seeded versions but we used 26

versions for this study because the selected test suites did not expose the faults in

the versions.

For the scalability study, the total number of versions (i.e., of Sed, Grep, and

Space) we used was 40. Also for the study, the technique builds a PPDG for each

faulty version of the program. The technique uses the traces of passing test cases to

estimate the parameters of the PPDG. After building the PPDG, we ran the RankCP

algorithm on the trace of each failing test case. We also computed the results for

RankM and RankJ for each failing test case. (Recall that RankCP, RankM and

RankJ analyzes a single trace at a time.)

3.2.4.2 Study 4: Effectiveness of Technique on Larger Subjects

The goal of this study is to evaluate the scalability of the PPDG on larger subjects and

to further investigate RankCP’s hypothesis when compared to RankM and RankJ.

Tables 8, 9, and 10 show the results of the study for Sed, Grep, and Space,

respectively. The first columns (Faulty Version) for Sed and Grep show which version

of the subjects was used and which fault was activated. For example, V6-F1 for
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Sed means version 6 of Sed was used with the first fault activated. The column

labeled MBT (model building time) gives the time it took to build the PPDG; the

columns labeled RankCP-best, RankCP-worst, and RankCP-median give the best,

worst, and median fault-localization results, respectively, for the faulty versions. We

also computed the best, worst, and median outcomes for RankM and RankJ. Tables 8,

9, and 10 also show the number of nodes in the PPDG that must be examined to find

the faulty statement instead of the percentage of the program that must be examined.

Using the number-of-nodes metric gives us a detailed view of the effectiveness of the

ranking approaches.

Table 8 shows the effectiveness of RankCP, RankM, and RankJ on Sed. As the

table indicates, the ranking approaches were effective in localizing the faults in some

faulty versions of Sed that we examined but not in others. For example, for V5-F2

under RankCP-best only the top two nodes must be examined to find the faulty node.

For the best of the RankM and RankJ rankings, only two and three nodes must be

examined, respectively. Under RankCP-worst and RankCP-median, only 15 and 4

nodes must be examined, respectively, to find the fault. Also under the worst and

median performances for RankM rankings, only 23 and 8 nodes, respectively, must

be examined. For the worst and median RankJ rankings, only 45 and 18 nodes,

respectively, must be examined to find the faulty node. However, for some versions

none of the ranking methods are effective. For example, for V6-F6, the developer must

examine 2093 and 2483 nodes under RankCP-best and RankCP-worst, respectively.

For RankM, the best and worst results are 2215 and 2601 respectively. For RankJ,

the best and worst are 2506 and 2669, respectively.

As Table 9 shows, all three ranking approaches were effective in localizing the

faults in some versions of Grep. For example, for V3-F10 under RankCP-best only

14 nodes has to be examined to find the faulty node. For the best of the RankM

and RankJ rankings, only 5 nodes and 73 nodes has to be examined respectively.
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Table 8: Results of the scalability case study on the Sed subject.

Faulty MBT PPDG RankCP- RankCP- RankCP- RankM- RankM- RankM- RankJ- RankJ- RankJ-
Version (seconds) Size best worst median best worst median best worst median

V4 - F2 1779.91 7049 2 2 2 2 2 2 3 3 3
V5 - F1 713.40 9137 10 429 20 15 353 21 196 1004 471
V5 - F2 723.02 9138 2 15 4 2 23 8 3 45 18
V5 - F3 745.71 9137 264 1370 429 389 1505 542 514 2014 699
V5 - F4 750.13 9138 317 318 317 417 477 417 459 526 459
V6 - F1 614.14 9142 1 143 4 1 238 1 1 334 14
V6 - F2 330.81 9138 7 2941 2015 2 3072 2219 16 1996 1042
V6 - F3 334.24 9143 7 2940 2015 2 3072 2143 16 1964 1091
V6 - F4 735.62 9142 7 7 7 4 4 4 18 18 18
V6 - F5 569.43 9142 1983 2702 2237 2113 2855 2377 2 830 32
V6 - F6 798.47 9137 2093 2483 2247 2215 2601 2366 2506 2889 2669
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Table 9: Results of the scalability case study on the Grep subject.

Faulty MBT PPDG RankCP- RankCP- RankCP- RankM- RankM- RankM- RankJ- RankJ- RankJ-
Version (seconds) Size best worst median best worst median best worst median

V3 - F10 2874.3 9801 14 26 72 5 18 9 73 342 184
V3 - F18 3261.1 9801 573 596 590 1048 1081 1059 1996 2057 2010
V4 - F12 2537.1 9839 97 153 124 88 104 96 248 481 368
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Table 10: Results of the scalability case study on the Space subject.

Faulty MBT PPDG RankCP- RankCP- RankCP- RankM- RankM- RankM- RankJ- RankJ- RankJ-
Version (seconds) Size best worst median best worst median best worst median

V10 532.06 4211 11 263 193 91 138 108 239 402 297
V11 538.63 4211 1301 1775 1458 1371 1824 1526 1462 1911 1640
V12 594.65 4211 1516 1766 1573 1593 1821 1630 131 240 138
V13 541.95 4211 9 39 11 8 78 10 11 246 14
V14 493.04 4210 962 1401 1071 972 1411 1081 1002 1429 1102
V15 385.08 4210 1036 1486 1146 1046 1496 1156 1077 1513 1177
V16 563.36 4211 10 1837 61 7 1871 58 29 1968 105
V17 576.26 4210 106 177 130 253 357 284 518 747 586
V18 593.95 4211 1524 1755 1554 83 91 88 237 270 256
V19 524.86 4213 1 4 1 1 4 1 32 80 47
V20 587.17 4211 1541 1887 1664 1568 1914 1691 8 26 26
V21 578.61 4211 1541 1887 1635 1568 1914 1662 6 24 24
V22 593.53 4206 1 1 1 1 1 1 1 1 1
V23 569.33 4211 2 47 20 61 83 69 5 114 61
V24 555.83 4196 50 171 101 86 316 202 5 545 370
V25 345.56 4209 1 1848 1263 63 1848 1263 1 1890 1281
V26 447.87 4211 886 1155 945 886 1215 945 911 1452 965
V27 613.35 4211 1694 1848 1808 73 106 96 201 340 317
V28 243.80 4211 932 1311 1017 971 1348 1057 215 390 263
V29 564.61 4211 242 328 271 303 394 330 484 644 526
V30 82.34 4211 25 1216 42 23 1216 34 45 1224 61
V31 514.4 4211 24 30 24 60 68 60 134 150 134
V33 592.87 4211 1587 1662 1632 1633 1708 1678 1727 1823 1774
V34 0.024 4211 10 10 10 10 10 10 10 10 10
V35 584.81 4203 1158 1678 1370 61 1678 1369 207 1722 1406
V36 596.33 4211 30 436 433 40 436 433 94 441 434
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With RankCP-worst and RankCP-median, only 72 and 26 nodes must be examined,

respectively, to find the fault. Also with the worst and median outcomes for RankM

rankings, only 18 and 9 nodes have to be examined. For the worst and median

RankJ rankings, only 342 and 184 nodes have to be examined to find the faulty node.

However, for some versions none of the ranking methods were effective (e.g., V3-F18).

Table 10 shows the results of the study for Space. As the table shows, the ranking

approaches were again effective in localizing the faults in some faulty versions of

Space. For example, for V19 with RankCP’s best, worst, and median outcomes, only

1, 4, and 1 nodes have to be examined respectively, to find the faulty node. For V19

under RankM’s best, worst, and median performances only 1, 4, and 1 nodes have to

examined respectively to find the faulty node. Finally, with RankJ’s best, worst, and

median performances 32, 80, and 47 nodes have to examined respectively, to find the

faulty node.

We also compared the cumulative results for RankCP, RankM, and RankJ. For

this comparison, we used the percentage of code examined instead of the number of

nodes examined. Figures 15, 16, and 17 show the best, median, and worst cumulative

comparisons between RankCP, RankM, and RankJ. For the three figures (i.e., 15, 16,

and 17), the horizontal axis represents the percentage of a program’s statements that

must be examined to find the fault it contains and the vertical axis represents the

percentage of faulty versions that are found given a score value on the horizontal axis.

The score was computed using Equation 24. Note that the vertical axis can also be

interpreted as the percentage of faults found if no more than a given percentage of the

program is examined. Overall, RankJ performed better than RankCP and RankM.

However, RankCP performed better than RankM and RankJ between 0% and 1% in

all three figures. Also note that the best, worst, and median cumulative performances

of RankM were better than RankCP but not by a large margin.

The MBT column of Tables 8, 9, and 10 show that the technique can scale to larger
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Figure 15: Best cumulative comparison of RankCP, RankM, and
RankJ on the scalability subjects.

programs—the technique required less than an hour to build the PPDG for each faulty

version of Sed, Grep, and Space. The scalability studies also provide preliminary

evidence that rankings based on the joint probability of a collection of nodes that are

connected in the PDG has the potential of being more useful than rankings based

on only single nodes. Ranking based on joint probabilities can potentially be more

useful because the rankings automatically provide contextual information, which are

useful to programmers during fault localization.

3.2.5 Threats to Validity

There are three main types of validity threats that affect the studies: internal, exter-

nal, and construct.

Threats to internal validity concern factors that affect dependent variables without

the researchers’ knowledge. There is the possibility that there might be errors in the

implementation (specifically, the process of generating a PPDG) that might affect the

experimental results. To address potential errors in the generation of the PPDG, we

compared manually generated PPDGs of smaller subjects to their PPDGs generated
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Figure 16: Median cumulative comparison of RankCP, RankM, and
RankJ on the scalability subjects.
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Figure 17: Worst cumulative comparison of RankCP, RankM, and
RankJ on the scalability subjects.
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automatically by the technique to ensure that the PPDGs match (which they did).

Another threat to internal validity concerns the potential for errors in the experi-

mental results based on the implemented algorithms in the approach. To address the

potential for errors in the experimental results, we manually checked the behavior of

RankCP, RankM, and RankCP on the smaller subjects, and compared the algorithm’s

results to manually computed results to ensure that they matched (which they did).

Threats to external validity occur when the results of the experiments cannot be

generalized. We performed the experiments and case studies on the Siemens suite

and several versions of the Sed, Grep, and Space software. Thus, we cannot claim

that the effectiveness of the approach can be generalized to other software subjects.

However, the Siemens suite has been used in many fault-localization studies and thus,

it provided a way to compare the technique to previous approaches. Also, Sed, Grep,

and Space are real programs, and thus, the studies demonstrate to some extent that

the technique can be effective on real programs. Clearly, additional studies are needed

to determine how well the approach can be generalized. We discuss why the technique

was not successful in Section 3.2.6.

Threats to construct validity concern the appropriateness of the metrics used in

the evaluation. We used the score metric to determine the effectiveness of the fault-

localization results of RankCP, RankM, and RankJ because it is the metric used by

all other fault-localization techniques. The score metric is essentially a ranking-

based metric. However, it is difficult to determine whether it conforms to the way

in which programmers perform fault localization. For example, Parnin and Orso [52]

demonstrated to some extent that some developers do not debug using this top-

down based ranking approach. However, the studies are inconclusive because the

number of developers used were statistically insignificant and also they did not take

into account other exogenous factors such as background of the developers. More

extensive studies are required to determine the appropriateness of the score metric
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for evaluating fault-localization techniques.

3.2.6 Discussion of the PPDG and RankCP

As the empirical results show, the effectiveness of fault localization can be improved

by combining control dependences, data dependences, and some state information

with statistical information. However, the PPDG model has several limitations.

The first limitation is that the PPDG is a probabilistic graphical model of a pro-

gram and therefore fault-localization algorithms such as RankCP that work on the

PPDG can have limitations. The algorithms can be limited because to compute the

causal effects of statements on program failure requires a causal graph, which is a

directed acyclic graph [53]. However, converting the PPDG into an acyclic graph

may result in loss of dependence information, which is likely to affect algorithms that

use the PPDG for fault localization. Also the RankCP algorithm is an associative

algorithm: it finds the program entity most associated with failure. The main is-

sue here is that the problem of fault localization is a causal problem and as such

causal algorithms are required to operate on the PPDG. Using causal algorithms can

significantly improve the fault-localization results.

A second limitation is that it is difficult to scale the PPDG to large software

systems (i.e., software with thousands of statements). The limitation occurs because

the sizes of the CPTs of nodes can be very large depending on the number of prede-

cessor nodes a node has in the program dependence graph and the state abstraction

associated with each of the nodes.

A third limitation that is specific to the current PPDG is that because local pro-

gram states are abstracted to obtain CPTs of manageable size, the resulting statistical

dependences between nodes may not correspond exactly to the dependences in the

PDG. This lack of correspondence could adversely affect applications of the PPDG,

particularly those involving more complex inference algorithms than those employed
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in the case studies.

A fourth limitation of the PPDG that is shared with all statistically-based fault-

localization techniques is its reliance on the test suite. The probability estimates

used in constructing a PPDG are based on the test suite and therefore, reflect the

probability distribution from which it was selected or generated. For example, if

the test cases were captured in the field, the CPTs reflect operational node-state

probabilities. The effect of the test-suite on the effectiveness of fault localization has

received little study, although Yu and colleagues [71] found that when performing fault

localization in conjunction with test-suite reduction, a stratified, vector-based form of

test-suite reduction was superior to statement-based reduction. The accuracy of the

probability estimates used in a PPDG also depends on the effective sample sizes used

to compute them. If the sample size for a particular node is too small, the probabilities

of its states cannot be estimated accurately. Consequently, suspiciousness measures

derived from those estimates may be misleading. One of the features of the PPDG

is that it requires a single failing execution and multiple passing executions and in

practice many passing executions can be obtained.

Finally, the results shows the importance of combining statistical information with

program dependences and program states. However, combining program-analysis in-

formation with statistical information is not sufficient for finding the causes of pro-

gram failures. In the next chapter, we present a causal framework for fault localization

that utilizes the information in the PPDG (although in a different way) to find the

causes of program failures.
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CHAPTER 4

CAUSAL FRAMEWORK FOR PROGRAMS

The fault-localization problem is a causal problem because we seek to find the program

element or elements (e.g., statement(s), function(s)) that caused the program to fail.

According to the causal literature, one of the ideal ways to search for the cause of an

event is to perform a randomized experiment [27, 46]. This randomized-experiment

approach was first proposed by Fisher in his book “The Design of Experiments” [23],

and it has formed the basis of further work in causal analysis in the statistical lit-

erature. Ideally to search for the cause of program failures, experiments should be

performed on programs through the manipulation of program elements. Experimen-

tal manipulation of program elements provides concrete evidence as to whether a

particular program element is responsible for the program’s failure. State-altering

techniques take this experimental approach, however, as we discussed in Chapter 1,

the experimental approach is not always feasible and has serious limitations.

In this Chapter, we develop a novel causal causal framework for programs that

combines program-analysis information [22] with Pearl’s Structural Causal Model [53,

54], and Neyman and Rubin’s potential outcome model [51, 62] to identify the causes

of program failures from data collected from the programs. This approach is purely

observational in nature and as such overcomes the limitations of state-altering tech-

niques. The approach also overcomes the limitations of statistical fault-localization

and slicing techniques because it attempts to find the program elements or elements

that caused the program to fail instead of program elements associated with failure.

Before presenting the framework, we present a motivating example that illustrates

the fundamental problem with statistical fault-localization techniques. We illustrate
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void Proc1() {
1 int x=read(); 1 1 1 1 1 0.50 0.40
2 int y=read(); 1 1 1 1 1 0.50 0.40
3 if( x > y ){ 1 1 1 1 1 0.50 0.40
4 print(x); 1 1 0 0 0 0.60 0.17
5 }
6 if( x != 0 ){ 1 1 1 1 1 0.50 0.40
7 print(y×y); //y+y 1 1 1 0 1 0.60 0.50
8 }
9 }

F P P P F

Figure 18: Procedure with test cases, execution data, and causal-
effect estimates. The error at statement 7 should be y+y.

the fundamental problem inherent in current statistical fault-localization approaches

because as discussed in Section 1, they have been shown through numerous studies

to be more effective than non-statistical approaches. We also provide the formal

definition of the failure-causing effect of a program element.

Definition 31. The failure-causing effect of a program element, ei, is the causal effect

of ei on program failure.

4.1 Motivating Example

We use the procedure (Proc1) in Figure 18 to motivate and explain the development

of the causal framework. Figure 19 represents the dynamic program dependence

graph (Dynamic-PDG) of Proc1. Proc1 reads two integers x and y at lines 1 and

2, respectively, and has an error at line 7. Columns 2 to 6 in Figure 18 show the

statement-coverage information gathered by executing the program on five test cases.

The top row and bottom row from columns 2 to 6 show the test cases (tk) and

their inputs ((x, y)) to the procedure and the outcomes P (pass) and F (fail) of the

procedure, respectively. The value 1 indicates that a statement was covered in a given
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Figure 19: Dynamic-PDG of Proc1.

execution and 0 indicates that it was not covered in that execution. For example,

column 2 shows that the test case, t1, covered all the statements and the procedure

failed.

Suppose we want to find the statement responsible for the failure, an approach will

be to use a heuristic, such as the Tarantula metric by Jones, Harrold, and Stasko [38].

The intuition behind the metric is that statements executed primarily by failing test

cases are most likely to be faulty. The Tarantula metric is

Ta(s) =

fs
f

fs
f

+
ps
p

(30)

where fs and ps are the number failing and passing test cases covering statement

s, respectively. f and p denote the total number of failing and passing test cases,

respectively.

Column 7 in Figure 18 shows the suspiciousness score of statements computed

with the Tarantula metric. As the Figure shows, statements 4 and 7 have the same

suspiciousness score although statement 7 is the faulty statement. Statement 4 has

the same suspiciousness as statement 7 because the suspiciousness scores computed
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by Tarantula can be divided into two main components: the failure-causing effect of

the statement plus a confounding bias.

Ta(s) = Failure-Causing Effect(s) + Confounding Bias(s) (31)

Therefore, to estimate the failure-causing effect of a program element, confounding

bias should be mitigated. The confounding bias is due to the interaction between

program elements. For example, statements 4 and 7 are control dependent on state-

ments 3 and 6, respectively. We provide detailed analysis of the Tarantula metric and

other statistical fault-localization metrics from a causal perspective in Section 5.

4.2 Developing the Framework

The development of our causal framework consists of five main steps. The first three

steps identify the primitives of the potential outcome model [63] (i.e., treatments,

units, and potential outcomes). The fourth step identifies the confounders of a pro-

gram element and the fifth step specifies the causal graph that establishes the direction

of causal edges between variables in the causal framework. Each step is informed by

program-analysis information.

4.2.1 Step 1: Treatment

A treatment in the potential outcome model is an intervention whose effects a re-

searcher would like to ascertain as compared to no intervention. For a program,

the goal is to intervene (e.g., manipulate a program element) in such a way as to

determine whether a program element is the cause of failure.

A program consists of different types of program elements, such as functions,

conditional statements, and assignment statements. The framework accommodates a

potentially infinite number of treatments. For example, runtime events (e.g., coverage

of program elements) that are used in statistical fault localization are numerous, and

all these events can be considered as treatments. However, the treatment should be
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Table 11: Observational data gathered for Statement 4.

Feature Treatment Confounder Outcome
(Unit) (T4) (X3) (Y4)

u1 1 1 1
u2 1 1 0
u3 0 1 0
u4 0 1 0
u5 0 1 1

homogenous. A homogenous treatment is desired because the treatment should be

applicable to all program elements so that failure-causing efffects can be compared

across different program elements.

An example of a treatment is “coverage of a program element.” This treatment

satisfies the homogeneity condition. In general, Equation (32) compactly represents

the treatment states (Te) for a program entity e where Te = 1 implies the treatment

state and Te = 0 implies the control state.

Te =















1, if test covers (e)

0, if test does not cover (e)

(32)

To estimate the failure-causing effect of a program element, units of the program

element (e) should be exposed to the treatment Te = 1 (treatment group) or not

exposed to the treatment Te = 0 (control group).

4.2.2 Step 2: Units

According to the potential outcome model, units are entities on which treatments

are applied. As discussed in Section 2, a unit can either be exposed to treatment or

control but not both. For a program, a set of units is associated with each program

element (e) (i.e., {u1, u2 · · · , un} ∈ e). For our framework, each unit uk corresponds

to a test case tk. Therefore, the total number of units is the total number of test

cases in the test suite.
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Table 11 shows the observational data of statement 4 that is derived from the

coverage information in Figure 18. The subscripts of the variables represent nodes in

the PDG of Proc1. The first through fourth columns represent the units of statement

4, the treatment indicator (specifies whether uk is exposed to treatment state or

control state), confounder of statement 4, and observed outcomes of the various units

when exposed to the treatment or control state, respectively. As Table 11 shows,

statement 4 has five units: two units (u1, u2) are in the treatment group because they

are covered by two test cases (t1, t2) in Figure 18 and three units (u3, u4, u5) in the

control group because the units are not covered by the three test cases (t3, t4, t5) in

Figure 18.

4.2.3 Step 3: Potential Outcomes

According to the potential outcome model, potential outcomes are the potential re-

sponses of units to the treatment. In the framework, each unit (uk) has a response

when it is covered or not covered by a test case (tk). A unit (u) has two potential-

outcome random variables: y1 if u is exposed to the treatment and y0 if u is exposed

to the control. We use the values yp and yf to represent the observed outcomes of

the units; {yp, yf} ∈ R.

For example, suppose u is in the control group, then its observed outcomes are

yf or yp if the program failed or passed, respectively. To facilitate the explication of

our framework, we use population-level potential outcomes Y 1 and Y 0 for a program

element. Note that Y 1 and Y 0 are random variables. Equation (33) provides a

compact representation of the potential outcomes.

{Y 1, Y 0} =















yp ∈ R, if program passed

yf ∈ R, if program failed

(33)

Designing potential outcomes is challenging because the potential-outcome variables

(Y 1, Y 0) should reflect the response of a unit at a given program element and the
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response should be represented by a real value. The potential outcome is a function

that maps the behavior of a unit (uk) to a real-valued space (Y 1(uk) 7→ R. The

challenge comes from having an appropriate real-valued space R to which to map

the potential outcomes. For example, a binary outcome function can be defined by

assigning 1 as the response of uk if the program fails and 0 if the passes.

4.2.4 Step 4: Confounders

As discussed in Chapter 2, to estimate the causal effect without confounding bias,

the potential-outcome variables ({Y 1, Y 0}) should be independent of the treatment

variable (T ). However, it is not certain whether the dynamic (e.g., coverage) infor-

mation gathered from the test cases ensures that potential outcomes are independent

of the treatment. The uncertainty occurs because the coverage of program elements

may have been influenced by other program elements. However, the independence of

the potential outcomes from the treatment can be established if Equation (14) holds.

Equation (14) expressed in terms of a program element (e) is given by Equation (34).

{Y 1

e , Y
0

e } ⊥⊥ Te | Xe (34)

According to Equation (34), the causal effect of covering a program element (e) on

the outcome of a program can be estimated with reduced confounding bias if factors

that affect the treatment and the potential outcomes can be identified in programs.

These factors are referred to as confounders and they are represented by Xe. The

final step in constructing our framework is, in general, to identify the confounders of

a program entity.

The problem of confounding bias arises in programs because of the semantic de-

pendences between program elements induced by syntactic dependences [56]. Finding

confounders of program elements can be tedious because, in general, there can be

many classes of confounders. However, some classes of confounders can be identified
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by relying on information from static or dynamic program analysis. For example,

Podgurski and Clarke [56] showed theoretically that a necessary condition for a state-

ment s1 to semantically influence another statement s2 is for a chain of control and/or

data dependences (syntactic dependences) to exist from s1 to s2. However, a chain

of control and/or data dependences from s1 to s2 is not a sufficient condition for a

semantic dependence to exist between s1 and s2. The syntactic dependences provide

approximate information about how a unit at a given program element is affected

directly or transitively by computations at other program elements.

Based on the theoretical results of Podgurski and Clarke [56], our framework iden-

tifies classes of confounders of a program element by assuming that causal influences

are carried by control and data dependences in a program’s program dependence

graph (PDG). Using only control and data dependences, our framework identifies

two main classes of confounders: confounders induced by control dependences and

confounders induced by data dependences and the values carried by the data depen-

dences. For example in the dynamic program dependence graph of procedure Proc1

shown in Figure 19, statement 7 is control dependent on statement 6 and data de-

pendent on statement 2. The confounders of statement 6 are statement 5 because

statement 6 determines whether statement 7 is executed and statement 2 because

the computation at statement 6 is determined by the value flowing from statement

2. Statements 5 and 2 belong to the control-dependence class and data-dependence

class, respectively.

Also, because each confounder (Xe) influences the treatment and the potential

outcomes through the computations that occur at the confounder, the framework

represents the computations that occur at a confounder using a set of abstract states,

Xe = {x1, x2, ..., xn}, that are discrete and exhaustive. For example, suppose the

abstract state used to characterize the value of a confounder is coverage, then Xe is

1 if the program element is covered and Xe is 0 otherwise.
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4.2.5 Step 5: Causal Graphs

As discussed in Section 2.4.1, causal graphs are at the heart of Pearl’s Structural

Causal Model [53]. Because our framework is based on Pearl’s model, causal graphs

are an important component of our framework. Causal graphs make explicit the di-

rection of the causal relationships between variables (i.e., the direction of causality

between program elements). As mentioned earlier in Section 4.2.4, our framework

assumes that the edges in the program dependence graph are causal edges. For each

program element, our framework constructs a causal graph for that program element

that shows the direction of causal edges between the confounders, program elements,

and potential outcomes. The causal graphs enable our technique to identify con-

founders that introduce spurious associations during causal analysis. These spurious

associations can be mitigated by blocking back doors in the causal graph, which is

tantamount to conditioning on the identified confounders.

For example, in Figure 19, Proc1’s causal influences of program elements upon the

occurrence of failure are carried by Proc1’s program dependences and Ye is associated

with a program element (e) such as an output statement or the exit point of Proc1.

Therefore, any back-door paths from Te to Ye must begin with an edge Te ← pred(e),

where pred(e) is a predecessor of e in the program dependence graph of Proc1. If

considering only control dependences in the program dependence graph, the causal

relationships among Proc1’s program elements and between them and Ye can be

represented by the forward control-dependence subgraph Gfcd of G.

As discussed in Section 2.4.1 of Chapter 2, a causal graph is a directed acyclic

graph but the program dependence graph may have loops. Our framework, transforms

a subgraph of the program dependence graph consisting of the program element (e),

its immediate predecessors, and the potential outcome variable into a causal graph

(directed acyclic graph). The transformation occurs during the instantiation of a

given causal model from the framework. The framework includes only immediate
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Figure 20: The causal graph of any statement s.

predecessors in the instantiated model based on the “d-separation” property from

probabilistic-graphical-model theory discussed in Section 2.4.2. For example, state-

ment 6 is data dependent on statement 1. However, statement 1’s effect on statement

7 is blocked by statement 6 if the state of statement 6 is fixed or known. Using

the “d-separation” property the framework is able to generate concise causal graphs

that facilitate understanding of the causal results. Next, we present an instantiation

of the causal framework, and show how that instantiation is used to estimate the

failure-causing effect of a program element.

4.3 An Instantiation of the Causal Framework

Many statistical fault-localization techniques use control-flow information about pro-

gram elements as the data set from which to compute suspiciousness of program

elements. Techniques that use control-flow information also referred to as coverage-

based fault-localization techniques (CBFL) compute suspiciousness scores in an in-

expensive but imprecise manner. They are imprecise because they do not find the

failure-causing effect of program elements. In this section, we instantiate a causal

model based on control dependences from our causal framework to find the causes of

program failures. We present a causal-effect algorithm based on the causal model.

4.3.1 Control-Dependence Causal Model (Causal-CD)

An instantiation of the causal framework that uses control-flow information generates

a causal model whose causal graphs are based on control-dependence information (i.e.,
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causal edges are control dependences). We call the control-dependence causal model

Causal-CD. The framework generates a causal model based on control dependences

that uses the forward control-dependence predecessor as a confounder in the causal

graph. The attributes of the control-dependence model are

1. Treatment: coverage of a statement

2. Units: test cases

3. Potential outcomes: 1 if the program fails and 0 otherwise

4. Confounders: forward control-dependence predecessor

In choosing the treatment, our framework makes the coverage trigger assumption.

The coverage trigger assumption states that the coverage of a program element is

necessary to trigger a failure if the program element is faulty. The assumption is

not sufficient because executing a faulty statement may not cause an invalid program

state or the invalid program state may not propagate to the program’s output.

A causal graph based on control dependences consists of the treatment indicator

for a program element e, the forward control-dependence predecessor of e (Xe), and

the potential-outcome variable for e (Ye). Figure 20 shows a conceptual causal graph

of any statement in a program. Nodes X, T , and Y represent the control-dependence

predecessor, the treatment variable, and the potential outcome of a statement, re-

spectively. The causal graph in Figure 20 shows that the failure-causing effect of T

on Y along the path T → Y is confounded by X. The presence of the confounder

X causes T to be associated with Y along the path T ← X → Y . However, condi-

tioning on X blocks the back-door path and therefore, the failure-causing effect along

the path T → Y can be estimated accurately. From a program-analysis perspective,

conditioning on X is tantamount to removing the semantic dependence between a

statement and its forward control-dependence predecessor. Removing the semantic
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dependences between statements in a program ensures that the failure-causing effect

of a statement can be estimated as if the program consisted of only that statement.

As discussed in Section 4.2.5, a causal graph is a directed acyclic graph but some of

the control-dependence causal graphs can have loops. For example, in the following

program snippet, statement 2 is control dependent on statement 1, statement 3 is

control dependent on statement 2, and statement 4 is control dependent on statement

3.

1 if (...)

2 while (...){

3 if (...){

4 break;

5 }

6 }

However, there is a control-dependence carried loop from statement 3 to statement 2

because of the break statement. Therefore, statement 2 is control dependent on state-

ments 1 and statement 3; statement 2 has two confounders. The framework eliminates

control-dependence loops when generating Causal-CD by using the forward control-

dependence predecessor (predfcd(e)) of a program element (e) in the program depen-

dence graph as a confounder. The framework uses the forward control-dependence

predecessor because for a statement to be covered, its predfcd(e) must first be covered

Next, we present how we estimate failure-causing effects of program elements using

Causal-CD.

4.3.2 Estimating Causal Effects

Suppose we would like to estimate the failure-causing effect of statement 4 in the

Dynamic-PDG of Proc1 in Figure 19 using Causal-CD. Figure 21 shows, the causal

graph for statement 4. As the graph shows there is a back-door path from statement
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Figure 21: Causal graph of statement 4 in Proc1.

4 through statement 3 to the outcome variable (Y ) (4← 3→ Y ). According to Pearl,

to mitigate the effects of statement 3 on statement 4, the path should be blocked; the

path is blocked by conditioning on statement 3 during the causal estimation process.

Suppose the values of the observed outcomes of a unit uk are represented by the

outcome of the procedure: (yf = 1) and (yp = 0) if the program fails and passes,

respectively. Also, suppose that the state of a confounder is 1 if it is covered by a test

and 0 otherwise. As Table 11 shows, all test cases reach the predfcd of statement 4, and

hence, the confounder (statement 3) has the value of 1 for each test. To demonstrate

the estimation of the failure-causing effect of statement 4, we use Equation (17): X1

denotes the confounder statement 1, {Y 1

2
, Y 0

2
} are the potential outcomes, and T2 is

the treatment applied to statement 2.

τ2 = E[Y 1

4
|X3, T4 = 1]− E[Y 0

4
|X3, T4 = 0]

=
∑

X3

[

∑

Y 1

4

Y 1

4
Pr(Y 1

4
|X3, T4 = 1)−

∑

Y 0

4

Y 0

4
Pr(Y 0

4
|X3, T4 = 0)

]

= Pr(Y 1

4
= 1|X3 = 1, T4 = 1)− Pr(Y 0

4
= 1|X3 = 1, T4 = 0)

= 0.50− 0.3333

≈ 0.17

Suppose conditioning on statement 1 is sufficient to remove all confounding bias

associated with statement 4 then conditioning on statement 1 is sufficient to compute
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the failure-causing effect of statement 4. As the computation shows, the failure-

causing effect of statement 4 is now 0.17. The last column of Figure 18 shows the

failure-causing effects of the statements in Proc1. As the Figure shows, statement 7

is correctly identified as the faulty statement.

In practice, a regression model such as Equation (35) can be used to represent

Causal-CD. The regression model is intended to include a set Xe of confounders that

block all back-door paths in the causal graph between the treatment indicator Te and

the potential-outcome variable Ye.

Ye = αe + τeTe + βeXe + εe (35)

The coefficient τe is the failure-causing effect of covering ei. The failure-causing effect

of program elements can then be used as suspiciousness scores. The linear model in

Equation (35) is by no means the only choice, or necessarily the best choice, for model-

ing the causal effect of a program element on failures. A logistic regression model [11]

is a natural alternative, and sophisticated nonparametric and semiparametric models

have been proposed for causal inference [34]. We chose a linear model as a preliminary

measure to demonstrate the relevance of causal inference to fault localization because

of its simplicity and the availability of fast, robust software and excellent diagnostics

for linear models. The next section presents Causal-CD’s fault-localization algorithm.

4.3.3 Causal Fault-Localization Algorithm

Given the binary outcomes from executing a set of tests yf denoting failure of a test

and yp denoting success and given corresponding program-element coverage profiles,

we propose the following basic approach:

1. For each program element e in a faulty program Q, fit a separate linear model

Me having the form of Equation (35), with the following stipulations:

(a) The outcome variable Ye is yf for a test if it fails and is yp otherwise.
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Input: DCDG, Dobs

Output: Sorted Effects
1 foreach e ∈ DCDG do
2 De = Dobs(e);
3 if predfcd(e) then
4 fit Equation (35) to De;
5 else
6 fit Ye = αe + τeTe + ǫe to De;
7 end
8 effects(e) = τe;

9 end
10 Sort effects in descending order;

Figure 22: The LocalizeFault-DCDG algorithm

(b) The “treatment” indicator Te is 1 for a test if it covers ei and is 0 otherwise.

(c) If e has a forward control-dependence predecessor predfcd(e), then Me has

a single binary covariate Xe, which is 1 for a test if it covers predfcd(e) and

is 0 otherwise; if e has no forward control-dependence predecessor then Me

has no covariates (i.e., Ye = αe + τeTe + εe)

2. For each program element e, use the least-squares estimate τ̂ls,e of the coeffi-

cient τe of Te in Me like a suspiciousness value. That is, rank statements (for

inspection by developers) in nonincreasing order of τ̂ls,e.

Figure 22 shows the fault-localization algorithm, LocalizeFault-DCDG, based on the

control-dependence causal model. LocalizeFault-DCDG takes as input the dynamic

control dependence graph (DCDG) and the observational data (Dobs) for each of the

program elements. Suppose each program element (ei) corresponds to a node in

the control dependence graph. For each e, LocalizeFault-DCDG gets the observa-

tional data for e (De) from Dobs at line 2. If e has a predfcd(e), LocalizeFault-DCDG

fits Equation (35) to the observational data (Line 4) otherwise LocalizeFault-DCDG
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fits a regression model to the observational data of e without predfcd(e) (Line 6).

LocalizeFault-DCDG stores the failure-causing effects of the program elements (Line

8) in effects. After all the program elements have been processed, the failure-

causing effects are sorted in descending order (Line 10) and presented to the devel-

oper. Note that this is by no means an efficient algorithm as the algorithm computes

the failure-causing effect for each program element. A specific optimization that can

be performed is to compute the failure-causing effect of a given control-dependence

region [22] and impute the effect to all program elements in that region. This opti-

mization is possible because all the program elements in the same control-dependence

region have the same forward control-dependence predecessor (confounder) and cov-

erage profiles.

4.3.4 Worst-case space and execution time for LocalizeFault-DCDG

In this section, we present the space and execution-time complexity of the LocalizeFault-DCDG

algorithm. Suppose |DCDG| is the number of nodes in the dynamic control depen-

dence graph, |R| is the cost of fitting the regression models to the observational data,

and S is the time to sort causal effects. The worst-case execution time for the algo-

rithm is O(|DCDG| × |R|+ |S|) because for each program element (e) a call is made

to fit the regression model and also the causal effects are sorted at the end. The

worst-case space required to store Dobs is O(3 × |T | × |DCDG|) because we need to

store the treatment variable, confounding variable, and the outcome variable for each

of the units of a program element. The total number of units of a program element is

T . The space complexity for the DCDG is O(|DCDG|+ |E|), where E is the number

of edges in the dynamic control dependence graph.
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CHAPTER 5

UNIFYING THE FAULT-LOCALIZATION METRICS

This chapter presents the analysis and unification of the most well-known fault-

localization metrics (suspiciousness metrics), from a causal perspective. We analyzed

six metrics: the Tarantula metric [37, 38], the Ochiai metric [1], the Jaccard metric [1],

a metric called the F1-measure, Liblit and colleagues’ Importance (p) metric [42], and

the Wong, Debroy, and Choi metrics [70]. The analyses show that each metric “em-

beds” in some way an estimator for the probability that a program Q fails given that

a program entity e is covered, (i.e., Pr(Q fails| e covered), also denoted as Pr(F | e)

for brevity). Because the techniques use specific program elements, we analyze each

metric based on the program elements used. We represent the output of the metrics

by Scoret, which measures the suspiciousness of a program entity e; the subscript t

represents the technique. Most of the techniques (with the exception of Liblit and

colleagues’ metric) use a statement s as the program element. We analyze each metric

to determine the metric’s properties and relationship to the other metrics and later

unify from the perspective of our causal model.

The following notation characterizes a test suite used for fault localization: n is

the total number of test cases; ne is the number of test cases covering a particular

program element e; p is the total number of test cases that pass (succeed); pe is the

number of test cases that pass and that do not cover e; f is the total number of test

cases that fail; pe is the number of test cases that pass and that also cover e; fe is

the number of test cases that fail and that also cover e; fe is the number of test cases

that fail and that do not cover e. In the probability expressions below, P denotes the

event that a test case passes and F denotes the event that a test case fails. e denotes
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the event that a test case covers the program entity.

5.1 Tarantula Metric

The Tarantula suspiciousness metric [37, 38] is

ScoreTa(e) =

fe
f

pe
p
+

fe
f

(36)

By multiplying the numerator and denominator by f to simplify, we get

=
fe

(

pe
p
× f

)

+ fe

(37)

Suppose the number of test cases that pass and the number of test cases that fail are

equal (i.e., p = f) in the test suite used for fault localization (e.g., because it was

deliberately made equal). Then, the Tarantula metric has a simpler form

ScoreTa(e) ≈
fe

pe + fe

=
fe
ne

(38)

fe
ne

is the sample estimator for the population estimator Pr(F |e).

ScoreTa ≈ Pr(F |e) (39)

Thus, if the number of test-case successes and failures are equal, the Tarantula metric

is simply an estimator for the probability of failure given that a program entity e is

covered.

5.2 Ochiai Metric

The Ochiai metric [1] is

ScoreO(e) =
fe

√

f(fe + pe)
(40)
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Squaring and simplifying Equation (40), we get

=
(fe)

2

f · ne

=
fe
ne

×
fe
f

(41)

(ScoreO)
2(e) =

(

fe
f

)

Pr(F |e) (42)

As the derivations show, the Ochiai metric is a weighted version of the Pr(F | s)

with the weight being

(

fe
f

)

. Program entities are assigned more weight if they are

covered by more failing test cases.

5.3 Jaccard Metric

The Jaccard metric [1, 14] is

ScoreJ(e) =
fe

fe + pe + fe
(43)

Simplifying and dividing the numerator and denominator by ns gives

=
fe

f + pe

=

fe
ne

ne

ne

+
f

ne

=

(

ne

f + pe

)

Pr(F | e)

ScoreJ(e) =

(

fe + pe
f + pe

)

Pr(F | e)

(44)

The Jaccard metric is essentially a weighted version of Pr(F | e) with the weight being
(

fe + pe
f + pe

)

. The key observation here is that f is a constant across all statements

and therefore the suspiciousness of e increases if less passing test cases do not cover

e and more failing tests cover e.
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5.4 Relationship among Tarantula, Jaccard, and Ochiai

There are connections among Tarantula, Jaccard, and Ochiai. To show the con-

nections, we analyze the coefficients of Pr(F |s) in the metrics. Beginning with the

Jaccard metric, suppose ps → 0,

limps→0

(

fs + ps
f + ps

)

=
fs
f

ScoreJ(s) ≈

(

fs
f

)

Pr(F |s) (45)

Equation (45) implies that if the number of passing test cases is significantly less than

the number of failing test cases that cover a given statement s, the Jaccard metric

behaves like the Ochiai metric. Suppose that ps → +∞,

limps→∞

(

fs + ps
f + ps

)

= 1

ScoreJ(s) ≈ Pr(F |s) (46)

Equation (46) implies that if the number of passing test cases that cover a statement

s are far more than the number failing test cases that cover s the Jaccard metric

behaves like the Tarantula metric. Also analyzing the Ochiai metric, if fs → f , the

behavior of the Ochiai metric approximates the Tarantula metric (Equation (47)).

limfs→f

(

fs
f

)

= 1

ScoreO(s) ≈
√

Pr(F |s) (47)

5.5 Cooperative Bug Isolation (CBI) Metric

We analyze Liblit and colleagues’ [42] CBI metric by using concepts and terminology

from the field of information retrievel [45]. Suppose we view a test covering e as being

analogous to a document retrieved with a given query and a test that fails as being

analogous to a relevant document then Pr(F | e) represents precision and Pr(e | F )

represents recall. A standard way of balancing recall and precision when evaluating
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the effectiveness of a query is to use the F-measure [45], which is the (unweighted)

harmonic mean of recall and precision. In the present context, it can be written as

F (e) =
2

1

Pr(e|F )
+

1

Pr(F |e)

(48)

The fault-localization metric named Importance that was defined by Liblit and col-

leagues [42] is based on the F-measure. Liblit and colleagues applied their metric to

program predicates rather than arbitrary statements, and so their metric is not fully

comparable to the suspiciousness metrics described above. Nevertheless, their tech-

nique embeds the measure Pr(F | e) in the Importance metric. For a given predicate

q, Importance(q) metric is

Importance(q) =
2

1

Increase(q)
+

log(fq)

log(f)

(49)

where Increase(q) measures precision as

Increase(q) ≈ Pr(F |q true)− Pr(F |q evaluated) (50)

The first term of this difference is identical to Pr(F |e) if q is true if and only if e is

covered. The second term, denoted Context(q), is a sort of correction, intended to

ensure that q is scored not by the chance that it implies failure, but by how much

difference it makes that the predicate is observed to be true versus simply reaching

the line where the predicate is checked [42]. Increase(q) measures the strength of the

association between a predicate being true and the failure of a program. Increase(q)

shows that CBI metric embeds the estimator, Pr(F |e), in its importance metric.

5.6 Wong, Debroy, and Choi’s Metric

Wong, Debroy, and Choi [70] present three techniques each with its own fault-

localization metric. We analyze the third technique because it addresses the limi-

tations of the two other techniques. The analysis shows that the third technique’s
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metric embeds the estimator, Pr(F | e). The intuition behind the third technique is

that failing and passing test cases contribute differently to the suspiciousness value of

a faulty program entity. For a given program entity e, the technique constructs bins

containing different numbers of failing test cases and passing cases. The number of

failing test cases in the bins is fe and the number of passing test cases in the passing

bins is pe. Different weights are then assigned to each bin with the constraint that

the sum of the weights of the failing test cases that cover e should be greater than

the weights of the passing test cases that cover e.

For clarity, we employ the following notation in analyzing the metric: wi is the

weight of each failing bin i; vj is the weight of each passing bin j; |Bf | is the total

number of failing bins; |Bp| is the total number of passing bins; |Bf
i | is the number

of test cases in failing bin i; and |Bp
i | is the number of passing test cases in passing

bin j. Given the notation, Wong, Debroy, and Choi metric is,

scoreWDC(e) =

|Bf |
∑

i=1

(

wi × |B
f
i |
)

−

|Bp|
∑

j=1

(

vj × |B
p
j |
)

(51)

The constraint is
fs
∑

i=1

wi >

ps
∑

j=1

vj (52)

The two components (failing and passing) of Equation (51),
∑|Bf |

i=1

(

wi × |B
f
i |
)

and

∑|Bp|
j=1

vj × |B
p
j |, are linear equations that, given the weights wi and vj, evaluate to a

constant, repectively. Simplifying the failing component results in

|Bf |
∑

i=1

(

wi ×Bf
i

)

= w1|B
f
1
|+ w2|B

f
2
|+ · · ·+ wn|B

f
n|

= αfs (53)

where α in Equation (53) is a variable that depends on the weights wi.
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Simplifying the passing component gives

|Bp|
∑

j=1

(

vj × Bp
j

)

= v1|B
p
1
|+ v2|B

p
2
|+ · · ·+ vn|B

p
n|

= βps (54)

where β is a variable that depends on the weights vj. Equation (51) can then be

represented as

ScoreWDC(e) = αfe − βpe

= αfs − β(ne − fe)

= (α + β)fe − βne

= ne{(α + β)
fe
ne

− β}

= ne{(α + β)Pr(F | e)− β} (55)

Equation (55) shows that Wong, Debroy, and Choi’s metric also embeds the sample

estimator of Pr(F | e).

5.7 Causal Analysis of the Metrics

Each of the proposed suspiciousness metrics discussed in the previous sections embeds

a sample estimator for Pr(F |e). Pr(F | e) measures the strength of the association

between a program entity e and the failure of a program. The metric Pr(F | e) is

the common thread that unifies all the other metrics. The weights associated with

Pr(F | e) is an attempt to account for the test suite composition. The analysis in this

section shows that Pr(F | e) does not account for confounders and therefore, cannot

be used to estimate the failure-causing effect of a program element.

We use the same notations as in Chapter 4: Y 1

e and Y 0

e represent the potential

outcomes for program states at program element e in the treatment group and the

control group, respectively. Te is the treatment indicator (coverage of a program
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element). Suppose Te is defined as

Te =















1, if a program entity e is covered by a test case

0, if a program entity e is not covered by a test case

(56)

and the potential outcomes under coverage of e are defined as

{Y 1

e , Y
0

e } =















1, if a test case/program fails

0, if a test case/program passes

(57)

Suppose we do not account for the covariates (Xe) of the program entity e, then the

biased causal effect is

τbiased = E[Y 1

e |Te = 1]− E[Y 0

e |Te = 0] (58)

=
∑

Y 1
e ∈{0,1}

Y 1

e Pr(Y
1

e | Te = 1)−
∑

Y 0
e ∈{0,1}

Y 0

e Pr(Y
0

e | Te = 0)

= Pr(Y 1

e = 1 | Te = 1)− Pr(Y 0

e = 1 | Te = 0)

= Pr(F | e)− Pr(F | e) (59)

Suppose Pr(F | e) = 0, that is the probability of failure given that e is not covered is

not accounted for, then Equation (59) reduces to Equation (60).

τbiased = Pr(F | e) = E[Y 1

e |Te = 1] (60)

From Equation (60), Pr(F | e) is clearly related to the biased causal estimator in

Equation (11) in Section 2.3.2. To determine the bias inherent in Equation (60), we

apply Equation (13),

E[Y 1 | Te = 1]− E[Y 0

e | Te = 0] = τ + {E[Y 0

e |Te = 1]− E[Y 0

e |Te = 0]}

+ (1− π){E[Y 1

e − Y 0|Te = 1]− E[Y 1

e − Y 0|Te = 0]}(61)

Pr(F |e) = E[Y 1

e |Te = 1] = τ + {E[Y 0

e |Te = 1]− E[Y 0

e |Te = 0]}

+ (1− π){E[Y 1

e − Y 0

e |Te = 1]− E[Y 1

e − Y 0

e |Te = 0]}

+ E[Y 0

e |Te = 0] (62)
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Equation (62) shows that the current metrics have three main sources of bias instead

of two: (1) the differential treatment-effect bias, (2) the selection or baseline bias,

and (3) E[Y 0

e | Te = 0], which is the average potential outcome of program entities

not covered by test cases. Using Pr(F | e) as a causal estimator also implies that

E[Y 0

e | Te = 0] = 0, which is not valid. What Equation (62) shows is that the

analyzed metrics do not estimate the causal effect of a program entity on the failure

of a program because units are only exposed to treatment (the program entity is

covered).

The significance of the presence of Pr(F | e) in the metrics will become clear in

results of the empirical studies in Section 5.8. The empirical studies also show that

some of the weights attached to Pr(F | s) are useful.

5.8 Empirical Studies

To evaluate the effectiveness of our causal framework for finding causes of program

failures at the statement level (i.e., a program element is a statement), we imple-

mented the framework, instantiated the control-dependence causal model (Causal-CD)

with different potential-outcome functions, and conducted several empirical studies

involving several subject programs. The studies investigated four main research ques-

tions:

RQ1: How effective is Causal-CD compared to the associative fault-localization met-

rics?

RQ2: How effective is integrating the causal estimator of Causal-CD into the asso-

ciative fault-localization metrics?

RQ3: How do different potential-outcome functions affect the accuracy of fault local-

ization?

RQ4: How efficient is our causal approach?
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Table 12: Subjects used for empirical studies.

Num. of Vers. Num. of Num. of Num. of
Used / Test DCDG Nodes Executed Lines

Program Num. of Vers. Cases (Min / Max) (Min / Max) Description

Cal 19 / 20 162 117 / 139 80 / 96 calendar printer
Col 29 / 30 156 147 / 252 95 / 177 filter-line reverser
Comm 10 / 12 186 28 / 133 22 / 88 file comparer
Look 9 / 14 193 131 / 143 69 / 78 word finder
Spline 13 / 13 700 243 / 250 139 / 145 curve interpolator
Tr 11 / 11 870 145 / 151 79 / 81 character translator
Uniq 17 / 17 431 111 / 136 65 / 81 duplicate line remover

Print-tokens 5 / 7 4130 422 / 428 207 / 210 lexical analyzer
Print-tokens2 10 / 10 4115 336 / 343 196 / 204 lexical analyzer
Replace 28 / 32 395 412 / 420 271 / 277 pattern replacement
Schedule 9 / 9 2710 215 / 220 153 / 156 priority scheduler
Schedule2 9 / 10 2650 222 / 230 138 / 141 priority scheduler
Tcas 41 / 41 1608 128 / 141 55 / 58 altitude separation
Tot-info 23 / 23 1052 247 / 254 122 / 124 information measure

Sed 10 / 10 363 2700 / 4365 1619 / 2218 stream editing utility
Grep 15 / 15 470 696 / 3579 775 / 1895 text-search utility
Gzip 18 / 18 211 2301 / 2751 1238 / 1482 compression utility
Space 30 / 38 157 1330 / 4183 1092 / 3583 ADL interpreter
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Next, we present the empirical setup, implementation, how we measure the effective-

ness of our causal approach, and the results of the empirical studies.

5.8.1 Empirical Setup

We used the Unix suite (Cal, Col, Comm, Look, Spline, Tr, Uniq),1 the Siemens suite,

Sed, Gzip, Grep, and Space2 as subject programs in our studies. Table 12 shows their

characteristics. For each subject, the first to sixth columns shows, the program name,

the ratio of versions used to the total number of versions, the number of test cases,

the minimum and maximum number of nodes in the dynamic control dependence

graph, the minimum and maximum number of executed lines of code, and a brief

description.

The Space subject comes with 38 faulty versions and different coverage-based test

suites. We randomly chose a test suite that achieves branch-coverage and executed

it on Space. We used 30 faulty versions of Space.

The Sed, Grep, and Gzip are large Unix subjects that come with multiple versions

with multiple faults per version. Each fault in a version can be activated separately.

For Sed, we randomly chose three different versions and activated 10 faults. For Grep

and Gzip, we activated 15 and 18 faults, respectively.

We omitted some of the faulty versions from the studies either because (1) there

were no syntactic differences between the C file of the correct version and the faulty

versions of the program (e.g., because the fault was in the header file) or (2) none of

the test cases failed when executed on the faulty version of the program or (3) the test

suite we randomly chose had only passing or failing test cases when executed on some

versions or (4) the size of the generated coverage data was too large (gigabytes) to

process in a reasonable amount of time. In total, we performed our empirical studies

1We obtained the Unix suite from Eric Wong of University of Texas at Dallas
2We obtained the Space, Gzip, Grep, and Sed programs from the Software-artifact Infrastructure

Repository [19].
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on 305 faulty versions.

5.8.2 Implementation

To construct the control-dependence causal model Causal-CD, our technique extracts

the control-dependence graphs and instruments the programs using the CIL frame-

work [50], which supports the analysis of ANSI C programs. We implemented the

control-dependence algorithms in the Objective Caml language, because it is required

for interfacing with the CIL framework.

Our technique instruments each faulty version to enable construction of the dy-

namic control-flow graph for each function. The technique then computes the dy-

namic control-dependence graph for each function from its dynamic control-flow

graph. Our technique computes dynamic control dependence graphs instead of static

control-dependence graphs. Using the dynamic control-dependence graphs ensures

that only control dependences that are exercised at runtime appear in the control

dependence graph. We implemented the LocalizeFault-DCDG algorithm and the

fault-localization metrics using R [58], which is a system for statistical computation

that consists of a language and a run-time environment.

Our technique computes a node-coverage matrix for each faulty version. The node-

coverage matrix shows the coverage of the nodes in the dynamic control dependence

graph. Note that there is a many-to-one correspondence from nodes to statements.

For example, a compound condition consisting of conjunctions or disjunctions of

predicates. A statement is identified by the line number where it occurs in the program

and each node has a line number as part of its identifier. For detailed explanations of

CIL transformations, see Reference [50]. Our technique computes the fault matrices

for each faulty version that indicates for each faulty version, which test cases pass

and fail.
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We implemented two variants of Causal-CD that use two different potential out-

comes PO-1 and PO-2. For brevity, we refer to the two variants as CD-1 (uses PO-1)

and CD-2 (uses PO-2), respectively. Note that PO-1 is the default potential-outcomes

function used by the LocalizeFault-DCDG.

5.8.3 Measuring Effectiveness

To measure the effectiveness of the various metrics with respect to fault localization

we perform two steps. During the first step, we map nodes in the dynamic control

dependence graph onto the line numbers associated with the node. We assume that

each line number corresponds to a single statement. We map nodes to statements

because developers often examine program statements during fault localization. Sec-

ond, we use the cost-measuring metric (Cost) in Equation (63) used by References

[6, 16, 38, 60].

Cost =
|Se|

|ST |
× 100% (63)

Se represents the number of statements examined by the developer until the faulty

statement is found. We assume that the statements are presented in nondecreasing

order of suspiciousness and the developer starts by examining the most suspicious

statement. ST represents the total number of executed statements.

To compare two metrics A and B for effectiveness, we first use one of the metrics

(say B) as the reference metric. We then subtract the Cost value for A from the

Cost value for B. A positive value means that A performed better than B and a

negative value means B performed better than A. The difference corresponds to the

magnitude of improvement. For example, for a given version, if the Cost of A is 30%

and the Cost of B is 40%, then the improvement of A over B is 10%, which means

that developers would examine 10% fewer statements if they used A.

Tables 13, 16 show a summary of the results of comparing CD-1 and CD-2 to the

associative fault-localization techniques and also the results of integrating the causal
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effects (i.e., τ̂ls,s) of CD-1 and CD-2 into some of the associative techniques. We also

refer to Causal-Ochiai, Causal-Jaccard and Causal-F1 as CO-x, CJ-x and CF1-x,

respectively; So “x” is 1 or 2 depending on whether the τ̂ls,s of CD-1 or CD-2 is used,

respectively. The first column shows comparison of the fault-localization techniques;

the comparison of A and B implies B is used as the reference metric. The second,

third, and fourth columns show the percentage of faulty versions that A performed

better, worse, and the same as B, respectively.

Tables 14 and 17, show a summary of the various statistics that capture in detail

the percentage of improvements of the techniques. The first column shows comparison

of the fault-localization techniques; comparison of A and B implies B is used as the

reference metric. The second to fifth columns show minimum, median, maximum,

and mean improvements of A over B, respectively.

There is a complication that should be mentioned here when measuring the effec-

tiveness of fault-localization techniques when the failure is due to missing code. In

fault-localization research, a fault involving missing code is by convention associated

with an existing, often correct, program element near where it is believed the miss-

ing code should be located. Because missing code can often reasonably be placed

in different locations, it may not be the case that such a program element is even

moderately associated with failures.

5.8.4 RQ1

The goal of RQ1 is to determine the fault-localization effectiveness of Causal-CD

with respect to the existing associative fault-localization metrics: the estimator fs/ns

of Pr(F |s), Tarantula, Ochiai, Jaccard, and F1-measure. To answer this research

question, we measure the Costs of the control-dependence causal model (CD-1) and

compare it to the Costs of Pr(F |s) and Tarantula. We used Pr(F |s) and Tarantula

as the reference metrics and subtracted the Costs of CD-1 from the Costs of Pr(F |s)
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(a) Comparison of Causal-Effect Estimator to Pr(F |s).
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(b) Comparison of Causal-Effect Estimator to Tarantula.

Figure 23: Comparison of Causal-Effect Estimator to Pr(F |s) and
Tarantula.
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and Tarantula.

Figures 23(a) and 23(b) show the results of comparing CD-1 to Pr(F |s) and Taran-

tula, respectively. The horizontal axes represent the number of versions that show

differences in the Cost of fault localization. The vertical axes represent the percent-

age difference in Costs, which is the magnitude of improvement. The zero-level lines

represent the performance of the reference metric. Bars above the zero-level lines rep-

resent versions for which our technique performed better than the reference metric,

and bars below the zero-level line represent versions for which our technique per-

formed worse. As the graph shows, CD-1 shows improvements over both Pr(F |s) and

Tarantula. The graphs also show that the performances of Pr(F |s) and Tarantula

are the same, which further confirms the accuracy of our analysis in Chapter 5.

The first four rows of Table 13 shows the summary of the results of comparing

CD-1 to the other associative techniques. As Table 13 shows, CD-1 performs better

than Pr(F |s) and Tarantula on 53.59% of the faulty versions, worse on 0.65%, and

performed the same on 45.75%. The results show that conditioning on the control-

dependence predecessor reduces the confounding bias. The first four rows of Table 14

shows the various improvements of the faulty versions for which technique A per-

formed better than B. For example, for the faulty versions for which CD-1 performed

better than Tarantula, half of the faulty versions had improvements between 0.03

and 3.99 and the other half had improvements between 3.99 and 43.61; the mean

performance was 6.69.

Table 13 also shows that CD-1 performs worse when compared to Ochiai, Jaccard,

and the F1-measure. We have identified three main reasons why CD-1 performed

worse than these associative techniques. The first reason relates to the coefficients

associated with the precision measure (Pr(F |s) associated with Ochiai, Jaccard, and

the F1-measure. The results indicate that an associative measure that combines both

a recall and precision estimator (Pr(F |s)) is more effective than only a precision-based
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Table 13: Comparison of fault-localization models

Fault Loc. Tech. Better (%) Worse (%) Neutral (%)

CD-1 vs Pr(F | s) 53.59 0.65 45.75
CD-1 vs Tarantula 53.59 0.65 45.75
CD-1 vs Ochiai 9.48 44.12 46.41
CD-1 vs Jaccard 17.97 31.37 50.65
CD-1 vs F1-measure 17.97 31.37 50.65
CO-1 vs Ochiai 23.20 0.33 76.47
CJ-1 vs Jaccard 29.08 0.33 70.59
CF1-1 vs F1-measure 39.21 1.31 59.48

Table 14: Distribution of “Better” improvements

Fault Loc. Tech. Minimum (%) Median (%) Maximum (%) Mean (%)

CD-1 vs Pr(F | s) 0.03 3.99 43.61 6.69
CD-1 vs Tarantula 0.03 3.99 43.61 6.69
CD-1 vs Ochiai 0.08 2.35 13.15 3.27
CD-1 vs Jaccard 0.06 2.41 15.11 4.01
CD-1 vs F1-measure 0.06 2.41 15.11 4.01
CO-1 vs Ochiai 0.05 1.72 12.06 2.91
CJ-1 vs Jaccard 0.05 2.17 15.11 3.56
CF1-1 vs F1-measure 0.05 4.39 62.10 7.37

estimator. To explain why the recall is important for fault localization, consider a

statement s for which Pr(s|F ) is very low. This statement will tend to be covered by

few failing test cases and perhaps by few test cases overall. Thus, the sample of failing

test cases available for estimating either Pr(F |s) or the causal effect of s on failures is

likely to be quite small. If there are many passing test cases that cover s, the overall

sample of test cases covering s will be imbalanced (i.e., more passing test cases than

failing test cases). If there are few passing test cases that cover s, the overall sample

of test cases covering s will be small, even if it is not imbalanced. In both cases, an

estimate of either Pr(F |s) or the causal effect of s is likely to be untrustworthy. The

way estimates of recall are used in the Ochiai and F1 metrics partially addresses this

issue by reducing the suspiciousness values of statements for which the recall Pr(s|F )

is low and by increasing the suspiciousness values of statements for which it is high.
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Such weighting is likely to be much more practical than the alternative of attempting

to roughly balance failures and successes covering each statement. We investigate

further the importance of the recall in RQ2.

The second reason for the causal estimator performing worse relates to the effects

of different potential-outcome functions of units of program elements in the treatment

and control groups. We present a detailed study that explains the second reason

in RQ3. The third reason concerns the fundamental issues, overlap, balance, and

confounders, which are central to our causal framework. We provide the details of

the third reason in Section 5.9.

5.8.5 RQ2

The goal of RQ2 is to determine the effectiveness of integrating the causal estimator

(τ̂ls,s) of CD-1 into the Ochiai metric, the Jaccard metric, and the F1-measure. The

results demonstrate the importance of the recall measure as explained in Section 5.8.4.

Table 15 shows the associative techniques (Ochiai, Jaccard, and F1-measure) and their

causal counterparts (Causal-Ochiai, Causal-Jaccard, and Causal-F1). We replace the

precision estimator Pr(F |s) in the Ochiai, Jaccard, and F1-measure with τ̂ls,s. For

the F1-measure, we use the inverse-logit3 of the causal estimator (τs). We use the

inverse-logit function to convert the causal-effect estimate into a probability value

because the F1-measure has precision + recall in its denominator. The recall and

precision values are both probabilities, and thus, the causal-effect estimate must be

a probability (i.e., its value must lie between 0.0 and 1.0 inclusive).

Table 13 shows that CO-1, CJ-1, and CF1-1 performed better than their non-

causal counterparts. For example, in Table 13 CO-1 performs better on 23.20% of

faulty versions and worse on 0.33% of faulty versions. Table 14 shows that, for CO-1,

half of the faulty versions had improvements between 0.05% and 1.72% and the other

3The inverse-logit function is invlogit(x) = exp(x)/(1 + exp(x)).
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Table 15: Associative techniques and their causal counterparts

Associative Technique Causal Technique

Jaccard

(

fs + ps
f + ps

)

Pr(F | s)

(

fs + ps
f + ps

)

×(τ̂ls,s)

Ochiai

(

fs
f

)

× Pr(F |s)

(

fs
f

)

×(τ̂ls,s)

F1-measure
2

1

Pr(s|F )
+

1

Pr(F |s)

2
1

Pr(s|F )
+

1

invlogit(τ̂ls,s)

half from 1.72% to 12.06%.

The results show that the improvement in fault-localization effectiveness of CO-1,

CJ-1, and CF1-1 is from conditioning on the forward control-dependence predecessor

of a statement. Thus, conditioning on the forward control-dependence predecessor

reduces confounding bias when finding the causes of program failures. Second, the

results show that associative techniques for which it is possible to incorporate the

causal estimator of CD-1 can be significantly improved. Third, the recall measure is

useful in providing some sort of balance to the ratio of passing and failing test cases

in the test suite.

5.8.6 RQ3

The goal of RQ3 is to investigate how different potential-outcome functions affect

the accuracy of fault localization. To answer this question, we constructed a new

potential-outcome function: PO-2 and compared it to the default potential-outcome

function used by LocalizeFault-DCDG. The default potential-outcome function

(Equation (64)) assigns the value of 1 to units in the treatment group and control

group that are covered by failing test cases and 0 to units covered by passing test

cases. The underlying intuition is that all the units features of different statements

107



have the same response when exposed to treatment or control.

{Y 1

s , Y
0

s } =















yf = 1, if program failed

yp = 0, if program passed

(64)

The results of using PO-1 in the control-dependence causal model are shown by the

results of CD-1 in Tables 13 and 14, whose results we have explained in RQ1.

The second potential-outcome function (PO-2) in (Equation (65)) is motivated

by the fact that units of different statements respond differently when exposed to

treatment or control. For example, suppose a fault occurs in a program and it is

a segmentation fault, computations that do not involve pointers should not have

the same potential outcomes as computations involving pointers. PO-2 models in a

limited way the probability of faultiness of units of statements. However, because it

is difficult, if not impossible, to determine the probability of faultiness of a unit, we

approximate using Equation (65).

{Y 1

s , Y
0

s } =































yf = fs/f, if unit is treated

yf = fs/f, if unit is untreated

yp = 0, otherwise

(65)

This function assigns a weight to the units of a statement depending on the ratio

of failing test cases that cover units in the treatment group and units in the control

group. The outcome yf = fs/f is imputed to all units in the treatment group for

which the program failed, yf = fs/f is imputed to all units in the control group for

which the program failed, and yp = 0 is imputed to all units in both the treatment

and control group for which the program passed. yf implies that the higher the ratio

the higher the probability of faultiness.

The results of using PO-2 in the control-dependence causal model are shown by

the results of CD-2 in Tables 16 and 17. As the results show, CD-2 performs better

than CD-1 on 48.69% of the faulty versions, worse on 1.96%, and neutral on 49.35%.
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The minimum, median, maximum, and mean improvements of CD-2 over CD-1 are

0.07%, 3.23%, 29.47%, and 5.66%, respectively. Although Table 13 showed that CD-

1 performed worse when compared to the Ochiai metric, Jaccard metric, and the

F1-measure, Table 16 shows that CD-2 performs better when compared to the three

metrics.

Overall, the results indicate that the choice of the potential-outcome function is

important for accurate fault localization; the closer the potential outcomes are to

modeling the actual outcomes of units of program elements the higher the accuracy

of the causal estimates. The results also indicate that the potential-outcome functions

potentially enables the integration of diverse information that effectively characterizes

the behavior of computations at program elements. Note that PO-2 is a heuristic

and that it has the potential to violate the SUTVA (Stable Unit Treatment Value

Assumption) [46]. SUTVA means that the potential outcome of a unit i should not

be influenced by the treatment of a unit j. In PO-2, depending on whether a unit is

in the treatment or control group influences the potential outcome of another unit.

5.8.7 RQ4

The goal of RQ4 is to determine the scalability and efficiency of Causal-CD. To do

this, we performed two timing studies on four large Unix subjects: Grep, Gzip, Sed,

and Space. For the first timing study (preprocess stage), we measured the time it took

for our technique to analyze all the gigabytes of trace data generated by the test suites

of the subjects, constructed the dynamic control dependence graphs, and constructed

the observational data for each node in the dynamic control dependence graph. For

Grep, Gzip, Sed, and Space, worst times our technique took are approximately 4,

5, 2, and 0.07 hours, respectively. The second timing study (causal-inference stage)

measured the time it took for LocalizeFault-DCDG to return a sorted list of

failure-causing effects of statements to the developers. The LocalizeFault-DCDG
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Table 16: Comparison of fault-localization models

Fault Loc. Tech. Better (%) Worse (%) Neutral (%)

CD-2 vs CD-1 48.69 1.63 49.67
CD-2 vs Pr(F | s) 64.38 0.98 34.64
CD-2 vs Tarantula 64.38 0.98 34.64
CD-2 vs Ochiai 20.58 0.65 78.75
CD-2 vs Jaccard 33.99 0.65 65.36
CD-2 vs F1-measure 33.99 0.65 65.36
CO-2 vs Ochiai 28.10 1.31 70.59
CJ-2 vs Jaccard 35.62 0.98 63.40
CF1-2 vs F1-measure 38.56 1.31 60.13

Table 17: Distribution of “Better” improvements

Fault Loc. Tech. Minimum (%) Median (%) Maximum (%) Mean (%)

CD-2 vs CD-1 0.08 3.45 28.57 5.33
CD-2 vs Pr(F | s) 0.06 5.20 64.29 9.56
CD-2 vs Tarantula 0.06 5.20 64.29 9.56
CD-2 vs Ochiai 0.05 1.61 12.06 2.64
CD-2 vs Jaccard 0.05 3.35 16.55 4.45
CD-2 vs F1-Measure 0.05 3.35 16.55 4.45
CO-2 vs Ochiai 0.05 3.07 22.58 22
CJ-2 vs Jaccard 0.08 3.44 19.80 4.90
CF1-2 vs F1-Measure 0.05 4.56 62.10 7.50

algorithm took milliseconds to a few seconds to return a sorted list of causal effects

to the developer. Note that these times depend largely on the number of test cases

and the number of nodes in the dynamic program dependence graph as shown by

the complexity measures in Section 4.3.4. Also, none of our algorithms have been

optimized.

5.8.8 Threats to Validity

There are three main types of validity threats that affect our studies: internal, exter-

nal, and construct. Threats to internal validity concern factors that affect dependent

variables without the researchers’ knowledge. There is the possibility that there might

be errors in our implementation—specifically, in the process of generating dynamic

control dependence graphs—that might affect the experimental results. To address
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potential errors in the generation of the dynamic control dependence graphs, we

compared manually generated dynamic control-dependence graphs of the functions of

some of the test subjects to the dynamic control dependence graphs the technique gen-

erated automatically, to ensure that the dynamic control dependence graphs matched

(which they did).

Threats to external validity occur when the results of our experiments cannot be

generalized. Although we performed the empirical studies on 18 subjects with a total

of 305 faulty versions, we cannot claim that the effectiveness of Causal-CD can be

generalized to other faults in other software subjects. This is because we cannot claim

to have accounted for all confounders affecting a given statement and the failure of

a program. However, because our framework is theoretically motivated the threat to

external validity is reduced. Also the results of our studies demonstrate the power of

causal analysis as compared to non-causal suspiciousness metrics.

Threats to construct validity concern the appropriateness of the metrics used in

our evaluation. It is difficult to determine how useful human developers will find

ranking metrics, such as those we have studied, even if their accuracy is improved

considerably. More studies need to be performed to address this issue and the issues of

how best to present available fault-localization results and how to integrate them with

other information useful for debugging. However, the more accurate fault-localization

methods are, the more meaningful such studies are likely to be.

5.9 Discussion

The results of the empirical studies confirm that causal-inference techniques are rel-

evant to fault localization, and that the causal-effect estimator τ̂ls,s is useful in itself

as a fault-localization metric and is superior to estimators of the precision measure

Pr(F |s). The studies also indicate that the recall measure Pr(s|F ) is important in

fault localization and that a measure that combines the causal-effect estimator with
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an estimator for recall is superior to estimators based on precision alone and estima-

tors that combines precision and recall.

Although the Causal-CD performed well in our studies, from a program-semantics

perspective there are foreseeable and quite possibly common cases in which it should

not perform well, namely faults that violate the coverage trigger assumption. In

general, faults that on rare occasions cause failures may not be amenable to any type

of coverage-based fault-localization technique.

To address such faults, it will be necessary to instantiate a causal model that

identifies and controls for all confounders of a program element. Such confounders

may include data dependences and the variable values they carry, not just control-

dependence predecessors. In incorporating variable values, it may be necessary to

partition (or “bin”) the values of variables. In any case, using additional, non-binary

predictors is likely to necessitate employing more sophisticated techniques of causal-

inference methodology, such as matching/stratification and propensity scores [46].

Additionally, in our studies we observed two fundamental causal problems that

contribute to the inability of Causal-CD to perform better on all faulty versions. The

first problem is that there were certain cases in which a statement had only units

in the treatment group or control group. This problem is referred to as the overlap

problem. An example of this problem occurs if, for a given statement, all test cases

whose execution reaches the forward control-dependence predecessor of the statement

cover only that statement. From a causal-analysis perspective, it is impossible to

reliably estimate the causal effect of a statement on program failure without making

significant assumptions when this problem arises. In the implementation, we assumed

that if a statement had units only in the treatment group or in the control group, the

expected outcome of the group with no units is 0.

The second problem occurs when a statement has units in both the treatment

and control groups but the units have different confounding variables or values (i.e.,
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different characteristics). This problem is referred to as the balance problem. An

example of this problem occurs if test cases that reach the forward control-dependence

predecessor of a statement cover the statement and all other test cases do not reach

the forward control-dependence predecessor. In this example, units of the statement

in the treatment group will have the forward control-dependence predecessor as the

confounder and units in the control group will have other confounders.

To address these two problems, ideally it is necessary to automatically generate

new test cases. Another way to address this problem is to leverage the classical

causal-analysis technique called matching, which we present in detail in the next

chapter (Chapter 6 but in certain cases, matching may not be sufficient and must

be combined with test-case generation. Note that in certain cases, it might not be

possible to mitigate the overlap or balance problems because of program semantics.

For example, the semantics of a program might be such that the true branch of an

if-statement is mostly executed and the false branch is rarely or not executed. New

techniques will need to be developed that help to mitigate such issues. For example,

techniques may need to analyze groups of statements and how they causally relate to

each other to handle this issue.

The causal framework addresses some of the limitations of the PPDG framework

because instantiations of the framework analyze only causal graphs consisting of a

program entity and its predecessors in the program dependence graph. Therefore,

the framework can scale to large software subjects.
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CHAPTER 6

COVARIATE MATCHING ON PROGRAM

DEPENDENCES

In Chapter 4, we presented a causal framework for programs and showed how a causal

model that uses only control dependences can be instantiated from the framework and

used for accurate fault localization. However, it is easy to see that the previous model

does not address all possible sources of confounding in fault localization, such as run-

time patterns of data dependences (data flows), the values taken on by inputs and

program variables, and non-determinism because of concurrency [7]. Making the best

use of causal-inference methodology in software fault localization will require deter-

mining the relative importance of such factors and devising effective and reasonably

efficient ways of controlling for them. As demonstrated in Chapter 3, static and dy-

namic data and control dependences have long been recognized as important factors

in software testing and debugging, because they contribute both to triggering the

effects of faults and to propagating those effects to a program’s output [56, 59, 61].

In this Chapter, we present a new technique that is an instantiation of the causal

framework that accounts and controls for local patterns of both dynamic data depen-

dences and dynamic control dependences, which can confound the estimated causal

effect of covering a program entity on the outcome of the program. This new technique

uses information about dynamic data and control dependences to reduce confounding

bias—more than is possible with our previous causal model that relied only control

dependences—and to thereby rank statements more effectively for fault localization.

This new technique also reveals an important problem in causal analysis called bal-

ance and how it affects our new technique. For effective causal analysis the units in
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void Proc2() {
1 int x=read(); 1 1 1 1 1 0.40 NA
2 int y=read(); 1 1 1 1 1 0.40 NA
3 if( x > 0 ){ 1 1 1 1 1 0.40 NA
4 if( y < 0) 0 1 1 0 1 0.67 0.67
5 y = 2; 0 0 1 0 0 -1.00 -1.00
6 print(”Out:”); 0 1 1 0 1 0.67 0.67
7 print(y+y); // y×y 0 1 1 0 1 0.67 1.00
8 }
9 }

P F P P F

Figure 24: Procedure with test cases, execution data, and causal-
effect estimates. Error at statement 7; correct computation should be
y×y.

the treatment group and control group must be balanced. That is the units in the

two groups should have similar patterns of dynamic data and control dependences.

In general units in the two groups should have similar characteristics. In practice,

because the units in the treatment and control groups are generated by test cases or

operational executions the units in the two groups cannot assumed to be balanced.

To achieve relative balance between the treatment and control groups and thus

reduce confounding bias, our technique employs a classical causal-inference technique

called matching. For each program entity e, matching reorganizes the units in the

treatment and control groups so that they are similar with respect to dynamic data

and control dependences that directly affect e. Each unit in the treatment group

is matched with a unit in the control group that is most similar, as measured by

applying a distance measure to the dynamic dependence information collected from

the program’s executions. After matching, the failure-causing effect of e is estimated

from the reorganized data.
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6.1 Motivating Example

Consider procedure Proc2 in Figure 24, which has a fault at line 7. Proc2 should print

the square of the value of y at line 7 but instead prints two times the value of y. The

first column shows Proc2 with line numbers associated with each of its statements.

Columns 2 through 6 represent test cases t1–t5, respectively. The top entry of each

column shows the values of x and y that are read at lines 1 and 2, respectively. The

numbers in the column for a test case indicate whether the corresponding program

statement is covered by the test case (1 for covered, 0 for not covered). The bottom

row shows the outcome of each test-case execution, with P indicating the procedure

passed and F indicating that the procedure failed.

Suppose the causal effects of all the statements in Proc2 are computed using the

LocalizeFault-CDG algorithm given in Section 4.3.3. The column labeled τ̂ in Fig-

ure 24 indicates the causal-effect estimates obtained for the statements. The estimate

for statement 7, which is faulty, is 0.67. However, the estimates for statements 4 and

6 are also 0.67, even though they are not faulty. Statements 4 and 6 have the same

estimate as statement 7 because they are in the same control-dependence region [22]

and hence, are covered by the same test cases. This example illustrates that serious

confounding may occur even after conditioning on each statement’s dynamic forward

control-dependence predecessor.

Our new technique addresses the inadequacy of the control-dependence causal

model for fault localization. The technique consists of two main components: an

instantiation of our causal framework for program dependences and a matching tech-

nique.

6.2 Program-Dependence Causal Model

The program-dependence causal model extends our control-dependence causal model

by addressing dynamic data dependences as well as dynamic control dependences.
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Dynamic data dependences are important because they carry the values that are

used at a given statement. Whereas a statement’s forward control-dependence prede-

cessor determines whether the statement is covered, the statement’s data dependences

determine the computation it propagates. Conceptually, the additional causal influ-

ences that we want to account for can be represented by including dynamic data

dependences in the causal graph for a program, in addition to dynamic forward con-

trol dependences. A complication is that loop-carried data dependences [22] give rise

to directed cycles in dependence graphs. However, to control confounding when es-

timating the causal effect of a particular program element ei, it suffices to consider

acyclic dependence chains terminating at ei, because if there is a causal path from ej

to ei that contains one or more cycles, there must also be a cycle-free path from ej

to ei. For example, consider a program loop of the form

1 while(...)

2 if (...)

3 x = f(y);

4 else

5 y = g(x);

Each edge in the data dependence cycle 3→5→3 may be relevant to localizing a

distinct fault. However, in seeking to control confounding while estimating the causal

effect of statement 3, we can ignore the edge (3, 5). Similarly, when estimating the

causal effect of statement 5, we can ignore the edge (5, 3).

The kind of causal graph that is required can be conceptualized in terms of the

transitive reduction of a digraph [4]. A transitive reduction of a digraph D is an

acyclic, spanning subdigraph H of D with no redundant arcs such that the transitive

closures of D and H are isomorphic [9]. Klamt, Flassig, and Sundmacher employ a

form of transitive reduction to model causality in biological networks with cycles [40].
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Figure 25: Dynamic-PDG of Proc2.

Aho, Garey, and Ullman [4] present a transitive reduction algorithm that, for a di-

graph with cycles, replaces each equivalence class of vertices appearing in the same

cycle with a new vertex. Consider a slight variant of this algorithm, applied to a graph

of dynamic data and control dependences between program statements. For a given

statement s whose failure-causing effect we want to estimate, this variant preserves all

nodes in s’s equivalence class (if there is more than one) rather than collapsing them

to a single node. However, it breaks any cycles involving s by deleting s’s outgoing

edges. Therefore, for each statement s in the dynamic program dependence graph, an

acyclic subgraph Hs can be constructed that reflects all causal influences on s. Hs can

be transformed into a proper causal graph by augmenting it with a potential-outcome

node Y . We call the augmented Hs the integrated causal graph for s and denote it

ICG(s).

Definition 32. An integrated causal graph is a graph obtained by augmenting Hs

with the potential-outcome node Y .

In the integrated causal graph ICG(s), there will be multiple back doors to s if it

is dependent on multiple statements. Observe, however, that the set of predecessors
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Figure 26: ICG of statement 7.

Table 18: Observational data gathered for Statement 7.

Confounders (X̂)
Program State Unit Treatment (T7) S2 S3 S5 Output (Y7)

u1 1 1 1 1 0 0
u2 2 1 1 1 0 1
u3 3 0 1 1 1 0
u4 4 0 1 1 0 0
u5 5 0 1 1 0 1

of s (Pred(s)) blocks all back-door paths from s to the potential-outcome node node

Y . Thus, by conditioning on Pred(s), we may be able to further reduce confounding

when estimating the causal effect of s. For example, Figure 25 shows the dynamic

program dependence graph of Proc2; dotted edges represent data dependences and

solid edges represent control dependences. Figure 26 shows the ICG of statement 7,

where nodes 2, 3, and 5 of statement 7 are nodes in the dynamic program dependence

graph of Proc. As the graph shows, there are three back-door paths in the graph:

7 ← 2 → Y , 7 ← 3 → Y , and 7 ← 5 → Y . These back-door paths must be blocked

to accurately estimate the causal effect of statement 7 on Y .

6.3 Matching

Matching [46] is a technique that brings some of the benefits of randomized controlled

experiments, in terms of reduced confounding bias, to observational studies. Match-

ing involves mapping (if possible) each treatment unit from an observational study to
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Figure 27: Units in treatment group and control group with their
covariate values.

one or more control units that are similar to it, in such a way that balance is achieved

between the resulting treatment group and control group with respect to covariate

values. Matching may involve removing unmatched units or (in effect) duplicating

certain units. We first describe a simple form of matching, called exact matching, be-

fore describing the more complex type of matching used with the program-dependence

causal model.

In exact matching, each treatment unit is matched with one or more control units

that have exactly the same covariate values as the treatment unit, if such control

units exist. All matched treatment and control units are retained, and all unmatched

units are discarded. The difference in the group means of the resulting treatment

group and control group is an estimate of the treatment effect.

We now illustrate exact matching with reference to the procedure and data in

Table 24 and Table 18, respectively. In the program-dependence causal model, the

covariates for each statement s in procedure Proc2 are the dynamic control and

data dependence predecessors of s. For example, for statement 7, there are three

predecessors: statement 2, which defines the value of y that may be used at statement

7; statement 3, which is statement 7’s forward control dependence predecessor); and

statement 5, which defines the value of y that may be used at statement 7. Table 18
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shows the observational data gathered for statement 7 in Proc2. As the table shows,

statement 7 has five units: three units in the treatment group because three program

states (ps2, ps3, and ps5) are covered by test cases (t2, t3, and t5) and two units in the

control group because program states ((ps1 and ps4) are covered by test cases (t1 and

t4). Suppose the state of a covariate is one if it is covered by a test case and zero if it

is not covered by a test case. Columns 4–6 in Table 18 shows a vector of covariates

X̂ for statement 7. The components of X̂ are statements 2, 3, and 5. The vector

of covariate values generated by the test cases is also shown for each program state

(psi); a vector of the form [1, 1, 0] means that for that psi, statement 2 was covered,

statement 3 was covered, and statement 5 was not covered, respectively.

Exacting matching works by first selecting a unit from the treatment group and

then examines the control group to determine if there is a unit with a matching

covariate vector. If such a unit exists in the control group it is matched to the

unit from the treatment group and the two units are removed from consideration.

Figure 27 shows the matches for the program states of statement 7. There is an arrow

from each treatment unit to a matching control unit. Note that there is no match for

t3, because there is no unit in the control group to match with. Consequently, ps3 is

not used to estimate the causal effect of statement 7. Using Equation 17, the estimate

for statement 7 is (1 + 1)/2 − (0 + 0)/2 = 1.0, which is the difference between the

average outcome values for the treatment group and the average outcome values for

the control group. The causal-effect estimates for the other statements are shown in

Table 24, in the column labeled τ̂match. (The NA for statement’s 1, 2, and 3 reflects the

fact that an estimate could not be computed for the statements because there were

no control units for the statements.) The estimate for statement 5 is 0− 1/1 = −1.0

and the estimate for each of statements 4 and 6 is (1 + 1 + 0)/3− (0 + 0)/2 = 0.67.

It can be seen that the faulty statement, statement 7, has the highest estimate.

Unfortunately, as the number of covariates increases, it becomes more difficult
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to find exact matches for treatment units. This difficulty results in more discarded

units, which can increase bias (This form of bias is different from confounding bias.

The bias is the difference in an estimator’s expected value and the true value of the

parameter being estimated.) when computing causal estimates. Therefore, other

forms of matching are typically used.

6.3.1 Matching with Mahalanobis Distance

To obtain more flexibility in matching treatment units with control units, our tech-

nique uses the Mahalanobis distance metric [46], which is a measure of the similarity

dM(a,b) between two random vectors a and b. Let S be the covariance matrix of a

and b and let the superscript T denote matrix/vector transpose. Then

dM(a,b) =
√

(a− b)TS−1(a− b) (66)

The matrix S is the sample covariance matrix for the treatment and control units.

Each treatment unit (test case covering statement s) with covariate vector a is

matched with a control unit (test case not covering s) with covariate vector b for

which dM(a,b) is minimal with respect to a threshold. In matching without replace-

ment, the two units are then removed from further consideration. In matching with

replacement, the control unit is retained to be matched with another treatment unit.

Replacement is normally used if the number of treatment units exceeds the number of

control units; matching with replacement also reduces bias [65] in the causal estimate.

A property of Mahalanobis-distance matching is that it regards all the component

interactions of the covariate vector as equally important [65]. This property is im-

portant when matching on the predecessors of s because in the absence of any prior

information about the relative importance of the predecessors, our technique treats

all interactions of the predecessors of s as equally important.
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Input: Dynamic-PDG, Coverage-Info
Output: Sorted τ̂

1 foreach s ∈ Dynamic-PDG do
2 τ̂(s) = -1.0;
3 Model(s) = Compute causal model of s;
4 Pred(s) = Compute predecessors of s from Pred(s);
5 Mdata(s) = Match on Pred(s) in Coverage-Info;
6 if Mdata(s) 6= ∅ then
7 Compute τ̂(s) from Mdata(s) using Equation (17);
8 else
9 Compute τ̂(s) using Equation (18);

10 end

11 end
12 Sort τ̂ in descending order;

Figure 28: The LocalizeFault-DPDG algorithm.

6.3.2 Matching based Causal Algorithm (LocalizeFault-DPDG)

Figure 28 shows the LocalizeFault-DPDG algorithm. The algorithm takes as in-

put the dynamic program dependence graph (Dynamic-PDG) of a procedure and

the coverage information (Coverage-Info) produced by executing the program con-

taining the procedure on a set of test cases. LocalizeFault-DPDG processes each

statement s in the Dynamic-PDG; it initializes the causal estimate of each statement

s, (τ̂(s)), to -1.0 (line 2). LocalizeFault-DPDG computes the first major component

of our technique, the causal model of s (Model(s)) (line 3). At line 4, the algorithm

computes the predecessors of s (Pred(s)) from Model(s). After computing Pred(s),

LocalizeFault-DPDG then computes the second major component of our technique by

matching on the Pred(s) in the Coverage-Info to produce the matched data, Mdata(s)

(line 5). If matching is successful, the τ̂(s) is estimated using Equation (17) (line 7);

if matching is not successful Equation (18) is used to estimate τ̂(s) (line 9). The

algorithm computes τ̂(s) for every statement in the Dynamic-PDG. After the causal
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estimate for each statement has been computed, LocalizeFault-DPDG sorts all the

estimates in descending order at line 12. It then returns the sorted estimates at line

13 to the developer.

6.4 Empirical Evaluation

To evaluate the effectiveness of our technique for fault localization, we implemented it

and performed empirical studies on a set of subjects. In this section, we first describe

the set-up and then present the results of the studies.

6.4.1 Empirical Study Setup

For our studies, we used the same set of subjects in Table 12 in Section 5.8.1 except

Gzip and Grep. We also omitted one version of Look because of the large amount

of time required to gather all the execution data. We extended the implementation

presented in Section 5.8.2 by computing dynamic data dependences and dynamic pro-

gram dependences from dynamic control flow graphs. Recall that our technique uses

dynamic control-flow graphs to compute dynamic dependences, because the former

contain only statements that are actually executed by a set of test cases. We again

implemented all fault-localization algorithms in R [58]. For matching on program

dependences, we used the R package Matching [64]. We used matching with replace-

ment and a default minimal distance of 0.00001. We also computed fault matrices

that indicate, for each faulty program, which test cases pass and which test cases fail.

We performed our studies on Mac OS X version 10.5.

6.4.2 Effectiveness Studies

To study the effectiveness of the program-dependence causal model for fault local-

ization, we use the same cost metric (Cost) and procedure for comparing two fault-

localization techniques presented in Section 5.8.3. Furthermore, to reduce the un-

certainty in the causal effect computed for each statement because of the matching
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technique, we computed a statement’s causal effect 100 times and took the average of

the 100 causal estimates. We found 100 to be an acceptable threshold for providing

stable causal effects. Each computed causal effect has an associated standard error.

We computed the average of the standard errors, and used it to construct a bound

(one standard deviation) on the causal effect for each statement. For example, if the

average of the causal effects of a statement on program failure is 0.3 and the average

standard error is 0.1, then [0.3 ± 0.1] is the range of the causal effect over the 100

samples with 0.2 being the lower bound and 0.4 being the upper bound.

For brevity, we denote the program-dependence causal model for fault localization,

which matches program states based on data and control dependences, as PD; we

denote a variant of the technique that matches only on data dependences as DD, and

we denote the control-dependence causal model [7], which considered only control

dependences, as CD. We also use PDmin and PDmax to represent variants of PD

computed using the lower bounds and upper bounds of the causal-effect estimates of

PD, respectively. For example, if for a statement the average causal estimate obtained

with PD is 0.3 and the average standard error is 0.1 then PDmin and PDmax yield

causal estimates of 0.2 and 0.4, respectively.

Table 19 summarizes the results of comparing fault-localization techniques. The

first column (Fault Loc. Tech.) shows the two fault-localization techniques (i.e., A vs

B) that are being compared; the second technique in each pair (i.e., B) is the baseline.

The second column (Positive (%)) shows the percentage of faulty versions for which

A performed better than B, the third column (Negative (%)) shows the percentage of

faulty versions for which A performed worse than B, and the fourth column (Neutral

(%)) shows the percentage of faulty versions for which there was no improvement.

For example, the first row, which compares PD to CD, shows that PD performed

better than CD on 61.4% of the faulty versions, performed worse on 13.97% of the

faulty versions, and performed identically on 24.63% of the faulty versions.

125



Table 19: Comparison of fault-localization models.

Fault Loc. Tech. Positive (%) Negative (%) Neutral (%)
PD vs CD 61.40 13.97 24.63
PDmin vs CD 61.40 13.97 24.63
PDmax vs CD 60.29 14.71 25.00
PD vs DD 49.26 23.16 27.57
DD vs CD 43.75 25.74 30.51
PD vs Tarantula 72.06 7.72 20.22
PD vs Ochiai 44.12 21.32 34.56
CO vs Ochiai 53.68 10.29 36.03

Table 20: Distribution of positive improvements.

Fault Loc. Tech. Minimum (%) Median (%) Maximum (%) Mean (%)
PD vs CD 0.05 3.84 61.71 8.57
PDmin vs CD 0.05 4.03 61.71 8.75
PDmax vs CD 0.05 3.94 62.29 8.60
PD vs DD 0.03 3.43 45.71 6.11
DD vs CD 0.05 5.07 59.43 9.54
PD vs Tarantula 0.05 6.41 70.29 11.44
PD vs Ochiai 0.03 4.79 54.86 7.77
CO vs Ochiai 0.03 4.28 54.86 7.45

Table 20 shows the minimum, median, maximum, and mean values of A’s im-

provement over B. Half the faulty versions with positive improvement values have

improvements between the minimum and the median, and the other half have im-

provements between the median and the maximum. For example, the first row, which

compares PD to CD, shows that half of the 61.4% of faulty versions with positive

improvement values had improvements between 0.05% and 3.84% while the other half

had improvements between 3.84% to 61.71%. The average positive improvement of

PD over CD was 8.57%.

6.4.2.1 Study 1: New Technique vs Old Technique

The goal of this study is to compare the fault-localization effectiveness of our new

technique PD to that of our previous causal technique CD, which considers control

dependences but not data dependences. To do this, we compared the Cost values for
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the two techniques.

Figure 29 shows the bar graph that summarizes the comparison of PD to CD over

all program versions. The horizontal axis (baseline) represents the Cost of using our

previous technique CD, the vertical axis represents the magnitude of improvement of

PD over CD. The graph contains a vertical bar for each faulty version for which there

was positive or negative improvement on the horizontal axis; the vertical bar shows

the difference in Costs. The bars above the horizontal axis represent faulty versions

for which PD performed better than CD (positive improvement) and the bars below

the horizontal axis represent faulty versions for which PD performed worse than

CD (negative improvement). For example, for faulty-version 3 on the graph, PD

performed better by about 21.87%. Figure 29 shows that PD performed better than

CD overall. As indicated in Table 19, PD performed better than CD on 61.4% of the

faulty versions, worse on 13.97% of the faulty versions, and showed no improvement

on 24.63% of the faulty versions. The first row of Table 20 characterizes the degree

of positive improvement of PD over CD. As the table indicates, half the 61.4% of the

faulty versions with positive improvement values had improvements between 0.05%

and 3.84%, and the other half had improvements between 3.84% and 61.71%. The

average positive improvement of PD over CD was 8.57%.

We also compared the Costs of PDmin and PDmax to PD. As Table 19 shows,

PDmin performed better than CD on 61.4% of the faulty versions, performed worse

on 13.97% of the faulty versions, and performed identically on 24.63% of the faulty

versions. The table also shows that PDmax performed better than CD on 60.29% of

the faulty versions, performed worse on 14.71% of the faulty versions, and performed

identically on 25% of the faulty versions. Table 20 shows that the performance of PD,

PDmin, and PDmax are similar. The results of PDmin and PDmax provide evidence

of the stability of the causal estimates computed with PD. Overall, the results indicate

that PD improved the accuracy of fault localization over CD by further reducing
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Figure 29: Comparison of new technique (Causal-PD) to old tech-
nique (Causal-CD).

confounding bias.

Although PD performed better overall, we wanted to see how much of the im-

provement resulted from data dependences. To do this, we compared DD to CD with

respect to Cost. Table 19 indicates that DD had lower Cost than CD on 43.75% of

the faulty versions and higher cost on only 25.74% of the versions. Thus most of

the improvement seen with PD is due to considering data dependences. Considering

both control and data dependences increases the accuracy of our technique by about

18%. Tables 19 and 20 indicate that causal models based on both data and control

dependences are more effective than causal models based on either type of dependence

alone. Overall, the results show that by blocking back-door paths created by program

dependences in a faulty program, confounding bias can be reduced when estimating

the failure-causing effect of a statement.
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Figure 30: Comparison of new technique Causal-PD to Tarantula and
Ochiai. 129



6.4.2.2 Study 2: New Technique vs Other Techniques

The goal of this study is to compare PD to two well-known statistical fault-localization

techniques, Tarantula [38] and Ochiai [1], with respect to Cost. We used the Costs of

Tarantula and Ochiai as baselines and subtracted the Cost of PD.

Figure 30(a) shows that PD performed better than Tarantula on most faulty ver-

sions. Table 19 indicates that PD performed better than Tarantula on 72.06% of the

faulty versions, performed worse on 7.72% of the faulty versions, and performed iden-

tically on 20.22% of the faulty versions. Table 20 also shows that half the 72.06% with

positive improvement values had improvements between 0.05% and 6.41% and that

the other half had improvements between 6.41% and 70.29%. The average positive

improvement of PD over Tarantula was 11.55%.

In our previous work [7], Ochiai performed better than our older technique (CD).

However, Ochiai does not address confounding bias, so we incorporated CD into

Ochiai (calling it Causal-Ochiai) and showed that Causal-Ochiai performed better

than Ochiai. Here we show that PD performs better than Ochiai even when the

techniques are not composed.

Figure 30(b) shows that PD performed better than Ochiai on most of the faulty

versions. Table 19 indicates that PD performed better than Ochiai on 44.12% of

the faulty versions, performed worse on 21.32% of the faulty versions, and performed

identically on 34.56% of the faulty versions. Table 20 also shows that half the 44.12%

of the faulty versions with positive improvement values had improvements between

0.03% and 4.79% and that the other half had improvements between 4.79% and

54.86%. The average positive improvement of PD over Ochiai was 7.77%. Tables 19

and 20 show that the performance of Ochiai was improved when PD was composed

with it to produce Causal-Ochiai (CO). CO performed better on 53.68% of the faulty

versions, performed worse on 10.29% of the faulty versions, and performed identically

on 36.03% of the faulty versions. Also, half the 53.68% of faulty versions with positive
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improvement values had improvements between 0.03% and 4.28% and the other half

had improvements between 4.28% and 54.86%. The average positive improvement of

CO over Ochiai was 7.45%.

Overall, the results indicate that PD performs better than both Tarantula and

Ochiai, and improves Ochiai.

6.4.2.3 Computation Time

In this section, we present the average computation time required to compute all the

fault-localization results for one version of some of the subjects. We found that the

computation time was largely dependent on the size of the test suite of a program. The

Matching package [64] takes considerable time to invert the large covariance matrices.

For Tcas, which had 1608 test cases, it took on average 8 minutes. For Schedule, which

had 2710 test cases, it took on average 32.73 minutes. For Printtokens2, which had

4115 test cases, it took on average 2.3 hours.

6.4.3 Threats to Validity

There are three main types of threats to validity that affect our studies: internal,

external, and construct. Threats to internal validity concern factors that might affect

dependent variables without the researcher’s knowledge. The implementations of the

algorithms we used in our studies could contain errors. The Matching package we used

in our studies is open source and has been used by other researchers for experimen-

tation, which provides confidence that the algorithms in the package are stable. To

address potential errors when constructing the dynamic program-dependence graph,

we compared manually generated dynamic program-dependence graphs of smaller

subjects to graphs generated automatically by our technique.

Threats to external validity occur when the results of a study cannot be gener-

alized. In this work, such threats are greatly alleviated because our work is based

on established causal inference theory and methodology. However, more empirical
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studies on additional subjects are needed to fully address this threat.

Threats to construct validity concern the appropriateness of the metrics used in

our evaluation. We used the Cost metric to determine the effectiveness of our tech-

nique for fault localization. The Cost metric is a ranking metric that has been used

to compare techniques in many fault-localization studies, though under a different

name (Score). However, it is not established whether this metric is well suited for

presenting fault-localization information to developers.

6.5 Discussion

We have presented a new technique that combines a program-dependence causal

model, an instantiation of the causal framework, with covariate matching (a classi-

cal causal analysis technique). The program dependence causal model is combined

with covariate matching to obtain more accurate (less biased) estimates of a given

statement’s effect on the occurrences of program failures. The use of both covariate

matching and data-dependence information in our technique are innovations. The

empirical results indicate that the new technique is more effective overall than other

techniques—including the control-dependence causal-model technique, which does

not consider data dependences.

Although the presented technique performed well overall, it performed relatively

poorly on some faulty program versions, which indicates there is room for improve-

ment. We mention three possible reasons for the technique’s performance in some

cases, and we suggest how it might be improved.

First, the results obtained with the new technique are subject to limitations of the

test suite used for fault localization. Even if the test suite has desirable properties

overall, it may be inadequate for accurately estimating the causal effect of certain

statements. This will be the case for any statement that is covered by very few

test cases or for which it is not possible to extract two reasonably well-matched
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comparison groups of test cases that respectively cover and do not cover the statement.

Suspiciousness scores computed for such statements cannot be trusted because they

lack adequate support. To address this issue, we plan to investigate the automatic

generation of test cases with the appropriate coverage characteristics.

Second, although matching using Mahalanobis distance was generally effective in

our studies, it sometimes failed to yield balanced comparison groups. In the latter

cases, the rankings produced by our technique are not consistent because they are

based on valid causal estimates mixed with biased estimates. Using Mahalanobis

distance for matching is also sometimes inefficient, because it is expensive to compute

Mahalanobis distance when there are many program dependences. To address these

issues, we plan to explore the use of other matching techniques, such as those based

on propensity scores [46].

Finally, some faults cannot be effectively localized without considering the variable

values carried by data dependences. For example, considering variables values may be

the only way to determine that a check for an unusual condition is missing in a certain

program location. Although the proposed technique considers data dependences it

does not currently consider variable values.
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CHAPTER 7

CONCLUSIONS

Current statistical fault-localization have resorted to borrowing, adapting, and ap-

plying metrics from other fields such as statistics to the fault-localization problem.

There is nothing inherently wrong with these metrics except that the metrics were

not developed to address the problem of causality. This dissertation presents a novel

approach to finding the causes of program failures based on causal-inference theory.

We presented a unifying framework that combines statistical, program analysis,

and causal analysis to enable effective reasoning (causal and probabilistic) over pro-

gram behaviors. We showed in the dissertation that in some cases the causes of pro-

gram failures can be identified from dynamic information gathered from programs. We

also presented a discussion as to why in some cases the causes of program failures could

not be reliably estimated. We unified the current statistical fault-localization metrics

by showing analytically that they were all related; we also showed analytically that

the metrics were biased and as such the metrics found associations between program

elements and program failures instead of finding the program elements that caused

the failure. We also presented empirical results on several software subjects with

many faulty versions. We compared the causal models instantiated from our causal

framework to current statistical fault-localization techniques. Our results showed that

our causal models performed significantly better than the current techniques.

7.1 Merit

The dissertation research makes a number of contributions to the field of software

engineering. First, the dissertation presents a novel program representation that

combines statistical information with program-analysis information in a principled
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manner to reason (probabilistically and causally) about program behaviors. We ap-

plied the representation known as the probabilistic program dependence graph to the

problem of fault localization, and showed through numerous empirical studies the

effectiveness of the technique.

The dissertation presents a theoretical causal framework for fault localization that

combines program-dependence information with causal inference methodology for ob-

servational studies. We instantiated several causal models from our causal framework

and demonstrated empirically the effectiveness of our approach over current fault-

localization techniques. Our theoretically-based approach provides the foundation on

which to build future fault-localization systems. Also, theoretical nature of our ap-

proach will ensure that future fault-localization systems built on our approach will not

be susceptible to severe external validity problems. The increase in fault-localization

accuracy will result in reduced time spent by developers during debugging, which, in

turn, will lead to higher software quality.

Third, the dissertation presents a unification of the current statistical fault-localization

metrics from a causal perspective. It presents an analysis of the behaviors of the

metrics to assess the limitations inherent in the metrics from a causal perspective.

Exposing the limitations of current statistical fault-localization metrics will direct

future researchers to avoid pitfalls of the current metrics.

7.2 Future Work

This research provides many directions for possible future research. We discuss the

future directions in four areas.

7.2.1 Causal Program Analysis

Program analysis is an approach to automatically reason about the behaviors of pro-

grams, for example, for program understanding or optimization. There are two main
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types of program analysis: static analysis and dynamic analysis. Static analysis pro-

vides may/must information about program behaviors and dynamic analysis provides

must information about a subset of program behaviors. However, the uncertainty in-

herent in many software-engineering problems requires an analysis that can handle

this uncertainty. We intend to explore another kind of analysis, which we call causal

program analysis. The goal of causal program analysis is to bridge the gap between

static and dynamic analyses to handle the uncertainty in program behaviors. This

analysis, which is observational and experimental in nature, will seek to combine

static, dynamic, and statistical information in a principled way to reason causally

about program behaviors. For example, causal program analysis can help fuse in-

formation from different sources such as developer knowledge, project history, and

program analysis.

7.2.2 Software Debugging

This dissertation presents the foundation necessary for future research in the area

of debugging. We view the dissertation work as a first step in addressing the larger

fault-localization problem, that is to eventually answer the question “Why did my

software fail?”.

• One of the many important features of the causal framework is that the frame-

work allows programmers to interact with models instantiated from the frame-

work. This feature is useful because developers can provide the model with

information that is not available through static or dynamic analysis. Another

important feature is that the causal framework can determine whether any of

its estimates are precise. One possible usage scenario is that the causal model

initially presents the developer with some result, and the developer then ana-

lyzes the result and provides feedback to the model. The model then uses the

feedback from the developer to refine the result.
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• For the causal aspect of the dissertation, we focused on program dependences in

our causal framework. However, for more effective analysis, we intend to incor-

porate different kinds of information such as variable values into the framework.

For example, incorporating variable values into the framework will require the

development of effective value-abstraction techniques.

• For fault localization to be useful to the developer, techniques should be able

to generate explanations. This research makes it possible to generate causal

explanations from dynamic information gathered from programs. These causal

explanations can be in the form of causal graphs.

• In this dissertation, we only focused on single threaded programs. In the future

we intend to extend our framework to concurrent programs. As a starting

point, we intend to use concurrent program dependence graphs as the underlying

representation from which we compute our causal causal graphs.

• In the future, we intend to focus on diverse kinds of large software systems such

as database systems, e-commerce applications, and mobile platforms. In this

dissertation we only focused on the C language, however, we intend to extend

our approach to other languages such as C++, Java, Fortran, and Ada.

7.2.3 Software Testing

One of the important problems in software testing is regression testing. Regression

testing is the testing of software systems to uncover faults after changes have been

made to the system. One of the key insights provided by my current research is that

software testing can be viewed as an experimental causal-analysis approach. The

goal of testing then is to reveal how a program element(s) causally affect the outcome

of the program. This causal insight potentially provides a way to determine and to

construct test suites that reveal how program entities causally affect the outcome
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of the software. Furthermore, the insight has the potential of addressing perennial

problems in regression testing such as test-suite augmentation, selection, and priori-

tization. Another potential application is that several metrics developed for testing

such as statement coverage or branch coverage, can potentially be unified from a

causal perspective.

7.2.4 Change Impact Analysis

The goal of change impact analysis is to determine the parts of a software system that

have been affected because of a change(s) to some other part(s) of the software. Our

causal framework provides a unique opportunity to address novel problems posed by

change impact analysis.

• A problem in change impact analysis is to quantify the importance of the af-

fected parts of the software. Quantifying affected parts of the software will

enable developers to focus their limited resources on testing the affected parts

of the software that are deemed important according to some metric. Viewing

the quantification problem from a causal perspective potentially provides a way

to address this problem.

• Another problem is how to incorporate impacts of changes made to the software

into the causal framework for effective reasoning. How will the causal graphs

look like when changes are incorporated into the framework.

7.2.5 Usability Studies

The techniques that have been developed in this dissertation will ultimately be used

by developers. Therefore there is the need to perform usability studies to determine

the usability and effectiveness of the techniques in practice. An example of a study

is to allow developers to interact with the causal framework by specifying a priori

information they might have about a particular failure. The causal framework is
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then supposed to use the information to generate more accurate results, which will

be judged by the developers.
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