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SUMMARY 

A State-Switched Absorber (SSA) is a device capable of instantaneously changing 

its stiffness, thus it can switch between resonance frequencies, increasing its effective 

bandwidth as compared to classical tuned vibration absorbers for vibration control. This 

dissertation considers the performance of the SSA for vibration suppression of 

continuous systems, specifically a beam and a plate. The SSA tuning frequencies and 

attachment point on the continuous body were optimized using a simulated annealing 

algorithm.  It was found that an optimized SSA outperforms and optimized TVA at 

controlling vibrations of both a beam and a plate.  These performance gains were also 

observed experimentally employing magneto-rheological elastomers to achieve a 

stiffness change. This dissertation also considers zero strain switching criteria and the 

maximum work extraction switching rule used by the SSA.  The zero strain switching 

criteria ensures the system remains stable as no energy is added or released across a 

switch event.  The maximum work extraction switching rule is designed to maximize the 

power dissipated by the absorber, but also guarantees minimization of the motion of the 

base to which the absorber is attached. 
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CHAPTER 1 

INTRODUCTION 

This research considers the theoretical optimization and experimental validation 

of a state-switched absorber (SSA) used in continuous systems.  An SSA is a variation of 

the classical tuned vibration absorber that is capable of instantaneously changing from 

one discrete stiffness to another.  Altering the stiffness element of the absorber 

instantaneously changes the resonance frequency of the device.  State switching can 

provide performance gains over classical vibration absorbers, especially for excitations 

with more than one frequency component.   

 The first section in this chapter contains a discussion of previous research in the 

area of vibration absorbers.  That will be followed by a review of the research that led 

directly to the development of the state-switched absorber.  The chapter concludes with a 

brief overview of prior work investigating the state-switched absorber used for vibration 

control. 

PREVIOUS ABSORBER RESEARCH 

 The state-switched absorber (SSA) is related to many types of vibration absorbers, 

including classical passive absorbers as well as adaptive and active absorbers.  Sun et al. 

[1] give an extensive overview of the origin, design, and applications of numerous 

vibration absorbers.  Many of the absorber concepts discussed in the following literature 

review are detailed in the paper by Sun et al.  Sun et al.’s paper is an excellent review of 

tuned vibration absorbers and variants through 1995 and interested readers may find more 
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extensive references in the Sun article than those key, selected papers and developments 

discussed below.  

 There are two classical passive vibration control devices, the tuned vibration 

absorber (TVA) and the tuned vibration damper (TVD).  While these two devices are 

similar, they serve different functions.  The TVA theoretically brings the base to which it 

is attached to rest at a single excitation frequency, the resonance frequency of the 

TVA.[2]  The TVA is classically used to suppress a single harmonic excitation on 

vibrating systems.  The TVA is a lightly damped mass-spring device with a mass much 

smaller than the mass to which it is attached.  The natural frequency of the TVA is tuned 

to that of the excitation frequency.  It can be shown, that designing the TVA in such a 

way results in no motion in the base mass to which the TVA is attached.  While the TVA 

works for a single excitation frequency, resonances in the system appear just above and 

below the excitation frequency, making the TVA’s effective bandwidth very narrow.  By 

introducing damping to the absorber, these resonant peaks can be reduced, thus 

increasing the effective bandwidth of the device.  However, the introduction of damping 

decreases the effectiveness of suppressing base vibration at the absorber’s resonance 

frequency.  

While TVAs are designed to reduce the base motion near a specific frequency, a 

TVD is designed to increase the energy losses due to the damping in the system.[3] To 

achieve maximum damping losses in the structure, the TVD maximizes the relative 

velocity across its damping element.  Maximizing the energy losses does not guarantee 

the minimization of base motion at the attachment point.  Unlike the TVA, the TVD is 
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not designed to control the response of only one frequency of vibration, thus it may be 

made effective over a range of frequencies.  

 Classical passive absorbers are tuned for set operating conditions.  These 

operating conditions can change over time and cause the absorber to become ineffective 

and potentially increase the base vibration.  Adaptive tuned vibration absorbers (ATVAs) 

overcome this through an algorithm that tunes the absorber as conditions change.[1]  

Since the ATVA is capable of changing its resonance frequency, it has an increased 

effective bandwidth over classical devices. Adaptive tuning approaches tune to only a 

single frequency for each operation.[4, 5] Using closed-loop control, adaptive tuned 

vibration absorbers can also be used for purposes other than just local vibration 

suppression, such as noise control.[4]  To achieve a change in resonance frequency, the 

properties of an ATVA may be modified using either active or semi-active control of the 

device. 

Active control allows for the direct control of the absorber’s transmitted force as 

well as modifying the dynamic properties of the device.  This is achieved using force 

actuators that require external energy and system feedback.  Initial research in active 

adaptive tuned vibration absorbers considered a force actuator in parallel with the 

absorber’s stiffness and damping elements.[6-8] Using closed-loop control, the force 

actuator essentially modified the effective stiffness and damping of the absorber.  Dosch 

et al.[8] used these active control concepts to develop an inertial piezoceramic force 

actuator.  More recently, adaptive filtering methods were used to control the force 

actuator which improved the performance of the absorber.[9, 10]  The advantage of using 

active control is it allows for fast response to disturbances.  Some disadvantages to active 
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control techniques are the potential for large actuator forces which may require high 

power inputs, increased complexity in the system, and the possibility of instability.[5] 

 A semi-active absorber achieves vibration control by changing its dynamic 

parameters, such as the stiffness or damping.  Some advantages of semi-active control are 

it requires less energy, costs less, and has reduced complexity versus active systems, 

while being nearly as effective.  The state-switched absorber is more closely related to 

semi-active control concepts described below since only the system’s dynamic 

parameters are modified with no active forcing actuator.  Walsh and Lamancusa[11] 

reduced transient vibrations using a mechanically variable spring.  Lai and Wang[12] 

integrated a closed-loop controller to enhance the performance of the variable stiffness 

concept of Walsh and Lamancusa.  Further advancing the variable parameter concept, the 

addition of a variable damping element into a feedback controller improved the 

performance of the absorber under transient vibration conditions.[13, 14]  Nguyen[15] 

explored parametric excitation as a tool for vibration control.  Parametric excitation 

generates a secondary harmonic excitation by varying the coefficients of the equations of 

motion.  While parametric excitation reduces resonances, it is not effective for broadband 

vibration control.[15] A variable damping element that produces a force proportional to 

the absolute absorber velocity is termed a sky-hook damper.[16] Bender[16], 

Krasnicki[17], and Karnopp[18] all used this concept of the sky-hook damper to reduce 

vibrations through semi-active control.   The sky-hook damper requires only a small 

amount of energy to adjust the damping force.  As compared to passive dampers, the 

semi-active sky-hook damper can further reduce the vibration transmission across the 

suspension to which the vibrating body is attached.  The sky-hook concept has mainly 
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been researched for semi-active vehicle suspensions.[19-23]  Gavin and Doke [24] used a 

control rule similar to the sky-hook concept to control seismic vibration in a base-isolated 

building using both variable damping and variable stiffness devices.  

Optimization of a vibration absorber is needed to minimize the vibration in the 

system to which it is attached.  Den Hartog [2] optimized the classical damped vibration 

absorber by altering the damping to minimize the amplitude peaks in the frequency 

response function.  Research has also been conducted optimizing the tuning parameters 

of vibration absorbers applied to continuous systems.  Jacquot[25] modeled a continuous 

beam as a one-degree of freedom and the optimum absorber parameters were determined 

for this equivalent lumped mass system.  To minimize the response for the first two 

modes, Kitis et al.[26] employed a gradient-based optimization to tune two TVAs attached 

to a cantilever beam.  Rice[27] used a SIMPLEX algorithm to optimize the position, 

stiffness, and damping of absorbers attached to a beam.  Esmailzadeh and Jalili[28] fixed 

the absorbers’ position along the beam and optimized their stiffness and damping by 

means of a Direct Update Method.  A genetic algorithm was used by Hadi and Arfiadi[29] 

to optimize the parameters of a tuned vibration absorbers applied to multi-degree-of-

freedom structures.  

STATE-SWITCHED ABSORBER DEVELOPMENT 

 Davis et al.[30] recognized that the piezoceramic device developed by Dosch et 

al.[8] could be considered as a controllable variable stiffness element, due to the 

dependence of the piezoceramic’s stiffness on the output impedance.  Clark[31] and 

Richard et al.[32] have considered piezoelectric devices for state-switched vibration 

control.  The switching criteria used by both Clark[31] and Richard et al.[32] allow for 
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switching at maximum displacement across the stiffness element to optimize the 

dissipation of energy.  However, switching at maximum strain will cause undesirable 

mechanical transients in the system.[33-36] Mechanical transients, as stated here, are 

shocks in the response due to a sudden release or addition of energy to the system 

violating the conservation of energy principle.  State-switched systems are not, in 

general, stable.[37]   Certain switching laws can lead to an energy addition to the system, 

which can cause the system to become unstable.[37] 

The state-switched absorber was directly derived from a device designed by 

Larson et al.[33-35] for use in underwater transduction.  The state-switched transducer 

has the same fundamental concept as the SSA in that it is capable of instantaneously 

switching between discrete stiffnesses.  Switching between discrete stiffnesses changes 

the resonance frequency of the device, thus increasing the effective bandwidth.   

 The state-switched transducer uses piezoelectric material as the spring element in 

the system.  The piezoelectric configuration used by Larson et al.[33-35] is similar to the 

approach used by Davis and Lesieutre,[5, 38] except Davis and Lesieutre’s device was 

implemented for vibration control, whereas Larson’s objective was underwater 

transduction.   The stiffness of a piezoelectric element is different when it is short 

circuited as compared to when it is open circuited.[30, 38]  If the piezoelectric circuit can 

be controlled, switching the stiffness of the piezoelectric material can occur as fast as the 

circuit can be changed.  If the instantaneous change in stiffness occurs at zero strain, then 

no mechanical transients will be introduced to the system.  Switch events can potentially 

occur every half-cycle of oscillation of the state-switched device. 
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 Piezoelectric elements have a relatively high stiffness, which can lead to relatively 

large absorber masses.  Also, piezoelectric materials should not be put into tension, as 

they are fragile and have displacement amplitude limitations.  To make the device more 

robust and lower the absorber mass, magneto-rheological (MR) elastomers could be 

implemented as a variable spring element.[39] An MR elastomer is a polymer with fine 

iron particles suspended in it.  The stiffness of an MR elastomer depends on the magnetic 

flux across it.[39] Since the MR elastomer is composed of rubber as opposed to ceramic, 

the stiffness will be much lower than a piezoelectric material, thus resulting in a smaller 

mass for a similar resonance frequency. 

Cunefare et al.[40] conducted introductory research on the state-switched 

absorber used for vibration control.  Their work focused on state-switching theory and 

theoretical simulations of simple one-degree of freedom and two-degree of freedom 

systems.  For the single degree of freedom system, an SSA with two discrete stiffnesses 

was compared to two passive tuned vibration absorbers (TVA) excited by an identical 

base motion.  Cunefare et al.[40] found that the SSA dissipates more work than the 

TVAs, illustrating a greater damping capability in the SSA.  Also, as the spacing in 

excitation frequencies increased, the relative performance of the SSA increased as 

compared to the TVAs.  Therefore, the SSA has a larger effective bandwidth as compared 

to the classical TVA. 

 The second system investigated by Cunefare et al.[40] was a simple two-degree of 

freedom system.  A single two-state SSA was compared to a single TVA attached to 

identical bases with identical two-frequency component forcings.  The SSA did as well as 

or outperformed the TVA for all combinations of excitation frequencies investigated, 
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including single frequency excitations.  As in the single-degree of freedom system, the 

comparative performance of the SSA increases as the spacing between forcing 

frequencies increases, illustrating a broader effective bandwidth.  The significance of the 

simulations is that the SSA has the potential for performance gains as compared the 

classical passive TVAs. 

Holdhusen[41] also researched the SSA considering the role of damping and its 

effect on the vibration control performance and modeling of the state-switched absorber.  

The SSA was found to be most effective at low damping values.  Also, changing the 

models of damping does not have a significant effect on the final performance of the SSA 

as compared to a TVA.  

 Holdhusen[41] also examined the experimental validation of the state-switched 

absorber.  The state-switched absorber was implemented using magneto-rheological fluid 

and a collection of coil springs. The SSA showed performance gains experimentally as 

compared to classical tuned vibration absorbers.  Also, the SSA was observed to be 

effective over a larger bandwidth than that of a classical TVA.  The damping in the SSA 

system examined by Holdhusen[41] was time variant due to the temperature change of 

the MR fluid used to implement switching.  Therefore, the damping could not be exactly 

determined during the operation of the SSA system and the response could not be 

modeled.  

 The state-switched absorber is very similar to classical tuned vibration absorbers.  

The fundamental difference between the SSA and the TVA is that the TVA is tuned to 

only one frequency at which the system operates, whereas the SSA is capable of 

switching between discrete resonance frequencies while the system operates.  At any 
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instant in time during operation, the SSA acts at only one discrete frequency, but when a 

switch event occurs the resonance of the absorber instantaneously changes and acts at a 

different frequency until the next switch event.  The switching of resonances increases 

the effective bandwidth of the absorber. 

 The ability of the state-switched absorber to change stiffness classifies it as a form 

of semi-active vibration control.  While the SSA is related to adaptive tuned vibration 

absorbers, the adaptive tuned vibration absorber is only effective at an adaptively tuned 

single frequency as opposed to the SSA effectiveness at multiple frequencies.  The state-

switched absorber’s ability to switch between resonance frequencies and broaden its 

effective bandwidth is what differentiates it from prior vibration absorber technologies. 

RESEARCH OBJECTIVES 

 The research detailed here will investigate the performance of the state-switched 

absorber used for controlling the vibration of continuous systems.  The switching rule 

employed to reduce vibrations will be investigated for its robustness and limitations.  

Also, the tuning and attachment location for the SSA will be optimized for both beam and 

plate systems.  The performance of the optimized SSA will be compared to that of an 

optimized classical TVA. The results from this theoretical optimization will be validated 

experimentally. 

 This dissertation will continue by outlining the basic dynamics and switching 

criteria employed in the state-switched absorber.  The investigation of the switching rule 

implemented is then detailed.  Next, the governing equations of motion for the systems 

considered are outlined, followed by a discussion of the optimization of the SSA applied 

to continuous systems.  Then, the experimental setup and results of the SSA applied to a 
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beam and plate are described.  This dissertation will end by drawing some conclusions 

from this research. 
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CHAPTER 2 

STATE-SWITCHING CONCEPTS 

 In the following sections, the basic tools required to analyze and simulate a state-

switched absorber attached to various dynamic systems are developed.  These tools are 

meant to be general and not specific to a particular hardware implementation of state 

switching.  The only restrictions on the analysis is that the absorber's spring stiffness is 

the sole switchable property, and switching only occurs at zero relative strain across the 

switchable spring. 

DYNAMICS 

 Figure 2.1 depicts a model of an SSA.  The SSA in isolation is a single degree of 

freedom spring-mass-damper device. The arrow through the spring in Figure 2.1 implies 

a spring with selectable, discrete stiffnesses.  The SSA has as many states as it does 

discrete stiffnesses.  For the work at hand, the SSA will have only two potential stiffness 

states, k1 and k2, where k1<k2. 

 Each discrete stiffness yields a distinct, discrete resonance frequency, 

ks c

m
xSSA

xbase  

Figure 2.1: Model of state-switched dynamical device 
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 i
i

k
mω = .  (2.1) 

Notice that the SSA in isolation has only one observable resonance frequency at any 

given time.  The observable state of the SSA is called the ‘on-line’ state.  Thus, the ‘off-

line’ state is the other potential state of the SSA.  When a switch in state occurs the ‘on-

line’ stiffness becomes the ‘off-line’ stiffness and vice versa.  For example, if the ‘on-

line’ state has the stiffness k1 and its corresponding resonance ω1, a switch event at zero 

relative displacement will cause the stiffness to change to k2, thus changing the resonance 

to ω2. 

SWITCHING CRITERIA 

 To avoid mechanical shocks in the system response, switching should only occur 

at zero relative displacement across the SSA, which is determined by 

 0=−= baseSSA xxz ,       (2.2) 

where xSSA is the displacement of the absorber and xbase is the displacement of the base.  

When the relative displacement across the spring is zero there is no potential energy in 

the spring (it is presumed that there is no static pre-load in the spring), thus the energy 

before and after the switch event remains equal.  Since the energy before the switch is 

equal to the energy after the switch, there is no energy input needed to the system and 

thus the system will remain stable.[37]  If a switch event occurs when the relative 

displacement is non-zero, the spring contains some potential energy that is 

instantaneously released, causing shocks in the response of the system. 
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 Zero strain across the spring is a necessary condition for switching to occur, 

however, the system need not switch at every occurrence of zero relative displacement.  

The fundamental question is whether or not to switch at a switch opportunity.  For the 

work previously done by Cunefare et al. [40] and Holdhusen[41], a maximum work 

extraction principle was implemented.  To achieve a maximum work extraction in a two 

state SSA, the switching rule is 

 
⎪
⎩

⎪
⎨

⎧

=−
<−
>−

=
0)xx(x  if  k
0)xx(x  if  k
0)xx(x  if  k

k

baseSSAbaseSSA

baseSSAbaseSSA2

baseSSAbaseSSA1
next

SSA

&&&

&&&

&&&

,          (2.3) 

where kSSA
next is the next value of the stiffness.  The switching rule described by (2.3) 

results in a maximum work extraction by the absorber, but does not guarantee minimized 

base motion.  The SSA behaves somewhat like a vibration damper under the switching 

rule described.  A physical interpretation of the switching rule is that when the force 

exerted by the SSA on the base opposes the base motion, a stiffer spring removes more 

energy from the base.  Likewise, a softer spring puts less energy into the base during 

periods when the SSA force acts in the same direction as the base motion.  It is noted that 

the switching logic defined by Equation (2.3) is closely related to the ‘sky hook’ optimal 

damping concept.[16-18]  

 Since the SSA can only be in one state at any given time, the modeling of the SSA 

is quite simple.  Between switch events, the SSA exhibits only one stiffness, thus behaves 

like a classical vibration absorber at any given time.  When implemented into a 

simulation, the equations of motion must be changed at each switch instant in order to 

reflect the dynamic properties of the ‘on-line’ state of the system.  After each switch 

event, the absorber is tuned to a new resonance frequency and acts like a classical TVA 
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with an initial velocity and displacement equaled to the final velocity and displacement 

before switch event.  After each switch event, the solution to the differential equation of 

motion is the sum of the particular solution and the homogeneous solution of the 

differential equation.  The particular solution is calculated from the excitation of the 

system, whereas the homogenous solution is the free response of the system and thus 

depends on the initial conditions.  There is a start-up transient after each switch event due 

to the dependence of the homogeneous solution on the initial conditions that are present 

after the switch.  Because this transient occurs at every switch event, the system can 

never reach a steady-state condition due to recurrent switching during the response.  

Since the system never reaches steady state, a frequency response function cannot be 

calculated for the SSA response.  Also, due to the non-linearity of the switching, 

superposition does not hold and the addition of the frequency response functions of a 

TVA at two frequencies will not result in that of the SSA. 
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CHAPTER 3 

SWITCHING RULE INVESTIGATION 

 This chapter discusses the state-switched absorber switching criteria and rule 

detailed in the previous chapter.  The switching rule is investigated to gain a better 

understanding of how the SSA works and how robust the switching rule is.  The chapter 

begins with a discussion of the maximum work extraction switching rule and the physics 

behind why the SSA outperforms passive devices.  Then, the stability of the vibrating 

system subjected to the zero relative displacement switching criteria is considered.  

Finally, the effect inaccurate switch timing has on SSA performance is considered, 

including delayed switching and ramped switching. 

MAXIMUM WORK EXTRACTION 

 The state-switched absorber used for vibration control uses the maximum work 

extraction switching rule defined by Equation (2.3).  This switching rule was developed 

by Cunefare et al. [40] and is designed to maximize the work extracted from the base to 

which the absorber is attached.  Maximizing the extracted work does not, however, 

guarantee reduced vibrations in the system trying to be controlled.  As Cunfare et al. [40] 

showed, as will be showed later in this dissertation, reduced base motion is a byproduct 

of this switching rule. 

 To determine what occurs for the maximum work extraction switching rule to 

result in reduced vibrations in the base, the research performed by Cunefare et al. [40] 

must be reviewed.  In this paper, the switching criteria and rule were derived and 

simulations were performed for the SSA applied to an elastically mounted lump mass.  
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The performance of the SSA was compared to that of a TVA for a base mass subjected to 

an excitation with two frequency components of equal amplitude.  Both absorbers tuning 

frequencies were optimized using a direct search algorithm for a range of excitation 

frequency combinations.  The metric of performance for this system was defined to be 

the kinetic energy of the base mass.  The lower the base kinetic energy, the better the 

performance of the absorber.  Figure 3.1 shows the ratio of base kinetic energy of the 

optimized SSA to the base kinetic energy of the optimized TVA as a function of the two 

excitation frequencies.  The energy ratio is represented in dBs, therefore when the value 

is negative the SSA performs better than the TVA.  The forcing frequencies have been 

normalized by the natural frequency of the isolated base system.  Figure 3.1 has a larger 

range of forcing frequencies than was presented in the original paper.  As can be seen, the 

 

Figure 3.1: Ratio, in dB, of base kinetic energies of an SSA to a TVA for a two-
frequency excitation.  Negative dB values indicate better performance of the SSA. 
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ratio value is negative for the entire range of forcing frequencies considered, therefore the 

SSA outperforms the TVA for all excitation combinations considered.  Note, there is a 

smaller range of forcing frequencies where the SSA performs at its best as compared to a 

TVA. 

 To determine what happens in the SSA that results in improved performance over 

a TVA, a power balance of the system is considered.  The power balance law for a 

vibratory system is 

 outin PPVT −=+ &&  (3.1) 

where T is kinetic energy, V is potential energy, Pin is power input by external forces, and 

Pout is work dissipated by the dampers in the system.  To dissect this power balance, the 

power is averaged over one period of repetition in the response of the system.  The time 

rate of change of kinetic energy and potential energy averaged over one repetition period 

is zero.  Therefore, the dampers must dissipate all the input power to the system for the 

power balance in Equation (3.1) to remain true.   The work dissipated by the system 

dampers is 

 ( )22
baseabsabsbasebaseout xxcxcP &&& −+=  (3.2) 

where cbase and cabs are the damping coefficients of the base and absorber, respectively, 

and xbase and xabs are the displacements of the base and absorber, respectively.  The input 

power is 

 ( ) ( )[ ] basein xtFtFP &2211 sinsin ωω +=  (3.3) 

where F1 and F2 are the forcing amplitudes, ω1 and ω2 are the forcing frequencies, and t 

is time.  Note, this input power is a function of the velocity of the base, which has both 
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amplitude and phase.  The phase of the base response is dependent on both resonance 

frequencies and damping in the system.  Therefore, switching between resonance 

frequencies in the SSA can change the response phase and may result in an increased or 

decreased power input, without necessarily changing the vibration amplitude. 

 To determine the effect switching has on the power input, a state switching 

system is compared to a system without switching, i.e. a tuned vibration absorber system.  

Figure 3.2 the ratio of input of the SSA to the TVA for a range of two-frequency 

component forcings.  The absorber tunings used to create Figure 3.2 are identical to the 

optimized tunings found to create Figure 3.1.  For each forcing combination, the input 

power was determined for each absorber and time averaged over one period of repetition 

in the system response.  The ratios of the SSA input power to the TVA input power are 

 

Figure 3.2: Ratio, in dB, of input power of an SSA to a TVA for two-frequency 
excitation 
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displayed, in decibels, in Figure 3.2. For the majority of the forcing cases considered, the 

ratio value is zero indicating that switching has little effect on the power input for most of 

the cases considered.  The lowest power input ratio occurs for the same forcing case that 

results in the best relative performance of the SSA, depicted in Figure 3.1.  For this case, 

there is 2.5 dB less input power in the SSA system than in the TVA system and the SSA 

dampers do not need to dissipate as much work as the TVA dampers.  The highest input 

power ratio occurs at a point of low relative performance of the SSA.  In this case, there 

is a 5 dB increase of power input to the SSA system as compared to the TVA system 

resulting in more work dissipation in the SSA’s dampers.  As Figure 3.1 shows, the SSA 

outperforms the TVA for this forcing case, demonstrating that the SSA was able to 

reduce base motion in spite of the increased power input to the system. 

 To determine how the SSA works to reduce the motion, even for increased power 

inputs, the power dissipation in each damper must be examined.  Focusing on the power 

dissipated in the base system’s damper and that dissipated in the SSA’s damper in 

Equation (3.2), the following equations are obtained, 

 
( )

2
,

2
,

out base base base

out abs abs abs base

P c x

P c x x

=

= −

&

& &
 (3.4) 

where Pout,base is the power dissipated by the damper between the base and ground and 

Pout,abs is the power dissipated by the damper.  Minimizing the power dissipation in the 

base damper results in minimizing the base vibration, as this dissipation depends only on 

the base velocity and a damping coefficient.  Conversely, maximizing the power 

dissipated by the absorber’s damper will also result in minimizing the base motion since 

all the power input to the system must be dissipated by both system dampers.  
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Maximization of the power dissipated by the absorber’s damper is exactly what the 

maximum work extraction switching rule does. 

 To show that the SSA damper dissipates most of the power added to the system, 

reducing the motion of the base, the work extracted by each system damper must be 

compared.  Figure 3.3 depicts the ratio, in dBs, of the work extracted by the state-

switched absorber’s damper to that of the base damper for the same forcing and tuning 

cases used for Figures 3.1 and 3.2.  When this value is greater than zero, the absorber 

damper dissipates more power than the base damper.  For nearly the entire range 

excitation frequencies, the ratio value is greater than zero dB and therefore the absorber 

damper dissipates more power than the base damper.  Only a very small range of forcing 

frequencies had a higher power dissipation in the base damper than in the absorber 

 

Figure 3.3: Ratio, in dB, of dissipated power of the SSA damper to the base damper 
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damper and these forcing cases had low relative performance of the SSA.  Figure 3.4 

shows the ratio of the work extracted by TVA’s damper to that of the base damper for the 

same range of excitation frequencies.   As can be seen, for about half of the forcing cases, 

the TVA’s absorber dissipates less power than that of the base damper.  The ratio values 

cross from positive to negative at the same frequencies where the SSA begins to improve 

its performance relative to a TVA as seen in Figure 3.1.  Also, the excitation combination 

that results in the lowest absorber damper to base damper power dissipation ratio was the 

same as the excitation resulting in best relative performance of the SSA.  In general, an 

absorber’s performance improves when the absorber’s damper dissipates more energy 

than the base damper.  Since state switching has little effect on the power input to a 

system and all this input power must be dissipated by the system’s dampers, maximizing 

 

Figure 3.4: Ratio, in dB, of dissipated power of the TVA damper to the base damper 
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the work extracted by the SSA’s damper leads reduced motion in the base to which the 

absorber is attached. 

STABILITY 

 Kurdila et al. [37] have researched the stability of state-switched systems.  They 

showed that certain switching rules can induce instabilities in systems.  The following is 

a brief summary of Kurdila el al.’s [37] research outlining a switching example that leads 

to instabilities in the system.  That example will be followed by a stability investigation 

of the switching rule defined by Equations (2.2) and (2.3) used for the research at hand. 

 Consider a two-state stiffness switching system with no damping.  Such a system 

has two potential “on-line” states defined by 

 1

2

0
0

mx k x
mx k x

+ =
+ =

&&

&&
, (3.1) 

where m is mass, x is displacement, and k1 and k2 are the lower and upper stiffnesses, 

respectively.  Since energy is conserved in Equation (3.1) for any initial condition, 
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where E1 and E2 are mechanical energies of the lower and upper stiffness states, 

respectively.  Equation (3.2) is an ellipse phase space represented by 
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Figure 3.5 depicts a graphical representation of several energy ellipses of one of the 

stiffness states defined in Equation (3.3).  The larger the ellipse in the phase portrait 

depicted in Figure 3.5, the more energy the system contains.  If a response trajectory 

plotted on a phase portrait is bounded, the system energy remains bounded and finite, 

therefore the system is determined to be stable. 

 Figure 3.6 shows a switching rule that leads to the trajectory shown in Figure 3.7.  

The switching rule states that if the displacement and velocity are in the same direction, 

the absorber should be in the lower stiffness state; otherwise, the absorber should be 

tuned to the upper stiffness.  Such a switching rule will switch each time the trajectory 

crosses an axis.  It can be seen from Figure 3.7 that the trajectory moves to a higher 

x

x&

Increasing 
Energy

 

Figure 3.5:  Phase portrait of a single stiffness state 
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energy ellipse with every switch representing an unbounded, therefore unstable, 

trajectory.  An external energy source is required to complete each switch and move to a 

higher energy state.  Figure 3.7 demonstrates that an unstable system can result from 

k1

k1

k2

k2

x

x&

 

Figure 3.6: Switching rule for unstable example 

x
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Figure 3.7: Trajectory of an unstable switched system 
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certain switching rules, even though each state is, itself, neutrally stable. 

 Kurdila et al.’s [37] example, outlined above, showed that a switched system 

could become unstable for certain switching rules.  A similar approach is taken to show 

that the switching rule defined in Equations (2.2) and (2.3) is stable.  Equations (3.1) and 

(3.2) defining the equations of motion and energy conservation are identical for switching 

rule at hand.  Figure 3.8 shows the energy trajectories for the two states of the system.  

Equation (2.2) states that switches may only occur at zero displacement across the spring 

of the absorber.  Therefore, switching may only occur when the trajectory crosses the 

vertical axis.  Because of this zero displacement switch criteria, the system switches 

between only two energy trajectories and thus is bounded.  The switching rule as used in 

this research is stable, as the energy remains bounded regardless of the number of 

switches. 
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Figure 3.8: Phase portrait of maximum work extraction switching rule 
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SWITCH TIMING 

 Real state switching systems have sensors and electronics that are real devices 

with finite response time.  Because of this, switches in real systems cannot occur 

instantaneously.  This non-instantaneous switch can affect the performance of a state-

switched absorber used for vibration control.  The following sections detail the effect the 

timing of switch events has on the performance of the state-switched absorber used for 

vibration control.  The first section considers a delay in an instantaneous switch event.  

The following section details the effect of a switch event that occurs over some finite 

time. 

Delayed Switched   

Ideally, switch events occur when the relative displacement equals zero, therefore 

there is no change in the potential or kinetic energy and the response of the system is 

continuous across the switch event.   However, in real systems, switch events cannot 

occur exactly at zero displacement.  If a switch occurs at a nonzero displacement, one of 

two things will happen.  In one situation, a discontinuous velocity response allows the 

energy to be conversed.  If energy cannot be conserved, energy must be added to the 

system from an external source to complete the switch.  If energy is added to the system, 

instabilities can occur. 

Consider the state-switched absorber attached to a moving base considered in the 

previous section.  The energy in such a system is defined by Equation (3.2).  In a real 

system, an instantaneous change in displacement cannot physically occur.  Therefore, a 

step in the displacement response of the system is not allowed. However, an 
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instantaneous change in velocity is allowed.  If a switch from high stiffness to low 

stiffness occurs at some relative displacement other than zero, the potential energy 

instantaneously decreases, as the displacement remains constant across the switch.  To 

conserve energy, the kinetic energy must increase an amount equal to the loss of potential 

energy.  An instantaneous change in velocity occurs to conserve energy across the switch.  

Now consider a switch from low stiffness to high stiffness at a nonzero relative 

displacement.  The potential energy increases, causing a decrease in kinetic energy.  

Since the kinetic energy cannot decrease below zero, there are cases where the kinetic 

energy cannot be decreased enough to conserve energy.  In such cases, energy must be 

added to the system to complete the switch.  The addition of energy can cause the state-

switched absorber system to become unstable. 

 Figure 3.9 depicts the phase portrait of an undamped state-switched absorber 

attached to moving base where switching is delayed.  The energy ellipses of the same 

color in Figure 3.9 represent energy paths that have equivalent energies.  From the 

defined switching rule, switches should occur when the trajectory crosses the vertical 

axis.  However, for the case at hand switch events are delayed by a constant time interval 

after the zero displacement crossing.  The system starts in the upper stiffness state.  When 

the first delayed switch event occurs, the systems instantaneously jumps to the lower 

stiffness state path of the energy.  This occurs with no change in displacement resulting in 

a vertical trajectory in Figure 3.9 representing a step change in the velocity response.  At 

the next delayed switch event, the system moves from the lower stiffness to the upper 

stiffness.  The system again attempts to jump to the equivalent energy path of the upper 

state by removing kinetic energy.  However, the velocity reaches zero before the 
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trajectory reaches the upper stiffness state of the same energy.  To complete the switch, 

energy must be added to the system causing the trajectory to follow a higher energy path.  

As delayed switches continue, the energy continues to increase and the system diverges 

becoming unstable. 

 A state-switched system can become unstable when the kinetic energy cannot be 

reduced enough to balance the energy conservation and energy must be added.  As shown 

in Figure 3.9, a switch event must occur before the displacement in the lower stiffness 

trajectory is greater than the maximum displacement in the upper stiffness path with the 

same energy to avoid instabilities.  To quantify this statement, consider the total energy in 

the system when the velocity is zero, or when there is only potential energy in the spring, 

x&
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Figure 3.9: Phase portrait of a state switching system with a delayed instantaneous 
switch 
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X is the displacement amplitude, k is the stiffness, and the subscripts 1 and 2 correspond 

to the lower and upper stiffness states, respectively.  By equating the energies defined in 

Equation (3.4), a relationship between the displacement amplitudes of the two states of 

equal energy is determined by 
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1 XX
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ω
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== . (3.5) 

where ω is the natural frequency of the absorber.  The displacement response of the SSA 

in its lower state is of the form 

 ( )tXx 111 sin ω= . (3.6) 

The latest a switch can occur is the displacement in the lower state equals the 

displacement amplitude of the upper state, thus keeping the total energy constant across 

the switch.  Equating the lower state’s displacement defined in Equation (3.6) with the 

displacement amplitude of the upper state results in 

 ( )tXX 12
1

2
2 sin ω

ω
ω

= . (3.7) 

Simplifying Equation (3.7) gives 
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Equation (3.8) defines the maximum time delay, ∆t, in switching before the state-

switched absorber system has the potential to become unstable.  This maximum time 

delay is frequency dependent as can be calculated from knowledge the SSA tuning 

frequencies.  

Ramped Switch 

 Another type of switch that can cause imprecise timing of switch events is a 

ramped switched.  A ramped switch is one where the switch does not occur 

instantaneously; it gradually moves from one stiffness to another over some finite time.  

Many state switching implementations, such as piezoelectrics and magneto-rheological 

elastomers, do not allow for instantaneous switching.  For example, piezoelectrics require 

the electric charge to build up in order switch.  This charge does not appear and disappear 

instantaneously.  The charge is ramped up and down, thus causing the stiffness to also 

ramp up and down during switch events.  The work at hand considers a stiffness switch 

that changes between states linearly as a function of time.  The stiffness change is defined 

as 

 ( ) Ttkk
T
tkk ≤≤−+= −+− 0  (3.9) 

where k is the stiffness, t is time, T is the duration of the switch, and the subscripts – and 

+ represent the initial and final state of the switch, respectively.  

 The phase portrait of a state switching system with ramped switching is shown in 

Figure 3.10.  The system starts in the upper stiffness state and begins its ramped switched 
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to the lower state once its trajectory reaches zero relative displacement.  At this point, the 

stiffness is linearly decreased as a function of time until it reaches the lower stiffness.  As 

with the delayed instantaneous switch, the system can always conserve energy by 

increasing the kinetic energy and not adding external energy.  Conversely, when the 

system switches from the lower stiffness to the higher stiffness, the stiffness is gradually 

increased to the higher state.  As this occurs, the potential energy steadily increases while 

the kinetic energy steadily decreases.  If the system reaches zero velocity, or zero kinetic 

energy, the kinetic energy cannot be reduced any more.  For this case, external energy 

must be added to the system to achieve the stiffness change.  This energy is gradually 

added until the switch is complete, at which point the system’s trajectory is at a higher 

energy level.  As this response continues, energy is added with each switch from low 

x&

x

 

 Figure 3.10: Phase portrait of state switching system with ramped stiffness 
switch 
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stiffness to high stiffness causing the trajectory to diverge and the system to become 

unstable. 
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CHAPTER 4 

EQUATIONS OF MOTION 

 This chapter derives the governing equations of motions for the state-switched 

absorber systems considered in this research.  The following development was used in 

optimizing the tuning parameters of the SSA used for vibration control.  First, a 

cantilever beam with an absorber attached is outlined.  The last section details the 

equations of a state-switched absorber applied to a plate clamped on all sides. 

CANTILIEVER BEAM 

 Figure 4.1 depicts a state-switched absorber used to control a vibrating beam.  

The equations of motion for such a system are of the form 

 UqKqCqM s =++ &&&  (4.1) 

where M is the mass matrix, C is the damping matrix, U is a vector of forces, q is a vector 

of coordinates, and Ks is the stiffness matrix where the subscript s represents the current 
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Figure 4.1: State-Switched absorber attached to a beam, subject to multi-harmonic 
point forcing 
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state of the SSA.   

 The method of assumed modes is used to derive the equations of motion.[42]  The 

flexural displacement field on the beam is represented as 

 ( ) ( ) ( ) qtqxtxw T
N

i
ii ϕϕ == ∑

=1
, , (4.2) 

where N is the number of modes in the isolated beam, ϕ are basis functions, x is position 

along the beam, and q is a vector of generalized coordinates.  For simplicity x and t will 

be omitted henceforth. 

 The kinetic energy for the beam and attached absorbers is  

 ( ) 2 2

10

1 1
2 2

L N NA

a a
a N

T m x w dx m q
+

= +

= + ∑∫ & & , (4.3) 

where NA is the number of attached absorbers, m(x) is the mass per unit length of the 

beam and ma are the masses of the attached absorbers.  The elements of the mass matrix, 

M, are 
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The potential energy due to the deformation of the beam and springs may be expressed as 



 

35 

 ( ) ( )( )
22

2

2
10

1 1
2 2

L N NA

a a a
a N

wV EI x dx k q w x
x

+

= +

⎛ ⎞∂
= + −⎜ ⎟∂⎝ ⎠

∑∫  (4.5) 

where E is the modulus of elasticity, I is the area moment of inertia, xa are the absorber 

locations, and ka are the absorbers’ stiffnesses.  The elements of the stiffness matrix, K, 

are 
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There are two discrete K matrices as there are two allowable stiffness states in the state-

switched absorbers attached to the beam.  Note that each state-switched absorber attached 

to the beam has two discrete stiffnesses that can be observed depending on what the “on-

line” state is.   

 The work at hand specifically considers the cantilever beam system depicted in 

Figure 4.1.  To satisfy the geometric boundary conditions of displacement and slope 

equaling zero at x=0, the basis functions are assumed to be 

 ( )
1i

i
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L

ϕ
+

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (4.7) 

For the work at hand, only one absorber is attached to the beam, which has a mass that is 

one-tenth the total mass of the beam (ma=ρAL/10).  Assuming the beam has a constant 

mass per unit length, mL, the elements of the mass matrix become 
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Assuming EI(x) is constant along the length of the beam, the elements of the stiffness 

matrix become 
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The work at hand assumes a two-harmonic point force located at the midpoint along the 

length of the beam, xF=L/2, giving a forcing vector of 

 ⎟
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2
LFU ii ϕ . (4.10) 

Proportional damping is used to model the damping in this system.  The damping matrix 

is defined as 

 ( )avgC M Kα= + , (4.11) 

where α is a proportionality constant and Kavg is the mean of the two SSA stiffness 

matrices.  For the work at hand, the proportionality constant is equal to 0.05.  An average 

of the two SSA stiffness matrices is used in Equation (4.11) because the stiffness matrix 
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can change during the response of the system and a switch in stiffness would cause 

damping switching, which is not the focus of the research. 

CLAMPED PLATE 

 Figure 4.2 depicts a rectangular plate clamped on all sides with a state-switched 

absorber attached to control vibrations.  The equations of motion for a plate are of the 

same form as a beam defined by Equation (4.1).  As with the beam system, the method of 

assumed modes is used to model the plate system.  The flexural displacement field of the 

plate is represented as 

 ( ) ( ) ( ) qtqyxtyxw T
N

i
ii ϕϕ == ∑

=1
,,, , (4.12) 

where x and y define position on the plate.  Position and time dependency notation will be 

dropped henceforth for simplicity. 

 The kinetic energy of the plate with absorbers attached is expressed as 
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Figure 4.2: State-switched absorber attached to a plate, subject to multi-harmonic 
point forcing 
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The elements of the mass matrix are 
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As with the beam system, the absorber mass is one-tenth the mass of the plate.  The 

potential energy for the plate and attached absorbers may be expressed as [43] 
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where 

 D x,y( ) =
E x,y( )h x, y( )3

12 1 −ν2( ) , (4.16) 

h is the plate thickness, ν is Poisson’s ratio, and xa and ya define the absorber’s position 

on the plate.  The elements of the stiffness matrix are calculated similarly to that of the 

beam and are 
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where 
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As with the beam system, there are two discrete stiffness matrices representing each of 

the two potential stiffnesses between which the absorber can switch. 

 The research at hand considers a square plate that has been clamped on all four 

sides.  The basis function used to satisfy the boundary conditions of such a plate is 
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where m and n are integer indices mapping to the subscript i.  The number of degrees of 

freedom in the plate is determined by the maximum values of m and n, 

 DOFplate = m × n . (4.20) 

The elements of the mass matrix for a clamped plate become 
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where m and n map to the subscript i and r and s map to the subscript j.  The elements of 

the stiffness matrix are 
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As with the mass matrix, m and n map to the subscript i and r and s map to the subscript 

j.  L is calculated using Equation (4.18), again using proper mapping between indices.  
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The double integrals in Equations (4.21) and (4.22) are calculated numerically using the 

MATLAB function dblquad. 

To determine the forcing vector, a point force on the plate located at xF Lx 25.0=  

and yF Ly 375.0=  is used. The resulting forcing vector is 
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A damping equivalent to that described in Equation (4.11) is also used in the plate 

system. 
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CHAPTER 5 

STATE-SWITCHED ABSORBER OPTIMIZATION 

 This chapter details the optimization of the location and tuning frequencies of the 

state-switched absorber attached to continuous systems, specifically a beam and plate.  

The first section describes how the response of the system was modeled and the 

optimization technique employed.  It also explains the objective function and how the 

performance of an SSA is compared to the performance of a TVA.  The final two 

sections detail the results from the optimization of the beam and plate, respectively. 

OPTIMIZATION METHOD 

 The response of the state-switched absorber system is calculated using a linear 

time invariant (LTI) state-space method.  This method can be used because the system is 

linear and time invariant between switch events.  When a switch event does occur, all the 

matrices are updated to reflect the new “on-line” state with initial conditions and the LTI 

simulation continues until the next switch event.  Cunefare et al.[40] detailed a more in-

depth coverage of this simulation method as it applies to the state-switched absorber.  

 The goal of this research is to compare the response of an optimized SSA to that 

of an optimized TVA. The objective function to be optimized is the time averaged kinetic 

energy of the base system.  The kinetic energy of the base system is defined as 
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1
2

TT q Mq= & & ,  (5.1) 

where q&  represents the generalized velocities corresponding to the base system and M is 

the mass matrix corresponding to the base system.  The kinetic energy described in 

Equation (5.1) is averaged over one repetition of the system response.  Due to the 

switching in the system, the SSA can never truly be in steady state.  However, a 

repetition in the response of the system can be observed. This repetition period is the 

interval over which the kinetic energy is averaged. 

 There are three or four parameters that can be altered to achieve an optimum 

performance depending on if the SSA is applied to beam or a plate.  One parameter is the 

location of the absorber’s attachment point on the vibrating body.  For the beam system, 

only one value is needed to describe the attachment location, whereas the plate system 

requires two values to define the absorber placement.  The other two parameters are the 

upper and lower tuning frequencies of the SSA.  Note that if the two SSA frequencies are 

equal, the absorber behaves as a classical tuned vibration absorber.  These tuning 

frequencies, along with the excitation frequencies, are normalized by the natural 

frequency of the fundamental mode of the base system with no attachment.   

 Optimization techniques that assume a continuous, but not necessarily convex, 

objective function to find local maxima and minima cannot be employed for the state 

switching system.  This is due to the discontinuous nature of the kinetic energy objective 

function as a function of tuning parameters.  A slight change in one of the SSA 

parameters can cause switch events to occur at different instances, which can lead to a 

significant change in the average kinetic energy of the base system.  Due to the discrete 
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nature of switching, the average kinetic energy objective function changes 

discontinuously as a function of tuning parameters.  Such discontinuities make gradient-

based optimizers infeasible, as an infinite slope will cause a failure in the optimization. 

 To optimize the absorber’s attachment location and tuning frequencies, a 

simulated annealing optimization method was employed.  Metropolis et al.[44] developed 

a simple algorithm that provides an efficient simulation of the annealing process of 

materials.   Kirkpatrick et al.[45] recognized that this simulated annealing algorithm could 

be utilized for optimization problems.  Optimization by simulated annealing is beneficial 

in that it allows for the transition out of local optimum, therefore the procedure need not 

get stuck in a non-global optimum.  However, even though the simulated annealing 

algorithm allows for movement out of a local optimum, it does not guarantee that a global 

optimum will be found. For the state-switching problem at hand, simulated annealing is 

advantageous not only because it won’t get stuck in local minimum, but also because it 

does not require the use of gradients. 

 The simulated annealing optimization algorithm begins at an initial “temperature” 

with an initial guess of the optimization parameters corresponding to an objective 

function value.  The procedure randomly selects new parameters in the neighborhood of 

the previous parameters.  These new parameters also each have a corresponding objective 

function value.  If the new value of the objective function is less than the previous 

objective function value, the move is allowed and the new parameters are accepted as the 

current parameters, assuming a minimum objective function is desired.  If the new value 

of the objective function is greater than the previous objective function value, the move 

away from the local minimum is allowed if 
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In Equation (5.2), f is the current objective function value, fnew is the objective function 

value corresponding to the newly determined parameters, c is the simulated annealing 

temperature, and random(0,1) is a number between zero and one chosen using a random 

number generator.  Note that the use of Equation (5.2) allows for movement to a higher 

objective value, thus the procedure need not get stuck in a local minimum.  Whether or 

not a move occurs, a new set of parameters is chosen in the neighborhood of the current 

parameters and the process is repeated.  After this process has been repeated a 

predetermined number of iterations at the same “temperature,” the “temperature” is 

lowered a small amount and the steps are repeated at this new “temperature.”  The 

algorithm continues until the objective function remains unchanged over a number of 

consecutive decreasing temperatures.  At this point, the system is “frozen” and the 

optimum is found.  

BEAM OPTIMIZATION RESULTS 

 The simulated annealing optimization algorithm described above was used to 

optimize the tuning frequencies and the attachment location of the state-switched 

absorber applied to a vibrating beam.  This optimization algorithm was considered for a 

range of two-frequency component excitations.  Each of the two forcing frequencies 

range from just below the frequency of the beam’s first mode to just above the second 

mode’s frequency.  There are 16 forcing frequency steps over the range resulting in 136 

different forcing combinations.  For each combination of forcing frequencies, the 

simulated annealing algorithm was employed to find the attachment location and tuning 
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frequencies that resulted in the minimum kinetic energy in the beam.  For comparison of 

the performance of the SSA to classical devices, a similar optimization method was used 

to optimize the location and frequency of a classical tuned vibration absorber. 

 Figure 5.1 shows the energy ratio of the optimized state-switched absorber system 

to a beam with no absorber attached to it.  The energy ratio used in Figure 5.1 is 

calculated by 

 ⎟⎟
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⎞
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SSA
r KE

KEE log10 , (5.3) 

where KESSA is the beam kinetic energy with the optimized SSA attached and KEbeam is 

the kinetic energy of a beam with no absorber attached.  When this value is less than 

zero, a beam with an SSA attached performs better than an untreated beam.  The forcing 

 

Figure 5.1: Kinetic energy ratio, in dB, of an optimized SSA system to an untreated 
beam as function of two forcing frequencies 
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frequencies in Figure 5.1 are all normalized by the frequency of the first mode of the 

isolated beam.  As can be seen from Figure 5.1, the SSA is effective at reducing the 

vibrations of a vibrating beam for all the forcing cases considered.  The best performance 

of the SSA occurs when the two normalized forcing frequencies are 1.04 and 1.24.  The 

SSA reduces the beam energy by 33.9 dB for this forcing case.   

 Figure 5.2 shows the energy ratio of the optimized SSA system to the optimized 

TVA system.  All values in Figure 5.2 are determined similarly to that of Figure 5.1.  As 

can be seen from Figure 5.2, an optimized SSA performs as well as or better than an 

optimized TVA for the entire range of frequencies considered.  The best relative 

performance of the SSA occurred when the normalized forcing frequencies were 6.4 and 

7.7 where the SSA reduced the kinetic energy of the beam by 17 dB over that of an 

 

Figure 5.2: Kinetic energy ratio, in dB, of an optimized SSA to an optimized TVA as 
function of two forcing frequencies 
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optimized TVA. 

 Figure 5.3 shows the optimal attachment location of the state-switched absorber 

along the beam as a function of the two frequency components.  The attachment location 

is normalized by the length of the beam and the forcing frequencies are normalized by the 

frequency of the first mode of the isolated beam.  As can be seen, most of the forcing 

cases result in an attachment location of one, which corresponds to the free end of the 

cantilever beam.  Over most of the frequency range considered, the first mode of 

vibration is the mode being controlled.  This first mode shape of a cantilever beam has 

maximum displacement at the free end of the beam, thus the free end vibrates more than 

any point on the beam.  The SSA is placed at the free end to have the greatest effect at 

controlling the first mode. Figure 5.3 also shows that around the frequency of the second 

 

Figure 5.3: Optimum SSA location along a beam as function of two forcing 
frequencies 
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mode there is a shift in absorber location.  The frequency of the second mode is 6.3 times 

that of the first mode for a cantilever beam.  Also, the largest displacement of the second 

mode shape occurs near the middle of the cantilever beam.  Figure 5.3 shows that the 

optimum attachment point is near the center of the beam, when the forcing frequencies 

are near the frequency of the second mode.  As with the first mode, the absorber has the 

greatest effect when attached at the point of greatest vibration.  

Figure 5.4 plots the average of the two optimized state-switched absorber 

frequencies versus each of the two forcing frequencies.  These average frequencies are 

normalized by the frequency of the first mode of the isolated beam.  As can be seen from 

Figure 5.4, as the forcing frequencies increase the average tuning frequency also 

increases.  This result is as expected since the tuning frequencies should be tuned near the  

 

Figure 5.4: Mean of two SSA tuning frequencies normalized by first mode of beam as 
function of two forcing frequencies 
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Figure 5.5: Ratio of optimum SSA tuning frequencies as function of two forcing 
frequencies 

excitation frequencies the SSA is trying to control.  Figure 5.5 depicts the ratio of the two 

optimized state-switched absorber tuning frequencies as a function of the two forcing 

frequency components.  When this ratio is one, the two SSA frequencies are equal and 

the absorber acts similarly to a classical tuned vibration absorber.  As the ratio increases, 

the spacing between SSA frequencies also increases.  When Figure 5.5 is compared to 

Figure 5.1, it can be seen that the forcing combinations that result in a frequency ratio of 

one closely correlate to the forcing cases that result in an SSA/TVA energy ratio equaling 

zero dB. At these forcing cases, the simulated annealing algorithm is choosing the SSA 

frequencies to be equal, thus choosing a TVA.  When the optimization was repeated for 

the TVA, it chose the exact same absorber as was found by the SSA optimization 

resulting in equal beam kinetic energies.  In other words, the optimization found the best 

SSA to be a TVA for these forcing cases.  Also, Figure 5.5 shows that a large spacing in 
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available tuning frequencies does not necessarily result in improved performance of the 

SSA over a TVA.  The cases that resulted in the best relative performance of the SSA all 

had frequency ratio of less than two.  MR elastomers have a potential tuning frequency 

ratio of 4.[46]  Therefore, the frequency shifts necessary to achieve maximum 

performance of the SSA applied to a beam are less than the maximum shift that can be 

physically realized.  This means that an optimal SSA should be able to be fabricated 

using MR elastomers.  Finally, there is no analytical correlation between the forcing 

frequencies and the optimized tuning frequencies.  The combination of Figures 5.4 and 

5.5, which defines optimal tuning frequencies, shows no trend in the tuning frequencies 

as a function of forcing frequencies.  Therefore, there is no way to approximate 

analytically what the optimized tuning frequencies should be based on the forcing 

frequencies. 

 The sensitivity of the optimization algorithm must be examined to determine the 

robustness of the optimization results.  The sensitivity is examined by slightly perturbing 

one of the tuning parameters of the best performing state-switched absorber.  As shown 

in Figure 5.6, the best relative SSA performance occurs when the normalized forcing 

frequencies are 6.4 and 7.7 and the SSA reduces the kinetic energy 17 dB more than a 

TVA.  The optimized normalized tuning frequencies are 5.07 and 6.11 and the optimal 

normalized location is 0.6 for this case.  To determine the sensitivity of this optimization, 

teach tuning parameter, including both SSA frequencies, attachment location, and 

absorber to beam mass ratio, is perturbed within a range of 10% above and below the 

optimal value while holding all other tuning parameters constant.  The ratio of the beam 

kinetic energy due to the SSA to the kinetic energy of the optimal TVA for this forcing 
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case is shown in Figure 5.6 for the perturbation range.  Each tuning parameter is 

normalized by its optimal value that resulted in the best SSA performance in the 

optimization.  As can be seen, there is about a 17 dB decrease in kinetic energy for a 

narrow range around each of the optimized frequencies and the attachment location.  The 

bandwidth of the optimal tuning values is about 1% for the attachment location, 2% for 

the lower tuning frequency, and about 6% for the upper tuning frequencies.  This means 

that perturbing any of these tuning parameters, even by a small amount, can lead to large 

differences in the performance of the SSA for this specific forcing and tuning case.  The 

simulation results are not sensitive to small perturbations in the mass ratio.  As can be 

seen in Figure 5.6, the beam kinetic energy gradually decreases as the mass ratio 
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Figure 5.6: Kinetic energy ratio of SSA to optimized TVA as a function of tuning 
parameters near the best performing SSA 
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increases.  Similar perturbation results can be found from all the sharps peaks seen in 

Figure 5.2.   

The optimization results for the best performing SSA are very sensitive to small 

perturbations in the tuning parameters.  This means that while the tuning parameters yield 

excellent performance, the likelihood that the optimization finds this narrow range of 

optimized tuning parameters is very small.  Also, when fabricating a physical SSA there 

may be difficulty in narrowing in on this small band where the SSA performs its best.  

For certain forcing cases, mistuning the optimal parameters, even by 1%, can cause the 

SSA to show no performance gains versus a classical TVA.   

 The sensitivity of the optimization was also investigated for an SSA that 

performed 0.5 dB better than a TVA, a more typical performance gain found from the 

optimization than the 17 dB performance gain investigated above.  Figure 5.7 shows the 

SSA to TVA energy ratio for perturbations around the optimal tuning parameters for this 

“average” performing SSA.  All values are normalized and displayed similarly to those in 

Figure 5.6.  Although the results are not as sensitive as the best performing SSAs, the 

performance of an “average” performing SSA is also sensitive to small perturbations in 

the tuning frequencies and attachment point.  A 4% change in the upper tuning frequency 

can change the SSA performance by 2.5 dB and a 1% change in attachment location can 

alter the SSA performance by 0.9 dB.  Changes in the lower tuning frequency had very 

little effect on the SSA performance near this specific optimal tuning case.  This 

“average” SSA’s performance is much less sensitive to tuning parameters than that of a 

high-performance point, where a 1% change in a tuning parameter can change the beam 

kinetic energy by 17 dB.  This means that an SSA designed in this region is more robust 
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than one designed for a high performance region.  As with the best performing SSA, the 

simulation results are not sensitive to perturbations in the mass ratioand the SSA 

performance improves as the mass ratio increases. 

PLATE OPTIMIZATION RESULTS 

The simulated annealing optimization algorithm was also used to optimize the 

tuning frequencies and the attachment location of the state-switched absorber applied to a 

vibrating plate.  A method similar to that used in the beam optimization was employed 

for the plate optimization.  The plate was subjected to a two-frequency component point 

excitation.  Each excitation frequency ranged from just below the natural frequency of the 

first plate mode to just above the natural frequency of the plate’s fifth mode.  For each 
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Figure 5.7: Kinetic energy ratio of SSA to optimized TVA as a function of tuning 
parameters near average performing SSA 
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combination of excitation frequencies, the state-switched absorber’s attachment location 

and tuning frequencies were optimized using the simulated annealing algorithm outlined 

previously.  Note that there are two values that define the attachment location on the two-

dimensional plate, whereas the beam system required only one value to define the 

attachment point.  Therefore, there are four parameters to be optimized in the state-

switched absorber applied to a plate system.  As with the beam system, a similar 

optimization was done for a tuned vibration absorber to compare the SSA to classical 

devices. 

Figure 5.8 depicts the performance of the state-switched absorber as compared to 

an untreated plate.  The kinetic energy ratio of the SSA system to the untreated system is 

shown as a function of both forcing frequencies.  The energy ratio is quantified on a 

  

Figure 5.8: Kinetic energy ratio, in dB, of an optimized SSA system to an untreated 
plate as function of two forcing frequencies 
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decibel scale as described by Equation (5.3), therefore when the value is less than zero 

the SSA reduces vibration in the plate.  As with the beam, all frequencies have been 

normalized by the natural frequency of the first mode of the plate.  Figure 5.8 shows that 

the SSA is effective at reducing the vibrations of the plate for the entire range of 

frequencies considered.  The optimized SSA reduced the kinetic energy of the plate the 

most when the two normalized forcing frequencies were 1.06 and 3.72.  For this forcing 

case, the SSA reduced the kinetic energy of the plate by 21.2 dB. 

 The relative performance of the optimized state-switched absorber as compared to 

an optimized tuned vibration absorber is shown in Figure 5.9.  The ratio of the plate 

kinetic energies, in decibels, is plotted as a function of the two forcing frequencies, 

normalized by the first mode’s frequency.  For nearly all of the forcing combinations 

 

Figure 5.9: Kinetic energy ratio, in dB, of an optimized SSA plate system to an 
optimized TVA plate system as function of two forcing frequencies 
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considered, the ratio value is less than zero and the optimized SSA outperforms the 

optimized TVA.  The best relative performance of the SSA occurs when the normalized 

excitation frequencies are 1.06 and 3.72, where the optimized SSA reduces the plate 

kinetic energy 12.9 dB more than the optimized TVA does.  As with the beam 

optimization, the sharp peaks seen in Figure 5.9 are strongly sensitive to small 

perturbations in the tuning parameters. Figure 5.9 also shows that there are forcing 

frequency combinations where the optimized TVA narrowly outperforms the optimized 

SSA.  For these forcing cases, the simulated annealing algorithm finds a less than optimal 

local minimum in optimizing the SSA. For these forcing cases, the algorithm could have 

found both SSA tuning frequencies to be equal to the optimized TVA frequency, thus 

causing the SSA to act as the optimum TVA.  While the simulated annealing algorithm 

allows for moving out of a local minimum, it does not guarantee that the global minimum 

will found.  So the simulated annealing algorithm can still get stuck in a local minimum, 

as was the case for a few scattered forcing cases.  However, for the vast majority of 

forcing combinations, the optimized SSA outperformed the optimized TVA. Also, the 

worst performing SSA only resulted a plate kinetic energy 2 dB more than an optimized 

TVA, whereas the best performing SSA resulted in a plate kinetic energy 12.9 dB less 

than an optimized TVA. 

 Figures 5.10 and 5.11 define the attachment point of the optimized state-switched 

absorber on the plate for the range of two-frequency excitations considered.  Since the 

plate has two dimensions, two values are required to define the attachment location on 

the plate.  The locations defined by Figures 5.10 and 5.11 are normalized by the length of 

the plate in the respective directions and the frequencies are normalized by the natural 
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Figure 5.10: Optimum SSA location in the x direction on the plate as function of two 
forcing frequencies  

 

Figure 5.11: Optimum SSA location in the y direction on the plate as function of two 
forcing frequencies  
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frequency of the first plate mode.  As can be seen from these figures, the attachment point 

was to found to be near 0.5 in both directions for nearly the entire range of forcing 

frequencies.  This corresponds to an attachment point near the geometric center of the 

plate.  The first mode shape of the plate has the largest amplitude of vibration at the 

center of the plate.  Therefore, the absorber is controlling this mode of vibration when 

attached at the midpoint of the plate.  To achieve optimal control of the plate, the SSA is 

attached near the center of the plate to control the fundamental vibration mode for nearly 

all of the forcing cases considered. 

 Figures 5.12 and 5.13 together define the optimal state-switched absorber tuning 

frequencies for a range forcing frequency combinations.  Figure 5.12 plots the mean of 

 

Figure 5.12: Mean of two SSA tuning frequencies normalized by first mode of plate as 
function of two forcing frequencies  
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the two optimized SSA tuning frequencies as a function of the two forcing frequencies.  

All frequencies are normalized by the natural frequency of the fundamental mode of the 

isolated plate.  As was the case for the beam optimization, the average SSA tuning 

frequency increases with increasing forcing frequency.  Figure 5.13 plots the ratio of the 

upper SSA frequency to the lower SSA frequency as a function of the two-excitation 

frequencies.  Note, there are very few forcing cases that resulted in an SSA frequency 

ratio at or very near one.  With such a tuning, the SSA would represent a classical tuned 

vibration absorber as switching between discrete frequencies would not occur.  As stated 

previously, for some forcing cases considered, the global optimum is a TVA.  However, 

the simulated annealing algorithm often did not find this global optimum, when it existed, 

for the SSA applied to a plate.  The plate system adds a new location parameter to that of 

 

Figure 5.13: Ratio of optimum SSA tuning frequencies for a plate as function of two 
forcing frequencies 
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the beam system, therefore increases the complexity of the system and offers more 

opportunities for local minimums.  While the simulated annealing algorithm always finds 

a low plate kinetic energy, it is not guaranteed to find the lowest plate kinetic energy.  

Also, Figure 5.13 seems to show the opposite of what was found for the tuning frequency 

ratio of the beam system.  At forcing frequencies less than two, where good performance 

of the SSA occurred, the tuning frequency ratio is above 6 for most of that frequency 

range.  Good performance of the SSA applied to a plate can require large spacing 

between the tuning frequencies, whereas good performance of the SSA applied to a beam 

generally requires tuning frequency ratios less than 2.  However, the tuning frequency 

ratio corresponding to the best relative performance of the SSA applied to a plate was 

only 1.24.  As with the beam system, there is no correlation between the forcing 

frequencies and the optimal tuning frequencies.  Therefore, there is no way to determine 

the optimal tuning frequencies given a set of forcing frequencies. 
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CHAPTER 6 

EXPERIMENTAL SETUP 

 This chapter outlines the setup of the beam and plate experiments used to validate 

the performance of the state-switched absorber used for vibration control.  A direct search 

to find the best performing absorber for each of a number of forcing cases was done from 

a set of potential tuning frequencies attainable by a fabricated SSA.  The same parameters 

were used using the simulations described in Chapters 4 and 5 to predict the performance 

of the SSA.  The results from the experiments were compared to the results from the 

simulations to experimentally validate the simulations. The first section in this chapter 

details the magneto-rheological elastomer implementation of the state-switched absorber.  

The beam and plate systems to which the SSA is attached are then described.  Next, the 

instrumentation, including the sensors, actuators, and DSP system, used in the 

experiments are detailed.  The final section in this chapter lays out the procedures used to 

acquire the data. 

STATE-SWITCHED ABSORBER DESIGN 

 Magneto-rheological elastomers (MRE) were used to fabricate an absorber that 

can switch between discrete stiffnesses.  An MR elastomer is a rubber that has fine iron 

particles dispersed throughout.  A magnetic field is applied during the cure of the 

elastomer to align the iron particles in chains.  The stiffness of the cured MRE is 

dependent on the magnetic field applied across the elastomer; the higher the magnetic 

flux, the greater the stiffness.  This stiffness’ dependence on the magnetic flux was 
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utilized in designing an SSA with variable discrete stiffnesses.  For more detail on the 

properties of MR elastomers, please refer to the paper by Albanese and Cunefare.[46] 

 Figure 6.1 illustrates the magneto-rheological elastomer implementation of the 

state-switched absorber.  This absorber design was employed for the experiments to 

validate the SSA’s performance in reducing vibrations in continuous systems.  The 

design consists of four MREs and an electromagnetic coil, along with steel to close the 

magnetic circuit.  The electromagnetic coil is simply a spool of magnet wire wrapped 

around an iron core.  By running an electric current through the coiled wire, a magnetic 

flux is created through the core of the coil.  As seen in Figure 6.1, this flux continues into 

the vertical steel members and then through the MR elastomers.  Since the MREs contain 

iron particles aligned in chains, the flux moves through the elastomer, thus causing an 

increase in stiffness as compared to when no flux exists.  The magnetic circuit is 

completed by thin steel strips along the top and bottom of the absorber.  These strips are 
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Coil 
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Figure 6.1: MR elastomer implementation of a state-switched absorber. 
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separated by aluminum rods and are rigidly attached to the base to which the absorber is 

attached.  Aluminum is used as the supports so the magnetic flux path would consistently 

pass through the MR elastomers.  The electromagnet and the larger steel members 

become the absorber mass (132 grams), while the MR elastomers are the stiffness and 

damping elements of the absorber. 

 Figure 6.2 plots the resonance frequencies of the state-switched absorber 

described above as a function of the electrical current supplied to the electromagnet.  As 

can be seen, there is an increase in resonance frequency with an increase in electrical 

current.  The frequency with no current applied is 48 Hz, whereas at 6 amps, the 

resonance frequency is 98.9 Hz.  Therefore, the SSA has a capability to change its 

frequency by 106% and it stiffness by 325%.   
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Figure 6.2: SSA resonance frequencies as a function of electromagnet current 
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BEAM AND PLATE SETUP 

 To experimentally validate the vibration control performance of the state-

switched absorber applied to continuous systems, comparison of an experimental and 

numerical SSA performance for a fixed set of tuning parameters was done for both a 

beam system and a plate system.  The experimental setup of each system is described in 

the following sections.  The first section details the cantilever beam setup.  The beam 

setup is followed by a description of the plate system used in the experiments. 

Beam Setup 

 A cantilever beam was used to validate the performance of an SSA applied to a 

beam.  To examine the effect of the state-switched absorber at multiple beam modes, two 

beams were used for experimentation.  This is due to the fact that the frequencies of the 

first and second cantilever beam modes are further apart than range of tuning frequencies 

available in the absorber described above.  Therefore, one beam is designed such that the 

frequency of the first mode is near 60 Hz, which was chosen such that the potential SSA 

tuning frequencies lie both above and below the mode of interest, and another beam is 

designed so the second mode is about 60 Hz.  Also, each beam should be wide enough to 

attach the absorber to it, about 4 inches, and have a mass roughly 10 times the mass of the 

absorber, about 1.32 kg. 

 The first beam was made from aluminum and was 4 inches wide, 0.5 inches thick, 

and 17 inches long.  This resulted in a beam that had a mass of 1.5 kg.  Given the 

absorber had a mass of 132 g, the absorber to base mass ratio for the first beam is 0.09. 

The second beam was made from steel and was 4 inches wide, 0.125 inches thick, and 
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19.5 inches long resulting in a mass of 1.3 kg and an absorber to base mass ratio of 0.1.  

Figures 6.3 and 6.4 plot the frequency response of each beam.  As can be seen from 

Figure 6.3, the first vibration mode of the aluminum beam occurs at 58.6 Hz, near the 

predicted natural frequency of 60 Hz and within the SSA tuning frequency range of 48 

Hz to 98.9 Hz.  Figure 6.4 illustrates that the frequency of the second mode of the steel 

beam is 64 Hz, also close to the predicted value and within the SSA frequency range.  

The SSA will attempt to control the first mode of vibration in the aluminum beam and the 

second vibration mode in the steel beam.  The unlabeled peaks in the frequency responses 

shown Figures 6.3 and 6.4 are resonances due to torsional modes within the beam.  In the 

experimental beam, there are torsional degrees of freedom that are not captured in the 

beam model. This torsional freedom will therefore lead to observable frequencies in the 
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Figure 6.3: Frequency response of cantilever aluminum beam 
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response that are not predicted by the simple beam model.   

Plate Setup 

 Only one plate was used to validate the SSA’s performance, as the natural 

frequencies of the plate modes are closer together than those of the beam modes, 

therefore more than one plate mode is within the switching limits of the physical state-

switched absorber.  The coil on the SSA used for the beam experiments burned out, so a 

new absorber was built for the plate experiments.  Figure 6.5 plots the resonance 

frequency of the new absorber versus the input current.  As can be seen from Figure 6.5, 

the lowest possible frequency of the new SSA is 56.9 Hz while the highest possible 

frequency is 102.1 Hz.  This results in a potential frequency shift of 79.4%. 
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Figure 6.4: Frequency response of cantilever steel beam 
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 A plate was designed so that several vibration modes would be within the range of 

frequencies between which the SSA is capable of switching.  A square plate clamped on 

all four sides was used for the experiments, similar to that used in the numerical 

optimization.  The plate used in the experiments was fabricated using a 0.0312 inch steel 

sheet clamped so that each side was 18.25 inches in length.  These dimensions resulted in 

a plate that had a mass of 1.35 kg and an absorber to base mass ratio of 0.1.  The 

frequency response of the plate is shown in Figure 6.6.  The region between dashed lines 

in Figure 6.6 is the range of potential frequencies of the state-switched absorber.  As can 

be seen, the potential switching frequency range covers a number of natural frequencies 

of the plate.  The SSA will attempt to control these vibration modes of the plate. 
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Figure 6.5: SSA frequencies versus current for plate experiments 
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INSTRUMENTATION 

 Figure 6.7 depicts the experimental setup of the beam system, including all the 

sensors and actuators.  Three accelerometers and an impedance head, which measures 

both force and acceleration, are distributed along the length of the beam and are used to 

measure the response.  Kistler 8636C50 accelerometers and a Kistler 8770A50 

impedance head were used.  The impedance head also measures the force delivered to the 

beam using an LDS V203 shaker.  The connection point for the excitation is the center of 

the cantilever beam, as was used in the numerical optimization.  The state-switched 

absorber’s base is rigidly attached to the beam and a Philtec D100-QPT displacement 

probe is rigidly attached to the base of the SSA.  This displacement probe measures the 

relative displacement between the SSA and the beam at the absorber attachment point.   

-70

-60

-50

-40

-30

-20

-10

0 20 40 60 80 100 120 140

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

Highest potential SSA frequency
102.1 Hz

Lowest potential SSA frequency
56.9 Hz

 Figure 6.6: Frequency response of plate 
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 The system is controlled using a dSpace DS1103 digital system processing 

system.  To implement the switching control algorithm defined by Equations (2.2) and 

(2.3) the displacement probe and the accelerometer with the same beam attachment point 

as the SSA are used.  The displacement probe determines when the absorber has passed 

through a zero strain condition.  By differentiating the displacement signal, the relative 

velocity is calculated which is needed in Equation (2.3).  To find the base velocity needed 

to determine when to switch, the signal from the accelerometer with the same attachment 

point as the SSA is integrated.  To perform a switch, an electrical current is sent to the 

electromagnetic coil using a Kepco 36-6D bipolar operational power supply.   

 The plate system has a similar setup with respect to the sensors and actuators, 

except the plate system contains more accelerometers to more accurately capture the 

response of the system.  Figure 6.8 depicts the locations of all the accelerometers, the 

impedance head, and the various attachment locations of the absorbers.  The points 
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Figure 6.7: Experimental setup with sensors and actuators 
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labeled SSAi represent potential attachment points of the state-switched absorber.  Only 

one absorber is attached to the plate at any given time.  These attachment points were 

chosen based on the results of the numerical optimization detailed in Chapter 5 and 

represent a set of three potential attachment points for the numerical and experimental 

direct search used to experimentally validate the SSA simulations.  Each ai in Figure 6.8 

represents a location of an accelerometer.  These were placed based on either 

corresponding to an SSA location or to avoid a nodal point on the plate for the modes of 

interest.  F and a4 correspond to the impedance head, which measures the acceleration 

and force at the point of excitation.  The excitation point was also chosen to avoid a node 

on the plate. 
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Figure 6.8: Plate layout including accelerometers, force transducer, and SSA locations. 
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PROCEDURES 

 The purpose of the experimental work at hand is to show how the state-switched 

absorber performs compared to a tuned vibration absorber when attached to both a beam 

and plate.  The experiments were also performed to determine how closely the 

simulations predict the performance of the SSA.  The procedures described here were 

developed to compare the performance found experimentally to the performance 

predicted by the numerical simulations.  The specifics of the procedures used for both the 

beam and plate are outlined in the following sections. 

Beam Procedures  

 Each of the two beams considered in the experiments was subjected to a range of 

two-frequency component excitations similar to that in the simulations done previously.  

Table 6.1 shows the excitation frequencies stepped through for each beam.  There are 

seven discrete forcing frequencies stepped through for the aluminum beam resulting in 28 

forcing combinations, including single frequency component excitations.  The steel beam 

has five discrete excitation frequencies resulting in 15 combinations.  These sets of 

excitation and tuning frequencies were also used in numerical simulations to predict the 

performance of a SSA as compared to a TVA. 
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 A direct search of the set of tuning frequencies shown in Table 6.1 was done 

experimentally to find the best performing TVA and SSA for each two-frequency forcing 

combination.  Also, simulations were performed for each forcing and tuning case 

considered in the experiments to determine how well the simulations predict SSA 

performance.  Instead of attempting to reproduce the optimization, this procedure was 

used because of the high sensitivity of the optimization results and the capabilities of the 

fabricated SSA.  An SSA fabricated using MREs cannot produce the tuning frequencies 

with a tolerance on frequency performance within the limits implied by the sensitivity 

results detailed in Chapter 5.  Also, the fabricated SSA cannot produce a large enough 

frequency shift to reproduce many of the results found in the optimization. 

For experimental comparison between an SSA and a TVA, the best performing 

TVA and SSA must be found for each forcing case.  The attachment location and both 

tuning frequencies that result in the best performance of each absorber should be found.  

The optimization study showed that the location of the absorber should be located at the 

free end of the beam when the excitation frequencies are near the first mode and in the 

middle of the beam when controlling the second mode of vibration.  Therefore, the 

absorber was attached at the free end of the aluminum beam and the center of the steel 

Table 6.1: SSA tuning frequencies and forcing frequencies for both beam experiments 

Current (A) Frequency (Hz) Aluminum Beam Steel Beam
0 48.0 50.0 50.0
1 51.4 54.0 56.0
2 58.7 58.0 64.0
3 65.4 66.0 77.0
4 74.9 74.0 95.0
5 88.1 84.0
6 98.9 95.0

SSA Frequencies Forcing Frequencies (Hz)
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beam.  To find the tuning frequencies that resulted in the best absorber performance, a 

direct search was employed by stepping through a range of SSA resonance frequencies.  

Table 6.1 contains the potential SSA frequencies and the corresponding electrical current 

needed to achieve each frequency.  There are seven discrete frequencies which make up 

the whole set of potential absorber tuning frequencies.  Combining these potential states 

in groups of two tuning frequencies, including equivalent frequencies where the absorber 

acts as a TVA, result in 28 different absorber tuning frequency combinations.  For each 

forcing case considered, each of the 28 absorber tuning combinations were stepped 

through to determine which tuning parameters resulted in the best performance.  To 

determine how well the model predicts the actual system, the SSA performance was also 

found using the simulations described earlier for each of these same forcing and tuning 

cases considered in the experiments. 

 For each forcing frequency combination investigated experimentally, the shaker is 

enabled and allowed to excite the beam.  While the voltage amplitude sent to shaker is 

held constant, each tuning combination is stepped through, acquiring five seconds of the 

beam’s response for each frequency combination.  This acquisition time was found to be 

adequate by running some trials and observing the time to pseudo-steady state and period 

of repetition in the response.  Pseudo-steady state occurred in less than one second and 

the longest period repetition found during all testing was on the order of 0.5 seconds. The 

kinetic energy of the beam is calculated for each tuning combination by 
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where M is the mass matrix of the beam and vaccel is the velocity at each accelerometer 

attachment point, calculated by integrating each accelerometer’s signal.  The root-mean-

squared value of the kinetic energy is calculated for the final 2.5 seconds of the response 

and normalized by the rms force, measured from the impedance head.  Even though the 

kinetic energy is not averaged over a repetition interval, the maximum possible error 

averaging over the final 2.5 seconds given a maximum repetition interval of 0.5 seconds 

is a negligible 0.012 dB.  This final energy metric can be written as 

 rms
metric

rms

TKE
F

= . (6.2) 

The kinetic energy is normalized by the force for accurate comparison between tests.  

The lowest kinetic energy metric is found from all the tunings where the resonance 

frequencies are equal, thus finding the best performing TVA.  The same is done for the 

tuning cases with unequal frequencies to determine the best performing SSA.  

Comparison of the best performing SSA and TVA is done for each forcing case in the 

experiments. 

 For each forcing and tuning combination, simulations were also done to find the 

SSA performance.  These simulations were performed similarly to those described in 

Chapters 4 and 5.  The SSA performance found through simulations was force 

normalized similarly to that of the experiments, which is described in Equation (6.2).  

The predicted SSA performance was then compared to the performance found 
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experimentally for each forcing and tuning case considered in the experiments.    This 

comparison is done by calculating the ratio of the experimental performance of the SSA 

to the performance found through the simulations for each forcing and tuning 

combination.  As a metric of how well the simulations predicted the observed 

performance, the standard deviation of all these ratios for both beams is then calculated. 

Plate Procedures 

 The procedures used to examine the plate system are very similar to those used in 

testing the beams.  As in the beam experiments, the plate was subjected to several two-

frequency component excitations.  For each forcing case, several tuning combinations 

were used to determine the optimal tuning for each of the state-switched absorber and the 

tuned vibration absorber.  The potential forcing and tuning frequencies used in the plate 

experiments our shown in Table 6.2.  Six discrete forcing frequencies were used in the 

plate experiments, resulting in 21 different forcing combinations.  For each forcing case, 

seven different tuning frequencies were stepped through to determine the best performing 

absorbers, resulting in 28 different tuning combinations.  Also, the absorber was placed at 

each of three attachment locations for each forcing case.  These attachment points can be 

Table 6.2: SSA tuning frequencies and forcing frequencies for the plate experiments 

Current (A) Frequency (Hz) Forcing Frequencies (Hz)
0 56.9 56.0
1 58.4 63.0
2 62.1 72.0
3 68.1 81.0
4 77.9 91.0
5 91.3 103.0
6 102.1

SSA Frequencies
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seen in Figure 6.8.  The kinetic energy of the plate was calculated using Equations (6.1) 

and (6.2) outlined above.  For each forcing case, the location and tuning that resulted in 

the lowest force normalized kinetic energy for both the SSA and the TVA were 

determined experimentally.  These best performing absorbers were then compared to 

determine whether the SSA performed better than the TVA for each excitation case.  

Also, the SSA performance predicted through the simulation of each forcing, tuning, and 

location combination was compared to the performance observed in the experiments. 
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CHAPTER 7 

EXPERIMENTAL VALIDATION RESULTS 

 The following sections present the results from the experimental validation of the 

beam and plate systems.  The results of the direct search found experimentally and 

presented here.  Also, the observed SSA performance is compared to the performance 

predicted through numerical simulations.  The first section details the results from the 

beam experiments, while the last section discusses the results from the plate experiments. 

BEAM RESULTS 

 Experiments were performed attaching a state-switched absorber to two cantilever 

beams.  The purpose of the experiments was to compare the performance achieved using 

an SSA to the performance achieved using a TVA.  The experiments were also done to 

determine the how well the simulations predicted the performance of the SSA.  One 

beam’s first vibration mode was within the range of tuning frequencies of the state-

switched absorber while the other beam was designed such that its second mode was 

within the SSA’s tuning limits.  A direct search of a fixed set of tuning parameters was 

used to experimentally find the best performing SSA and TVA for each of a number of 

two-frequency excitations.  The best performances of each absorber were compared to 

determine if the SSA showed improved performance versus a classical TVA.  Also, the 

SSA performance found experimentally was compared to the performance calculated 

from numerical simulations using the same tuning parameters.  Specifics of the setup and 

procedures for these experiments were outlined in the previous chapter. 
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 Before comparing the performance of the SSA to that of a TVA and comparing 

the experimental results to the simulations, the experimental beam response with an SSA 

attached is compared to the experimental response of an untreated beam.  Figures 7.1 and 

7.2 show the ratio of the kinetic energy of the beam with the best performing SSA 

attached to that untreated beam’s kinetic energy as a function of the two forcing 

frequencies.  The forcing frequencies are normalized by the natural frequency of the 

fundamental mode of vibration of each beam.  The force-normalized kinetic energy is 

found using Equations (6.1) and (6.2) for each forcing case.  The ratio is plotted in 

Figures 7.1 and 7.2 using a dB scale defined as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

untreated

SSA
ratio KE

KEKE log10 . (7.1) 

When the value found in Equation (7.1) is negative, the beam treated with the SSA has 

 

Figure 7.1: Experimental kinetic energy ratio, in dB, of the aluminum beam with SSA 
attached to untreated beam. Forcing frequencies near first mode of vibration.
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improved performance versus the untreated beam.  As can be seen from Figures 7.1 and 

7.2, attaching an SSA reduces the vibration of a beam for nearly the entire range of 

forcing frequencies considered for both beams.  The best performance of the aluminum 

beam, whose first mode is at 58.6 Hz, occurs when the normalized forcing frequencies 

are both one, corresponding to the frequency of the first mode of vibration, with an 

improved performance of 15.1 dB.  The best performance of the steel beam, whose 

second mode occurs at 64 Hz, occurs when the normalized forcing frequencies are both 

6.4, corresponding to an excitation near the frequency of the beam’s second mode.  The 

SSA reduces the vibration by 15.2 dB for this forcing case.  There is a small region where 

the SSA does not reduce the vibration of the steel beam.  The worst SSA performance on 

the steel beam resulted in a 2 dB increase of the beam kinetic energy.  However, this 

 

Figure 7.2: Experimental kinetic energy ratio, in dB, of the steel beam with SSA 
attached to untreated beam. Forcing frequencies near second mode of vibration. 
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increase is very small when compared to the largest decrease in kinetic energy of 15.2 

dB. 

 The results of the experiments comparing the performance of the state-switched 

absorber to the tuned vibration absorber performance are depicted in Figures 7.3 and 7.4.  

In these figures, the ratio of the kinetic energy of the best performing SSA beam to the 

best performing TVA beam’s kinetic energy is plotted versus the two forcing frequencies, 

normalized by the beam’s fundamental frequency.  The ratios in these figures are shown 

in dB, calculated similarly to the untreated beam ratio defined by Equation (7.1).  As 

shown in Figures 7.3 and 7.4, for the entire range of forcing frequencies considered, the 

ratio is less than 0 dB.  Therefore, an optimized SSA reduces the beam vibration more 

than an optimized TVA for each forcing case considered.  The best relative performance 

 

Figure 7.3: Experimental kinetic energy ratio, in dB, of beam with SSA attached to 
beam with TVA attached.  Forcing frequencies near first mode of vibration. 
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of the SSA attached to the aluminum beam, where the SSA is controlling the first mode, 

occurs when the normalized forcing frequencies are 0.85 and 0.99 with a 2.1 dB 

reduction in vibration versus the TVA.  For the steel beam, the greatest improvement 

versus the TVA is 0.9 dB and occurs when both normalized frequencies are 5.6.  For the 

entire range of excitations for both beams, the state-switched absorber performs better 

than a classical tuned vibration absorber at controlling beam vibrations. 

 A repeatability study of the SSA was also performed for one forcing and tuning 

combination, specifically when the normalized forcing frequencies 0.92 and 1.13 and the 

normalized SSA tuning frequencies are 0.82 and 1.00.  The experiment was performed 

ten times for this specific case and the normalized beam kinetic energy was found for 

each trial.  The mean and the standard deviation from the mean of the kinetic energies 

 

Figure 7.4: Experimental kinetic energy ratio, in dB, of beam with SSA attached to 
beam with TVA attached.  Forcing frequencies near second mode of vibration. 
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were calculated for each of the ten trials.  To quantify the repeatability of the 

experimental SSA, the standard deviation was divided by the mean.  This ratio was found 

to be 0.126, which corresponds to 0.52 dB.  This ratio means that the standard deviation 

of these ten trials was 12.6% of the average kinetic energy.  This results follows the 

repeatability results found for MREs by Albanese and Cunefare.[46] 

 To determine how well numerical simulations predict the performance of the 

SSA, each forcing and tuning considered in the experiments was put into the numerical 

simulations described earlier.  For each test case, the force normalized beam kinetic 

energy was calculated from the simulation and divided by the experimental kinetic 

energy giving a performance ratio of the simulations to the experiments.  The simulations 

predicted the observed performance relatively well.  The standard deviation from an 

energy ratio of 1, the ratio at which the simulation perfectly predicted the experiment, for 

all the tuning and forcing combinations of both beams was 0.101, which corresponds to 

0.41 dB.  Note, that the standard deviation from experiment to experiment is 0.52 dB as 

compared to a 0.41 dB standard deviation between experiment and simulation.  This 

means that the error in the prediction is within the error limits of the experiments.  

Therefore, the simulation predicts the observed SSA performance from the experiments 

quite well. 

PLATE RESULTS 

 Experiments and simulations using an SSA were also performed on a vibrating 

clamped plate.  The plate was subjected to a number of two-frequency component 

excitations.  For each forcing case, the tuning frequencies and attachment location for the 

best performing SSA and a TVA were found using a direct search method for the 
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experiments.  These experiments were executed to determine the performance of an SSA 

compared to that of a classical tuned vibration absorber as well as to validate the results 

found through the numerical simulations.  For more details on the setup and procedures 

of the plate experiments, please refer to Chapter 6. 

 Figure 7.5 depicts the experimental ratio of the kinetic energy found of the plate 

with a state-switched absorber attached to the kinetic energy of an untreated plate as a 

function of excitation frequencies normalized by the frequency of the fundamental plate 

mode.  This ratio is plotted using a dB scale defined in Equation (7.1) above.  When this 

ratio is less than 0 dB, the SSA reduces the kinetic energy of the vibrating plate.  As can 

be seen from Figure 7.5, the SSA reduces the vibration of the plate for the entire range of 

forcing frequencies considered.  The state-switched absorber achieves its greatest 

 

Figure 7.5: Experimental kinetic energy ratio, in dB, of the plate with SSA attached to 
untreated plate. 
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vibration reduction of 14.8 dB when both normalized forcing frequencies are 2.14, which 

is in the vicinity of the plate’s natural frequency near the middle of the potential SSA 

frequency range. 

 Figure 7.6 depicts the observed ratio of the plate kinetic energy with the state-

switched absorber attached to the plate kinetic energy with the tuned vibration absorber 

attached.  Again, when this ratio is less than 0 dB the SSA reduces plate vibration more 

than a TVA in the experiments.  Over the entire range of forcing frequencies considered, 

the ratio is less than 0 dB meaning that the SSA outperforms the TVA for each forcing 

case.  The best relative performance of the SSA as compared to the TVA occurs when the 

normalized excitation frequencies are both 1.88, where the SSA outperforms the TVA by 

2 dB.   

 

Figure 7.6: Experimental kinetic energy ratio, in dB, of a plate with SSA attached to a 
plate with TVA attached. 
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 To determine the repeatability of the plate experiments a single forcing and tuning 

case was selected and the experiment was repeated ten times, just as in the beam 

experiments.  The specific case here was when the normalized forcing frequencies were 

1.88 and 2.14, the normalized SSA tuning frequencies were 1.69 and 2.03, and the SSA 

attachment point was in the center of the plate.  The standard deviation of the normalized 

kinetic energies divided by the mean of the kinetic energies for all plate experiments was 

calculated to be 0.144, which corresponds to 0.59 dB.  This indicates that the standard 

deviation in the plate kinetic energy found from these experiments is 14.4% of the mean 

kinetic energy.  This repeatability result is very similar to those found in the beam 

experiments. 

 To determine how well the simulations predicted the SSA performance, 

simulations were performed for each of tuning and forcing cases considered in the plate 

experiments.  Similarly to the beam system, the ratio of the plate kinetic energy found 

from the simulation to the kinetic energy found from the experiments was found for each 

forcing and tuning combination.  When this ratio equals 1, the simulation exactly predicts 

the experiment.  Therefore, the standard deviation from a ratio of 1 was calculated from 

all the cases considered in the simulations.  This standard deviation was found to be 

0.114, corresponding to 0.47 dB.  Since the standard deviation in predicting the SSA 

performance is less than the standard deviation of repeating the experiments, the 

simulations predicted the observed performance of the SSA relatively accurately, which 

is similar to what was found in the beam experiments.   
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CHAPTER 8 

CONCLUSIONS 

The work presented here addressed three principle objectives regarding the state-

switched absorber used for vibration control: the investigation of the maximum work 

extraction switching rule, the optimization of the SSA applied the a vibrating continuous 

system, and the experimental validation of the SSA used to control a vibrating continuous 

system.  The maximum work extraction switching rule, which is designed to maximize 

the power dissipated by the absorber’s damper, does guarantee reduced base motion at 

the absorber’s point of attachment.  Also, an optimized state-switched absorber reduces 

vibrations in continuous systems better than an optimized tuned vibration absorber.  This 

improved performance has been shown through simulations as well as in experiments. 

The maximum work extraction switching rule of the state-switching absorber 

considered by this research is an effective way to control a vibrating system.  To reduce 

vibration in the base to which the SSA is attached, the maximum work extraction 

switching rule maximizes the power dissipated by the absorber’s damper.  Since 

switching has little affect on the power input to the system and all power input to the 

system must be dissipated by the system’s dampers, maximizing the work extracted by 

the absorber’s damper minimizes the base motion.  Also, the switching criteria allowing 

switching to occur only at zero relative displacement of the absorber results in a stable 

system.  The system remains stable because the system energy remains constant across a 

switch at zero strain.  However, switching at the incorrect instant or too slow can lead to 
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instabilities in the system, as the addition of energy to the system may be necessary to 

complete the switch. 

The state-switched absorber was also optimized to control a vibrating continuous 

system, specifically a cantilever beam and a clamped plate.  The SSA tuning frequencies 

and location on the beam or plate were optimized using a simulated annealing 

optimization algorithm and its resulting base system kinetic energy was compared to that 

of an optimized tuned vibration absorber.  The SSA performed as well as, or better, than 

a classical TVA for the entire range of forcing frequencies of both the beam and the plate 

systems.  At its best, the SSA can reduce the kinetic energy of the beam to which it is 

attached by 17 dB over that of an optimized TVA.  Note, this is a simulation result and 

the performance of the SSA found by this simulation is highly sensitive to small 

perturbations in the tuning parameters causing potential difficulties in fabricating an SSA 

to achieve these large performance gains found by the optimization.  The tolerance on 

frequency performance of the MREs employed to build an SSA is not within the limits 

implied by these sensitivity results.  When the excitation frequencies are near the 

frequency of the beam’s first mode, the optimum attachment point is the free end of the 

cantilever beam.  When the forcing frequencies are near the second mode, the optimum 

location is near the center of the beam.  When optimized for the plate system, the SSA 

outperforms an optimized TVA by 12.9 dB.  The optimal SSA location on a clamped 

square plate was near the center of the plate for the vast majority of the forcing cases 

considered.  Improved SSA performance is not guaranteed when the optimum tuning 

frequencies have a large spacing.  The best relative performance of the SSA occurred 

when the optimum tuning frequencies differed by less than a factor of two.    
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Experiments and simulations were performed to validate the performance of the 

state-switched absorber used to control vibrating continuous systems, specifically a 

cantilever beam and a clamped plate.  A state-switched absorber was designed using 

magneto-rheological elastomers (MREs).  MREs, which are made from rubber with iron 

particles suspended throughout, can change stiffness based on the magnetic field applied 

across them.  The SSA built for these experiments had potential for a frequency change 

of 106%.  Both the beam and the plate system were subjected to a two-frequency 

component excitation.  For each forcing case, an experimental direct search of a set of 

potential tuning frequencies and attachment locations was done to find the best 

performing SSA as well as the best performing TVA.  When applied to a cantilever beam 

in the experiments, the SSA reduced the beam kinetic energy 2.1 dB versus the beam 

kinetic energy using a TVA.  For the clamped plate experiments, the SSA outperformed 

the TVA by 2 dB.  Simulations of each experimental forcing and tuning case were 

performed to determine how well the model predicted the experimental results.  The error 

in predicting the observed SSA performance was found to be less then the error in the 

experiments.  Therefore, the numerical simulations predicted results similar to those 

found in the experiments. 

The state-switched absorber has been proven to have improved vibration control 

performance over classical devices.  The zero strain switching criteria used in this work 

ensures the system will remain stable, while the maximum work extraction switching rule 

guarantees minimized motion of the body to which it is attached.  The SSA has been 

shown to perform better than a classical TVA at reducing vibrations in both a beam and 
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plate.  These performance gains are observed both through simulations as well as 

experiments.  
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