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 SUMMARY 

 

 Recent advances in technologies for monitoring and modeling coupled with 

concern about disproportionate impact on vulnerable communities in “hot spots” have 

been driving recent efforts to characterize risks from air toxics at finer spatial resolutions.  

However, few studies seek to understand the potential policy implications of regulating 

risks at increasingly finer spatial resolutions and the impact of resulting policies on 

distribution of risks and costs.  To address this gap, this research poses two broad 

questions: (1) How could the choice of spatial resolution for regulation of risks from 

toxic air pollutants affect emission standards? and (2) What are the distributional 

consequences of regulation at different spatial resolutions? 

 To address the research questions, this research first develops a formal model of a 

hypothetical decision maker choosing emissions within a risk-based regulatory 

framework.  The model follows the general outlines of the US Environmental Protection 

Agency (EPA) decision making processes under its current Residual Risk regulation and 

the Air Toxics "Hot Spots" program implemented by the California Air Resource Board 

(CARB).  Within this framework, the decision maker chooses emissions to minimize net 

social costs (private industry costs and population health costs) subjected to the constraint 

that individual risk at any location should not exceed a certain threshold level of risk.  

 The model suggests that optimal emissions of air toxics could vary with the 

spatial resolution chosen to regulate risks depending on whether or not finer resolutions 

reveal local “hot spots” that are not apparent at coarse resolutions.  Specifically, (a) 

spatial resolution of regulation does not matter to optimal emission levels when finer 



 xv 

spatial resolution does not capture new hotspots, (b) optimal emissions will decrease for 

sources that contribute most to hotspots captured at finer spatial resolutions, and (c) 

emission levels could increase for sources that do not contribute significantly to hotspots 

captured at finer resolutions. The model also suggests that net social costs are non-

decreasing as one regulates risk at increasingly finer spatial resolutions. 

 An empirical application of the model using air toxic emission data for Escambia 

and Santa Rosa Counties in Pensacola, FL demonstrates the sensitivity of optimal 

emissions and net costs to the spatial resolution chosen for regulation.  The empirical 

analysis is based on 15 “major” emission sources in seven industrial facilities in 

Pensacola, emitting six cancer-causing air toxics. Optimal emissions are estimated at 

three different spatial resolutions – census tract, census block group, and census block – 

and for three different threshold cancer risk values – 100 in a Million, 10 in a Million, 

and 1 in a Million.   

 The data for the analysis come from a variety of sources.  An engineering cost 

methodology estimates abatement cost functions using data from regulatory impact 

analyses (RIAs) and background information documents (BIDs) of the EPA’s Maximum 

Achievable Control Technology (MACT) standards.  Air toxics exposures at the 

centroids of various census units were estimated by implementing an integrated risk 

assessment tool, the Regional Air Impact Modeling Initiative (RAIMI), recently 

developed by Region 6 of the EPA.  RAIMI integrates an emission inventory, an air 

dispersion model, and a risk model and operates in a geographical information systems 

(GIS) environment.  Population data come from the US Census Bureau; the value of 

statistical life (VSL) is based on prior estimates from various meta-analyses. 
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 The empirical results are consistent with the predictions of the model.  At a 100 in 

a million threshold risk, optimal emissions are exactly the same at the census block group 

and at the census tract resolutions, because regulation at the finer census block group 

resolution does not reveal any new hot spots.  At the other risk thresholds and spatial 

resolution, emissions of pollutants such as acetaldehyde decrease for those sources that 

contribute the most to new hot spots identified at finer spatial resolutions.  At a 100 in a 

Million risk threshold, the acetaldehyde emissions from a paper mill in Pensacola 

decrease from 135 to 69 ton per year (TPY) when regulated at the finer census block 

resolution. On the other hand, the optimal emissions of acetaldehyde increase from 4.2 to 

10.7 for an organic chemical manufacturing facility because it contributes very little to 

the hot spot identified at the census block resolution. 

 The second part of the empirical analysis investigates the equity implications of 

regulating risks at finer spatial resolutions.  The empirical results indicate that, consistent 

with the assumptions of the underlying decision model, regulation at finer resolutions 

reduces the maximum individual risk (MIR) of cancer in Pensacola.   At a 10 in a Million 

risk threshold, MIR decreases from 17 in a Million at the census tract resolution to 10 in a 

Million at the finer census block resolution. The analysis, however, shows that the 

population risks, measured as expected excess cancer cases, might increase when risks 

are regulated at finer spatial resolutions. The expected excess cancer cases increase from 

0.00215 at census tract level regulation to 0.00244 at census block regulation at the 

threshold risk of 100 in a Million. 

 The equity analysis also examined the environmental justice (EJ) implications of 

regulation at finer spatial resolutions by analyzing the correlations between changes in 
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cancer risk and percent nonwhite population.  The correlations show improvements for 

nonwhites due to regulation at finer spatial resolutions at 10 in a Million risk threshold; at 

other risk thresholds the improvements occur in communities with higher proportion of 

whites.  Thus the EJ analysis indicates that regulation at finer spatial resolutions might 

not address environmental injustice by itself.   

 Finally, this research conducted an uncertainty analysis taking into account 

uncertainties in abatement cost parameters, exposures estimated by air dispersion model, 

and cancer risk factors of toxic air pollutants.  The results of the analysis demonstrate that 

uncertainties in input parameters introduce substantial uncertainty in choice of optimal 

emissions; the standard deviations and means of optimal emission distributions are of the 

same order of magnitude.  However, spatial resolution at which air toxics risks are 

regulated could still matter in predictable ways even after taking into account the 

uncertainties that the decision maker faces. 

 The findings of this study have several policy implications. First, regulation at 

finer spatial resolutions involves a tradeoff between costs and equitable distribution of 

risks.  At a threshold cancer risk of 100 in a million, regulating risks in Pensacola at the 

census block level resolution could be twice as costly as regulating risks at the census 

tract resolution, while reducing the MIR by almost half.  Second, the MIR as a basis for 

risk-based regulation deserves further scrutiny, given the evidence from this research that 

decisions based on MIR could increase population risks.  Third, regulation at finer spatial 

resolutions might not address environmental injustice by itself; EJ concerns may have to 

be incorporated more explicitly into emission control decisions. Future extensions of this 

research include formulating alternative decision models, relaxing assumptions such as 
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uniform susceptibility of population groups to toxic exposures, and fully characterizing 

the uncertainties in input parameters. 

 

 

 

 

 

 



 

 

CHAPTER 1 

INTRODUCTION 

 

 Environmental pollution is inherently spatial in nature, more so is air pollution. 

The fate and transport mechanism of air pollutants, after they are released from a source, 

is in part a function of source and emission characteristics, meteorological conditions, 

residence time of pollutants in the atmosphere, and physical features of the area into 

which pollutants are released. The complexity of this process produces variations in 

pollutant concentrations over a wide range of spatial scales from local to regional to 

global scales. Like any other spatial phenomenon, an implication is that patterns of 

pollutant concentrations observed at one scale1 may not be apparent at other spatial scales 

(see Gibson, Ostrom, & Ahn, 2000). Thus global scale patterns in concentrations of 

greenhouse gases are not likely to be observed at local scales and localized 

concentrations of some air pollutants are unlikely to be apparent at larger scales. 

 The local scale concentrations or air pollution “hot spots” and their impacts in 

terms of health risks on exposed individuals and populations have been of recent concern 

in air quality management in the United States. A recent National Academies study on 

future air quality management in the United States recommended enhancement of 

exposure assessment in hot spots and design strategies to control sources contributing to 

                                                 

 
 
1 Scale has two attributes – extent and resolution. Spatial extent is the size of the geographical area under 
study and resolution is the density of measurement locations within the spatial extent. For example, 
national air toxics assessment (NATA) estimated cancer and non-cancer risks from air toxics in the US at 
the centroids of census tracts. According to the concepts of scale employed here, the spatial extent of this 
national scale study is the entire country and the spatial resolution is the census tract resolution. 
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hot spots (NRC, 2004). Risks in hot spots have especially been a concern with regards to 

air toxics2 primarily because of the increasing concern that certain population groups may 

be disproportionately exposed to elevated risks in hot spots.  

 An initial policy response to deal with air toxics hot spots has been to increase 

local scale monitoring and develop modeling tools to characterize risks at finer spatial 

resolutions. Most of the U.S. Environmental Protection Agency (EPA)’s recent air toxics 

monitoring funds have been allocated to local scale monitoring projects, with a focus on 

characterization of air toxics exposures at community resolution. Advancements in 

Geographical Environmental Systems (GIS) tools are aiding in the development of new 

modeling tools capable of characterizing exposures at increasingly finer resolutions. In 

the context of this drive toward finer resolution information, a pertinent question is how 

could this information affect air toxics policy? This is the primary question for this 

dissertation research. In addition, this research also analyzes the distributional 

consequences of regulating risks at finer spatial resolutions. 

1.1 Motivation for Research 

1.1.1 Why Air Toxics “Hot Spots”? 

 The NRC study defined hot spots as “locales where pollutant concentrations are 

substantially higher than concentrations indicated by ambient outdoor monitors located in 

                                                 

 
 
2 Air toxics are one class of air pollutants regulated under the Clean Air Act (CAA). These pollutants 
include volatile organic compounds (VOCs) such as benzene and formaldehyde, semi-volatile compounds, 
and heavy metals such as nickel and mercury. Air toxics exposures are believed to cause cancer risks and a 
number of other non-cancer risks such as asthma and respiratory toxicity, central nervous system effects, 
systemic effects such as liver and kidney toxicity and immunotoxicity (Moller, Schuetzle, & Autrup, 1994). 
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adjacent or surrounding areas (NRC, 2004: 274).” Hot spots have been especially of 

concern in the context of air toxics3, for reasons described below.  

1.1.1.1 Localized Nature of Emissions 

 Air toxics are emitted not only from large stationary sources (e.g., oil refineries 

and organic chemical manufacturing facilities) and mobile sources, but also from smaller 

sources such as dry cleaners and gas stations. The smaller sources of air toxics are large 

in numbers and are typically distributed throughout densely populated urban areas, 

potentially posing very high, localized risks. Further, the concentrations of some air 

toxics tend to be highest within the first few meters from the source of release and flatten 

out quickly after that distance (EPA, 2004a). This nature of air toxics makes hot spots a 

concern in air toxics management. 

1.1.1.2 Sparse Monitoring Network 

 The Clean Air Act Amendments (CAAA) listed 188 air toxics that should be 

regulated. Because of the large number of regulated air toxics, maintaining an extensive 

monitoring network is economically infeasible. Unlike the six criteria pollutants, there 

are no ambient air quality standards for air toxics. For criteria pollutants, EPA established 

a large network of monitoring stations including state and local air monitoring stations 

(SLAMS), national air monitoring stations (NAMS), special purpose monitoring stations 

(SPMS), and photochemical assessment monitoring stations (PAMS), all over the country 

to assess compliance with national ambient air quality standards (NAAQS). In case of air 

                                                 

 
 
3 Air Toxics, Toxic Air Pollutants, and Hazardous Air Pollutants (HAPs) are used synonymously in this 
document. 
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toxics, however, the current national monitoring network for air toxics, called the 

National Air Toxics Trends Station (NATTS) network, has only 22 monitors across the 

country and monitors 18 toxic air pollutants (EPA, 2004a), mainly in large urban areas.  

 As some of the recent air quality modeling4 studies of air toxics show, the spatial 

resolution of such a sparse monitoring network is unlikely to capture concentrations in 

localized hot spots. For example, Dolinoy & Miranda (2004) modeled concentrations of 

glycol ethers from lithographic printing units in Durham County, NC and found that 

modeling at finer resolutions (such as census blocks and block groups) reveals 

concentrations that are not apparent at coarser resolutions (census tracts and zip codes). 

Other studies (Ching et al., 2004; Majeed et al., 2004) modeled HAPs using the 

Community Multiscale Air Quality (CMAQ) model at various grid resolutions (36-, 12-, 

4-, and 1-km grids) and found that coarser resolutions could not capture localized hot 

spots. 

1.1.1.3 Environmental Justice Concerns 

 Perhaps the most important driver for the concern regarding air toxics hot spots is 

the evidence from the environmental justice literature that certain susceptible populations 

(low-income and minority groups) may be disproportionately subjected to high risks from 

air toxics (for e.g., see Morello-Frosch et al., 2001; Lopez, 2002; Morello-Frosch et al., 

2002; Dolinoy & Miranda, 2004; Apelberg et al., 2005). Most of these studies have used 

national level assessments of air toxics such as the national air toxics assessment (NATA) 

                                                 

 
 
4 Air quality models are computer models that are used to predict ambient concentrations, based on certain 
assumptions about the dispersion process, and use emission inventories, source and emission 
characteristics, local meteorology, and characteristics of local physical features as inputs. 
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and the cumulative exposure project (CEP) to analyze if minority and low income 

communities were subjected to greater risks than others. Some of these studies (e.g., 

Dolinoy & Miranda, 2004) used local scale estimation of risks and found evidence for 

environmental injustice. 

1.1.2 Drive toward Increasing Spatial Resolution of Air Toxics Risks  

 Characterizing exposures in hot spots has been an explicit goal in many recent 

EPA air toxics strategy documents. The National Air Toxics Program or “Urban Air 

Toxics Strategy” (Federal Register, 1999a), developed in 1999, intended to “characterize 

exposure and risk distributions….(p: 38712)” in “geographic ’hot spots’…(p: 38712)” to 

achieve the goal of addressing disproportionate impacts of air toxics. EPA’s Workplan 

for the National Air Toxics Program and Integrated Air Toxics State/Local/Tribal 

Program Structure (EPA, 2001) identified addressing risks in hot spots as part of its 

“near-source” and “community/neighborhood” goals. Finally, the second objective of 

EPA’s proposed national air toxics monitoring program (EPA, 2004a) was to 

“characterize ambient concentrations (and depositions) in local communities (p: 14).”  

 At the level of implementation, EPA has been investing in local scale monitoring 

projects as well as modeling tools. For example, EPA allocated 60% of air toxics 

monitoring funding for the fiscal year 2004 to local-scale monitoring projects (EPA, 

2004a). The aim of these projects, among other things, is to characterize the local 

concentration gradients of air toxics.  

 EPA has also been developing tools and guidance to model air toxics 

concentrations at finely resolved spatial scales, such as the community scale. An example 

of tool development is the recently developed integrated risk assessment tool called 
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Regional Air Impact Modeling Initiative (RAIMI) (EPA, 2006a). RAIMI is a GIS-based 

tool that can estimate cancer and non-cancer risks from multiple air toxics emitted from 

multiple sources at a community resolution. Recently, EPA has also published a detailed 

guidance document for conducting community-scale risk assessments as part of its Air 

Toxics Risk Assessment Reference Library series (EPA, 2006b).   

 Advances in GIS tools are also aiding the research efforts to characterize 

exposures at finer resolutions. In environmental health research, exposure models, which 

can estimate intra-urban variations in air quality based on the data on a limited number of 

monitoring stations are being developed (Nuckols, Ward, & Jarup, 2004; Jerrett et al., 

2005). Jerrett et al., (2005) identified six such exposure models that are either under 

development or are already in use.  

 Recent research on air toxics modeling has also focused on developing methods 

that can model air toxics concentrations at spatially finely resolved local and 

neighborhood scales (see Touma et al., 2006 for a good review of this research). Full 

characterization of local scale ambient concentrations of air toxics requires modeling 

both long-range transport (transboundary air pollution) and local emissions. Large-scale 

air quality models such as CMAQ are capable of modeling long-range transport and 

chemical transformations but because of their limited spatial resolution, these models 

alone cannot fully characterize local scale concentrations. Air dispersion models such as 

the Industrial Source Complex Short Term (ISCST) model are designed to model local 

scale emissions, but they fall short of capturing the cumulative impacts from multiple 

sources. Recent modeling research has focused on developing techniques that can 
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combine large scale and local scale models to fully characterize local scale ambient 

concentrations (Touma et al., 2006; Isakov & Venkataram, 2006). 

 1.2 Research Questions 

 As the above discussion shows, characterizing risks from air toxics at fine spatial 

resolutions is an explicit goal in current air toxics policy and research, both as a strategic 

goal and with regard to implementation. This spatially finely resolved information will 

eventually be used federally or by states or local governments in policies to reduce risks 

from air toxics hot spots. In light of this, the question is how could finely resolved risk 

information affect the choice of a policy maker equipped with such information?  

 In framing the research question, this study makes a distinction between the 

effects of “resolution of information” and “resolution of regulation.” Finer resolution of 

information could affect the decision maker’s choice by providing additional information 

on risks. For example, a decision maker’s policy choice could be affected if finely 

resolved information changes the uncertainty over the parameters in decision maker’s 

objective function. Typically, such questions are studied under the value of information 

(VOI) framework (see Yokota & Thompson, 2004 for a review of VOI applications in 

environmental risk management).  

 Alternatively, finer resolution information could also be viewed as increasing the 

spatial resolution at which the decision maker could regulate risks. In this case, finer 

resolution information has no “informational” value and the policy choice is affected only 

by the number of spatial locations over which risks are regulated. This study focuses on 

the policy implications of increasing the “resolution of regulation.”  
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 As will be seen in later Chapters, regulation of emissions has been the primary 

policy instrument in air toxics risk management at all levels of government. In this 

context, the first question for this research is how could increasing the spatial resolution 

at which risks are regulated affect emission controls on air toxics? 

 As discussed earlier, the concern about hot spots is mainly driven by the evidence 

that certain susceptible groups (e.g., children, minorities and low-income groups) might 

be subjected to disproportionately higher risks from air toxics.  Given this, the second 

question this research addresses is what are the distributional consequences of regulating 

air toxics at finer spatial resolutions? 

1.3 Research Methodology 

 Based on a review of federal and state decision making in current risk-based air 

toxics policies, a formal decision model is proposed to study how regulation at finer 

spatial resolution could affect emission controls. In this model, a hypothetical social 

decision maker chooses emission levels to minimize net costs (net of costs of abatement 

to industry and population health costs) subject to the constraint that no spatial location 

should have more than a specific threshold risk. An empirical analysis then applies this 

model to air toxics emissions in two counties in Florida, Escambia and Santa Rosa, to 

demonstrate the results of the decision model.  

1.4 Organization of Dissertation 

 This dissertation includes 11 chapters including this introduction. Chapter 2 

provides a broad overview of air toxics management in the United States at the federal, 

state, and local levels.  Chapter 3 reviews the decision making processes in risk-based 

regulation of air toxics. This chapter provides the rationale for the decision model in 
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Chapter 4. Chapter 4 formalizes the model and derives predictions regarding variation in 

emissions decisions depending on the spatial resolution chosen to regulate risks. Chapter 

5 develops the detailed approach for the empirical application of the decision model 

developed in Chapter 4. The sixth chapter characterizes the data used to implement the 

empirical approach. Chapter 7 and Chapter 8 present the results of the empirical analysis 

of toxic air emissions in Pensacola. This analysis employs point estimates of model input 

parameters. Chapter 9 incorporates the uncertainties in model input parameters to draw 

implications for considering uncertainty in decision parameters. Chapter 10 draws 

broader implications of the results for environmental policy including cost-equity 

tradeoffs and the role of acceptable risk in resolving those tradeoffs, maximum individual 

risk as a basis for toxic regulations, and environmental injustice. Finally, Chapter 11 

proposes some areas for future research. 
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CHAPTER 2 

AIR TOXICS MANAGEMENT IN THE UNITED STATES 

   

 This chapter describes the primary policy tools used to manage air toxics at the 

federal, state, and local level in the United States. The first section discusses the federal 

air toxics policies followed by sections on state and local policies. 

2.1 Federal Air Toxics Management 

 Control of air toxics at the federal level could be thought of as having two distinct 

phases – pre- and post 1990 Clean Air Act Amendments (CAAA).  

2.1.1 Pre-1990 Air Toxics Control 

 The Section 112 of the Clean Air Act of 1970 required EPA to set standards, 

known as the National Emission Standards for Hazardous Air Pollutants (NESHAP), to 

control air toxics. Under this section, EPA had to first list the pollutant (s) considered 

hazardous, then promulgate proposed standards within 180 days of listing the pollutant, 

and finally, within the next 180 days, either set an emission standard or determine that the 

pollutant was not hazardous (Reitze, Jr. & Lowell, 2001). 

 NESHAPs under the CAA of 1970 were risk-based standards. EPA had to first 

establish, based on risk assessment, that the pollutant intended to be regulated posed 

substantial risk at ambient concentrations (Goldstein & Carruth, 2003). Then the 

emission standards were to be set by the EPA Administrator “at the level which in his 

judgment provides ample margin of safety to protect the public health from such 

hazardous air pollutant” (as quoted in Reitze, Jr. & Lowell, 2001). During the twenty 
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years prior to the 1990 CAA amendments, EPA listed eight pollutants and regulated only 

seven pollutants: asbestos, beryllium, mercury, radionuclides, inorganic arsenic, benzene, 

and vinyl chloride. Unrealistic timeframes required by the Act to develop standards, the 

agency’s interpretation that the Act did not allow for consideration of costs and 

technological feasibility in determining the standards, and a number of lawsuits filed 

during this period all contributed to the slow pace of regulation (Reitze, Jr. & Lowell, 

2001). This apparent lack of progress in setting standards to control air toxics led to a 

new section 112 in the 1990 amendments to the Clean Air Act. 

2.1.2 Post-1990 CAAA Regulations 

 The 1990 amendments of the CAA listed 189 HAPs to be regulated under the 

amendments and required EPA to regulate sources that emit HAPs by developing 

standards. EPA had to list and develop emission standards for “major” 5 and “area” 6 

source categories of stationary sources and develop separate standards for mobile 

sources. Four main types of standards have been developed by EPA since the 

promulgation of 1990 amendments: Maximum Achievable Control Technology (MACT), 

Area Source, Residual Risk, and Mobile Source. These standards are briefly described 

below:  

                                                 

 
 
5 Major sources are those that emit more than 10 tons per year (TPY) of any one of the 188 pollutants listed 
in the amendments or more than 25 TPY of a combination of pollutants. 
6 Area sources emit less than the threshold quantities specified for “major” sources. 
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MACT Standards 

 In response to the requirements of the 1990 CAAA amendments, in 1992, EPA 

published an initial list of 1747 stationary source categories to be regulated under MACT 

standards and has since been developing standards for the listed sources in a phased 

manner. MACT standards are technology standards that are based on the best available 

technology for existing as well as new sources. MACT standards allow consideration of 

costs but only after ensuring a minimum standard or “floor.” The MACT floor for 

existing sources is based on average emissions of the best performing 12% of existing 

units; for new sources, the floor is based on average emissions achieved by the best 

controlled source in the source category (Reitze Jr. & Lowell, 2001). The industries 

within each source category have three years to comply with the standards after the 

promulgation of the final rule. EPA completed the process of setting up standards for all 

listed source categories. 

Residual Risk Standards 

 The MACT standards, as discussed earlier, are technology based standards and do 

not take into account the risks to public health and environment in setting the standards. 

The 1990 CAAA required EPA to review the risks remaining, eight years after the 

implementation of MACT standards, and set additional controls, if required. These 

standards are called Residual Risk Standards. EPA submitted a residual risk report (EPA, 

1999a) to Congress in 1999 that outlined the approach EPA would take to determine 

whether additional controls would be required post-MACT implementation (see Chapter 

                                                 

 
 
7 The initial list has been revised several times and it is an ongoing process. 
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3 for a more detailed explanation of the decision process involved in residual risk 

determination). EPA has so far completed residual risk standards for eight source 

categories (EPA, 2007a) although some of them did not require additional controls 

beyond MACT standards.  

Area Source Standards 

 “Area” sources are smaller sources that emit less than the threshold emissions 

specified for “major” sources. Area sources categories are identified for regulation in 

several different provisions of 1990 CAAA. For example, the initial list of sources to be 

regulated under MACT standards identified five area source categories for regulation 

because EPA found a “threat of adverse health or environmental effects (Federal 

Register, 1992)” for these categories, as required by the CAAA. The CAAA also required 

EPA to identify at least 30 air toxics that pose the greatest potential health threat in urban 

areas and regulate the area source categories that represent 90% of the emissions of these 

30 air toxics. In compliance with this requirement, EPA, in its Urban Air Toxics Strategy 

(EPA, 1999), identified those 30 urban air toxics. Currently, there are 70 area source 

categories, under three different listings, representing 90% of the emissions of the 30 

urban air toxics (EPA, 2007b). 

 Some of the area sources are regulated under MACT Standards while a majority 

is regulated under Generally Available Control Technology Standards (GACT).  GACT 

standards tend to be less stringent than MACT standards and they take into account the 

economic impact of employing those technologies and the technical capabilities of the 

firms to operate and maintain emission control systems. 
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Mobile Source Standards 

 Section 202 of the CAA requires EPA to set standards to control air toxics from 

mobile sources and their fuels. In 2001, EPA established the first mobile source air toxics 

rules (Federal Register, 2001) in which EPA identified 21 mobile source toxics to be 

regulated and established gasoline toxic emission performance standards. More recently, 

EPA finalized new mobile source rules that regulate benzene content in gasoline, set 

exhaust standards for vehicles at cold temperatures and evaporative emission standards 

from passenger vehicles, and set standards for gas cans to limit hydrocarbon emissions 

due to evaporation (Federal Register, 2007).  

2.1.3 Air Toxics Assessments  

 In addition to the development of standards, the other major component of 

national air toxics management has been assessments of risks from air toxics. The 

objectives of this component are to identify geographical areas of high risks for priority 

action and track progress of regulatory programs in terms of their impact in reducing 

risks (Federal Register, 1999a). The assessment activities include the creation of a nation-

wide monitoring network called the National Air Toxics Trends Stations (NATTS), the 

development of emission inventories, and the national air toxics assessments (NATA).  

 The NATTS network initially started with 13 monitoring stations across the 

country and now includes 22 stations, mainly located in urban areas. EPA has been 

compiling a national inventory of air toxics emissions since 1990, the most recent one 

being the 2002 NTI. This inventory, referred to as the national toxics inventory (NTI), is 

updated every three years. Two NATA studies have been conducted so far – one based on 

the 1996 NTI and the other based on the 1999 NTI. NATA studies estimate cancer and 
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non cancer risk from air toxics at the centroid of every census tract in the United States. 

The 1996 study estimated risks from 33 air toxics while the 1999 study estimated risks 

from 177 air toxics.  

2.1.4 Integrated Urban Air Toxics Strategy 

 A key component of EPA’s national air toxics program is the Integrated Urban 

Air Toxics Strategy (Federal Register, 1999a). This strategy was developed in response to 

the requirement in the 1990 CAAA that directs EPA to prepare “a comprehensive 

strategy to control emissions of hazardous air pollutants from area sources in urban areas 

(CAA: 74).” The strategy specifies three main goals: (1) attain 75% reduction in 

incidence of cancer risk attributable to stationary source air toxics, (2) attain a substantial 

reduction in public health risks from area source air toxics, and (3) address 

disproportionate impacts of air toxics risks across urban areas. 

 The urban strategy document provided details on four components of the strategy 

that EPA would implement to achieve the three goals. The first component was about the 

regulations that EPA would implement at the national scale and enforcement thereof; the 

second component focused on local and community-based initiatives to deal with 

cumulative risks in urban areas; the third component  involved assessment activity 

including modeling tools and monitoring; and the final component was education and 

outreach to inform the public of risks and involve them in the implementation of the 

strategy.  

 Figure 2.1 shows an overview of current federal air toxics management reviewed 

in this section. 
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Figure 2.1 Federal Air Toxics Management in the United States  

(Based on: Federal Register, 1999a) 



 

 

2.2 State and Local Air Toxics Management 

 The slow pace of progress in federal regulation prior to the 1990 CAAA prompted 

many states to design their own air toxics programs to reduce emissions. The nature of 

the programs varies from state to state; while some states use technology based controls, 

some states use risk based standards, and a few others use ambient air toxics standards 

(Federal Register, 1999a). However, according to a survey conducted in 1995, 60% of the 

states that responded to the survey had risk based standards (EPA, 1999a). It is not clear 

how many of the state programs go beyond minimum federal regulations because no 

comprehensive study that compiles all the state air toxics programs is available. A recent 

GAO report (GAO, 2006), however, identified four state programs – California, New 

Jersey, Oregon, Wisconsin – and a local program, Louisville, KY that go beyond federal 

programs in many ways. Some of these programs are relatively new; for example, 

Oregon’s program started in 2003 and the Louisville program was approved in 2005. The 

California program, which is one of the oldest and successful programs, and a local 

program, the Louisville program, are briefly reviewed below. 

2.2.1 Air Toxics “Hot Spots” Program of California 

 California was among the first states to promulgate a state level air toxics 

regulation called The Air Toxics “Hot Spots” Information and Assessment Act (AB 

2588), which came into effect in 1987. This is a risk-based regulation. Any stationary 

source that manufactures, formulates, uses, or releases one of the over 600 identified 

toxic substances is potentially subject to this Act. The Act has a number of components to 

it (see California ARB, 2007 for an overview). First, the facilities subjected to this Act 

have to submit an emission inventory reporting plan and, upon approval by the 
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appropriate air pollution control district (APCD), submit the emission inventory. This 

inventory must be updated every four years.  

 The APCD classifies the facilities as high, intermediate, and low priority risk, 

taking into account a number of relevant factors including toxic potency , the quantity of 

emissions of pollutants, and the location of the facility with respect to populated areas. 

Facilities that are prioritized as “high” risk facilities have to conduct a detailed health risk 

assessment to estimate the risks associated with their emissions. If the risks they pose are 

beyond the “notification” risk standard specified by the APCD, the facilities then must 

notify the people exposed to those risks. The 1992 amendments to the Act also requires  

high risk facilities to submit an emission reduction plan to reduce the risks below 

acceptable levels specified by the air quality district. This Act also prescribes penalties 

for violating any provisions of the Act or for intentionally submitting false information. 

2.2.2 Louisville, KY Local Program 

 The Louisville Metro Air Pollution Control District Board recently approved 

implementation of a set of regulations under its Strategic Toxic Air Reduction (STAR) 

program (Louisville Metro, 2005). Based on extensive local monitoring and modeling 

studies, this program identified 37 air toxics released by various stationary sources in 

Louisville that pose or may pose risks above a specified health risk goal. The health risk 

goal is a 1 in a million cancer risk or higher than 1.0 non-cancer risk threshold. The 

STAR program identified 18 pollutants for action in its first phase. A total of 170 

facilities are subject to regulation under this program. These facilities must conduct risk 

assessments to estimate cancer and non-cancer risks posed by their emissions and submit 

an emission reduction plan to reduce the risks below the health risk goal (Williams, n.d.). 
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The air pollution district increased the permit fees based on the size of the facility to 

partly fund the implementation of the STAR program. The federal EPA provided 

financial and technical assistance in designing the STAR program. 

2.2.3 Role of Federal EPA in State/Local Air Toxics Programs 

 Many states, as discussed in the previous section, developed their own air toxics 

programs prior to the 1990 CAAA. After the development of federal standards such as 

MACT, there was a potential overlap of regulatory requirements for several facilities 

already regulated under a state regulation. In recognition of this potential overlap, Section 

112(l) of the 1990 CAAA directed EPA to develop clear guidance to state and local (S/L) 

agencies on how agencies could seek approval for alternative standards or seek 

delegation authority to enforce federal standards. Section 112, however, makes it clear 

that EPA cannot approve any proposal by S/L agencies that is deemed less stringent than 

federal requirements. 

 The guidance developed by the EPA (Federal Register, 2000) in response to 

Section 112 (l) requirements proposes several alternatives for S/L agencies: (1) Agencies 

can request for straight delegation, without any changes in federal requirements, or (2) 

request approval of adjustments to federal rules, or (3) request approval of substitution 

for a particular federal rule, or (4) request an entirely independent program in lieu of 

federal rules. The guidance also specified timeframes and other procedures for approval 

process. 

 In addition to oversight of federal rule enforcement, EPA also works in 

partnership with S/L agencies to implement its overall national air toxics program, as 

outlined in the Integrated Urban Air Toxics Strategy (Federal Register, 1999a). As a 
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follow up to this commitment for partnership with S/L agencies, EPA created a 

workgroup in 2000 to discuss the role of state, local, and tribal (S/L/T) agencies in 

achieving the national air toxics program goals. The final Workplan, in its integrated 

S/L/T program structure, identified national, area-wide, near-source, and 

community/neighborhood goals and a four-step process (assessment, program 

development, program implementation, and audit/backstop) for addressing air toxics risks 

at each level (EPA, 2001). This document also discussed delegation of implementation 

and funding mechanisms for implementation of sub-national goals. 

 Finally, EPA funds local air toxics monitoring programs to help local agencies 

and communities address air toxics “hot spots.” EPA has already funded a number of 

such projects in communities across the country and has been increasingly shifting its air 

toxics monitoring funds to local monitoring projects instead of expanding its national 

NATTS network (EPA, 2004a).  

2.3 Summary 

 Review of air toxics management in the United States suggests that: (1) the 

predominant policy tool employed in air toxics management is regulation (2) current 

federal regulation has been moving increasingly towards risk based standards, in addition 

to implementation of technology based standards, (3) some state agencies have long been 

implementing risk based standards to reduce air toxics, and (4) local air toxics 

management is gaining prominence, with EPA actively encouraging such initiatives. 
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CHAPTER 3 

DECISION MAKING IN RISK-BASED REGULATION OF TOXICS 

 

 This chapter reviews the regulatory decision making processes in the management 

of toxics. The first section reviews empirical research that analyzes EPA’s regulatory 

decision making under various toxics laws. The next section focuses on risk-based air 

toxics regulation. Based on this review, the final section proposes a decision making 

model to study the primary question for this dissertation research. 

3.1 Risk-based Regulation of Toxics 

 Risk-based regulation has a long history in the management of toxic pollutants in 

the United States. It has been widely used in regulatory decisions by a number of federal 

agencies including the EPA, the Food and Drug Administration (FDA), and the 

Occupational Safety and Health Administration (OSHA). Toxics regulations such as the 

Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), the Toxics Substances 

Control Act (TSCA), the Superfund program under the Comprehensive Environmental 

Response, Compensation, and Liability Act (CERCLA), and the regulation of toxic air 

pollutants under the Clean Air Act (CAA) – all base their regulatory decisions on 

assessment of risks to individuals and populations. 

 It is surprising, given the pervasiveness of risk assessment in regulatory decision 

making, that very limited empirical research systematically analyzes the actual decisions 

EPA and other agencies have made in a risk-based framework; the exception has been 

research on the Superfund program. Limited empirical research, mostly in political 
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economy, tests the influence of mainly three factors on EPA decisions. First, did EPA 

balance benefits and costs in its regulatory decision making; second, what is the role of 

maximum individual risk (MIR); and third, did political factors influence EPA decisions? 

The findings with regards to these three questions are briefly discussed below. 

3.1.1 Balancing Benefits and Costs of Regulation 

 Economic efficiency suggests that decisions be made such that the marginal costs 

equal the marginal benefits of a regulation. Economic efficiency, however, is not a goal 

of environmental regulation in the US. While some regulations such as FIFRA and TSCA 

allow consideration of costs in regulatory decisions, the Superfund regulation and the 

Clean Air Act prohibit consideration of costs in standard setting. Balancing, in the 

context of this research, means testing whether a costly standard is less likely to be 

selected and a beneficial standard is more likely to be selected. An analysis of 242 

regulatory decisions of EPA under FIFRA found that EPA did balance costs and benefits 

in deciding whether or not to allow continued use of a pesticide on food crops (Cropper et 

al., 1992). 

 TSCA is another regulation that allows balancing of costs and benefits. A study 

that analyzed EPA’s decision to regulate the use of asbestos in 39 products found that 

EPA balanced costs and benefits, consistent with the TSCA mandate; products with low 

costs and high lives saved were banned most often while products with high costs and 

low lives saved were not banned (Van Houtven & Cropper, 1996). The Superfund law 

does not allow consideration of costs in setting cleanup target risk standards although 

costs may be considered in cleanup decisions once a target risk level is set. Empirical 

analysis of 110 soil contaminated superfund sites found that EPA’s cleanup decisions 
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were consistent with Superfund law (Gupta, Van Houtven, & Cropper, 1995). Costs did 

not matter in selecting target risks while EPA did select lower cost technology options to 

achieve the target risks. 

3.1.2 Maximum Individual Risk vs. Population Risk 

 A key feature of risk-based decision making in the regulation of toxic pollutants 

has been the focus on reducing individual risks. Individual risk typically means upper-

bound8 risk to a maximally exposed individual in a population. Population risk is 

measured either as the size of population exposed to risks above certain threshold risk 

values or the number of people in a population expected to develop a disease due to 

exposure to pollution.  

 In a study of 132 regulatory decisions made by federal agencies, no correlation 

was found between size of population exposed and likelihood of regulation whereas 

individual risk did matter in decisions (Travis et al., 1987). This study found that agency 

decisions revealed an implicit de manefestis and de minimis levels of individual risk; 

every chemical with an individual cancer risk above 4 in 1000 was regulated and no 

chemical with individual risk less than 1 in a million was regulated. Further, every 

pollutant with individual risks above de manefestis risk was regulated regardless of costs 

and pollutants for which individual risks fell between de manefestis and de minimis risks 

were regulated only when the cost per life saved was less than $ 2 million. EPA’s 

guideline for Superfund cleanup is consistent with this finding. Whether or not a clean up 

                                                 

 
 
8 In the case of air toxics, upper-bound risk is based on the assumption that an individual subjected to 
estimated pollutant concentrations is exposed to those concentrations for 24 hours a day for 70 years. 
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action is required for a site is based on cumulative individual lifetime cancer risk. 

According to this guideline, no action is warranted for sites with less than 1 in a million 

individual lifetime cancer risk, action is warranted when individual risk exceeds 1 in 

10,000, and action is discretionary for risks between these two values (Hamilton & 

Viscusi, 1999). 

 The above finding led to the “bright-line” hypothesis (Cropper et al., 1992), 

which says that regulatory agencies balance costs and benefits only after a threshold 

individual risk is achieved. Analysis of actual decisions made by EPA rejected this 

hypothesis for pesticide regulation (Cropper et al, 1992; Van Houtven & Cropper, 1996) 

but supported it for regulation of hazardous air pollutants (Van Houtven & Cropper, 

1996). 

3.1.3 Political Influence 

 In democratic decision making, voter interests, bureaucratic discretion, and 

interest group activities all influence environmental policies (Congleton, 1996). Tests of 

whether EPA was influenced by interests of different stakeholders in its risk-based 

regulation have used a number of different measures of political influence. In pesticide 

regulation decisions studied by Cropper et al., (1992), the influence of various 

stakeholder groups was measured by a dummy variable that indicated whether or not they 

commented on a regulatory proposal. Adding interest group variables “dramatically” 

increased the explanatory power of the model indicating that interest group activity was a 

significant predictor of the probability of cancellation of pesticide use. The study also 

found that “interventions by environmental groups have about twice the impact on the 

likelihood of cancellation as those by growers (p: 194).”  
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 For the Superfund program, one of the most expensive efforts in US 

environmental policy, evidence is somewhat mixed. Hird (1994) studied the influence of 

House and Senate authorizing and appropriations subcommittees on a variety of 

Superfund outcome variables such as pace of cleanup and cleanup expenditures. His 

general finding was that the subcommittees did not affect outcomes. However, another 

study that used a different set of measures for political influence variables found strong 

evidence of their effects on stringency of cleanup targets (Viscusi & Hamilton, 1999). 

These measures included voter turnout, number of environmentalists in the state, and the 

environmental records of state senators. 

3.2 Standard Setting Processes in Air Toxics Regulation 

 Prior to the Clean Air Act Amendments (CAAA) of 1990, regulation of air toxics 

was risk-based, as discussed in Chapter 2. EPA listed eight pollutants as hazardous and 

regulated seven pollutants before the 1990 CAAA. The most controversial among those 

seven pollutants was vinyl chloride. EPA first set standards for sources of Vinyl Chloride 

based on best available control technology because scientific uncertainty about risks 

restricted EPA’s ability to determine a “safe” level for vinyl chloride, as mandated by the 

CAA.  EPA argued that it had to take costs and technological feasibility into account 

because scientific uncertainty about “safe” quantities of vinyl chloride meant a zero 

emission standard (Reitze, Jr. & Lowell, 2001). This standard led to lawsuits, first by the 

Environmental Defense Fund (EDF) and later by the Natural Resources Defense Council 

(NRDC), claiming that Section 112 of the CAA of 1970 prohibits EPA from considering 

costs and technological feasibility (see Dankner, 1988 for an excellent legal review of 

this regulation). 
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 In the lawsuit by NRDC, now known as the “Vinyl Chloride” case, the D.C. 

Circuit upheld EPA’s view that the CAA did not explicitly prohibit consideration of costs 

but directed EPA to adopt a two-step process to setting up standards in case of hazardous 

air pollution regulation. In the first step, EPA should establish a “safe” level of risk 

without considering factors such as cost and technology. Once a safe level is assured, the 

second step should set the strictest feasible emission standard, taking into account costs 

and other factors. After the Vinyl Chloride case, EPA used this direction to set standards 

for regulation of sources of benzene (Federal Register, 1989).  

 One empirical study (Van Houtven & Cropper, 1996) that analyzed air toxics 

regulation prior to the 1990 CAAA concluded that the Vinyl Chloride case had an impact 

on how EPA made decisions in regulating air toxics.  There was clear evidence in this 

study that EPA tried to balance costs and benefits before the Vinyl Chloride case but after 

the Vinyl Chloride verdict did not consider costs when maximum individual risk (MIR) 

was above 1 in 10,000. 

 The CAAA of 1990 required EPA to develop and enforce technology based 

standards, referred to as Maximum Achievable Control Technology Standards (MACT), 

in the first phase of implementation of air toxics regulation. Eight years after MACT 

implementation, EPA was required to the risks that remained and set additional controls, 

if necessary. This second phase of air toxics regulation, currently underway, entails the 

development and implementation of Residual Risk Standards. Under Section 112(f) of 

the CAAA, Congress directed that EPA should set residual risk standards to provide an 

“ample margin of safety” for public health. EPA submitted a report to Congress (EPA, 

1999a) detailing its approach to conducting risk assessments and to set additional 
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controls, if required, under Residual Risk Standards. The following subsections discuss 

the decision process that EPA set forth to set regulation under residual risk standards, 

followed by a discussion of a relevant state act, the California “Hot Spots” program. 

3.2.1 Residual Risk Regulation  

 Air toxics regulation under residual risk is no exception to the principle of 

protecting the individual exposed to maximum risk. The rationale behind this principle is 

“to ensure equitable protection across an exposed population (EPA, 2004b: 27).” Under 

this principle, decisions to control emissions are driven by the estimated upper-bound 

MIR9 from a source category. Other factors such as costs and feasibility could be 

considered in control decisions only after ensuring that the MIR does not exceed a 

threshold value determined by the regulatory agency. 

 EPA adopted the two-step process suggested by the D.C. Circuit in the Vinyl 

Chloride case discussed earlier to set standards under the residual risk rule (EPA, 1999a). 

The two steps in the determination of additional control requirements under the residual 

risk regulation are: 

1. In the first step, EPA determines an “acceptable risk” from air toxics for the exposed 

population. “Acceptable Risk” 10 is a judgment EPA makes by taking into account a 

number of factors including maximum individual risk (MIR), the overall incidence of 

cancer in the exposed population, the number of people exposed to different 

                                                 

 
 
9 MIR is “the highest estimated risk to an exposed individual in areas that people are believed to occupy 
(EPA, 1999b: 45).”  
10 The typical benchmark for risk acceptability under residual risk standards is a MIR of less than 1 in 
10,000 (EPA, 1999a). 
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individual life time risk ranges, the uncertainties associated with risk estimates, 

weight of evidence for human health effects of toxic pollutants, and any other 

relevant health effects. 

2. The second step is the determination of an “ample margin of safety.” In making this 

determination, EPA “strives to provide protection to the greatest number of persons 

possible to an individual lifetime risk level no higher than approximately 1 in a 

million (Federal Register, 1989, p: 38046).” This step leads to establishment of 

controls to maintains “ample margin of safety.” While establishing controls EPA 

takes into account not only all the health factors in the first step but also other factors 

such as cost and technical feasibility of controls, uncertainties, economic impact, and 

other relevant factors. 

3.2.2 Identification of “Hot Spots” 

 A related regulation at the state level is the Air Toxics “Hot spots” Information 

and Assessment Act enacted by the California Air Resources Board (CAARB) in 1987 

and later amended in 1992. This act requires that health risk assessments be conducted by 

those facilities that are identified to cause “significant” health risks and inform the public 

of those significant risks. The 1992 amendment also required that emissions of HAPs that 

contribute to significant risk be reduced within a specified timeframe. The Air Pollution 

Control Districts (APCD) set the risk threshold levels that trigger risk reduction 

requirements for the facilities. Facilities that exceed the threshold risk must submit a “risk 

audit and reduction plan” to bring the risks down to the threshold value. For example, 

South Coast Air Quality Management District requires facilities to submit a risk audit and 
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reduction plan if the cancer risk exceeds 25 in a million, the cancer burden exceeds 0.5, 

or the non cancer hazard index exceeds 3.0 (South Coast AQMD, 2007). 

 The identification of “hot spots” or “significant” risks that trigger requirements 

for risk reduction plans in this program is based on “point of maximum impact (PMI)” 

which is located using health risk assessment models. The California Air Resources 

Board issued detailed guidelines to facilities to determine the PMI (CalEPA, 2003). This 

PMI corresponds to MIR referred to earlier in residual risk regulation. Unlike federal 

residual risk standards where EPA determines how air toxics risk should be controlled by 

facilities, this state program allows flexibility, in terms of abatement options, to the 

industries to achieve the risk reductions. The APCDs do not specify the control 

technologies that the high-risk facilities must implement. However, in the risk audit and 

reduction plan submitted to APCDs for approval, the facilities must include a rationale 

for including or excluding identified abatement options.  

3.3 A Model of Risk-based Air Toxics Decision Making  

 This section first reviews various approaches for modeling regulatory behavior 

and then proposes a model to address the questions for this research. 

3.3.1 Modeling Regulatory Behavior 

 The review in Chapter 2 suggested that regulation is the primary instrument in air 

toxics management in federal as well as local agency policy making. Before proposing a 

decision model to address the research questions for this research, this section briefly 

reviews previous research on modeling regulatory decisions with special reference to 

environmental regulation. 

 The economic theory of regulation, first proposed by Stigler (1971), models 

regulators as maximizing their self-interest; the self-interest is generally the votes that 
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keep the regulators in power. This theory, referred to as “capture theory” of regulation, 

predicts that the benefits of regulation generally accrue to industry because of their ability 

to organize as powerful groups. Peltzman (1976) formalized and extended Stigler’s 

theory and modeled regulator as maximizing the likelihood of reelection, given 

competing interest groups. Through this formulation, Peltzman’s theory suggests that 

organized groups (such as consumers), in addition to the regulated industry, could also 

get a share of rents from a regulator maximizing the self-interest. Within this theoretical 

tradition, Becker (1983) modeled regulatory outcomes, specifically the political 

redistribution of income and other policies, as a result of competition for influence among 

pressure groups. One of Becker’s main prediction is that governments will choose more 

efficient policies to less efficient policies in redistributing income from less powerful to 

more powerful groups. 

 Agency theory or principal-agent theory predicts that because elected institutions 

(Congress and President) create agencies and control their resources, regulatory behavior 

of the agencies should be shaped by the elected institutions (Wood, 1988). Many 

empirical studies of federal agency decisions show consistency with agency theory. 

Proposing a legislative choice model, Weingast & Moron (1983) modeled the Federal 

Trade Commission decisions as a function of preferences of Congressional oversight 

committees. The authors found that oversight committees held considerable influence on 

FTC decisions even in absence of systematic oversight hearings. Studying the core 

regulatory enforcement decisions of seven federal agencies including the Equal 

Employment Opportunity Commission (EEOC), the FTC, the Nuclear Regulatory 

Commission (NRC), the FDA, the National Highway Traffic Safety Administration 
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(NHTSA), the Office of Surface Mining (OSM), and the EPA, Wood & Waterman 

(1991) found that political events such as political appointments, resignations, and budget 

changes consistently affected agency decisions. Using similar theoretical approach to 

explain EPA’s clean air enforcement decisions, Wood (1998) found limited evidence of 

political control in EPA decisions. 

3.3.1.1 Modeling in Environmental Regulation 

 Two main approaches are reviewed here: public choice and political economy. 

The main emphasis of public choice approach in environmental policy is to explain the 

conditions under which policy makers choose different instruments.  In one of the early 

studies, Buchanan & Tullock (1975) argued that firms favor emission standards to 

emission taxes because standards restrict entry of new firms leading to higher profits for 

the existing firms. This inference was based on the assumption that the industry, being 

more organized than consumers, can influence the choice of policy instrument. Hahn 

(1990) proposed a model of environmental regulator in which the regulator chooses a 

policy instrument and a level of environmental quality to maximize utility. The utility in 

the objective function was a linear combination of preferences of industry and 

environmental interest groups. Based on this model of environmental regulation, he 

author derives predictions for conditions under which the regulator chooses a market-

based instrument as opposed to a standard. A more recent application of public choice 

approach to choice of environmental policy instruments proposed that the choice of 

instrument is a competitive equilibrium outcome of a “political market (Keohane, 

Revesz, & Stavins, 1997).” The proposed political market consists of utility maximizing 

legislators, who supply support for policy instruments based on their ideologies, and a 
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number of interest groups with a demand for particular types of policy instruments. Based 

on this modeling approach, the authors provide explanations for adoption of standards vs. 

market-based policy instruments. 

 Perhaps the approach most relevant to this research is the political economy 

approach that has already been discussed in Section 3.1. The political economy models 

reviewed here analyze ex post policy decisions of EPA to explain the determinants of 

EPA decision making. Cropper et al., (1992) modeled the probability of banning a 

pesticide as a function of costs and benefits of banning the pesticide and whether or not 

political interest groups participated in the regulatory process. The authors not only found 

that EPA did balance costs and benefits but also that participation of interest groups was 

a significant factor in banning decisions. In a study of Superfund decisions, Viscusi and 

Hamilton (1999) modeled regulatory stringency in site clean up decisions as a function of 

chemical risks and site-specific factors including voter turnout. The regulatory stringency 

was measured by target risk level for each chemical pathway and cost of clean up at each 

site. This study also found significant influence of political factors in EPA decisions.  

3.3.2 Proposed Decision Model 

 The approaches reviewed in Section 3.3.1 suggests that the regulatory decision 

process is a complex political process largely influenced by political interests of various 

groups.  

 The decision model proposed for this research departs from the reviewed models 

in that this model assumes an idealized net social cost minimizing decision maker, who is 

not influenced by political considerations. The model proposed here reflects the decision 

process set forth by EPA and other state agencies under residual risk regulations. Based 

on the review in Section 3.2, the basic elements of the decision process in setting risk-

based standards are: 

1. Determine an acceptable level of maximum individual risk, and 
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2. Achieve the maximum feasible reduction in emissions taking into account the costs of 

controls and other factors only after risk to the maximally exposed individual is at or 

below the acceptable risk level determined in the first step. In this research this is 

translated as: balance the costs of compliance with the population health benefits of 

reducing emissions after ensuring that MIR is at or below an acceptable risk 

threshold. 

 Thus, in the model proposed here, a hypothetical decision maker chooses 

emission levels such that the net costs (net of costs to industry of abating emissions and 

population health costs) are minimized subjected to the constraint that no spatial 

location has an individual risk greater than a threshold value. This model is developed 

formally in Chapter 4. 
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CHAPTER 4 

MODEL FORMULATION AND PREDICTIONS 

 

 This chapter formalizes the decision model proposed in section 3.3. The initial 

sections present the policy setting, the modeling choices, and the model assumptions. The 

later sections develop the mathematical form of the decision model to study the 

implications, for optimal emissions and net social costs, of regulating air toxics at finer 

spatial resolutions  

4.1 Policy Setting 

 Let the baseline scenario be the current emissions of air toxics from various 

sources in a geographical area of interest such as a county. Suppose, a hypothetical 

decision maker made an assessment of risks based on current emissions and found that 

certain locations within the area of interest are subjected to high (or unacceptable) risks. 

The decision maker wants to act on this assessment and choose emission controls to 

reduce risks. Also suppose that the hypothetical decision maker can choose the spatial 

resolution over which to regulate risks. For example, the decision maker could regulate at 

census tract resolution (based on available national studies such as the national air toxics 

assessment) or at a finer resolution (such as a census block) based on a local scale 

modeling study. The question for this research is: how could the hypothetical decision 

maker’s choice of emission levels vary depending on the spatial resolution the decision 

maker chooses to regulate risks? 
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4.2 Modeling Choices 

 The hypothetical decision maker’s problem is to choose emission levels that 

minimize net social costs, subjected to the constraint that no individual is subjected to 

more than a certain threshold risk ‘r’. The net social costs consist of the net of private 

costs of abatement for firms and the human health costs of air toxics exposures. 

4.2.1 Rationale for Modeling Choices 

 As explained in Chapter 3, in decisions such as the additional controls required 

under residual risk standards, a key factor for EPA is the risk to the maximally exposed 

individual, or the maximum individual risk (MIR). The constraint in the model, which 

says that no location should be subjected to more than a threshold risk ‘r,’ reflects this 

principle. Further, after ensuring an acceptable level of MIR, EPA is allowed to consider 

costs and reduction of population risks while setting emission control standards. Thus the 

objective function of the model proposed here (i.e., net of private costs to industry and 

population health costs) is consistent with decision making processes as specified under 

risk-based air toxics emission control standards.  

 In risk-based regulations of air toxics, agencies implicitly choose the quantity of 

emissions. Although residual risk standards specify the technologies the regulated 

industries must adopt to reduce residual risks, these imply an allowable quantity of 

emissions. In California’s “hot spots” program, the choice is more explicit. The industries 

that pose risks beyond the standard set by the Air Pollution Control District (APCD) must 

submit a detailed emission reduction program that reduces the maximum individual risk 

to within the specified limits. Thus, the choice variable in the decision model is emission 

levels. 
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4.3 Model Assumptions 

 The decision model assumes: 

• The decision maker weighs private costs and social costs equally. 

• Emissions are continuous and released at a constant rate. 

• Value of statistical life (VSL) is constant across different population groups. 

• Cancer risks are additive. That is, every pollutant imposes risk independent of other 

pollutants. 

• The population is exposed to the estimated concentrations continuously during their 

entire lifetime (70 years). 

• There is no chemical transformation of toxic air pollutants after they are released 

into air. 

• Abatement costs are convex and increase at an increasing rate. 

• The model includes costs of only cancer risks and does not include costs resulting 

from other endpoints such as non-cancer human health effects or ecological effects. 

 Implications of some of these assumptions and possible ways of relaxing the 

assumptions are discussed in Chapter 11. 

4.4 Decision Maker’s Problem Set-up 

 Let there be ‘I’ sources, S1, S2,…, SI, each of which emit ‘J’ toxic air pollutants t1, 

t2,…, tJ . Let the excess lifetime cancer risk due to these ‘J’ pollutants emitted by ‘I’ 

sources be estimated at k = 1,2,3,…., K spatial locations. The cancer risk at any given 

location rk is given by: 

1 1

  
I J

k ij ijk j
i j

r Q uβ
= =

= ∑∑  for all k = 1,2,3,…, K    (4.1) 
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Where, 

k
r  Risk (expressed as increased probability of cancer) at k th location  

ij
Q  Emission rate (g/s) of pollutant j from i th source 

ijkβ  Exposure concentration, in [( 3/g mµ )/(g/s)], at location k due to a unit emission 

rate (1 g/s) of pollutant j from source i = f (meteorology, emission and source 

characteristics, site characteristics, location of the measurement point with 

respect to the source, and activity patterns of exposed population) 

j
u  Unit Risk Factor for j th pollutant, ( 3/g mµ )-1 (represents the probability of 

cancer due to continuous exposure for 70 years to 1 3/g mµ  of pollutant j) 

 

 Cancer risk is expressed as ‘n’ in a million probability. The interpretation is that if 

a million people are exposed to a risk of ‘n’ in a million over 70 years, it is expected that 

there will be ‘n’ additional cases of cancer due to air toxics exposure. So, if m th spatial 

location has pm people and are exposed to a cancer risk of rm, it is expected that there will 

be pm*rm number of excess cancer cases. Thus for a geographic region with m=1,2,….,M 

population locations, the total number of expected additional cancer cases is given by: 

1

M

m m

m

R r p
=

= ∑      (4.2) 

 A component of the objective function is the health costs associated with cancer 

risks from toxics exposure. In a willingness to pay (WTP) framework, these costs could 
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be estimated as the number of additional cancer cases multiplied by the value of 

statistical life (V)11. Thus, this component of costs can be expressed as: 

1

Health Costs, .
M

h m m
m

C r p V
=

= ∑      (4.3) 

 The health costs are increasing in emissions. This is because the cancer risks 

increase as the air toxics emissions increase. 

0h

ij

C

Q

∂
>

∂
      (4.4) 

 The other component of the objective function is the private costs of abatement 

borne by polluting sources. This cost is in part a function of the industrial sector, the 

process and abatement technologies, and the type of toxic air pollutant being abated. If 

source i has to reduce emissions of a pollutant j from a baseline of Qb
ij to Qij, and if MCij 

represents the marginal cost function for pollutant j from source i, then the private cost of 

abatement can be expressed as: 

Private Costs,  
ij

b
ij

Q
I J

p ij ij ij
i=1 j=1 Q

C MC (Q ). dQ= ∑ ∑ ∫    (4.5) 

 The private costs decrease with increasing emissions. That is, the higher the 

allowable emissions, the lower are the abatement costs.  

                                                 

 
 
11Value of statistical life (VSL) is the rate of tradeoff between money and the risk of dying (Hammitt, 
2000). Its application here assumes that incidence of cancer results in mortality and that VSL is constant 
across additional cancer cases. VSL enters as a scalar in equation (4.3), which assumes that there is no 
heterogeneity in willingness to pay to reduce risk of death across individuals. VSL is discussed further in 
Section 6.4.4. 
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0
p

ij

C

Q

∂
<

∂
      (4.6) 

 The constraint in the model is that the cancer risk at any of the spatial locations 

over which risks are regulated should not exceed a threshold value r. If the risks are 

regulated based on an assessment of risks over k=1,2,…,K spatial locations, the constraint 

in the model is given by: 

  
1 1

k  1,2,3, .,K
I J

ij ijk j
i j

Q u rβ
= =

< ∀ = …∑∑    (4.7) 

 It should be noted that the variable of interest for the question addressed in this 

research is K. Spatial resolution in this research refers to the number (or density) of 

locations over which risks are regulated. The number of locations increases as the spatial 

resolution becomes finer and finer. That is, K increases with increasing spatial resolution. 

 Putting everything together, the decision maker’s problem then is: 

( )
1 1 1 1 1

.
ij

ij b
ij

Q
I J I J M

mij ij ij ij ijm jQ i j i j mQ

Min MC Q dQ Q u p Vβ
= = = = =

              

+∑∑ ∑∑ ∑∫  (4.8) 

Subjected to the constraints that: 

1 1

  1,2,3, .,
I J

ij ijk j
i j

Q u r k Kβ
= =

< ∀ = …∑∑  

0≥
ij

Q  

 The goal is to derive the implications of regulating at finer spatial resolutions to 

optimal emissions and net costs, given the above problem set up. In order to achieve this, 

the first step is to solve the model for optimal emissions at any given resolution (i.e., at 
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any particular K) and then examine what happens to optimal emissions as we regulate at a 

finer spatial resolution (i.e., at any K′ > K). 

4.4.1 Optimal Emissions at a Specific Spatial Resolution (K) 

 Minimizing a function f is the same as maximizing − f . I will use this property 

to generate first order conditions for my problem. The Lagrangian is (Simon & Blume, 

1994): 

( )

( ) ( )1 1

1 1 1 1 1

1 1 1 1

.

....

Q

Q

ij

ij ij ij ij ijm j m
b
ij

ij j ij jK ijKij

I J I J M

i j i j m

I J I J

i j i j

L MC Q dQ Q u p V

Q u r Q u r

β

λ β λ β

= = = = =

= = = =

= − −∑ ∑ ∑ ∑ ∑∫

− − − − −∑ ∑ ∑ ∑

  (4.9) 

The first order conditions will be: 

( )*

1 1
0

ij k

ij

ij ijm j m jijk

M K

m k

L
MC Q u p V u

Q
β λ β

= =

∂
= − − − ≤∑ ∑

∂
  (4.10) 

( )* * * *

1 1

0
ij ij ij ij k ij

ij

ij ijm j m jijk

M K

m k

L
Q Q MC Q Q u p V Q u

Q
β λ β

= =

∂
= − − − =

∂
∑ ∑  (4.11) 

* *

1
1 1 1 1

1

( ) 0,..., ( ) 0
I J I J

ij ij j ij ijK j
i j i j

K

L L
Q u r Q u rβ β

λ λ= = = =

∂ ∂
= − − ≥ = − − ≥

∂ ∂
∑∑ ∑∑  (4.12)  
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*

1 1 1
1 1

1

*

1 1

( ) 0,

.

.

.

( ) 0

I J

ij ij j
i j

I J

K K ij ijK j
i j

K

L
Q u r

L
Q u r

λ λ β
λ

λ λ β
λ

= =

= =

∂
= − − =

∂

∂
= − − =

∂

∑∑

∑∑

   (4.13) 

1
0,..... 0

K
λ λ≥ ≥      (4.14) 

 In the above set of equations, (4.10) is a condition that the first derivative of the 

Lagrangian with respect to the choice variables should be non-positive. The set (4.11) is a 

condition that states that when 0ijQ > , the condition (4.10) holds with equality. Equation 

(4.12) is just the constraint set, (4.13) is the complementary slackness condition, which 

says that either the constraints bind or the Lagrange Multipliers (LM) ( λ ) are zeros for 

those constraints that do not bind. The set of equations (4.14) says that the Lagrange 

Multipliers (LM) should be non-negative. The system of equations from (4.10) to (4.14) 

has (I*J+K) unknowns and (I*J+K) equations and hence is identified. 

 The choice variables, the emission quantities, are assumed non-negative. Given 

this, the condition in equation (4.10) holds with equality. It can thus be written as: 

 
*

1 1

( ) 0
M K

mij ij ijm j jk ijk
m k

MC Q u p V uβ λ β
= =

+ + =∑ ∑  (4.15)  
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 Solving for *
ijQ  in this equation gives the optimal emissions for regulation at any 

spatial resolution K. Substituting all the *
ijQ  back into the objective function given by the 

equation (4.8) gives the net costs of regulation at any spatial resolution K. 

4.4.2 Optimal Emissions at Finer Spatial Resolutions (K′ > K)  

 The question of interest is what happens to net costs and choice of emissions as 

one regulates risks at a finer resolution. That means the interest is in understanding how 

*

ijQ and the objective function change if we add more constraints to the problem. Let the 

new optimal emissions for a pollutant j from source i be *
ijQ′ and the number of locations 

over which the sources are regulated at the finer spatial resolution be K ′  ( K ′ >K). As one 

regulates at this finer resolution, equation (4.15) becomes: 

*

11 1

( ) 0
k ijk

M K K

mij ij ijm j j jk ijk
k Km k

MC Q u p V u uλ ββ λ β
′

= += =
′ =′ ′+ + + ∑∑ ∑  (4.16)  

Here, 
k

λ′  is LM or shadow price for any location k under regulation at a finer 

spatial resolution. For a pollutant j with positive emissions from a source i, 0ijQ ≥ , 

subtracting (4.15) from (4.16) gives: 

* *

1 1
( )( ) ( ) 0

k k ijk j k ijk

K K

ij ij ij ij j
k k K

MC Q MC Q u uλ λ β λ β
′

= = +
′ ′− +′ − + =∑ ∑  (4.17)  

4.4.2.1 Change in Optimal Emissions with Spatial Resolution 

 The first result of interest is the change in optimal emissions ( *
ijQ ) when risks are 

regulated at finer spatial resolutions. In equation (4.17), we have: 

0, 0, 0, 0, ( ) 0
k k ijk j ij ij

u MC Qλ λ β′≥ ≥ > > <  



 43 

Given this, we can derive the following set of conditions: 

* *

* *

1 1

* *

1 1

1,2,...., 0 1,..,

( ) 0

( ) 0

ij ij k k k

K K

ij ij k k ijk k ijk

k k K

K K

ij ij k k ijk k ijk

k k K

Q Q if k K and k K K

Q Q if

Q Q if

λ λ λ

λ λ β λ β

λ λ β λ β

′

= = +

′

= = +

′ ′ ′ ′= = ∀ = = ∀ = +

′ ′ ′< − + >

′ ′ ′> − + <

∑ ∑

∑ ∑

 (4.18) 

 The first interpretation of the set of equations (4.18) is that regulating at finer 

spatial resolutions could result in increases in optimal emissions for some sources and 

reductions for some sources; and it might not matter for some sources.  It is clear from 

the set of conditions (4.18) that two parameters – the Lagrange Multiplier (LM), kλ , and 

exposure concentration at any location k, ijkβ  – affect the change in emission levels. 

Before interpreting these conditions, it is important to interpret kλ and ijkβ .  

 In an optimization problem, the LM or shadow price ( kλ  here) represents the 

marginal change in the value function as one relaxes or tightens a constraint. In the 

problem presented here, kλ  represents the change in net costs due to a marginal change 

in threshold risk, r; in other words, kλ indicates how costly it is to reduce the risk by an 

additional unit at the k th location. kλ is zero for the spatial locations (k) for which the 

unregulated risk is below the threshold risk and is positive for locations for which the 

threshold risk constraint does bind. In other words, if we define “hotspot” as a location at 

which unregulated risk, kr , would be above the threshold risk r, then kλ > 0 for hotspots 

and kλ =0 for other non-hot spot locations. 
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 The second parameter, ijkβ , represents the exposure concentration at the k th 

location due to a unit emission rate (1 g/s) of pollutant j from source i. As stated earlier, it 

is a function of several factors, including meteorological conditions, land use around the 

source, and distance of k th location from the source. Typically, ijkβ is highest closer to 

the source, in the downwind direction, and decreases with distance from the source (EPA, 

2004a), which means that sources closer to hotspots typically contribute more to the risk 

at hotspots than sources away from the hotspots. 

 The interpretation of kλ  suggests that kλ  and hence kλ′  have non-zero (and non-

negative) values only at hotspots. The set of conditions (4.18) indicates that the change in 

optimal emissions when risks are regulated at finer spatial resolutions is a function of 

( kλ′ - kλ ) and kλ′ , in addition to ijkβ . Hence, the change in optimal emissions of a 

pollutant j from source i, when regulated at finer resolutions, is a function of (1) what 

happens to hotspots when the sources are regulated at finer resolutions and (2) how much 

risk a pollutant/source combination contributes to hotspots (the value of ijkβ for any ij at 

hotspots, relative to ijkβ for any other source/pollutant combination i′j′ ≠ ij) at finer 

resolution. Given this, it is convenient to interpret the set of conditions (4.18) by 

constructing possible scenarios for what is likely to happen to hotspots as sources are 

regulated at finer spatial resolutions. The possible scenarios are: 

1. Finer spatial resolution does not capture any new hotspots 

2. Finer spatial resolution does capture new hotspots while some or all of the hotspots 

captured at coarser resolutions disappear 
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 Under scenario 1, 0 1,..,k k K Kλ′ ′= ∀ = + and 1,2,....,k k k Kλ λ′ = ∀ = , which 

means that the optimal emissions do not change for any source/pollutant combination, ij. 

Under scenario 2, for the sources that contribute most to hotspots captured at fine 

resolution, optimal emissions will be reduced because of high ijkβ and thus a higher 

absolute value for the term
1

K

k ijk

k K

λ β
′

= +

′∑ compared to the term

1

( )
K

k k ijk

k

λ λ β
=

′ −∑ 12 in (4.18). 

For sources distant from hotspots captured at finer resolution, ijkβ tends to be low (EPA, 

2004a). If kλ′ 13is sufficiently lower than kλ for hotspots captured at the coarser resolution 

so as to make the absolute value of the term

1

( )
K

k k ijk

k

λ λ β
=

′ −∑ greater than the term 

1

K

k ijk

k K

λ β
′

= +

′∑ , then the optimal emissions will increase for those sources when risks are 

regulated at a finer spatial resolution. Intuitively, an increase in optimal emissions is 

possible for sources distant from hot spots, because (i) the reduction in optimal 

emissions, for sources responsible for hot spots, creates slack in risks at other non-hot 

spot locations and (ii) because of this slack, the increase in costs, due to emission 

reductions by sources responsible for hot spots, could be offset by increasing the 

emissions for other sources that do not contribute to hot spots captured at finer resolution. 

 In summary, the set of conditions (4.18) indicate that (a) spatial resolution of 

regulation does not matter to optimal emissions when finer spatial resolution does not 

                                                 

 
 
12 Note that kλ′  ≤ kλ 1,2,....,k K∀ = and hence this term is always negative. 

13 kλ′ =0 for hot spots that disappear under regulation at fine resolution 
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capture new hotspots, (b) optimal emissions will decrease for sources that contribute 

most to hotspots captured at finer spatial resolution, and (c) optimal emissions could 

increase for sources that do not contribute significantly to hotspots captured at finer 

resolution. 

4.4.2.2 Change in Net Costs with Spatial Resolution 

 Net costs are non-decreasing when emissions are regulated at finer resolution. 

This comes from a standard result in optimization theory that the value function is non-

decreasing with addition of constraints to the problem (Taha, 2003). 

4.5 Sensitivity to Threshold Risk 

 The threshold risk ‘r’ in the model proposed here is an indicator of the individual 

risk that is considered acceptable in regulatory decisions. In a study of 132 federal 

regulatory decisions to control toxic substances, it was found that every chemical with a 

maximum individual cancer risk of 4000 in a million or higher was regulated by federal 

agencies (Travis et al., 1987). This study also found that the level of regulated risk varied 

depending on other factors such as expected number of additional cancer cases, costs of 

controls, and availability of control technologies. The current regulation of air toxics is 

consistent with these findings. EPA, in its Benzene NESHAP (Federal Register, 1989) 

and in its residual risk regulation (EPA, 1999a), set an acceptable risk of 100 in a million 

maximum individual risk (MIR) for its control decisions. While this is a goal for 

acceptable MIR, EPA has accepted higher MIR taking into account uncertainty, costs, 

and other factors. For example, in its first residual risk decision on coke oven emissions, 

the MIR was estimated to be 270 in a million after the implementation of proposed 
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controls. This risk was, however, considered by EPA to provide an “ample margin of 

safety” to public health and the environment. 

 Within the context of the decision process modeled here, it is possible to examine 

how optimal emissions will change with changes in acceptable MIR (or threshold risk, r, 

in the model) at any particular spatial resolution. Based on the discussion in Section 

4.4.1, optimal emissions at any spatial resolution could be obtained by solving the 

equation (4.15): 
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 In this equation, kλ  is a function of r. kλ  increases with decreasing r i.e., the 

shadow prices for hotspots increase as the risk threshold is tightened. Further, new 

hotspots are likely to show up as the threshold risk is tightened i.e., more kλ s with non-

zero values. These two conditions will increase the value of the last term in equation 

(4.15) and thus reduce optimal emissions, *
ijQ . Thus, optimal emissions are non-

increasing as the risk threshold is tightened (i.e., for lower values of r). The opposite also 

holds true – the optimal emissions are non-decreasing as the risk threshold is relaxed (for 

higher values of r). 
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CHAPTER 5 

EMPIRICAL APPROACH 

 

 This chapter describes the empirical approach adopted to illustrate the results of 

the model developed in Chapter 4. The first few sections describe various empirical 

choices made and the rationale behind those choices. The later sections outline the steps 

involved in analysis and the approach adopted for executing each step. The sources and 

quality of data are discussed separately in the next chapter. 

5.1 Study Site 

 The site for empirical analysis in this research is a two-county (Escambia and 

Santa Rosa) area in Pensacola, FL. Community concerns about toxic contamination and 

the associated environmental justice issues and current focus of federal and local 

environmental agencies on this region’s environmental health problems provide a suitable 

setting to analyze the questions this research seeks to address.  

This two-county region has had problems with toxic contamination since the early 

1990s – the most publicized case being the Superfund site of Escambia Treating 

Company. The dioxin contamination in groundwater and air from this waste site 

prompted citizen action (Wheeler, 1995) and eventually led to relocation of several 

families from the waste site by EPA (Hauserman & Olinger, 1996).  

 The two counties host a number of sources that emit toxic pollutants. According 

to the toxic release inventory (TRI) data of 2005, Escambia county was ranked top and 

Santa Rosa was ranked 9th in Florida in terms of total tons of toxics released into various 

media. Responding to public concern about potential impacts of poor local environmental 
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conditions on public health, the US Congress sponsored the Partnership for 

Environmental Research and Community Health (PERCH) to conduct a series of 

environmental health studies. PERCH is led by the University of West Florida in alliance 

with the Escambia and Santa Rosa County Health Departments. The environmental 

studies under this project include, among other things, multivariate analysis of health 

outcomes, assessment of contamination from dioxins, furans, mercury, and other 

pollutants in Escambia Bay, clinical studies of the population living around the superfund 

sites, and an assessment of air quality. Georgia Institute of Technology, University of 

South Florida, Florida State University, and other institutions are involved in conducting 

the environmental studies.   

 Georgia Institute of Technology conducted air quality studies in three phases 

under the PERCH project. The first phase of air quality studies compared risks from 

different air pollutants (particulate matter, ozone, and air toxics), based on available 

published data, to identify priorities for future research. Based on the assessment in the 

first phase, the second phase involved field monitoring studies to generate primary 

monitoring data on particulate matter and some air toxics. The third phase of air quality 

studies included (1) source apportionment studies to identify the contribution of regional 

and local sources to particulate matter pollution in Pensacola and (2) a comprehensive 

assessment of cancer and non cancer risks from stationary and mobile sources in the two 

county area using an integrated assessment tool, Regional Air Impact Modeling Initiative 

(RAIMI), developed by Region 6 of EPA.  

 This research utilizes the data from RAIMI implementation process in the third 

phase of the PERCH project. RAIMI data utilized for this empirical analysis include an 
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inventory of air toxics emission sources and their characteristics, population data, and 

estimated exposure concentrations using the Industrial Source Complex (ISC) (version 3) 

dispersion model.  

5.2 Sample Selection 

 According to the National Toxics Inventory (NTI) of 1999, the two-county study 

area had 94 air toxics emission sources distributed across 43 facilities including 

manufacturing industries, utility plants, and waste landfills. These sources emitted 78 

different air toxics. This research used a small subset of these 94 sources, selected based 

on the following two criteria, for empirical analysis. 

1. The source is categorized as “major” 14 source according to the Clean Air Act. The 

rationale for this criterion is that most sources that are currently regulated under 

Maximum Achievable Control Technology Standards (MACT) are “major” sources. 

2. The source emits at least one toxic air pollutant for which inhalation cancer risk can 

be quantified. This criterion is obvious because the model developed here quantifies 

only cancer risk. 

 Applying these two criteria resulted in a sample of 17 emission sources in eight 

facilities. It turned out that one of the eight facilities was not regulated under any MACT 

although it was classified as a “major” source. This facility was dropped out of the final 

sample because no abatement cost information was available for the sources within this 

                                                 

 
 
14 According to this definition, a “major” source of hazardous air pollutants (HAP) is one that emits more 
than 10 tons per year (TPY) of any one of the 188 regulated HAPs or more than 25 TPY of a combination 
of regulated HAPs. 
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facility. Thus the final sample includes 15 emission sources from seven facilities that emit 

six different air toxics. 

5.3 Spatial Resolution Choices 

 The empirical application of the model developed in the earlier section requires 

estimating optimal emissions and total costs under regulation at different spatial 

resolutions. This study uses three spatial resolutions: census tract, census block group, 

and census block. The census tract is the biggest spatial unit and it is composed of several 

census block groups. The census block represents the finest spatial unit with a number of 

census blocks forming a census block group. The fact that population data and other 

demographic data of the US Census Bureau are available at these three resolutions make 

the empirical application of the model feasible.  

 In the context of these choices for spatial resolution, several analytical choices 

have been made. Firstly, the estimated risk at the geographical centroid of a census unit 

was assumed to represent the risk to any individual within that census unit. Thus, for 

example, regulation at census tract resolution means that the decision maker chooses 

emission levels such that the total costs are minimized subjected to the constraint that the 

risk at the centroid of any census tract does not exceed the threshold risk. Secondly, 

regulation at finer resolution assumed to include regulation of risks both at the existing 

locations (i.e., locations at which risk information was available when regulated at 

coarser resolution) and the new locations i.e., the locations where risk information has 

become available at finer spatial resolution. For example, regulation at census block 

group resolution, which is a finer spatial resolution than census tract, means that the 

decision maker chooses emission levels such that the total costs are minimized subjected 
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to the constraint that the risk estimated at the centroid of any census block group and at 

the centroid of any census tract does not exceed the threshold risk.  

5.4 Empirical Analysis Steps 

 The empirical analysis includes three steps: 

1. Estimate and/or obtain data on all input parameters to the model. 

2. Run the optimization model at each of the three chosen spatial resolutions – census 

tract, census block group, and census block – and at three threshold risk values to 

estimate optimal emissions and total costs. 

3. Analyze the spatial distribution of risks due to emissions under regulation at different 

spatial resolutions. 

5.4.1 Estimation of Input Parameters to the Model 

 The objective function of the model has two components – private costs to 

industry and population health costs. The costs to industry are the costs of changing the 

emissions from a baseline quantity to a chosen quantity. Thus this component of the 

objective function required marginal cost functions ( ijMC ) for each pollutant from each 

source and the baseline emissions ( b
ijQ ).  

 The second component of the objective function is population health costs. 

Because the model developed here quantifies only cancers from inhalation pathway15, 

these health costs include only a part of the costs of cancer due to exposure to air toxics. 

                                                 

 
 
15 In addition to direct inhalation, air toxics can cause cancer in humans though other pathways such as 
dermal absorption of soil contaminated by air toxics, ingestion of water, soil, and food (Cal EPA, 2003). 
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Cancer can be fatal or non fatal and costs vary accordingly. This empirical analysis 

assumes that all expected additional cancer cases due to exposure to air toxics result in 

fatal cancers. These costs are estimated in a willingness to pay (WTP) framework, which 

estimates costs as the number of fatal cancers multiplied by the value of a statistical life 

(VSL). The expected number of additional cancer cases is cancer risk in a spatial unit (m) 

multiplied by the population ( mp ) in that spatial unit, summed over all spatial units (M) 

within the region under study. The spatial unit used for estimating additional cases of 

cancer is census block and cancer risk at the centroid of census block represents the 

cancer risk to which the population in the census block is exposed.  

 Cancer risk estimation is a function of quantity of emissions, exposure 

concentrations due to the unit emission rate ( β )16, and cancer potency of a toxic air 

pollutant (measured by unit cancer risk factor, ju ). In this analysis, cancer risk is 

estimated at a number of different spatial locations. As explained in the previous 

paragraph, estimation of costs of cancer in the objective function requires estimation of 

cancer risks at the centroid of every census block in the two-county area. In addition, the 

constraints in the model require estimation of cancer risks at a different set of spatial 

locations depending on the spatial resolution of regulation. Analysis at census tract 

resolution requires estimation of cancer risks at the centroids of the census tracts while 

analysis at the census block group resolution requires estimation of cancer risk at the 

centroids of the census block groups.  

                                                 

 
 
16 It should be noted that in this analysis the exposure concentrations due to emissions was estimated as a 
product of total emission rate and exposure concentration due to a unit emission rate (1 gram/second). Thus 

β  represents the exposure concentrations due to a 1 g/s emission rate. 
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 Hence, the input parameters required for empirical analysis are: marginal cost 

functions ( ijMC ) for each pollutant from each source, baseline emissions ( b
ijQ ), exposure 

concentration ( ijmβ ) at each of m=1,2,3,….,M locations due to a unit emission rate, 

exposure concentration ( ijkβ ) at each of k=1,2,3,….,K locations (K varies depending on 

the spatial resolution) due to a unit emission rate, unit cancer risk factor ( ju ) for each 

pollutant, population ( mp ) in each of M census block centroids, and the value of a 

statistical life (V). 

 Among these parameters, ijMC  and ijmβ  or ijkβ require an empirical estimation 

strategy and hence are discussed in detail in this section. The details on remaining 

parameters are discussed in the next chapter on data collection. 

5.4.1.1 Estimation of Marginal Cost (MC) Functions 

 Marginal cost (MC) functions represent the relationship between emissions and 

the cost of achieving an additional unit reduction at any given quantity of emissions. MC 

functions for pollution abatement have been estimated using three broad approaches: 

1. Production cost approach: Estimation by relating production costs to environmental 

performance measures at the plant level 

2. Direct cost approach: Econometric estimation by relating direct costs of pollution 

abatement, obtained through surveys, to emission quantities abated 

3. Engineering cost approach: Engineering cost estimates of abatement technologies 

 Following a description of each of these approaches, the motivation for the 

approach used here is derived from a discussion of their strengths and weaknesses. 
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Production Costs Approach 

 Two different methods have been used in literature to estimate MC functions 

using this approach. In one type of studies, firms are assumed to minimize the cost of 

production subject to a constraint on the quantity of pollution that can be emitted. The 

production cost function is specified as a function of input prices, the quantity of output 

produced, the production technology, and the quantity of a pollution indicator (e.g., SO2 

emissions from power plants or BOD from paper plants). The marginal cost function is 

the partial derivative of this cost function with respect to the pollution indicator. Gollop 

and Roberts (1985) used this approach to estimate MC functions of sulfur dioxide (SO2) 

abatement for 56 electric utilities. Applying a similar approach, Carlson et al., (2000) 

derived MC functions for abatement of SO2 in a sample of 734 fuel-switching electricity 

generating plants to estimate gains from SO2 trading. McClelland and Horowitz (1999) 

estimated MC functions of biological oxygen demand (BOD) abatement in effluents of 

paper mills. A similar approach is used in the global climate change research for deriving 

MC curves for abatement of carbon dioxide (CO2). An example application is the 

analysis of CO2 emission trading under Kyoto protocol (Ellerman & Decaux, 1998). This 

study derived country level MC curves by estimating shadow prices for various levels of 

carbon controls using a computable general equilibrium model of global economy 

developed by the MIT Joint Program on the Science and Policy of Global Change. 

 A second type of studies uses an “output distance function” method. An output 

distance function is similar to a production function. While a traditional production 

function describes the production possibilities for a single output, an output distance 

function models the “joint production of multiple outputs (Fare et al., 1993, pp: 375).” 
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The idea behind this approach is that it is costless to dispose of goods (products) but it is 

not costless to dispose of bads (pollution) when the quantities of bads are regulated. Thus, 

under a “regulated” output distance function, the firm has to proportionally scale down 

(compared to an “unregulated” output distance function) its desirable outputs. Marginal 

costs are then the foregone revenues of “desirable” outputs due to an incremental 

reduction in undesirable outputs.  

 In this method, typically, the parameters of a translog output distance function are 

estimated using linear programming optimization. The shadow prices, which are the 

marginal costs of undesirable outputs, are derived using the estimated output distance 

function. This method is perhaps more widely used than the first method. This method 

has been applied to derive the marginal costs of pollution abatement in paper mills (Fare 

et al., 1993; Marklund, 2003), abatement of SO2 emissions from power plants (Coggins 

& Swinton, 1996; Rezek & Blair, 2005), and controlling groundwater leaching and 

pesticide runoff in United States agriculture (Fare et al., 2006). 

 The production cost approach is a revealed cost method and thus avoids the 

problems of hidden costs and misallocated expenditures that are typically associated with 

the other two approaches (Pizer & Kopp, 2003).  On the other hand, the main drawback 

of the production cost approach is that it is highly data-intensive. Establishment-level 

data on input costs and quantities and abatement volumes are not available for all types of 

pollutants and industrial sectors. 

Econometric Estimation using Stated Direct Costs of Abatement 

 This approach is based on econometric estimation of direct abatement costs as a 

function of abated quantities. At least two studies in the literature (Hartman, Wheeler, & 
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Singh, 1997; Dasgupta et al., 2001) use this approach to estimate MC functions. The US 

Census Bureau collected pollution abatement and cost expenditure (PACE) data for a 

large number of firms in the United States. The Census Bureau collected PACE data 

annually between 1973 and 1994 (with the exception of 1987) and then in 1999, after a 

gap of five years (Ross et al., 2004). While PACE data has been used for a number of 

applications, only one study (Hartman, Wheeler, & Singh, 1997) has used it to estimate 

average and marginal costs of abatement for a variety of air pollutants – criteria as well as 

hazardous pollutants- and for a variety of industrial sectors. The authors estimated the 

costs of pollution abatement using a simple econometric model. The air pollution 

abatement cost was specified as a quadratic function of the quantity abated. They 

estimated a regression equation using ordinary least squares (OLS) for 37 industrial 

sectors17 and for different pollutants using establishment level data. 

ij
i i

ijkjjkijkjkjij AAC εβββ +++= ∑ ∑ 2
0  

Cij = Total air pollution abatement cost for plant i in sector j 

Aijk = Quantity of pollutant k abated by plant i in sector j 

εij = Error term 

 The marginal cost function based on the above estimated model was: 

ijkjjkjkjk AMC ββ 2+=  

 The econometric specification of this study ignores a number of other relevant 

independent variables that might be correlated with the level of abatement. For example, 

                                                 

 
 
17 Based on International Standard Industrial Classification (ISIC) codes 
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process- and abatement technologies vary across firms within any given industrial sector 

and have varying costs. To the extent that the level of abatement is correlated with the 

technology employed, the estimators in the above specification would be biased.  

 In contrast to this simple econometric specification, Dasgupta et al. (2001) 

specified a translog functional form in their study, in which they estimated the marginal 

abatement cost functions for four water pollutants in China, using direct costs of 

abatement.  

 The validity of abatement expenditures reported in surveys is suspect. This is the 

main drawback of the direct cost approach. For instance, the validity of PACE data to 

measure direct abatement costs has been criticized on several fronts. The questionnaire 

design does not make it clear the expenditures that must be included under environmental 

abatement expenditures. Jaffe et al., (1995) raises this question of misallocated 

expenditures: if a firm installs a production technology that has benefits in terms of both 

environmental improvements as well as product quality improvements, what part of the 

expenditure should be attributed to environmental improvements? The other criticism is 

that of hidden costs that go unreported in surveys, for example, costs of paper work and 

legal fees (Pizer & Kopp, 2003). 

Engineering Cost Estimates 

 A more common approach to estimation of cost functions is ex ante engineering 

cost estimates of abatement technology options. In this approach, a suite of abatement 

technology options are identified for abatement of pollutants of concern and detailed 

costs of implementing those abatement options are estimated using engineering data. 

While specifics (such as assumptions about discount rates, the life of equipment, etc.,) 
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might differ from study to study, typically, capital costs of equipment and fixed and 

variable operation and maintenance (O&M) costs are included. In some cases, the costs 

of monitoring and record keeping are also estimated. 

 The first step in estimating marginal cost functions using this approach is to 

calculate the cost effectiveness of each identified abatement technology. Cost 

effectiveness is defined as the cost of abatement per unit of pollutant removed. The 

quantity of pollutant removed by a technology is the product of baseline emissions 

(uncontrolled emissions) and the removal efficiency of the technology. The cost of 

implementing that technology divided by the quantity of pollutant removed gives the cost 

effectiveness or the unit cost of that technology.  

 In this approach, the most cost-effective technology (lowest unit cost) is first 

applied to the source. Then, the technology with the lowest marginal cost among the 

remaining available options is applied. Marginal costs are calculated for each of the 

remaining available technologies as the difference in present value of costs between the 

technology under consideration and the existing technology, divided by the additional 

amount of pollutant removed by the new technology. Understandably, if the new 

technology has lower removal efficiency at higher costs compared to the existing 

technology, then that will not be applied. In this way, technologies with increasing 

marginal costs are successively applied. 

 For example, let us say that baseline emissions are 100 tons. Let us assume that 

the existing technology (or the most cost-effective technology that is applied first) has a 

removal efficiency of 50% at an annual cost of $50,000. Then the unit cost of this 

technology is $1000 per ton removed. If further abatement is required, and another 
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technology removes 60% at a cost of $90,000, the marginal cost of applying this second 

technology is then $4000 per ton ((90,000-50,000)/10). In this manner, it is possible to 

generate as many points as there are abatement technology options to generate a step 

function for MC. However, if a smooth MC function is required, one can choose a 

functional form such as a quadratic or an exponential form and fit a cost function with 

cost as the dependent variable and the level of abatement or emissions as the independent 

variable, using regression techniques. The slope of this cost function is the marginal cost 

function. 

 Specific examples of this approach include the study by the International Institute 

for Applied Systems Analysis under its Regional Air Pollution Information and 

Simulation (RAINS) model (Klimont, Amann, and Cofala, 2000), the tracking and 

analysis framework (TAF) model (U.S. Department of Energy, 1996) developed by 

Argonne National Laboratory, and a study on international analysis of methane and 

nitrous oxide abatement opportunities by US EPA (EPA, 2003a). 

 The engineering cost approach assumes that the only choice for firms confronted 

with pollution abatement is to employ end-of-the-pipe abatement technologies and 

ignores other possible adjustments the firms can make including reducing output and 

improving efficiency of existing processes (Hartman, Wheeler, & Singh, 1997). Further, 

this approach requires knowledge of specific processes within a firm to estimate cost 

functions and is more suitable to estimate cost functions for a small number of firms 

(Pizer & Kopp, 2003). 

Selection of Approach for Estimation of Abatement Cost Functions  
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 This research employs an engineering cost approach to estimate abatement cost 

functions. Each of the three approaches described above have their own strengths and 

weaknesses in estimating abatement cost functions. The direct abatement cost approach, 

although useful in estimating nationwide or region-wide costs of pollution abatement, 

suffers from problems associated with reported measures such as problems of survey 

design and uncounted costs of abatement (Pizer & Kopp, 2003). The production cost 

approach, being a revealed approach, reflects the costs of abatement more accurately, but 

fails to incorporate cost-efficient abatement technology options (Coggins & Swinton, 

1996). Engineering cost estimates, on the other hand, can incorporate state-of-the-art 

abatement technology options, but fail to consider important alternatives for reducing 

pollution, for example, fuel switching in production processes, or scaling down output. 

 In selecting an approach for the empirical analysis in this research, however, the 

most critical criterion turned out to be the availability of data. The production cost 

approach requires extensive plant level data on input prices and quantities, output prices 

and quantities, and abatement volumes. Such data are readily available only for specific 

pollutants and industrial sectors, for example SO2 in power plants. This type of data is not 

available for the toxic air pollutants of interest for this study, to the author’s knowledge. 

For the direct abatement approach, the only data available in the US are the PACE data. 

There are two problems with these data: (1) plant level data are only publicly available 

with long lead times and (2) the most recent PACE data (for the year 1999) do not 

include data on volumes of pollution abatement, which are critical parameter for 

estimating cost functions. Thus, this research employs the engineering cost approach to 

estimate abatement cost functions. 
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 The data on abatement technology options and costs are from Regulatory Impact 

Analyses (RIA) and background information documents (BID) that EPA developed to 

assess the cost impacts of various Maximum Achievable Control Technology (MACT) 

standards. For RIAs, EPA has to analyze the costs of various regulatory alternatives – 

typically control technology options to reduce emissions – in addition to the regulatory 

option selected. 

 The first step in the estimation of cost functions identified the specific MACT 

standards under which each of the 15 sources included in the empirical analysis is 

regulated. This step utilized air permit documents available from the Florida Department 

of Environmental Protection (FL DEP) to assign the 15 sources to the corresponding 

MACT standards. The next step thoroughly examined the RIAs to collect information on 

available emission control options, emission reductions associated with each technology, 

and annual costs of implementing the technology. Typically, the RIAs report these cost 

estimates at an aggregated sectoral level. However, they also report the number of 

industry sources on which these aggregate estimates are based. This information was 

used to obtain cost estimates for an “average” firm, which is the total sector-wise annual 

costs divided by the number of firms on which the aggregate estimates are based. This is 

one of the important assumptions made in the estimation of cost functions – that the 

source in the analysis represents an “average” source.  

 The MC function in the decision model is assumed to be continuous and hence the 

MC function estimated for empirical analysis must be a continuous function. In addition, 

the cost function in the model is a function of the level of emissions rather than the 

quantity of emissions abated. Hence, to fit the costs as a function of the level of 
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emissions, the emissions remaining after applying an abatement option are calculated as 

the difference between baseline emissions and the quantity of emissions abated by the 

technology option. For example, if the estimated baseline emissions for an “average” 

source are X ton/year and if an abatement option has a removal efficiency of 70%, then 

the emissions remaining after the application of the technology are calculated as X-

0.7X=0.3X tons/year. If the annual costs of implementing that technology option are C, 

then (C, 0.3X) is a data point on the cost functions fitted for this analysis. 

 Previous estimates of MC functions have assumed either a quadratic functional 

form (Hartman, Wheeler, & Singh, 1997) or an exponential function (Mariam & Barre, 

1996). In this analysis, an exponential function of the following form is fitted for cost 

functions. 
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 The exponential cost function was fitted with annual cost as the dependent 

variable and emission level (TPY) as the independent variable using a non-linear least 

square regression framework. The advantage of an exponential functional form is that it 

restricts the dependent variable, which is annual costs in this case, to positive values. 

 Finally, in almost all RIAs, the abatement technology options identified are not 

specific to abatement of any single toxic air pollutant; rather the technology abates a 

group of pollutants and there is no information in the RIAs on the removal efficiency of 

individual pollutants. Thus, in this analysis, the cost function developed for a given 
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source is applied separately to all the pollutants emitted from that source. The implication 

of this is that the costs to industry are potentially counted multiple times, once for each 

pollutant. For example, a single cost function is estimated for process vents in organic 

chemical manufacturing industry; that same function is applied for all pollutants emitted 

from process vents. 

5.4.1.2 Estimation of Exposure Concentrations ( ijmβ and ijkβ ) 

 Ambient air concentration of a pollutant at any location is typically the amount of 

pollutant estimated to be present in one m3 of outdoor air, after the pollutant is released 

from a source. The exposure concentration, however, is the amount of pollutant people 

actually breathe and is not necessarily same as the ambient concentration. This is because 

people move from one place to the other (e.g., outdoors vs. indoors) and are involved in 

different types of activities that involve different breathing rates (e.g., exercising vs. 

watching a movie). Exposure models such as Hazardous Air Pollutant Exposure Model 

(HAPEM) have been developed to estimate exposure concentrations (Rosenbaum, 2005) 

from ambient concentrations. In this empirical analysis, however, ambient air toxics 

concentrations are used as surrogates for exposure concentrations because the integrated 

assessment tool, the Regional Air Impact Modeling Initiative (RAIMI), utilized in this 

analysis does not incorporate an exposure model such as HAPEM. 

Regional Air Impact Modeling Initiative (RAIMI) Implementation 

 Annual average ambient air toxics concentrations are estimated using the air 

dispersion model integrated within RAIMI. The Region 6 office of EPA recently 

developed RAIMI, which consists of a set of tools designed “to evaluate the potential for 
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health impacts as a result of exposure to multiple contaminants from multiple sources, at 

a community level of resolution (EPA, 2006a).” RAIMI integrates an emission inventory, 

a dispersion model, and risk estimation in a Geographical Information System (GIS) 

environment, to support estimation and representation of risks from air toxics.  

 RAIMI uses the version 3 of the Industrial Source Complex Short Term (ISCST3) 

dispersion model to estimate ground-level ambient air toxics concentrations. Air 

dispersion models are computer models that predict ambient concentrations, based on 

assumptions about the dispersion process, and use as inputs, emission quantities, source 

and emission characteristics (e.g., temperature and velocity of gas flow), local 

meteorology (e.g., wind speed and direction and vertical temperature profile), and 

characteristics of local physical features (e.g., land use and cover). ISCST3 is a steady-

state, multiple source, Gaussian dispersion model and has been the preferred regulatory 

model for industrial sources until it was replaced by AMS/EPA Regulatory Model 

(AERMOD) in 2005 (Federal Register, 2005). 

  The RAIMI system incorporated four primary tools. A conceptual diagram of 

implementation of RAIMI is shown in Figure 5.1. Appendix A provides more details on 

the implementation process. 

1. Risk-MAP: Risk-MAP is the core tool within RAIMI. Risk-MAP is used to 

import emission inventory information into a Geographic Information Systems 

(GIS) environment, perform risk analyses, present risk assessment results in 

tabular or graphical form, and perform supplemental analysis. Risk-MAP is 

designed as an extension within ArcGIS software. 
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2. Air Modeling Preprocessor (AMP): The main function of AMP is to prepare 

source-specific meteorological and ISCST3 air model input files. This tool is also 

designed as an extension in ArcGIS. 

3. ISC Batch: This tool is designed to execute multiple ISCST model runs in a 

single batch run. 

4. AIR2GIS: This tool organizes the output from the dispersion model into a format 

that can be imported into GIS. 

 Use of RAIMI first required importing emission inventory information into 

ArcGIS using the Risk-MAP tool. The inventory data include emission quantities of 

different pollutants from each source, emission characteristics such as temperature and 

exit velocity, and source characteristics such as the geographical location of sources. In 

this step, Risk-MAP generates a number of tables in Microsoft Access format to be used 

in later steps. The next two steps – the implementation of Air Modeling Preprocessor 

(AMP) tool to generate input files for the ISCST dispersion model and implementation of 

the ISCBatch tool to execute the ISCST dispersion model – are the steps that are most 

relevant to the estimation of annual average ambient concentrations and hence are 

explained in detail below. 
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 Figure 5.1 Conceptual Diagram of RAIMI Implementation 
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 The second step in the RAIMI implementation is to generate input files using the 

AMP tool to execute the ISCST dispersion model. The ISCST model requires, for each 

source modeled: (a) meteorological conditions surrounding the source, (b) geographical 

coordinates of the receptor locations at which ambient concentrations are to be estimated, 

(c) source-specific inputs imported from the emission inventory, and (d) the land use 

characteristics and an elevation profile of the modeling domain. 

 Raw meteorological inputs were processed using EPA’s Meteorological 

Preprocessor for Regulatory Models (MPRM). MPRM has three stages of execution. 

RAIMI requires stage 1 and stage 2 of MPRM as input so that it can complete stage 3 of 

MPRM and create an ISCST input meteorological data file for each source. Typically, 

five years of meteorological data at the nearest meteorological station are used for stage 1 

and stage 2 MPRM. This study used the data collected at the Pensacola Regional Airport 

station for the years 1986 to 1990 to complete stage 1 and stage 2 of MPRM. Stage 3 

processing of MPRM requires consideration of land use characteristics within the 

modeling domain. The effects of land use and land cover in a typical dispersion model 

are represented by three surface characteristics – surface roughness, the Bowen ratio, and 

Albedo, which may vary by wind direction and time of the year. This analysis used 

1:250,000 USGS land use land cover maps in the form of a GIS shape file for the land 

use characteristics of the study area. AMP is capable of reading these spatial files to 

obtain the required parameters. Execution of stage 3 of MPRM generated a single 5-year 

(1986-1990) meteorological file with a .MET extension for each source.  

 RAIMI automatically generates an array of receptors throughout the modeling 

domain at which ISCST3 computes pollutant concentrations. RAIMI utilizes a universal 
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grid based in the Universal Transverse Mercator (UTM) coordinate projection system to 

generate 100-meter spaced receptors up to a distance of 5 km from each source, and 500-

meter spaced receptors up to a distance of 10 km from each source.  The ground-level 

terrain elevation of each receptor node is imported using the digital elevation model 

(DEM) data. However, the empirical analysis for this research required estimation of 

annual average concentrations at specific locations (i.e., centroids of various census 

units), that are different from the receptor locations generated by RAIMI. Thus, in the 

input to the dispersion model, the receptors generated by RAIMI were replaced with the 

appropriate centroid location coordinates. For example, for analysis at the census tract 

resolution, ambient concentrations were required at the centroids of census tracts and 

hence the RAIMI-generated receptors were replaced with census tract centroids. 

 Given all these inputs, the AMP tool within RAIMI automatically generates the 

source-specific formatted input files required for execution of the dispersion model. The 

third step then is to execute the ISCST dispersion model for all of the sources using the 

input files generated in the previous step. In a multi-source assessment, the dispersion 

model has to be executed once for each source. However, using the ISCBatch tool within 

RAIMI, the dispersion model can be executed for all sources in a single batch run. The 

ISCBatch tool produces output files that contain annual average ambient concentrations 

in microgram per cubic meter (µg/m3) at specified locations due to 1 g/s emission of a 

pollutant released from each source. For the empirical analysis here, it is assumed that 

the annual average concentration at any location due to a unit emission rate (1 g/s) is the  

same for every pollutant released from a particular source. 
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5.4.2 Optimization Model Runs for Various Spatial Resolutions 

 The second step in the empirical methodology is to run the optimization model at 

the three chosen spatial resolutions – census tract, census block group, and census block. 

This study used the General Algebraic Modeling System (GAMS) (www.gams.com) 

version 22.3 to solve the optimization model. The GAMS is “a high-level modeling 

system for mathematical programming problems (McCarl, 2006, pp:2).” GAMS is 

capable of solving linear, nonlinear, and mixed integer programming problems. The 

optimization problem in this empirical analysis is a nonlinear programming problem. 

GAMS requires specific “solvers,” in addition to the base GAMS program to solve 

nonlinear programming problems. Several solvers such as CONOPT, MINOS, and 

KNITRO are currently available within GAMS to solve nonlinear problems. Each of 

these solvers uses a specific routine to search for an optimal solution. This study relies on 

the CONOPT solver but tests the sensitivity of the solution to using the other solvers. A 

sample GAMS code written for optimization runs in this research is included in 

Appendix B. 

 The input data required for running the optimization program can be read in a 

specific file format called GDX in GAMS. All the input data are initially compiled in an 

MS Excel file and then imported into GDX format. GAMS program was instructed to 

write the solution to the optimization problem in MS Excel file format.  

 The solution to the optimization model gives a set of emission quantities for each 

source and pollutant at each resolution along with total costs (the value function). The 

optimization model is also solved at the three resolutions by varying the threshold risk. 

Emissions and net costs are estimated for the three resolutions at three different threshold 
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risks – 100 in a million cancer risk, 10 in a million cancer risk, and 1 in a million cancer 

risk. According to EPA, under its residual risk regulations, “…an MIR for cancer 

approximately 1 in 10 thousand should ordinarily be the upper end of the range of 

acceptability.. (EPA, 1999a, p:128)” and hence the choice of 100 in a million threshold 

cancer risk. State and local agencies typically use 1 in a million cancer risk as the health 

risk goal and hence the choice of 1 in a million threshold cancer risk. Ten in a million 

threshold cancer risk represents an intermediate value. 

5.4.3 Analysis of Spatial Distribution of Risk 

 A key rationale for regulating risks at finer resolutions is to ensure protection for 

populations living in “hotspots” that are not apparent at coarse spatial resolutions. To 

demonstrate the equity implications of regulation at finer resolutions, risks are estimated 

at the centroids of census blocks by using both the optimal emissions that resulted from 

regulation at census tract resolution and the optimal emissions that resulted from 

regulation at census block resolution. Location and magnitude of maximum individual 

risk (MIR) at the two resolutions of regulation is then calculated to demonstrate the 

change in MIR with change in spatial resolution chosen for regulation. The spatial 

distribution of risk is then graphically represented on a map of the two county study area 

using ArcGIS software. 
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CHAPTER 6 

DATA FOR EMPIRICAL ANALYSIS 

 

 This chapter discusses the data utilized in the empirical analysis, the sources of 

the data, and a few issues of quality of data used. The first section lists the industrial 

sources of air toxics selected for empirical analysis. The second section presents the data 

collected for the estimation of marginal cost (MC) functions and the fitted exponential 

cost functions for every source selected for analysis. The next section describes the data 

used for implementation of the Regional Air Impact Modeling Initiative (RAIMI) tools to 

estimate the exposure concentrations at various spatial locations. The remaining sections 

discuss the other input data such as baseline emissions, value of statistical life, and 

population data. 

6.1 Sources Selected for Empirical Analysis 

 The two criteria used for selection of sources for empirical analysis are: (1) the 

source is a “major” source of air toxics and (2) at least one known carcinogen is released 

from the source. The first step in the selection process was to identify all the sources18 

that emit toxic air pollutants in Escambia and Santa Rosa. The National Toxics Inventory 

(NTI) data for 1999 complied by EPA was used to identify the entire population of 

sources. From this population, the second step identified all the “major” sources of air 

toxics using the Title V Operation Permits issued by the Florida Department of 

                                                 

 
 
18 It is important to note that “sources” here refer to only stationary point sources.  
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Environmental Protection (FLDEP). Cancer toxicity information from EPA’s Integrated 

Risk Information System (IRIS) was used to determine whether the “major” sources 

emitted at least one carcinogenic air pollutant. 

 Seventeen emission sources in eight industrial facilities satisfy the two selection 

criteria. Among these eight facilities that satisfied the two criteria, one facility – 

Armstrong World Industries – is not regulated under any Maximum Achievable Control 

Technology (MACT) standards although it is listed as a “major” source. Hence this 

facility was dropped from the final sample. Thus the final sample includes 15 emission 

sources in seven facilities that emit six different air toxics. The six air toxics are 

acetaldehyde, formaldehyde, benzene, acrylonitrile, nickel, and arsenic. 

 Table 6.1 shows the number of sources in each facility selected for empirical 

analysis, the industrial sector category of the facilities, and the cancer causing air toxics 

emitted from each facility. 

 

Table 6.1 Facilities and Pollutants Selected for Empirical Analysis 

Facility Industrial Sector Number 

of Sources 

Pollutants Emitted 

International 
Paper  

Pulp, Paper, and Paperboard 
Mill 

2 Formaldehyde, 
Acetaldehyde, Benzene 

Gulf Power 
Company  

Electric Power Generation, 
Transmission and 
Distribution 

4 Formaldehyde, 
Acetaldehyde, 
Benzene, Nickel, 
Arsenic 

Solutia, Inc. Noncellulosic Organic Fiber 
Manufacturing 

1 Formaldehyde, 
Acetaldehyde, Benzene 

Air Products and 
Chemicals  

Basic Chemical 
Manufacturing 

1 Formaldehyde, 
Acetaldehyde, Benzene 

Sterling Fibers  Noncellulosic Organic Fiber 
Manufacturing 

3 Acrylonitrile 
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Facility Industrial Sector Number 

of Sources 

Pollutants Emitted 

Florida Gas 
Transmission 
Company  

Pipeline Transportation of 
Natural Gas 

1 Formaldehyde, 
Acetaldehyde, Benzene 

Exxon Mobil (St. 
Regis plant)  

Crude Petroleum and 
Natural Gas Extraction 

3 Formaldehyde, 
Acetaldehyde, Benzene 

  

 6.2 Cost Functions 

 This section presents the data used for estimation of cost functions for each 

selected source. As explained in Chapter 4, Regulatory Impact Analyses (RIA) and 

Background Information Documents (BID) developed by EPA for MACT regulations are 

the sources of data for the estimation of cost functions. Before describing the details of 

data collected for each individual source, it is important to outline the general 

methodology used by EPA to estimate costs of abatement options in RIAs. The 

methodology for deriving abatement costs varies significantly from one regulation to 

another. The following steps, however, are typical: 

• For an industrial sector to be regulated, identify the emission points or process units 

that should be regulated based on their emissions of hazardous air pollutants (HAPs). 

• Develop model process units for each process identified for regulation: Model units 

are “parametric descriptions of the types of processes that exist and that are likely to 

be constructed in the future (EPA, 1993 pp: 4-1).” The idea behind these model units 

is to classify the entire population of firms potentially affected by regulation into a 

smaller number of representative units so that national cost estimates can be derived 

by aggregating the costs estimated for representative units. Typically, these model 

process units are developed based on an understanding of the process parameters that 
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affect emissions of HAPs. For example, in the development of MACT for pulping 

system emissions in pulp and paper mills, EPA classified paper units in the country 

into 18 model units based on the process parameters (e.g., process technology, wood 

type, digestion process, etc.) that affect HAP emissions (EPA, 1993). Each of the pulp 

and paper firms, affected by the MACT regulation, was assigned to one of these 18 

model units. 

• Estimate baseline emissions for each model process unit: The baseline emissions are 

usually estimated using emission factors developed for each model unit. If controls 

are already in place (even before the regulation), the reductions due to controls are 

taken into account in baseline emission estimations.  

• Identify control technology options for each process: The number of control options 

considered varies widely from one RIA to another: anywhere between a single option 

and more than five options have been considered by EPA (GAO, 1997). At this step, 

information on the control efficiency of each identified technology is also collected. 

Control efficiency is the percentage of baseline emissions expected to be removed by 

the abatement option under consideration. 

• Estimate the costs of identified technology options for model mills using an 

engineering cost approach: The estimated annualized costs include: (1) capital costs 

including capital recovery costs, taxes, insurance, administrative, and overhead 

charges, (2) equipment installation costs, and (3) direct operation and maintenance 

costs. The cost estimation includes a number of assumptions. The RIAs provide 

rationale for some of these assumptions, but others appear arbitrary. Example 

assumptions include installation costs as a percentage of purchased equipment costs, 
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life of technology (typically 10 years), interest rate, costs of fuels, labor requirement 

for operating pollution control equipment, and material maintenance costs as a 

fraction of maintenance material costs. 

 Two issues that are common to all the cost functions described later in this section 

deserve mention. Firstly, because the MACT rules were developed in different years for 

different source categories, the dollar years vary significantly from one RIA to another. 

In this analysis, however, all dollar years are converted to 1999 dollars using the 

Composite Price Index (CPI) Inflation Calculator of the Bureau of Labor Statistics. 

Secondly, “no control” was always considered as one of the abatement options 

irrespective of whether or not EPA considered such an option in its regulatory analysis. 

The costs of the “no control” option were assumed to be zero and the corresponding 

emission levels were assumed to be the baseline emissions. The remaining subsections 

provide details of fitted cost functions for all the sources. 

6.2.1 International Paper 

 This facility manufactures paper and paperboards from wood pulp using Kraft 

process. The NTI data for 1999 listed 14 sources of air toxics at this facility. Among the 

air toxics emitted from these sources, acetaldehyde, benzene, and formaldehyde were the 

carcinogenic pollutants. Only two sources of the 14 listed emit carcinogenic pollutants.  

 This facility is subjected to National Emission Standards to control Hazardous Air 

Pollutants (NESHAP) emitted from Pulp and Paper Mills. The paper mill NESHAP has 

three parts MACT I (40 CFR 63 Subpart S), MACT II (40 CFR 63 Subpart M), and 

MACT III. Only MACT I and MACT II are applicable for this facility. 
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 The background information document (BID) (EPA, 1993) on development of 

MACT I standards for paper mill includes information on two sources – pulping system 

vents and bleach lines vents. For the purpose of this analysis, it was assumed that the two 

NTI sources correspond to the two MACT I sources i.e., pulping system vents and bleach 

line vents, though there is insufficient information in the BID to verify this assumption.  

 The final version of the BID (EPA, 1997a) identified four abatement options for 

reducing emissions from the pulping system vents of Kraft process paper mills. The BID 

includes national aggregate estimates of costs for the four abatement options and suggests 

that the national aggregate estimates are based on 112 Kraft process paper mills. Hence 

dividing the national aggregate estimates by 112 gives the cost and emission estimates for 

an “average” source. One option costs more while reducing emissions less and was hence 

removed. Table 6.2 shows the data, including the “no control” option. 

 

Table 6.2 Annual Costs and Emissions for Pulping System Vents of Paper Mills 

Option Annual Cost for 

“average” firm 

(1999 $/y) 

Emission Reduction 

(Ton/year) 

Emissions 

Remaining 

(Ton/year) 

1. No control 0 0 1835 

2 1,148,393 1211 624 

3 1,216,518 1231 605 

4 1,343,036 1240 595 

Source: EPA. (1997). Pulp, Paper, and Paperboard Industry – Background Information for Promulgated Air Emission 
Standards: Manufacturing Processes at Kraft, Sulfite, Soda, Semi-chemical, Mechanical, and Secondary and Non-wood 
Fiber Mills, Final EIS, October 1997, EPA-453/R-93-050b 

 

 The BID (EPA, 1993) developed for MACT I proposed rule identified two 

options for bleach lines – (1) scrubbing and (2) incineration followed by scrubbing. The 

BID estimated control costs for a 1000 ton per day pulping capacity model mill with 
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certain process characteristics. The table below (Table 6.3) shows the costs and emissions 

data for bleach lines. 

 

Table 6.3 Annual Costs and Emissions for Bleach Line Emissions of Paper Mills 

Option Annual Cost for 

“average” firm 

(1999 $/y) 

Emission 

Reduction 

(Ton/year) 

Emissions 

Remaining 

(Ton/year) 

No Control 0 0 464 

Scrubbing of 
Bleaching Vents 

312,830 320 144 

Incineration followed 
by Scrubbing 

4,185,600 452 12 

Source: EPA. (1993). Pulp, Paper, and Paperboard Industry – Background Information for Proposed Air Emission 
Standards: Manufacturing Processes at Kraft, Sulfite, Soda, and Semi-chemical Mills, October 1993, EPA-453/R-93-
050a 

 

6.2.2 Air Products Ltd. 

 This facility manufactures a number of chemicals such as methylamines, 

alkylamines, nitric acid, and ammonium nitrate. This facility is subject to National 

Emission Standards for Organic Hazardous Air Pollutants from the Synthetic Organic 

Chemical Manufacturing Industry. 

 The 1999 NTI lists six sources of HAPs within this facility. Only one of these six 

sources emits at least one carcinogenic air toxic. This source emits three carcinogenic air 

toxics – acetaldehyde, benzene, and formaldehyde. Based on the information from the 

Title V Operating Permit of FLDEP, this source is most likely the process vent from 

methylamine plants.  

 The RIA for Organic Chemicals NESHAP (EPA, 1994) identified regulatory 

options and estimated costs for five source categories – storage tanks, process vents, 
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equipment leaks, wastewater, and transfer operations – within this industrial sector. 

Based on the earlier discussion, the source category relevant to Air Products facility was 

process vents. The RIA for synthetic organic chemical industries MACT rule (EPA, 

1994) considered five abatement options for process vents. The cost estimates for these 

five regulatory options are national aggregate estimates. However, according to the 

Background Information Document (BID) Volume 1A (EPA, 1992), the number of 

organic chemical manufacturing units considered in the national aggregate cost estimates 

are 729. The cost estimates and emission reductions are thus calculated for an “average” 

firm by dividing the national estimates by 729. The following table (Table 6.4) shows 

expected pollutant reduction for each option and the corresponding annual costs in 1999 

dollars for an “average” firm. 

 

Table 6.4 Annual Costs and Emissions for Process Vents in Synthetic Organic 

Chemical Manufacturing Industries 

 

Option Annual Cost for 

average firm 

(1999 $/y) 

Emission Reduction 

(Ton/year) 

Emissions 

Remaining 

(Ton/year) 

1. No Control 0 0 395 

2 101,097 355 40 

3 106,612 357 38 

4 113,964 360 35 

5 121,317 361 34 

6 178,299 364 31 

Source: EPA. (1994). Regulatory Impact Analysis for The National Emissions Standards for Hazardous Air Pollutants for 
Source Categories:  Organic Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry and 
Other Processes Subject to the Negotiated Regulation for Equipment Leaks. EPA Document Number EPA-453/R-94-
019, March 1994 
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6.2.3 Solutia Inc., 

 This facility manufactures nylon and nylon intermediate chemicals. This facility 

is subjected to the same NESHAP – National Emission Standards for Organic 

Hazardous Air Pollutants from the Synthetic Organic Chemical Manufacturing Industry 

– as Air Products facility. According to the Florida DEP air permit, the following sources 

within this facility are subject to NESHAP: 

• Maleic Anhydride Plant: Emits VOCs 

• Area 480 KA – Product Synthesis, Refining and Raw Material Recovery and all related 

ancillary equipment and systems: Emits VOCs and phenol 

• Area 480 KA – Fugitive emissions 

 The 1999 National Toxics Inventory (NTI) lists four sources for this facility. Only 

one source emits carcinogenic pollutants – formaldehyde, acetaldehyde, and benzene. 

This source is assumed to correspond to Maleic Anhydride Plant process emissions. The 

same cost function developed earlier for Air Products (using data in Table 6.4) is used for 

this source as well because both facilities are regulated under the same NESHAP and 

emit the same carcinogenic air pollutants. 

6.2.4 St. Regis 

 St. Regis is an oil and gas production facility owned by Exxon Mobil, and located 

in Santa Rosa County.  This facility is subject to a variety of NESHAPs. According to 

FLDEP, the following are the sources of air toxics and the corresponding NESHAP to 

which they are subjected. 

• Triethylene glycol (TEG) reboiler unit: subject to NESHAP for oil and natural gas 

production (40 CFR 63 Subpart HH) 
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• Two turbines: subject to NESHAP for Stationary Turbines (40 CFR 63 Subpart 

YYYY) 

• One recompressor engine with catalytic converter and eight internal combustion 

(IC) engines: NESHAP for reciprocating internal combustion engines (40 CFR 63 

Subpart ZZZZ) 

• Gas-fired process heaters: subjected to NESHAP for Boilers and Heaters (40 CFR 

63 Subpart DDDDD) 

 While the air permit lists a large number of sources of air toxics, the 1999 NTI 

lists only three sources for the St. Regis facility. One explanation for this discrepancy is 

that many of the sources have come under regulation only recently and thus were not 

listed as sources of air toxics in the 1999 inventory. It is not possible, however, to tell 

directly which of the sources listed in the air permit correspond to the three sources listed 

in the inventory. Two of the inventory sources emit the same pollutants – benzene, 

formaldehyde, acetaldehyde, and polycyclic organic matter. These two sources are likely 

to correspond to the two stationary turbine emissions because these are the pollutants of 

concern for natural-gas fired combustion turbines (Federal Register, 2004). For 

estimation of cost functions, these two sources in the NTI are assumed to correspond to 

stationary turbine emissions.  

 The third source in the NTI emits only benzene. This source likely corresponds to 

TEG reboiler unit that is subjected to oil and gas NESHAP. This is because benzene is 

the pollutant of primary concern for TEG reboiler unit (Federal Register, 1999b). Hence 

the third source in the inventory was assumed to be TEG reboiler unit. 

Abatement Options for Stationary Turbines 
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 The only control technology option considered for turbine NESHAP was 

oxidation catalyst to reduce emissions of formaldehyde, acetaldehyde, and benzene. The 

NESHAP requires new turbine units to install an oxidation catalyst. According to the RIA 

of turbine NESHAP, 44 new turbines are expected to install oxidation catalysts resulting 

in a total national HAP reduction of 98 ton per year (TPY) i.e., 2.227 TPY for an 

“average” turbine unit (EPA, 2003b). This emission reduction is based on an assumption 

of 95% removal efficiency of oxidation catalysts. Thus the baseline emissions for an 

average turbine are 2.344 TPY. The total estimated costs for installing and operating 

oxidation catalyst at these projected 44 units is $42.6 million ($1998) i.e., an average of 

$0.97 million per turbine unit. The table below (Table 6.5) shows the cost data including 

the “no control” option, after conversion to 1999 dollars. 

 

Table 6.5 Annual Costs and Emissions for Stationary Turbines 

Option Annual Cost 

(1999$/y) 

Emission Reduction 

(Ton/year) 

Emissions Remaining 

(Ton/year) 

No Control 0 0 2.3 

Oxidation Catalyst 1,068,200 2.2 0.1 
Source: EPA. (2003b). Economic Impact Analysis of the Final Stationary Combustion Turbines NESHAP: Final 
Report, August 2003, EPA Report No. EPA-452/R-03-014 

Abatement Options for TEG Reboiler Unit 

This analysis is based on Economic Impact Analysis (EIA) (EPA, 1999b) and 

Background Information Document (BID) (EPA, 1997b) of oil and gas NESHAP. The 

BID for oil and gas NESHAP identified four possible control options and the 

corresponding removal efficiencies for TEG reboiler emissions. The following are the 

control options. 

• Condenser, with flash tank in dehydration system design (95% removal) 
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• Condenser without flash tank (50% removal) 

• Combustion (98% removal) 

• System optimization (Variable removal efficiency) 

 However, neither the BID nor the EIA estimate costs for all of the identified 

control options. The option selected for the final NESHAP rule was condenser with flash 

tank in dehydration system design. The EIA estimates costs only for this option. As in 

any typical EIA, model units were developed for TEG reboiler units in oil and gas 

production facilities. The model units were based on actual throughput of reboiler units. 

According to NTI, the actual throughput of the TEG reboiler unit in the St. Regis unit 

was 84 Million Cubic Feet per Day (MCFD). Under this classification St. Regis unit falls 

under the Model Unit TEG-D of the EIA (EPA, 1999b). The cost estimated for this 

model unit for the condenser with flash tank option is $12,790 (1993 $) per year. 

According to the oil and gas BID, the baseline emissions for a typical TEG reboiler unit 

is 120 Mg/year (132.6 TPY) and with a 95% reduction efficiency, the reduction in air 

toxics is 114 Mg/year (126 TPY). Thus the following data (Table 6.6) are used to fit a 

cost function for this source, after converting the costs into 1999 dollars. 

 

Table 6.6 Annual Costs and Emissions for TEG Reboiler Emission Unit 

Option Annual Cost 

(1999$/yr) 

Emission 

Reduction 

(Ton/year) 

Emissions 

Remaining 

(Ton/year) 

No Control 0 0 133 

Condenser, with flash tank in 
dehydration system design 

14,709 126 7 

Source: EPA. (1999b). Economic Impact Analysis of the Oil and Natural Gas Production NESHAP and the Natural 
Gas Storage and Transmission NESHAP, Final Report, May, 1999, Office of Air Quality and Radiation, The 

Environmental Protection Agency 
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6.2.5 Florida Gas Transmission Company 

 This facility is part of a natural gas transmission pipeline system. It has six natural 

gas-fired internal combustion engines and two natural gas-fired turbine engines. 

Currently, according to FLDEP Title V Operating Permit, the internal combustion 

engines are subject to NESHAP for reciprocating internal combustion engines (RICE) 

and the turbines are subject to the turbine NESHAP. 

 The 1999 NTI, however, lists only one source for this facility. This source likely 

corresponds to turbine emissions because acetaldehyde, formaldehyde, benzene, and 

POM are the pollutants emitted from this source. Hence the same cost data developed 

earlier for turbine emissions (Table 6.5) in the St. Regis facility is used to fit cost function 

for this source.  

6.2.6 Sterling Fibers 

 This facility manufactures acrylic fiber and is a major source of air toxics. This 

facility is subjected to the acrylic/modacrylic fiber manufacturing NESHAP (40 CFR 63 

Subpart YY). Although this facility emits a number of air toxics, acrylonitrile is the only 

cancer-causing pollutant. According to the FLDEP air permit document, three regulated 

sources emit acrylonitrile – monomer process, acrylonitrile storage tanks, and polymer 

purification plant. The 1999 NTI also lists three sources of acrylonitrile. However, the 

three sources listed in the inventory are fugitive emission sources. The potential sources 

of fugitive emissions of acrylonitrile from this plant are storage tanks and plant-wide 

fugitive emissions from equipment leaks. 

 The EPA did not conduct a RIA for acrylic fiber NESHAP. However, an 

economic analysis (EPA, 1998) of the NESHAP for acrylic and modacrylic fiber is 
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available. This economic analysis estimated the cost of a leak detection and repair 

program at Sterling Fibers as $50,000 (1996 $) per year. The Title V permit document of 

Sterling Fibers has an attachment (Attachment 10) on leak detection and elimination 

program19 submitted by the industry to FLDEP. According to this document, the 

estimated baseline plant-wide fugitive emissions are 1.25 pounds of acrylonitrile per hour 

of plant operation. Assuming continuous operation of the plant throughout the year, the 

estimated annual baseline emissions are 5.475 tons. The estimated efficiency of such leak 

detection programs is between 60 and 70 % (Klimont, Amann, & Cofala, 2000). 

Assuming an efficiency of 65%, the total reduction is 3.558 T/y and the emissions 

remaining are 1.916 T/y. Because no cost information is available for fugitive emissions 

from storage tanks, the same cost function is assumed for all sources. The data in Table 

6.7 below show the annual cost and emission reductions assumed to fit the cost function 

for this source. 

 

Table 6.7 Annual Costs and Emissions for Sterling Fibers Facility 

Option Annual Cost 

(1999$/yr) 

Emission Reduction 

(Ton/year) 

Emissions 

Remaining 

(Ton/year) 

No Control 0 0 5.5 

Leak Detection 
Program 

53,000 3.6 1.9 

Source: EPA. (1998). Economic impact analysis for the proposed national emission standard for hazardous air 

pollutants from the production of acrylic modacrylic fibers. Office of Air Quality Planning and Standards, Docket No. 
A-97-18, Item No. II-A-6, May 1998; Title V Renewal Application, Sterling Fibers, Inc. (Facility ID#113003), Pace, 
Florida. Attachment 10, Santa Rosa Plant Leak Detection and Elimination Program 

 

                                                 

 
 
19 Title V Renewal Application, Sterling Fibers, Inc. (Facility ID#113003), Pace, Florida. Attachment 10, 
Santa Rosa Plant Leak Detection and Elimination Program  
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6.2.7 Gulf Power 

 This facility has seven boilers with varying heat input capacities. These boilers 

are the sources of air toxics. The carcinogenic pollutants are benzene, formaldehyde, 

acetaldehyde, and metals such as lead and nickel. 

 The RIA (EPA, 2002) of boilers and process heaters NESHAP, which is the 

relevant NESHAP to this source, developed model units based on the fuel type used and 

input heat capacity of boilers. All the boilers at this facility are in the existing solid fuel 

large boilers (>10 MMBtu/hr boilers using coal as the primary fuel) category. The 

selected regulatory option for NESHAP for this category is a combination of wet 

scrubber and typical fabric filter technologies. EPA considered two other regulatory 

alternatives – (1) a better designed and operated fabric filter (better than typically 

designed) and (2) packed bed scrubbers. 

 While the RIA itself did not provide details of costs of various alternatives, a 

separate cost memorandum20 provided details of national aggregate costs of controls for 

various alternatives. The aggregate cost estimates are based on approximately 2300 

boilers. Thus dividing the aggregate estimates by 2300 gives the estimates for an 

“average” unit. Table 6.8 gives the details for the category relevant to Gulf Power boilers 

(i.e., existing boilers with more than 10 MMBtu/hour input capacity using coal/solid 

fuel). 

                                                 

 
 
20 Memorandum to Jim Eddinger, USEPA, Office of Air Quality Planning and Standards (OAQPS) from 

Roy Oommen, Eastern Research Group, Inc., on Methodology for estimating Cost and Emission Impacts 
for Industrial, Commercial, Institutional Boilers and Process Heaters National Emission Standards for 
Hazardous Air Pollutants dated October 2002 
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Table 6.8 Annual Costs and Emissions for Gulf Power Boilers 

Option Annual Cost 

(1999$/yr) 

Emission 

Reduction (T/y) 

Emissions 

Remaining (T/y) 

No Control 0 0 37 

Combination of wet 
scrubbers and fabric 
filter 

290,870 245 12 

Packed Scrubbers 671,304 36 1 
Source: Memorandum to Jim Eddinger, USEPA, Office of Air Quality Planning and Standards (OAQPS) from Roy 
Oommen, Eastern Research Group, Inc., on Methodology for estimating Cost and Emission Impacts for Industrial, 
Commercial, Institutional Boilers and Process Heaters National Emission Standards for Hazardous Air Pollutants dated 
October 2002 

 

6.2.8 Fitted Cost Functions 

 The data presented above for each source are used to fit a continuous cost 

functions. As indicated in Chapter 4, the data are fitted to an exponential function of the 

form: 

 

 

 The cost functions are fitted to this form in a nonlinear least square regression 

framework (Wooldridge, 2001) to estimate the parameters ija and 
ij

b  with STATA 9.2 

Table 6.9 shows estimated cost function parameters for each source in the analysis. 

 

Table 6.9 Details of Cost Function Parameters Used in Empirical Analysis 

Cost Parameters Facility Source Source 

ID 

Pollutants 

Emitted 
ija  

ij
b  

Bleaching 
Line Vent 

IP01 Acetaldehyde 
5303579 -0.019 

International Paper  

Pulping 
System Vent 

IP02 Formaldehyde, 
Acetaldehyde, 
Benzene 

27600000 -0.005 

ij ijb Q

ij ij
C a e=
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Cost Parameters Facility Source Source 

ID 

Pollutants 

Emitted 
ija  

ij
b  

Boiler GP01 Formaldehyde, 
Acetaldehyde, 
Benzene 

755887 -0.083 

Boiler GP02 Formaldehyde, 
Acetaldehyde, 
Benzene 

755887 -0.083 

Boiler GP03 Formaldehyde, 
Acetaldehyde, 
Benzene 

755886.9 -0.083 

Gulf Power Company  

Boiler GP04 Nickel, 
Arsenic 

755886.9 -0.083 

Solutia, Inc. Maelic 
Anhydride 
Plant Vent 

SO01 Formaldehyde, 
Acetaldehyde, 
Benzene 

1214368 -0.066 

Air Products and 
Chemicals  

Methylamine 
Plant Vent 

AP01 Formaldehyde, 
Acetaldehyde, 
Benzene 

1214368 -0.066 

Fugitive 
Emissions 

SF01 Acrylonitrile 
25600000 -3.225 

Fugitive 
Emissions 

SF02 Acrylonitrile 
25600000 -3.225 

Sterling Fibers  

Fugitive 
Emissions 

SF03 Acrylonitrile 
25600000 -3.225 

Florida Gas 
Transmission 
Company  

Turbine FG01 Formaldehyde, 
Acetaldehyde, 
Benzene 

2248523 -6.307 

Turbine SR01 Formaldehyde, 
Acetaldehyde, 
Benzene 

2248523 -6.307 

Turbine SR02 Formaldehyde, 
Acetaldehyde, 
Benzene 

2248523 -6.307 

St. Regis plant  

TEG 
Reboiler 

SR03 Benzene 
31863 -0.112 

 

6.3 RAIMI Data 

 The implementation of RAIMI to estimate exposure concentrations involved 

collection of a variety of data from different sources. This section briefly presents the 

type of data collected and their sources. 
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6.3.1 Inventory Data 

 As discussed earlier (in Section 5.4.1.2), implementation of RAIMI required 

development of an emission inventory with physical characteristics of sources such as 

location and type (stack, fugitive, or flare), height of release, and velocity and 

temperature of the exit gas as well as emission characteristics such as pollutants released 

and emission rates. A few states in the United States developed their own inventories for 

air toxics. Florida, however, has not yet developed any such comprehensive state level 

database for air toxics. Hence this analysis uses a federal emission inventory developed 

by U.S. EPA. Specifically, I use a point source database from EPA’s 1999 base year 

National Emission Inventory (NEI) (Version 3) for hazardous air pollutants (HAPs) 

(EPA, 2007c). 

6.3.2 Geographical Information Systems (GIS) Data 

 RAIMI operates predominantly in a GIS environment. Thus, the implementation 

of RAIMI tools requires many GIS datasets. These GIS maps were primarily used to 

generate input files for dispersion modeling. The analysis for this study required the land 

use/land cover maps, digital elevation maps, and aerial photographs GIS to implement 

RAIMI. 

6.3.2.1 Land Use/Land Cover Maps 

 Input to the ISCST3 dispersion model requires identification of land use category 

(urban or rural), dispersion coefficients, and surface roughness height parameters for each 

source selected for analysis. This study used 1:250,000 land use land cover (LULC) map 

of United States Geological Service (USGS) available from Florida Geographic Data 
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Library (FGDL) (www.fgdl.org) for Escambia and Pensacola counties. These maps were 

edited to correct for some inconsistencies. 

6.3.2.2 Digital Elevation Maps (DEM) 

 The elevation of sources as well as receptors is an input for air dispersion 

modeling. In this study, 1:250,000 scale USGS digital elevation model (DEM) maps 

available from USGS (http://eros.usgs.gov/geodata) were used. 

6.3.2.3 Aerial Photographs 

 Aerial photographs of the two-county study area were used for verifying source 

locations. The tool utilized for this purpose is called TerraServer Download ArcGIS 9.0 

(Version 2) available from ESRI at http://arcscripts.esri.com/details.asp?dbid=13703. 

This tool has the ability to download aerial photograph imagery from TerraServer server 

(http://terraserver.microsoft.com) directly into ArcMap GIS software.  

6.3.3 Upper Air and Surface Meteorological Data 

 The ISCST3 air dispersion modeling in RAIMI is executed using meteorological 

data for 1986 to 1990, based on surface observations taken from the Pensacola Regional 

Airport (WBAN 13899).  During this period the observation station was located at 30.47 

N, 87.20 W with a base elevation of 34.1 meters above mean sea level and anemometer 

height of 6.71 meters.  Mixing heights and upper air data are from Apalachicola (WBAN 

12832).  The observation station at Apalachicola was located at 29.73 N, 85.02 W with a 

base elevation of 6.1 meters above mean sea level.  It should be noted that precipitation 

data for wet deposition computations are not utilized in the analysis due to lack of a 

representative precipitation observation data set for the study period.  This could 
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overestimate ambient air concentrations because removal of pollutants by precipitation is 

not taken into account. Surface and upper air data are obtained from U.S. EPA’s archive 

of meteorological data for dispersion modeling (EPA, 2007d). 

6.4 Other Input Data 

6.4.1 Baseline Emissions 

 The baseline emissions represent the current emissions for sources selected for 

empirical analysis. These data are obtained from the 1999 National Toxics Inventory. 

6.4.2 Unit Cancer Risk Factor 

 Unit Risk is defined as “the upper-bound excess lifetime cancer risk estimated to 

result from continuous exposure to an agent at a concentration of 1 µg/L in water, or 1 

µg/m3 in air (EPA, 2007e).”  The URF is calculated using the following equation (Rood 

et al., 2001): 

   
.

.

SF BR
URF

BW CF
=        

where URF is Unit Risk Factor in (µg /m3)-1 SF = Slope Factor in mg/kg-day, BW = 

Body Weight in kg, BR = Breathing rate in m3/day, and CF = Conversion factor to 

convert mg into µg = 1000. The slope factor in the above equation is defined by EPA as 

“an upper-bound, approximating a 95% confidence limit, on the increased cancer risk 

from a lifetime exposure to an agent (EPA, 2007e).” 

 Values of unit risk factors, ju , for each of the six pollutants in the sample are 

from EPA’s Integrated Risk Information System (IRIS) database. The following table 

(Table 6.10) shows the values of unit risk factors used in the analysis. 
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Table 6.10 Unit Risk Factors for Pollutants in Empirical Analysis 

Pollutant Unit Risk Factor 

Benzene 0.0000078 

Acetaldehyde 0.0000022 

Formaldehyde 0.000013 

Acrylonitrile 0.000068 

Nickel 0.00024 

Arsenic 0.0043 

 

6.4.3 Population Data 

 The second term in the objective function requires population data for each census 

block to estimate population health risks. The census block population data were obtained 

from the US Census Bureau.  

6.4.4 Value of Statistical Life 

 Value of statistical life is an extensively used measure for valuing mortality risks 

by regulatory agencies as well as environmental economics researchers. It represents the 

tradeoff individuals make between risk and wealth. VSL is often incorrectly interpreted 

as the value of an individual’s life (Krupnick, 2004). For example, a VSL of $5 million 

does not mean that an individual will be willing to pay $5 million to avoid death; it rather 

means that 100,000 people in society would be willing to collectively pay $5 million to 

avoid a risk that randomly kills one among them (Hammitt, 2000). 

 Extensive research estimates VSL using either a revealed preference approach 

(hedonic-wage studies) or a stated preference approach (contingent valuation) (see 

Viscusi & Aldy, 2003 for a recent meta analysis of VSL estimates in a number of 

countries). A number of studies also examine the variation in VSL with income, age, 
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baseline risk, or risk aversion. This indicates that policy analyses should use different 

VSL for different population groups depending on their attributes. In this study, however, 

a uniform value is used for all population subgroups.  

 In addition to the issue of heterogeneity in individual willingness to pay to reduce 

risk of death, the other important policy debate with regard to VSL is the issue of benefit 

transfer. Because it is not feasible to estimate VSL for every context, VSL estimated 

within one context is used in analyzing policies in other contexts. Many of the VSL 

estimates in the literature are based on hedonic wage studies. The context for many of 

these studies is the risk of death in the work place due to accidents. Is it appropriate to 

apply VSL estimates derived from these studies to a context such as the risk of death due 

to cancer attributable to exposure to air toxics? A scientific advisory board (SAB) panel 

of EPA, while reviewing a white paper submitted by EPA on valuing the benefits of fatal 

cancer risk reduction, suggested that VSL estimates derived from wage-risk tradeoff 

studies “….should not be taken as accurate estimates of the value of reducing the risk of 

fatal cancers because of differences in both the nature of the risks being valued and in the 

socio-economic characteristics of the affected populations (EPA, 2000a, p: 19).”  The 

SAB panel, however, recommended that EPA continue to use wage-risk VSL estimates 

because there was no theoretical or empirical basis to make any quantitative adjustments 

to wage-risk VSL estimates to reflect the differences in contexts. Thus, this study will use 

VSL estimates from the literature to estimate costs of cancer in the objective function. 

 Given that a large number of estimates of VSL exist in literature, EPA and other 

regulatory agencies utilize values from meta-analyses in their benefit cost assessments. 

EPA used a mean VSL of $4.8 million (in 1990$ or 5.5 million in 1999$) with a standard 
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deviation of $3.2 million in its benefit cost assessment of the Clean Air Act (EPA, 1999c) 

for 1990-2010. In its new proposed assessment for 1990-2020 (EPA, 2006c), EPA 

conducted another meta-analysis that yielded a mean of $5.4 million (2000$) and a 

standard deviation of $2.4 million. Mrozek & Taylor (2002) conducted a meta analysis of 

33 studies and concluded that $2 million (1998$) was a reasonable mean estimate of VSL 

based on their analysis. Viscusi and Aldy (2003), in their meta analysis of a sample of US 

studies, estimated a mean value that varied between $5.5 million and $7.6 million 

(2000$). 

 Based on this review, this dissertation research uses a mean VSL of $5.5 million 

(1999$) because EPA has been using this value for most of its benefit assessments. 

However, because of the wide variation in mean VSL estimated by different meta 

analyses, a sensitivity analysis is also conducted by assuming two alternative values for 

the VSL: $2.04 million (1999$) (based on Mrozek & Taylor, 2002) representing the 

lower end of the mean VSL estimates and $7.35 million (1999$) (based on Viscusi & 

Aldy, 2003) representing the upper end of the available mean estimates. 
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CHAPTER 7 

RESULTS: OPTIMAL EMISSIONS AND NET COSTS VS. SPATIAL 

RESOLUTION 

 

 The results of the empirical analysis are presented in two chapters. This chapter 

presents the results of the optimization runs discussed in Section 5.4.2. The next chapter, 

Chapter 8, discusses the potential distributional implications of regulating at finer spatial 

resolutions. The first section of this chapter discusses how choice of spatial resolution to 

regulate risks could affect the optimal emissions a hypothetical decision maker would 

choose, and then interprets the results in light of the model used for the analysis. The 

second section focuses on the costs of regulation at finer spatial resolutions. The last two 

sections present sensitivity of optimal emissions to risk thresholds and value of statistical 

life (VSL). 

7.1 Optimal Emissions vs. Spatial Resolution 

 The optimal emissions a hypothetical decision maker might choose, based on the 

decision model developed in Chapter 4, are estimated at three different cancer risk 

thresholds. The following sub sections discuss the results at each threshold risk. 

7.1.1 Risk Threshold of 100 in a Million Cancer Risk 

 Table 7.1 shows the baseline emissions and the optimal emissions at census tract, 

census block group (BG), and census block resolutions for each of the 34 source/pollutant 

combinations. The optimal emissions in Table 7.1 correspond to a risk threshold (r) of 

100 in a million and at a value of statistical life (VSL) equal to $5.5 Million. One can 
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make two immediate observations from the table. First, the optimal emissions at the 

census block group regulation are exactly the same as those at the census tract regulation. 

Second, if the sources are regulated at a finer census block resolution instead of the 

census block group resolution, the optimal emissions are higher for a number of sources 

(for example, all pollutants and sources from Gulf Power) and lower for some sources 

(for example, acetaldehyde from IP02).  

 

Table 7.1 Optimal Emissions for Regulation at Various Spatial Resolutions 
(Threshold Risk = 1.0E-04; VSL=$5.5 Million) 

 
Optimal Emissions (TPY) Facility 

  

Source 

ID 

Pollutant 

  

Baseline 

Emissions 

(T/Y) 

  
Census 

Tract 

Block 

Group 

Block 

IP01 Acetaldehyde 5.5 149.6 149.6 ↔ 196.4 ↑ 

Formaldehyde 8.5 0 0 0 

Acetaldehyde 50.9 135.1 135.1 ↔ 69.3 ↓ 

International Paper 

IP02 

Benzene 5.08 0 0 0 

Formaldehyde 0.0436 1.57 1.57 ↔ 7.87 ↑ 

Acetaldehyde 0.00575 28.6 28.6 ↔ 34.9 ↑ 

Solutia SO01 

Benzene 0.00052 9.35 9.35 ↔ 15.6 ↑ 

SF01 Acrylonitrile 2.819 0.11 0.11 ↔ 0.03 ↓ 

SF02 Acrylonitrile 5.48 0.28 0.28 ↔ 0.21 ↓ 

Sterling Fibers 

SF03 Acrylonitrile 1.159 0.17 0.17 ↔ 0.07 ↓ 

Formaldehyde 0.869 0 0 ↔ 0 

Acetaldehyde 0.073 4.25 4.25 ↔ 10.7 ↑ 

Air Products AP01 

Benzene 0.03 0 0 0 

Formaldehyde 30.52 1.02 1.02 ↔ 1.07 ↑ 

Acetaldehyde 2.561 1.30 1.30 ↔ 1.35 ↑ 

SR01 

Benzene 1.0405 1.10 1.10 ↔ 1.15 ↑ 

Formaldehyde 0.01027 1.06 1.06 ↔ 1.11 ↑ 

Acetaldehyde 0.00135 1.34 1.34 ↔ 1.39 ↑ 

SR02 

Benzene 0.000123 1.14 1.14 ↔ 1.19 ↑ 

St. Regis 

SR03 Benzene 1.3 0 0 0 

Formaldehyde 78.8 1.15 1.15 ↔ 1.20 ↑ 

Acetaldehyde 6.615 1.43 1.43 ↔ 1.48 ↑ 

Florida Gas FG01 

Benzene 2.687 1.23 1.23 ↔ 1.28 ↑ 

Formaldehyde 0.031 14.9 14.9 ↔ 18.4 ↑ Gulf Power GP01 

Acetaldehyde 0.000006 36.3 36.3 ↔ 39.8 ↑ 
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Optimal Emissions (TPY) Facility 

  

Source 

ID 

Pollutant 

  

Baseline 

Emissions 

(T/Y) 

  
Census 

Tract 

Block 

Group 

Block 

Benzene 0.00087 21.1 21.1 ↔ 24.5 ↑ 

Formaldehyde 0.00098 24.2 24.2 ↔ 27.0 ↑ 

Acetaldehyde 0.0000002 45.6 45.6 ↔ 48.4 ↑ 

GP02 

Benzene 0.000028 30.4 30.4 ↔ 33.1 ↑ 

Formaldehyde 0.00228 37.8 37.8 ↔ 40.2 ↑ 

Acetaldehyde 0.0000004 59.2 59.2 ↔ 61.6 ↑ 

GP03 

Benzene 0.0000621 44.0 44.0 ↔ 46.4 ↑ 

Nickel  0.4095 0 0 0 GP04 

Arsenic  0.438 0 0 0 

Net Costs 

(Million $/y) 

     17.76 17.76 35.47 

Note: ↑ - Increase in optimal emissions; ↓ - Decrease in optimal emissions; ↔ - No change in optimal emissions 

 

 Section 4.4.2.1 in Chapter 4 derived a set of conditions (4.18) to explain the 

direction of change of optimal emissions when risks are regulated at finer spatial 

resolution. According to these conditions, three parameters – kλ , kλ′ , and ijkβ – affect the 

change in optimal emissions due to regulation at finer spatial resolution. The 

interpretation of the conditions in (4.18) suggested that (1) spatial resolution of regulation 

does not change optimal emissions when finer spatial resolution does not capture new 

hotspots, (2) optimal emissions will decrease for sources that contribute most to hotspots 

captured at finer spatial resolution, and (3) optimal emissions could increase for sources 

that do not contribute significantly to hotspots captured at finer resolution. The empirical 

results are consistent with these predictions, as described in the following. 

 Table 7.2a shows the optimal emissions of acetaldehyde (except for the source in 

the Sterling Fibers facility for which the pollutant is acrylonitrile) from a set of select 

sources when risks are regulated at two different resolutions: census tract and a finer 

census block group resolution. The results in Table 7.2a are for 100 in a million risk 
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threshold and $5.5 Million VSL. This first column in Table 7.2a shows the location of hot 

spots (k for which kλ ≠0), the second column shows the shadow price ( kλ ) for hot spots 

at census tract resolution, and the third column shows the shadow price ( kλ′ ) for hot spots 

at the finer census block group resolution. The last column in Table 7.2a shows the 

exposure concentrations due to a unit emission rate ( ijkβ ) at hot spots for the select 

sources. 

 It can be observed from Table 7.2a that regulation at finer resolution does not 

capture any new hot spots. Location numbers 16 and 17 are the hot spots at both block 

group resolution and census tract resolution. Consistent with the interpretations of the 

conditions (4.18), the optimal emissions are the same at both spatial resolutions. 

 Table 7.2b shows the results for regulation at census block group resolution and at 

a finer census block regulation. Regulation at the finer census block resolution captures 

two new hot spots, at location numbers 2503 and 9361 (shaded rows in Table 7.2b), but 

the two hot spots (location numbers 16 and 17) found at the census block group 

resolution disappear. The values of ijkβ  for the sources indicate that source 1 of Sterling 

Fibers (SF01) has the maximum value (6.41 3/g mµ ) at the hot spot 2503, much more 

than for any other source, and thus contributes most to the risk at that hot spot. 

Accordingly, the optimal emissions for this source reduce from 0.11 TPY at block group 

resolution to 0.03 TPY at census block resolution. Similarly, the second source of 

International Paper (IP02) has the highest exposure concentration (0.5218 3/g mµ , an 

order of magnitude higher than the next highest source Solutia) at hot spot location 9361 

and thus the emissions of acetaldehyde from IP02 reduce from 135 TPY at block group 
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resolution to 69 TPY at block resolution. All the other sources contribute insignificant 

risk to hot spots at finer resolution and thus their optimal emissions increase. Again, this 

is consistent with the interpretation of the conditions (4.18). 

7.1.2 Risk Threshold of 10 in a Million Cancer Risk 

 The optimal emissions, at 10 in a million risk threshold, for all pollutant/source 

combinations at the three spatial resolutions are shown in Table 7.3. The optimal 

emissions, in general, either remain same or decrease for most sources, when regulated at 

block group resolution, except for acetaldehyde from IP01, which increases slightly. In 

case of regulation at census block resolution, the optimal emissions reduce for almost all 

the sources, with the exception of Florida Gas and Air Products, when compared to 

regulation at the coarser block group resolution. 

 Tables 7.4a and 7.4b explain these results. Table 7.4a shows that regulation at 

finer block group resolution as opposed to census tract resolution captures a new hot spot 

at location number 146. Acetaldehyde from two sources – Solutia and Air Products – has 

comparable exposure concentrations at the new hot spot captured by regulation at block 

group resolution. Thus, as expected, the emissions of acetaldehyde from Solutia reduce 

from 17.5 TPY to 17 TPY. In case of Solutia, regulation at census tract resolution itself 

does not allow any emissions and hence the regulation at finer resolution has zero optimal 

emissions. Because there is a reduction in optimal emissions for only one source, 

emissions for most of the other sources do not increase, except for a slight increase in 

acetaldehyde from IP01 (see Table 7.3). 



 

 

Table 7.2a. Hot Spot Locations and Change in Optimal Emissions with Change in Spatial Resolution (Tract to Block 

Group Resolution; Risk Threshold: 100 in a Million) 

 
Location 

No. (k) 
kλ  

(Tract) 

kλ′  
(BG) 

3( / )ijk g mβ µ  

   IP02 SO01 AP01 FG01 SR01 SF01 GP01 

16 1.1E+11 1.1E+11 0.2769 0.0219 0.0084 0.0019 0.0031 0.0062 0.007 

17 2.5E+11 2.5E+11 0.0024 0.0087 0.1047 0.0022 0.0055 3.399 0.0024 

Optimal Emissions (TPY) 

Tract   135 28.6 4.2 1.4 1.3 0.11 36.3 

BG   135 28.6 4.2 1.4 1.3 0.11 36.3 

 

Table 7.2b. Hot Spot Locations and Change in Optimal Emissions with Change in Spatial Resolution (Block Group to 

Block Resolution; Risk Threshold: 100 in a Million) 

 
Location 

No. (k) 
kλ  

(BG) 

kλ′  
(Block) 

3( / )ijk g mβ µ  

   IP02 SO01 AP01 FG01 SR01 SF01 GP01 

16 1.1E+11 0 0.2769 0.0219 0.0084 0.0019 0.0031 0.0062 0.007 

17 2.5E+11 0 0.0024 0.0087 0.1047 0.0022 0.0055 3.399 0.0024 

2503 - 1.7E+11 0.0024 0.008 0.1007 0.0226 0.056 6.411 0.0024 

9361 - 0.85E+11 0.5218 0.0265 0.0077 0.0019 0.0036 0.0059 0.0075 

Optimal Emissions (TPY) 
BG   135 28.6 4.2 1.4 1.3 0.11 36.3 

Block   69.2 34.9 10.7 1.5 1.35 0.03 39.8 
IP02 – International Paper; SO01 – Solutia; AP01 – Air Products; FG01 – Florida Gas; SR01 – St. Regis; SF01 – Sterling Fibers; GP01 – Gulf Power 
All emissions are for the pollutant acetaldehyde, except for SF01 for which the pollutant is acrylonitrile  
Rows shaded in blue refer to hot spot locations at finer spatial resolution 

 

 



 

 

Table 7.3 Optimal Emissions for Regulation at Various Spatial Resolutions 
(Threshold Risk = 1.0E-05; VSL=$5.5 Million) 

 
Facility 

  

Source 

ID 

Pollutant 

  

Baseline 

Emissions 

(TPY) 

Optimal Emissions (TPY) 

    Census 

Tract 

Block 

Group 

Block 

IP01 Acetaldehyde 5.5 112.0 113.9 ↑ 96.9 ↓ 

Formaldehyde 8.5 0 0 0 

Acetaldehyde 50.9 0 0 0 

International Paper 

IP02 

Benzene 5.08 0 0 0 

Formaldehyde 0.0436 0 0 0 

Acetaldehyde 0.00575 17.5 17.0 ↓ 16.4 ↓ 

Solutia SO01 

Benzene 0.00052 0 0 0 

SF01 Acrylonitrile 2.819 0 0 0 

SF02 Acrylonitrile 5.48 0.06 0.06 ↔ 0.03 ↓ 

Sterling Fibers 

SF03 Acrylonitrile 1.159 0 0 0 

Formaldehyde 0.869 0 0 0 

Acetaldehyde 0.073 0 0 0.54 ↑ 

Air Products AP01 

Benzene 0.03 0 0 0 

Formaldehyde 30.52 0.90 0.90 ↔ 0.86 ↓ 

Acetaldehyde 2.561 1.2 1.19 ↔ 1.14 ↓ 

SR01 

Benzene 1.0405 0.99 0.99 ↔ 0.94 ↓ 

Formaldehyde 0.01027 0.94 0.94 ↔ 0.94 ↔ 

Acetaldehyde 0.00135 1.22 1.22 ↔ 1.22 ↔ 

SR02 

Benzene 0.000123 1.02 1.02 ↔ 1.02 ↔ 

St. Regis 

SR03 Benzene 1.3 0 0 0 

Formaldehyde 78.8 1.03 1.03 ↔ 1.06 ↑ 

Acetaldehyde 6.615 1.31 1.31 ↔ 1.35 ↑ 

Florida Gas FG01 

Benzene 2.687 1.11 1.11 ↔ 1.14 ↑ 

Formaldehyde 0.031 6.10 5.48 ↓ 3.22 ↓ 

Acetaldehyde 0.000006 27.5 26.9 ↓ 24.6 ↓ 

GP01 

Benzene 0.00087 12.3 11.6 ↓ 9.4 ↓ 

Formaldehyde 0.00098 15.4 15.2 ↓ 13.3 ↓ 

Acetaldehyde 0.0000002 36.8 36.6 ↓ 34.7 ↓ 

GP02 

Benzene 0.000028 21.6 21.4 ↓ 19.5 ↓ 

Formaldehyde 0.00228 29.0 29.1 ↑ 27.4 ↓ 

Acetaldehyde 0.0000004 50.4 50.5 ↑ 48.8 ↓ 

GP03 

Benzene 0.0000621 35.2 35.2 ↔ 33.5 ↓ 

Nickel  0.4095 0 0 0 

Gulf Power 

GP04 

Arsenic  0.438 0 0 0 

Net Costs 

(Million $/y) 

     63.0 63.0 65.4 

Note: ↑ - Increase in optimal emissions; ↓ - Decrease in optimal emissions; ↔ - No change in optimal emissions 
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 Table 7.4b is more interesting. Regulation at the census block resolution revealed 

six new hot spots. The source Solutia (SO01) alone contributes significant amount of risk 

at three new hot spot locations and hence the acetaldehyde emissions from SO01 reduce 

from 17.0 to 16.4 TPY. Similarly, International Paper (IP02) has a value of ijkβ that is an 

order of magnitude higher than other sources at the new hot spot location 9353. Thus the 

emissions reduce from 0.1 to 0 TPY. The same holds for St. Regis (SR01) whose optimal 

acetaldehyde emissions slightly reduce from 1.19 to 1.14 TPY. St. Regis has ijkβ of 0.287 

compared to 0.006 for the next highest source. There is a slight increase in optimal 

emissions for Air Products (AP01) and Florida Gas (FG01). 

7.1.3 Risk Threshold of 1 in a Million Cancer Risk 

 The result in Section 4.5 showed that the optimal emissions are non-increasing, 

for regulation at any given spatial resolution, with decreasing (or stricter) threshold risk r. 

This result is evident from zero optimal emissions for a number of sources and relatively 

low optimal emissions for other sources, as shown in Table 7.5, for all spatial resolutions. 

Between census block group and census tract resolutions, Florida Gas and Gulf Power 

had their optimal emissions reduce for some pollutants while optimal emissions for most 

of the other sources remained the same across the two spatial resolutions. Acetaldehyde 

from Florida Gas (FG01) facility has a high value of ijkβ , compared to all other sources, 

at the hot spot captured at finer resolution (location number 85) and hence the reduction 

in optimal emissions, as seen in Table 7.6a. 

 



 

 

Table 7.4a. Hot Spot Locations and Change in Optimal Emissions with Change in Spatial Resolution (Tract to Block 

Group Resolution; Risk Threshold: 10 in a Million) 

 
Location 

No. (k) 
kλ  

(Tract) 

kλ′  
(BG) 

3( / )ijk g mβ µ  

   IP02 SO01 AP01 FG01 SR01 SF01 GP01 

16 2.4E+11 2.3E+11 0.2769 0.0219 0.0084 0.0019 0.0031 0.0062 0.007 

17 5.2E+11 5.2E+11 0.0024 0.0087 0.1047 0.0022 0.0055 3.399 0.0024 

146 - 13.0E+11 0.0076 0.055 0.0604 0.002 0.0048 0.0211 0.0188 

Optimal Emissions (TPY) 
Tract   0 17.5 0 1.3 1.19 0 27.5 

BG   0.096 17.0 0 1.3 1.19 0 26.9 

 

Table 7.4b. Hot Spot Locations and Change in Optimal Emissions with Change in Spatial Resolution (Block Group to 

Block Resolution; Risk Threshold: 10 in a Million) 

 
Location 

No. (k) 
kλ  

(BG) 

kλ′  
(Block) 

3( / )ijk g mβ µ  

   IP02 SO01 AP01 FG01 SR01 SF01 GP01 

16 2.3E+11 0 0.2769 0.0219 0.0084 0.0019 0.0031 0.0062 0.007 

17 5.2E+11 0 0.0024 0.0087 0.1047 0.0022 0.0055 3.399 0.0024 

146 13E+11 0 0.0076 0.055 0.0604 0.002 0.0048 0.0211 0.0188 

979 - 6.8E+09 0.0018 0.003 0.002 0.0059 0.287 0.002 0.0015 

2503 - 3.1E+11 0.0024 0.008 0.1 0.0023 0.0056 6.411 0.0024 

9185 - 0.13 0.0149 0.091 0.021 0.002 0.004 0.0094 0.015 

9261 - 1.7E+10 0.0137 0.096 0.024 0.002 0.004 0.011 0.016 

9313 - 3.7E+10 0.008 0.055 0.047 0.002 0.005 0.021 0.023 

9353 - 2.6E+011 0.31 0.024 0.007 0.002 0.004 0.005 0.007 

Optimal Emissions (TPY)* 

BG   0.096 17.0 0 1.30 1.19 0 26.9 

Block   0 16.4 0.53 1.34 1.14 0 24.6 
IP02 – International Paper; SO01 – Solutia; AP01 – Air Products; FG01 – Florida Gas; SR01 – St. Regis; SF01 – Sterling Fibers; GP01 – Gulf Power 
All emissions are for the pollutant acetaldehyde, except for SF01 for which the pollutant is acrylonitrile 
Rows shaded in blue refer to hot spot locations at finer spatial resolution 



 

 

Table 7.5 Optimal Emissions for Regulation at Various Spatial Resolutions 
(Threshold Risk = 1.0E-06; VSL=$5.5 Million) 

 
Optimal Emissions (T/Y) Facility 

  

Source 

ID 

Pollutant 

  

Baseline 

Emissions 

(T/Y) 

  

 

    Census 

Tract 

Block 

Group 

Block 

IP01 Acetaldehyde 5.5 15.6 15.8 ↑ 12.0 ↓ 

Formaldehyde 8.5 0 0 0 

Acetaldehyde 50.9 0 0 0 

International Paper 

IP02 

Benzene 5.08 0 0 0 

Formaldehyde 0.0436 0 0 0 

Acetaldehyde 0.00575 0 0 0 

Solutia SO01 

Benzene 0.00052 0 0 0 

SF01 Acrylonitrile 2.819 0 0 0 

SF02 Acrylonitrile 5.48 0.01 0.01 ↔ 0 ↓ 

Sterling Fibers 

SF03 Acrylonitrile 1.159 0 0 0 

Formaldehyde 0.869 0 0 0 

Acetaldehyde 0.073 0 0 0 

Air Products AP01 

Benzene 0.03 0 0 0 

Formaldehyde 30.52 0.01 0.02 ↑ 0 ↓ 

Acetaldehyde 2.561 0.29 0.30 ↑ 0.28 ↓ 

SR01 

Benzene 1.0405 0.09 0.10 ↑ 0.08 ↓ 

Formaldehyde 0.01027 0.24 0.25 ↑ 0.16 ↓ 

Acetaldehyde 0.00135 0.52 0.53 ↑ 0.44 ↓ 

SR02 

Benzene 0.000123 0.32 0.33 ↑ 0.24 ↓ 

St. Regis 

SR03 Benzene 1.3 0 0 0 

Formaldehyde 78.8 0.59 0.11 ↓ 0.06 ↓ 

Acetaldehyde 6.615 0.87 0.39 ↓ 0.34 ↓ 

Florida Gas FG01 

Benzene 2.687 0.67 0.19 ↓ 0.14 ↓ 

Formaldehyde 0.031 0 0 0 

Acetaldehyde 0.000006 5.41 5.55 ↑ 6.51 ↑ 

GP01 

Benzene 0.00087 0 0 0 

Formaldehyde 0.00098 12.3 11.3 ↓ 12.3 ↑ 

Acetaldehyde 0.0000002 0 0 0 

GP02 

Benzene 0.000028 0 0 0 

Formaldehyde 0.00228 0.38 0 0 

Acetaldehyde 0.0000004 21.8 19.8 ↓ 20.7 ↑ 

GP03 

Benzene 0.0000621 6.53 4.55 ↓ 5.51 ↑ 

Nickel  0.4095 0 0 0 

Gulf Power 

GP04 

Arsenic  0.438 0 0 0 

Net Costs 

(Million $/y) 

     79.7 81.4 83.6 

Note: ↑ - Increase in optimal emissions; ↓ - Decrease in optimal emissions; ↔ - No change in optimal emissions 
 



 

 

Table 7.6a. Hot Spot Locations and Change in Optimal Emissions with Change in Spatial Resolution (Tract to Block 

Group Resolution; Risk Threshold: 1 in a Million) 

 

Location 

No. (k) 
kλ  

(Tract) 

kλ′  
(BG) 

3( / )ijk g mβ µ  

   IP02 SO01 AP01 FG01 SR01 SF01 GP01 

2 4.1E+12 3.8E+12 0.0195 0.0034 0.0024 0.0054 0.255 0.0022 0.0016 

16 1.5E+12 0 0.2769 0.0219 0.0084 0.0019 0.0031 0.0062 0.007 

17 6.1E+11 6.1E+11 0.0024 0.0087 0.1047 0.0022 0.0055 3.399 0.0024 

85 - 2.2E+12 0.0012 0.0025 0.0017 0.238 0.002 0.0017 0.001 

126 - 1.3E+12 0.165 0.022 0.0092 0.0018 0.0034 0.0053 0.0064 

Optimal Emissions (TPY) 

Tract   0 0 0 0.87 0.29 0 5.4 

BG   0 0 0 0.39 0.30 0 5.5 

 

Table 7.6b. Hot Spot Locations and Change in Optimal Emissions with Change in Spatial Resolution (Block Group to 

Block Resolution; Risk Threshold: 1 in a Million) 

 
Location 

No. (k) 
kλ  

(BG) 

kλ′  
(Block) 

3( / )ijk g mβ µ  

   IP02 SO01 AP01 FG01 SR01 SF01 GP01 

2 3.8E+12 0 0.0195 0.0034 0.0024 0.0054 0.255 0.0022 0.0016 

17 6.1E+11 0 0.0024 0.0087 0.1047 0.0022 0.0055 3.399 0.0024 

85 2.2E+12 0 0.0012 0.0025 0.0017 0.238 0.002 0.0017 0.001 

126 1.3E+12 0 0.165 0.022 0.0092 0.0018 0.0034 0.0053 0.0064 

546 - 2.1E+12 0.0012 0.0021 0.0014 0.348 0.002 0.0015 0.008 

979 - 3.9E+12 0.0018 0.003 0.002 0.006 0.286 0.002 0.0015 

2503 - 3.3E+11 0.0024 0.008 0.1 0.0023 0.0056 6.411 0.0024 

9353 - 1.2E+12 0.31 0.024 0.007 0.002 0.004 0.005 0.007 

Optimal Emissions (TPY)* 
BG   0 0 0 0.39 0.30 0 5.5 

Block   0 0 0 0.34 0.28 0 6.5                          
IP02 – International Paper; SO01 – Solutia; AP01 – Air Products; FG01 – Florida Gas; SR01 – St. Regis; SF01 – Sterling Fibers; GP01 – Gulf Power  
All emissions are for the pollutant acetaldehyde, except for SF01 for which the pollutant is acrylonitrile; Rows shaded in blue are hot spot locations at finer spatial 
resolution 



 

 

 Between block group and census block resolution at 1 in a million risk threshold, 

most optimal emissions become zero while the reduction and the increase in optimal 

emissions for various sources is consistent with the interpretations of equation (4.18). 

Table 7.6b shows the relevant results. 

7.2 Net Costs vs. Spatial Resolution 

 This section discusses two types of costs – the net costs of regulation and the 

population health costs – resulting from regulation at three different spatial resolutions 

and at three different threshold risks. The net costs represent the net of private costs of 

abatement to industry and population health costs. The population health costs are costs 

due to residual risks remaining after the regulation and are discussed here in terms of 

number of expected additional cancer cases due to residual risks21.  

 The result in Section 4.4.2 predicted that the net costs should be non-decreasing 

with spatial resolution. That is, the net costs cannot decrease as the risks are regulated at 

finer and finer spatial resolutions. The empirical results are consistent with that 

prediction.  The last row of Table 7.1 shows the net costs of regulation at various spatial 

resolutions at 100 in a million risk threshold. Because the optimal emissions are the same 

for regulation at the census tract and at the census block group resolutions, the net costs 

are also the same at these two resolutions. However, regulation at the census block 

resolution result in net costs twice as high as those at the other resolutions ($35.5 Million 

at block resolution as opposed to $17.8 Million at census block group and census tract 

                                                 

 
 
21 The population health costs expressed in dollars are simply the product of number of expected additional 
cancer cases due to residual risks and the value of statistical life (VSL). 
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resolutions). This is because, at the census block resolution, although the optimal 

emissions increased marginally (compared to other resolutions) for a number of sources, 

there is a significant reduction in optimal emissions for two sources: International Paper 

(IP02) and Sterling Fibers. The abatement costs for these two sources together account 

for about 60% of additional net costs.  

 Figure 7.1 shows the variation of net costs as well as the number of additional 

cancer cases with spatial resolution when risks are regulated at 100 in a million cancer 

risk threshold. Net costs, as explained before, are the same at the tract and the block 

group resolutions but increase at the finest block resolution. The expected additional 

cancer cases due to air toxics exposures do not change between tract and block group 

regulation; but the expected cancer cases increase at the finer block resolution.  

 The increase in expected additional cancer cases at the finest resolution in the 

analysis is rather an unexpected, but important result. In the context of the decision model 

assumed in this paper, this result could be explained as follows. Under the regulation at 

finer resolutions, reducing risks at hotspots requires reduction in emissions from sources 

that contribute significantly to the hotspots. This reduction in emissions increases costs 

and not only reduces risks at hotspots, but potentially creates slack in risk at a number of 

other locations. In order to offset the increase in costs for some sources and due to the 

additional slack created by the reduction in emissions at these sources, a few other 

sources could be allowed to increase their emissions. If the increase in emissions from 

these other sources increases risk in areas that are highly populated, then the overall 

population risks might increase when risks are regulated at finer resolutions. The 

implications of this result are further explored in Chapter 10.  
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 Figure 7.2 shows the variation of net costs and expected additional cancer cases 

with spatial resolution when regulated at 10 in a million cancer risk threshold and Figure 

7.3 shows the variation at 1 in a million cancer risk threshold. From Figures 7.1, 7.2, and 

7.3, it can be observed that the increase in net costs when moving from a coarse 

resolution (track) to a finer resolution (block) is steepest at 100 in a million risk threshold 

while it flattens out at 10 in a million threshold, and flattens out further at 1 in a million 

risk threshold. The reason is: as the risk tolerance decreases, more and more sources have 

to be shut down even at coarse resolution and spatial resolution of regulation matters 

much less for net costs. We can see evidence for this reasoning by observing the optimal 

emissions at the three risk thresholds (in Tables 7.1, 7.3, and 7.5). The number of sources 

with zero optimal emissions increases as risk is regulated at tighter and tighter thresholds. 

Figure 7.1 Variation of Net Costs and Expected Cancer Cases with Spatial 

Resolution (Threshold Risk: 100 in a Million) 
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 Unlike the regulation at 100 in a million threshold risk, the expected cancer cases 

due to residual risks drop with spatial resolution in case of regulation at 10 in a million 

and 1 in a million threshold risks.  
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Figure 7.2 Variation of Net Costs and Expected Cancer Cases with Spatial 

Resolution (Threshold Risk: 10 in a Million) 

Figure 7.3 Variation of Net Costs and Expected Cancer Cases with Spatial 

Resolution (Threshold Risk: 1 in a Million) 
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7.3 Sensitivity of Optimal Emissions to Threshold Risks 

 The result in Section 4.5 predicted that, for regulation at any spatial resolution, the 

optimal emissions are non-increasing as the threshold risk r decreases. That is, the 

optimal emissions should decrease or remain unchanged when moving from 100 in a 

million risk threshold to 1 in a million risk threshold. Figures 7.4 and 7.5 show that the 

variation is in the expected direction – the optimal emissions decrease as the threshold 

risk decreases – for both census tract regulation and census block regulation. 
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 Figure 7.4 Variation of Optimal Emissions with Threshold Risk for Regulation 

atCensus Tract Level Resolution 

Figure 7.4 Variation of Optimal Emissions with Threshold Risk for Regulation at 

Census Tract Resolution 
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7.4 Sensitivity to Value of Statistical Life (VSL) 

 Section 6.4.4 discussed in detail the need for analyzing the sensitivity of the 

results to estimates of VSL used in empirical analysis. The results presented in Tables 

7.1, 7.3, and 7.5 are based on a VSL of $5.5 million (1999$). In this section, two other 

VSL estimates – $2.04 million (1999$) and $7.35 million (1999$) – are used to assess the 

sensitivity of optimal emissions to VSL for only a risk threshold of 100 in a million.22 

                                                 

 
 
22 Results were analyzed for other risk thresholds as well. Excluding the results from these risk thresholds 
do not change the conclusions of this section, however.  

Figure 7.5 Variation of Optimal Emissions with Threshold Risk for Regulation at 

Census Block Resolution 
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 Table 7.7 shows the results of estimates of optimal emissions and net costs at the 

two estimates of VSL. First, the results are identical for $2.04 million VSL and $7.35 

million VSL. Comparing the results in Table 7.7 with results in Table 7.1 (results of 

analysis based on $5.5 million VSL) reveals that alternative estimates of VSL have no 

effect on optimal emissions and net costs. 

 

 

 

 

 

 

 

 

 



 

 

Table 7.7 Comparison of Optimal Emissions and Net Costs at Various Values of VSL (Risk Threshold: 100 in Million)  

 
Optimal Emissions (TPY) 

(VSL=$2.04 million) 

Optimal Emissions (TPY) 

(VSL=$7.35 million) 

Facility 

  

Source 

ID 

Pollutant 

  

Baseline 

Emissions 

(T/Y) 

  
Census 

Tract 

Block 

Group 

Block  Census 

Tract 

Block 

Group 

Block 

IP01 Acetaldehyde 5.5 149.6 149.6 196.5 149.6 149.6 196.3 

Formaldehyde 8.5 0 0 0 0 0 0 

Acetaldehyde 50.9 135.1 135.1 69.2 135.1 135.1 69.3 

International Paper 

IP02 

Benzene 5.08 0 0 0 0 0 0 

Formaldehyde 0.0436 1.6 1.6 7.9 1.6 1.6 7.85 

Acetaldehyde 0.00575 28.6 28.6 34.9 28.6 28.6 34.9 

Solutia SO01 

Benzene 0.00052 9.37 9.37 15.7 9.37 9.37 15.6 

SF01 Acrylonitrile 2.819 0.11 0.11 0.03 0.11 0.11 0.03 

SF02 Acrylonitrile 5.48 0.28 0.28 0.21 0.28 0.28 0.21 

Sterling Fibers 

SF03 Acrylonitrile 1.159 0.17 0.17 0.07 0.17 0.17 0.07 

Formaldehyde 0.869 0 0 0 0 0 0 

Acetaldehyde 0.073 4.25 4.25 10.7 4.25 4.25 10.7 

Air Products AP01 

Benzene 0.03 0 0 0 0 0 0 

Formaldehyde 30.52 1.02 1.02 1.07 1.02 1.02 1.07 

Acetaldehyde 2.561 1.30 1.30 1.35 1.30 1.30 1.35 

SR01 

Benzene 1.0405 1.10 1.10 1.15 1.10 1.10 1.15 

Formaldehyde 0.01027 1.06 1.06 1.11 1.06 1.06 1.11 

Acetaldehyde 0.00135 1.34 1.34 1.39 1.34 1.34 1.39 

SR02 

Benzene 0.000123 1.14 1.14 1.19 1.14 1.14 1.19 

St. Regis 

SR03 Benzene 1.3 0 0 0 0 0 0 

Formaldehyde 78.8 1.15 1.15 1.20 1.15 1.15 1.20 

Acetaldehyde 6.615 1.43 1.43 1.48 1.43 1.43 1.48 

Florida Gas FG01 

Benzene 2.687 1.23 1.23 1.28 1.23 1.23 1.28 

Formaldehyde 0.031 14.9 14.9 18.4 14.9 14.9 18.4 

Acetaldehyde 0.000006 36.3 36.3 39.8 36.3 36.3 39.8 

GP01 

Benzene 0.00087 21.1 21.1 24.5 21.1 21.1 24.5 

Formaldehyde 0.00098 24.3 24.3 27.0 24.2 24.3 27.0 

Acetaldehyde 0.0000002 45.6 45.6 48.4 45.6 45.6 48.4 

Gulf Power 

GP02 

Benzene 0.000028 30.4 30.4 33.1 30.4 30.4 33.1 
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Optimal Emissions (TPY) 

(VSL=$2.04 million) 

Optimal Emissions (TPY) 

(VSL=$7.35 million) 

Facility 

  

Source 

ID 

Pollutant 

  

Baseline 

Emissions 

(T/Y) 

  
Census 

Tract 

Block 

Group 

Block  Census 

Tract 

Block 

Group 

Block 

Formaldehyde 0.00228 37.9 37.9 40.2 37.9 37.9 40.2 

Acetaldehyde 0.0000004 59.3 59.3 61.6 59.3 59.3 61.6 

GP03 

Benzene 0.0000621 44.0 44.0 46.4 44.0 44.0 46.4 

Nickel  0.4095 0 0 0 0 0 0 GP04 

Arsenic  0.438 0 0 0 0 0 0 

Net Costs 

(Million $/y) 

     17.75 17.75 35.47 17.75 17.75 35.47 

 
 

 



 

 

CHAPTER 8 

RESULTS: ANALYSIS OF DISTRIBUTION OF RISKS AND COSTS 

  

 This chapter presents the second set of results of empirical analysis. The first part 

of the chapter discusses how regulation at finer spatial resolutions affects the spatial 

distribution of cancer risks. This part also examines, through a correlation analysis, if 

regulation at finer resolutions addresses environmental justice (EJ) concerns. The final 

section of this chapter analyzes the distributional effects of regulation at finer resolutions 

on industry abatement costs. 

8.1 Spatial Resolution and Spatial Distribution of Cancer Risks 

 One of the goals of characterizing air toxics risks at finer spatial resolutions is to 

address disproportionate impacts of air toxics exposures, as discussed in Chapter 1.  It is 

expected that by regulating risks at finer and finer spatial resolutions, risks in hot spots 

that are not apparent at coarse resolution could be reduced, thus ensuring a more 

equitable distribution of risk. The empirical analysis carried out for this research could be 

used to demonstrate how the spatial distribution of risks changes with a change in the 

spatial resolution chosen for regulation.  

8.1.1 Spatial Resolution and Maximum Individual Risk (MIR) 

 In order to demonstrate the impact of regulation at finer resolution on spatial 

distribution of risks, the analysis presented in this section estimates cancer risks at two 
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resolutions of regulation – census tract and census block23 – and at two threshold risk 

levels (100 in a million and 10 in a million). Using the set of optimal emissions estimated 

at each resolution of regulation, cancer risks are estimated at the centroid of each census 

block.  

 Figure 8.1 shows the spatial distribution of cancer risks when risks are regulated 

at census tract resolution at the risk threshold of 100 in a million. The circled area in the 

figure is enlarged in the inset so that the blocks with risks greater than 100 in a million 

are clearly seen. The maximum individual risk (MIR) is 187 in a million when risks are 

regulated at the census tract resolution, although the risk threshold for the regulation is 

100 in a million. The census blocks with MIR greater than 100 in a million, which are the 

hot spots in this case, are represented in red in Figure 8.1. Figure 8.2 shows spatial 

distribution due to regulation at the finer census block resolution at 100 in a million risk 

threshold. As expected, the MIR in this case is 100 in a million. The inset of Figure 8.2 

shows that the hot spots that are seen in red blocks at census tract regulation (in Figure 

8.1) disappear at the census block resolution. The spatial distribution of cancer risks in 

Figure 8.2 indicates that no census block in the two county area has a cancer risk greater 

than 100 in a million whereas the distribution in Figure 8.1 shows that a few blocks, 

represented in red, have cancer risks greater than 100 in a million with the maximum risk 

being 187 in a million.  

                                                 

 
 
23 Optimal emissions were also estimated for regulation at census block group resolution. However, the 
analysis in this chapter is restricted to tract and block level resolution because there was very little variation 
in optimal emissions between tract and block group level resolutions at all risk thresholds. 
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 Figures 8.3 shows spatial distribution of risks when the risks are regulated at the 

census tract resolution with a threshold risk of 10 in a million. Again, the red blocks in 

the figure show the hot spots where cancer risk is above the 10 in a million threshold 

MIR. There are a few red blocks spread over the entire two county area and the inset 

shows the hot spots in the circled area. The MIR at the census tract regulation is 17 in a 

million, although the threshold risk is 10 in a million. Figure 8.4 shows spatial 

distribution of cancer risks when risks are regulated at the census block resolution. The 

MIR, not surprisingly, is 10 in a million and all the hot spots (the red blocks) that showed 

up in Figure 8.3 disappear here indicating that no census block has a risk greater than 10 

in a million. Thus, regulation at finer spatial resolution can potentially reduce MIR. 

 



 

 

  

 
Figure 8.1 Spatial Distribution of Cancer Risks under Regulation at Census Tract Resolution (Cancer 

Risk Threshold of 100 in a Million) 
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Figure 8.2 Spatial Distribution of Cancer Risks under Regulation at Census Block Resolution (Cancer 

Risk Threshold of 100 in a Million) 
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Figure 8.3 Spatial Distribution of Cancer Risks under Regulation at Census Tract Resolution (Cancer 

Risk Threshold of 10 in a Million) 
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Figure 8.4 Spatial Distribution of Cancer Risks under Regulation at Census Block Resolution (Cancer 

Risk Threshold of 10 in a Million) 



 

 

8.1.2 Spatial Resolution and Population Risks 

 Population risks in this research are measured as the expected additional cases of 

cancer due to air toxics exposures. The expected cancer cases are calculated as the 

product of cancer risk at the centroid of census block and population of the census block 

summed over all the 9881 census blocks in the two county study area.  

 In Chapter 7, while discussing expected additional cancers due to air toxics 

emissions remaining after regulation at 100 in a million threshold risk, it was found that 

the expected additional cancers were higher under regulation at the finer census block 

resolution (Refer to Figure 7.1). The expected cancers due to emissions remaining after 

regulation at census tract resolution were 0.00215 and the expected cancers at census 

block resolution were 0.00244. In the context of the decision model assumed in this 

paper, this result could be explained as follows. As discussed in Section 7.1.1, regulation 

at census block resolution, as opposed to census tract resolution, decreases emissions 

from some source and increases emissions from other sources. If the increase in 

emissions increases risk in areas that are highly populated, then overall population risks 

might increase.  

 Thus, while regulation at finer resolution (census block) results in a decrease in 

MIR from 187 in a million to 100 in a million, population risk increases. While this result 

might be an artifact of the specific empirical context studied here (that is, emission 

increases at finer resolutions occurring for those sources that are located in populated 

areas), the result still suggests that reduction in individual risks might come at the cost of 

increases in overall population risks. This is a criticism often put forward by public health 
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scholars against the focus on MIR in regulatory decision making (Goldstein, 1989; 

Goldstein & Carruth, 2003). 

8.2 Environmental Justice (EJ) Analysis 

 The increasing evidence (Morello-Frosch et al., 2001; Lopez, 2002; Morello-

Frosch et al., 2002; Dolinoy & Miranda, 2004; Apelberg et al., 2005) that low income 

and minority groups might be subjected to disproportionately high air toxics risks 

coupled with the likelihood that such groups are more susceptible than others to air 

pollution exposures (Rios, Poje, & Detels, 1993; O’Neill et al., 2003) due to a variety of 

biological and non-biological factors makes EJ an important policy concern. An 

important rationale for the increasing drive toward characterizing air toxics exposures at 

finer spatial resolutions has been the concern about environmental injustice. 

 The results in Section 8.1.1 show that regulation at finer spatial resolution can 

reduce MIR in hot spots. The analysis presented in Section 8.1.1, however, does not 

examine the association between reduction in risk due to regulation at finer spatial 

resolutions and population characteristics. This section presents a simple correlation 

analysis to test whether regulation at finer spatial resolutions addresses the EJ concerns. 

8.2.1 Change in Cancer Risk and Race 

 The hypothesis tested here is that, if regulation at finer spatial resolutions were to 

address EJ concerns, change in risks due to regulation at finer resolution should be 

negatively correlated with EJ variables. In other words, regulation at finer resolutions 

would address EJ concerns if cancer risks attributable to air toxics decrease in areas with 

higher populations of minorities and low-income groups. The EJ variable for this analysis 
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is percent nonwhite population24 and the association between change in risk and percent 

nonwhite is analyzed at the census block level.  

 Cancer risk is calculated at the centroid of each census block, according to 

equation (4.1), reproduced below as equation (8.1). Cancer risk at the centroid of each 

census block is calculated for regulation at each spatial resolution (census tract, census 

block group, and census block) for each risk threshold (100 in a Million, 10 in a Million, 

and 1 in a Million) based on optimal emissions presented in Tables 7.1, 7.3, and 7.5.  

  
1 1

  
I J

k ij ijk j
i j

r Q uβ
= =

= ∑∑       (8.1) 

Where, 

kr  Cancer risk at the k th census block  

ij
Q  Optimal Emissions (in g/s) of pollutant j from source i due to regulation at 

any given spatial resolution and risk threshold 

ijkβ  Exposure concentration, in [( 3/g mµ )/(g/s)], at any regulated location k due 

to unit emission rate (1 g/s) of pollutant j from source i 

j
u  Unit Risk Factor for j th pollutant, ( 3/g mµ )-1 (represents the probability of 

cancer due to continuous exposure for 70 years to 1 3/g mµ  of pollutant j) 

 

 After calculating cancer risks at each census block due to regulation at each 

spatial resolution and each risk threshold, changes in cancer risk due to regulation at finer 

                                                 

 
 
24 Association between change in cancer risk and income could not be tested because census data on 
median household income are not available at the census block level 
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spatial resolution is calculated at the centroid of each census block. The following table 

(Table 8.1) shows the pair-wise correlation between changes in risk due to regulation at 

finer resolutions and percent nonwhite population at census block level. 

 

Table 8.1 Pair-wise Correlation between Change in Estimated Cancer Risk due to 

Regulation at Finer Resolutions and Percent Nonwhite (N = 7147) 

 
Risk Threshold Change in Risk due to change 

in Resolution of Regulation 

from Tract to Block Group 

Change in Risk due to change 

in Resolution of Regulation 

from Tract to Block 

100 in a Million 0 0.063** 

10 in a Million -0.27** -0.31** 

1 in a Million 0.028** 0.052** 
** Correlations statistically significant at 1% 

 

  The results in Table 8.1 indicate mixed evidence for the effect of regulation at 

finer resolutions on environmental justice. At 100 in a million threshold risk, there was 

no change in the optimal emissions between census tract resolution and census block 

group resolution and hence there is no change in risk either, as indicated by the zero 

correlation in the first cell of Table 8.1. If the sources were to be regulated at the census 

block resolution instead of the census tract resolution, the correlation coefficient is 

positive indicating that blocks with increases in cancer risks have higher percentages of 

nonwhite population. In the context of the finding in Section 8.1.1 that MIR in hot spots 

decreases when risks are regulated at census block as opposed to census tract resolution, 

the positive correlation here indicates that decreases in cancer risk have not occurred in 

blocks with higher proportion of minorities. Although statistically significant, the 

correlation is weak (0.063). 

 At 10 in a million risk threshold, however, there is a relatively strong and 

statistically significant negative correlation between change in cancer risks and percent 
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nonwhite. This indicates that at 10 in a million risk threshold, regulation at finer 

resolution reduces risk in blocks with higher percentage of minorities. At 1 in a million 

risk threshold, the positive correlations resurface. The correlations, however, are weak 

although statistically significant. This result is not surprising. As discussed in Chapter 7, 

a 1 in a million risk threshold risk is so strict that the optimal emissions are zero for a 

number of sources even at the coarse census tract resolution. Because of this, changes in 

optimal emissions and hence cancer risks are very small when regulated at finer 

resolutions. The relative lack of variation in change in cancer risk between tract and 

block resolution is reflected in the weak correlation shown in the last row of Table 8.1. 

 In summary, at 100 in a million and 1 in a million threshold risk, regulation at 

finer resolution increases risk in areas with higher proportion of minorities. At 10 in a 

million threshold risk, the converse is true; regulation at finer resolution decreases risk in 

blocks with higher proportion of minority population. Overall, these results indicate that 

regulation at finer spatial resolutions might reduce MIR in hot spots; that reduction in 

MIR, however, need not automatically translate into reduction in risks for EJ 

communities. This result is somewhat expected because nothing in the decision model 

developed in Chapter 4 explicitly accounts for EJ concerns in the hypothetical decision 

maker’s choice of optimal emissions. Possible ways in which EJ concerns could be 

incorporated into the decision model for the hypothetical decision maker are discussed in 

Chapter 11. 

8.2.2 Expected Annual Cancer Incidence and Race 

 The analysis presented in the previous section examines the association between 

change in cancer risks and the percentage of nonwhite population. The percentages do 
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not adequately reveal the absolute number of people affected by the changes in cancer 

risks due to regulation at finer spatial resolutions. For example, consider two scenarios. In 

scenario 1, let us suppose that cancer risks decrease in blocks with very small population 

but very high percentage of minority population (that is, the few people that live in the 

block are minorities). The correlation coefficients for scenario 1 will show a strong 

negative correlation indicating that regulation at finer resolutions has a strong positive 

effect on EJ. In scenario 2, let us suppose that the cancer risks decrease by the same 

magnitude as in scenario 1 but in census blocks with large population and lower 

percentage of minorities (compared to scenario 1). The correlation analysis in this 

scenario 2 shows weaker relationships than in scenario 1, although the same decrease in 

cancer risks benefits a bigger minority population than in scenario 1. To overcome this 

drawback, this section replicates the correlation analysis of the previous section but uses 

the change in expected annual cancer incidence as the dependent variable. The change in 

expected annual cancer incidence weighs change in risk by the population affected by the 

change in risk. That is, change in expected annual cancer incidence in the i th census 

block = annual cancer risk at the centroid of the i th census block * total population of the 

i th census block. Table 8.2 shows the results of the correlation analysis. 

 

Table 8.2 Pair-wise Correlation between Change in Expected Annual Cancer 

Incidence (= Change in Annual Cancer Risk * Population) due to 

Regulation at Finer Resolutions and Percent Nonwhite (N = 7147) 

 
Risk Threshold Change in Incidence from Tract 

Regulation to Block Group 

Regulation 

Change in Incidence from Tract 

Regulation to Block Regulation 

100 in a Million 0 -0.0034 

10 in a Million -0.0012 -0.0019 

1 in a Million 0.0294 0.045** 
** Correlations statistically significant at 1% 
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 The results in Table 8.2 show that there is no statistically significant association 

between change in expected cancer incidence and percent minority, except in one case 

where the association is positive and statistically significant. This result is in sharp 

contrast to the results shown in Table 8.1. At 10 in a million threshold risk, for example, 

decrease in cancer risk due to regulation at finer resolutions was strongly associated with 

a higher proportion of minorities (Table 8.1), but when this decrease in risk was weighted 

by the size of population affected, there was no evidence of association with higher 

proportion of minorities. The implications of this result are discussed in detail in Chapter 

10. 

8.3 Spatial Resolution and Distribution of Abatement Costs  

 The empirical results in Tables 7.1, 7.3, and 7.5 indicate that optimal emissions 

decrease for some sources of air toxics, increase for some, and remain unchanged for 

others as the spatial resolution of regulation increases from census tract to census block 

resolution. The changes in optimal emissions at finer resolutions are associated with 

changes in abatement costs for regulated sources. Using the cost functions estimated for 

the empirical analysis, the changes in abatement costs corresponding to change in optimal 

emissions at finer spatial resolution are calculated. Table 8.1 shows the changes in 

abatement costs due to regulation at the census block resolution for the 15 sources 

selected for the analysis. Because the cost functions are assumed to be identical for every 

pollutant emitted from a source, the changes in costs in Table 8.1 are cumulative costs of 

abatement of all pollutants from a source. Changes in abatement costs are calculated for 

all the three threshold risks. 
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 The results at 100 in a million threshold risk suggest that significant abatement 

costs would be imposed on two facilities or four sources (International Paper and Sterling 

Fibers) when risks are regulated at census block resolution instead of a coarser census 

tract resolution. Abatement costs would drop for all the other sources. At the other risk 

thresholds, however, costs would increase for all the sources except for one source. It 

should be noted that the zeros in the table reflect either unchanged non-zero levels of 

optimal emissions or zero emissions at both the coarse resolution and the finer resolution.  

 

Table 8.3 Change in Abatement Costs Due to Regulation at Finer Spatial Resolution 

 
Facility Source 

ID 

Change in Abatement Costs Due to Regulation at Census 

Block Resolution Instead of Tract Resolution ($)* 

  Risk Threshold 

  100 in a Million 10 in a Million 1 in a Million 

International Paper IP01 -169,560 203,125 287,180 

 IP02 5,533,709 0 0 

Solutia SO01 -656,487 28,066 0 

Sterling Fibers SF01 5,284,603 0 0 

 SF02 2,628,089 2,143,006 812,408 

 SF03 5,630,810 0 0 

Air Products AP01 -316,063 -42,322 0 

St. Regis SR01 -1,734 4,362 243,933 

 SR02 -13,473 0 576,383 

 SR03 0 0 0 

Florida Gas FG01 -763 -1,067 2,636,622 

Gulf Power GP01 -972,413 217,830 -42,111 

 GP02 -36,306 70,457 226 

 GP03 -10,383 17,884 73,406 

 GP04 0 0 0 
* Negative values indicate decrease in abatement costs and positive values indicate increase in abatement costs 

 

 As expected, regulation at finer resolution not only affects the distribution of 

cancer risks, it also affects the distribution of abatement costs. 
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CHAPTER 9 

UNCERTAINTY ANALYSIS 

 

 The model developed in Chapter 4 includes inputs around which significant 

uncertainties exist. The analysis presented in previous chapters was based on point 

estimates of input parameters. This chapter first reviews previous research on uncertainty 

in various input parameters to develop a rationale for the approach used in the uncertainty 

analysis. The later sections present the results of the uncertainty analysis and the final 

section discusses the interpretation of the results. 

9.1 Approach for Uncertainty Analysis 

 Chapter 4 developed the model of a hypothetical decision maker choosing 

emission levels to minimize net social costs subjected to the constraint that cancer risk at 

no spatial location exceeds a threshold value. The following was the mathematical 

representation of the model. 

( )
1 1 1 1 1

.
ij

ij b
ij

Q
I J I J M

mij ij ij ij ijm jQ i j i j mQ

Min MC Q dQ Q u p Vβ
= = = = =

              

+∑∑ ∑∑ ∑∫  (9.1)  

Subject to the constraints that: 

1 1

  1,2,3, .,
I J

ij ijk j
i j

Q u r k Kβ
= =

< ∀ = …∑∑  

0≥
ij

Q  
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ij
Q  Emission rate (g/s) of pollutant j from i th source 

ijmβ  Exposure concentration, in [( 3/g mµ )/(g/s)], at population location m due to a 

unit emission rate (1 g/s) of pollutant j from source i = f (meteorology, emission 

and source characteristics, site characteristics, location of the measurement point 

with respect to the source, activity patterns of exposed population, etc.,) 

ijkβ  Exposure concentration, in [( 3/g mµ )/(g/s)], at any regulated location k due to 

unit emission rate (1 g/s) of pollutant j from source i 

j
u  Unit Risk Factor for j th pollutant, ( 3/g mµ )-1 (represents the probability of 

cancer due to continuous exposure for 70 years to 1 3/g mµ  of pollutant j) 

mp  Population at location m 

V Value of Statistical Life 

 

 The functional form assumed for the cost functions is exponential, as discussed in 

Section 5.4.1.1 in Chapter 5. Annual costs are expressed as:  

    
ij ijb Q

ij ij
C a e=      (9.2) 

Annualcosts of abatement for pollutant jfromsourcei ($)

Emission Levelsof pollutant jfromsourcei (Ton/Year)

, Cost Parameters to beestimated

ij

ij

ij ij

C

Q

a b

=

=

=

 

 Substituting this cost function in equation (9.1) gives the following form for the 

equation to be estimated. 

1 1 1 1 1

)(
b

ij ij ij ijb Q b Q

ij ij
ij

I J I J M

mij ijm jQ i j i j m

e eMin a a Q u p Vβ
= = = = =

        −         

+∑∑ ∑∑ ∑  (9.3) 
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Subject to the constraints that: 

1 1

  1,2,3, .,
I J

ij ijk j
i j

Q u r k Kβ
= =

< ∀ = …∑∑  

0≥
ij

Q  

 This research analyzes uncertainty in four parameters in equation (9.3) – annual 

average ambient concentrations ( ijmβ  and ijkβ ), cancer unit risk factor (
j

u ), and cost 

parameters ( ,
ij ij

a b ).  

9.1.1 Uncertainty in Ambient Air Concentrations 

 The empirical analysis in this study used the Industrial Source Complex Short 

Term Version 3 (ISCST3) air dispersion model for estimating annual average ambient 

concentrations ( ijmβ and ijkβ ), as discussed in Chapter 5. The ISCST3 model is a steady 

state Gaussian Plume model and estimates hourly ambient air concentrations from point 

sources at a downwind distance x and crosswind distance y according to the following 

equation (reproduced from EPA, 1995). 

  

2

0.5
2 s y z y

QKVD y
C

uπ σ σ σ

  
 = −      

     (9.4) 

Q Emission Rate (mass per unit time) 

K Scaling Coefficient to Convert Units of Measurement 

V Vertical Term, which is a function of such parameters as elevation of 

emission source, elevation of spatial location where concentration is 

estimated, mixing height, and plume rise 



 133 

D Decay Term 

y z
σ σ  Standard Deviation of Lateral and Vertical Concentration Distribution (m) 

su  Mean Wind Speed (m/s) at Release Height 

 

 The total uncertainty in air dispersion models such as ISCST3 has three major 

components: model uncertainty, input parameter uncertainty, and stochastic uncertainty 

(Hanna, 1988; Rao, 2005). Model uncertainty arises if the mathematical representation of 

the model does not accurately capture the true dispersion process. For example, ISCST3 

assumes that the dispersion of pollutants from an emission source follows a steady state 

Gaussian process. Model uncertainty represents the deviation of the true dispersion 

processes from this assumption.  

 Equation (9.4) indicates that ISCST3 requires a variety of input parameters to 

estimate ambient air concentrations all of which may have uncertainties in their 

measurement. This uncertainty is called input parameter uncertainty. Stochastic 

uncertainty arises from the inherently variable nature of atmospheric turbulence. This 

type of uncertainty is relevant for estimating concentrations for short averaging periods 

such as 1-hour averages and is not considered important for annual average 

concentrations (Rao, 2005). 

9.1.1.1 Research on Uncertainties in the ISCST Model 

 Although quantification of uncertainties in air quality models has long been 

discussed (Fox, 1984), much of the empirical work has been more recent. The initial 

research focused on analytical techniques for propagating uncertainty in dispersion 

models (e.g., Freeman et al., 1986). However, with advances in computational power, 
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simulation techniques such as Monte Carlo (MC) simulations have become more 

common. The next few paragraphs review the studies of uncertainty in ISCST model 

predictions, with specific reference to estimation of ambient concentrations of toxic air 

pollutants, in order to provide a basis for the distributional assumptions made in this 

study. 

 A recent paper studied uncertainty of the ISCST3 and AERMOD models in 

predicting annual average concentrations of hexavalent chromium emitted from welding 

processes at a ship building and repair facility in California (Sax & Isakov, 2003). The 

study specified uncertainties in quantity of emissions, spatial and temporal allocation of 

emissions, model input parameters such as emission release parameters, building 

downwash, Bowen ratio, surface roughness, and interannual variability of meteorology. 

While the study did not indicate the number of Monte Carlo runs used for deriving the 

uncertainty estimates, the results indicated that the “95% confidence interval of predicted 

pollutant concentrations spanned roughly an order of magnitude at each receptor..(Sax & 

Isakov, 2003, p: 3487).” The uncertainty factor for 95% confidence interval (the ratio of 

95% confidence upper bound to median and the ratio of median to 95% lower bound) 

ranged between two and three. This study found that emission uncertainties (Q in 

equation 9.4) contribute most to uncertainty in predicted ambient concentrations. 

 Using a different approach to evaluating uncertainty in ISCST model predictions, 

another study compared the monitored concentrations of nine volatile organic compounds 

(VOCs) to concentrations predicted by ISCST3 model in three communities in 

Minneapolis (Pratt et al., 2004). The study found that model predicted concentrations for 

all pollutants were within a factor of two of monitored concentrations. 
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 A more recent study examined uncertainty in annual average concentrations of 

benzene and 1,3-butadiene predicted by two Gaussian models – ISCST3 and AERMOD –  

in Houston area (Hanna et al., 2006). This study specified uncertainties in several input 

parameters such as emissions, wind speed, wind direction, cloud cover, mixing height, 

surface roughness length, Bowen ratio, vertical temperature gradient, and vertical and 

horizontal dispersion parameters and studied uncertainties in predictions of pollutant 

concentrations by using 100 Monte Carlo runs. The predicted concentrations for 100 runs 

followed a log-normal distribution and the uncertainty factor (±geometric mean) for the 

95% confidence range was between 2 and 3. This result was consistent across models and 

pollutants. 

9.1.1.2 Distributional Assumptions for this Study 

 This analysis assumed a log-normal probability distribution for annual average air 

toxics concentrations. Log-normal distributions are generally suitable for physical 

quantities such as pollutant concentrations that are constrained to being non-negative 

(Morgan & Henrion, 1990). Further, empirical research on uncertainties in predicted 

pollutant concentrations shows that concentrations do follow log-normal distributions 

(Dabberdt & Miller, 2000; Hanna et al., 2001; Hanna et al., 2006). 

 A variable has a log-normal distribution if the logarithm of the variable has a 

normal distribution. Log-normal distribution are described by the mean (µlnx) of the 

logarithm of the variable and the standard deviation (σlnx) of the logarithm of the variable 

(Morgan & Heniron, 1990). Alternatively, log-normal distributions can also be described 

by their geometric mean (GM) and geometric standard deviation (GSD) (Limpert, Sahel, 

and Abbt, 2001). The GM is exp (µ) and GSD is exp (σ). GM is also the median of the 
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log-normal distribution. The uncertainty analysis in this study assumes that the annual 

average concentration predicted by ISCST3 model (used in deterministic analyses 

presented in chapter 7) represents the median (or GM) of the log-normal distribution. 

Research reviewed in Section 9.1.1.1 indicates that the uncertainty factor ranges from 

two to three. Consistent with that research, this analysis assumes an uncertainty factor of 

2.5. This corresponds to a GSD of 1.6 and a σlnx = 0.46. Another important assumption 

made in characterizing uncertainty in ambient air concentrations in this study is that the 

correlations in concentrations across spatial locations are ignored. In Gaussian plume 

models, ambient concentrations predicted at one location are potentially correlated with 

concentrations predicted by the model at other locations in the modeling domain. 

9.1.2 Uncertainty in Unit Risk Factor (URF) 

 EPA defines URF as “the upper-bound excess lifetime cancer risk estimated to 

result from continuous exposure to an agent at a concentration of 1 µg/L in water, or 1 

µg/m3 in air (EPA, 1999b, p: xii).” The URF is calculated using the following equation 

(Rood et al., 2001): 

   
*

*

SF BR
URF

BW CF
=       (9.5) 

where URF is Unit Risk Factor in (µg /m3)-1 SF = Slope Factor in mg/kg-day, BW = 

Body Weight in kg, BR = Breathing rate in m3/day, and CF = Conversion factor to 

convert mg into µg = 1000. 

 The slope factor in equation (9.5) is defined by EPA as “an upper-bound, 

approximating a 95% confidence limit, on the increased cancer risk from a lifetime 

exposure to an agent (EPA, 2007e).” The slope factor is derived using dose-response 
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assessments conducted based on either animal experiment studies or human 

epidemiological studies. Uncertainties exist in every step of dose-response assessments. 

Firstly, data on cancer incidence in experimental animals (such as mice and rats) are 

often used to derive response in humans. This is called inter-species extrapolation and the 

assumptions made in this extrapolation involve significant uncertainties25. Secondly, the 

doses or exposures of interest for human health risk assessments are much lower than the 

doses at which experimental animals respond in animal studies. This requires 

extrapolation to low doses based on dose-response data at higher doses. Typically, dose-

response data at high doses are fitted to an assumed functional form and a point of 

departure (POD) for low-dose extrapolation is determined. From the POD, either a linear 

extrapolation (by drawing a line from POD to the origin) or, if sufficient evidence is 

available to assume a non-linear dose-response relationship at low doses, a non-linear 

extrapolation is used to derive the “slope factor.” The assumption that dose-response 

relationship at high doses can be an indicator of a relationship at low doses and the 

assumption that a linear or non-linear extrapolation of some form sufficiently represents 

the relationship at low doses induce further uncertainty in the derivation of slope factors 

(EPA, 2005a). 

 Estimates of inhalation URF for different air toxics reported in EPA’s Integrated 

Risk Information System (IRIS) are calculated based on upper-bound estimates of slope 

factors and a breathing rate of 20 m3/day, and 70 kg body weight (EPA, 2005a). The 

                                                 

 
 
25 These uncertainties are not present when human data are used to derive slope factors. However, slope 
factors for most chemicals are based on animal data because of limited availability of data for 
epidemiological studies. 
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resulting value for the URF is an upper-bound estimate of cancer risk due to 1 µg /m3 of 

lifetime (70 years) exposure to the pollutant. The assumption for breathing rate and body 

weight are based on an average adult individual and could vary considerably across 

population groups and individuals within a population group. For example, breathing 

rates and body weight could vary a great deal even within the adult population of a 

population group. Further, within a population group, breathing rates and body weight for 

children are significantly different from those of adults and thus these standard values are 

not appropriate when the assessed population is that of children. Thus this variability 

plays a role in determining an appropriate value for URFs. 

 Based on the discussion so far, an ideal uncertainty analysis for this study would 

specify a probability distribution for slope factors, to represent a range of possible values 

for each chemical (instead of a single upper bound estimate), and probability distributions 

for body weight and breathing rate in equation (9.4) and then use a Monte Carlo 

simulation to derive probability distributions for URFs for various chemicals. The major 

constraint in implementing such an approach is the difficulty in deriving distributions for 

slope factors. In spite of a great deal of research over the past few years on deriving 

probability distributions for cancer slope factors (see Boyce, 1998 for a comprehensive 

review), no standard approach has yet been developed to derive chemical-specific URF 

distributions (C.P. Boyce, personal communication, May 4, 2007) . Because of this, the 

distributions for URF are not readily available; rather, they have to be derived 

independently for each study. 
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 The most commonly used and a relatively simple approach26 for deriving 

probability distributions has been the statistical approaches that extend methods used by 

EPA to develop upper bound slope factors (e.g., Crouch et al., 1995). As discussed earlier 

in this section, uncertainty is encountered at various stages in the process of deriving 

cancer slope factors. Statistical approaches characterize the uncertainties at various stages 

to derive distributions for overall uncertainty in cancer slope factors (Boyce, 1998). Even 

this relatively simple approach is not so simple. This approach requires the original 

animal experimental data based on which EPA derived the point estimates of the slope 

factors reported in IRIS. This process is especially time-intensive if the distributions have 

to be derived for multiple chemicals, as required in this study. Hence an alternative 

approach that only characterizes the uncertainty in upper bound estimates of the URFs is 

used in this study. 

9.1.2.1 Distributional Assumptions for URFs ( ju ) 

 Although there is agreement between EPA and state agencies on the use of upper 

bound estimates for cancer risk assessments, the actual upper bound estimates used by 

agencies differ. For example, the upper bound URFs used by the California EPA, under 

its Air Toxics Hot Spots program, differ significantly from those used by federal EPA, 

for some air toxics. Appendix F of California EPA’s “Technical Support Document for 

Describing Available Cancer Potency Factors” lists the air toxics for which the URFs of 

Cal EPA differ from those of U.S. EPA (Cal EPA, 2002). The basic approach used in 

                                                 

 
 
26 Refer to Boyce (1998) for a review of various methods used in literature for deriving uncertainty 
distributions for slope factors 
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deriving the cancer slope factors is similar; however, differences in estimates of URFs 

“appear to be due mainly to differences in scientific judgment, differences in the 

interpretation of scientific data in individual cases, or to development of new scientific 

data…(Risk Assessment Advisory Committee, 1996, p: 4-10).” 

 Recognizing these differences in upper bound URFs between Cal EPA and U.S. 

EPA, the uncertainty analysis presented in this Chapter uses a uniform distribution with a 

lower bound corresponding to the lower estimate of the two agencies (Cal EPA and U.S. 

EPA) and an upper bound corresponding to higher estimate of the two agencies. Clearly, 

this is not the ideal approach for the analysis of interest here; but this approach is used 

because of the data constraints in developing a more comprehensive approach to 

characterizing uncertainty in URFs. The following table shows the lower bound and the 

upper bound URFs used in the uncertainty analysis conducted for this research. 

 

Table 9.1 Assumed Distribution of URFs for Various Air Toxics 

Air Toxic Chemical Assumed Distribution Point Estimate Used in 

Deterministic Analysis 

Acetaldehyde U (2.2E-06, 2.7E-06) 2.2E-06 

Formaldehyde U (0.6E-05, 1.3E-05) 1.3E-05 

Benzene U (0.78E-05, 2.9E-05) 0.78E-05 

Acrylonitrile U (0.68E-04, 2.9E-04) 0.68E-04 

Arsenic U (3.3E-03, 4.3E-03) 4.3E-03 

Nickel U (2.4E-04, 2.6E-04) 2.4E-04 
Source: EPA’s Integrated Risk Information System (IRIS) and Technical Support Document for Describing Available Cancer Potency 
Factors (Cal EPA, 2002) 

 

9.1.3 Uncertainty in Cost Parameters 

 The cost functions for this research, discussed in Section 5.4.1 and Section 6.2, 

are estimated based on a number of assumptions that introduce significant uncertainties in 
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the estimation of the two cost parameters, andij ija b  in equation (9.2). First, the costs and 

the emission reductions associated with various abatement technology options are derived 

for an “average” source based on aggregate national estimates. These estimates can differ 

significantly for the specific sources analyzed in the empirical application, based on 

factors such as production capacity of the firm, process technology, and local input 

prices. Second, although a given abatement technology removes more than one toxic air 

pollutant, the empirical analysis assumes that the abatement technology is employed 

separately for each pollutant. This assumption results in multiple counting of costs, 

leading to potential overestimation of costs. Third, the background information 

documents (BID) and the regulatory impact analyses (RIA) used to identify the available 

abatement options, did not consider the full range of options for some source categories. 

For example, for some source categories, there were only two identified control options 

(including no control option). Thus the estimated cost functions for most of the sources 

are based on a very small sample size. Such a small sample size introduces huge 

uncertainties (very large standard errors in the non-linear least square estimation) in the 

estimation of the two cost parameters andij ija b . 

 The approach taken for quantifying uncertainty in cost parameters in this analysis 

is to utilize the estimates of means and standard errors on the parameters andij ija b , from 

the non-linear least square regression for each cost function, to generate a randomly 

drawn sample of values for each parameter. The random sample is drawn from a joint 

normal distribution with the correlation coefficient being empirically estimated from the 

non-linear least square regression estimation. The cost functions for Sterling Fibers, the 

TEG Reboiler of the St. Regis facility, and the turbines of Florida Gas and St. Regis 
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include only one abatement cost option listed in the respective RIAs. That is, including 

the “no control” option, the cost parameters are estimated based on two data points. The 

non-linear regressions do not generate standard errors for the cost parameters of these 

sources. Based on the largest standard errors among all sources, the standard errors for 

these three sources are assumed to be 80% of the mean value for the parameter ija  and 

25% of the mean value for the parameter ijb . 

 Finally, an important assumption in the decision model regarding the cost 

functions is that the abatement costs increase at an increasing rate with abatement. This 

assumption means that the parameter ija  is non-negative. However, when random 

samples are generated for the parameter ija  from a joint normal distribution, because of 

the large standard errors on ija  for some cost functions, a small percentage of the sample 

include negative values for ija . In order to be consistent with the assumptions of the 

model, the negative values on ija  were constrained to have an arbitrarily small positive 

value of 0.1. This is clearly arbitrary and perhaps unrealistic. However, it illustrates the 

serious lack of data on abatement costs for air toxics. 

9.2 Methodology for Uncertainty Analysis 

 The basic methodology followed for optimization runs in the deterministic 

analysis using point estimates of input parameters of the model was discussed in Section 

5.4.2. The following were the steps involved in the implementation of uncertainty 

analysis presented in this chapter. 
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1. For each of the uncertain input parameters, ija , ijb , 
ju , ijmβ , and ijkβ , 500 

samples – one for each simulation – were randomly drawn from the respective 

assumed probability distributions. There were 34 cost parameters – one for each 

combination of sources and pollutants (I.J in equation 9.3 = 34), 9881 ambient air 

concentration values ( ijmβ ) – one for each census block (M in equation 9.3 = 

9881) – based on which population health costs are estimated in the objective 

function, six URFs (
ju ) – one for each air toxic (J=6), and 77 constraints at 

census tract resolution, 317 constraints at census block group resolution, and 

10198 constraints at census block resolution (i.e., K = 77 for census tract analysis, 

K = 317 for census block group analysis, and K = 10198 for census block 

analysis). Stata 9.2 was used to generate random samples. 

2. As discussed in Section 5.4.2, to run General Algebraic Modeling System 

(GAMS), one needs to generate input files in GDX file format. The GDX format 

data are generated from data input into an MS Excel spreadsheet. Thus for this 

uncertainty analysis, 500 MS Excel input files and eventually 500 GDX input files 

– one for each simulation – were prepared using Macros in MS Excel. The 

decision to restrict the number of simulations to 500 was strictly based on the 

feasibility of generating input GDX files. 

3. The GAMS optimization program with CONOPT solver for nonlinear 

programming was run in a batch mode with the 500 input GDX files. This batch 

run generated 500 output GDX files – one for each simulation – that contain 

optimal emissions and net costs. These outputs were then transferred into Stata 

9.2 to conduct further statistical analyses presented in the next section. 
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 The uncertainty analysis is carried out in two phases. In the first phase, costs are 

treated as known with certainty and the results of uncertainty in ambient air 

concentrations and URFs are analyzed. In the second phase, uncertainty in cost 

parameters is incorporated to examine the sensitivity of the results to uncertainty in cost 

estimates. The uncertainty analysis are carried out at one risk threshold – 10 in a million 

– for regulation at the three spatial resolutions (census tract, census block group, and 

census block). The analysis without uncertainty in cost parameters is carried out at one 

spatial resolution (census tract resolution) and at one risk threshold (10 in a million).   

9.3 Results of Uncertainty Analysis
27
 

9.3.1 Analysis without Uncertainty in Cost Parameters 

9.3.1.1 Optimal Emissions 

 Table 9.2 shows the optimal emissions for select sources and pollutants at three 

spatial resolutions – census tract, census block group, and census block. For each spatial 

resolution, the table shows optimal emissions from the deterministic analyses (presented 

in Tables 7.1, 7.3, and 7.5) and six parameters – mean, standard deviation, median, 5th 

                                                 

 
 
27 Because of the large number of pollutant/source combinations included in the analysis, results here are 
discussed based on a select set of source/pollutant combinations. These are selected such that the results 
based on these sources are generalizable across all combinations included in the analysis. 



 

 

Table 9.2 Comparison of Optimal Emissions from Deterministic Analysis with Optimal Emissions from Uncertainty 

Analysis (Without Uncertainty in Cost Parameters) (Risk Threshold: 1E-05; VSL: $5.5 Million) 

 
Source IP01 IP02 SO01 AP01 SF02 SR01 FG01 GP01 GP02 GP03 Resolution 

Pollutant A A A A AN A F A B F 

Deterministic 
Analysis 

111.9 0 17.47 0 0.06 1.2 1.03 27.5 21.6 29.0 

Mean 91.3 2.77 12.83 2.6 0.022 1.0 1.08 23.47 9.07 30.1 

SD 25.7 4.18 4.78 3.6 0.024 0.2 0.07 3.62 5.37 4.9 

Median 90.6 1.2 13.1 0 0.018 1.04 1.08 23.6 8.34 29.8 

5th Percentile 50. 3 0.0 4.5 0 0 0.64 0.95 17.3 0.2 22.9 

95th Percentile 134.2 10.2 19.9 9.8 0.07 1.27 1.2 29.4 18.6 38.2 

Census 
Tract 

99th Percentile 148.6 20.4 23.3 12.6 0.11 1.31 1.24 31.7 22.5 41.3 

Deterministic 
Analysis 

113.9 0 17.0 0 0.06 1.19 1.03 26.9 21.4 29.1 

Mean 79.06 2.22 11.1 8 0.022 1.0 0.96 21.5 7.1 28.8 

SD 22.2 2.6 3.8 4.7 0.025 0.2 0.2 3.1 4.8 4.8 

Median 78.7 1.46 11.2 7.4 0.019 1.05 1.03 21.5 6.3 28.6 

5th Percentile 43.6 0 4.8 0.7 0 0.67 0.54 16.5 1.1 20.8 

95th Percentile 117.7 7.1 17.2 16.0 0.07 1.26 1.18 26.8 15.7 37.4 

Census 
Block 
Group 

99th Percentile 135.1 10.1 19.9 18.1 0.11 1.31 1.22 28.7 18.7 41.2 

Deterministic 
Analysis 

96.9 0 16.4 0.54 0.03 1.14 1.06 24.6 19.5 27.4 

Mean 47.1 0.97 9.2 2.7 0.01 0.83 0.58 19.7 4.5 25.8 

SD 10.5 1.03 2.5 1.6 0.0096 0.17 0.17 2.4 3.9 4.3 

Median 47.2 0.75 9.3 3.1 0.009 0.8 0.56 19.8 3.7 25.9 

5th Percentile 29.9 0 5.2 0 0 0.6 0.33 15.6 0 19.0 

95th Percentile 63.7 2.8 13.5 4.9 0.03 1.18 0.9 23.3 12.2 33.3 

Census 
Block 

99th Percentile 71.2 3.6 15.1 5.7 0.04 1.2 1.02 24.6 16.1 35.4 
Pollutants: A – Acetaldehyde; F – Formaldehyde; B – Benzene; AN – Acrylonitrile 
Sources: IP – International Paper; SO – Solutia; SF – Sterling Fibers; SR – St. Regis; FG – Florida Gas; GP – Gulf Power 



 

 

 

percentile, 95th percentile, and 99th percentile – that describe the distribution of optimal 

emissions derived from 500 simulations.  

 At census tract and census block group regulation, the optimal emissions from 

deterministic analysis generally fall between the median and the 95th percentile values of 

the distribution for most sources. The standard deviations are typically of the same order 

of magnitude as the mean except for the emissions from Gulf Power and Florida Gas. The 

90% confidence range (range between 5th and 95th percentile) varies by an order of 

magnitude for most sources except for GP01 and GP03. This indicates a significant 

uncertainty in optimal emissions even without considering cost uncertainties.  

 The deterministic values, at the census tract and the census block group 

regulation, are typically closer to the 95th percentile than the median except for 

formaldehyde emissions from Florida Gas (FG01) and Gulf Power (GP03) and 

acetaldehyde emissions from International Paper (IP02) and Solutia (SO01). These 

results can be explained by going back to Table 9.1. This table (Table 9.1) shows the 

values of URFs used in the deterministic analysis as well as the bounds on URFs used in 

the uncertainty analysis. Among the four main pollutants, except in the case of 

formaldehyde, the deterministic analysis used the lower bound on the URF. All else 

equal, lower values of URF mean lower health costs and higher optimal emissions. Thus, 

for pollutants that used the lower bounds of the uncertainty distribution for deterministic 

analysis, the optimal emissions for most simulations are lower than the optimal emissions 

from deterministic analysis. This makes the deterministic optimal emissions fall into the 

upper tail of the simulated distributions. The opposite is true for formaldehyde for which 
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the deterministic analysis used the upper bound of the uncertainty distribution. In case of 

IP02 and SO01, the deterministic optimal emission is zero. As will be seen later in Figure 

9.1, for acetaldehyde from IP02, more than half of the simulations result in zero optimal 

emissions and the remaining simulations show significant spread. Because of the large 

number of zeroes in the uncertainty simulation, the deterministic value (zero emissions) 

is closer to the median value than the 95th percentile value. 

 At the block resolution, however, the deterministic optimal emissions are not 

captured within the simulated distribution. The deterministic optimal emissions for most 

sources are well above the 99th percentile of the distribution. This potentially means that 

500 simulations are not adequate to fully capture the range of possible optimal emissions 

at block regulation. This is likely because the number of constraints (K in the decision 

model) at the block resolution increase to 10,120 from 317 constraints at the block group 

resolution thus significantly increasing the number of input parameters. However, 

increasing the number of simulations would likely result in similar patterns explained for 

the case of census tract and census block group regulation. 

 Figure 9.1 shows histograms of optimal emissions for various pollutants from 

select sources. The distributions vary significantly across sources. Some of them 

approximate a normal distribution, some of them are skewed to the right, and some are 

skewed to the left. Acetaldehyde emissions from IP02 and acrylonitrile emissions from 

SF02 have large number of zeros in their distributions. These distributions are 

constrained in some sense because of the non-negativity constraint on emissions in the 

decision model. 
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Figure 9.1 Histograms for Distribution of Optimal Emissions of Select Sources and Spatial Resolutions (Without Uncertainty in 

Cost Parameters) (Deterministic optimal emissions are shown by red dashed lines) 
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Figure 9.1 (cont’d) Histograms for Distribution of Optimal Emissions of Select Sources and Spatial Resolutions (Without 

Uncertainty in Cost Parameters) (Deterministic optimal emissions are shown by red dashed lines) 



 

 

 Optimal Emissions and Spatial Resolution under Uncertainty 

 The next question of interest is how uncertainty in ambient air concentrations and 

URFs affect optimal emissions across spatial resolutions of regulation. Again, Table 9.2 

has some answers.  First of all, the mean and the median of optimal emissions decrease as 

one regulates at finer resolutions. That is, emission standards become tighter and tighter 

at finer resolutions. This holds even for those sources that show a marginal increase in 

optimal emissions under the deterministic analysis. For example, under the deterministic 

analysis, the optimal emissions for IP01 increase at the finer census block group 

resolution compared to regulation at the census tract. However, the mean and the median 

optimal emissions of the simulated distributions decrease substantially at the finer 

resolution. Thus, if the hypothetical decision maker were to regulate acetaldehyde 

emissions from IP02 at the mean or the median of the distribution, the emission standards 

will be tighter at finer resolutions even if the deterministic choice relaxes the standards. 

This result also holds for other sources that show increases in optimal emissions at finer 

resolution. However, there are some sources (e.g., acrylonitrile from SF02 and 

acetaldehyde from SR01) for which deterministic analysis shows that the resolution at 

which these sources are regulated does not matter for optimal emissions and the 

uncertainty results are consistent with deterministic results. As seen from Table 9.2, the 

mean, median, and deterministic optimal emissions of SF02 and SR01 are the same at 

both tract and block group resolutions. 

 The second finding from Table 9.2 is that the standard deviation of the 

distribution of optimal emissions decreases from census tract resolution to the finer 

census block group and census block resolutions. This finding is generally consistent 
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across all sources. This means that the uncertainty in the choice of optimal emissions 

decreases as the sources are regulated at finer spatial resolutions. 

 The third finding from Table 9.2 is that there are significant overlaps in 

confidence ranges across spatial resolutions. That is, comparing the range of 5th and 95th 

percentile optimal emissions across spatial resolutions reveals that a particular range of 

optimal emissions are common across spatial resolutions. For example, the 5th to 95th 

percentile range for acetaldehyde emissions from IP01 is 50.3-134.2 at the census tract 

resolution, 43.6-117.7 at the census block group resolution, and 29.9-63.7 at the census 

block resolution. This shows that the range of optimal emissions from 50.3 to 63.7 is 

common to all the three resolutions. However, it is possible that the values within this 

overlapping region correspond to different confidence levels for different resolutions. 

The cumulative distributions functions (CDFs) can reveal if this is the case.  

 Figure 9.2 shows the CDFs of optimal emissions under regulation at the three 

spatial resolutions for a select set of sources. For most sources, the CDFs do not intersect, 

except at the tails of the distributions. Consistent with the findings from Table 9.2, the 

CDFs move to the left as the sources are regulated at finer resolutions. That is, at almost 

every confidence level, the optimal emissions decrease with increasing spatial resolution 

of regulation. There are a few exceptions, however. As discussed earlier, in two cases – 

acrylonitrile emissions from SF02 and acetaldehyde emissions from SR01 – the mean and 

the median of distributions were the same for the census tract and the census block group 

resolutions. The CDFs for these sources reinforce the finding; the two CDFs (tract and 

block group) for these two sources are indistinguishable (see Figure 9.2).  
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Figure 9.2 Cumulative Distribution Functions at Various Spatial Resolutions for Optimal Emissions of Select Sources (Without 

Uncertainty in Cost Parameters) 
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Figure 9.2 (cont’d) Cumulative Distribution Functions at Various Spatial Resolutions for Optimal Emissions of Select Sources 

(Without Uncertainty in Cost Parameters) 
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Figure 9.2 (cont’d) Cumulative Distribution Functions at Various Spatial Resolutions for Optimal Emissions of Select Sources 

(Without Uncertainty in Cost Parameters)



 

 

9.3.1.2 Net Costs without Uncertainty in Cost Parameters 

 The net costs are narrowly distributed at all the three resolutions with mean net 

costs increasing with increasingly finer spatial resolutions (mean = $65.9 million, SD = 

$73,736 for the census tract, mean = $66.5 million, SD = $74,659 for the census block 

group, and mean = $69.8 million, SD = $44,971 for census block.  The difference in 

mean net costs between resolutions is statistically significant (Diff = $580, 800, p<0.001 

between census tract and census block group; diff = $3,273,446, p<0.001 between census 

block group and census block). 

 Figure 9.3 shows the CDFs for net costs under regulation at the three spatial 

resolutions. The deterministic analysis predicted that net costs increase as the sources are 

regulated at finer resolutions. The CDFs move to the right with increasing resolution and 

they do not intersect, as expected, indicating that at any level of confidence, net costs are 

higher at finer spatial resolutions. 
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Figure 9.3 Net Costs of Regulation at Various Spatial Resolutions without 

Uncertainty in Cost Parameters 
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9.3.2 Analysis with Cost Uncertainties 

 The second phase of the analysis incorporated uncertainty in cost parameters, in 

addition to uncertainty in ambient air concentrations and URFs, and analyzed the results 

at one spatial resolution, the census tract resolution, and one risk threshold (10 in a 

million).  

9.3.2.1 Optimal Emissions 

 Table 9.3 compares the results at census tract resolution with and without 

uncertainty in cost parameters. For about half of the sources shown in the table, there is a 

statistically significant difference in mean optimal emissions; one of the five sources 

shows an increase in mean optimal emissions when cost uncertainties are incorporated 

while for the other four the mean optimal emissions decrease. At the median level 

though, the optimal emissions decrease for all sources when cost uncertainties are 

incorporated into the analysis. That is, if the decision maker were to regulate the sources 

at the median of the distribution, she would choose stricter standards when cost 

uncertainties are incorporated into the analysis. 

 The second result from Table 9.3 is that the standard deviations of optimal 

emissions increase substantially when cost uncertainties are incorporated. This is not 

surprising because including uncertainties in more input parameters should typically 

increase (or at least should not decrease) the uncertainty in the output parameters. 

 Figure 9.4 compares the frequency distributions of optimal emissions with and 

without uncertainty in cost parameters. Because of the larger standard deviations, the 

values are spread over a bigger range when cost uncertainties are included. The shapes of 

the distributions appear generally similar with and without cost uncertainties with some 
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exceptions. In case of sources FG01 and SR01, the frequency distributions under cost 

uncertainties show a long bar at zero, which is not seen for distribution without cost 

uncertainties. This is because of the decision to constrain the sampled negative values on 

cost parameter ija to an arbitrary low value 0.1. A low value for ija indicates low 

abatement costs at any emission levels and this drives the optimal emission to zero 

because it is very cheap to abate pollution. 

 Finally, Figure 9.5 shows the CDFs of optimal emissions with and without cost 

uncertainties. The problem of constraining the cost parameter ija  to 0.1 discussed in the 

previous paragraph shows up once again. In cases of those same sources (mainly FG01 

and SR01), the CDFs with and without cost uncertainties start at very different locations 

on the emissions axis. Further, the CDF of optimal emissions with cost uncertainties 

included (red line) is much flatter than the CDF without the cost uncertainties (blue line), 

indicating much bigger uncertainty when cost parameters are incorporated in the analysis 

(see CDFs for formaldehyde and benzene emissions from FG01 and acetaldehyde 

emissions from SR01). For other sources, however, it appears from the CDFs that cost 

uncertainties might not matter a great deal. For most of the other sources, the CDFs with 

and without cost uncertainties almost merge. 



 

 

Table 9.3 Comparison of Optimal Emissions without Cost Uncertainties with Optimal Emissions from Uncertainty 

Analysis with Cost Uncertainties (Tract Resolution; Risk Threshold: 1E-05; VSL: $5.5 Million) 

 
 Source IP01 IP02 SO01 AP01 SF02 SR01 FG01 GP01 GP02 GP03 

 Pollutant A A A A AN A F A B F 

Deterministic 
Analysis 

 
111.9 0 17.47 0 0.06 1.2 1.03 27.5 21.6 29.04 

Mean 91.3 2.77 12.83 2.6 0.022 1.0 1.08 23.47 9.07 30.1 

SD 25.7 4.18 4.78 3.6 0.024 0.2 0.07 3.62 5.37 4.9 

Median 90.6 1.2 13.1 0 0.018 1.04 1.08 23.6 8.34 29.8 

5th Percentile 50. 3 0.0 4.5 0 0 0.64 0.95 17.3 0.2 22.9 

95th Percentile 134.2 10.2 19.9 9.8 0.07 1.27 1.2 29.4 18.6 38.2 

Without Cost 
Uncertainties 

99th Percentile 148.6 20.4 23.3 12.6 0.11 1.31 1.24 31.7 22.5 38.2 

Mean 88.8 3.3 11.0* 3. 5* 0.019 0.85* 0.91* 22.7* 8.7 29.8 

SD 32.6 5.9 5.9 4.6 0.024 0.37 0.36 5.1 5.9 6.4 

Median 85.3 0.93 11.7 0.4 0.013 0.93 1.02 23.3 7.9 29.6 

5th Percentile 40.5 0 0 0 0 0 0 12.7 0 19.1 

95th Percentile 145.8 13.5 19.5 13.1 0.07 1.3 1.25 30.0 19.3 40.9 

With Cost 
Uncertainties 

99th Percentile 171.0 29.7 23.0 17.6 0.11 1.42 1.33 32.1 23.7 45.0 
* Difference in means between optimal emissions with and without cost uncertainties is statistically significant at 5% 
Pollutants: A – Acetaldehyde; F – Formaldehyde; B – Benzene; AN – Acrylonitrile 
Sources: IP – International Paper; SO – Solutia; SF – Sterling Fibers; SR – St. Regis; FG – Florida Gas; GP – Gulf Power 
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9.4 Histograms for Distribution of Optimal Emissions of Select Sources at Tract Resolution with and without Uncertainty in Cost 

Parameters (Deterministic optimal emissions are shown by red dashed lines) 
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9.4 (Cont’d) Histograms for Distribution of Optimal Emissions of Select Sources at Tract Resolution with and without Uncertainty 

in Cost Parameters (Deterministic optimal emissions are shown by red dashed lines) 
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9.4 (Cont’d) Histograms for Distribution of Optimal Emissions of Select Sources at Tract Resolution with and without Uncertainty 

in Cost Parameters (Deterministic optimal emissions are shown by red dashed lines) 
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9.4 (Cont’d) Histograms for Distribution of Optimal Emissions of Select Sources at Tract Resolution with and without Uncertainty 

in Cost Parameters (Deterministic optimal emissions are shown by red dashed lines)



 

 

9.3.2.2 Net Costs 

 Figure 9.6 shows the frequency distribution of net costs with and without cost 

uncertainties included. The distribution on the right (with cost uncertainties) best captures 

the uncertainty in cost parameters. The net costs vary from negative values to as high as 

$200 million. The figure on the left that shows the distribution of net costs without cost 

uncertainties has a much narrower band – between $60 and $70 million. Again, the 

negative net costs that show up in the analysis with cost uncertainties can be explained by 

the constraint (a value of 0.1) placed on some of the sampled values for the cost 

parameter, ija . As explained before, this constraint drives the optimal emissions of all 

those sources with restricted ija values to zero, and at a very little cost. The zero 

emissions from these sources create slack in cancer risk at a number of spatial locations 

over which risks are regulated (in this case, the centroids of census tracts) and this slack 

allows higher emissions from other sources. 
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Figure 9.5 Cumulative Distribution Functions for Optimal Emissions of Select Sources at Tract Resolution with and without 

Uncertainty in Cost Parameters 
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Figure 9.5 (cont’d) Cumulative Distribution Functions for Optimal Emissions of Select Sources at Tract Resolution with and 

without Uncertainty in Cost Parameters
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Figure 9.6 Histograms of Net Costs of Regulation at Tract Level Resolution with and 

without Cost Uncertainties 
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When these other sources are allowed to emit much more than their current baseline 

emissions, their costs decrease so much that the overall costs become negative. Finally, 

Figure 9.7 shows the CDFs for net costs at the census tract resolution with and without 

uncertainties in cost parameters. The CDF confirms the wider distribution of net costs 

with uncertainties in cost parameters compared to net cost distribution without 

uncertainties in cost parameters. 
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9.3.3 Summary of Results 

 The uncertainty analysis presented here is by no means a complete analysis. First 

of all, the characterization of uncertainty in the input parameters of the decision model is 

inadequate. In characterizing uncertainty in ambient air concentrations, (a) the 

correlations in concentrations predicted by ISCST model across spatial locations 

Figure 9.7 CDFs of Net Costs of Regulation at Tract Level Resolution with and 

without Uncertainties in Costs 
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(receptors) were ignored and (b) in spite of some empirical evidence (Sax and Isakov, 

2001) that the uncertainty in the prediction of Gaussian plume models could vary 

depending on the location of receptors with respect to sources, the analysis here assumes 

the uncertainty to be the same (constant ln xσ for log-normal distribution) across all 

receptors. In the case of inhalation URFs, this analysis considered uncertainty in only the 

upper bound URF although a more complete characterization would characterize the 

entire range of plausible values. Finally, the characterization of cost uncertainties was 

limited to the uncertainty in parameters of the fitted cost functions. A more complete 

characterization should also include the uncertainty in the estimates of the abatement 

costs themselves. Secondly, as the analysis at block resolution indicated, the number of 

simulations used in the analysis might be inadequate to capture the complete range of 

possible optimal emission outcomes. Nevertheless, the analysis does provide some useful 

insights: 

• In spite of the limited characterization, the uncertainty in input parameters introduces 

substantial uncertainty in the choice of optimal emissions; the standard deviations are 

of the same order of magnitude as the means of the distributions for most sources.  

• Even after considering uncertainties, it appears that the empirical findings of 

deterministic analysis regarding variation of optimal emissions with spatial resolution 

generally hold, especially in the inter-quartile confidence range. That is, when the 

deterministic analysis found that the optimal emissions decrease when regulated at 

finer resolution, the uncertainty analysis also showed that the optimal emissions 

would be lower at finer resolutions. However, when the deterministic analysis found 

that the optimal emissions would increase at finer resolutions (for example, in Table 
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9.2, formaldehyde emissions from GP03 between tract and block group resolutions), 

the results from the uncertainty analysis still predicted a decrease in optimal 

emissions.  

• In general, the uncertainty in the choice of optimal emissions decreases at finer spatial 

resolutions. This could be an artifact of an inadequate number of simulations, and a 

larger sample size for simulations might clarify this finding. 

• Abatement cost uncertainties substantially influence results. The difference in means 

of the distributions with and without abatement cost uncertainties is statistically 

significant for a number of sources. 
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CHAPTER 10 

POLICY IMPLICATIONS 

  

 This chapter discusses some of the major policy implications of the findings 

presented in Chapters 7, 8, and 9. The discussion is divided into a number of broad 

themes: costs vs. equity tradeoff, role of acceptable risk, regulation based on maximum 

individual risk, and environmental justice implications. 

10.1 Costs vs. Equity Tradeoff 

 The central question for this research is how could regulation at finer spatial 

resolutions affect choices of emission standards and net social costs? The specific context 

for this study is the regulation of air toxics. The model developed to address this question 

and its empirical application demonstrates that the direction of change of choice of 

emissions is a function of whether or not regulation at finer resolutions identifies “hot 

spots” that are not apparent at coarser spatial resolutions. Sources that contribute to new 

hot spots identified at finer resolutions would be subjected to stricter emission standards 

while other polluting sources could be subjected to laxer emission standards. The results 

of the model and the empirical analysis also showed that net costs are non-decreasing 

with regulation at increasingly finer spatial resolutions. 

 The second question for this research is what are the distributional consequences 

of regulation at fine spatial resolutions? The results of the empirical analysis presented in 

Chapter 8 suggested that regulation at finer spatial resolutions could reduce “hot spots” 

where hot spots are defined as those locations at which unregulated risks exceed a certain 

“acceptable” level of risk. Thus, if the objective of regulation at finer spatial resolutions 
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is to address risk in “hot spots,” it appears that finer resolution regulation could have the 

intended effect.  

 These findings imply that regulation at finer spatial resolutions could involve 

tradeoffs between costs and the goal of ensuring an equitable distribution28 of risk. The 

results of the empirical analysis presented in Section 8.1.1 indicated, for example, that at 

100 in a Million threshold risk, maximum individual risk (MIR) reduces from 187 in a 

Million at the census tract resolution, to 100 in a Million at the finer census block 

resolution. The size of the population that would benefit from this reduction in cancer 

risk is less than 0.1% of the total population of Escambia and Santa Rosa. On the other 

hand, the results in Table 7.1 show that regulation at the census block resolution costs 

twice as much as regulation at the census tract resolution and among the regulated 

entities, there will likely be both winners and losers, as indicated in Table 8.3. In the 

context of these results, the question is how can these tradeoffs be resolved? 

 The setting just described is a familiar setting in public policy making in which 

the eventual policy decision is an outcome of a political process involving the various 

groups likely to be affected by the policy. One line of empirical literature in 

environmental policy that is particularly relevant to the question here is the literature on 

the relation between polluting firms’ abatement activity and characteristics of the 

community in which the firms are located. This literature consistently shows, in a variety 

of policy settings, that community characteristics have significant effects on the firm’s 

pollution abatement behavior. Hazardous waste processing firms were unlikely to expand 

                                                 

 
 
28 “Equitable distribution” here has no reference to environmental equity. This definition simply refers to 
the goal that no individual should be subjected to more than a certain level of “acceptable” risk 



 172 

their capacity in locations where potential for collective action was high, as measured by 

voter turnout (Hamilton, 1993). Hamilton (1999) replicated this result for firms releasing 

carcinogenic air pollutants; firms located in high voter turnout areas reduced carcinogenic 

air emissions more. For Superfund, Hird (1993) found that Superfund clean up was more 

likely to benefit affluent and highly educated communities. Enforcement inspections 

were more likely in communities with higher per capita income (Helland, 1998); higher 

air pollution abatement expenditures were associated with communities with higher per 

capita income (Becker, 2004); and finally, manufacturing plants in areas with a politically 

active population emitted less air pollution (Gray & Shadbegian, 2004). 

 Thus, the empirical evidence in the literature indicates that the political power of 

the communities drives regulated firms’ willingness to spend money on abatement 

activity. In the context of the findings of this dissertation research, this empirical 

evidence suggests that the risk reduction benefits of regulation at finer spatial resolution 

are likely to accrue to politically powerful groups because only those groups are capable 

of forcing regulated industries to pay for additional emission controls required by 

regulation at finer spatial resolutions. This presents a dilemma for regulation at finer 

spatial resolutions. An important rationale for regulating risks at finer spatial resolutions 

has been to protect minorities and low-income groups that are likely to live in hot spots. 

These groups, however, are also likely to possess limited political power, in which case 

regulation at finer resolutions is unlikely to benefit the targeted populations unless 

regulatory agencies ensure that the targeted populations have an influence in the policy 

process. 
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10.2 Role of Acceptable Risk 

 The preceding section argued that regulation at increasingly finer spatial 

resolution would involve tradeoffs between net costs of regulation and ensuring equitable 

distribution of risk. This argument, however, was conditional on a fixed threshold risk. 

The threshold risk represents an “acceptable level” of individual risk and reducing the 

individual risks across the population of interest to a level below this acceptable level 

would mean ensuring an “equitable distribution” of risks.  

 The concept of acceptable risk, however, is not a fixed quantity that is known a 

priori (Bostrom, Turaga, & Ponomariov, 2006). Research on technological risk 

perceptions suggests that risk acceptability is likely a function of perceived benefits of 

technology, perceived risks, and trust in institutions responsible for risk management 

(Siegrist, 2000). For example, when risks are regulated at 1 in a million threshold risk, 

Table 7.5 showed that a number of emission sources have to be shut down to achieve that 

level of risk. Under such situations, even for the local communities, the costs of 

achieving the “acceptable level” of risk (for example, in terms of loss of local 

employment) would likely be too high compared to the benefits of risk reductions, which 

in turn, might make higher risks acceptable. 

 Figure 10.1 shows the variation of net costs with threshold risk at each spatial 

resolution. The figure shows that as higher and higher risks become acceptable (as one 

moves to the right on the horizontal axis), the net costs decrease sharply. The implication 

is that “acceptable risk” could play a role in resolving the tradeoffs between costs and 

equity when risks are regulated at increasingly finer spatial resolutions. 
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10.3 Maximum Individual Risk (MIR) in Risk-based Regulation  

 A key component that drives the results of the decision model developed for this 

study is the constraint that no spatial location should be subjected to more than a certain 

threshold risk. As finer resolutions reveal new hot spots, the constraint requires that risks 

be reduced in these new hotspots, which increases costs but ensures equity in risk. This 

constraint in the model was based on the principle of protection of the individual exposed 

to maximum risk. The rationale for this principle is “….to ensure equitable protection 

across an exposed population…(EPA, 2004b, p: 26).”  

 This principle of reducing MIR has been criticized both by economists and public 

health experts. The economists argue against this principle on the grounds of economic 

inefficiency of the policies that are based on this principle (Kopp, Krupnick, & Toman, 

1996; Viscusi, 2000). The argument is that reducing small individual risk to large 

populations is likely to lead to greater benefits than reducing large individual risk to 

Figure 10.1 Variation of Net Costs with Threshold Risk 
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smaller populations. The public health experts, although less concerned about economic 

inefficiency, also argue on similar lines. For public health experts, ignoring population in 

preference to individuals is against the historically accepted basis for public health 

decision making (Goldstein, 1989; Goldstein, 1995). 

 An interesting result found in the empirical analysis of this study illustrates the 

merit of the above arguments. At 100 in a Million risk threshold, regulation at the census 

block resolution instead of tract resolution reduced MIR from 187 in a Million to 100 in a 

Million (Figures 8.1 and 8.2); however, population risks, expressed as expected 

additional cancer cases, increased (Figure 7.1) when regulated at the finer resolution. 

This increase in population risk might just be an artifact of the empirical setting specific 

to this study but it does point to the possibility that by focusing on reducing the individual 

risk, one might just be achieving risk reductions to a few people29 at the expense of a 

larger population. These results suggest the need for reexamining the principle of 

protecting individual risk as the basis in risk-based regulation.  

10.4 Implications for Environmental Justice (EJ) 

 A 1994 executive order requires federal agencies to “…..make achieving 

environmental justice part of its mission by identifying and addressing, as appropriate, 

disproportionately high and adverse human health or environmental effects of its 

programs, policies, and activities on minority populations and low-income 

populations…(Executive Order 12898, 1994).” As discussed in Chapter 1 and Chapter 8, 

                                                 

 
 
29 Note that the reduction in individual risk from 187 in a Million to 100 in a Million benefits less than 
0.1% of the population 
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the increasing emphasis on characterizing air toxics at finer resolutions is partly driven by 

the need to address disproportionate exposures to sensitive populations including 

minority and low-income populations. 

 The analysis presented in Chapter 8 showed that regulating risks at increasingly 

finer resolutions would reduce hot spots but the reduction in risks need not necessarily 

translate into reductions for minority communities. This result underlines the need for 

incorporating EJ concerns more explicitly in regulatory decisions in order to achieve 

desired EJ outcomes. This is especially important in light of a lack of clarity in EPA’s 

current EJ practices. A recent General Accounting Office report (GAO, 2005), for 

example, reviewed three rules promulgated by EPA under the Clean Air Act (CAA) and 

found that EPA paid little attention to EJ in drafting the rules. The report also found that 

the working groups responsible for drafting the rules did not have any knowledge or 

guidance on incorporating EJ into rule making. Chapter 11 briefly discusses possible 

ways of modifying the model of decision making developed for this study to incorporate 

EJ concerns.  

 The analysis in Section 8.2.2 showed that even if the reductions in cancer risks 

due to regulation at finer resolution occurred in locations with a higher proportion of 

minority populations (see the case of 10 in a million threshold risk in Table 8.1), the 

population weighted change in risk (change in expected cancer incidence) had no 

association with the proportion of EJ population. This result demonstrates that assessment 

of environmental equity due to policy intervention should take the size of the population 

affected by the policy into account. 
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CHAPTER 11 

FUTURE RESEARCH 

 The model developed to address the main research question in this dissertation 

was based on many assumptions, which were already discussed in Section 4.3. This 

chapter will (1) indicate possible ways of relaxing some of the model assumptions for 

future research and (2) suggests some additional data collection efforts that would 

improve the empirical analysis presented in this research. 

11.1 Relaxing Modeling Assumptions 

 The model in Chapter 4 was based on a number of important assumptions. The 

earlier chapters discussed some of the assumptions in appropriate contexts. This section 

discusses two specific assumptions and indicates potential ways of relaxing those 

assumptions in light of current knowledge. 

11.1.1 Variation in Susceptibility to Air Toxics Exposures 

 The health costs component of the model in Chapter 4 assumes uniform 

susceptibility to air toxics exposures irrespective of the individual characteristics of the 

population. However, susceptibility to toxics exposures could vary by age, race, gender, 

and health status (Zahm & Fraumeni, 1995). The population sub-groups of particular 

concern have been children and minority populations. The discussion that follows 

specifically focuses on these two groups and suggests possible ways of incorporating the 

variation in susceptibility within the decision model developed for this research. 
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11.1.1.1 Susceptibility in Children  

 The report (NRC, 1993) by the National Academy of Sciences in 1993 concluded 

that both exposure to toxics and chemical induced toxicity could differ between adults 

and children. More recent research indicates that accounting for variation in age related 

susceptibilities in risk assessments could lead to a 2.8 fold increase in mean risk estimates 

(Hattis, Globe, & Chu, 2005). The scientific evidence on age related susceptibilities, 

especially in children, led to an executive order in 1997 that requires federal agencies to 

“make it a high priority to identify and assess environmental health risks and safety risks 

that may disproportionately affect children (Executive Order 13045, 1997).” 

 The parameter in the decision model that could account for variation in 

susceptibilities is the unit risk factor (URF) 
j

u . As explained in Section 9.1.2, the URF is 

calculated by the equation: 

  
*

*

SF BR
URF

BW CF
=        (11.1)  

Where, SF is cancer slope factor, BR is breathing rate, BW is body weight, and CF is a 

conversion factor equal to 1000.  

 The URF estimates the probability of cancer due to lifetime exposure to 1 

3/g mµ of pollutant. Typically, the values for the variables SF, BR, and BW are based 

on average adult characteristics. Accounting for differences in susceptibilities between 

adults and children requires adjusting for cancer potency as well as breathing rates and 

body weight. In case of cancer potency, in the most recent carcinogenic risk assessment 

guidelines, EPA developed a supplemental guidance for assessing susceptibility to early 

life exposures (EPA, 2005b). According to these guidelines, the cancer potency factor 
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should have an adjustment factor of 10 for individuals less than two years old and an 

adjustment factor of 3 for individuals between 2 and 16 years of age. These guidelines are 

specific to chemicals that cause cancer through mutagenic modes of action. EPA 

recommends no adjustment for other modes of action because of a lack of scientific 

evidence. The breathing rate and body weight are also obviously different for adults and 

children and that has an effect (based on equation 11.1) on the URF that should be used 

for different life stages. The risk assessment guidelines for the Air Toxics Hot Spots 

program of California recommends using age-specific breathing rates and body weight to 

estimate risks (Cal EPA, 2003). 

 Thus, methods are available for accounting for variation in susceptibility between 

children and adults and future research should include such methods within the 

framework of the decision model and the empirical analysis. Ignoring this variation in 

susceptibility would overestimate the optimal emissions due to regulation at any given 

spatial resolution. However, the predictions of the model regarding the variation in 

optimal emissions with variation in spatial resolution would still hold unless the threshold 

risk constraints in the model are varied based on the population characteristics of the 

location at which risks are regulated. 

11.1.1.2 Susceptibility based on Race 

 Section 8.2 briefly discussed the evidence on disproportionate risks to EJ 

communities as well as potentially greater susceptibility of these communities to cancer 

risks. It is important to understand the relation/difference between “variation in 

susceptibility to risk” and “disproportionate risk.” If an individual within an EJ group and 

a non-EJ individual are both subjected to an equal level of air toxics exposure, the 
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variation in susceptibility to risks makes the EJ individual more prone to cancer risk than 

a non-EJ individual. This would lead to “disproportionate risk,” which could be assessed 

by incorporating appropriate risk factors to each individual (the EJ individual will have a 

higher risk factor). Disproportionate risk, however, is also possible, even without 

considering the variation in susceptibility, when the two individuals are subjected to 

different levels of exposures of air toxics. Most of the empirical research that is 

concerned about “disproportionate risks” is based on the latter understanding of the 

term.30 Unlike in case of risks to children, there is little guidance available from EPA on 

how to account for variation in susceptibility across racial groups in risk assessments. 

 In the context of this research, the constraint on threshold risk does address the 

concern of disproportionate risks because the constraint ensures that no individual is 

subjected to more than an “acceptable” risk. The model does not account for variation in 

susceptibility across racial groups or other sensitive groups. It is possible, however, to 

incorporate variation in susceptibility within the decision model. One possibility is to 

develop URFs that appropriately reflect the variation in susceptibilities across various 

population groups (children vs. adults, white vs. minority) and use the population group-

adjusted URFs in the assessment of the population health costs component of the 

objective function. As explained in the previous paragraph, however, there is little 

guidance on how to quantify the differences in unit risk across racial groups. In light of 

this, an alternative is to assume that variation in susceptibility poses greater risks to 

                                                 

 
 
30 Actually most of the EJ research assumes presence of a polluting facility as a proxy for risk. It can be 
misleading especially in case of air pollution because some pollutants travel several miles from the location 
of emissions and could cause more impact in census units far away from the source. 
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minorities and vary the risk threshold conditional on the proportion of the EJ population 

in the location at which risk is regulated. That is, the threshold risk (which, in the current 

model, is constant across spatial locations over which risk is regulated) will be stricter for 

locations where the proportion of the EJ population is higher than some reference 

group.31 

11.1.2 Valuation of Non-cancer and Ecological Effects 

 The decision model developed for this research does not quantify the costs of non 

cancer risk and ecological risk. Ignoring these risks underestimates the costs of residual 

risks remaining after regulation, and for any given spatial resolution of regulation, the 

optimal emissions will likely be overestimated (that is, ignoring the non cancer and 

ecological effects would relax the standards). 

 An important constraint in valuing non cancer and ecological risk is the lack of 

outcome measures in risk assessments that allow economic valuation. Typically 

economic valuations require quantification of probabilities of adverse outcomes so that 

stated preference methods such as willingness to pay (WTP) can be used to value the 

change in probabilities of those adverse outcomes due to a change in the exposure 

(Dockins et al., 2004). In case of non cancer risk assessments, the current method of 

quantification uses threshold models. Inhalation reference concentrations (RfC) or oral 

reference dose (RfD), used in non cancer risk assessments are defined “as an estimate, 

                                                 

 
 
31 A toolkit developed by EPA (EPA, 2004c) defines environmental justice communities as those 
communities where minorities or low income groups or children and elderly live at a higher percentage 
than the state average percentage. This definition of EJ communities could be used in differentiating the 
risk threshold across regulated locations. 
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with uncertainty spanning perhaps an order of magnitude, of an inhalation exposure or 

oral dose to the human population (including sensitive subgroups) that is likely to be 

without appreciable risks of deleterious effects during a lifetime (EPA, 1999a p: 50).” An 

index called hazard index (HI) is then calculated as a ratio of current exposures to RfC. If 

HI is above 1, it only indicates the potential for adverse non cancer risk but HI cannot 

clearly relate a change in exposures to a change in probability of an adverse effect. 

Efforts are underway (EPA, 2000b; Axelrad et al., 2005) to develop alternative non 

cancer risk assessment methods that allow valuation of non cancer health effects. 

 Quantifying and valuing ecological changes due to changes in pollutant 

concentrations is even more complex than valuing human health effects. Ecological risk 

assessment techniques have been in place for more than a decade now but there has been 

no systematic effort to link ecological risk assessment with economic valuation to 

develop valuation techniques for ecological effects. Recognizing this, EPA has recently 

developed a strategic plan to develop methods for ecological benefits assessment (EPA, 

2006d). This document discusses several issues that need to be addressed and specific 

actions to achieve the goal of fully incorporating ecological effects valuation into benefit-

cost analyses. 

11.2 Improving Empirical Analysis 

 This section discusses three specific areas for future research where additional 

data could improve the empirical analysis. 

11.2.1 Data for Estimation of Cost Functions 

 The limitations of data used for estimating cost functions have already been 

discussed at several places in the document, specifically in Chapter 6 and Chapter 9. The 
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approach for estimating cost functions relied on the regulatory impact analyses (RIA) and 

background information documents (BID) developed by EPA for various maximum 

achievable control technology (MACT) standards. This approach was selected because it 

was the only feasible approach. In hindsight, however, a primary data collection effort 

would have led to better estimation of cost functions. For example, for the sources 

selected for the analysis, one could have used an approach such as expert judgment to 

identify several alternative abatement options and the likely costs. The experts in such an 

approach would be engineering design firms that routinely design and construct pollution 

control devices. Such an approach lends itself to a more systematic quantification of 

uncertainties in cost parameters. Future research could explore such innovative 

alternatives to estimating costs in the face of an extremely limited amount of publicly 

available data. 

11.2.2 Incorporating an Exposure Model 

 The integrated risk assessment tool, the Regional Air Impact Modeling Initiative 

(RAIMI), used for estimating exposure concentrations does not incorporate an exposure 

model. Because of this, the empirical analysis assumed ambient air concentrations to be 

surrogates for exposure concentrations. As discussed in Section 5.4.1.2, exposure models 

such as the Hazardous Air Pollutant Exposure Model (HAPEM) are available to estimate 

exposure concentrations from ambient air concentrations. These models use population 

activity pattern data. By making assumptions about the amount of time people live in 

different “microenvironments,” such models can estimate exposures. Future research 

could incorporate an exposure model to improve the empirical analysis. 
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11.2.3 Improved Characterization of Uncertainty 

 The main limitations of the uncertainty analysis were summarized in Section 

9.3.3. This is another area in empirical analysis that would benefit from additional data 

collection. Specifically, complete characterization of uncertainties in unit risk factors will 

clarify a number of conclusions made based on the limited analysis presented in Chapter 

9. 
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APPENDIX A 

RAIMI IMPLEMENTATION
32
 

 

A.1 Background 

 The Regional Air Impact Modeling Initiative (RAIMI) consists of a set of tools 

designed “to evaluate the potential for health impacts as a result of exposure to multiple 

contaminants from multiple sources, at a community level of resolution33.” RAIMI 

integrates emission inventory, dispersion model, and risk estimation in a GIS 

environment and allows estimation and representation of cancer and non-cancer risks 

from air toxics.  

 Conceptually RAIMI follows the typical steps involved in a multi-source multi-

pollutant risk assessment of air toxics. Figure A1 shows a flowchart of steps involved in a 

typical risk assessment process. As a first step, an emission inventory of all sources and 

pollutants released in the community of interest is developed. An air dispersion model 

such as Industrial Source Complex (ISC) model predicts ambient air concentrations at a 

number of receptor locations using emission source characteristics (e.g., exit gas velocity, 

exit gas temperature, stack height), meteorological parameters (e.g., wind speed and 

direction, vertical temperature profile, atmospheric stability), land use, and terrain 

characteristics of the study area. An exposure model takes into account the activity 

patterns and demographic composition of the area to estimate the actual exposures from 

                                                 

 
 
32 This description is a slightly modified version of the write-up included in Gesser et al. “PERCH Air 
Quality Study, Midyear Progress Report;” Georgia Institute of Technology; August 11, 2006 
33 RAIMI – Regional Air Impact Modeling Initiative available at 
http://www.epa.gov/earth1r6/6pd/rcra_c/raimi/raimi.htm. Last updated March 3rd, 2006 



 186 

ambient concentrations. In the next step, using the toxicity information for different 

pollutants, individual as well as cumulative cancer and non-cancer risks are estimated.  

 The RAIMI process generally follows this typical risk assessment process but 

with a few additional assumptions. First, RAIMI does not have an exposure model built 

into it and hence assumes ambient concentrations as surrogates to exposures. Second, the 

dispersion modeling in RAIMI estimates ambient concentrations for a unit emission rate 

(1 g/s). This assumes that pollutants are released at a constant rate over the entire year 

and the dispersion process for all pollutants is the same irrespective of their individual 

physical characteristics. Finally, RAIMI is currently capable of estimating cancer and 

non-cancer risks only from inhalation pathway. Future developments are likely to provide 

capabilities for considering other pathways such as ingestion. 
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Figure A1. A Typical Inhalation Risk Assessment Process 

(Source: EPA’s Risk Assessment Reference Library – Volume 3) 
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A.2 RAIMI Components 

 The RAIMI system has five different tools that perform various functions. 

1. Risk-MAP: Risk-MAP is the core tool within RAIMI. Risk-MAP is used to 

import emission inventory information into Geographic Information Systems 

(GIS) environment, perform risk analyses, present risk assessment results in 

tabular or graphical form, and perform supplemental analysis. Risk-MAP is 

designed as an extension within ArcMap GIS software. 

2. Air Modeling Preprocessor (AMP): The main function of AMP is to prepare 

source-specific meteorological and ISCST3 air model input files. This tool is also 

designed as an extension in ArcMap. 

3. ISC Batch: This tool is designed to execute multiple ISCST model runs in a 

single batch run. In a multi-source risk assessment, the dispersion model has to be 

executed once for each source. Using this tool, one can run the dispersion model 

for a large number of sources in a single batch run. 

4. AIR2GIS: This tool organizes the output from the dispersion model into a format 

that can be imported into GIS. 

5. Data Miner: This tool has the capability to extract information from an existing 

inventory to prepare a table in a format that can be imported into the main Risk-

MAP tool. Currently, this tool’s use is restricted to Point Source Data Base 

(PSDB) format of Texas and was not used for this study. 

A.2.1 Dispersion Model in RAIMI 

 Dispersion models predict downwind pollutant concentrations by simulating the 

evolution of the pollutant plume over time and space given data inputs including the 

quantity of emissions and the initial conditions (e.g., velocity, flowrate, and temperature) 

of the stack exhaust to the atmosphere.  To estimate maximum ground-level 



 189 

concentrations, RAIMI uses the latest version (02035) of the ISCST3 dispersion model, 

which was most recently upgraded by U.S. EPA on February 4, 2002.  ISCST3 is a 

refined, steady-state, multiple source, Gaussian dispersion model and is a preferred model 

to use for industrial sources in this type of air quality analysis.34   

 It should be noted that RAIMI applications of ISCST3 do not allow for inclusion 

of building downwash parameters (i.e., dimensions of dominant building tiers), since the 

required data on buildings are typically not available.  Building structures that obstruct 

wind flow near emission points may cause stack discharges to become caught in the 

turbulent wakes of these structures leading to downwash of the plumes.  Wind blowing 

around a building creates zones of turbulence that are greater than if the building were 

absent.  These effects generally cause higher ground level pollutant concentrations since 

building downwash inhibits dispersion from elevated stack discharges.  The absence of 

building downwash analysis in this and any application of RAIMI is likely to affect the 

accuracy of model results to a certain degree that cannot be readily estimated since 

building dimensions (hence downwash effects) vary considerably from facility to facility. 

A.2.2 Estimation of Cancer and Non cancer Risks in RAIMI 

 For chronic effects from carcinogenic compounds, risk is calculated from the 

inhalation unit risk (IUR), which represents upper-bound excess lifetime cancer risk 

estimated to result from continuous inhalation exposure of 1 g/m3 over a lifetime.  The 

chronic cancer risk is calculated simply as the product of the long-term modeled average 

                                                 

 
 
34 40 CFR 51, Appendix W−Guideline on Air Quality Models (April 2003 revision), Appendix 

A.5−Industrial Source Complex Model (ISC3).  Note that since PERCH Phase III project inception, the 
U.S. EPA promulgated the AERMOD Modeling System on November 9, 2005 as the preferred regulatory 
dispersion model to replace ISCST3.  However, RAIMI is not currently structured to utilize AERMOD, 
since this dispersion model requires different processing of meteorological data inputs than ISCST3.  
Future applications of RAIMI or refinement of risk assessment result should utilize AERMOD in favor of 
ISCST3. 
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concentration (MC) and the IUR.  RAIMI calculates the chronic cancer risk attributable 

to each pollutant emitted from each source at each node, and making the assumption that 

all chronic risks are cumulative, adds the piecewise risks to quantify the total risks as 

summarized in equations A1 and A2. 

 Risk IUR ( 1)i i iMC A= ×  

 ( )Cumulative Risk  Risk ( 2)
i

i

A= ∑   

 Chronic non-cancer effects are expressed in terms of a reference concentration 

(RfC), which represents an estimate of the upper-bound continuous inhalation exposure 

without an adverse health effect.  The chronic non-cancer risk is calculated simply as the 

division of the long-term MC by the RfC.  The chronic non-cancer risk hazard quotient 

(HQ) attributable to each pollutant emitted from each source can be calculated at each 

receptor node, and making the assumption that all chronic risks are cumulative, adding 

the piecewise HQ yields the total hazard index (HI) as summarized in equations A3 and 

A4.    

 i ( 3)
RfC

i

i

MC
HQ A=   

 ( ) ( 4)
i

i

HI  HQ A= ∑  

A.3 Data  

 The implementation of RAIMI involved collection of a variety of data from 

different sources. This section briefly presents the type of data collected and their 

sources. 

A.3.1 Emissions Data 
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 RAIMI requires development of an emission inventory that should include 

physical characteristics of sources such as location and type (stack, fugitive, or flare), 

height of release, and velocity and temperature of exit gas as well as emission 

characteristics such as pollutants released, and the corresponding emission rates. Several 

states develop their own inventories for air toxics (for example, the point source database 

of Texas). Florida, however, has not yet developed any such comprehensive state level 

database for air toxics. Hence this research used a federal emission inventory developed 

by EPA. Specifically, we used the point source database of EPA’s 1999 base year 

National Emission Inventory (NEI) (Version 3) for hazardous pollutants (HAPs) 

(http://www.epa.gov/ttn/chief/net/1999inventory.html). 

 The US EPA compiles the NEI for HAPs from a variety of sources. The first 

source of information for NEI is state and local air pollution control agencies. Identical 

information was also requested from the Emission Standards Division (ESD) for 

Maximum Achievable Control Technology (MACT) standards. EPA then uses Toxic 

Release Inventory (TRI) data to make sure that “all emissions data for facilities that 

report to TRI are included in NEI (EPA, 2003 p: 2-2).” Finally, for those states and 

counties that did not submit data in 1999, EPA used data submitted in 1996 to complete 

the 1999 base year NEI for HAPs. 

 Considerable manual, subjective quality assurance of data inputs was required to 

avoid misrepresentative modeling analyses.  NEI data are compiled from emissions 

reports submitted by individual facilities whose emissions reports vary in completeness 

and quality.  Common data entry errors that can have a significant impact on model 

results include source coordinates, emission rate, and stack parameters.  Of these inputs, 

improper source coordinates were most evident when plotted in the RAIMI GIS system.  

Using NEI data, several facilities exhibited multiple point sources in distinct locations 

within the model domain.  In these cases, aerial photographs and/or permit files obtained 

from the Florida Department of Environmental Protection were referenced to discern 
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appropriate source locations and parameters.  The source inventory was also inspected for 

duplicate entries, which were removed if found. 

A.3.2 Geographical Information Systems (GIS) Data 

 RAIMI predominantly operates in a GIS environment. Thus, the implementation 

of RAIMI tools requires several GIS maps. These GIS maps are primarily used in 

generating input files for dispersion modeling. In our study, we used the following GIS 

maps. 

• Land use/Land cover Maps: Inputs to the ISCST3 dispersion model requires 

identification of land use category (urban or rural), dispersion coefficients, and 

surface roughness height parameters for each source. This study used a 1:250,000 

land use / land cover (LULC) map (in the form of a GIS shapefile) from the 

United States Geological Service (USGS) available from the Florida Geographic 

Data Library (FGDL) (www.fgdl.org) for Escambia and Pensacola counties. 

These maps were edited to correct for some inconsistencies. 

• Digital Elevation Maps (DEM): The elevation of sources as well as receptors is an 

input for air dispersion modeling. This study used 1:250,000 scale USGS digital 

elevation model (DEM) maps available from http://eros.usgs.gov/geodata. 

• Aerial Photographs: Aerial photographs of the two-county study area were used 

for verifying source locations. The tool utilized for this purpose is called 

TerraServer Download ArcGIS 9.0 (Version 2) (available from 

http://arcscripts.esri.com/details.asp?dbid=13703), which has the ability to 

download aerial photograph imagery from TerraServer server 

(http://terraserver.microsoft.com) directly into ArcMap GIS software.  

A.3.3 Upper Air and Surface Meteorological Data 
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 The ISCST3 air dispersion modeling in RAIMI was performed using 1986 

through 1990 meteorological data based on surface observations taken from the 

Pensacola Regional Airport (WBAN 13899).  During this period, the observation station 

was located at 30.47 N, 87.20 W with a base elevation of 34.1 meters above mean sea 

level and anemometer height of 6.71 meters.  Mixing heights and upper air data were 

obtained from Apalachicola (WBAN 12832).  The observation station at Apalachicola 

was located at 29.73 N, 85.02 W with a base elevation of 6.1 meters above mean sea 

level.  It should be noted that precipitation data for wet deposition computations were not 

utilized in the analysis due to lack of a representative precipitation observation data set 

for the study period.  Surface and upper air data were obtained from U.S. EPA’s archive 

of meteorological data for dispersion modeling 

(http://www.epa.gov/scram001/metobsdata_databases.htm). 

A.3.4 Toxicity Data 

 Unit Risk Factors (URFs) for cancer risk estimation and Reference 

Concentrations for non-cancer risk estimation for various air toxics were compiled by the 

US EPA Region 6 office from a variety of sources including EPA’s Integrated Risk 

Information System (IRIS) (www.epa.gov/iris), California Air Resource Board (CA 

ARB) risk factors, and Health Effects Assessment Summary Tables (HEAST). 

A.4 Implementation Methodology 

 This section describes the detailed implementation process of RAIMI for point 

sources in Pensacola and Santa Rosa counties (see Figure 5.1 for conceptual diagram of 

RAIMI implementation). The implementation involved the following broad steps. 

• Creating PIT from 1999 National Toxics Inventory (NTI) database 

• Setting up Emission Tracking Database (ETD) 

a. Importing PIT into Risk-Map 
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b. Identification and verification of geographical location of sources to be 

modeled 

c. Preparation of source input table for AMP tool 

d. Importing dose-response data as “contaminant table” into Risk-Map 

• Implementing AMP tool to prepare source and meteorological input files for 

ISCST air dispersion model 

• Executing ISCST model using RAIMI’s ISC Batch tool to generate source-

specific hourly and annual average plot files 

• Importing air model results into Risk-Map tool for risk analysis on a GIS platform 

• Analyzing cancer and non-cancer risks in the study area using Risk-Map tool 

A.4.1 Creating Primary Inventory Table (PIT) 

 The PIT is one of the primary inputs into RAIMI. PIT is an MS Access table with 

each record containing information about a particular source. This information includes, 

among other things, a unique identifier for the source, the facility name, source location 

(in UTM coordinates), and emission characteristics such as temperature, exit velocity, 

height and diameter of emission stack. The PIT was generated from the NEI.  

 The first step in generating the PIT was to obtain point source NEI data for the 

entire state of Florida and then extracted data for Escambia (FIPS code – 12033) and 

Santa Rosa (FIPS code – 12113). The point source NEI for HAPs is an MS Access 

database organized in eight tables with the state facility identifier being the common field 

for all the tables. The data required for generating the PIT existed in three of those eight 

tables – “Site,” “Emission Release Point,” and “Emission.” A set of MS Access queries 

extracted the required fields from the NEI database into the PIT. After extracting all the 

required fields, the MS Access table was formatted to comply with the specific 

requirements of the PIT. The User’s Guide of RAIMI’s Risk-Map tool (EPA Region 6, 

2004) specifies the field name and field type for every field in the PIT. For example, the 
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name describing an emission point should have a field name “point_name” and it should 

be a text field with a width of 25 characters. Similarly, stack exit gas temperature should 

be named “temp” and that field should be an integer type. 

 It should be noted that not every field required for the PIT was available from the 

NEI database. For example, while fugitive source modeling ideally requires details about 

width and length of the fugitive source, the point source NEI does not report such 

information. In such cases, the fields in the PIT were left blank and the fugitive sources 

were modeled as if they were emitted from a stack. 

 The next step was to check for any inconsistencies in the compiled data. In the 

study area, the NEI reported duplicate data for some facilities. For example, although 

International Paper took over Champion International, the NEI data reports emissions 

data for both facilities separately. We removed data for Champion International and 

retained data for International Paper in the final PIT. Based on air permit documents from 

the Florida Department of Environmental Protection (DEP) as well as the draft 2002 NEI, 

the data for Champion International were excluded from the final PIT, while retaining the 

data for International Paper. 

A.4.2 Setting up Emission Tracking Database (ETD) 

 The Risk-Map tool is developed as an extension of the ArcView GIS software. 

This step generates the information, in the form of several tables, necessary for running 

Air Modeling Preprocessor (AMP) tool and later for risk assessment. All these tables are 

generated by Emission Tracking Database (ETD) Manager – an MS Access database 

builder with imbedded queries. The tables are stored in the project-specific ETD. The 

ETD consists of (a) PIT, (b) Emissions, (c) Geolocation (d) Final Geolocation, (e) 

Sources_to_AM, (f) AM Sources, and (g) Contaminants tables.  

 The first step imported the PIT into the ETD. All the subsequent tables within 

ETD were generated using the information contained in the PIT. The first table generated 
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in ETD using information in the PIT is “emissions table.” It simply contains the unique 

source ID, source name, and the emission value for each pollutant. Emissions table will 

be used as an input for risk assessment. The process behind the generation of all the ETD 

related tables are described below. 

Geolocation 

 The Geolocation table generated in the ETD contains the source-specific location 

information that is taken from the PIT. The NEI collects information on coordinates of 

the source location and the corresponding reference datum. The reference datum was 

different for different source coordinates and for a few sources, no reference datum was 

specified35. The purpose of generating the Geolocation table was to project all the sources 

into a common reference datum. All the sources were projected into the UTM Zone 16 

NAD 1983 coordinate system. 

Final Geolocation 

 A crucial step in air dispersion modeling is accurate location of sources to be 

modeled. Before going any further, it was important to verify the accuracy of source 

locations in the Geolocation table. Before correcting the source locations, the 

“Geolocation” table was saved as “Final Geolocation” table. 

 As was generally described above, a number of independent sources of location 

information were used for this verification step. These information sources included: 

• Location data for industrial facilities in Escambia supplied by the University of 

West Florida (UWF),  

• Aerial Photographs, 

                                                 

 
 
35 In cases where no reference datum was specified, we assumed NAD 1927 projection system based on the 
recommendation of EPA Region 6 Office 
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• Air permit documents from the Florida Department of Environmental Protection 

(FL DEP), 

• The Solid Waste Facility Locator of FL DEP36, and 

• Google Earth 

Sources_ to_AM 

 The next table generated by the ETD Manager was Sources_to_AM table. This 

table contains the data on source-specific emission characteristics (such as exit gas 

temperature, velocity, and height and diameter of stack) as well as the source coordinates. 

The emission characteristic fields for this table come from the PIT and the source 

coordinate fields come from the Final Geolocation Table. In order to comply with the 

requirements of ISCST3 air dispersion model, some of the fields in the Sources_to_AM 

table had to be edited. These edits were made in AM Sources table, which was just a 

copy of Sources_to_AM table. 

 AM Sources 

  The NEI reports emission parameters such as exit gas velocity and temperature in 

English units whereas the ISCST3 model requires them in metric units. Thus, to meet 

these requirements, exit gas velocity was changed from ft/s to m/s, exit gas temperature 

from degree Fahrenheit to degree Kelvin, and stack diameter and height from ft to m. The 

ISCST3 model also places some restrictions on the minimum and maximum values for 

the above emission parameters. The following maximum and minimum values were used 

as per the recommendation of EPA Region 6 Office: 

• Stack height: 

o Minimum: 1 m and Maximum: 91.44 m 

                                                 

 
 
36 Available at http://gisweb.dep.state.fl.us/DEP/Regulatory/viewer.asp?SWFL=true  
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• Stack Diameter 

o Minimum: 0.01 m and Maximum: 30 m  

• Stack gas temperature 

o Minimum: 273 K 

• Stack gas exit velocity 

o Minimum: 0.01 m/s and Maximum: 165 m/s 

After making these edits, the AM Sources table was imported into the ETD using the 

ETD Manager. This table was the source input table for AMP tool. 

Contaminants 

 The contaminant table contains the dose-response data – unit risk factors (URF) 

for estimating cancer risks and reference concentrations (RfC) for estimating non-cancer 

risks – for various pollutants. EPA developed these values for various pollutants and they 

are primarily reported in the Integrated Risk Information System (IRIS) although a few 

other sources are also used. These are used as an input into risk assessment. As explained 

before, currently RAIMI only has the capability to estimate risk from the inhalation 

pathway. Eventually, capabilities to estimate risks from other pathways such as digestion 

will be developed. 

A.4.3 Generating Input Files for ISCST Air Dispersion Model 

 The next step was to prepare input files for ISCST air dispersion model. This step 

is accomplished using the Air Model Preprocessor (AMP) tool. Similar to Risk-Map, 

AMP is also an extension in ArcGIS software. The AMP tool requires the following 

inputs to generate source-specific ISCST- and meteorological input files. 

Source Input 

 AMP uses the AM_Souces table imported into Risk-MAP in the previous step for 

source input parameters. 
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MPRM Stage 1 and Stage 2 file:  

 Raw meteorological inputs were processed using U.S. EPA’s MPRM which 

compiles surface and mixing height observations, calculates atmospheric stability, and 

estimates boundary layer profiles based on land use and cover surrounding the 

observation site.  The AMP tool in RAIMI requires generation of quality checked surface 

and upper air meteorological data (stage 1 and stage 2 of MPRM)) so that it can complete 

stage 3 of MPRM and create an ISCST input meteorological data file for each source. 

Typically, five years of meteorological data at the nearest station is used for stage 1 and 

stage 2 MPRM. For this study, stage 1 and stage 2 of MPRM were completed for five 

years of available meteorological data between 1986 and 1990. 

Land Use/Land Cover 

 Stage 3 processing of MPRM requires consideration of land use characteristics 

within the modeling domain. The effects of land use and land cover in typical dispersion 

model is represented by three surface characteristics – surface roughness, Bowen ratio, 

and Albedo that may vary by wind direction and time of the year. Completing stage 3 

requires the definition of each surface characteristic in up to 12 wind sectors about the 

meteorological data observation point, varying by climatological season. This study used 

the 1:250,000 USGS land use land cover maps in the form of a GIS shape file for land 

use characteristics of the study area. 

Elevation Data 

 RAIMI utilizes a universal grid based in the Universal Transverse Mercator 

(UTM) coordinate projection system to place receptors throughout the modeling domain 

at which ISCST3 computes pollutant concentrations.  By default, RAIMI places 100-

meter spaced receptors up to a distance of 5 km from each source, and 500-meter spaced 

up to a distance of 10 km from each source.  The variation between the elevation of a 
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receptor grid node location and a source location significantly affects the dispersion 

modeling results. Because of this, the dispersion model input requires elevation of each 

receptor grid location relative to the source. Elevation data for the two-county study area 

was obtained from USGS Digital Elevation Model (DEM) maps. Our study area was 

covered by four DEM files – Pensacola East, Pensacola West, Andalusia East, and 

Andalusia West. 

 Using these inputs, AMP generated the following outputs: 

• Source-specific ISCST Input Files: AMP can create model input files for each of 

the four contaminant phases – vapor, particle, particle-bound, and mercury vapor 

– for each source. In our study, however, we generated only vapor phase input 

files because we modeled only inhalation risks. This input file also includes 

source-centered universal grid node array with extracted terrain elevations. 

• Source-specific meteorological files: Execution of stage 3 of MPRM generated a 

single 5-year (1986-1990) meteorological file with a .MET extension for each 

source. 

A.4.4 Executing ISCST Model with ISC Batch Tool 

 The next step used the ISCST3 and meteorological input files generated for each 

source to execute the ISCST3 dispersion model. The output from this step is the 

estimation of 1-hour average and annual average concentrations at each point on the 

receptor grid for each source. This output is generated in the form of two plot files, one 

for each of the 1-hour and annual averages. The ISC Batch tool used in this step is 

capable of executing the ISCST3 model for a large number of sources in a single batch 

run. It should be noted again that the estimated ambient concentrations are based on a 

unit emission rate (1 g/s). That is, the emissions are modeled as if they are emitted at a 

constant rate over an entire year. The benefit of this approach is that risk estimations can 
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be carried out quickly for any emission scenario without having to run the dispersion 

model multiple times. 

A.4.5 Importing Dispersion Model Results into Risk-Map Tool 

 The AIR2GIS tool used in this step merges the information in the two output plot 

files (for 1-hour and annual averages) generated in the previous step into one A2G file in 

a format importable to ArcGIS software. The AIR2GIS tool is capable of generating A2G 

files for several sources in a single run. 

A.4.6 Risk Analysis 

 The final step in the implementation is the estimation of cancer and non-cancer 

risks in the study area by importing the ambient air concentrations (in the form of A2G 

files) into Risk-MAP tool. The Node Attribute Index Table (NAIT) layer, created during 

the process of importing A2G files into Risk-MAP, organizes and stores results of air 

dispersion model in “an efficient format designed to reduce file access and data 

read/write times37.” The Risk-MAP tool then utilizes the toxicity information imported 

through “Contaminant” table and emission rates from “Emissions” table, created in 

earlier steps, to calculate cancer and non-cancer risks at various receptors in the study 

area. The NAIT layer enables Risk-MAP to calculate cumulative risks from individual 

risk calculations based on source, pollutant, or both.  

 

 

 

  

                                                 

 
 
37 Page 4-1 of RAIMI Tools – Risk-MAP User’s Manual: Risk Management and Analysis Platform, US 
EPA Region 6, April 2004 
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APPENDIX B 

GAMS MODEL CODE 

* Decision Model for Mohan's Dissertation * 

* GAMS Program for Optimization Run at Census Tract Resolution * 

* Open the input GDX file * 

$gdxin input.gdx 

* Definition of Sets in the Model * 

Sets 

         i (*) sources 

         j (*) pollutants 

         k (*) locations 

         m (*) pop-locations ; 

* Reading the sets from the input gdx file * 

$load i j k m 

* Declaration of Parameters of the model * 

Parameters 

         u(j) Cancer Unit Risk Factors for pollutants 

         QB (i,j) Baseline Emissions of Pollutant j from Source i 

         Beta (i,j,m) Concentration at m from unit emission rate in obj function 

         BetaR (m,i,j) Concentration at m in obj function with sets reversed for GDX input 

         Gamma (i,j,k) Concentration at k from unit emission rate in constraint 

         GammaR (k,i,j) Concentration at k in constraint with sets reversed for GDX input 

         p(m) Population at location m 

         b(i,j) Product term  for Cost Function 

         c(i,j) Exponential term for Cost Function; 
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* Load all the parameters from the input GDX file * 

$load u QB BetaR=Beta GammaR=Gamma p b c 

option Beta<BetaR, Gamma<GammaR; 

* Close the input gdx file * 

$gdxin 

* Scalars in the model - threshold risk and value of statistical life * 

Scalars 

         V Value of Statistical Life in Dollars/5500000/ 

         Z Threshold Risk/0.00001/; 

* Model Variables - Q is choice variable and TCOST is variable to be minimized * 

Positive variable Q(i,j) Emission of pollutant j from source i ; 

Variable r(k) Risk at location k; 

Variable LCOST Linear term in objective function; 

Variable TCOST Total cost in dollars; 

* Declaration of equations for objective function and constraint * 

Equations 

         OBJ Objective Function for the Problem 

         Objl Equation for Linear term in objective function 

         CalRisk(k) Equation for Risk Calculation; 

* The factor 2116.8 below reflects conversion of Q from t/y to g/s and lifetime risk to 

annual risk * 

Objl.. LCOST =e= ((1/2116.8)*(sum((i,j),(Q(i,j))*(sum (m, (Beta 

(i,j,m)*p(m)*u(j)*V)))))); 

OBJ .. TCOST =e= (sum ((i,j), ((b(i,j))*(exp(c(i,j)*Q(i,j))-exp(c(i,j)*QB(i,j))))))+LCOST; 

CalRisk(k) .. r(k)=e=sum((i,j), (Q(i,j)*Gamma(i,j,k)*u(j))); 

* Risk Threshold Constraint * 

r.up(k)=Z; 
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* Define the model – the model name is resolution * 

Model resolution Spatial Resolution Model /all/ ; 

* Declaration that this nonlinear optimization model should use CONOPT as the 

solver * 

Option nlp=CONOPT ; 

* Show slack in the constraints in the output * 

Option solslack=1; 

* Option file for CONOPT solver that specifies the maximum value any model 

parameter can reach in the optimization search * 

resolution.optfile=1; 

* Solve the non-linear optimization problem* 

Solve resolution using nlp minimizing TCOST; 

*Write optimized emissions and value function into a gdx file names “tract_output”* 

execute_unload 'tract_output', Q, TCOST; 

* Write output from gdx file to Excel Spreadsheet * 

execute 'gdxxrw.exe tract_output.gdx var=Q.l rng=Sheet1!A1'; 

execute 'gdxxrw.exe tract_output.gdx var=TCOST.l rng=Sheet2!A1'; 

* Display optimized emissions in the output LST file* 

Display Q.l; 
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