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SUMMARY

This dissertation characterizes the equilibrium behavior of a class of stochastic

particle systems, where particles (representing customers, jobs, animals, molecules,

etc.) enter a space randomly through time, interact, and eventually leave. The

results are useful for analyzing the dynamics of randomly evolving systems including

spatial service systems, species populations, and chemical reactions. Such models with

interactions arise in the study of species competitions and systems where customers

compete for service (such as wireless networks).

The models we develop are space-time measure-valued Markov processes. Specif-

ically, particles enter a space according to a space-time Poisson process and are as-

signed independent and identically distributed attributes. The attributes may deter-

mine their movement in the space, and whenever a new particle arrives, it randomly

deletes particles from the system according to their attributes.

Our main result establishes that spatial Poisson processes are natural temporal

limits for a large class of particle systems. Other results include the probability

distributions of the sojourn times of particles in the systems, and probabilities of

numbers of customers in spatial polling systems without Poisson limits.
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CHAPTER I

PRELIMINARIES

In this study we characterize the limiting behavior of several time-varying transfor-

mations of marked point processes, and give applications to spatial service systems,

species competitions, and particle systems. We begin this chapter with a brief intro-

duction to marked point processes. Next, we present two examples of spatial service

systems and describe many of the systems we will analyze in the later chapters. We

end the chapter with point process terminology and notation.

1.1 Introduction

At its most basic level, a point process on the time axis IR+ is a collection of random

points Tn in IR+. When additional information in the form of attributes is known

about the points, say, the point Tn has been marked as Yn, the sequence (Tn, Yn) is said

to form a marked point process . The elements Tn and Yn belong to what are called the

ground space and the mark space, respectively. The theory of point processes provides

a very natural framework in which to model a number of stochastically evolving

phenomena including chemical reactions, magnetism, weather, species competitions,

and the spread of epidemics. The theory is important in operations research for

modeling flows of items in inventory systems and jobs in service systems such as

queueing networks.

1



-
-

-

-

-

-

Type (i)
Type (ii)

Type (i)

Types (i) and (ii)

Figure 1: A three-node stochastic network with two item types.
Upon arrival, the nth item is marked with the attributes Xn, Rn, and Vn, representing
its type, route through the network, and service times at each node, respectively.
When departing node 1, each type (i) item is routed to node 2 with probability p,
and to node 3 with probability 1− p. Each type (ii) item is routed to node 3.

For instance, consider the three-node stochastic processing network in Figure 1.

Imagine that Tn ∈ IR+ represents the time at which the nth job enters a service system

for processing. Upon its arrival, suppose we know the nth job’s type Xn ∈ IE, the

route it will take through the service system Rn = (Rn1, Rn2, . . .) ∈ R, and its service

times at each station Vn = (Vn1, Vn2, . . .) ∈ V . These three, typically random, pieces

of information are attributes associated with the nth arrival, and can be captured in

the form of a vector (Xn, Rn, Vn), called a mark. Then the sequence (Tn, (Xn, Rn, Vn))

generates a marked point process M on the space (IR+ × (IE×R×V)) expressed as

M(I × (A×B × C)) =
∑
n

1l(Tn ∈ I, Xn ∈ A,Rn ∈ B, Vn ∈ C).

As another example, suppose Tn represents the time at which the nth person or

animal enters a particular community IE. The mark associated with this person is

(Xn, Rn, Hn), where Xn represents the location at which the nth person enters IE,

Rn ∈ [0, 1] represents some level of natural resistance to a particular disease, and

Hn tells us whether the nth person is initially well (w), sick (s), immune (i), or

2



deceased (d). Then (Tn, (Xn, Rn, Hn)) generates a marked point process M on the

space (IR+ × (IE× [0, 1]× {w, s, i, d})), where

M(I × (A×B × C)) =
∑
n

1l(Tn ∈ I, Xn ∈ A,Rn ∈ B, Hn ∈ C).

A marked point process is useful for describing the quality or performance of a

system in space as well as time. For instance, in the service system example, at time

t one would like to know how many jobs of each type are currently in the system,

their present locations, and how many jobs of each type have been processed. In

the epidemic model, one would certainly like to know how many well, sick, immune,

and deceased individuals are in the community at time t. In each case, performance

characteristics can be modelled as a random transformation of the initial marked

point process M .

1.2 Spatial M/G/∞ System

The following example motivates the general framework we develop in the third chap-

ter.

Suppose particles enter the space IE at times 0 < T1 < T2 < . . . forming a Poisson

process with rate λ. The nth customer arriving at time Tn moves independently

according to a stochastic process Xn ≡ {Xn(t) : t ≥ 0} in IE for a random time Sn

and then exits the system. That is, the location of the nth particle at time t > Tn is

Xn(t − Tn) provided t − Tn < Sn. Otherwise, the particle has departed and its last

location was Xn(Sn).

We assume (Xn, Sn) for n ≥ 1 are independent and identically distributed with

a known distribution, and that they are also independent of the Tn. Also, Xn is

3



a random element of the Skorohod space of functions D(IR+, IE) (see [12]), so that

it is right continuous with left-hand limits. The data for this system is the family

{(Tn, Xn, Sn), n ≥ 1}, which generates a space-time Poisson point process M on

IR+ ×D(IR+, IE)× IR+.

Suppose for each arrival to the system before time t we are interested in the time

since its arrival, its location at time t, and whether or not it is still in the system.

Then a natural and useful transformation of the data for this particle system at time

t is

φt(t− Tn, Xn, Sn) ≡ (t− Tn, Xn((t− Tn) ∧ Sn), 1l(t− Tn < Sn)), Tn < t.

Here, a ∧ b denotes the minimum of a and b. At time t, this transformation denotes

for the nth particle the time since its arrival, its current location (or last location

prior to departure), and whether or not it is still in the system, respectively. Here

1l(S) denotes the indicator function that is either 1 or 0 if the statement S is true or

false, respectively. Thus the input process M along with the transformation function

φt generate a point process Nt on IR+ × IE× {0, 1} by setting

Nt(I × A×B) =
∑
n

1l(φt(Tn, Xn, Sn) ∈ I × A×B), Tn < t

Here, Nt(I ×A×{1}) counts the number of particles that arrive in the time interval

t−I with positions in A that are still in the system at time t. Similarly, Nt(I×A×{0})

counts the number of particles that arrive in the time interval t− I with positions in

A that have departed the system by time t. Our main concern is the distribution of

Nt and its limiting distribution as t →∞.

4



For now, consider the case in which the particles do not move, but simply enter

the system at their initial position Xn and stay there until they depart. We will

return to the analysis of the more general model with moving particles in Chapter

6. That is, Xn(t)
d
= Xn for each t. This is called a spatial M/G/∞ service system,

where Sn is the service time of the nth customer that enters Xn at time Tn.

In this case, it is known that Nt, for fixed t, is a space-time Poisson process.

Specifically, the number of customers in the set A ⊂ IE at time t that entered the

space IE in the time interval [t− u, t) has a Poisson distribution with mean

E[Nt((0, u]× A× {1})] = λFX(A)
∫

[t−u,t]
(1− FS(t− v))dv.

Here FS and FX are the distributions of the service times and locations, respectively.

Similarly, the number of departures from A in [t − u, t] has a Poisson distribution

with mean

E[Nt((0, u]× A× {0})] = λFX(A)
∫

[t−u,t]
FS(t− v)dv.

Furthermore, Nt
d→ N , where N is a space-time Poisson process. This convergence

follows because the mean measure of Nt given converges to the mean measure of N ,

which is defined by

EN((0, u]×B × {1}) = λFX(B)
∫ u

0
(1− FS(v))dv.

1.3 General Spatial Service System

We will study the following example more in depth in Chapter 6.

Consider a system in which customers enter a Polish space IE at times 0 < T1 <

T2 < . . .. As in the previous section, the nth customer arrives at time Tn and moves

5



in IE according to a stochastic process {Xn(t) : t ≥ 0} in D(IR+, IE) for some time and

eventually exits the system. This customer has a sojourn time or service requirement

denoted by Sn.

There is a service mechanism like a polling server that allocates service to the

nth customer according to a nondecreasing stochastic process Zn, which is a random

element in D(IR+, IR+). Specifically, during a time interval (Tn, t], the service time

Sn is decreased by the amount Zn(t − Tn). Then Dn = inf{t : Zn(t − Tn) > Sn} is

the departure time of the nth customer.

This system is driven by the data

(Tn, Xn, Sn, Zn), n ≥ 1,

which forms a marked point process M on IR+×D(IR+, IE)× IR+×D(IR+, IR+). We

are interested in the point process Nt on on [0, t]× IE× {0, 1} which is generated by

the set of points

{(t− Tn, Xn((t− Tn) ∧Dn), 1l(Zn(t− Tn) < Sn)) : Tn ≤ t},

which describes at time t how long each particle has been in the system, where each

particle is or was upon its departure, and whether or not the particles remain in the

system. We can also express Nt as an integral of the input process M . That is, for

any f ∈ C+
K ,

Ntf ≡
∞∑

n=1

f(t− Tn, Xn((t− Tn) ∧Dn), 1l(Zn(t− Tn) < Sn))

=
∫

[0,t]×D(IR+,IE)×IR+×D(IR+,IR+)
f(u, x(u ∧ inf{t : z(u) = s}),

1l(z(u) < s))Mt(−du dx ds dz),

6



where Mt(I × A) ≡ M(t− I × A).

A variety of scenarios can be described by imposing various assumptions on the

data. Here we describe several models which we will describe in later chapters:

1. Our main model, the so-called attribute-based thinning model1, has an input

process generated by the data (Tn, Xn, Ln) in the space IR+ × IR × IN. Here,

IN denotes the natural numbers {1, 2, . . .}, and Tn represents the arrival time of

the nth particle. We denote by Xn an attribute (or ranking) of the nth particle.

Upon the nth arrival, this particle may consider other particles in the system

for deletion if their ranks are strictly less than Xn. In this case Ln is the discrete

number of arrivals required to remove the nth customer from the system (also

called the discrete lifetime). The state of the system at time t is determined by

the set of points

(t− Tn, Xn, 1l(M((Tn, t]× (Xn,∞)× IN) < Ln)),

for n such that Tn ≤ t, which form a point process Nt on IR+ × IR × {0, 1}.

This information tells for the nth particle how far back in time it arrived, the

position to which it arrived, and whether or not remains in the system.

2. An extension of the attribute-based thinning model is as follows. Suppose the

nth arriving customer is assigned a rank Xn ∈ IR+, as well as a position Yn in

Euclidean space IRd. Denote by Br(y) the ball of radius r centered at y. Upon its

arrival to (Xn, Yn), the nth arrival may consider any customer for deletion whose

1This model is analyzed in Chapter 4.
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position is within Br(Yn) and whose rank is less than Xn. This system is driven

by the data (Tn, Xn, Yn, Sn, Zn) in the space IR+ × IR+ × IRd × IN×D(IR+, IN).

In this case, Sn is still the discrete number of arrivals required to remove the

nth customer from the system, and Zn(t) = M((Tn, Tn+t]×(Xn,∞)×Br(Yn)×

IN×D(IR+, IN)).

3. Particles enter a space according to a Poisson process, and take on random

positions upon their arrival. Every time a new arrival occurs, a customer (or

particle) with position x is served with probability a(x). This is our so-called

elastic polling model appearing in Chapter 5, where each arrival polls all parti-

cles in the system. Suppose instead that servers arrive to the system according

to a Poisson process with rate γ, and that a customer (or particle) with position

x is served with probability a(x) upon arrival of a server. This is our so-called

inelastic polling model, which appears in Chapter 5.

1.4 Point Process Notation

In this section we will introduce point processes and marked point processes, along

with their standard terminology and notation. For excellent references on these sub-

jects see [6], [12], and [15].

Let (IE, E) be a Polish space, where E is the family of Borel sets of IE. Let M(IE)

set of finite counting measures on IE. A typical counting measure is µ =
∑n

k=1 δxk
,

where δx(A) ≡ 1l(x ∈ A) is the Dirac measure on IE with unit mass at x and n = µ(IE);

when n = 0, µ = 0 (the zero measure). For simplicity we will write µ =
∑

k δxk

without the n. Let C+
K(IE) denote the set of nonnegative, continuous functions on IE

8



with compact support. We endow M with the vague topology (the smallest topology

such that the mapping µ → µf is continuous for any f ∈ C+
K(IE)) so that it is a Polish

space,2 and let B(N ) denote its Borel sets.

A point process N on IE is a measurable function from a probability space (Ω,F ,P)

into (N ,B(N )). It has the form N =
∑

k δXk
, where Xk are its point locations, and

N(B) denotes the number of points in a set B ∈ E . We will frequently use the integral

notation

Nf ≡
∫

IE
f(x)N(dx) =

∑

k

f(Xk).

As a classic example, a point process N is a Poisson process with intensity measure µ

if N has independent increments and for any B ∈ E , N(B) has a Poisson distribution

with mean µ(B), which is finite when B is bounded.

A point process N is defined by specifying the form or distribution of the random

quantities N(B) for all B ∈ E . Equivalently, one can specify the form or distribution

of the family of integrals Nf , for f ∈ C+
K(IE). That is, the distribution of a point

process N is uniquely determined by the form of its Laplace functional LN defined

by

LN(f) ≡ E[e−Nf ], f ∈ C+
K(IE). (1)

As seen in (1), the Laplace functional plays an analogous role for point processes (and

random measures) as Laplace transforms do for nonnegative random variables. As

an example, the Laplace functional of a Poisson process N with intensity measure µ

2A measure space endowed with the vague topology is Polish. See Theorem A2.3 of [12].
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is well known to be

LN(f) = exp{−
∫

IE
(1− e−f(x))µ(dx)}, f ∈ C+

K (2)

(see [22]).

Given a point process M on a space IE, we may know some other additional

information about the points. We call IE the ground space. One may be interested

in assigning to each point of Tn of M an attribute Yn, which is an element of what is

called the mark space IE′. Then we call {(Tn, Yn) : Tn ∈ IE, Yn ∈ IE′} a marked point

process .

The theory of point processes forms a sub-theory of that of random measures. Let

M(IE) denote a family of measures on (IE, E), and let M be a measurable mapping

from a probability space into M(IE). Then M is a random measure on IE. Just as

Laplace functionals completely determine the distributions of point processes, they

also completely determine the distributions of random measures. Convergence in

distribution of the random measures Mn to M is notated by Mn
d→ M and defined

by Mnf
d→ Mf , f ∈ C+

K(IE). In addition, convergence in distribution of a sequence of

random measures is equivalent to the convergence of their Laplace functionals. That

is, Mn
d→ M if and only if LMn(f) → LM(f), f ∈ C+

K(IE).

1.5 Outline of Thesis

The remainder of this thesis is organized as follows. Chapter 2 is a review of relevant

literature on point processes and their applications. Here we discuss results from point

process theory including thinnings and space-time Poisson models. We also discuss

10



results from application areas, including particles systems, population models, and

service systems.

We discuss space-time stochastic processes as marked point processes in Chapter 3.

After this, we are able to provide notation and a general modelling framework, as well

as a limit theorem that is useful for examining long-run (also called limiting) behavior

of the systems in question. Specifically, this framework allows us to show convergence

in distribution of the processes in which we are interested.

In chapters 4 through 6, we use our results to examine the limiting behavior of

several specific models. The first of these is a space-time extension of an elementary

species competition model that was first considered by Durrett and Limic in [8].

This model also has applications in the areas of spatial service systems like wireless

networks.

We then analyze two spatial polling models in Chapter 5. The Laplace functionals

of the limiting processes for these models contain infinite products with no closed-

form expressions. However, we are able to get the probability generating functions

for the numbers of particles in certain regions by making certain substitutions into

the Laplace functionals.

In Chapter 6 we consider models where particles are allowed to move about the

system. Again, the departures are triggered by arriving particles. The first model we

consider in this chapter allows for particle movements, but no interactions. We then

analyze a model where the particles move and interact.

We conclude with some possible areas of future research in Chapter 7.
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CHAPTER II

LITERATURE REVIEW

In this chapter we discuss previous work in the areas of point processes, as well as

their applications as they pertain to the results in this dissertation.

2.1 Point Processes

Point process theory has evolved over the last few centuries for building probability

models of systems in science and engineering, such as those arising in population

biology, epidemics, and queueing systems. See [6] for a brief history of point process

development. The models we construct in this dissertation are marked point processes

on the real line. Background material for marked point processes can be found in [6],

[15], and [22].

An excellent introduction to space-time Poisson models is [22]. Specifically, the

author discusses p-transformations of Poisson processes. Given a point process N ,

a p-transformation of N is found by mapping each point of N into a new space ac-

cording to a probability kernel that is independent of the other points. The systems

we consider in Chapters 4, 5, and 6 require different analysis because they are trans-

formations of Poisson processes that do depend on the other points. That is, for our

models we allow the probability kernels for the transformations to not only depend

upon the initial attributes, but they will depend upon the future evolution of the
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process as well.

Thinnings are standard topics in point process literature, sometimes presented in

the guise of disaggregation. Classical thinning results are addressed in most standard

texts on stochastic processes, including [13], [19], and [21]. Boker and Serfozo consider

the convergence of thinnings that are compositions of measures in [3]. The models we

consider in Chapters 4, 5, and 6 can be viewed as thinnings that take place over time,

and are very different from traditional thinnings. That is, in the models we consider,

particles arrive to a system through time, and the particles collecting in the system

are thinned as time passes.

In Chapter 4 we prove Proposition 10 which is concerned with the convergence

in distribution of products of random variables. Results of this type are useful for

evaluating Laplace functionals. Lemma 5.8 of [12] states that for a null array of

constants cni ≥ 0 and a constant c ∈ [0,∞] that the product
∏

i(1− cni) converges to

e−c if and only if the sum
∑

i cni converges to c. This result can also be extended to

null arrays of random variables. However, given a null array of random variables ξni,

the ξni are independent for each n. In order to analyze the main model in Chapter 4

we need Proposition 10, which does not require independence.

2.2 Particle Systems

Particle systems attempt to capture the random nature of many real-world phenom-

ena involving customers, molecules, animals, plants, etc., that can be represented by

particles. In such models, particles enter a system, possibly move about and interact,

and eventually depart the system.
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The phrase interacting particle system refers a class of stochastic spatial models

that are restricted to evolve on a lattice or graph. The state of the system at time t is

determined by the states of all the points on the lattice. Then the states of the points

are allowed to change, typically at exponentially distributed rates, depending on the

states of the surrounding points. Essential background and standard models are

found in [16] and [17]. Models for particle movements in this area are called exclusion

processes , where a particle jumps from a lattice point to an unoccupied lattice point

at an exponential rate. Much of the study of interacting particle systems is devoted

to finding invariant measures for the system states, as well as finding critical values

for parameters that determine these invariant measures (like extinction). Our models

are less intricate. It appears that each of our systems has only one invariant measure.

2.3 Population Models

The study of populations has been a constant application area of point processes

since the seventeenth century. Some of the most popular tools for modelling popula-

tions have been branching processes and point processes. Branching processes were

introduced in the nineteenth century to model the longevity of surnames of British

nobility. See [1]. Since then the theory has evolved tremendously, and today there is

a large amount of literature on measure-valued branching processes, which are well

suited to capturing spatial aspects of population evolutions.

The work in this dissertation was originally motivated by an elementary toy species

competition model considered by Durrett and Limic in [8]. In this model, particles

arrive to the unit interval according to a Poisson process. Upon arrival, particles take
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on independent and identically distributed positions in the unit interval according to

uniform [0, 1] random variables. For all y ∈ [0, 1], an arrival to y instantly removes

any existing particle at x < y with probability a. The authors first establish that

the limiting process is equal in distribution to a unique stationary process. They

then show the stationary process is a Poisson process with mean measure µ(dx) =

dx/((1 − x)a). We generalize this model in Chapter 4 to a class of models we call

attribute-based thinnings (ABTs).

2.4 Service Systems

Spatial service systems are popular for describing cellular telephone traffic and manu-

facturing systems. Spatial queueing models use point processes to generalize Jackson

networks (see [11]). An introduction to spatial queueing systems is also given in [22].

Polling models describe service systems where servers arrive to a space and serve

the customers. We present two models in Chapter 5 that resemble polling models.

The first is what we call an elastic polling model, where all arrivals to the system are

customers, but each customer serves a random number of customers in the system

upon his arrival. The second is called an inelastic polling model. This case is more

traditional in that customers and servers arrive to a service system, and upon arrival

of a server, a random number of customers are serviced.
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CHAPTER III

GENERAL FRAMEWORK

The focus of this dissertation is on modelling the evolution of particle systems by

time-dependent random transformations of marked point processes. For instance,

the marks of a point process may dictate how long particles are to remain in a system,

or even how the particles are allowed to move about the system. A typical problem is

to determine the point process describing the remaining particles at time t. We attack

such a problem by performing a time-transformation of the marked point processes

at time t.

The systems we consider are continuous-time, measure-valued Markov processes

that are subordinated to time-homogeneous Poisson processes. Our main goal is to

determine their limiting behavior. By representing the input data of such a system as

a marked point process M , we define the spatial system Nt as a time transformation

of M , and finally establish the convergence in distribution of Nt as t goes to infinity.

For instance, Nt(A) might represent the number of customers that are in the spatial

region A at time t.

In this chapter we describe a very general particle system in which the trans-

formation Nt of an input process is determined by an abstract random functional.

We present limit theorems for this system, which we will use in our analysis of the

upcoming models. We conclude with an illustrative example.
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3.1 Time-Varying Point Processes as

Integral Functionals

Consider a system in which particles (representing customers, animals, microbes, etc.)

arrive to a Polish space IE′ according to a Poisson process with rate λ at the times

0 ≤ T1 ≤ T2 ≤ . . .. The space IE′ is the mark space. Upon arrival, the nth particle is

assigned the mark Yn, which is a random element of the measure space (IE′, E ′), where

E ′ is the Borel σ-field on IE′. The Yn are independent and identically distributed, and

are independent of the arrival times Tn. The data {(Tn, Yn) : n ≥ 1} generates the

marked point process M ∈M(IR+ × IE′) expressed as

M(A×B) =
∑
n

1l(Tn ∈ A, Yn ∈ B).

The particles that arrive to the system prior to time t are transformed such that

the nth point is mapped to a point in some measure space (IE, E), and the points in

IE form a point process Nt on IE. Here, E is the Borel σ−field on IE. Specifically,

the transformation of the nth point of M is a random function φt(t − Tn, Yn) of the

current time t, how far back in time the arrival occurred t−Tn, and its mark Yn. This

is a natural and very general transformation. To define this random function, let IF

denote a space of measurable functions mapping [0,∞]× IE′ into IE such that for any

h ∈ IF and compact set A ∈ E , h−1(A) is compact in IR+ × IE′. This will ensure that

the transformed process is finite on compact regions of IE. We also assume there is a

Polish topology on IF.

Our convention is that at any time t, the nth point of M is transformed into the

point φt(t − Tn, Yn) ∈ IE, where φt is a random element of IF defined on the same
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probability space as M . Thus the transformed points form a point process on IE

which we denote by Nt. Specifically, for any region A ∈ E and t ≥ 0,

Nt(A) =
∑
n

1l(φt(t− Tn, Yn) ∈ A)

= M({(s, y) : φt(t− s, y) ∈ A}). (3)

We will frequently characterize the transformed process Nt by its functional form Ntf

for any f ∈ C+
K(IE), which is

Ntf =
∑

k

f(φt(t− Tk, Yk))

=
∫

[0,t]×IE′
f(φt(t− s, y))M(ds dy).

A more convenient form of Ntf is as follows. By making the change of variable

u = t− s in the above integral, we have

Ntf =
∫

[t,0]×IE′
f(φt(u, y))M(t− du dy), (4)

where t − I = {x : t − x ∈ I}. For each t, define the random element Mt ∈

M([0, t]× IE′) by

Mt(I × A) = M(t− I ∩ [0, t]× A).

That is, given the point process M on the interval [0, t] of the ground space, Mt counts

the same points by going backward along the interval [0, t] from t to 0. Thus we can

write Ntf as

Ntf =
∫

[0,t]×IE′
f(φt(u, y))Mt(du dy). (5)

Also, expression (3) can be written as

Nt(A) = M({(t− u, y) : φt(u, y) ∈ A})

= Mt(φ
−1
t (A)). (6)
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We will use the representations in (5) and (6) to characterize the distribution of

Nt and obtain its limit as t →∞. Because M is a time-homogeneous Poisson process,

Mt is equal in distribution to M restricted to [0, t]×IE′. This is an important property

that we will exploit.

3.2 Main Limit Theorem

This section contains the main theorem that gives conditions under which the process

Nt converges in distribution, and it describes the limit process.

Theorem 1 Suppose there is a random element φ of IF such that

(φt,Mt)
d
= (φ,M) on IF×M([0, t]× IE′), t ≥ 0. (7)

Then Nt
d→ N , where N is defined by

Nf =
∫

IR+×IE′
f(φ(u, y))M(du dy), f ∈ C+

K(IE). (8)

The mean measure of N is

µN(A) ≡ EN(A) = E[M(φ−1(A))], A ∈ E .

If in addition µN(A) < ∞ for every compact A ∈ E, then

ENtf → ENf, f ∈ C+
K(IE). (9)

Proof We prove Nt
d→ N by proving the equivalent statement that Ntf

d→ Nf for

all f ∈ C+
K . From (5) and assumption (7),

Ntf
d
=

∫

[0,t]×IE′
f(φ(u, y))M(du dy)

19



Now as t → ∞, this integral converges w.p.1 to
∫
IR+×IE′ f(φ(u, y))M(du dy). Thus

Ntf
d→ Nf .

Similar to expression (3), the N defined by (8) can be written as N(A) = M(φ−1(A)).

Therefore, EN(A) = E[M(φ−1(A))].

Finally, note that because f is bounded and has compact support,

Ntf ≤ cNt(supp(f)) ≤ cM(φ−1(supp(f))),

where supp(f) denotes the support of f and c is an upper bound on f . Then

ENtf → ENf by dominated convergence because Ntf → Nf w.p.1.

Remark 2 Mean Measure. In Theorem 1, the mean measure of the limiting process

N can be expressed as

ENf = E
[ ∫

IR+×IE′
E[f(φ(u, y))|M ]M(du dy)

]
. (10)

This follows by conditioning on M .

Though elementary, (10) sheds light on the mean measure in certain cases. For

instance, independence of φ and M implies

ENf =
∫

IR+×IE′
E[f(φ(u, y))]E[M(du dy)].

Furthermore, if M has mean measure given by E[M(I × A)] =
∫
I×A λdsF (dy), then

ENf =
∫

IR+×IE′
E[f(φ(u, y))]λ dsF (dy). (11)

The following known result is useful for identifying the limiting point process in

Theorem 1.
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Proposition 3 In the context of Theorem 1, suppose φ is independent of the Poisson

process M . Then the limiting process N is a Cox process with mean measure

µN(A) = E[µ(φ−1(A))], A ∈ E .

In particular, if φ is deterministic, then N is a Poisson process with mean measure

µN(A) = µ(φ−1(A)).

Proof Conditioning on φ, using (8) and the form of the Laplace functional of the

Poisson process M given in (2), the Laplace functional of N can be written as

LNf = E[E[e−Nf |φ]] = E
[
exp

{
−

∫

IR+×IE′
(1− e−f(φ(u,y)))µ(du dy)

}]
.

Then by the change of variable x = φ(u, y) in the integral and using the independence

of φ and M to get µN(A) = EM(φ−1(A)) = µ(φ−1(A)),

LNf = E
[
exp

{
−

∫

IE
(1− e−f(x))µN(dx)

}]
, (12)

which is the Laplace functional of a Cox process. Thus, N is a Cox process with

mean measure µN . When φ is deterministic, the expectation in (12) vanishes so that

LNf is the Laplace functional of a Poisson process.

We conclude this section with a few remarks.

Remark 4 Convergence of Moments. Under the assumption in Theorem 1 that µN

is finite on compact sets, we have ENt(A) → EN(A) for compact B from (9). We

can also get convergence of other moments. For instance, for compact A,

E[Nt(A)2] → E[N(A)2] = E[M(φ−1(A))2]
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by dominated convergence.

Remark 5 An Extension. Theorem 1 can be extended to a setting in which there

exist φ and M such that (φt,Mt)
d→ (φ,M). This would involve extra technical

conditions regarding the convergence of integrals as addressed in [20]. We do not

require this generality because all of the models we consider have input processes that

are Poisson processes, implying that (φt, Mt)
d
= (φ,M). The proof that Nt

d→ N in

Theorem 1 is obvious when the input process is a time-homogeneous Poisson process.

Remark 6 Traditional Queueing. Unfortunately, traditional queueing processes are

not appropriate for this modelling framework. The reason is that any φt function

that describes a queueing process maps points from the input process as a function

of the past of the process. In each of the models we consider, the φt function maps

points from the input process as a function of the future of the process until time t.

3.3 Spatial M/G/∞ System

In this section we revisit the spatial M/G/∞ example from Section 1.2 to illustrate

how to use the results of the previous section to get convergence results. Let M

represent the Poisson input process to a service system in which the nth customer

arrives at time Tn with the mark Yn = (Xn, Vn), representing its respective spatial

location in a space S and sojourn time in the system. The arrivals occur according

to a Poisson process with rate λ. Let F denote the distribution of a typical spatial

location Xn, and Gx denote the conditional distribution of the service time Vn of the

nth customer arriving to x ∈ S. The (Xn, Vn) and Tn are independent, and the mean
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measure of M is given by

EM([a, b]× A×B) = λ|b− a|
∫

A×B
F (dx)Gx(dy).

There are several quantities of interest surrounding the limiting process of this

system. One might like to know (i) the limiting distribution of the number of cus-

tomers that arrived in the interval [t − u, t] that departed the system before time t,

or (ii) the limiting distribution of the number of customers remaining in the system

in a certain region of the mark space.

To this end, consider the transformed point process

Nt(I × A× {j}) =
∑
n

1l
(
t− Tn ∈ I, Xn ∈ A, 1l(0 < t− Tn < Vn) = j

)
.

This process counts the number of arrivals in the time interval I and in the spatial

region A that are still in the system or that have departed, depending on whether

j = 1 or 0. The process Nt corresponds to a transformation of M under the function

φ(u, x, v) = (u, x, 1l(0 < u < v)),

which is non-random and independent of t. Therefore, as in (5), we can express Nt

as

Ntf =
∫

IR+×S×IR+

f(φ(u, x, v))Mt(du dx dv). (13)

Now the assumptions of Theorem 1 are satisfied because M is a time homogeneous

Poisson process and φ is non-random and independent of t. Therefore, Nt
d→ N , where

Nf =
∫

IR+×S×IR+

f(φ(u, x, v))M(du dx dv).
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Because φ is deterministic, by Proposition 3 it follows that N is a Poisson process

with mean measure

EN(I × A× {j}) = EM(φ−1(I × A× {j}))

= λ
∫

A
F (dx)

[
1l(j = 0)

∫

I
Gx(y)dy

+1l(j = 1)
∫

I
(1−Gx(y))dy

]
. (14)

As mentioned above, one might be interested in the limiting process of the number

of customers that arrived to the system in the time interval [t − u, t] that departed

before time t. By the preceding remarks, this is a Poisson process with mean measure

EN(I × A× 0) = λ
∫

A
F (dx)

∫

I
Gx(y)dy.

The limiting process describing the total number of remaining customers in a

spatial region over all time is also a Poisson process with mean measure

EM(φ−1(IR+, A, {1})) = λEV1

∫

A
F (dx).

The transformations of the previous example are tractable because the function

φ is deterministic. While Theorem 1 is far from essential for analyzing this model, it

sheds light on how one can prove limit theorems for marked point processes. Our main

model appears in Section 4.2 and is more difficult to analyze because φ is random

and dependent upon the input process M .
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CHAPTER IV

ATTRIBUTE-BASED THINNINGS

In this chapter we will study a random time transformation of a marked point process

called an attribute-based thinning (ABT). Not only is the system input data random,

but the transformation function φt is random as well. The original motivation for this

model was an elementary species competition model analyzed by Durrett and Limic

in [8], which is discussed in Section 2.3.

Although we can establish the convergence in distribution of ABT processes, the

limits are not always tractable. However, we are able to prove that the limiting

process is Poisson for a certain generalization of the model of Durrett and Limic.

This is the main result of the dissertation.

We begin this chapter by introducing the main result, along with discussing the

exponential sojourn times. In Section 4.2 we prove three preliminary propositions

that are not only of interest in their own right, but also facilitate the proof of the

limit theorem for the main model. Section 4.3 consists entirely of the proof of the

main result. We describe general ABTs and calculate their limiting mean measures

in the fourth section. We conclude this chapter by showing the stationary Poisson

process is consistent with the our limiting results, and we present some ABTs that

do not have Poisson processes as stationary versions.
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4.1 Main Result

Consider a system where particles arrive to the totally ordered attribute space (IR,B),

where B is the Borel σ-field on the real numbers. Each arrival considers for deletion all

particles currently in the system that have strictly lower attributes. The attributes

Xn ∈ IR are independent continuous random variables with common distribution

function F . Then the deletion region of a particle arriving to y ∈ IR is defined by

D(y) ≡ {x : x < y}, which is the set of points an arrival at y can consider for deletion.

We write a(x) to denote the probability that a particle with attribute x is removed

from the system given an arrival to y > x. Then the probability that a particle at x

is considered for deletion by the next arrival is F (x), and the probability it is deleted

by the next arrival is a(x)F (x). Also, we require the condition

∫

A

F (dx)

a(x)2F (x)2
< ∞ (15)

for any compact set A ∈ B.1

We write Ln to denote the discrete lifetime of the nth particle. That is, Ln = `

means the nth particle survives exactly ` − 1 future deletion attempts, and ex-

its the system upon the arrival of the particle indexed with n + `. The marks

(X1, L1), (X2, L2) . . . ∈ IE× IN are independent and identically distributed, and they

are independent of T1, T2, . . ., though Xn and Ln can be dependent on each other for

each n. The nature of the deletion region is a key feature that leads to a Poisson

limit.

1We require this condition in order to ensure the mean measure given in (18) below is finite
on compacts. Moreover, it ensures the Wn in (36) below have finite second moments. Forcing the
probability density function for Xn to be strictly non-negative on an open set IE ⊆ IR, 0 otherwise,
and a(x) to be bounded away from 0 on compact subsets of IE satisfies this condition.
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To illustrate the deletion mechanism, consider Figure 2 below. In (a), the time is

just prior to the arrival time Tn of the nth particle. The particles currently remaining

in the system are located at the positions Xk, Xj, Xi, and Xm. In (b), the time

is Tn, and the nth particle is considering the ith, jth, and kth particles for deletion

because Xi, Xj, Xk < Xn. The mth particle cannot be considered for deletion because

Xn < Xm. In (c), the time is just after time Tn, and we see that particles i and k

were removed by the nth arrival.

∞

−∞
Xk

Xj

Xi

¾ Xn

Xm

(a) t < Tn

∞

−∞
Xk

Xj

Xi

Xn

Xm

(b) t = Tn

∞

−∞

Xj

Xn

Xm

(c) t > Tn

Figure 2: An attribute-based thinning model.

The input marked point process M on IR+ × (IE× IN) given by

M(I × A×B) =
∑
n

1l(Tn ∈ I, Xn ∈ A,Ln ∈ B), I ∈ B+, A ∈ B, B ∈ N , (16)

counts the number of particles with discrete lifetime in B that enter region A in the

time interval I. Here, B+ and N are the σ-fields on the nonnegative reals and the

natural numbers, respectively. We will also write M(t) =
∑

n 1l(0 < Tn ≤ t) to denote

the total number of arrivals to the space in the time interval [0, t].
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Our interest is in the process

Nt(A) = N t
0(A) +

∑
n

1l(0 < Tn ≤ t,Xn ∈ A,M((Tn, t]× (Xn,∞)× IN) < Ln), (17)

where N t
0 is the point process describing the numbers of particles initially in the

system at time 0 that are still in the system at time t. Then Nt(A) is the total

number of particles with attributes in region A at time t. We are assuming the

particles in the system at time 0 do not affect the arrivals after time 0. Therefore, Nt

is a continuous-time Markov jump process. The transitions are at the arrival times

of the particles.

An important performance measure of the system is the sojourn time of a typical

particle. The following result says the sojourn time has an exponential distribution.

However, it turns out that these times are highly dependent.

Proposition 7 (Sojourn Times.) The sojourn time of a particle that enters IR

with attribute x has an exponential distribution with rate λa(x)F (x), where a(x)F (x)

is the probability that a particle with attribute x does not survive the next arrival.

Proof A particle with attribute x at any time will be deleted by the next arrival

with probability a(x)F (x), independently of everything else. This implies the num-

ber of new arrivals until the particle at x is deleted is a geometric random variable ν

with parameter a(x)F (x). Thus the sojourn time of a particle at x is
∑ν

k=1 τk, where

the τk represent independent exponential interarrival times with rate λ, which are

independent of ν. It is well known that such a sum of a geometric number of i.i.d.

exponential random variables is distributed exponentially with rate λa(x)F (x).
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Our main result is the following theorem that says the limiting process for Nt is

Poisson.

Theorem 8 Under the preceding assumptions, Nt
d→ N as t → ∞, where N is a

Poisson process that is independent of N t
0, with mean measure

µN(A) =
∫

A

F (dx)

a(x)F (x)
, A ∈ B. (18)

Hence, the stationary distribution of the Markov process Nt is that of the Poisson

process N .

Proof First note that by Proposition 7 each particle has a finite sojourn time w.p.1.

Because N t
0 is a point process, there are finite numbers of particles in compact sets

at time 0. Therefore N t
0

d→ 0. Next, by Theorem 14 of Section 4.4, we will see that

Nt −N t
0

d→ N , where N is given by

Nf =
∑
n

f(Xn)1l(Mn < Ln), f ∈ C+
K(IR), (19)

and Mn = M([0, Tn)× (Xn,∞)× IN). These observations prove Nt
d→ N where N is

given by (19). We complete the proof in Theorem 12 of Section 4.3 by establishing

that N is a Poisson process with mean measure µN given by (18). We postpone the

proof of Theorem 12 until Section 4.3 so that we can make use of the preliminary

propositions in Section 4.2.

As an aside, here is another way to think about the system. One can interpret

the process {Nt, t ≥ 0} as a measure-valued branching process with immigration2.

2On a related note, Branching processes have also been used to describe the busy period of
queues. See for instance [9], [14], and [18].
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In this context, at each time Tn a new particle immigrates into the space IR with

attribute y. At each of these times, a particle already located at x such that x < y

produces exactly one offspring with the same attribute with probability 1−a(x), then

immediately dies. Otherwise, the particle at x produces no offspring and immediately

dies. If y ≤ x, then the particle at x produces exactly one particle and immediately

dies. If at time 0 there are no particles in the system, then conditioned on the space-

time coordinates of all M(t) arrivals, Nt(A) is an example of what has been referred

to as a Poisson-Binomial random variable in [4] and [5].

4.2 Preliminaries for Poisson Limit

In this section we present three propositions that are of interest by themselves, and

are required for the proof of Theorem 8 in the following section.

The first is a known result on the cumulative ranks of independent and identically

distributed random variables; e.g. see page 52 of [7]. The proof below is a little

different than this reference.

Proposition 9 (Cumulative Ranks.) Let Z1, . . . , Zn be independent random vari-

ables with a common continuous distribution, and define

Rj =
j∑

i=1

1l(Zi ≤ Zj),

which is the rank of Zj within the random sample Z1, . . . , Zj. Then the cumulative

ranks R1, . . . , Rn are independent and

P (Rj = k) = j−1, 1 ≤ k ≤ j, j = 1, . . . , n. (20)
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Proof It is well known that the rank Rj of Zj has the distribution given in (20)

because Zj is a member of the random sample Z1, . . . , Zj. To prove the independence

of the ranks, we will consider the way in which the Rj depend on the Z-values.

Because Z1, . . . , Zj are i.i.d. and continuous, Zj is equally likely to be in any one

of the j intervals

(−∞, Z̃1), (Z̃1, Z̃2), . . . , (Z̃j−1,∞)

where Z̃1 < Z̃2 < . . . < Z̃j−1 are the ordered Z1, . . . , Zj−1. That is,

P (Rj = k|Fj−1) = j−1, 1 ≤ k ≤ j, (21)

where Fj−1 = σ(Z1, . . . , Zj−1). Furthermore, because Fj−1 contains σ(R1, . . . , Rj−1),

we have

P (Rj = k|R1, . . . , Rj−1) = E[P (Rj = k|Fj−1)|R1, . . . , Rj−1] = j−1.

In light of this result, we have

P (R1 = r1, . . . , Rn = rn) =
n∏

j=1

P (Rj = rj|R1 = r1, . . . , Rj−1 = rj−1)

=
n∏

j=1

1

j
=

1

n!
.

Because this joint probability is the product of the marginal probabilities of the

R1, . . . , Rn, the ranks are independent.

Our next proposition gives a criterion for the convergence in distribution of prod-

ucts of dependent but identically distributed random variables. It is a generalization

of Lemma 5.8 of [12] that states for a null array of constants cni ≥ 0 and c ∈ IR+,

∏

i

(1− cni) → e−c ⇐⇒ ∑

i

cni → c.
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A similar result applies to null arrays of independent random variables as well. How-

ever, the product we encounter in the proof of Theorem 8 is different since the random

variables we have to deal with are not independent.

Proposition 10 Let Wn1 . . . , Wnn be an array of random variables in [0, c], with c <

1, that are identically distributed for each n but not necessarily independent. Suppose

there are nonnegative iid random variables Wi such that (Wni,Wi) are identically

distributed for i ∈ {1, . . . , n} and

nWni
L1→ Wi as n →∞ (22)

and

nW 2
n1

L1→ 0 as n →∞. (23)

Then

n∏

i=1

(1−Wni)
d→ e−EW1 , as n →∞. (24)

Proof Consider the expression

n∏

i=1

(1−Wni) = exp{
n∑

i=1

log(1−Wni)} = exp{−n−1
n∑

i=1

Wi + ℵn},

where

ℵn =
n∑

i=1

(
n−1Wi + log(1−Wni)

)
.

We know n−1 ∑n
i=1 Wi → EW1 w.p.1 by the strong law of large numbers. Then the

assertion in (24) will follow upon application of the continuous mapping theorem (see

[2] and [12]) and showing that ℵn
d→ 0.
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Using the triangle inequality and the identically distributed assumptions,

E|ℵn| ≤ E|W1 + n log(1−Wn1)|

= E
∣∣∣W1 − n

∞∑

j=1

W j
n1

j

∣∣∣

≤ E|W1 − nWn1|+ nE
∣∣∣W 2

n1

∞∑

j=0

W j
n1

2 + j

∣∣∣. (25)

Assumption (22) ensures E|W1−nWn1| → 0. Because Wn1 ≤ c < 1 for all n, the last

term in (25) is bounded by

nE
[ W 2

n1

1−Wn1

]
≤ n

E
[
W 2

n1

]

1− c
,

which goes to zero by (23). Applying this observation to (25) proves ℵn
d→ 0.

The proof of Theorem 12 uses the following result for binomial random variables.

Part (i) is used primarily to prove Part (ii), which can be thought of as an inverted

law of large numbers for binomial random variables.

Proposition 11 For n ≥ 1, let Sn be a binomial random variable with parameters n

and p. Then

(i) For each k ≥ 0 and f : {0, 1, . . . , n} −→ IR,

E[f(Sn)] = p−kE
[
1l(Sn+k ≥ k)f(Sn+k − k)

k−1∏

i=0

Sn+k − i

n + k − i

]
, (26)

(ii) n(Sn + 1)−1 L2→ 1/p.

Proof To prove (i), we use the change of variable ` = j + k to obtain

E[f(Sn)] =
n∑

j=0

f(j)

(
n

j

)
pj(1− p)n−j
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=
n+k∑

`=k

f(`− k)

(
n

`− k

)
p`−k(1− p)n+k−`

= p−k
n+k∑

`=k

f(`− k)
`!

(`− k)!

n!

(n + k)!

(
n + k

`

)
p`(1− p)n+k−`.

This is equal to the right-hand side of (26).

To prove (ii), we substitute

f(Sn) =
( n

Sn + 1
− 1

p

)2
,

and k = 2 into (26) to get

E
[( n

Sn + 1
− 1

p

)2]
= p−2E

[
1l(Sn+2 ≥ 2)

( n2Sn+2

(Sn+2 − 1)(n + 2)(n + 1)

− 2nSn+2

p(n + 2)(n + 1)
+

Sn+2(Sn+2 − 1)

p2(n + 2)(n + 1)

)]
.

The expression inside the last expectation is bounded and converges to 0 w.p.1 as

n →∞. Thus

E
[( n

Sn + 1
− 1

p

)2] → 0

by the bounded convergence theorem, which proves (ii).

4.3 Proof of Poisson Limit

In this section we prove the following theorem, which is required for the proof of

Theorem 8. We will prove Nt −N t
0

d→ N in the following section.

Theorem 12 The point process N defined by

Nf =
∑
n

f(Xn)1l(Mn < Ln), f ∈ C+
K(IR),
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with Mn = M([0, Tn)× (Xn,∞)× IN) is a Poisson process with mean measure

µN(A) =
∫

A

F (dx)

a(x)F (x)
.

Proof We will prove this by showing the Laplace functional of N is that of a Poisson

process. That is, we will show

E[e−Nf ] = exp{−
∫

IR
(1− e−f(x))µN(dx)}, f ∈ C+

K(IR). (27)

For each t > 0, define the point process N̄t on IR by

N̄tf =
∑
n

f(Xn)1l(Mn < Ln)1l(Tn ≤ t). (28)

Assume for the moment that the following statements are true:

(i) Φm ≡ E[e−N̄tf |M(t) = m] is independent of t,

(ii) limm→∞ Φm = Φ ≡ exp{− ∫
IR(1− e−f(x))µN(dx)}.

Then because N̄t ↑ N and ΦM(t) → Φ w.p.1 as t →∞, it would follow by the bounded

convergence theorem that

E[e−Nf ] = lim
t→∞E[e−N̄tf ]

= lim
t→∞E[E[e−N̄tf |M(t)]]

= Φ.

This means that expression (27) will follow upon proving statements 1 and 2 above.

At this point, we temporarily digress to prove the following lemma which verifies

statement (i) above.
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Lemma 13 Define

νm(n) =
m∑

i=1

1l(Xi ≥ Xn), n ∈ {1, . . . , m}, (29)

and let ν−1
m (n) be the index k such that νm(k) = n. Then for each m ≥ 1, the

ν−1
m (1), . . . , ν−1

m (m) denotes the permutation of 1, . . . , m such that Xν−1
m (1) > Xν−1

m (2) >

· · · > Xν−1
m (m). Define

pm(n) =
1− (1− a(Xn))νm(n)

νm(n)a(Xn)
, n ∈ {1, . . . , m}. (30)

Then E[e−N̄tf |M(t) = m] = Φm is independent of t, where

Φm = E
[ m∏

n=1

[1− pm(n)(1− e−f(Xn))]
]
. (31)

Proof Conditioning on the σ-field Fm(t) = σ(M(t) = m,X1, X2, . . . , Xm), we have

E[e−N̄tf |M(t) = m] = E
[
E

[ m∏

n=1

e−f(Xn)1l(Mn<Ln)|Fm(t)
]∣∣∣M(t) = m

]
, (32)

where

Mn =
m∑

k=1

1l(Tk < Tn, Xk > Xn).

By a standard property of Poisson processes, we can assume the Tn are independent

and identically distributed with the uniform distribution on [0, t]. Letting T ′
n =

Tν−1
m (n), we recognize that conditioned on Fm(t),

Mn =
νm(n)−1∑

k=1

1l(T ′
k < T ′

νm(n)) (33)

is the rank of T ′
n in the random sample T ′

1, . . . , T
′
n. Then by Proposition 9, the

cumulative ranks Mn are conditionally independent given Fm(t) and

P (Mn = k|Fm(t)) =
1

νm(n)
, 0 ≤ k ≤ νm(n)− 1. (34)
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Next, note that L1, . . . , Lm, M1, . . . , Mm are conditionally independent given Fm(t).

This follows because the Mn are functions of the T ′
n which are conditionally indepen-

dent of the Ln given Fm(t). Note that conditioned on Fm(t) the Ln has the geometric

(a(Xn)) distribution. This means

P (Mn < Ln|Fm(t)) = E[P (Mn < Ln|Fm(t))|Fm(t)]

= E[(1− a(Xn))Mn |Fm(t)].

Then using the conditional distribution in (34) for Mn, it follows that

P (Mn < Ln|Fm(t)) = E
[
E[(1− a(Xn))Mn |Fm(t),Mn]

∣∣∣Fm(t)
]

=
νm(n)−1∑

k=0

(1− a(Xn))k

νm(n)

=
1− (1− a(Xn))νm(n)

νm(n)a(Xn)

= pm(n).

Applying the preceding observations to (32) yields

E[e−N̄tf |M(t) = m] = E
[ m∏

n=1

E[e−f(Xn)1l(Mn<Ln)|Fm(t)]
∣∣∣M(t) = m

]

= E
[ m∏

n=1

(
e−f(Xn)pm(n) + 1− pm(n)

)]

= Φm.

This proves (31).

We now return to the proof of Theorem 12. All that remains is to verify that

statement (ii) holds, which is

Φm = E
[ m∏

n=1

(
1− pm(n)(1− e−f(Xn))

)]
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→ Φ = exp{−
∫

IR
(1− e−f(x))µN(dx)}. (35)

To do this, we will apply Proposition 10. Set

Wmn = pm(n)(1− e−f(Xn)).

Note that for each m, the Wmn are not independent, but are identically distributed

on [0, c], where

c = 1− exp
{
− sup

x∈IR
f(x)

}
.

Define the nonnegative random variables

Wn =
1− e−f(Xn)

a(Xn)F (Xn)
. (36)

Note the Wn are independent and identically distributed because they are functions

of the Xn. Also note the (mWmn,Wn) are identically distributed, and E[W 2
n ] < ∞

by (15). Then in order to use Proposition 10 to show (35), we just need to show

mWmn
L1→ Wn and mW 2

m1
L1→ 0 as m →∞.

Convergence in L2 implies convergence in L1. Therefore showing

mWmn
L2→ Wn (37)

implies mWmn
L1→ Wn. Next, by the triangle and Cauchy-Schwarz inequalities,

mE|W 2
m1| = E|Wm1(mWm1 −W1) + Wm1W1|

≤ E|Wm1(mWm1 −W1)|+ E|Wm1W1|

≤
(
E[W 2

m1]E[(mWm1 −W1)
2]

)1/2
+

(
E[W 2

m1]E[W 2
1 ]

)1/2
.
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The first term on the right goes to zero as m →∞ because 0 ≤ Wm1 < 1 and by (37).

The second term on the right goes to zero because E[W 2
1 ] < ∞ and by (37) because

mWm1
L2→ W1 ⇒ m2E[W 2

m1]− 2mE[Wm1W1] + E[W 2
1 ] → 0

⇒ E[W 2
m1]−

2

m
E[Wm1W1] +

E[W 2
1 ]

m2
→ 0.

Since E[W 2
1 ] < ∞, this implies E[W 2

m1] → 0, so that mW 2
m1

L1→ 0. Therefore, it

suffices to show (37).

Retaining the νm(n) from (29) and noting that (1 − a(Xn))νm(n) L2→ 0 as m → ∞

because νm(n) →∞ w.p.1, we see that showing (37) is equivalent to showing

E
[( m

νm(n)
− 1

F (Xn)

)2
1l(Xn ≤ x∗)

]
→ 0, (38)

where x∗ = sup{x : f(x) 6= 0}.

By the definition of νm(n), we know that

P (νm(n) = k|Xn = x) = P (Sm−1 = k − 1),

where Sm−1 has a Binomial distribution with parameters m − 1 and F (x). Then

conditioning on Xn,

E
[( m

νm(n)
− 1

F (Xn)

)2
1l(Xn ≤ x∗)

]
=

∫ x∗

−∞
hm(x)F (dx), (39)

where

hm(x) = E
[( m

Sm−1 + 1
− 1

F (x)

)2]
.

By part (ii) of Proposition 11, it follows that hm(x) → 0 as m →∞. Also, from

the proof of this, it is clear that |hm(x)| ≤ C/F (x∗)2, for some constant C. Then by

the bounded convergence theorem, the expectation in (39) converges to 0, and this
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proves (38). Thus, the proof of Theorem 12 is complete.

It appears our model results in a Poisson process in the limit because we can

exploit Proposition 9 in the previous section. We can do this because of the special

deletion rule based on the total ordering of the particle attributes. This proposition

does not always hold for other deletion rules, and furthermore seems to be quite rare.

In Section 4.5 we briefly examine some ABTs that are similar to the one described

above that neither allow for the use of Proposition 9, nor produce Poisson limits. It

is likely that a necessary criterion for Proposition 9 to be applied is for the deletion

rule to follow a linear ordering.

Upon proving Theorem 8, it is evident that we can make some generalizations.

First, the results immediately extend to certain cases of batch arrivals. Suppose ar-

rivals come in batches consisting of a random number of particles, and each particle

receives an independent and identically distributed attribute in IR from the distrib-

ution F . Further, assume each arrival within each batch is ranked among the other

particles within the batch, and considers for deletion those that arrived previously as

well as those within the batch with a lower position. Theorem 8 prescribes the same

limiting distribution for such cases, only the convergence is faster provided the batch

distributions have means greater than one.

Our model can also be generalized to allow for multiple types of particles by simply

allowing m independent ABT processes N1
t , . . . , Nm

t , each with its own parameters Fn

and an(·), to take place on IR. Limiting and stationary results are easily achieved by

straightforward applications of standard aggregation theorems for Poisson processes.
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Letting Nt denote the entire process N1
t + · · ·+Nm

t , it follows that the limiting mean

measure for such a system is given by

µN =
m∑

n=1

µNn ,

where m is the number of particle types, Nn
t

d→ Nn for each n, and

µNn(A) =
∫

A

Fn(dx)

an(x)F n(x)
, A ∈ B.

4.4 Limiting Distributions of ABTs

In this section we will consider a more general model than that of the previous section.

We examine special cases in the next section. Now, instead of arriving to a totally

ordered space, assume particles (representing customers, items, etc.) arrive to a

Polish space (IE, E) at times 0 < T1 < T2 < . . ., forming a time-homogeneous Poisson

process on IR+ with rate λ. Then nth arrival at time Tn will be assigned the mark

(Xn, Ln) from the mark space (IE × IN, E ⊗ N ), where N is the Borel field on the

natural numbers, and Ln is the discrete lifetime as before. Here, Xn represents the

attribute of the nth particle in IE (which can now be a number, a vector, etc.), and

we use F to denote its distribution. Then the input marked point process M on

IR+ × (IE× IN) given by

M(I × A×B) =
∑
n

1l(Tn ∈ I, Xn ∈ A,Ln ∈ B), I ∈ R+, A ∈ E , B ∈ N , (40)

counts the number of particles with discrete lifetime in B that enter region A in the

time interval I. We will also write M(t) =
∑

n 1l(Tn ≤ t) to denote the total number

of arrivals to the space through time t.
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The particles are again subject to deletion by future arrivals. Recall that D(y)

denotes the deletion region of y, meaning that upon an arrival to y ∈ IE, a particle

with attribute x ∈ IE is deleted with probability a(x) if x ∈ D(y), independently of

everything else. We will also use the notation D−1(x) ≡ {y : x ∈ D(y)}, and we

assume D−1(x) to be a measurable set for all x ∈ IE. Here we do not specify the form

of D(y).

In order to illustrate the deletion mechanism, consider Figure 3. For the process

depicted here, Xn = (Yn, Zn), where Yn is the actual position of the nth particle in

the IR2 plane, and Zn is the rank3 of the nth particle. In this figure, the nth particle

has just arrived. Its deletion region is the set of all points located within the circle

of radius r centered at Yn that have lower ranks than Zn. Because the ith and jth

particles are the only ones within the circle, the ith particle will be removed from

the system with probability a(Yi, Zi) if Zi < Zn, and the jth particle will be removed

from the system with probability a(Yj, Zj) if Zj < Zn.

Let us define

b(x) ≡ F (D−1(x)) =
∫

IE
1l(x ∈ D(y))F (dy), x ∈ IE′,

which is the conditional probability that the next arrival to the system has the oppor-

tunity to consider a particle at x for deletion. Note that a(x)b(x) is the probability

that a particle located at x is removed from the system upon the next arrival. As

before, Ln is conditionally geometric given Xn. That is,

P (Ln = `|Xn) = [1− a(Xn)]`−1a(Xn). (41)

3The ranks here are not to be confused with the ranks of Proposition 9. Here, a rank is a value
in the unit interval or IR.
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(Yn, Zn)

µ
(Yi, Zi)

(Yj, Zj)

IR2

Figure 3: Attribute-based thinning with IE = IR2 × IR.

Under these assumptions, the input process M is a Poisson process. The mean

measure of the Poisson process M is given by

E[M(I × A×B)] =
∫

I
λds

∫

A
F (dx)

∑

`∈B

(1− a(x))`−1a(x).

Our concern will be with the continuous-time stochastic point process Nt on the

space IR+ × IE× {0, 1} defined by

Nt(I × A× {i}) =
∑
n

1l
(
t− Tn ∈ I,Xn ∈ A,

1l
(
M

(
(Tn, t]×D−1(Xn)× IN)

)
< Ln

)
= i

)
. (42)

In this section, we do not consider the process N t
0 because particles again have expo-

nential sojourn times and N t
0 → 0 on compact sets w.p.1. Note that Nt keeps track

of more information than the previous model. In particular, Nt([0, u] × A × {1}) is

the number of particles that arrived in the time interval [t− u, t] that are retained in

the set A ∈ E at time t. On the other hand, Nt([0, u] × A × {0}) is the number of

particles that arrived in the time interval [t − u, t] that have departed from the set
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A ∈ E by time t. Note that Nt is a measure-valued Markov process because given

{Ns : s ≤ t}, the distribution of Nt+h for any h > 0 depends only upon Nt.

The following theorem describes the limiting distribution of the Nt process.

Theorem 14 The process defined in (42) satisfies Nt
d→ N , where N is defined by

Nf =
∑
n

f(Tn, Xn, 1l(Mn < Ln)), f ∈ C+
K(IE), (43)

where Mn = M([0, Tn)×D−1(Xn)× IN). The mean measure of N is

µN(I ×B × {i}) =





λ
∫
B

∫
I e−λua(x)b(x)duF (dx), i = 1,

λ
∫
B

∫
I(1− e−λua(x)b(x))duF (dx), i = 0.

(44)

In addition,

ENtf → ENf, f ∈ C+
K(IR). (45)

Proof The process Nt defined by (42) can be expressed as

Ntf =
∑
n

f(φt(t− Tn, Xn, Ln)), f ∈ C+
K(IE),

where

φt(u, x, `) =
(
u, x, 1l

(
M([t− u, t]×D−1(x)× IN) < `

))
,

and this is defined to be zero for all u > t. Then Nt is obtained from the input process

M as discussed in Chapter 3 via the random transformation φt. By defining

Mt(I ×B × C) ≡ M(t− I ×B × C) on [0, t]× IE× IN,

we can write

φt(u, x, `) =
(
u, x, 1l

(
Mt([0, u]×D−1(x)× IN) < `

))
.
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To prove that Nt converges in distribution, it suffices by Theorem 1 to show there

exists a function φ ∈ IF such that (φt,Mt)
d
= (φ,M). To this end, define

φ(u, x, `) =
(
u, x, 1l

(
M([0, u]×D−1(x)× IN) < `

))
.

Because Mt and M are time-homogeneous Poisson processes, they are equal in distri-

bution on [0, t]× IE× IN. Then clearly (φt,Mt)
d
= (φ,M) on IF×M([0, t]× IE× IN),

and the conditions of Theorem 1 are satisfied. Thus, Nt
d→ N , where N is defined by

Nf =
∫

IR+×IE

∞∑

`=0

f(φ(u, x, `))M(du× dx× {`}),

which is equivalent to (43).

To prove the mean measure of N is given by µN , consider (43), where 1l(Mn <

Ln) = 1 or 0 if the nth particle survives Tn time units or not, respectively. Then we

can write ENf as

ENf =
∑
n

Ef(Tn, Xn, 1l(Mn < Ln))

=
∑
n

E[f(Tn, Xn, 1)P (Mn < Ln|Tn, Xn)

+f(Tn, Xn, 0)P (Mn ≥ Ln|Tn, Xn)]. (46)

Because Ln given Xn is distributed geometric with parameter a(Xn), and Mn given

Tn and Xn is distributed Poisson with mean λTnb(Xn), it follows that

P (Mn < Ln|Tn, Xn) = E[P (Mn < Ln|Tn, Xn,Mn)|Tn, Xn]

= E[(a(Xn))Mn|Tn, Xn]

= exp{−λTna(Xn)b(Xn)}.
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Substituting the above expression into (46) yields

ENf =
∑
n

E
[
f(Tn, Xn, 1) exp{−λTna(Xn)b(Xn)}

+f(Tn, Xn, 0)(1− exp{−λTna(Xn)b(Xn)})
]

= λ
∫

IR+×IE

(
f(u, x, 1)e−λua(x)b(x)

+f(u, x, 0)(1− e−λua(x)b(x))
)
duF (dx), (47)

and the first part of the theorem is proved.

Finally, (45) follows by statement (9) of Theorem 1.

4.5 Examples: Stationary Distributions and Non-

Poisson Limits

In the previous section we studied a process where deletions were triggered by arrivals

with higher ranks in a linearly ordered space. These assumptions yielded a limiting

process that was a Poisson process. This is apparently a very special result, as the

limiting process is very sensitive to the deletion rule.

In this section we will investigate the stationary distribution of the system Nt

described in the previous sections, as well as the stationary distributions of some

other similar systems by testing whether or not they they can be Poisson processes.

We begin by considering the main model, and reprove that its stationary distribution

is the limiting process proved in Theorem 8. Then we examine three similar processes

with slightly different deletion rules, and show their stationary distributions cannot

be Poisson processes.
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Because each of the following processes is a Markov process subordinated to a

Poisson process, in each case it will suffice to assume the process is stationary in

time, and simply compare the forms of the Laplace functionals at times 0 and T1,

the time of the first arrival after time 0. That is, we know that if Nt is stationary in

time, then N0
d
= NT1 (in fact, N0

d
= Nt for all time t). Because Laplace functionals

completely characterize point processes, this is equivalent to the statement

LN0(f) = LNT1
(f), (48)

where LN(f) is the Laplace functional of the N process as defined in (1). Then in

order to test whether or not a system has a Poisson process for a stationary version,

we just need to verify (48) when N0 and NT1 are equal in distribution to a Poisson

process with mean measure prescribed by (47):

EN(A) =
∫

A

F (dx)

a(x)b(x)
. (49)

Example 15 Main Model. Recall the model from the first section along with its

notation. Assume the process Nt is stationary in time, and has the distribution of a

Poisson process with mean measure (49). Then we know the Laplace functional of

the process at these times must be given by

LN0f = LNT1
f = exp

{ ∫

IR
(1− e−f(x))µN(dx)

}
, f ∈ C+

K(IR). (50)

In order to test this hypothesis, we begin by writing down the expression for the

Laplace functional of NT1 for f ∈ C+
K by conditioning on the location of the first

arrival X1 after time 0:

LNT1
f = E[e−

∫
IR

f(x)NT1
(dx)]

47



=
∫

IR
E

[
exp

{
−

∫ y

−∞
f(x)(1− a(x))N0(dx)

−
∫ ∞

y
f(x)N0(dx)− f(y)

}]
F (dy),

which follows directly from the deletion rule of the Nt process. Next, because N0 is

a Poisson process, it has independent increments so that

LNT1
f =

∫

IR
E

[
exp

{
−

∫ y

−∞
f(x)(1− a(x))N0(dx)

}]

×E
[
exp

{ ∫ ∞

y
f(x)N0(dx)

}]
e−f(y)F (dy).

Because N0 is a Poisson process with mean measure µN , we can use the known form of

the Laplace functional for Poisson processes and standard thinning results to rewrite

the integrand and get

LNT1
f =

∫

IR
exp

{
−

∫ y

−∞
(1− e−f(x))(1− a(x))µN(dx)

}

× exp
{
−

∫ ∞

y
(1− e−f(x))µN(dx)

}
e−f(y)F (dy).

Rearranging the terms in the exponents yields

LNT1
f =

∫

IR
exp

{
−

∫ ∞

−∞
(1− e−f(x))µN(dx)

}

× exp
{ ∫ y

−∞
(1− e−f(x))a(x)µN(dx)

}
e−f(y)F (dy)

= exp
{
−

∫ ∞

−∞
(1− e−f(x))µN(dx)

}

×
∫

IR
exp

{ ∫ y

−∞
(1− e−f(x))a(x)µN(dx)

}
e−f(y)F (dy).

Because we assume (50), examining the expression above tells us we just need to

verify

Ψ ≡
∫

IR
exp

{ ∫ y

−∞
(1− e−f(x))a(x)µN(dx)

}
e−f(y)F (dy) = 1. (51)
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Substituting the expression for the mean measure µN(dx) = F (dx)a(x)−1F (x)−1 into

the expression for Ψ yields

Ψ =
∫

IR
exp

{ ∫ y

−∞
(1− e−f(x))

F (dx)

F (x)
− f(y)

}
F (dy)

=
∫

IR
exp

{ ∫ y

−∞
F (dx)

F (x)
−

∫ y

−∞
e−f(x)F (dx)

F (x)
− f(y)

}
F (dy)

=
∫

IR
exp

{
− log F (y)−

∫ y

−∞
e−f(x)F (dx)

F (x)
− f(y)

}
F (dy)

=
∫

IR

1

F (y)
exp

{
−

∫ y

−∞
e−f(x)F (dx)

F (x)
− f(y)

}
F (dy)

Letting g(y) =
∫ y
−∞ e−f(x)/F (x)F (dx) means Ψ can be written as

Ψ =
∫

IR
e−g(y)dg(y),

which is indeed equal to 1. Thus (51) is established, which proves that the Poisson

process N is a stationary distribution for Nt. This lengthy proof, which we include

for illustrative purposes, is another way of showing what we already know is true.

The next process is examined more thoroughly in the next chapter under the

heading of a spatial polling model. Here we simply show that the process cannot be

a Poisson process in the limit.

Example 16 Elastic Polling Model. We will consider a model similar to the one

presented in the previous section, except there is no discrimination of attributes.

That is, each particle is considered for deletion at each future arrival. Specifically,

suppose particles enter the space IR according to a Poisson process with rate λ. Upon

an arrival, each customer already in the system located at x is considered for service,

and is so serviced (and exits) with probability a(x) < 1, independently of everything

else.
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We are interested in knowing whether the process Nt describing the numbers of

customers in regions of the system is Poisson, assuming Nt is stationary. As in the

previous example, we will compare the Laplace functionals of the system states N0

at time 0 and NT1 at the time of the first arrival. We will let µN denote the mean

measure of N .

We proceed as in the previous example. By conditioning on the position of the

first arrival X1, using the form of the Laplace functional for Poisson processes given

by (2), and using the deletion rule, we get for any f ∈ C+
K(IR)

LNT1
f = E[e−

∫
IR

f(x)NT1
(dx)]

=
∫

IR
exp

{
−

∫

IR
(1− e−f(x))(1− a(x))µN(dx)− f(y)

}
F (dy)

= exp
{
−

∫

IR
(1− e−f(x))(1− a(x))µN(dx)

} ∫

IR
e−f(y)F (dy). (52)

Because the system is stationary at time 0, we know the expression (52) should be

equal to the Laplace functional of the stationary process

LN0f = exp
{
−

∫

IR
(1− e−f(x))µN(dx)

}
. (53)

Setting (52) equal to (53) implies

Ψ ≡ exp
{ ∫

IR
(1− e−f(x))a(x)µN(dx)

} ∫

IR
e−f(y)F (dy) = 1, (54)

which is what we have to check. We know from (47) that the mean measure for the

N process is given by µN = F (dx)/a(x). Substituting µN into Ψ yields

Ψ = exp
{ ∫

IR
(1− e−f(x))F (dx)

} ∫

IR
e−f(y)F (dy)

= exp
{
1−

∫

IR
e−f(x)F (dx)

} ∫

IR
e−f(y)F (dy).
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Taking the logarithm of Ψ yields

log Ψ = 1−
∫

IR
e−f(x)F (dx) + log

∫

IR
e−f(x)F (dx).

But since Ψ = 1, we see that

∫

IR
e−f(x)F (dx) = 1,

which is not always true. For instance, if f(x) = 1l(x ∈ [0, 1]) and F is the cumulative

distribution function for a uniform [0, 1] random variable, then the left-hand side of

the above expression yields e = 1. Therefore, this system does not admit a Poisson

process as a stationary distribution.

In retrospect, it may seem that the result in the previous example is intuitive.

Standard thinning results for Poisson processes tell us that thinning a Poisson process

with a certain intensity yields another Poisson process. If we then randomly add a

point to the thinned process, we no longer have a Poisson process. However, this

intuition seems to contradict the limiting result of the previous section. We will

study the elastic polling model more in depth in the following chapter.

Example 17 Discriminating Service System. Suppose particles enter IR according

to a Poisson process with rate λ, and take on independent positions in IR according to

the distribution F . Assume the deletion mechanism is as follows. Upon an arrival to

the position y ∈ IR, each existing particle at x < y is deleted with probability a1(x),

and each existing particle at x′ > y is deleted with probability a2(x
′), independently

of everything. This simply cannot have a stationary Poisson process because setting

a1(x) = a2(x) for all x ∈ IR yields the previous example.
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Example 18 Generalized Deletion Probabilities. Suppose particles arrive to IR ac-

cording to a Poisson process with rate λ, taking on independent positions in IR ac-

cording to the distribution function F . Upon an arrival to y, each particle located at

x < y is deleted from the system with probability a(x, y). Proceeding as we have in

the previous examples, if the stationary distribution is that of a Poisson process with

mean measure µN , we should be able to write for f ∈ C+
K(IR) the Laplace functional

of the process NT1 at the time of the first arrival. By conditioning on the location of

the first arrival and using the deletion rule,

LNT1
f = E[e−

∫
IR

f(x)NT1
(dx)]

=
∫

IR
E

[
exp

{
−

∫ y

−∞
f(x)(1− a(x, y))N0(dx)

−
∫ ∞

y
f(x)N0(dx)− f(y)

}]
F (dy).

Using the independent increments of Poisson processes yields

LNT1
f =

∫

IR
E

[
exp

{
−

∫ y

−∞
f(x)(1− a(x, y))N0(dx)

}]

×E
[
exp

{
−

∫ ∞

y
f(x)N0(dx)

}]
e−f(y)F (dy).

Recalling the known form of the Laplace functional for a Poisson process as given in

expression (2),

LNT1
f =

∫

IR
exp

{
−

∫ y

−∞
(1− e−f(x))(1− a(x, y))µN(dx)

}

× exp
{
−

∫ ∞

y
(1− e−f(x))µN(dx)

}
e−f(y)F (dy)

= exp
{
−

∫

IR
(1− e−f(x))µN(dx)

}

×
∫

IR
exp

{ ∫ y

−∞
(1− e−f(x))a(x, y)µN(dx)

}
e−f(y)F (dy).
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Because the system is stationary at time 0, we set LNT1
f equal to the Laplace func-

tional for the stationary Poisson process N given by

LNf = exp
{
−

∫

IR
(1− e−f(x))µN(dx)

}

to get

Ψ ≡
∫

IR
exp

{ ∫ y

−∞
(1− e−f(x))a(x, y)µN(dx)

}
e−f(y)F (dy) = 1. (55)

From (47), we know the limiting mean measure of the process must be

µN = F (dx)/
∫ ∞

x
a(x, y)F (dy).

Then upon substituting µN into Ψ, it remains to show Ψ = 1. We have

Ψ =
∫

IR
exp

{ ∫ y

−∞
(1− e−f(x))a(x, y)F (dx)∫∞

x a(x, y)F (dy)

}
e−f(y)F (dy).

Now let

a(x, y) =





y x ∈ [0, 1], y ∈ [0, 1],

1 otherwise,

let f(x) = 1l(x ∈ [0, 1]), and let F be the distribution function for a uniform [0, 1]

random variable. Then

Ψ =
∫ 1

0
exp

{ ∫ y

0

(1− e−1)ydx
∫ 1
x ydy

}
e−1dy

=
∫ 1

0
exp

{
2y(1− e−1)

∫ y

0

dx

1− x2

}
e−1dy

=
∫ 1

0
exp

{
2y(1− e−1)

1

2
log

1 + y

1− y

}
e−1dy

=
∫ 1

0

1 + y

1− y
exp

{
y(1− e−1)

}
e−1dy

> 1.

Thus the process described above cannot admit a Poisson process for a stationary

distribution because (55) is not satisfied.

53



CHAPTER V

SPATIAL POLLING MODELS

Standard polling models describe service systems where a server serves several queues

in some order. For example, n queues may be placed on the unit circle and a server

moving clockwise on the circle may allocate a certain amount of time to each queue

before proceeding to the next. This is also an example of processor sharing.

In this chapter we describe models where particles (customers, items, etc.) arrive

to a service system and are selected for service by servers that arrive in the future.

Upon the arrival of a server, each particle that is in the system is independently

served immediately or not depending on the particle’s location. After servicing the

particles, if the servers remain in the system as particles, we call the model an elastic

polling model. If the servers instantaneously depart the system after their arrival, we

call the model an inelastic polling model. The motivation for these terms comes from

elastic and inelastic collisions of particles in physics. A perfectly inelastic collision

is one where momentum is conserved but kinetic energy is not. Both quantities are

conserved in an elastic collision. We consider an elastic model in the first section and

turn to an inelastic model in the following section.

As an example, consider a freshly poured glass of soda. Carbon dioxide bubbles

form at the bottom of the glass, and subsequently stream to the surface where they

form a bubble cluster. New bubbles arriving to the surface will annihilate some of
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the existing bubbles in the cluster upon contact. The new arrivals then remain in the

bubble cluster at the surface and wait for arriving bubbles to annihilate them. Such

a system can be modelled as an elastic polling model.

5.1 Elastic Spatial Polling Model

In this section we consider the following alteration of the ABT model of Section 4.1.

As above, suppose particles arrive to a service system at times 0 < T1 < T2 < . . .

that form a Poisson process with rate λ, and the nth particle arriving at time Tn

takes on the position Xn in the space IE. Whenever a particle arrives, any particle

already in IE at some location x is removed from the system with probability a(x),

independently of everything else. That is, the deletion region D(y) for an arrival

to y ∈ IE will be the entire space IE. New arrivals cannot delete themselves. This

system can also be viewed as a spatial service system where customers are serviced

in random order in binomially distributed batches.

To illustrate the process, consider Figure 4 below. In (a), the time t is just prior to

Tn. The particles in the system are the mth, ith, jth, and kth arrivals. In (b) the time

is exactly Tn. At this time each particle in the system is being considered for deletion

according to its position, e.g., the mth particle will be deleted with probability a(Xm),

the jth particle will be deleted with probability a(Xj), etc. In (c) we see the mth

and the kth particles were deleted, and only the ith, jth, and nth particles remain.

The data that generates the input point process M is the set of points {(Tn, Xn, Ln) :

n ≥ 1}, where Tn ∈ IR+ and Xn ∈ IE denote the arrival time and location of the nth

arriving customer. Here, the discrete lifetime Ln ∈ IN denotes the number of particle

55



IE

Xk

Xj

Xi

¾ Xn

Xm

(a) t < Tn
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(b) t = Tn

IE

Xj

Xi

Xn

(c) t > Tn

Figure 4: An elastic polling model.

arrivals required in order for the nth particle to depart the system. We assume the

(Xn, Ln) are independent and identically distributed, independent of the arrival times

Tn, and

P (Xn ∈ A,Ln > `) =
∫

A
(1− a(x))`F (dx),

where F is the distribution of X. Then

M(I × A× IN) =
∑
n

1l(Tn ∈ I, Xn ∈ A)

counts the total number of particles that arrived in the time-space region I ×A. The

M is a Poisson process, and its mean measure is

EM(I ×B × C) = λ
∫

I
ds

∫

B
F (dx)

∑

`∈C

[1− a(Xn)]`−1a(Xn).

We will once again let

M(t) ≡ M([0, t]× IE× IN),

which is the number of arrivals up to time t.
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5.1.1 Main Result

In this subsection we are concerned with finding the limiting distribution of the

process Nt defined by

Nt(I, B, {i}) =
∑
n

1l
(
t− Tn ∈ I, Xn ∈ B, 1l(M(t)− n < Ln) = i

)
. (56)

In particular, Nt([0, u]×B × {1}) is the number of particles that arrived in the time

interval [t− u, t] that remain in the set B at time t.

The following theorem describes the limiting distribution of the Nt process.

Theorem 19 The process defined above satisfies Nt
d→ N , where N is defined by

Nf =
∑
n

f(Tn, Xn, 1l(Mn < Ln)), f ∈ C+
K(IE), (57)

with Mn = M([0, Tn)× IE× IN). The mean measure of N is

µN(I ×B × {i}) =





λ
∫
B

∫
I e−λua(x)duF (dx), i = 1,

λ
∫
B

∫
I(1− e−λua(x))du F (dx), i = 0.

(58)

In addition,

ENtf → ENf, f ∈ C+
K(IR). (59)

Proof As in Chapter 3, the process Nt defined by (56) is a transformation of M of

the form

Ntf =
∑
n

f(φt(t− Tn, Xn, Ln)), f ∈ C+
K(IR),

where

φt(u, x, `) =
(
u, x, 1l(Mt([0, u)× IE× IN) < `)

)
.
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To prove that Nt converges in distribution, it suffices by Theorem 1 to show there

exists a function φ ∈ IF such that (φt,Mt)
d
= (φ,M). To this end, define

φ(u, x, `) =
(
u, x, 1l

(
M(u) < `

))
.

Because Mt and M are time-homogeneous Poisson processes, they are equal in dis-

tribution. Then clearly (φt,Mt)
d
= (φ,M) on IF ×M([0, t] × IE × [0, 1]). Thus the

conditions of Theorem 1 are satisfied so that Nt
d→ N , where N is defined by

Nf =
∫

IR+×IE

∞∑

`=0

f(φ(u, x, `))M(du× dx× {`}),

and this representation is the same as (57).

To prove the mean measure of N is given by (58), we use the representation of N

in (57) to write

ENf = E
[ M(S(f))∑

n=1

Ef(Tn, Xn, 1l(Mn < Ln))
]

= E
[ M(S(f))∑

n=1

E[f(Tn, Xn, 1)P (Mn < Ln|Tn, Xn)]

+f(Tn, Xn, 0)P (Mn ≥ Ln|Tn, Xn)]
∣∣∣S(f)

]
,

where M(S(f)) denotes the number of arrivals in the support of f . Because Ln

given Xn is distributed geometric with parameter a(Xn), and Mn given Tn and Xn is

distributed Poisson with mean λTn, it follows that

P (Mn < Ln|Tn, Xn) = E[P (Mn < Ln|Tn, Xn,Mn)|Tn, Xn]

= E[(1− a(Xn))Mn|Tn, Xn]

= exp{−λTna(Xn)}.
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Therefore,

ENf = E
[ M(S(f))∑

n=1

E[f(Tn, Xn, 1) exp{−λTna(Xn)}

+f(Tn, Xn, 0)(1− exp{−λTna(Xn)})]
∣∣∣M(S(f))

]

= λ
∫

IR+×IE

(
f(u, x, 1) exp{−λTna(Xn)}

+f(u, x, 0)(1− exp{−λTna(Xn)})
)
duF (dx).

Finally, the convergence ENtf → ENf follows by statement (9) of Theorem 1.

In the following section we will be concerned with the process that counts the

total numbers of remaining particles in various regions. Unfortunately, the Laplace

functional of this process does not have a known form from which we can obtain

a closed form representation of the limiting process. However, we will derive the

limiting distribution of the number of remaining particles in any region A ∈ IE by

using probability generating functions.

5.1.2 Limiting Distributions of Remaining Particles

In this subsection we will consider the process defined by (56) restricted to part of its

space. Specifically, we examine the behavior of the Nt process defined by

Nt(A) =
∑
n

1l(Tn ∈ [0, t], Xn ∈ A,M(t)− n < Ln), (60)

where the M process is generated by the data {(Tn, Xn, Ln)} as above. Here, Nt(A)

is the number of particles that are in the set A at time t. The Nt(A) here is equal to

Nt(IR+ × A× {1}) for the process in (56).
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Note that

Nt(A) =
M(t)∑

n=1

Utn1l(Xn ∈ A), n ≥ 1,

where Utn ≡ 1l(M(t)−n < Ln) are conditionally independent given M(t). Then given

M(t), the Nt(A) has a binomial distribution with parameters M(t) and P (Utn = 1).

This is what has been referred to as a Poisson-Binomial random variable in [4].

Below is the main theorem for this subsection. We require the process to begin

with finite numbers of particles in compact sets at time 0. Because each particle

remains in the system for a finite amount of time, without loss of generality we may

assume the process begins with no particles in the system. That is, N0(IE) = 0.

Theorem 20 The point process Nt above converges in distribution to the point process

N , whose Laplace functional is given by

LNf =
∞∏

n=0

(1− an(f)), f ∈ C+
K(IR), (61)

where an(f) =
∫
IR(1− a(x))n(1− e−f(x))F (dx). Hence, the stationary distribution of

Nt is that of the point process N .

Proof By Theorem 19, we know that Nt
d→ N , where

Nf =
∑
n

f(Xn)1l(Ln ≥ n), f ∈ C+
K(IR)

because M([0, Tn)× IE× IN) = n− 1.

To finish the proof, it suffices to show the Laplace functional LN of N is given by

(61). Because the (Xn, Ln) are independent and identically distributed, we can write

LN(f) = E
[
e−

∑∞
n=1

f(Xn)1l(Ln≥n)
]
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=
∞∏

n=1

E[e−1l(Ln≥n)f(Xn)]

=
∞∏

n=1

E[(1− a(X1))
n−1e−f(X1) + 1− (1− a(X1))

n−1]

=
∞∏

n=0

(
1− E[(1− a(X1))

n(1− e−f(X1))]
)
. (62)

This proves (61).

Unfortunately, a closed form expression for the product in (62) it not known.

However, the Laplace functional of the limiting process N is still useful because we

can determine distributions of the numbers of particles N(A) remaining in various

regions A of the system. That is, we can obtain the generating function GN(A)(s) of

N(A) by setting f(x) = 1l(x ∈ A) and by replacing e−1 with s in (61):

GN(A)(s) ≡ E[sN(A)] =
∞∏

n=0

(
1− E[(1− a(X1))

n(1− s1l(X1∈A))]
)
.

Then the generating function for the limiting random variable N(A) is given by

GN(A)(s) = eC(s), (63)

where

C(s) =
∞∑

n=0

log
(
1− (1− s)an

)
, (64)

and

an = E[(1− a(X1))
n1l(X1 ∈ A)].

Using (63) we can write down the distribution of the process N , but first we need the

following lemma.

61



Lemma 21 Suppose the probability generating function G(s) =
∑∞

n=0 pns
n has the

form G(s) = eC(s) where

C(s) =
∞∑

n=0

log[1− (1− s)an],

for some numbers 1 > a0 > a1 > . . . > 0. Then

p0 =
∞∏

n=0

(1− an),

pk = k−1
k−1∑

n=0

C(k−n)(0)pn

(k − 1− n)!
, k ≥ 1, (65)

where

C(k)(0) = (k − 1)!
∞∑

n=0

ak
n

(an − 1)k
.

Proof We prove the nth derivative of G is

G(n)(s) =
n−1∑

i=0

(
n− 1

i

)
G(i)(s)C(n−i)(s) (66)

by induction. Note that

G′(s) = G(s)C ′(s).

Assume (66) is true for some n. Then we can write

G(n+1)(s) =
n−1∑

i=0

(
n− 1

i

)
[G(i+1)(s)C(n−i)(s) + G(i)(s)C(n−i+1)(s)]

= G(s)C(n+1)(s) +
n−1∑

i=0

((
n− 1

i

)
+

(
n− 1

i + 1

))
G(i+1)(s)C(n−i)(s)

+G(n)(s)C ′(s).

Using the identity
(
n− 1

i

)
+

(
n− 1

i + 1

)
=

(
n

i + 1

)
,
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we get

G(n+1)(s) = G(s)C(n+1)(s) +
n−1∑

i=0

(
n

i + 1

)
G(i+1)(s)C(n−i)(s) + G(n)(s)C ′(s)

=
n∑

i=0

(
n

i

)
G(i)(s)C(n−i+1)(s).

Then the distribution in (65) follows by noting G(n)(0) = n!pn.

Now we are now ready to get the distribution of N(A) for A ∈ E .

Theorem 22 The distribution of N(A) for A ∈ E is given by

P (N(A) = 0) = eC(0),

P (N(A) = k) = k−1
k−1∑

n=0

C(k−n)(0)P (N(A) = n)

(k − 1− n)!
, k ≥ 1, (67)

where C(s) is

C(s) =
∞∑

n=0

log
(
1− (1− s)an

)
,

and

an =
∫

A
(1− a(x))nF (dx).

Proof The probability generating function in (63) has the form of G(s) given in

Lemma 21. Letting an =
∫
A(1 − a(x))nF (dx) in Lemma 21 yields the distribution

given by (67).

Remark 23 Moments of N(A). We can use the expression for the derivative of G(s)

in (66) to get moments of the distribution of N(A). For example, the first and second
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moments EN(A) and E[N(A)2] are, respectively

E[N(A)] = G′
N(A)(1) = C ′(1),

and

E[N(A)2] = G′′
N(A)(1)− E[N(A)]

= C ′′(1) + C ′(1)2 − C ′(1),

where

C(k)(1) =
∞∑

n=0

(k − 1)!ak
n.

5.2 Inelastic Spatial Polling Model

In this section we turn our attention to a slightly different model, where two different

types of particles arrive to a space according to independent Poisson processes. Specif-

ically, c-particles arrive according to a Poisson process with rate λ and s-particles

arrive according to a Poisson process with rate γ.1 Each c-particle takes on a position

in IE according to the distribution function F , independently of everything else. The

deletions are triggered by the arrivals of the s-particles. That is, upon the arrival of

an s-particle, a c-particle that is still in the system located at x is either removed

from or retained in the system with probabilities a(x) and 1−a(x), respectively. The

s-particles never enter the system; their only purpose is to arrive, serve, and immedi-

ately leave. We call models of this type inelastic polling models because of the polling

nature of the servicing, and because the s-particles do not remain in the system. As

1Here, the c stands for customer and s stands for server.
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with the previous models, we model the particles in the system as a continuous-time

Markov chain Nt on the space of counting measures on IE.

For example, consider Figure 5 below. In (a), the time is just prior to Tn (the

arrival time of the nth particle), and the particles that remain in the system are the

mth, ith, jth, and kth. In (b), the time is Tn. It turns out the nth particle is an

s-particle. Thus the mth, ith, jth, and kth particles are independently deleted from

the system with probabilities a(Xm), a(Xi), a(Xj), and a(Xk), respectively. In (c),

the time is just after Tn. Here we see the nth particle has departed because it was an

s-particle, and that only the mth and jth particles remain.

IE

Xk

Xj

Xi

¾ Xn

Xm

(a) t < Tn

IE

Xk

Xj

Xi

Xn

Xm

(b) t = Tn

IE

Xj

Xm

(c) t > Tn

Figure 5: An inelastic polling model.

The data that generates the input process M for this system is the set of points

{(Tn, Xn, Yn, Ln) : n ≥ 0}. As in the previous section, Tn and Xn denote the arrival

time in IR+ and the spatial location in IE. Here, Yn = 1l(nth particle is a c-particle).

The discrete lifetime Ln ∈ IN is the number of arriving s-particles required to remove
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the nth arrival. Because the s-particles do not actually enter the system, we will

adopt the convention that Ln = 0 if and only if Yn = 0. We will allow s-particles to

receive a position coordinate in IE, even though they never really enter the system.

The marks (Xn, Yn, Ln) are independent and identically distributed, and independent

of the arrival times, and we denote the distribution function of Xn by F . Then

M(I, A, {1}, IN) =
∑
n

1l(Tn ∈ I,Xn ∈ A, Yn = 1)

counts the total number of c-particles that arrived in the time-space region I × A.

We let M c(t) and M s(t) denote the total number of c-particles and the number of

s-particles that arrived in the time interval [0, t], respectively.

We see that Ln is conditionally geometric given Yn = 1 and Xn so that

P (Ln = `|Yn = 1, Xn) = [1− a(Xn)]`−1a(Xn).

Because M is a Poisson process, its mean measure is given by

EM(I ×A×B × C) =
∫

I
ds

∫

A
F (dx)

(
λ1l(1 ∈ B)

∑

`∈C

[1− a(x)]`−1a(x) + γ1l(0 ∈ B)
)
.

5.2.1 Main Result

In this subsection we are concerned with finding the limiting distribution of the

process Nt defined by

Nt(I × A×B × {i}) =
∑
n

1l
(
t− Tn ∈ I, Xn ∈ A, Yn ∈ B, ζn = i

)
, (68)

where ζn ≡ 1l(M s(t) −M s(Tn) < Ln). In particular, Nt(I × A × {1} × {1}) counts

the number of c-particles that remain in the system at time t that arrived during the
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time interval I to the region A, and Nt(I × IE× {0} × {0}) counts the total number

of s-particles that arrived during the time interval I.

The following theorem describes the limiting distribution of the Nt process.

Theorem 24 The Nt process described in (68) satisfies Nt
d→ N , where N is defined

by

Nf =
∑
n

f(Tn, Xn, Yn, 1l(M
s(Tn) < Ln)), f ∈ C+

K(IE). (69)

The mean measure of N is given by

µN(I × A× {i} × {j}) =





λ
∫
I

∫
A e−γua(x)F (dx) du i = j = 1,

λ
∫
I

∫
A(1− e−γua(x))F (dx) du i = 1, j = 0,

γ
∫
I

∫
A F (dx) du i = j = 0.

In addition, if the measure µN is finite on compact sets, then

ENtf → ENf, f ∈ C+
K(IE). (70)

Proof The process Nt defined by (68) is a transformation of M of the form

Ntf =
∑
n

f(φt(t− Tn, Xn, Yn, Ln)), f ∈ C+
K(IE),

where

φt(u, x, y, `) = (u, x, y, 1l(y = 1,M s(t)−M s(t− u) < `))

is zero when u > t.

To prove Nt
d→ N , it suffices by Theorem 1 to show there exists a function φ ∈ IF

such that (φt, Mt)
d
= (φ,M) where

Mt(I, A, B,C) ≡ M(t− I, A, B, C).
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To this end, define

φ(u, x, y, `) = (u, x, y, 1l(y = 1,M([0, u), IE, {0}, {0}) < `)).

Because the Mt and M processes are time-homogeneous Poisson processes, they are

equal in distribution. Then the conditions of Theorem 1 are satisfied so that Nt
d→ N ,

where N is given by

Nf =
∫

IR×IE

1∑

y=0

∞∑

`=0

f(φ(u, x, y, `))M(du× dx× {y} × {`}).

This representation is the same as (69).

To prove the mean measure of N is given by µN , we use the representation of N

in (69) to write

ENf = E
[ M(S(f))∑

n=1

Ef(Tn, Xn, Yn, 1l(M
s(Tn) < Ln))

]

= E
[ M(S(f))∑

n=1

E[f(Tn, Xn, 1, 1)P (Yn = 1,M s(Tn) < Ln|Tn, Xn)

+f(Tn, Xn, 1, 0)P (Yn = 1,M s(Tn) ≥ Ln|Tn, Xn)

+f(Tn, Xn, 0, 0)P (Yn = 0|Tn, Xn)]
]
,

where M(S(f)) denotes the total number arrivals in the support of f . Because Yn and

M s(Tn) are independent, and Ln given Xn is distributed geometric with parameter

a(Xn), and M s(Tn) given Tn and Xn is distributed Poisson with mean γTn, it follows

that

P (Yn = 1, M s(Tn) < Ln|Tn, Xn)

= E[P (Yn = 1,M s(Tn) < Ln|Tn, Xn,M
s(Tn))|Tn, Xn]

=
λ

γ + λ
E[P (M s(Tn) < Ln|Tn, Xn,M

s(Tn))|Tn, Xn]
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=
λ

γ + λ
E[(1− a(Xn))Ms(Tn)|Tn, Xn]

=
λ

γ + λ
e−γa(Xn)Tn .

Similarly,

P (Yn = 1,M s(Tn) ≥ Ln|Tn, Xn) =
λ

γ + λ
(1− e−γa(Xn)Tn).

Thus,

ENf =
M(S(f))∑

n=1

E
[
f(Tn, Xn, 1, 1)

λ

γ + λ
e−γa(Xn)Tn

+f(Tn, Xn, 1, 0)
λ

γ + λ
(1− e−γa(Xn)Tn) + f(Tn, Xn, 0, 0)

γ

γ + λ

]

=
∫

IR+×IE

(
f(u, x, 1, 1)λe−γa(x)u

+f(u, x, 1, 0)λ(1− e−γa(x)u) + f(u, x, 0, 0)γ
)
F (dx) du.

Finally, the convergence of the mean measure in (70) follows by statement (9) of

Theorem 1.

5.2.2 Limiting Distributions of Remaining Particles

In this subsection, we will consider the process defined by (69) restricted to part of

its space. Specifically, we examine the limiting behavior of the Nt process defined by

Nt(A) =
∑
n

1l(Tn ∈ [0, t], Xn ∈ A, Yn = 1,M s(t)−M s(Tn) < Ln), (71)

where the M process is generated by the data {T − n,Xn, Yn, Ln} as above. That is,

Nt(A) counts the number of c-particles that are in the region A at time t. As in the

previous section, the Laplace functional of the N process will prove to have no closed
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form. However, we can still use it to obtain the probability generating function of

N and to prove the limiting distribution of the number of c-particles that remain in

various regions of IE.

As usual, we will assume N0(IE) = 0 w.p.1. The following theorem describes the

convergence in distribution of the Nt process above.

Theorem 25 The point process Nt above converges in distribution to the point process

N whose Laplace functional is given by

LNf =
∞∏

n=0

1

1 + λ/γE[(1− a(X1))n(1− e−f(X1))]
, f ∈ C+

K(IE),

Hence, the stationary distribution of the Markov process Nt is that of the point process

N .

Proof By Theorem 24, the Nt process defined in (71) above converges in distribution

to the process N defined by

Nf =
∑
n

f(Xn)Un, f ∈ C+
K(IE),

where Un = 1l
(
Yn = 1, Ms(Tn) < Ln

)
. We just need to show the Laplace functional

of N is given by 25.

To do so, note the first particles to arrive after time 0 form a sequence of c-

particles, and the number of these plus 1 has the geometric(γ/(γ + λ)) distribution.

After this initial sequence of c-particles, there is an s−particle, then another sequence

of c-particles, an s particle, and so forth. To model the N process, note that at time

0 there are two point processes that compose the current state of the system. Let N1

denote the process of particles remaining at time 0 that is generated by exactly those
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c-particles that arrived between time 0 and the arrival time of the first s-particle.

Let N2 denote the process of particles remaining at time 0 that is generated by the

arrivals begining with the first s-particle. Figure 6 below depicts the particle arrival

times, as well as the arrivals that generate the N1 and N2 processes.

c-particle arrival times

× s-particle arrival times

←− time axis ←− t = 0

c-particles generating N1particles generating N2

××

Figure 6: Arrival stream of the inelastic polling model.
The particles remaining at time 0 come from the aggregation of the N1 and N2

processes.

We now see that N1 is generated by a geometric minus one number of c-particles

with independent and identically distributed positions in IE. That is,

N1(A) =
Z∑

n=1

1l(Xn ∈ A), A ⊂ IE,

where Z + 1 is distributed geometric(γ/(λ + γ)). Also, we can represent N2 as

N2(A) =
∞∑

n=1

Zn∑

k=1

Unk.

Here, Zn denotes the number of c-particles arriving between the nth and (n + 1)th

s-particle, and the survival indicator functions Unk are defined as

Unk ≡ 1l(the kth c-particle from the nth continuous sequence

of c-particles survives the following n s-particles).
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The Zn are independent and identically distributed as geometric(λ/(λ+γ))−1 random

variables. We will denote the position of the kth c-particle of the nth continuous

sequence of c-particles by Xnk.

Then the Laplace functional of N1 for f ∈ C+
K(IE) is given by

LN1(f) = E[e−
∑N1(IE)

n=1
f(Xn)]

= E
[ N1(IE)∏

n=1

E[e−f(Xn)|N1(IE)]
]

= E
[
E[e−f(X1)]N

1(IE)
]

=
∞∑

i=0

E[e−f(X1)]i
( λ

λ + γ

)i γ

λ + γ

=
γ

λ + γ
× 1

1− λ/(λ + γ)E[e−f(X1)]

=
1

1 + λ/γ(1− E[e−f(X1)])
. (72)

Then noting the conditional independence of the Unk and Xnk given the Zn, the

Laplace functional of the N2 process is given by

LN2(f) = E[e−
∑∞

n=1

∑Zn
k=1

f(Xnk)Unk ]

= E[E[e−
∑∞

n=1

∑Zn
k=1

f(Xnk)Unk |Z1, Z2, . . .]]

= E
[
E[

∞∏

n=1

Zn∏

k=1

e−f(Xnk)Unk |Z1, Z2, . . .]
]

=
∞∏

n=1

E
[ Zn∏

k=1

E[e−f(Xnk)Unk |Z1, Z2, . . .]
]

=
∞∏

n=1

E
[ Zn∏

k=1

E[e−f(X1)Un1 ]
]

=
∞∏

n=1

E
[
E[e−f(X1)Un1 ]Zn

]
.
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Noting that

Unk =





1 w.p. (1− a(Xnk))
n,

0 w.p. 1− (1− a(Xnk))
n,

we have

LN2f =
∞∏

n=1

E
[
E[(1− (1− a(X1))

n(1− e−f(X1)))]Zn

]

=
∞∏

n=1

γ

λ + γ
× 1

1− λ/(λ + γ)E[(1− (1− a(X1))n(1− e−f(X1)))]

=
∞∏

n=1

1

1 + λ/γE[(1− a(X1))n(1− e−f(X1))]
. (73)

The N process at time 0 is the aggregation of the two processes N1 and N2. Thus,

the Laplace functional of the N process is the product of the Laplace functionals of

the N1 and N2 processes. Multiplying (72) and (73) yields the Laplace functional of

the process N in (25).

Though there is no closed form for the product in (73), we can substitute e−1 = s

and f(x) = 1l(x ∈ A) into (25) to get the probability generating function GN(A)(s)

for the number of remaining particles in the region A ∈ E :

GN(A)(s) =
∞∏

n=0

1

1 + (1− s)an

,

where

an = λ/γE[(1− a(X1))
n1l(X1 ∈ A)].

We can rewrite GN(A)(s) as

GN(A)(s) = e−C(s), (74)
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where

C(s) =
∞∑

n=0

log
(
1 + (1− s)an

)
.

Using Lemma 26 below, we can write down the distribution of N(A).

Lemma 26 Suppose the probability generating function G(s) =
∑∞

n=0 pns
n has the

form G(s) = e−C(s) where

C(s) =
∞∑

n=0

log[1 + (1− s)an],

for some numbers 1 > a0 > a1 > . . . > 0. Then

p0 =
∞∏

n=0

1

1 + an

,

pk = −1

k

k−1∑

n=0

C(k−n)(0)pn

(k − 1− n)!
, k ≥ 1, (75)

where

C(k)(0) = −(k − 1)!
∞∑

n=0

ak
n

(1 + an)k
.

The proof of Lemma 26 is similar to that of Lemma 21. Now we can write down

the distribution of N(A).

Theorem 27 The distribution of N(A) for A ∈ E is given by

P (N(A) = 0) =
∞∏

n=0

1

1 + an

,

P (N(A) = k) = −1

k

k−1∑

n=0

C(k−n)(0)P (N(A) = n)

(k − 1− n)!
, k ≥ 1, (76)

where C(s) is

C(s) =
∞∑

n=0

log
(
1 + (1− s)an

)
(77)
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and

an = λ/γ
∫

A
(1− a(x))nF (dx).

Proof The proof follows directly upon application of Lemma 26 to the generating

function GN(A)(s) above.

Remark 28 We can use the probability generating function to calculate moments of

N(A). For instance, the mean of N(A) is given by

EN(A) = G′
N(A)(1)

= λ/γE[a(X1)
−11l(X1 ∈ A)].

The second moment of N(A) can be found by taking the second derivative of GN(A)(s):

E[N(A)2] = G′′
N(A)(1) + G′

N(A)(1)

= −C ′′(1) + (EN(A))2 + E[N(A)]

=
∞∑

n=0

(
λ/γ

∫

A
(1− a(x))nF (dx)

)2
+ (EN(A))2 + E[N(A)].
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CHAPTER VI

MODELS WITH PARTICLE MOVEMENTS

In this chapter we will focus on spatial systems where particles arrive to a space,

are allowed to move about the space, and eventually depart. The departures may be

triggered by predetermined service times, or upon the arrival of future particles. We

describe these systems by random time transformations of marked point processes.

Motivational systems for this material include stochastic networks, wireless networks,

and mobile populations.

In the first section we return to Example 1.2 from section 1.2 regarding particle

movements without interactions, and we obtain the limiting process. In the second

section we provide a particle movement generalization of the extension of Durrett’s

and Limic’s model from Section 4.2 where the deletions depend upon the initial

attributes of the particles in the system.

6.1 Movements Without Interactions

Recall Example 1.2 from section 1.2 regarding the spatial M/G/∞ system. Particles

arrive to a Polish space IE according to a Poisson process with rate λ at the times

0 < T1 < T2 < . . .. Upon arrival, each particle is assigned a location Xn ∈ IE and

a service time Vn ∈ IR+. The locations are independent and identically distributed

according to the distribution function F , and the service times are independent, but
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Xn

Zn(t− Tn)
µ Xi

Zi(t− Ti)
O

Zj(t− Tj)
I

XjZk(t− Tk)UXk

IR2

Figure 7: Particle movements without interactions.
Here, IE = IR2 and the time is currently t. A particle is still in the system if its service
time (not indicated in the figure) is larger than t minus its arrival time.

the distribution of Vn may depend on Xn. That is, given Xn = x, the nth service

time is distributed according to the distribution function Gx. Upon arrival, the nth

particle moves about IE according to a stochastic process {Zn(t), t ≥ 0} ∈ D(IR+, IE)

such that Zn(0) = Xn w.p.1. that depends only upon the initial location Xn. Given

Xn = x, the nth path Zn is distributed according to the distribution function Hx on

D(IR+, IE). At time Tn + Vn, the nth particle exits the system. See Figure 7.

The data {(Tn, Xn, Vn, Zn) : n ≥ 1} generates the input process M defined by

M(I × A×B × C) =
∑
n

1l(Tn ∈ I, Xn ∈ A, Vn ∈ B, Zn ∈ C).

Because M is a Poisson process, its mean measure is given by

EM(I × A×B × C) = λ
∫

I

∫

A

∫

B

∫

C
Hx(dz) Gx(dv) F (dx) ds.
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6.1.1 Main Results

We are interested in the Nt process defined by

Nt(I, A, B,C, {i}) =
∑
n

1l(t− Tn ∈ I, Xn ∈ A,

Vn ∈ B, Zn(t− Tn) ∈ C, 1l(Vn > t− Tn) = 1). (78)

Specifically, if i = 1, Nt counts the number of particles that arrived in the time

interval t − I in the spatial region A with a service time in B that are still in the

system at time t somewhere in region C.

The following theorem describes the limiting distribution of the Nt process.

Theorem 29 The process defined above satisfies Nt
d→ N , where N is a Poisson

process defined by

Nf =
∑
n

f(Tn, Xn, Vn, Zn(Tn), γn), f ∈ C+
K(IE),

with γn = 1l(Tn < Vn). The mean measure of N is

µN(I × A×B × C × {i}) = λ
∫

I

∫

A

∫

B

∫

{h∈D(IR+,IE):h(0)=x,h(u)∈C}
g(u, x, i)

×Hx(dz) Gx(dv) F (dx) du, (79)

where

g(u, x, 0) = Gx(u), g(u, x, 1) = 1− g(u, x, 0). (80)

In addition,

ENtf → ENf, f ∈ C+
K(IE). (81)
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Proof The process Nt can be expressed as

Ntf =
∑
n

f(φt(t− Tn, Xn, Vn, Zn)), f ∈ C+
K(IE),

where

φt(u, x, v, z) = (u, x, v, z(u), 1l(0 < u < v)).

Thus Nt is obtained from the input process M via the random transformation φt as

discussed in Chapter 3.

Let us define

Mt(I, A, B,C) ≡ M(t− I, A, B, C).

Then to prove Nt converges in distribution, it suffices by Theorem 3 to show there

exists a function φ ∈ IF such that (φt,Mt)
d
= (φ,M). To this end, define φ by

φ(u, x, v, z) = (u, x, v, z(u), 1l(0 < u < v).

Because Mt and M are time-homogeneous Poisson processes, they are equal in dis-

tribution. Thus the conditions of Theorem 3 are satisfied so that Nt
d→ N , where N

is defined by

Nf =
∑
n

f(φ(Tn, Xn, Vn, Zn))

=
∫

IR+

∫

IE

∫

IR+

∫

D(IR+,IE)
f(u, x, v, z(u), 1l(0 < u < v)M(du dx dv dz).

Then N is a Poisson process by Proposition 3 of Chapter 3.

To prove the mean measure of N is given by µN ,

ENf = E
∫

IR+

∫

IE

∫

IR+

∫

D(IR+,IE)
f(u, x, v, z(u), 1l(0 < u < v)M(du dx dv, dz)

= λ
∫

IR+

∫

IE

∫

IR+

∫

D(IR+,IE)

1∑

i=0

f(u, x, v, z(u), i)g(u, x, i)

×Hx(dz) Gx(dv) F (dx) du.
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Finally, the convergence ENtf → ENf for f ∈ C+
K follows from Theorem 1.

In the following subsection we are concerned with the point process that counts

the numbers of remaining particles in the system at time t, and we will prove the

limiting process as t →∞ is also a Poisson process.

6.1.2 Limiting Process of Remaining Particles

For this subsection, define the process

Nt(A) =
∑
n

1l(Zn(t− Tn) ∈ A)Utn,

where the survival indicator function Utn is defined by

Utn = 1l(0 < t− Tn < Vn).

Thus Nt(A) is the number of particles that remain in the region A ∈ IE at time t.

The independence of the Utn follows because there are no interactions. As usual, we

suppose N0(IE) = 0 w.p.1.

The main theorem of this subsection appears below.

Theorem 30 The point process Nt converges in distribution to the Poisson process

N with mean measure given by

µN(A) = λ
∫

IR+

∫

IE

∫

{h:h(0)=x,h(u)∈A}

∫
(1−Gx(u))Hx(dz)F (dx)du.

Hence, the stationary distribution of Nt is that of the Poisson process N .

Proof The proof follows by replacing B with IE, setting I = [0, t] and letting t →∞

in Theorem 29.
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In the remaining sections we consider models where particles move about the

system according to a Markov probability kernel and interact.

6.2 ABTs with Movements

The models we present in this section are the same as the main model in Chapter

4, except the particles are now allowed to move about the system. When the nth

particle arrives to the system at time Tn, it is marked not only with an initial position

Xn and discrete lifetime Ln as before, but it also receives a trajectory process Zn in

D(IR+ × IR) as in the previous section. That is, Zn(t− Tn) is the location of the nth

particle at time t, provided it is still in the system at time t. We set Zn(0) = Xn for

all n. The Zn could be a continuous time Markov process, or a Brownian motion, for

instance. We let H denote the distribution function on the set of paths.

As in the previous models, the marks are independent and identically distributed

and independent of the Tn. Here the nth mark is (Xn, Ln, Zn). We again denote by

F the distribution function of Xn, and the discrete lifetimes Ln only depend only on

the Xn. Once again, a(x) is the probability that a particle that initially arrives to x

will be deleted upon an arrival to y > x, and

P (Ln > k|Xn) = (1− a(Xn))k.

In order to describe the particle movements, we will use the probability kernels

Pt(x,A) defined by

Pt(x,A) = P (Zn(t) ∈ A|Xn = x).
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The data generates the input process M given by

M(I × A×B × C) =
∑
n

1l(Tn ∈ I, Xn ∈ A,Ln ∈ B, Zn ∈ C).

Here, M(I × A × B × C) counts the number of particles that arrived in the time

interval I that were initially in A with discrete lifetime in B that have a path in the

set C. As before, we will let M(t) denote the total number of particles that arrive

to the system in the time interval [0, t]. Because M is a Poisson process, its mean

measure is given by

EM(I × A×B × C) = λ
∫

I
ds

∫

A
F (dx)

∑

`∈B

(1− a(x))`−1a(x)
∫

C
H(dz).

6.2.1 Convergence of Mean Measure

We are interested in the process Nt defined by

Nt(A) =
∑
n

1l(Zn(t− Tn) ∈ A)1l(Ln > Mn(t)), (82)

where Mn(t) ≡ M((Tn, t]× (Xn,∞)× IN×D(IR+, IR)) counts the number of particles

that arrive before time t that could annihilate the nth particle.

The following proposition describes the limiting mean measure of Nt process.

Proposition 31 For the Nt process defined above, we have

ENtf →
∫

IR

∫

IR+

∫

IR
f(z)Ps(x, dz)λe−λsF (x)a(x)dsF (dx), f ∈ C+

K(IE).

Proof By conditioning on M(t),

ENtf = E[
M(t)∑

n=1

ΨM(t),n(t)], (83)
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where

Ψmn(t) = E[f(Zn(t− Tn))1l(Ln > Mn(t))|M(t) = m].

Then by conditioning on Tn, Xn, Mn(t), and Zn(t− Tn), we have

Ψmn(t) =
∫

IR

∫ t

0

m−1∑

k=0

(
m− 1

k

)(F (x)s

t

)k(t− F (x)s

t

)m−1−k

×
∫

IR
f(z)Ps(x, dz)(1− a(x))kt−1dsF (dx)

=
∫

IR

∫ t

0

(F (x)s(1− a(x)) + t− F (x)s

t

)m−1

×
∫

IR
f(z)Ps(x, dz)t−1dsF (dx),

where the second step follows from the binomial theorem. Noting that M(t) has the

Poisson(λt) distribution, we can get an expression for ENtf :

ENtf =
∞∑

m=0

∫

IR

∫ t

0

me−λt(λt)m

m!

(F (x)s(1− a(x)) + t− F (x)s

t

)m−1

×
∫

IR
f(z)Ps(x, dz)t−1dsF (dx)

=
∫

IR

∫ t

0

∫

IR
f(z)Ps(x, dz)dsF (dx)

×
∞∑

m=0

me−λt(λ)m

m!

(
F (x)s(1− a(x)) + t− F (x)s

)m−1

=
∫

IR

∫ t

0

∫

IR
f(z)Ps(x, dz)λe−λsF (x)a(x)dsF (dx).

Thus, as t →∞, we have

ENtf →
∫

IR

∫

IR+

∫

IR
f(z)Ps(x, dz)λe−λsF (x)a(x)dsF (dx). (84)
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CHAPTER VII

CONCLUSIONS AND PROPOSED FUTURE

RESEARCH

The theme of this dissertation has been that one can achieve limiting results for certain

space-time stochastic processes by modelling them as marked point processes and

then taking a random time transformation. In this light, we have found the limiting

behavior of several models for service systems and species competitions, focusing

on models where arriving particles trigger departures from the system. Many more

intricate models remain uninvestigated. We now discuss some of these.

7.1 Framework

All of the models we have considered have Poisson arrivals. Theorem 1 makes no such

assumptions. As previously mentioned in Remark 5, in the context of Theorem 1 of

Chapter 3, under certain conditions this theorem holds when there exists φ ∈ IF such

that (φt,Mt)
d→ (φ,M). Also, the theorem is obvious when the input process is a

Poisson process. Therefore, models with more general input processes such as renewal

processes could be constructed.

It seems that traditional queueing models do not fit within the framework laid

down in Chapter 3. This is due to the fact that a customer that arrives to a queueing

system at time Tn remains in the system at time t > Tn depending on the service and
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arrival times of customers that arrived before time Tn. In the models we consider, a

customer (or particle) that arrives at time Tn remains in the system at time t > Tn

depending on attributes of particles that arrive in the time interval (Tn, t]. Perhaps

a more general framework exists in which one can well model systems of both types.

7.2 Service Systems

Generalizations of queueing models where departures may be triggered by an arriving

customer should be considered. This would be like having a queueing system with

traditional service times where waiting customers can depart upon the arrival of new

customers. Even this description is vague. Suppose each customer is marked with

a service time random variable. On one hand, customers may be allowed to depart

only after a required number of deletion attempts have been made by arrivals and

the service time is completed. On the other hand, customers may be allowed depart

the system upon the minimum of their service time and the time until the arrival

triggering their departure.

In the case of the spatial M/G/∞ system with ABTs, it is not difficult to show

the limiting mean measure of the number of particles remaining in the system is given

by

µ(dx) =
F (dx)

γ(x)/λ + a(x)D−1(x)
.

Here, λ is the arrival rate of customers to the system, F is the distribution function

determining the customers’ positions, γ(x) is the service rate of a customer at x,

D−1(x) is the set of points where new arrivals can delete a particle at location x, and

a(x) is the deletion probability as before. In models similar to this with interactions,
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the analysis becomes more complicated because the process is no longer a Markov

chain subordinated to a Poisson process; the transition rates due to services are not

uniform.

An interesting generalization of the polling models we have considered is to allow

the deletion probabilities a(x) to change throughout time. That is, suppose the ith

particle survives the nth arrival, and that at time Tn, the deletion probability of the ith

particle is a(Xin). Then at the time of the arrival at Tn+1, the deletion probability

of the ith particle is a(Xi,n+1). The changes in the deletion probabilities could be

governed by Markov transition kernels that depend only on the current transition

probability, or also upon the amount of time the particle has spent in the system so

far. This setup models systems where particles become more or less resilient as time

passes, depending on the transition kernel.

Capacity constraints are other interesting extensions. Suppose either a cap exists

on the total number of particles in the system, or perhaps local capacity constraints

exist for subsets of the space. Such models are important in service systems theory

because real-life storage areas and buffers typically have finite sizes.

7.3 Particle Movements

Future models should include more intricate branching, movements, and interactions

of the particles. It would be interesting to discover the limiting behavior of mod-

els where species are allowed to move about the system, reproduce, and meet their

ends by natural causes or through interaction with other species already in the sys-

tem. In such models, the departures may be triggered by particles already in the
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system. These models would perhaps require different framework because like tradi-

tional queueing models, the random time transformation that describes the process

of interest would depend upon the past and future of the entire process.

It appears that subjecting the particles in the main model of Chapter 4 to Markov-

ian movements that take place only at the arrival times yields a Poisson process in

the limit with mean measure

µ(dx) = π(dx)
∫

IR

F (dy)

a(y)F (y)
.

Here, π is the stationary distribution of an ergodic Markov chain that governs the

particle movements, and F and a are as before. Although these conditions are rather

restrictive, the limiting process appears tractable.

In the previous section, we allowed the particles to move about the system accord-

ing to a path that was only dependent upon the initial locations and ranks of the one

particle. However, more natural assumptions suggest environment constraints should

be implemented. For example, the laws for particle movements could be allowed to

depend on the state of the entire system at the current time. Such models could still

be Markovian, yet much more complicated due to the dependence of the transition

kernels upon the entire transformed process at time t, not just the attributes of a

particular particle.
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