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SUMMARY

We demonstrate new results in additive combinatorics, including a proof of

a conjecture by J. Solymosi: for every ε > 0, there exists δ > 0 such that, given n2

points in a grid formation in R2, if L is a set of lines in general position such that each

line intersects at least n1−δ points of the grid, then |L| < nε. This result implies a

conjecture of Gy. Elekes regarding a uniform statistical version of Freiman’s theorem

for linear functions with small image sets.
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CHAPTER I

INTRODUCTION

1.1 The Arithmetic of Sets

Let G be a group with binary operation +, and let A,B be subsets of G. We define

the sum set of A and B by

A+B := {a+ b : a ∈ A, b ∈ B} .

We can further define the iterated sum set by 1A := A and, for k > 1,

kA := (k − 1)A+ A.

The related notion of the difference set of A and B can also be defined by

A−B := {a− b : a ∈ A, b ∈ B} .

If A and B are subsets of a ring R, then we can define their sum set as above

using the addition operation on R. We can also define the product set of A and B by

A.B := {a · b : a ∈ A, b ∈ B} ,

where · is the multiplication operation on R. If B is a subset of the group of units of

R, then we can define the ratio set of A and B by

A/B :=
{
a · b−1 : a ∈ A, b ∈ B

}
.

The iterated product set is defined by A(1) = A and

A(k) := A(k−1).A

for k > 1.
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Two major objects of study in the field of additive combinatorics are the ratios

|A+A|
|A| and |A.A||A| , which give measures of the growth of a finite set A under the operation

of taking its sum set with itself and its product set with itself. We may also study

the related ratios |A−A||A| and |A/A||A| . If A is subset of an additive group, [72] denotes the

ratio |A+A||A| by σ[A], the doubling constant, and the ratio |A−A||A| by δ[A], the difference

constant. (In principle, the same symbols can be used if the operation of G is written

multiplicatively.)

It is not hard to see that the minimum possible doubling constant of a set A is 1:

this occurs precisely when A is a coset of a finite subgroup of the ambient group G

[72]. On the other hand, the maximum possible doubling constant is |A|: this would

occur if a+ b 6= c+ d whenever (a, b) 6= (c, d). (In the abelian case, the maximum is

(|A|+ 1)/2.) A set A whose doubling constant is maximum is called a Sidon set.

Another useful measure of additive structure between two sets A,B ⊆ G is the

Ruzsa distance d, defined by

d(A,B) = log
|A−B|√
|A| |B|

,

which satisfies all properties of a metric except that d(A,A) 6= 0 in general (indeed,

d(A,A) = log δ[A]) [72]. The fact that d satisfies the triangle inequality follows from

Ruzsa’s triangle inequality : for all subsets A,B,C ⊆ G,

|A− C| ≤ |A−B| |B − C|
|B|

.

An immediate consequence of Ruzsa’s triangle inequality is that

|A− A| ≤ |A+ A|2

|A|

(taking B = −A and C = A), which we can rewrite as

δ[A] ≤ σ[A]2,

giving one relation between the doubling and difference constants [72].
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1.2 The Additive Energy

Counting solutions to equations of the form a + b = c + d, where a, b, c, d ∈ A, gives

a quantity useful in studying problems of this form. We define the additive energy of

sets A,B ⊆ G to be

E(A,B) := #{(a, a′, b, b′) ∈ A× A×B ×B : a+ b = a′ + b′}.

Colloquially, we say a quadruple (a, a′, b, b′) satisfying this equation is a “collision,”

the idea being that the sum of a and b collides with the sum of a′ and b′. It is easy

to show that

|A| |B| ≤ E(A) ≤ |A| |B|max(|A| , |B|).

The lower bound comes from assuming each pair (a, b) ∈ A × B yields a different

sum. The upper bound comes from the fact that choosing a, b, and a′ forces b′ to

equal a+ b− a′ in order for the equation to be satisfied; likewise, choosing a, b, and

b′ forces our choice for a′.

The additive energy has analytic properties of great interest in additive combina-

torics. Let G be a finite additive group. Define the Fourier transform of a function

f : G→ C by

f̂(χ) =
∑
x∈G

f(x)χ(x),

where χ is an additive character, and define the convolution of two functions f, g :

G→ C by

f ∗ g(x) =
∑
t∈G

f(t)g(x− t).

Then f̂ ∗ g = f̂ · ĝ. We also have Parseval’s identity:

∑
x∈G

|f(x)|2 =
1

|G|
∑
ξ∈G

∣∣∣f̂(ξ)
∣∣∣2 .

Let f = 1A and g = 1B be the indicator functions for the subsets A,B ⊆ G, and let

r(x) = #{(a, b) ∈ A×B : a+ b = s} be the number of representations of x as a sum

3



of two elements of A. Then

r(x) =
∑
t∈G

1A(t)1B(x− t) = 1A ∗ 1B(x)

and

E(A,B) =
∑
x∈G

r(x)2 =
∑
x∈G

(1A ∗ 1B(x))2 = ||1A ∗ 1B||22 .

Taking A = B and using Parseval’s identity we have

E(A,A) =
1

|G|
∑
ξ∈G

∣∣∣1̂A(ξ)
∣∣∣4 =

1

|G|

∣∣∣∣∣∣1̂A∣∣∣∣∣∣4
4
.

We also have the following identities:

|A| = 1̂A(0) =
1

|G|
∑
ξ∈G

∣∣∣1̂A(ξ)
∣∣∣2 =

1

|G|

∣∣∣∣∣∣1̂A∣∣∣∣∣∣2
2
.

Analyzing the Fourier coefficients at nonzero frequencies of the indicator function of A

tells us a great deal about the additive structure (or lack thereof) in A. For example,

if the nonzero Fourier coefficients of 1A are all sufficiently small, A is “pseudorandom”

enough to contain a three-term arithmetic progression, and if there is a large nonzero

Fourier coefficient, then A has dense intersection with a large arithmetic progression.

This idea forms the basis of one proof of Roth’s theorem on three-term arithmetic

progressions [72].

1.3 Growth Theorems

Intuitively, we may expect a set with low additive energy (close to |A|2) to have large

growth in its sum set and a set with large additive energy (close to |A|3) to have small

growth. While the former statement is true, the latter statement is not.

By an application of the Cauchy-Schwarz inequality, we have

E(A) =
∑

s∈A+A

r(s)2 ≥ 1

|A+ A|

( ∑
s∈A+A

r(s)

)2

=
|A|4

|A+ A|
.

Thus, E(A) ≥ |A|4
|A+A| . As a consequence, if E(A) is asymptotically smaller than |A|3,

we obtain a nontrivial lower bound on the size of A+ A.
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We do not obtain any information from this bound if E(A) is asymptotically

equal to |A|3. For example, suppose A is the disjoint union of the sets A1 and A2,

where |A1| = |A2| = n, |A1 + A1| = Θ(n), and |A2 + A2| = Θ(n2) (we shall present

examples of sets A1 and A2 satisfying these properties in the following section). Since

A2 + A2 ⊆ A + A, |A+ A| = Θ(n2), but it is also true that E(A) ≥ E(A1) + E(A2)

(since the set of collisions within A will contain the set of collisions within A1 and

the set of collisions within A2). Thus,

E(A) ≥ n4

c1n
+

n4

c2n2
= Θ(n3).

So A is a set with asymptotically maximal growth and asymptotically maximal energy.

On the other hand, the set A1 has asymptotically minimal growth yet asymptotically

maximal energy.

A “best-possible” result describing the structure of a set A with asymptotically

maximal additive energy comes from a theorem of Antal Balog and Szemerédi, stating

that there is a dense subset of A that has small growth [5]. The theorem was later

given a new proof by Timothy Gowers [43].

Theorem 1 (Balog-Szemerédi-Gowers). Let A be a subset of an additive group. Given

c > 0, there exist c′ = c′(c) > 0 and C = C(c) > 0 such that, if E(A,A) ≥ c |A|3,

then there is a subset A′ ⊆ A such that |A′| ≥ c′ |A| and |A′ + A′| ≤ C |A′|.

Gowers’ proof considerably strengthened the bounds on the coefficients c′ and

C, giving them polynomial dependence (instead of tower-like dependence) on the

parameter c. This means that the theorem still holds even if c is on the order of |A|ε

for some fixed ε > 0 [72], a fact we shall use extensively later in the paper.

Another well-known and useful result proved via graph-theoretic methods is the

Plünnecke-Ruzsa-Petridis inequality: [57, 58, 59, 56]

Theorem 2. Let A be a finite subset of an additive group G such that |A+ A| ≤

K |A|. Then |mA− nA| ≤ Km+n |A| for all m,n ≥ 1.
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This theorem states that sets which are “almost closed” under the addition oper-

ation remain “almost closed” under multiple iterations of addition and subtraction.

A similar result holds for multiplicative sets, as well:

Corollary 3. Let A be a finite subset of the units of the ring R such that |A.A| ≤

K |A|. Then
∣∣A(m)/A(n)

∣∣ ≤ Km+n |A| for all m,n ≥ 1.

1.4 The Erdős-Szemerédi Conjecture

A motivating example for the sum-product problem is the difference in behavior

between different types of progressions in a ring. A progression is a set P in a

semigroup (G,+) of the form

P = {a+ kd : 0 ≤ k ≤ n}

for some elements a, d ∈ G and n ∈ N. If the operation on G is written additively,

then P is called an arithmetic progression, and if the operation is written multiplica-

tively, then P is called a geometric progression. In a ring, therefore, both types of

progressions exist.

Consider the sets

P1 = {1, 2, 3, ..., n}

and

P2 = {2, 4, 8, ..., 2n}

in the ring Z. Both sets are progressions of size n, and P1 is an arithmetic progression

while P2 is a geometric progression. Their sum sets are

P1 + P1 = {2, 3, 4, 5, ..., 2n},

an arithmetic progression of size 2n− 1, while

P2 + P2 = {2i + 2j : 1 ≤ i, j ≤ n}

6



has size n2+n
2

. (To see this, rewrite the elements of P2 in binary notation, and then

observe that adding two distinct elements of P2 results in a number with 1s in two

different binary positions, while adding two of the same element of P2 results in a

number with a single 1.) Therefore, the sum set of the arithmetic progression only

grows in size by a factor of Θ(1), while the sum set of the geometric progression grows

by a factor of Θ(n).

Very different behavior can be seen in the product sets of these progressions. We

have

P2.P2 = {22, 23, 24, 25, ..., 22n},

which has size 2n− 1, but P1.P1 has the size of the number of distinct elements in an

n × n multiplication table, which was shown to be Θ(n2/ log(n)γ log log(n)3/2) for a

constant γ by Kevin Ford [37]. Therefore, the product set of a geometric progression

shows growth by a factor of Θ(1), and the product set of an arithmetic progression

shows growth by nearly a factor of n.

These progressions display the extremes of additive and multiplicative structure

in Z. It is also rather easy to find a set that has large growth under both additive

and multiplicative doubling: take P1 to be the same as above and

P2 = {(3n)k : 1 ≤ k ≤ n},

and then define A = P1∪P2. Then |A+ A| = Θ(n2), since adding elements of P1 and

P2 will yield unique sums, and |A.A| = Θ(n2) as well, since multiplying elements of

P1 and P2 will yield unique products. Therefore, both the sum set and product set

of A have maximal growth.

Is it possible to find a set that has less-than-maximal growth in both its sum set

and its product set? This is a much more difficult question, and one that remains

open to this day. The question was first addressed in the literature by Paul Erdős

and Endre Szemerédi, who proved the following theorem in the ring Z:
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Theorem 4 ([34]). There is an absolute constant c such that, for every finite set A

of integers,

max(|A+ A| , |A.A|) ≥ |A|1+c .

In other words, no set of integers can have both small additive growth and small

multiplicative growth. They further conjectured that

Conjecture 5 ([34]). For every ε > 0, there exists an n0 such that for every set of

integers A with |A| > n0,

max(|A+ A| , |A.A|) ≥ |A|2−ε .

In other words, every sufficiently large set of integers must have nearly maximal

growth in either its sum set or its product set; a sufficiently large set of integers

cannot have both additive and multiplicative structure.

Erdős and Szemerédi did not attempt to give an explicit value for their constant c

in Theorem 4, but explicit values were found in rapid succession by Melvyn Nathanson

(who gave c = 1/31 in [54]), Kevin Ford (who gave c = 1/15 in the ring of real numbers

R [36]), and György Elekes (who gave c = 1/4 in R [28]).

Elekes’s proof is notable in that it obtains a much stronger bound than previously

known in just two pages of work; it is also notable for being one of the first applications

of incidence geometry to the sum-product problem. The proof invokes a theorem of

Szemerédi and William T. Trotter:

Theorem 6 ([68, 67]). There exists an absolute constant c such that the number of

incidences between n points and t lines in R2 is at most c(n2/3t2/3 + n+ t).

Given a finite set of real numbers A, Elekes considered the set of |A|2 lines in

R2 of the form y = a(x − b), each of which intersects the cartesian grid of points

(A+A)× (A.A) exactly |A| times. Employing a simple corollary of Theorem 6—if P

8



is a set of n points in R2 and k ≥ 2, the number of lines intersecting at least k points

of P is at most C(n
2

k3
+ n

k
)—he showed that

|A|2 ≤ C
|A+ A|2 |A.A|2

|A|3
,

yielding |A+ A| |A.A| ≥ |A|5/2 (up to a constant factor), whence the result.

This remarkably simple and effective technique was a breakthrough in the field,

leading to new approaches on the sum-product problem using methods from incidence

geometry. The most successful application of this approach to date was found by

Jószef Solymosi, who proved that |A+ A|2 |A.A| = Ω(|A|4 / log |A|); in other words,

max(|A+ A| , |A.A|) = Ω(|A|4/3 / log |A|), meaning that the constant c in Theorem 4

may be taken to be arbitrarily close to 1/3 [64].

1.5 Small Additive Growth and Small Multiplicative Growth

A problem related to the Erdős-Szemerédi problem is the study of the behavior of

sets that have small additive or multiplicative growth. Elekes and Ruzsa [32] showed

that if |A+ A| ≤ |A|1+ε for ε > 0, then |A.A| = Ω(|A|2−4ε / log |A|). Solymosi’s

aforementioned bound in [64] implies |A.A| = Ω(|A|2−2ε / log |A|) if |A+ A| ≤ |A|1+ε.

Mei-Chu Chang gives a more general result in the real numbers in return for a stronger

hypothesis in [22]: if |A+ A| < K |A| with K < K(ε, j, |A|) (which she remarks must

be oε,j(log log |A|)), then
∣∣A(j)

∣∣ = Ω(|A|j−ε).

Progress on the corresponding result for when the product set is small has been

slower. Solymosi’s result above (as well as earlier results [31]) implies that if |A.A| ≤

|A|1+ε, then |A+ A| = Ω(|A|3/2−ε). In [20], Mei-Chu Chang used methods based on

Freiman’s theorem to show that for A ⊆ Z, if |A.A| ≤ c |A| for c > 0, then there

exists a constant c′ = c′(c) such that |A+ A| ≥ c′ |A|2. Later in [22], Chang improved

her result in the integers: if |A.A| ≤ |A|1+ε, then |jA| ≥ |A|j−δj(ε), where δj(ε) → 0

as ε→ 0. In the same paper, she utilized a version of Freiman’s theorem—
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Lemma 7 ([39]). If G is a torsion-free abelian group, A ⊆ G, and |A.A| < K |A|,

then

A ⊆ {gj11 · · · g
jd
d : ji = 1, ..., `i, and gi ∈ G},

where d ≤ K and
∏
`i < c(K) |A|.

—and the subspace theorem—

Theorem 8 ([35, 2, 61]). Let k be an algebraically closed field, let Γ be a multi-

plicative subgroup of k∗ of rank r, and let a1, a2, ..., an ∈ k∗. Then there are at most

(8n)4n
4(n+nr+1) solutions (z1, ..., zn) ∈ Γn to the equation

a1z1 + a2z2 + · · ·+ anzn = 1

with no vanishing subsum on the left-hand side.

—to show that if A is a subset of the real numbers with |A.A| < K |A|, then for every

ε > 0, |jA| > |A|j−ε provided K = oj,ε(log |A|). However, as noted, because these

results rely on Freiman’s theorem, they cannot obtain nontrivial results in R or C

when |A.A| < K |A| for K = |A|ε, ε > 0.

Solymosi proved an Elekes-like bound (c = 1/4) for sets A in the complex numbers,

quaternions, and other hypercomplex numbers [62]. In 2013, Sergei Konyagin and

Misha Rudnev improved this bound for C to match Solymosi’s bound for R (c = 1/3)

[53].

1.6 The Sum-Product Conjecture in Fields of Prime Order

The sum-product problem can also be studied in rings and fields that do not properly

contain the integers. One natural setting in which to study the problem is in finite

fields. It is known that it is not possible to obtain the result analogous to the Erdős-

Szemerédi conjecture (that is, max(|A+ A| , |A.A|) ≥ c(ε) min(|A|2−ε , q1−ε) for all

A ⊆ Z/qZ) [40].
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Jean Bourgain, Netz Katz, and Terence Tao provided one of the first major sum-

product results in this setting:

Theorem 9 ([16]). Let F = Z/qZ for some prime q, and let A ⊂ F such that

qδ < |A| < q1−δ for some δ > 0. Then there exist c = c(δ) > 0, ε = ε(δ) > 0 such that

max(|A+ A| , |A.A|) ≥ c |A|1+ε.

The authors then applied Theorem 9 to deduce a Szemerédi-Trotter theorem for

finite fields:

Theorem 10 ([16]). Let F = Z/qZ for some prime q, and let P3
F be the projective

plane over F . If P ⊂ P3
F is a set of points and L is a set of lines in P3

F such that

|P | , |L| ≤ N = |F |α for 0 < α < 2, then there exists ε = ε(α) > 0 such that

#{(p, `) ∈ P × L : p ∈ `} ≤ CN3/2−ε.

This Szemerédi-Trotter-type result further permits one to obtain a bound on the

Erdős distance problem in prime fields in which −1 is not a quadratic residue:

Theorem 11 ([16]). Let F = Z/qZ for some prime q ≡ 3 (mod 4), and let P ⊆ F 2

be a set of size N = |F |α for some 0 < α < 2. Then there exists ε = ε(α) > 0 such

that

#{d(p, p′) : p, p′ ∈ P} ≥ CN1/2+ε,

where d((x1, y1), (x2, y2)) = (x1 − x2)2 + (y1 − y2)2.

Shortly after [16], Bourgain along with Alexei Glibichuk and Sergei Konyagin

published a result removing the need for a lower bound on |A| in Theorem 9:

Theorem 12 ([16]). Let F = Z/qZ for some prime q, and let A ⊂ F such that

|A| < q1/2. Then there exist c > 0, ε > 0 such that max(|A+ A| , |A.A|) ≥ c |A|1+ε.

In the same paper, Bourgain, Glibichuk, and Konyagin gave an estimate on expo-

nential sums stating that multiplicative subgroups of F∗p have little additive structure

[44]:
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Theorem 13 ([15]). Let F = Z/qZ for some prime q, let δ > 0, and let H ≤ F ∗ be a

multiplicative subgroup of F ∗ of size at least qδ. Then there exists ε = ε(δ) > 0 such

that for all ξ 6= 0,

1

|H|

∣∣∣∣∣∑
x∈H

e2πixξ/q

∣∣∣∣∣ ≤ Cq−ε.

In 2007 Derrick Hart, Alex Iosevich, and Solymosi gave the following explicit

estimates using Kloosterman sums.

Theorem 14 ([46]). Let F = Z/qZ for some prime q. Then

max(|A+ A| , |A.A|) ≥


C |A|3/2 q−1/4, q1/2 < |A| < q7/10

C |A|2/3 q1/3, q7/10 < |A| ≤ q.

In 2007 and 2008, Moubariz Garaev published two explicit estimates for prime

fields when |A| is smaller than q7/13 and when |A| is larger than q2/3:

Theorem 15 ([40, 41]). Let F = Z/qZ for some prime q. Then

max(|A+ A| , |A.A|) ≥


C |A|5/3

q1/3 log|A| , |A| ≤ q7/13(log q)−4/13

Cq1/2 |A|1/2 , |A| > q2/3.

The latter situation is optimal for sets of size greater than q2/3, since it is pos-

sible to construct a subset A ⊆ Z/qZ of any size such that max(|A+ A| , |A.A|) ≤

cq1/2 |A|1/2 [41]. Solymosi gives a different proof of Garaev’s bound for |A| > q2/3

using expander graphs [65].

Katz and Chun-Yen Shen modified Garaev’s argument in [40] to improve his result

for |A| < q1/2 to

max(|A+ A| , |A.A|) ≥ |A|14/13 .

1.7 Other Variants of the Sum-Product Problem

A variant of the sum-product problem is to replace the set A + A or A.A (or both)

with different “functions” in the set A: more precisely, sets of the form

f(A,A) = {f(a, b) : (a, b) ∈ A× A}
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(or analogously for functions with other than two variables). Bourgain published a

result of this flavor in [9], proving a sum-product-type inequality for A + A versus

1/A+1/A. Elekes also showed results of this type: if f is a strictly convex or concave

function and A ⊆ R, then |A± A| |f(A)± f(A)| = Ω(|A|5/2)(giving the inequality

max(|A+ A| , |1/A+ 1/A|) = Ω(|A|5/4)) and |A+ 1/A| = Ω(|A|5/4) [30], resolving a

question of Erdős and Szemerédi in [34].

Van Vu studied this problem for polynomial functions in finite fields and proved

the following result:

Theorem 16 ([73, 19]). Let F = Z/qZ for some prime q. There is an absolute

constant c > 0 such that, if f is a polynomial of degree d in F [x, y] and not of the

form g(`(x, y)) for a polynomial g ∈ F [t] and a linear form ` ∈ F [x, y], then for all

A ⊆ F with |A| > √q,

max(|A+ A| , |f(A,A)|) ≥ c |A|


(|A| /√q)1/2d−2, √q < |A| ≤ d4/5q7/10

(q/ |A|)1/3d−1/3, |A| ≥ d4/5p7/10.

The theorem immediately implies the previously mentioned sum-product result of

Hart, Iosevich, and Solymosi in Z/qZ by taking f(x, y) = xy [46, 73].

In [19] Boris Bukh and Jacob Tsimerman gave sum-product-type inequalities for

polynomial functions for small subsets of F = Z/qZ, including an extension of Vu’s

result to sets with |A| < √p for quadratic polynomials. They further developed sum-

product-type inequalities for rational functions of large subsets of finite fields: for

example, if f ∈ F (x) and g ∈ F (x, y) are nonconstant rational functions of degree

d < q1/50 and g is not of the degenerate form G(af(x) + bf(y) + c), G(x), or G(y),

then for all A ⊆ F with |A| ≥ √q, we have

max(|f(A) + f(A)| , |g(A,A)|) ≥ c |A|


(|A| /√q)1/2d−2, √q ≤ |A| ≤ d8/5q7/10

(q/ |A|)1/3d−2, |A| ≥ d8/5q7/10.
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Recently Terence Tao established that for a bivariate polynomial f ∈ F [x, y] of

bounded degree, with F a finite field of large characteristic, either |f(A,B)| = Θ(|F |)

whenever A and B are subsets of F such that |A| |B| = Ω(|F |15/8) or else f has the

form f(x, y) = g(p(x) + q(y)) or g(p(x)q(y)) for polynomials g, p, q [71]. His main

new tool in attacking the problem is an algebraic version of the Szémeredi regularity

lemma, which he uses to describe the structure of graphs generated by subsets of

finite fields of large characteristic [71].

The sum-product problem can also be studied in matrix spaces. Mei-Chu Chang

provided some early results in this setting [23, 72]:

Theorem 17. There is a function Φ(n) tending to infinity with n such that, if d

is a fixed integer and A is a finite set of d × d matrices with real entries such that

det(M −M ′) 6= 0 for all pairs of distinct matrices M,M ′ ∈ A, then

|A+ A|+ |A.A| ≥ Φ(|A|) |A| .

Moreover, for every positive integer d there exists ε = ε(d) > 0 such that

|A+ A|+ |A.A| ≥ |A|1+ε .

Focusing on the multiplicative structure of matrix rings, Chang shows that if

A ⊂ SL3(Z) does not have large intersection with any cosets of a nilpotent subgroup,

then |A.A.A| ≥ c |A|1+ε. Chang also proves a similar result for SL2(C) [24, 70].

Chang also attains a sum-product result (|A+ A|+ |A.A| ≥ |A|1+c for an absolute

constant c) in semisimple commutative Banach algebras using Freiman’s lemma and

the Balog-Szemerédi-Gowers theorem [21]. However, in this setting, it is known that

c ≤ 1− log 2
log 3

[70].
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1.8 Connections to the Theory of Expanders

Let G = G(V,E) be a (simple, undirected) graph, and let N(W ) denote the set of

vertices in V \W which are adjacent to some vertex in W . We say G is an (n, d, c)-

expander if it has n vertices, the maximum degree of a vertex is d, and for every set of

vertices W ⊆ V , we have |N(W )| ≥ c |W |. The study of families of expanders (that

is, sequences (G1, G2, ...) such that each Gi is an (ni, d, c)-expander and ni →∞ with

i) has many applications to problems in theoretical computer science, such as circuit

construction, error correcting codes, and complexity theory [1, 49].

Results in sum-product inequalities are closely connected to the theory of ex-

panders. For example, the previously stated results by Solymosi and Vu on the sum-

product and sum-polynomial problems in finite fields are proved through the study

of the eigenvalues of expander graphs [65, 73]. Conversely, results on sum-product

inequalities have implications in the theory of expanders.

Harald Helfgott obtained results of this flavor working towards the following con-

jecture of László Babai and Ákos Seress:

Conjecture 18 ([4]). For a group G and set of generators A, let Γ(G,A) be the

Cayley graph (whose vertex set is G and whose edge set is {(ag, g) : g ∈ G, a ∈ A}).

Let the diameter of a graph Γ be the maximum over all pairs (u, v) of vertices in Γ of

the length of the shortest path between u and v.

There is an absolute constant c > 0 such that for every nonabelian finite simple

group G and set of generators A of G,

diam(Γ(G,A)) = O((log |G|)c).

Helfgott proves the conjecture for G = SL2(Z/qZ), q prime, as a direct conse-

quence of a growth theorem for multiplicative subsets of SL2(Z/qZ):

Theorem 19 ([47]). Let q be a prime, and let A be a subset of SL2(Z/qZ) not
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contained in any proper subgroup. For all δ > 0, there exist c = c(δ) > 0 and

ε = ε(δ) > 0 such that if |A| < p3−δ, then |A.A.A| > c |A|1+ε.

If ψ is a symmetric probability distribution on G (that is, ψ(g) = ψ(g−1) for all g ∈

G) whose support contains A, define the transition matrix Tψ(G,A) = (ψ(y−1x))x,y∈G.

Then the largest eigenvalue of Tψ(G,A) is 1; define the spectral gap of Tψ(G,A) to be

the difference between 1 and the second-largest eigenvalue. An alternate definition of

a family of expander graphs is to consider a family {Gj, Aj}j∈J of finite groups Gj and

sets of generators Aj of Gj such that d =
∣∣Aj ∪ A−1j ∣∣ is constant. Letting ψj(g) = 1/d

for g ∈ Aj ∪A−1j and ψj(g) = 0 for g /∈ Aj ∪A−1j , we may define {Γ(Gj, Aj)}j∈J to be

a family of expander graphs if the spectral gap of Tψj(Gj, Aj) is bounded below by a

positive constant [47].

Helfgott’s result did not show that {Γ(G,A)} (where G varies over SL2(Z/qZ) for

all the primes q and A varies over all sets of generators such that |A ∪ A−1| is fixed)

is a family of expanders, but it did yield nontrivial consequences on the spectral gap

of Tψ(G,A) and the mixing time of the Cayley graph Γ(G,A):

Corollary 20 ([47]). Let q be a prime and A be a set of generators for G = SL(Z/qZ).

Let ψ be a symmetric probability distribution on G whose support contains A, define

the transition matrix Tψ(G,A) = (ψ(y−1x)x,y∈G), and let η = min{ψ(g) : g ∈ A ∪

A−1}.

Then the second largest eigenvalue of Tψ(G,A) is at most 1 − Cη−1(log p)−2c for

absolute constants C, c > 0.

Furthermore, the mixing time of Γ(G,A) is at most C |A| (log p)2c+1) for absolute

constants C, c > 0.

Later, Bourgain and Gamburd showed that if A is a set of generators of SL2(Z/qZ)

such that the girth of Γ(G,A) is Ω(log |G|), then the adjacency matrix of Γ(G,A) has

spectral gap bounded below by a constant [48, 13].
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A result of Gowers and Babai, Nikolov, and Pyber states that if A ⊆ G =

SLn(Z/qZ) and |A| > 2 |G|1−1/(3n+3), then A.A.A = SLn(K) [48, 42, 55, 3].

Helfgott proved a later result for SL3(Z/qZ) using the sum-product theorem of

Bourgain, Katz, Tao, and Konyagin:

Theorem 21 ([48]). Let q be a prime. For all ε > 0, if A be a set of generators of

G = SL3(Z/qZ) such that |A| < |G|1−ε, there exist δ = δ(ε) > 0 and c = c(ε) > 0

such that

|A.A.A| ≥ c |A|1+δ .

This theorem, along with the result of Gowers and Babai, Nikolov, and Pyber,

implies Babai’s conjecture for G = SL3(Z/qZ) [48]. Later, Breuillard, Green, and

Tao extended Helfgott’s result to show that approximate subgroups of SLn(Fq) that

generate the group are either very small or else make up nearly all of the group [18].

In contrast to Helfgott’s work, Breuillard, Green, and Tao do not use sum-product

theorems to obtain their result; instead, they derive the sum-product theorem from

their result on approximate subgroups.

1.9 Summary of New Contributions

In this section we detail the contributions of the present work and their significance

in the context of the present state of research.

1.9.1 Sets of Rich Lines in General Position

In this chapter we prove a δ-ε formulation of a conjecture of Solymosi initially pub-

lished by Elekes [30]. This conjecture implies a statistical version of a Freiman-type

theorem on linear functions with small image sets. The following exposition is primar-

ily based on selected sections of Elekes’ survey paper [30], and the reader is directed

to the references and proofs therein.
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Let G be an additive abelian group. A generalized arithmetic progression, or GAP,

P ⊆ G, is a set of the form

P = {a0 + r1a1 + · · ·+ rdad : 0 ≤ r1 ≤ n1, ..., 0 ≤ rd ≤ nd},

where a0, ..., ad ∈ G, n1, ..., nd ∈ Z+, and |P | = n1 · · ·nd.1 For multiplicative abelian

groups G, an analogous definition may be made: a generalized geometric progression,

or GGP, P ⊆ G, is a set of the form

P = {a0 · r1a1 · · · rdad : 0 ≤ r1 ≤ n1, ..., 0 ≤ rd ≤ nd},

where a0, ..., ad ∈ G, n1, ..., nd ∈ Z+, and |P | = n1 · · ·nd. In both these cases, the

dimension of P , dim(P ), is defined to be d.

Freiman showed that a set A ⊂ R with a small sum set must be contained in a

proportionally sized GAP and bounded dimension:

Theorem 22 ([38, 39]). For all c > 0 there exist C = C(c) > 0 and d = d(c) > 0

such that the following property holds.

Let A ⊂ R. If |A+ A| ≤ c |A|, then A is contained in a GAP P such that

|P | ≤ C |A| and dim(P ) ≤ d.

This theorem also holds for multiplicative subsets of the nonzero reals, replacing

|A+ A| with |A.A| and GAP with GGP.

If A ⊂ R, let E ⊆ A × A. In this way, E can be considered the edge set of a

bipartite A t A. We define the restricted sum set

A+E A := {a+ b : (a, b) ∈ E}.

Theorem 23 ([5]). For all a, c > 0 there exist α = α(a, c) > 0, C = C(a, c) > 0, and

d = d(a, c) > 0 such that the following property holds.

If |E| ≥ a |A|2 and |A+E A| ≤ c |A|, then there is a subset A′ ⊆ A with |A′| ≥

α |A| such that |A′ + A′| ≤ C |A′|.

1Some authors allow |P | < n1 · · ·nd and call GAPs such that |P | = n1 · · ·nd proper.
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Combining Theorem 22 with Theorem 23, we see that a set A with small restricted

sum set must intersect a GAP P with with dim(P ) ≤ d in at least |P | /C places.

This may be considered a “statistical” version of Freiman’s theorem [30]. A “uniform

statistical” hypothesis (that is, requiring a minimum degree proportional to |A| in

the bipartite graph G) guarantees that A can be covered by a constant number of

GAPs [30].

Theorem 24 ([30, 33]). For all δ, c, ε > 0 there exist C = C(δ, c, ε) > 0, d =

d(δ, c, ε) > 0, and γ = γ(δ, c) such that the following property holds.

Let A ⊂ R be finite, G a bipartite graph on A t A with minimum degree δ |A|. If

|A+E A| ≤ c |A|, then A can be partitioned into k disjoint sets A1, ..., Ak such that:

1. Each Ai is contained in a GAP Pi with |Pi| ≤ C |A| and dim(Pi) ≤ d (the GAPs

Pi need not be disjoint);

2. For each i, at least γ |A|2 edges of E are between elements of Ai (hence k ≤ 1/γ);

and

3. There are at most ε |A|2 “leftover” edges. That is,∑
i<j

∑
a∈Ai

∑
b∈Aj

1E((a, b)) ≤ ε |A|2 .

It turns out that Freiman’s theorem extends to more general objects than sets of

real numbers: sets of linear functions [30]. Sets of lines with small composition sets

satisfy a particular “two extremities” structure.

For the remainder of the section, let L be the set of all functions f : R → R of

the form f(x) = mx+ b for real numbers m 6= 0 and b. If L ⊆ L, define L−1 = {f−1 :

f ∈ L}.

If L ⊆ L, P ⊆ L is a parallel family if the graphs of the lines in P are parallel,

and S ⊆ L is a star family if the graphs of the lines in S intersect at some common

point. We say L is in general position if L has no parallel families of size two and
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no star families of size three. If L has no parallel and no star families of size greater

than some constant C > 2, then we say L is in near-general position.

Theorem 25 (Elekes [27, 30]). For all c, C > 0, there exists c′ = c′(c, C) > 0 such

that the following property holds.

Let L1, L2 ⊂ L be sets of n lines each and E ⊂ L1 × L2 have size at least cn2.

Define

L1 ◦E L2 := {f ◦ g : (f, g) ∈ E} .

If |L1 ◦E L2| ≤ Cn, then there exist subsets L′1 ⊆ L1 and L′2 ⊆ L2 such that

|(L′1 × L′2) ∩ E| ≥ c′n2 and both L′1 and L′2 are either parallel families (possibly of

different slopes) or star families (possibly of different common intersections).

Using this theorem along with Theorem 22, Elekes proved a result analogous to

Theorem 22—in fact, a true generalization of Freiman’s theorem.

Theorem 26 (Elekes [29, 30]). For every c > 0 there exist C = C(c) > 0 and

C ′ = C ′(c) > 0 such that the following property holds.

If L1, L2 ⊂ L are sets of n lines each and
∣∣L−11 ◦ L2

∣∣ ≤ cn, then L1∪L2 is contained

in a union of either C parallel families or C star families, and each of those families

has size at most C ′n.

A uniform statistical version of this Freiman-type theorem for linear functions can

be deduced from Theorem 24:

Theorem 27 (Elekes [?]). For all δ, c > 0 there exists C = C(δ, c) > 0 such that the

following property holds.

Let L1, L2 be as in Theorem 26, G = (L1tL2, E) a bipartite graph with minimum

degree at least δn. If
∣∣L−11 ◦E L2

∣∣ ≤ cn, then L1 ∪ L2 is the union of C parallel and

star families.
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The previous theorems have focused on sets of lines whose composition set is

small. Another direction we can explore is to study sets of lines L and points A ⊂ R

whose image set L(A) = {f(a) : f ∈ L, a ∈ A} is small. In particular, Theorem 25 is

equivalent to the following:

Theorem 28 (Elekes [30]). For all c, c′ > 0, there exists C = C(c, c′) > 0 such that

the following property holds.

Let L ⊂ L and A ⊂ R each have size n, let E ⊂ L×A have size at least cn2, and

define

LE(A) := {f(a) : (f, a) ∈ E} .

If |LE(A)| ≤ c′n, then there exists a parallel or star family L′ ⊆ L such that

|E ∩ (L′ × A)| ≥ Cn2.

A result about small image sets analogous to Theorem 26 holds:

Theorem 29 (Elekes [30]). For all c > 0 there exist C = C(c) > 0 and C ′ = C ′(c) > 0

such that the following property holds.

Let L ⊂ L and A ⊂ R each have size n. If |L(A)| ≤ cn, then L is contained in

the union of at most C parallel families or of at most C star families, and each of

these families has size at most C ′n.

Elekes asked whether a uniform statistical version of this theorem similar to The-

orem 27 holds. We formulate the following conjecture in which a minimum degree is

required on only one side of the bipartite graph.

Conjecture 30. For all δ, c > 0 there exists C = C(δ, c) > 0 such that the following

property holds.

Let L,A be as in Theorem 28, G = (L t A,E) a bipartite graph with degree at

least δn for each f ∈ L. If |LE(A)| ≤ cn, then L is the union of C parallel and star

families.
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In terms of cartesian products, this conjecture is equivalent to the following:

Conjecture 31 (Elekes [30]). If L is a set of cn lines, each cn-rich in an n × n

cartesian product, then L is the union of C = C(c) parallel and star families.

Proposition 32. Conjecture 30 and Conjecture 31 are equivalent.

The following proof is not given explicitly in [30] but can be inferred from similar

arguments presented in the paper.

Proof. Suppose Conjecture 30 holds. Fix 0 < c < 1, and let L be a set of cn lines,

each cn-rich in a n × n Cartesian product A × B. Construct the bipartite graph

G = (L tA,E), where an edge connects f ∈ L and a ∈ A whenever φ(a) ∈ B. Then

the degree of each f ∈ L is at least cn, so L is the union of a constant number of

parallel and star families.

For the reverse implication, suppose L is a set of n lines, A is a set of n points, and

the edge set E ⊆ L×A satisfies |LE(A)| ≤ Cn for C > 0. Observe that each line from

L occurs in at least δn pairs of E, so we have n ≥ δn lines which are each δn-rich in

the cartesian product (A∪LE(A))× (A∪LE(A)), which has size at most (C + 1)2n2.

So the lines are the union of a constant number of parallel and star families.

Conjecture 31, and therefore Conjecture 30, would be implied by following:

Conjecture 33 (Solymosi [30]). Among the lines which are cn-rich in an n × n

cartesian product, at most C = C(c) can be in general position.

Proposition 34. Conjecture 33 implies Conjecture 31

Proof. Given a set L of cn lines which are cn-rich in an n × n grid, let L′ be a

maximum collection of these lines in general position. By Conjecture 33, |L′| ≤ C.

Define L(λ) to be the set of lines in L with slope λ and define L(p) to be the set of

lines in L passing through a given point p ∈ R2. Then the union of L(λ) over all λ

22



which are slopes of lines in L′ and L(p) over all points p which are intersections of

pairs of lines in L′ must be L. So L is the union of at most C + C2 parallel and star

families.

The main result of Chapter II, Theorem 39, yields a version of Conjecture 31.

Corollary 35. For every ε > 0, there exists 0 < δ0 < ε such that for all 0 < δ < δ0

and sufficiently large n, the following property holds.

If each of n1−δ lines is n1−δ-rich in an n × n cartesian product, then the set of

lines is the union of nε parallel and star families.

Therefore, we also have the following uniform statistical Freiman-type theorem

similar to Conjecture 30:

Corollary 36. For every ε > 0, there exists 0 < δ0 < ε such that for all 0 < δ < δ0

and sufficiently large n, the following property holds.

Let L,A be as in Theorem 28, G = (L t A,E) a bipartite graph with degree at

least n1−δ for each f ∈ L. If |LE(A)| ≤ n1+δ, then L is the union of nε parallel and

star families.

Proof. Let B = A ∪ LE(A). Each line in L is incident with at least n1−δ edges of E,

so each line in L is n1−δ-rich in the n1+δ × n1+δ cartesian product B × B. In other

words, each line of L is |B|1−δ
′
-rich in B × B, where δ′ = 1− 1−δ

1+δ
→ 0 as δ → 0. By

choosing δ small enough, we can ensure through Corollary 35 that L is the union of

nε parallel and star families.

1.9.2 Few Products, Many Differences

In this chapter, we give a short proof of a result similar in flavor to Solymosi’s result

[64] that a set A with a small sum set has many products. However, our result gives

a converse bound: if A has a small product set, then A−A has many elements. The

proof is conditional on the following conjecture:
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Conjecture 37. Let V ⊂ R2 be a set of vectors such that at most |V |
2

are contained

in any common line. Then

∑
s>0

#{(v,w) ∈ V × V : |v ×w| = s}2 = O(|V |3 log |V |)

(In Conjecture 37, v×w is the cross product of v and w considered as vectors in

R3.)

One reason that Conjecture 37 is of interest is that it quickly implies a result

about areas of triangles formed from a set of N points in the plane, which we suspect

is also true:

Theorem 38 ([50]). If Conjecture 37 holds, then there exists an absolute constant

c > 0 such that N > 1 points in R2, not all on the same line, determine at least

cN/ logN areas of triangles with one vertex at the origin.

The conjecture would also imply a sum-product-type inequality of the form

|A.A± A.A| ≥ C(ε) |A|2−ε

for all ε > 0 [50], a statement which we also suspect to be true.

1.9.3 Contributions of the Author

Sets of Rich Lines in General Position was primarily written by the author under

the supervision of Prof. Ernie Croot with contributions from Albert Bush and Gagik

Amirkhanyan. The latter two sections of the chapter were originally written by Bush

and later revised and updated by the author.

The text of Few Products, Many Differences was originally written by Bush and

later revised and updated by the author. The initial argument behind the proof of the

chapter’s main result was conceived jointly by the author and Bush; Amirkhanyan

later strengthened the original argument to its present form. This chapter was also

written under the supervision of Prof. Croot.
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CHAPTER II

SETS OF RICH LINES IN GENERAL POSITION

2.1 Introduction

Our goal in the present chapter is to prove a δ-ε formulation of a conjecture of

Solymosi found in [30]:

Theorem 39. For every ε > 0, there exists 0 < δ0 < ε such that for all 0 < δ < δ0

and for sufficiently large n = n(ε, δ), the following property holds.

If A ⊆ R has size n, then every set of at least nε lines in R2, each of which

intersects A × A in at least n1−δ points, contains either two parallel lines or three

lines with a common intersection point.

The Szemerédi-Trotter theorem gives a bound of O(n1+3δ) n1−δ-rich lines for an

arbitrary set of n2 points. In addition to the connections Theorem 39 has to Freiman’s

theorem, a consequence of Solymosi’s conjecture is that requiring a grid structure in

the set of points and general position in the set of lines gives a significant improvement

to the Szemerédi-Trotter bound.

We begin by listing the major tools and basic results needed to prove Theorem 39.

Next we introduce a key result, Theorem 44, describing the behavior of sets of rich

lines under self-composition. Theorem 44 will allow us to extract a set of lines in

“nearly” general position from the composition of a set of rich lines with itself. We

then prove a weakened version of Solymosi’s conjecture:

Theorem 40. For every ε > 0, there exists 0 < δ0 < ε such that for all 0 < δ < δ0

and for sufficiently large n = n(ε, δ), the following property holds.

If A ⊆ R, |A| = n, then every set of at least n1−ε lines in R2, each of which
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intersects A × A in at least n1−δ points, contains either two parallel lines or C =

C(ε) ≥ 2 lines with a common intersection point.

Finally, we use the subset-extraction theorem along with Theorem 40 to conclude

the proof of Theorem 39.

2.2 Preliminaries

Let A ⊂ R be a finite subset with |A| = n. We call a line ` in R2 k-rich if it intersects

at least k points in A × A. A line can be at most n-rich; we will concern ourselves

mainly with lines that are n1−δ-rich for some small positive δ.

If ` : y = λx + b is a line in R2, then `−1 : y = 1
λ
x − b

λ
is the line such that

` ◦ `−1 = `−1 ◦ ` is the identity function on R2 (i.e., the line y = x).

In the next two lemmas, we establish that many pairs of lines in a set of rich lines

can be combined to obtain lines of slightly less richness.

Lemma 41. Given sets A1, ..., Ak ⊆ {1, ..., n}, each of size at least n1−δ, we must

have at least k2n−2δ/2 ordered pairs of sets (Ai, Aj) with |Ai ∩ Aj| ≥ n1−2δ/2.

Proof. Let B = {(i, j) : |Ai ∩ Aj| ≥ n1−2δ

2
}. For a contradiction, suppose |B| <

1
2
k2n−2δ. Then∑
i,j

|Ai ∩ Aj| =
∑

(i,j)∈B

|Ai ∩ Aj|+
∑

(i,j)∈Bc
|Ai ∩ Aj| < n · 1

2
k2n−2δ+

(
k2 − 1

2
k2n−2δ

)
n1−2δ

2
< k2n1−2δ.

However, letting d(x) := #{1 ≤ i ≤ k : x ∈ Ai}, we have by Cauchy-Schwarz∑
i,j

|Ai ∩ Aj| =
n∑
x=1

d(x)2 ≥

(
n−1/2

n∑
x=1

d(x)

)2

= n−1

(∑
i

|Ai|

)2

≥ k2n1−2δ.

Lemma 42. Let A ⊂ R, and let L be a set of lines in R2 such that each line in L is

n1−δ-rich in A×A. Then, for at least 1
2
|L|2 n−2δ pairs of lines (`, `′) ∈ L×L, `−1 ◦ `

is 1
2
n1−2δ-rich in A× A.
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Proof. For each line ` : y = λx + b, let X(`) = {x ∈ A : λx+ b ∈ A}, and similarly

let Y (`) = {y ∈ A : λ−1(y − b) ∈ A}. Observe that Y (`) = X(`−1). Thus, for (`, `′) ∈

L × L, if |Y (`) ∩ Y (`′)| ≥ 1
2
n1−2δ, then `−1 ◦ `′ is 1

2
n1−2δ-rich in A × A. Observe

that each Y (`) has size at least n1−δ. By Lemma 41, at least 1
2
|L|2 n−2δ pairs of sets

(Y (`), Y (`′)) have intersection of size at least 1
2
n1−2δ.

We define the operation ∗ by `1∗`2 = `−11 ◦`2. This formalizes the notion described

earlier of combining rich lines in L to form new rich lines (at the cost of a small amount

of richness). Given two sets L,L′ of n1−δ-rich lines, we would like to consider the set

of lines ` ∗ `′ which retain a large amount of richness in A× A.

{
` ∗ `′ : ` ∈ L, `′ ∈ L′, |` ∗ `′ ∩ (A× A)| ≥ n1−2δ/2

}
. (1)

Corollary 43. Given a set L of lines which are n1−δ-rich in A × A, there exist at

least 1
2
|L|n−2δ distinct lines of the form ` ∗ `′ which are 1

2
n1−2δ-rich in A× A.

Proof. There can be at most |L| pairs which map to a given line in L∗L, or else there

exists `1 ∈ L and `2 6= `3 such that `−11 ◦ `2 = `−11 ◦ `3, a contradiction. By Lemma 42,

the result therefore follows.

In addition to the richness of our new lines in A×A, we will want to have control

over the number of pairs (`1, `2) which map to the same line under ∗. Let P(`) denote

the set of pairs (`1, `2) such that `1 ∗ `2 = `; if X is a set of lines, let P(X) be the

union of the sets P(`) over all ` ∈ X. For each 0 ≤ i ≤ dlog2 |L|e, let Li be the set of

those lines ` in the set (1) such that

2i−1 < |P(`)| ≤ 2i,

and let

Ni =
∑
`∈Li

|P(`)| .
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Then

N0 +N1 + · · ·+NK = #

{
(`, `′) : |` ∗ `′ ∩ (A× A)| ≥ 1

2
n1−2δ

}
≥ 1

2
|L|2 n−2δ

by Lemma 42. By the pigeonhole principle, at least one Ni satisfies

Ni ≥
|L|2 n−2δ

2 log2 |L|
.

For the maximal such i, we define L ∗ L to be

L ∗ L := {` ∗ `′ : (`, `′) ∈ P(Li)} .

If L is a set of n1−δ rich lines, we recursively define the sequence of j-fold ∗

operations on L as follows: take L∗2 := L ∗L and L∗j := L∗(j−1) ∗L∗(j−1). We remark

that the operation ∗ is not associative: for example, (L∗L)∗(L∗L) will not in general

equal ((L ∗ L) ∗ L) ∗ L.

2.3 Lines in Near-General Position

The following theorem illustrates the behavior of a near-general position set of lines

under the operation of ∗.

Theorem 44. For all 0 < ε < 1, there exists 0 < α0 < ε such that for all 0 < α < α0,

there exists 0 < δ0 < α such that for all 0 < δ < δ0 and for finite sets A with |A| = n

sufficiently large, the following holds:

Let L be a set of at least nε lines in near-general position (with star families

bounded in size by some constant C ≥ 2 independent of n) which are n1−δ-rich in

A× A.

(i) If L ∗ L contains a family P of parallel lines, then |P | ≤ 2 |L ∗ L|n2δ/ |L|.

(ii) If L ∗ L contains a star family S, then |S| ≤ 2C |L ∗ L|n2δ/ |L|.

(iii) If Pλ denotes the set of lines in L ∗ L with common slope λ, then |Pλ| ≥ nα for

at most nα numbers λ.
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(iv) If Sp denotes the set of lines in L ∗ L with common meeting point p, then

|Sp| ≥ nα for at most nα points p.

Conditions (i), (ii), and (iv) will be shown in this paper. Condition (iii) is shown

to hold in [6].

The proofs of conditions (i) and (ii) are similar. Given a line ` ∈ L∗L, recall that

P(`) denotes the set of pairs (`1, `2) ∈ L × L such that `1 ∗ `2 = `. If X ⊂ L ∗ L,

define P(X) :=
⋃
`∈X P(`).

2.3.1 Large Families of Parallel Lines

Proof of Theorem 44(i). Suppose there is a family P ⊆ L ∗ L of parallel lines with

|P | > 2 |L ∗ L|
|L|

n2δ ≥ |L|
2i
,

where i is the maximal index between 0 and dlog2 |L|e such that

#
{
` ∈ L ∗ L : 2i−1 < |P(`)| ≤ 2i

}
≥ |L|

2 n−2δ

2 log2 |L|
.

Then the total number of pairs mapping to lines in P under ∗ will be

|P(P )| =
∑
`∈P

|P(`)| > |P | 2i > |L| .

Since the lines of L have distinct slopes, it follows that there exist two distinct pairs

(λx+ b, λ′x+ b′) and (λx+ b, λ′′x+ b′′′) which each map to some line in P . But then

λ′ = λ′′, and by the distinctness of the pairs it follows that b′ 6= b′′′. Thus, two lines in

L are parallel, contradicting the hypothesis that they are in near-general position.

2.3.2 Large Star Families

Proof of Theorem 44(ii). It is sufficient to consider the case that the lines in S inter-

sect on the y-axis. If not, suppose the center of S is (x0, y0), and consider the grid

A′ × A′, where A′ is the translate A− x0. Suppose the pair (`1, `2) of n1−δ-rich lines

in A× A maps to a line in S, where `1 : y = λ1x+ b1 and `2 : y = λ2x+ b2. Then

`1 ∗ `2 : y =
λ2
λ1
x+

b2 − b1
λ1
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contains the point (x0, y0). Let `′1, `
′
2 be the translates of `1, `2 down by x0 and left

by x0; then

`′1 : y = λ1x+ λ1x0 + b1 − x0 and `′2 : y = λ2x+ λ2x0 + b2 − x0.

So (`′1, `
′
2) maps to

`′1 ∗ `′2 : y =
λ2
λ1
x+

(λ2 − λ1)x0 + b2 − b1
λ1

.

At x = 0, we have

y =
λ2
λ1
x0 +

b2 − b1
λ1

− x0 = y0 − x0.

That is to say, (`′1, `
′
2) maps to a rich line passing through the point (0, y0−x0). Thus,

given a star family of lines 1
2
n1−2δ-rich in A×A, we can construct a new 1

2
n1−2δ-rich

star family of the same size in the translated grid A′ × A′ whose center lies on the

y-axis.

Now suppose there is a star family S ⊆ L ∗ L centered at (0, y0) with

|S| > 2C
|L ∗ L|
|L|

n2δ ≥ C
|L|
2i

(where i is taken as in the previous proof). Then the total number of preimages for

lines in S will be

|P(S)| =
∑
`∈S

|P(`)| > |S| 2i > C |L| .

Since the lines of L have distinct slopes, it follows that there exist C+1 distinct pairs

in L× L mapping to S such that the lines in the first coordinate of the pairs are the

same:

(λx+ b, λ1x+ b1), (λx+ b, λ2x+ b2), ..., (λx+ b, λC+1x+ bC+1).

Since the y-intercepts of the output lines are the same, it follows that

b1 − b
λ

=
b2 − b
λ

= · · · = bC+1 − b
λ

= y0;

in other words, b1 = b2 = · · · = bC+1 = λy0 + b. Thus, L contains C + 1 lines with a

common y-intercept, contradicting the hypothesis that L is in near-general position

with star families bounded in size by C.
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2.3.3 Star Families of Moderate Size

Moving towards a proof of case (iv) of Theorem 44, we begin with a technical sum-

product-type result. The result follows from two theorems: a variant of the Balog-

Szemerédi-Gowers theorem by Evan Borenstein and Ernie Croot, and the other a

result by Croot and Hart on k-fold sumsets when the product set is small.

Theorem 45 ([7]). For every 0 < ε < 1/2 and c > 1, there exists δ > 0 such that

for sufficiently large k and n, the following property holds.

Let A be a subset of an additive abelian group with |A| = n and S ⊆ Ak, the k-fold

cartesian product of A with itself. Define

Σ(S) := {a1 + · · ·+ ak : (a1, ..., ak) ∈ S} .

If |S| ≥ |A|k−δ and |Σ(S)| < |A|c, then there exists a subset A′ ⊆ A with |A′| ≥ |A|1−ε

such that for all h ≥ 1, |hA′| ≤ |A′|c(1+hε).

Theorem 46 ([26]). For every h ≥ 2, there exists ε0 = ε0(h) > 0 such that for every

0 < ε < ε0, there exists δ = δ(ε) > 0 such that for sufficiently large n, the following

property holds.

Let B ⊆ R with |B| = n. If |B.B| ≤ |B|1+δ, then |hB| ≥ |B|ε.

Now let us introduce and prove the lemma:

Lemma 47. For every c > 0 and k ≥ 2, there exists α > 0 such for sufficiently large

n, the following property holds.

If A1, A2, ..., Ak ⊆ R with |Ai| = n, |Ai.Ai| ≤ n1+α for all i = 1, ..., k, and

S ⊆ A1 × A2 × · · · × Ak has size |S| ≥ nk−α, then |Σ(S)| ≥ nc.

Proof. Let c > 0, and let A1, ..., Ak, S be sets as in the statement of the lemma such

that |Σ(S)| < nc (where α, k, and n will be determined later). Let ε > 0, choose
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δ = δ(ε) be as in Theorem 45, let α < δ/2, and let A = A1 ∪ · · · ∪ Ak. Observe that

n ≤ |A| ≤ kn. Note that S ⊂ Ak,

|S| ≥ nk−α > (|A| /k)k−α > |A|k−δ , and |Σ(S)| < nc ≤ |A|c .

So there is a subset A′ ⊆ A with |A′| ≥ |A|1−ε such that for all h ≥ 1, |hA′| <

|A|c(1+hε).

By the pigeonhole principle, A′ intersects some Aj, 1 ≤ j ≤ k, in a set of size at

least |A′| /k > |A|1−ε /k. Let A′′ be that intersection, and note that this set satisfies

the following:

|A′′| > |A|1−ε /k, |A′′.A′′| ≤ |Aj.Aj| ≤ n1+α, and |hA′′| < N c(1+hε).

Expressing all of this in terms of |A′′|, we get

|A′′.A′′| ≤ n1+α ≤ (k |A′′|)(1+α)/(1−ε) and |hA′′| < (k |A′′|)c(1+hε)/(1−ε).

Choosing h sufficiently large and α and ε sufficiently small, these inequalities contra-

dict Theorem 46.

From this lemma we prove a corollary which will have a direct application to the

proof of condition (iv) of Theorem 44.

Lemma 48. There is an absolute constant c > 0 such that for every ε > 0, there

exists 0 < α0 < ε such that for all 0 < α < α0, there exists 0 < δ0 < α such that the

following holds for all 0 < δ < δ0 and sufficiently large n = n(ε, α, δ):

If {C1, ..., Ck} is a collection of sets of real numbers such that for all i, |Ci| ≥ nα

and |Ci.Ci| ≤ |Ci|1+cδ, B is a set of real numbers with |B| ≥ nε, and x1, ..., xk ∈ R

are distinct constants such that for all i and for each λ ∈ Ci, there are at least |B|1−cδ

pairs (b, b′) ∈ B ×B satisfying λ(b− xi) = b′ − xi, then k < nα−cδ.

First we need another lemma:
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Lemma 49. Suppose that di,j, i = 1, ..., k and j = 1, ..., N are real numbers satisfying

0 ≤ di,j ≤ L. If 0 ≤ C ≤ 1 is defined by

k∑
i=1

N∑
j=1

di,j = CLkN,

then there exists i ∈ {1, ..., k} such that for at least 1
2
kC2 indices i′ ∈ {1, ..., k},

N∑
j=1

di,jdi′,j >
1

2
C2L2N. (2)

Proof. By the Cauchy-Schwarz inequality,

∑
1≤i,i′≤k

N∑
j=1

di,jdi′,j =
N∑
j=1

(
k∑
i=1

di,j

)2

≥ 1

N

(
N∑
j=1

k∑
i=1

di,j

)2

= C2L2k2N.

In particular, there must exist some i ∈ {1, ..., k} such that

k∑
i′=1

N∑
j=1

di,jdi′,j ≥ C2L2kN.

Fixing such an i, let T denote the number of indices i′ ∈ {1, ..., k} for which

N∑
j=1

di,jdi′,j ≤
1

2
C2L2N.

Then

1

2
TC2L2N + (k − T )L2N ≥ C2L2kN,

so

T ≤ k
1− C2

1− C2/2
.

Thus, for at least

k − T ≥ kC2

2− C2
≥ 1

2
kC2

indices i′ ∈ {1, ..., k}, (2) holds.

Proof of Lemma 48. By a dyadic pigeonhole argument, there exists a subcollection

of the set {C1, ..., Ck} with size k
log2(n)

and an integer L ≥ nα such that L ≤ |Ci| ≤ 2L
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for each Ci in the subcollection. Redefine k to be the number of elements in this

subcollection, and reindex so that C1, ..., Ck are the sets making up the subcollection.

For each i = 1, ..., k, construct the directed bipartite graph Gi on vertex set

B1 t B2 where B1 = B2 = B and where (b, b′) is an edge if there exists λ ∈ Ci such

that λ(b− xi) = b′ − xi. Letting N = |B|, the sum of the out-degrees in B1 (and the

sum of the in-degrees in B2) is at least LN1−cδ by our dyadic pigeonhole argument.

If G is a directed graph, define G̃ to be the graph obtained by reversing the

orientation of each of G’s edges.

If G and G′ are two (2t+1)-partite directed graphs whose vertex sets are B1t· · ·t

B2t+1, where B1 = · · · = B2t+1 = B, then define the (2t+1 + 1)-partite directed graph

G∧G′ as follows: Let V = B1t· · ·tB2t+1+1. For m = 1, ..., 2t, let (bj, bj′) ∈ Bm×Bm+1

be an edge in G ∧ G′ if and only if (bj, bj′) ∈ Bm × Bm+1 is an edge in G. For

m = 2t + 1, ..., 2t+1, let (bj, bj′) ∈ Bm × Bm+1 be an edge in G ∧ G′ if and only if

(bj, bj′) ∈ Bm−2t ×Bm+1−2t is an edge in G′.

Define Gi1,i2 to be Gi1 ∧ G̃i2 . By Lemma 49 (taking C = N−cδ) there is an index

1 ≤ i1 ≤ k such that for at least 1
2
kN−2cδ indices 1 ≤ i2 ≤ k,

N∑
j=1

di1,jdi2,j ≥ L2N1−2cδ,

where di,j is the number of directed edges in Gi terminating at bj ∈ B2. This sum

then counts the total number of paths of length 2 in Gi1,i2 , so the average number of

paths in Gi1,i2 terminating at a particular b ∈ B is at least L2N−2cδ.

Now, fixing i1, ..., it−1, we can apply Lemma 49 again to form a (2t + 1)-partite

graph

Gi1,...,it+1 = Gi1,...,it−1,it ∧ G̃i1,...,it−1,it+1

with L2t−2
N1−Ot,c(δ) length-2t paths corresponding to 2t-tuples (λ1, ..., λ2t) such that

λ4m+1 ∈ Ci1 for all m.
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Using the fact that

λj(βj − xij) = βj+1 − xij ,

or, equivalently,

λjβj = βj+1 − xij + λjxij ,

each of these paths corresponds to an equation of the form:

λ2t · · ·λ1β1 = λ2t · · ·λ2(β2 − xi1 + λ1xi1)

= λ2t · · ·λ2β2 − λ2t · · ·λ2xi1 + λ2t · · ·λ1xi1
...

= (β2t+1 − xi2t ) +
2t∑
y=1

[
2t∏
j=y

λj

]
(xiy − xiy−1),

where we define xi0 = 0.

By the pigeonhole principle, there exists a choice of β1 and of the variables λj,

j 6≡ 1 (mod 4), for which there are at least L2t−2
N−O(δ) paths in the (2t + 1)-partite

graph starting at β1 and utilizing the edges specified by the selected λj (leaving

at least L2t−2
free choices of edges). Fixing such a β1 and the variables λj except

λ4s−3 ∈ Ci for all 1 ≤ s ≤ 2t−2, the left-hand side of the equality

λ2t · · ·λ1β1 = (β2t+1 − xi2t ) +
2t∑
y=1

[
2t∏
j=y

λj

]
(xiy − xiy−1), (3)

is an expression contained in the set

C2t−2

i · β1 ·
∏

1≤j≤2t
j 6≡1 (mod 4)

λj,

which by Theorem 2 has size at most |Ci|1+Ot(δ). Now we rewrite the right-hand side

by grouping the terms indexed by y into groups of four, starting at y = 4r + 2: a

typical such group will have the sum

λ4r+5λ4r+6 · · ·λ2t
(
λ4r+2λ4r+3λ4r+4(xi4r+2 − xi4r+1) + λ4r+3λ4r+4(xi4r+3 − xi4r+2)+

λ4r+4(xi4r+4 − xi4r+3) + xi4r+5 − xi4r+4

)
. (4)
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Conveniently, all the terms in the parentheses involve products of λjs, where j 6≡

1 (mod 4). Since consecutive pairs of xi4r+1 , xi4r+2 , xi4r+3 , xi4r+4 are all distinct (as

they are each associated to different star families), xi4r+2 − xi4r+1 , xi4r+3 − xi4r+2 ,

xi4r+4 − xi4r+3 , and xi4r+5 − xi4r+4 are all nonzero. It follows that for any choice of

two of the parameters among λ4r+2, λ4r+3, λ4r+4, there is at most one possible choice

of the remaining parameter that can make the expression (4) equal to 0. In fact,

the number of paths through the graph resulting in a selection of the λjs where at

least one of the 2t−2 four-tuples equals 0 is at most L2t−1N1−O(δ). But since there are

many more paths than this, there is a choice for the λj, j 6≡ 1 (mod 4), where all the

quadruples are nonzero. Re-expressing the right-hand side of (3) in terms of these

quadruples for these fixed choices of λj, j 6≡ 1 (mod 4), we find that it is contained

in the set

β2t+1 − xi2t +
2t−2∑
j=1

κjC
4j
i ,

where κj 6= 0 are constants. Furthermore, it turns out that for at least |Ci|2
t−2−O(δ)

vectors (c1, c2, ..., c2t−2) ∈ Ci × C
(2)
i × · · · × C

(2t−2)
i , this expression is among the

expressions in the right-hand side of (3) that we can produce by Theorem 2 (since

|Ci.Ci| ≈ |Ci|). Applying Lemma 47, we find that for t large enough, the number

of right-hand side expressions exceeds L2. This contradicts the fact that the number

of left-hand side expressions is bounded by L1+Oc,t(δ). This contradiction finishes the

proof.

Now, we finally establish that if L is in near-general position, then L ∗L does not

contain too many star families of “moderate” size.

Proof of Theorem 44(iv). Suppose that there exist k = nα star families S1, ..., Sk ⊆

L ∗ L with |Si| ≥ nα for all i. Let δ′ be an auxiliary parameter such that δ < δ′ < α.

We will construct sets B,C1, ..., Ck and distinct constants x1, ..., xk ∈ R such that

|Ci| ≥ nα, such that |Ci.Ci| ≤ |Ci|1+O(δ′) and such that for all i and for all λ ∈ Ci, we
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have |B|1−O(δ′) pairs (b, b′) ∈ B × B such that λ(b− xi) = b′ − xi. This construction

is forbidden by Lemma 48, giving us a contradiction.

Begin by taking the xi to be the x-coordinates of the centers of the star families

S1, ..., Sk in L ∗L. Our first difficulty will be to show that the xi are distinct. Indeed,

this may not be the case, for it is possible that many of the star families lie on common

vertical lines. However, suppose that there are K distinct vertical lines on which there

are star families. Then there is some such line with at least nα/K star families on it.

Now, since a line ` : y = λx+ b is in L ∗L if and only if its inverse `−1 : x = λy+ b is

also in L ∗ L, it follows that there is a horizontal line with nα/K star families on it,

implying there are at least that many distinct vertical lines. Hence, K ≥ nα/K, so

K ≥ nα/2. By choosing one star family from each vertical line and ignoring the rest

(and reducing α to α/2) we attain distinct x-coordinates for the centers of the star

families.

Now, fix a star family Si, and let Λi be the set of slopes of the lines in Si. Observe

that lines in S∗2i := Si ∗ Si will have slopes in the ratio set Qi := Λi/Λi, lines in

S∗3i := S∗2i ∗ S∗2i will have slopes in Q2
i = (Λi/Λi)

2, and (in general) lines in S
∗(j+2)
i ,

j ≥ 0, will have slopes in the set Q2j

i . Now, not all elements of Q2j

i will be slopes of

lines in S
∗(j+2)
i (because some combined lines will not be rich enough in A×A). Let

Mi,j ⊂ Q2j

i be the set of slopes of lines in S
∗(j+2)
i .

Observe that Si ∗ Si is itself a star family centered at (xi, xi). The line y = x is

an n-rich line passing through this point, so if Si ∗Si does not contain the line y = x,

we may add it to Si ∗ Si while preserving the fact that all lines in Si ∗ Si are rich.

Therefore, S∗ji ⊆ S
∗(j+1)
i for all j ≥ 2; hence Mi,j−1 ⊆ Mi,j for all j ≥ 1. Moreover,

since y = x is in Si ∗Si, Mi,j is closed under taking reciprocals for all j. Further note

that lines in S∗ji will be n1−2O(j)δ-rich in A× A.

Recall that δ < δ′ < α. Suppose |Mi,j+1| ≥ |Mi,j|nδ
′α for all j up to m = b2/δ′αc.

Redefining δ if necessary, we may take 1− 5mδ > 0. For sufficiently large n, we then
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have

|Mi,m+1| ≥ nα+mδ
′α ≥ n2.

But, since each element of Mi,m+1 corresponds to a distinct rich line in A × A, this

violates Theorem 6. Therefore there exists some j = j(i) < 2/δ′α such that

|Mi,j+1| < |Mi,j|nδ
′α ≤ |Mi,j|1+δ

′
.

Therefore, by Lemma 42, there are at least |Mi,j|2−O(δ′) pairs (m,m′) ∈ Mi,j ×Mi,j

such that m/m′ ∈Mi,j+1. So the multiplicative energy of Mi,j satisfies

E(Mi,j,Mi,j) ≥ |Mi,j|3−O(δ′) .

By Theorem 1, we conclude there is a subset M ′
i ⊆ Mi,j with small multiplicative

doubling: |M ′
i .M

′
i | ≤ |M ′

i |
1+O(δ′). Let S ′i be those lines ` ∈ S∗(j+2)

i such that the slope

of ` is in M ′
i .

Now, let ` : λx + (xi − λxi) = λ(x − xi) + xi be a line in the stable star family

S ′i. Since this line is rich in A × A, there are |A|n−O(δ′) pairs (a, a′) ∈ A × A such

that λ(a − xi) = a′ − xi. Taking Ci = M ′
i and B = A, we obtain the sets forbidden

by Lemma 48.

2.4 Extracting a Near-General Position Set of Lines

Using Theorem 44, we can find a subset of lines in L ∗ L which is in near-general

position: the subset will contain no two parallel lines, and all star families in the

subset have size bounded by a constant C independent of n.

Corollary 50. For all 0 < ε < 1 there exists 0 < α0 < ε such that, for all 0 < α < α0,

there exists 0 < δ0 < α such that for all 0 < δ < δ0 and for sufficiently large n, the

following holds:

Let A ⊆ R be a finite set with |A| = n, and let L be a set of at least nε lines which

are all n1−δ-rich in A × A. If L contains no parallel lines and all star families in L

38



are bounded above in size by C = C(ε, α), then there exists a subset R ⊆ L ∗ L such

that

• |R| ≥ |L|n−cα for some absolute constant c,

• R contains no two lines which are parallel, and

• at most k = dε/αe lines of R pass through any given point of R2.

We need a short lemma, which is easily proved by induction.

Lemma 51. Let k be a nonnegative integer and 0 < γ < 1. Then

lim
x→∞

xkγ ·
(

x
x1−γ−k

)(
x

x1−γ

) = 1.

Proof of Corollary 50. By Theorem 44(iii), there are at most nα families of parallel

lines in L ∗L with size greater than nα. By Theorem 44(i), none of these families can

have size greater than 2 |L ∗ L|n2δ/ |L|. Thus, deleting all of these lines from L ∗ L

leaves us with a set of at least

|L ∗ L| − 2 |L ∗ L|nα+2δ

|L|
>

1

2
|L ∗ L|

lines.

The remaining families of parallel lines in this set have size at most nα, and these

families are all disjoint. By picking a single representative from each family, we form

a subset of L ∗L of at least 1
2
|L ∗ L|n−α lines, no two of which are parallel. Invoking

Theorem 44(ii) and (iv), we remove from this subset all star families of size greater

than nα to leave us with a subset L′ with at least 1
4
|L ∗ L|n−α lines.

By Corollary 43, there are at least |L|n−3δ lines in L ∗ L, so L′ contains at least

|L|n−2α lines.

Uniformly at random choose a subset R ⊆ L′ of d|L′|n−cαe lines, where c > 0 is a

parameter to be chosen later. The probability that a star family S in L′ contains at
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least k lines of R is (|S|
k

)
·
(|L′|−k
|R|−k

)(|L′|
|R|

) ≤ nkα

k!
·

( |L′|
|R|−k

)(|L′|
|R|

) .
Applying Lemma 51 with x = |L′| and x1−γ = |R| = x1−cα logx(n), for large values of

n we have ( |L′|
|R|−k

)(|L′|
|R|

) = (1 + o(1)) · |L′|−kcα log|L′|(n) ≤ 2n−kcα.

Since there are at most n2ε star families, the expected number of star families with

at least k lines of R is bounded by

2

k!
n2ε+k(1−c)α.

Taking k =
⌈
ε
α

⌉
and c = 3 makes this expected value less than 1, meaning there is

some choice of R such that no star family has more than dε/αe lines in R.

Thus, R is a near-general position subset of L′ (and therefore of L) with size at

least |L′|n−3α ≥ |L|n−5α.

We remark that the proof still holds if L ∗ L above is replaced by L′′ ⊆ L ∗ L so

long as |L′′| ≥ |L|n−c0α for some c0 > 0. We will use this modified version in the

proof that Theorem 40 implies Theorem 39.

2.5 Proof of the Weakened Theorem

Using Corollary 50, we are now ready to prove Theorem 40. A major tool used will

be the commutator graph, which we draw from [30].

Let A ⊆ R, let δ > 0, and let L be a set of n1−δ-rich lines in R2. The commutator

graph on L is the graph G = (V,E), where

V (G) = L ∗ L ∪ L−1 ∗ L−1

(with the minor change that we require minimum richness only n1−5δ for each line in

L ∗ L and L−1 ∗ L−1) and

E(G) =
{
{f ∗ g, g−1 ∗ f−1} : f, g ∈ L, f ∗ g ∈ L ∗ L, g−1 ∗ f−1 ∈ L−1 ∗ L−1

}
.
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We draw attention to the fact that the lines f ∗ g and g−1 ∗ f−1 have the same slope.

Hence, any edge of the commutator graph is between two parallel lines.

Proof of Theorem 40. Let ε > 0, let δ > 0 be much smaller than ε, and let A ⊂ R

with n = |A| > 0. Suppose for a contradiction that L is a set of at least n1−ε lines, all

n1−δ-rich in A×A, and that L is in near-general position with star families bounded

in size by a constant C > 0 independent of n. Consider the commutator graph on L.

If |V (G)| ≥ n1+4δ, then we contradict Theorem 6, so let us assume that |V (G)| <

n1+4δ. We claim that |E(G)| ≥ n2−6δ. If this is true, then there is a vertex with

degree at least |E(G)| / |V (G)|, so there is a connected component (corresponding to

a set of parallel lines) of size n1−10δ, in contradiction with Theorem 44(i).

Let S(f) = X(f)×Y (f) for each f ∈ L. By applying Lemma 41 to the collection

of sets S(f), where each set S(f) has size at least n2−2δ, we must have at least

n2−4δ/2 ≥ n2−5δ pairs S(f), S(g) with |S(f) ∩ S(g)| ≥ n2−4δ/2 ≥ n2−5δ. Note that

for any sets A1, A2, A3, A4, (A1×A3)∩ (A2×A4) = (A1∩A2)× (A3∩A4). Thus, since

|S(f) ∩ S(g)| ≥ n2−5δ, we have |X(f) ∩X(g)| ≥ n1−5δ and |Y (f) ∩ Y (g)| ≥ n1−5δ:

that is, there are at least n2−5δ pairs f, g ∈ L such that f ∗ g and g−1 ∗ f−1 are each

n1−5δ-rich.

Let fi, gi denote the lines such that Pi := {fi ∗ gi, g−1i ∗ f−1i } is a pair of n1−5δ-

rich lines. Given an index i, fi and gi intersect at a unique point (x, y); it then

follows that x is the unique fixed point of fi ∗ gi and y is the unique fixed point of

g−1i ∗ f−1i . Suppose there were 2C + 2 indices i1, ..., i2C+2 such that Pij = Pik for all

1 ≤ j, k ≤ 2C + 2. Then there would exist C + 1 indices ij1 , ..., ijC+1
such that

fij1 ∗ gij1 = · · · = fiC+1
∗ giC+1

and g−1ij1
∗ f−1ij1 = · · · = g−1iC+1

∗ f−1iC+1
.

Since for each 1 ≤ k ≤ C + 1 there is a unique (x, y) such that fijk ∗ gijk (x) = x and

g−1ijk
∗ f−1ijk (y) = y, it follows that fijk and gijk all intersect the point (x, y). Since the

fijk ∗ gijk must all have the same slope and L has no parallel lines, we cannot have
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that fijk = fij′
k

for k 6= k′ or else gijk = gij′
k

as well, contradicting distinctness of the

pairs. Similarly we must have gijk 6= gij′
k

for k 6= k′. The collection

{fijk : 1 ≤ k ≤ C + 1} ∪ {gijk : 1 ≤ k ≤ C + 1}

must therefore contain at least C + 1 distinct lines (a single line may appear as an

fij at most once and as a gij at most once). But then we have a set of more than

C concurrent lines at (x, y), contradicting the hypothesis that L is in almost-general

position.

Thus, for each edge e, there are at most 2C + 2 pairs {fi ◦ g−1i , g−1i ◦ fi} equal to

e, so the total number of edges in G is at least n2−5δ/(2C + 2) � n2−6δ, yielding a

contradiction with Theorem 44(i).

We remark that there is a constant 0 < c < 1 such that taking δ = cε is sufficient

for the proof to go through.

2.6 Proof of the Main Theorem

For ` ∈ L∗L, recall that P(`) is the set of all pairs (f, g) ∈ L×L such that f ∗ g = `.

Lemma 52. For all 0 < ε < 1, there exists 0 < α0 < ε such that, for all 0 < α < α0,

there exists 0 < δ0 < α such that for all 0 < δ < δ0 and for sufficiently large n, the

following holds:

Let A ⊆ R have size n, and let L be a set of at least nε near-general position lines,

all of which are n1−δ-rich in A× A. Then there exists a set L′ ⊆ L ∗ L such that L′

is a set of lines in near-general position, |L′| > |L|n−5α−4δ, and for all ` ∈ L′,

|P(`)| ≥ |L|
2 n−3δ

2 |L ∗ L|
.

Proof. Let

S :=

{
(f, g) ∈ L× L : f ∗ g is

1

2
n1−4δ-rich

}
∩ P(Li),
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where P(Li) is as in our definition of L ∗ L. Then |S| ≥ |L|2n−2δ

2 log2|L|
� |L|2 n−3δ. Let

T :=

{
(f, g) ∈ S : |P(f ∗ g)| ≤ |L|

2 n−3δ

2 |L ∗ L|

}
.

If |T | > 1
2
|S|, then we obtain an absurdity:

|L ∗ L| =
∑

(f,g)∈S

1

|P(f ∗ g)|
=

∑
(f,g)∈S\T

1

|P(f ∗ g)|
+
∑

(f,g)∈T

1

|P(f ∗ g)|
≥

1

|L|
|S \ T |+ 2 |L ∗ L|n3δ

|L|2
|T | > |L ∗ L| .

Thus, |S \ T | ≥ |L|2 n−3δ/2 > |L|2 n−4δ. Letting L′ = {f ∗ g : (f, g) ∈ S \ T}, we

then have |L′| ≥ |L|n−4δ. Apply Corollary 50 to deduce that L′ contains a subset of

|L|n−5α−4δ lines in near-general position.

Proof of Theorem 39. Let L be a set of nε lines in general position, all of which are

n1−δ-rich for some δ > 0 to be chosen later. Fix α < ε, and suppose
∣∣L∗(k+1)

∣∣ ≥∣∣L∗k∣∣n5α for all k up to m = b2/αc. (By Corollary 50, we may further assume that

L∗j is in near-general position for all j ≤ k at the cost of a factor of n4α each iteration.)

Redefining δ if necessary, we can take 1 − 4 · 5mδ > 0. For sufficiently large n, we

then have ∣∣L∗(m+1)
∣∣ ≥ nε+mα ≥ n2.

But this violates Theorem 6, so such an m cannot exist. Therefore there exists

k < 2/α such that ∣∣L∗(k+1)
∣∣ < ∣∣L∗k∣∣n5α.

In this case, let L′ = L∗k for the smallest such k (such that the above inequality would

now read |L′ ∗ L′| < |L′|n5α), let α′ < 5α such that α′ � ε, let N = |L′|, and choose

δ′ ≤ 5kδ such that δ′ � α′.

By applying Lemma 52, we can restrict our attention to a subset L′′ ⊆ L′ ∗ L′ of

size at least Nn−5α
′−4δ′ such that all lines in L′′ are in near-general position and, for
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all ` ∈ L′′,

|P(`)| ≥ N2

2 |L′ ∗ L′|n3δ′
≥ N

2n5α+3δ′
>

N

2nα′+3δ
.

If ` is a line in L′′, then ` = f ∗ g for some f, g ∈ L′. We will then have at least

1

C
|L′′| (Nn−α′−4δ′)2 ≥ 1

C
N3n−5α

′−8δ′ � N3n−6α
′

solutions (f, g, f ′, g′) ∈ L× L× L× L to the equation

f ′ ∗ f(0) = g′ ∗ g(0) (5)

(The factor of 1/C comes from the fact that L′′ is a set of lines in near-general position,

so at most C lines will share a y-intercept.)

Now, fixing f ′, g′ in (5) and letting f, g vary, we can interpret (5) as the line f ′∗g′,

where the x and y variables are the y-intercepts of f and g. Letting B be the set

of y-intercepts among lines in L′′, we may interpret the above count of solutions to

(5) as stating that many of the lines f ′ ∗ g′ are Nn−7α
′
-rich in the new grid B × B.

Indeed, let

S := {(f ′, g′) ∈ L′ × L′ : f ′ ∗ g′ is Nn−7α
′
-rich in B ×B},

and let p(f ′, g′) denote the number of points that f ′ ∗ g′ intersects in B × B. Then,

for a contradiction, assume |S| < N2n−8α
′
. This implies the absurdity:

N3n−6α
′
=

∑
(f ′,g′)∈S

p(f ′, g′) +
∑

(f ′,g′)∈Sc
p(f ′, g′) < |S| |B|+ |Sc| (Nn−7α′) <

|S|Nnα′ + (N2 − |S|)Nn−7α′ < |S|Nnα′ +N3n−7α
′
< 2N3n−7α

′ � N3n−6α
′
.

(Note that this requires N � n4α′ , which is satisfied provided α′ � ε because N �

nε.) Thus, |S| ≥ N2n−8α
′
, and that implies that we have at least Nn−8α

′
lines that

are all Nn−7α
′
-rich in B ×B. Moreover, since L′ is in near-general position, we may

extract a set L′′′ from {f ′ ∗ g′ : (f ′, g′) ∈ S} ⊆ L′ ∗L′ that is in near-general position,

and L′′′ has size at least Nn−11α
′
. However, this is in contradiction with Theorem 40,
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since L′′′ is a set of N1−γ-rich lines in near-general position for some γ > 0, and

|L′′′| ≥ N1−O(γ).
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CHAPTER III

FEW PRODUCTS, MANY DIFFERENCES

In this chapter, we give a short proof of the following conditional result:

Theorem 53. If Conjecture 37 holds, then there exists an absolute constant c > 0

such that, for every 0 < ε < 1
2
, there exists n0 = n0(ε) ∈ N such that, for all A ⊂ R

with |A| ≥ n0 and |A.A| ≤ |A|1+ε,

|A− A| ≥ c
|A|2−3ε

(log |A|)8
.

A straightforward corollary of Conjecture 37 that we will use in the proof of

Theorem 53 is:

Corollary 54. If A ⊂ R, then

#{(x1, ..., x8) ∈ A8 : x1x2 − x3x4 = x5x6 − x7x8} = O(|A|6 log |A|).

Proof. Letting

r(s) = #{(v,w) ∈ A2 × A2 : |v ×w| = s},

we see that

r(s)2 = #{(x1, ..., x8) ∈ A8 : x1x2 − x3x4 = x5x6 − x7x8 = s}.

There are at most |A|3 linearly dependent pairs of vectors in A× A (|A|2 choices

for the first vector, and then |A| choices of vectors along the line spanned by the first

vector). Two vectors (a, b), (c, d) are linearly dependent if and only if (a, b)× (c, d) =

ad− bc = 0. In other words, r(0) ≤ |A|3, so r(0)2 ≤ |A|6.
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We conclude that

#{(x1, ..., x8) ∈ A8 : x1x2 − x3x4 = x5x6 − x7x8} =
∑
s>0

r(s)2 + r(0)2 =

O(|A|6 log |A|) + |A|6 = O(|A|6 log |A|).

Proof of Theorem 53. Fix ε > 0 and let A ⊂ R be a finite set such that |A.A| ≤

|A|1+ε. Let

r(p) = #{(a, b) ∈ A× A : ab = p}.

Then ∑
p∈A.A

r(p) = |A|2

and ∑
p∈A.A

r(p)2 = E×(A) = #{(a, b, c, d) ∈ A4 : ab = cd},

where E×(A) is the energy of A as a multiplicative set.

By a dyadic pigeonhole principle argument, there exists t ∈ {0, ..., 2 log |A|} such

that ∑
p∈A.A

2t≤r(p)<2t+1

r(p) ≥ |A|2

2 log |A|
.

Let F = {(a, b) ∈ A × A : 2t ≤ r(ab) < 2t+1} and P = {ab : (a, b) ∈ F} ⊆ A.A (the

mnemonic being F for “factors” and P for “products”). Then

|F | =
∑
p∈A.A

2t≤r(p)<2t+1

r(p) ≥ |A|2

2 log |A|

and

|F | =
∑
p∈Pt

r(p) ≤ 2t+1 |P | .

This gives us a lower bound on 2t |P |:

2t |P | ≥ |A|2

4 log |A|
. (6)
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Since P ⊆ A.A and |A.A| ≤ |A|1+ε, we in turn obtain a lower bound on 2t:

2t ≥ |A|1−ε

4 log |A|
. (7)

Now, for w ∈ A, let Fw = {(a, b) ∈ F : ab ∈ w.A}; that is, Fw is the set of those

pairs of factors in F whose product lives in the multiplicative translation of A by w.

Then ∑
w∈A

|Fw| =
∑
w∈A

∑
p∈P

#{(a, b) ∈ F : ab = p}1w.A(p).

Switching the order of summation, we obtain∑
p∈P

#{(a, b) ∈ F : ab = p}
∑
w∈A

1w.A(p) =
∑
p∈P

#{(x, y) ∈ F : xy = p}2 ≥ 22t+2 |P | .

Thus, ∑
w∈A

|Fw| ≥ 22t+2 |P | . (8)

For w ∈ A, define the set Ow by

Ow = {(x1, ..., x8) ∈ F × F × F × F : x1x2 − x3x4 = x5x6 − x7x8 and x1x2 ∈ w.A}

(the mnemonic here is O for “octuples”). First observe that∑
w∈A

|Ow| =
∑
w∈A

∑
(x1,x2)∈F

#{(x1, ..., x8) ∈ P 4 : x1x2− x3x4 = x5x6− x7x8}1w.A(x1x2) =

—after again changing the order of summation—

=
∑

(x1,x2)∈F

#{(x1, ..., x8) ∈ P 4 : x1x2 − x3x4 = x5x6 − x7x8}
∑
w∈A

1w.A(x1x2)

=
∑

(x1,x2)∈F

#{(x1, ..., x8) ∈ P 4 : x1x2 − x3x4 = x5x6 − x7x8}r(x1x2)

≤ 2t+1#{(x1, ..., x8) ∈ P 4 : x1x2 − x3x4 = x5x6 − x7x8}

≤ c2t |A|6 log |A|

for some absolute constant c > 0 by Corollary 54. Thus,∑
w∈A

|Ow| ≤ c2t |A|6 log |A| . (9)

We now prove a lemma from which Theorem 53 will quickly follow.
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Lemma 55. There is some w ∈ A and some absolute constant c′ > 0 such that for

sufficiently large |A|,

|Fw|4 > c′
|A|2−3ε

(log |A|)8
|Ow| .

Proof. For a contradiction, suppose that for all w ∈ A,

|Fw|4 ≤ c′
|A|2−3ε

(log |A|)8
|Ow| ,

where c′ > 0 is a parameter to be determined later. Then

∑
w∈A

|Fw|4 ≤ c′
|A|2−3ε

(log |A|)8
∑
w∈A

|Ow| . (10)

Using Hölder’s inequality and eq. (8), we obtain

∑
w∈A

|Fw|4 ≥
1

|A|3

(∑
w∈A

|Fw|

)4

≥ 28t+8 |P |4

|A|3
.

In the other direction, using eq. (9) and eq. (10), we obtain

∑
w∈A

|Fw|4 ≤ c′
|A|2−3ε

(log |A|)8
∑
w∈A

|Ow| ≤ cc′
A8−3ε2t

(log |A|)7

for an appropriate constant c > 0. Hence

cc′
|A|11−3ε

(log |A|)7
≥ 27t+8 |P |4 .

Using the estimates from eq. (6) and eq. (7) we obtain

cc′
|A|11−3ε

(log |A|)7
≥ 28 |A|11−3ε

(4 log |A|)7
,

and taking c′ < 1/64c yields a contradiction.

Let w be the element of A and c′ the constant obtained from Lemma 55. Then

let

G = Fw × Fw = {(a, b, c, d) ∈ F × F : ab ∈ w.A and cd ∈ w.A},

let

n(s) = #{(a, b, c, d) ∈ G : ab− cd = s},
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and let

S = {s : n(s) > 0}.

By Cauchy-Schwarz, ∑
s∈S

n(s)2 ≥ |G|
2

|S|
.

On the other hand,

∑
s∈S

n(s)2 ≤ |Ow| ≤ c′ |Fw|4
(log |A|)8

|A|2−3ε
.

Since |G| = |Fw|2, combining the two inequalities yields

|S| = Ω

(
|A|2−3ε

(log |A|)8

)
.

Finally, observe that |S| ≤ |A− A| since for each s ∈ S, we have s = wa − wb =

w(a− b) ∈ w.(A− A).
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503, 2003.

[12] Bourgain, J. and Chang, M.-C., “A Gauss Sum Estimate in Arbitrary Finite
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[66] Solymosi, J. and Tao, T., “An Incidence Theorem in Higher Dimensions,”
Discrete and Computational Geometry, vol. 48, pp. 255–280, 2012.
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