
SOME APPROXIMATION ALGORITHMS FOR
MULTI-AGENT SYSTEMS

A Thesis
Presented to

The Academic Faculty

by

Lei Wang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Algorithm,Combinatorics and Optimization, College of Computing

Georgia Institute of Technology
August 2011

SOME APPROXIMATION ALGORITHMS FOR
MULTI-AGENT SYSTEMS

Approved by:

Professor Robin Thomas,
Committee Chair
Algorithm,Combinatorics and
Optimization, College of Computing
Georgia Institute of Technology

Professor Prasad Tetali
College of Computing
Georgia Institute of Technology

Professor Vijay Vazirani, Advisor
Algorithm,Combinatorics and
Optimization, College of Computing
Georgia Institute of Technology

Professor Robin Thomas
School of Mathematics
Georgia Institute of Technology

Professor Vijay Vazirani
College of Computing
Georgia Institute of Technology

Professor William Cook
School of ISyE
Georgia Institute of Technology

Professor Nina Balcan
College of Computing
Georgia Institute of Technology

Date Approved: ——

I delicate this thesis to my parents,

Xiaodong Wang and Jun Tian Wang,

for their selfless love.

iii

ACKNOWLEDGEMENTS

First of all, I owe my deepest gratitude to my advisor Vijay Vazirani who gave me the

invaluable guidance throughout my PhD study. Vijay is a very good advisor to me

in many aspects: he introduced me into the palace of theoretical computer science,

gave me freedom in choosing research problems and provided me good career advice.

I enjoy all the meetings and conversations we had. At last, I will always remember

the warm encouragement from Vijay when my paper was rejected from STOC’11.

Secondly, I am indebted to Gagan Goel from whom I learned a lot during the

years when we worked together. As a senior student, he showed me how to find my

own research problems and helped me improve my writing. I am also grateful to

Changyuan Yu who introduced me to the area of mechanism design and taught me

how to give a talk.

In addition, I would like to thank my other co-authors: Nina Balcan, Deeparnab

Chakrabarty, Xue Chen, Florin Constantin, Zhiyi Huang, Chinmay Karande, Pinyan

Lu, Pushkar Tripathi and Yuan Zhou. I won’t forget those days when we shared

ideas together. Special thanks to my thesis reader Nina Balcan who supported me

for summer 2011 when I was writing this thesis and special thanks to Pinyan Lu who

hosted me as an intern at Microsoft Research in the summer of 2009.

Thank my parents Xiaodong Wang and Jun-Tian Wang who are always there

when I need them. Also, very importantly, I owe a great gratitude to my girlfriend

Peng Tang for her companion and support all the time. Thank all my friends in

Atlanta who made my PhD life cheerful.

At last, I would like to thank my thesis committee Nina Balcan, William Cook,

Prasad Tetali, Robin Thomas and Vijay Vazirani for their patient and time.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . x

I INTRODUCTION . 1

1.1 Contribution . 2

1.2 Organization and Credits . 3

II SUBMODULAR COMBINATORIAL OPTIMIZATION: ORACLE
MODEL . 6

2.1 Introduction . 6

2.1.1 Our Results . 8

2.1.2 Related Work . 9

2.2 Preliminaries: Information Theoretic Lower Bounds 10

2.3 Combinatorial Reverse Auction . 11

2.3.1 Proof of hardness . 11

2.3.2 A min(m, log n) approximation algorithm for combinatorial re-
verse auction . 15

2.4 Vertex Cover . 16

2.4.1 Single agent case . 17

2.4.2 Multi-agent Case . 20

2.5 Shortest Path . 22

2.5.1 Single agent case . 22

2.5.2 Multi-agent case . 27

2.6 Perfect Matching . 29

2.7 Spanning Tree . 31

v

2.8 Summary . 33

III SUBMODULAR COMBINATORIAL OPTIMIZATION: DISCOUNTED
PRICE MODEL . 34

3.1 Introduction . 34

3.1.1 Discounted Price Model . 35

3.1.2 Our Results, Organization and Related Work 35

3.2 Hardness of Approximation . 36

3.2.1 Basic Reduction . 37

3.2.2 Amplification: Hardness for Discounted s− t Path 38

3.2.3 Reduction: Hardness for Discounted Perfect Matching 41

3.3 Algorithms for Discounted Combinatorial Optimization 42

3.3.1 Discounted Edge Cover . 42

3.3.2 Discounted Spanning Tree 45

3.3.3 Discounted s− t Path and Perfect Matching 48

3.4 Summary . 49

IV BLACK-BOX REDUCTIONS IN MECHANISM DESIGN . . . 50

4.1 Introduction . 50

4.2 Preliminaries . 53

4.3 Warm Up: A simple Black-Box Reduction 55

4.4 Main Results: A Factor-preserving Reduction 58

4.4.1 Construction of the range . 59

4.4.2 Analysis . 60

4.5 Summary . 64

V OPTIMAL AUCTION DESIGN . 65

5.1 Introduction . 65

5.2 Preliminary . 68

5.3 The Approximation Ratio . 70

5.4 Tightness of Analysis . 77

vi

5.5 Discussion . 81

5.6 Summary . 82

VI CONCLUSION . 84

VII BIBLIOGRAPHIC NOTE . 85

REFERENCES . 86

vii

LIST OF TABLES

1 Results of Submodular Combinatorial Optimization 9

viii

LIST OF FIGURES

1 Shortening the path in dense regions 26

2 Discount function for agent corresponding to set S 37

3 Gadgets . 41

4 Circuits not involving edges in S should have zero costs 42

ix

SUMMARY

This thesis makes a number of contributions to the theory of approximation

algorithm design for multi-agent systems. In particular, we focus on two research

directions. The first direction is to generalize the classical framework of combinatorial

optimization to the submodular setting, where we assume that each agent has a

submodular cost function. We show hardness results from both the information-

theoretic and computational aspects for several fundamental optimization problems

in the submodular setting, and provide matching approximation algorithms for most

of them. The second direction is to introduce game-theoretic issues to approximation

algorithm design. Towards this direction, we study the application of approximation

algorithms in the theory of truthful mechanism design. We study both the standard

objectives of revenue and social welfare, by designing efficient algorithms that satisfy

the requirement of truthfulness and guarantee approximate optimality.

x

CHAPTER I

INTRODUCTION

Most natural optimization problems, including those that arise in important appli-

cations, are computationally hard, and understanding the approximabilities of these

problems becomes a compelling subject in both mathematics and theoretical com-

puter science. Over the last two decades, the study of approximation algorithms has

blossomed into a rich field ([51]).

Recently, rapidly developing technology such as the Internet has provided a large

scale computing platform. As a consequence, a feature that arises in many computa-

tional problems is the presence of multiple agents that can interact with each other.

This has engendered a rich set of economic and computational challenges in which

approximation serves as a guiding principle, resulting in two new directions in the

area of approximation algorithm design.

The first direction is a rectification of the classical framework of combinatorial

optimization to fit in the multi-agent setting. Usually in a multi-agent system, each

agent has a distinct valuation function representing her own interest. As a result, this

brings an additional task of allocating the object among agents into the optimization

algorithm design. At the same time, linear functions do not always model the complex

dependencies of the agents’ valuations. For example, one might give a discount to

her cost function in order to compete with the other agents. These features of multi-

agent system introduce new issues into combinatorial optimization and resolving them

requires new computational models and algorithmic techniques.

The second direction is the introduction of game-theoretic considerations in ap-

proximation algorithm design. In the traditional model, an algorithm is not supposed

1

to question the origin of the input but is supposed to perform the optimization on

the given input. However, in the new model of computation, we assume that different

parts of the input originate from different self-interested agents, each of which has her

own optimizations to perform. As a consequence, the agent may misreport the true

value of her input to manipulate the algorithm. This usually leads to a loss in the

performance. Therefore, a desired property of an algorithm is to motivate the agents

to report their true inputs, so that the algorithm gives a globally optimized output.

1.1 Contribution

In this thesis, we contribute to both directions mentioned above.

Towards the first direction, we propose and study the model of Submodular Com-

binatorial Optimization. In our model, we are given a set of elements and a collection

of combinatorial objects defined over subsets of elements (for instance, spanning trees

defined over subsets of edges in a graph). We are also given a set of agents, each of

which specifies a submodular cost function. Our goal is to find a combinatorial object

and an allocation of its elements to the agents, such that the total cost is minimized.

We will study various fundamental optimization problems in our model including

reverse auction, vertex cover, spanning trees, perfect matching and shortest path.

From a practical viewpoint, each of these problems is meaningful in its own right.

For example, shortest path and spanning trees are used in network design problems,

and it is natural to assume that different agents could have different submodular cost

functions depending on the set of edges they can construct cheaply. From a theoretical

perspective, one would like to extend the tools and techniques developed in classical

approximation algorithm design to as general a setting as possible. Submodular

function is a natural generalization where one would expect to be able to extend the

techniques.

2

In the second direction, we will explore the application of approximation algo-

rithms in truthful mechanism design. A typical goal in mechanism design is to opti-

mize the social welfare. It is well known that the VCG mechanism ([10, 22, 52]) which

maximizes the social welfare is truthful. However, it suffers from many weaknesses

that are frequently decisive ([2]). A major concern is that VCG is not computationally

efficient in general and this is exactly the place where approximation algorithms come

in. Unfortunately, the simple combination of approximation and VCG is not guaran-

teed to be truthful. This raises the important open question (see [39]) of designing

approximation algorithms that preserve truthfulness. In this thesis, we will resolve

the question completely for the broad class of symmetric single-parameter problems.

Another standard objective in mechanism design is revenue optimization. Myer-

son initiated this study in his seminal paper [38] by characterizing revenue-optimal

mechanisms for the single-item auction with independently distributed agents. In

the case of correlated agents, the optimal auction is still not well understood. An

economic approach for solving the problem is to generalize Myerson’s characteriza-

tion. Unfortunately, most results obtained via this approach are for restricted special

cases. In this thesis, we will study the problem of single-item auction with correlated

agents from a computer science aspect. In other words, instead of providing a char-

acterization of the optimal auction, we will design efficient truthful mechanisms that

guarantee approximately optimal revenue.

1.2 Organization and Credits

To present our results, we organize the thesis as follows:

Results in submodular combinatorial optimization will be presented in chapters 2

and 3.

3

∙ Chapter 2. In this chapter, we will study the submodular combinatorial opti-

mization problems in the oracle model, in which we assume that every submod-

ular function is given by a value oracle. We will study five fundamental com-

binatorial optimization problems in this setting: reverse auction, vertex cover,

spanning tree, shortest path and perfect matching. We start with the single-

agent setting and generalize the results to the multi-agent case. We provide

approximation algorithms and matching information-theoretic lower bounds for

these problems.

∙ Chapter 3. As a follow up work to chapter 2, we will study a class of succinctly

representable submodular functions called discounted price functions. This class

function has its motivations from both theory and practice. We will design

approximation algorithms for the five problems studied in chapter 2 and obtain

computational hardness results.

Next, we will study the application of approximation algorithms in mechanism

design in chapters 4 and 5.

∙ Chapter 4. A single-parameter mechanism design problem is symmetric, if

each agent’s valuation is represented by a single value and the alternative space

is closed under permutation. In this chapter, we consider the class of symmetric

single-parameter problems and derive a black-box that converts any approxima-

tion algorithm to a truthful mechanism with essentially the same approximation

factor. A central question in algorithmic mechanism design is whether truth-

fulness introduces additional burden in approximation algorithm design, and

our result implies that for the class of symmetric single-parameter problems,

mechanism design is as easy as algorithm design.

∙ Chapter 5. We consider the revenue maximization aspect of mechanism design

in this chapter. In particular, we will study the k-lookahead mechanism, which is

4

class of truthful mechanisms for the single-item auction with correlated agents.

Briefly speaking, it selects the k highest bidders and write a linear program that

captures the optimal auction among these k-bidders to output the allocation.

One can show that as long as k is a constant, the linear program has polynomial

size, hence the mechanism is efficient. By a delicate analysis, we show that the

approximation ratio of k-lookahead mechanism is at least e1−1/k

1+e1−1/k . Furthermore,

we prove that our analysis is tight for 2-lookahead.

5

CHAPTER II

SUBMODULAR COMBINATORIAL OPTIMIZATION:

ORACLE MODEL

2.1 Introduction

A multitude of fundamental computational problems with real-world applications can

be cast in the following framework: We are given a set X of elements, a collection

C of subsets of X (i.e. C ⊆ 2X) and a cost function f over the subsets of X. The

collection C is typically specified via a combinatorial structure like a matroid or a

graph property (for instance, the set of all spanning trees in a graph). The objective

is to select a set S ∈ C that minimizes f(S).

A major focus in theoretical computer science has been on linear cost functions.

The study of combinatorial problems with linear cost functions has led to great de-

velopments in the theory of exact and approximation algorithms. However, linear

cost functions do not always model the complex dependencies of the costs in a real-

world scenario. Often, they only serve as an approximation to the original functions.

As a result, even though we might have a good algorithm for solving some linear

optimization problem, the output solution can still be suboptimal.

Another feature that arises in practice is the presence of multiple agents, where

each agent has her own cost function. Thus, in the optimal solution, each agent might

build only a part of the required combinatorial structure. For example, the Internet

is a complex multi-agent system where each service provider owns only a part of the

network. For linear cost functions, it is easy to see that having multiple agents doesn’t

change the complexity of the original problem. However, this is not the case for more

general cost functions.

6

Motivated by these considerations, we define the following class of submodular

combinatorial optimization problems - We are given a set of elements X and a collec-

tion C ⊆ 2X . We are also given m agents, where each agent i specifies a normalized

monotone submodular cost function fi : 2X → R+. The goal is to find a set S ∈ C

and a partition S1, ..., Sm of S such that
∑

i fi(Si) is minimized.

Submodular functions form a rich class and capture the natural properties of

economies of scale and the law of diminishing returns . A function f : 2X → R+ is said

to be submodular iff for any two sets S and T ⊆ X, f(S)+f(T) ≥ f(S∪T)+f(S∩T).

Function f is said to be monotone if f(S) ≤ f(T) for any S ⊆ T , and normalized if

f(∅) = 0. Note that linear functions, i.e. functions of the form f(S) =
∑

i∈S ai, are a

special and classically studied subcase of submodular functions, Since a submodular

function is defined over an exponentially large domain, we will work with the value

oracle model in which an oracle will return the value of f(S), when queried with the

set S ⊆ X.

Notice that by fixing the collection C to any particular combinatorial structure,

one can define a subclass of the problems of interest. In this chapter, we study the

following fundamental problems in our setting :

∙ Combinatorial Reverse Auction: We are given a set X of elements and

the collection C consists of only the set X, i.e., in the required solution all the

elements must be covered. This models the situation where a set of jobs needs

to be assigned to multiple workers.

∙ Submodular Vertex Cover: We are given an undirected graph G(V,E).

Element set X is the same as the set of vertices V and the collection C consists

of all the vertex covers of the graph. Recall that a set S ⊆ V is a vertex cover

if every e ∈ E is incident on a vertex in S.

∙ Submodular Shortest Path: We are given a connected undirected graph

7

G(V,E), and a pair of vertices s, t ∈ V . Element set X is the same as the set

of edges E and the collection C consists of all the paths from s to t.

∙ Submodular Minimum Perfect Matchings: We have a undirected graph

G(V,E) that contains at least one perfect matching. Element set X is the set

of all edges, and the collection C is defined as the set of all perfect matchings

of G.

∙ Submodular Minimum Spanning Tree: We are given a connected undi-

rected graph G(V,E). Element set X is the set of all edges, and the collection

C is the set of spanning trees of G.

For each of the above problems, we study both the single agent and the multi-agent

setting.

2.1.1 Our Results

We give an approximation algorithm and a matching information theoretic lower

bound for each of the problems that we mentioned earlier1. In case of shortest path,

minimum spanning tree and minimum perfect matching problems, the bounds es-

tablished are polynomial and tight up to poly-logarithmic factors. Ignoring these

logarithmic factors, we present these results in the table 1. For the reverse auction

problem, m is the number of agents and n is the number of items, whereas for all

other problems, n is the number of vertices in the instance graph.

Note that the minimum perfect matching and minimum spanning tree problems,

which are polynomial time solvable with linear cost functions, have a large hardness

factor with submodular cost functions. We would like to draw attention to our lower

bound result for the vertex cover problem in the single agent case. In the classical

vertex cover problem, the best known approximation factor is 2, and the best known

1With the exception of the multi-agent submodular shortest path problem. We comment on this
aberration in Section 2.5.2.

8

Table 1: Results of Submodular Combinatorial Optimization

Single-agent Multi-agent
Lower bound Upper bound Lower bound Upper bound

Reverse Auction 1 1 Ω(log n) min(m, log n) [25]
Vertex Cover 2− � 2 Ω(log n) 2 log n

Shortest Path Ω(n2/3) O(n2/3) Ω(n2/3) O(n)
Perfect Matching Ω(n) n Ω(n) n

Spanning Tree Ω(n) n Ω(n) n

hardness of approximation is 1.3606 (assuming P ∕= NP) [12]. Khot et al. [34] showed

that achieving a factor of 2− � ‘might be’ hard by presenting a hardness result based

on UGC conjecture [32]. Our results for the single agent submodular vertex cover

problem implies that, if the cost function over the set of vertices is submodular, then

the optimal approximation factor is indeed 2.

Our hardness results use information theoretic arguments and follow the frame-

work explained in Section 2.2, with some modifications specific to each problem. Our

algorithms are based on LP rounding or greedy methods.

We would like to point out that our results for perfect matchings and spanning

trees extend to the class of subadditive cost functions, and to related combinatorial

structures such as Steiner trees.

2.1.2 Related Work

Submodular functions have been of great interest in optimization in the past. The

most fundamental optimization problem concerning submodular functions is, perhaps,

the non-monotone submodular function minimization problem. A sequence of papers

in this direction [17, 27, 28, 30, 40, 46] has resulted in fast strongly polynomial time

combinatorial algorithms. Another related work is that of non-monotone submodular

function maximization [15].

9

Another body of work in optimization over submodular functions deals with wel-

fare maximization [9, 16, 33, 53]. In this context, the reverse auction problem that

we study, can be thought of as submodular welfare minimization. Calinescu et al.

[9] studied submodular function maximization subject to matroid constraints. They

showed that their problem contains as subcases, many other allocation problems,

thus giving a unified framework for studying such problems. Matching information

theoretic lower bounds were established in [37].

Very recently, Svitkina and Fleischer [49] studied submodular objective function

for problems like sparsest cut, load balancing, and knapsack. They gave O

(√
n

logn

)
upper and lower bounds for all these problems, showing that all these problems be-

come much harder under submodular costs. For the submodular reverse auctions,

where a set of n goods has to be allocated to m agents (i.e. collection set C = {X})

with submodular cost functions to minimize the overall cost, a simple greedy algo-

rithm is known to have a factor log n [25]. Goemans et al. [21] gave an algorithm

for constructing explicit approximate submodular functions by querying polynomial

number of times to the original submodular function. Some other related work in

optimization that uses submodular functions include [25, 47, 48, 50, 54].

Recall that the problems we study in this paper are very well studied in presence of

linear cost functions. Shortest path, perfect matching and spanning tree can be solved

exactly in polynomial time. Algorithm for vertex cover with factor 2 for weighted

graphs was first given by [5]. The best known hardness of approximation for Vertex

Cover is 1.3606 (assuming P ∕= NP) [12]. Using UGC conjecture [32], Khot and

Regev [34] showed that achieving a factor of 2− � is hard.

2.2 Preliminaries: Information Theoretic Lower Bounds

A problem is said to have information theoretic lower bound of � if any randomized

algorithm that approximates the optimum to a factor � with high probability requires

10

super-polynomial number of queries to the value oracle.

By Yao’s principle, it suffices to establish the lower bounds for deterministic al-

gorithms acting on an input which is picked randomly from some fixed distribution.

To show these approximation gaps, we follow the general framework which was also

used in [15, 21, 49]. We will outline this framework in the single agent setting.

The idea is to first choose a problem instance which has a suitably large collection

set C ⊆ 2X of interest. For example, for the spanning tree problem, we choose a

graph that has exponentially many spanning trees. Then we design two submodular

cost functions f and g. Typically, g is deterministically picked, whereas f is chosen

from a distribution. The choice of f and g relies on the following two properties: a)

The optimum values of f and g over C must differ by a large factor, and b) f and g

must be ‘hard to distinguish’ in the sense that, for any deterministic query Q ⊆ X,

both functions return the same value with a high probability.

By the union bound and a computation path argument [15, 49], a deterministic

algorithm making polynomially many queries cannot distinguish between f and g.

Combining this with the gap in the optima of f and g, one proves the lower bound.

2.3 Combinatorial Reverse Auction

In this problem we are given a set J , of n elements and m agents. For each agent i

we have a normalized monotone submodular cost function fi : 2J → ℝ+. We wish

to partition the elements among the agents to minimize the total cost. We prove a

Ω(log n) information theoretic hardness result and provide an algorithm that matches

this bound. We also prove the same algorithm to be m-approximate. Another log n-

approximate algorithm for this problem had previously appeared in [25].

2.3.1 Proof of hardness

As discussed in Section 2.2, the idea is to construct a deterministic instance and a

random instance of the combinatorial reverse auction so that the optimal solution of

11

these two instances differ by a factor of Ω(log n), and then show that with high prob-

ability, a deterministic algorithm which uses only polynomially many value queries

can not distinguish between these two instances.

The deterministic instance we will use is the following: There are m agents and

a set J of n = m(m + 1)2/4 elements. The elements are equally partitioned into

m blocks J1, J2, ..., Jm. We will choose m such that m = 2d − 1, for some d. Now

each number i between 1 and m can be represented as a vector ai in GF [2]d. Let

Gi =
∪

1≤k≤m, ai⋅ak=1 Jk. For each i, 1 ≤ i ≤ m, agent i is only interested in elements

in Gi. It is easy to see that Gi consists of exactly m+1
2

blocks and for each block

there are (m+ 1)/2 agents who are interested in it. Now, we define the cost function

gi : 2J −→ ℝ+ as follows:

gi(S) =

⎧⎨⎩ min{∣S∣, (m+ 1)2/4} If S ⊆ Gi

∞ Otherwise

Let us analyze the optimal cost of this instance. We say that an agent is marked

if the total size of elements assigned to him is at least (m + 1)2/4. Among all the

optimal solutions, let OPT be the one that maximizes the number of marked agents.

We claim that at least d agents are marked in OPT. Suppose not, then without loss

of generality, we may assume M = {1, 2, ..., t} to be the set of marked agents and

t < d. The system of linear equations ai ⋅ x = 0,∀1 ≤ i ≤ t has at least one solution

x∗ ∈ GF [2]d, since number of equations is less than the number of variables. Let k

be the number between 1 and m corresponding to the vector x∗. This implies that

no agent in M is interested in block Jk. Let Ak = {i1, i2, ..., iw} be the set of agents

who are assigned elements from Jk. Then Ak ∩M = ∅. Therefore, we can mark one

more agent by transferring the elements in Jk from agents i2, ..., iw to agent i1 without

changing the cost of the new solution. This is a contradiction because of the choice

of OPT. Hence, the optimal cost of this instance is at least (m+ 1)2d/4.

12

Next we will describe the randomized instance which has same the set of agents

and elements as the deterministic instance. Also, each agent is interested in the same

set of elements. However, the cost function for each agent is picked in a randomized

manner. We describe in detail below.

For each element, assign it uniformly at random to one of the agents who is inter-

ested in it. Let Si be the set of elements which agent i gets. Clearly (S1, S2, ..., Sm)

forms a partition of the element set J . We define the cost function fi : 2J −→ ℝ+,

for agent i as follows: if S ⊆ Gi,

fi(S) = min
(
∣S ∩ Si∣+ min {∣S ∩ Si∣, (1 + �)(m+ 1)/2 } , (m+ 1)2/4

)
,

and otherwise fi(S) =∞. Here � > 0 is a fixed constant.

Now we show that with high probability, a deterministic algorithm using only

polynomially many value queries can not distinguish between f = (f1, f2, ..., fm) and

g = (g1, g2, ..., gm). We prove the following lemma.

Lemma 2.3.1 For any subset S of elements and any i, 1 ≤ i ≤ m, Pr[fi(S) ∕=

gi(S)] = e−Ω(m).

Proof: Suppose S is a subset of elements and 1 ≤ i ≤ m. By our construction,

fi(S) ≤ gi(S). Therefore Pr[fi(S) ∕= gi(S)] = Pr[fi(S) < gi(S)].

First of all, we claim that the above probability is maximized when S ⊆ Gi and

∣S∣ = (m + 1)2/4. For this, if S ∕⊆ Gi, then fi(S) = gi(S) = ∞ hence Pr[fi(S) <

gi(S)] = 0. Now suppose S ⊆ Gi and ∣S∣ ≥ (m + 1)2/4. Then gi(S) = (m + 1)2/4.

Therefore

Pr [fi(S) < gi(S)] = Pr
[
∣S ∩ Si∣+ min{∣S ∩ Si∣, (1 + �)(m+ 1)/2} < (m+ 1)2/4

]
This probability can only increase when we remove elements from S. For the case

13

when ∣S∣ ≤ (m+ 1)2/4, we get:

Pr [fi(S) < gi(S)] = Pr
[
∣S ∩ Si∣+ min{∣S ∩ Si∣, (1 + �)(m+ 1)/2 } < ∣S∣

]
= Pr [min{∣S ∩ Si∣, (1 + �)(m+ 1)/2 } < ∣S ∩ Si∣]

= Pr [∣S ∩ Si∣ > (1 + �)(m+ 1)/2]

Thus, this probability can only increase when more elements are added to S. Hence

under the condition S ⊆ Gi, ∣S∣ ≤ (m+1)2/4, the probability is also maximized when

∣S∣ = (m+ 1)2/4.

Now we assume S ⊆ Gi and ∣S∣ = (m + 1)2/4. In this case, Pr[fi(S) < gi(S)] =

Pr[∣S ∩Si∣ > (1 + �)(m+ 1)/2], which by a standard Chernoff bound arguments, can

be shown to be bounded by e−Ω(m). □

If we define f(S) = (f1(S), ..., fm(S)) and g(S) = (g1(S), ..., gm(S)), then by

a simple union bound, as a corollary of the lemma, we have Pr[f(S) ∕= g(S)] =

poly(m)e−Ω(m). Now suppose A is a deterministic algorithm which makes polynomi-

ally many queries to the value oracle. Then by the union bound, with probability

at most poly(m) ⋅ e−Ω(m), A can distinguish between f and g. Notice that for the

cost function f = (f1, ⋅ ⋅ ⋅ , fm), the optimal solution is at most (1 + �)m(m + 1)/2

achieved by assigning Si to agent i. However, as we showed, the optimal solution for

the cost function g = (g1, g2, ⋅ ⋅ ⋅ , gm) has cost at least d(m + 1)2/4, thus with high

probability, A can not approximate a combinatorial reverse auction instance within

factor (m+1)2d/4
(1+�)m(m+1)/2

≃ d = c log n for some c < 1.

At last, by Yao’s principle, we have the following:

Theorem 2.3.2 A randomized approximation algorithm for the Combinatorial Re-

verse Auction problem within factor c log n for some c < 1 needs to make exponentially

many value queries.

14

2.3.2 A min(m, log n) approximation algorithm for combinatorial reverse
auction

A log n-approximate algorithm for this problem appeared in [25]. In what follows we

provide a min(m, log n) approximation algorithm. Consider the following LP relax-

ation (LP1) and its dual (LP2).

min
∑
S⊆V

∑
i

xi,Sfi(S) (LP1)∑
S:u∈S

∑
i

xi,S ≥ 1 ∀u ∈ X

xi,S ≥ 0 ∀S ⊆ V, ∀i

max
∑
u∈X

yu (LP2)∑
u∈S

yu ≤ fi(S) ∀S ⊆ V, ∀i

yu ≥ 0 ∀u ∈ X

In LP1, xi,S is used to represent the fraction of set S that is allocated to agent

i. Since fi(S) −
∑

u∈S yu is a submodular function, we can construct a separation

oracle for the dual program using the submodular minimization algorithm as a sub-

routine. Thus we can solve LP1 and LP2 optimally. The following lemma describes

the structure of an optimal solution to LP1.

Lemma 2.3.3 There exists an optimal fractional solution to LP1 such that for every

agent i the set Ti = { S : xi,S > 0 } forms a nested family.

Proof: Let x be any feasible solution to LP1. If Ti is not nested, then there exist

A,B ∈ Ti such that neither A nor B is contained in the other. We may assume

xi,A ≥ xi,B. We will construct another feasible solution x′ to LP1 as follows:

∙ x′i,A∪B = xi,B

∙ x′i,B = 0

∙ x′i,S = xi,S for all other S ∈ X.

∙ x′i,A = xi,A − xi,B

∙ x′i,A∩B = xi,B if A ∩B ∕= ∅

∙ x′j,S = xj,S ∀j ∕= i and ∀S ∈ X

By submodularity, one can verify that the cost of the solution x′ is at most the cost

of x. If the set T ′i corresponding to x′ is nested, we are done. Otherwise, we repeat

the procedure for x′. The termination of the above procedure can be guaranteed by

15

observing that the potential function
∑
S∈Ti

∣S∣2 strictly increases and is polynomially

bounded. □

Let x be an optimal solution of LP1 which satisfies the conditions in lemma 2.3.3

and Ti be the corresponding nested families of sets. Let W be the cost of the optimal

solution, and also let T =
∪
i Ti. Let Y denote the set of uncovered elements in X. In

each iteration pick the set (i, S) ∈ T minimizing fi(S)/∣S ∩ Y ∣. Add S to the cover

and assign it to agent i. Remove all the newly covered elements from Y . Repeat

until all elements are covered. Since each Ti is a nested family, an agent can drop all

but the largest set assigned to her. Let (i, S) be the set covering an element u in the

integral cover, and let Y be the set of uncovered elements at that point. Then we

define �(u) = fi(S)/∣S∩Y ∣ to be the cost ‘borne’ by u. Note that
∑

u �(u) is exactly

the cost of the integral cover.

Let u ∈ X be the j’th element to be covered by this algorithm and let (i, S) be

the set chosen to cover it. Suppose u was picked during the algorithm. Then since x

is a fractional cover of Y , fi(S)/∣S ∩ Y ∣ ≤ W/∣Y ∣.

�(u) ≤ fi(S)

∣S ∩ Y ∣
≤ W

∣Y ∣
=

W

(∣X∣ − j + 1)

On the other hand, if u was not picked by the algorithm, then �(u) ≤ W/(∣X∣ −

j′ + 1) ≤ W/(∣X∣ − j + 1) for some j′ < j.

Summing over all u, we conclude that the integral cover has cost at most W log n.

To prove that this algorithm is also m-approximate, observe that each set selected

has cost at most W . Moreover, each agent is assigned at most one set in the final

solution. This proves the claim.

2.4 Vertex Cover

In this section, we consider the submodular vertex cover problem. We first prove an

information theoretic lower bound of 2− � (for any fixed �) for the single agent case

16

and provide an algorithm with approximation ratio of 2. We then present a 2 log n

approximation algorithm for the multi-agent case and an information theoretic lower

bound of Ω(log n).

2.4.1 Single agent case

We are given an undirected graph G(V,E) and a normalized monotone submodular

function f : 2V −→ ℝ. We wish to find a vertex cover U ⊆ V of graph G such that

f(U) is minimized.

Theorem 2.4.1 For every fixed � > 0, any randomized algorithm for the submodular

vertex cover problem with an approximation ratio of 2 − � needs exponentially many

queries to the value oracle.

Proof: Consider a bipartite graph G(A ∪B,E) such that ∣A∣ = ∣B∣ = n. The edge

set consists of n edges which forms a matching between A and B. Let R be a random

minimum cardinality vertex cover of this graph, which can be picked by choosing one

endpoint of every edge uniformly at random.

Define the following two submodular cost functions.

fR(S) = min

{
∣S ∩R∣ + min

{
∣S ∩R∣, (1 + �)n

2

}
, n

}
g(S) = min { ∣S∣, n }

Here � is chosen such that 2/(1 + �) = 2 − �. Notice that the optimum value

of the vertex cover for the function fR is (1+�)n
2

, and for g it is n. Thus if we can

show that any randomized algorithm, cannot distinguish between fR and g with high

probability, it will imply an inapproximability ratio of 2/(1 + �) or 2 − � for the

submodular vertex cover problem.

As discussed earlier, it suffices to show that for a deterministic queryQ, Pr[fR(Q) ∕=

g(Q)] is exponentially small, where the probability space is defined over the ran-

dom choice of set R. Since fR(S) ≤ g(S) for all S ⊆ V , fR(Q) ∕= g(Q) implies

17

fR(Q) < g(Q).

Let Q∗ be the optimal query for which Pr[fR(Q) < g(Q)] is maximized. We will

show that ∣Q∗∣ = n. First, suppose that ∣Q∣ ≥ n, then

Pr[fR(Q) < g(Q)] = Pr[fR(Q) < n]

= Pr
[
∣Q ∩R∣ + min { ∣Q ∩R∣, (1 + �)n/2 } < n

]
which increases as the size of Q is reduced. Thus the size of the optimal query in this

case is n.

Now suppose ∣Q∣ ≤ n. In this case,

Pr[fR(Q) < g(Q)] = Pr[fR(Q) < ∣Q∣]

= Pr
[
∣Q ∩R∣ + min { ∣Q ∩R∣, (1 + �)n/2 } < ∣Q∣

]
= Pr [min { ∣Q ∩R∣, (1 + �)n/2 } < ∣Q ∩R∣]

= Pr[∣Q ∩R∣ > (1 + �)n/2]

which increases as ∣Q∣ is raised. Therefore, the optimal query size in this case is also n.

Hence ∣Q∗∣ = n. Let k be the number of edges for which both the end points are

contained in Q∗ and Q1 be the set of these endpoints (∣Q1∣ = 2k). Let Q2 = Q∗−Q1.

We have:

Pr[fR(Q∗) < g(Q∗)] = Pr
[
∣Q∗ ∩R∣ > (1 + �)

n

2

]
= Pr

[
∣Q2 ∩R∣ > (1 + �)

n

2
− k

]
= Pr

[
∣Q2 ∩R∣ > (1 + �)

∣Q2∣
2

+ �k

]
(1)

If �k ≥ (1− �) ∣Q2∣
2

, then the expression in equation (1) reduces to Pr[∣Q2 ∩ R∣ >

∣Q2∣] = 0. On the other hand if �k < (1− �) ∣Q2∣
2

, then

∣Q2∣ = n− 2k > n− 1− �
�
∣Q2∣

18

which implies ∣Q2∣ > �n. Every vertex in Q2 belongs to R with probability 1
2

with

independence, and E[∣Q2 ∩ R∣] = ∣Q2∣/2 = �n/2. Therefore, applying Chernoff

bounds:

Pr[fR(Q∗) < g(Q∗)] = Pr

[
∣Q2 ∩R∣ > (1 + �)

∣Q2∣
2

+ �k

]
≤ Pr

[
∣Q2 ∩R∣ > (1 + �)

∣Q2∣
2

]
≤ e−

�3n
2

Hence, the probability that an arbitrary query Q can distinguish between f and

g is exponentially small. □

Theorem 2.4.2 There exists an algorithm which finds a 2-approximate solution to

the single agent vertex cover problem with submodular costs.

Proof: We formulate the problem as a configurational LP and round the fractional

solution. Let variable xS be an indicator variable for the set S of vertices being the

vertex cover. Then the following LP is a lower bound on the value of the optimal

integral solution.

min
∑
S⊆V

xSf(S) (LP3)∑
S:u∈S

xS +
∑
S:v∈S

xS ≥ 1 ∀(u, v) ∈ E

xS ≥ 0 ∀S ⊆ V

max
∑
e∈E

ye (LP4)∑
v∈S

∑
e∈�(v)

ye ≤ f(S) ∀S ⊆ V

ye ≥ 0 ∀e ∈ E

It is not difficult to see that the function
∑

v∈S
∑

e∈�(v) ye is a modular function.

Thus f(S)−
∑

v∈S
∑

e∈�(v) ye is a submodular function, and we can use the submodular

minimization algorithm as a subroutine to construct a separation oracle for the dual.

This allows us to find an optimal fractional solution to LP3 with value at most OPT.

Let x∗ be this solution. Output Q =
{
u ∈ V :

∑
S:u∈S x

∗
S ≥ 1/2

}
as the vertex

19

cover. Clearly, for any (u, v) ∈ E, either
∑

S:u∈S x
∗
S ≥ 1/2 or

∑
S:v∈S x

∗
S ≥ 1/2 must

hold, thus Q is a valid vertex cover of G. Now, for monotone submodular functions

it is known that if a fractional solution yS (∀S ⊆ V) covers a set Q, in the sense

that
∑

S:i∈S yS ≥ 1 for all i ∈ Q, then f(Q) ≤
∑

S⊆V yS ∗ f(S). Thus, since 2x∗ is a

fractional cover of Q, we get that f(Q) ≤ 2
∑

S⊆V x
∗
S ∗ f(S) = 2 ⋅OPT. □

2.4.2 Multi-agent Case

We are given an undirected graph G(V,E) and a normalized monotone submodular

function fi : 2V −→ ℝ for each agent i. We wish to find a vertex cover U ⊆ V , and a

partition U1, U2, ⋅ ⋅ ⋅ , Uk of U such that
∑

i fi(Ui) is minimized.

A lower bound of Ω(logn) for the multi-agent case follows easily from the lower

bound of the reverse auction setting. This is because even if we know the set of

vertices which form the vertex cover, it is hard (in information-theoretic sense) to

find optimal allocation of these vertices to the agents - meaning which agent builds

which set of vertices of the given vertex cover. Thus we get the following theorem:

Theorem 2.4.3 Any randomized algorithm for the multi-agent submodular vertex

cover problem with an approximation ratio c log n for some constant c < 1 needs

exponentially many queries to the value oracle.

2 log n-approximate algorithm: We begin by finding an optimal fraction so-

lution x using the LP relaxation LP5, which gives a lower bound on the optimal

integral solution. The given LP can be solved by constructing a separation ora-

cle of the dual program as shown earlier in the single agent case. Consider the set

Q =

{
u ∈ V :

∑
S:u∈S

∑
i

xi,S ≥ 1/2

}
which forms a valid vertex cover. We will now

round 2x to find an allocation of vertices in Q to the various agents. Let W denote

the total cost of the solution 2x.

20

min
∑
S⊆V

∑
i

xi,Sfi(S) (LP5)∑
S:u∈S

∑
i

xi,S +
∑
S:v∈S

∑
i

xi,S ≥ 1 ∀(u, v) ∈ E

xi,S ≥ 0 ∀S ⊆ V, ∀i

The algorithm proceeds in rounds; in each round we cover some elements of the

set Q. Let at the beginning of round t of the algorithm, Zt be the set of uncovered

elements in Q. For any fractional cover x of set Z and u ∈ Z, define �x,Z(u) =∑
S:u∈S

∑
i

xi,Sfi(S)

∣S ∩ Z∣
. Note that

∑
u∈Z �x,Z(u) =

∑
i,S:S∩Z ∕=� xi,sfi(S) ≤

∑
i,S xi,sfi(S).

Now let ut be an element in Zt that minimizes �2x,Zt(u). Among the sets containing

ut, choose a set (i, S) randomly with probability proportional to 2 ∗ xi,S. Remove all

the newly covered elements from Zt and call the new subset Zt+1 and iterate until

all the elements are covered. Set yi,S = 1 if (i, S) was picked in any round of the

algorithm.

Analysis: Let u1, u2, ... be the order in which the vertices of Q get covered. We

claim that E[�y(uj)] ≤ W/(∣Q∣− j+1). Suppose uj was picked during the algorithm.

Then, E[�y(uj)] ≤ �2x(uj). Since 2x covers the remaining ∣Q∣ − j + 1 elements in

Q, �2x(uj) ≤ W/(∣Q∣ − j + 1). On the other hand, if uj was not picked during the

algorithm, then

E[�y(uj)] = �2x(u
′
j) ≤

W

(∣Q∣ − j′ + 1)
≤ W

(∣Q∣ − j + 1)

for some j′ < j. Summing over j, we have

∑
i,S

yi,Sfi(S) =
∑
u∈Q

�y(u) ≤
∑
u∈Q

�2x(u) ≤ W log n ≤ 2OPT ⋅ log n

This algorithm can be derandomized using standard techniques.

21

2.5 Shortest Path

In this problem we are given an undirected graphG(V,E) and a monotone submodular

cost function fi : 2E :−→ ℝ for each agent i. The goal is to find a path P between two

given vertices, and partition of P into P1, P2, ⋅ ⋅ ⋅ , Pk such that
∑

i fi(Pi) is minimized.

We first consider the single agent case and provide an information-theoretic lower

bound of Ω(n2/3) for all fixed � > 0, ignoring poly-logarithmic factors. We also

present an O(n2/3)-approximation algorithm for this problem. Lastly, we comment

on the gap that exists between the upper and lower bounds for the multi-agent case,

in context of our results for the single agent case.

2.5.1 Single agent case

As in previous sections, we proceed by designing two submodular functions that are

hard to distinguish in polynomially many queries but have different optimal values.

In the general framework outlined in section 2.2, this is accomplished by ‘hiding’ a

random element of lower cost from the target collection C in one of the functions. In

this case, C is the set of all s− t paths. However an identical analysis does not work

in this case. This is because for a pair of adjacent edges, the events that these edges

belong to the random shortest s− t path are are not independent precluding the use

of Chernoff bounds which makes the analysis a lot more involved. In this section we

use a simple pigeon hole principle argument to solve this problem.

Theorem 2.5.1 Any randomized approximation algorithm for the submodular short-

est path problem with factor O
(
n2/3

logn

)
needs super-polynomially many queries.

Proof: Consider the graph G which is a level graph having n2/3 +2 levels of vertices.

First level contains only vertex s and the last level contains only t. Each other level

has n1/3 vertices and there exists a complete bipartite graph between successive levels.

Let R be a randomly chosen s− t path of length n2/3 + 1.

22

Define the following two submodular cost functions f, g : 2E −→ ℝ+:

f(Q) = min
{
∣Q ∩R∣ + min { ∣Q ∩R∣, log n } , n2/3 + 1

}
g(Q) = min

{
∣Q∣, n2/3 + 1

}
Clearly, the ratio of optima in g and f is Ω

(
n2/3

logn

)
.

To prove the lower bound it suffices to prove that Pr[f(Q) ∕= g(Q)] is super-

polynomially small for an arbitrary query Q. This happens if and only if f(Q) < g(Q).

Making arguments analogous to the proof of theorem 2.4.1, Pr[f(Q) < g(Q)] is

maximized when ∣Q∣ = 1 + n2/3. Therefore,

Pr[f(Q) < g(Q)] = Pr[∣Q ∩R∣ > log2 n]

Let Eeven and Eodd be the set of edges which are at distance even and odd respectively

from the vertex s. Define Qeven = Q ∩ Eeven and Qodd = Q ∩ Eodd. Similarly define

Reven and Rodd. Without loss of generality, let ∣Qodd∣ ≥ ∣Qeven∣. Thus,

Pr[∣Q ∩R∣ > log2 n] = Pr[∣Qeven ∩Reven∣+ ∣Qodd ∩Rodd∣ > log n]

≤ 2 ⋅ Pr[∣Qodd ∩Rodd∣ >
log n

2
]

Note that the edges in Rodd were chosen independently at random since R was cho-

sen uniformly at random. Also E [∣Qodd ∩Rodd∣] = O(1). Thus by chernoff bounds we

conclude that is Pr [∣Q ∩R∣ > log n] ≤ O
(
e−Ω(log2 n)

)
, which is super-polynomially

small. This proves the theorem. □

Theorem 2.5.2 There exists an algorithm which finds an O(n2/3) approximate so-

lution to the single agent shortest path problem with submodular costs.

Proof: We begin with two simple approaches to get an O(n)-approximate algo-

rithm. Interestingly, we can combine the two ideas to obtain an O(n2/3)-approximate

algorithm for the problem.

23

Goemans et al [21] address the problem of finding approximate explicit repre-

sentations for submodular functions. They use an ellipsoidal approximation of the

polymatroid of the submodular function f : 2X → R+ to assign a weight we to every

element e ∈ X. The approximated cost of a set is then defined as f̂(S) =
√∑

e∈S we.

They prove that for all S,

f̂(S) ≤ f(S) ≤
√
∣X∣f̂(S)

and therefore, f̂ can be though of as an explicit approximate representation of f . To

solve our submodular shortest path problem, a possible approach would be to find

the weights we for all the edges of the graph and then find the path P minimizing

f̂(P). This can be done in polynomial time, since minimizing f̂(P) is the same as

minimizing
(
f̂(P)

)2

, which just reduces to the shortest path problem with linear

costs. This approach yields a O(
√
E) approximation algorithm. For dense graphs

this factor can be as bad as Ω(n). This method can be useful if the given graph has

few edges.

Another simple algorithm to get an O(n) approximation for this problem is to

‘guess’ the cost of the heaviest edge e in the path, use that as a lower bound on OPT.

Define cost of an edge e as f({e}). The algorithm runs in multiple phases. In each

phase choose a new edge and drop all edges that weigh more than the given edge and

return any s− t path(if it exists) in the pruned graph. We finally select the smallest

s − t paths among those returned during the phases. It is easy to see that this is

an O(l) approximate algorithm where l is the number of edges in the optimal path.

Once again this can be as bad as O(n) for some graphs. This approach can be useful

if the given graph is dense, since sufficiently dense graphs are known to have small

diameter.

The central idea of our algorithm is to decompose the graph in to sparse and dense

clusters. Then we use the first approach to account for sparse regions of the graph

and deal with the dense regions using ideas from the second approach.

24

The algorithm runs in multiple phases, where after each phase we output a path.

Final solution is the minimum cost path among these paths. Each phase is identified

by a unique edge in the edge set, thus there are ∣E∣ phases. Following are the steps,

in order, which constitutes a single phase.

Pruning Step: Let e be the edge corresponding to the current phase. Delete all

edges that weigh more than e. Let Ge denote the pruned graph. The phase terminates

prematurely if the s and the t are disconnected in Ge.

Separation Step: In this step we partition the edge set into those that are in dense

regions of the graph and those which belong to sparse regions. Successively remove

vertices from Ge whose degree in the remaining graph is at most n1/3. Also remove

the edges incident on these vertices and add them to the set Se. Continue removing

vertices until all the remaining vertices have degree more than n1/3. Let Re be the

remaining edges in Ge. Edges in Se belong to the sparse part of the graph while those

in Re constitute the dense part of the graph.

Search Step: Using the algorithm in [21], we find an explicit representation for the

function f restricted to the Se. Redefine the costs for edges in Se to be the weights

returned by the ellipsoidal approximation subroutine and set the cost of each edge in

Re to be a zero. Treating these edge costs as additive quantities, find the shortest

s− t path passing through e. Let Pe be this path.

Compression Step: The path returned by the search step might contain too many

edges, which could be bad for the algorithm. In this step, we compress the path Pe

by replacing some of its subpaths by smaller paths(in terms of number of edges). For

this we analyze the intersection of Pe with every connected component of G (V,Re).

Let H be an arbitrary connected component of G (V,Re) and let a be the first vertex

where Pe enters H and b be the final vertex that it passes through before leaving H

for the last time. Replace the sub-path of Pe between a and b with the shortest path

in H(in terms of the number of edges) connecting them(refer to the figure below). Do

25

this for every connected component of G (V,Re). Report this modified path as the

solution for this phase.

Components in G(V,Re)

Original path Path after replacing segments in G(V,Re)

Figure 1: Shortening the path in dense regions

Analysis: To prove that the above algorithm achieves an approximation ratio of

O(n2/3) we will use the following observation.

Observation 1 Since all the vertices remaining after the first step have degree greater

than n1/3, any connected component C of G (V,Re) has diameter at most ∣V (C)∣
n1/3 .

Let POPT be an optimal path for the problem under the submodular cost function

f . Let � be the heaviest edge in this path. Consider the phase corresponding to �.

During the separation step of every phase we remove at most n4/3 edges since each of

the chosen vertices have a degree less than n1/3. Thus the subroutine gives an explicit

cost function that is a O(n2/3) approximation for all subsets of S�. Let f̂(A) denote

the cost of any A ⊆ S� returned by the subroutine. Thus for all A ⊆ S�, we have:

f̂(A) ≤ f(A) ≤ n2/3f̂(A) (2)

26

Let P� be the solution returned by this phase. Define X� = POPT ∩ S�, Y� =

P� ∩ S� and Z� = P� ∩R�. It follows that,

2n2/3f(POPT) ≥ n2/3f(POPT) + n2/3f({�}) (3)

≥ n2/3f(X�) + n2/3f({�}) (4)

≥ n2/3f̂(X�) + n2/3f({�}) (5)

≥ n2/3f̂(Y�) + n2/3f({�}) (6)

≥ n2/3f̂(Y�) + f(Z�) (7)

≥ f(Y�) + f(Z�) (8)

≥ f(Y� ∪ Z�) (9)

= f(P�) (10)

Equations (3) and (4) follow from monotonicity. Equation (5) uses equation (2).

Equation (6) then follows from equation (5) since P� is the shortest path under the

function f̂ . Also, using the observation above and summing over all components of

G (V,R�) we conclude that ∣Z�∣ can not be more than n2/3. Thus equation (7) follows

from equation (6) since each edge in ∣Z�∣ costs at most f({�}) and f is submodular.

We arrive at equations (8), (9), (10) using equation (2) and the submodularity of

function f . □

2.5.2 Multi-agent case

One glance at Table 1 reveals the fact that the multi-agent submodular shortest path

problem is the only problem left ‘open’ in the sense that we do not have an algorithm

that matches the Ω(n2/3) information theoretic lower bound. We will first explain why

this gap exists, and then elaborate on some of the interesting issues it emphasizes.

Obviously, the Ω(n2/3) lower bound from Theorem 2.5.1 also applies in presence of

multiple agents. However, our algorithm from the previous section cannot be ported

to the multi-agent case. Recall the two basic approaches we outlined that yield O(n)

27

approximations to the single agent submodular shortest path problem: 1) Pruning

the graph of edges heavier than the heaviest edge in the optimal solution and 2)

Ellipsoidal approximation of the submodular function as provided in [21]. While we

can still use the former to obtain an O(n)-approximation in the multi-agent case, the

latter fails due to inherent computational hardness. Finding a path P that minimizes

the ellipsoidal approximation function f̂(P) was computationally feasible, because

minimizing f̂(P) is equivalent to minimizing
(
f̂(P)

)2

, which reduces to finding the

shortest path under linear costs. For this approach to work in the multi-agent case

however, we need to find an s − t path P , and partition it into the m agents as

P1, ..., Pm such that
∑

i f̂i(Pi) is minimized. This function is not linear in terms of

the ellipsoidal weights, and in particular is known to be NP-hard to minimize.

It is important to note however, that the lower bound established by Theorem

2.5.1 is the best possible information theoretic hardness result. Recall that such lower

bounds only limit the number of calls made to the value oracle, and no restriction

is placed on the computational complexity of the algorithm outside of the oracle

calls. Indeed, it is easy to generalize the algorithm in the previous section to the

multi-agent case, if we have the computational capacity to minimize the non-linear

objective function discussed above. Therefore, there does exist an algorithm that

makes polynomially many calls to the value oracle, performs exponentially many

other computational operations and guarantees an approximation factor of O(n2/3).

This indicates that a stronger hardness result needs to combine the computational

and information theoretic complexity of the problem into one argument. In the next

chapter, we will study such hardness results for the class of discounted price functions.

28

2.6 Perfect Matching

In this section, we consider the multi-agent submodular minimum perfect matching

problem. In this problem we are given a bipartite graph G(V,E) where ∣V ∣ = n,

containing at least one perfect matching and a normalized monotone submodular

function fi : 2E −→ R+ for each agent i. We wish to find a perfect matching M , and

a partition of M into M1,M2, ⋅ ⋅ ⋅ ,Mm such that
∑

i fi(Mi) is minimized. We first

prove an information theoretic lower bound of Ω(n) on the approximability of the

single agent case, which also implies the same bound for the multi-agent case. Then,

we give an n-approximate algorithm for the multi-agent case.

As in previous sections, we proceed by designing two submodular functions that

are hard to distinguish in polynomially many queries but have widely differing optimal

values. In the general framework outlined in section 2.2, this is accomplished by

‘hiding’ a random element of lower cost from the target collection C in one of the

functions. In this case, C is the set of all perfect matchings. Once again choosing

a random matching from C however does not serve our purpose because for a fixed

pair of edges, the events that these edges belong to the random matching are not

independent, thus precluding the use of Chernoff bounds. We circumvent this problem

by using the following result from the theory of random graphs [7]:

Lemma 2.6.1 Let G(n, n, p) be a random bipartite graph on 2n vertices such that

each edge is present independently with probability p. Then

Pr[G(n, n, p) contains no perfect matching] = O(ne−np)

Now instead of hiding a randomly chosen perfect matching, we hide a collection

of randomly and independently chosen edges that contains a perfect matching with

high probability. We prove the following theorem.

Theorem 2.6.2 Any randomized approximation algorithm for the submodular min-

imum cost perfect matching problem with factor O
(

n
log2 n

)
needs super-polynomially

29

many queries. There exists an algorithm that approximately finds an n-approximate

minimum cost matching in polynomial time.

Proof: Consider the complete bipartite graph Kn,n. We choose a random subset

R of edges by picking each edge independently with probability p = log2 n/n. By

applying lemma 2.6.1, the probability that R does not contain a perfect matching is

O
(
ne− log2 n

)
, which is super-polynomially small.

Define the following two submodular cost functions fR, g : 2E −→ ℝ+:

fR(Q) = min
{
∣Q ∩R∣ + min{ ∣Q ∩R∣, (1 + �) log2 n }, n

}
g(Q) = min { ∣Q∣, n }

With probability 1 − O(ne− log2 n), R contains a perfect matching and hence the

minimum cost of a perfect matching in f is at most (1 + �) log2 n. Therefore the ratio

of optima in g and f is Ω
(

n
log2 n

)
with high probability.

Now we look at the probability that the algorithm can not distinguish f and g. It

suffices to prove that Pr[fR(Q) ∕= g(Q)] is super-polynomially small for an arbitrary

query Q. It’s easy to see that fR(S) ≤ g(S), thus these two functions differ on Q if

and only if fR(Q) < g(Q).

Making arguments analogous to the proof of theorem 2.4.1, Pr[fR(Q) < g(Q)]

is maximized when ∣Q∣ = n. Therefore,

Pr[fR(Q) < g(Q)] = Pr[∣Q ∩R∣ > (1 + �) log2 n]

Since E[∣Q ∩ R∣] = log2 n and edges were picked uniformly at random, we can apply

Chernoff bounds to conclude that this probability is O(e−�
2 log2 n). This proves the

theorem. □

Factor n approximation algorithm: We are given a graph G(V,E) and sub-

modular cost functions fi for each agent. Define a new cost function w over E as

30

we = mini fi({e}) and define w(Z) =
∑

e∈Z we for all Z ⊆ E. Since w is an addi-

tive valuation function we can find a minimum value perfect matching in polynomial

time. Let M be such a matching. Assign each edge e ∈ M to the agent having the

minimum valuation for that edge. Let the cost of this solution under the original

valuation functions be W .

We now prove that this is an n-approximate algorithm. By submodularity we

have W ≤ w(M). Let M0 be an optimal solution having value OPT. Since M is a

minimum weight matching under w, w(M) ≤ w(M0).

Let wmax = maxe∈M0{fi(e) ∣ e assigned to agent i in M0}. By submodularity of

the cost functions, w(M0) ≤ n ⋅ wmax. By monotonicity we have wmax ≤ OPT .

Therefore,

W ≤ w(M) ≤ w(M0) ≤ n ⋅ wmax ≤ n ⋅OPT

This completes the analysis.

2.7 Spanning Tree

In this section, we consider the multi-agent submodular minimum spanning tree prob-

lem. We are given a connected graph G(V,E) where ∣V ∣ = n and a normalized mono-

tone submodular function fi : 2E −→ R+ for each agent i. We want to find a spanning

tree T of G, and a partition of T into T1, T2, ⋅ ⋅ ⋅ , Tm such that
∑

i fi(Ti) is minimized.

We first prove an information theoretic lower bound of Ω(n) on the approximability

of the single agent case, which also implies the same bound for the multi-agent case.

Then, we give an n-approximate algorithm for the multi-agent case.

To prove the lower bound we will provide two submodular functions that can

not be distinguished in polynomially many queries and have widely differing optimal

values. As in Section 2.6, we will use the following lemma [7] in the proof.

Lemma 2.7.1 Let G(n, p) be a random graph on n vertices such that each edge is

31

present independently with probability p. Then

Pr[G(n, p) is disconnected] ≤ n(1− p)n.

Theorem 2.7.2 Any randomized approximation algorithm for the submodular min-

imum spanning problem on a with factor O
(

n
log2 n

)
needs super-polynomially many

queries. There exists an algorithm that approximately finds an n-approximate span-

ning tree in polynomial time.

Proof: Consider Kn, the clique graph on n vertices. We choose a random subset

of edges R, by picking each edge independently with probability p = log2 n/n. By

applying Lemma 2.7.1, the probability that R is not connected is O
(
ne− log2 n

)
, which

is super-polynomially small.

Define the following two submodular cost functions fR, g : 2E −→ ℝ+:

fR(Q) = min
{
∣Q ∩R∣ + min

{
∣Q ∩R∣, (1 + �) log2 n

}
, n

}
g(Q) = min { ∣Q∣, n }

With probability 1−O(ne−n
�
), R is connected and hence, the cost of the optimal

spanning tree in f is at most (1 + �) log2 n. Therefore, the ratio of optimal solution

values in g and f is Ω
(

n
log2 n

)
with high probability.

Making arguments similar to the proof of Theorem 2.6.2, we conclude that Pr[fR(Q) <

g(Q)] = O(ne−�
2 log2 n) for any query Q. This suffices to prove the theorem.

Factor n approximation algorithm: We are given a graph G(V,E) and sub-

modular cost functions fi for each agent. Define a new cost function w over E as

we = mini fi({e}). Run Kruskal’s algorithm on G treating we as the cost of the edge e

to get a minimum spanning tree T . Assign each edge e ∈ T to the agent i minimizing

fi({e}). The proof that this constitutes an n-approximate solution follows similar

arguments as the analysis of the n-approximate algorithm for perfect matching. □

32

2.8 Summary

In this chapter, we study several fundamental submodular combinatorial optimization

problems in the oracle model. We obtain information-theoretic lower bounds on their

approximabilities and design matching algorithm for each problem. We will study the

computational aspect of submodular combinatorial optimization under the discounted

price model in the next chapter .

33

CHAPTER III

SUBMODULAR COMBINATORIAL OPTIMIZATION:

DISCOUNTED PRICE MODEL

3.1 Introduction

In the previous chapter, we studied the submodular combinatorial optimization prob-

lems in the oracle model. Unfortunately, many of the fundamental optimization prob-

lems have turned out to be extremely hard if we are given only value oracles. Thus,

from a practical standpoint, the applicability of these results is not very well-founded

as the class of submodular functions might be much more general than real-world

functions. Moreover, the class of submodular functions is defined over an exponen-

tially large domain and thus requires exponential time to write down the function

explicitly. This may not be the case in real-world applications.

In this chapter, we wish to explore functions that lie between the additive functions

and the general submodular functions, and that are also succinctly representable. In

particular, we study discounted price functions in which we are given an additive

function c and a discount function d : R+ → R+ that is a concave curve. The price of

any subset S is defined to be d(c(S)). It is not difficult to see that discounted price

functions form a subclass of submodular functions.

The practical motivation of discounted price function is that agents usually give

discounts to their prices for a subset of items. On the other hand, these functions

have strong theoretical motivation as well. A common technique (due to [21]) for

designing optimal algorithms under general submodular functions is to first approx-

imate submodular functions by ellipsoid functions. These ellipsoid functions form a

special class of discounted price functions.

34

3.1.1 Discounted Price Model

We define a function d :→ ℝ+ to be a discounted price function if it satisfies the

following properties: (1) d(0) = 0; (2) d is increasing; (3) d(x) ≤ x for all x; (4) d is

concave.

We study combinatorial problems in the following general setting. We are given

a set of elements E, and a collection Ω of its subsets. We are also given a set A

of k agents where each agent a ∈ A specifies a cost function ca : E → ℝ+ where

ca(e) indicates her cost for the element e. Each agent also declares a discounted

price function da. If an agent a is assigned a set T of elements, then her total price

is specified by da(
∑

e∈T ca(e)). This is called her discounted price. For the ease of

notation we will use da(T) to denote da(
∑

e∈T ca(e)). The objective is to select a subset

S from Ω and a partition S1, S2, ..., Sk of S, such that
∑

a∈A da(Sa) is minimized.

We study the following four problems over an undirected graph G(V,E).

∙ Discounted Edge Cover: In this problem, Ω is chosen to be the collection of

edge covers.

∙ Discounted Spanning Tree: In this problem, Ω is the collection of spanning

trees of the graph.

∙ Discounted Perfect Matching: In this problem, we assume the graph has an

even number of vertices. Ω is chosen to be the collection of perfect matchings

of the graph.

∙ Discounted s− t Path: In this problem, we are given two fixed vertices s and

t. Ω consists of all paths connecting s and t.

3.1.2 Our Results, Organization and Related Work

In section 3.2.1, we show that the discounted edge cover and spanning tree problems

are hard to approximate within a factor of (1− o(1)) log n unless P = NP. In section

35

3.2.2 and 3.2.3, we amplify this result to show that s− t path and matching are hard

to approximate within any polylog factor.

On the algorithmic front, in section 3.3.1 and 3.3.2, we show that our results

are tight by giving log n-approximate algorithms for the discounted edge cover and

spanning tree problems. In section 3.3.3, we describe simple O(n)-approximate algo-

rithms for discounted s − t and perfect matching. We leave the design of sublinear

approximation algorithms for these two problems as an open question.

The results in this chapter is a follow up work of submodular combinatorial op-

timization in the oracle model studied in chapter 2. Independent of our work [18],

recently, Iwata and Nagano [29] also also study submodular cost set cover and sub-

modular edge cover problems. At last, much of the other related work has been listed

in section 2.1.2 from chapter 2 and we omit for here.

3.2 Hardness of Approximation

In this section we present hardness of approximation results for the four problems

defined earlier. Unlike some of the previous work on combinatorial optimization

[18, 49] over non-linear cost functions, the bounds presented here are not information

theoretic but are contingent on P ∕= NP. In section 3.2.1, we show that all our

problems are hard to approximate within factor log n. In section 3.2.2 and 3.2.3, we

amplify the hardness of approximation for discounted s−t path and perfect matching

to O(logc n) for any constant c.

Recall that in each of the problems we are given a graph G = (V,E) over n vertices.

We are also given a set A of k agents each of whom specifies a cost ca : E → ℝ+.

Here ca(e) is the cost for building edge e for agent a. Each agent also specifies

a discounted price function given by da : ℝ+ → ℝ+. The objective is to build

a specified combinatorial structure using the edges in E, and allocate these edges

among the agents such that the sum of discounted prices for the agents is minimized.

36

3.2.1 Basic Reduction

To show the logarithmic hardness of approximation for the problems stated earlier we

consider the following general problem and use a reduction from set cover to establish

its hardness.

Discounted Reverse Auction: We are given a a set E of n items and a set A

of agents each of whom specifies a function ca : E → ℝ+. Here ca(e) is the cost for

procuring item e from agent a. Each agent also specifies a discounted price function

given by da : ℝ+ → ℝ+. The task is to find a partition P = {P1 ⋅ ⋅ ⋅Pk} of E such

that
∑

a∈A da(
∑

e∈Pa ca(e)) is minimized.

Lemma 3.2.1 It is hard to approximate the discounted reverse auction problem within

factor (1− o(1)) log n unless P = NP.

Proof: We reduce set cover to the discounted reverse auction problem to prove this

result. Consider an instance ℐ = (U,C,w) of set cover where we wish to cover all

elements in the universe U using sets from C and minimize the sum of weights under

the weight function w : C → ℝ+. We define an instance, ℐ ′ of our discounted reverse

auction problem corresponding to ℐ in the following way. Let U be the set of items.

For every set S ∈ C define an agent aS, whose cost function ca assigns the value w(S)

for every element s ∈ S and sets the cost of all other elements in U to be infinity.

The discounted price function for the agent is shown in figure 2. Here the slope of

the second segment is small enough.

Figure 2: Discount function for agent corresponding to set S

37

Consider a solution for ℐ ′ where we procure at least one item from agent aS; then

we can buy all elements in S from aS without a significant increase in our payment.

So the cost of the optimal solution to ℐ can be as close to the price of the optimal

solution for ℐ ′ as we want. By [1, 43], set cover is hard to approximate beyond a

factor of log n unless P = NP. Therefore the discounted reverse auction problem can

not be approximated within factor (1− o(1)) log n unless P = NP. □

This reduction can be extended to other combinatorial problems in this setting to

give logarithmic hardness of approximation for many combinatorial problems. This

can be achieved by considering an instance of the problem where we have just one

combinatorial object and our task is to allocate it optimally among the agents. For

example, for the discounted spanning tree problem we consider the instance when

the input graph is itself a tree and we have to optimally allocate its edges among the

agents to minimize the total price. Thus, we have the following:

Theorem 3.2.2 It is hard to approximate discounted edge cover, spanning tree, per-

fect matching and s− t path within factor of (1−o(1)) log n on a graph with n vertices

unless P = NP.

3.2.2 Amplification: Hardness for Discounted s− t Path

In this section we consider the discounted s− t path problem between two given ver-

tices s and t. We show that unless P = NP, this problem is hard to approximate within

a factor of O(logc n) for any fixed constant c. The proof is based on amplification of

the result of theorem 3.2.2. This is done by repeatedly applying a transformation �

on the given family of problem instances, which amplifies the approximation factor

on every application. Each application of � also increases the size of the graph but

only by a polynomial(in n) factor. We now describe the transformation formally.

Consider the following instance (G,A,U): We are given a graph G = (V,E),

vertices s,t and a set A of agents. We are also given a collection U = {Ua}a∈A. Here

38

Ua ⊆ E specifies the set of edges that can be assigned to agent a, i.e., ca(e) = 1

for all e ∈ Ua and ca(e) = +∞ otherwise. The discounted price function da is such

that da(x) = x for all x ≤ 1 and 1 for all 1 < x < +∞. Observe that under this

assumption, for any set S of edges, da(S) has value 1 if S ⊆ Ua and ∞ otherwise.

We may assume that the sets Ua for a ∈ A are pairwise disjoint, by replacing a single

edge that can be assigned to multiple agents by parallel edges and assigning them

to each of the agents. In future discussion, we will use ℱ to denote the family of

instances {(G,A,U)}.

We define the transformation � : ℱ → ℱ that takes an instance I = (G,A,U)

in ℱ , and generates another instance I⊗ = (G⊗,A × A,U⊗) as follows. The graph

G⊗ = (V ⊗, E⊗) is constructed from G by replacing each edge (u, v) ∈ E with a copy

of the graph G such that s coincides with u and t coincides with v. Thus any edge

e ∈ E can be identified with a subgraph Ge, of G⊗ that is isomorphic to G. Each

e′ ∈ Ge has a cost ca(e) for each agent a and we define �(e′) = e and define
(e′) to

be the edge corresponding to e′ in G under this isomorphism. There are ∣A∣2 agents

in the new instance who are indexed by A × A. We define the elements of U⊗ as

U⊗(a1,a2) = {e′ ∣ �(e′) ∈ Ua1 and
(e′) ∈ Ua2}.

Note that ∣E⊗∣ = ∣E∣2, i.e. the size of instance I⊗ is bounded by a polynomial in

the size of I. We define �(ℱ) = {�(I) ∣ ∀I ∈ ℱ}. In lemma 3.2.3, we show that we

can amplify that hardness result from theorem 3.2.2 by applying the transformation

� repeatedly.

Lemma 3.2.3 If ℋ = �r(ℱ) is a family of instances for the s− t path problem that

is hard to approximate to a factor better than �, then �(ℋ) is hard to approximate

within a factor O(�2).

Proof: Let I = (G, s, t,A,U) be an instance in ℋ. Let us begin by making some

observations about the structure of an optimal solution for �(I) = (G⊗,A,U⊗).

39

Claim 3.2.4 If there is a s− t path of price � in G, then there is a s− t path in G⊗

of price at most �2.

Proof: Let P = e1, e2 . . . et be a path of price � in G. We can construct a s− t path

in G⊗ by considering the set of graphs Ge1 . . . Get and picking the edges corresponding

to the edges in P in each of these copies. It can be verified that this gives us a valid

path that has price �2. □

Next we note that the converse is also true.

Claim 3.2.5 If there is a s − t path of price �2 in G⊗ then there is a s − t path in

G of price at most �.

Proof: Let P be a path of price �2 in G⊗. Let Ge1 . . . Get be the copies of G that

have non-empty intersection with P . Two cases may arise. Either the set of edges

{e1 . . . et} belong to at most � distinct agents in A or they belong to more than �

agents in A. Note that the set of edges {e1 . . . et} form a path in G, and in the first

case this path has price at most �. In the second case, the price of edges in P ∩Gei

must be less than � for some copy Gei of graph G. These edges also form a s− t path

in G of price at most �. Thus in both cases we can find a path of price at most � in

G. □

Using the observations above, if the price of the optimal solution to I is OPT ,

then the price of the optimal solution to �(I) is OPT 2. Furthermore, if we can

approximate the optimal solution to �(I) to within a factor of o(�2) then we can

approximate the optimal solution for I to better than o(�), using the construction in

claim 3.2.5. This yields the desired contradiction. □

By theorem 3.2.2, ℱ is hard to approximate within a factor of log n. Using this

as the base case and applying lemma 3.2.3 repeatedly we have the following theorem.

40

Theorem 3.2.6 The discounted shortest s − t path problem is hard to approximate

within a factor of O(logc n) for any fixed constant c > 0.

3.2.3 Reduction: Hardness for Discounted Perfect Matching

In this section we consider the discounted perfect matching problem. We show that

unless P = NP, this problem is hard to approximate within a factor of O(logc n) for

any fixed constant c. The proof is based on a factor preserving reduction from the

s− t path problem. We now describe our reduction:

Lemma 3.2.7 Let A be a �-approximate algorithm for the perfect matching problem,

then we can get a �-approximation for the s− t path problem using A as a subroutine.

Proof: Suppose we are given a graph G = (V,E). Construct an auxiliary graph

G∗ in the following way: Replace every vertex v ∈ V by v′ and v′′ and add an edge

connecting them. The price of this edge is zero for every agent. We replace each edge

uv ∈ E with the gadgets shown in figure 3.

Figure 3: Gadgets

On this graph G∗, use the algorithm A to get the minimum weight matching. Let

M be the matching returned. We can interpret M as a s−t path in G in the following

way. Let g(uv) be the edges in G∗ corresponding to the edge uv for the gadget shown

in figure 3. Observe that either one or two edges of every such gadget must belong to

M . Let S be the set of edges in G such that two edges in their corresponding gadget

belong to M . One can check that every vertex in V is incident with zero or two edges

from S, whereas s and t are each incident with exactly one edge in S. Therefore S

41

consists of an s− t path PS and some other circuits. Now the circuits in S must have

cost zero. This is because if a circuit has positive cost then the cost of the matching

can be reduced further by pairing up the vertices in the circuit as shown in figure 4.

Figure 4: Circuits not involving edges in S should have zero costs

□

Note that the reduction defined in lemma 3.2.7 defines a cost preserving bijection

between s − t paths in G to perfect matchings in G∗. Thus, using theorem 3.2.6 we

have :

Theorem 3.2.8 The discounted perfect matching problem is hard to approximate

within a factor of O(logc n) for any fixed constant c > 0.

3.3 Algorithms for Discounted Combinatorial Optimization

In this section, we present approximation algorithms for the four problems defined

earlier.

3.3.1 Discounted Edge Cover

We will establish a factor O(log n) algorithm for the discounted edge cover problem.

Given a discounted edge cover instance, we construct a set cover instance such

that: 1) An optimal edge cover corresponds to a set cover with the same cost and 2) A

set cover corresponds to an edge cover with a smaller price. For the set cover instance,

we apply the greedy algorithm from [31] to get a set cover whose cost is within log n

of the optimal cost. The corresponding edge cover gives a log n approximation of the

42

optimum edge cover. We remark that we will have exponentially many sets in the set

cover instance that we construct for our problem. To apply the greedy algorithm, we

need to show that in each step, the set with the lowest average cost can be found in

polynomial time.

Now we state our algorithm formally. Consider a set cover instance where we have

to cover the set of vertices, V , with k2n subsets which are indexed by (a, S) ∈ A×2V .

The cost of the set (a, S), denoted by cost(a, S), is defined as the minimum discounted

price of an edge cover for the vertices in S that can be built by agent a. For the

instance of set cover described above, we apply the greedy algorithm [31] to get a

set cover S. Let Ua be the set of vertices covered by sets of the form (a, S) ∈ S.

Let Ca be agent a’s optimal discounted edge cover of the vertices in Ua. We output

{Ca : a ∈ A} as our solution.

The correctness of the algorithm follows from the observation that each Ca is a

cover of Ua thus their union must form an edge cover for V .

Now we show that the running time of the algorithm is polynomial in k and

n. Given Ua, Ca can be found in polynomial time. Thus our algorithm can be

implemented in polynomial time, if we can implement the greedy algorithm on our

set cover instance efficiently.

Recall that the greedy algorithm from [31] covers the ground set iteratively. Let

Q be the set of covered elements at the beginning of a phase. The average cost of a

set (a, S) is defined as �a(S) = cost(a, S)/∣S − Q∣. In every iteration the algorithm

picks the set with the smallest average cost until all the vertices are covered. To show

that this algorithm can be implemented efficiently, we only need to show the following

lemma.

Lemma 3.3.1 For any Q ⊂ V , we can find min{cost(a, S)/∣S−Q∣ : (a, S) ∈ A×2V }

in polynomial time.

43

Proof: We can iterate over all choices of agent a ∈ A, thus the problem boils down

to finding min{cost(a, S)/∣S −Q∣ : S ⊆ V } for each a ∈ A.

For each integer d, if we can find min{cost(a, S) : ∣S − Q∣ = d} in polynomial

time, then we are done since then we can just search over all the possible sizes of

S −Q. Unfortunately, it is NP-hard to compute min{cost(a, S) : ∣S −Q∣ = d} for all

integer d. We will use claim 3.3.2 to circumvent this problem.

Claim 3.3.2 For any graph G = (V,E) and Q ⊆ V and for any positive integer d,

we can find the set (a, S) minimizing cost(a, S) such that ∣S − Q∣ is at least d, in

polynomial time.

Proof: To find the desired set we construct a graph G′ = (V ′, E ′) as follows: Add a

set X ∪Y to the set of vertices in G, where ∣X∣ = ∣Q∣ and ∣Y ∣ = ∣V ∣− ∣Q∣−d. Match

every vertex in X to a vertex in Q with an edge of cost 0. Connect each vertex in Y

to each vertex in V by an edge of very large cost. Set the cost of each edge e ∈ E

as ca(e). Find the minimum cost edge cover in G′. Let S∗ be the set of vertices not

adjacent to X ∪ Y in such a cover. It is easy to verify that S∗ is the desired set. □

By claim 3.3.2 above we can generate a collection of subsets {Si ⊆ V : 1 ≤ i ≤ n},

such that (a, Si) has the lowest value of cost(a, S) among all sets S which satisfy

∣S −Q∣ ≥ i.

Claim 3.3.3 min{cost(a, S)/∣S −Q∣ : S ⊆ V } = min{cost(a, Si)/∣Si −Q∣ : 1 ≤ i ≤

n}.

Proof: Let S∗ be the set that has the minimum average cost with respect to agent

a. Suppose ∣S∗ −Q∣ = d. By our choice of Sd, we have ∣Sd −Q∣ ≥ d = ∣S∗ −Q∣ and

cost(a, Sd) ≤ cost(a, S∗). Therefore we have cost(a, Sd)/∣Sd −Q∣ ≤ cost(a, S∗)/∣S∗ −

Q∣, hence they must be equal. □

44

By iterating over all a ∈ A, we can find min{cost(a, S)/∣S−Q∣ : (a, S) ∈ A× 2V }

in polynomial time. □

Next we show that the approximation factor of our algorithm is log n. Let OPTEC

and OPTS denote the costs of the optimal solutions for the discounted edge cover

instance and the corresponding set cover instance respectively. Let {Ca : a ∈ A} be

the edge cover reported by our algorithm. For all a ∈ A let Oa be the set of vertices

covered by agent a in the optimal edge cover. The sets {(a,Oa) : a ∈ A} form a

solution for the set cover instance. Therefore OPTS ≤ OPTEC .

Since we use the greedy set cover algorithm to approximate OPTS, we have∑
a∈A

da(Ca) ≤ (log n)OPTS ≤ (log n)OPTEC

Thus we have the following theorem.

Theorem 3.3.4 There is a polynomial time algorithm which finds a O(log n)-approximate

solution to the discounted edge cover problem for any graph over n vertices.

3.3.2 Discounted Spanning Tree

In this section, we study the discounted spanning tree problem and establish an

O(log n) approximation algorithm for this problem.

Let us first consider a simple O(log2 n)-approximation algorithm. Observe that

a spanning tree is an edge cover with the connectivity requirement. If we apply the

greedy edge cover algorithm in section 3.3.1, there is no guarantee that we will end up

with a connected edge cover. We may get a collection of connected components. We

can subsequently contract these components and run the greedy edge cover algorithm

again on the contracted graph. We repeat this until there is only one connected

component. By this method, we will get a connected edge cover containing a spanning

tree.

Now we will analyze the above algorithm. Let OPTST be the price of the minimum

discounted spanning tree. After each execution of the greedy edge cover algorithm,

45

there is no isolated vertex, hence the contraction decreases the number of vertices by

at least a a factor of half, therefore we will have to run the greedy edge cover algorithm

at most O(log n) times. Let OPT rEC be the price of the minimum edge cover for the

graph obtained after the rtℎ contraction and let Cr be the edge cover that we produce

for this iteration. Using theorem 3.3.4, the price of Cr is at most (log n)OPT rEC . It

is easy to see that OPT rEC is at most OPTST for every r. Hence the price of Cr is

bounded by log n ⋅ OPTST . Since there are at most O(log n) iterations, the price of

the spanning tree produced by the above algorithm is bounded by O(log2 n)OPTST .

We observe that two main steps in the above algorithm are greedy edge cover

and contraction. Intuitively, they are used to satisfy the covering and connectiv-

ity requirements respectively. The algorithm proceeds by alternately invoking these

subroutines. Based on this observation, our idea to get an O(log n) approximation

algorithm is to apply the following greedy algorithm: rather than apply contraction

after each complete execution of the greedy edge cover, we interleave contraction with

the iterations of the greedy edge cover algorithm. After each iteration, we modify the

graph to coerce our algorithm to get a connected edge cover at the end.

Now we describe our greedy algorithm. For every agent a and subset of vertices

S we define cost(a, S) as the cost of the optimal edge cover for S. We define the

average cost of a set (a, S) as �Sa = cost(a, S)/∣S∣. The algorithm proceeds in phases

and each phase has two steps, search and contraction. In the rtℎ phase, during the

search step we find the set (ar, Sr) with the lowest average cost and set the potential

of each vertex v ∈ Sr as p(v) = �Srar . The search step is followed by a contraction step,

where we modify the graph by contracting every connected component in the induced

subgraph of agent ar’s optimal edge cover for the set Sr. After this we begin the next

phase. The algorithm terminates when we have contracted the original graph to a

single vertex. For every agent, we find the set of all edges assigned to her across all the

search steps declare this as her bundle of assigned edges. Finally remove unnecessary

46

edges from the set of assigned edges to get a spanning tree.

It is easy to see that we get a connected edge cover at the end of the algorithm,

which proves the correctness of the algorithm. To analyze the running time, we

observe that there can be at most n phases and by Lemma 3.3.1, each phase can be

implemented in polynomial time. Hence the algorithm runs in polynomial time.

Next, we prove that the approximation factor of the algorithm is O(log n). Let

OPTST be the price of the optimal solution of the discounted spanning tree instance

and let {Ta : a ∈ A} be our solution. Let V ′ be the set of contracted vertices

we produced during the algorithm. Number the elements of V and V ′ in the order

in which they were covered by the algorithm, resolving ties arbitrarily. Suppose

V = {v1, ..., vn} and V ′ = {z1, ..., zn′}. Obviously, n′ ≤ n.

It is easy to verify that
∑

a da(Ta) ≤
∑

i p(vi) +
∑

j p(zj). Therefore we only need

to bound the potentials of the vertices in V ∪ V ′.

Claim 3.3.5 p(vi) ≤ OPTST
n−i+1

for any i ∈ {1 ⋅ ⋅ ⋅n} and p(zj) ≤ OPTST
n′−j for any j ∈

{1 ⋅ ⋅ ⋅n′}.

Proof: For i ∈ {1 ⋅ ⋅ ⋅n}, suppose vi is covered in phase r. Let Gr be the underlying

graph at the beginning of phase r. Since vi, vi+1, ..., vn are not covered before phase r,

Gr contains at least n− i+ 1 vertices. Since the optimal spanning tree can cover the

vertices in Gr by a price of OPTST , by our greedy choice, p(vi) ≤ OPTST/(n− i+ 1).

Similarly, let 1 ≤ j ≤ n′ and assume zj is covered in phase r. Since we should be

able to produce zj+1, zj+2, ..., zn′ from contraction on vertices of Gr, there are at least

n′ − r vertices in Gr. Therefore we have p(zj) ≤ OPTST/(n
′ − j). □

From the above claim, we have

∑
a

da(Ta) ≤
∑

1≤i≤n

OPTST
n− i+ 1

+
∑

1≤j≤n′

OPTST
n′ − j

≤ (log n+log n′)OPTST ≤ O(log n)OPTST

Therefore we have the following theorem:

47

Theorem 3.3.6 There is a polynomial time algorithm which finds an O(log n)-approximate

solution to the discounted spanning tree problem for any graph with n vertices.

3.3.3 Discounted s− t Path and Perfect Matching

In sections 3.2.2 and 3.2.3 we showed that unlike edge cover and spanning tree, no

polylog-approximate algorithm is likely to exist for discounted s− t path and perfect

matching.

Now we describe a simple n-approximate algorithm for discounted s − t path

problem. For each edge e, define we = mina∈A da(ca(e)) and for each s − t path P ,

define its weight w(P) =
∑

e∈P we. Use Dijkstra’s algorithm to find a path P0 with

the minimum weight and output it as the solution. Allocate the edges in P0 as follows:

for each edge e ∈ P , we allocate e to the agent a such that da(ca(e)) = we, with ties

broken arbitrarily.

For the analysis, let us define Sa to be the set of edges allocated to agent a in our

solution. Since da is concave, we have da(Sa) ≤
∑

e∈Sa da(ca(e)). Therefore, the total

price of our solution is bounded by
∑

a∈A
∑

e∈Sa da(ca(e)) which is exactly w(P0). Let

OPT be the path chosen in the optimal solution (as an abuse of notation, we also

use OPT to denote the optimal value) and OPTa be the set of edges on the path

allocated to agent a. By our choice of P0 and weight w, we have w(P0) ≤ w(OPT) =∑
a∈A

∑
e∈OPTa we ≤

∑
a∈A

∑
e∈OPTa da(ca(e)). Since da is increasing, we have

∑
e∈OPTa

da(ca(e)) ≤ ∣OPTa∣ ⋅ da(OPTa) ≤ n ⋅ da(OPTa).

Therefore w(OPT) ≤ n
∑

a∈A da(OPTa) = n ⋅OPT . This implies that our algorithm

is an n-approximate algorithm.

We apply the same idea for discounted perfect matching problem. Define the

weight of a perfect matching M as w(M) =
∑

e∈M we. Use Edmond’s algorithm

to find a minimum weight perfect matching M0 for this weight function. For every

48

e ∈ M0, allocate it to the agent a such that ca(e) = we. By a similar argument as

above, we can show that this is a n approximate algorithm.

3.4 Summary

In this chapter, we consider several fundamental submodular combinatorial optimiza-

tion problems from the computational aspect. We study the class of discounted-price

functions which are submodular and succinctly representable. We leave as a concrete

open problem to improve our approximation ratios of discounted-price shortest path

and perfect matching or enlarge their lower bounds. From a higher level, an inter-

esting future direction would be to investigate the approximabilities of submodular

combinatorial optimization problems for other classes of well-motivated succinctly

representable functions.

49

CHAPTER IV

BLACK-BOX REDUCTIONS IN MECHANISM DESIGN

4.1 Introduction

In an algorithmic mechanism design problem, we face an optimization problem where

the necessary inputs are private valuations held by self-interested agents. The high-

level goal of truthful mechanisms is to reveal these valuations via the bids of the agents

and to optimize the objective simultaneously. In this chapter, we will focus on the

objective of social welfare maximization. As usual in computer science, computational

tractability is a necessary requirement.

It is well known that the VCG mechanism ([10, 22, 52]) which maximizes the social

welfare exactly is truthful. However, VCG is not computationally efficient in general.

And unfortunately, the simple combination of approximation algorithms and VCG

usually fails to preserve truthfulness. This raises the important open question (see

[39]) of designing approximation algorithms that are truthful simultaneously.

A major tool that accounts for positive results related to the above question is the

black-box reduction. The methodology is to apply a given algorithm for the underlying

optimization problem as a sub-routine in the design of the mechanism, without any

knowledge of the algorithm itself.

In this chapter, we will provide two such reductions for an interesting, broad

class of problems called symmetric single-parameter problems. Formally, a mecha-

nism design problem (with n agents) is single-parameter if each feasible allocation is

represented as an n-dimensional real vector x, and each agent i has a private value

vi such that her valuation of allocation x is given by vixi. We further define that a

problem is symmetric if the set of feasible allocations is closed under permutations:

50

if x is feasible, so is � ∘ x for any permutation �. Here � ∘ x is defined as the vector

(x�(1), ..., x�(n)).

Main Result. Our main result is a black-box reduction that converts any approx-

imation algorithm to a truthful mechanism with essentially the same approximation

factor for the class of symmetric single-parameter problems. In other words, for these

problems, mechanism design is as easy as algorithm design!

Theorem 4.1.1 For a symmetric single-parameter mechanism design problem Π,

suppose we are given an �-approximate (� > 1) algorithm A as a black-box, then

for any constant � > 0, we can obtain a polynomial time truthful mechanism with

approximation factor �(1 + �).

As an example to which our theorem applies, consider the following Google’s TV

ad auction problem where an auctioneer is trying to sellm TV ad slots to n advertisers.

Assume that there are k TV viewers, and for each TV ad slot we are given the set of

viewers who watch that ad slot and we can define a function f : 2[m] → [k] that for any

subset S of ad slots, tells the number of unique viewers who will see the ad if the ad is

shown on set S. Now suppose that each advertiser has a fixed value (vi for advertiser

i) per unique viewer to whom his ad will be shown. So if a set Si of ad slots is given

to an advertiser i, his total value will be vif(Si). The goal is to design a truthful

polynomial time mechanism which maximizes the social welfare
∑

i vif(Si), where Si

is the set of ad slots allocated to advertiser i. Without considering the requirement of

truthfulness, Vondrak [53] provides a (1-1/e)-approximate algorithm for social welfare

maximization aspect of this problem and it is tight unless P=NP[33]. Applying

Vondrak’s algorithm as a black-box, Theorem 4.1.1 implies a truthful mechanism

with the optimal approximation ratio.

In our reductions, we make no assumption on the black-box algorithm A. In

addition, while the black-box algorithm may be randomized, our reduction does not

51

introduce any further randomization. If the algorithm is deterministic, then our

mechanism is deterministically truthful, and if the algorithm is randomized, then our

mechanism is universally truthful. Interestingly, this is the first time such reduction is

obtained and resolve the conflict between approximability and incentive compatibility

for a broad class of problems.

Previous work. There has been a significant amount of work related to black-box

reductions in mechanism design. In the single-parameter setting, the first black-box

reduction was given by Briest et al. [8]. The authors studied the single-parameter

binary optimization problem and they showed that any algorithm which is an FPTAS

can be converted to a truthful mechanism that is also an FPTAS. Secondly, Babaioff

et al. [3] studied the single-value combinatorial auction problem and they constructed

a black-box reduction that converts an algorithm to a truthful mechanism with the

approximation factor degraded by a logarithmic factor.

For multi-parameter problems, there is no factor-preserving black-box reduction

in general (see [42]). This motivates the study of truthfulness in expectation, which is

a weaker notion of incentive compatibility. Here, a randomized mechanism is truthful

in expectation, if truth telling maximizes an agent’s expected payoff. The initial effort

in black-box reduction for multi-parameter problems is due to Lavi and Swamy [36],

they showed a method to convert a certain type of algorithms called integrality-gap-

verifiers to truthful in expectation mechanisms with the same approximation factors.

Recently, Dughmi and Roughgarden [14] studied the class of packing problems. Via

an elegant black-box reduction and smooth analysis, they showed that if a packing

problem admits an FPTAS, then it admits a truthful in expectation mechanism that

is an FPTAS as well. At last, Balcan et al.[4] considered black-box reductions from

the revenue maximization aspect. By the technique of sample complexity in machine

learning, they gave revenue-preserving reductions from truthful mechanism design to

52

the algorithmic pricing problems.

The previous discussion is about prior-free mechanism design. Another important

area in algorithmic game theory is the Bayesian mechanism design where each agent’s

valuation is drawn from some publicly known prior distribution. Hartline and Lucier

[24] studied this problem in the single-parameter setting. They constructed a clever

black-box reduction that converts any non-monotone algorithm into a monotone one

without compromising its social welfare. Following this work, Bei and Huang [6]

and Hartline et al. [23] independently showed such black-box reductions in the multi-

parameter setting as well.

Organization Our constructions are based on the technique of maximum-in-range.

Here, a maximum-in-range mechanism outputs the allocation maximizing the social

welfare over a fixed range of allocations. The range is chosen to balance the fol-

lowing trade-off: A larger range can yield better approximation but require greater

computational complexity.

As a warm up, in section 4.3 we show a very simple and efficient construction of

the range involving only linear number of queries to the given black-box algorithm

and the social welfare maximization within the range requires only linear number

of inner product computations. However, the construction suffers from a logarithmic

degrade in the approximation factor. To overcome this drawback, we provide a factor-

preserving reduction as our main result in section 4.4, which is a more sophisticated

construction.

4.2 Preliminaries

In this section, we will outline the basic concepts in mechanism design relevant to our

results.

53

Truthfulness. Let X be the set of all feasible allocations, and vi(x) be the private

valuation of agent i if allocation x ∈ X is picked. A typical goal of a mechanism

is to reveal agents’ private valuation functions via their bids and optimize the ob-

tained social welfare simultaneously. Formally, suppose we are given n agents and

let v = (v1, ..., vn) be the valuation functions reported by the agents. Based on

this, a (deterministic) mechanism M will specify an allocation x(v) ∈ X and a

payment p(v). We say M is deterministically truthful(or truthful), if the following

conditions hold: for any i,v−i and any vi, v
′
i, we have vi(x(vi,v−i)) − pi(vi,v−i) ≥

vi(x(v′i,v−i))− pi(v′i,v−i).

Single-parameter mechanism design. In a single-parameter mechanism design

problem, each allocation is represented as an n-dimensional real vector x (where n is

the number of agents), and each agent i has a private value vi such that her valuation

of allocation x is given by vixi. It is known [38] that for a single-parameter problem,

a mechanism is truthful if and only if (1) the allocation rule is monotone: suppose

vi ≤ v′i, then xi(vi,v−i) ≤ xi(v
′
i,v−i); (2) each agent i’s payment is determined by

pi(v) = vixi(vi,v−i)−
∫ vi

0
xi(t,v−i)dt.

Maximum-in-range mechanisms. The maximum-in-range technique is a general

approach in the field of mechanism design. It works as follows: The mechanism fixes

a range ℛ of allocations without any knowledge of the agents’ valuations. Given any

v, let x∗ =argmaxx∈ℛ
∑

j vj(x) and x∗−i =argmaxx∈ℛ
∑

j ∕=i vj(x) respectively. Now

define payment pi of agent i to be
∑

j ∕=i vj(x
∗
−i)−

∑
j ∕=i vj(x

∗). It is now not difficult to

see that with this payment function, it is in best interest of every agent to report their

true valuations, irrespective of what others report. The major challenge in designing

maximum-in-range mechanism is to balance between the size of the range and the

approximation factor obtained.

54

4.3 Warm Up: A simple Black-Box Reduction

Recall that a single-parameter mechanism design problem is symmetric if the alloca-

tion space X is closed under permutations: if x ∈ X , then �∘x = (x�(1), ..., x�(n)) ∈ X

for any permutation � ∈ Sn. In this section, we provide a very simple black-box re-

duction for symmetric single-parameter problems that converts any �-approximate

algorithm into a truthful mechanism with approximation factor � log n.

Our construction is based on the maximum-in-range technique. Given an �-

approximate algorithm A, we define a range ℛ by applying A as a black-box on some

bid vectors fixed in advance. Our mechanism is then maximum-in-range over ℛ.

Construction of the range. Now we describe our construction of the range ℛ.

Let A be an �-approximate algorithm for social welfare maximization in our problem.

Consider the following set T of bid vectors T = {v1,v2, ...,vn} where vj is defined as

follows:

vji =

⎧⎨⎩
1 For 1 ≤ i ≤ j

0 For j < i ≤ n

Let xj be the allocation output byA given the input bid vector vj. Since the allocation

space is symmetric, without loss of generality, we may assume that xj1 ≥ xj2 ≥ ... ≥ xjn

for all j. We define our range ℛ as {� ∘ xj : ∀� ∈ Sn, 1 ≤ j ≤ n}. It is easy to see

that our construction involves only linear number of value queries.

Given any bid vector, we use opt(v) and optℛ(v) to denote the optimal allocations

among X and ℛ respectively. As an abuse of notation, we also use them to denote

the corresponding optimal social welfare.

Efficiency. Now we show that for any bid vector v, we can find optℛ(v) efficiently,

although ∣ℛ∣ is exponentially large. Let �∗ ∈ Sn be the permutation such that

v�∗(1) ≥ v�∗(2) ≥ ... ≥ v�∗(n). Obviously, we have the following:

55

Claim 4.3.1 v ⋅ (�∗ ∘ x) ≥ v ⋅ (� ∘ x) for all x ∈ ℛ and � ∈ Sn.

Therefore, it is easy to see that optℛ(v) = max{�∗ ∘ x1, �∗ ∘ x2, ..., �∗ ∘ xn}, which

can be computed by a linear number of inner product computations.

Approximation ratio. Notice that for any v, our mechanism outputs optℛ(v).

Therefore, we only need to show that opt(v) ≤ (� log n)optℛ(v) for all v.

The high-level intuition of our proof is the following: we will partition the optimal

solution into different layers and the one can prove that largest layer provides a log n

approximation of the total social welfare. Then we will show that within each layer,

there is an allocation in ℛ that provides an �-approximation to that particular layer,

therefore, the optimal allocation among ℛ gives an � log n-approximation to opt(v).

Now we formally prove the approximation guarantee. We first need the following:

Definition 1 Let u,w ∈ ℝn
+. We say that u ≥L w, if the following hold:(1) u1 ≥

... ≥ un, w1 ≥ ... ≥ wn; (2)
∑n

k=1 uk =
∑n

k=1wk; (3) there exists t such that uk ≥ wk

for all k ≤ t and uk ≤ wk for all k > t.

The follow lemmas implies that if u ≥L w, then the social welfare of u at least

the social welfare of w.

Lemma 4.3.2 Suppose u,w ∈ ℝn
+ and u ≥L w. Let x be such that x1 ≥ ... ≥ xn ≥ 0.

Then we have u ⋅ x ≥ w ⋅ x.

Proof: Let t be such that uk ≥ wk for all k ≤ t and uk ≤ wk for all k > t. Then:

n∑
k=1

ukxk −
n∑
k=1

wkxk

=
t∑

k=1

(uk − wk)xk +
n∑

k=t+1

(uk − wk)xk

≥
t∑

k=1

(uk − wk)xt +
n∑

k=t+1

(uk − wk)xt = 0.

56

Therefore, we have u ⋅ x ≥ w ⋅ x. □

Now we are ready to prove:

Theorem 4.3.3 For any bid vector v, we have opt(v) ≤ (� log n)optℛ(v).

Proof: Without loss of generality, we may assume that v1 ≥ v2 ≥ ... ≥ vn. For

simplicity, we assume vn+1 = 0. Let x∗ be the optimal allocation. Therefore, we

have:

opt(v) (11)

=
n∑
i=1

vix
∗
i (12)

=
n∑
j=1

(vj − vj+1)

j∑
k=1

x∗k (13)

≤ �
n∑
j=1

(vj − vj+1)

j∑
k=1

xjk (14)

≤ �
n∑
j=1

(vj − vj+1)

j∑
k=1

jvk∑j
t=1 vt

xjk (15)

= �
n∑
j=1

j(vj − vj+1)∑j
t=1 vt

j∑
k=1

vkx
j
k (16)

≤
(
�

n∑
j=1

j(vj − vj+1)∑j
t=1 vt

)
optℛ(v) (17)

Here, equation (12) is from the definition of x∗ and (13) is a rewrite of (12). Since xj

is the allocation output by A, we have
∑j

k=1 x
∗
k ≤ �

∑j
k=1 x

j
k, which implies (14). At

last, observe that if we define uj as

ujk =

⎧⎨⎩

jvk∑j
t=1 vt

For 1 ≤ k ≤ j

0 For j < k ≤ n

then uj ≥L vj. Therefore, by Lemma 4.3.2, we have (15).

57

By the previous argument, to complete our proof, we only need to show:

n∑
j=1

j(vj − vj+1)

Sj
≤ log n.

where Sj =
∑j

t=1 vt. In fact, this is the case because:

n∑
j=1

j(vj − vj+1)

Sj

=
n∑
j=1

j

Sj
vj −

n∑
j=1

j

Sj
vj+1

=
n∑
j=1

j

Sj
vj −

n∑
j=1

j − 1

Sj−1

vj

=
n∑
j=1

Sj−1 − (j − 1)vj
SjSj−1

vj

≤
n∑
j=1

1

Sj
vj

≤
n∑
j=1

1

j
= log n+ o(n)

This completes our proof. □

The above shows that our simple black-box reduction converts any �-approximate

algorithm A into a truthful mechanism with factor � log n. In fact, our analysis is

tight. To overcome this logarithmic degrade, we will provide a more delicate black-box

reduction that is factor-preserving in the next section.

4.4 Main Results: A Factor-preserving Reduction

In this section, we will present our main result.

As we mentioned before, the central issue in designing maximum-in-range mecha-

nisms lies in balancing the computational complexity and approximation ratio. Recall

that in the previous section, we construct a very simple range among which social

welfare maximization requires only linear number of inner-product computations.

However, it suffers from a logarithmic degrade in the approximation ratio. In this

58

section, we will give a more sophisticated construction of the range, which provides

us the desired approximation guarantee.

The high-level idea of our construction is the following: Given an algorithm A,

we define our range ℛ by applying A as a black-box on a carefully chosen collection

of typical bids. We will show that every bid can be mapped to a typical bid with

approximately the same social welfare, hence our mechanism performs at least as

well as the algorithm A.

Now we describe our range construction in detail for a given symmetric single-

parameter problem Π, black-box algorithm A and constant � > 0.

4.4.1 Construction of the range

Let V = Rn
+ be the collection of all possible bid vectors. Next we will provide a

three-step procedure that chooses a subset T ⊆ V as our collection of typical bids.

The first step is normalization: By properly reordering the agents and scaling their

bids, we only consider the set T0 of bids where v ∈ T0 if and only if 1 = v1 ≥ ... ≥ vn;

The second step is discretization. In this step, our goal is to obtain a finite set of bid

vectors that approximately represent the whole valuation space V . To do this, given

any vector v ∈ T0, we first apply the operation of tail cutting : We choose a small

value u (e.g. 1/nM for some constant M) and round all the entries smaller than u

to 0; then, we discretize the interval [u, 1] by considering Q = {�k : k ≥ 0} ∩ [u, 1]

where � < 1 is a fixed constant. We will round down each of the remaining entries of

v after the tail cutting to the closest value in Q. If we do the above for each v ∈ T0,

we obtain a finite set of vectors T1; The final step is equalization. We fix a constant

� > 1 and partition [n] into log� n groups. For each vector in T1, we equalize its

entries within each group by setting them to be the value of the largest entry in the

group. We then obtain the set of vectors T , and each vector in T is called a typical

bid.

59

Now we provide the detailed description. In the following, we fix constants � > 1

and � < 1 such that �
�

= 1 + �/2.

1: Normalization. Let T0 = {v : 1 = v1 ≥ ... ≥ vn};

2: Discretizing. Let Q = {�k : 0 ≤ k ≤ ⌈log1/�(n
M)⌉} where M ≥ log2

8
�

is a constant. For any real value z, define ⌊z⌋� = �⌈log1/� z⌉ ∈ Q. Then we

define a function D : T0 7→ T0 as follows: for each v ∈ T0 and for each i,

define

D(v)i =

⎧⎨⎩ ⌊vi⌋� vi ≥ u = 1
nM

0 otherwise

Let T1 = D(T0);

3: Equalization. Let nk = ⌊�k⌋ where � > 1 is a fixed constant and

0 ≤ k ≤ ⌊log� n⌋. Define a function E : T1 → T1 as follows: for each

v ∈ T1 and 1 ≤ i ≤ n, E(v)i is set to be vnk when nk ≤ i < nk+1. At

last, let T = E(T1).

For a bid vector v, let xA(v) be the allocation obtained by applying algorithm

A on v. Since the allocation space is closed under permutations, we may assume

xA(v)1 ≥ xA(v)2 ≥ ... ≥ xA(v)n. At last, let ℛ0 = {xA(v) : v ∈ T} and we

finally define our range as ℛ = {� ∘ x : x ∈ ℛ0, � ∈ Πn} where Πn consists of all

permutations over n elements.

4.4.2 Analysis

Now we analyze the performance of our mechanism. Since the mechanism is maximum-

in-range, it is truthful. We will show that it has polynomial running time and an

approximation factor of �(1 + �).

4.4.2.1 Running time

In this section, we show that the social welfare maximization over ℛ is solvable within

polynomial time, hence our maximum-in-range mechanism is efficient.

60

First of all, we show that the ∣ℛ0∣ is polynomial in n. We only need to prove the

following lemma:

Lemma 4.4.1 ∣ℛ0∣ ≤ ∣T ∣ ≤ n1/ log2 �+M/ log2(1/�).

Proof: The first inequality follows from the definition of ℛ0. Now we prove the

second one. Observe that for each vector v in T1, E(v) is uniquely determined by the

values {vnk : 0 ≤ k ≤ ⌊log� n⌋} ⊆ Q
∪
{0}. Moreover, we have that vnk−1

≥ vnk for all

k. Therefore, let H be the class of non-increasing functions from {0, 1, ..., ⌊log� n⌋}

to Q
∪
{0}, thus ∣T ∣ ≤ ∣H∣. Since ∣Q∣ = ⌈log1/�(n

M)⌉, It is not difficult to see,

∣H∣ ≤
(
⌊log� n⌋+ ⌈log1/�(n

M)⌉
⌈log1/�(n

M)⌉

)
≤ 2⌊log� n⌋+⌈log1/�(nM)⌉ ≤ n1/ log2 �+M/ log2(1/�).

□

Now we are ready to prove the running time guarantee. Let optℛ(v) be the

allocation maximizes the social welfare over ℛ for the given bid vector v. Let � be

the permutation such that v�(1) ≥ ... ≥ v�(n). Obviously, for each x ∈ ℛ0, we have

v ⋅(�−1∘x) ≥ v ⋅(�∘x) for all permutation �. Therefore, optℛ(v) ∈ {�−1∘x : x ∈ ℛ0}.

By Lemma 4.4.1, ∣{�−1 ∘ x : x ∈ ℛ0}∣ = ∣ℛ0∣ ≤ n1/ log2 �+M/ log2 �, this implies that

optℛ(v) can be found in polynomial time.

4.4.2.2 Approximation factor

In this section, we show that the approximation factor of our mechanism is �(1 + �).

Given any bid vector v, by reordering and scaling properly, we may assume v ∈ T0,

then we consider the typical bid E(D(v)). We show that for any sorted allocation x,

the social welfare v ⋅x is (1+�)-approximated by E(D(v))⋅x, hence an �-approximate

solution for social welfare maximization with respect to E(D(v)) is an �(1 + �)-

approximate solution for v. This proves the desired approximation guarantee.

Now we provide the detail. We first show that by considering D(v) instead of

v ∈ T0, the social welfare is rounded down by at most a factor of �(1− �/4).

61

Lemma 4.4.2 For any v ∈ T0 and any allocation x such that x1 ≥ ... ≥ xn, we have

D(v) ⋅ x ≤ v ⋅ x ≤ 1
�(1−�/4)

D(v) ⋅ x.

Proof: The first inequality holds by definition. Now we prove the second one. We

first show that the social welfare affected by “tail cutting” is bounded by a fraction

of �/4.

Claim 4.4.3
∑

i:vi≥1/nM vixi ≥ (1− �/4)
∑n

i=1 vixi.

Proof: For the ease of notation, we let A =
∑n

i=1 vixi and B =
∑

i:vi≥1/nM vixi.

Thus

A = B +
∑

i:vi<1/nM

vixi ≤ B +
1

nM

∑
i:vi<1/nM

xi.

Since x1 ≥ ... ≥ xn and 1 = v1 ≥ ... ≥ vn, we have

1

n

n∑
i=1

xi ≤
n∑
i=1

∑n
j=1 vj

n
xi ≤

n∑
i=1

vixi = A.

The last inequality holds because of rearrangement inequality. Therefore, we have

A ≤ B +
1

nM−1

(1

n

∑
i:vi<1/nM

xi
)
≤ B +

1

nM−1

(1

n

n∑
i=1

xi
)
≤ B +

1

nM−1
A ≤ B +

�

4
A.

Hence we have B ≥ (1− �/4)A. □

Let v′ = D(v), it is easy to see:

v′ ⋅ x =
∑

i:vi≥1/nM

v′ixi ≥ �
∑

i:vi≥1/nM

vixi ≥ �(1− �

4
)v ⋅ x

. □

Secondly, we show that the social welfare increases by at most a factor of � by

considering E(v) instead of v for any v ∈ T1.

Lemma 4.4.4 For any v ∈ T1 and any allocation x such that x1 ≥ ⋅ ⋅ ⋅ ≥ xn, we

have v ⋅ x ≤ E(v) ⋅ x ≤ �v ⋅ x.

62

Proof: The first inequality is implied by the definition of E. We will prove the

second one. Let v′ = E(v) and L = ⌈log1/� n⌉. Since v,v′ ∈ T1, we have that

vi, v
′
i ∈ Q for each i. Thus, if we let li = log� vi and l′i = log� v

′
i respectively for each

i, then li’s and l′i’s are non-decreasing sequences. By our construction, it is easy to

see: (1) for all 1 ≤ i ≤ n, l′i ≤ li; (2) for all l ∈ [0, L], ∣{i : l′i ≤ l}∣ ≤ � ∣{i : li ≤ l}∣.

Since x1 ≥ ... ≥ xn, we have the following:

Claim 4.4.5 For any l ∈ [0, L] and 1 ≤ i ≤ n,
∑

i:l′i≤l
xi ≤ �

∑
i:li≤l xi.

Observe that if we define Wl = �l for 0 ≤ l ≤ L and WL+1 = 0, then

n∑
i=1

xivi =
n∑
i=1

xiWli =
n∑
i=1

xi

L∑
l=li

(Wl −Wl+1) =
L∑
l=0

(Wl −Wl+1)
∑
i:li≤l

xi .

Similarly, we have
∑n

i=1 xiv
′
i =

∑L
l=0(Wl −Wl+1)

∑
i:l′i≤l

xi. By Lemma 4.4.5, we

have v′ ⋅ x ≤ �v ⋅ x. □

By Lemma 4.4.2 and Lemma 4.4.4, we have the following:

Corollary 4.4.6 For any v ∈ T0 and any allocation x such that x1 ≥ ⋅ ⋅ ⋅ ≥ xn, we

have: �(1− �/4)v ⋅ x ≤ E(D(v)) ⋅ x ≤ �v ⋅ x.

Now we prove the approximation guarantee of our mechanism. Given any bid

vector v, without loss of generality, we may assume v ∈ T0. Let z∗ be the optimal

solution of social welfare maximization for v and x∗ be the solution output by our

mechanism. In addition, let y∗ be the optimal solution for the typical bid E(D(v)).

Then, by Corollary 4.4.6, we have

v ⋅ x∗ ≥ 1

�
E(D(v)) ⋅ x∗ . (18)

Since our algorithm is maximum-in-range, allocation x∗ is at least as good as the

allocation by algorithm A with respect to typical bid vector E(D(v)). Hence, we

have

E(D(v)) ⋅ x∗ ≥ 1

�
E(D(v)) ⋅ y∗ . (19)

63

Further, by optimality of y∗ and Corollary 4.4.6, we have

E(D(v)) ⋅ y∗ ≥ E(D(v)) ⋅ z∗ ≥ �
(

1− �

4

)
v ⋅ z∗ . (20)

Since we choose � and � such that �/� = 1 + �/2, by equation 18, 19 and 20, we

have v ⋅z∗ ≤ �(1 + �/2)/(1− �/4)v ⋅x∗ ≤ �(1 + �)v ⋅x∗. This completes our analysis.

4.5 Summary

In this chapter, we provide two black-box reductions for the class of symmetric single-

parameter problems. Arguably, this is the first time such results are shown in the

prior-free setting for a broad class of problems. An interesting and important future

direction is to either generalize our result to multi-parameter problems, or establish

lower bounds on the approximabilities for truthful mechanisms, or at least, maximum-

in-range mechanisms.

64

CHAPTER V

OPTIMAL AUCTION DESIGN

5.1 Introduction

Optimal auction design is an important subject that has been heavily studied in

both economics and theoretical computer science. Among the accomplished research

in this area, a solid part is focused on single-item auction, which serves as a basic

that provides insight to other more complicated problems. In the seminar paper [38],

Myerson gave a complete characterization of the optimal single-item auction in the

setting where bidders’ valuations are drawn from independent distributions. However,

the design of optimal auction with correlated bidders was left open.

From the economics aspect, a natural attempt for solving this problem is to gen-

eralize Myerson’s characterization. Unfortunately, most results obtained via this ap-

proach are for restricted special cases, see [35] for a survey. On the other hand, from

a computer science aspect, two research directions (see [13]) were suggested.

The first one is the introduction of approximation algorithms into optimal auction

design. In other word, instead of providing a characterization of the optimal auction,

which might not even exist, one would look for efficient algorithms that guarantee

the approximate optimality.

Along this direction, two computational models were considered-the explicit model

[41] and the oracle model [44]. In the explicit model, the running time of an algorithm

has to be polynomial in the support size of the distribution. However, in the oracle

model, the algorithm is only allowed to make polynomially many queries to an oracle

that returns the conditional distribution of a set of bidders given the values of the re-

maining ones. Although several positive and negative results have been discovered in

65

both models [13, 41, 44, 45], understanding the approximability of the optimal auction

remains as a major challenge.

The second direction suggested is to relax the solution concept to truthfulness-

in-expectation. One advantage of such relaxation is that the optimal truthful-in-

expectation auction can be described as a linear program [13] whose size is polynomial

in the support of the distribution, hence can be computed efficiently in the explicit

model.

Based on this observation, Dobzinski et.al. [13] studied a class of truthful-in-

expectation mechanisms called k-lookahead. To be precise, for any fixed constant k,

the k-lookahead mechanism runs the linear program among the k bidders with the

highest bids, conditioning on the remaining bidders. Since k is a constant, the linear

program can be solved efficiently in the oracle model.

In, [13], the authors showed that the k-lookahead mechanism has approximation

ratio 3k−1
2k−1

. As usual in computer science, improving this approximation ratio would

be an important issue in this direction. Furthermore, a question that is of theoret-

ical interest itself is the task of evaluating the gap between truthful-in-expectation

and deterministically truthful mechanisms. Obviously, one would expect truthful-in-

expectation mechanisms to achieve more revenue than the deterministic ones. Dobzin-

ski et.al. showed that the gap is at most a factor of 5/3 by an elegant derandomization

of the 2-lookahead mechanism. Closing the gap further requires either better truthful-

in-expectation mechanisms that can be derandomized, or simply tighter analysis of

the 2-lookahead mechanism.

Our results In this chapter, we contribute to both research directions mentioned

earlier by providing more delicate analysis of the k-lookahead mechanisms in the

oracle model. We show that the approximation ratio of k-lookahead mechanism is at

least e1−1/k

1+e1−1/k , which improves the ratio given in [13]. In particular, our result implies

66

that 2-lookahead mechanism is at least
√
e

1+
√
e
-approximate and interestingly, we prove

that our analysis is tight by showing an example in which 2-lookahead mechanism

obtains exactly
√
e

1+
√
e

fraction of the optimal revenue.

Our analysis is based on the clever idea from [13] of comparing the revenue ob-

tained by k-lookahead mechanism to the t-fixed-price and t-pivot auctions. The nov-

elty of our approach is that instead of picking only one threshold t, we consider a

series of thresholds t1, ..., tm and choose the best series. Apparently, our analysis will

lead to better ratio but become more complicated. Therefore, new idea and technique

will be introduced for our analysis.

Related work The celebrated result of Myerson [38] initiated the research in op-

timal auction design. In the paper, Myerson studied the case of single-item auction

with independent bidders. An important open question left was the optimal auction

for correlated bidders.

As we mentioned, an economic approach of studying the single-item auction is

via characterizing the revenue maximizing mechanism for special distributions, see

[35]. One exception is [11] by Cremer and McLean where they relax the individually

rational constraint and obtain mechanisms that extract the full social welfare.

From the computer science stand point, Ronen [44] gave the first efficient mecha-

nism in the oracle model called 1-lookahead that 2-approximates the optimal revenue.

In [45], Ronen and Saberi further proved that no deterministic efficient ascending auc-

tion can do better than 3
4
. On the other hand, in the explicit model, Papadimitiou

and Pierrakos [41] showed that although the optimal auction for two bidders can be

computed efficiently, it is NP-hard to do so for more than three bidders.

Most recently, Dobzinski, Fu and Kleinberg [13] generalize the 1-lookahead mecha-

nism to k-lookahead, which is truthful in expectation and efficient in the oracle model.

They prove that the approximation ratio of k-lookahead is 3k−1
2k−1

. They further show

67

that 2-lookahead can be derandomized, which implies a gap of at most 5/3 between

deterministic and truthful-in-expectation mechanisms.

Organization We first provide some preparation and terminology in section 5.2.

We present our analysis of k-lookahead mechanism in section 5.3 and the tightness

example for 2-lookahead will be described in section 5.4.

5.2 Preliminary

In this section, we formally define our problem and provide some useful facts that

will be needed in the future discussion.

In a single-item auction, a seller wishes to sell one item to a group of n self-

interested bidders. Each bidder has a private valuation vi ∈ ℝ+. We assume that

there is a publicly known distribution D on the valuation space of the bidders. In

this chapter, we make no assumption on the distribution. In particular, bidders’

valuations could be correlated. Since we only consider truthful mechanisms in this

paper, we will equalize the notions of bid and valuation.

An auction M is a mechanism that takes a bid vector v and then decides who

wins the item and for what price. We use (x,p) to denote the allocation and payment

where xi(v) is the probability that bidder i gets the item and pi(v) is her expected

payment. Here, the goal of each bidder i is to maximize her own utility defined as

xivi − pi.

A mechanism is deterministically truthful if reporting the true valuation is a dom-

inant strategy for each agent and we say that a randomized mechanism is universally

truthful if the mechanism is a probability distribution over deterministically truthful

mechanisms. At last, truthful-in-expectation is a weaker notion in which an agent

maximizes her expected utility by being truthful. It is easy to see that every deter-

ministically truthful mechanism is universally truthful and every universally truthful

mechanism is truthful in expectation.

68

In this chapter, we are interested in designing truthful-in-expectation mechanisms.

From now on, without particular specification, we will simply say a mechanism is

truthful if it is truthful-in-expectation and an optimal auction is referred to a truthful-

in-expectation mechanism that maximizes the seller’s expected profit

ED[M] = Ev∼D(
n∑
i=1

pi(v))

on input distribution D.

An useful observation is that the optimal auction can be described by the following

linear program [13].

max
∑
v∼D

PrD(v)
∑
i

pi(v)

s.t.
∑
v,i

xi(v) ≤ 1, ∀v, i;

xi(v)vi − pi(v) ≥ xi(v
′
i, v−i)vi − pi(v′i, v−i), ∀i,v, v′i;

xi(v) ≥ 0, pi(v) ≥ 0 ∀i,v;

pi(0, v−i) = 0, ∀i, v−i.

Here, v−i be the valuation vector of all bidders except bidder i, i.e. v−i = (v1, ⋅ ⋅ ⋅ , vi−1, vi+1, ⋅ ⋅ ⋅ , vn)

and (v′i, v−i) denotes the vector (v1, ⋅ ⋅ ⋅ , vi−1, v
′
i, vi+1, ⋅ ⋅ ⋅ , vn). As one can see, the

size of the linear program is polynomial in the support size of the distribution, which

implies that the optimal auction can be computed efficiently in the explicit model.

However, the linear program is not generally efficient in the oracle model, unless the

number of bidders is a constant. This motivates the study of k-lookahead mechanisms

[13, 44].

In a k-lookahead mechanism, we find the k bidders with the highest values.

Without lose of generality, we assume these k bidders are v1, v2, ⋅ ⋅ ⋅ , vk and denote

the set of these k bidders by K. Next we get the conditional distribution DK on

69

v′i ≥ max{vj∣j ∕∈ K}(∀i ∈ K) and vk+1, ⋅ ⋅ ⋅ , vn is fixed. Then we reject the bid-

ders not in K and use the mentioned linear program for distribution DK to get the

allocation vector xK and payment vector pK .

In this paper, we will investigate the approximation ratio of the k-lookahead mech-

anism. Here, we say an auction M is a c-approximation mechanism if ED[M]
ED[OPT]

≥ c

where OPT is the revenue-maximizing valid auction on distribution D.

Finally, the following theorem provides a characterization of deterministic mech-

anisms for single item auctions, which will be useful in the analysis of 2-lookahead

mechanism.

Theorem 5.2.1 [38] A deterministic mechanism, with allocation and payment rule

q,p respectively, is truthful if and only if for each bidder i and each v−i, the following

conditions hold:

1. Monotone Allocation: qi(vi, v−i) ≤ qi(v
′
i, v−i) for all vi ≤ v′i;

2. Threshold Payment: There exists a threshold ti(v−i) such that pi(vi, v−i) =

ti(v−i) ⋅ qi(vi, v−i).

5.3 The Approximation Ratio

In this section, we present our main result. From now on, we fix a constant k and let

K be the agents with the highest k bids. Let DK be the conditional distribution of

bidders in K conditioned on the remaining bidders. We show that the approximation

ratio of k-lookahead mechanism is at least e1−1/k

1+e1−1/k .

Our high-level idea is to partition the optimal revenue into different components.

Then we design several auctions that only sell the item in K and each of them

approximately realizes part of the components. The revenues of these auctions provide

a lower bound on the revenue of k-lookahead since it is the optimal auction that only

sells the item to bidders in K.

70

In the following, we always assume that the optimal revenue is 1. Now we consider

the expected revenue of the k-lookahead auction. As we mentioned before, we first

partition the optimal revenue into four parts.

Definition 2 Fix the optimal auction, for any t > 1, we define L(t), L̃(t), M(t), H(t)

as follows:

1. L(t):the expected revenue from bidders in N∖K for instances where no bidder

in K has value at least t ⋅ vk+1.

2. L̃(t):the expected revenue from bidders in N∖K for instances where there are

some bidders in K whose valuations are at least t ⋅ vk+1.

3. M(t):the expected revenue from bidders in K for instances where no bidder in

K has value at least t ⋅ vk+1.

4. H(t):the expected revenue from bidders in K for instances where there are some

bidders in K whose valuations are at least t ⋅ vk+1.

Let the expected revenue from K in the optimal auction be �(� ≤ 1). By our

definition, M(t) +H(t) = � and L(t) + L̃(t) = 1− � for all t ≥ 1.

Lemma 5.3.1 The expected revenue of k-lookahead auction is at least �.

Proof: Consider the following auction: If the optimal auction sells the item to

bidder i in K with probability xi and pi, we still sell the item to i with probability

xi and ask for a payment pi. Otherwise no one gets the item. This mechanism

might not be truthful because it is possible that some bidder in N∖K raises her bid

so that she becomes a bidder in K and has a chance to get the item. To make this

mechanism truthful, we raise the expected payment of each bidder i by max{0, (vk+1−

pi(vk+1, v−i)) ⋅ xi(vk+1,v−i)
xi(v)

}. This is then a truthful mechanism with expected revenue

71

at least �. Furthermore, one can see that the mechanism only sells the item to bidders

in K, therefore, the expected revenue of k-lookahead auction is at least �. □

The above lemma provides a lower bound on the revenue of k-lookahead related

to the components of M and H in the optimal auction. To get more such bounds,

we need the following auctions first introduced by Dobzinski, Fu and Kleinberg [13].

Suppose there is a thresholds t ≥ 1. Without lose of generality, we assume vk+1 is

the highest valuation not in K:

1. t-Fixed Price Auction: Select one bidder j from K uniformly at random. If

there is any bidder in K∖{j} has valuation at least t ⋅vk+1 then he gets the item

with payment t ⋅ vk+1. If there are several bidders satisfy this condition, break

ties arbitrary. Otherwise, we allocate the item to bidder j with a payment vk+1.

2. t-Pivot Auction: Select one bidder j from K uniformly at random. If there is

any bidder in K∖{j} has valuation greater than t ⋅ vk+1, we choose the bidder

i with the smallest index. We run the k-lookahead auction on the conditional

distribution D′k that fixed the valuations of bidders not in K, required v′l ≥

vk+1(l ∈ K) and v′i ≥ t ⋅ vk+1. Otherwise, we allocate the item to bidder j with

a payment vk+1.

It is easy to verify that t-Fixed Price Auction is truthful. To check t-Pivot Auction

is truthful, the only case we should be careful is that some bidder i raises her valuation

and let the mechanism run the k-lookahead auction. However, bidder i must be the

only bidder whose valuation is no less than t ⋅vk+1 in this case. Therefore k-lookahead

auction runs under the conditional distribution that vi > t ⋅ vk+1. As a result, her

payment must be at least t ⋅ vk+1, which exceeds her actual valuation. Therefore,

t-Pivot auction is truthful.

In the following, we will choose a series of s threshold values t1 < t2 < ⋅ ⋅ ⋅ < ts

(whose values will be determined later) and relate the revenue of each ti-Fixed Price

72

Auction and ti-Pivot Auction to the four components of the optimal revenue defined

earlier.

To be precise, assume that t0 = 1 and we define Mi = M(ti) − M(ti−1) ≥ 0

which is the revenue from K in the optimal auction when the highest valuation is in

[ti−1 ⋅ vk+1, ti ⋅ vk+1).

Lemma 5.3.2 The expected revenue of ti-Fixed Price Auction is at least Pi = L(ti)+∑i
j=1

Mj

tj
+ (k−1

k
ti + 1

k
)(L̃(ti) +

∑s
j=i+1

Mj

tj
).

Proof: We consider two cases. In the first case, there is no bidder in K whose

valuation is greater or equal than ti ⋅ vk+1. So the auction allocates the item to the

selected bidder j with payment vk+1. The corresponding expected revenue in the

optimal auction is L(ti) +
∑i

j=1Mj. From the definition of Mi, the revenue of our

auction is at least L(ti) +
∑i

j=1
Mj

tj
.

In the second case, there are some bidders whose valuations are at least ti ⋅vk+1. In

our auction, the auction will obtain ti ⋅ vk+1 with probability at least k−1
k

. Otherwise

the auction will obtain at least vk+1. Therefore the expected revenue of this auction

is at least (k−1
k
ti + 1

k
)L̃(ti) when the optimal auction allocates the item to bidders

not in K. At the same time, the expected revenue of this auction is at least (k−1
k
ti +

1
k
)
∑s

j=i+1
Mj

tj
when the optimal auction allocates the item to K.

From all discussion above, the expected revenue of ti-Fixed Price Auction is at

least Pi = L(ti) +
∑i

j=1
Mj

tj
+ (k−1

k
ti + 1

k
)L̃(ti) + (k−1

k
ti + 1

k
)
∑s

j=i+1
Mj

tj
. □

Similarly, we can prove the following:

Lemma 5.3.3 The expected revenue of ti-Pivot Auction is at least Qi = L(ti) +∑i
j=1

Mj

tj
+ k−1

k
H(ti) + 1

k
(L̃(ti) +

∑s
j=i+1

Mj

tj
).

Let Ri = max{Pi, Qi} and we can see that max1≤i≤sRi is a lower bound on the

revenue of k-lookahead. From the above lemma, this lower bound is explicitly related

73

to the components M,H,L and L̃. In the following, we will choose s large enough and

t1, ..., ts appropriately to obtain a lower bound on max1≤i≤sRi that is only related to

�. Together with Lemma 5.3.1, we will get the desired approximation ratio.

Now we prove this lower bound:

Lemma 5.3.4 max1≤i≤sRi ≥ 1− e−(1−1/k)�.

Proof: To prove this lemma, we need to eliminate the explicit dependency of

max1≤i≤sRi to the components of M,H,L and L̃.

First of all, for each ti, we can replace L̃(ti) by 1− �− L(ti) and simplify Pi as:

Pi = (
k − 1

k
ti +

1

k
)(1−�)− (

k − 1

k
ti +

1

k
− 1)L(ti) +

i∑
j=1

Mj

tj
+

s∑
j=i+1

(
k − 1

k
ti +

1

k
)
Mj

tj
.

Similarly, we can replace H(ti) by �−M(ti) and further replace M(ti) by
∑i

j=1Mj

to get:

Qi =
k − 1

k
� +

1

k
(1− �) +

k − 1

k
L(ti) +

i∑
j=1

(
1

tj
− k − 1

k
)Mj +

s∑
j=i+1

1

k

Mj

tj
.

Now we are ready to eliminate L(ti). Since Ri = max{Pi, Qi}, we have that

Ri ≥
1

ti
Pi +

ti − 1

ti
Qi = 1− (

k − 1

kti
+

1

k
)� +

s∑
j=1

Mj

tj
− k − 1

k
(1− 1

ti
)

i∑
j=1

Mj.

At last, we will eliminate Mj for all j. Observe that max1≤i≤sRi is lower bounded

by the average, we have the following:

s max
1≤i≤s

Ri

≥
s∑
i=1

Ri

≥ s−
s∑
i=1

(
k − 1

kti
+

1

k
)� + s

s∑
j=1

Mj

tj
−

s∑
i=1

k − 1

k
(1− 1

ti
)

i∑
j=1

Mj

= s−
s∑
i=1

(
k − 1

kti
+

1

k
)� + s

s∑
j=1

Mj

tj
−

s∑
j=1

[s∑
i=j

k − 1

k
(1− 1

ti
)
]
Mj

= s−
s∑
i=1

(
k − 1

kti
+

1

k
)� +

s∑
j=1

[s
tj
−

s∑
i=j

k − 1

k
(1− 1

ti
)
]
Mj.

74

Therefore, in order to eliminate Mj for all j, we only need to choose t1, ..., ts such

that

s

tj
−

s∑
i=j

k − 1

k
(1− 1

ti
) = 0 (21)

for all 1 ≤ j ≤ s.

As long as we can find such t1, ..., ts, we have:

max
1≤i≤s

Ri ≥ 1−
[k − 1

k
⋅ 1

s

s∑
i=1

1

ti
+

1

k

]
�. (22)

Observe that if we denote 1
tj

by zj, (21) is equivalent to the system of linear

equations A ⋅ z = (s, s− 1, ..., 1)T where A is the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k
k−1

s+ 1 1 1

0 k
k−1

s+ 1 1 ... 1

0 0 k
k−1

s+ 1

... 1

0 0 ... 0 k
k−1

s+ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For the ease of notation, we use � to denote k
k−1

. It is easy to see that A is

invertible and its inverse is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
�s+1

− 1
(�s+1)2

− �s
(�s+1)3

... − (�s)s−2

(�s+1)s

0 1
�s+1

− 1
(�s+1)2

... − (�s)s−3

(�s+1)s−1

0 0 1
�s+1

... ...

... − 1
(�s+1)2

0 0 ... 0 1
�s+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Therefore, the system of equations has a unique solution z = A−1(s, s− 1, ..., 1)T .

Moreover, we have the following:

75

z1 + ...+ zs

= (1, 1, ..., 1)
[
A−1(s, s− 1, ..., 1)T

]
=

[
(1, 1, ..., 1)A−1

]
(s, s− 1, ..., 1)T

=
s∑
i=1

(�s)i−1

(�s+ 1)i
(s− i+ 1)

= �s
(�s

1 + �s

)s
+ (1− �)s.

Therefore, if we replace zi back by 1
ti

for all i, we have:

1

s

s∑
i=1

1

ti
= �

(�s

1 + �s

)s
+ (1− �)

and hence

lim
s→∞

1

s

s∑
i=1

1

ti
= �e−1/� + 1− � =

k

k − 1
e−(1−1/k) − 1

k − 1
.

Together with (22), we have max1≤i≤sRi ≥ 1− e−(1−1/k)�. □

Finally, we are ready to prove:

Theorem 5.3.5 The approximation ratio of k-lookahead mechanism is at least e1−1/k

1+e1−1/k .

Proof: Let revk be the revenue of the k-lookahead mechanism. From Lemma 5.3.4,

we know that revk ≥ 1− e−(1−1/k)�. Together with Lemma 5.3.1, we have

revk ≥ max{�, 1− e−(1−1/k)�}.

Simple calculation shows that for all positive value x,

max{�, 1− x�} ≥ 1

1 + x
.

Therefore, we have revk ≥ e1−1/k

1+e1−1/k . This completes our proof. □

76

5.4 Tightness of Analysis

In the last section, we showed that the approximation ratio of k-lookahead is e1−1/k

1+e1−1/k .

In particular, the 2-lookahead mechanism, which is of special interest, has an approx-

imation ratio of at least
√
e

1+
√
e
. In this section, we design an example to show that our

analysis for 2-lookahead is tight. To do so, we need some definitions.

Since 2-lookahead auction is a deterministic mechanism, it either allocates the

item, or does not allocate to anyone. We will consider the empty instances that a

2-lookahead mechanism doesn’t allocate the item. We use empt(D) to denote the

empty probability that empty instances occur on a distribution D. In the following,

we will use E2(D) to denote the 2-lookahead mechanism with the maximum empty

probability.

In a setting where there are only three bidders, we say that a distribution D is

valid, if the third bidder always has valuation v3 = 1 and the valuations of the other

two bidders are at least 1.

We first prove a property of valid distributions. Let rev2(D) and opt(D) denote the

revenue of the 2-lookahead and the optimal auction for a distribution D respectively.

Lemma 5.4.1 Let D be a valid distribution on three bidders, then we have opt(D) ≥

rev2(D) + empt(D).

Proof: Consider this auction A: run the 2-lookahead auction and if it allocates the

item to bidder i in K = {1, 2} with payment p, we still allocate the item to i with

payment p. Otherwise we allocate the item to bidder 3 with payment 1. A remark

here is that if the bids are not consistent with a valid distribution, we do not allocate

the item. It is easy to see that A is truthful, and its revenue is rev2(D) + empt(D).

Therefore, opt(D) ≥ rev2(D) + empt(D). □

The above lemma provides a lower bound of opt. In the following, we will explicitly

construct a valid distribution D such that empt(D) ≥ rev2(D)√
e

, hence prove our desired

77

ratio.

In our example, there are three bidders and the third bidder’s valuation is always 1.

Now we construct the distribution D2 for the first two bidders explicitly. We assume

that there are m possible valuations p0, p1, ⋅ ⋅ ⋅ , pm(m is an odd number). Then we

define x0 = 1 and xi = (1 + p)i − (1 + p)i−1 = p(1 + p)i−1 for 1 ≤ i ≤ m where p is a

parameter. We will set the value of p and choose p1, ..., pm later. One can see that a

property of our construction is
∑

0≤i≤j xi = (1 + p)j for all j ≤ m.

Now consider this following distribution matrix D2 where D2(i, j) denotes the

probability of v1 = pi, v2 = pj:

pm xmx0 0 0

pm−1 xm−1x0 (xm−1 + xm)x1 0 . . . 0

.

p1 x1x0 x1x1 . . . x1(xm−1 + xm) 0

p0 x0x0 x0x1 . . . x0xm−1 x0xm

p0 p1 . . . pm−1 pm

Namely:

D2(i, j) =

⎧⎨⎩

0 i+ j > m

xixj i+ j < m

xi(
∑

j≤k≤m xk) (i+ j = m) and (i < j)

(
∑

i≤k≤m xk)xj (i+ j = m) and (i > j)

In fact, D2 should be normalized to become a distribution. However, since we

only care about the ratio between empt(D) and rev2(D), we will simply use D2 as the

distribution without normalizing. From now on, we will simply use E2, rev2 and empt

to denote E2(D), rev2(D) and empt(D).

Now we choose p0 = 1 and pi =
∑

0≤j≤m xj∑
j≥i xj

for all 1 ≤ i ≤ m. Therefore, we have

p0 ≤ p1 ≤ ⋅ ⋅ ⋅ ≤ pm. Furthermore,we obtain the following characterization of the

event that E2 allocates the item:

78

Lemma 5.4.2 Let pi, pj be the bid of bidder 1 and 2 respectively, then E2 allocates

the item if and only if i+ j = m.

Proof: First of all, by our choice, it is easy to verify the following:

Property 5.4.3 If i < m/2, then:

p0

(∑
0≤k≤m−i

D2(i, k)
)

= ⋅ ⋅ ⋅ = pj
(∑
j≤k≤m−i

D2(i, k)
)

= ⋅ ⋅ ⋅ = pm−iD2(i,m−i) = xi
∑
l

xl.

Basically, this property can be interpreted as follows: fix v1 = pi, the expected

revenue obtained by offering bidder 2 a threshold price pj is a constant when 0 ≤ j ≤

m− i. As a result, recall that by Theorem 5.2.1, the winner in a single item auction

pays the threshold price, we have:

Corollary 5.4.4 In E2, t2(v1) ≥ pm−i when v1 = pi for all i < m/2. Similarly,

t1(v2) ≥ pm−j when v2 = pj for all j < m/2.

The proof of the corollary is straightforward: Suppose v1 = pi for some i < m/2.

If t2(v1) < pm−i, then we can always increase the threshold price to pm−i without

decreasing the revenue. By doing this, we only increase the empty probability. This

is a contradiction to our assumption that E2 maximizes the empty probability.

Now we are ready to prove the lemma. If it is not true, suppose i + j < m

but E2 allocates the item to either bidder 1 or 2. Consider the smallest sum of

i + j that satisfies the above. Without lose of generality, we may assume i < m/2.

From Corollary 5.4.4, since i + j < m, we know that bidder 2 can not get the item.

Therefore, bidder 1 gets the item when v1 = pi and v2 = pj. At the same time,

j > m/2 otherwise we can get a contradiction from Corollary 5.4.4. So bidder 1 still

gets the item when v1 = pm−j > pi and v2 = pj.

Now we show that we can modify the allocation of E2 when v2 = pj to get more

empty probability and the expected revenue of modified auction is not less than the

79

original one. Let E ′2 be an auction as follows: (1) it performs exactly the same as

E2 when v2 ∕= pj and (2) when v2 = pj, E
′
2 allocates the item to bidder 2 only when

v1 = pm−j and otherwise allocates nothing.

Obviously, E ′2 has a larger empty probability than E2. To get a contradiction, we

only need to prove that its expected revenue is at least as large as E2. In other words,

we want to show:

pjDK(m− j, j) ≥ pi

m−j∑
k=i

DK(k, j) (23)

By our construction, simple calculation shows that (23) is equivalent to the fol-

lowing

p(1 + p)m−j−1
(
(1 + p)j−1 −

i−1∑
l=0

xl
)

≥p(1 + p)j−1
(
(1 + p)m−j−1 −

i−1∑
l=0

xl
)
,

which always holds when j > m/2. This is a contradiction. □

By the above characterization, we can easily calculate rev2 and empt. We will show

that by choosing the parameter p appropriately, rev2 ≤
√
e ⋅ empt, which implies:

Theorem 5.4.5 The approximation ratio of 2-lookahead auction is at most
√
e√
e+1

.

Proof: By Lemma 5.4.2 and our construction, we first estimate rev2 as follows:

rev2 ≤
∑

i,j:i+j=m

pjD2(i, j) = 2(
∑

0≤i<m/2

xi)(
m∑
l=0

xl) = 2(1 + p)3m/2.

Now we compute the empty probability empt. Again, by Lemma 5.4.2, we have

80

empt =
∑

i,j:i+j<m xixj, which can be calculate as follows:

∑
i,j:i+j<m

xixj

=
m−1∑
i=0

m−1−i∑
j=0

xixj

= p(1 + p)m−2 +
m−2∑
i=0

m−1−i∑
j=0

xixj

= p(1 + p)m−2 +
m−2∑
i=0

xi(1 + p)m−1−i

= p(1 + p)m−2 + (1 + p)m−1 +
m−2∑
i=1

xi(1 + p)m−1−i

= p(1 + p)m−2 + (1 + p)m−1 +
m−2∑
i=1

p(1 + p)m−2

= p(1 + p)m−2 + (1 + p)m−1 + (m− 2)p(1 + p)m−2

Now we set p = 1/m and let m → ∞, we have rev2 ≤ 2e3/2 and empt ≥ 2e.

Therefore, rev2 ≤
√
e ⋅empt. Therefore, by our previous argument, the approximation

ratio of 2-lookahead auction is at most
√
e√
e+1

. □

5.5 Discussion

Perhaps the first question that every theoretical computer scientist would ask here is

whether the analysis of the k-lookahead mechanism can be improved in general. A

nature attempt for this question from the negative aspect is to generalize our tight

instance for 2-lookahead in section 5.4 to the k-lookahead for general k. In particular,

one might consider the following distribution DK(i1, ..., ik) for the set K of the highest

k bidders:

1. DK(i1, ⋅ ⋅ ⋅ , ik) = 0: there exists p, q ∈ [k] such that p ∕= q and ip + iq > m.

2. DK(i1, ⋅ ⋅ ⋅ , ik) =
∏

j∈K xij : for all p, q ∈ [k](p ∕= q), we have ip + iq < m.

81

3. DK(i1, ⋅ ⋅ ⋅ , ik) =
∏

j∈K∖{l} xij ⋅
∑m

j=il
xj: maxp,q∈[k](p∕=q){ip + iq} = m. Without

lose of generality, we assume il = max{i1, ⋅ ⋅ ⋅ , ik}.

Again, we assume that the highest bid outside K is vk+1 = 1. Similar to the analysis

for 2-lookahead, we can prove that k-lookahead allocates to some bidder in K if

and only if i1, i2, ⋅ ⋅ ⋅ , ik is such that maxp,q∈[k](p ∕=q){ip + iq} = m. However, simple

calculation implies that the ratio between the empty probability and the revenue

of the k-lookahead is at most 2/k. This only implies a k
k+2

upper bound on the

approximation ratio of the k-lookahead mechanism. Therefore, to obtain better upper

bound, if possible, one might need new ideas and techniques.

From the positive aspect, one might improve the analysis via the following ap-

proach: Instead comparing the revenue of k-lookahead to t-fixed price and t-pivot

auctions, we could compare to more delicate auctions such as a hybrid of t1-fixed

price and t2-pivot auctions for distinct values of t1, t2. Obviously, these auctions

would provide better revenue, however, the difficulty here is to show that the hybrid

mechanism is truthful.

Another interesting open question is to further close the gap between the rev-

enues of the optimal deterministically truthful and truthful-in-expectation mecha-

nisms. Our analysis of 2-lookahead implies that the gap is at most a factor of 1+
√
e√
e

.

As we mentioned, our analysis is tight, hence closing the gap further requires better

truthful-in-expectation mechanisms which can be derandomized.

5.6 Summary

In this chapter, we study the optimal auction design problem in the fundamental set-

ting of single-item setting. We make no assumption on the distribution of the bidders’

valuations. In particular, the bidders might not be independent. We study this prob-

lem from a computer science aspect, i.e. we design efficient truthful mechanisms that

82

obtain the approximate optimality. We show that the approximation ratio of the k-

lookahead mechanism is at least e1−1/k

1+e1−1/k and the analysis is tight for 2-lookahead. An

interesting open question is to either improve the analysis of k-lookahead for general

k ≥ 3 or design examples to show that our analysis is already tight.

83

CHAPTER VI

CONCLUSION

As we have seen, problems in multi-agent systems introduce new challenges in the

theory of algorithm design. In these problems, economic considerations such as op-

timization and game theory become necessary in their solutions. At the same time,

due to the complex dependency of multiple agents, usually approximation serves as

a guiding principle in solving these problems. As a consequence, approximation al-

gorithm design in multi-agent systems becomes one of the most important areas in

the theory of computing. In this thesis, we contribute to this area in two directions.

We first generalize the classical combinatorial optimization to the submodular setting

which fits into the multi-agent systems; then we design truthful mechanisms with ap-

proximate optimality for some auction environments. In fact, our work is also closely

related to other directions in the multi-agent systems such as equilibrium computa-

tion, and we believe that the algorithmic and game-theoretic insights gained will help

better understand the real-world and theoretical problems.

84

CHAPTER VII

BIBLIOGRAPHIC NOTE

Most of the research that appears in this thesis was published in theoretical computer

science conferences.

Chapter 2 and 3 are based on two papers “Approximability of Combinatorial Prob-

lems with Multi-agent Submodular Cost Functions” and “Optimal Approximation Al-

gorithms for Multi-agent Combinatorial Problems with Discounted Price Functions”

([18, 20]) with Gagan Goel, Chinmay Karande and Pushkar Tripathi.

In Chapter 3, the simple black-box reduction is a modification of the one given

in the paper “Single Parameter Combinatorial Auctions with Partially Public Valu-

ations” ([19]) with Gagan Goel and Chinmay Karande. The main result which is a

factor reserving reduction is based on the paper “Black-box Reductions in Mechanism

Design”([26]) with Zhiyi Huang and Yuan Zhou. Chapter 4 is a working paper with

Xue Chen and Pinyan Lu.

85

REFERENCES

[1] Alon, N., Moshkovitz, D., and Safra, S., “Algorithmic construction of sets
for k-restrictions,” ACM Trans. Algorithms, vol. 2, no. 2, pp. 153–177, 2006.

[2] Ausubel, L. M. and Milgrom, P., “The lovely but lonely vickrey auction,”
in Combinatorial Auctions, chapter 1, MIT Press, 2006.

[3] Babaioff, M., Lavi, R., and Pavlov, E., “Single-value combinatorial auc-
tions and implementation in undominated strategies,” in Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), 2006.

[4] Balcan, M.-F., Blum, A., Hartline, J. D., and Mansour, Y., “Mech-
anism design via machine learning,” in Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2005.

[5] Bar-Yehuda, R. and Even, S., “A linear time approximation algorithm for
the weighted vertex cover problem,” Journal of Algorithms, vol. 2, pp. 198–203,
1981.

[6] Bei, X. and Huang, Z., “Bayesian incentive compatibility via fractional assign-
ments,” in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2011.

[7] Bollobas, B., Random Graphs. Cambridge University Press, 2001.

[8] Briest, P., Krysta, P., and Vocking, B., “Approximation techniques for
utilitarian mechanism design,” in Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing (STOC), 2005.

[9] Calinescu, G., Chekuri, C., Pal, M., and Vondrak, J., “Maximizing
a submodular set function subject to a matroid constraint,” in Proceedings of
the 12th international conference on Integer Programming and Combinatorial
Optimization (IPCO), 2007.

[10] Clarke, E. H., “Multipart pricing of public goods,” Public Choice, vol. 11,
September 1971.

[11] Cremer, J. and McLean, R. P., “Optimal selling strategies under uncertainty
for a discriminating monopolist when demands are interdependent,” Economet-
rica, vol. 53, pp. 345–61, March 1985.

[12] Dinur, I. and Safra, S., “On the hardness of approximating minimum vertex
cover,” Annals of Mathematics, vol. 162, no. 1, pp. 439–486, 2005.

86

[13] Dobzinski, S., Fu, H., and Kleinberg, R., “Optimal auctions with correlated
bidders are easy,” in Proceedings of the 43rd Annual ACM Symposium on Theory
of Computing (STOC), 2011.

[14] Dughmi, S. and Roughgarden, T., “Black-box randomized reductions in
algorithmic mechanism design,” in Proceedings of the 51st Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 2010.

[15] Feige, U., Mirrokni, V. S., and Vondrak, J., “Maximizing non-monotone
submodular functions,” in Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2007.

[16] Feige, U. and Vondrak, J., “Approximation algorithms for allocation prob-
lems: Improving the factor of 1 - 1/e,” in Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2006.

[17] Fleischer, L., Fujishige, S., and Iwata, S., “A strongly polynomial-time
algorithm for minimizing submodular functions,” Journal of the ACM, vol. 48,
pp. 761–777, 2001.

[18] Goel, G., Karande, C., Tripathi, P., and Wang, L., “Approximability
of combinatorial problems with multi-agent submodular cost functions,” in Pro-
ceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2009.

[19] Goel, G., Karande, C., and Wang, L., “Single parameter combinatorial
auctions with partially public valuations,” in Proceedings of the 3rd International
Symposium on Algorithmic Game Theory (SAGT), 2010.

[20] Goel, G., Tripathi, P., and Wang, L., “Optimal approximation algorithms
for multi-agent combinatorial problems with discounted price functions,” in Pro-
ceedings of the 30th Foundations of Software Technology and Theoretical Com-
puter Science(FSTTCS), 2009.

[21] Goemans, M. X., Harvey, N. J. A., Iwata, S., and Mirrokni, V., “Ap-
proximating submodular functions everywhere,” in Proceedings of the 20th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2009.

[22] Groves, T., “Incentives in teams,” Econometrica, vol. 41, pp. 617–631, July
1973.

[23] Hartline, J., Kleinberg, R., and Malekian, A., “Bayesian incentive com-
patibility via matchings,” in Proceedings of the 22nd Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2011.

[24] Hartline, J. D. and Lucier, B., “Bayesian algorithmic mechanism design,”
in Proceedings of the 42nd Annual ACM Symposium on Theory of Computing
(STOC), 2010.

87

[25] Hayrapetyan, A., Swamy, C., and Tardos, E., “Network design for infor-
mation networks,” in Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms (SODA), 2005.

[26] Huang, Z., Wang, L., and Zhou, Y., “Black-box reductions in mechanism
design,” in Proceedings of the 14th. International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems(APPROX), 2011.

[27] Iwata, S., “A faster scaling algorithm for minimizing submodular functions,”
SIAM J. Comput., vol. 32, no. 4, pp. 833–840, 2003.

[28] Iwata, S., “Submodular function minimization,” Math. Program., vol. 112,
no. 1, pp. 45–64, 2008.

[29] Iwata, S. and Nagano, K., “Submodular function minimization under cover-
ing constraints,” in Proceedings of the 2009 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2009.

[30] Iwata, S. and Orlin, J. B., “A simple combinatorial algorithm for submod-
ular function minimization,” in Proceedings of the 19th Annual ACM -SIAM
Symposium on Discrete Algorithms (SODA), 2009.

[31] Johnson, D. S., “Approximation algorithms for combinatorial problems,”
in Proceedings of the 5th Annual ACM symposium on Theory of Computing
(STOC), 1973.

[32] Khot, S., “On the power of unique 2-prover 1-round games,” in Proceedings of
the 34th annual ACM symposium on Theory of computing (STOC), 2002.

[33] Khot, S., Lipton, R. J., Markakis, E., and Mehta, A., “Inapproxima-
bility results for combinatorial auctions with submodular utility functions,” in
Proceedings of the 1st Workshop on Internet and Network Economics (WINE),
2005.

[34] Khot, S. and Regev, O., “Vertex cover might be hard to approximate to
within 2-epsilon,” J. Computer System Science., vol. 74, no. 3, pp. 335–349,
2008.

[35] Klemperer, P., “Auction theory: A guide to the literature,” microeconomics,
EconWPA, Mar. 1999.

[36] Lavi, R. and Swamy, C., “Truthful and near-optimal mechanism design via
linear programming,” in Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2005.

[37] Mirrokni, V. S., Schapira, M., and Vondrak, J., “Tight information-
theoretic lower bounds for welfare maximization in combinatorial auctions,” in
Proceedings of the 9th ACM Conference on Electronic Commerce (EC), 2008.

88

[38] Myerson, R., “Optimal auction design,” Mathematics of operations research,
vol. 6, pp. 58–73, Feb 1981.

[39] Nisan, N. and Ronen, A., “Algorithmic mechanism design,” in Proceedings of
the 31st Annual ACM Symposium on Theory of Computing (STOC), 1999.

[40] Orlin, J. B., “A faster strongly polynomial time algorithm for submodular
function minimization,” in The 14th Conference on Integer Programming and
Combinatorial Optimization (IPCO), 2007.

[41] Papadimitiou, C. and Pierrakos, G., “On optimal single-item auctions,”
in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing
(STOC), 2011.

[42] Papadimitriou, C., Schapira, M., and Singer, Y., “On the hardness of be-
ing truthful,” in In 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2008.

[43] Raz, R. and Safra, S., “A sub-constant error-probability low-degree test, and
sub-constant error-probability pcp characterization of np,” in Proceedings of the
29th annual ACM symposium on Theory of computing (STOC), 1997.

[44] Ronen, A., “On approximating optimal auctions,” in In The 3rd ACM Confer-
ence on Electronic Commerce (EC), 2001.

[45] Ronen, A. and Saberi, A., “Optimal auctions are hard,” in IEEE Symposium
on Foundations of Computer Science (FOCS), 2002.

[46] Schrijver, A., “A combinatorial algorithm minimizing submodular functions
in strongly polynomial time,” Journal of Combinatorial Theory, Series B, vol. 80,
pp. 346–355, 2000.

[47] Sharma, Y., Swamy, C., and Williamson, D. P., “Approximation algo-
rithms for prize collecting forest problems with submodular penalty functions,”
in Proceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms
(SODA), 2007.

[48] Sviridenko, M., “A note on maximizing a submodular set function subject to
a knapsack constraint,” Operations Research Letter, vol. 32, no. 1, pp. 41–43,
2004.

[49] Svitkina, Z. and Fleischer, L., “Submodular approximation: Sampling-
based algorithms and lower bounds,” in Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2008.

[50] Svitkina, Z. and Tardos, E., “Facility location with hierarchical facility
costs,” in Proceedings of the seventeenth annual ACM-SIAM symposium on Dis-
crete algorithm (SODA), 2006.

89

[51] Vazirani, V., Approximation Algorithms. Springer-Verlag, 2003.

[52] Vickrey, W., “Counterspeculation, auctions, and competitive sealed tenders,”
The Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961.

[53] Vondrak, J., “Optimal approximation for the submodular welfare problem in
the value oracle model,” in Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC), 2008.

[54] Wolsey, L. A., “An analysis of the greedy algorithm for the submodular set
covering problem,” Combinatorica, vol. 2, no. 4, pp. 385–393, 1982.

90

