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SUMMARY

In this dissertation, we will consider three fundamental problems under the setting

of high data volume: statistical inference with distributed data, testing of independence,

and two-sample testing.

The first part of this dissertation focuses on distributed statistical inference, which has

recently attracted enormous attention. Many existing work focuses on the averaging esti-

mator, e.g., [93] together with many others. We propose a one-step approach to enhance

a simple-averaging-based distributed estimator. We derive the corresponding asymptotic

properties of the newly proposed estimator. We find that the proposed one-step estimator

enjoys the same asymptotic properties as the centralized estimator. The proposed one-step

approach merely requires one additional round of communication in relative to the averag-

ing estimator; so the extra communication burden is insignificant. In finite sample cases,

numerical examples show that the proposed estimator outperforms the simple averaging

estimator with a large margin in terms of the mean squared errors. A potential application

of the one-step approach is that one can use multiple machines to speed up large scale sta-

tistical inference with little compromise in the quality of estimators. The proposed method

becomes more valuable when data can only be available at distributed machines with lim-

ited communication bandwidth.

The second part is a statistically and computationally efficient test of independence

based on distance covariance and random projections. As we know, test of independence

plays a fundamental role in many statistical techniques. Among the nonparametric ap-

proaches, the distance-based methods (such as the distance correlation based hypotheses

testing for independence) have numerous advantages, comparing with many other alterna-

tives. A known limitation of the distance-based method is that its computational complexity
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can be high. In general, when the sample size is n, the order of computational complexity

of a distance-based method, which typically requires computing of all pairwise distances,

can be O(n2). Recent advances have discovered that in the univariate cases, a fast method

with O(n log n) computational complexity and O(n) memory requirement exists. In this

part, we show the potential of random projection in converting the multivariate problems

into multiple univariate ones. As an immediate consequence, we develop a novel test

of independence method based on random projection and distance covariance. We name

our method a Randomly Projected Distance Covariance (RPDC), which achieves nearly

the same power as the state-of-the-art distance-based approach, works in the multivariate

cases, and enjoys the O(nK log n) computational complexity and O(max{n,K}) memory

requirement, where K is the number of random projections. The empirical results even

suggest that fixed number of random projections suffice. The statistical theoretical analysis

takes advantage of some techniques on random projections, which are rooted in contempo-

rary machine learning. Numerical experiments demonstrate the efficiency of the proposed

method, in relative to several competitors.

In the third part, we apply the technique of random projections on energy statistics to

develop an efficient algorithm and derive a corresponding two-sample test. A common

disadvantage in existing distribution-free two-sample testing approaches is that the compu-

tational complexity could be high. Specifically, if the sample size is N , the computational

complexity of those two-sample tests is at leastO(N2). In this part, we develop an efficient

algorithm with complexity O(N logN) for computing energy statistics in univariate cases.

For multivariate cases, we introduce a two-sample test based on energy statistics and ran-

dom projections, which enjoys the O(KN logN) computational complexity, where K is

the number of random projections. We name our method for multivariate cases as Ran-

domly Projected Energy Statistics (RPES). We can show RPES achieves nearly the same

test power with energy statistics both theoretically and empirically. Numerical experiments

also demonstrate the efficiency of the proposed method over the competitors.
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CHAPTER I

INTRODUCTION

Parameter estimation and hypotheses testing are fundamental problems in statistics. Many

existing methods have been developed for the problems with moderate amount of data.

Unfortunately, some of those methods could be computationally costly or even infeasible

when the volume of data is high. This dissertation is an attempt to fulfill the needs for com-

putationally efficient methods in statistics. Specifically, we focus on three main topics: the

first one is distributed statistical estimation; the second one is a fast algorithm of distance

covariance and corresponding test of independence; the third one is an efficient algorithm

for energy statistics and its application in the two-sample test.

1.1 Distributed Statistical Inference

In many important contemporary applications, data are often partitioned across multiple

servers. For example, a search engine company may have data coming from a large num-

ber of locations, and each location collects tera-bytes of data per day [20]. On a different

setting, high volume of data (like videos) have to be stored distributively, instead of on a

centralized server [55]. Given the modern “data deluge”, it is often the case that central-

ized methods are no longer possible to implement. It has also been notified by various

researchers (e.g., [35]) that the speed of local processors can be thousands time faster than

the rate of data transmission in a modern network. Consequently it is evidently advanta-

geous to develop communication-efficient method, instead of transmitting data to a central

1



location and then apply a global estimator.

In statistical inference, estimators are introduced to infer some important hidden quan-

tities. In ultimate generality, a statistical estimator of a parameter θ ∈ Θ is a measurable

function of the data, taking values in the parameter space Θ. Many statistical inference

problems could be solved by finding the maximum likelihood estimators (MLE), or more

generally, M-estimators. In either case, the task is to maximize an objective function,

which is the average of a criterion function over the entire data, which is typically denoted

by S = {X1, X2, . . . , XN}, where N is called the sample size. Here we choose a capital-

ized N to distinguish from a lower n that will be used later. Traditional centralized setting

requires access to entire data set S simultaneously. However, due to the explosion of data

size, it may be infeasible to store all the data in a single machine like we did during past

several decades. Distributed (sometimes, it is called parallel) statistical inference would be

an indispensable approach for solving these large-scale problems.

At a high level, there are at least two types of distributed inference problems. In the first

type, each sample Xi is completely observed at one location; at the same time, different

samples (i.e., Xi and Xj for i 6= j) may be stored at different locations. We will focus

to this type of problems. On the other hand, it is possible that for the same sample Xi,

different parts are available at different locations, and they are not available in a centralized

fashion. The latter has been studied in the literature (see [27] and references therein). We

will not study the second type.

For distributed inference in the first type of the aforementioned setting, data are split

into several subsets and each subset is assigned to a processor. This chapter will focus on

2



the M-estimator framework, in which an estimator is obtained by solving a distributed op-

timization problem. The objective in the distributed optimization problem may come from

an M-estimator framework (or more particularly from the maximum likelihood principle),

empirical risk minimization, and/or penalized version of the above. Due to the type 1 set-

ting, we can see that the objective functions in the corresponding optimization problem are

separable; in particular, the global objective function is a summation of functions such that

each of them only depends on data reside on one machine. The exploration in this chapter

will base on this fact. As mentioned earlier, a distributed inference algorithm should be

communication-efficient because of high communication cost between different machines

or privacy concerns (such as sensitive personal information or financial data). It is worth

noting that even if the data could be handled by a single machine, distributed inference

would still be beneficial for reducing computing time.

Our work has been inspired by recent progress in distributed optimization. We review

some noticeable progress in numerical approaches and their associated theoretical analysis.

Plenty of research work has been done in distributed algorithms for large scale optimiza-

tion problems during recent years. [13] suggests to use Alternating Direction Method of

Multipliers (ADMM) to solve distributed optimization problems in statistics and machine

learning. Using a trick of consistency (or sometimes called consensus) constraints on local

variables and a global variable, ADMM can be utilized to solve a distributed version of

the Lasso problem [82, 18]. ADMM has also been adopted in solving distributed logistic

regression problem, and many more. ADMM is feasible for a wide range of problems,

but it requires iterative communication between local machines and the center. In com-

parison, we will propose a method that only requires two times iteration. [96] proposes a

3



parallelized stochastic gradient descent method for empirical risk minimization and proves

its convergence. The established contractive mappings technique seems to be a powerful

method to quantify the speed of convergence of the derived estimator to its limit. [71]

presents the Distributed Approximate Newton-type Method (DANE) for distributed statis-

tical optimization problems. Their method firstly averages the local gradients then follows

by averaging all local estimators in each iteration until convergence. They prove that this

method enjoys linear convergence rate for quadratic objectives. For non-quadratic objec-

tives, it has been showed that the value of objective function has geometric convergence

rate. [35] proposes a communication-efficient method for distributed optimization in ma-

chine learning, which uses local computation with randomized dual coordinate descent in

a primal-dual setting. They also prove the geometric convergence rate of their method.

The above works focused on the properties of numerical solutions to the corresponding

optimization problems. Nearly all of them require more than two rounds of communica-

tion. Due to different emphasis, they did not study the statistical asymptotic properties

(such as convergence in probability, asymptotic normality, Fisher information bound) of

the resulting estimators.

Now we switch the gear to statistical inference. Distributed inference has been studied

in many existing works, and various proposals have been made in different settings. To

the best of our knowledge, the distributed one-step estimator has not been studied in any

of these existing works. We review a couple of state-of-the-art approaches in the litera-

ture. Our method builds on a closely related recent line of work of [93], which presents a

straight forward approach to solve large scale statistical optimization problem, where the

4



local empirical risk minimizers are simply averaged. They showed that this averaged es-

timator achieves mean squared error that decays as O(N−1 + (N/k)−2), where N stands

for the total number of samples and k stands for the total number of machines. They also

showed that the mean squared error could be even reduced to O(N−1 + (N/k)−3) with

one more bootstrapping sub-sampling step. Obviously, there exists efficiency loss in their

method since the centralized estimator could achieve means squared error O(N−1). [47]

proposes an inspiring two-step approach: firstly find local maximum likelihood estimators,

then subsequently combine them by minimizing the total Kullback-Leibler divergence (KL-

divergence). They proved the exactness of their estimator as the global MLE for the full

exponential family. They also estimated the mean squared errors of the proposed estimator

for a curved exponential family. Due to the adoption of the KL-divergence, the effective-

ness of this approach heavily depends on the parametric form of the underlying model. [19]

proposes a split-and-conquer approach for a penalized regression problem (in particular, a

model with the canonical exponential distribution) and show that it enjoys the same oracle

property as the method that uses the entire data set in a single machine. Their approach

is based on a majority voting, followed by a weighted average of local estimators, which

somewhat resembles a one-step estimator however is different. In addition, their theoretical

results requires k ≤ O(N
1
5 ), where k is the number of machines and N is the total number

of samples; this is going to be different from our needed condition for theoretical guaran-

tees. Their work considers a high-dimensional however sparse parameter vector, which is

not considered in this chapter. [64] analyzes the error of averaging estimator in distributed

statistical learning under two scenarios. The number of machines is fixed in the first one

5



and the number of machines grows in the same order with the number of samples per ma-

chine. They presented asymptotically exact expression for estimator error in both scenarios

and showed that the error grows linearly with the number of machines in the latter case.

Their work does not consider the one-step updating that will be studied in this chapter. Al-

though it seems that their work proves the asymptotic optimality of the simple averaging,

our simulations will demonstrate the additional one-step updating can improve over the

simple averaging, at least in some interesting finite sample cases. [6] study the distributed

parameter estimation method for penalized regression and establish the oracle asymptotic

property of an averaging estimator. They also discussed hypotheses testing, which is not

covered in this chapter. Precise upper bounds on the errors of their proposed estimator have

been developed. We benefited from reading the technical proofs of their paper; however

unlike our method, their method is restricted to linear regression problems with penalty and

requires the number of machine k = o(
√
N). [41] devise a one-shot approach, which aver-

ages “debiased” lasso estimators, to distributed sparse regression in the high-dimensional

setting. They show that their approach converges at the same order of rate as the Lasso

when the data set is not split across too many machines.

It is worth noting that near all existing distributed estimator are averaging estimators.

The idea of applying one additional updating, which correspondingly requires one addi-

tional round of communication, has not be explicitly proposed. We may notice some pre-

cursor of this strategy. For example, in [71], an approximate Newton direction was esti-

mated at the central location, and then broadcasted to local machines. Another occurrence

is that in [41], some intermediate quantities are estimated in a centralized fashion, and then

distributed to local machines. None of them explicitly described what we will propose.

6



In the theory on maximum likelihood estimators (MLE) and M-estimators, there is

a one-step method, which could make a consistent estimator as efficient as MLE or M-

estimators with a single Newton-Raphson iteration. (Here, efficiency stands for the relative

efficiency converges to 1.) See [84] for more details. There have been numerous papers uti-

lizing this method. See [8], [25] and [97]. One-step estimator enjoys the same asymptotic

properties as the MLE or M-estimators as long as the initial estimators are
√
n-consistent.

A
√
n-consistent estimator is much easier to find than the MLE or an M-estimator. For

instance, the simple averaging estimator (e.g., the one proposed by [93]) is good enough as

a starting point for a one-step estimator.

In this dissertation, we propose a one-step estimator for distributed statistical inference.

The proposed estimator is built on the well-analyzed simple averaging estimator. We show

that the proposed one-step estimator enjoys the same asymptotic properties (including con-

vergence and asymptotic normality) as the centralized estimator, which would utilize the

entire data. Given the amount of knowledge we had on the distributed estimators, the

above result may not be surprising. However, when we derive an upper bound for the er-

ror of the proposed one-step estimator, we found that we can achieve a slightly better one

than those in the existing literature. We also perform a detailed evaluation of our one-step

method, comparing with simple averaging method and centralized method using synthetic

data. The numerical experiment is much more encouraging than the theory predicts: in

nearly all cases, the one-step estimator outperformed the simple averaging one with a clear

margin. We also observe that the one-step estimator achieves the comparable performance

as the global estimator at a much faster rate than the simple averaging estimator. Our work

may indicate that in practice, it is better to apply a one-step distributed estimator, than a
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simple-average one. See [32] for a stand-alone paper on this topic.

1.2 Distance Covariance and Testing of Independence

Test of independence plays a fundamental role in many statistical techniques. Among

the nonparametric approaches, the distance-based methods (such as the distance correla-

tion based hypotheses testing for independence) have numerous advantages, comparing

with many other alternatives. A known limitation of the distance-based method is that its

computational complexity can be high. In general, when the sample size is n, the order

of computational complexity of a distance-based method, which typically requires com-

puting of all pairwise distances, can be O(n2). Recent advances have discovered that in

the univariate cases, a fast method with O(n log n) computational complexity and O(n)

memory requirement exists. We will introduces a test of independence method based on

random projection and distance correlation, which achieves nearly the same power as the

state-of-the-art distance-based approach, works in the multivariate cases, and enjoys the

O(nK log n) computational complexity and O(max{n,K}) memory requirement, where

K is the number of random projections. Note that saving is achieved when K < n/ log n.

We name our method a Randomly Projected Distance Covariance (RPDC). The statistical

theoretical analysis takes advantage of some techniques on random projection which are

rooted in contemporary machine learning. Numerical experiments demonstrate the effi-

ciency of the proposed method, in relative to several competitors.

Test of independence is a fundamental problem in statistics, with many existing work

including the maximal information coefficient (MIC) [62], the copula based measures [68,

72], the kernel based criterion [29] and the distance correlation [80, 77], which motivated
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our current work. Note that the above works as well as ours focus on the detection of the

presence of the independence, which can be formulated as statistical hypotheses testing

problems. On the other hand, interesting developments (e.g., [61]) aim at a more general

framework for interpretable statistical dependence, which is not the goal of this dissertation.

Distance correlation proposed by [80] is an indispensable method in test of indepen-

dence. The direct implementation of distance correlation takes O(n2) time, where n is the

sample size. The time cost of distance correlation could be substantial when sample size is

just a few thousands. When the random variables are univariate, there exist efficient numer-

ical algorithms of time complexity O(n log n) [34]. However, for the multivariate random

variables, we have not found any efficient algorithms in existing papers after an extensive

literature survey.

Independence tests of multivariate random variables could have a wide range of ap-

plications. In many problem settings, as metioned in [81], each experimental unit will be

measured multiple times, resulting in multivariate data. Researchers are often interested in

exploring potential relationships among subsets of these measurements. For example, some

measurements may represent attributes of physical characteristics while others represent at-

tributes of psychological characteristics. It may be of interests to determine whether there

exists a relationship between the physical and the psychological characteristics. A test of

independence between pairs of vectors, where the vectors may have different dimensions

and scales, becomes crucial. Moreover, the number of experimental units, or equivalently,

sample size, could be massive, which requires the test to be computationally efficient. This

work will meet the demands for numerically efficient independence tests of multivariate

random variables.
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The newly proposed test of independence between two (potentially multivariate) ran-

dom variable X and Y works as follows. Firstly, both X and Y are randomly projected

to one-dimensional spaces. Then the fast computing method for distance covariances be-

tween a pair of univariate random variables is adopted to compute for an surrogate distance

covariance. The above two steps are repeated for numerous times. The final estimate of the

distance covariance is the average of all aforementioned surrogate distance covariances.

For numerical efficiency, we will show (in Theorem 3.2.1) that the newly proposed

algorithm enjoys the O(Kn log n) computational complexity and O(max{n,K}) memory

requirement, where K is the number of random projections and n is the sample size. On

the statistical efficiency, we will show (in Theorem 3.3.18) that the asymptotic power of the

test of independence by utilizing the newly proposed statistics is as efficient as its original

multivariate counterpart, which achieves the stat-of-the-art rates.

Another contribution of this work is that we show potential of random projection in

distance-based methods. Specifically, we can convert multivariate problems into univariate

problems by projecting the data in some random directions. People have long conjectured

that this random-projection approach may work, however it is not solved yet. Our work

has the potential to significantly advance the frontier of this line of research. Moreover,

in lemma 3.3.1, 3.3.2 and 3.3.3, we reveal the sufficiency and necessity of random projec-

tions for distance covariance. Lemma C.2.1, which is foundation of aforementioned three

lemmas, even indicates that random projection should also work for other distance-based

statistics.
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1.3 Energy Statistics and Two-Sample Testing

Testing the equality of distributions is one of the most fundamental problems in statistics.

Formally, let F and G denote two distribution function in Rp. Given independent and

identically distributed samples

{X1, . . . , Xn} and {Y1, . . . , Ym}

from two unknown distribution F and G, respectively, the two-sample testing problem is

to test hypotheses

H0 : F = G v.s. H1 : F 6= G.

There are a few recent advances in two sample testing that attract attentions in statis-

tics and machine learning communities. [63] propose a test statistic based on the optimal

non-bipartite matching, and, [9] develop a test based on shortest Hamiltonian path, both of

which are distribution-free. [28] develop a kernel method based on maximum mean dis-

crepancy. [75], [76] and [5] consider a test statistic based on pairwise distance within the

same sample and across two different samples, which also motivates this work.

Computational complexity is a common limitation in the aforementioned methods. Let

N = n+m denote the size of the two-sample testing problem. The Cross Match (CM) test

in [63] requires solving the non-bipartite matching problem, whose computational com-

plexity is: (1) O(N3) with optimal solution, see [23]; (2) O(N2) with greedy heuristic.

The two-sample test in [9] is based on shortest Hamilton path, which is an NP-complete

problem, and its computational complexity is O(N2 logN) with heuristic method based on

Kruskal’s algorithm ([39]). The Maximum Mean Discrepancy (MMD) proposed by [28]

requires computing the kernel function values of all pairs of samples, whose complexity is
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O(N2). Similarly, the energy statistics based methods in [75] and [5] typical requires the

pairwise Euclidean distance, which also costs O(N2) complexity.

As a summary, the computational complexity of the aforementioned two-sample tests

is at least O(N2), which leads to substantial computing time and prohibits their feasibility

when the sample size N is too large. As a solution, we develop an efficient algorithm for

computing the energy statistics in [75] with complexity O(N logN) for univariate random

variables. For multivariate random variables, we propose an efficient algorithm of com-

plexity O(KN logN) with the technique of random projection, where K is the number of

random projections. The main idea of the multivariate algorithm is as follows: firstly, we

project the data along some random direction; then, we use the univariate fast algorithm to

compute the energy statistics with the univariate projected data; lastly, we repeat previous

procedure for multiple times and take the average. As we will show in Theorem 4.3.12, the

proposed test statistic based on random projections has nearly the same power with energy

statistics.

The technique of random projection has been widely used in two-sample testing prob-

lems. [48] propose a new method, which firstly projects data along a few random direction;

and then, applies the classical Hotelling T 2 statistic, for testing the equality of means in

different samples. [74] develop a similar approach based on random projection and the

Hotelling T 2 statistic, but the random projection is taken with respect to sample mean

vectors and sample covariance matrices. These two papers focus on the problem under

multivariate Gaussian settings while our work is more general and does not impose any

assumptions in the distributions.
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CHAPTER II

DISTRIBUTED STATISTICAL INFERENCE

This chapter is organized as follows. Section 2.1 describes details of our problem setting

and two methods—the simple averaging method and the proposed one-step method. In

Section 2.2, we study the asymptotic properties of the one-step estimator in the M-estimator

framework and analyze the upper bound of its estimation error. Section 2.3 provides some

numerical examples of distributed statistical inference with synthetic data. We conclude in

Section 2.4. When appropriate, detailed proofs are relegated to the appendix.

2.1 Problem Formulation
2.1.1 Notations

In this subsection, we will introduce some notations that will be used in this chapter. Let

{m(x; θ) : θ ∈ Θ ⊂ Rd} denote a collection of criterion functions, which should have

continuous second derivative. Consider a data set S consisting of N = nk samples, which

are drawn i.i.d. from p(x) (for simplicity, we assume that the sample size N is a multiple

of k). This data set is divided evenly at random and stored in k machines. Let Si denote

the subset of data assigned to machine i, i = 1, . . . , k, which is a collection of n samples

drawn i.i.d. from p(x). Note that any two subsets in those Si’s are not overlapping.

For each i ∈ {1, . . . , k}, let the local empirical criterion function that is based on the local
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data set on machine i and the corresponding maximizer be denoted by

Mi(θ) =
1

|Si|
∑
x∈Si

m(x; θ) and θi = arg max
θ∈Θ

Mi(θ). (2.1.1)

Let the global empirical criterion function be denoted by

M(θ) =
1

k

k∑
i=1

Mi(θ). (2.1.2)

And let the population criterion function and its maximizer be denoted by

M0(θ) =

∫
X
m(x; θ)p(x)dx and θ0 = arg max

θ∈Θ
M0(θ), (2.1.3)

where X is the sample space. Note that θ0 is the parameter of interest. The gradient and

Hessian matrix of m(x; θ) with respect to θ are denoted by

ṁ(x; θ) =
∂m(x; θ)

∂θ
, m̈(x; θ) =

∂2m(x; θ)

∂θ ∂θT
. (2.1.4)

We also let the gradient and Hessian of local empirical criterion function be denoted by

Ṁi(θ) =
∂Mi(θ)

∂θ
=

1

|Si|
∑
x∈Si

∂m(x; θ)

∂θ
, M̈i(θ) =

∂2Mi(x; θ)

∂θ ∂θT
=

1

|Si|
∑
x∈Si

∂2m(x; θ)

∂θ ∂θT
,

(2.1.5)

where i ∈ {1, 2, . . . , k}, and let the gradient and Hessian of global empirical criterion

function be denoted by

Ṁ(θ) =
∂M(θ)

∂θ
, M̈(θ) =

∂2M(θ)

∂θ ∂θT
. (2.1.6)

Similarly, let the gradient and Hessian of population criterion function be denoted by

Ṁ0(θ) =
∂M0(θ)

∂θ
, M̈0(θ) =

∂2M0(θ)

∂θ ∂θT
. (2.1.7)
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The vector norm ‖ · ‖ for a ∈ Rd that we use in this chapter is the usual Euclidean norm

‖a‖ = (
∑d

j=1 a
2
j)

1
2 . And we also use |||·||| to denote a norm for matrix A ∈ Rd×d, which is

defined as its maximal singular value, i.e., we have

|||A||| = sup
u:u∈Rd,‖u‖≤1

‖Au‖.

The aforementioned matrix norm will be the major matrix norm that is used throughout the

chapter. The only exception is that we will also use Frobenius norm in Appendix B.1. And

the Euclidean norm is the only vector norm that we use throughout this chapter.

2.1.2 Review on M-estimators

In this chapter, we will study the distributed scheme for large-scale statistical inference. To

make our conclusions more general, we consider M-estimators, which could be regarded as

a generalization of the Maximum Likelihood Estimators (MLE). The M-estimator θ̂ could

be obtained by maximizing empirical criterion function, which means

θ̂ = arg max
θ∈Θ

M(θ) = arg max
θ∈Θ

1

|S|
∑
x∈S

m(x; θ).

Note that, when the criterion function is the log likelihood function, i.e.,m(x; θ) = log f(x; θ),

the M-estimator is exactly the MLE. Let us recall that M0(θ) =
∫
X m(x; θ)p(x)dx is the

population criterion function and θ0 = arg maxθ∈ΘM0(θ) is the maximizer of population

criterion function. It is known that θ̂ is a consistent estimator for θ0, i.e., θ̂ − θ0
P−→ 0. See

Chapter 5 of [84].

2.1.3 Simple Averaging Estimator

Let us recall that Mi(θ) is the local empirical criterion function on machine i,

Mi(θ) =
1

|Si|
∑
x∈Si

m(x; θ).
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And, θi is the local M-estimator on machine i,

θi = arg max
θ∈Θ

Mi(θ).

Then as mentioned in [93], the simplest and most intuitive method is to take average of all

local M-estimators. Let θ(0) denote the average of these local M-estimators, we have

θ(0) =
1

k

k∑
i=1

θi, (2.1.8)

which is referred as the simple averaging estimator in the rest of this chapter.

2.1.4 One-step Estimator

Under the problem setting above, starting from the simple averaging estimator θ(0), we can

obtain the one-step estimator θ(1) by performing a single Newton-Raphson update, i.e.,

θ(1) = θ(0) − [M̈(θ(0))]−1[Ṁ(θ(0))], (2.1.9)

where M(θ) = 1
k

∑k
i=1Mi(θ) is the global empirical criterion function, Ṁ(θ) and M̈(θ)

are the gradient and Hessian ofM(θ), respectively. The whole process to compute one-step

estimator can be summarized as follows.

(1) For each i ∈ {1, 2, . . . , k}, machine i compute the local M-estimator with its local

data set,

θi = arg max
θ∈Θ

Mi(θ) = arg max
θ∈Θ

1

|Si|
∑
x∈Si

m(x; θ).

(2) All local M-estimators are averaged to obtain simple averaging estimator,

θ(0) =
1

k

k∑
i=1

θi .

Then θ(0) is sent back to each local machine.
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(3) For each i ∈ {1, 2, . . . , k}, machine i compute the gradient and Hessian matrix of its

local empirical criterion functionMi(θ) at θ = θ(0). Then send Ṁi(θ
(0)) and M̈i(θ

(0))

to the central machine.

(4) Upon receiving all gradients and Hessian matrices, the central machine computes

gradient and Hessian matrix of M(θ) by averaging all local information,

Ṁ(θ(0)) =
1

k

k∑
i=1

Ṁi(θ
(0)), M̈(θ(0)) =

1

k

k∑
i=1

M̈i(θ
(0)).

Then the central machine would perform a Newton-Raphson iteration to obtain a

one-step estimator,

θ(1) = θ(0) − [M̈(θ(0))]−1[Ṁ(θ(0))].

Note that θ(1) is not necessarily the maximizer of empirical criterion function M(θ) but

it shares the same asymptotic properties with the corresponding global maximizer (M-

estimator) under some mild conditions, i.e., we will show

θ(1) P−→ θ0,
√
N(θ(1) − θ0)

d−→ N(0,Σ), as N →∞,

where the covariance matrix Σ will be specified later.

The one-step estimator has advantage over simple averaging estimator in terms of estima-

tion error. In [93], it is showed both theoretically and empirically that the MSE of simple

averaging estimator θ(0) grows significantly with the number of machines k when the total

number of samples N is fixed. More precisely, there exists some constant C1, C2 > 0 such

that

E[‖θ(0) − θ0‖2] ≤ C1

N
+
C2k

2

N2
+O(kN−2) +O(k3N−3).
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Fortunately, one-step method θ(1) could achieve a lower upper bound of MSE with only

one additional step. we will show the following in Section 2.2:

E[‖θ(1) − θ0‖2] ≤ C1

N
+O(N−2) +O(k4N−4).

2.2 Main Results of One-Step Estimator

At first, some assumptions will be introduced in Section 3.2.1. After that, we will study the

asymptotic properties of one-step estimator in Section 3.2.2, i.e., convergence, asymptotic

normality and mean squared error (MSE). In Section 3.2.3, we will consider the one-step

estimator under the presence of information loss.

2.2.1 Assumptions

Throughout this chapter, we impose some regularity conditions on the criterion function

m(x; θ), the local empirical criterion function Mi(θ) and population criterion function

M0(θ). We use the similar assumptions in [93]. Those conditions are also standard in

classical statistical analysis of M-estimators (cf. [84]).

First assumption restricts the parameter space to be compact, which is reasonable and

not rigid in practice. One reason is that the possible parameters lie in a finite scope for

most cases. Another justification is that the largest number that computers could cope with

is always limited.

Assumption 2.2.1 (parameter space). The parameter space Θ ∈ Rd is a compact convex

set. And let D , maxθ,θ′∈Θ ‖θ − θ′‖ denote the diameter of Θ.

We also assume thatm(x; θ) is concave with respect to θ andM0(θ) has some curvature

around the unique optimal point θ0, which is a standard assumption for any method requires
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consistency.

Assumption 2.2.2 (invertibility). The Hessian of population criterion function M0(θ) at

θ0 is a nonsingular matrix, which means M̈0(θ0) is negative definite and there exists some

λ > 0 such that supu∈Rd:‖u‖<1 u
tM̈0(θ0)u ≤ −λ.

In addition, we require the criterion function m(x; θ) to be smooth enough, at least in

the neighborhood of the optimal point θ0, Bδ = {θ ∈ Θ : ‖θ − θ0‖ ≤ δ}. So, we impose

some regularity conditions on the first and second derivative of m(x; θ). We assume the

gradient of m(x; θ) is bounded in moment and the difference between m̈(x; θ) and M̈0(θ)

is also bounded in moment. Moreover, we assume that m̈(x; θ) has Lipschitz continuity in

Bδ.

Assumption 2.2.3 (smoothness). There exist some constants G and H such that

E[‖ṁ(X; θ)‖8] ≤ G8 and E
[∣∣∣∣∣∣∣∣∣m̈(X; θ)− M̈0(θ)

∣∣∣∣∣∣∣∣∣8] ≤ H8, ∀θ ∈ Bδ.

For any x ∈ X , the Hessian matrix m̈(x; θ) is L(x)-Lipschitz continuous,

|||m̈(x; θ)− m̈(x; θ′)||| ≤ L(x)‖θ − θ′‖, ∀θ, θ′ ∈ Bδ,

where L(x) satisfies

E[L(X)8] ≤ L8 and E[(L(X)− E[L(X)])8] ≤ L8,

for some finite constant L > 0.

By Theorem 8.1 in Chapter XIII of [40], m(x; θ) enjoys interchangeability between

differentiation on θ and integration on x, which means the following two equations hold:

Ṁ0(θ) =
∂

∂θ

∫
X
m(x; θ)p(x)dx =

∫
X

∂m(x; θ)

∂θ
p(x)dx =

∫
X
ṁ(x; θ)p(x)dx,
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and,

M̈0(θ) =
∂2

∂θt∂θ

∫
X
m(x; θ)p(x)dx =

∫
X

∂2m(x; θ)

∂θt∂θ
p(x)dx =

∫
X
m̈(x; θ)p(x)dx.

2.2.2 Asymptotic Properties and Mean Squared Error (MSE) Bound

Our main result is that one-step estimator enjoys oracle asymptotic properties and has mean

squared error of O(N−1) under some mild conditions.

Theorem 2.2.4. Let Σ = M̈0(θ0)−1E[ṁ(x; θ0)ṁ(x; θ0)t]M̈0(θ0)−1, where the expectation

is taken with respect to p(x). Under Assumption 2.2.1, 2.2.2, and 2.2.3, when the number

of machines k satisfies k = O(
√
N), θ(1) is consistent and asymptotically normal, i.e., we

have

θ(1) − θ0
P−→ 0 and

√
N(θ(1) − θ0)

d−→ N(0,Σ) as N →∞.

See Appendix B.3 for a proof. The above theorem indicates that the one-step estimator

is asymptotically equivalent to the centralized M-estimator.

Remark. It is worth noting that the condition ‖
√
N(θ(0) − θ0)‖ = OP (1) suffices for our

proof to Theorem 2.2.4. Let θ̃(0) denote another starting point for the one-step update, then

the following estimator

θ̃(1) = θ̃(0) − M̈(θ̃(0))−1Ṁ(θ̃(0))

also enjoys the same asymptotic properties with θ(1) (and the centralized M-estimator θ̂) as

long as
√
N(θ̃(0) − θ0) is bounded in probability. Therefore, we can replace θ(0) with any

estimator θ̃(0) that satisfies

‖
√
N(θ̃(0) − θ0)‖ = OP (1).
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Theorem 2.2.5. Under Assumption 2.2.1, 2.2.2, and 2.2.3, the mean squared error of the

one-step estimator θ(1) is bounded by

E[‖θ(1) − θ0‖2] ≤ 2Tr[Σ]

N
+O(N−2) +O(k4N−4).

When the number of machines k satisfies k = O(
√
N), we have

E[‖θ(1) − θ0‖2] ≤ 2Tr[Σ]

N
+O(N−2).

See Appendix B.4 for a proof.

In particular, when we choose the criterion function to be the log likelihood function,

m(x; θ) = log f(x; θ), the one-step estimator has the same asymptotic properties with the

maximum likelihood estimator (MLE), which is described below.

Corollary 2.2.6. If m(x; θ) = log f(x; θ) and k = O(
√
N), one-step estimator θ(1) is a

consistent and asymptotic efficient estimator of θ0,

θ(1) − θ0
P−→ 0 and

√
N(θ(1) − θ0)

d−→ N(0, I(θ0)−1), as N →∞,

where I(θ0) is the Fisher’s information at θ = θ0. And the mean squared error of θ(1) is

bounded as follows:

E[‖θ(1) − θ0‖2] ≤ 2Tr[I−1(θ0)]

N
+O(N−2) +O(k4N−4).

Proof. It follows immediately from Theorem 2.2.4, 2.2.5 and the definition of the Fisher’s

information.
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2.2.3 Under the Presence of Communication Failure

In practice, it is possible that the information (local estimator, local gradient and local Hes-

sian) from a local machine cannot be received by the central machine due to various causes

(for instance, network problem or hardware crash). We assume that the communication

failure on each local machine occurs independently.

We now derive a distributed estimator under the scenario with possible information loss.

We will also present the corresponding theoretical results. We use ai ∈ {0, 1}, i = 1, . . . , k,

to denote the status of local machines: when machine i successfully sends all its local

information to central machine, we have ai = 1; when machine i fails, we have ai = 0.

The corresponding simple averaging estimator is computed as

θ(0) =

∑k
i=1 aiθi∑k
i=1 ai

.

And one-step estimator is as follows

θ(1) = θ(0) −

[
k∑
i=1

aiM̈i(θ
(0))

]−1 [ k∑
i=1

aiṀi(θ
(0))

]
.

Corollary 2.2.7. Suppose r is the probability (or rate) that a local machine fails to send

its information to the central machine. When n = N/k → ∞, k → ∞ and k = O(
√
N),

the one-step estimator is asymptotically normal:

√
(1− r)N(θ(1) − θ0)

d−→ N(0,Σ).

And more precisely, unless all machines fail, we have

E[‖θ(1) − θ0‖2] ≤ 2Tr[Σ]

N(1− r)
+

6Tr[Σ]

Nk(1− r)2
+O(N−2(1− r)−2) +O(k2N−2).

See Appendix B.5 for a proof. Note that the probability that all machines fail is rk,

which is negligible when r is small and k is large.
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2.3 Numerical Examples for One-Step Estimators

In this section, we will discuss the results of simulation studies comparing the performance

of the simple averaging estimator θ(0) and the one-step estimator θ(1), as well as the central-

ized M-estimator θ̂, which maximizes the global empirical criterion function M(θ) when

the entire data are available centrally. Besides, we will also study the resampled averaging

estimator, which is proposed by [93]. The main idea of a resampled averaging estima-

tor is to resample bsnc observations from each local machine to obtain another averaging

estimator θ(0)
1 . Then the resampled averaging estimator can be constructed as follows:

θ(0)
re =

θ(0) − sθ(0)
1

1− s
.

In our numerical examples, the resampling ratio s is chosen to be s = 0.1 based on

past empirical studies. We shall implement these estimators for logistic regression, Beta

distribution and Gaussian Distribution. We will also study the parameter estimation for

Beta distribution with occurrence of communication failures, in which some local machines

could fail to send their local information to the central machine.

2.3.1 Logistic Regression

In this example, we simulate the data from the following logistic regression model:

y ∼ Bernoulli(p), where p =
exp(xtθ)

1 + exp(xtθ)
=

exp(
∑d

j=1 xjθj)

1 + exp(
∑d

j=1 xjθj)
. (2.3.10)

In this model, y ∈ {0, 1} is a binary response, x ∈ Rd is a continuous predictor and θ ∈ Rd

is the parameter of interest.

In each single experiment, we choose a fixed vector θ with each entry θj, j = 1, . . . , d,

drawn from Unif(−1, 1) independently. Entry xj, j = 1, . . . , d of x ∈ Rd is sampled
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from Unif(−1, 1), independent from parameters θj’s and other entries. After generating

parameter θ and predictor x, we can compute the value of probability p and generate y

according to (2.3.10). We fix the number of observed samples N = 217 = 131, 072 in each

experiment, but vary the number of machines k. The target is to estimate θ with different

number of parallel splits k of the data. The experiment is repeated for K = 50 times to

obtain reliable average error. And the criterion function is the log-likelihood function,

m(x, y; θ) = yxtθ − log(1 + exp(xtθ)).

The goal of each experiment is to estimate parameter θ0 maximizing population crite-

rion function

M0(θ) = Ex,y[m(x, y; θ)] = Ex,y[yxtθ − log(1 + exp(xtθ))].

In this particular case, θ0 is exactly the same with the true parameter.

In each experiment, we split the data into k = 2, 4, 8, 16, 32, 64, 128 non-overlapping

subsets of size n = N/k. We compute a local estimator θi from each subset. And simple

averaging estimator is obtained by taking all local estimators, θ(0) = 1
k

∑k
i=1 θi. Then the

one-step estimator θ(1) could be computed by applying a Newton-Raphson update to θ(0),

i.e., equation (2.1.9).

The dimension is chosen to be d = 20 and d = 100, which could help us understand

the performance of those estimators in both low and high dimensional cases. In Fig. 1,

we plot the mean squared error of each estimator versus the number of machines k. As

we expect, the mean squared error of simple averaging estimator grows rapidly with the

number of machines. But, the mean squared error of one-step estimator remains the same

with the mean squared error of oracle estimator when the number of machines k is not very
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large. Even when the k = 128 and the dimension of predictors d = 100, the performance

of one-step estimator is significantly better than simple averaging estimator. As we can

easily find out from Fig. 1, the mean squared error of simple averaging estimator is about

10 times of that of one-step estimator when k = 128 and d = 100. Detailed values of
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Figure 1: Logistic Regression: The mean squared error ‖θ̂ − θ0‖2 versus number of ma-
chines, with fifty simulations. The “average” is θ(0) and the “one-step” is θ(1). The “cen-
tralized” denotes the oracle estimator with entire data.

mean squared error are listed in Table 1 and 2. From the tables, we can easily figure out
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that the standard deviation of the error of one-step estimator is significantly smaller than

that of simple averaging, especially when the number of machines k is large, which means

one-step estimator is more stable.

Table 1: Logistic Regression (d = 20): Detailed values of squared error ‖θ̂− θ0‖2. In each
cell, the first number is the mean of squared error in K = 50 experiments and the number
in the brackets is the standard deviation of the squared error.

number of
machines 2 4 8 16 32 64 128

simple avg 28.036 28.066 28.247 28.865 30.587 38.478 69.898
(×10−4) (7.982) (7.989) (8.145) (8.443) (9.812) (14.247) (27.655)
one-step 28.038 28.038 28.038 28.038 28.038 28.035 28.039
(×10−4) (7.996) (7.996) (7.996) (7.996) (7.996) (7.998) (8.017)

centralized 28.038 (7.996)
(×10−4)

Table 2: Logistic Regression (d = 100): Detailed values of squared error ‖θ̂−θ0‖2. In each
cell, the first number is the mean of squared error in K = 50 experiments and the number
in the brackets is the standard deviation of squared error.

number of
machines 2 4 8 16 32 64 128

simple avg 23.066 23.818 26.907 38.484 87.896 322.274 1796.147
(×10−3) (4.299) (4.789) (6.461) (10.692) (22.782) (67.489) (324.274)
one-step 22.787 22.784 22.772 22.725 22.612 24.589 151.440
(×10−3) (4.062) (4.060) (4.048) (3.998) (3.835) (4.651) (43.745)

centralized 22.787 (4.063)
(×10−3)

2.3.2 Beta Distribution

In this example, we use data simulated from Beta distribution Beta(α, β), whose p.d.f. is

as follows:

f(x;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1.

In each experiment, we generate the value of parameter as α ∼ Unif(1, 3) and β ∼

Unif(1, 3), independently. Once (α, β) is determined, we can simulate samples from the
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above density. In order to examine the performance of two distributed methods when k is

extremely large, we choose to use a data set with relatively small size N = 213 = 8192 and

let number of machines vary in a larger range k = 2, 4, 8, . . . , 256. And the objective is

to estimate parameter (α, β) from the observed data. The experiment is again repeated for

K = 50 times. The criterion function is m(x; θ) = log f(x;α, β), which implies that the

centralized estimator is the MLE.

Figure 2 and Table 3 show that the one-step estimator has almost the same performance

with centralized estimator in terms of MSE and standard deviation when the number of

machines k ≤
√
N (i.e., when k ≤ 64). However, the one-step estimator performs worse

than centralized estimator when k >
√
N (i.e., when k = 128 or 256), which confirms the

necessity of condition k = O(
√
N) in Theorem 2.2.4. In addition, we can easily find out

that both simple averaging estimator and resampled averaging estimator are worse than the

proposed one-step estimator regardless of the value of k.

Table 3: Beta Distribution: Detailed values of squared error ‖θ̂ − θ0‖2. In each cell, the
first number is the mean squared error with K = 50 experiments and the number in the
brackets is the standard deviation of the squared error.

number of
machines

simple avg
(×10−3)

resampled avg
(×10−3)

one-step
(×10−3)

centralized
(×10−3)

2 1.466 (1.936) 1.616 (2.150) 1.466 (1.943)

1.466
(1.943)

4 1.480 (1.907) 1.552 (2.272) 1.466 (1.943)
8 1.530 (1.861) 1.545 (2.177) 1.466 (1.943)

16 1.704 (1.876) 1.594 (2.239) 1.466 (1.946)
32 2.488 (2.628) 1.656 (2.411) 1.468 (1.953)
64 5.948 (5.019) 2.184 (3.529) 1.474 (1.994)

128 21.002 (11.899) 4.221 (7.198) 1.529 (2.199)
256 89.450 (35.928) 31.574 (36.518) 2.435 (3.384)
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Figure 2: Beta Distribution: The error ‖θ− θ0‖2 versus the number of machines, with fifty
simulations, where θ0 is the true parameter. The “avg” is θ(0), the “avg-re” is θ(0)

re with
resampling ratio rr = 10% and the “one-step” is θ(1). The “centralized” denotes maximum
likelihood estimator with the entire data.

2.3.3 Beta Distribution with Possibility of Losing Information

Now, we would like to compare the performance of simple averaging estimator and one-

step estimator under a more practical scenario, in which each single local machine could
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fail to send its information to central machine. We assume those failures would occur in-

dependently with probability r = 0.05. The simulation settings are similar to previous

example in Section 4.2, however, we will generate N = 409600 samples from Beta distri-

bution Beta(α, β), where α and β are chosen from Unif(1, 3), independently. And the goal

of experiment is to estimate parameter (α, β). In each experiment, we let the number of

machines vary k = 8, 16, 32, 64, 128, 256, 512. We also compare the performance of the

centralized estimator with entire data and centralized estimator with (1−r)×100% = 95%

of entire data. This experiment is repeated for K = 50 times.

In Figure 3(a), we plot the MSE of each estimator against the number of machines.

As expected, the MSE of simple averaging estimator grows significantly with the number

of machines while the other three remains nearly the same. We can easily find out that

performance of simple averaging estimator is far worse than others, especially when the

number of machines is large (for instance, when k = 256 or 512). If we take a closer look

at the other three estimators from Fig. 3(b), we will find that the performance of one-step

estimator is volatile but always remains in a reasonable range. And as expected, the error of

one-step estimator converges to the error of oracle estimator with partial data when number

of machines k is large.

2.3.4 Gaussian Distribution with Unknown Mean and Variance

In this part, we will compare the performance of the simple averaging estimator, the resam-

pled averaging estimator and the one-step estimator when fixing the number of machines

k =
√
N and letting the value of N increase. We draw N samples from N(µ, σ2), where

µ ∼ Unif(−2, 2) and σ2 ∼ Unif(0.25, 9), independently. We let N vary in {43, . . . , 49}
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Figure 3: Beta Distribution with Possibility of Losing Information: The error ‖θ − θ0‖2

versus the number of machines, with fifty simulations, where θ0 is the true parameter. The
“average” is θ(0) and the “one-step” is θ(1). The “centralized” denotes maximum likeli-
hood estimator with the entire data. And the “centralized-partial” denotes the maximum
likelihood estimator with (1− r)× 100% = 95% of data.

and repeat the experiment for K = 50 times for each N . We choose the criterion function

to be the log-likelihood function

m(x;µ, σ2) = −(x− µ)2

2σ2
− 1

2
log(2π)− 1

2
log σ2.

Figure 4 and Table 5 show that one-step estimator is asymptotically efficient while
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Table 4: Beta Distribution with Possibility of Losing Information: Detailed values of
squared error ‖θ̂ − θ0‖2. In each cell, the first number is the mean of squared error in
K = 50 experiments and the number in the brackets is the standard deviation of squared
error.

number of
machines

simple avg
(×10−5)

one-step
(×10−5)

centralized
(×10−5)

centralized(95%)
(×10−5)

8 4.98 (10.76) 4.95 (10.62)

4.07
(6.91)

4.76
(9.81)

16 4.82 (7.61) 4.75 (7.40)
32 4.85 (9.65) 4.72 (9.31)
64 4.51 (7.89) 4.10 (7.04)

128 5.25 (9.16) 4.48 (7.77)
256 7.57 (12.26) 4.52 (7.70)
512 16.51 (20.15) 5.24 (8.02)

simple averaging estimator is absolutely not. It is worth noting that the resampled averaging

estimator is not asymptotic efficient though it is better than simple averaging estimator.

When the number of samples N is relatively small, the one-step estimator is worse than

centralized estimator. When the number of samplesN grows large, the differences between

the one-step estimator and the centralized estimator become minimal in terms of both mean

squared error and standard deviation. However, the error of the simple averaging estimator

is significant larger than both the one-step estimator and the centralized estimator. When

the sample size N = 49 ≈ 250, 000, the mean squared error of the simple averaging

estimator is more than twice of that of the one-step and the centralized estimator.

2.4 Conclusions on One-Step Estimator

The M-estimator is a fundamental and high-impact methodology in statistics. The classic

M-estimator theory is based on the assumption that the entire data are available at a central

location, and can be processed/computed without considering communication issues. In

many modern estimation problems arising in contemporary sciences and engineering, the
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Figure 4: Gaussian Distribution with Unknown Mean and Variance: The log error log ‖θ−
θ0‖2 versus the log number of machines (log2 k), with fifty repeated experiments for each
N , where θ0 is the true parameter. The “avg”, “avg-re” and “one-step” denote θ(0), θ(0)

re with
resampling ratio rr = 10% and θ(1), respectively. The “centralized” denotes the maximum
likelihood estimator with the entire data. The sample size is fixed to be N = k2.

classical notion of asymptotic optimality suffers from a significant deficiency: it requires

access to all data. The asymptotic property when the data has to be dealt with distributively

is under-developed. In this chapter, we close this gap by considering a distributed one-step

estimator.

Our one-step estimator builds on the existing averaging estimator. In a nutshell, after

obtaining an averaging estimator, this initial estimate is broadcasted to local machines, to

facilitate their computation of gradients and hessians of their objective functions. By doing

so, the data do not need to be transmitted to the central machine. The central machine than

collects the locally estimated gradients and hessians, to produce a global estimate of the

overall gradient and overall hessian. Consequently, a one-step update of the initial estimator

32



Table 5: Gaussian Distribution with Unknown Mean and Variance: Detailed values of
squared error ‖θ̂ − θ0‖2. In each cell, the first number is the mean of squared error in
K = 50 experiments and the number in the brackets is the standard deviation of squared
error.

no. of
machines

no. of
samples simple avg resampled avg one-step centralized

8 64
3.022104

(4.385627)
2.153958

(3.458645)
1.694668

(2.882794)
1.388959

(2.424813)

16 256
0.739784

(1.209734)
0.392389

(0.739390)
0.318765

(0.621990)
0.286175

(0.566140)

32 1024
0.118766

(0.151695)
0.041050

(0.053808)
0.034494

(0.046586)
0.032563

(0.045779)

64 4096
0.026839

(0.046612)
0.016519

(0.030837)
0.014255

(0.029258)
0.014414

(0.030533)

128 16384
0.010996

(0.019823)
0.004542

(0.009089)
0.004329

(0.009453)
0.004357

(0.009315)

256 65536
0.002909

(0.005785)
0.001158

(0.002733)
0.001105

(0.002779)
0.001099

(0.002754)

512 262144
0.000843

(0.001426)
0.000461

(0.000744)
0.000376

(0.000596)
0.000376

(0.000595)

is implemented. Just like the one-step approach has improved the estimator in the classical

(non-distributed) setting, we found that the one-step approach can improve the performance

of an estimator under the distributed setting, both theoretically and numerically.

Besides the works that have been cited earlier, there are many other results that are in

the relevant literature, however they may not be directly technically linked to what’s been

done here. We discuss their influence and insights in the next few paragraphs.

An interesting split-and-merge Bayesian approach for variable selection under linear

models is proposed in [73]. The method firstly split the ultrahigh dimensional data set into a

number of lower dimensional subsets and select relevant variables from each of the subsets,

and then aggregate the variables selected from each subset and then select relevant variables

from the aggregated data set. Under mild conditions, the authors show that the proposed
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approach is consistent, i.e., the underlying true model will be selected in probability 1

as the sample size becomes large. This work differs from all the other approaches that

we discussed in this chapter: it splits the variables, while all other approaches that we

referenced (including ours) split the data according to observations. This paper certainly is

in line with our research, however takes a very distinct angle.

An interesting piece of work that combines distributed statistical inference and infor-

mation theory in communication is presented in [92]. Their current results need to rely

on special model settings: uniform location family U = {Pθ, θ ∈ [−1, 1]}, where Pθ de-

notes the uniform distribution on the interval [θ − 1, θ + 1], or Gaussian location families

Nd([−1, 1]d) = {N(θ, σ2Id×d) | θ ∈ Θ = [−1, 1]d}. It will be interesting to see whether or

not more general results are feasible.

[57] proposed a distributed expectation-maximization (EM) algorithm for density es-

timation and clustering in sensor networks. Though the studied problem is technically

different from ours, it provides an inspiring historic perspective: distributed inference has

been studied more than ten years ago.

[56] propose an asymptotically exact, embarrassingly parallel MCMC method by ap-

proximating each sub-posterior with Gaussian density, Gaussian kernel or weighted Gaus-

sian kernel. They prove the asymptotic correctness of their estimators and bound rate of

convergence. This dissertation does not consider the MCMC framework. The analytical

tools that they used in proving their theorems are of interests.

[86] propose a distributed variable selection algorithm, which accepts a variable if more

than half of machines select that variable. They give upper bounds for the success proba-

bility and Mean Squared Error (MSE) of estimator. This work bears similarity with [73]
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and [19], however with somewhat different emphases.

[37] propose a scalable bootstrap (named ‘bag of little bootstraps’ (BLB)) for massive

data to assess the quality of estimators. They also demonstrate its favorable statistical

performance through both theoretical analysis and simulation studies. A comparison with

this work will be interesting, however not included here.

[94] consider a partially linear framework for massive heterogeneous data and propose

an aggregation type estimator for the commonality parameter that possesses the minimax

optimal bound and asymptotic distribution when number of sub-populations does not grow

too fast.

A recent work [2] shed interesting new light into the distributed inference problem. The

authors studied the fundamental limits to communication-efficient distributed methods for

convex learning and optimization, under different assumptions on the information avail-

able to individual machines, and the types of functions considered. The current problem

formulation is more numerical than statistical properties. Their idea may lead to interesting

counterparts in statistical inference.

Besides estimation, other distributed statistical technique may be of interests, such as

the distributed principal component analysis [4]. We do not touch this line of research.

Various researchers have studied communication-efficient algorithms for statistical esti-

mation (e.g., see the papers [22, 3, 85, 54] and references therein). They were not discussed

in details here, because they are pretty much discussed/compared in other references of this

dissertation.

There is now a rich and well-developed body of theory for bounding and/or computing

the minimax risk for various statistical estimation problems, e.g., see [90] and references
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therein. In several cited references, researchers have started to derive the optimal minimax

rate for estimators under the distributed inference setting. This will be an exciting future

research direction.
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CHAPTER III

DISTANCE COVARIANCE AND TESTING OF INDEPENDENCE

This chapter is organized as follows. In Section 3.1, we review the definition of distance

covariance, its fast algorithm in univariate cases and related distance-based independence

tests. Section 3.2 gives the detailed algorithm for distance covariance of random vectors and

corresponding independence tests. In Section 3.3, we present some theoretical properties

on distance covariance and the asymptotic distribution of the proposed estimator. In Section

3.4, we conduct numerical examples to compare our method against others in existing

literature. Some discussions are presented in Section 3.5. We conclude in Section 3.6. All

technical proofs as well as formal presentation of algorithms are relegated to the appendix

when appropriate.

Throughout this chapter, we adopt the following notations. We denote cp = π(p+1)/2

Γ((p+1)/2)

and cq = π(q+1)/2

Γ((q+1)/2)
as two constants, where Γ(·) denotes the Gamma function. We will also

need the following constants: Cp = c1cp−1

cp
=
√
πΓ((p+1)/2)

Γ(p/2)
and Cq = c1cq−1

cq
=
√
πΓ((q+1)/2)

Γ(q/2)
.

For any vector v, let vt denote its transpose.

3.1 Review of Distance Covariance: Definition, Fast Algorithm, and Re-
lated Independence Tests

In this section, we review some related existing works. In Section 3.1.1, we recall the

concept of distance variances and correlations, as well as some of their properties. In

Section 3.1.2, we discuss the estimators of distance covariances and correlations, as well
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as their computation. We present their applications in testing of independence in Section

3.1.3.

3.1.1 Definition of Distance Covariances

Measuring and testing the dependency between two random variables is a fundamental

problem in statistics. The classical Pearson’s correlation coefficient can be inaccurate and

even misleading when nonlinear dependency exists. [80] proposes the novel measure–

distance correlation–which is exactly zero if and only if two random variables are indepen-

dent. A limitation is that if the distance correlation is implemented based on its original

definition, the corresponding computational complexity can be as high as O(n2), which is

not desirable when n is large.

We review the definition of the distance correlation in [80]. Let us consider two random

variablesX ∈ Rp, Y ∈ Rq, p ≥ 1, q ≥ 1. Let the complex-valued functions φX,Y (·), φX(·),

and φY (·) be the characteristic functions of the joint density of X and Y , the density of X ,

and the density of Y , respectively. For any function φ, we denote |φ|2 = φφ̄, where φ̄ is

the conjugate of φ; in words, |φ| is the magnitude of φ at a particular point. For vectors,

let us use | · | to denote the Euclidean norm. In [80], the definition of distance covariance

between random variables X and Y is

V2(X, Y ) =

∫
Rp+q

|φX,Y (t, s)− φX(t)φY (s)|2

cpcq|t|p+1|s|q+1
dtds, (3.1.11)

where two constants cp and cq have been defined at the beginning of this chapter. The

distance correlation is defined as

R2(X, Y ) =
V2(X, Y )√

V2(X,X)
√
V2(Y, Y )

.
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The following property has been established in the aforementioned paper.

Theorem 3.1.1. Suppose X ∈ Rp, p ≥ 1 and Y ∈ Rq, q ≥ 1 are two random variables,

the following statements are equivalent:

(1) X is independent of Y ;

(2) φX,Y (t, s) = φX(t)φY (s), for any t ∈ Rp and s ∈ Rq;

(3) V2(X, Y ) = 0;

(4) R2(X, Y ) = 0.

Given sample (X1, Y1), . . . , (Xn, Yn), we can estimate the distance covariance by re-

placing the population characteristic function with the sample characteristic function: for

i =
√
−1, t ∈ Rp, s ∈ Rq, we define

φ̂X(t) =
1

n

n∑
j=1

eiX
t
jt,

φ̂Y (s) =
1

n

n∑
j=1

eiY
t
j s, and

φ̂X,Y (t, s) =
1

n

n∑
j=1

eiX
t
jt+iY

t
j s.

Consequently one can have the following estimator for V2(X, Y ):

V2
n(X, Y ) =

∫
Rp+q

|φ̂X,Y (t, s)− φ̂X(t)φ̂Y (s)|2

cpcq|t|p+1|s|q+1
dt · ds. (3.1.12)

Note that the above formula is convenient to define a quantity, however is not convenient for

computation, due to the integration on the right hand side. In the literature, other estimates

have been introduced and will be presented in the following.
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3.1.2 Fast Algorithm in the Univariate Cases

The paper [50] gives an equivalent definition for the distance covariance between random

variables X and Y :

V2(X, Y ) = E[d(X,X ′)d(Y, Y ′)] = E[|X −X ′||Y − Y ′|]

− 2E[|X −X ′||Y − Y ′′|] + E[|X −X ′|]E[|Y − Y ′|], (3.1.13)

where the double centered distance d(·, ·) is defined as

d(X,X ′) = |X −X ′| − EX [|X −X ′|]− EX′ [|X −X ′|] + E[|X −X ′|],

where EX , EX′ and E are expectations over X , X ′ and (X,X ′), respectively.

Motivated by the above definition, one can give an unbiased estimator for V2(X, Y ).

The following notations will be utilized: for 1 ≤ i, j ≤ n,

aij = |Xi −Xj|, bij = |Yi − Yj|,

ai· =
n∑
l=1

ail, bi· =
n∑
l=1

bil, (3.1.14)

a·· =
n∑

k,l=1

akl, and b·· =
n∑

k,l=1

bkl.

It has been proven [79, 34] that

Ωn(X, Y ) =
1

n(n− 3)

∑
i 6=j

aijbij

− 2

n(n− 2)(n− 3)

n∑
i=1

ai·bi· +
a··b··

n(n− 1)(n− 2)(n− 3)
(3.1.15)

is an unbiased estimator of V2(X, Y ). In addition, a fast algorithm has been propose [34]

for the aforementioned sample distance covariance in the univariate cases with complexity

order O(n log n) and storage O(n). We list the result below for reference purpose.
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Theorem 3.1.2 (Theorem 3.2 & Corollary 4.1 in [34]). SupposeX1, . . . , Xn and Y1, . . . , Yn ∈

R. The unbiased estimator Ωn defined in (3.1.15) can be computed by an O(n log n) algo-

rithm.

In addition, as a byproduct, the following result is established in the same paper.

Corollary 3.1.3. The quantity

a··b··
n(n− 1)(n− 2)(n− 3)

=

∑n
k,l=1 akl

∑n
k,l=1 bkl

n(n− 1)(n− 2)(n− 3)

can be computed by an O(n log n) algorithm.

We will use the above result in our test of independence. However, as far as we know, in

the multivariate cases, there does not exist any work on fast algorithm of the order of com-

plexity O(n log n). This chapter will fill in this gap by introducing an order O(nK log n)

complexity algorithm in the multivariate cases.

3.1.3 Distance Based Independence Tests

In [80] an independence test is proposed using the distance covariance. We summarizes

it below as a theorem, which serves as a benchmark. Our test will be aligned with the

following one, except that we introduced a new test statistic, which can be more efficiently

computed, and it has comparable asymptotic properties with the test statistic that is used

below.

Theorem 3.1.4 ([80], Theorem 6). For potentially multivariate random variables X and

Y , a prescribed level αs, and sample size n, one rejects the independence if and only if

nV2
n(X, Y )

S2

> (Φ−1(1− αs/2))2,
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where V2
n(X, Y ) has been defined in (3.1.12), Φ(·) denote the cumulative distribution func-

tion of the standard normal distribution and

S2 =
1

n4

n∑
i,j=1

|Xi −Xj|
n∑

i,j=1

|Yi − Yj|.

Moreover, let α(X, Y, n) denote the achieved significance level of the above test. If E[|X|+

|Y |] <∞, then for all 0 < αs < 0.215, one can show the following:

lim
n→∞

α(X, Y, n) ≤ αs, and

sup
X,Y

{
lim
n→∞

α(X, Y, n) : V(X, Y ) = 0
}

= αs.

Note that the quantity V2
n(X, Y ) that is used above as in [80] differs from the one that

will be used in our proposed method. As mentioned, we use the above as an illustration for

distance-based tests of independence, as well as the theoretical (or asymptotic) properties

that such a test can achieve.

3.2 Numerically Efficient Method for Random Vectors

This section is made of two components. We present a random-projection-based distance

covariance estimator that will be proven to be unbiased with a computational complexity

that is O(Kn log n) in Section 3.2.1. In Section 3.2.2, we describe how the test of indepen-

dence can be done by utilizing the above estimator. For user’s conveniences, stand-alone

algorithms are furnished in the appendix.

3.2.1 Random Projection Based Methods for Approximating Distance Covariance

We consider how to use a fast algorithm for univariate random variables to compute or

approximate the sample distance covariance of random vectors. The main idea works as

42



follows: first, projecting the multivariate observations on some random directions; then,

using the fast algorithm to compute the distance covariance of the projections; finally, av-

eraging distance covariances from different projecting directions.

More specifically, our estimator can be computed as follows. For potentially multivari-

ate X1, . . . , Xn ∈ Rp, p ≥ 1 and Y1, . . . , Yn ∈ Rq, q ≥ 1, let K be a predetermined number

of iterations, we do:

(1) For each k (1 ≤ k ≤ K), randomly generate uk and vk from Uniform(Sp−1) and

Uniform(Sq−1), respectively. Here Sp−1 and Sq−1 are the unit spheres in Rp and Rq,

respectively. Uniform(Sp−1) is a uniform measure (or distribution) on Sp−1.

(2) Let utkX and vtkY denote the projections of X and Y to the spaces that are spanned

by vector uk and vk, respectively. That is we have

utkX = (utkX1, . . . , u
t
kXn), and vtkY = (vtkY1, . . . , v

t
kYn).

Note that samples utkX and vtkY are now univariate.

(3) Utilize the fast (i.e., order O(n log n)) algorithm that was mentioned in Theorem

3.1.2 to compute for the unbiased estimator in (3.1.15) with respect to utkX and vtkY .

Formally, we denote

Ω(k)
n = CpCqΩn(utkX, v

t
kY ),

where Cp and Cq have been defined at the beginning of this chapter.

(4) The above three steps are repeated for K times. The final estimator is the average:

Ωn =
1

K

K∑
k=1

Ω(k)
n . (3.2.16)
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To emphasize the dependency of the above quantity with K, we sometimes use a

notation Ωn,K , Ωn.

See Algorithm 1 in the appendix for a stand-alone presentation of the above method. In the

light of Theorem 3.1.2, we can handily declare the following.

Theorem 3.2.1. For potentially multivariate X1, . . . , Xn ∈ Rp and Y1, . . . , Yn ∈ Rq, the

order of computational complexity of computing the aforementioned Ωn is O(Kn log n)

with storage O(max{n,K}), where K is the number of random projections.

The proof of the above theorem is omitted, because it is straightforward from Theo-

rem 3.1.2. The statistical properties of the proposed estimator Ωn will be studied in the

subsequent section (specifically in Section 3.3.4).

3.2.2 Test of Independence

By a later result (cf. Theorem 3.3.18), we can apply Ωn in the independence testing. The

corresponding asymptotic distribution of the test statistic Ωn can be approximated by a

Gamma(α, β) distribution with α and β given in (3.3.24). We can compute the significant

level of the test statistic by permutation and conduct the independence test accordingly.

Recall that we have potentially multivariate X1, . . . , Xn ∈ Rp and Y1, . . . , Yn ∈ Rq. Recall

that K denotes the number of Monte Carlo iterations in our previous algorithm. Let αs

denote the prescribed significance level of the independence test. Let L denote the num-

ber of random permutations that we will adopt. We would like to test the null hypothesis

H0—X and Y are independent—against its alternative. Recall Ωn is our proposed esti-

mator in (3.2.16). The following algorithm describes an independence test which applies

permutations to generate a threshold.
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(1) For each `, 1 ≤ ` ≤ L, one generates a random permutation of Y : Y ?,` = (Y ?
1 , . . . Y

?
n );

(2) Using the algorithm in Section 3.2.1, one can compute the estimator Ωn as in (3.2.16)

for X and Y ?,`; denote the outcome to be V` = Ωn(X, Y ?,`). Note under the random

permutations, X and Y ?,` are independent.

(3) The above two steps are executed for all ` = 1, . . . , L. One rejects H0 if and only if

we have

1 +
∑L

`=1 I(Ωn > V`)

1 + L
> αs.

See Algorithm 2 in the appendix for a stand-alone description.

One can also use the information of an approximate asymptotic distribution to estimate

a threshold in the aforementioned independence test. The following describes such an

approach. Recall that we have random vectors X1, . . . , Xn ∈ Rp, p ≥ 1 and Y1, . . . , Yn ∈

Rq, q ≥ 1, the number of random projections K, and a prescribed significance level αs that

has been mentioned earlier.

(1) For each k (1 ≤ k ≤ K), randomly generate uk and vk from uniform(Sp−1) and

uniform(Sq−1), respectively.

(2) Use the fast algorithm in Theorem 3.1.2 to compute the following quantities:

Ω(k)
n = CpCqΩn(utkX, v

t
kY ),

S
(k)
n,1 = C2

pC
2
qΩn(utkX, u

t
kX)Ωn(vtkY, v

t
kY ),

S
(k)
n,2 = Cp

auk··
n(n− 1)

, S
(k)
n,3 = Cq

bvk··
n(n− 1)

,

where Cp and Cq have been defined at the beginning of this chapter and in the last
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equation, the auk·· and bvk·· are defined as follows:

aukij = |utk(Xi −Xj)|, bvkij = |vtk(Yi − Yj)|,

auk·· =
n∑

k,l=1

aukkl , bvk·· =
n∑

k,l=1

bvkkl .

(3) For the aforementioned k, one randomly generates u′k and v′k from uniform(Sp−1)

and uniform(Sq−1), respectively. Use the fast algorithm that is mentioned in Theorem

3.1.2 to compute the following.

Ω
(k)
n,X = C2

pΩn(utkX, u
′t
kX), Ω

(k)
n,Y = C2

pΩn(vtkY, v
′t
kY ).

where Cp and Cq have been defined at the beginning of this chapter.

(4) Repeat the previous steps for all k = 1, . . . , K. Then we compute the following

quantities:

Ωn =
1

K

K∑
k=1

Ω(k)
n , S̄n,1 =

1

K

K∑
k=1

S
(k)
n,1, S̄n,2 =

1

K

K∑
k=1

S
(k)
n,2,

S̄n,3 =
1

K

K∑
k=1

S
(k)
n,3, Ωn,X =

1

K

K∑
k=1

Ω
(k)
n,X , Ωn,Y =

1

K

K∑
k=1

Ω
(k)
n,Y ,

α =
1

2

S̄2
n,2S̄

2
n,3

K−1
K

Ωn,XΩn,Y + 1
K
S̄n,1

, (3.2.17)

β =
1

2

S̄n,2S̄n,3
K−1
K

Ωn,XΩn,Y + 1
K
S̄n,1

. (3.2.18)

(5) Reject H0 if nΩn + S̄n,2S̄n,3 > Gamma(α, β; 1 − αs); otherwise, accept it. Here

Gamma(α, β; 1− αs) is the 1− αs quantile of the distribution Gamma(α, β).

The above procedure is motivated by the observation that the asymptotic distribution of the

test statistic nΩn can be approximated by a Gamma distribution, whose parameters can be

estimated by (3.2.17) and (3.2.18). A stand-alone description of the above procedure can

be found in Algorithm 3 in the appendix.
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3.3 Theoretical Properties of Distance Covariance and Random Projec-
tions

In this section, we establish the theoretical foundation of the proposed method. In Section

3.3.1, we study some properties of the random projections and the subsequent average esti-

mator. These properties will be needed in studying the properties of the proposed estimator.

We study the properties of the proposed distance covariance estimator (Ωn) in Section 3.3.2,

taking advantage of the fact that Ωn is a U-statistic. It turns out that the properties of eigen-

values of a particular operator plays an important role. We present the relevant results in

Section 3.3.3. The main properties of the proposed estimator (Ωn) is presented in Section

3.3.4.

3.3.1 Using Random Projections in Distance-Based Methods

In this section, we will study some properties of distance covariances of randomly projected

random vectors. We begin with a necessary and sufficient condition of independence.

Lemma 3.3.1. Suppose u and v are points on the hyper-spheres: u ∈ Sp−1 = {u ∈ Rp :

|u| = 1} and v ∈ Sq−1. We have

random vectors X ∈ Rp and Y ∈ Rq are independent

if and only if

V2(utX, vtY ) = 0, for any u ∈ Sp−1, v ∈ Sq−1.

The proof is relatively straightforward. We relegate a formal proof to the appendix.

This lemmas indicates that the independence is somewhat preserved under projections. The

main contribution of the above result is to motivate us to think of using random projection,

47



to reduce the multivariate random vectors into univariate random variables. As mentioned

earlier, there exist fast algorithms of distance-based methods for univariate random vari-

ables.

The following result allows us to regard the distance covariance of random vectors of

any dimension as an integral of distance covariance of univariate random variables, which

are the projections of the aforementioned random vectors. The formulas in the following

lemma provides foundation for our proposed method: the distance covariances in the mul-

tivariate cases can be written as integrations of distance covariances in the univariate cases.

our proposed method essentially adopts the principle of Monte Carlo to approximate such

integrals. We again relegate the proof to the appendix.

Lemma 3.3.2. Suppose u and v are points on unit hyper-spheres: u ∈ Sp−1 = {u ∈ Rp :

|u| = 1} and v ∈ Sq−1. Let µ and ν denote the uniform probability measure on Sp−1 and

Sq−1, respectively. Then, we have for random vectors X ∈ Rp and Y ∈ Rq,

V2(X, Y ) = CpCq

∫
Sp−1×Sq−1

V2(utX, vtY )dµ(u)dν(v),

where Cp and Cq are two constants that are defined at the beginning of this chapter. More-

over, a similar result holds for the sample distance covariance:

V2
n(X, Y ) = CpCq

∫
Sp−1×Sq−1

V2
n(utX, vtY )dµ(u)dν(v).

Besides the integral equations in the above lemma, we can also establish the following

result for the unbiased estimator. Such a result provides direct foundation of our proposed

method. Recall that Ωn, which is in (3.1.15), is an unbiased estimator of the distance

covariance V2(X, Y ). A proof is provided in the appendix.
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Lemma 3.3.3. Suppose u and v are points on the hyper-spheres: u ∈ Sp−1 = {u ∈ Rp :

|u| = 1} and v ∈ Sq−1. Let µ and ν denote the measure corresponding to the uniform

densities on the surfaces Sp−1 and Sq−1, respectively. Then, we have

Ωn(X, Y ) = CpCq

∫
Sp−1×Sq−1

Ωn(utX, vtY )dµ(u)dν(v),

where Cp and Cq are constants that were mentioned at the beginning of this chapter.

From the above lemma, recalling the design of our proposed estimator Ωn as in (3.2.16),

it is straightforward to see that the proposed estimator Ωn is an unbiased estimator of

Ωn(X, Y ). For completeness, we state the following without a proof.

Corollary 3.3.4. The proposed estimator Ωn in (3.2.16) is an unbiased estimator of the

estimator Ωn(X, Y ) that was defined in (3.1.15).

Note that the estimator Ωn in (3.2.16) evidently depends on the number of random

projections K. Recall that to emphasize such a dependency, we sometimes use a nota-

tion Ωn,K , Ωn. The following concentration inequality shows the speed that Ωn,K can

converge to Ωn as K →∞.

Lemma 3.3.5. Suppose E[|X|2] <∞ and E[|Y |2] <∞. For any ε > 0, we have

P
(
|Ωn,K − Ωn| > ε

)
≤ 2 exp

{
− CKε2

Tr[ΣX ]Tr[ΣY ]

}
,

where ΣX and ΣY are the covariance matrices ofX and Y , respectively, Tr[ΣX ] and Tr[ΣY ]

are their matrix traces, and C = 2
25C2

pC
2
q

is a constant.

The proof is a relatively standard application of the Hoeffding’s inequality [31], which

has been relegated to the appendix. The above lemma essentially indicates that the quantity

|Ωn,K − Ωn| converges to zero at a rate no worse than O(1/
√
K).
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3.3.2 Asymptotic Properties of the Sample Distance Covariance Ωn

The asymptotic behavior of a range of sample distance covariance, such as Ωn in (3.1.15) of

this chapter, has been studied in many places, seeing [50, 34, 77, 69]. We found that it is still

worthwhile to present them here, as we will use them to establish the statistical properties

of our proposed estimator. The asymptotic distributions of Ωn will be studied under two

situations: (1) a general case and (2) when X and Y are assumed to be independent. We

will see that the asymptotic distributions are different in these two situations.

It has been showed in [34, Theorem 3.2] that Ωn is a U-statistic. In the following, we

state the result without a formal proof. We will need the following function, denoted by h4,

which takes four pairs of input variables:

h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))

=
1

4

∑
1≤i,j≤4,i 6=j

|Xi −Xj||Yi − Yj| −
1

4

4∑
i=1

(
4∑

j=1,j 6=i

|Xi −Xj|
4∑

j=1,j 6=i

|Yi − Yj|

)

+
1

24

∑
1≤i,j≤4,i 6=j

|Xi −Xj|
∑

1≤i,j≤4,i 6=j

|Yi − Yj|. (3.3.19)

Note that the definition of h4 coincides with Ωn when the number of observations n = 4.

Lemma 3.3.6 (U-statistics). Let Ψ4 denote all distinct 4-subset of {1, . . . , n} and let us

define Xψ = {Xi|i ∈ ψ} and Yψ = {Yi|i ∈ ψ}, then Ωn is a U-statistic and can be

expressed as

Ωn =

(
n

4

)−1 ∑
ψ∈Ψ4

h4 (Xψ, Yψ) .

From the literature of the U-statistics, we know that the following quantities play critical
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roles. We state them here:

h1((X1, Y1)) = E2,3,4[h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))],

h2((X1, Y1), (X2, Y2)) = E3,4[h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))],

h3((X1, Y1), (X2, Y2), (X3, Y3)) = E4[h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))],

where E2,3,4 stands for taking expectation over (X2, Y2), (X3, Y3) and (X4, Y4); E3,4 stands

for taking expectation over (X3, Y3) and (X4, Y4); and E4 stands for taking expectation

over (X4, Y4); respectively.

One immediate application of the above notations is the following result, which quan-

tifies the variance of Ωn. Since the formula is a known result, seeing [70, Chapter 5.2.1,

Lemma A], we state it without a proof.

Lemma 3.3.7 (Variance of the U-statistic). The variance of Ωn could be written as

Var(Ωn) =

(
n

4

)−1 4∑
l=1

(
4

l

)(
n− 4

4− l

)
Var(hl)

=
16

n
Var(h1) +

240

n2
Var(h1) +

72

n2
Var(h2) +O

(
1

n3

)
,

where O(·) is the standard big O notation in mathematics.

From the above lemma, we can see that Var(h1) and Var(h2) play indispensable roles in

determining the variance of Ωn. The following lemma shows that under some conditions,

we can ensure that Var(h1) and Var(h2) are bounded. A proof has been relegated to the

appendix.

Lemma 3.3.8. If we have E[|X|2] < ∞, E[|Y |2] < ∞ and E[|X|2|Y |2] < ∞, then we

have Var(h4) <∞. Consequently, we also have Var(h1) <∞ and Var(h2) <∞.
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Even though as indicated in Lemma 3.3.7, the quantities h1(X1, Y1) and

h2((X1, Y1), (X2, Y2)) play important roles in determine the variance of Ωn, in a generic

case, they do not have a simple formula. The following lemma gives the generic formulas

for h1(X1, Y1) and h2((X1, Y1), (X2, Y2)). Its calculation can be found in the appendix.

Lemma 3.3.9 (Generic h1 and h2). In the general case, assuming (X1, Y1), (X, Y ), (X ′, Y ′),

and (X ′′, Y ′′) are independent and identically distributed, we have

h1((X1, Y1)) =
1

2
E[|X1 −X ′||Y1 − Y ′|]−

1

2
E[|X1 −X ′||Y1 − Y ′′|]

+
1

2
E[|X1 −X ′||Y − Y ′′|]−

1

2
E[|X1 −X ′||Y ′ − Y ′′|]

+
1

2
E[|X −X ′′||Y1 − Y ′|]−

1

2
E[|X ′ −X ′′||Y1 − Y ′|]

+
1

2
E[|X −X ′||Y − Y ′|]− 1

2
E[|X −X ′||Y − Y ′′|].

We have a similar formula for h2((X1, Y1), (X2, Y2)) in (C.47). Due to its length, we do

not display it here.

If one assumes that X and Y are independent, we can have simpler formula for h1, h2,

as well as their corresponding variances. We list the results below, with detailed calcula-

tion relegated to the appendix. One can see that under independence, the corresponding

formulas are much simpler.

Lemma 3.3.10. When X and Y are independent, we have the following. For (X, Y ) and
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(X ′, Y ′) that are independent and identically distributed as (X1, Y1) and (X2, Y2), we have

h1((X1, Y1)) = 0, (3.3.20)

h2((X1, Y1), (X2, Y2)) =
1

6
(|X1 −X2| − E[|X1 −X|]− E[|X2 −X|] + E[|X −X ′|])

(3.3.21)

(|Y1 − Y2| − E[|Y1 − Y |]− E[|Y2 − Y |] + E[|Y − Y ′|]),

Var(h2) =
1

36
V2(X,X)V2(Y, Y ), (3.3.22)

where E stands for the expectation operators with respect to X , X and X ′, Y , or Y and

Y ′, whenever appropriate, respectively.

If we have 0 < Var(h1) < ∞, it is known that the asymptotic distribution of Ωn is

normal, as stated in the following. Note that based on Lemma 3.3.10, X and Y cannot

be independent; otherwise one should have h1 = 0 almost surely. The following theorem

is based on a known result on the convergence of U-statistics, seeing [70, Chapter 5.5.1

Theorem A]. We state it without a proof.

Theorem 3.3.11. Suppose n ≥ 7, 0 < Var(h1) <∞ and Var(h4) <∞, then we have

Ωn
P−→ V2(X, Y )

moreover, we have

√
n(Ωn − V2(X, Y ))

D−→ N(0, 16Var(h1)), as n→∞.

When X and Y are independent, the asymptotic distribution of
√
nΩn is no longer

normal. In this case, from Lemma 3.3.10, we have

h1((X1, Y1)) = 0 almost surely, and Var[h1((X1, Y1))] = 0.
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The following theorem, which applies a result in [70, Chapter 5.5.2], indicates that nΩn

converges to a weighted sum of (possibly infinitely many) independent χ2
1 random vari-

ables.

Theorem 3.3.12. If X and Y are independent, the asymptotic distribution of Ωn is

nΩn
D−→

∞∑
i=1

λi(Z
2
i − 1) =

∞∑
i=1

λiZ
2
i −

∞∑
i=1

λi,

where Z2
i ∼ χ2

1 i.i.d, λi’s are the eigenvalues of operator G that is defined as

Gg(x1, y1) = Ex2,y2 [6h2((x1, y1), (x2, y2))g(x2, y2)],

where function h2((·, ·), (·, ·)) was defined in (3.3.21).

Proof. The asymptotic distribution of Ωn is from the result in [70, Chapter 5.5.2].

See Subsection 3.3.3 for more details on methods for computing the value of λi’s. In

particular, we will show that we have
∑∞

i=1 λi = E[|X−X ′|]E[|Y −Y ′|] (Corollary 3.3.15)

and
∑∞

i=1 λ
2
i = V2(X,X)V2(Y, Y ) (which is essentially from (3.3.22) and Lemma 3.3.7).

3.3.3 Properties of Eigenvalues λi’s

From Theorem 3.3.12, we see that the eigenvalues λi’s play important role in determining

the asymptotic distribution of Ωn. We study its properties here. Throughout this subsection,

we assume that X and Y are independent. Let us recall that the asymptotic distribution of

sample distance covariance Ωn,

nΩn
D−→

∞∑
i=1

λi(Z
2
i − 1) =

∞∑
i=1

λiZ
2
i −

∞∑
i=1

λi,

where λi’s are the eigenvalues of the operator G that is defined as

Gg(x1, y1) = Ex2,y2 [6h2((x1, y1), (x2, y2))g(x2, y2)],
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where function h2((·, ·), (·, ·)) was defined in (3.3.21). By definition, eigenvalues λ1, λ2, . . .

corresponding to distinct solutions of the following equation

Gg(x1, y1) = λg(x1, y1). (3.3.23)

We now study the properties of λi’s. Utilizing the Lemma 12 and equation (4.4) in [69],

we can verify the following result. We give details of verifications in the appendix.

Lemma 3.3.13. Both of the following two functions are positive definite kernels:

hX(X1, X2) = −|X1 −X2|+ E[|X1 −X|] + E[|X2 −X|]− E[|X −X ′|]

and

hY (Y1, Y2) = −|Y1 − Y2|+ E[|Y1 − Y |] + E[|Y2 − Y |]− E[|Y − Y ′|].

The above result gives us a foundation to apply the equivalence result that has been ar-

ticulated thoroughly in [69]. Equipped with the above lemma, we have the following result,

which characterizes a property of λi’s. The detailed proof can be found in the appendix.

Lemma 3.3.14. Suppose {λ1, λ2, . . .} are the set of eigenvalues of kernel

6h2((x1, y1), (x2, y2)), {λX1 , λX2 , . . .} and {λY1 , λY2 , . . .} are the sets of eigenvalues of the

positive definite kernels hX and hY , respectively. We have the following:

{λ1, λ2, . . .} = {λX1 , λX2 , . . .} ⊗ {λY1 , λY2 , . . .};

that is, each λi satisfying (3.3.23) can be written as, for some j, j′,

λi = λXj · λYj′

where λXj and λYj′ are the eigenvalues corresponding to kernel functions hX(X1, X2) and

hY (Y1, Y2), respectively.
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Above lemma implies that eigenvalues of h2 could be obtained immediately after know-

ing the eigenvalues of hX and hY . But, in practice, there usually does not exist analytic

solution for even the eigenvalues of hX or hY . Instead, given the observations (X1, . . . , Xn)

and (Y1, . . . , Yn), we can compute the eigenvalues of matrices K̃X = (hX(Xi, Xj))n×n and

K̃Y = (hY (Yi, Yj))n×n and use those empirical eigenvalues to approximate λX1 , λ
X
2 , . . . and

λY1 , λ
Y
2 , . . ., and then consequently λ1, λ2, . . .

We end this subsection with the following corollary on the summations of eigenval-

ues, which is necessary for the proof of Theorem 3.3.12. The proof can be found in the

appendix.

Corollary 3.3.15. The aforementioned eigenvalues λX1 , λ
X
2 , . . . and λY1 , λ

Y
2 , . . . satisfy

∞∑
i=1

λXi = E[|X −X ′|], and
∞∑
i=1

λYi = E[|Y − Y ′|].

As a result, we have
∞∑
i=1

λi = E[|X −X ′|]E[|Y − Y ′|],

and
∞∑
i=1

λ2
i = V2(X,X)V2(Y, Y ).

3.3.4 Asymptotic Properties of Averaged Projected Sample Distance Covariance Ωn

We have reviewed the properties of the statistics Ωn in a previous section (Section 3.3.2).

The disadvantage of directly applying Ωn (which is defined in (3.1.15)) is that for multi-

variate X and Y , the implementation may require at least O(n2) operations. Recall that

for univariate X and Y , an O(n log n) algorithm exists, cf. Theorem 3.1.2. The proposed

estimator (Ωn in (3.2.16)) is the averaged distance covariances, after randomly projecting
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X and Y to one-dimensional spaces, respectively. In this section, we will study the asymp-

totic behavior of Ωn. It turns out that the analysis will be similar to the works in Section

3.3.2. The asymptotic distribution of Ωn will differ in two cases: (1) the dependent case

and (2) the case when X and Y are independent.

As a preparation of presenting the main result, we recall and introduce some notations.

Recall the definition of Ωn:

Ωn =
1

K

K∑
k=1

Ω(k)
n ,

where

Ω(k)
n = CpCqΩn(utkX, v

t
kY )

and constants Cp, Cq have been defined at the beginning of Chapter 3. By Corollary 3.3.4,

we have E
[
Ω

(k)
n

]
= Ωn, where E stands for the expectation with respect to the random

projection. Note that from the work in Section 3.3.2, estimator Ω
(k)
n is a U-statistic. The

following equation reveals that estimator Ωn is also a U-statistic,

Ωn =

(
n

4

)−1 ∑
ψ∈Ψ4

CpCq
K

K∑
k=1

h4(utkXψ, v
t
kYψ) ,

(
n

4

)−1 ∑
ψ∈Ψ4

h̄4(Xψ, Yψ),

where

h̄4(Xψ, Yψ) =
1

K

K∑
k=1

CpCqh4(utkXψ, v
t
kYψ).

We have seen that quantities h1 and h2 play significant roles in the asymptotic behavior
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of statistic Ωn. Let us define the counterpart notations as follows:

h̄1((X1, Y1)) = E2,3,4[h̄4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))]

,
1

K

K∑
k=1

h
(k)
1

h̄2((X1, Y1), (X2, Y2)) = E3,4[h̄4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))]

,
1

K

K∑
k=1

h
(k)
2 ,

where E2,3,4 stands for taking expectation over (X2, Y2), (X3, Y3) and (X4, Y4); E3,4 stands

for taking expectation over (X3, Y3) and (X4, Y4); as well as the following:

h
(k)
1 = E2,3,4[CpCqh4(utkXψ, v

t
kYψ)],

h
(k)
2 = E3,4[CpCqh4(utkXψ, v

t
kYψ)].

In the general case, we do not assume thatX and Y are independent. Let U = (u1, . . . , uK)

and V = (v1, . . . , vK) denote the collection of random projections. We can write the

variance of Ωn as follows. The proof is an application of Lemma 3.3.7 and the law of total

covariance. We relegate it to the appendix.

Lemma 3.3.16. Suppose EU,V [VarX,Y (h̄1|U, V )] > 0 and Varu,v(V2(utX, vtY )) > 0, then,

the variance of Ωn is

Var(Ωn) =
1

K
Varu,v(V2(utX, vtY )) +

16

n
EU,V [VarX,Y (h̄1|U, V )]

+
72

n2
EU,V [VarX,Y (h̄2|U, V )] +O

(
1

n3

)
.

With above preparation, we will derive the asymptotic distribution of proposed estima-

tor Ωn in two different cases: (1) X and Y are dependent; (2) X and Y are independent. It
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is worthing noting that the second case is of more interest for hypotheses testing while the

first case is for theoretical completeness.

3.3.4.1 Asymptotic Properties under Depedence

Equipped with Lemma 3.3.16, we can summarize the asymptotic properties of proposed

estimator in the following theorem. We state it without a proof as it is an immediate result

from Lemma 3.3.16 as well as the contents in [70, Chapter 5.5.1 Theorem A].

Theorem 3.3.17. Suppose 0 < EU,V [VarX,Y (h̄1|U, V )] <∞,

EU,V [VarX,Y (h̄4|U, V )] <∞. Also, let us assume that K →∞, n→∞, then we have

Ωn
P−→ V2(X, Y ).

And, the asymptotic distribution of Ωn could differ under different conditions.

(1) If K →∞ and K/n→ 0, then

√
K
(
Ωn − V2(X, Y )

) D−→ N
(
0,Varu,v(V2(utX, vtY ))

)
.

(2) If n→∞ and K/n→∞, then

√
n
(
Ωn − V2(X, Y )

) D−→ N
(
0, 16EU,V [VarX,Y (h̄1|U, V )]

)
.

(3) If n→∞ and K/n→ C, where C is some constant, then

√
n
(
Ωn − V2(X, Y )

) D−→

N

(
0,

1

C
Varu,v(V2(utX, vtY )) + 16EU,V [VarX,Y (h̄1|U, V )]

)
.

Since our main idea is to utilize Ωn to approximate the quantity Ωn, it is of interests to

compare the asymptotic variance of Ωn in Theorem 3.3.11 with the asymptotic variances

in the above theorem. We present some discussions in the following remark.
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Remark. Let us recall the asymptotic properties of Ωn ,

√
n(Ωn − V2(X, Y ))

D−→ N(0, 16Var(h1)).

Then, we make the comparison in the following different scenarios.

(1) If K → ∞ and K/n → 0, then the convergence rate of Ωn is much slower than Ωn

as K � n, which implies a high price to pay in terms of efficiency.

(2) If n→∞ and K/n→∞, then the convergence rate of Ωn is the same with Ωn and

but there is virtually no gain in terms of computational complexity.

(3) If n→∞ andK/n→ C, whereC is some constant, then the convergence rate of Ωn

is the same with Ωn but the variance of Ωn is larger than that of Ωn. In this case, Ωn

loses statistical efficiency compared with Ωn. The benefit for this loss of efficiency,

however, is only a marginal improvement in terms of computational complexity.

Theorem 3.3.17 is a general theoretical result with limited application in test of inde-

pendence. First, we do not assume that X and Y are independent while, in test of inde-

pendence, the asymptotic behavior of test statistics under the null hypotheses is of more

interest. Second, we let number of random projections K be sufficiently large in Theo-

rem 3.3.17. However, in practice, we must limit the value of K to achieve computational

efficiency.

3.3.4.2 Asymptotic Properties under Independence

Generally, whenX is not independent of Y , Ωn is not as good as Ωn in terms of convergence

rate. However, asymptotic distribution when X is independent of Y is of more interest for
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hypotheses testing. In the following context of this section, we will show that Ωn has the

same convergence rate with Ωn when X is independent of Y .

By Lemma 3.3.10, we have

h̄
(k)
1 = 0, h̄1 = 0, almost surely, and ,Var(h̄1) = 0.

And, by Lemma 3.3.1, we know that

V2(utX, vtY ) = 0,∀u, v,

which implies

Varu,v
(
V2(utX, vtY )

)
= 0.

Therefore, we only need to consider VarX,Y (h̄2|U, V ). Suppose (U, V ) is given, a result

in [70, Chapter 5.5.2], together with Lemma 3.3.16, indicates that nΩn converges to a

weighted sum of (possibly infinitely many) independent χ2
1 random variables. The proof

can be found in appendix.

Theorem 3.3.18. If X and Y are independent, given the value of U = (u1, . . . , uK) and

V = (v1, . . . , vK), the asymptotic distribution of Ωn is

nΩn
D−→

∞∑
i=1

λ̄i(Z
2
i − 1) =

∞∑
i=1

λ̄iZ
2
i −

∞∑
i=1

λ̄i,

where Z2
i ∼ χ2

1 i.i.d, and

∞∑
i=1

λ̄i =
CpCq
K

K∑
k=1

E[|utk(X −X ′)|]E[|vtk(Y − Y ′)|],

∞∑
i=1

λ̄2
i =

C2
pC

2
q

K2

K∑
k,k′=1

V2
(
utkX, u

t
k′X
)
V2
(
vtkY, v

t
k′Y
)
.

61



Remark 3.3.19. Let us recall that if X and Y are independent, the asymptotic distribution

of Ωn is

nΩn
D−→

∞∑
i=1

λi(Z
2
i − 1).

Theorem 3.3.18 shows that under the null hypotheses, Ωn enjoys the same convergence rate

with Ωn.

It is also worth noting that in Theorem 3.3.18, the number of random projections to be

fixed in order to achieve computational efficiency.

There usually does not exist a close-form expression for
∑∞

i=1 λ̄iZ
2
i , but we can approx-

imate it with the Gamma distribution whose first two moments matched. Thus, we have

that
∑∞

i=1 λ̄iZ
2
i could be approximated by Gamma(α, β) with probability density function

βα

Γ(α)
xα−1e−βx, x > 0,

where

α =
1

2

(
∑∞

i=1 λ̄i)
2∑∞

i=1 λ̄
2
i

, β =
1

2

∑∞
i=1 λ̄i∑∞
i=1 λ̄

2
i

. (3.3.24)

See [12, Section 3] for an empirical justification on this Gamma approximation. See [11]

for a survey on different approximation methods of weighted sum of chi-square distribu-

tion.

The following result shows that both
∑∞

i=1 λ̄i and
∑∞

i=1 λ̄
2
i could be estimated from

data, see appendix for the corresponding justification.
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Proposition 3.3.20. One can approximate
∑∞

i=1 λ̄i and
∑∞

i=1 λ̄i as follows:

∞∑
i=1

λ̄i ≈
CpCq

Kn2(n− 1)2

K∑
k=1

auk·· b
vk
·· ,

∞∑
i=1

λ̄2
i ≈

K − 1

K
Ωn(X,X)Ωn(Y, Y )

+
C2
pC

2
q

K

K∑
k=1

Ωn(utkX, u
t
kX)Ωn(vtkY, v

t
kY ).

3.4 Simulations for Randomly Projected Distance Covariance

Our numerical studies follow the works of [69, 29, 80]. In Section 3.4.1, we study how

the performance of the proposed estimator is influenced by some parameters, including

the sample size, the dimensions of the data, as well as the number of random projections

in our algorithm. We also study and compare the computational efficiency of the direct

method and the proposed method in Section 3.4.2. The comparison of the corresponding

independence test with other existing methods will be included in Section 3.4.3.

3.4.1 Impact of Sample Size, Data Dimensions and the Number of Monte Carlo It-
erations

In this part, we will use some synthetic data to study impact of sample size n, data dimen-

sions (p, q) and the number of the Monte Carlo iterations K on the convergence and test

power of our proposed test statistic Ωn. The significance level is set to be αs = 0.05. Each

experiment is repeated for N = 400 times to get reliable mean and variance of estimators.

In first two examples, we fix data dimensions p = q = 10 and let the sample size n vary

in 100, 500, 1000, 5000, 10000 and let the number of the Monte Carlo iterations K vary in

10, 50, 100, 500, and 1000. The data generation mechanism is described as follows, and it

generates independent variables.
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Example 3.4.1. We generate random vectorsX ∈ R10 and Y ∈ R10. Each entryXi follows

Unif(0, 1), independently. Each entry Yi = Z2
i , where Zi follows Unif(0, 1), independently.

See Figure 5 for the boxplots of the outcomes of Example 3.4.1. In each subfigure, we

fix the Monte Carlo iteration number K and let the number of observations n grow. It is

worth noting that the scale of each subfigure could be different in order to display the entire

boxplots. This experiment shows that the estimator converges to 0 regardless of the number

of the Monte Carlo iterations. It also suggests that K = 50 Monte Carlo iterations should

suffice in the independent cases.
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Figure 5: Boxplots of estimators in Example 3.4.1. Dimensions of X and Y are fixed to be
p = q = 10; the result is based on 400 repeated experiments.

The following example is to study dependent random variables.

Example 3.4.2. We generate random vectors X ∈ R10 and Y ∈ R10. Each entry Xi
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follows Unif(0, 1), independently. Let Yi denote the i-th entry of Y . We let Y1 = X2
1 and

Y2 = X2
2 . For the rest entry of Y , we have Yi = Z2

i , i = 3, . . . , 10, where Zi follows

Unif(0, 1), independently.

See Figure 6 for the boxplots of the outcomes of Example 3.4.2. In each subfigure, we

fix the number of the Monte Carlo iterations K and let the number of observations n grow.

This example shows that when K is fixed, the variation of the estimator remains regardless

of the sample size n. In the dependent cases, the number of the Monte Carlo iterations K

plays a more important role in estimator convergence than sample size n.
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Figure 6: Boxplots of our estimators in Example 3.4.2. Dimension of X and Y are fixed to
be p = q = 10; the result is based on 400 repeated experiments.

The outcomes of Example 3.4.1 and 3.4.2 confirm the theoretical results that the pro-

posed estimator converges to 0 as sample size n grows in the independent case; and con-

verges to some nonzero number as the number of the Monte Carlo iterations K grows in

the dependent case.
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In the following two examples, we fix the sample size n = 2000 as we noticed that

our method is more efficient than direct method when n is large. We fix the number of the

Monte Carlo iterations K = 50 and relax the restriction on the data dimensions to allow

p 6= q and let p and q vary in (10, 50, 100, 500, 1000). We continue on with an independent

case as follows.

Example 3.4.3. We generate random vectorsX ∈ Rp and Y ∈ Rq. Each entry ofX follows

Unif(0, 1), independently. Each entry Yi = Z2
i , where Zi follows Unif(0, 1), independently.

See Figure 7 for the boxplots of the outcomes of Example 3.4.3. In each subfigure,

we fix the dimension of X and let the dimension of Y grow. It is worth noting that the

scale of each subfigure could be different in order to display the entire boxplots. It shows

that the proposed estimator converges fairly fast in the independent case regardless of the

dimension of the data.

The following presents a dependent case. In this case, only a small number of entries

in X and Y are dependent, which means that the dependency structure between X and Y

is low-dimensional though X or Y could be of high dimensions.

Example 3.4.4. We generate random vectors X ∈ Rp and Y ∈ Rq. Each entry of X

follows Unif(0, 1), independently. We let the first 5 entries of Y to be the square of first 5

entries of X and let the rest entries of Y to be the square of some independent Unif(0, 1)

random variables. Specifically, we let Yi = X2
i , i = 1, . . . , 5, and, Yi = Z2

i , i = 6, . . . , q,

where Zi’s are drawn independently from Unif(0, 1).

See Figure 8 for the boxplots of the outcomes of Example 3.4.4. In each subfigure,
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Figure 7: Boxplot of Estimators in Example 3.4.3: both sample size and the number of
Monte Carlo iterations is fixed, n = 2000, K = 50; the result is based on 400 repeated
experiments.

we fix the dimension of X and let the dimension of Y grow. The test power of proposed

test against data dimensions can be seen in Table 6. It is worth noting that when sample

size is fixed, the test power of our method decays as the dimension of X and Y increase.

We use the Direct Distance Covariance (DDC) defined in (3.1.15) on the same data. As

a contrast, the test power of DDC is 1.000 even p = q = 1000. This example raises a

limitation of random projection: it may fail to detect the low dimensional dependency in

high dimensional data. A possible remedy for this issue is performing dimension reduction

before applying the proposed method. We do not research further along this direction since

it is beyond the scope of this dissertation.

Note this chapter focuses on independence testing. Therefore the independent case is

of more relevance.
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Figure 8: Boxplots of the proposed estimators in Example 3.4.4: both sample size and the
number of the Monte Carlo iterations are fixed: n = 2000 and K = 50; the result is based
on 400 repeated experiments.

Table 6: Test Power in Example 3.4.4: this result is based 400 repeated experiments; the
significant level is 0.05.

Dimension of X: p
Dimension of Y : q

10 50 100 500 1000
10 1.0000 1.0000 1.0000 1.0000 0.9975
50 1.0000 1.0000 1.0000 0.7775 0.4650

100 1.0000 1.0000 0.9925 0.4875 0.1800
500 0.9950 0.8150 0.4425 0.1225 0.0975

1000 0.9900 0.4000 0.2125 0.0900 0.0475

3.4.2 Comparison with Direct Method

In this section, we would like to illustrate the computational and space efficiency of the

proposed method (RPDC). RPDC is much faster than the direct method (DDC, eq. (3.1.15))

when the sample size is large. It is worth noting that DDC is infeasible when the sample size

is too large as its space complexity is O(n2). See Table 7 for a comparison of computing

time (unit: second) against the sample size n. This experiment is run on a laptop (MacBook
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Pro Retina, 13-inch, Early 2015, 2.7 GHz Intel Core i5, 8 GB 1867 MHz DDR3) with

MATLAB R2016b (9.1.0.441655).

Table 7: Speed Comparison: the Direct Distance Covariance (Ωn) versus the Randomly
Projected Distance Covariance (Ωn). This table is based on 100 repeated experiments, the
dimensions of X and Y are fixed to be p = q = 10 and the number of Monte Carlo
iterations in RPDC is K = 50. The numbers outside the parentheses are the average and
the numbers inside the parentheses are the sample standard deviations.

Sample size Ωn Ωn

100 0.0043 (0.0047) 0.0207 (0.0037)
500 0.0210 (0.0066) 0.0770 (0.0086)

1000 0.0624 (0.0047) 0.1685 (0.0141)
2000 0.2349 (0.0133) 0.3568 (0.0169)
4000 0.9184 (0.0226) 0.7885 (0.0114)
8000 7.2067 (0.4669) 1.7797 (0.0311)

16000 — 3.7539 (0.0289)

3.4.3 Comparison with Other Independence Tests

In this part, we compare the statistical test power of the proposed test (RPDC) with Hilbert-

Schmidt Independence Criterion (HSIC) ([29]) as HSIC is gaining attention in machine

learning and statistics communities. We also compare with Randomized Dependence Co-

efficient (RDC) ([49]), which utilizes the technique of random projection as we do. Two

classical tests for multivariate independence, which are described below, are included in

the comparison, as well as the Direct Distance Covariance (DDC) defined in (3.1.15).

• Wilks Lambda (WL): the likelihood ratio test of hypotheses Σ12 = 0 with µ unknown

is based on

det(S)

det(S11)det(S22)
=

det(S22 − S21S
−1
11 S12)

det(S22)
,

where det(·) is the determinant, S, S11 and S22 denote the sample covariances of

(X, Y ), X and Y , respectively, and S12 is the sample covariance ˆCov(X, Y ). Under
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multivariate normality, the test statistic

W = −n log det(I − S−1
22 S21S

−1
11 S12)

has the Wilks Lambda distribution Λ(q, n− 1− p, p), see [88].

• Puri-Sen (PS) statistics: [59], Chapter 8, proposed similar tests based on more gen-

eral sample dispersion matrices T . In that test S, S11, S12 and S22 are replaced by

T, T11, T12 and T22, where T could be a matrix of Spearman’s rank correlation statis-

tics. Then, the test statistic becomes

W = −n log det(I − T−1
22 T21T

−1
11 T12).

The critical values of the Wilks Lambda (WL) and Puri-Sen (PS) statistics are given by

Bartlett’s approximation ([53], Section 5.3.2b): if n is large and p, q > 2, then

−(n− 1

2
(p+ q + 3)) log det(I − S−1

22 S21S
−1
11 S12)

has an approximate χ2(pq) distribution.

The reference distributions of RDC and HSIC are approximated by 200 permutations.

And the reference distributions of DDC and RPDC are approximated by the Gamma Dis-

tribution. The significant level is set to be αs = 0.05 and each experiment is repeated for

N = 400 times to get reliable type-I error / test power.

We start with an example that (X, Y ) is multivariate normal. In this case, WL and PS

are expected to be optimal as the distributional assumptions of these two classical tests are

satisfied. Surprisingly, DDC has comparable performance with the aforementioned two

methods. RPDC can achieve satisfactory performance when sample size is a reasonably

large.
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Example 3.4.5. We set the dimension of the data to be p = q = 10. We generate ran-

dom vectors X ∈ R10 and Y ∈ R10 from the standard multivariate normal distribution

N (0, I10). The joint distribution of (X, Y ) is also normal and we have Cor(Xi, Yi) =

ρ, i = 1, . . . , 10, and the rest correlation are all 0. We set the value of ρ to be 0 and 0.1

to represent independent and correlated scenarios, respectively. The sample size n is set to

be from 100 to 1500 with an increment of 100.

Figure 9 plots the type-I error in subfigure (a) and test power in subfigure (b) against

sample size. In the independence case (ρ = 0.0), the type-I error of each test is always

around the significance level αs = 0.05, which implies the Gamma approximation works

well for the asymptotic distributions. In the dependent case (ρ = 0.1), the overall perfor-

mance of RPDC is close to HSIC and RPDC outperforms when sample size is smaller and

underperforms when sample size is larger. Unfortunately, RDC’s test power is unsatisfac-

tory.

(a) Independence: ρ = 0.0 (b) Dependence: ρ = 0.1

Figure 9: Type-I Error/Test Power vs Sample Size n in Example 3.4.5. The result is based
on 400 repeated experiments.

Next, we compare those methods when (X, Y ) is no longer multivariate normal and
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the dependency between X and Y is non-linear. We add a noise term to compare their

performance in both the low and the high noise-to-signal ratio scenarios. In this case, DDC

and RPDC are much better than WL, PS and RDC. The performance of HSIC is close to

DDC and RPDC when the noise level is low but much worse than those two when the noise

level is high.

Example 3.4.6. We set the dimension of data to be p = q = 10. We generate random

vector X ∈ R10 from the standard multivariate normal distribution N (0, I10). Let the i-th

entry of Y be Yi = log(X2
i ) + εi, i = 1, . . . , q, where εi’s are independent random errors,

εi ∼ N (0, σ2). We set the value of σ to be 1 and 3 to represent low and high noise ratios,

respectively. In the σ = 1 case, the sample size n is from 100 to 1000 with an increment

20; and in the σ = 3 case, the sample size n is from 100 to 4000 with an increment 100.

Figure 10 plots the test power of each test against sample size. In both low and high

noise cases, none of WL, PS and RDC has any test power. In the low noise case, all of

RPDC, DDC and HSIC have satisfactory test power (> 0.9) when sample size is greater

than 300. In the high noise case, RPDC and DDC could achieve more than 0.8 in test power

once sample size is greater than 500 while the test power of HSIC reaches 0.8 when the

sample size is more than 2000.

In the following example, we generate the data in the similar way with Example 3.4.6

but the difference is that the dependency is changing over time. Specifically, X and Y are

independent at the beginning but they become dependent after some time point. Since all

those tests are invariant with the order of the observations, this experiment simply means

that only a proportion of observations are dependent while the rest are not.
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(a) Low Noise: σ = 1 (b) High Noise: σ = 3

Figure 10: Test Power vs Sample Size n in Example 3.4.6. The significance level is αs =
0.05. The result is based on N = 400 repeated experiments.

Example 3.4.7. We set the dimension of data to be p = q = 10. We generate random vector

Xt ∈ R10, t = 1, . . . , n, from the standard multivariate normal distribution N (0, I10). Let

the i-th entry of Yt be Yt,i = log(Z2
t,i) + εt,i, t = 1, . . . , T and Yt,i = log(X2

t,i) + εt,i, t =

T + 1, . . . , n, where Zt i.i.d. ∼ N (0, I10) and εt,i’s are independent random errors, εt,i ∼

N (0, 1). We set the value of T to be 0.5n and 0.8n to represent early and late dependency

transition, respectively. In the early change case, the sample size n is from 500 to 2000

with an increment 100; and in the late change case, the sample size n is from 500 to 4000

with an increment 100.

Figure 11 plots the test power of each test against sample size. In both early and late

change cases, none of WL, PS and RDC has any test power. In the early change case, all

of RPDC, DDC and HSIC have satisfactory test power (> 0.9) when sample size is greater

than 1500. In the late change case, DDC and HSIC could achieve more than 0.8 in test

power once sample size reaches 4000 while the test power of RPDC is only 0.6 when the

sample size is 4000. As expected, the performance of DDC is better than RPDC in both

cases and the performance of HSIC is between DDC and RPDC.
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(a) Early Change: T = 0.5n (b) Late Change: T = 0.8n

Figure 11: Test Power vs Sample Size n in Example 3.4.7. The significance level is αs =
0.05. The result is based on N = 400 repeated experiments.

Remark 3.4.8. The experiments in this subsection show that though the RPDC under-

performs the DDC when the sample size is relatively small, the RPDC could achieve the

same test power with the DDC when the sample size is sufficiently large. Considering the

computational advantage of the RPDC (it has a lower order of computational complexity),

when the sample size is large enough, RPDC can be superior over the DDC.

3.5 Discussions on Randomly Projected Distance Covariance
3.5.1 A Discussion on the Computational Efficiency

We compare the computational efficiency of proposed method (RPDC) and direct method

(DDC) in Section 3.4.2. We will discuss this issue here.

As X ∈ Rp and Y ∈ Rq are multivariate random variables, the effect of p and q on

computing time could be significant when p and q are not negligible comparing to sample

size n. Now, we analyze the computational efficiency of DDC and RPDC by taking p and q

into consideration. The computational complexity of DDC becomes O(n2(p+ q)) and that

of RPDC becomes O(nK(log n + p + q)). Let us denote the total number of operations
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in DDC by O1 and that in RPDC by O2. Then, by sacrificing the technical rigor, one may

assume that there exist constants L1 and L2 such that

O1 ≈ L1n
2(p+ q), and O2 ≈ L2nK(log n+ p+ q).

There is no doubt that O2 will eventually much less than O1 as the sample size n grows.

Due to the complexity of the fast algorithm, we may expect L2 > L1, which means that

the computational time of the RPDC can be even larger than the one for the DDC when the

sample size is relatively small. Then we need to study the problem: what is the break-even

point in terms of sample size n when the RPDC and the DDC has the same computational

time?

Let n0 = n0(p + q,K) denote the break-even point, which is a function of p + q and

number of Monte Carlo iterations K. For simplicity, we fix K = 50 since 50 iterations

could achieve satisfactory test power as we showed in Example 3.4.4. Consequently n0

becomes a function solely depending on p + q. Since it is hard to derive the close form of

n0, we derive it numerically instead. For fixed p+ q, we let the sample size vary and record

the difference between the running time of two methods. We fit the difference of running

time against sample size with smoothing spline. The root of this spline is the numerical

value of n0 at p+ q.

We plot the n0 against p+ q in Figure 12. As the figure predicts, the break-even sample

size decreases as the data dimension increases, which implies that our proposed method is

more advantageous than the direct method when random variables are of high dimension.

However, as showed in Example 3.4.4, the random projection based method does not per-

form well when high dimensional data have low dimensional dependency structure. This
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indicates that one need to be cautious to use the proposed method when the dimension is

high.

100 200 300 400 500

500

1000

1500

2000

2500

3000

3500

4000

Figure 12: Break-Even Sample Size n0 against Data Dimension p+ q. This figure is based
on 100 repeated experiments.

3.5.2 Connections with Existing Literature

It turns out that distance-based methods are not the only choices in independence testing.

See [43] and the references therein to see alternatives. On the other hand, in our numerical

experiments, it is evident that the distance-correlated-based approaches compare favorably

against many other popular contemporary alternatives. Therefore it is meaningful to study

the improvements of the distance-correlated-based approaches.

Our proposed method utilizes random projections, which bears similarity with the ran-

domized feature mapping strategy [60] that was developed in the machine learning com-

munity. Such an approach has been proven to be effective in kernel-related methods

[1, 10, 26, 24]. However, a closer examination will reveal the following difference: most of

the aforementioned work are rooted on the Bochner’s theorem [66] from harmonic analysis,

which states that a continuous kernel in the Euclidean space is positive definite if and only

if the kernel function is the Fourier transform of a non-negative measure. In this chapter,
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we will deal with distance function which is not a positive definite kernel. We managed to

derive a counterpart to the randomized feature mapping, which was the influential idea that

has been used in [60].

Random projections have been used in [48] to develop a powerful two-sample test in

high dimensions. They derived an asymptotic power function for their proposed test, and

then provide sufficient conditions for their test to achieve greater power than other state-

of-the-art tests. They then used the receiver operating characteristic (ROC) curves (that are

generated from their simulated data) to evaluate its performance against competing tests.

The derivation of the asymptotic relative efficiency (ARE) is of its own interests. Despite

the usage of random projection, the details of their methodology is very different from the

one that is studied in the present chapter.

Several distribution-free tests that are based on sample space partitions were suggested

in [30] for univariate random variables. They proved that all suggested tests are consis-

tent and showed the connection between their tests and the mutual information (MI). Most

importantly, they derived fast (polynomial-time) algorithms, which are essential for large

sample size, since the computational complexity of the naive algorithm is exponential in

sample size. Efficient implementations of all statistics and tests described in the afore-

mentioned paper are available in the R package HHG, which can be freely downloaded

from the Comprehensive R Archive Network, http://cran.r-project.org/. Null tables can be

downloaded from the first author’s web site.

Distance-based independence/dependence measurements sometimes have been utilized

in performing a greedy feature selection, often via dependence maximization [34], [95] and

[45], and it has been effective on some real-world datasets. This paper simply mentions
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such a potential research line, without pursuing it.

Paper [87] derives an efficient approach to compute for the conditional distance corre-

lations. We noted that there are strong resemblances between the distance covariances and

its conditional counterpart. The search for a potential extension of the work in this paper to

conditional distance correlation can be a meaningful future topic of research.

3.6 Conclusions on Randomly Projected Distance Covariance

A significant contribution of this chapter is that we demonstrated that the multivariate vari-

ables in the independence tests need not imply the higher-order computational desideratum

of the distance-based methods.

Distance-based methods are indispensable in statistics, particular in test of indepen-

dence. When the random variables are univariate, efficient numerical algorithms exist. It is

an open question when the random variables are multivariate. We study the random projec-

tion approach to tackle the above problem. It first turn the multivariate calculation problem

into univariate calculation one via random projections. Then they study how the average

of those statistics out of the projected (therefore univariate) samples can approximate the

distance-based statistics that were intended to use. Theoretical analysis was carried out,

which shows that the loss of asymptotic efficiency (in the form of the asymptotic variance

of the test statistics) is likely insignificant. The new method can be numerically much more

efficient, when the sample size is large; considering large sample sizes are well-expected

under this information (or big-date) era. Simulation studies validate the theoretical state-

ments. The theoretical analysis takes advantage of some newly available results, such as

the equivalence of the distance-based methods with the reproducible kernel Hilbert spaces
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[69]. The numerical methods utilizes a recently appeared fast algorithm in [34].
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CHAPTER IV

ENERGY STATISTICS AND TWO-SAMPLE TESTING

This chapter is organized as follows. We will review the definition and property of energy

distance and energy statistics in Section 4.1. In Section 4.2, we describe the details of fast

algorithms and corresponding two-sample tests. Asymptotic properties of proposed test

statistic will be studied in Section 4.3. In Section 4.4, we will some numerical examples

with simulated data to illustrate the computational and statistical efficiency of the proposed

test. Discussions could be found in Section 4.5 and we will conclude in Section 4.6.

Throughout this chapter, we adopt the following notations. We denote cp = π(p+1)/2

Γ((p+1)/2)

and Cp = c1cp−1

cp
=
√
πΓ((p+1)/2)

Γ(p/2)
as two constants, where Γ(·) denotes the Gamma function.

We also denote | · | as the Euclidian norm. For any vector v, vT is its transpose.

4.1 Review of Energy Distance and Energy Statistics

Energy distance is initially proposed by [75] to measure the distance between two multi-

variate distributions. We follow the definition of energy distance in [78].

Definition 4.1.1. [78, Definition 1] Suppose X, Y ∈ Rp are two real-valued independent

random variables with finite means, i.e., E[|X|] < ∞ and E[|Y |] < ∞, then the energy

distance between X and Y is defined as

E(X, Y ) = 2E[|X − Y |]− E[|X −X ′|]− E[|Y − Y ′|],

where X ′ and Y ′ are independent and identical copies of X and Y , respectively.
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[78] also show that energy distance is equivalent to the weighted L2-distance of the

characteristic functions.

Proposition 4.1.2. [78, Proposition 1] Suppose X, Y ∈ Rp are two real-valued indepen-

dent random variables with finite means and X ′ and Y ′ are independent identical copies of

X and Y . Let f̃X(·) and f̃Y (·) denote the characteristic function of X and Y , respectively,

we have

1

cp

∫
Rp

|f̃X(t)− f̃Y (t)|2

|t|2
dt = 2E[|X − Y |]− E[|X −X ′|]− E[|Y − Y ′|] = E(X, Y ).

Thus, E(X, Y ) ≥ 0 with equality to zero if and only if X and Y are identically distributed,

i.e., f̃X ≡ f̃Y .

Suppose that we observe samples X1, . . . , Xn
i.i.d.∼ F and Y1, . . . , Ym

i.i.d.∼ G, the energy

statistics is usually defined as follows (see [78], (6.1)).

2

nm

n∑
i=1

m∑
j=1

|Xi − Yj| −
1

n2

n∑
i=1

n∑
j=1

|Xi −Xj| −
1

m2

m∑
i=1

m∑
j=1

|Yi − Yj|.

However, above estimator is NOT an unbiased estimator of E(X, Y ). To mitigate this issue,

let h(X1, X2, Y1, Y2) = 1
2

2∑
i=1

2∑
j=1

|Xi− Yj| − |X1−X2| − |Y1− Y2| be a two-sample kernel

(see [84, Chapter 12.2]), which an unbiased estimator, i.e., E[h] = E(X, Y ), then it is easy

to verify that

1(
n
2

)(
m
2

) ∑
i1<i2,j1<j2

h(Xi1 , Xi2 , Yj1 , Yj2)

=
2

nm

n∑
i=1

m∑
j=1

|Xi − Yj| −
1

n(n− 1)

n∑
i,j=1,i 6=j

|Xi −Xj| −
1

m(m− 1)

m∑
i,j=1,i 6=j

|Yi − Yj|.

is a U-statistic and an unbiased estimator of E(X, Y ). Thus, we will use the following

definition of energy statistics throughout this chapter.
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Definition 4.1.3 (Unbiased Energy Statistics). Given samples X1, . . . , Xn
i.i.d.∼ F and

Y1, . . . , Ym
i.i.d.∼ G, the energy statistics between X and Y could be defined as

En,m(X, Y ) =
2

nm

n∑
i=1

m∑
j=1

|Xi−Yj|−
1

n(n− 1)

n∑
i,j=1,i 6=j

|Xi−Xj|−
1

m(m− 1)

m∑
i,j=1,i 6=j

|Yi−Yj|.

4.2 Efficient Computational Methods for Energy Statistics

In this section, we will describe the efficient algorithms for energy statistics of both uni-

variate and multivariate random variables in Section 4.2.1 and Section 4.2.2, respectively.

We will also propose two different methods based on the efficient algorithm of multivariate

random variables for two-sample test in Section 4.2.3.

4.2.1 A Fast Algorithm for Univariate Random Variables

We will start with the fast algorithm for univariate random variables. Let us recall the

definition of energy statistics first. Given univariate random variables X1, . . . , Xn ∈ R and

Y1, . . . , Ym ∈ R, the energy statistic of X and Y is defined below:

En,m(X, Y ) =
2

nm

n∑
i=1

m∑
j=1

|Xi−Yj|−
1

n(n− 1)

n∑
i,j=1,i 6=j

|Xi−Xj|−
1

m(m− 1)

m∑
i,j=1,i 6=j

|Yi−Yj|.

For simplicity of notation, we denote above term with En,m. The following algorithm can

compute En,m with an average order of complexity O(N logN), where N = n + m. The

main idea of this algorithm is sorting the observations first and use a linear-time algorithm

to compute the energy statistic with sorted observations.

(1) Sort Xi’s and Yj’s, so that we have order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n) and

Y(1) ≤ Y(2) ≤ · · · ≤ Y(m).
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(2) Compute the second term of En,m as follows:

E2 =
2

n(n− 1)

n−1∑
i=1

i(n− i)
∣∣X(i+1) −X(i)

∣∣ .
(3) Compute the third term of En,m as follows:

E3 =
2

m(m− 1)

m−1∑
i=1

i(m− i)
∣∣Y(i+1) − Y(i)

∣∣ .
(4) In this step, we will compute the first term of En,m.

(a) Merge two ordered series X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤ Y(2) ≤ · · · ≤

Y(m) into a single ordered series Z(1) ≤ Z(2) ≤ · · · ≤ Z(n+m), where each

Z(k) is either from X(i)’s or from Y(j)’s. At the same time, one can generate a

sequence Ii, i = 1, 2, . . . , n+m, where Ii records the size of the subset of Z(1)

through Z(i) that are from X(i)’s.

(b) Compute the first term of En,m,

E1 =
2

nm

n+m−1∑
i=1

[Ii(m− i+ Ii) + (i− Ii)(n− Ii)]
∣∣Z(i+1) − Z(i)

∣∣ .
(5) Compute the energy statistic,

En,m = E1 − E2 − E3.

A stand-alone description of above algorithm can be found in Algorithm 4 of Appendix

A.2. Our result could be summarized in the following theorem.

Theorem 4.2.1. Given univariate random variables X1, . . . , Xn ∈ R and Y1, . . . , Ym ∈ R,

there exists an algorithm with complexity O(N logN), where N = n + m, for computing

the energy statistic defined in Definition 4.1.3.

See Appendix D.1 for the proof and detailed explanations.
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4.2.2 A Fast Algorithm for Multivariate Random Variables

In this part, we will introduce a fast algorithm for the energy statistics of multivariate

random variables. We will show later in Theorem 4.3.9 that the estimator produced by

this algorithm converges fairly fast. The main idea works as follows: first, projecting the

multivariate observations along some random directions; then, using the fast algorithm

described in Section 4.2.1 to compute the energy statistics of projections; last, averaging

those energy statistics from different projecting directions.

Formally, suppose we have observationsX1, . . . , Xn ∈ Rp and Y1, . . . , Ym ∈ Rp and let

K denote the pre-determined number of random projections, the algorithm is as follows:

(1) For each k (1 ≤ k ≤ K), randomly generate projecting direction uk from Uniform(Sp),

where Sp is the unit sphere in Rp.

(2) Let uTkX and uTk Y denote the projections of X and Y . That is,

uTkX = (uTkX1, . . . , u
T
kXn), and uTk Y = (uTk Y1, . . . , u

T
k Ym).

Note that uTkX and uTk Y are now univariate.

(3) Utilize the fast algorithm described in Section 4.2.1 to compute the energy statistic

of uTkX and uTk Y . Formally, we denote

E (k)
n,m = CpEn,m(uTkX, u

T
k Y ),

where Cp is the constant defined at the beginning of Chapter 4.

(4) Repeat above steps for K times. The final estimator is

En,m =
1

K

K∑
k=1

E (k)
n,m,
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which is refered as Randomly Projected Energy Statistics (RPES). To emphasize

the dependency of the above quantity with number of random projections K, we

sometimes use another notation En,m;K , En,m.

A stand-alone description of above algorithm can be found in Algorithm 5 of Appendix

A.2. The following theorem summarizes above result.

Theorem 4.2.2. For multivariate random variables X1, . . . , Xn ∈ R and Y1, . . . , Ym ∈ R,

there exists an algorithm with complexityO(KN logN), whereN = n+m, for computing

aforementioned En,m, where K is a pre-determined number of random projections.

We omit the proof since above theorem is a straight-forward conclusion from Theorem

4.2.1.

4.2.3 Two-Sample Test based on Randomly Projected Energy Statistics (RPES)

The randomly projected energy statistic En,m could be applied in the two-sample test. Let

us recall that we would like to test the null hypotheses H0 — X and Y are identically dis-

tributed — against its alternative. The threshold of the test statistic could be determined by

either permutation or the Gamma approximation of asymptotic distribution. Let us recall

that we observe X1, . . . , Xn ∈ Rp and Y1, . . . , Ym ∈ Rp. Let Z = (Z1, . . . , Zn+m) =

(X1, . . . , Xn, Y1, . . . , Ym) denote the collection of all observations. Let En,m denote the

proposed estimator defined in Section 4.2.2. Suppose αs is the pre-specified significance

level of the test and L is the pre-determined number of permutations. The following algo-

rithm describes a two-sample test using permutation to generate the threshold.
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(1) For each l, 1 ≤ l ≤ L, generate a random permutation of observations: let

(X?,l, Y ?,l) = (X?,l
1 , . . . , X?,l

n , Y
?,l

1 , . . . , Y ?,l
m )

be a random permutation of (Z1, . . . , Zn+m).

(2) Using the algorithm in Section 4.2.2, we compute the estimator for X?,l and Y ?,l:

D(l) = En,m(X?,l, Y ?,l). Note that under null hypotheses, X?,l and Y ?,l are identi-

cally distributed.

(3) Reject null hypothesesH0 if and only if

1 +
∑L

l=1 I(En,m > D(l))

1 + L
> αs.

See Algorithm 6 of Appendix A.2 for a stand-alone description of above algorithm.

We can also find the threshold for test statistic based on the Gamma approximation of its

asymptotic distribution. Let K denote the pre-determined number of random projections.

The algorithm is as follows:

(1) For each k, 1 ≤ k ≤ K, randomly generate uk independently from Unif(Sp−1).

(2) Use the univariate fast algorithm in Section 4.2.1 to compute the following quantities:

E (k)
n,m = CpEn,m(uTkX, u

T
k Y ),

S
(k)
1;n,m = Cp

(
n+m

2

)−1 n∑
i<j

|uT (Zi − Zj)|,

where constant Cp has been defined at the beginning of Chapter 4.

(3) Use the univariate fast algorithm for distance covariance in [34] to compute:

S
(k)
2;n,m = C2

pSDC(uTkZ, u
T
kZ),
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where SDC stands for Sample Distance Covariance defined in [34, eq (3.3)]. Ran-

domly generate vk from Unif(Sp−1) and use aforementioned algorithm to compute

S
(k)
3;n,m = C2

pSDC(uTkZ, v
T
k Z).

(4) Repeat above steps for k = 1, . . . , K and aggregate the results as follows:

En,m =
1

K

K∑
k=1

E (k)
n,m, S1;n,m =

1

K

K∑
k=1

S
(k)
1;n,m,

S2;n,m =
1

K

K∑
k=1

S
(k)
2;n,m, S3;n,m =

1

K

K∑
k=1

S
(k)
3;n,m,

α̂ =
1

2

S
2

1;n,m

1
K
S2;n,m + K−1

K
S3;n,m

, (4.2.25)

β̂ =
1

2

S1;n,m

1
K
S2;n,m + K−1

K
S3;n,m

. (4.2.26)

(5) Reject null hypothsesH0 if and only if (n+m)En,m+S1;n,m > Gamma(1−αs; α̂, β̂),

where Gamma(1−αs; α̂, β̂) is the 1−αs percentile of Gamma distribution with shape

parameter α̂ and rate parameter β̂; Otherwise, accept it.

See Algorithm 7 of Appendix A.2 for a stand-alone description of above algorithm.

4.3 Theoretical Properties of Energy Statistics and Random Projections

Firstly, we will show some nice properties of random projections in energy distance and

energy statistics in Section 4.3.1. Then, we will study the asymptotic properties of energy

statistics En,m and randomly projected energy statistics En,m in Section 4.3.2 and 4.3.3,

respectively.
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4.3.1 Properties of Random Projections in Energy Distance

We will study some properties of randomly projected energy distance and energy statistics

in this part. We begin a sufficient and necessary condition of equality of distributions.

Lemma 4.3.1. Suppose u is some random point on unit sphere Sp−1: u ∈ Sp−1 := {u ∈

Rp : |u| = 1}. We have

random vector X ∈ Rp has the same distribution with random vector Y ∈ Rp

if and only if

E(uTX, uTY ) = 0 for any u ∈ Sp−1.

The following result allows us to regard energy distance / energy statistics of multivari-

ate random variables as the integration of energy distance / energy statistics of univariate

random variables. This result provides the foundation of our proposed method in Section

4.2.2.

Lemma 4.3.2. Suppose u is some random point on unit sphere Sp−1. Let µ denote the

uniform probability measure on Sp−1. Then, for random vectors X, Y ∈ Rp with E[|X|] <

∞,E[|Y |] <∞, we have

E(X, Y ) = Cp

∫
Sp−1

E(uTX, uTY )dµ(u),

where Cp is the constant defined at the beginning of Chapter 4. Similarly, for energy

statistics, we have

En,m(X, Y ) = Cp

∫
Sp−1

En,m(uTX, uTY )dµ(u).
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4.3.2 Asymptotic Properties of Energy Statistics En,m

As showed in Section 4.1, the energy statistics En,m is a two-sample u-statistics with respect

to kernel

h(X1, X2, Y1, Y2) =
1

2

2∑
i=1

2∑
j=1

|Xi − Yj| − |X1 −X2| − |Y1 − Y2|

which is a two-sample kernel. Before analyzing the asymptotic properties of En,m, let us

define the following quantities that will play important roles in subsequent studies:

h10 = h10(X1) = EX2,Y1,Y2 [h(X1, X2, Y1, Y2)],

h01 = h01(Y1) = EX1,X2,Y2 [h(X1, X2, Y1, Y2)],

h20 = h20(X1, X2) = EY1,Y2 [h(X1, X2, Y1, Y2)],

h02 = h02(Y1, Y2) = EX1,X2 [h(X1, X2, Y1, Y2)],

h11 = h11(X1, Y1) = EX2,Y2 [h(X1, X2, Y1, Y2)],

where the two subindexes represent how many X’s and Y ’s in the functions, respectively.

Lemma 4.3.3 (Generic Formula). If E[|X|] + E[|Y |] < ∞, for independent X1, X2, X ,

X ′, Y1, Y2, Y and Y ′, w we have

h10(X1) = EY [|X1 − Y |] + EX,Y [|X − Y |]− EX [|X1 −X|]− EY,Y ′ [|Y − Y ′|],

(4.3.27)

h01(Y1) = EX [|X − Y1|] + EX,Y [|X − Y |]− EX,X′ [|X −X ′|]− EY [|Y1 − Y |],

(4.3.28)
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h20(X1, X2) = EY [|X1 − Y |] + EY [|X2 − Y |]− |X1 −X2| − EY,Y ′ [|Y − Y ′|], (4.3.29)

h02(Y1, Y2) = EX [|X − Y1|] + EX [|X − Y1|]− |Y1 − Y2| − EX,X′ [|X −X ′|], (4.3.30)

h11(X1, Y1) =
1

2
|X1 − Y1|+

1

2
EX [|X − Y1|] +

1

2
EY [|X1 − Y |] +

1

2
EX,Y [|X − Y |]

− EX [|X1 −X|]− EY [|Y1 − Y |]. (4.3.31)

We can also define h21, h12 and h22 in a similar way but we do not list them here as they

are not important in subsequent analysis. The corresponding variance of hi,j is denoted by

σ2
ij = Var[hij], 1 ≤ i+ j ≤ 2, 1 ≤ i, j ≤ 2.

Then, by the result [42] Section 2.2 Theorem 2, the variance of En,m can be represented as

follows.

Lemma 4.3.4 (Variance of two-sample U-statistics). Suppose Var[h(X1, X2, Y1, Y2)] <∞

and n,m ≥ 4, then the variance En,m(X, Y ) is

Var[En,m] =
1(

n
2

)(
m
2

) 2∑
i,j=0,i+j≥1

(
2

i

)(
2

j

)(
n− 2

2− i

)(
m− 2

2− j

)
σ2
ij

=
4

m
σ2

01 +
4

n
σ2

10 + (
16

mn
+

1

m2
)σ2

01 + (
16

mn
+

1

n2
)σ2

10

+
2

m2
σ2

02 +
2

n2
σ2

20 +
16

nm
σ2

11 +O(
1

n2m
) +O(

1

nm2
)

[42] also shows that En,m is asymptotically normal under mild conditions.

Theorem 4.3.5. ([42, Section 3.7, Theorem 1]) Let N = n+m denote the total number of

observations. Suppose there exists constant 0 < η < 1 such that n/N → η and m/N →

1−η as n,m→∞. If Var[h(X1, X2, Y1, Y2)] <∞ and σ2
10 +σ2

01 > 0, then
√
N(En,m−E)
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converges in distribution to a normal distribution with mean zero and variance 4σ2
10/η +

4σ2
01/(1− η), i.e.,

√
N(En,m − E)

D−→ N (0, 4σ2
10/η + 4σ2

01/(1− η)),

where E is the energy distance E = E[En,m].

Now, we assume that X has the same distribution with Y . Then, the formulas of hij

could be simplified.

Lemma 4.3.6. If X and Y are identically distributed, then we have

h10(X1) = 0, h01(Y1) = 0, (4.3.32)

h20(X1, X2) = EX [|X1 −X|] + EX [|X2 −X|]− |X1 −X2| − EX,X′ [|X −X ′|],

(4.3.33)

h02(Y1, Y2) = EY [|Y1 − Y |] + EY [|Y2 − Y |]− |Y1 − Y2| − EY,Y ′ [|Y − Y ′|], (4.3.34)

h11(X1, Y1) =
1

2
(|X1 − Y1| − EX [|X1 −X|]− EX [|Y1 −X|] + EX,X′ [|X −X ′|]) .

(4.3.35)

The proof of this lemma is straightforward by noting the fact that the usage of X and

Y is interchangeable as they are identically independently distributed.

When X has the same distribution with Y , En,m is no longer asymptotically normal.

Instead, (n + m)En,m converges to a sum of (possibly infinite) independent chi-squared

random variables.

Theorem 4.3.7. Let N = n + m denote the total number of observations. Suppose there

exists constant 0 < η < 1 such that n/N → η and m/N → 1− η as n,m→∞. If X and
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Y are identically distributed, the asymptotic distribution of En,m is

NEn,m
D−→

∞∑
l=1

λl
η(1− η)

(Z2
l − 1),

where Z1, Z2, . . . are independent standard normal random variables and λl’s are defined

in Lemma D.4.1 and

∞∑
l=1

λl = EX,X′ [|X −X ′|],
∞∑
l=1

λ2
l = DC(X,X),

where DC(X,X) is the distance covariance of X , see [33].

See appendix for a proof.

4.3.3 Asymptotic Properties of Randomly Projected Energy Statistics En,m

Let us recall some notations. The randomly projected energy statistics En,m is defined as

En,m =
1

K

K∑
k=1

E (k)
n,m =

1

K

K∑
k=1

CpEn,m(uTkX, u
T
k Y ),

where constant Cp has been defined at the beginning of Chapter 4 and uk’s are independent

samples from Unif(Sp−1). Note that En,m(uTkX, u
T
k Y ) is a U-statistic for any k and En,m is

also a U-statistic as

En,m =
1

K

K∑
k=1

Cp(
n
2

)(
m
2

) ∑
i1<i2,j1<j2

h(uTkXi1 , u
T
kXi2 , u

T
k Yj1 , u

T
k Yj2)

=
1(

n
2

)(
m
2

) ∑
i1<i2,j1<j2

1

K

K∑
k=1

Cph(uTkXi1 , u
T
kXi2 , u

T
k Yj1 , u

T
k Yj2)

,
1(

n
2

)(
m
2

) ∑
i1<i2,j1<j2

h(Xi1 , Xi2 , Yj1 , Yj2),

where

h(Xi1 , Xi2 , Yj1 , Yj2) =
1

K

K∑
k=1

Cph(uTkXi1 , u
T
kXi2 , u

T
k Yj1 , u

T
k Yj2)
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is the kernel of En,m. Let us define the following notations that will be essential in analyzing

the asymptotic properties of En,m:

h10 = h10(X1) = EX2,Y1,Y2 [h(X1, X2, Y1, Y2)],

h01 = h01(Y1) = EX1,X2,Y2 [h(X1, X2, Y1, Y2)],

h20 = h20(X1, X2) = EY1,Y2 [h(X1, X2, Y1, Y2)],

h02 = h02(Y1, Y2) = EX1,X2 [h(X1, X2, Y1, Y2)],

h11 = h11(X1, Y1) = EX2,Y2 [h(X1, X2, Y1, Y2)],

where the expecations are taken with respect to (X, Y ) given random projections U . We

also let σ2
ij denote the conditional variance of hij given all projection directions U =

(u1, . . . , uK),

σ2
ij = σ2

ij(U) = VarX,Y [hij|U ].

4.3.3.1 Asymptotic Properties in Inequality of Distribution

By Lemma 4.3.4 and the Law of Total Variance, we have the following result on the vari-

ance of En,m.

Lemma 4.3.8 (Variance of En,m). Suppose Var[h(X1, X2, Y1, Y2)] < ∞ and n,m ≥ 4,

then the variance En,m is

Var[En,m] =
1

K
Varu

[
E(uTX, uTY )

]
+ EU

[
4

m
σ2

01 +
4

n
σ2

10

]
+ EU

[
(

16

mn
+

1

m2
)σ2

01 + (
16

mn
+

1

n2
)σ2

10

]
+ EU

[
2

m2
σ2

02 +
2

n2
σ2

20 +
16

nm
σ2

11

]
+O(

1

n2m
) +O(

1

nm2
).
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As an immediate result from Lemma 4.3.8, we have the following theorem on the

asymptotic properties of En,m.

Theorem 4.3.9. Suppose Var[h(X1, X2, Y1, Y2)] <∞. LetN = n+m and assume n/N →

η as N →∞, where 0 < η < 1, then we have

En,m
p−→ E(X, Y ) as N →∞, K →∞.

The asymptotic distribution of En,m could differ under different conditions.

(1) If K →∞ and K/N → 0, then

√
K(En,m − E(X, Y ))

D−→ N (0,Varu[E(uTX, uTY )]).

(2) If N →∞ and K/N →∞, then

√
N(En,m − E(X, Y ))

D−→ N (0,
4

η
EU [σ2

10] +
4

1− η
EU [σ2

01]).

(3) If N →∞ and K/N → C, where 0 < C <∞, then

√
N(En,m−E(X, Y ))

D−→ N (0,
1

C
Varu[E(uTX, uTY )]+

4

η
EU [σ2

10]+
4

1− η
EU [σ2

01]).

4.3.3.2 Asymptotic Properties in Equality of Distribution

It is of more interest to study the asymptotic properties of En,m under the condition that X

has the same distribution with Y . We have the following lemma under this condition.

Lemma 4.3.10. If X has the same distribution with Y , we have

Varu[E(uTX, uTY )] = 0,
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and,

h10 = 0, h01 = 0 with probability 1,

which implies

σ2
10 = Var[h10|U ] = 0, σ2

01 = Var[h01|U ] = 0.

Therefore, the variance of En,m could be expressed as

Var[En,m] = EU
[

2

m2
σ2

02 +
2

n2
σ2

20 +
16

nm
σ2

11

]
+O(

1

n2m
) +O(

1

nm2
).

See appendix for the proof.

We should also be aware of a result, which is similar with Lemma D.4.1. This result

will play an important role for our main theorem and its proof.

Lemma 4.3.11. The kernel k(·, ·) defined as

k(X1, X2) =
Cp
K

K∑
k=1

EX [|uTk (X1−X)|]+EX [|uTk (X2−X)|]−|uTk (X1−X2)|−EX,X′ [|uTk (X−X ′)|]

is a positive kernel and thus there exists φ1(·), φ2(·), . . . such that

k(X1, X2) =
∞∑
i=1

λiφi(X1)φi(X2),

where λ1 ≥ λ2 ≥ . . . ≥ 0, E[φi(X)] = 0, E[φi(X)2] = 1 and E[φi(X)φj(X)] = 0,

i = 1, 2, . . . ,∞, i 6= j.

Proof. It is worth noting that k(·, ·) a positive kernel as it is the sum of a collection of

positive kernel. The rest follows by Mercer’s Theorem.

Equipped with above two lemmas, we can conclude that En,m also converges to a

weighted sum of chi-square random variables when the collection of random projections U

is given.

95



Theorem 4.3.12. Let N = n + m denote the total number of observations. Suppose there

exists constant 0 < η < 1 such that n/N → η and m/N → 1− η as n,m→∞. If X and

Y are identically distributed and all projection directions U = (u1, . . . , uK) are given, the

asymptotic distribution of En,m is

NEn,m
D−→

∞∑
l=1

λl
η(1− η)

(Z2
l − 1) =

1

η(1− η)

∞∑
l=1

λlZ
2
l −

1

η(1− η)

∞∑
l=1

λl,

where Z1, Z2, . . . are independent standard normal random variables and λl’s are the

eigenvalues associated with kernel k(·, ·) in Lemma 4.3.11. We also have

∞∑
l=1

λl =
Cp
K

K∑
k=1

EX,X′ [|uTk (X −X ′)|],
∞∑
l=1

λ
2

l =
C2
p

K2

K∑
k,k′=1

DC(uTkX, u
T
k′X),

where DC(uTkX, u
T
k′X) is the distance covariance between uTkX and uTk′X .

See appendix for the proof.

Usually,
∑∞

l=1 λlZ
2
l is a weighted sum of infinite many chi-squared random variables.

As a result, there is no close form for the asymptotic distribution of En,m. But, we can

approximate it by a gamma distribution with first two moments matched, see [12]. As a

result,
∑∞

l=1 λlZ
2
l could be approximated by Gamma(α, β) with density function

βα

Γ(α)
xα−1e−βx, x > 0,

where

α =
1

2

(
∑∞

l=1 λl)
2∑∞

l=1 λ
2

l

, β =
1

2

∑∞
l=1 λl∑∞
l=1 λ

2

l

.

The following proposition gives a specific way to approximate
∑∞

l=1 λl and
∑∞

l=1 λ
2

l from

data.
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Proposition 4.3.13. Let Z denote the collection of all observations,

Z = (Z1, . . . , Zn+m) = (X1, . . . , Xn, Y1, . . . , Ym).

When X and Y have the same distribution, we can approximate
∑∞

l=1 λl and
∑∞

l=1 λ
2

l as

follows:

∞∑
l=1

λl ≈
Cp
K

K∑
k=1

1

(n+m)(n+m− 1)

n+m∑
i 6=j

|uTk (Zi − Zj)|

∞∑
l=1

λ
2

l ≈
C2
p

K2

K∑
k=1

SDC(uTkZ, u
T
kZ) +

(K − 1)C2
p

K2

K∑
k=1

SDC(uTkZ, v
T
k Z),

where SDC(·, ·) denotes the sample distance covariance and v1, . . . , vK are all independent

random variables from Unif(Sp−1).

See appendix for the reasoning and justification.

4.4 Simulations on Randomly Projected Energy Statistics
4.4.1 Speed Comparison with Direct Method

In this section, we compare the computing speed of the proposed algorithms for univariate

random variables and multivariate random variables with direct method by Definition 4.1.3.

This experiment is run on a laptop (MacBook Pro Retina, 13-inch, Early 2015, 2.7 GHz

Intel Core i5, 8 GB 1867 MHz DDR3) with MATLAB R2016b (9.1.0.441655). Figure 13

summarizes the time cost of each method against sample size. Note that the scale of time

elapsed is different in each subfigure. The result demonstrates the computational advantage

of the fast algorithm when sample size is large.

4.4.2 Impact of Sample Size, Data Dimension and Number of Random Projections

In this section, we will use synthetic data to study the impact of sample size (n,m), data

dimension p and Number of Random Projections K on the convergence and test power of
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(a) univariate: m = 0.25n
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(b) multivariate: m = 0.25n
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Figure 13: Speed Comparison:“Direct-uni” and “Direct-multi” represent the direct method
for univariate and multivariate random variables, respectively; “Fast-uni” represents the
fast algorithm for univariate random variables described in Section 4.2.1; “Fast-multi” rep-
resents the fast algorithm for multivariate random variables described in Section 4.2.2 and
the number of Monte Carlo iterations is chosen to be K = 50. The dimension of the mul-
tivariate random varialbes is fixed to be p = 10. We let the ratio of sample size of Y over
sample size of X be either 0.25 or 1. The experiment is repeated for 400 times.

multivariate energy statistics. The significance level is set to be αs = 0.05. Each experi-

ment will be repeated for 400 times to achieve reliable means and variances.

In the following two examples, we will fix sample size n = 5000,m = 5000 and let

data dimension p vary in (5, 10, 50, 100, 500) and number of random projections K vary in

(10, 50, 100, 500, 1000). In Example 4.4.1, X and Y are identically distributed while they

are not in Example 4.4.2. The result in these two examples suggests that K = 50 should
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suffice when sample size is sufficiently large, regardless of the data dimension.

Example 4.4.1. We generate random vector X, Y ∼ N (0, Ip), which implies X and Y are

identically distributed.
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Figure 14: Boxplots of estimators in Example 4.4.1. Sample size of X and Y are fixed to
be n = 2000, m = 2000, respectively; the result is based on 400 repeated experiments.

Example 4.4.2. We generate random vector X ∼ N (0, Ip), Y ∼ t(5)(p), where each entry

of Y follows t-distribution with degrees of freedom 5. In this case, the distribution of X is

different from the distribution of Y .

4.4.3 Compare with Other Two-Sample Tests

We compare our method — Randomly Projected Energy Statistics (RPES) with direct

method of Energy Statistics (ES) as well as the most popular alternative in recent litera-

ture — the Maximum Mean Discrepancy (MMD) proposed by [28]. Specifically, we use
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Figure 15: Boxplots of estimators in Example 4.4.2. Sample size of X and Y are fixed to
be n = 2000, m = 2000, respectively; the result is based on 400 repeated experiments.

the MMD with Gaussian kernels in our implementation. To obtain reliable estimate of test

power, the experiments will be repeated for 200 times.

In the following example, we will measure the power of those tests in distinguishing

minor difference in mean of two multivariate normal distribution.

Example 4.4.3. We generate random vector X ∼ N (0, Ip), Y ∼ N (µ, Ip). We let µ =

(0.1, 0, . . . , 0)t, where the first entry of µ is 0.1 while the rest entries are all 0.We let p = 5

and p = 50 to represent low dimensional case and moderate dimensional case, respectively.

In the p = 5 case, the sample sizes n = m is from 500 to 2500 with an increment 100; and

in the p = 50 case, the sample size n is from 500 to 5000 with an increment 250.

Figure 16 plots the test power of each test against sample size in Example 4.4.3. In

the low dimensional case, RPES, ES and MMD have similar performance. In higher di-

mensional case, RPES is less effective than ES since random projection may lose some
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Figure 16: Test Power vs Sample Size in Example 4.4.3

efficiency when the mean of two distributions only differ in a single dimension. But, RPES

still outperforms MMD by a significant margin.

In the next example, we will check how those tests perform when there is only a minor

difference in degrees of freedom of two multivariate student t-distribution.

Example 4.4.4. We generate random vector X ∼ t
(50)
ν1 , Y ∼ t

(50)
ν2 , where each entry of X

follows t-distribution with degree of freedom, Xi ∼ tν1 , and Yi ∼ tν2 . We let (ν1, ν2) =

(4, 5) and (ν1, ν2) = (7, 10), respectively. In both cases, the sample size n is from 500 to

5000 with an increment 250.

Figure 17 plots the test power of each test against sample size in Example 4.4.4. In the

first case, both RPES and ES outperforms MMD. In the second case, ES and MMD achieve

similar performance while RPES underperforms slightly.

In the last example of this section, we will compare the performance of those tests in

uniform distributions.

Example 4.4.5. We generate random vector in the following two scenarios: (1) X ∼

Unif(0, 1)(5), which means each entry of X is drawn independently from Unif(0, 1), and
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Figure 17: Test Power vs Sample Size in Example 4.4.4

Y ∼ Unif(0, 0.98)(5); (2) X ∼ Unif(0, 1)(50), and Y ∼ Unif(0, 0.99)(50). In both cases, the

sample size n is from 500 to 5000 with an increment 250.
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(a) Unif(0, 1)(5) v.s. Unif(0, 0.98)(5)
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Figure 18: Test Power vs Sample Size in Example 4.4.5

Figure 18 plots the test power of each test against sample size in Example 4.4.5. Similar

with the result of Example 4.4.3, the performance of RPES, ES and MMD are quite close

in the lower dimensional case. In higher dimensional case, RPES and MMD are also very

close in performance while RPES underperforms the aforementioned two methods.

The experiments results in this part show that ES performs best in nearly all the cases.

Although RPES tends to be slightly less effective than ES when the data dimension is high
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and sample size is relatively small, their performances are quite close when the dimension

is moderate or the size is sufficiently large.

4.5 Discussions on Randomly Projected Energy Statistics

There are plenty existing work on graph-based two-sample tests. For instance, [16], [17]

propose a graph-based two-sample test based on minimum spanning tree for multivari-

ate data and categorical data, respectively. However, like aforementioned graph-based

methods, they still suffer from the high computational complexity — O(N2 logN) with

Kruskal’s algorithm. It is worth noting that [7] introduce a general notion of graph-based

two-sample tests, and provide a unified framework for analyzing their asymptotic proper-

ties.

The kernel two-sample test statistic proposed by [28] has a very similar form with

energy statistics. Though the Euclidean distance f(x, y) = |x− y| is not a positive definite

kernel, [69] show that distance-based methods and kernel-based methods might be unified

under the same framework.

A possible application of the proposed two-sample tests is change-point detection. [67]

develop a change-point detection method based on the minimum non-bipartite matching,

which could be regared as an extension of [63]. So, it might be of interest to extend energy

distance based method for change-detection problems.

The technique of random projection could be beneficial in reducing the computational

complexity without significant compromise in statistical efficiency. [33] propose an com-

putationally and statistically efficient test of independence with the random projection and

distance covariance, which reveals the potential of random projection in all distance-based
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methods.

Another interesting application of energy distance is distribution representation. [52]

introduce a new way to compact a continuous probability distribution into a set of represen-

tative points called support points, which are obtained by minimizing the energy distance.

4.6 Conclusions on Randomly Projected Energy Statistics

This work makes three major contributions. First, we develop an efficient algorithm based

on sorting and rearrangement to compute energy statistics of univariate random variables.

Second, we propose an efficient scheme for computing the energy statistics of multivariate

random variables with random projections and univariate fast algorithm. Third, we carry

out a two-sample test based on the efficient algorithms and derive its asymptotic properties.

The theoretical analysis shows that the proposed test has nearly the same asymptotic

efficiency (in terms of asymptotic variance) with the energy statistics. Numerical examples

validate the theoretical results in computational and statistical efficiency.
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APPENDIX A

ALGORITHMS

A.1 Algorithms in Distance Covariance

For readers’ convenience, we present all the numerical algorithms here.

• The Algorithm 1 summarizes how to compute the proposed distance covariance for

multivariate inputs.

• The Algorithm 2 describe an independence testing which applies permutation to gen-

erate a threshold.

• The Algorithm 3 describes an independence test that is based on the approximate

asymptotic distribution.

In the following algorithms, recall that Cp and Cq have been defined at the beginning of

Chapter 3.
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Algorithm 1: An Approximation of Sample Distance Covariance Ωn

Data: Observations X1, . . . , Xn ∈ Rp, Y1, . . . , Yn ∈ Rq; Number of Monte Carlo
Iterations K

Result: Approximation of Sample Distance Covariance Ωn

for k = 1,. . . , K do
Randomly generate uk from uniform(Sp−1); randomly generate vk from
uniform(Sq−1);
Compute the projection of Xi’s on uk: utkX = (utkX1, . . . , u

t
kXn);

Compute the projection of Yi’s on vk: vtkY = (vtkY1, . . . , v
t
kYn);

Compute Ω
(k)
n = CpCqΩn(utkX, v

t
kY ) with the Fast Algorithm in [34];

end
Return Ωn = 1

K

∑K
k=1 Ω

(k)
n .

Algorithm 2: Independence Test Based on Permutations
Data: Observations X1, . . . , Xn ∈ Rp, Y1, . . . , Yn ∈ Rq; Number of Monte Carlo

Iterations K; Significance Level αs; Number of Permutation: L

Result: Accept or Reject the Null HypothesisH0: X and Y are independent

for l = 1,. . . , L do

Generate a random permutation of Y : Y ?,l = (Y ?
1 , . . . Y

?
n );

Compute Vl = Ωn(X, Y ?,l), using the approach in Algorithm 1;

end

RejectH0 if 1+
∑L

l=1 I(Ωn>Vl)

1+L
> αs; otherwise, accept.
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Algorithm 3: Independence Test Based on Asymptotic Distribution
Data: Observations X1, . . . , Xn ∈ Rp, Y1, . . . , Yn ∈ Rq; Number of Monte Carlo

Iterations K; Significance Level αs

Result: Accept or Reject the Null HypothesisH0: X and Y are independent

for k = 1,. . . , K do
Randomly generate uk from uniform(Sp−1); randomly generate vk from

uniform(Sq−1);

Use the Fast Algorithm in [34] to compute:

Ω
(k)
n = CpCqΩn(utkX, v

t
kY ),

S
(k)
n,1 = C2

pC
2
qΩn(utkX, u

t
kX)Ωn(vtkY, v

t
kY ),

S
(k)
n,2 = Cpa

uk
··

n(n−1)
,

S
(k)
n,3 = Cqb

vk
··

n(n−1)
;

Randomly generate u′k from uniform(Sp−1); randomly generate v′k from

uniform(Sq−1);

Use the Fast Algorithm in [34] to compute:

Ω
(k)
n,X = C2

pΩn(utkX, u
′t
kX),

Ω
(k)
n,Y = C2

qΩn(vtkY, v
′t
kY );

end

Ωn = 1
K

∑K
k=1 Ω

(k)
n ; S̄n,1 = 1

K

∑K
k=1 S

(k)
n,1; S̄n,2 = 1

K

∑K
k=1 S

(k)
n,2;

S̄n,3 = 1
K

∑K
k=1 S

(k)
n,2;

Ωn,X = 1
K

∑K
k=1 Ω

(k)
n,X ; Ωn,Y = 1

K

∑K
k=1 Ω

(k)
n,Y ;

α = 1
2

S̄2
n,2S̄

2
n,3

K−1
K

Ωn,XΩn,Y + 1
K
S̄n,1

; β = 1
2

S̄n,2S̄n,3
K−1
K

Ωn,XΩn,Y + 1
K
S̄n,1

;

RejectH0 if nΩn + S̄n,2S̄n,3 > Gamma(α, β; 1− αs); otherwise, accept it. Here

Gamma(α, β; 1− αs) is the 1− αs quantile of the distribution Gamma(α, β).
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A.2 Algorithms in Energy Statistics

We present all numerical algorithms of Chapter 4 here.

• Algorithm 4 summarizes how to compute the energy statistics of univariate random

variables in O(N logN) time.

• Algorithm 5 describes how to approximate the energy statistics of random variables

of any dimension in O(KN logN) time.

• Algorithm 6 describes a two-sample test that applies permutations to determine the

threshold.

• Algorithm 7 describes a two-sample test using approximation of asymptotic distribu-

tion to determine the threshold.
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Algorithm 4: A Fast Algorithm for Energy Statistics of Univariate Random Vari-

ables: En,m(X, Y )

Data: Observations X1, . . . , Xn ∈ R, Y1, . . . , Ym ∈ R;

Result: Energy Statistics En,m(X, Y )

Sort X1, . . . , Xn and Y1, . . . , Ym. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) and

Y(1) ≤ Y(2) ≤ · · · ≤ Y(m) denote the order statistics.

Compute E2 = 1
n(n−1)

n−1∑
i=1

i(n− i)
∣∣X(i+1) −X(i)

∣∣ and

E3 = 1
m(m−1)

m−1∑
i=1

i(m− i)
∣∣Y(i+1) − Y(i)

∣∣.
Merge two ordered series X(i)’s and Y(j)’s into a single ordered series

Z(1) ≤ · · · ≤ Z(n+m). Let Ii record the size of the subset of Z(1) through Z(i) that are

from X(i)’s.

Compute E1 = 2
nm

n+m−1∑
i=1

[Ii(m− i+ Ii) + (i− Ii)(n− Ii)]
∣∣Z(i+1) − Z(i)

∣∣.
Return En,m(X, Y ) = E1 − E2 − E3.

109



Algorithm 5: A Fast Algorithm for Energy Statistics of Multivariate Random Vari-

ables: Em,n
Data: Observations X1, . . . , Xn ∈ Rp, Y1, . . . , Ym ∈ Rp; Number of Random

Projections K

Result: Average Randomly Projected Energy Statistics Em,n

for k = 1,. . . , K do

Randomly generate uk from Uniform(Sp−1);

Compute the projection of Xi’s on uk: uTkX = (uTkX1, . . . , u
T
kXn);

Compute the projection of Yj’s on uk: uTk Y = (uTk Y1, . . . , u
T
k Ym);

Compute the energy statistics of uTkX and uTk Y with Algorithm 4:

E (k)
n,m = CpEn,m(uTkX, u

T
k Y );

end

Return Em,n = 1
K

∑K
k=1 E

(k)
n,m.
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Algorithm 6: Two-Sample Test Based on Permutations
Data: Observations X1, . . . , Xn ∈ Rp, Y1, . . . , Ym ∈ Rp; Number of Random

Projections K; Significance Level αs; Number of Permutations L

Result: Accept or Reject the Null HypothesesH0: X and Y have the same

distribution

Compute Em,n with Algorithm 5;

for l = 1,. . . , L do

Generate a random permutation of the observations: (X?,l, Y ?,l);

Use Algorithm 5 to compute D(l) = Em,n(X?,l, Y ?,l) with permutated

observations;

end

RejectH0 if and only if 1+
∑L

l=1 I(En,m>D(l))

1+L
> αs; otherwise, accept it.

111



Algorithm 7: Two-Sample Test Based on Approximated Asymptotic Distribution
Data: Observations X1, . . . , Xn ∈ Rp, Y1, . . . , Ym ∈ Rp,

Z = (X1, . . . , Xn, Y1, . . . , Ym); Number of Random Projections K;

Significance Level αs

Result: Accept or Reject the Null HypothesesH0: X and Y have the same

distribution

for k = 1,. . . , K do

Randomly generate uk from Uniform(Sp−1);

Use Algorithm 4 to Compute:

E (k)
n,m = CpEn,m(uTkX, u

T
k Y )

S
(k)
1;n,m = Cp

(
n+m

2

)−1
n∑
i<j

|uT (Zi − Zj)|;

Use the fast algorithm for distance covariance in [34] to compute:

S
(k)
2;n,m = C2

pSDC(uTkZ, u
T
kZ);

Randomly generate vk from Uniform(Sp−1);

Use the fast algorithm for distance covariance in [34] to compute:

S
(k)
3;n,m = C2

pSDC(uTkZ, v
T
k Z);

end

En,m = 1
K

∑K
k=1 E

(k)
n,m; S1;n,m = 1

K

∑K
k=1 S

(k)
1;n,m;

S2;n,m = 1
K

∑K
k=1 S

(k)
2;n,m; S3;n,m = 1

K

∑K
k=1 S

(k)
3;n,m;

α̂ = 1
2

S
2
1;n,m

1
K
S2;n,m+K−1

K
S3;n,m

; β̂ = 1
2

S1;n,m
1
K
S2;n,m+K−1

K
S3;n,m

;

Reject null hypothsesH0 if and only if

(n+m)En,m + S1;n,m > Gamma(1− αs; α̂, β̂); otherwise, accept it.
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APPENDIX B

PROOFS OF DISTRIBUTED STATISTICAL INFERENCE

This appendix is organized as follows. In Section B.1, we analyze the upper bounds of

sum of i.i.d. random vectors and random matrices, which will be useful in later proofs. In

Section B.2, we derive the upper bounds of the local M-estimators and the simple averaging

estimator. We present the proofs to Theorem 2.2.4 and Theorem 2.2.5 in Section B.3 and

Section B.4, respectively. A proof of Corollary 2.2.7 will be in Section B.5.

B.1 Bounds on Gradient and Hessian

In order to establish the convergence of gradients and Hessians of the empirical criterion

function to those of population criterion function, which is essential for the later proofs, we

will present some results on the upper bound of sums of i.i.d. random vectors and random

matrices. We start with stating a useful inequality on the sum of independent random

variables from [65].

Lemma B.1.1 (Rosenthal’s Inequality, [65], Theorem 3). For q > 2, there exists constant

C(q) depending only on q such that if X1, . . . , Xn are independent random variables with

E[Xj] = 0 and E[|Xj|q] <∞ for all j, then

(E[|
n∑
j=1

Xj|q])1/q ≤ C(q) max

{
(
n∑
j=1

E[|Xj|q])1/q, (
n∑
j=1

E[|Xj|2])1/2

}

Equipped with the above lemma, we can bound the moments of mean of random vec-

tors.
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Lemma B.1.2. Let X1, . . . , Xn ∈ Rd be i.i.d. random vectors with E[Xi] = 0. And there

exists some constants G > 0 and q0 ≥ 2 such that E[‖Xi‖q0 ] < Gq0 . Let X = 1
n

∑n
i=1 Xi,

then for 1 ≤ q ≤ q0, we have

E[‖X‖q] ≤ Cv(q, d)

nq/2
Gq,

where C(q, d) is a constant depending solely on q and d.

Proof. The main idea of this proof is to transform the sum of random vectors into the sum

of random variables and then apply Lemma B.1.1. Let Xi,j denote the j-th component of

Xi and Xj denote the j-th component of X.

(1) Let us start with a simpler case in which q = 2.

E[‖X‖2] =
d∑
j=1

E[|Xj|2] =
d∑
j=1

n∑
i=1

E[|Xi,j/n|2]

=
d∑
j=1

E[|X1,j|2]/n = n−1E[‖X1‖2] ≤ n−1G2,

The last inequality holds because E[‖X1‖q] ≤ (E[‖X1‖q0 ])q/q0 ≤ Gq for 1 ≤ q ≤ q0

by Hölder’s inequality.

(2) When 1 ≤ q < 2, we have

E[‖X‖q] ≤ (E[‖X‖2])q/2 ≤ n−q/2Gq.

(3) For 2 < q ≤ q0, with some simple algebra, we have

E[‖X‖q] = E

[
(
d∑
j=1

|Xj|2)q/2

]

≤ E
[
(d max

1≤j≤d
|Xj|2)q/2

]
= dq/2E

[
max
1≤j≤d

|Xj|q
]

≤ dq/2E

[
d∑
j=1

|Xj|q
]

= dq/2
d∑
j=1

E
[
|Xj|q

]
.
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As a continuation, we have

E[‖X‖q] ≤ dq/2
d∑
j=1

E[|Xj|q]

≤ dq/2
d∑
j=1

[C(q)]q max

{
n∑
i=1

E[|Xi,j/n|q], (
n∑
i=1

E[|Xi,j/n|2])q/2

}

(Lemma B.1.1)

= dq/2[C(q)]q
d∑
j=1

max

{
E[|X1,j|q]
nq−1

,
(E[|X1,j|2])q/2

nq/2

}

≤ dq/2+1[C(q)]q max

{
E[‖X1‖q]
nq−1

,
(E[‖X1‖2])q/2

nq/2

}
(since E[|X1,j|q] ≤ E[‖X1‖q])

≤ dq/2+1[C(q)]q max

{
Gq

nq−1
,
Gq

nq/2

}
(Hölder’s inequality)

=
dq/2+1[C(q)]q

nq/2
Gq. (q − 1 > q/2 when q > 2)

To complete this proof, we just need to set Cv(q, d) = dq/2+1[C(q)]q.

To bound the moment of the mean of i.i.d. random matrices, let us consider another

matrix norm – Frobenius norm |||·|||F , i.e.,

|||A|||F =

√∑
i,j

|aij|2, ∀A ∈ Rd×d.

Note that

|||A|||F =

√∑
i,j

|aij|2 =
√

trace(AtA) ≥
√

sup
u∈Rd:‖u‖≤1

‖AtAu‖ = |||A|||,

and

|||A|||F ≤
√
d sup
u∈Rd:‖u‖≤1

‖AtAu‖ =
√
d |||A|||.
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With Frobenius norm, we can regard a random matrix X ∈ Rd×d as a random vector in Rd2

and apply Lemma B.1.2 to obtain the following lemma.

Lemma B.1.3. Let X1, . . . , Xn ∈ Rd×d be i.i.d. random matrices with E[Xi] = 0d×d.

Let |||Xi||| denote the norm of Xi, which is defined as its maximal singular value. Suppose

E[|||Xi|||q0 ] ≤ Hq0 , where q0 ≥ 2 and H > 0. Then for X = 1
n

∑n
i=1 Xi and 1 ≤ q ≤ q0,

we have

E
[∣∣∣∣∣∣X∣∣∣∣∣∣q] ≤ Cm(q, d)

nq/2
Hq,

where Cm(q, d) is a constant depending on q and d only.

Proof. By the fact |||A|||F ≤
√
d|||A|||, we have

E [|||Xi|||q0F ] ≤ E
[∣∣∣∣∣∣∣∣∣√dXi

∣∣∣∣∣∣∣∣∣q0] ≤ (
√
dH)q0 .

Then by the fact |||A||| ≤ |||A|||F and Lemma B.1.2, we have

E
[∣∣∣∣∣∣X∣∣∣∣∣∣q] ≤ E

[∣∣∣∣∣∣X∣∣∣∣∣∣q
F

]
≤ Cv(q, d

2)

nq/2
(
√
dH)q =

Cv(q, d
2)d

q
2

nq/2
Hq.

In the second inequality, we treat X as a d2-dimensional random vector and then apply

Lemma B.1.2. Then the proof can be completed by setting Cm(q, d) = Cv(q, d
2)d

q
2 .

B.2 Error Bound of Local M-estimator and Simple Averaging Estimator

Since the simple averaging estimator is the average of all local estimators and the one-step

estimator is just a single Newton-Raphson update from the simple averaging estimator.

Thus, it is natural to study the upper bound of the mean squared error (MSE) of a local

M-estimator and the upper bound of the MSE of the simple averaging estimator. The main

idea in the following proof is similar to the thread in the proof of Theorem 1 in [93], but

116



the conclusions are different. Besides, in the following proof, we use a correct analogy of

mean value theorem for vector-valued functions.

B.2.1 Bound the Error of Local M-estimators θi, i = 1, . . . , k

In this subsection, we would like to analyze the mean squared error of a local estimator

θi = arg maxθ∈ΘMi(θ), i = 1, . . . , k and prove the following lemma in the rest of this

subsection.

Lemma B.2.1. Let Σ = M̈0(θ0)−1E[ṁ(X; θ0)ṁ(X; θ0)t]M̈0(θ0)−1, where the expecation

is taken with respect to X . Under Assumption 2.2.1, 2.2.2 and 2.2.3, for each i = 1, . . . , k,

we have

E[‖θi − θ0‖2] ≤ 2

n
Tr(Σ) +O(n−2).

Since Ṁi(θi) = 0, by Theorem 4.2 in Chapter XIII of [40], we have

0 = Ṁi(θi) = Ṁi(θ0) +

∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ [θi − θ0]

= Ṁi(θ0) + M̈0(θ0)[θi − θ0] +

[∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈0(θ0)

]
[θi − θ0]

= Ṁi(θ0) + M̈0(θ0)[θi − θ0] +

[∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ − M̈i(θ0)

]
[θi − θ0]

+ [M̈i(θ0)− M̈0(θ0)][θi − θ0] (subtract and add M̈i(θ0)),

Remark. Here, it is worth noting that there is no analogy of mean value theorem for

vector-valued functions, which implies that there does not necessarily exist θ′ lying on the

line between θi and θ0 satisfying Ṁi(θi) − Ṁi(θ0) = M̈i(θ
′)(θi − θ0). Numerous papers

make errors by claiming such θ′ lies between θi and θ0.

If last two terms in above equation are reasonably small, this lemma follows immedi-

ately. So, our strategy is as follows. First, we show that the mean squared error of both
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[
∫ 1

0
M̈i((1−ρ)θ0 +ρθi)dρ −M̈i(θ0)][θi−θ0] and [M̈i(θ0)−M̈0(θ0)][θi−θ0] is small under

some “good” events. Then we will show the probability of “bad” events is small enough.

And Lemma B.2.1 will follow by the fact that Θ is compact.

Suppose Si = {x1, . . . , xn} is the data set on local machine i. Let us define some good

events:

E1 =

{
1

n

n∑
j=1

L(xj) ≤ 2L

}
,

E2 =
{∣∣∣∣∣∣∣∣∣M̈i(θ0)− M̈0(θ0)

∣∣∣∣∣∣∣∣∣ ≤ λ/4
}
,

E3 =

{
‖Ṁi(θ0)‖ ≤ λ

2
δ′
}
,

where δ′ = min(δ, λ
8L

), λ is the constant in Assumption 2.2.2 and L and δ are the constants

in Assumption 2.2.3. We will show that event E1 and E2 ensure that Mi(θ) is strictly

concave at a neighborhood of θ0. And we will also show that in event E3, θi is fairly close

to θ0. Let E = E1 ∩ E2 ∩ E3, then we have the following lemma:

Lemma B.2.2. Under event E, we have

‖θi − θ0‖ ≤
4

λ
‖Ṁi(θ0)‖

Proof. First, we will show M̈i(θ) is a negative definite matrix over a ball centered at θ0:

Bδ′ = {θ ∈ Θ : ‖θ − θ0‖ ≤ δ′} ⊂ Bδ. For any fixed θ ∈ Bδ′ , we have

∣∣∣∣∣∣∣∣∣M̈i(θ)− M̈0(θ0)
∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣M̈i(θ)− M̈i(θ0)

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣M̈i(θ0)− M̈0(θ0)

∣∣∣∣∣∣∣∣∣
≤ 2L‖θ − θ0‖+

λ

4
≤ λ/4 + λ/4 = λ/2,

where we apply event E1, Assumption 2.2.3 and the fact that δ′ = min(δ, λ
8L

) on the first

term and event E2 on the second term. Since M̈0(θ0) is negative definite by Assumption
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2.2.2, above inequality implies that M̈i(θ) is negative definite for all θ ∈ Bδ′ and

sup
u∈Rd:‖u‖≤1

utM̈i(θ)u ≤ −λ/2. (B.36)

With negative definiteness of M̈i(θ), θ ∈ Bδ′ , event E3 and concavity of Mi(θ), θ ∈ Θ, we

have

λ

2
δ′

E3

≥ ‖Ṁi(θ0)‖ = ‖Ṁi(θ0)− Ṁi(θi)‖
(B.36)

≥ λ

2
‖θi − θ0‖.

Thus, we know ‖θi − θ0‖ ≤ δ′, or equivalently, θi ∈ Bδ′ . Then by applying Taylor’s

Theorem on Mi(θ) at θ0, we have

Mi(θi)
(B.36)

≤ Mi(θ0) + Ṁi(θ0)t(θi − θ0)− λ

4
‖θi − θ0‖2.

Thus, as Mi(θ0) ≤Mi(θi) by definiton,

λ

4
‖θi − θ0‖2 ≤Mi(θ0)−Mi(θi) + Ṁi(θ0)t(θi − θ0)

≤ ‖Ṁi(θ0)‖‖θi − θ0‖,

which implies

‖θi − θ0‖ ≤
4

λ
‖Ṁi(θ0)‖.

For 1 ≤ q ≤ 8, we can bound E[‖Ṁi(θ0)‖q] by Lemma B.1.2 and Assumption 2.2.3,

E[‖Ṁi(θ0)‖q] ≤ Cv(q, d)

nq/2
Gq,

where Cv(q, d) is a constant depending on q and d only. Then by conditioning on event E,
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we have

E[‖θi − θ0‖q] = E[‖θi − θ0‖q1(E)] + E[‖θi − θ0‖q1(Ec)]

≤ 4q

λq
E[‖Ṁi(θ0)‖q] +DqPr(Ec)

≤ 4q

λq
Cv(q, d)

nq/2
Gq +DqPr(Ec).

If we can show Pr(Ec) = O(n−
q
2 ), then E[‖θi − θ0‖q] = O(n−

q
2 ) follows immediately.

Lemma B.2.3. Under Assumption 2.2.3, we have

Pr(Ec) = O(n−4).

Proof. Under Assumption 2.2.3, by applying Lemma B.1.2 and B.1.3, we can bound the

moments of Ṁi(θ0) and M̈i(θ0)− M̈0(θ0). Rigorously, for 1 ≤ q ≤ 8, we have

E
[
‖Ṁi(θ0)‖q

]
≤ Cv(q, d)

nq/2
Gq,

E
[∣∣∣∣∣∣∣∣∣M̈i(θ0)− M̈0(θ0)

∣∣∣∣∣∣∣∣∣q] ≤ Cm(q, d)

nq/2
Hq.

Therefore, by Markov’s inequality, we have

Pr(Ec) = Pr(Ec
1 ∪ Ec

2 ∪ Ec
3) ≤ Pr(Ec

1) + Pr(Ec
2) + Pr(Ec

3)

≤
E
[
| 1
n

∑n
j=1 L(xj)− E[L(x)]|8

]
L8

+

E
[∣∣∣∣∣∣∣∣∣M̈i(θ0)− M̈0(θ0)

∣∣∣∣∣∣∣∣∣8]
(λ/4)8

+
E
[
‖Ṁi(θ0)‖8

]
(λδ′/2)8

≤ O(
1

n4
) +O(

1

n4
) +O(

1

n4
) = O(n−4).

Now, we have showed that for 1 ≤ q ≤ 8,

E[‖θi − θ0‖q] ≤
4q

λq
Cv(q, d)

nq/2
Gq +O(n−4) = O(n−

q
2 ). (B.37)
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Until now, [M̈i(θ0) − M̈0(θ0)][θi − θ0] has been well bounded. Next, we will consider the

moment bound of
∫ 1

0
M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0).

Lemma B.2.4. Under assumption 2.2.3, for 1 ≤ q ≤ 4,

E
[∣∣∣∣∣∣∣∣∣∣∣∣∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

∣∣∣∣∣∣∣∣∣∣∣∣q]
≤Lq 4q

λq

√
Cv(2q, d)

nq/2
Gq +O(n−2) = O(n−q/2).

Proof. By Minkowski’s integral inequality, we have

E
[∣∣∣∣∣∣∣∣∣∣∣∣∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

∣∣∣∣∣∣∣∣∣∣∣∣q]
≤E

[∫ 1

0

∣∣∣∣∣∣∣∣∣M̈i((1− ρ)θ0 + ρθi)− M̈i(θ0)
∣∣∣∣∣∣∣∣∣qdρ]

=

∫ 1

0

E
[∣∣∣∣∣∣∣∣∣M̈i((1− ρ)θ0 + ρθi)− M̈i(θ0)

∣∣∣∣∣∣∣∣∣q] dρ.
For simplicity of notation, we use θ′ = (1− ρ)θ0 + ρθi in this proof. When event E holds,

we have

‖θ′ − θ0‖ = ‖ρ(θi − θ0)‖ ≤ ρδ′ ≤ δ,

which means that θ′ ∈ Bδ,∀ρ ∈ [0, 1]. Thus, because of the convexity of the matrix norm

|||·|||, we can apply Jensen’s inequality and Assumption 2.2.3 and get

∣∣∣∣∣∣∣∣∣M̈i(θ
′)− M̈i(θ0)

∣∣∣∣∣∣∣∣∣q ≤ 1

n

n∑
j=1

|||m̈(xj; θ
′)− m̈(xj; θ0)|||q ≤ 1

n

n∑
j=1

L(xi)
q‖θ′ − θ0‖q.

Then apply Hölder’s inequality,

E
[∣∣∣∣∣∣∣∣∣M̈i(θ

′)− M̈i(θ0)
∣∣∣∣∣∣∣∣∣q1(E)

]
≤

{
E[(

1

n

n∑
j=1

L(xi)
q)2]

}1/2 {
E[‖θ′ − θ0‖2q]

}1/2

Jensen’s
≤ C(q)Lqρq

{
E[‖θi − θ0‖2q]

}1/2

(B.37)
≤ C(q)Lq

4q
√
C(2q, d)Gq

λqnq/2
+O(n−2).
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When event E does not hold, we know that
∣∣∣∣∣∣∣∣∣M̈i(θ

′)− M̈i(θ0)
∣∣∣∣∣∣∣∣∣q must be finite by the

assumption that Θ is compact and M̈i(θ) is continuous. By Lemma B.2.3, the probability

that event E does not hold is bounded by O(n−4), which implies,

E
[∣∣∣∣∣∣∣∣∣M̈i(θ

′)− M̈i(θ0)
∣∣∣∣∣∣∣∣∣q] ≤ C(q)Lq

4q
√
C(2q, d)Gq

λqnq/2
+O(n−2) +O(n−4) = O(n−q/2).

Therefore, we have

E
[∣∣∣∣∣∣∣∣∣∣∣∣∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

∣∣∣∣∣∣∣∣∣∣∣∣q]
≤
∫ 1

0

E
[∣∣∣∣∣∣∣∣∣M̈i((1− ρ)θ0 + ρθi)− M̈i(θ0)

∣∣∣∣∣∣∣∣∣q] dρ
≤C(q)Lq

4q
√
C(2q, d)Gq

λqnq/2
+O(n−2) +O(n−4) = O(n−q/2).

Now, recall that we have

0 = Ṁi(θ0) + M̈0(θ0)[θi − θ0] +

[∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

]
[θi − θ0]

+ [M̈i(θ0)− M̈0(θ0)][θi − θ0]. (B.38)
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For the sum of last two terms, we have

E

[∥∥∥∥[

∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)][θi − θ0] + [M̈i(θ0)− M̈0(θ0)][θi − θ0]

∥∥∥∥2
]

≤ 2E

[∥∥∥∥[

∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)][θi − θ0]

∥∥∥∥2
]

+ 2E
[
‖[M̈i(θ0)− M̈0(θ0)][θi − θ0]‖2

]
(since (a+ b)2 ≤ 2a2 + 2b2)

≤ 2(E

[∥∥∥∥∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

∥∥∥∥4
]

)1/2(E[‖θi − θ0‖4])1/2

+ 2(E[‖M̈i(θ0)− M̈0(θ0)‖4])1/2(E[‖θi − θ0‖4])1/2 (Hölder’s inequality)

= O(n−2) +O(n−2) (Lemma B.1.3 & B.2.4 and (B.37))

= O(n−2).

Unitl now, we have established the upper bound for the mean squared error of local M-

estimators,

E[‖θi − θ0‖2] ≤ 2

n
Tr(Σ) +O(n−2),

for i = 1, . . . , k.

B.2.2 Bound the Error of Simple Averaging Estimator θ(0)

Next, we will study the mean squared error of simple averaging estimator,

θ(0) =
1

k

k∑
i=1

θi.

We start with a lemma, which bounds the bias of local M-estimator θi, i = 1, . . . , k.

Lemma B.2.5. There exists some constant C̃ > 0 such that for i = 1, . . . , k, we have

‖E[θi − θ0]‖ ≤ C̃

n
+O(n−2),

where C̃ = 16[Cv(4, d)]
1
4

√
Cv(2, d)λ−3G2L+ 4

√
Cm(2, d)

√
Cv(2, d)λ−2GH .
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Proof. The main idea of this proof is to use equation (B.38) and apply the established error

bounds of Hessian and the aforementioned local m-estimators. By equation (B.38) and fact

E[Mi(θ0)] = 0, we have

‖E[θi − θ0]‖

= ‖E{M̈0(θ0)−1

[∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

]
[θi − θ0]

+M̈0(θ0)−1[M̈i(θ0)− M̈0(θ0)][θi − θ0]}‖

≤ ‖E{M̈0(θ0)−1

[∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

]
[θi − θ0]}‖

+‖E{M̈0(θ0)−1[M̈i(θ0)− M̈0(θ0)][θi − θ0]}‖

Jensen’s
≤ E

[
‖M̈0(θ0)−1

[∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

]
[θi − θ0]‖

]
+E

[
‖M̈0(θ0)−1[M̈i(θ0)− M̈0(θ0)][θi − θ0]‖

]
Assumption 2.2.2

≤ λ−1E
[∥∥∥∥∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

∥∥∥∥ ‖θi − θ0‖
]

+λ−1E
[
‖M̈i(θ0)− M̈0(θ0)‖‖θi − θ0‖

]
Hölder’s
≤ λ−1E

[∥∥∥∥∫ 1

0

M̈i((1− ρ)θ0 + ρθi)dρ− M̈i(θ0)

∥∥∥∥2
]1/2

E[‖θi − θ0‖2]1/2

+λ−1E[‖M̈i(θ0)− M̈0(θ0)‖2]1/2E[‖θi − θ0‖2]1/2.
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Then we can apply Lemma B.1.3 & B.2.4, and (B.37) to bound each term, thus, we have

‖E[θi − θ0]‖] ≤ λ−1

√
L2

42

λ2

√
Cv(4, d)

n
G2 +O(n−2)

√
42

λ2

Cv(2, d)

n
G2 +O(n−4)

+λ−1

√
Cm(2, d)

n
H2

√
42

λ2

Cv(2, d)

n
G2 +O(n−4)

≤ λ−1

[
L

4

λ

Cv(4, d)1/4

√
n

G+O(n−
3
2 )

] [
4

λ

√
Cv(2, d)√

n
G+O(n−

7
2 )

]

+λ−1

√
Cm(2, d)√

n
H

[
4

λ

√
Cv(2, d)√

n
G+O(n−

7
2 )

]

= L
42

λ3

Cv(4, d)1/4
√
Cv(2, d)

n
G2 +O(n−2)

+
4

λ2

√
Cm(2, d)

√
Cv(2, d)

n
GH +O(n−4).

Let C̃ = 16[Cv(4, d)]
1
4

√
Cv(2, d)λ−3G2L+ 4

√
Cm(2, d)

√
Cv(2, d)λ−2GH , then we have

‖E[θi − θ0]‖ ≤ C̃

n
+O(n−2).

Then we can show that the MSE of θ(0) could be bounded as follows.

Lemma B.2.6. There exists some constant C̃ > 0 such that

E[‖θ(0) − θ0‖2] ≤ 2

N
Tr(Σ) +

C̃2k2

N2
+O(kN−2) +O(k3N−3),

where C̃ = 16[Cv(4, d)]
1
4

√
Cv(2, d)λ−3G2L+ 4

√
Cm(2, d)

√
Cv(2, d)λ−2GH .

Proof. The mean squared error of θ(0) could be decomposed into two parts: covariance and

bias. Thus,

E[‖θ(0) − θ0‖2] = Tr(Cov[θ(0)]) + ‖E[θ(0) − θ0]‖2

=
1

k
Tr(Cov[θ1]) + ‖E[θ1 − θ0]‖2

≤ 1

k
E[‖θ1 − θ0‖2] + ‖E[θ1 − θ0]‖2,
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where the first term is well bounded by Lemma B.2.1 and the second term could be bounded

by Lemma B.2.5. Thus, we know

E[‖θ(0) − θ0‖2] ≤ 2

N
Tr(Σ) +

C̃2k2

N2
+O(kN−2) +O(k3N−3).

More generally, for 1 ≤ q ≤ 8, we have

E[‖θ(0) − θ0‖q] = E[‖(θ(0) − E[θ(0)]) + (E[θ(0)]− θ0)‖q]

≤ 2qE[‖θ(0) − E[θ(0)]‖q] + 2q‖E[θ(0)]− θ0‖q

(since (a+ b)q ≤ 2qaq + 2qbq)

= 2qE[‖θ(0) − E[θ(0)]‖q] + 2q‖E[θ1]− θ0‖q (since E[θ(0)] = E[θ1])

≤ 2qE[‖θ(0) − θ0‖q] + 2q
C̃q

nq
+O(n−q−1)

Lemma B.1.2
≤ 2q

Cv(q, d)

kq/2
E[‖θ1 − θ0‖q]) + 2q

C̃q

nq
+O(n−q−1)

(B.37)
≤ 2q

Cv(q, d)

kq/2

[
4q

λq
C(q, d)

nq/2
Gq +O(n−4)

]
+ 2q

C̃q

nq
+O(n−q−1)

= 8q[Cv(q, d)]2λ−qGqN−
q
2 +O(N−

q
2n

q
2
−4) + 2q

C̃q

nq
+O(n−q−1).

In summary, we have

E[‖θ(0)− θ0‖q] ≤ O(N−
q
2 ) +

2qC̃qkq

N q
+O(kq+1N−q−1) = O(N−

q
2 ) +O(kqN−q). (B.39)

B.3 Proof of Theorem 2.2.4

The whole proof could be completed in two steps: first, show simple averaging estima-

tor θ(0) is
√
N -consistent when k = O(

√
N); then show the consistency and asymptotic

normality of the one-step estimator θ(1). In the first step, we need to show the following.
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Lemma B.3.1. Under Assumption 2.2.1, 2.2.2 and 2.2.3, when k = O(
√
N), the simple

averaging estimator θ(0) is
√
N -consistent estimator of θ0, i.e.,

√
N‖θ(0) − θ0‖ = OP (1) as N →∞.

Proof. If k is finite and does not grow with N , the proof is trivial. So, we just need to

consider the case that k →∞. We know that ‖E[
√
n(θi− θ0)]‖ ≤ O( 1√

n
) by Lemma B.2.5

and E[‖
√
n(θi−θ0)‖2] ≤ 2Tr(Σ)+O(n−1) by Lemma B.2.1. By applying Lindeberg-Lévy

Central Limit Theorem, we have

√
N(θ(0) − θ0) =

1√
k

k∑
i=1

√
n(θi − θ0)

=
1√
k

k∑
i=1

{
√
n(θi − θ0)− E[

√
n(θi − θ0)]}+

√
nkE[θ1 − θ0]

d−→N(0,Σ) + lim
N→∞

√
nkE[θ1 − θ0],

It suffices to show limN→∞
√
nkE[θ1 − θ0] is finite. By Lemma B.2.5, we have

‖E[θi − θ0]‖ = O(
1

n
), ∀i ∈ {1, 2, . . . , k},

which means that ‖
√
nkE[θi − θ0]‖ = O(1) if k = O(

√
N) = O(n). Thus, when k =

O(
√
N),
√
N(θ(0) − θ0) is bounded in probability.

Now, we can prove Theorem 2.2.4.

Proof. By the definition of the one-step estimator

θ(1) = θ(0) − M̈(θ(0))−1Ṁ(θ(0)),
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and by Theorem 4.2 in Chapter XIII of [40], we have

√
NM̈(θ(0))(θ(1) − θ0) = M̈(θ(0))

√
N(θ(0) − θ0)−

√
N(Ṁ(θ(0))− Ṁ(θ0))−

√
NṀ(θ0)

= M̈(θ(0))
√
N(θ(0) − θ0)−

√
N

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ (θ(0) − θ0)−
√
NṀ(θ0)

=

[
M̈(θ(0))−

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ

]√
N(θ(0) − θ0)−

√
NṀ(θ0),

As it is shown in (B.39), for any ρ ∈ [0, 1], when k = O(
√
N), we have

‖(1− ρ)θ0 + ρθ(0) − θ0‖ ≤ ρ‖θ(0) − θ0‖
P−→ 0.

Since M̈(·) is a continuous function,
∣∣∣∣∣∣∣∣∣M̈(θ(0))−

∫ 1

0
M̈((1− ρ)θ0 + ρθ(0))dρ

∣∣∣∣∣∣∣∣∣ P−→ 0.

Thus,

√
NM̈(θ(0))(θ(1) − θ0) = −

√
NṀ(θ0) + oP (1).

And, M̈(θ(0))
P−→ M̈0(θ0) because of θ(0) P−→ θ0 and Law of Large Number. Therefore, we

can obatain

√
N(θ(1) − θ0)

d−→ N(0,Σ) as N →∞

by applying Slutsky’s Lemma.

B.4 Proof of Theorem 2.2.5

Let us recall the formula for one-step estimator,

θ(1) = θ(0) − M̈(θ(0))−1Ṁ(θ(0)).
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Then by Theorem 4.2 in Chapter XIII of [40], we have

M̈0(θ0)(θ(1) − θ0) = [M̈0(θ0)− M̈(θ(0))](θ(1) − θ0) + M̈(θ(0))(θ(1) − θ0)

= [M̈0(θ0)− M̈(θ(0))](θ(1) − θ0) + M̈(θ(0))(θ(0) − θ0)− [Ṁ(θ(0))− Ṁ(θ0)]− Ṁ(θ0)

= [M̈0(θ0)− M̈(θ(0))](θ(1) − θ0)

+

[
M̈(θ0)−

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ

]
(θ(0) − θ0)− Ṁ(θ0).

Then we have

θ(1) − θ0 = −M̈0(θ0)−1Ṁ(θ0) + M̈0(θ0)−1[M̈0(θ0)− M̈(θ(0))](θ(1) − θ0)

+ M̈0(θ0)−1

[
M̈(θ0)−

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ

]
(θ(0) − θ0) (B.40)

We will show the last two terms are small enough. Similar to the proof of Lemma B.2.1,

we define a “good” event:

E4 = {‖θ(0) − θ0‖ ≤ δ}.

The probability of above event is close to 1 when N is large.

Pr(Ec
4) ≤ E[‖θ(0) − θ0‖8]

δ8
≤ O(N−4) +O(k8N−8).

Lemma B.4.1. If event E4 holds, for 1 ≤ q ≤ 4, we have

E
[∣∣∣∣∣∣∣∣∣M̈0(θ0)− M̈(θ(0))

∣∣∣∣∣∣∣∣∣q] ≤ O(N−
q
2 ) +O(kqN−q),

E
[∣∣∣∣∣∣∣∣∣∣∣∣M̈(θ0)−

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ

∣∣∣∣∣∣∣∣∣∣∣∣q] ≤ O(N−
q
2 ) +O(kqN−q).

Proof. By Lemma B.1.3, we know

E
[∣∣∣∣∣∣∣∣∣M̈0(θ0)− M̈(θ0)

∣∣∣∣∣∣∣∣∣q] ≤ C(q, d)

N q/2
Hq.

129



Under event E4 and Assumption 2.2.3, by applying Jensen’s inequality, we have

∣∣∣∣∣∣∣∣∣M̈(θ0)− M̈(θ(0))
∣∣∣∣∣∣∣∣∣q ≤ 1

N

k∑
i=1

∑
x∈Si

∣∣∣∣∣∣m̈(x; θ(0))− m̈(x; θ0)
∣∣∣∣∣∣q

≤ 1

N

k∑
i=1

∑
x∈Si

L(x)q‖θ(0) − θ0‖q.

Thus, for 1 ≤ q ≤ 4, we have

E
[∣∣∣∣∣∣∣∣∣M̈(θ0)− M̈(θ(0))

∣∣∣∣∣∣∣∣∣q] Hölder’s
≤ E

[
(

1

N

k∑
i=1

∑
x∈Si

L(x)q)2

] 1
2

E
[
‖θ(0) − θ0‖2q

] 1
2

(B.39)
≤ O(N−

q
2 ) +

2qC̃qLqkq

N q
+O(

kq+1

N q+1
).

As a result, we have, for 1 ≤ q ≤ 4,

E
[∣∣∣∣∣∣∣∣∣M̈0(θ0)− M̈(θ(0))

∣∣∣∣∣∣∣∣∣q]
≤ 2qE

[∣∣∣∣∣∣∣∣∣M̈0(θ0)− M̈(θ0))
∣∣∣∣∣∣∣∣∣q]+ 2qE

[∣∣∣∣∣∣∣∣∣M̈(θ0)− M̈(θ(0))
∣∣∣∣∣∣∣∣∣q]

≤ O(N−
q
2 ) +

4qC̃qLqkq

N q
+O(

kq+1

N q+1
).

In this proof, we let θ′ = (1 − ρ)θ0 + ρθ(0) for the simplicity of notation. Note that

θ′ − θ0 = ρ(θ(0) − θ0), then by event E4, Assumption 2.2.3 and inequality (B.39), we have

E
[∣∣∣∣∣∣∣∣∣M̈(θ0)− M̈(θ′)

∣∣∣∣∣∣∣∣∣q] Jensen’s
≤ E

[
1

N

k∑
i=1

∑
x∈Si

L(x)q‖θ′ − θ0‖q
]

Hölder’s
≤ E

[
(

1

N

k∑
i=1

∑
x∈Si

L(x)q)2

] 1
2

ρqE
[
‖θ(0) − θ0‖2q

] 1
2

≤ O(N−
q
2 ) +

2qC̃qLqkq

N q
+O(

kq+1

N q+1
).
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So, we have

E
[∣∣∣∣∣∣∣∣∣∣∣∣M̈(θ0)−

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ

∣∣∣∣∣∣∣∣∣∣∣∣q]
≤E

[∫ 1

0

∣∣∣∣∣∣∣∣∣M̈(θ0)− M̈((1− ρ)θ0 + ρθ(0))
∣∣∣∣∣∣∣∣∣qdρ]

=

∫ 1

0

E
[∣∣∣∣∣∣∣∣∣M̈(θ0)− M̈((1− ρ)θ0 + ρθ(0))

∣∣∣∣∣∣∣∣∣q] dρ
≤O(N−

q
2 ) +

2qC̃qLqkq

N q
+O(

kq+1

N q+1
).

Therefore, under eventE4, for 1 ≤ q ≤ 4, we can bound M̈0(θ0)−1[M̈0(θ0)−M̈(θ(0))](θ(1)−

θ0) and M̈0(θ0)−1[M̈(θ0)−
∫ 1

0
M̈((1− ρ)θ0 + ρθ(0))dρ](θ(0) − θ0) as follows:

E[‖M̈0(θ0)−1[M̈0(θ0)− M̈(θ(0))](θ(1) − θ0)‖q]

≤ λ−qE
[∣∣∣∣∣∣∣∣∣M̈0(θ0)− M̈(θ(0))

∣∣∣∣∣∣∣∣∣q]Dq

≤ O(N−
q
2 ) +O(kqN−q).

and,

E
[
‖M̈0(θ0)−1[M̈(θ0)−

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ](θ(0) − θ0)‖q
]

≤ λ−qE
[∣∣∣∣∣∣∣∣∣∣∣∣M̈(θ0)−

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ

∣∣∣∣∣∣∣∣∣∣∣∣q]Dq

≤ O(N−
q
2 ) +O(kqN−q).

And by Lemma B.1.2, for 1 ≤ q ≤ 8, we have

E[‖Ṁ(θ0)‖q] = O(N−
q
2 ).
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Therefore, combining above three bounds and equation (B.40), we have, for 1 ≤ q ≤ 4,

E[‖θ(1) − θ0‖q]

≤ 3qE[‖M̈0(θ0)−1[M̈0(θ0)− M̈(θ(0))](θ(1) − θ0)‖q]

+3qE[|M̈0(θ0)−1

[
M̈(θ0)−

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ

]
(θ(0) − θ0)‖q]

+3qE[‖M̈0(θ0)−1Ṁ(θ0)‖q] + Pr(Ec
4)Dq

= O(N−
q
2 ) +O(kqN−q).

Now, we can give tighter bounds for the first two terms in equation (B.40) by Hölder’s

inequality.

E[‖M̈0(θ0)−1[M̈0(θ0)− M̈(θ(0))](θ(1) − θ0)‖2]

≤ λ−2

√
E
[∣∣∣∣∣∣∣∣∣M̈0(θ0)− M̈(θ(0))

∣∣∣∣∣∣∣∣∣4]√E[‖θ(1) − θ0‖4]

= O(N−2) +O(k4N−4),

and,

E[‖M̈0(θ0)−1[M̈(θ0)−
∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ](θ(0) − θ0)‖2]

≤ λ−2

√√√√E

[∣∣∣∣∣∣∣∣∣∣∣∣M̈(θ0)−
∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ

∣∣∣∣∣∣∣∣∣∣∣∣4
]√

E[‖θ(0) − θ0‖4]

= O(N−2) +O(k4N−4).

Now, we can finalize our proof by using equation (B.38) again,

E[‖θ(1) − θ0‖2]

≤ 2E[‖M̈0(θ0)−1Ṁ(θ0)‖2] + 4E[‖M̈0(θ0)−1[M̈0(θ0)− M̈(θ(0))](θ(1) − θ0)‖2]

+4E
[
‖M̈0(θ0)−1[M̈(θ0)−

∫ 1

0

M̈((1− ρ)θ0 + ρθ(0))dρ](θ(0) − θ0)‖2

]
≤ 2

Tr(Σ)

N
+O(N−2) +O(k4N−4).
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B.5 Proof of Corollary 2.2.7

At first, we will present a lemma on the negative moments of a Binomial random variable,

i.e., E
[

1
Z

1(Z>0)

]
and E

[
1
Z2 1(Z>0)

]
, where Z ∼ B(k, p) and B(k, p) denotes Binomial

distribution with k independent trials and a success probability p for each trial. We believe

that E
[

1
Z

1(Z>0)

]
and E

[
1
Z2 1(Z>0)

]
should have been well studied. However, we did not

find any appropriate reference on their upper bounds that we need. So, we derive the upper

bounds as follows, which will be useful in the proof of Corollary 2.2.7.

Lemma B.5.1. Suppose Z ∼ B(k, p), when z > 0, we have

E
[

1

Z
1(Z>0)

]
<

1

kp
+

3

k2p2
and E

[
1

Z2
1(Z>0)

]
<

6

k2p2
.

Proof. By definition, we have

E
[

1

Z
1(Z>0)

]
=

k∑
z=1

1

z

(
k

z

)
pz(1− p)k−z =

k∑
z=1

1

z

k!

z!(k − z)!
pz(1− p)k−z

=
k∑
z=1

z + 1

z

1

(k + 1)p

(k + 1)!

(z + 1)!(k − z)!
pz+1(1− p)k−z

=
k∑
z=1

1

(k + 1)p

(
k + 1

z + 1

)
pz+1(1− p)k−z +

k∑
z=1

1

z

1

(k + 1)p

(
k + 1

z + 1

)
pz+1(1− p)k−z

<
1

(k + 1)p
+

k∑
z=1

z + 2

z

1

(k + 1)(k + 2)p2

(
k + 2

z + 2

)
pz+2(1− p)k−z

<
1

(k + 1)p
+

3

(k + 1)(k + 2)p2
<

1

kp
+

3

k2p2
.
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Similarly, we have

E
[

1

Z2
1(Z>0)

]
=

k∑
z=1

1

z2

(
k

z

)
pz(1− p)k−z =

k∑
z=1

1

z2

k!

z!(k − z)!
pz(1− p)k−z

=
k∑
z=1

(z + 1)(z + 2)

z2

1

(k + 1)(k + 2)p2

(k + 2)!

(z + 2)!(k − z)!
pz+2(1− p)k−z

≤
k∑
z=1

6

(k + 1)(k + 2)p2

(
k + 2

z + 2

)
pz+2(1− p)k−z

<
6

(k + 1)(k + 2)p2
<

6

k2p2
.

Now, we can prove Corollary 2.2.7 could be as follows.

Proof. Let the random variable Z denote the number of machines that successfully com-

municate with the central machine, which means that Z follows Binomial distribution,

B(k, 1 − r). By Law of Large Number, Z
(1−r)k

P−→ 1 as k → ∞. If Z is known, the

size of available data becomes Zn. By Theorem 2.2.4, the one-step estimator θ(1) is still

asymptotic normal when k = O(
√
N),

√
Zn(θ(1) − θ0)

d−→ N(0,Σ) as n→∞.

Therefore, when k →∞, we have

√
(1− r)N(θ(1) − θ0) =

√
(1− r)N
Zn

√
Zn(θ(1) − θ0)

d−→
√

(1− r)N
Zn

N(0,Σ).

Since (1−r)N
Zn

= (1−r)k
Z

P−→ 1, by Slutsky’s Lemma, we have

√
(1− r)N(θ(0) − θ0)

d−→ N(0,Σ).

This result indicates that when the local machines could lose communication independently

with central machine with probability q, the one-step estimator θ(1) shares the same asymp-

totic properties with the oracle M-estimator using (1− r)× 100% of the total samples.
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Next, we will analyze the mean squared error of one-step estimator with the presence

of local machine failures. Note that, when Z is fixed and known, by Theorem 2.2.5, we

have

E[‖θ(1) − θ0‖2
∣∣Z] ≤ 2Tr[Σ]

nZ
+O(n−2Z−2) +O(n−4).

By Rule of Double Expectation and Lemma B.5.1,

E[‖θ(1) − θ0‖21(Z>0)] = E[E[‖θ(1) − θ0‖2
∣∣Z]1(Z>0)]

≤ E
[

2Tr[Σ]

nZ
1(Z>0)

]
+ E[(O(n−2Z−2) +O(n−4))1(Z>0)]

≤ 2Tr[Σ]

{
1

nk(1− r)
+

3

nk2(1− r)2

}
+O(n−2k−2(1− r)−2) +O(n−4)

=
2Tr[Σ]

N(1− r)
+

6Tr[Σ]

Nk(1− r)2
+O(N−2(1− r)−2) +O(k2N−2).
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APPENDIX C

PROOFS OF DISTANCE COVARIANCE

We present all proofs for Chapter 3 here. For reader’s convenience, we restate some con-

stants that we have defined at the beginning of Chapter 3. We denote cp = π(p+1)/2

Γ((p+1)/2)
and

cq = π(q+1)/2

Γ((q+1)/2)
as two constants, where Γ(·) denotes the Gamma function. We will also

need the following constants: Cp = c1cp−1

cp
=
√
πΓ((p+1)/2)

Γ(p/2)
and Cq = c1cq−1

cq
=
√
πΓ((q+1)/2)

Γ(q/2)
.

C.1 Proof of Lemma 3.3.1

Proof. The proof is straightforward as follows. It is known that X and Y are independent

if and only if φX,Y (t, s) = φX(t)φY (s),∀t ∈ Rp, s ∈ Rq, which by definition of the

characteristic functions is equivalent to

E[eiX
tt+iY ts] = E[eiX

tt]E[eiY
ts],∀t ∈ Rp, s ∈ Rq.

Changing of variables t = ut′ and s = vs′ in the above expression results in the following:

E[eiX
tut′+iY tvs′ ] = E[eiX

tut′ ]E[eiY
tvs′ ],∀u ∈ Sp−1, v ∈ Sq−1, t′, s′ ∈ R,

or equivalently, the following

E[eiu
tXt′+ivtY s′ ] = E[eiu

tXt′ ]E[eiv
tY s′ ],∀u ∈ Sp−1, v ∈ Sq−1, t′, s′ ∈ R.

Note the above, again by the definitions of the characteristic functions, is equivalent to

φutX,vtY (t′, s′) = φutX(t′)φvtY (s′), ∀u ∈ Sp−1, v ∈ Sq−1, t′, s′ ∈ R.
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From the definition and the properties of the distance covariance V2 (Theorem 3.1.1), we

know that the previous is equivalent to

V2(utX, vtY ) = 0, ∀u ∈ Sp−1, v ∈ Sq−1.

From all the above, we have proved Lemma 3.3.1.

C.2 Proof of Lemma 3.3.2

We prove Lemma 3.3.2.

Proof. We will use the following change of variables: t = r1 · u, s = r2 · v, where r1, r2 ∈

(−∞,+∞) and u ∈ Sp−1, v ∈ Sq−1. As the surface area of Sp−1 is equal to 2πp/2

Γ(p/2)
= 2cp−1,

we have

V2(X, Y )

=

∫
Rp+q

|E[eiX
tt+iY ts]− E[eiX

tt]E[eiY
ts]|2

cpcq|t|p+1|s|q+1
dtds

= cp−1cq−1

∫
Sp−1
+

∫ +∞

−∞

∫
Sq−1
+

∫ +∞

−∞

|E[eir1u
tX+ir2vtY ]− E[eir1u

tX ]E[eir2v
tY ]|2

cpcq|r1|p+1|r2|q+1

|r1|p−1|r2|q−1dµ(u)dr1dν(v)dr2

= cp−1cq−1

∫
Sp−1
+

∫
Sq−1
+

∫ +∞

−∞

∫ +∞

−∞

|E[eir1u
tX+ir2vtY ]− E[eir1u

tX ]E[eir2v
tY ]|2

cpcq|r1|2|r2|2

dµ(u)dν(v)dr1dr2

=
c2

1cp−1cq−1

cpcq

∫
Sp−1
+

∫
Sq−1
+

V2(utX, vtY )dµ(u)dν(v)

= CpCq

∫
Sp−1

∫
Sq−1

V2(utX, vtY )dµ(u)dν(v).

In the above, the first and fourth equations are due to the definition of V2(·, ·); the second

equation reflects the aforementioned change of variables; the third equation is a reorgani-

zation; the last equation is from the definition of constants Cp and Cq. From all the above,

137



we establish the first part of Lemma 3.3.2.

For the sample distance covariance part, we just need to replace the population char-

acteristic function φX(t) = E[eiX
tt] with the sample characteristic function φ̂X(t) =

1
n

∑n
j=1 e

iXt
jt, the rest reasoning part is nearly identical. We omit the details here.

C.2.1 Proof of Lemma 3.3.3

We will need the following lemma.

Lemma C.2.1. Suppose v is a fixed unit vector in Rp−1 and u ∈ Sp−1. Let µ be the uniform

probability measure on Sp−1. We have

Cp

∫
Sp−1

|utv|dµ(u) = 1,

where constant Cp has been mentioned at the beginning of this chapter.

Proof. Since both u and v are unit vector, we have

|utv| =

∣∣∣∣∣ 〈u, v〉√
|u||v|

∣∣∣∣∣ = | cos θ|,

where θ is the angle between vectors u and v. As we know, the angle between two random

vectors on Sp−1 follows distribution with density, (see [15]) for θ ∈ [0, π],

h(θ) =
1√
π

Γ(p/2)

Γ((p− 1)/2)
(sin θ)p−2. (C.41)

138



Therefore, we have

∫
Sp−1

|utv|dµ(u) =

∫ π

0

h(θ)| cos θ|dθ

= 2

∫ π/2

0

h(θ) cos θdθ

(C.41)
= 2

∫ π/2

0

1√
π

Γ(p/2)

Γ((p− 1)/2)
(sin θ)p−2 cos θdθ

= 2

∫ 1

0

1√
π

Γ(p/2)

Γ((p− 1)/2)
xp−2dx

=
2√
π

Γ(p/2)

Γ((p− 1)/2)

∫ 1

0

xp−2dx

=
Γ(p/2)√

πΓ((p+ 1)/2)
=

1

Cp
.

The second equation is due to the symmetry of the function on [0, π]; the third equation

is a change of random variable; the sixth equation is from the fact that Γ((p + 1)/2) =

p−1
2

Γ((p− 1)/2).

We now prove Lemma 3.3.3

Proof. We will need the following notations:

auij = |ut(Xi −Xj)|, bvij = |vt(Yi − Yj)|,

aui· =
n∑
l=1

auil, bvi· =
n∑
l=1

bvil, (C.42)

au·· =
n∑

k,l=1

aukl, and bv·· =
n∑

k,l=1

bvkl.

Recall the definition of Ωn(·, ·) in (3.1.15), we have

Ωn(utX, vtY ) =
1

n(n− 3)

∑
i 6=j

auijb
v
ij

− 2

n(n− 2)(n− 3)

n∑
i=1

aui·b
v
i· +

au··b
v
··

n(n− 1)(n− 2)(n− 3)
. (C.43)
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By Lemma C.2.1, we have the following: ∀1 ≤ i, j ≤ n,

Cp

∫
Sp−1

|ut(Xi −Xj)|dµ(u) = |Xi −Xj| and (C.44)

Cq

∫
Sq−1

|vt(Yi − Yj)|dν(v) = |Yi − Yj|. (C.45)

By integrating Ωn(utX, vtY ) on u and v, we have

CpCq

∫
Sp−1×Sq−1

Ωn(utX, vtY )dµ(u)dν(v)

(C.43)
=

1

n(n− 3)

∑
i 6=j

Cp

∫
Sp−1

auijdµ(u)Cq

∫
Sq−1

bvijdν(v)

− 2

n(n− 2)(n− 3)

n∑
i=1

Cp

∫
Sp−1

aui·dµ(u)Cq

∫
Sq−1

bvi·dν(v)

+
Cp
∫
Sp−1 a

u
··dµ(u)Cq

∫
Sq−1 b

v
··dν(v)

n(n− 1)(n− 2)(n− 3)

(C.44)(C.45)
=

1

n(n− 3)

∑
i 6=j

aijbij −
2

n(n− 2)(n− 3)

n∑
i=1

ai·bi·

+
a··b··

n(n− 1)(n− 2)(n− 3)
= Ωn(X, Y ).

From all the above, the equation in the lemma is established.

C.2.2 Proof of Lemma 3.3.5

Proof. We can regard Ωn(utX, vtY ) as a real-valued function on Rp × Rq. It is easy to

find that Ωn(utX, vtY ) is a continuous differentiable function by its definition. Since Bp×

Bq is a convex compact set, Ωn(utX, vtY ) must be bounded on this set. Let LX,Y =

supu∈Bp,v∈Bq Ωn(utX, vtY ) denote this upper bound, which is constant depending on the

distribution ofX and Y only. Since auij = |ut(Xi−Xj)| ≤ |u||Xi−Xj| = |Xi−Xj| = aij ,
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then we have

LX,Y ≤
1

n(n− 3)

∑
i 6=j

aijbij +
a··b··

n(n− 1)(n− 2)(n− 3)

≤ E[|X −X ′||Y − Y ′|] + E[|X −X ′|]E[|Y − Y ′|] + oP (1)

≤ 2
√
E[|X −X ′|2]E[|Y − Y ′|2] + oP (1)

≤ 2
√

2Tr[ΣX ]2Tr[ΣY ] + oP (1)

≤ 5
√

Tr[ΣX ]Tr[ΣY ] for sufficiently large n.

We can get the first inequality from the definition in (2.5) by removing the negative term. It

is worth noting that 1
n(n−3)

∑
i 6=j aijbij and a··b··

n(n−1)(n−2)(n−3)
are the U-statistics for E[|X −

X ′||Y − Y ′|] and E[|X − X ′|]E[|Y − Y ′|], respectively. So, the second inequality is due

to almost sure convergence of U-statistics, see [70, Chapter 5.4 Theorem A], where oP (1)

represents a small error that converges to 0 as n→∞. The third inequality is an immediate

result from Hölder’s inequality. The fourth inequality holds as

E[|X −X ′|2] =

p∑
i=1

E[(X(i) −X ′(i))2] =

p∑
i=1

(E[X2
(i)] + E[X2

(i)]− 2E[X(i)X
′
(i)])

= 2

p∑
i=1

(E[X2
(i)]− E2[X(i)]) = 2

p∑
i=1

Var(X(i)) = 2Tr[ΣX ],

where X(i) and X ′(i) are the i-th component of X and X ′, respectively.

Since (u1, v1), . . . , (uK , vK) are draw i.i.d. from uniform distribution on Sp−1 × Sq−1.

h1, . . . ,ΩK are i.i.d. random variables with E[Ω(k)] = Ωn,∀k. And, we know that Ω(k) ≤
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CpCqLX,Y . By Chernoff-Hoeffding’s inequality [31], we have

P
(∣∣Ωn − Ωn

∣∣ > ε
)

= P

(∣∣∣∣∣
K∑
k=1

Ω(k) −KΩn

∣∣∣∣∣ > Kε

)

≤ 2 exp

{
−2K2ε2

KC2
pC

2
qL

2
X,Y

}

≤ 2 exp

{
− 2Kε2

25C2
pC

2
qTr[ΣX ]Tr[ΣY ]

}
.
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C.2.3 Proof of Lemma 3.3.8

Proof. Recall that Ωn is an unbiased estimator of V2(X, Y ) and Ω4 = h4, we have E[h4] =

V2(X, Y ) ≥ 0, consequently, we have the following:

Var(h4) ≤ E[h2
4]

=E

[
1

4

∑
1≤i,j≤4,i 6=j

|Xi −Xj||Yi − Yj|

−1

4

4∑
i=1

( ∑
1≤j≤4,j 6=i

|Xi −Xj|
∑

1≤j≤4,j 6=i

|Yi − Yj|

)

+
1

24

∑
1≤i,j≤4,i 6=j

|Xi −Xj|
∑

1≤i,j≤4,i 6=j

|Yi − Yj|

]2

≤C1E[|X1 −X2|2|Y1 − Y2|2] + C2E[|X1 −X2|2|Y1 − Y2||Y1 − Y3|]

+ C3E[|X1 −X2|2|Y1 − Y2||Y3 − Y4|]

+ C4E[|X1 −X2||X1 −X3||Y1 − Y2|2]

+ C5E[|X1 −X2||X1 −X3||Y1 − Y2||Y1 − Y3|]

+ C6E[|X1 −X2||X1 −X3||Y1 − Y2||Y3 − Y4|]

+ C7E[|X1 −X2||X3 −X4||Y1 − Y2|2]

+ C8E[|X1 −X2||X3 −X4||Y1 − Y2||Y1 − Y3|]

+ C9E[|X1 −X2||X3 −X4||Y1 − Y2||Y3 − Y4|]

≤C ′1E[|X1 −X2|2|Y1 − Y2|2] + C ′2E[|X1 −X2|2|Y1 − Y3|2]

+ C ′3E[|X1 −X2|2|Y3 − Y4|2]

≤C ′4E[|X|2|Y |2] ≤ ∞,
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where C1, . . . , C9, C
′
1, . . . , C

′
4 ≥ 0 are some constants. The second inequality is due to

computing the squared term and set all coefficients to their absolution value, the third in-

equality is by Cauchy’s inequality ab ≤ 1
2
a2 + b2, and the fourth inequality is because of

|X1 −X2|2 ≤ 2|X1|2 + 2|X2|2.

By the law of total variance, both h1 and h2 must have variances no more than the

variance of h4. We can have Var(h1) ≤ Var(h4) <∞ and Var(h2) ≤ Var(h4) <∞.

C.2.4 Proof of Lemma 3.3.9

Proof. Under the general case, we derive the formulas of h1((X1, Y1)) and h2((X1, Y1), (X2, Y2)).

Recall that

h1((X1, Y1)) = E2,3,4[h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))],

h2((X1, Y1), (X2, Y2)) = E3,4[h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))],

where

h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))

=
1

4

∑
1≤i,j≤4,i 6=j

|Xi −Xj||Yi − Yj| −
1

4

4∑
i=1

(
4∑

j=1,j 6=i

|Xi −Xj|
4∑

j=1,j 6=i

|Yi − Yj|

)

+
1

24

∑
1≤i,j≤4,i 6=j

|Xi −Xj|
∑

1≤i,j≤4,i 6=j

|Yi − Yj|.

To facilitate the calculation, we introduce the notations aij = |Xi − Xj| and bij = |Yi −

Yj|, and then utilize them to expand quantity h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)) as
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follows:

h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))

=
1

6
a12b12 −

1

12
a12b13 −

1

12
a12b14 −

1

12
a12b23 −

1

12
a12b24 +

1

6
a12b34

− 1

12
a13b12 +

1

6
a13b13 −

1

12
a13b14 −

1

12
a13b23 +

1

6
a13b24 −

1

12
a13b34

− 1

12
a14b12 −

1

12
a14b13 +

1

6
a14b14 +

1

6
a14b23 −

1

12
a14b24 −

1

12
a14b34

− 1

12
a23b12 −

1

12
a23b13 +

1

6
a23b14 +

1

6
a23b23 −

1

12
a23b24 −

1

12
a23b34

− 1

12
a24b12 +

1

6
a24b13 −

1

12
a24b14 −

1

12
a24b23 +

1

6
a24b24 −

1

12
a24b34

+
1

6
a34b12 −

1

12
a34b13 −

1

12
a34b14 −

1

12
a34b23 −

1

12
a34b24 +

1

6
a34b34.

One may verify the correctness of the above by brute force. The following is a matrix that

consists of the terms of h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)). In the same matrix, we

highlighted the terms, which will become equal after taking the expectation with respect to

random variables (X2, Y2), (X3, Y3) and (X4, Y4).

+1
6
a12b12 − 1

12
a12b13 − 1

12
a12b14 − 1

12
a12b23 − 1

12
a12b24 +1

6
a12b34

− 1
12
a13b12 +1

6
a13b13 − 1

12
a13b14 − 1

12
a13b23 +1

6
a13b24 − 1

12
a13b34

− 1
12
a14b12 − 1

12
a14b13 +1

6
a14b14 +1

6
a14b23 − 1

12
a14b24 − 1

12
a14b34

− 1
12
a23b12 − 1

12
a23b13 +1

6
a23b14 +1

6
a23b23 − 1

12
a23b24 − 1

12
a23b34

− 1
12
a24b12 +1

6
a24b13 − 1

12
a24b14 − 1

12
a24b23 +1

6
a24b24 − 1

12
a24b34

+1
6
a34b12 − 1

12
a34b13 − 1

12
a34b14 − 1

12
a34b23 − 1

12
a34b24 +1

6
a34b34




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Thus, h1((X1, Y1)) could be expressed as follows.

h1((X1, Y1)) = E2,3,4[h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))]

=
1

2
E[|X1 −X ′||Y1 − Y ′|]−

1

2
E[|X1 −X ′||Y1 − Y ′′|]

+
1

2
E[|X1 −X ′||Y − Y ′′|]−

1

2
E[|X1 −X ′||Y ′ − Y ′′|] (C.46)

+
1

2
E[|X −X ′′||Y1 − Y ′|]−

1

2
E[|X ′ −X ′′||Y1 − Y ′|]

+
1

2
E[|X −X ′||Y − Y ′|]− 1

2
E[|X −X ′||Y − Y ′′|].

We may notice that the four above lines are equal to the expectations of sums of terms in

the upper left, upper right, bottom left, and bottom right quadrants of the aforementioned

matrix, respectively.

Similarly, we can highlight the entries, which will be the same after taking expectation

with respect to (X3, Y3) and (X4, Y4). We do it in the following:

+1
6
a12b12 − 1

12
a12b13 − 1

12
a12b14 − 1

12
a12b23 − 1

12
a12b24 +1

6
a12b34

− 1
12
a13b12 +1

6
a13b13 − 1

12
a13b14 − 1

12
a13b23 +1

6
a13b24 − 1

12
a13b34

− 1
12
a14b12 − 1

12
a14b13 +1

6
a14b14 +1

6
a14b23 − 1

12
a14b24 − 1

12
a14b34

− 1
12
a23b12 − 1

12
a23b13 +1

6
a23b14 +1

6
a23b23 − 1

12
a23b24 − 1

12
a23b34

− 1
12
a24b12 +1

6
a24b13 − 1

12
a24b14 − 1

12
a24b23 +1

6
a24b24 − 1

12
a24b34

+1
6
a34b12 − 1

12
a34b13 − 1

12
a34b14 − 1

12
a34b23 − 1

12
a34b24 +1

6
a34b34




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Therefore, the expression of h2((X1, Y1), (X2, Y2)) can be written as follows.

h2((X1, Y1), (X2, Y2)) = E3,4[h4((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4))] (C.47)

=
1

6
|X1 −X2||Y1 − Y2|+

1

3
E[|X1 −X ′||Y1 − Y ′|] +

1

3
E[|X2 −X ′||Y2 − Y ′|]

+
1

6
E[|X −X ′||Y − Y ′|] +

1

6
|X1 −X2|E[|Y − Y ′|] +

1

3
E[|X1 −X||Y2 − Y ′|]

+
1

3
E[|X2 −X||Y1 − Y ′|] +

1

6
|Y1 − Y2|E[|X −X ′|]− 1

6
|X1 −X2|E[|Y1 − Y ′|]

− 1

6
|X1 −X2|E[|Y2 − Y ′|]−

1

6
|Y1 − Y2|E[|X1 −X|]−

1

6
E[|X1 −X||Y1 − Y ′|]

− 1

6
E[|X1 −X||Y2 − Y |]−

1

6
E[|X1 −X||Y − Y ′|]−

1

6
|Y1 − Y2|E[|X2 −X|]

− 1

6
E[|X2 −X||Y1 − Y ′|]−

1

6
E[|X2 −X||Y2 − Y ′|]−

1

6
E[|X2 −X||Y − Y ′|]

− 1

6
E[|X −X ′||Y1 − Y |]−

1

6
E[|X −X ′||Y2 − Y |].

C.2.5 Proof of Lemma 3.3.10

Proof. In the rest of this section, let us assume that X’s are independent of Y ’s. The

following notations will be utilized to simplify our calculations.

a12 = |X1 −X2|, b12 = |Y1 − Y2|,

a1 = E[|X1 −X|], b1 = E[|Y1 − Y |],

a2 = E[|X2 −X|], b2 = E[|Y2 − Y |],

a = E[|X −X ′|], and b = E[|Y − Y ′|],

where the expectation operator E is taken with respect to X , X ′, Y , Y ′, or any combination

of them, whenever it is appropriate. Then, whenX’s are independent of Y ’s, one can easily
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verify the following:

h1((X1, Y1)) =
1

2
a1b1 +

1

2
ab+

1

2
a1b+

1

2
ab1 −

1

2
a1b1 −

1

2
a1b−

1

2
ab1 −

1

2
ab = 0,

as well as the following:

h2((X1, Y1), (X2, Y2))

=
1

6
a12b12 +

1

3
a1b1 +

1

3
a2b2 +

1

6
ab+

1

6
a12b+

1

3
a1b2 +

1

3
a2b1 +

1

6
ab12

− 1

6
a12b1 −

1

6
a12b2 −

1

6
a1b12 −

1

6
a1b1 −

1

6
a1b2 −

1

6
a1b

− 1

6
a2b12 −

1

6
a2b1 −

1

6
a2b2 −

1

6
a2b−

1

6
ab1 −

1

6
ab2

=
1

6
(a12b12 + a1b1 + a2b2 + ab+ a12b+ a1b2 + a2b1 + ab12

− a12b1 − a12b2 − a1b12 − a1b− a2b12 − a2b− ab1 − ab2)

=
1

6
(a12 − a1 − a2 + a)(b12 − b1 − b2 + b).

Note that the above two are essentially (3.3.20) and (3.3.21) in Lemma 3.3.10. As we have

had E[h2] = E[h4] = 0 when X and Y are independent, we have Var(h2) = E[h2
2]. Let us

compute E[(a12 − a1 − a2 + a)2] first. It is worth noting that

E[a2
12] = E[|X −X ′|2],

E[a2] = E[a1a] = E[a2a] = E[a12a] = E2[|X −X ′|], and

E[a2
1] = E[a2

2] = E[a12a1] = E[a12a1] = E[|X −X ′||X −X ′′|].
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As a result, we have

E[(a12 − a1 − a2 + a)2]

=E[a2
12 + a2

1 + a2
2 + a2 − 2a12a1 − 2a12a2 + 2a12a+ 2a1a2 − 2a1a− 2a2a]

=E[|X −X ′|2] + 2E[|X −X ′||X −X ′′|] + E2[|X −X ′|]

− 2E[|X −X ′||X −X ′′|]− 2E[|X −X ′||X −X ′′|]

+ 2E2[|X −X ′|] + 2E2[|X −X ′|]− 2E2[|X −X ′|]− 2E2[|X −X ′|]

=E[|X −X ′|2]− 2E[|X −X ′||X −X ′′|] + E2[|X −X ′|] = V2(X,X).

Similarly, we have E[(b12 − b1 − b2 + b)2] = V2(Y, Y ). In summary, we have

Var(h2) = E[h2
2] =

1

36
V2(X,X)V2(Y, Y ),

which is (3.3.22) in Lemma 3.3.10.

C.2.6 Proof of Lemma 3.3.13

Proof. By [69, Lemma 12], it is known that

k̃(x, x′) = |x− x0|+ |x′ − x0| − |x− x′|

is a positive definite kernel. Due to [69, equation (4.4)], we have the following:

k̃P (x, x′) = k̃(x, x′) + EW,W ′ k̃(W,W ′)− EW ′ k̃(x,W ′)− EW k̃(W,x′)

= |x− x0|+ |x′ − x0| − |x− x′|+ Ex|x− x0|+ Ex′ |x′ − x0|

− Ex,x′|x− x′| − |x− x0| − Ex′|x′ − x0|

+ Ex′ |x− x′| − Ex|x− x0| − |x′ − x0|+ Ex|x− x′|

= −|x− x′| − Ex,x′ |x− x′|+ Ex′|x− x′|+ Ex|x− x′|

= hX(x, x′)
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is also a positive definite kernel. Similarly, hY (Y1, Y2) is also a positive definite kernel.

C.2.7 Proof of Lemma 3.3.14

Proof. Since hX is a positive definite kernel, by Mercer’s Theorem, there exists a function

sequence ψX1 , ψ
X
1 , . . . and eigenvalues λX1 ≥ λX2 ≥ . . . ≥ 0 such that

hX(x, x′) =
∞∑
l=1

λXl ψ
X
l (x)ψXl (x′),

where E[ψXl (x)] = 0, E[ψXl (x)2] = 1 and E[ψXl (x)ψXl′ (x)] = 0 for l 6= l′. Similarly, we

have

hY (y, y′) =
∞∑
l=1

λYl ψ
Y
l (y)ψYl (y′).

By [69] equation (3.5), we that know

h2((X1, Y1), (X2, Y2)) =
1

6
hX(X1, X2)hY (Y1, Y2)

is a kernel with Reproducing Kernel Hilbert Space (RKHS)H isometrically isomorphic to

the tensor productHX ⊗HY . Thus,

6h2((X1, Y1), (X2, Y2)) =
∞∑

l,l′=1

λXl λ
Y
l′ [ψ

X
l (X1)ψYl′ (Y1)][ψXl (X2)ψYl′ (Y2)],

which implies

{λ1, λ2, . . .} = {λX1 , λX2 , . . .} ⊗ {λY1 , λY2 , . . .}.

C.2.8 Proof of Corollary 3.3.15

Proof. In this proof, we follow the notations in the proof of Lemma 3.3.14. It is worth

noting that

∞∑
l=1

λXl = E[hX(x, x)] = Ex[−Ex,x′ |x− x′|+ Ex′|x− x′|+ Ex′ |x− x′|] = E[|X −X ′|].
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As an immediate result of Lemma 3.3.14, we have

∞∑
i=1

λi =
∞∑
i=1

λXi

∞∑
i=1

λYi = E[|X −X ′|]E[|Y − Y ′|].

Similarly, we verify that

∞∑
l=1

(λXl )2 = E[hX(x, x′)2] = V2(X,X).

Then, we have

∞∑
i=1

λ2
i =

∞∑
i=1

(λXi )2

∞∑
i=1

(λYi )2 = V2(X,X)V2(Y, Y ).

C.2.9 Proof of Lemma 3.3.16

Proof. By the law of total variance, we have

Var(Ωn) = EU,V [VarX,Y (Ωn|U, V )] + VarU,V [EX,Y (Ωn|U, V )].

For the first term, when the random projections U = (u1, . . . , uK) and V = (v1, . . . , vK)

are given, then by Lemma 3.3.7, we have

VarX,Y (Ωn|U, V ) =
16

n
VarX,Y (h̄1|U, V ) +

72

n2
VarX,Y (h̄2|U, V ) +O

(
1

n3

)
,

thus,

EU,V [VarX,Y (Ωn|U, V )] =
16

n
EU,V [VarX,Y (h̄1|U, V )]

+
72

n2
EU,V [VarX,Y (h̄2|U, V )] +O

(
1

n3

)
.

For the second term, we have

EX,Y (Ωn|U, V ) =
1

K

K∑
k=1

V2(utkX, v
t
kY )
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thus, since (uk, vk), k = 1, . . . , K are independent,

VarU,V [EX,Y (Ωn|U, V )] = VarU,V

(
1

K

K∑
k=1

V2(utkX, v
t
kY )

)

=
1

K
Varu,v(V2(utX, vtY )),

where (u, v) stands for random projection vectors from Unif(Sp−1) and Unif(Sq−1), re-

spectively. In summary, the variance of Ωn is

Var(Ωn) =
1

K
Varu,v(V2(utX, vtY )) +

16

n
EU,V [VarX,Y (h̄1|U, V )]

+
72

n2
EU,V [VarX,Y (h̄2|U, V )] +O

(
1

n3

)
.

C.2.10 Proof of Theorem 3.3.18

Proof. For simplicity of notation, in this proof, without explicit statement, Var(·) and

Cov(·) are with respect to (X, Y ). By the definition of h̄2, we have

Var(h̄2|U, V ) =
1

K2

K∑
k,k′=1

Cov(h
(k)
2 , h

(k′)
2 |U, V ).

To simplify the notation, we define the following:

au12 = |ut(X1 −X2)|, bv12 = |vt(Y1 − Y2)|,

au1 = E[|ut(X1 −X)|], bv1 = E[|vt(Y1 − Y )|],

au2 = E[|ut(X2 −X)|], bv2 = E[|vt(Y2 − Y )|],

au = E[|ut(X −X ′)|], and bv = E[|vt(Y − Y ′)|].
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Thus, by (3.3.21), we have

Cov(h
(k)
2 , h

(k′)
2 |U, V )

=
C2
pC

2
q

36
EX,Y [(auk12 − a

uk
1 − a

uk
2 + auk)(bvk12 − b

vk
1 − b

vk
2 + bvk)

(a
uk′
12 − a

uk′
1 − a

uk′
2 + auk′ )(b

vk′
12 − b

vk′
1 − b

vk′
2 + bvk′ )]

=
C2
pC

2
q

36
EX,Y [(auk12 − a

uk
1 − a

uk
2 + auk)(a

uk′
12 − a

uk′
1 − a

uk′
2 + auk′ )]

EX,Y [(bvk12 − b
vk
1 − b

vk
2 + bvk)(b

vk′
12 − b

vk′
1 − b

vk′
2 + bvk′ )]

=
C2
pC

2
q

36
V2(utkX, u

t
k′X)V2(vtkY, v

t
k′Y ),

where the second equation holds by the assumption that X and Y are independent and the

last equation holds by the definition of distance covariance in (3.1.13).

To summarize, the variance of Ωn with respect to (X, Y ) is

Var(Ωn|U, V ) =
2C2

pC
2
q

n2

1

K2

K∑
k,k′=1

V2(utkX, u
t
k′X)V2(vtkY, v

t
k′Y ) +O(

1

n3
),

which implies

∞∑
i=1

λ̄2
i = 36Var(h̄2|U, V ) =

C2
pC

2
q

K2

K∑
k,k′=1

V2(utkX, u
t
k′X)V2(vtkY, v

t
k′Y ).

By Corollary 3.3.15, we know that

∞∑
i=1

λ̄i = E[6h̄4(x, x)] =
CpCq
K

K∑
k=1

E[|utk(X −X ′)|]E[|vtk(Y − Y ′)|].

C.2.11 Proof of Proposition 3.3.20

Proof. Let us recall the definition,

∞∑
i=1

λ̄i = E[6h̄4(x, x)] =
CpCq
K

K∑
k=1

E[|utk(X −X ′)|]E[|vtk(Y − Y ′)|],
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∞∑
i=1

λ̄2
i =

C2
pC

2
q

K2

K∑
k,k′=1

V2(utkX, u
t
k′X)V2(vtkY, v

t
k′Y ).

To estimate
∑∞

i=1 λ̄
2
i , we can use

C2
pC

2
q

K2

K∑
k,k′=1

Ωn(utkX, u
t
k′X)Ωn(vtkY, v

t
k′Y ),

which takes O(K2n log n) time and is costly when K is large. It is worth noting that if

k 6= k′ and (uk, vk) is independent of (uk′ , vk′), by Lemma 3.3.2, we know that

C2
pC

2
qEU,V [V2(utkX, u

t
k′X)V2(vtkY, v

t
k′Y )] = V2(X,X)V2(Y, Y ).

Thus,
∑∞

i=1 λ̄
2
i could be estimated by

K − 1

K
Ωn(X,X)Ωn(Y, Y ) +

C2
pC

2
q

K

K∑
k=1

Ωn(utkX, u
t
kX)Ωn(vtkY, v

t
kY ),

which takes only O(Kn log n) time.

And,
∑∞

i=1 λ̄i could be estimated by:

CpCq
Kn2(n− 1)2

K∑
k=1

auk·· b
vk
·· ,

where

auk·· =
n∑

i,j=1

|utk(Xi −Xj)| and bvk·· =
n∑

i,j=1

|vtk(Yi − Yj)|.

So, in summary, we have

∞∑
i=1

λ̄i ≈
CpCq

Kn2(n− 1)2

K∑
k=1

auk·· b
vk
·· ,

∞∑
i=1

λ̄2
i ≈

K − 1

K
Ωn(X,X)Ωn(Y, Y ) +

C2
pC

2
q

K

K∑
k=1

Ωn(utkX, u
t
kX)Ωn(vtkY, v

t
kY ).
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APPENDIX D

PROOFS OF ENERGY STATISTICS

We present all the proofs of Chapter 4 here. For reader’s convenience, we restate the

following notations. We denote cp = π(p+1)/2

Γ((p+1)/2)
and Cp = c1cp−1

cp
=
√
πΓ((p+1)/2)

Γ(p/2)
as two

constants, where Γ(·) denotes the Gamma function.

D.1 Proof of Theorem 4.2.1

Proof. The detailed explanations and corresponding complexity analysis of the fast algo-

rithm in Section 4.2.1 is as follows.

(1) Sort Xi’s and Yj’s, so that we have order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n)

and Y(1) ≤ Y(2) ≤ · · · ≤ Y(m). By adopting the merge sort [38, 36], the average

computational complexity in this step is O(max(n,m) log max(n,m)). In addition,

it is easy to verify the following:

E : =
2

nm

n∑
i=1

m∑
j=1

|X(i) − Y(j)| −
1

n(n− 1)

n∑
i,j=1,i 6=j

|X(i) −X(j)|

− 1

m(m− 1)

m∑
i,j=1,i 6=j

|Y(i) − Y(j)|

=
2

nm

n∑
i=1

m∑
j=1

|X(i) − Y(j)| −
2

n(n− 1)

n∑
i<j

|X(i) −X(j)|

− 2

m(m− 1)

m∑
i<j

|Y(i) − Y(j)|

That is, we can compute E through merely the order statistics. The rest of algorithmic

description will be based on the above formula.
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(2) We can verify the following:

2

n(n− 1)

n∑
i<j

|X(i) −X(j)| =
2

n(n− 1)

n−1∑
i=1

i(n− i)
∣∣X(i+1) −X(i)

∣∣ .
Given order statisticsX(i)’s, the computational complexity of implementing the above

is O(n).

(3) Essentially identical to the previous item, one can verify the following:

2

m(m− 1)

m∑
i<j

|Y(i) − Y(j)| =
2

m(m− 1)

m−1∑
i=1

i(m− i)
∣∣Y(i+1) − Y(i)

∣∣ .
Given order statistics Y(i)’s, the computational complexity of implementing the above

is O(m).

(4) For the first term in E , one can computer it in two sub-steps as below.

(a) One can merge two ordered series X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤ Y(2) ≤

· · · ≤ Y(m) into a single ordered series Z(1) ≤ Z(2) ≤ · · · ≤ Z(n+m), where each

Z(k) is either from X(i)’s or from Y(j)’s. At the same time, one can generate a

sequence Ii, i = 1, 2, . . . , n+m, where Ii records the size of the subset of Z(1)

through Z(i) that are from X(i)’s. It is evident to show that quantity i− Ii is the

size of the subset of Z(1) through Z(i) that are from Y(j)’s.

Note the computational complexity in this step is O(n+m).

(b) Given the above preparation, we can verify the following:

2

nm

n∑
i=1

m∑
j=1

∣∣X(i) − Y(j)

∣∣
=

2

nm

n+m−1∑
i=1

[Ii(m− i+ Ii) + (i− Ii)(n− Ii)]
∣∣Z(i+1) − Z(i)

∣∣ .
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Note that the term Ii(m− i+Ii)+(i−Ii)(n−Ii) on the right hand side is equal

to the number of times the length |Z(i+1)−Z(i)| has been counted in the double

summation on the left hand side. Through this, we can establish the equality.

The computational complexity of implementing the above is O(n+m).

From all the above, we show that the complexity of computing E is dominated by the

sorting step, thus the average total complexity is O(max(n,m) log max(n,m)).

D.2 Proof of Lemma 4.3.1

Proof. The proof is straightforward. First, by Proposition 4.1.2, we know that

random vector X ∈ Rp has the same distribution with random vector Y ∈ Rp

if and only if

ΦX = ΦY , almost everywhere,

where ΦX and ΦY are the characteristic functions of X and Y , respectively. That becomes

E
[
eiX

T t
]

= E
[
eiY

T t
]
, ∀t ∈ Rp.

By variable change t = ut′, where u ∈ Sp−1 and t′ ∈ [0,∞), we have

E
[
eiu

TXt′
]

= E
[
eiu

TY t′
]
,∀u ∈ Sp−1 and t′ ∈ [0,∞),

or equivalently,

ΦuTX = ΦuTY ,∀u ∈ Sp−1.

By Proposition 4.1.2, we know that

ΦuTX = ΦuTY ,∀u ∈ Sp−1,
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is equivalent with

E(uTX, uTY ) = 0,∀u ∈ Sp−1.

D.3 Proof of Lemma 4.3.2

First, let us state a result from [33], which shows relationship between the norm of random

projections and the norm of original vector.

Lemma D.3.1. [33, Lemma B.1] Suppose v is a fixed unit vector in Rp and u ∈ Sp−1. Let

µ be the uniform probability measure on Sp−1. We have

Cp

∫
Sp−1

|uTv|dµ(u) = CpEu[|uTv|] = 1,

where constant Cp has been mentioned at the beginning of this chapter.

Equipped with above lemma, we can prove Lemma 4.3.2 as follows.

Proof. By Lemma D.3.1, we have

CpEu
[∣∣∣∣uT (X − Y )

|X − Y |

∣∣∣∣] = 1, thus, |X − Y | = CpEu
[∣∣uT (X − Y )

∣∣] .
Therefore, the energy distance could be written as

E(X, Y ) = 2E[|X − Y |]− E[|X −X ′|]− E[|Y − Y ′|]

= 2EX,Y [CpEu[|uT (X − Y )]]− EX,X′ [CpEu[|uT (X −X ′)]]

− EY,Y ′ [CpEu[|uT (Y − Y ′)]]

= CpEu
[
2EX,Y [|uT (X − Y )]− EX,X′ [|uT (X −X ′)]− EY,Y ′ [|uT (Y − Y ′)]

]
= CpEu[E(uTX, uTY )] = Cp

∫
Sp−1

E(uTX, uTY )dµ(u),
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where u is a uniformly distributed random variable on Sp−1, the second equality is by

Lemma D.3.1, the third equality is by exchanging the order of expectation, and the fourth

equality is by the definition of energy distance.

We can reach a similar result for energy statistics simply by replacing EX,Y [·], EX,X′ [·]

and EY,Y ′ [·] with summation. The rest reasoning is almost the same with above reasoning

for energy distance.

D.4 Proof of Theorem 4.3.7

First, let us introduce a lemma that will be used in later proof.

Lemma D.4.1. [33, Lemma 4.13] If E[|X|2] <∞, we have that kernel

k(X1, X2) = EX [|X1 −X|] + EX [|X2 −X|]− |X1 −X2| − EX,X′ [|X −X ′|]

is a positive definite kernel. As a result, if X and Y have the same distirbution, h20(·, ·),

h02(·, ·) and −h11(·, ·) in Lemma 4.3.6 are all positive definite kernels. Also, there exist

functions φ1(·), φ2(·), . . . such that

k(X1, X2) =
∞∑
i=1

λiφi(X1)φi(X2),

where λ1 ≥ λ2 ≥ . . . ≥ 0, E[φi(X)] = 0, E[φi(X)2] = 1 and E[φi(X)φj(X)] = 0,

i = 1, 2, . . . ,∞, i 6= j.

Now, let us prove Theorem 4.3.7.

Proof. By Lemma 4.3.6 and [42, Section 2.2, Theorem 3], we have

En,m =

(
n

2

)−1 ∑
i1<i2

h20(Xi1 , Xi2) + 4(nm)−1

n∑
i=1

m∑
j=1

h11(Xi, Yj)

+

(
m

2

)−1 ∑
j1<j2

h02(Yj1 , Yj2) +Rn,m,
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whereRn,m is the residual with NRn,m
P−→ 0. By Lemma D.4.1, we know that

h20(Xi1 , Xi2) =
∞∑
l=1

λlφl(Xi1)φl(Xi2), h02(Yj1 , Yj2) =
∞∑
l=1

λlφl(Yj1)φl(Yj2),

and

h11(Xi, Yj) = −1

2

∞∑
l=1

λlφl(Xi)φl(Yj).

Therefore, we have

En,m =
∞∑
l=1

λl

( 1

n

n∑
i=1

φl(Xi)−
1

m

m∑
j=1

φl(Yj)

)2

− 1

n2

n∑
i=1

φl(Xi)
2 − 1

m2

m∑
j=1

φl(Yj)
2


+Rn,m +

(
2

n(n− 1)
− 2

n2

)∑
i1<i2

h20(Xi1 , Xi2)

+

(
2

m(m− 1)
− 2

m2

) ∑
j1<j2

h02(Yj1 , Yj2)

=
1

N

∞∑
l=1

λl

(√N/n
1√
n

n∑
i=1

φl(Xi)−
√
N/m

1√
m

m∑
j=1

φl(Yj)

)2

−N
n2

n∑
i=1

φl(Xi)
2 − N

m2

m∑
j=1

φl(Yj)
2

]
+ R̃n,m,

where

R̃n,m = Rn,m +
2

n2(n− 1)

∑
i1<i2

h20(Xi1 , Xi2) +
2

m2(m− 1)

∑
j1<j2

h02(Yj1 , Yj2).

It is worth noting that NR̃n,m
P−→ 0. Therefore, as N →∞, we have

NEn,m
D−→

∞∑
l=1

λl[(
√

1/ηZl,1 −
√

1/(1− η)Zl,2)2 − 1

η
− 1

1− η
] =

∞∑
l=1

λl
η(1− η)

(Z2
l − 1),

where Zl,1, Zl,2, l = 1, 2, . . . are all independent standard normal random variables and

Zl =
√

1− ηZl,1 +
√
ηZl,2. It is worth noting that

∞∑
l=1

λl = E[h20(X,X)] = E[|X −X ′|].
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Similarly, we know that

∞∑
l=1

λ2
l = EX1,X2

[
∞∑
l=1

λlφl(X1)φl(X2)

]2

= EX1,X2

[
h20(X1, X2)2

]
= EX1,X2

[
(EX [|X1 −X|] + EX [|X2 −X|]− |X1 −X2| − EX,X′ [|X −X ′|])2

]
= DC(X,X),

where the last equality is by the definition of distance covariance.

D.5 Proof of Lemma 4.3.10

Proof. It is worth noting that when X and Y have the same distribution, uTX and uTY

also should have the same distribution for any u, thus

E(uTX, uTY ) = 0,∀u ∈ Rp,

which indicates that

Varu[E(uTX, uTY )] = 0.

Moreover, we have

h10(X1) =
1

K

K∑
k=1

Cph10(uTkX1).

By the definition of h10(·), we know h10(uTkX1) = 0 when X and Y are identically dis-

tributed, which sugguests

h10 = 0, and Var[h10|U ] = 0.

Similarly, we have

h01 = 0, and Var[h01|U ] = 0.
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Combining above results and Lemma 4.3.8, we have the formula of the variance of En,m in

this lemma.

D.6 Proof of Theorem 4.3.12

Proof. This proof is almost identical with the proof of Theorem 4.3.7. We can simply re-

place the notations like h20, h02, h11, λi, φi(·) with corresponding notations like h20, h02, h11, λi, φi(·).

The rest reasoning is the same.

For
∑∞

l=1 λl, it is easy to see that

∞∑
l=1

λl = E[k(X,X)] =
Cp
K

K∑
k=1

EX,X′ [|uTk (X −X ′)|].

For
∑∞

l=1 λ
2

l , we have

∞∑
l=1

λ
2

l = EX1,X2

[
∞∑
l=1

λlφl(X1)φl(X2)

]2

= EX1,X2

[
C2
pk(uTkX1, X2)2

]
= EX1,X2

(C2
p

K

K∑
k=1

k(uTkX1, u
T
kX2)

)2


=
C2
p

K2

K∑
k,k′=1

EX1,X2

[
k(uTkX1, u

T
kX2)k(uTk′X1, u

T
k′X2)

]
=
C2
p

K2

K∑
k,k′=1

DC(uTkX, u
T
k′X),

where the last equation is by the definition of distance covariance.

D.7 Proof of Proposition 4.3.13

Proof. When X and Y are identically distributed, we know

E[|uTk (Zi − Zj)|] = EX,X′ [|uTk (X −X ′)|],

which implies

Cp
K

K∑
k=1

1

(n+m)(n+m− 1)

n+m∑
i 6=j

|uTk (Zi − Zj)|
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is an unbiased estimator for Cp

K

∑K
k=1 EX,X′ [|uTk (X −X ′)|] =

∑∞
l=1 λl.

We have

∞∑
l=1

λ
2

l =
C2
p

K2

K∑
k,k′=1

DC(uTkX, u
T
k′X)

=
C2
p

K2

K∑
k=1

DC(uTkX, u
T
kX) +

C2
p

K2

K∑
k 6=k′

DC(uTkX, u
T
k′X).

For DC(uTkX, u
T
kX) in the first term , it is natural to estimate it with SDC(uTkZ, u

T
kZ). It

is worth noting that uk is independent of uk′ for all k′ 6= k. When the number of random

projections K is sufficient large, by the Law of Large Number, we have

C2
p

K2

K∑
k 6=k′

DC(uTkX, u
T
k′X)

P−→
(K − 1)C2

p

K2

K∑
k=1

DC(uTkX, v
T
kX).

We can estimate the quantity on the right-hand-side by simply estimating distance covari-

ance with the sample version. Thus, we have

C2
p

K2

K∑
k=1

SDC(uTkZ, u
T
kZ) +

(K − 1)C2
p

K2

K∑
k=1

SDC(uTkZ, v
T
k Z)→

∞∑
l=1

λ
2

l as N,K →∞.
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