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Nourish beginnings, let us nourish beginnings.

Not all things are blessed, but the seeds of all things are blessed.

The blessing is in the seed.

Muriel Rukeyser
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SUMMARY

A surface of genus g has many symmetries. These form the surface’s mapping class

group Mod(Sg), which is finitely generated. The most commonly used generating sets for

Mod(Sg) are comprised of infinite order elements called Dehn twists; however, a number

of authors have shown that torsion generating sets are also possible. For example, Brendle

and Farb showed that Mod(Sg) is generated by six involutions for g ≥ 3. We will discuss

our extension of these results to elements of arbitrary order: for k > 5 and g sufficiently

large, Mod(Sg) is generated by three elements of order k.

Generalizing this idea, in joint work with Margalit we showed that for g ≥ 3 every non-

trivial periodic element that is not a hyperelliptic involution normally generates Mod(Sg).

This result raises a question: does there exist an N , independent of g, so that if f is a peri-

odic normal generator of Mod(Sg), then Mod(Sg) is generated by N conjugates of f? We

show that in general there does not exist such an N , but that there do exist universal bounds

when additional conditions are placed on f .

In Chapter 1 we give an introduction and overview of our work. In Chapter 2 we

show how to construct elements of order k in Mod(Sg) for sufficiently large values of

g. In Chapter 3 we show how to write a Dehn twist as a product in elements of order

k. In Chapters 4 and 5 we construct generating sets for Mod(Sg) that are comprised of

elements of fixed finite order. In Chapter 6 we show that that in general that there is no

universal upper bound on the number of conjugates of a periodic normal generator required

to generate Mod(Sg), although universal bounds do exist when additional conditions are

placed on f .
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CHAPTER 1

INTRODUCTION

Let Sg be a closed, connected, and orientable surface of genus g. The mapping class group

Mod(Sg) is the group of homotopy classes of orientation-preserving homeomorphisms of

Sg. In this paper, we construct small generating sets for Mod(Sg) where all of the genera-

tors have the same finite order.

Theorem 1.1. Let k ≥ 6 and g ≥ (k − 1)2 + 1. Then Mod(Sg) is generated by three

elements of order k. Also, Mod(Sg) is generated by four elements of order 5 when g ≥ 8.

Theorem 1.1 follows from a stronger but more technical result that we prove as Theorem

4.1. Our generating sets for Mod(Sg) are constructed explicitly. In addition, the elements

in any particular generating set are all conjugate to each other. Of course, attempting to

construct generating sets consisting of elements of a fixed order k only makes sense if

Mod(Sg) contains elements of order k in the first place. A construction of Tucker [1]

guarantees an element of any fixed order k in Mod(Sg) whenever g is sufficiently large, as

described in Section 2.

Later in the introduction we describe prior work by several authors on generating

Mod(Sg) with elements of fixed finite orders 2, 3, 4, and 6. In each case, the authors

show that the number of generators required is independent of g. Set alongside this prior

work, a new phenomenon that emerges in our results is that the sizes of our generating

sets for Mod(Sg) are not only independent of the genus of the surface, but they are also

independent of the order of the elements.

Our generators are all finite-order elements that can be realized by rotations of Sg em-

bedded in R3. There are values of g and k where there exist elements of order k in Mod(Sg),

but where these cannot be realized as rotations of Sg embedded in R3. For instance, there

are elements of order 7 in Mod(S3) that cannot be realized in this way.
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Problem 1.2. Extend Theorem 4.1 to cases where elements of order k exist in Mod(Sg) but

cannot be realized as rotations of Sg embedded in R3.

Our results in Chapter 6 provide an answer to this problem.

We can also seek smaller generating sets for Mod(Sg) consisting of elements of order k.

We note that any such sharpening of Theorem 4.1 would seem to demand a new approach.

Our proofs hinge on applications of the lantern relation, and a lantern has only a limited

number of symmetries.

Problem 1.3. For fixed k ≥ 3 and any g ≥ 3 where elements of order k exist, can Mod(Sg)

be generated by two elements of order k? What about three elements for orders 4 and 5?

Background and prior results

The most commonly-used generating sets for Mod(Sg) consist of Dehn twists, which have

infinite order. Dehn [2] showed that 2g(g−1) Dehn twists generate Mod(Sg), and Lickorish

[3] showed that 3g + 1 Dehn twists suffice. Humphries [4] showed that only 2g + 1 Dehn

twists are needed, and he also showed that no smaller set of Dehn twists can generate

Mod(Sg). The curves for these Dehn twists are depicted in Figure 1.1.

There have also been many investigations into constructing generating sets for Mod(Sg)

that include or even consist entirely of periodic elements. For instance, Maclachlan [5]

showed that Mod(Sg) is normally generated by a set of two periodic elements that have

orders 2g + 2 and 4g + 2, and McCarthy and Papadopoulos [6] showed that Mod(Sg) is

normally generated by a single involution (element of order 2) for g ≥ 3. Korkmaz [7]

showed that Mod(Sg) is generated by two elements of order 4g + 2 for g ≥ 3.

Luo [8] explicitly constructed a finite generating set for Mod(Sg) consisting of 6(2g+1)

involutions, given that g ≥ 3. Luo asked whether there exists a universal upper bound (that

is, independent of g) for the number of involutions required to generate Mod(Sg). Brendle

and Farb [9] showed that six involutions suffice to generate Mod(Sg), again for g ≥ 3.

Kassabov [10] sharpened this result by showing that only five involutions are needed for
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g ≥ 5 and only four are needed for g ≥ 7. Monden [11] showed that Mod(Sg) can be

generated by three elements of order 3 and by four elements of order 4, each for g ≥ 3.

Recently Yoshihara [12] has shown that Mod(Sg) can be generated by three elements of

order 6 when g ≥ 10 and by four elements of order 6 when g ≥ 5.

Figure 1.1: The 2g + 1 Humphries curves in Sg.

Much work has been done to establish when elements of a particular finite order exist

in Mod(Sg). In his paper, Monden noted that for all g ≥ 1, Mod(Sg) contains elements

of orders 2, 3, and 4. Aside from order 6, elements of larger orders do not always exist in

Mod(Sg). For example, Mod(S3) contains no element of order 5 and Mod(S4) contains no

element of order 7.

Determining the orders of the periodic elements in Mod(Sg) for any particular g is a

solved problem, at least implicitly. In fact, this is even true for determining the conjugacy

classes of periodic elements in Mod(Sg). Ashikaga and Ishizaka [13] listed necessary and

sufficient criteria for determining the conjugacy classes in Mod(Sg) for any particular g.

The criteria are number theoretic and consist of the Riemann–Hurwitz formula, an upper

bound of 4g + 2 on the order of elements due to Wiman, an integer-sum condition on

the valencies of the ramification points due to Nielsen, and several conditions on the least

common multiple of the ramification indices that are due to Harvey.

Ashikaga and Ishizaka also gave lists of the conjugacy classes of periodic elements in

Mod(S1), Mod(S2), and Mod(S3). Hirose [14] gave a list of the conjugacy classes of

periodic elements in Mod(S4). Broughton [15] listed criteria for determining actions of

finite groups on Sg, and hence for determining conjugacy classes of finite subgroups of
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Mod(Sg). Broughton also gave a complete classification of actions of finite groups on S2

and S3. Kirmura [16] gave a complete classification for S4.

Several results have been proved about guaranteeing the existence of elements of order

k in Mod(Sg) for sufficiently large g. Harvey [17] showed that Mod(Sg) contains an ele-

ment of order k whenever g ≥ (k2 − 1)/2. Glover and Mislin [18] showed that Mod(Sg)

contains an element of order k whenever g > (2k)2. A fundamental result in this direction

was shown by Kulkarni [19]: for any finite group G, the g for which G acts faithfully on

Sg all fall in some infinite arithmetic progression; and further, all but finitely many values

in the arithmetic progression are admissible g.

Tucker [1] gave necessary and sufficient conditions for the existence of an element

of order k in Mod(Sg) that can be realized as a rotation of Sg embedded in R3. Using

this characterization, Tucker showed that for any k and for sufficiently large g, Mod(Sg)

contains an element of order k that is realizable by a rotation of Sg embedded in R3. We

give a proof of this fact in Lemma 2.1.
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CHAPTER 2

CONSTRUCTING ELEMENTS OF A GIVEN ORDER IN Mod(Sg)

In this section we construct elements of order k in Mod(Sg) whenever g is sufficiently large.

We will use elements that are conjugate to these elements when we build our generating

sets.

The following result gives sufficient conditions for the existence of elements of order

k in Mod(Sg) that can be realized by a rotation of Sg embedded in R3. The result was

proved by Tucker [1], who additionally showed that these sufficient conditions are in fact

necessary. We include a proof of the result in order to establish conventions about the

geometric realizations of the elements it guarantees, as these geometric realizations will be

important in proving our main result.

Lemma 2.1. Let k ≥ 2. Then Mod(Sg) contains an element of order k that can be realized

as a rotation of Sg embedded in R3 whenever g > 0 can be written as ak + b(k − 1) with

a, b ∈ Z≥0 or as ak + 1 with a ∈ Z>0.

Proof. In Figure 2.1 we depict two ways of embedding a surface in R3 so that it has k-

fold rotational symmetry. First, we can embed a surface of genus k in R3 so that it has a

rotational symmetry of order k by evenly spacing k handles about a central sphere. We can

also embed a surface of genus k − 1 in R3 so that it has a rotational symmetry of order

k, as follows. Arrange two spheres along an axis of rotation and remove k disks from

each sphere, evenly spaced along the equator of each. Then connect pairs of boundary

components, one from each sphere, with a cylinder. This can be done symmetrically so

that a rotation by 2π/k permutes the cylinders cyclically.

We can use these two types of embeddings to construct embeddings of surfaces of

higher genus that also have rotational symmetry of order k. Whenever g = ak + b(k − 1),

5



Figure 2.1: Embeddings of S5 and S4 with rotational symmetry of order 5.

Figure 2.2: Embeddings of S18 and S16 with rotational symmetry of order 5.

we can construct an embedding of Sg in R3 by taking a connected sum of surfaces of

genus k and k − 1 along their axis of rotational symmetry. See the left of Figure 2.2 for

an example. Rotating a surface embedded in this way by 2π/k produces an element of

Mod(Sg) of order k for any genus g = ak + b(k − 1). That an element so formed does not

have order less than k can be seen by the element’s action on homology.

In order to produce elements of order k in the case where g = ak + 1, we first con-

struct a surface of genus ak with k-fold rotational symmetry by the above construction.

We can modify this surface to increase its genus by 1 while preserving its symmetry as

follows. See the right of Figure 2.2. The axis of a genus ak surface intersects the surface

6



at two points—at the top and the bottom. Removing an invariant disk around each of these

points creates two boundary components. Connecting the two boundary components with

a cylinder yields an embedding of a surface of genus ak + 1 with k-fold symmetry.

By way of some elementary number theory, we show that all sufficiently large integers

have either the form ak + b(k − 1) or the form ak + 1.

Lemma 2.2. If k ≥ 5 and g ≥ (k − 1)(k − 3), then g can either be written in the form

ak + b(k − 1) with a, b ∈ Z≥0 or in the form ak + 1 with a ∈ Z>0.

Proof. All integers at least (k − 1)(k − 2) can be written in the form ak + b(k − 1) with

a, b ∈ Z≥0 by the solution to the Frobenius coin problem. Further, every number from

(k − 1)(k − 3) to k(k − 3) can also be written as a sum of k’s and k − 1’s. Start with

k − 3 copies of k − 1 and replace the k − 1’s one at a time by k’s. Finally, k(k − 3) + 1 =

(k − 1)(k − 2)− 1 is of the form ak + 1.

In addition to producing elements of order k in the stable range g ≥ (k− 1)(k− 3), we

note that the construction given in Lemma 2.1 is also valid for approximately half of the

values of g less than (k − 3)(k − 1). Specifically, (k2 − 3k − 4)/2 of these k2 − 4k + 2

smaller values of g are either of the form ak + b(k − 1) or ak + 1. This amount is simply∑k−2
i=3 i, since {k − 1, k, k + 1} is the first run of numbers of the given forms and {(k −

4)(k − 1), ..., (k − 4)k + 1)} is the last run less than (k − 1)(k − 3).

Also, note that Lemma 2.1 includes the cases where k is 2, 3, or 4. However, the

construction we use to create the generating sets of Theorem 4.1 does not work for these

small orders. However, these values of k are those already treated by Luo, Brendle and

Farb, Kassabov, and Monden in their work on generating sets for Mod(Sg) consisting of

elements of fixed finite order.

7



CHAPTER 3

BUILDING A DEHN TWIST

In this section, we show that a Dehn twist in Mod(Sg) about a nonseparating curve may

be written as a product in four elements whenever these elements act on a small collection

of curves in a specified way. In fact, even fewer than four elements will suffice as long as

products in these elements act on the collection of curves as specified. In our proof, we

follow the argument that Luo [8] gave for writing a Dehn twist as a product of involutions,

as well as the pair swap argument made by Brendle and Farb [9].

We write Tc for the (left) Dehn twist about the curve c. Recall the lantern relation

that holds among Dehn twists about seven curves arranged in a sphere with four boundary

components, called a lantern. In the left of Figure 3.1 we depict a lantern L that is a

subsurface of Sg. Singling out this particular lantern is convenient for our proof of Theorem

4.1. Note that Sg \ L is connected. Seven curves lie in L in a lantern arrangement, and

several of these are Humphries curves. We will call these seven curves lantern curves. We

have the following lantern relation:

Tα1Tα2Tx1Tγ2 = Tγ1Tx3Tx2 .

Recall also that for a Dehn twist Tc and a mapping class f , we have fTcf−1 = Tf(c).

Lemma 3.1. Suppose we are given the subsurface L in Sg and elements f , g, and h in

Mod(Sg) such that

f(γ1) = γ2

g(x3, x1) = (γ1, γ2)

h(x2, α2) = (γ1, γ2).

8



Then the Dehn twist Tα1 may be written as a product in f , g, h, an element conjugate to f ,

and their inverses.

While this lemma is stated for a specific Dehn twist by way of a specific lantern, the

result holds for other Dehn twists by the change of coordinates principle: if two collections

of curves on a surface Sg are given by the same topological data, then there exists a home-

omorphism of Sg to itself that maps the first collection of curves to the second. Details are

given by Farb and Margalit [20].

Proof. Since Dehn twists about nonintersecting curves commute, one form of the lantern

relation for L is

Tα1 = (Tγ1T
−1
γ2

)(Tx3T
−1
x1

)(Tx2T
−1
α2

).

Applying the assumptions on the elements g and h yields

Tα1 = (Tγ1T
−1
γ2

)(g−1(Tγ1T
−1
γ2

)g)(h−1(Tγ1T
−1
γ2

)h).

Applying the assumption on the element f and regrouping yields

Tα1 = ((f−1Tγ2f)T−1γ2
)(g−1(f−1Tγ2f)T−1γ2

g)(h−1(f−1Tγ2f)T−1γ2
h)

= (f−1(Tγ2fT
−1
γ2

))(g−1f−1(Tγ2fT
−1
γ2

)g)(h−1f−1(Tγ2fT
−1
γ2

)h).

We have written Tα1 as a product in f , g, h, Tγ2fT
−1
γ2

, and their inverses.

Note that if f has order k, then so does Tγ2fT
−1
γ2

since it is a conjugate of f . Finally,

notice that we required very little of f , g, and h in this argument—only that they map one

specific curve or one specific pair of curves to another. We will take advantage of this

flexibility in the proof of Theorem 4.1.
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Figure 3.1: On the left, the subsurface L and five of the lantern curves. Two lantern curves
are omitted for clarity. On the right, the subsurface L and all seven lantern curves.

10



CHAPTER 4

GENERATING Mod(Sg) WITH FOUR ELEMENTS OF ORDER k

In this section and in the following section we prove the two parts of the following theorem,

which is our main technical result.

Theorem 4.1. (1) Let k ≥ 5 and let g > 0 be of the form ak + b(k − 1) with a, b ∈ Z≥0

or of the form ak+1 with a ∈ Z>0. Then Mod(Sg) is generated by four elements of order k.

(2) Let k ≥ 8 or k = 6 and let g > 0 be of the form ak + b(k − 1) with a, b ∈ Z≥0.

Then Mod(Sg) is generated by three elements of order k. If instead k = 7 and g is of the

form 7 + 7a+ 6b with a, b ∈ Z≥0, then Mod(Sg) is generated by three elements of order 7.

Theorem 1.1 in the introduction follows directly from Theorem 4.1 along with Lemma

2.2 (for the case g = 5) and the observation that any g ≥ (k − 1)2 + 1 may be written as a

sum of k’s and (k − 1)’s with at least one summand equal to k.

In this section we prove the first part of Theorem 4.1 about generating with four ele-

ments of fixed finite order. In order to illustrate our construction, we depict the particular

case k = 5 and g = 18 in Figure 4.3. In what follows, a chain of curves on a surface is a

sequence of curves c1, . . . , ct such that pairs of consecutive curves in the sequence intersect

exactly once and each other pair of curves is disjoint.

Proof of Theorem 4.1, (1). We begin with the case where g = ak + b(k − 1) and treat

the case where g = ak + 1 with a small modification at the end of the proof. Since

g = ak + b(k − 1), we have a k-fold symmetric embedding of Sg in R3 as constructed in

Lemma 2.1. Call this embedded surface Σg and let it be comprised of a surfaces of genus

k followed by b surfaces of genus k − 1. Let σ1 through σa+b denote these k-symmetric

subsurfaces of Σg. Let r be a rotation of Σg by 2π/k about its axis.
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We will construct our desired elements by mapping Sg to Σg, performing a rotation r,

and then mapping back to Sg. In doing so we will specify how individual curves map over

and back again, and so control how curves are permuted among themselves. In order to

construct these maps, it is convenient to label curves on Sg and Σg as follows. Take on the

one hand the usual embedding of the Humphries curves in Sg as shown in Figure 1.1 and

the upper-left of Figure 4.3. We will refer to the αi, βi and γi curves as α curves, β curves,

and γ curves, respectively. The Humphries curves consist of a chain of 2g − 1 curves that

alternate between β curves and γ curves as well as two additional α curves.

Similarly, take the k-fold symmetric embedded surface Σg and embed in each σi a chain

of curves of length 2gi − 1, where gi is the genus of σi. See Figure 4.1 and the upper-left

of Figure 4.3. We label the curves in these chains also as β and γ curves and note that they

are embedded so that r(βi) = βi+1, 1 ≤ i ≤ gi − 1, and r(γi) = γi+1, 1 ≤ i ≤ gi − 2. We

will use these labels as “local coordinates”—saying, for instance, “the β2 curve in σ3.” In

σ1 we additionally embed two α curves, α1 and α2, such that each respectively intersects

β1 and β2 once, intersects no other curves, and r(α1) = α2.

We are now prepared to define three homeomorphisms f̂ , ĝ, and ĥ from Sg to Σg. We

will use these maps to define three homeomorphisms of the form f̂−1rf̂ and will show

that the corresponding mapping classes (1) have order k, (2) satisfy Lemma 3.1, and (3)

generate a subgroup that puts the Humphries curves into the same orbit.

We first construct a homeomorphism f̂ . The β and γ Humphries curves in Sg form a

chain of length 2g − 1. By removing some of the γ curves from this chain, we form a + b

smaller chains. The first a chains will be 2k − 1 curves long and the last b chains will be

2k− 3 curves long. We accomplish this by removing every kth γ curve up to γak, and then

every (k − 1)st γ curve thereafter. We call these the excluded γ curves. Call the resulting

chains Fi, keeping their sequential order. We add to F1 the curves α1 and α2.

Note that the curves in each Fi form a chain of simple closed curves in Sg and the union

of the Fi is nonseparating. (Note that F1 is not quite a chain because of the α2 curve.) By
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Figure 4.1: The embeddings of chains of curves in the σi. The α curves are only included
in the subsurface σ1.

the change of coordinates principle, there is a homeomorphism f̂ that takes curves in the Fi

to the curves in the chains in σi as specified above, as these chains of curves have the same

length. (Recall that in σ1 we have two additional curves that correspond to the α curves

of Sg.) Let f be the mapping class of f̂−1rf̂ . Then f has order k and maps γ1 to γ2 as

required by Lemma 3.1.

We now construct ĝ. We form triples of curves Gi, 2 ≤ i ≤ a+ b. To form each Gi, we

take the second-to-last β curve in Fi−1, the excluded γ curve falling between Fi−1 and Fi,

and the second β curve in Fi.

Note that the curves in ∪iGi are in the complement of L, that they are nonseparating

simple closed curves, that they are disjoint, and that their union is nonseparating. By the

change of coordinates principle, there is a homeomorphism ĝ that maps the curves in L and

the curves ∪iGi to a collection of curves of the same topological type in Σg as follows:

ĝ : Sg −→ Σg

(x3, x1, γ1, γ2) 7−→ (a, b, c, d) in σ1 as in Figure 4.2

Gi 7−→ (β1, β2, β3) in σi, 2 ≤ i ≤ a+ b

Note that the specified image curves are of the same topological type as the four curves in

L and the curves in ∪iGi. Note also that the embedding of the lantern curves depends on
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whether the genus of σ1 is k or k − 1; see Figure 4.2. In both embeddings, the image of L

is again nonseparating. Let g be the mapping class of ĝ−1rĝ. Then g has order k and maps

the pair (x3, x1) to the pair (γ1, γ2) as required in Lemma 3.1.

Figure 4.2: The important curves of the subsurface L as embedded by ĝ and ĥ in σ1 when
the genus of σ1 is k and when it is k − 1. The latter is depicted as seen from above.

Finally, we construct ĥ. We form pairs of curves Hi, 2 ≤ i ≤ a + b. Each Hi consists

of the first β curve and the second γ curve in Fi. The map ĥ also specifies the mapping of

the Humphries curve β4. Let ĥ be a homeomorphism that maps curves as follows:

ĥ : Sg −→ Σg

(γ1, γ2, x2, α2) 7−→ (a, b, c, d) in σ1 as in Figure 4.2

β4 7−→ r(d) in σ1

Hi 7−→ (β1, β2) in σi, 2 ≤ i ≤ a+ b

Let h be the mapping class of ĥ−1rĥ. Then h has order k and h−1 maps the pair (x2, α2) to

the pair (γ1, γ2) as required by Lemma 3.1. (We use h−1 here because we want all of our

generators to be conjugate and because the lantern curves are in a fixed cyclic order.)

We now show that the Humphries curves are in the same orbit under 〈f, g, h〉. Refer

to Figure 4.4. First, note that every β and γ Humphries curve in Sg is in some Fi or Gi.
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Figure 4.3: The Humphries curves in S18. Σ18 with “local coordinate” curves in each σi.
The curves in the Fi, Gi, Hi, and the subsurface L, along with their images under f̂ , ĝ, and
ĥ.
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α1 α2

g g

g
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g
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g
f (a=0)

f (a>0)

Figure 4.4: Each node is a collection of curves that are in the same orbit under the subgroup
generated by a single element. Each arrow indicates when a power of an element maps a
curve in one collection to a curve in another. Since every Humphries curve is in at least one
of the collections, all Humphries curves are in the same orbit under the subgroup 〈f, g, h〉.

Additionally, powers of f map any β curve in Fi to any other β curve in the same Fi, and

likewise for γ curves. Call these orbits of curves Fiβ and Fiγ. In the same way, a power

of g maps any curve in Gi to any other curve in the same Gi. Thus at most we have the

following orbits of the Humphries curves under 〈f, g, h〉: the Fiβ, the Fiγ, the Gi, α1, and

α2. We will show that these are all in fact a single orbit under 〈f, g, h〉.

The element f maps α1 to α2 when σ1 has genus k and maps α1 to γ1 when σ1 has

genus k − 1. The element g maps the lantern curve γ2 to the lantern curve α2. Thus each

of α1 and α2 is in the same orbit as some γ curve.

A power of g takes a curve in Fiβ to a curve in Fi−1β as well as to a curve in Gi, 2 ≤

i ≤ a+ b. Additionally, a power of h takes a curve in Fiβ to a curve in Fiγ, 1 ≤ i ≤ a+ b.

(Note that in the case of F1, we have h2(γ2) = β4.) Thus all Humphries curves are in a

single orbit under 〈f, g, h〉. By Lemma 3.1, the Dehn twist about α1 may be written as a

product in f , g, h, and Tγ2fT
−1
γ2

. Thus all Dehn twists about the Humphries curves may be

written as products in our four elements of order k, and so they generate Mod(Sg).

In the case where g = ak + 1, we may modify the construction to show that Mod(Sg)

is again generated by four elements of order k. Take a connect sum of a surfaces of genus

k and insert one further handle along the axis of rotation, as in Lemma 2.1. The element

r is a rotation of this embedded surface by 2π/k and f is defined as above by ignoring
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the final two Humphries curves βg and γg−1. We must modify our other elements of order

k so that they place these two additional Humphries curves into the same orbit as all of

the other Humphries curves under the subgroup 〈f, g, h〉. Modify ĝ so that it additionally

maps βg to r(d) in σ1 and modify ĥ so that it additionally maps γg−1 to r2(d) in σ1. These

modifications preserve the fact that the curves involved are disjoint and that their union is

nonseparating. The elements g and h now put the curves βg and γg−1 into the same orbit as

the other Humphries curves. Hence Mod(Sg) is also generated by four elements of order k

when g = ak + 1.
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CHAPTER 5

SHARPENING TO THREE ELEMENTS

In this section we prove the second part of Theorem 4.1.

Proof of Theorem 4.1, (2). We first provide the construction for the cases k ≥ 8 and then

afterwards give the constructions for k = 7 and k = 6. Let k ≥ 8. By assumption we may

write g in the form ak+ b(k− 1). We construct the homeomorphism f̂ : Sg → Σg as in the

proof of the first part of theorem, except with the modification that it additionally maps the

α curve that intersects the final β curve in F1 (called α`) to the curve r−1f̂(α1). See Figure

5.1. We again let f be the mapping class of f̂−1rf̂ , and f has order k.

We now construct ĝ. Let G2 consist of α`, the excluded γ curve falling between F1 and

F2, the first γ curve in F2, and the third β curve in F2. For 2 < i ≤ a + b, let Gi be the

last γ curve in Fi−1, the excluded γ curve between Fi−1 and Fi, the first γ curve in Fi, and

the third β curve in Fi. See Figure 5.2. Let ĝ be a homeomorphism that maps the specified

curves as follows:

ĝ : Sg −→ Σg

(x3, x1, γ1, γ2, x2, α2) 7−→ (a, b, c, d, e, f) as in Figure 5.3

(γ3, γ4) 7−→ (r3(e), r3(f))

β6 7−→ r4(f) in σ1

Gi 7−→ (β1, β2, β3, β4) in σi, 2 ≤ i ≤ a+ b

Let g be the mapping class of ĝ−1rĝ. Then g has order k and maps the pair (x3, x1)

to the pair (γ1, γ2) as required by Lemma 3.1. Additionally, g3(x2, α2) = (γ3, γ4) and

f−2(γ3, γ4) = (γ1, γ2). We may therefore define h = f−2g3 so that h satisfies the hypoth-
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Figure 5.1: The images of α curves embedded in σ1 by f̂ . With this embedding, the rotation
r maps α` to α1.

Figure 5.2: The curves mapped by ĝ in the case k = 8, g = 21. This is a worst case
example where k has the smallest possible value and all of the σi have genus k − 1.

Figure 5.3: The embedding of the subsurface L in σ1 when the genus of σ1 is k and when
it is k − 1. Also, the embedding of γ3, γ4, and β6. These diagrams depict the case k = 8.
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esis of Lemma 3.1, as h(x2, α2) = (γ1, γ2). Thus the Dehn twist about α1 may be written

as a product in f , g, and Tγ2fT
−1
γ2

.

G2 G3

F1β F2β F3β

F1γ F2γ F3γ . . .

α2 α1 αl

g g

g g g

f (a=0)
h=f−2g3

g

g

g

f (a>0)

f

Figure 5.4: Again, each node is a collection of curves that are in the same orbit under the
subgroup generated by a single element. Each arrow indicates when a power of an element
maps a curve in one collection to a curve in another. Since every Humphries curve is in at
least one of the collections, all Humphries curves are in the same orbit under 〈f, g〉.

Finally, we show that all of the Humphries curves are in the same orbit under 〈f, g〉, as

can be seen in Figure 5.4. Again, every β and γ Humphries curve in Sg is in some Fiβ,

Fiγ, or Gi. Therefore we have at most the following orbits of the Humphries curves under

〈f, g〉: the Fiβ, the Fiγ, the Gi, α1, and α2. We will show that these are all in fact a single

orbit under 〈f, g〉. For i > 2, powers of g put the curves in Gi, Fiβ, Fiγ, and Fi−1γ in the

same orbit. Note that powers of g map β6 to γ2 and a γ curve in F2 to α`, while the product

h carries α2 to γ2. Also, f maps α` to α1 and maps α1 either to α2 or γ1, depending on the

genus of σ1. Considering this, all of the curves are in the same orbit under the subgroup

〈f, g〉. Therefore the Dehn twist about each of the Humphries curves may be written as a

product in the three elements f , g, and Tγ2fT
−1
γ2

, and so they generate Mod(Sg).

In the case where k = 7, the same construction as above goes through as long as the

genus of σ1 is 7. As illustrated in Figure 5.2, under this assumption there is enough room to

configure all of the required curves in the construction of ĝ. The hypotheses of the theorem

in this case exactly demand that the genus of σ1 be 7.

In the case where k = 6, we use the same construction as above for f and construct the
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Figure 5.5: The embeddings of the subsurface L in σ1 when k = 6.

element g as follows, exploiting the three-fold symmetry of a lantern. See Figure 5.5. Let

ĝ be a homeomorphism that maps the specified curves as follows:

ĝ : Sg −→ Σg

(x3, x1, γ1, γ2, x2, α2) 7−→ (a, b, r2(a), r2(b), r4(a), r4(b)) as in Figure 5.5

β4 7−→ r(b) in σ1

Gi 7−→ (β1, β2, β3, β4) in σi, 2 ≤ i ≤ a+ b

In this case, g2 and g4 play the roles of g and h in Lemma 3.1, and all Humphries curves

are again in the same orbit.
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CHAPTER 6

UNIVERSAL BOUNDS FOR TORSION GENERATING SETS OF Mod(Sg)

6.1 Introduction

The author and Margalit proved the following theorem.

Theorem 6.1. [21, Theorem 1.1] For every g ≥ 3, every nontrivial periodic mapping class

that is not a hyperelliptic involution normally generates Mod(Sg).

Based on this result and other corroborating evidence, the author and Margalit raised the

following question, which was also recorded as Problem 4.3 by Margalit in his problems

paper [22].

Question 6.2. [21, Question 3.4] Is there a number N , independent of g, so that if f is a

periodic normal generator of Mod(Sg) then Mod(Sg) is generated by N conjugates of f?

It will sometimes be convenient for us to use the notation N(f) for the number of

conjugates of f required to generate Mod(Sg). Note that it is not difficult to give an upper

bound on N(f) for periodic normal generators that is linear in g. A soft bound is N(f) ≤

24g + 12, which follows from our Lemma 6.6 and the fact that Mod(Sg) is generated by

2g + 1 Dehn twists about non-separating curves.

The results in this paper resolve Question 6.2.

For the class of involutions—and therefore for the case of general periodic normal

generators—we show that there is no universal bound on the number of conjugates of f

required to generate Mod(Sg).

Theorem 6.3. There does not exist a number N , independent of g, so that if f is a periodic

normal generator of Mod(Sg) with |f | = 2 then Mod(Sg) is generated by N conjugates of

f .
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Alternatively, this may be written as:

sup
g≥3
{N(f) | f ∈ Mod(Sg) an involution normal generator} =∞

This result should be viewed in contrast with the results by Brendle–Farb, Kassabov,

Korkmaz, and Yildiz giving involution generating sets for Mod(Sg) of universally bounded

size [9, 10, 23, 24]. For these results, the involutions in a given generating set need not all

be conjugate, and the conjugacy classes used are hand-picked, rather than arbitrary.

On the other hand, we show that involutions are the exceptional case: there does exist

a universal upper bound N under the assumption that |f | ≥ 3.

Theorem 6.4. There a number N , independent of g, so that if f is a periodic normal

generator of Mod(Sg) with |f | ≥ 3 then Mod(Sg) is generated by N conjugates of f .

Our proof of this theorem shows that N may be taken to be 60. This can be rephrased

as: for g ≥ 3 and f periodic with |f | ≥ 3, N(f) ≤ 60. We can of course ask what the

sharp universal upper bound may be under the hypothesis |f | ≥ 3; we know of no obstacle

to it being N = 2.

Prior results

There have been many results about generating mapping class groups with torsion; an

overview is given in an earlier paper of the author [25]. In terms of giving upper bounds

on the sizes of torsion generating sets for Mod(Sg) consisting of conjugate elements, the

following results were previously known. Korkmaz showed that two conjugate elements of

order 4g+2 generate Mod(Sg) for g ≥ 3. The author showed that three conjugate elements

of order k ≥ 6 generate Mod(Sg) for g ≥ (k − 1) + 1 [25]; all of the elements used in the

constructions of that paper can be realized as rotations of an embedding of Sg in R3.
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Outline

In Section 2 we prove our results about generating sets for Mod(Sg) comprised of conju-

gates of an involution. In Section 3 we describe our proof strategy for Theorem 6.4, prove

several preliminary technical lemmas, and then apply these to prove Theorem 6.4.

6.2 Involution generating sets

Every pair (r, s) of non-negative integers determines a conjugacy class of involution home-

omorphisms on Sg where g = 2r + s; we denote a representative of this class by ir,s. The

involution ir,s rotates r pairs of handles to swap them and “skewers” s handles, as illus-

trated in Figure 6.1. Pairs (r, s) with g = 2r + s in fact parametrize conjugacy classes of

involutions in Mod(Sg) for g ≥ 2, a classification that goes back to the work of Klein; see,

for instance, the survey by Dugger [26]. An involution ir,s induces an action on H1(Sg;Q)

that preserves 2s subspaces of dimension 1 and induces involutions on r pairs of subspaces

of dimension 2.

The intersection of the preserved subspaces of the generators of a group action is also

preserved by the group. Consequently, any generating set for Mod(Sg) comprised of con-

jugates of ir,s must contain least (2r + s)/2r generators, since Mod(Sg) acts transitively

on 1-dimensional subspaces of H1(Sg;Q). The quantity (2r + s)/2r is arbitrarily large

whenever we let s be sufficiently large compared to r.

Note that i0,g is a hyperelliptic involution in Mod(Sg) and it is not a normal generator

of Mod(Sg); for i0,g, the quantity (2r + s)/2r is undefined.

Figure 6.1: A schematic for the involution ir,s, where an involution i3,4 on S10 is illustrated.
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While (2r + s)/2r is a lower bound on the number of conjugates of ir,s required to

generate Mod(Sg), we can also give an easy upper bound. This will also show that with

the constraint (2r + s)/2r < n, there exists a universal bound N(n) on the number of

conjugates of ir,s required to generate Mod(Sg). Our argument additionally serves as a

warm-up for our proof of Theorem 6.4.

Let Hg be the set of curves {a1, . . . , a2g, b} corresponding to the Humphries generating

set, where the curves ai form a chain of length 2g; the curves Hg are depicted in Figure 6.2.

Each generator that is a conjugate of ir,s puts 2r disjoint non-separating curves into r 2-

cycles, and these 2r curves are collectively non-separating. Therefore in a subgroup gen-

erated by k = dg/2re = d(2r + s)/2re generators, we can ensure that each of g disjoint

curves is in a 2-cycle, and that these are collectively non-separating. In the subgroup gen-

erated by k additional generators, the same holds true for all 2g curves in Hg − {b}. We

may add a further 2k− 1 generators so that the curves in Hg −{b} are all in the same orbit

under the generated subgroup, and adding one further generator ensures that b is also in the

same orbit. So far this is a total of 4k generators. Since Tb can be written as a product in

at most an additional 6 generators by the lantern relation trick (see Lemma 6.6), we have

that all Dehn twists about the curves in Hg are in the generated subgroup, which therefore

equals Mod(Sg). Summing up, we have that N(ir,s) ≤ 4k + 6 = 4 · d(2r + s)/2re+ 6.

We record the results of this section in the following theorem.

Theorem 6.5. Let g ≥ 3 and let ir.s be an involution in Mod(Sg) that is not a hyperelliptic

involution. Any generating set for Mod(Sg) consisting of conjugates of the involution ir,s

contains at least (2r + s)/2r generators. Further, 4 · d(2r + s)/2re+ 6 conjugates of ir,s

suffice to generate Mod(Sg).

This result immediately implies Theorem 6.3, stated in the introduction.
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Figure 6.2: The set of curves Hg = {a1, . . . , a2g, b} corresponding to the Humphries gen-
erating set.

6.3 A universal bound for non-involution torsion generating sets

In this section we prove our main result, Theorem 6.4. We begin by outlining our proof

strategy, which breaks up into three steps. We then prove the lemmas that carry out the

first two steps and then conclude with our proof of Theorem 6.4, which carries out the final

step.

Proof strategy

The proof of Theorem 6.4 follows the same basic strategy taken by the author in his article

[25], which gives a sharper version of Theorem 6.4 for a certain class of periodic elements

(ones that can be represented by rotations of Sg embedded in R3) under the further assump-

tion that |f | ≥ 5. It is also the strategy used in the proof of Theorem 6.5 above.

To prove Theorem 6.4, it suffices to show that each of the generators in the Humphries

generating set of 2g+1 Dehn twists about nonseparating curves lies in a subgroup generated

by 60 conjugates of an arbitrary periodic element f with |f | ≥ 3. Again, call the set of

Humphries curves Hg; it consists of a chain of curves a1, . . . , a2g and an additional curve

b. See Figure 6.2. By passing to powers, it suffices to consider f where |f | is either 4 or an

odd prime.

The proof then consists of three steps. First, using the lantern relation trick, we show

that a single Dehn twist about a non-separating curve can be written as a product in at most

12 distinct conjugates of f . We show this as Lemma 6.6.

It remains to show that the curves in Hg lie in a single orbit under the action of a

subgroup generated by at most 48 conjugates of f . As the second step, we show that there
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exists a maximal non-separating chain C of 2g curves in Sg such that f acts on a subset C∗

of C of size at least g/4 where every orbit under 〈f〉 that contains an element of C∗ in fact

contains at least two elements of C∗. That is, we show that f shuffles a nice collection of

curves, of size a definite fraction of g, in a nice way. This is shown for irreducible elements

in Lemma 6.8 and for reducible elements in Lemma 6.9. We conclude by proving the

main result, which involves showing that at most 48 conjugates of f generate a subgroup

of Mod(Sg) that acts transitively on Hg; along with the 12 conjugates of f that generate a

subgroup that contains Tb, this yields a generating set for Mod(Sg) consisting of at most

60 conjugates of f .

Step 1

Our first lemma is a straightforward consequence of the work in Sections 2 and 3 of the

author’s paper with Margalit [21].

Lemma 6.6. Let g ≥ 3 and let f ∈ Mod(Sg) be a periodic mapping class with |f | ≥ 3.

Then the Dehn twist about any fixed non-separating curve in Sg can be written as a product

in at most 12 distinct conjugates of f .

Proof. By the proof of Theorem 1.1 of [21], there exists a non-trivial power fk of f and a

curve c in Sg such that

1. c is non-separating and c and fk(c) are disjoint and non-homologous,

2. c is non-separating and c and fk(c) intersect exactly once, or

3. c is separating and c and fk(c) are disjoint.

The third case implies the existence of a non-separating curve d such that d and fk(d)

are disjoint and non-homologous, and so reduces to the first case. The second case implies

that there is a conjugate g of f such that c and gkfk(c) are disjoint and non-homologous,

and so reduces to the first case at the cost of doubling the number of conjugates of f
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required. Finally, using the lantern relation trick, the first case shows that a single Dehn

twist about a non-separating curve can be written as a product of 6 conjugates of f . (See

for instance [20, Theorem 7.16].) So considering all cases, a single Dehn twist about a

given non-separating curve can be written as a product in 12 conjugates of f .

Step 2

We now proceed to the main technical work of the paper, where we guarantee that a definite

fraction, independent of g, of the 2g + 1 curves in Hg can be shuffled around by a periodic

element f with |f | ≥ 3. We begin by classifying the irreducible mapping classes of odd

prime order and of order 4.

Lemma 6.7. Let p be either an odd prime or 4. Then there exists a unique g(p) ≥ 1

such that Mod(Sg(p)) contains an irreducible element of order p. Up to conjugacy and

powers, Mod(Sg(p)) contains exactly 1 such element when p = 4, which has signature

(4, 0; (1, 2), (1, 4), (1, 4)); and finitely many such elements when p is an odd prime, each

with signature of the form (p, 0; (c1, p), (c2, p), (c3, p)), with 0 < ci < p.

Proof. Let f be an irreducible periodic mapping class of order p, with p equaling either

an odd prime or 4. By a result of Gilman [27], any irreducible periodic mapping class has

as its quotient orbifold a sphere with three marked points. Since the index of each marked

point is greater than 1 and must divide p, each index must equal p when p is prime and

must equal 2 or 4 when p is 4. By the Riemann–Hurwitz formula, we have when p is an

odd prime

2g − 2 = p(0− 2) + 3(p− 1)

And so g(p) = p−1
2

.

Similarly, when p = 4, the possible triples of indices are {2, 2, 4}, {2, 4, 4}, and

{4, 4, 4}, since the LCM of the indices must be 4. We have, respectively,
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2g − 2 = 4(0− 2) + 7

2g − 2 = 4(0− 2) + 8

2g − 2 = 4(0− 2) + 9

Only the second equation, corresponding to {2, 4, 4}, yields a natural number for g, and

so we have g(4) = 1.

The conjugacy class of a periodic element (that is not a free action) is determined by

its signature (n, g0; (c1, n1), . . . , (c`, n`)). For our irreducible element of order p, we have

either

(p, 0; (c1, p), (c2, p), (c3, p))

when p is an odd prime and

(4, 0; (c1, 2), (c2, 2), (c3, 4))

when p = 4, with 0 < ci < p. In each case, there is a requirement that
∑

i ci = 0 (mod

p). We see that there are finitely many combinations. For p = 4, we have that there are

two conjugacy classes: (4, 0; (1, 2), (1, 4), (1, 4)) and (4, 0; (1, 2), (1, 4), (1, 4)). These are

powers of each other.

The next two lemmas form the main technical result of this paper. Under the hypothesis

that |f | is an odd prime or 4, we give a topological decomposition of f and use this to show

that f shuffles a definite fraction of the curves in a maximal non-separating chain in Sg.

Our decomposition applies work of Gilman [27] and follows the outline of a geometric

decomposition for general periodic elements given by Parsad–Rajeevsarathy–Sanki [28];
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see especially their Theorem 2.27. Our decomposition also resembles the construction

of periodic elements of prime order in the thesis of Chrisman, although Chrisman’s goal

is to produce periodic homeomorphisms that realize any given number of branch points

[29, Chapter 3]. (That is, Chrisman gives a construction realizing each possible number

of branch points for prime order elements, but he does not show that every prime order

conjugacy class can be built in his manner.)

Lemma 6.8. Let p be either an odd prime or 4. Let g = g(p) and let f ∈ Mod(Sg) be an

irreducible element of order p. Then there exists a set of curves C∗ in Sg such that

· C∗ is a subset of a maximal non-separating chain of curves in Sg,

· |C∗| ≥ 2g/5, (alternatively, |C∗| ≥ p/4− 1),

· every orbit of curves under the action of 〈f〉 that contains a curve in C∗ contains at

least two curves in C∗, and

· each subset of curves in C∗ that lies in the same orbit under 〈f〉 forms either a chain

of length at least 2 or else consists of disjoint curves.

In particular, when p is 3, 4, 5, 7, or 11, we may take C∗ so that |C∗| is 2, 2, 2, 3, or 3,

respectively.

Proof. We first treat the case p = 4. Then Sg is the torus T and f can be realized by a

rotation of a square torus by π/2 or 3π/2. In either case, f exchanges the meridian and

longitude of T , which form a chain of length 2. We take this chain to be C∗. We have that

|C∗| = 2 > 1 = g.

Next we let p ≥ 13 be an odd prime; we treat the cases p ∈ {3, 5, 7, 11} afterwards.

Since f has a fixed point, by a result of Kulkarni, f can be represented as a rotation of a

polygon with an appropriate side pairing [30, Theorem 2]. Parsad–Rajeevsarathy–Sanki

give an explicit construction for Kulkarni’s existence result [28, Theorem 2.10]. In par-

ticular, they show that f can be realized by a rotation of a 2p-gon D by 2πm/p, where
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(m, p) = 1. The sides di of D are identified in pairs (in an orientation-preserving way) ac-

cording to the formula di ∼ di+k, where indices are taken mod 2p and where k is a constant

that depends on the signature for f . In other words, each pair of sides that is identified is at

a fixed distance k apart.

Consider three cases, depending on whether k is 0, 1, or 2 (mod 3). In each case we will

construct a set of curves C∗ so that |C∗| ≥ 2g/5. In each case, we will select curves from

an orbit of a curves ci under 〈f〉, 1 ≤ i ≤ p, where each curve is formed by the segments

connecting midpoints of two pairs of edges: di and di+2, and di+k and di+k+2. Each of

these curves is non-separating, and we will take a collection so that they form a subset of

a chain. Further, these curves are all in the same orbit, and so satisfy the third and fourth

properties of C∗ in the statement.

When k = 0 (mod 3), we may take b2p/6c of the ci so that they are disjoint and

together do not separate. This case is illustrated in Figure 6.3 in a case where p = 13 and

b2p/6c = 4.

When k = 1 (mod 3), we may take b2p/7c of the ci so that they are disjoint and together

do not separate.

When k = 2 (mod 3), we may take b2p/8c of the ci so that they are disjoint and together

do not separate.

In each case, we have that |C∗| = b2p/8c = b(2g + 1)/4c ≥ 2g/5 and also |C∗| ≥

p/4− 1. For all odd primes p ≥ 13 we have that |C∗| ≥ 2 and that all of the curves in C∗

belong to the same orbit, as desired.

For p ∈ {3, 5, 7, 11}, a more careful analysis is required. In these cases the bound

|C∗| ≥ p/4− 1 is insufficient, since we require |C∗| ≥ 2. We give a modified construction

for C∗ in each case.

When p = 3, g(p) = 1. Up to conjugacy and powers there is a single element to

consider, corresponding to the signature (3, 0; (1, 3), (1, 3), (1, 3)). We have that D is a

hexagon with opposite sides identified, and f is a rotation by 2π/3. Then we may take for
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(13,0;(1,13),(1,13),(11,13))
Figure 6.3: The collections of curves C∗ for an irreducible periodic mapping classes of
orders 13 with skip number 3 (=0 (mod 3)).
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C∗ a chain of 2 curves that are in the same orbit under f , namely, 2 curves corresponding

to segments connecting midpoints of opposite sides of D.

When p = 5, g(p) = 2. Up to conjugacy and powers there is a single element to

consider, corresponding to the signature (5, 0; (1, 5), (1, 5), (3, 5)). We may take C∗ to be

a chain of length 2, as shown in Figure 6.4.

When p = 7, g(p) = 3. Up to conjugacy and powers there are two elements to consider,

corresponding to the signatures (7, 0; (1, 7), (1, 7), (5, 7)) and (7, 0; (1, 7), (2, 7), (4, 7)). In

each case we may take C∗ to be a chain of length 3, as shown in Figure 6.4.

When p = 11, g(p) = 5. Up to conjugacy and powers there are two elements to con-

sider, corresponding to the signatures (11, 0; (1, 11), (1, 11), (9, 11)) and (7, 0; (1, 11), (2, 11), (8, 11)).

In each case we may take C∗ to be a chain of length 3; the pictures are similar to those for

p = 7.

Lemma 6.9. Let p be either an odd prime or 4. Let g ≥ 3 and let f ∈ Mod(Sg) be a

reducible element of order p. Then there exists a set of curves C∗ in Sg such that

· C∗ is a subset of a maximal non-separating chain of curves in Sg,

· |C∗| ≥ g/4,

· every orbit of curves under the action of 〈f〉 that contains a curve in C∗ contains at

least two curves in C∗, and

· each subset of curves in C∗ that lies in the same orbit under 〈f〉 forms either a chain

of length at least 2 or else consists of disjoint curves.

Proof. Let p, g, and f be as in the statement. We first observe that if two sets of curves Y1

and Y2 are each subsets of a chain of curves in Sg and the Yi lie in disjoint subsurfaces of

Sg that are distinct in homology, then Y1 ∪ Y2 is again a subset of a chain of curves in Sg.

We will use this fact freely in forming our collection of curves C∗.
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(5,0;(1,5),(1,5),(3,5))
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Figure 6.4: The collections of curves C∗ for the irreducible periodic mapping classes of
orders 5 and 7.
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We first treat the case when p is an odd prime. Since f is reducible, the quotient orbifold

Q = Sg/〈f〉 has either g0 > 0 or ` > 3 or both, by a result of Gilman [27]. (Here g0 is the

genus of Q and ` is the number of orbifold points of Q.) If g0 > 0, we may take preimages

under 〈f〉 of g0 disjoint separating curves in Q, each of which cuts off a single handle from

Q. In the preimage, the curves corresponding to a single separating curve in Q cut off an

orbit of p handles, distinct in homology. We may take a chain of two non-separating curves

in each handle and produce all together 2p disjoint curves, which together form a subset of

a chain of curves in Sg. These free orbits of handles, then, have a curve-to-genus ratio of

2/1. Since we are only showing that we can form C∗ so that the curves-to-genus ratio is

1/4, orbits of this type can only help the ratio.

We have therefore reduced to the case of elements f such that g0 = 0. Since f is

assumed reducible, again by a result of Gilman [27], f has a reduction system of disjoint

essential curves C that are pairwise non-isotopic, which we may take to be maximal. Note

that every orbit of curves in C under 〈f〉 has size 1 or p, since p is prime. Let Sg(C) denote

the (possibly disconnected) surface obtained from Sg by cutting along C and capping the re-

sulting boundary components with disks containing a single marked point. Corresponding

to f there is an action f ′ on Sg(C).

We now consider the connected components Ri of Sg(C). We first claim that f ′ induces

the identity permutation on the Ri. Otherwise there would be an orbit of Ri of size p. If

these Ri had positive genus, this would contradict the assumption of g0 = 0. If they instead

were spheres, they would each have at least 3 marked points in order for the curves of C to

be essential and non-isotopic, and this would again contradict the assumption that g0 = 0.

Therefore each Ri is mapped to itself by f ′.

We now analyze what the components Ri may be and how f ′ may act upon them. If Ri

is a sphere, then f ′ acts on Ri by a rotation of 2mπ/p, with (m, p) = 1. The action of f ′ on

Ri has exactly two branch points, each of order p. If instead Ri is not a sphere, f ′ restricts

to an irreducible self-map of order p, and we classified these in Lemma 6.7. In particular,
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each non-sphere Ri has genus p−1
2

and has exactly 3 branch points, each of order p.

We are now prepared to recover the action of f on Sg by reglueing annuli at pairs of

marked points. For any Ri that is a sphere, it cannot only have marked points at one or

both of its branch points, since the curves of C are essential and non-isotopic. Therefore

each sphere Ri has some ri > 0 orbits of p marked points, each having 0 local rotation

number. Each of the p marked points in each orbit is paired with p other marked points that

lie in some other Rj . (We have that i 6= j by the assumption that g0 = 0.) For each such

orbit, we may add to C∗ a collection of p − 1 disjoint non-separating curves. The sphere

Ri may additionally have marked points at one or both of its branch points; each can either

connect to a marked point on a different Rj , or else they may together form a pair. From

these orbits we do not take any curves to add to C∗.

In the other case, where Ri is a surface with positive genus, Ri may have marked points

at its branch points under the action of f ′, or at non-branch points, or at both. The surface

Ri has some ri ≥ 0 orbits of p marked points (possibly none), each having 0 local rotation

number. Each of the p marked points in each orbit is paired with p other marked points that

lie in some other Rj . (We have that i 6= j by the assumption that g0 = 0.) For each such

orbit, we may add to C∗ a collection of p − 1 disjoint non-separating curves. The surface

Ri may additionally have marked points at its branch points; each can either connect to a

marked point on a different Rj , or two of these marked points may together form a pair. In

fact, this last possibility does not arise, since then ci + cj = 0 (mod p) but we have that

c1 + c2 + c3 = 0 (mod p) and that each ci is nonzero (mod p). In any case, no further

contribution to C∗ is made for these orbits. Also, we have by Lemma 6.8 that Ri supports

p/4 − 1 curves to contribute to C∗ whenever g ≥ 13, and either 2 or 3 curves for smaller

values of p.

We are now prepared to compute bounds for each of g and |C∗| in terms of the data

described so far. Let a be the number of Ri that are spheres and let b be the number of Ri

that are surfaces with positive genus. Then the number of branch points of the Ri totals
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2a + 3b. Therefore the maximal number of marked branch points is the same, and the

number of fixed annuli is at most 2a+3b
2

. Let k = 1
2

∑
i ri be the number of orbits of annuli

of size p. Since (a + b − 1) of these annuli are required so that the resulting surface is

connected—and therefore do not contribute to the genus—we have the following bound

for g:

g ≤ a · 0 + b · p− 1

2
+ kp+

2a+ 3b

2
− (a+ b− 1) =

bp

2
+ kp+ 1

Note that since g ≥ 3 by assumption, at least one of b or k is positive.

Let c be equal to the constant guaranteed by Lemma 6.8: p/4 − 1 when g ≥ 13 and

2, 2, 3, or 3 when g is 3, 5, 7, or 11, respectively. As we have a contribution of c curves

to C∗ for each Ri of positive genus and a contribution of p − 1 curves from each pair of

marked points with orbit of size p (corresponding to an orbit of annuli of size p), we have

the following equality for |C∗|:

|C∗| = bc+ k(p− 1)

We now apply the following three facts: (1) at least one of b or k is positive; (2) in

general, q+r
s+t
≥ min{ q

s
, r
t
} for q, r, s, t > 0; (3) the individual inequalities

bc
bp
2

+ 1
≥ 1

4
and

k(p− 1)

kp+ 1
≥ 1

4

hold for each p ≥ 3 and its corresponding value of c whenever b is positive and whenever

k is positive, respectively.

Applying these facts yields the desired result:

|C∗|
g
≥ bc+ k(p− 1)

bp
2

+ kp+ 2
≥ 1

4
.

The case when p = 4 follows the same outline.
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Figure 6.5: A schematic for the collections of curves C ′1, . . . , C
′
16, C ′17, . . . , C

′
32, and

C ′33, . . . , C
′
48. Within a single surface, curves in different C ′i are in different colors, and

within a collection C ′i the curves in the same orbit under the cyclic group 〈fi〉 are in the
same chain. Note that for the case illustrated, only four collections of curves are needed in
each of the three groupings, and also that “overflow” curves are not depicted.

Figure 6.6: A schematic for the collections of curves Codd, Ceven, and the shifted versions
of each. Within a single surface, curves in different C ′i are in different colors, and within
a collection C ′i the curves in the same orbit under the cyclic group 〈fi〉 have matching
markings. Note that for the case illustrated, only four C ′i are needed in each of the four
groupings, and also that “overflow” curves are not depicted.

38



Proof of the main theorem

With all of our preliminaries in hand, we are prepared to prove Theorem 6.4.

Proof of Theorem 6.4. Let g ≥ 3 and let Hg = {a1, . . . , a2g, b} be a set of simple closed

non-separating curves corresponding to the Humphries generating set for Mod(Sg). Let f

be a periodic element of Mod(Sg) with |f | ≥ 3. By passing to a power, we may assume

without loss of generality that |f | is either 4 or an odd prime. By Lemma 6.6, a Dehn twist

about a non-separating curve may be written as a product in at most 12 distinct conjugates

of f . Take 12 conjugates of f in which Tb is a product and let them be the start to our

generating set for Mod(Sg).

By Lemmas 6.8 and 6.9, f acts on C∗, a subset of a maximal non-separating chain of

curves in Sg, such that |C∗| ≥ g/4 and every orbit of curves under the action of 〈f〉 that

contains a curve in C∗ contains at least two curves in C∗. The C∗ curves that lie in a given

orbit either form a chain of length at least 2, or they are all disjoint. We consider two cases,

depending on whether at least half of the curves of C∗ lie in orbits of the former type, or of

the latter type. In either case, let this collection of curves be called C ′. We have |C ′| ≥ g/8.

We treat the two cases in turn, in similar fashion.

First case: chains. When the curves ofC ′ all lie in chains of length at least 2, we form at

most 16 = 2g
g/8

subsets of Hg−{b}, C ′1, . . . , C ′16, that are each of the topological type of C ′

and that together coverHg−{b} except for “gaps” of size 1. See Figure 6.5. Note that fewer

than 16 subsets may be required, and that it does not matter how the “overflow” curves for

the last C ′i are chosen. We may then take at most 16 conjugates of f , {f1, . . . , f16}, so that

each individually acts on the corresponding C ′i in the way that f acts on C ′. In particular,

each curve in each C ′i is in the same orbit as the other curves belonging to the same chain

in C ′i under the action of the cyclic group 〈fi〉.

Similarly, we form C ′17, . . . , C
′
32 and C ′33, . . . , C

′
48 that are shifted one and two curves

down the chain Hg − {b} from the corresponding curves in C ′1, . . . , C
′
16. Note that it again
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does not matter where the “overflow” curves are chosen, except that we ensure that b is

among them. Again, see Figure 6.5. We may take 32 conjugates of f , {f17, . . . , f48}, so

that each acts on C ′i in the way that f acts on C ′, for 17 ≤ i ≤ 48.

We now argue that all of the curves in Hg are in the same orbit under the subgroup

generated by the 48 fi. All but the “gap” curves are put into orbits by 〈f1, . . . , f16〉. Each

gap curve is put into the same orbit as the curve immediately “prior” to it by 〈f17, . . . , f32〉

and also into the same orbit as the curve immediately “after” it by 〈f33, . . . , f48〉. Thus

all of the original orbits are collapsed into a single orbit “through” the gap curves. By

construction we also have that b is in this orbit.

Therefore the curves in Hg are all in the same orbit under the action of a subgroup

generated by 48 conjugates of f . With the additional 12 conjugates of f we have a Dehn

twist about b in the subgroup, and so also the Dehn twists about all curves in Hg, and

therefore the subgroup so generated is equal to Mod(Sg). Thus Mod(Sg) is generated by

60 conjugates of f , as required.

Second case: disjoint curves. When the curves of C ′ are all disjoint, we form at most

8 = g
g/8

subsets of Hg − {b}, C ′1, . . . , C ′8, that are each of the topological type of C ′ and

that together cover the ai curves in Hg with odd indices. Call these subsets Codd. See

Figure 6.6. Note that fewer than 8 subsets may be required, and that it does not matter how

the “overflow” curves for the last C ′i are chosen. We may then take at most 8 conjugates

of f , {f1, . . . , f8}, so that each individually acts on the corresponding C ′i in the way that f

acts on C ′. Similarly, we form sets of curves C ′9, . . . , C
′
16 that are each of the topological

type of C ′ and that together cover the ai curves in Hg with even indices; we may do this by

shifting all of the Codd curves down the Hg − {b} chain by one curve. Call these subsets

Ceven. We take at most 8 conjugates of f , {f9, . . . , f16}, so that each individually acts on

the corresponding C ′i in the way that f acts on C ′.

We now take C ′17, . . . , C
′
24 and C ′25, . . . , C

′
32 that are shifted two and three three curves

down the chain Hg − {b} from the Codd curves. (So two down from Codd and two down
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from Ceven.) Note that fewer than 16 subsets may be required, and that it again does not

matter where the “overflow” curves are chosen, except that we ensure that b is among them,

and also that an “overflow” curve from the shifted “odd” chain is one of the ai curves with

an even index. Again, see Figure 6.6. We take at most 16 conjugates of f , {f17, . . . , f32},

so that each acts on C ′i in the way that f acts on C ′, for 17 ≤ i ≤ 32.

We now argue that all of the curves in Hg are in the same orbit under the subgroup

generated by the 32 fi. All of the ai curves with odd index are in the same orbit, since all of

their orbits under 〈f1, . . . , f8〉 are collapsed by the “shifted” conjugates. Similarly, all of the

ai curves with even index are in the same orbit under 〈f1, . . . , f32〉. By construction, there

exist an even ai curve and an odd ai curve that lie in the same orbit under 〈f1, . . . , f32〉, and

also b is in the same orbit as some ai curve. Therefore the curves in Hg are all in the same

orbit under the action of a subgroup generated by 32 conjugates of f .

With an additional 12 conjugates of f we have a Dehn twist about b in the subgroup,

and so also the Dehn twists about all curves in Hg, and therefore the subgroup so generated

is equal to Mod(Sg). Thus Mod(Sg) is generated by 44 conjugates of f , as required.
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