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SUMMARY

The Internet is a global communication network, organized into regions called

Autonomous Systems (ASs) that are interconnected. An AS is typically an Internet

Service Provider (ISP), a corporate, or a university network consisting of a group of

routers under the control of a single administrative entity. The routing infrastructure

of the Internet is vast and is governed by two types of routing protocols: interior (i.e.

OSPF, EIGRP), used within an AS, and exterior (i.e. BGP), used to connect ASs

together.

These routing protocols, coupled with routing policies, pose significant challenges

in understanding their performance and behavior. They are sophisticated distributed

algorithms, and are deployed in medium to large-scale networks. Studying real time

behavior of these protocols is either unfeasible or limited to data extracted through

probes from few locations, which may not characterize the performance of these pro-

tocols throughout the Internet.

This research increases the knowledge on some routing protocols by contributing

an enabling technique for large-scale network simulation, and simulation testbeds to

analyze two routing protocols.

A new approach to federated network simulations that eases the burdens on the

simulation developer in creating space-parallel simulations is presented. Difficulties

that arise from the need for global topology knowledge when forwarding simulated

packets between federates is overcome by utilizing a topology partitioning method-

ology that uses Ghost Nodes. A ghost node is a simulator object in a federate that

xi



represents a simulated network node that is spatially assigned to some other fed-

erate, and thus that other federate is responsible for maintaining state information

associated with that node. However, ghost nodes do retain topology connectivity

information with other nodes, allowing all federates in a space-parallel simulation

to obtain global information concerning the network topology. Experimental results

show that the memory overhead associated with ghosts is minimal relative to the

overall memory footprint of the simulation.

The second contribution of this thesis is a detailed simulated Anycast testbed.

In this project, we implemented IP Anycasting in BGP++ which is a detailed BGP

simulator based on Georgia Tech Network Simulator (GTNetS). The simulator sup-

ports longest-prefix-match routing based on routes discovered through BGP. We use

simulations to study the advantages of using Anycast for DNS root servers, and

to assess the impact of topology failures on the performance of BGP during Any-

cast deployment. We employ topology data available from RouteViews project and

from CAIDA (Cooperative Association for Internet Data Analysis) data sets to build

realistic topologies to simulate the supporting Internet backbone topology. The ex-

perimental results show that Anycast indeed provides higher availability and smaller

user latency for DNS requests. No load balancing was observed using the local-global

Anycast deployment mode. In addition, the BGP churn associated with a topology

failure is reduced when Anycast is deployed.

The third contribution of this thesis is a scalable EIGRP simulation model and a

new approach for host mobility within an AS. In this effort, we developed a detailed

simulation model of EIGRP, and we used it to evaluate EIGRP performance under

a very dynamic network. Also, we discuss an approach for seamless mobility and

continuous connectivity for users of mobile wireless devices as they move within an

AS. The solution is to allow end systems to retain a fixed IP address as those systems

move across subnet boundaries, and to use route advertisement updates (by EIGRP)

xii



to inform routers of new or revised routes to reach the mobile hosts as they migrate.

Simulation results show the ability of EIGRP to update routing tables in a timely

fashion, usually within a single TCP timeout period.
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CHAPTER I

INTRODUCTION

The Internet infrastructure is composed of Autonomous Systems (ASs) that are in-

terconnected together. These ASs exchange routing information through routing

protocols. Common protcols are such as Open Shortest Path First (OSPF) [38], En-

hanced Interior Gateway Routing Protocol (EIGRP) [3], and Border Gateway Proto-

col (BGP) [45]. These protocols provide the algorithms and communication protocols

for determining routes to every destination. In addition to routing protocols, there

are a number of routing policies and services that enhance routing in the Internet.

IP Anycast [41], for example, is an internetwork service that allows multiple hosts

to be configured to accept traffic on a single IP address. Mobile IP [44] is a service

that allows transparent routing in the Internet of IP packets to mobile nodes. How-

ever, the interactions of these policies and services with other elements of the Internet

infrastructure is not well understood.

This research provides detailed simulation analyses of some routing protocols and

services. The simulated IP Anycast and EIGRP testbeds offer new capabilities for

future research. They are implemented in Georgia Tech Network Simulator (GTNetS)

[46]. GTNetS features a detailed and scalable model of BGP and features a unique

technique that simplifies simulations of large-scale complex network topologies.

The rest of this chapter is organized as follows. An overview of Internet routing

is discussed in Section 1.1. Section 1.2 motivates the need for routing protocols

simulation. Thesis contributions are introduced in Section 1.3. Section 1.4 provides

the outline of the thesis.
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1.1 Routing Overview

The Internet is a global communication network that is organized into regions called

Autonomous Systems (ASs). An AS is typically an Internet Service Provider (ISP), a

corporate, or a university network that consists of a group of routers under the control

of a single administrative entity. Each AS constitutes a distinct routing domain.

ASs need to exchange routing information in order to effectively forward packets to

remote destinations. Routing is the process of moving packets from one network to

another, and routing protocols provide the algorithms and communication methods

for determining routes to every destination. The routing infrastructure of the Internet

is vast and is governed by two types of routing protocols: intra-domain and inter-

domain.

Intra-domain routing protocols, also known as Interior Gateway Protocols(IGP),

enable routers within an AS to communicate with each other. There are a number

of common IGP protocols such as Open Shortest Path First (OSPF), Routing Infor-

mation Protocol (RIP), and Enhanced Interior Gateway Routing Protocol (EIGRP).

The purpose of these protocols is to ensure that the internal routers have a coherent

and up-to-date view of how to reach each remote destination within the AS.

Reaching a remote destination across ASs is accomplished through inter-domain

protocols, also known as Exterior Gateway Protocols (EGP). The details of how the

network is configured or what happens within an AS are hidden from other ASs, giving

the AS the freedom to choose any IGP protocol. However, to connect ASs together

reliably, ASs have to run the same EGP to exchange reachability information between

two routers in a network of ASs. The only EGP protocol in use today is BGP, and is

considered the glue that is interconnecting all of the ASs together to form a unified

communication infrastructure. Within an AS, IGP and EGP routers communicate

in order to exchange information about internal and remote destinations, forming a

global network of ASs.
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In addition to routing protocols, there are a number of routing policies and services

that play a key role in the Internet infrastructure. For example, IP Anycasting is an

internetwork service that allows multiple hosts (i.e. servers) to be configured to accept

traffic on a single IP address. The motivation for Anycast service is to simplify for the

user the process of finding the closest server for a particular service. In this context

“closer” means with respect to network metrics and may not be necessary the closest

one geographically.

IP Anycasting is easy to implement and has recently been deployed by many op-

erators. Current global-scale IP Anycasting deployment is the anycasting of Domain

Name System (DNS) root servers [23, 2], AS-112 servers [1], and Distributed De-

nial of Service (DDoS) sinkholes [21]. The discovery of the Anycast servers is done

through BGP routing table updates. However, using a shared /24 prefix address

advertisement, the effects of IP Anycast technique on other elements of the Internet

infrastructure (BGP) is not well understood.

Mobile IP is another routing service that allows transparent routing in the Internet

of IP packets to mobile nodes. In IPv4, a point of attachment to the Internet is

uniquely identified by its IP address. When a mobile device moves outside the network

identified by its IP address, all the packets destined for that node are lost. In the

Mobile IP approach, as the mobile host moves away from its home network, it gets

associated with a different IP address that has the subnet prefix of the new (foreign)

link. Then, it binds this new address with a router (agent) at the home network.

Later, all the packets destined to the mobile host are routed through its home network

to the foreign network. However, this service and other mobility approaches have

different deployment requirements.

Modeling and understanding the interactions of these services with the routing

protocols are of central interest in this research.
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1.2 Routing Protocols Simulations

The interior/exterior routing protocols are sophisticated distributed algorithms. A

deep understanding of their performance is very complex as they are deployed in

medium to large-scale networks. Reliable evaluation tools are needed for testing

current routing protocols or to assess proposed enhancements and new architectures.

Current evaluation tools are of three types: theoretical analysis, laboratory testbeds,

and simulation experiments.

Theoretical analysis works well for simple protocols. However, as the protocol of

study gets complex, the model abstraction for mathematical analysis becomes very

hard. For example, the inter-domain routing protocol BGP cannot be analyzed in a

mathematical model as it is too complex to formulate mathematically. Its implemen-

tation is discussed in many RFCs.

Laboratory testbeds are usually small-scale prototypes. They are unable to per-

form experiments at a meaningful scale because of the need for extensive resources,

and the inability to develop an experimental setup that reflects the commercial nature

of the Internet. Therefore, the laboratory experiments produce intitial results, and

should not be used as basis for large-scale deployment because they may not reveal

the limitations of the protcol of interest if deployed at large scale.

Simulation has become the method of choice for many networking research prob-

lems. As new protocols are designed and tested, computer based simulations are

used to validate the correctness of the new protocol, and are used to measure the

performance of the new protocol under a variety of experimental conditions. Current

network simulators such as ns-2 [35], OPNet [6], SSFNet [10], and GTNetS are com-

mon platforms for computer network research. However, as the size and capacity of

modern networks have increased, the ability to simulate such networks has decreased.

Simulation of large-scale network is very difficult, if not impossible, due to the exces-

sive requirements of both memory and CPU time. Distributed network simulations
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have been implemented in few simulators such as Parallel/Distributed ns (pdns) [50],

Dartmouth SSF (DASSF) [31], and GTNetS. However, insuring correct packet for-

warding between the federates is still a difficult problem. In a space–parallel network

simulation the model for the entire simulated network is divided logically into k sub–

models, where k is the number of federates in the distributed simulation. With this

approach, each federate is responsible for approximately 1/kth of the entire topol-

ogy, and instantiates simulation objects to represent its own portion of the network.

Since a given federate has no responsibility for the remaining (k−1)/k portion of the

network, no simulation objects are created and thus the federate has no knowledge

of the remaining topology. Simulating large-scale networks and analyzing routing

protocols/services is a central part of this dissertation.

1.3 Thesis Contributions

In this Section, we summarize the contributions of this dissertation.

1.3.1 Ghost Nodes: An Enabling Technique for Distributed Network
Simulations

First, we introduce a new approach to federated network simulations that simpli-

fies space-parallel simulations. Previous approaches have difficulties that arise from

the need for global topology knowledge when forwarding simulated packets between

federates. In all but the simplest cases, proper packet forwarding decisions between

federates requires routing tables of size O(mn) where m is the number of nodes mod-

eled in a particular federate, and n is the total number of network nodes in the entire

topology. Further, the benefits of the well–known NIx-Vector [48] routing approach

cannot be fully achieved without global knowledge of the overall topology.

We overcome these difficulties by utilizing a topology partitioning methodology

that uses Ghost Nodes. A ghost node is a simulator object in a federate that represents

a simulated network node that is spatially assigned to some other federate, and thus
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that other federate is responsible for maintaining state information associated with

that node. However, ghost nodes do retain topology connectivity information with

other nodes, allowing all federates in a space-parallel simulation to obtain global in-

formation concerning the network topology. We show experimentaly that the memory

overhead associated with ghosts is minimal relative to the overall memory footprint

of the simulation.

1.3.2 BGP-Anycast Routing Simulation Analysis

In this part of the research, we implement IP Anycasting in BGP++ [14] which is a

detailed BGP simulator based on Georgia Tech Network Simulator (GTNetS). The

motivation for this research is that an increasing number of DNS Root Server oper-

ators are using IP Anycasting techniques to improve availability and load balancing.

This setup might be susceptible to a wide variety of failures, which most measurement

studies may not be able to capture.

We use detailed BGP simulations to develop a simulated Anycast testbed. This

testbed is used to study the effect of IP Anycasting on BGP, mainly BGP conver-

gence time and BGP churn (exchanged update messages). We replicate a real world

topology (Tier-1 and Tier-2 ASs) in a simulated environment, and analyze the impact

of failures on DNS and BGP infrastructure with Anycasting.

We find indeed that Anycast provides higher availability and better user latency

for DNS queries than using a single DNS server. We also simulated all 3 modes of

Anycast deployment, discussed later.

1.3.3 EIGRP Simulation Model and Seamless Mobility Using Route Up-
dates

The last part of the research is two-fold. The first goal is to evaluate the Enhanced

Interior Gateway Routing Protocol EIGRP via packet simulations. To this end, we

developed a detailed simulation model of EIGRP (publicly available), and we used it

6



to evaluate EIGRP performance under a very dynamic network.

Another part of this research is the introduction of a new approach to supporting

host mobility within an AS. As wireless devices move across coverage boundaries for

a given access point, present mobility solutions require that the device be assigned

a new IP address within the address range assigned to the new access point. This

address reassignment leads to a number of difficulties for applications requiring un-

interrupted connectivity, such as peer–to–peer file transfers, real–time stock quotes,

and streaming multimedia. Proposals to enable continuous connectivity in the pres-

ence of mobility exist for both IPV4 [44] and IPV6 [12], although neither have seen

widespread deployment. We discuss an approach for seamless mobility and continuous

connectivity for users of mobile wireless devices as they move within an autonomous

system. Since interior routing protocols such as EIGRP are well equipped to adapt

to routing changes within a subnetwork, we find that indeed, mobile wireless devices

can maintain continuous connectivity across access point handoffs while at the same

time maintaining a single IP address.

We present simulation results showing the ability of EIGRP to update routing

tables in a timely fashion, usually within a single TCP timeout period. The fast

convergence of EIGRP enables the support of applications requiring uninterrupted

connectivity.

1.4 Dissertation Outline

The rest of the thesis is organized as follows. Chapter 2 discusses a new technique

to federated network simulations. This technique is used later on in the research to

enable large-scale simulation. Chapter 3 provides a simulation analysis of IP Anycast.

This is done via the extension of a detailed BGP simulator to include IP Anycast. In

Chapter 4 we describe our implementation efforts to provide a simulation model of

EIGRP, and a new approach for mobile computing. Chapter 5 outlines the conclusions

7



drawn from the research throughout this doctoral thesis.
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CHAPTER II

GHOST NODES: AN ENABLING TECHNIQUE FOR

DISTRIBUTED NETWORK SIMULATIONS

This chapter presents the Ghost Node Technique, a new approach to federated network

simulations that eases the burdens on the simulation developer in creating space-

parallel simulations. It is an enabling technique for large-scale simulations where

there is a need for global topology knowledge when forwarding simulated packets

between federates (Federate is synonymous with simulator instance and simulator).

Section 2.1 discusses the space-parallel approach for distributed simulation and

motivates the need for the new technique. The difficulties associated with the existing

distributed-simulation techniques are discussed in Section 2.2. Current distributed

network simulators are described in Section 2.3. Section 2.4 gives the basic design

of our Georgia Tech Network Simulator with emphasis on the ghost node imple-

mentation. Section 2.5 presents memory usage statistics comparing the ghost node

approach to traditional approaches. Finally, Section 2.6 describes conclusions from

this work.

2.1 Motivation

One approach to creating network simulation models for large–scale topologies is to

use a space–parallel partitioning methodology, coupled with distributed simulation

methods. In a space–parallel network simulation the model for the entire simulated

network is divided logically into k sub–models, where k is the number of federates

in the distributed simulation. With this approach, each federate is responsible for

approximately 1/kth of the entire topology, and instantiates simulation objects to
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represent its own portion of the network. Since a given federate has no responsibility

for the remaining (k− 1)/k portion of the network, no simulation objects are created

and thus the federate has no knowledge of the remaining topology. This approach

is relatively easy to implement, and is the method used in space–parallel distributed

network simulators such as Parallel/Distributed ns (pdns) [50, 49] and the Georgia

Tech Network Simulator (GTNetS) [46, 47].

Further, this method has very good scalability, since each federate need only be

concerned with its assigned network elements, and thus only need to allocate memory

for a fraction of the entire set of network elements. However, as we shall show this

approach introduces a number of difficulties that must be addressed in order to insure

correct packet forwarding between the federates.

2.2 Distributed Space-Parallel Network Simulations

To illustrate the concepts and issues regarding space–parallel network simulations,

we present two simple examples. Consider the simple topology shown in Figure 1,

consisting of four subnetworks. Each subnetwork has four hosts, two intermediate

routers, and one gateway router. Each of the four gateway routers is connected to

each of the other three gateway routers, forming a fully connected mesh. All of the

simulated nodes for a subnetwork have a common 24 bit network address prefix, such

as 192.168.0.x for subnetwork 0 as shown.

Now suppose that, due to resource constraints in our simulation environment, we

cannot model more than seven network nodes in a given federate without running

out of memory on the computing platform in use. Clearly, such limited resources are

not realistic, but are used here for illustrative purposes. Even with these resource

constraints, we can still create a simulation of the four subnetwork topology by using

space–parallel distributed simulation.

We create four different federates, each running on a separate hardware platform.
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Figure 1: Simple Space–Parallel Topology
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Each of the four federates instantiates models for the seven nodes in a single subnet-

work. For example, federate 0 would model the seven nodes in subnetwork 0, federate

1 would model the seven nodes in subnetwork 1, etc. The simulation environment

must have some way to describe simulated links between federates (such as the link

from G0 to G1). Links that span federate boundaries are called remote links, or

rlinks. Issues such as time management and event distribution between federates can

easily be solved using one of several available Runtime Infrastructure packages, such

as the Georgia Tech Federated Simulation Developers Kit (FDK) [17], or the DMSO

RTI [4]. The end result is that we are able to model twenty–eight network nodes,

using four instances of a simulator that can only model seven nodes each, using the

space–parallel methodology. The following paragraphs discuss some of the issues that

arise when determining correct packet routing in this type of simulation.

Default Routes. In this simple example, the routing of packets between federates

is nearly trivial. Suppose host H00 sends a packet to host H23. Federate 0 can

easily determine that the destination node (H23) is not modeled locally1. Since in

this example the destination node is defined and managed on federate 2, federate 0

must make a routing decision based on incomplete knowledge of the overall topology.

In this case however, gateway node G0 is the only way that packets can leave or

enter subnet 0 (and hence federate 0), H00 simply forwards the packet to node G0

(through node R00) for further processing. In pdns and GTNetS this is known as a

Default Route, and works well when there is a single simulated node responsible for

all packets entering and leaving the portion of the network topology mapped to that

federate.

1Details of how this is done are dependent on the implementation, and are not important for this
discussion
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Inter–Federate Route Aggregation. Route aggregation is a method used in

Internet routers to reduce routing table size. If all of the routing table entries for

a set of destination addresses are identical, and the destination set has a common

address prefix, then this entire set of routes can be stored with a single entry.

Using route aggregation, once the packet arrives at gateway node G0, the routing

decision is again easy and requires little memory. Although gateway node G0 has

three rlinks, the routing decision can easily be made based on the destination IP

Address. The rlink from G0 to G1 is the correct path for any IP Address starting

with 192.168.1, since all nodes with that prefix are defined in federate 1. Thus,

using route aggregation, only three routing table entries (one for each rlink) are

sufficient for federate 0 to make correct routing decisions in all cases. Both pdns and

GTNetS provide commands to specify this type of aggregated routing entries for the

remote links. In this simple case, assuming the use of NIx-Vector routing within each

federate, we need routing state in each of the gateway nodes of size O(f), where f is

the number of federates in the distributed simulation.

A More Complicated Example. It appears from the above discussion that the

problem of inter–federate routing in space–parallel network simulations is easily solved.

However, consider the slightly modified topology shown in Figure 2. This topology is

nearly identical to the previous example, except the addition of two more inter–subnet

links, connecting certain hosts to hosts in a neighboring subnet, and two extra links

from gateway nodes G0 and G2 to neighboring interior routers. With this topology,

the simplifying assumptions observed for the previous example no longer hold, and

inter–federate routing of packets becomes much more difficult to manage.

First, the notion of the default route, indicating that all packets not destined to a

local IP Address should be routed to a common gateway, can no longer be used. Thus,

each node in each federate will need a routing table (potentially with O(n) entries,
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where n is the total number of nodes in the simulation) to select which inter–federate

gateway node is the best path to remote nodes.

Secondly, the clean and simple route aggregation method that worked nicely on

the previous example may no longer work. Now, gateway node G0 has four rlinks,

two to subnet 1 and two to subnet 3. The assignment of the IP Addresses to nodes

in subnets 1 and 3 will affect how well the route aggregation will work for the rlink

routing entries. In the best case, we can still use a single aggregate entry for each

rlink, but in the worst case we need routing entries for every node in subnets 1 and

3 in the routing table for G0. The end result of both of these problems is that we

still need routing state of size O(mn), where m is the number of nodes managed in

each federate, and n is the total number of nodes in the global topology. We point

out that the O(mn) memory requirement is the worst case, and in practice one can

still expect some saving from route aggregation.

Using NIx-Vector Routing. An efficient source–routing methodology called NIx-

Vector routing is discussed in [48]. With this method, a route between a source and a

destination is calculated only when needed, and is cached at the source for later re–use.

Further, the calculated path from the source to the destination is stored in the packet

using the compact NIx-Vector format, that allows intermediate routing decisions to

be made without the use of routing tables. However, this approach requires global

information concerning the topology from the source to the destination. Clearly,

in the space–parallel methodology, this global topology knowledge is not available.

However, we can provide additional routing information at the rlinks that allows a

partial NIx-Vector to be calculated within a federate.

Suppose host H00 is sending a packet to host H13. Since host H13 is managed by

federate 1, federate 0 lacks global knowledge of the topology to calculate a NIx-Vector

to H13. However, if each rlink in federate 0 has routing information specifying those
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addresses that are reachable from this link, and the number of hops to reach each

destination, a NIx-Vector that routes the packet to the appropriate gateway can be

calculated using a modified Breadth First Search (BFS) algorithm. In our example,

the rlink from G0 to G1 will have a routing entry indicating it can reach H13 in three

hops, and the rlink from H03 to H10 will indicate it can reach H13 in five hops.

The modified BFS algorithm will calculate that the shortest path from H00 to H13

should use the rlink from G0 to G1, and calculates a NIx-Vector from H00 to G1 (the

last hop is the rlink from G0 to G1).

This method has some of the benefits of NIx-Vector routing, in that no routing

tables are needed at any node excepting those with rlinks to other federates. The

memory requirements are still O(kn) (k is the number of inter–federate rlinks, and n is

the total number of nodes in the simulation). Further, in all cases except the simplest

topologies, the calculation of these inter–federate routes can be time consuming. For

example, we computed inter–federate routes for the million–node MILNET topology

defined by Liljenstam et. al[29]. The off–line computation took 4 hours on a 866Mhz

desktop processor, resulted in more than 5 million inter–federate routes, and required

over 500MB of disk space to store the computed routing information.

Using Pre–Computed Routes. A simple approach to intra–federate routing is to

use Pre–Computed Routes. In this approach, an off–line program creates a simplified

and memory efficient representation of the topology. Once this complete topology

model is created, routing information can be computed for all nodes, giving paths

to all other nodes. An advantage of this approach is that the time–consuming route

computation step can be performed once, and used repeatedly in the simulation runs.

The obvious disadvantage of this method is the O(n2) memory requirements for the

all–pairs routing tables. For example, if the entire topology consists of one million
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nodes, the resulting pre–computed routing tables would consist of 1012 entries, con-

suming unreasonably large amounts of disk space and memory. This approach is used

by the distributed memory Dartmouth SSF (DaSSF) simulator[31] described in [30].

At the same time, one can argue that if combined with the information on the

traffic designation in simulations, the method using precomputed routes actually can

significantly reduce memory usage by encoding only those routes required by the

simulation. However when using large topologies, the source and destination pairs are

often chosen randomly (for example as in the web–browsing model of GTNetS), and

thus route precomputation is not feasible without a complete all–pairs computation

(or at least all pairs that might make a random connection).

Using Routing Protocols. Another approach to inter–federate and intra–federate

routing in network simulations is the use of simulated Routing Protocols within the

simulation. For example, we could include a model of the widely–used Border Gate-

way Protocol (BGP) on each node with inter–subnet connections. In the example

in Figure 2, this would be nodes G0, G1, G2, G3, H00, H03, H10, R10, H13,

H20, H23, H30, R31, and H33. Further, we could use an Interior Routing Protocol,

such as EIGRP[3, 19] or OSPF[39] on interior routers within a subnetwork (such as

nodes R00, R01, R11, R20, R21, and R30 in our example). This approach is used by

the SSFNet simulator[11, 9], and results in an easy to use space–parallel simulation.

Additionally, this method inherently deals with dynamic topology changes, such as

reacting to link or node failures. When creating the simulated topology, the user need

not be concerned about routing information, since the routing protocols will compute

the best routes using routing message exchanges between federates. Further, these

routing protocols use route aggregation techniques to reduce the size of the resulting

routing tables as much as possible. However, this approach still requires simulator

memory to hold the routing tables calculated by the routing protocol, which can be
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excessive.

Our solution to these difficulties is to introduce the notion of a Ghost Node. A

ghost node is a simulator object that acts as a placeholder for nodes that are assigned

to other federates. The ghost node object has none of the complex and memory

intensive state needed for real nodes (such as queues, routing tables, port maps,

and applications). Rather, a ghost node simply contains topology connectivity in-

formation about links and neighbors. Thus, using ghosts, a federate is afforded a

global view of the simulated topology, without the memory overhead of maintaining

unneeded state for the ghosts.

2.3 Network Simulators

There are several network simulation tools available that use a space–parallel ap-

proach to distributed simulation. However, most of these simulators introduce diffi-

culties when insuring correct packet forwarding between the federates.

Parallel/Distributed ns (pdns) by Riley[49, 50] (based on the venerable ns2[35]

simulator) has used the space–parallel approach from its outset. However, simulating

large and highly connected topology is challenging as routes cannot be aggregated.

The SSFNet simulator was initially designed for parallel simulation in a multi–

threaded shared–memory environment, but has since been adapted by Liu and Nicol[30]

to support distributed memory platforms. However, SSFNet makes use of simulated

routing protocols to ensure correct packet forwarding, which requires simulator mem-

ory to hold the routing tables calculated by the routing protocol, which can be very

excessive.

The Dartmouth SSF (DASSF) simulator[31] also has been adapted for a dis-

tributed simulation with a space–parallel methodology. Their approach is to use

pre-computed routes, routing information is computed off-line for all nodes, giving

paths to all other nodes. However, this approach has an O(n2) memory requirements.
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Wu et. al[55] report some limited success in adapting the commercial OPNet

simulator[6] to operate in a distributed environment, using a space–parallel approach.

The concept of using limited state objects (ghosts) as place–holders for remote

objects is not new. In the Distributed Interactive Simulation (DIS) community, tools

such as SIMNet[37] often use dead reckoning or other approximation methods to es-

timate the state of objects that are managed in remote federates. In a battlefield

simulation for example, a federate may report the position and velocity of a tank

object at a particular point in time. Other federates will maintain the tank’s location

by assuming a constant velocity until informed otherwise. Ferenci[16] discusses the

use of Proxy Objects in distributed simulations, which are conceptually similar to our

ghosts. However, Ferenci’s proxy objects exist primarily to facilitate inter–federate

message routing, and do not in fact represent any global state. Additionally, Fer-

enci discusses his approach in the context of optimistic simulations, where we deal

exclusively in the conservative environment. To our knowledge, we are the first to

apply the limited–state object method to represent the global topology information

in space–parallel network simulations.

2.4 Ghost Nodes in GTNetS

In this Section, we discuss the basic design of the space–parallel distributed sim-

ulation support in GTNetS, with particular attention to the ghost node approach.

A GTNetS network simulation is created by writing a C++ main program that in-

stantiates objects representing the network topology (nodes, links, queues, etc.), and

the applications that create data flows, such as web servers, web browsers, and FTP

clients. Also each GTNetS simulation instantiates a single Simulator object that

controls the simulation (maintains the pending event list and schedules events).
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#include "simulator.h"

#include "node.h"

#include "linkp2p.h"

int main()

{ // Simple sequential simulation

Simulator s; // Sequential simulation

Node* n1 = new Node(); // Node 1

Node* n2 = new Node(); // Node 2

// Define a link object

Linkp2p link(Rate("1Mb"),

Time("10ms"));

// Add the link from n1 to n2

n1->AddDuplexLink(n2, link,

IPAddr("192.168.1.1"), Mask(32),

IPAddr("192.168.1.2"), Mask(32));

Figure 3: Simple Sequential Script

GTNetS supports both sequential, single–process simulations as well as space–

parallel distributed simulations. The majority of GTNetS simulations will use se-

quential execution, so the distinction between sequential and distributed execution

was made as simple as possible. To this end, two versions of the object constructor

for the Simulator object are provided, one with no parameters and one with a single

Distributed Simulation Identifier parameter. For sequential simulations, the default

constructor without arguments is specified by the user, in which case none of the

distributed simulation support functions are called, and the complete topology is as-

sumed present in the single address space. See Figure 3 for a simple code snippet.

The remainder of this Section will focus on the distributed simulation methods.

To specify a distributed simulation, the Simulator object is instantiated with

a single integer argument, assigning an instance identifier to this simulator that is

unique within the federated simulation. If there are to be k federates in the dis-

tributed simulation, the instance identifier is in the range of 0 . . . (k − 1). When the
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#include "simulator.h"

#include "node.h"

#include "linkp2p.h"

int main(int argc, char** argv)

{ // Simple distributed simulation

// Get instance id from arguments

int myId = atol(argv[1]);

Simulator s(myId); // Distributed sim

// n1 is managed by simulator 0

Node* n1 = new Node(0); // Node 1

// n2 is managed by simulator 1

Node* n2 = new Node(1); // Node 2

// Define a link object

Linkp2p link(Rate("1Mb"),

Time("10ms"));

// Add the link from n1 to n2

n1->AddDuplexLink(n2, link,

IPAddr("192.168.1.1"), Mask(32),

IPAddr("192.168.1.2"), Mask(32));

Figure 4: Distributed Simulation Script

Simulator object is constructed in this manner, GTNetS will call the necessary dis-

tributed simulation support functions in the Run-Time Infrastructure (RTI), such as

initialization functions, data distribution, and time management requests. Further,

the instance identifier is used to determine if node objects are to be real nodes or

ghost nodes, as discussed in the following paragraphs.

The next action needed in the distributed simulation script is to identify, for ev-

ery node in the topology, which federate is responsible for that node object. This

is accomplished by providing a node object constructor with a single argument that

specifies an instance identifier. If the specified instance identifier matches that spec-

ified on the Simulator object constructor, then this federate is responsible for the

node object, and a real node object is created. Otherwise, a ghost object is created.

See Figure 4 for a simple code snippet showing a distributed simulation instance.

Note that the only differences (other than command line argument processing) are
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the myId parameter passed to the Simulator constructor, and the single integer argu-

ments passed to the Node object constructors. In this simple example, one simulator

process is initiated with the command line argument “0”, and the second is initiated

with the command line argument “1”. Notice that when node objects n1 and n2

are created, the Node constructor is called with the arguments 0 and 1 respectively,

indicating that node n1 is to be modeled on federate 0, and n2 is to be modeled on

federate 1. In federate 0, node n1 is a real node and n2 is a ghost. In federate 1, node

n1 is a ghost node and n2 is real.

There are two important points to be seen from this simple example. First, there is

little difference from the users’ perspective between the sequential and the distributed

execution. The only differences are the presence of the instance id parameter on

the Simulator constructor, and the responsible instance id parameter on the Node

constructor. Excepting a few other minor differences discussed later, the remainder

of the script is identical. Secondly, each federate runs exactly the same script. Using

this method, the same GTNetS main program can be used for each federate in the

distributed simulation, distinguished with command line parameters.

Ghost Node Implementation. From the above discussion, it is clear that in

GTNetS the Node objects come in two flavors, real nodes and ghost nodes. Equally

clear is that the API for the two node types (i.e., the set of member functions available

to object owners) must be identical or nearly identical. If this were not the case, there

would be many conditional checks in the simulation script to take different actions

depending on the real or ghost status of the nodes. Note for example the call to

AddDuplexLink for Node object n1 in the above example. While the actions taken in

this method are different for real and ghost nodes, the API is the same. In fact, all

Node methods are identical for real nodes and ghost nodes. Finally, the ghost node

implementation must be memory efficient, utilizing as little state as possible. If this
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were not the case, the advantage of exploiting multiple processors to simulate larger

networks would be lost, since the entire topology is required on every federate.

We achieve these goals by using a simple one–level method indirection as shown

in Figure 5. The basic Node object has all the API methods needed by GTNetS

to manage nodes, but only has a single Implementation Pointer state variable. This

implementation pointer points to an object that is a subclass of class NodeImpl. The

NodeImpl class defines the required set of methods needed for nodes, but only has

state common to ghost nodes and real nodes. The only common state between ghost

nodes and real nodes is the IP Address and a vector of Interfaces. In this context, the

word Interface refers to a simulation model of a hardware link interface (such as a NIC

card) in a router or end system. Finally, there are two classes that are subclasses of

NodeImpl, namely NodeReal and NodeGhost. Objects of class NodeReal have all the

state associated with real nodes, such as port maps, routing information, animation

size and color, and location information.

When a node is created in a distributed simulation, the Node constructor checks

whether the system identifier specified in the constructor argument matches that

specified in the Simulator constructor. If so, this node is real, and a new object of

class NodeReal is created and pointed to by the implementation pointer. If the system

identifiers do not match, the node is a ghost, and a new object of class NodeGhost is

created.

We mentioned previously that both real and ghost nodes maintain a list of Inter-

faces that model the link interfaces in nodes and routers. This seems at first glance

to be inefficient in terms of memory usage, since these interfaces have a substantial

amount of state (for example a packet queue) that is not necessary for ghost nodes.

We solve this problem by defining two Interface subclasses, InterfaceReal (which

has the state needed to model an interface), and InterfaceGhost (which does not).

When a new Interface object is needed by a node object, real nodes create a real
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Figure 5: Node Implementation
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interface, and ghost nodes create a ghost interface. Similarly, we use real and ghost

Link objects for the same purpose. The key point is that the API is common across

real and ghost objects, allowing any owner of these objects to call the defined methods

without regard to whether the object is real or ghost.

We did an analysis by inspection of the memory used by real and ghost nodes and

their associated state, and confirmed this analysis by using the C++ sizeof operator.

The total memory cost of a real node is given by (244 + 266x) bytes and the total

memory cost of a ghost node is given by (40 + 44x) bytes where x is the number

of interfaces for that particular node. Using this memory analysis, we can show

quantitatively the real vs. ghost memory used as a function of number of federates

for a given topology (memory cost for both real and ghost nodes is dependent on the

number of interfaces for that node). For instance, using the topology shown in Figure

8, and for a star size of 3500, the memory cost of a real star (all star nodes are real)

is 2.716 MB, and the memory cost of a ghost star (all star nodes are ghost) is 0.448

MB. Therefore, running that topology on 8 federates will require a total of 3.136 MB

of memory overhead for the ghost nodes. Once the number of federates involved in

the simulation is known, the memory cost for the ghost nodes can be computed, and

the simulation can be noted as feasible or not based on the memory available at every

federate.

Using this technique of real and ghost objects, each federate in the distributed

simulation has a complete picture of the simulated topology, and can compute NIx-

Vector routing information from any source to any destination. We show in the next

Section that the overhead incurred by ghost objects is likely to be small compared to

the overall memory footprint of the simulation.

There is one case where the behavior of a ghost node and a real node requires the

simulator user to be aware of whether the node is real or not. All of the previous

discussion has focused exclusively on the topology generation part of the simulation
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script. In a network simulation, we also need to define the flow of data between the

nodes in the topology. In GTNetS this data flow is defined using Application objects.

GTNetS presently has defined application models for thirteen different application be-

haviors, including web browsers, web servers, Gnutella clients, and others. However,

we do not use the concept of ghost applications. Since applications are added to nodes

using the AddApplication method for node objects, a simpler method is to design

ghost nodes to ignore any request to add an application. Since the semantics of the

AddApplication method are that it returns a pointer to the newly added application

object, the design is that ghost nodes simply return a NULL pointer instead. The

user simulation scripts simply check for a NULL return from the AddApplication

call, and if so skips further application initialization. See Figure 6 for a code snippet

illustrating this point. While the script does not directly determine whether an ap-

plication is being added to a ghost node or a real node, it detects the NULL return

to differentiate between the actions performed by the two node types.

Consistent Topology View. It is apparent that, for the ghost node approach to

work properly, all federates must have a consistent view of the global topology being

modeled. While this seems easy to achieve, there are two instances that can cause

problems with this requirement.

First is the use of randomly generated topologies, using a tool such as the Georgia

Tech Internet Topology Modeler (GTITM)[57]. In our GTNetS simulator, a single

C++ object can represent an arbitrarily large network, generated randomly based on

the GTITM technique. Thus, different federates could randomly generate different

topologies, thereby violating our consistent view constraint. In this case, care must

be taken to insure the random number generators are seeded in a deterministic way

to insure each federate generates identical random topologies.

The second issue is the modeling of link or node failures in a network. If a
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int main(int argc, char** argv)

{ // Simple distributed simulation

// Get instance id from arguments

int myId = atol(argv[1]);

Simulator s(myId); // Distributed sim

// n1 is managed by simulator 0

Node* n1 = new Node(0); // Node 1

// n2 is managed by simulator 1

Node* n2 = new Node(1); // Node 2

// Add WebServer application to n1

WebServer* svr = n1->AddApplication(

TCPServer());

if (svr) {

// Application added

svr->EnableGCache();

}

// Add WebBrowser to n2

WebBrowser* br = n2->AddApplication(

WebBrowser( ... ));

if (br) {

// Added, configure and start

br->ConcurrentConnections(4);

br->Start(0.1);

}

Figure 6: Adding Applications
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given federate has a real node representation of a given network node, and generates

a random node failure event, other federates must be made aware of this failure.

Although not implemented in our simulator, it is straightforward to use state update

events between federates to achieve these notifications. Further, these state update

events need not be sent between federates with zero simulation time advance, since

node and link failures cannot be detected in a network any faster than packets can

flow through the network. In a real-life network, topology changes are not propagated

instantaneously. In fact, the farther a network element is from the location of topology

change, the longer it takes for the topology-change information to be propagated to

the element. This is important because it is well known that zero time update events

between federates leads to poor performance in conservative distributed simulation

environments.

Summary. The design of GTNetS leads to an easy to use, low overhead way to

manage a space–parallel network simulation. The ghost nodes give the simulation the

necessary topology information to calculate NIx-Vector routing information, while at

the same time use little memory. Figure 7 shows the difficult topology presented in

the previous Section, from the perspective of federate 0. All of the nodes in subnet 0

are real nodes indicated with solid lines, and all other nodes are ghosts, indicated with

dotted lines. Further, all links in the other subnets are ghost links (again with dotted

lines), excepting those rlinks connecting those real nodes in subnet 0 to ghost nodes

in other subnets. These cross subnet links are special links, called RTILinks, which

use the services of the runtime–infrastructure to transfer packets between federates.

Finally, a large–scale network simulation should take into account the effects of policy–

based routing as defined by the Border Gateway Protocol (BGP). By offering a global

view of the topology, the ghost approach gives a more complete picture of the overall

network, and will enable efficient implementation of policy-aware routing decisions.
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Figure 8: Simple Star/Ring Topology

2.5 Experimental Results

To demonstrate the effectiveness of the ghost node approach, we ran two sets of

experiments to measure the memory usage of the space–parallel network simulations,

using both the traditional approach with manually specified inter–federate routing

and our new ghost node approach. The first set of experiments uses a simple topology

similar to that shown in Figure 8. This topology consists of k subnetworks (k is eight

in the Figure shown), each with n nodes arranged in a star topology (n is sixteen in

the example). Each of the subnetworks is connected to its neighbors, forming a ring.

This topology was chosen since it is the best possible case for the traditional approach.

Each of the leaf nodes in the star subnetwork can use the simple default route method
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Table 1: Star Topology Memory Usage
Method Star Size Node Count/Federate Memory Execution Time

Real Ghost Total (MB) (sec)
Nodes Nodes Nodes

Traditional 1,501 1,501 0 1,501 45 156
Ghost 1,501 1,501 10,507 12,008 47 150

Traditional 3,501 3,501 0 3,501 53 188
Ghost 3,501 3,501 24,507 28,008 57 152

Traditional 7,501 7,501 0 7,501 68 271
Ghost 7,501 7,501 53,507 60,008 77 150

Traditional 15,001 15,001 0 15,001 95 331
Ghost 15,001 15,001 105,007 120,008 114 228

to reach the single gateway node. At each gateway, the route aggregation method can

easily and efficiently specify which addresses are reachable on each of the rlinks.

The simple topology was run on eight federates, with varying numbers of leaf

nodes per subnetwork. The experiments were performed using both the traditional

approach and the ghost node approach. One hundred and fifty TCP flow endpoints

were assigned to leaf nodes, and 1MB transfers were simulated. The memory usage

and execution time of each simulation is shown in Table 1. Since in this experiment,

all federates model an identical subnetwork, results are only shown for federate zero.

As can be seen, the memory footprint for the ghost node approach is only slightly

larger than the traditional method. For the 120,008 node case (the largest we per-

formed, 8 connected stars), there were 15,001 real nodes and 105,007 ghost nodes per

federate. The ghosts required a total of 19 MB of memory, representing a 20 percent

increase. As mentioned before, the number of federates involved in the simulation

determines the feasibility of the experiment as the overhead incurred from the ghost

nodes can be excessive when the number of federates becomes large.

Interestingly, the overall execution time for the ghost node approach is less than

the traditional approach. Using ghosts, we pay a one–time cost for the calculation of

the NIx-Vector, but gain an O(1) routing decision at each hop in the path. Without
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Figure 9: Milnet Topology

NIx-Vectors, the routing at gateway nodes and hubs requires an O(k) computation

(k is the number of IP Addresss assigned to the node) to determine if the packet has

arrived at the destination. We are examining a less burdensome way to make this

decision, to reduce this overhead to O(lgk).

The second set of experiments used a large and complex topology known as the

MILNet defined by Liljenstam et. al[29]. This topology consists of a backbone net-

work containing over three thousand routers and eleven thousand links, that roughly

models the backbone network for United States military bases. Connected to the

backbone are 163 subnetworks of various sizes from five hundred to nine thousand

nodes each. The entire network exceeds one million nodes. A graphical representation

of the MILNet backbone is shown in Figure 9.

The results from the MILNet experiments are shown in Table 2. The MILNet

topology was divided among 8 federates, with federate zero modeling the high–speed
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Table 2: MILNet Memory Usage
Federate Method Node Count/Federate Memory Execution Time

Real Ghost Total (MB) (sec)
Nodes Nodes Nodes

0 Traditional 3,070 0 3,070 73 692
Ghost 3,070 1,095,558 1,098,628 216 299

1 Traditional 181,268 0 181,268 704 699
Ghost 181,268 917,360 1,098,628 833 299

2 Traditional 144,769 0 144,769 568 696
Ghost 144,769 953,859 1,098,628 699 299

3 Traditional 141,421 0 141,421 557 695
Ghost 141,421 957,207 1,098,628 688 299

4 Traditional 150,060 0 150,060 588 699
Ghost 150,060 948,568 1,098,628 720 299

5 Traditional 151,465 0 151,465 593 697
Ghost 151,465 947,163 1,098,628 724 299

6 Traditional 171,224 0 171,224 671 705
Ghost 171,224 927,404 1,098,628 798 299

7 Traditional 155,351 0 155,351 606 698
Ghost 155,351 943,277 1,098,628 737 299

backbone and the other federates modeling approximately equal parts of the remain-

ing nodes. In the traditional (Non–Ghost) approach, we used an off–line routing

computation program that required more than 4 hours of CPU time and computed

more than 5 million inter–federate routes. This routing information was then used

to populate the inter–federate routing information in the remote links. In contrast,

the ghost node approach uses the on–demand NIx-Vector routing method and thus

no precomputation is needed. The results show that the memory used for ghosts

is considerable, but in most cases a small fraction of the total memory usage. The

exception is for federate zero, which models only 3,070 of the high–speed backbone

routers of MILNet. This federate has more than a million ghosts, using 143MB of

memory, which is 200 percent increase of the overall memory. In all other federates,

the ghosts take between 100MB and 150MB, accounting for around 16 percent of the

total.
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Interestingly, the initialization time for the ghost node simulation is less than half

of that of the traditional method. In this experiment, the entire topology is specified

in a large XML file, which must be read in its entirety by both approaches. However,

the traditional approach also requires the population of the inter–federate routing

information. As mentioned, this information consists of over 5 million individual

routes, which take considerable time to read and process, as evident by the larger

initialization times.

2.6 Conclusion

This chapter showed that the ghost node approach is a viable method to achieve effi-

cient and easy–to–use space–parallel network simulations. The memory required for

the ghosts is small relative to the overall memory footprint of a large–scale network

simulation. Using ghost nodes, no precomputation of routing information is needed

and the memory–efficient NIx-Vector routing method can be used. The implementa-

tion of ghost nodes in GTNetS allows the same simulation script to be used for all

federates, with simple command line parameters identifying node mapping.

While it is demonstrated here that the memory overhead associated with our ghost

node approach is small, there is still the potential for excessive overhead when the

number of federates becomes large. For example, if the same experiments were run

on a thousand node supercomputer cluster, such as the Pittsburgh Supercomputer,

the overhead would likely to be unmanageable. If we used one thousand federates,

for every real node defined in a federate there would be approximately 999 ghost

nodes. Even with the relatively small memory footprint of a ghost, the total memory

for ghosts would be substantial. Future work could investigate the use of distributed

graph algorithms, such as those described in [7], to allow a complete NIx-Vector

calculation from any source to any destination in the presence of incomplete topology

information. This should result in substantial memory savings at the expense of
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additional overhead for each NIx-Vector calculation.
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CHAPTER III

BGP-ANYCAST ROUTING SIMULATION ANALYSIS

Increasing number of DNS Root Server operators are using IP Anycasting techniques

to improve availability and load balancing of Root Servers. However, IP Anycast

interaction with other elements of the Internet infrastructure is not well understood.

This chapter presents a simulated Anycast testbed that could be used to study the

advantages of IP Anycast and its impact on the main factor of the Internet infras-

tructure, BGP. The need for such a simulation framework is motivated in Section

3.1. A brief background about BGP and IP Anycasting is described in Section 3.2.

The recent IP Anycast studies are discussed in Section 3.3. Section 3.4 provides

details of our simulator . Section 3.5 describe our experimental setup and discusses

the results. The chapter is concluded in Section 3.6

3.1 Motivation

Even though the Border Gateway Protocol (BGP) is the de facto Inter-domain rout-

ing protocol of the Internet, the survival of the Internet is critically dependent on the

performance of the Domain Name System (DNS). DNS is a hierarchical distributed

database which maps names and addresses on the Internet, and this mapping service

is an important element for the Internet infrastructure. The root of the hierarchy

is referred to as DNS Root Server. Currently, there are 13 Root Server operators

worldwide. To ensure high availability of the DNS service, some of the Root Servers

are replicated or mirrored in various locations. This was achieved through the deploy-

ment of IP Anycasting. In IP Anycasting, a group of servers operated by a particular

organization share the same unicast address. Packets destined to this address will be

routed to only one of the servers. IP Anyasting is a means to locate and communicate
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with one of a set of distributed servers within a network.

The main goals of IP Anycasting are to facilitate robust distributed system op-

eration, ensure availability, and to reduce latency observed by the service user. The

DNS system has been lately a prime target for DDoS attacks. The most recent DDoS

attack against Root Servers was on 6 February 2007. As reported by The Internet

Corporation for Assigned Names and Numbers (ICANN) [25], a DDoS attack on six

or more of the Internet’s root servers only damaged two of the servers. The attack

had a very limited impact since several Root Server operators had implemented IP

Anycasting since the previous DNS attack on 21 October 2002. Hierarchical deploy-

ment of Anycast servers helps in segragating traffic into regions, thus the impact of

an attack is limited locally.

Since the development of IP Anycasting, a number of studies has been conducted

to characterize the advantages of anycasting the IP prefix of the Root Servers [5, 8, 52].

The studies have shown that the availability of the Anycast prefixes is improved, and

the end-to-end latency perceived by the user is decreased. Nonetheless, these studies

have shown a few failures which can make the Anycast prefixes unavailable for several

minutes. This problem has been attributed to BGP convergence. Also, one of the

studies showed that the strict BGP flap-damping policies resulted in the withdrawal

of a prefix by the routers even though the server was available for the entire period

of the study.

The studies mentioned above are among the detailed analysis case studies which

were performed on Anycasting. They provide a wide range of results about real-time

behavior of the system. However, all of the studies are limited to data extracted

through probes from a few locations. In addition, there is a need to evaluate the

performance of Anycast under certain failure cases which may not occur during the

observation period of the study. Therefore, we need a way to characterize the perfor-

mance benefits of Anycast on a large scale, and need to have a good understanding
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of how the system performs globally. We designed a simulation platform that can be

used in a controlled environment to achieve these goals.

In this research, we have developed a detailed BGP anycast simulator based on

Georgia Tech Network Simulator [46]. The BGP simulator has capability to incorpo-

rate inferred AS relationships to better reflect routing policies that might be used in

reality. The simulation also supports longest-prefix- match routing based on routes

discovered through BGP. Using this setup, we have created an Anycast testbed to sim-

ulate a realistic large-scale topology that include providers to F-,J-,K-, and M-Root

Servers.

We have performed a number of simulations to evaluate the effect of Anycast on

DNS and BGP performance. Some of the interesting evaluations we have incorporated

is comparison of different modes of IP Anycast deployment. There are three different

modes that can be used for IP Anycast deployment, but only two of them are actually

deployed. Also, we have incorporated evaluations for two different kinds of failures:

silent link failure, and explicit route withdrawal from an Autonomous System (AS). As

later discussed, we find that these two failures have different impact on the downtime

of a prefix. We will release the simulator to the research community as a tool that can

be used by Root Server operators to judge performance impact of different placement

options for future Anycast servers.

3.2 Background

DNS is a critical infrastructure service for the Internet. Several DNS root server op-

erators are using Anycast to ensure availability, load balancing, and to reduce latency

perceived by the end user. The Anycast mechanism used is IP level Anycasting, which

is naturally supported by the existing BGP infrastructure. In the next few sections,

we give a brief background on both protocols and how their behaviors directly affect

each other.
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3.2.1 BGP

BGP is the de facto inter-domain routing protocol of the Internet [45]. It is currently

the only routing protocol used to maintain connectivity between ASs. BGP routers

in different ASs form peering sessions to exchange network reachability information.

Such sessions run over a reliable transport protocol (TCP), which ensures transport

reliability and eliminates the need for BGP to handle retransmissions. BGP is a

path-vector protocol where each router selects best routes to destinations based on

advertisements from neighboring routers/peers. BGP messages are used to exchange

information and help maintain states between the routers participating in the peering

session. There are four types of messages:

1. Open: Used to start a BGP session (request to open a BGP session over an

existing TCP/IP session)

2. KeepAlive: Used to keep the peering session running when no update messages

are exchanged. They are exchanged between the BGP peers to let each other

know that they are still alive (running). In case a BGP peer does not receive

a KeepAlive message from its peer, it will remove all the routes learned from

that peer from its Forwarding Information Base (FIB).

3. Notification: Used to send an error message (i.e. received a corrupted update

message).

4. Update: Used to transfer routing information between the BGP peers. It con-

tains the actual route updates; the information included in this message can be

used to construct a graph describing the relationships between ASs.

Overall, the update messages carry routing information while the other messages

carry session management information. BGP is not strictly a standard routing pro-

tocol in the sense that it includes commercial relationships configured in its routers
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Figure 10: Typical Anycast Setup

policies, which are applied when selecting the routes during the Decision process.

Empirical measurements have shown that there can be a considerable delay in

BGP convergence after routing changes. Labovitz et al. [28] show that BGP routers

in the Internet may take tens of minutes to converge (have a consistent view of the

topology). They relate the delay in convergence to temporary routing table oscilla-

tions formed by the BGP path selection process. Similary, BGP path exploration

and Flap Dampening would have an impact on the stability of other implemented

protocols/services (i.e. IP Anycast).
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3.2.2 Anycast Routing

Anycast is neither unicast, where a single host receives all traffic, nor multicast, where

many hosts receive (all) traffic to multicast group. Rather, it is a mechanism whereby

multiple nodes are configured to accept traffic on a single IP address. IP Anycast

is described in RFC 1546 [42] as a mechanism which simplifies service discovery and

achieves load balancing. In this mechanism, a set of servers providing a service share

the same Unicast IP address. A client wishing to use the service sends requests to the

specific Unicast address (termed as Anycast address). The actual node that receives

a packet is determined by routing, and the packet is not guaranteed as it could be

dropped like any other packet. Being an IP layer service, IP Anycasting provides best

effort to deliver packets destinated to a server of the anycast group. However, being

a network layer service means that sequential packets may be delivered to different

anycast nodes. Therefore, the anycast service is best used for single request/response

type protocols such as DNS. At a broad level, this mechanism is supposed to achieve

coarse load balancing as clients get directed to servers near them. Figure 10 shows

a typical Anycast deployment scenario.

To achieve IP Anycasting, servers located in different ASs advertise the same

Anycast prefix through BGP. Client ASs receiving the advertisements, choose the

shortest AS length route (or another route which is preferred due to BGP policy

settings) and direct queries to server residing in that AS. IP Anycasting can be viewed

as ASs using multi homing, meaning that a client sees multiple different paths to the

same destination.

IP Anycasting can be deployed in different modes. Some servers in the Anycast

deployment might have limited bandwidth or limited server resources and might not

be able to support traffic at a global level. In such cases, the advertisement of such

servers is scoped. The scoping is achieved by using BGP No-Export community field.

This community field helps in restricting the radius of advertisement to 1 AS hop.
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Figure 11: Hierarchical Anycast Setup
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Nodes whose advertisement is thus scoped are called “Local” Nodes. The rest of

the nodes whose advertisement is not scoped are referred to as “Global” Nodes. A

deployment in which there is a mix of Local and Global Nodes is termed “Hierarchical”

setup. Deployments which make no such scoping are referred to as “Flat” setup.

Figure 11 shows a Hierarchical deployment setup.

Typically, the DNS servers run a BGP daemon (Zebra bgpd for example) which

advertises the BGP Anycast prefix used by the server to the BGP routers of the

AS. The BGP daemon withdraws the prefix whenever a server failure is detected. IP

Anycasting has been used for supporting DNS servers for several years. F-, K-, J-, and

M-Root Server operators have had substantial deployments. Anycasting has also been

used for Top Level Domains (TLDs), .org and .info maintained by UltraDNS. The F-,

K-, J-, and M-Root Anycasting is Hierarchical whereas the UltraDNS deployment is

Flat.

3.3 Measurement Studies

In [8], Colitti provided some early measurement results about K-Root Anycast per-

formance. K-Root had 2 Global nodes deployed and there were many local nodes.

The key observations of the study were:

1. Anycast provides good latency to clients.

2. K-Root Anycast Deployment is quite stable.

3. Local nodes do not take much load off the global nodes, hinting at greater load

imbalance than expected.

One of the reasons why local nodes do not get much traffic is due to the BGP

policy settings. Normally, global nodes have better paths and hence preferentially

chosen by BGP. However, with the hierarchical structure we expect local nodes to be

chosen. Local nodes could advertise a more specific prefix and thus force the traffic
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through a local node; however, this is not realistically feasible as most ISPs will not

advertise a /32 prefix.

Another major study regarding DNS Anycast measurements has been reported

by Sarat et al. [52]. They provide a detailed analysis of Anycast behavior. Their

measurements focus on different modes of deployment comparing Hierarchical F-,K-

Root deployments with Flat Ultra DNS setup. They make use of PlanetLab nodes

sending queries to the Anycast IP Addresses. The key findings of their study can be

summarized as:

1. Improved latency and stability.

2. Few outages which last more than 100 seconds observed.

3. Flat DNS deployment was less stable than Hierarchical.

Ballani et al. [5] have reported similar results regarding DNS Anycast perfor-

mance. They also observe that with IP Anycasting, the closest server is not neces-

sarily chosen. They attribute this to specific BGP policies between interacting ASs.

BGP promises shortest AS path selection only when all policy implications are the

same.

Though these studies do assure that the client latency and system stability is

improved with Anycasting deployed, they fail to answer some important questions:

1. How many clients get affected when outages are observed?

2. What is the impact of Global Node failure vs. Local Node failure?

3. What is the BGP churn for deploying IP Anycasting?

4. What is the impact on response time and prefix availability due to topology

failures or changes?
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Figure 12: A Geoplot Visualization of Tier-1 Simulated Topology

To the best of our knowledge, there have been no other detailed simulation-based

studies for DNS Anycasting. Many simulation studies have focused on studying BGP

convergence properties [22, 40]. In this research we try to infer global effect of BGP

convergence on the total downtime of a prefix. A client might have visibility to the

server even if the network has not converged as the intermediate paths might still be

valid.

Mao et al. [34] describe a strategy to find out shortest policy path in an AS

graph obtained from RouteViews BGPTables. They use this technique to effectively

measure the Anycast Servers that the clients will choose and thus estimate the load

on each server. However, in our simulations we are interested in measuring impact

of topology failure on Anycast downtime and BGP convergence which cannot be

statically inferred.

3.4 Simulations

In this section we present details of our simulator features and capability.
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3.4.1 GTNetS BGP++

GTNetS is a discrete event based packet level simulator developed in Georgia Tech.

GTNetS shares similarities with ns-2, but exposes a richer programming interface to

the user. The GTNetS implementation of BGP protocol is termed BGP++. The

BGP++ implementation is based on Open Source Zebra BGP code. Zebra BGP was

chosen as it is a production BGP implementation compliant with the RFC. Many of

the techniques used to port Zebra code to ns-2 were used in porting Zebra to BGP++.

A number of changes were made to the underlying Zebra data-structures which helped

in simulating a large number of nodes on a single workstation. A discussion about

the BGP++ implementation can be found in [15].

3.4.2 Simulating AS Topology

For our simulations, we chose to model the real AS topology as opposed to syntheti-

cally generated topologies. Since we wished to analyze DNS Anycast deployment in

a realistic topology, the choice was fairly straight forward. The AS topology was in-

ferred based on BGP routing tables as observed by the RouteViews Project [36]. We

also made extensive use of AS link adjacency data available on CAIDA websites for

generating the topology. Finally, we used a modified technique [13] based on Gao’s

[18] AS level inference strategy to infer the provider-customer, peer-peer relations

between ASs.

3.4.3 Simulating DNS Client/Servers

We have a very simple simulation of DNS Clients and Servers. Each client sends a

UDP request to the Anycast IP address every t seconds (discussed later). The client

encodes data about originating node ID and time of the request. The UDP server

responds to a request and returns the original message with details about the serving

Anycast node ID. On receipt of the message, the client calculates the latency and

logs the entire UDP message. The logs are parsed to gather statistics about latencies
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and server load.

3.4.4 Distributed Simulations

Simulations of up to 1000 nodes can be run on a modern workstation. However,

the goal of our simulations is to scale to as many ASs as necessary for a simulation

of a realistic topology. This requires us to use distributed simulations. GTNetS

supports a parallel distributed mode which allows simulations to be run on multiple

machines in a Local Area Network (LAN). We use the Chaco and Metis [24, 26] graph

partitioning tools to split the simulation topology between different machines. The

partitioning ensures minimum interconnections between participating machines thus

ensuring efficient simulation.

3.4.5 Failures

For our analysis, we simulated two kinds of failures:

1. Silent link failure: Link failures could be on any segment of the chosen best

AS path, but we restrict it to a failure in the last hop AS link. Silent link

failures would rely on BGP hold-time timers to get triggered for detection. In

this failure mode, the client could still communicate with the same server (if it

is up) through a different path (if one exists). Such failures are expected to have

a long downtime but less network churn as fewer updates about the failures are

exchanged.

2. Explicit withdrawal of an Anycast prefix: This failure would mean that the

server is unreachable and hence the prefix is withdrawn by the advertising AS.

The Anycast client would switch to a different server in this failure case. Explicit

withdraw is expected to have shorter downtime but involves potentially more

network churn as many updates can be exchanged.
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Our simulation also logs the number of BGP updates that get exchanged due to

failures. This can be used to measure the BGP churn resulting from Anycast server

instability.

3.4.6 Measurement Methodology

All of our simulation experiments consisted of several steps as follows.

1. The simulation of the topology is started, and BGP is allowed to converge.

2. Multiple Anycast servers are started in the ASs which advertise the Anycast

prefix (these servers are the DNS Root Servers), and multiple clients are started

in different ASs (these are the DNS clients).

3. The clients send an UDP packet to the server every t seconds, which is times-

tamped and returned to the client by the server.

4. Failures are induced into the system using one of the failure modes discussed

earlier.

5. The simulation stops at a pre-determined time. As previously mentioned, the

update messages logs, client requests/responses logs, and other statistics will

be parsed for the metrics of interest.

3.5 Experimental Results

We divided our simulations into two parts. In the first part, we ensured the function-

ality of the simulator by using a small topology of 44 nodes. This consisted of the 44

Tier-1 topologies as inferred from the CAIDA AS ranking data. Of the 44 ASs, we

found 10 ASs to provide service to the F-Root AS. For all of our simulations, we chose

to place the Anycast servers at the provider nodes. The remainder of the AS nodes

(34) were chosen to be DNS clients, and each client is sending one DNS request per

second. The 44 Tier-1 ASs are connected through 467 links. The simulation time for
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Figure 13: Load Distribution of F-Root Servers (44 nodes)

stage 1 experiments is 2000 seconds. BGP routers start and are allowed to converge.

At 1000 seconds, the DNS clients start sending requests, and at 1200 seconds failures

are induced into the topology. A visualization of this topology is available in Figure

12. The figure shows the number of Anycast servers that are located at overlapping

sites.

3.5.1 Tier-1 topology Simulation

The 44-node setup can be run on a single machine. There are a total of 10 Anycast

server instances. The first set of experiments entailed simulation of all three modes

of Anycast deployment: flat, local- global hierarchy, and local-global hierarchy with

more specific prefix. A flat Anycast deployment means that all anycast servers are

global, their catchment area is global (global load of client requests). In the local-

global hierarchy deployment, the local anycast servers handle only the requests from

its local area. The adverstisement of the local prefixes is scoped. In the third mode

of deployment, the anycast prefixes advertised by the local servers are /32 compared

to /24, which will force BGP to choose the local servers as the closest servers for the
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client requests.

We ran the experiments and did not observe any load distribution patterns for flat

or hierarchical deployment. We attribute this to the BGP decision process and to the

small topology of study. However, as expected we did notice that when advertising

more specific prefixes, the global nodes tend to receive a very low percentage of DNS

clients requests, as show in Figure 13. This is due to the fact that BGP decision

process will favor /32 prefix over any other metric (local preference).

We ran another experiment, using local-global hierarchy mode, where we induced

the failures mentioned earlier. In the link down failure case, we found that there is a

significant loss of DNS requests, whereas the withdraw case shows better performance.

The experimental results show that it took 123 seconds for the network to realize that

a link failure has occured. As expected, silent link failures would rely on BGP hold-

time timers to get triggered for detection, resulting in larger convergence time. As

a result a lot of DNS client requests were lost, 1307 requests (3.84 percent). In

addition, the measurements for the withdraw case reveal that the effective downtime

of the prefix is less than one second. We attribute this to quick convergence of BGP

as the graph is very strongly connected.

3.5.2 Tier-1,Tier-2 Topology Simulation

After verifying the correct functionality of our simulator, we moved to the second part

of simulation experiments where we expanded the number of nodes in our topology by

including Tier-2 ASs. This increased the total number of nodes in our system to 5476.

These nodes are interconnected by 14,468 links. We used distributed simulations with

16 federates for this topology. Thus each federate modeled about 350 nodes. In this

stage, we evaluated the following metrics of interest:

1. BGP Convergence: After inducing the failures in the topology, we measure how

long it takes BGP to reach a steady state both in Anycast and non-Anycast
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Figure 14: Load Distribution of F-Root Servers (5476 nodes)

deployment.

2. BGP Churn: The failures will cause an exchange of update messages, and we

quantify this exchange both in Anycast and non-Anycast deployment.

3. End-to-End User Latency: One of the advantages of Anycast deployment is

the decrease of latency perceived by the enduser. We verify this in multiple

experiment scenarios.

4. Anycast Load Balancing: We measure the load distribution of DNS client re-

quests among the DNS Anycast servers.

We have extracted information about ASs that provide connectivity to the F-, J-,

K-, and M-root sites. In all, we have 5,476 ASs and 14,468 interconnecting links.

We found in the topology 10 ASs that provide service to the F-root, 6 ASs that

provide service to the J-root, 17 ASs that provide service to the K-root, and 4 ASs

that provide service to the M-root. Initially, we had each node advertising one prefix

each, but experiments showed that the memory requirements for this network would
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Figure 15: Load Distribution of J-Root Servers (5476 nodes)

be quite high. Thus, we changed the BGP configuration files so that only Anycast

prefixes get advertised. We verified using a smaller topology that advertising the

non-anycast prefixes does not have any measurable effect on the metrics of our study.

This is because the failures are only induced on the Anycast server nodes, which only

advertise Anycast prefixes.

In order to make our simulation experiments more realistic, we collected DNS

request statistics to drive our simulations. We are mainly interested in the sending

rate of DNS requests to the root servers. The data was retrieved from the DNS

Statistics project by CAIDA, which has data only for F- and K-Root. This data

showed average requests per second, 6699.18 and 7449.65. As for the J- and M-Root

servers, we assumed a rate of 6000 requests per second.

In total, we conducted 8 experiments. The first three experiments entailed eval-

uating the load distribution among all root servers under the three different modes

of deployments. We find that the load distribtion under the local-global mode is not

significantly different from that of flat, or all-global deployment. This is illustrated

in Figure 14 and Figure 15. However, as seen in the first stage of simulations, the
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pattern of hierarchical deployment (with more specific prefix) is redundant in the sec-

ond stage of experiments. The global nodes tend to receive very low number of DNS

requests. For example, in the case of F-Root servers, global node AS3549 receives

around five percent of the DNS queries, while global node AS27319 receives none.

Similarly for global node AS8308 in the J-Root servers.

The second three experiments were all run with the hierarchical mode of Anycast

deployment (advertising /24 prefixes for both local and global nodes). All experiments

have a simulation time of 2000 seconds. The first experiment does not have any

failures. In the second experiment, we take down one of the interfaces of an F-

Root server node (AS27319) at 1300 seconds of simulation time. Next, in the third

experiment, we further take down interfaces of J-,K-, and M-Root servers at 1300

seconds of simulation time. As previously stated, we are interested in the robustness

and effectiveness of Anycast deployment. The experimental results show a loss of

16,321 DNS requests (0.24 percent) destinated to AS27319 due to taking one of its

interfaces down. As predicted, taking J-,K-, and M-Root interfaces down did not

have any effect on the loss rate of DNS request destinated to the F-Root Anycast

address. However, the convergence time in the latter case was longer, 214 seconds

compared to 152 seconds.

The last two experiments were all run with non-Anycast deployment, with tra-

ditional unicast deployment using one-to-one mapping between DNS servers and IP

addresses. The only difference between these two experiments is that F-, J-, K-, and

M-Root interfaces go down at 1300 seconds in the second experiment, as was done in

the earlier experiment with the Anycast deployment. The results of this experimental

setup will enable us to compare the performance of both Anycast and non-Anycast

deployment, as well as their effect on BGP. In other words, we will measure BGP

convergence, amount of BGP churn associated with both cases of deployment, in

addition to the DNS response time for the F-Root DNS server.
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Figure 16: DNS Response Time without Failures (5476 nodes)

Table 3: BGP Performance
Anycast Unicast

BGP Convergence Time 211 sec 178 sec
BGP Churn 12,019 30,978

(Update Messages)
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Figure 17: DNS Response Time with Topology Failures (5476 nodes)

The experimenal results show clearly the advanages of IP Anycasting. As seen in

Table 3, the failures induced in the topology (taking root servers interfaces down)

cause BGP churn of 30,978 update messages in the non-Anycast deployment compared

to 12,019 update messages with Anycast deploment. This is due to the fact that with

using Anycast, the updates only propagates to the affected routers and other routers

best path will remain the same. However, the convergence time due to failures in

the case of Anycasting is slightly longer than the unicast-case. This is not a major

drawback as new AS path could be selected before BGP completely converges.

As mentioned earlier, the DNS response time is measured by noting the time of

each DNS request and the time each response is delivered back to the client. Figure

16 and Figure 17 shows the comparison of DNS response time between both Anycast

and non-Anycast deployment with and without topology failures. It is easy to see

in the CDF of Figure 16 that 85 percent of the DNS requests got answered at 0.05

seconds with Anycast compared to 0.115 seconds using unicast prefixes for the F-

Root servers. Furthermore, introducing topology failures has a direct effect on the
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response time in the unicast case compared to the Anycast case. The response time

for 85 percent of the request was around 0.13 seconds, an increase of 13 percent. With

Anycast, the probability to find a best path after a topology change is higher than

that in the unicast case.

3.6 Conclusion

In this work we have built a simulation framework that will allow us to analyze the

performance of Anycast Server deployment. Our framework supports detailed BGP

simulations and routing based on the routes learned through simulated BGP. Our

simulations allow realistic simulation of topologies as observed through RouteViews

project. We have used our simulation to analyze performance of different Anycast

deployment modes. We have also analyzed the impact of different failure modes for

the deployment scenarios. We find that most current deployments do not achieve

good load balancing. We find that when Local nodes advertise a more specific prefix,

this reduces the load on Global nodes. Also, our experimental results show higher

availability of the prefix and decreased latency using IP Anycasting. Our comparison

of IP Anycasting to the traditional approach shows that IP Anycasting causes less

BGP churn when failures occur.

Future work could incorporate more failure models to determine their impact on

IP Anycasting and BGP. Many different scenarios should be evaluated and we expect

that using our simulations the community will gain a better understanding of the

advantages of DNS Anycasting.
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CHAPTER IV

EIGRP SIMULATION MODEL AND SEAMLESS

MOBILITY USING ROUTE UPDATES

This chapter presents a scalable simulation model of Enhanced Interior Gateway

Routing Protocol (EIGRP) and a new approach for host mobility within an Au-

tonomous System (AS). EIGRP is widely deployed, and our simulator can be used

as a framework to analyze the performance and behavior of EIGRP in different sce-

narios. In addition, this chapter shows that host mobility can be supported without

the deployment of new protocols, special configuration, or support from any end

applications.

Section 4.1 motivates the needs for an EIGRP simulation model and a new

host mobility approach. Existing EIGRP studies and current mobile computing ap-

proaches are discussed in Section 4.2. Section 4.3 discusses the simulation framework

and our implementation efforts of EIGRP and wireless-handoff in Georgia Tech Net-

work Simulator to support route updates for mobile nodes. Our experimental setup

and results are presented in Section 4.4. We conclude in Section 4.5.

4.1 Motivation

The motivation for this research is two-fold. First is the implementation of an EIGRP

simulation model which can be used to evaluate the performance of EIGRP in a variety

of scenarios. Next is the implementation and evaluation of the new mobile computing

appproach. Even though host mobility is used to create a highly dynamic topology

for EIGRP test-case scenarios, each part of this work has its own motivation.
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4.1.1 EIGRP

Since its development, EIGRP has been shown to converge as quickly as a link-state

protocol while at the same time being loop free. The EIGRP designers [3] state that

many medium-scale network studies were performed and EIGRP proved to be a ro-

bust and reliable intra-domain routing protocol. As of 2000, network architects [43]

state that EIGRP and Open Shortest Path First (OSPF) [38] are being implemented

in approximately half of the networks. EIGRP is not only an enterprise-oriented

routing protocol, but also a protocol that can be used in service-provider environ-

ments because it has fewer topology limitations than OSPF [43]. However, OSPF

has seen more deployment in the service-provider market because most new service-

provider oriented technologies such as MPLS/VPN (Virtual Private Networks based

on Multi-Protocol Label Swapping) are first implemented within the framework of

OSPF. Although EIGRP is widely deployed, there have been few published studies

measuring its performance.

These routing protocols are sophisticated distributed algorithms and a deep un-

derstanding of their performance and behavior is difficult as they are deployed in

medium to large-scale networks. Simulation tools have been typically used in com-

puter network systems study to evaluate architectures or perform systems tuning.

However, there is usually a trade-off between accuracy and scalability. A full detailed

model of the system will require a large amount of memory and CPU power, and

sometimes lengthy execution time. On the other hand, an abstract model will result

in better scalability at the expense of less accuracy.

4.1.2 Seamless Mobility

Wireless local-area networks are becoming increasingly common among university

and corporate campuses. A 2004 survey [20] representing 516 two- and four-year

public and private colleges and universities across the United States reported that
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19.8 percent of the colleges participating in the survey indicate that full-campus

wireless networks are up and running at their institutions as of fall 2004, compared to

14.2 percent in 2003. Also, the survey reported that wireless networks are available in

more than 35.5 percent of college classrooms. This revolutionary change in network

technology development and deployment indicates the need for mobile networking

research. An important feature of wireless networks is the ability of end hosts to

move within the physical region covered by the subnetwork. However, this mobility

action leads to difficulties in handling host IP addresses and forwarding packets within

the subnetwork.

To illustrate the issues regarding IP mobility, let us consider the scenario as shown

in Figure 18. A wireless user is browsing a web page while he is sitting or moving

within the College of Physics building. As long as he stays within range of the

wireless base station of Physics, the packets are delivered to the mobile host using

the IP address that was assigned to it by DHCP, as long as there are no changes in

the session identifiers. If the user starts moving away from the College of Physics

to a different building, the College of Chemistry in our example, his wireless device
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could be in one of two states. First, it could get disassociated from the current access

point, resulting in a broken link which then results in packets being dropped at the

access point. In the second case, the device could get associated with another access

point that is on a different network and receives an new IP Address from a different

DHCP process. In either case the remote endpoint of the session is unaware of the

new address and continues sending the packets to the old IP address, resulting in

packets being dropped at the old access point. In the next section, we discuss the

basic concepts and operations of Mobile IP in both IPv4 and IPv6. We also discuss

the difficulties and overhead arising from these approaches.

In IPv4, a point of attachment to the Internet is uniquely identified by its IP

address. So, when a mobile device moves outside the network identified by its IP

address, all the packets destined for that node are lost. In Mobile IP, as the mobile

host moves away from its home network, it gets associated with another IP address

that has the subnet prefix of the new (foreign) link, and it binds this new address with

an agent on a local router at the home network. Then, all the packets destined to

the mobile host are routed through its home network to the foreign network. Figure
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19. illustrates the basic operations of Mobile IP.

The mobile agent of every network identifies its presence by sending agent adver-

tisement using an ICMP router advertisement. A mobile host uses Agent Discovery

to determine if it is connected to its home network or a foreign network. If the mo-

bile host is connected to its home network, the packets that are destined to it are

delivered using standard Internet routing mechanisms. Otherwise, the mobile node

gets associated with a new IP address offered by the foreign network, known as the

care-of-address. The correspondent node for a TCP connection with the mobile node

cares only about the home IP address since it is the packet header destination ad-

dress. Therefore, the mobile node must inform its home network with the IP address

(care-of-address) using a process known as Registration. The care-of-address will be

registered with the home agent, which will forward all the packets destined to the

home IP address to the new location of the mobile node.

For example, suppose initially the mobile node is located on its home network,

and has a TCP connection with a web server. As the mobile node moves to a different

network as shown in Figure 19, the packets sent from the web server will arrive at

the home network via standard IP routing. Then, the home agent will intercept all of

these packets, and it will tunnel them to the foreign agent or the mobile node itself.

The packets are tunneled to hide the mobile host home address from routers along

the path from the home to foreign network. Next, the packets will be de-capsulated

and delivered to the mobile node. Note that the packets originated from the mobile

node could be delivered to the web server directly from the foreign agent without

going through the home network.

The main difference between Mobile IPv4 and Mobile IPv6 is that mobility support

is integrated in IPv6. The basic binding and registration processes are similar, but

in Mobile IPv6 the mobile node can inform its correspondent node (the other end

point of the connection) with its current location by registering its care-of-address
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with the correspondent node. Thus, any new packet addressed to the mobile node is

sent directly to the new care-of-address by checking the correspondent cache bindings.

When sending a packet from the mobile node to the correspondent node, the mobile

node stores its home address in a new Home Address destination option in the IP

header. In addition to the support of IPv6 in both networks, local routers at the

home network are required for at least one registration of the new care-of-address.

This is required since the first packet addressed to the mobile node has to be routed

via the home network routers. After that the packets are routed directly to the new

care-of-address.

4.2 Related Work

Many studies have been done in both areas of research.

4.2.1 EIGRP Studies

Several simulation studies have been done to evaluate the performance of interior

routing protocols for new applications/architectures. However, most of these studies

have used OSPF models. For example, OSPF is implemented in NS-2 [35], SSFNet

[10], and GLOMOSIM [58]. One of the reasons could be that EIGRP is proprietary.

Nevertheless, Opnet [6] has developed an EIGRP model which has been used in such

studies, and a simulation of HP backbone yielded good performance of EIGRP [3].

Still, one can notice that there are few analysis studies on EIGRP.

4.2.2 Host-Mobility Studies

Several solutions for seamless continuity of applications and sessions during mobil-

ity have been proposed. They differ depending on the layer of the OSI model at

which they are implemented. Mobility solutions have been proposed for: link layer,

application layer, and network layer.

In link layer mobility solutions such as [51], GSM or 802.11 handle all the mobility
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and the IP/network layer is unaware of the changes of points of attachment to the

Internet. However these solutions are access technology–specific, since integrating

heterogeneous access media at the link layer becomes very complex to deploy. Another

link layer mobility solution is to use virtual wireless LANs using switches and forming

layer 2 subnets. The APs will be connected to switches, and once a mobile host

associates or disassociates, the mapping table of the switch will be updated. There

are some disadvantages of this approach as well. First, the outstanding packets will be

lost as there is no queuing in switches, and secondly the network has to be configured

for virtual LANs which can be difficult to install and maintain.

Another viable approach to mobility is to move the burden of managing the ses-

sion and the underlying changes at the IP layer to the application layer. However,

rebuilding all the applications to support mobility and be backward compatible is not

viable, as it is very complex and expensive. NetMotion Wireless Inc. developed a

driver that sits between the application layer and the transport layer. This mobility

approach requires a server (a proxy for the mobile device) as well as a software in-

stalled on the mobile device. In a similar work, Snoeren [53] suggested an architecture

that uses modified transport layer protocols at the end hosts without any changes to

the IP layer.

As mentioned earlier, Mobile IP by Perkins [44] is a modification to IP which allows

mobile nodes to receive their data packets wherever they happen to be attached to

the Internet. Mobility is solved at the network layer by hiding the changes in IP

address from upper layers. This approach is presently considered the most developed

and deployed mobility solution.

Zhuang [59] proposed a mobility solution ROAM that is built on top of the Internet

Indirection Infrastructure (i3). i3 is implemented as an overlay network consisting of

a number of servers across the Internet which introduces an extra support overhead.
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4.3 Simulation Framework

The simulated network had to be very dynamic to effectively test EIGRP limits.

This was accomplished by allowing the wireless Access Points (APs) to behave as

EIGRP routers (or running EIGRP agents), and access points. Also, the end systems

were allowed to retain a fixed IP address while those systems move across subnet

boundaries. This way, as the mobile hosts move across network coverage, the wireless

handoffs between the mobile hosts and the APs will trigger the EIGRP agents to send

route advertisements to inform routers of new or revised routes to reach the mobile

systems. The following sections describe our implementation efforts of EIGRP and

the wireless handoff mechanism into GTNetS.

4.3.1 EIGRP

EIGRP [3] is an intra-domain routing protocol that leverages the strong points of

both distance-vector and link-state protocols: it converges quickly while remaining

loop free at all times. This is achieved by using a system of diffused computation

where every route calculation is computed in a coordinated fashion among multiple

routers. EIGRP is based on the Diffusing Update Algorithm (DUAL) which is used

to compute shortest paths in a distributed manner and without ever creating routing-

table loops or incurring counting-to-infinity behavior. Simulation studies [56] have

shown that DUAL’s average performance after a topology change such as link failure,

or link-cost increase or decrease, is significantly better than the Distributed Bellman-

Ford (DBF) algorithm used in Routing Information Protocol (RIP), and it is similar

to the performance of an ideal link-state algorithm with much less CPU overhead.

EIGRP’s updates are similar to a distance-vector protocol, as they are vectors of

distances transmitted only to directly connected neighbors. However, the updates are

partial, non-periodic, and bounded. They are partial since the updates contain only

the changed routes, and not the entire routing table. They are only sent whenever
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a metric or topology change occurs (non-periodic), and they are sent to the affected

routers only (bounded). EIGRP has shown to provide loop freedom and quick con-

vergence in medium-scale networks[3]. Also, a simulation of HP backbone yielded

good performance of EIGRP [3]. However, a true analysis and diagnosis of EIGRP

protocol at a large scale has not been undertaken. This analysis is essential taking

into perspective the number of deployed EIGRP-enabled Cisco routers.

We developed a scalable simulation model for EIGRP. The protocol is not ported,

but rather implemented in a high quality software network simulator (GTNetS ). Also,

we have implemented a subset of EIGRP functionality, since for our performance

analysis we only need link failure, link restoration and link-metric change.

4.3.2 Wireless Handoff

As mentioned earlier, in our simulation the wireless handoffs are the events which

trigger EIGRP to send routing updates. In GTNetS we have implemented a fairly

complete subset of handoff mechanisms based on the 802.11 MAC protocol. A handoff

mechanism essentially illustrates the basic steps which must be taken when a mobile

station disassociates with the current access point and associates with the new one.

The wireless communications of mobile devices are vulnerable to communications

interception to some degree, and thus there needs to be a control of such communi-

cations to protect the information while in transit. In our area of study, a number

of security attacks could be exploited to either disrupt the functionality of the im-

plemented protocols or to gain access to sensitive information. For example, the

EIGRP updates are triggered by the wireless handoffs of the mobile nodes. Therefore

a malicious user could send fake association or disassociation messages to disrupt the

routing while a mobile host may or may not be already associated with an access

point (the network does not converge). In addition, an adversary machine could ad-

vertise itself as an existing mobile station and associate with an access point and
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start receiving all packets destined to that mobile station. These packets could be

very sensitive such as online banking transaction, secure access session, etc.

Due to the above reasons, we use an authentication mechanism between the APs

and the mobile hosts. Once a mobile host associates with an AP, a shared key will

be generated and that key will be propagated with the EIGRP updates informing

the peer EIGRP routers about the new host. Thus, if a malicious user tries to send

fake association or disassociation messages to disrupt the routing while a mobile host

is already associated with an AP, the association/disassociation procedure will fail.

This will happen because the current AP that the mobile host is associated with or

any other AP has the secret key of the host being faked and knows that the message

being advertised is not valid.

The wireless layer design in GTNetS allows for stations to be designated as Access

Points (APs) or Mobile stations (MSs). The APs are connected to the wired network.

Our design assumes that the APs have the role of EIGRP routers as well as access

points, but this functionality can be decoupled without any effect on the proposed

routing scheme. In the current scheme, we have additional local state information in

the form of a last-heard timer at each MS and AP. While the AP needs to maintain

one such timer for each associated MS, the MS has to maintain only one for its

currently associated AP.

The handoff scheme we use is slightly different from the one specified in the

802.11F. The mobile stations always listen to the periodic beacons sent from the Ac-

cess Points (typically, every 0.1 seconds). Depending on the received signal strength

(RSS) and other factors, the MS determines if the incoming beacon’s transmitter is

a more appropriate access point than its current association. To prevent oscillating

associations we chose a threshold margin, which is the difference in signal strength

that the MS must see between the current association and the incoming beacon’s

signal. Voluntary disassociations are initiated by sending an association request to
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the new AP and a disassociation message to the currently associated AP. The disas-

sociation message is sent only after the new association has been acknowledged by an

association response message by the new AP.

Both the APs and the MSs need to mutually know when each has left the operating

range of the other. This mechanism is implemented by running a last-heard timer for

each of the associated mobile hosts. The mobile stations send reassociation messages

every 5 seconds to the access point. The receipt of a reassociation message resets

the corresponding last-heard timer. A timeout of this last-heard timer means that

the MS has disassociated involuntarily. On the other hand, at the MS’s end, the

last-heard timer is reset at the reception of a beacon from the associated AP. If the

MS does not hear beacons from its currently associated AP, its last-heard timer will

timeout, at which point it will assume it is no longer associated. This would make

the MS try to associate with any other AP from which it hears a beacon.

The wireless MAC layer notifies the EIGRP layer of any associations and dis-

associations that have occurred. These notifications trigger the EIGRP diffusing

computations that adjust the routing tables appropriately. For instance, when an AP

receives a disassociation message from a MS (moving out of range), it sets the link

metric for that MS to infinity. On the other hand, when an AP receives an associa-

tion message from a MS (moving in range), it sets its link metric to a certain value

(this value is the same for all MSs). We chose the value of 100, but it could be any

reasonable value. Also, the secret key will be propagated with the EIGRP updates

informing the peer EIGRP routers about the new MS.

4.4 Experimental Results

The test environment is a simulation of a subset of Georgia Tech campus which

consists of 7 buildings, in an area of 120 acres as shown in Figure 20. All 7 buildings

are connected to the backbone routers with a mix of 1Gb and 100Mb links. The
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experimental network topology was constructed as follows. Every building network

includes a wired and a wireless network. The wired network consists of 3 subnets

with 30 end hosts each connected through 10Mb links as shown in Figure 21, while

the wireless network is made of a single access point and 9 mobile stations per access

point on average. The total topology has 720 wired end hosts, 72 mobile stations,

and 42 routers including the 8 access points. The choice of buildings was made to

include worst-case scenario for EIGRP convergence. The EIGRP agents are triggered

by the handoffs of the APs, and the handoffs come in two flavors: live-handoff, and

dead-handoff depending whether there is an overlap in wireless coverage or not.

In [27], Kotz reported that 53 percent of the traced wireless traffic was web brows-

ing and the rest included data-backup, peer-to-peer file sharing, file transfer, etc.

However, we believe that with today’s development in wireless technology, 54g wire-

less cards, mobile users will tend to do most of their work through wireless media

wherever possible, which leads us to believe that most or all of them would have one

or more long–lived active TCP connection.

We modeled two types of mobile users. First, those who start a TCP connection

and remain stationary. The second are those who start a TCP connection, and then

move around the campus while the connection is active. Our experiments included

both types of users, as this would be the more realistic model and would also clearly

show EIGRP convergence capability when mobile devices move across subnetwork

boundaries.

All of our experiments have background traffic which includes web browsing and

data-backup/file transfer traffic running on the wired end hosts. There are 700

web browsers on 200 wired end hosts that randomly connect to a group of web

servers(located outside the campus), each handling a large number of simultaneous

requests. The size of the individual web object requests, the size of the replies, and

the time delay between the requests is modeled based on empirical measurements
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described by [33]. There are 75 file transfers between 150 wired end hosts with a

uniformly distributed size between 20 and 80 MB. The wireless users traffic is com-

posed of 72 long-term on-campus/off-campus TCP connection uniformly distributed

between 20 and 50MB each. As mentioned previously, all of the simulations were per-

formed using our Georgia Tech Network Simulator (GTNetS), enhanced to include our

detailed model of the EIGRP protocol and realistic wireless handoff models. The sim-

ulations were run for 400 simulation seconds, which resulted in a number of wireless

handoff actions and routing convergence computations as reported below.

To illustrate the robustness and reliability of EIGRP, we ran four sets of experi-

ments to collect a set of metrics. Some metrics were also chosen to demonstrate the

feasibility of the mobile computing within an AS with the deployment of EIGRP. The

chosen performance metrics are the following:

1. EIGRP Convergence Time is the period of time that takes the routing

protocol to converge and the routing tables to reach a steady state. This metric

determines the overall performance of TCP connections, since with long conver-

gence times active TCP connections might experience substantial packet losses

and several timeouts resulting in reduced performance. Figure 22 and Figure

23 shows the EIGRP convergence time (log scale) throughout the simulation

time for two experiments. Both experiments have the same topology shown in

Figure 20, the only difference being the radio range for both wireless devices

being 300 feet (resulting in overlapping coverage between most of the buildings)

in first experiment and 200 feet (resulting in several dead zones) in the second.

Initially, all EIGRP routers started randomly between 0 and 20sec, after which

the mobile devices start moving according to a specific waypoint model. We

see in the figures that EIGRP has a maximum convergence time of around 0.7

milliseconds for the 300ft radio range, and 9.0 milliseconds for the 200ft radio

range. Using 200ft radio range, there will be more dead zones resulting in mobile
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hosts disassociating from APs (triggering EIGRP updates). Next, while EIGRP

is converging, mobile hosts associations will trigger new EIGRP updates thus

extending the convergence process. The convergence period is acceptable even

for wireless users, as the packets destined to the MS need to be forwarded to

the new AP as soon as the MS get associated with it.

It is true that the mobility model (number of users, walking patterns and speed)

has a substantial effect on the EIGRP convergence time. In the worst case,

handoffs would be so frequent that the protocol would never converge since

during the convergence the topology has again changed. However, we believe

that our experimental results are scalable to any reasonable mobility pattern

and reasonable network topology size. We considered the normal walking speed

of 4.4 feet per second as the general speed within the campus, and we de-

fined specific waypoint models that best represent the mobility patterns for the

campus users. Since the longest measured convergence time was less than 10

milliseconds, we would have to experience more than 100 handoffs per second

to overrun the convergence process with update actions. One of the reasons

that our convergence times are fast is that our experiments are limited to a

single AS within a small geographic region, leading to a very small propagation

delay. In our wired topology, we used one microsecond for the propagation de-

lay on all wired links. This is certainly reasonable for most moderate sized AS

subnetworks.

In addition, the reason for the extra spikes in convergence time shown in Figure

23 is the number of dead zones. A dead zone occurs when a user leaves the cov-

erage area of his existing access point association before coming into coverage

range of another access point. As soon as the MS is disassociated from the AP,

an EIGRP update event is triggered and results in subsequent DUAL computa-

tions. When it comes into range with a new AP, another EIGRP update event
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Figure 22: EIGRP Convergence Time for 300ft Radio

is triggered and EIGRP has to converge again.

Since most EIGRP packets are configured to have the same priority as any

other packets in the network, a heavy load on the network might cause a longer

convergence time for the routing protocol, due to increased queuing delay on

the congested links. This is illustrated in Figure 24 and Figure 25. However,

even with a large load on the network, the convergence time of EIGRP in this

environment is still extremely small and acceptable for our applications.

2. TCP Performance measures the amount of data sent by an active TCP

connection per unit time. In this environment, the EIGRP convergence time

is one of the main factors that impacts TCP performance. If the network

experiences excessively long EIGRP convergence times, active TCP connections

would endure heavy packet loss and numerous timeouts. Having shown with

previous experiments that EIGRP in fact converged quickly due to host mobility,

we expected that the TCP connections over moving wireless media with handoffs
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Figure 23: EIGRP Convergence Time for 200ft Radio

to behave as similarly as the stationary wireless media. We point out that TCP

over wireless media has several other issues which are outside the scope of this

paper.

The same experiments that were used to compute EIGRP convergence time

resulted in the TCP performance measurement illustrated in Figure 26 and

Figure 27. The figures show the TCP sequence number transmitted as a func-

tion of time. Clearly, a higher slope indicates better throughput. As mentioned

earlier, we have 72 mobile devices, with each one having an active TCP con-

nection. The flow that is shown in Figure 26 is one of the 72 wireless flows.

We chose this particular one as it represents the TCP performance for a mobile

station as it experiences handoffs. For this particular flow, the MS visits three

networks during its mobility pattern. The handoff actions occurred at approx-

imately 100, 200, and 300 seconds. One can notice that the first handoff was

clean, with few retransmissions. However, the connection during the second
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Figure 24: EIGRP Convergence Time with Data Flows

handoff had no activity for short intervals. This was not a dead zone handoff;

rather it was a live handoff. In cases when the mobile is at the boundary of

overlapping access points, we are bound to see oscillations because of the wire-

less characteristics and the CSMA/CA properties. The multiple associations

and disassociations that we see when the mobile station move through such a

region are an artifact of this.

The results in Figure 26 and Figure 27 are for a 300ft radio range experiment

with and without mobility. The MS shown in the bottom curve had a total of

11 handoffs. In most of our results, the stationary MS throughput was higher

than the mobile one as expected. However, some of the mobile users (actively

moving) had similar throughput as the stationary users as shown in Figure 27.

This was for the on-campus connection since its short RTT (Round Trip Time)

enables the wireless user with mobility to perform better. When a MS gets

associated with a new AP, it resets its transmit queue. Again, the experimental
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Figure 25: EIGRP Convergence Time with No Data Flows

results are based on the wireless users which incur a lot of dynamic network

changes, thus representing worst-case scenarios for EIGRP performance.

3. EIGRP Overhead is the overhead incurred in the routing protocol due to a

handoff from one access point to another. In a traditional wired network, when

the EIGRP routers start they will exchange their routing table information with

neighboring routers, causing many update and reply messages. After some pe-

riod of time, the EIGRP protocol converges to a steady state with each EIGRP

speaker having the same view of the overall network topology. As long as there

is no router failure, link failure or cost metric change, there is only the low

overhead of the periodic EIGRP Hello packets. However, in our experimental

setup every AP is running an EIGRP protocol instance, the dynamic changes in

the network due to end host mobility induce a number of EIGRP messages as

the protocol recomputes the optimal routing paths. Therefore, we measured the

total number of EIGRP messages to show the effect of the additional network
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Figure 26: TCP Performance for a MS
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Figure 27: TCP Performance for a MS with On-campus Connection

76



load due to mobile handoffs and routing reconvergence.

Table 4: EIGRP Overhead During a Mobility Speed of 4.4ft/sec
EIGRP Events During
Startup Mobility

Updates 1,897 4,346

Queries 0 4,662

Replies 0 4,662

Table 4 shows the overhead of EIGRP measured when running an experiment

with normal walking speed of 4.4 feet per second for mobile devices, and using

a 300 foot radio range APs and MSs across the campus subset shown in Figure

20. When the network starts up, the EIGRP routers have to exchange the

routing tables, which triggers 1,897 EIGRP update packets. After the network

converges and all routing tables have reached a steady state, the MSs start their

TCP connections and begin to move between the campus buildings. All MSs in

our experiments follow a specific waypoint model designed to realistically model

a user walking on campus. The mobility in this particular experiment resulted

in an EIGRP overhead of 4,346 update packets, 4,662 query packets, and 4,662

reply packets. This may seem substantial, but recall that the EIGRP protocol

uses partial updates rather than full routing table exchanges. Further, these

several thousand updates were spread over a period of 400 seconds throughout

our simulation execution. Since, there are a total of 40 MS in motion and on

average each moves between four buildings (according to our specific waypoint

model), the 300ft radio range experiment resulted in a 284 handoffs. Some of

the handoffs (a small percentage) were due to the coverage overlap, and this

resulted in some oscillations.
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4.5 Conclusion

We have developed a scalable and detailed simulation model of EIGRP that is publicly

available for researchers in the computer networks community. Also, our performance

analysis of the protocol has shown its robustness and capability to adapt quickly to a

very dynamic network. In addition, we have shown that the host mobility using route

updates is a viable method to achieve seamless mobility and continuous connectivity

for users of mobile wireless devices as they move within an AS. The EIGRP overhead

incurred from mobility is minimal as all of EIGRP query and reply messages are small.

Using our approach, there is no need to deploy new hosts or agents, make special

configuration, or request support from any end points. We do need instances of the

EIGRP protocol running on the APs, or an interface between the AP and existing

EIGRP routers to inform the routing protocol of associations and disassociations.

Also, an authentication mechanism between the APs and the mobile hosts is needed

to prevent session hijacking.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This dissertation provides contributions to the field of conducting detailed large-scale

realistic IP Anycast (coupled with BGP) and EIGRP simulations. We first developed

a new technique to federated network simulations that enables large-scale simulations

regardless of the complexity of the network topology being simulated. The second

contribution was the extension of a detailed BGP simulator (BGP++) to include IP

Anycast service. The third contribution was the implementation of EIGRP into a

scalable network simulator, and the introduction of a new approach to host mobility

within an AS. Route updates are used to convey the new point of attachment of the

mobile node.

5.1 Ghost Node: An Enabling Technique for Distributed

Network Simulations

In Chapter 2 we introduced a new approach to federated network simulations. One

way to creating network simulation models for large-scale topologies is to use a space-

parallel partitioning methodology, coupled with distribued simulations methods. In

this approach the simulated network is divided into k sub-models, where k is the

number of federates in the distributed simulation. With this approach each federate

is only responsible for approximately 1/kth of the entire topology, and instantiates

simulation objects to represent its own portion of the network. Since a given federate

has no responsibility for the remaining (k−1)/k portion of the network, no simulation

objects are created and thus the federate has no knowledge of the remaining topology.

However, difficulties arise in order to insure correct packet forwarding between

79



the federates especially when the simulated network is well interconnected. We over-

come these difficulties by introducing a new mechanism that provides full topology

knowledge at every federate. We utilize a topology partitioning methodology that

uses Ghost Nodes. A ghost node is a simulator object in a federate that represents a

simulated network node that is spatially assigned to some other federate, and thus no

other federate is responsible for maintaining state information associated with that

node. The ghost node acts as a placeholder for nodes that are assigned to other fed-

erates. It has none of the complex and memory intensive state needed for real nodes

(such as queues, routing tables, port maps, and applications). Rather, it simply con-

tains toplogy connectivity information about links and neighbors. Therefore, using

ghosts, a federate is affordable a global view of the simulated topology, without the

memory overhead of maintaining unneeded state for the ghosts.

Experimental results of small (15,000 nodes) and large (over 1 million nodes)

networks showed that the ghost node approach is a viable method to achieve efficient

and easy-to-use space-parallel network simulations. The memory required for the

ghosts is small relative to the overall memory footprint of a large-scale simulation.

The implementation of ghost nodes in GTNetS allows the same simulation script

to be used for all federates, with simple command line parameters identifying node

mapping.

Even with the ghost node approach, the simulation user must still specify the

mapping of node objects to federates. In all but the simplest cases, determining a

suitable and efficient mapping is challenging and requires considerable analysis of the

traffic patterns between the simulated network elements. Liu and Chien[32] describe

an automated method to partition networks used in their MicroGrid[54] emulation

tool. These results seem promising, and investigating their applicability to the ghost

node approach for space–parallel network simulation can be a future research work.
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5.2 BGP-Anycast Routing Simulation Analysis

In Chapter 3 we provided a simulated IP Anycast [41] testbed that is implemented in

a detailed BGP simulator. This testbed was used to replicate the real world topology

in a simulated environment in order to analyze the performance and limitations of IP

Anycast. Also, we investigated the impacts of IP Anycast on BGP.

Our experimental analysis were all based on DNS Anycast deployment, because an

increasing number of DNS Root Server operators are using IP Anycasting techniques

to improve availability and load balancing of root servers. We wanted to simulate DNS

Anycast deployment that is as close as the real deployed network. Thus, we inferred

a large realistic Tier-1 and Tier-2 topology (5476 ASs) based on BGP routing tables

as observed by the RouteViews Project [36]. Also, we made extensive use of AS link

adjacency data available on CAIDA websites for generating the topology.

In addition, we used a modified technique [13] based on Gao’s [18] AS level in-

ference strategy to infer the provider-customer, peer-peer relations between ASs. We

used this experimental setup to reflect the commercial nature of the Internet. Also,

our simulations entailed two kinds of topology failures: silent link failure, and prefix

withdrawal. These failures were induced in the topology after BGP converged to

evaluate the impact of BGP convergence on the response time of DNS Root Server.

The simulation of the 5476 node topology was only made available through the use

of the Ghost technique introduced in Chapter 2.

Our study showed higher availability of the prefix and reduced latency using IP

Anycasting. Furthermore, our comparison of IP Anycasting to the traditional ap-

proach (using a single server per service) showed that BGP incurs less overhead when

IP Anycast is deployed. The BGP churn was measured after topology failures were

induced. Like other studies, we found that most current Anycast deployments do not

achieve good load balancing. However, in the case where local nodes advertise a more

specific prefix, the load on global nodes is reduced.
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To our knowledge, this is the first detailed BGP simulator coupled with IP Anycast

service. We are expecting this simulator to be used as a framework for future analysis

of IP Anycast. Future work could incorporate more failure models to determine their

impact on IP Anycast and BGP. Also, it could be used to futher investigate the effects

of BGP policies on load balancing.

5.3 EIGRP Simulation Model and Seamless Mobility Using

Route Updates

In Chapter 4, we introduced a simulation model of EIGRP in a scalable simulator

GTNetS. Also, we presented a new approach for host mobility within an AS. The

chapter discusses the simulation framework and our implementation efforts of EIGRP

and wireless-handoff in GTNetS.

In short, we developed a model of EIGRP protocol in GTNetS. The protocol

was not ported, but rather implemented from publicly available specification. We

implemented a subset of EIGRP functionality, specifically link failure, link restoration

and link-metric change. Also, our new host mobility approach can be summarized as

follows. The wireless Access Points (APs) are allowed to behave as EIGRP routers

(or running EIGRP agents), and access points. Also, the mobile hosts are allowed

to retain a fixed IP address while those systems move across subnet boundaries.

This way, as the mobile hosts move across network coverage, the wireless handoffs

between the mobile hosts and the APs will trigger the EIGRP agents to send route

advertisements to inform routers of new or revised routes to reach the mobile systems.

Our experiments showed EIGRP’s robustness and capability to adapt quickly to

a very dynamic network (a network composite of wired and wireless hosts with high

mobility). In addition, we have shown that host mobility using route updates is a

viable method to achieve seamless mobility and continuous connectivity for users of

mobile devices as they move within an AS. The results showed that EIGRP converges

faster than a single TCP timeout in most cases.
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