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SUMMARY

Energetic structural materials (ESMs) constitute a new class of materials that

provide dual functions of strength and energetic characteristics. ESMs are typically

composed of micron-scale or nano-scale intermetallic mixtures or mixtures of metals

and metal oxides, polymer binders, and structural reinforcements. Voids are included

to produce a composite with favorable chemical reaction characteristics.

In this thesis, a continuum approach is used to simulate gas-gun or explosive load-

ing experiments where a strong shock is induced in the ESM by an impacting plate.

Algorithms are developed to obtain equations of state of mixtures. It is usually as-

sumed that the shock loading increases the energy of the ESM and causes the ESM

to reach the transition state. It is also assumed that the activation energy needed

to reach the transition state is a function of the temperature of the mixture. In this

thesis, it is proposed that the activation energy is a function of temperature and the

stress state of the mixture. The incorporation of such an activation energy is se-

lected in this thesis. Then, a multi-scale chemical reaction model for a heterogeneous

mixture is introduced. This model incorporates reaction initiation, propagation, and

extent of completed reaction in spatially heterogeneous distributions of reactants. A

new model is proposed for the pore collapse of mixtures. This model is formulated by

modifying the Carol, Holt, and Nesterenko spherically symmetric model to include

mixtures and compressibility effects.

Uncertainties in the model result from assumptions in formulating the models for

continuum relationships and chemical reactions in mixtures that are distributed het-

erogeneously in space and in numerical integration of the resulting equations. It is

xvi



important to quantify these uncertainties. In this thesis, such an uncertainty quantifi-

cation is investigated by systematically identifying the physical processes that occur

during shock compression of ESMs which are then used to construct a hierarchical

framework for uncertainty quantification.
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Chapter I

INTRODUCTION AND BACKGROUND

1.1 Overview

Energetic structural materials (ESMs) constitute a new class of materials that provide

dual functions of strength and energetic characteristics [4, 5, 88, 101, 37]. These mate-

rials are typically composed of mixtures of reactive materials, binders, and structural

reinforcements. Reactive materials consist of micron-scale or nano-scale inter-metallic

particles; mixtures of metals and metal oxides; or oxidizing metals. The role of struc-

tural reinforcements, polymer binders, and voids are included to produce a composite.

Gas-less reactions and are sometimes called as heat detonations [20]. The failure cri-

teria for ESMs consist of the following two failure branches: (1) one branch consists

of strength-based failure. In this branch, the material is expected not fail due to lack

of sufficient strength when subjected to static or dynamic loading or when exposed to

specified high temperatures; (2) the second branch consists of chemical reaction-based

failure. In this branch, chemical reactions are not expected when the structure with

ESM is expected to operate under expected static or dynamic loading. Of course, the

reaction must initiate and complete when needed.

Major difficulties arise when attempting to understand several processes during

intense dynamic loading in ESMs, namely chemical reaction mechanisms, melting,

inelastic behavior, and fracture. In particular, atomistic processes in chemical reac-

tions are not well understood [104]. Direct experimental observations with current

technology are limited. The physical processes involved are inherently multi-scale [92]

that span from quantum mechanical scales to continuum scales in space and fempto

second to milliseconds in time.
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Current shock induced chemical reaction (SICR) and shock assisted chemical re-

action (SACR) models consist of three independent reaction processes, namely ini-

tiation, propagation, and complete reaction. In some cases, shock-induced chemical

reactions in ESMs are explained [28] by a homogeneous solid-state approach and a

heterogeneous solid-liquid approach. In the former approach, a solid-state reaction

occurs due to a high density of defects produced in shock compression of high pres-

sures and in a high temperature environment [28]. In the latter approach, one of the

reactive mixture components is assumed to be in the liquid state before the reaction

initiation proceeds [28, 88].

Another leading process is known as the mechanochemical process that leads

to reaction initiation and involves plastic deformation, flow, and mixing of con-

stituents [112]. Thadhani et al. [113] suggested that the initiation of the reaction

depends strongly on the relative deformation and the fracture of constituents, or

solid state mechanochemical effects. Shock-induced chemical reactions are initiated

within the time scales of mechanical (pressure) equilibration; shock-assisted chemical

reactions are initiated on the larger time scales of thermal equilibration, after release

waves have allowed mechanical relaxation [112]. Gas-gun or explosive loading exper-

iments are a class of experiments that are used to study ESMs and similar reactive

powder mixtures under shock conditions [64, 120, 39].

Formulation of models that fully predict all the complex physical processes that

occur during shock compression of ESM and reactive material mixtures, without ex-

periments, is an active area of research. Very often we rely on experiments to validate

models and in many cases to calibrate unknown model parameters. However, the com-

plex behavior, currently available measurement tools, and the needed measurement

time scales of the order of femto seconds and small length scales severely limit the

capability of acquiring all the needed experimental data.
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Previous shock induced and shock assisted chemical reaction theoretical and com-

putational studies are conducted at either the mesoscale or the macro-scale [14, 15,

33, 34, 5, 29, 37, 88, 101, 4, 5, 29]. The mesoscale is the middle scale and is defined

here as the scale that includes a detailed description of metallic or metal oxide powder

granules. Macro-scale is concerned with the continuum description of the mixture,

therefore individual granules are not explicitly described at this scale. A multi-scale

approach that incorporates results from a mesoscale simulation into a macro-scale

model does not currently exist. Reasons for this include i) mesoscale simulations for

shock induced chemical reactions are relatively new, ii) coupling between chemical

and mechanical processes is complex, and iii) currently available chemical reaction

models are insufficient for describing chemical reactions in heterogeneous media.

1.2 Shock-Induced Chemical Reactions

Several models and mechanisms are published to describe shock induced chemical

reactions. One of the earliest is the ROLLER model by Dremin and Breusov in

1968 [35] in which the sliding interface between two crystals are assumed to produce

a small nucleus or roller, which accumulates material in the formation of a new phase.

Batsanov in 1986 was one of the first to investigate “superfast induced diffusion under

shock loading” [8]. Both the ROLLER and Batsanov models do not include reaction

initiation conditions.

In the CONMAH model by Graham [52], physical mechanisms such as, pore col-

lapse, mixing of reactants, shock activation, and heating at sites of intimate reactant

contact are considered. The reaction initiation mechanisms include: 1) large degrees

of fluid-like plastic flow, 2) turbulent mixing, 3) defect generation, 4) cleansing of ex-

isting reacting surfaces, 5) formation of new reactant surfaces, and 6) elevated surface

temperatures.

Thermochemical models that are introduced by Boslough in 1990 [20] and others
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model the reaction initiation based on a temperature increase due to void collapse.

Boslough found that reactions occurred at extremely fast rates as evidenced by tem-

perature increases that could not be explained by the plastic work alone, which he

called “heat detonations” or the heat detonation model.

Horie and Kipp present a chemical reaction model for the Ni+Al system (1988 [62]).

The heterogeneous model for the heterogeneous distribution of reactants includes par-

ticle or grain size and surface area effects. The resulting product formation rate is

described by a non-dimensional ordinary differential equation. The spatial hetero-

geneity is not explicitly simulated.

A model known as the Ballotechnic model is due to Bennett and Horie ([10] in

1994) is an extension of earlier work by Graham et al. [52] and Song et al. [110]

Gasless detonation for the Ni + Al system is studied in which heat and volume

expansion result from the exothermic chemical reaction. This model assumes a full

pore collapse and employs a model known as the snow-plow model [10]. Heat from

reaction is included. This model is designed to offer a “closed form prediction of the

Hugoniot of the reacted powder” [10]. The model does not include reaction initiation

criterion and a finite chemical reaction rate (reaction is instantaneous).

The extended VIR model (1994) is a continuum model by Bennett, Horie, and

Hwang [11]. The mixture is separated into two subsystems so that the rate and the

extent of reaction are controlled independently in each subsystem. Reaction is only

permitted in the subsystem that is downstream of the shock front and a time delay

is simulated in the chemical reaction. As with many of the continuum approaches,

reaction initiation is based on the heterogeneous solid-liquid approach. Additionally,

as with all of the shock induced chemical reaction models [78, 88, 101], thermodynamic

quantities are assumed to be in equilibrium.
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The BN theory by Baer and Nunziato (1986) models explosive mixtures as phase-

separated substances [6]. This theory is formulated for any system of energetic mate-

rials including ESMs. The mixture is treated as a fluid in thermodynamic equilibrium.

A critical review of this theory is given by Bdzil et al. [9] in 1999. This approach

is to study deflagration-to-detonation transition in granular materials. A gas phase

is produced due to chemical reactions, thus, it is necessary to modify the model for

gas-less reactions of ESM investigated in this thesis.

The model of Namjoshi and Thadhani [87] (2000) predicts reaction synthesis of

Ti-Si powder mixture compacts, densified at 5 to 7 GPa. Rapid solid-state diffu-

sion describes the mass mixing. Reaction kinetics are assumed based on Carter’s

solid-state diffusion [26, 27]. A one dimensional “slab” model is employed for heat

conduction. Reactions complete in approximately 10 seconds.

A non-equilibrium thermodynamics continuum model is formulated for a study

of ESMs in 2005 by Lu, Narayanan, and Hanagud [78, 88]. A heterogeneous solid-

liquid approach for reaction initiation is employed. The core strength to the non-

equilibrium thermodynamics framework is the use of extended irreversible thermody-

namics and the formulation that yields epressions to calculate heat due to irreversible

processes. Also, the rate of entropy production is quantitatively expressed by the

non-equilibrium terms [78, 88]. As is needed in all continuum models, it is necessary

to determine the parameters by experimental or ab initio methods.

The RAVEN code approach [14, 15, 33, 34, 5, 29, 37] is a mesoscale alternative to

the macro-scale models and mechanisms. Material granules with distributed mass are

included in a two dimensional space that appears as, flakes, or cylinders of material

constituents with binder material such as Epon828 and voids [5]. The constituent

materials are separated from each other by discrete interfaces or boundaries. Ther-

momechanical processes including plastic flow, pore collapse, mixing behavior, and

heat conduction are simulated with relatively high resolution.
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RAVEN is a two dimensional multi-material Eulerian hydrocode developed by

Benson [14]. RAVEN uses the monotonic upwind scheme for conservation laws

(MUSCL) [73] in an Arbitrary Eulerian-Lagrangian method in which the material

interfaces are tracked by Youngs’ method [79]. Conserved quantities include mass,

momentum, and energy. An example of the RAVEN code approach that is applied

to study shock induced chemical reactions is the model (with chemical reactions) by

Do and Benson [33]. In this approach, components of the mixture are assumed to

be immiscible and to have an infinite transport rate. However, this modeling ap-

proach is restricted to applications in which the reaction of the powder mixture is

complete. The RAVEN code approach [33, 34] also requires a reaction initiation cri-

terion, namely, the solid-liquid approach. An example microstructure used in the

RAVEN code by R. A. Austin [4] is shown in Figure (1).
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Figure 1: Actual microstructure provided by R. A. Austin. Mixture contains 60%
theoretical mass density, particle diameters dNi ≈ dAl ≈ 25µm. Void space, V , is
shown in blue.

1.3 Chemical Reaction Models

The three distinct reaction processes, initiation, propagation, and complete reaction,

used in the published shock induced chemical reaction models are discussed next. The

extent of reaction is defined as the amount of conversion from reactants to products.
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1.3.1 Reaction Initiation

Shock initiation of chemical reactions in spatially heterogeneous explosives has cen-

tered around the understanding of “hot spot” formation, as introduced by Bowden [22]

and Eyring [40]. A hot spot is defined here as a region in which reactants reach a

temperature significantly higher than the surrounding material. The amount of re-

actants and temperature required for a hot spot to be defined is currently unknown.

Boyer’s [23] (1969) work incorporates hot spots in a reaction rate model for shock

initiation of chemical reaction in TNT. More recently, hot spots are used to inves-

tigate shock induced chemical reactions for intermetallic mixtures (for example see

Austin [4] in 2005).

With the idea of reaction initiation due to hot spots, Lee and Tarver [72] present

a phenomenological model which applies to a wide range of explosives and a wide

range of shock initiation stimuli. A heterogeneous process is assumed in which the

temperatures of the reacted and un-reacted material are not in equilibrium. The

hot-spot ignition model is based on experimental observations using r = 4 in the rate

equation given by,

∂F

∂t
= I(1− F )xηr + G(1− F )xF ypz. (1.1)

In this equation, η = Vo/V1, F is the fraction of explosive that has reacted, t is

time, Vo is the initial specific volume of the explosive, V1 is the specific volume of

the shocked, unreacted explosive, p is pressure in megabars, and I, x, r, G, y, z are

constants.

Equation (1.1) with r = 4 is used when the inelastic work required for hot-spot

formation, due to void collapse. The so-called p2 assumption has yielded the best

correlation with experimental results. Walker and Wasley propose a similar critical

energy criterion for initiation of detonation which is now known as the P 2τ = const

criterion, where τ is in units of time.

Hot-spot shock ignition and growth-to-detonation, double shock ignition, and
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quenching and reignition in solid explosives are in a report by Horie, Hamate, and

Greening [61] (2003). Their hot-spot model is a planar, combustion model with a

propagating hot and reacting surface that is initially heated by either localized me-

chanical heating or by other means of external heat supply. Further details are in a

review by Bdzil et al. [9].

Recent reaction initiation models, proposed since 2006, are now reviewed [53, 54,

32, 17]. Gur’ev, Gordopolov, and Batsanov [53] propose a mechanism for the chemical

transformation and a heterogeneous Zn−Te system. This approach accounts for the

increase in specific volume due to the formation of products. Shock wave pressures are

strong enough in all cases to initiate chemical reactions since the sample materials

are heated to temperatures close to the point in which chemical reactions occur.

Solid state reactions are shown to be feasible by evidence of increased shock wave

velocity with increased sample pre-heating. In a similar study by Gur’ev, Gordopolov,

Batsanov, Merzhanov, and Fortov [54], experiments are performed for the solid state

detonation in the zinc-sulfur system. The exothermic solid-state detonation represents

a new type of transport phenomena in reactive media.

Dienes, Zuo, an Kershner [32] propose a statistical approach for modeling the

dynamic response of brittle materials including explosives. Conventional explosives,

PBX-9404, PBX-9502, and PBX-9501 are investigated. Although these explosives

are not ESMs, it is useful to examine these models since it is possible to develop

similar models to investigate ESMs. Some reaction initiation models are discussed

here. Intense heating is hypothesized at crack interfaces during compaction, in which

hot spot formation is possible [32]. At low shock velocities, interfacial friction is

thought to be a dominant mechanism. Subsequent reaction and possible detonations

are considered. The critical temperature for ignition is given by [75],

Tc(Ti, q̇) =
EA

R

1

ln (ρQrZkTi/q̇2)
(1.2)
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where Ti is the initial temperature, q̇ is the heating per unit area (flux) due to inter-

facial friction, EA is the activation energy, R is the universal gas constant, ρ is the

mass density, Qr is the heat of reaction per unit mass for chemical decomposition, Z

is the frequency factor, and k is the thermal conductivity.

The ten hot-spot mechanisms that are pointed out in reference [32] are: 1) Adi-

abatic compression of cavity gases, 2) Heating of solid adjacent to collapsing cavity,

3) Viscous heating of binder between grains, 4) Friction between impacting surfaces,

5) Localized adiabatic shear, 6) Heating at crack tips, 7) Heating at dislocation pile

ups, 8) Spark discharge, 9) Triboluminescent discharge, 10) Decomposition followed

by Joule heating of metallic elements. The role that these hot-spot mechanisms have

in intermetallic and metal/metal oxide systems is an open area of research.

Reaction initiation mechanisms for sulfur and zinc, bismuth oxide and aluminum,

and copper (II) sulfate and sulfur by Gordopolov and Viljoen [49] in 2004 requires

an energy release during shock compression. Fracture initiates at the shock front

if sufficient energy is dissipated from elastic, chemical, and thermal contributions.

Gordopolov and Viljoen suggest that the material “volatilizes” when the dissipated

energy reaches the limit of the theoretical strength of the crystalline structure but

the storage of energy in excited states may occur prior to this limit.

Bolkhovitinov and Batsanov [17] in 2007 employ the classical Jouguet-Zel’dovich

theory, in which the hydrodynamic equations describe the state of the medium in the

Jouguet plane, where the chemical reaction is terminated in high explosives. Detona-

tion velocities are shown to closely match experimental results using manganese and

zinc chalcogenides.

1.3.2 Reaction Propagation

The modified Arrhenius model by Lu, Narayanan, and Reding [78, 88, 101] is a gen-

eralized form of the Arrhenius model used in shock induced chemical reaction studies
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Figure 2: Wagner mechanism

and is given in equation (1.3). The modification accounts for the non-equilibrium re-

action rate behind the shock front [78]. However, this modification does not delay the

onset of chemical reaction, which depends entirely on the reaction initiation criterion.

τΘΘ̇ + Θ = +Ao

(
+φ(l)

)
exp

{
−

+µa

RT

}∏
p+

[
+Cp

]+vp

+−Ao

(−φ(l)

)
exp

{
−

−µa

RT

}∏
p−

[−Cp

]−vp
(1.3)

where Θ is the chemical reaction rate, τΘ is a relaxation time for the chemical reaction

rate, R is the universal gas constant (8.314472J ·K−1 ·mol−1), T is the temperature,

Ao is the pre-exponential factor, φ(l) is the mass fraction of the constituents in the

liquid phase, µa is the activation energy, +() refers to the reactant group and −()

refers to the product group. vp is the stoichiometric coefficient and Cp (mol/m3) is

the concentration of reactant phase p and is given by,

Cp =
φpρ̄

Mp

(1.4)

and changes in the rate are given by,

Ċp = vpΘ. (1.5)

1.3.3 Reaction Extent

In most shock induced chemical reaction studies, reaction extent is chosen to be either

complete (in cases where complete reactions occur by experimental observation [33])

or partial by estimating the extent of reaction to closely match experimental data [11].
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One study that aims to explain partial reactions is due to Batsanov [7], in which a

forced diffusion model is used to model solid-phase reactions induced by shock waves.

The time needed for a particle of one component to diffuse through a particle of

another component is

τ = 2d/∆u12 (1.6)

where d is the particle diameter, u is the particle velocity, and ∆u12 = u1−u2. Partial

reactions are explained for cases in which ∆u12 is insufficient for a particle of a certain

size to pierce another particle.

1.4 Pore Collapse

Ductile fracture criterion, in porous materials, with shear banding is considered by

McClintock, Kaplan, and Berg [81]. McClintock [82] presents a very strong inverse

dependence of fracture strain on hydrostatic tension in plastic materials. Dienes, Zuo,

an Kershner [32] use this work in modeling explosives.

Oh and Persson [95] propose an empirical equation of state for accurate extrapo-

lation of high-pressure shock Hugoniot states to other thermodynamic states. Porous

Hugoniots are extrapolated from corresponding solid Hugoniot data. A similar ap-

proach to formulate an equation of state with application to porous mixtures is by

Wu and Jing equation [119] in 1996. Geng, Wu, Tan, Cai, and Jing [45, 46, 44] modify

this model (2002).

Silvia and Ramesh [30] consider porosity as an internal variable. To investigate

dynamic powder consolidation for porous pure iron (up to strain rates exceeding

103s−1), a finite deformation viscoelastic model is formulated using the theory of

composites [30]. These strain rates are not as high as the strain rates that are observed

in shock consolidation experiments [85].

Other continuum models to describe pore collapse in energetic granular metallic

mixtures are in references [20, 110, 11, 10, 114, 78, 88, 101]. All of these models use

11



the widely used P −α model by Herrmann [60] to describe pore collapse. A quadratic

dependence of porosity on pressure is assumed for all of these studies except for the

work in [114]. The P − α model is an equation of state, without temperature effects.

The P − α model depends on pressure. A study of dynamic compaction in porous

media [18] compares commonly used models, namely P − α, P − λ, and snowplow

model.

1.4.1 P − α Model

The P−α model by Herrmann [60] in equation (1.7) is a pore collapse equation of state

which is applied in porous aluminum and iron [24, 11]. The quadratic dependence

on pressure is given by n = 2 in equation (1.7). This equation of state assumes that

P = P (ρ) only.

α =


αo

1 + (αo − 1) [(P s − P ) / (P s − P e)]n

1

;

;

;

P < P e

P e ≤ P ≤ P s

P s < P

. (1.7)

The parameter n describes the order of porosity dependence on the pressure P and

is left as a general unknown material parameter. P e and P s are the elastic threshold

and pore collapse strength respectively. For P < P e, only elastic deformations are

assumed to take place and for P > P s complete closure of the voids is assumed. The

porosity is a measure of the void content and is expressed in terms of specific volume

v and density ρ by,

α =
v

vd

=
ρd

ρ
≥ 1 (1.8)

where the densities ρd and ρ correspond to the dense and porous material at the same

temperature and pressure.

The central assumption used in the P − α model is that specific internal energy

is the same for the porous material and the fully dense material under identical

conditions of pressure and temperature [60]. This assumption implies that the surface
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energy of the pores is neglected. The equation of state for the porous material is

denoted by,

P = f (vd, e) = f
( v

α
, e
)

. (1.9)

1.4.2 P − λ Compaction Model

The P − λ model, developed by Grady [51, 50] is another model to describe pore

collapse. The porous material is split into two separate groups, un-compacted and

fully compacted. The mass fraction of compacted mixture is denoted λ and is an

irreversible state variable defined by,

λ = 1− e−(P/Y )n

(1.10)

where Y is the local mixture yield strength, P is the local pressure, and n is the

mixture homogeneity.

1.4.3 Spherically Symmetric Model

An alternative to the P − α model is the single pore models with spherical sym-

metry [24, 36, 91, 25, 92] shown schematically in Figure (3). This model includes

viscoplasticity and dynamic effects for a monolithic material with single constituent.

These models describe the pressure-density relation in the dynamic process of pore

densification due to a shock wave. A critical analysis of the Carroll-Holt model is

given by Nesterenko [92] with a detailed discussion of the reasons for the modifica-

tion of the classical Carroll-Holt model shown schematically in Figure (3(a)). The

modified Carroll-Holt model assumes a nondeformable central core [25, 91, 92] as

seen in Figure (3(b)). This physically represents the geometry of a granule. The

central core prevents the large strains in the hollow sphere model. The pore collapse

kinetics are successfully described for shock pressures 1 − 14GPa (in copper) based

on agreement with experimental shock front thickness [91, 92].
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Figure 3: Spherically symmetric single pore collapse models.

In contrast to the P − α EOS model, the spherically symmetric model gives a

history dependent simulation of the pore collapse process. The non-deformable core

prevents the outer shell from collapsing to the center. The superscript ( ′ ) notation in

Figure (3(b)) is not included in the following equations for convenience, i.e., ao = a
′
o

and bo = b
′
o.

It is assumed that plastic flow dominates the pore collapse process. It is also

assumed that the outside shell material is incompressible. Pore collapse is not affected

by this assumption when α is relatively high [92], or approximately greater than

α = 1.1. The following geometrical relations describe the radially symmetric motion

in the modified hollow sphere model:

r3 − a3 = r3
o − a3

o, θ = θo, ϕ = ϕo, (1.11)

where r, θ, and ϕ are spherical polar coordinates, c ≤ ro ≤ bo corresponds to the

initial radius of some point with the current coordinate r, and a and ao are the

current and initial inner radii of the model sphere.

The core radius c is determined based on the assumption that the volume of the

plastically deformed material (the volume of the outside shell) is equal to the volume

of empty space if the initial porosity of the granular material αo is smaller than

the minimal porosity α∗ achieved by dense packing of the granules. For cases when

αo > α∗, the volume of the outside shell is supposed to be equal to the volume of the
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empty space corresponding to the porosity α∗. This porosity is a function of particle

morphology. For the random packing of spheres, α∗ = 1.66 [47].

For granular materials (spherical), the mass in the model spherical cell and the

mass in the granular material are equal. The resulting relations between the model

parameters and properties of the powder are given in equation (1.12) for the case

when α∗ ≥ αo < 2.

bo = R 3
√

αo, ao = R, c = R 3
√

2− αo, α =
(

a
ao

)3

+ (αo − 1) , (1.12)

where R is the representative particle radius in the granular material. This is generally

unknown since the mixture components do not have uniform diameters. R is treated

as an unknown material parameter.

Wang, Li, and Yan [116] use the hollow sphere model or Carroll-Holt model to

study the mechanisms of energy deposition at the interface between granules in ex-

plosively compacted metal powders. A contact between mixture constituents is not

assumed to be degraded by physical and chemical processes. Therefore, only a single

constituent mixture is demonstrated. Their simulation results [116] show the cou-

pling between strain-rate hardening and thermal softening that results in melting.

Melting only occurs in a small region near the inner surface of the shell. Premature

melting may have occurred since the spherically symmetrical geometry of the hollow

sphere causes a singularity when the inner radius a from Figure (3(a)) approaches

zero [92]. Temperature produced due to the plastic work has a logarithmic singularity

(T ∼ ln a) and viscous dissipation tends to infinity (T ∼ a−5/2).

Results from Tang, Liu, and Horie [111] demonstrate a need for an improved

mesoscale pore collapse model through simulations that show strong localization ef-

fects. Benson, Nesterenko, Jonsdottir, and Meyers [15] stress the importance for

models to incorporate realistic powder morphology and a non-uniform plastic flow.

Their study [15] investigates the transition between quasistatic and dynamic regimes

regimes correlates with a defined “microkinetic energy (MKE)” and depends on the
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pressure, initial porosity and the mixture strength. MKE is a term introduced by

Nesterenko [90, 91, 92] to “describe the qualitative transition from the quasistatic

type of particle deformation to the dynamic type of deformation during the shock

wave loading of powders”.

1.5 Mixture Equation of State

Several methods have been presented [84, 20, 10, 11, 85] to calculate the mixture EOS

by using Mie-Grüneisen and Murnaghan EOS models with mass or volume fraction

averaged material parameters. Three methods [84, 10, 85] are commonly used in

shock studies in which mixtures contain more than one constituent.

1.6 Numerical Approaches

Regardless of any theoretical approach to describe the physical processes in shock

induced chemical reactions, the accuracy of the solution usually depends on the nu-

merical implementation. Various approaches are available to solve hyperbolic partial

differential equations numerically and to treat material interfaces.

The first methods for solving shock problems numerically were presented in 1950

by Von Neumann and Richtmyer [93] by the use of finite differences of differential

operators. These approaches often require the use of an artificial viscosity (case

specific) to damp numerical oscillations and a vast majority of implementations are

non-conservative [12]. Such approaches are also used in continuum simulations of

shock induced chemical reactions [78].

Finite element approaches are used in shock induced chemical reactions such as in

the extended VIR model [11] in which artificial viscosity is required. Finite volume

approaches such as the Monotone Upstream-centered Schemes for Conservation Laws

(MUSCL) algorithm [73] avoid the use of artificial viscosity through the use of slope

limiters [73]. This approach is also used in shock induced chemical reactions [88, 101].
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A major breakthrough in discontinuity (material interface and shock front dis-

continuities) front tracking is due to Glimm, Li, and Liu [48] in (2003), with the

introduction of conservative front tracking. This method is conservative even at dis-

continuities and improves accuracy by one order over the conventional algorithms

such as ghost fluid method [48].

1.7 Uncertainty Quantification

Uncertainty quantification of numerical simulations is necessary to establish the cred-

ibility of a numerical code and is composed of two main activities, verification and

validation. A new framework is necessary to conduct validation studies for the pur-

pose of designing energetic structural materials (ESMs) [88, 101, 4, 64].

A systematic hierarchial decomposition with the goal to identify independent ex-

periments is provided in an AIAA Guide [94]. Ultimately the objective is to calibrate

parameters and validate the numerical simulation using experimental data, there-

fore, a validation framework is required. A building-block approach [74] is recom-

mended [94] for assessing the accuracy of the computational results at multiple levels

of complexity. The complete system is decomposed into three progressively simpler

phases: subsystem cases, benchmark cases, and unit problems.

The state-of-the-art practice for simulation of shock induced chemical reactions

involves model qualification [94] based on many important physical processes. How-

ever, quantitative analysis of these models are difficult since only comparisons between

simulation and experiments are performed. Uncertainty quantification requires a ver-

ification and validation framework. Although Choi et al. [29] quantify uncertainty in

simulations for an non-reacting energetic structural material (shock induced chemical

reactions are not considered), errors and uncertainties associated with code verifica-

tion were not included.

A verification and a validation are possible when all sources of uncertainties are
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identified and quantified [94]. The proposed framework quantifies uncertainty at

multiple levels in the hierarchy of physical processes in the shock compression of

energetic structural materials. This approach maximizes the use of experimental

data, other than energetic structural material gas-gun data, for obtaining material

constants from calibration.

Uncertainty quantification addresses three fundamental components of computer

simulations for physical systems, namely, model qualification, model verification, and

model validation [94]. The model qualification requires an understanding of the phys-

ical phenomena, thus, the problem is to qualify sets of equations or models for the

nature of the physics to be simulated. Errors always exist between a mathematical

model and a true physical process because of simplifying assumptions that are made.

Verification is the process of determining that a model implementation accurately

represents the developer’s conceptual description of the model and the solution to the

model [94]. Four predominant sources of error are: insufficient spatial discretiza-

tion convergence, insufficient temporal discretization convergence, lack of iterative

convergence, and computer programming [57].

Validation is the process of determining the degree to which a model is an accu-

rate representation of the real world from the perspective of the intended uses of the

model [94]. The process of verifying the governing equations and validating the set

of physical models gives one a historical database that has the potential to improve

predictive credibility.

The solution over the entire domain, including the boundaries, is verified for the

geometry and loading conditions of interest. Many codes employ shock-capturing

schemes such as the MUSCL algorithm that uses flux limiters or built-in functions that

limit the flux between cells or nodes. The order of accuracy in fixed cell finite volume

lowers by one order near a shock discontinuity compared to the smooth regions. If the

observed order-of-accuracy from grid convergence studies lies within the theoretical
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order of accuracy in the smooth region and at the discontinuity, then the order-of-

accuracy of the limiter is verified [70].

Several methods are available for code verification through grid refinement and

some methods are appropriate for non-monotonic convergence that may occur in shock

simulations. Relatively simple methods are based on extrapolation or the grid con-

vergence index (GCI)(see method#3 [76]). However, GCI methods can not provide

statistical confidence as opposed to response surface methods (RSM) [76]. Further,

GCI methods rely on an empirical safety factor, Fs, to provide a confidence interval.

Some of the assumptions made in GCI and RSM methods are relaxed in a non-linear

Ansatz error model [59]. An Ansatz as defined in [99] is the establishment of the

starting equation(s) describing a mathematical or physical problem.

The confidence estimate for a given safety factor is based on the number of grid

points used Ng and no consensus has been reached on the value. For example,

Roach [103] recommends that with Ng ≥ 3 an Fs = 1.25 provides 95% certainty (5%

uncertainty, that would be roughly a 2σ error band if the distribution were Gaussian)

error band typical of experimentalists. Note that results are for steady-state fluid

flow and heat transfer. Logan and Nitta [76] conclude that Ng ≥ 4 with Fs = 1.25

provides an estimate of 68% certainty (or 1σ) based their database of non-smooth

grid convergence studies. A consensus has been reached that it is necessary to explore

multiple methods in a systematic verification study and that GCI methods (Ng ≥ 3)

often produce useful information.

Material parameters in the submodels are associated uncertainty in addition to

the errors and uncertainty in the model solution. An approach based on principles

of physics and Baysian analysis [57] quantifies the uncertainty in the computational

model based on inferences with experimental data and on the uncertainty associated

with the experimental data itself.
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1.8 Shock Compression

1.8.1 Conservation Laws

Conservation of mass and energy and the momentum balance are the governing equa-

tions for hydrodynamic simulations involving shock wave propagation. Equations

(A.1-A.7) are for the continuum model (macro-scale) in which mixture averages are

used. The following equations do not include mass diffusion, i.e., vp = v̄ for all con-

stituents p. The conservation equations and momentum balance, explained in more

detail in Appendix (A), are given by the following three equations, written in spatial

(Eulerian) coordinates:

∂

∂t
(ρ̄) +∇ · (ρ̄v̄) = 0 (1.13)

∂

∂t
(ρ̄v̄) +∇ · (ρ̄v̄ × v̄) = ∇ · σ̄ + ρ̄f̄ + Ψ̄m (1.14)

∂

∂t

(
Ē
)

+∇ ·
(
Ēv̄
)

= ∇ · (q̄) + σ̄ : ˙̄ε + Ψ̄e (1.15)

where t is time. f̄ is the specific body force vector. σ̄ is the stress tensor defined later

in Section (D.1). ˙̄ε is the mixture strain rate tensor, or rate of deformation tensor.

The source terms Ψ̄m and Ψ̄e are defined below. Ē is the total energy in the mixture

and is defined as

Ē = ρ̄d

(
ē +

1

2
v̄ · v̄

)
. (1.16)

where ē is the specific internal energy in the dense mixture since surface energy of

the pores is neglected (see Section (1.4.1)) and is defined as

ē = C̄vT̄ . (1.17)

C̄v is the mass fraction averaged specific heat capacity at constant volume in the dense

mixture and T̄ is the mixture temperature. Equations (1.13-1.15) are supplemented

by np − 1 independent constituent equations given by,

∂

∂t
(φpρ̄) +∇ · (φpρ̄pv̄) = Ψmassp (1.18)
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where np is the total number of constituents in the mixture. These equations are

required to close the solution for n − 1 independent unknown φp quantities. Pres-

sure and temperature are not present in equation (1.18) therefore no assumptions

concerning these quantities is necessary. The rate of mass production is

Ψmassp = ΘMpvp (1.19)

where Θ is the reaction rate. Mp is the molar mass and vp is the stoichiometric

coefficient for constituent p. The source terms Ψm and Ψe are due to reactions in

equation (1.18) and only apply to the continuum-level model. Ψm in equation (4.9),

representing change in momentum due to reactions, is composed of linear and angular

momentum contributions respectively,

Ψ̄m =
∑

p

Ψmassp (vp + xp × vp). (1.20)

xp is the material coordinate unit vector for the pth constituent. The source term Ψe

in equation (A.8) represents the energy contribution due to reactions and is given by,

Ψ̄e =
∑

p

Ψmassp

(
1

2
vp · vp + µcp

)
, (1.21)

where µcp is the specific chemical potential, for the pth constituent, defined later. The

latent heat of melting ∆Hmp is accounted for in the numerical solution by limiting

the temperature to the melting temperature, Tmp for constituent p, until melting is

complete. The corresponding difference in the internal energy ē is used to calculate

the amount of melting at each time step.

1.8.2 RAVEN Code

The granular-level physics is captured through the RAVEN code [14]. The thermo-

mechanical response of a mixture during shock wave propagation is modeled using

the finite element method. It should be noted that the effects of chemical reactions

are not included in the current RAVEN code.
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A detailed description of the algorithms used in reconstructing the geometry of

mixtures for simulation is discussed elsewhere [4]; a brief description is given here

to provide a deeper understanding of the underlying model used for the basis of the

current models. Much of this description is directly obtained from R. Austin [97].

Details concerning calculated quantities discussed later in this thesis are given in Ap-

pendix (B). Statistical volume elements (SVEs) of a particle mixture are subjected to

shock waves in the RAVEN code calculations. The SVEs are reconstructed according

to certain prescribed mixture attributes (i.e., the mean particle size, the variation

in particle size, and the volume fractions of the constituent phases). The mixture

is reconstructed in a series of steps. First, a set of particles is generated from a

prescribed particle size distribution. Next, particle centroids are located in an SVE

of prescribed dimensions using a sequential addition process, where it is possible to

place the particles in such a way that spatial correlations within phases are respected.

Since RAVEN code calculations are performed on SVEs, it is necessary to simulate

multiple instantiations of the same mixture to build up response functions used in

later analyses.

A sample mixture for RAVEN code containing Al+Fe2O3 +20wt.%EPON828 is

shown in Figure (4) for Up = 1km s−1. Boundary conditions are applied to the SVE

to replicate nominally one-dimensional shock wave propagation. The shock wave is

generated by applying a velocity boundary condition by a driver plate located adjacent

to the left surface of the mixture, i.e., the particle velocity Up. Impact is not simulated

since oscillations at the material interface are significant. The velocity boundary

condition is quickly ramped up from zero to the peak value in order to avoid ringing

in the solution. The periodic boundary conditions ensure displacement continuity and

traction cancelation on the top and bottom surfaces. The roller boundary condition

imposes zero displacement and zero tangential force at the right surface of the mixture.
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Figure 4: Boundary conditions applied to the SVE.

The initial-boundary value problem is solved using the arbitrary LagrangianEu-

lerian (ALE) method [12]. A two-dimensional multi-material Eulerian code [14] that

is specialized for shock micromechanics is used. Here, the governing equations (i.e.,

the conservation of mass and energy and the momentum balance in equations (A.1-

A.8)) are solved using a second-order accurate central differences scheme. The ALE

formulation and implementation is discussed in reference [12].
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Chapter II

RESEARCH ISSUES AND OBJECTIVES

2.1 Research Issues

The current experimental observations record chemical reactions in reactive material

mixtures occur over a time range from hundreds of nanoseconds to microseconds for

various reactive material powder mixtures [21, 19, 20, 113, 34]. To simulate these

experiments, accurate multi-scale models are needed for predicting shock induced

chemical reactions within the rise time of the shock.

In all real systems such as granular metallic powders, reactants are initially sep-

arated by a surface or a void. As reaction proceeds, products form between the

two reactants has the potential of inhibiting reaction [105]. Material from each side is

transported across the product layer to the opposing reactant side and reaction occurs

at these surfaces. The mechanisms are currently unknown in most cases. However,

mass transport is dependent on several physical factors [105] which include tempera-

ture, surface or structural elements, state of stress, diffusion, and fracture. Spatially

heterogeneous models [33] have been developed to approximate this behavior. Such

models involve two or more reactants with finite interfaces and a finite material spa-

tial description. However, finite mass transport rates across these interfaces have not

been proposed in any model used for shock induced chemical reactions. Therefore, a

chemical reaction model with finite transport rate in a heterogeneous media is needed.

A transport mechanism is needed to describe the flow of reactants through the

product layer. As noted by Do and Benson [33], little is known about the transport

mechanism through the product other than that it does not appear to limit the

reaction rate for the Nb− Si system. For general systems in which partial reactions
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are observed such as in the 2Al+Fe2O3 system studied by Boslough [20], the infinite

transport rate assumption is clearly invalid since an infinite transport rate results in

complete reactions.

Understanding the mixing mechanism is very important. Diffusion or forced dif-

fusion alone can not explain the mass mixing in real materials during shock compres-

sion. Vorticies may form and result in mixing between reactants. Jetting is another

phenomena that results in mixing between reactants. However, to form the product

compounds, at some level, a diffusion type of process occurs. This is the motivation

behind the current study.

Accurate and physically meaningful methods to predict the equation of state

(EOS) in porous mixtures are needed. Small differences between various mixture

EOS models can result in large differences in simulated shock velocity. During shock

compression of ESMs, chemical reaction and pore collapse produce greatly increased

temperatures with relatively low pressures. Existing EOS methods [84, 20, 10, 11, 85]

use averages of constituent EOS parameters, loosing physically meaningful informa-

tion such as compressibility of individual constituents and thermal expansion. Accu-

rate and physically meaningful EOS predictions are critical for predicting the influence

of chemical reactions on shock velocity.

A major limitation of the spherically symmetric single pore models [24, 91] occurs

in the the energy dissipation. Wave reverberations on the scale of the grain size (shock

front width) in a two-dimensional model can provide energy dissipation in addition to

the dissipation from the plastic flow during pore collapse. Spherically symmetric sin-

gle pore models can not capture detailed micro-structural behavior due to tremendous

geometric simplifications employed to homogenize the true microstructure. However,

these models allow one to gain valuable insight since temperature and plastic work are

localized and the mechanics is on the length scale of the actual pores. An important

requirement for the existing spherically symmetric models is to incorporate mixture
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rules and compressibility effects.

Existing models [20, 11, 78, 88, 101] do not incorporate granular models or RAVEN

code results. Chemical reaction implementation is complex [33] even with infinite

transport rate. Therefore, a motivation in this thesis is a need for a multi-scale

approach to incorporate RAVEN code results into continuum level energetic structural

material (ESM) shock compression simulations.

Since the physical processes involved in the shock compression of ESMs are cou-

pled, Hugoniot experiments are relied upon solely to obtain multiple material con-

stants in existing models [35, 8, 52, 20, 110, 11, 10, 34, 78, 88, 101]. These models have

greatly improved our understanding of experimental results involving post-shock ex-

amination and real-time measurements. However, the unknown material parameters

in these models are difficult to obtain. Not all unknown material parameters inde-

pendently affect the measured quantities in the experiment. For example, changes in

a parameter in the chemical reaction rate model may have the same effect on the sim-

ulated shock velocity as changes in a pore collapse model parameter. Therefore, the

goal is to calibrate unknown material parameters in each sub-model to experiments

in which only the corresponding physical effects are present. For example, the pore

collapse model is calibrated to Hugoniot experiments in which no chemical reactions

occur. In the case of shock compression of ESMs, the amount of chemical reaction

and the time at which chemical reactions occur are often unknown.

Previous models used to describe shock induced chemical reactions have short-

comings. The extended VIR model has the shortcoming that there is no physically

based reason for selecting the amount of reactants in the subsystems. The extent of

reaction is left as a model parameter to be calibrated with experiments, thus, pre-

dictive capability is diminished significantly. In the non-equilibrium thermodyanmic

model, the most significant shortcoming is the need to calibrate several material con-

stants. In the models by Do and Benson [33] and Bennett and Horie [11], predictive
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capability is lacking for cases when partial reactions occur.

2.2 Objectives

The objectives are summarized as follows:

• Formulate procedures to obtain the unknown equation of state parameters of

a mixture with chemical reactions during the passing of a shock wave or shock

induced chemical reactions.

• Construct models that can be used to calculate shock induced chemical reac-

tions in heterogeneous media consisting of reactive materials with binder and

reinforcement. Then, illustrate the procedure with 1-D strain approximation

for special cases. The model includes finite mass transport rate, the activa-

tion energy to be a function of both temperature and stress parameters, and

mesoscale reaction.

• Develop techniques to quantify the uncertainty in shock simulation computer

codes and formulate techniques for verification and validation.

The multi-scale model presented is useful for the design of novel materials formed

through shock synthesis. In addition, this model provides higher fidelity physical

representation of shock induced chemical reactions than previous models. This model

is useful for incorporation into the RAVEN code.

2.3 Thesis Outline

A procedure to accurately calculate the equation of state of a mixture during the

passage of a shock wave, shock induced chemical reactions is discussed in Chapter (3)

and includes the proposed spherically symmetric pore collapse model for a mixture

and compressibility effects. A more detailed description of the homogeneous chemical

reaction model is given along with the granular level reaction (GLR) model, modeled
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as heterogeneous media, and mesoscale reaction (MSR) model in Chapter (4). The

gas-gun simulation is explained in Chapter (5) and the sources for uncertainty are

given in Chapter (6).

A significant contribution of this thesis is the formulation of chemical reactions

and thermomechanical processes which are represented in separate sets of models

are integrated. The models have a strong link of deriving information from the

RAVEN code and incorporating the chemical reaction model. However, chemical

and thermomechanical models are run separately due to the difference in spatial and

temporal scales. Both models are used in the continuum gas-gun simulation where

temperature is transferred between the reaction and thermomechanical models.

The proposed granular level reaction (GLR), mesoscale reaction (MSR), and pore

collapse models are part of a multi-scale modeling approach to investigate shock in-

duced chemical reactions in Chapter (4). Figure (5) shows the framework in which the

RAVEN code (a discrete particle simulation) results are incorporated into chemical

reaction and pore collapse equation of state models. The Ni + Al system is cho-

sen for the study involving the complete model integration spanning mesoscale and

macroscale models. The advantage for this system is the experimental evidence, from

pressure gauges and post-shock recovery, suggesting the presence of shock induced

chemical reactions.

The proposed multi-scale model framework is demonstrated using two separate

case studies, namely the Fe2O3 + Al system and the Al + Ni system. The ther-

mite system (Fe2O3 + Al) is used to elucidate the granular level reaction models and

mixture equation of state methods. The Al + Ni system is used to demonstrate the

heterogeneous granular level reaction and mesoscale reaction models and the spheri-

cally symmetric pore collapse model, which are then used in the gas-gun simulation.

The main contribution for the Fe2O3 + Al system is to demonstrate the advantages
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Vertical grid spacing: 1.3  
Horizontal grid spacing: 1.8 
 

GLR 
(Granular Level Reaction, 0.001 - 1 μ s) 

a) Heterogeneous 
b) Homogeneous, length independent 

DPS 
(Discrete Particle Simulation, 4 - 100 ns) 
Immiscible, spatially-resolved particle 
system 

MSR 
(Meso-Scale Reaction, 1 - 10 μ s) 

Spatially heterogeneous heat transport 
with distributed chemical reactions 

Pore collapse 
a) Single pore model, 1 – 10 ns 
b) P-α model, time independent 

Continuum 
Homogenized mixture 
representation, 1 - 10 μ s 

(0.1-1 μ m) (10-100 μ m) (1-10 mm) 

Meso-scale 
 

Macro-scale 

Figure 5: Multi-scale model schematic with models in boxes and arrows to indicate
information flow. Time and length scales are typical for gas-gun experiment sim-
ulations in which micron-scale or nano-scale inter-metallic granules are considered.
Note: the homogeneous GLR model does not have spatial dependency; the P − α
pore collapse model does not have either time or spatial dependency.

of the proposed equation of state algorithms, show results for the granular level re-

action model, and show fully integrated chemical reaction results. Unfortunately, no

experimental data exist for the latter case. Fortunately, experimental data does exist

for the Al + Ni system. For the Al + Ni system, the qualities of the spherically

symmetric pore collapse model are demonstrated along with granular level reaction

and mesoscale reaction models. These demonstrate that reactions can occur within a

nanosecond, which is much faster than standard diffusion. The completely integrated

multi-scale model is demonstrated for the Al + Ni system through comparison with

gas-gun experiments in which reaction is evidenced.
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Chapter III

CONSTITUTIVE RELATIONSHIPS

The constitutive relationships for reactive material mixtures are discussed in this

chapter. The formulation of mixture equation of state methods is a new contribution

and is an improvement over the three previously discussed methods#1-3 [10, 84, 85].

The second new contribution given is the modification of a spherically symmetric pore

collapse model to include a mixture of reactive materials and compressibility effects.

Published pore collapse models do not consider mixtures [92].

3.1 Equation of State for Mixtures

3.1.1 Mixture Rules Used by Bennett and Horie [10](Method#1)

The mixture averaged isentropic parameter and pressure derivative are obtained re-

spectively by,

β̄So =
1

ρ̄o

[∑
p

φp

ρopβSop

]−1

(3.1a)

β̄
′

So
= ρ̄oβ̄

2
So

[∑
p

φp

(
1 + β

′
Sop

)
ρopβ2

Sop

]
− 1 (3.1b)

The reference temperature To is usually taken as room temperature, ≈ 298K. ρo is

the reference density. ρ̄ is defined in a later chapter. Γ is the Grüneisen parameter.

φp is the mass fraction for constituent or phase p. This method assumes that

βTo
∼= βSo = ρoC

2
o (3.2a)

β
′

T
∼= β

′

S = 4S1 − 1 (3.2b)

where S1 is the slope of the Us − Up curve. The following relationship is assumed,

ρΓ = ρoΓo. (3.3)
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The quantities C̄v and Γ̄ are are grouped together and approximated by the mixture

rule [11].

C̄vΓ̄ = β̄T

∑
p

φpCvpΓp

βTp

. (3.4)

The Murnaghan equation of state (EOS) [86] for a mixture is given by

P̄ =
β̄To

β̄′
To

[(
ρ̄

ρ̄o

)β̄′To

− 1

]
+ C̄vΓ̄M ρ̄o

(
T̄ − T̄o

)
(3.5)

where βTo = −V (∂P/∂V )|To is the isothermal bulk modulus at the reference temper-

ature, β′
To

= (∂β/∂P )|To is the pressure derivative of the isothermal bulk modulus

at the reference temperature, Cv is the specific heat capacity under constant volume,

ρo is the reference density, and ΓM is a material parameter similar to the Grüneisen

parameter Γ. Equation (D.17) is easily inverted, i.e., solved for ρ.

3.1.2 Mixture Rule Based on Mass Fraction Averages at 0K Isotherms [84]
(Method#2)

Two methods are discussed by Meyers [85]. This method is due to McQueen et

al. [84]. In the following equation, all quantities are mixture averaged and the overbar

is omitted for clarity. The pressure is calculated by solving the differential equation,(
dP

dv

)
To

+
Γo

vo

PTo =
Γo

2vo

[
PH +

(
vo

Γo

+ v − vo

)(
C2

o + 2S1 [vo − S1 (vo − v)]

[vo − S1 (vo − v)]4

)]
(3.6)

where the subscript o denotes the reference state and PTo is the pressure at the

reference state temperature To. v is the specific volume. All terms on the right hand

side of equation (3.6) are known since,

PH =
C2

o (vo − v)

[vo − S1 (vo − v)]2
. (3.7)

This method uses mass fraction averages for quantities in equation (3.6). For

example, the heat capacity is C̄v =
∑

p φpCvp. A mass fraction average is used to

calculate the Grüneisen ratio as(
v̄o

Γ̄o

)
=
∑

p

φp

(
vop

Γop

)
. (3.8)
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3.1.3 Mixture Rule Based on Mass Fraction Averages [85](Method#3)

This method has been used in the study of shock induced chemical reactions [88]. In

the example given by Meyers [85], the Mie-Grüneisen EOS parameters Co and S1 and

the mixture reference density ρ̄o are given by,

C̄o =
∑

p

φpCop ; S̄1 =
∑

p

φpS1p ; ρ̄o =
∑

p

φpρop (3.9)

The Mie-Grüneisen EOS is written in terms of the specific energy e or temperature

T and specific volume v as,

P̄ (e, v) =
C̄2

o (v̄o − v̄)[
v̄o − S̄1 (v̄o − v̄)

]2 +
Γ̄

v̄

[
ē− 1

2

(
C̄o (v̄o − v̄)

v̄o − S̄1 (v̄o − v̄)

)2
]

(3.10)

where Co is the acoustic wave speed, S1 is the slope of the linear Us − Up curve,Up is

the particle velocity, and Γ is the Grüneisen parameter.

3.1.4 Porous Mixture Equation of State (This Thesis)

The objective is to calculate the equation of state of the mixture. A representative

volume element ∆V contains 1 to p number of mixture constituents and void. As

the representative volume element tends to zero, the result is point xi in space and

mixture mechanics are formulated for a point in a space. The numerical solution of

a dynamic response problem including shock-induced chemical reactions depends on

discretization and finite volume elements.

The mixture theories are developed by Truesdel, Toupin and other mechanicians.

In Truesdel’s mixture theory, the motion of each constituent is defined [98] as

x = X i(Xi, t), i = 1...p. (3.11)

The velocity of each constituent is given by,

vi =
∂X i

∂t
. (3.12)
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The mass density of the mixture is defined as

ρ̄ =

p∑
i=1

ρi. (3.13)

The average velocity is

v̄ =
1

ρ̄

p∑
i=1

ρivi. (3.14)

The diffusion velocity of the ith component is

vi
d = vi − v. (3.15)

The stress and hence the pressure is defined in the following way. A symbol s is used

to denote a surface in the body that intersects x. The normal to the surface is ns.

The partial traction and the partial stress tensor σi are defined by

ti =
[
σi
]T

ns (3.16)

and the total stress is

t =

p∑
i=1

ti; σ =

p∑
i=1

σi. (3.17)

The consequences of equation (3.13) are discussed. For clarity, the following relation-

ship is given as

lim
∆v→0

ρ̄∆v = ρ1∆v + ρ2∆v + ... + ρp∆v

= ∆m1 + ∆m2 + ... + ∆mp

. (3.18)

Thus, it is seen that

ρi

∆v→0
=

∆mi

∆v
. (3.19)

Thus, if an element ∆v contains only Aluminum (Al) and Nickel (Ni) and each occu-

pies 50% of ∆v, then

ρAl = lim
∆v→0

2.7∆v/2

∆v
= lim

∆v→0

∆m1

∆v
= 2.7/2 = 1.35 g/cc. (3.20)

Similarly, ρNi = 5.9/2 = 2.95 g/cc. To characterize the equation of state of the

constituents Al or Ni, the Mie-Grüniesen equation of state is used that depends on
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Figure 6: Two constituent mixture.

the initial density of 2.7 and not 1.35. Thus, the following modifications are sometimes

considered.

For example, for a mixture with two constituents (Figure (6)),

ξ1∆v + ξ2∆v = ∆v

ξ1 + ξ2 = 1
(3.21)

The quantity ξ is known as the volume fraction and

p∑
i=1

ξp = 1. (3.22)

Now ρi
l is defined as

ρi
l = lim

∆v→0

∆mi

ξi∆v
(3.23)

and the relationship between ρi
l and ρi of Truesdell are

ξiρ
i
l = ρi (Truesdell) (3.24)

p∑
i=1

ξiρ
i
l = ρ̄ (Truesdell) (3.25)

where ρi
l represents the true density of the component and yields correct P − ρ · T

relationship with EOS like the Mie-Grüniesen EOS.

With these modifications, the void is now introduced to derive EOS similar to

those of Herrmann [60]. To illustrate the procedure, a mixture with two constituents

and void is considered in Figure (7).
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Figure 7: Two constituent mixture with void.

A quantity α is defined as

α
∆v

∆v1 + ∆v2

=
∆v

ξ1∆v + ξ2∆v
=

1

ξ1 + ξ2

(3.26)

or

α(ξ1 + ξ2) = 1. (3.27)

In general,

α

(
p∑

i=1

ξp
i

)
= 1 (3.28)

if ρd
l is used to denote the dense solid, i.e.,

ρd
l =

∆m1 + ∆m2

∆v1 + ∆v2

. (3.29)

Similarly,

ρporous
l =

∆m1 + ∆m2

∆v
. (3.30)

Then,

ρd
l

ρporous
l

=
∆v

∆v1 + ∆v2

=
v

vd

= α =
1

ξ1 + ξ2

. (3.31)

3.1.4.1 Equation of State for a Mixture

To illustrate the procedure, consider a mixture with four constituents (A, B, C, D)

and void. If at any instant ρA
l , ρB

l , ρC
l and ρD

l are the densities where temperature

T is known. The individual pressures PA, PB, PC and PD can be determined. In the

35



mixture theory, T is assumed to be the same throughout ∆v at this stage.

PA = fA(ρA, TA)

PB = fB(ρB, TB)

PC = fC(ρC , TC)

PD = fD(ρD, TD)

Pair = fair(ρair, Tair)

(3.32)

To simplify the initial discussion, Pvoid = Pair = fair(ρ
air
l , T ). Later, it is assumed

that voids do not carry any of the pressure. Then equation (3.17) is used to obtain

the mixture pressure with modification to account for voids.

P =
∑

P i or P = α
∑

P i. (3.33)

Thus, the general iteration procedure to obtain the EOS of a mixture is uniform as

follows.

At the end of the nth iteration, it is assumed that P̄ , T̄ , φ̄, φp, ξp, αL, and αU , are

known. αL and αU are defined as the lower and upper bounds, respectively. The

iteration starts with

α∗ = 1/2(αU + αL)

ξn+1
p =

ξn
p

α∗
∑

ξp

φp∆m = ∆mp .. mass fractions

ρp
l = ∆mp/ξp∆v (∆v = Cell volume)

pp = fp(ρp
l , T )

Obtain P = α
∑

P p

Check for tolerances and repeat iteration with new values of αL and αU until

tolerance limits are obtained.

Now the procedure is illustrated for specific cases, namely the homobaric and uniform

strain methods.
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The uniform strain assumption states that the strain is equal for all constituents

as shown in Figure (8-b), thus, constituent volume fractions remain constant. The

uniform strain assumption may be viewed as an idealization of an infinitely thin slice

of the mixture material, or as ∆x → 0 in Figure (8-b). This assumption states that

pressure equilibrium has not been reached. In this case, it is assumed from equation

(D.2) that the surface area of each constituent is proportional to its volume fraction.

Therefore the pressure for the porous mixture P̄ is approximated by equations (D.2)-

(D.6).
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Figure 8: Porous mixture theories.

All of the three previous methods discussed in this thesis use a mixture average for

equation of state model parameters. This simplifies the computation of the general

problem stated above by reducing the number of equation of state equations from 5

to 1. The model by Bennett and Horie [10](Method#1) assumes that the equation of

state material parameters are averaged, which reduces the number of equation of state

equations to 1 and the number of heat conduction equations reduces to 1. Therefore,

the equation of state for the model by Bennett and Horie is a single equation with

a single unknown. Similarly, the method provided by Meyers [85](Method#2) uses

mass fraction averages for quantities in equation (3.6). In addition, the mixture rule

based on mass fractions [85] (Method#3) uses a mass fraction average for equation
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of state model parameters.

To demonstrate the proposed porous mixture EOS methods, the P − α model

by Herrmann [60] is first modified to incorporate the mixture. The pressure for the

porous mixture P̄ in equations (3.36-a-b) includes contributions from constituents p

by using the porous volume fractions, i.e.,

α
∑

p

ξp = 1. (3.34)

Components in the mixture are assumed to be in thermal equilibrium. fp is the

pressure EOS for each solid or liquid mixture constituent p. The porous mixture

average density ρ̄ with porosity α has the corresponding initial values ρ̄o and αo at

t = 0, so that the dense mixture has the average density ρ̄d
o = ρ̄αo.

The new algorithms for the mixture equation of state are derived as follows. The

equation of state is assumed to take the form,

Pp = fp (vdp, ep) = fp

(vp

α
, ep

)
(3.35)

where vd is the dense specific volume. The next step is to sum the constituents p in

equation (3.35) and use the definition from equation (3.34). First, the special cases

of homobaric and uniform strain are discussed.

For the homobaric case, any two components denoted by p and r have Pp =

Pr for p 6= r, therefore,

P̄ho = α
∑

p

fp

(
ρop

ρp

, T̄

)
ξp (3.36)

For the uniform strain case, ρp

ρop
= ρ̄d

ρ̄d
o

for all p

P̄us = α
∑

p

fp

(
ρ̄d

o

ρ̄d
, T̄

)
ξp. (3.37)

It is important to note that there are no mixture averages for the equation of state

parameters. For example, βSo , β
′
So

, Γ.

Difference between homobaric method and three alternative methods:
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The difference between the homobaric method and Method#1 is that the homo-

baric method does not average the equation of state parameters. This means that the

condition Pp = Pr for p 6= r is satisfied exactly in the homobaric method. Method#1

can not accomplish this because only one equation is solved. The homobaric method

employs any acceptable form of the equation of state. For example, Grüneisen and

Murnaghan equation of state. However, Method#1 can not employ Grüneisen equa-

tion of state. The difference between the homobaric method and Method#2 is that

the homobaric method does not average the equation of state parameters. Method#2

employs a single equation of state for the mixture compared to the use of p number

of constituent equation of state equations in the homobaric method. The difference

between the homobaric method and Method#3 is that the homobaric method does

not average the equation of state parameters. Method#3 employs a single equation

of state for the mixture compared to the use of p number of constituent equation of

state equations in the homobaric method.

The difference between the uniform strain method and Method#1 is that the uni-

form strain method does not average the equation of state parameters. The proposed

uniform strain method employs any acceptable form of the equation of state. For

example, Grüneisen and Murnaghan equation of state. The difference between the

uniform strain method and Method#2 is that the uniform strain method does not

average the equation of state parameters. Method#2 employs a single equation of

state for the mixture compared to the use of p number of constituent equation of

state equations in the uniform strain method. The difference between the uniform

strain method and Method#3 is that the uniform strain method does not average the

equation of state parameters. Method#3 employs a single equation of state for the

mixture compared to the use of p number of constituent equation of state equations

in the uniform strain method.

Equations (3.36) and (3.37) are implicit and are solved using the bisection method
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iteratively as seen in the algorithms given in Figure (9). The bisection method is

chosen over potentially faster methods for robustness. Matlab scripts for both the

homobaric and uniform strain algorithms are given in Appendix (F.3).

An algorithm is proposed for the solution of the homobaric assumption. This

algorithm shows the methodology on how to apply the theory presented above in

equation (3.36). The assumptions include maintaining all mixture components at the

same temperature and pressure. The algorithm solves for the pressure and individual

constituent densities for a specified mixture density. The homobaric algorithm in

Figure (9-a) shown below uses the new mass fractions that remain constant during the

iterations. Constituent volume fractions are re-calculated until the mixture density

converges. The aim is to calculate the mixture pressure for a specified mixture density.

The homobaric algorithm steps are written as follows.

Given: The mixture density ρ̄ is obtained at each time step in a hydrocode sim-

ulation and it is calculated from the conservation equations. Similarly, the mixture

temperature T̄ is specified from the conservation of energy. The mass fractions φp and

volume fractions ξp are given by the conservation of mass and the chemical reaction

equation. Thus we know P̄ , T̄ , φp, ξp.

Assumptions: All constituents are assumed to have the same pressure Pp and

temperature T̄ .

To find: The goal is to obtain the mixture pressure P̄ .

Homobaric algorithm:

1. The mixture pressure P̄ is calculated using the upper and lower bounds. The

upper bound P̄U is equal to twice the maximum pressure expected. This is an

estimate and needs modification if and estimated pressure is unknown. The

lower bound P̄L is equal to zero.This is consistent with the bisection method

given in Appendix (D.5). Therefore, P̄ = 1/2(P̄U + P̄L).

2. Obtain the constituent densities ρp from the corresponding equation of state
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using the mixture average pressure and temperature, i.e., ρp = f−1
p

(
P̄ , T̄

)
.

3. Calculate the constituent volume fractions ξp and normalize using the mixture

porosity that is calculated from P̄ in step 1, i.e., ξi+1
p =

ξi+1
p

αi+1(P̄ )
∑

p ξi+1
p

, where i

is the iteration (see Figure (9(a))).

4. Re-calculate the mixture density ρ̄∗ based on ρp in step 2, i.e., ρ̄∗ =
∑

p ξi+1
p ρi+1

p .

5. Check ρ̄∗ against the specified mixture density ρ̄. If the error is less than the

tolerance, then the iterations are stopped.

6. Decide if P̄ becomes the new upper or lower bound according to the bisection

method.

7. Repeat steps 1-6 until iterations have converged in step 5.

If the initial guesses for PL and PU bound the solution, then the bisection method

employed will converge to a local minima [63]. A discussion of the conditions under

which the bisection method converges are discussed in detail in Appendix (D.5).

The uniform strain algorithm in Figure (9-b) uses the initial volume fractions.

When chemical reactions change the mass fractions, the reference density ρ̄d
o is cal-

culated using ρp = ρop. From the definition of the uniform strain assumption,

shown above, the ratio of the volume fractions between constituents remains con-

stant. Therefore, volume fractions are proportionally scaled according to equation

(3.34). Again, the aim is to calculate the mixture pressure for a specified mixture

density. The uniform strain algorithm steps are written as follows.

Given: The mixture density ρ̄ is obtained at each time step in a hydrocode sim-

ulation and it is calculated from the conservation equations. Similarly, the mixture

temperature T̄ is specified from the conservation of energy. The volume fractions

ξp are given by the conservation of mass and change due to the chemical reaction

equation. Volume fractions are initially specified. Thus we know ρ̄, T̄ and ξp.
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Assumptions: All constituents are assumed to have the same change in ρp/ρop and

temperature Tp, i.e., ρp

ρop
= ρ̄d

ρ̄d
o

for all p. Generally, the strain varies. The uniform

strain algorithm is a special case of the general approach given above. Iterations are

only required when the porosity is αo > 1.

To find: The goal is to obtain the mixture pressure P̄ .

Uniform strain algorithm:

1. The mixture porosity α∗ is calculated using the upper an lower bounds. The

upper bound αU is the initial porosity αo and the lower bound αL is 1. This

is consistent with the bisection method given in Appendix (D.5). Therefore,

α∗ = 1/2(αU + αL).

2. Calculate the constituent volume fractions ξp and normalize using α∗ in ξi+1
p =

ξi+1
p

αi+1
∑

p ξi+1
p

.

3. Calculate the mixture pressure P̄ using the mixture density ρ̄, temperature T̄ ,

α∗, and constituent volume fractions ξp, i.e., P̄us = α∗∑
p fp

(
ρ̄d

o

ρ̄d , T̄
)

ξp.

4. Check α∗ against the mixture porosity α(P̄ ). If the error is less than the toler-

ance, then the iterations are stopped. The porosity is calculated using,

α(P̄ ) =


αo

1 + (αo − 1)
[(

P s − P̄
)
/ (P s − P e)

]n
1

;

;

;

P̄ < P e

P e ≤ P̄ ≤ P s

P s < P̄

. (3.38)

5. Decide if α∗ becomes the new upper or lower bound according to bisection

method.

6. Repeat steps 1-5 until iterations have converged in step 4.

In practice, tight tolerances (Tol = 0.01% error) are used for the proposed al-

gorithms. Although this tolerance is computationally expensive with approximately
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Figure 9: Mixture EOS Algorithms

10 − 20 iterations, high accuracy results are obtained. Please see Appendix (D.5)

for details concerning the monotonicity of the equation of state and the bisection

method.

The mixture parameter Cm is defined as the fraction of the pressure from homo-

baric mixture assumption, P̄ho. This mixture rule is stated as,

Pmix = P̄ho · Cm + P̄us · (1− Cm) , 0 ≤ Cm ≤ 1. (3.39)

Pressure equilibration in simulated mixtures occurs well within the rise time of a

shock wave [4] therefore it is expected that Cm → 1 approximates real mixtures.
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Table 1: Input parameters used in the stoichiometric Al+Fe2O3 → Al2O3+2Fe
reaction.

Parameter Al Fe2O3 Al2O3 Fe Epon828 Units
M 26.98 159.69 101.96 55.85 – g ·mol−1

ν 2 1 1 2 – –
φo 0.2526 0.7474 0 0 0 –
ξo

a 0.3976 0.6024 0 0 0 –
φo (20 wt.% Epon828) 0.2021 0.5979 0 0 0.20 –
ξo

a(20 wt.% Epon828) 0.2109 0.3195 0 0 0.4696 –

a Calculated by using solid densities in Table (15).

Table 2: Reactant material parameters.

Parameter Al − 1100 [66] Fe2O3
a Epon828a Units

Shear modulus, G 26.0 104 1.4 GPa
Yield strength, σy,o 105 800 60 MPa
Melting temperature, Tm 926 1780 533 K
Latent heat of melting, ∆Hm 390 600 – kJ · kg−1

a Estimated from [4, 5].

3.2 Thermite System Case Study

3.2.1 Mixture Equation of State Results

The shock compression of the 2Al +Fe2O3 is considered in stoichiometric ratios with

up to 20 wt.% Epon828 and distention ratio as high as α = 1.666. Initial mass

fractions and corresponding volume fractions of the dense mixture ξo are given in

Table (1).

Constituent Grüneisen and Murnaghan EOS parameters are given in Table (15)

in Appendix (D). Equations for both EOS models are given in Appendix (D.2). The

Grüneisen and Murnaghan EOS models need to produce similar pressures to make fair

comparisons between mixture models. The Murnaghan EOS constituent parameters

for Al and Fe2O3 are adjusted in Table (15) in Appendix (D) to approximate the

T = 298K isotherm pressure calculated using the Grüneisen model.
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3.2.2 Pressure-density model characterization

3.2.2.1 Fully Dense Mixture Equation of State Characterization

Methods#1-3 are compared using the constituent Grüneisen EOS parameters with

the exception of Method#1 which requires Murnaghan EOS parameters. For the Ho-

mobaric method, the pressure difference between using Grüneisen and adjusted Mur-

naghan EOS constituent parameters is less than 1% for the pressure range (<30GPa)

considered in this thesis (see Figure (10)). The new EOS methods are compared

to Methods#1-3 for the fully dense stoichiometric mixture of 2Al + Fe2O3 with and

without 20 wt.% Epon828 in Figure (10(a)) with the exception of Method#2 in Figure

(10(b)) (see explanation below).
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(b) 20 wt.% Epon828.

Figure 10: T = 298K isotherm predicted by three mixture EOS methods com-
pared to the homobaric and uniform strain methods for the fully dense stoichiometric
mixture of 2Al + Fe2O3 with and without 20 wt.% Epon828.

Homobaric and uniform strain methods:

The uniform strain method calculates higher pressures compared to the homobaric

method in Figure (10). The uniform strain method provides higher pressures for the

same relative volume change since the stiffest material dominates the load carrying

capability of the mixture. This effect is exaggerated with the addition of Epon828
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since this constituent has a low bulk modulus and high volume fraction compared to

the other constituents.
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Figure 11: T = 1000K isotherm pre-

dicted by two mixture EOS methods com-

pared to the homobaric and uniform strain

methods for the fully dense stoichiometric

mixture of 2Al + Fe2O3.

Method#1:

For both mixtures (with and with-

out Epon828) in Figure (10), Method#1

closely approximates the homobaric

method up to P = 10GPa. This agree-

ment is not surprising since the bulk

modulus and its pressure derivative are

volume fraction averaged at the T =

298K isotherm.

Method#1 deviates from the ho-

mobaric method at higher temperature

isotherms, for high temperature and low

pressure conditions as shown in Figure

(11). This illustrates a fundamental as-

pect of the homobaric method in which the constant volume thermal contribution to

the pressure has non-physical effects. Here, the homobaric assumption is invalid since

the thermal pressure contribution in one of the constituents will be too high. It is

necessary to use the general method outlined above. Therefore, constituent pressures

can not be equilibrated without imposing either negative pressures or negative volume

fractions, both of which are non-physical. Therefore, Pp ≥ 0 and ξp ≥ 0 are imposed

for all constituents. The homobaric method approximates the uniform strain method

as v → vo since the constituent pressures are not equal at the lower pressures in

Figure (11). Method#1 does not have have the pressure and temperature limitations

that are displayed for the homobaric method. However, Method#1 is non-physical

since there can not be any physical pressure equilibration between the constituents.
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This is because the EOS parameters are averaged.

Method#2:

Results of this method are shown in Figure (10(a)). Lower pressures are predicted

compared to the homobaric method, thus, results from Method#2 are not bounded

by the homobaric and uniform strain methods. This method is an acceptable approx-

imation for some alloys and compounds [85]. For the mixture in this study, Figure

(10(a)) shows that Method#2 does not reasonably approximate the case in which

mechanical equilibrium is assumed for P > 5GPa. Data could not be obtained from

the MIXTURE program [121] for the 20 wt.% Epon828 case due to its relatively low

acoustic wave speed Co.

Method#3:

Mass averaging all of the Mie-Grüneisen EOS parameters leads to an overestima-

tion of the mixture average density ρ̄ for the stoichiometric 2Al + Fe2O3 mixture.

The effects of this overestimation are indicated by elevated pressures that exceed the

uniform strain method as seen in Figure (10). Method#3 results are relatively close

to the uniform strain results when when all mixture quantities are close to the same

density (see Figure (10(a))). However, when the 20 wt.% Epon828 is added, the

pressure increases significantly due to the overestimation of ρ̄.

3.2.3 Porous Mixture Equation of State Characterization

The homobaric and uniform strain methods are applied to porous stoichiometric

mixture of 2Al + Fe2O3 with and without 20 wt.% Epon828 in Figure (12) using

equations (3.36). Here, it is assumed that P e = 250MPa, and P s = 3GPa based

on experimental data for a mixture containing spherical Ni + Al granules [39] with

the porosity αo = 1.66. As shown in Figure (11), the homobaric and uniform strain

methods show considerable differences when 20 wt.% Epon828 is included in the non-

porous mixture. However, these pressure differences are much smaller for the porous
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mixture (α ≥ 1) since the mixture density ρ̄d does not change significantly during

pore collapse. This is not the case after the pores have collapsed. The effect of the

pore collapse is an increase in temperature. Therefore a small change in density will

result.

Homobaric and uniform strain results are shown in Figures (12(c)) to (12(d)) for

distension ratio pressure dependencies in the range n = [1, 4]. Higher values of n

physically correspond to porous materials with lower strength. Parameter n may be

adjusted to reflect the strength in porous mixtures with various morphologies such as

flake and spherical powders [39].

Figure (13) shows that for a single constituent material, the homobaric and uni-

form strain algorithms give the same results. For this case, Epon828 is chosen for the

material, which is compressed much more than the 20wt.% Epon828 case shown for

the same pressures.

3.2.4 Mixture Equation of State Summary

The case study results in Figures (10) and (11) show that Method#2 does not approx-

imate the homobaric method nearly as well as Method#1 does. Therefore, Method#1

should be used instead of Method#2 when mechanical equilibration is assumed in the

mixture. However, Method#1 does not approximate the homobaric assumption at

high pressures when the bulk moduli of constituents are considerably different. For

example, agreement between Method#1 and the homobaric model was observed for

the 20wt.%Epon828 case up to pressures near 10GPa. Method#3 should be used

with extreme caution as a crude approximation for materials with constituents that

have similar densities.

The main disadvantage of the proposed methods is the increased number of itera-

tions required. The extended VIR model [11] requires an estimated 4-8 iterations per

time step compared to the 10-20 iterations required in the proposed methods. Further
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(c) Homobaric.
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(d) Uniform strain.

Figure 12: Simulation results with P e = 250MPa, and P s = 3GPa for the T =
298K isotherm. The mixture is stoichiometric 2Al+Fe2O3 + Epon828 and αo = 1.66.
(a)-(b) Compare effect of adding Epon828 with n = 2. (c)-(d) Homobaric and uniform
strain methods with various orders n of α dependence on pressure with 20 wt.%
Epon828.

computations are required to compute the approximate derivatives in equation (F.3).

The proposed algorithms are subject to limitations resulting from approximations

made in constituent EOS models. For example, the homobaric assumption is observed

to be invalid for low pressure and high temperature conditions. This limitation is

not present if the constituent EOS model does not have a constant volume thermal

pressure contribution (the last term in the right hand side of the pressure equation
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Figure 13: Simulation results with P e = 250MPa, and P s = 3GPa for the T =
298K isotherm. The material is Epon828 and αo = 1.66. The lines are overlapping.

of state).

3.3 Spherically Symmetric Mixture Model

The spherically symmetric pore collapse mode by Caroll, Holt and Nesterenko [24,

25, 92] does not consider a mixture. This section gives the derivation for the modified

spherically symmetric pore collapse models for a mixture. Material parameters are

introduced that are calibrated with RAVEN code results.

When αo > α∗, the spherical granules are assumed to repack [92] during the pore

collapse when α∗ ≤ α < αo. Since the mass of the model cell (core plus shell) is equal

to the mass of the granule and the density of the model is equal to the initial density

of the powder (incompressibility is assumed),

bo = R 3
√

αo, ao = R 3
√

αo − α∗ + 1, c = R 3
√

2− α∗, (3.40)

R is the representative granule radius in the granular material. At the moment when

the porosity is equal to α∗, the outer and inner radii of the shell become b∗ = R 3
√

α∗,

and a∗ = R. Further densification resulting in porosity smaller than α∗ must include

viscoplastic dissipation.
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The motion is spherically symmetric (1D) as given by the following geometrical

relations that describe the radially symmetric motion in the modified hollow sphere

model [91]. In the hollow sphere model c = 0. As discussed by Carrol, Kim, and

Nesterenko,

r3 − a3 = r3
o − a3

o, θ = θo, ϕ = ϕo, (3.41)

where r, θ, and ϕ are spherical polar coordinates, c ≤ ro ≤ bo corresponds to the

initial radius of some point with the current coordinate r, and a and ao are the current

and initial inner radii of the model sphere. The motion is completely determined by

the inner radius a(t). The velocity is obtained by differentiating equation (1.11) with

respect to time to give [25, 91],

ṙ =
a2ȧ

r2
=

a2ȧ

(r3
o − a3

o + a3)2/3
. (3.42)

and the acceleration can be written in terms of a potential ζ [25],

r̈ =
∂ζ

∂r
, ζ =

a2ä + 2aȧ2

r
− a4ȧ2

2r4
. (3.43)

The values of α, r, and b are written in terms of the pore radius a by

α = 1 + (αo − 1)a3/a3
o, r3 = (r3

o − a3
o + a3) ,

b = a3 + a3
o/ (αo − 1) .

(3.44)

The equation of motion for spherical geometry is

∂σ̄rr

∂r
+

2

r
˜̄σ = ρ̄sr̈. (3.45)

where the mixture density is

ρ̄(s) =

p∑
i=1

ξiρ
l
i (3.46)

and ˜̄σ = σ̄rr − σ̄θθ is the shear stress in the mixture. The energy balance equation

(with no radiative or conductive heat supply) is written as [91]

ρ̄sė = −2˜̄σṙ

r
. (3.47)
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where e is the specific internal energy. Expressing equation (3.47) as a function of

temperature T ,

ρ̄sṪ = − 1

C̄v

2˜̄σṙ

r
. (3.48)

where, C̄v for p number of constituents, is the heat capacity at constant volume for

the mixture.

σ̄rr =

 0 at r = a

−P (t) at r = b
. (3.49)

Since the incompressibility is assumed in equation (3.41), ρ̄s = const. This means

that the density does not change in the pore collapse model only. Density changes in

the macro-scale continuum simulation because the only output from the pore collapse

model is the porosity, α. The incompressibility assumption is relaxed later.

From the assumptions in equation (3.41), the initial (αo) and current (α) porosities

of the real material are connected with the model geometry by the relations

αo = b3o
b3o−a3

o
= ρ̄s

ρ̄po
; α = b3

b3−a3 = ρ̄s

ρ̄p
(3.50)

where b is the current outer radius.

The expression for σ̄, for a mixture, is different from approach that is discussed

and used by Carrol, Kim, and Nesterenko. From the mixture theory that is discussed

in section (3.1.4),

σ̄ij =

p∑
i=1

σi. (3.51)

In this equation, it is assumed that there are p number of constituents in the mixture.

Then, the quantity σ̄ is

σ̄ = σ̄rr − σ̄θθ =

p∑
i=1

σ̄i =

p∑
i=1

(σ̄i
rr − σ̄i

θθ). (3.52)

To introduce the temperature effect, a viscoplastic behavior is assumed for σ̄, with

temperature dependent yield strength Yi and viscosity ηi. These are similar to those

discussed by Durmin and Sulkov for a “single constituent” material. Then, for the

52



species i,

σi = Yi(T )− 6ηi(T )
ṙ

r
. (3.53)

The variation of the yield strength with the temperature depends on the selected

specific material. In general, yield strength decreases with temperature and becomes

equal to zero at the melting temperature Tm
i . After melting, the material behaves like

a viscous liquid with the coefficient of viscosity ηm. Then, the following approximation

is assumed for Y i.

Y i = Y o
i

[∑N
n=1 ai

yn

(
1− T

T i
m

)n]
, T < T i

m

= 0, T > T i
m i = 1, 2, ...p

(3.54)

Similarly

ηi = ηi
m exp

(
N∑

n=1

Bn
i

(
1

T
− 1

T i
m

)n
)

i=1,2,...p

, T < T i
m. (3.55)

with these equations, the spherically symmetric compaction problem is formulated in

the following way.

A non-dimensional interaction coefficient 0 ≤ µIsp ≤ 1 between constituents s and

p is introduced to account for friction between any two constituents in the mixture.

The modified constituent yield strength becomes

Y o
i =

1

1− ξp

∑
s 6=p

µIspY
o
p (3.56)

This equation is based on the mixture theory described earlier in this chapter.

Assuming the incompressible behavior, the governing equations are as follows,

P (t) = 2
∫ b

a

[∑p
i=1 Y i

o

{
ai

yn

(
1− T

T i
m

)n}
−∑p

i=1 6ηi
m exp

(∑N
n=1 Bn

i

(
1
T
− 1

T i
m

)n)]
ṙ
r

dr
r
−

P̄s [(aä + 2ȧ2)(1− a/b)− 1/2ȧ2(1− a4/b4)] ; T < Tm

. (3.57)

ρ̄(s) =
∑p

i=1 ξiρ
i

b =
[
a3 + a3

αo−1

]1/3 . (3.58)
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r =
(
r3
o − a3

o + a3
)1/3

. (3.59)

ρ̄sc̄Ṫ = −
[
2σp

i=1Y
i
o

{
ai

yn(1− T/T i
m)n
}]

ṙ
r
+[

12
∑p

i=1 ηi
m exp

(∑N
n=1 Bn

i

(
1
T
− 1

T i
m

)n)] (
ṙ
r

)2
; T < Tm

. (3.60)

It is noted that ρ̄s and c̄ do not change because of incompressibility. Initial conditions

are

a(0) = ao

ȧ(0) = 0

T (ro, T ) = To

. (3.61)

In these equations, P (t) is given as the boundary conditions. Equations (3.57) to

(3.60)) are used to solve for a(t), b(t), γ(t), and T (t). Then the equation (3.48) is used

to find ė(t). Similarly, kinetic energy of the hollow sphere is obtained. Calculations

are continued until the inner radius approaches Tm.

Some observations of the approximate model are as follows. The rate of com-

paction increases with inertial effects. Also, discussed by Carroll et. al. for a full

compaction at a finite P (t), the rate of compaction is expected to decrease to zero. If

not inertial term has the potential to become unbounded. This is also discussed by

Carroll et al. for a single constituent. These effects result from the fact that there

is no dissipation. These can be controlled by formulating the problem such that the

work done by applied P (t) is finite. Then it is necessary to consider compressibility

such that a reflection of the finite shock wave results from the inner boundary at

r = a(t). When T ≥ T i
m, the material is a viscous liquid and thus is not considered

in this analysis.

The average density represents the uniformly blended mixture density. However,

the mixture surrounding the pore is not uniformly blended. Here, the assumption of

mechanical equilibrium between mixture constituents during pore collapse is relaxed
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by introducing a scaling factor CI to obtain the modified mixture density as

ρ̄∗s = ρmin + CI (ρ̄s − ρmin) ; 0 ≤ CI ≤ 1 (3.62)

where ρmin = minp
i=1(ρi) is the minimum density of all of the mixture constituents.

3.3.1 Compressibility Considerations

The problem considered consists of a hollow sphere of initial internal radius ao and

external radius bo, in a single constituent material and not a mixture. The sphere

is subjected to an external pressure P (t) on the outer radius b = b(t) To introduce

compressibility into the Carol, Kim, and Nesterenko model, the compressibility is

approximated by an idealized locking approximation. This approximation results in

a finite shock velocity until the effects of the external pressure reach the internal

radius. A schematic of the pressure-density plot is given in Figure (14). ρl is shown

in Figure (15).

 

P 

ρo ρl ρ 

Figure 14: Pressure-density schematic for compressible material with idealized lock-
ing.

The viscoplastic stress-strain relationship is still assumed to be valid between the

strain deviator and deformation. It is possible to replace the ideal locking behavior by

an elastic-locking behavior used by Hanagud and Ross [56] in deriving the compress-

ible cavity expansion theory for deep penetration of solids by impacting projectiles.

The approximate value of the locking density is obtained from a knowledge of

the external pressure P (t) at r = b(t) and the equation of state of the material. In
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the ideal-locking approximation, once the pressure is applied the material reaches the

density ρl but the shock wave speed is finite. A schematic of the cross section of the

pore is shown in Figure (15). Eulerian coordinates are used in this analysis.
 

Shock 
front 

b(t) 

ρl

ρo

k(t) 

ao

Figure 15: Schematic of the pore cross section with a traveling shock front in
Eulerian coordinates.

In the region k(t) < r < b(t), the density is constant at ρ = ρl. Then

∂v

∂r
+

2v

r
= 0 (3.63)

where v(t) is the particle velocity. Then

v(t) =
f(t)

r2
. (3.64)

f(t) is an unknown function that should be determined. (σr − σθ) = σ′ has a vis-

coplastic relationship with both y(T ) and η(T ) depending on the temperature, as

described before. Then σr is determined from the spherical symmetric equation of

motion that is valid in the region k(t) < r < b(t), i.e.,

∂σr

∂r
+

σr − σθ

r
= ρ

Dθ

∂t
. (3.65)

Dv

Dt
=

∂v

∂t
+ v

∂v

∂r
. (3.66)

σθ − σr = Y (1− T/Tm)− η(T )(ε̇θ − ε̇r); T < Tm. (3.67)
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In large deformation,

εr = ln(r)− ln(ro). (3.68)

Because of locking approximation,

−(εr + 2εθ) = εl (constant). (3.69)

ε̇θ − ε̇r =
v

r
− ∂θ

∂r
. (3.70)

From equation (3.68),

ε̇θ − ε̇r =
3f

r3
. (3.71)

Then,

∂σr

∂r
=

2Y (T )

r
− 2

r
η · 3f

r3
+ ρl

(
ḟ

r2
− 2f 2

r5

)
. (3.72)

The coefficient 6 in the second term on the right hand side of equation (3.72)

agrees with Dunin and Surkov (as stated by Caroll, Kim, and Nesterenko). Then

σr = 2Y ln(r)− ρl
ḟ

r
+

1

2
ρl

f 2

r4
+ ηm

∫ r

k

18f

r3
dr′ exp

(
B

[
1

T
− 1

Tm

])
+ g(t). (3.73)

At r = b, σr = −P (t), where

−P (t) = 2Y ln(b)− ρl
ḟ

b
+ 1/2ρl

f 2

b5
+ η

∫ b

k

6f

r′3
dr′ exp

(
B

[
1

T
− 1

Tm

])
+ g(t). (3.74)

This equation is used to obtain g(t). There are two discontinuity conditions at the

shock front. The conservation of mass yields,

ρl(k̇ − [σ]r=k) = ρok̇, (3.75)

or

ρl

{
k̇ − ρl

f

k2

}
= ρok̇. (3.76)

This yields an expressions f(t) as a function of k and k̇ as

f = k2k̇(1− ρo/ρl) = α̂k2k̇ (3.77)
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where

α̂ = 1− ρo/ρl. (3.78)

The only remaining unknown is a differential equation for k̇. This is obtained by

the impulse momentum relationship,

σr]r=k = −ρp

[
(k̇ − v)v

]
r=k

. (3.79)

σr at r = k is known from equation (3.73) after g(p) is substituted from equation

(3.72) with known g(t) i.e.,

σr = −P (t) + 2Yo

(
1
T
− 1

Tm

)
ln
(

r
b

)
+ 6η

∫ r

b
f

r′3
dr′ exp

(
B
[

1
T
− 1

Tm

])
+ρlḟ

(
1
b
− 1

r

)
− 1

2
ρlf

2
(

1
b4
− 1

r4

) . (3.80)

The two shock jump conditions are based on conservation of mass. First, the con-

servation of mass condition across shock wave is used to express f(t) in terms of k

as shown in equations (3.77) and (3.78). Then the impulse-momentum relationships

across the shock is used to find a integro-differential equation for k(t) as shown by,

−P (t) + 2Y ln
(

k
a

)
+ 6η

∫ k

b
f

r′3
dr′ exp

(
B
[

1
T
− 1

Tm

])
+ρlḟ

(
1
b
− 1

k

)
− 1

2
ρlf

2
(

1
b4
− 1

k4

)
= ρl

(
k̇ − ρl

f
k2

)
f
k2

. (3.81)

with f = α̂k2k̇. The value of b(t) is related to k(t) by,

(b3 − k3)ρl = (b3
o − k3)ρo. (3.82)

The energy equation becomes,

ρlcṪ = (σθ − σr)(ε̇θ − ε̇r)

=
[
Y
(
1− T

Tm

)
− η exp

(
B
[

1
T
− 1

Tm

])]
9f2

r6

. (3.83)

Equation (3.81) and (3.82) are used to find b(t) and k(t) with given P (t). Then T (t)

is obtained from equation (3.83). These equations are valid until k reaches ao.
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3.3.2 Ni+Al System Results

The new incompressible spherically symmetric pore collapse model is demonstrated

for the Ni + Al mixture with volume fractions ξNi = 0.5 and ξAl = 0.5 and ini-

tial porosity αo = 1.639. R is estimated from mixture morphology as the average

representative granule radius shown previously in Figure (1).

For the pore collapse model, the duration of the shock front τ̂ is the time required

for the pore to close α = 1 as shown in Figures (18-16). Computation of r, in

equations (3.42) and (3.48), is performed with 4th order Runge-Kutta and a time step

of 0.5ns. Figures (18-16) show the sensitivity to changes in the material parameters

with respect to the pore closure, temperature, stress, and strain rate. These plots are

useful in determining how the unknown parameters, CI , µf , can be calibrated using

RAVEN code results. Since the results from the hollow sphere are at the time of pore

collapse, the strain rate is extraordinarily high due to the asymptotic behavior of the

material flow into the center of the sphere. The strain rate is lower in the modified

Carroll Holt model. However, the strain rates are still over predicted.

3.4 Incorporation of the Incompressible Spherically Sym-
metric Pore Collapse Model

The spherically symmetric pore collapse model is integrated into the framework in

Figure (5) by incorporating information from both the RAVEN code and macro-scale

continuum models. The summary of equations for the mixture modified pore collapse
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Figure 16: Pore collapse with P = 3GPa, R = 25µm, and CI = 1 with µf = 0 in
the solid line and µf = 1 in the dashed line. The lines nearly overlap in the upper
left plot. Temperature, stress, and strain rate are given at the point of pore closure.
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Figure 17: Pore collapse with P = 3GPa (upper left), P = 6GPa (upper right),
P = 9GPa (lower left), P = 12GPa (lower right), CI = 1, and µf = 1 with R = 25µm
in the solid line and R = 50µm in the dashed line.
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model is given by,

ṙ =
a2ȧ

r2
=

a2ȧ

(r3
o − a3

o + a3)2/3
(3.84a)

r̈ =
∂ζ

∂r
, ζ =

a2ä + 2aȧ2

r
− a4ȧ2

2r4
(3.84b)

∂σ̄rr

∂r
+

2

r
˜̄σ = ρ̄sr̈ (3.84c)

ρ̄sṪ = − 1

C̄v

2˜̄σṙ

r
(3.84d)

ρ̄∗s = ρmin + CI (ρ̄s − ρmin) ; 0 ≤ CI ≤ 1 (3.84e)

˙̄γ =
∑

p

γ̇p = 2
ṙ

r
(3.84f)

˜̄σ = Ȳ (γ̇, T̄ ) (3.84g)

Y i = Y o
i

[
N∑

n=1

ai
yn

(
1− T

T i
m

)n
]

, T < T i
m (3.84h)

Y i = 0, T > T i
m (3.84i)

ηi = ηi
m exp

(
N∑

n=1

Bn
i

(
1

T
− 1

T i
m

)n
)

i=1,2,...p

, T < T i
m (3.84j)
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Y o
i =

1

1− ξp

∑
s 6=p

µIspY
o
p (3.85a)

P (t) = 2
∫ b

a

[∑p
i=1 Y i

o

{
ai

yn

(
1− T

T i
m

)n}
−∑p

i=1 6ηi
m exp

(∑N
n=1 Bn

i

(
1
T
− 1

T i
m

)n)]
ṙ
r

dr
r
−

P̄s [(aä + 2ȧ2)(1− a/b)− 1/2ȧ2(1− a4/b4)] ; T < Tm

(3.85b)

τ ∗ = τ ∗0 (ρ̂)

[
1−

{
kT

∆G0

ln

(
v0 (ρ̂)

˙̄γp

)}1/q
]1/p

(3.85c)

∂ρ̂

∂ ˙̄γp
= MII ( ˙̄γp)− ka ( ˙̄γp, T ) [ρ̂− ρ̂0] (3.85d)

ε̇ = ε̇0 exp

[
∆G (σt/σ̂t)

kT

]
(3.85e)

σ = σa + [(sI (ε̇, T ) σ̂I)
n + (sε (ε̇, T ) σ̂ε)

n]
1/n

(3.85f)

si =

(
1−

[
kT

goiµ(T )b3
ln

ε̇0i

ε̇

]1/qi

)1/pi

(3.85g)

d

dε
σ̂ε = θ0 (ε̇)

1−
tanh

[
2σ̂ε

σ̂εs

]
tanh(2)

 (3.85h)

where ˙̄γp is the effective plastic shear strain rate (see Appendix (D.3)), τ ∗0 (ρ̂) =

∆G0

√
ρ̂/(ba) is the thermally activated part of the threshold stress (i.e. the stress

barrier associated with short range obstacles at 0 K with activation distance a),

v0 (ρ̂) = fρ̂vDb2 is the attempt frequency factor at 0K, k is Boltzmann’s constant,

∆G0 is the activation energy at 0K, and p and q are constants that describe the

shape of the energy barrier. Here, f is the fraction of mobile dislocations, vD is the

Debye frequency, MII ( ˙̄γp) is the rate-dependent dislocation multiplication term, ρ̂0

is the initial dislocation density, and ka ( ˙̄γp, T ) is the dislocation annihilation factor,

σ̂t is the mechanical threshold stress, ∆G is the free energy, ε̇0 is a constant, si is

the thermally activated component of the stress, Burgers vector is b = 2.517Å and

goi is the normalized total activation free energy that characterizes obstacle i and

ε̇0i = 107s−1. goI = 0.103 corresponding to σ̂ = 11MPa and goε = 1 (typical for
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long-range dislocation/dislocation interactions which are less thermally activated)

[43]. The material parameters pi and qi have physical interpretations [71] similar to

those used in the Klepaczko model. Here, pε = pI = 2/3 and qε = qI = 1 which

correspond to box-like obstacles. σ̂εs is the steady state value of σ̂ε and θ0 is the

Stage II hardening rate. These parameters are fit to strain-rate data [43] and given

by θ0 = 5.04 + 0.103 ln(ε̇) GPa and σ̂εs = 870.8 + 12.8 ln(ε̇) MPa. Further details

and description is given in Appendix (D.2).

3.5 Continuum 1D strain model interface

In this thesis, the macro-scale continuum model is solved by numerically integrating

the conservation equations (A.1-A.8) in space and time to provide the mixture density.

The mixture is compressible in the continuum model and incompressibility is assumed

in the pore collapse model. Momentum is spherically symmetric, thus, it does not

influence the continuum 1-D strain model. Temperature localized within the pore

collapse model is not coupled to the continuum 1-D strain model since the temperature

generated by the work done by the pore collapse is already accounted for.

The mixture density in the 1-D strain model is used in the pore collapse model to

calculate the pressure. The pressure is iterated until the required density is reached.

Iterations are performed by choosing lower and upper pressure bounds, i.e., PL, PU

respectively as shown previously in the algorithms in Figure (9). All history depen-

dent parameters w such as the inner pore radius a(t), velocity ȧ(t), and constituent

strength parameters are advected according to equation (3.86).

∂

∂t
(w) +∇ · (wv̄) = 0. (3.86)

Results from the spherically symmetric pore collapse as implemented in the 1D

strain are shown in Figures (18) and (19).
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Figure 18: Pore collapse with P = 3GPa, R = 25µm, and µf = 1 with CI = 0 in
the solid line and CI = 1 in the dashed line. Temperature, stress, and strain rate are
given at the point of pore closure.
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Figure 19: Pore collapse with P = 3GPa, CI = 1, and µf = 1 with R = 25µm in
the solid line and R = 50µm in the dashed line. Temperature, stress, and strain rate
are given at the point of pore closure.
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3.6 RAVEN code model interface

RAVEN code results for Ed, τ are used to obtain the unknown pore collapse model

parameters, R, CI , and µIsp. The pressure applied to the surface of the pore collapse

model Pm is approximated by the linear time dependence [92] which is written as

Pm(t) =

 P1 + (P ∗ − P1)t/τ (0 ≤ t ≤ τ),

P ∗ (t > τ).
(3.87)

It is assumed that P ∗ = Pst is the final shock pressure downstream in the RAVEN

code and τ is the duration of the shock front in the RAVEN code. Both quantities

are obtained from Figure (44). P1 is the pressure at which point higher pressures

result in plastic flow. Pressure in the elastic range (0 ≤ P < P1) is neglected here

because the elastic densification is negligible in comparison with the densification due

to plastic pore collapse during strong shocks. For strong shocks, it is assumed that

P1 = 0 since the shock front thickness is approximately equal to the largest granule

size in the mixture [92].

The assumption in equation (D.2) approximates mechanical equilibrium. There-

fore, the mixture strength in equation (3.54) implies consistency with the mixture the-

ory employed in the RAVEN code [5], in which a single-iteration pressure-equilibration

mixture theory is employed. It is noted that full mechanical equilibrium is not im-

posed in the RAVEN code because a shock wave would traverse a mesh element

multiple times before the pressure equilibrates. Integration is based on calibrating

three model parameters.

The two criterion are f = [Ed, τ ] and three model parameters [R,CI , µIps] to

optimize the fit between the pore collapse results f̂i(k) and the RAVEN code re-

sults fi(k), where k denotes the two experiment conditions [u, M] which represent

the steady state particle velocity imposed in the RAVEN code (see equation (B.5))

and mixture morphology respectively. The corresponding RAVEN code stationary

pressure Pst is input into the pore collapse model boundary condition in equation
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(3.87). This is a partially constrained multi-criterion optimization problem. The

linear weighting method takes the form

minimize
∑2

i=1 wi

√
1

Nruns

∑Nruns

k=1

(
fik−f̂ik(R,CI ,µIps)

fik

)2

such that
∑2

i=1 wi = 1

R ≥ 0

0 ≤ CI ≤ 1

0 ≤ µIps ≤ 1

(3.88)

where wi is the weighting factor assigned to the two criterion. The least squares

approach includes normalization to obtain the optimal solution based on the true

percent error between RAVEN code and gas-gun simulation results.

The pore collapse model results f̂(k) contain continuous solutions for parameters

[R,CI , µIps] in each experiment k. A response surface is constructed in the three

parameter coordinates for each set experimental conditions.

3.7 Summary

The mixture model proposed for use in a spherically symmetric pore collapse equation

of state allows for calibration based on morphology and surface conditions. Inertial

effects, representative granule size, and granular surface sliding effects. Simulated

pore collapse under-predicts the pore collapse time τ̂ that is observed from RAVEN

code results. This is primarily due to non-uniform pressure at the shock front in the

RAVEN code. Additionally, two dimensional effects in the RAVEN code may not be

well represented by the spherical geometry.

The proposed model incorporates mechanical threshold stress model and Klepaczko

constituent strength models. These models have not been included in a spherically

symmetric pore collapse model to date. A strong reason for this is the difficulty of

implementation. A further complication is encountered when incorporating the mix-

ture pore collapse model into the gas-gun simulation. The iterative approach taken
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in this study provides a robust method for future researchers to employ.
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Chapter IV

CHEMICAL REACTION

This chapter contains the formulation of a new chemical reaction model and tech-

niques to bridge a granular level chemical reaction model into a macro-scale contin-

uum level model. The mesoscale is defined in this thesis as the length and time scales

appropriate for describing the interactions between individual granules in a granu-

lar mixture. This model consists of the conservation equations, the reaction model,

reaction initiation, boundary conditions, and initial conditions.

4.1 Chemical Reaction Model

The complete chemical reaction model consists of two distinct levels of modeling,

namely granular level and mesoscale. The RAVEN code provides information that is

used by both the granular level and mesoscale models. A detailed discussion of as-

sumptions model characteristics for the mesoscale model are given later. This section

only describes the granular level model. The goal is to find a formulation of a chem-

ical reaction model that can be used to study chemical reactions in a heterogeneous

media of granular mixture of reactants.

Input: Mixture temperature T̄ , contact length between reactants CL, amount of

reactants Acs (area with unit depth), contact site locations with nearest neighbor

distributions denoted by NNcs, hot spot locations NNhs, hot spot temperature T ,

and pressure P , for the location between two granules of reactants, is obtained from

the RAVEN code. This information is not taken from the macro-scale continuum

model since the RAVEN code has 2D spatial resolution of microstructures.

Desired output: The output is the mass fractions given by the rate equation
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(discussed later),

φ̇p =
ṡ(t)

LB

νpMp∑
p νpMp

(4.1)

where the p constituents are summed over the reactants or the products, φ̇p is rate

of change of the mass fraction for the pth constituent, LB is the length of the two

granules, Mp is the molar mass, νp is the stoichiometric coefficient, and ṡ(t) is the

velocity of the reaction surface in the granular level reaction model. φ̇p is used as an

input in the mesoscale model.

Assumptions: Chemical reactions are not assumed to increase additional mixing

of the constituents. Heat transport employs a volume fraction mixture average of

the conductivity between contact sites. Mass transport is assumed to be 1D. Nearest

neighbor distributed quantities are assumed to be independent. Temperature at the

contact site is 1D and heat is transported to the surrounding mixture over the entire

contact site domain , T = T (x). The state of stress at a contact site is assumed to

be hydrostatic. Chemical reactions are assumed to be reversible and homogeneous at

the surface to keep the formulation general for reactions in heterogeneous media, in

which reactions occur at the surface. In this case, the reverse reaction is important.

The steps are summarized as follows:

1. Reaction initiation is by the solid-liquid approach. The melting of one of the

constituents produces reaction initiation.

2. The reaction rate at the surface is determined by both the mass transport to the

surface and the chemical reaction rate at the surface. The Arrhenius equation

is given by,

Θ = kCνA
A CνB

B (4.2)

k = Ao exp

(
−∆µa(T,σ)

RT

)
(4.3)

where Θ is the reaction rate, k is the reaction coefficient, C is the concentration,

ν is the stoichiometric coefficient, Ao is the pre-exponential factor or Arrhenius
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constant, T is temperature, σ is the Cauchy stress tensor, µ is Gibbs free energy,

R is the universal gas constant. If the stressed state is considered with only

hydrostatic pressure P , the chemical potential becomes

µi(σ, T ) ∼= µi(P
o, T ) + PVi (4.4)

where P o = 1atm is the ambient pressure. Therefore, the change in free energy

due to pressure is

∆µσ =
∑

i

PiVi (4.5)

where the summation must include all mixture constituents with corresponding

pressure Pi.

3. Mass transport is given by,

∂CA

∂t
= DA(T, σ)∇2CA +∇vACA. (4.6)

where, CA is the concentration for reactant A, v is the translation velocity,

DA(T, σ) is a constant described in detail later. The temperature and state of

stress are initially given by the RAVEN code results.

4. Reaction produces heat at the rate given by,

ΨS(x = s(t)) =
∂s

∂t
·
[−∆µo(P o, T̄ )− +∆µo(P o, T̄ )

]
(4.7)

where µo is Gibbs free energy at the energy of formation, s is the surface location,

T is temperature, P is pressure, + designates forward reaction, and − designates

reverse reaction.

5. The rate of change of the mass fraction is given by equation (4.1). This is

directly input into the mesoscale reaction model discussed in a later section.

4.2 RAVEN Code

RAVEN [14] is a finite element code developed at the University of California, San

Diego.
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4.2.1 Differential equations

The differential equations used in the Raven code are given by the conservation of

mass, momentum balance, and conservation of energy in Eulerian coordinates, i.e.,

∂ρ

∂t
+∇ · (ρv) = 0 (4.8)

∂ρv

∂t
+∇ · (ρv × v) = ∇ · σ + ρf (4.9)

∂ρe

∂t
+∇ · (ρev) = σ : ε̇ (4.10)

where, ρ is the density, t is time, v is velocity vector, σ is the stress tensor, f is the

body force, e is the specific internal energy, and ε̇ is the strain rate. Since mixture

averages are not employed, ρ is the density for a constituent at a specific spatial

location.

4.2.2 Assumptions

Model geometry is constructed by generating synthetic distributions of granules that

conform to stereological measures of actual microstructures [4]. The resulting mix-

tures appear similar to those shown in in Figure (20). The assumed boundary condi-

tions, roller boundary on the left and right, velocity on top, and transmitting bound-

ary on bottom, are shown for the mixture in the figure on the left hand side in Figure

(20) [13].

4.2.3 Finite Difference Equations

A Lagrangian calculation embeds a computational mesh in the material domain and

solves for the position of the mesh at discrete points in time as shown in Figure (21).

Since the mesh is embedded in the material, the motion of the material is inferred

from the motion of the mesh [12].

RAVEN is an explicit code since the solution is advanced from time tn to tn+1

without any iterations, and the difference between them is tn+1/2 [12]. Stability
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Figure 20: The initial configurations of cylindrical (19% porosity) and rectangular
prismatic (16% porosity) Cu particle distributions simulated by Benson (illustrations
taken from [13]).

Figure 21: Operator splitting is achieved by a Lagrangian step followed by an
Eulerian step(illustration taken from [12]).
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conditions are discussed in [12]. The following equations are summarized from [12, 4].

The central difference method is used. The second order accurate integration is given

for the general function f by,

fn+1 = fn + f
n+1/2
,t ∆tn+1/2 + O((∆tn+1/2)3). (4.11)

The position x is updated based on the velocity, i.e.,

xn+1
i = xn

i + ẋ
n+1/2
i ∆t. (4.12)

Applying equation (4.11) again gives the integration rule for the velocity.

un+1
i = un

i + u̇
n+1/2
i ∆t. (4.13)

4.2.4 Method of Solution

Operator splitting is employed. The governing equations may be expressed in the

generalized transport form

∂

∂t
φ + u̇ · ∇φ = Φ (4.14)

where the quantity φ represents a generalized solution variable and Φ is a source

term. Operator splitting is a method of decoupling the material transport from the

governing equations. The generalized transport equation is decomposed into the

following terms

∂

∂t
φ = Φ (4.15)

∂

∂t
φ + u · φ = 0. (4.16)

Thus, the governing differential equations are replaced by sets of equations that

can be solved sequentially. This solution technique involves two steps: a Lagrangian

step, defined by Eq. (4.15), and an Eulerian step, defined by Eq. (4.16). The La-

grangian step, which is performed first, advances the solution in time. The Eulerian

step, which is performed afterwards, accounts for material transport. Eulerian for-

mulations are used to simulate the dynamic responses of spatially-resolved particle
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systems subjected to shock loading, where the stress-strain response of each phase is

modeled using distinctive constitutive relations.

4.2.4.1 Lagrangian Step

The Lagrangian calculations performed here adhere broadly to the framework used in

many traditional Lagrangian formulations. There is, however, a complicating factor:

the allowance of more than one material in a single element. The calculations are

adapted to handle this behavior through the introduction of a mixture theory similar

to the theory presented later in this thesis. Details are given in [12]. The flow of

calculations performed in a Lagrangian step is summarized as follows:

1. The forces at the nodes are calculated from the stress state an applied forces at

tn.

2. Nodal accelerations are calculated from the nodal forces at tn.

3. The acceleration is integrated to obtain the velocity at tn+1/2 .

4. The velocity is integrated to obtain the displacement at tn+1.

5. The density is calculated from the deformation gradient at tn+1.

6. The total strain rate at tn+1/2 is calculated from the velocity gradient.

7. The total strain rate is partitioned among the materials in a mixed element

according to a mixture theory.

8. The deviatoric stress in each material is updated using an objective stress rate,

where the stress increment from the constitutive model is added at the midpoint

of the time step.

9. The mean deviatoric stress tensor in an element is calculated according to a

mixture theory.
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10. The updated artificial shock viscosity and hourglass viscosity are calculated

from the time-centered velocity.

11. The internal energy is updated based on the work done during the time step.

12. The pressure is calculated from the equation of state (EOS) based on the internal

energy and density at tn+1.

13. The updated total stress tensor is calculated now that all components are known

at tn+1.

14. A new time step ∆tn+1 is calculated based on the Courant stability criterion.

4.2.4.2 Eulerian Step

The remapping of the solution described by the Lagrangian mesh to the Eulerian

mesh involves the following procedures:

1. The volume transported between elements is calculated.

2. The mean values of the solution variables associated with the transported vol-

ume are calculated and advected.

3. The material interfaces within a mixed element are reconstructed.

4. The computational meshes are reconciled and the calculation proceeds to the

next Lagrangian step.

4.3 Chemical Reaction Model

The general form for the chemical reactions k = 1...Nr is written from [67] as

+Nsk∑
i=1

+νik [Ci] 


−Nsk∑
i=1

−νik [Ci] (4.17)

for +/−Ns reactant and product species, respectively. In the equations, +() denotes

the reactant group and −() denotes the product group or forward and backward
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processes, respectively. νik is the stoichiometric coefficient. Ci (mol/m3) is the molar

concentration species i. For the specific case of 2Al + Fe2O3, the reaction rate for

reaction k is given by [88],

τΘkΘ̇k + Θk = +kk

+Nsk∏
i=1

[Ci]
+νik − −kk

−Nsk∏
i=1

[Ci]
−νik . (4.18)

The modified Arrhenius rate coefficients are given by [105] as,

+kk = +Ak T
+βk P

+ηk +fk(1− ϕ) exp
{
−∆+µak

RT

}
,

−kk = −Ak T
−βk P

−ηk −fk(1− ϕ) exp
{
−∆−µak

RT

} . (4.19)

ϕ is the global degree of conversion of the reactant.

The total differential of the internal energy dU in equation (4.20) considers the

energy in a stressed solid where dS is the differential entropy production [105].

dU = TdS + V σ̄ : dε̄ +
∑

µidni (4.20)

where V is the partial molar volume and dni is the number of moles of component i.

Here, ε and σ are symmetric tensors [105]. We may relate the chemical potential in

equation (4.20) to the Gibbs free energy µ and Helmholtz free energy H, i.e,

µi(σ, T ) =

(
∂µ

∂ni

)
nj ,σ,T

=

(
∂H

∂ni

)
nj ,σ,T

− V σjk · dεjk. (4.21)

If we consider the stressed state with only hydrostatic pressure P , the chemical

potential becomes

µi(σ, T ) ∼= µi(P
o, T ) + PiVi (4.22)

where P o = 1atm is the ambient pressure. Therefore, the change in free energy due

to pressure is

∆µσ =
∑

i

PiVi (4.23)

where the summation must include all mixture constituents with corresponding pres-

sure Pi. Figure (22) shows an ideal case for ∆µσ when both the reactants and the

products are at P = 0 and the transition state is at P < 0.
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Figure 22: Idealized schematic of the reaction path.

The partial molar volume of constituent i is

Vi =
Mi

ρi

vi. (4.24)

In equation (4.24), Mi is the molar mass with units g/mol. For the constituents in

the mixture, the molar masses are MAl = 26.98, MFe2O3 = 159.69, MAlO = 42.98,

and MFe2O = 127.69.

The zero stress (or ambient pressure P o = 1atm) chemical potential or thermal

contribution is defined in equation (4.25).

µp(P
o, T ) = ∆µp(P

o, T ) = ∆Hf
op

(P o, T o) +
∫ T

T ′=To
cvp(P

o, T ′)dT ′

−T ·
[
∆Sp(P

o, T o)−
∫ T

T ′=To

cvp(P o,T ′)
T ′ dT ′

] (4.25)

where T o = 298K is the reference temperature and cvp is the heat capacity for constant

volume for constituent p. The stoichiometric mixture change in free energy for P = P o

is given by

+/−∆µo(P o, T ) =
∑

p

µp(P
o, T ) · vp (4.26)

and is shown for both reactants and products respectively in Figure (22).
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4.4 Chemical Reaction in Heterogeneous Media: Granular
Level Model

The system is initially composed of two reactants, at a single contact site. Each

granule is represented by a continuum in 1D spatial coordinates based on the size of

the reactant granules at the contact site. The model explicitly describes the reaction

at the interface between the reactants. Heat and material transport through the

product layer are included. A consideration of the pressure and temperature are

shown to initiate reaction.

The homogeneous media GLR model is defined in this thesis by considering all

constituents in a contact site to exist at a single continuum point in space. Funda-

mental chemical reaction descriptions are given in Appendix (C). Reaction kinetics

assume the form in equation (4.18). The transition state is described in Appendix

(C.1). A review of the functional forms in equation (4.19) are given by Smith and

Chaudhri [109], in which +f(1−ϕ) = 1 for 1D phase boundary growth. f is a function

with a form that corresponds to a process to limit chemical reaction and the extent of

completion, which is used in equation (4.19). This is the form assumed in this study

since reactions are assumed to be faster than is permitted by the standard concentra-

tion based diffusion reaction, i.e., +f(1−ϕ) = 1/α for 1D diffusion controlled growth.

We assume that −f(1− ϕ) = 0 since we assume that the reaction is irreversible.

Austin [4, 5, 29] used the RAVEN code, a 2-D plane strain multi-material Eulerian

hydrocode developed by Benson [14]. These simulations were conducted on Al+Fe2O3

+ 20 wt.% epoxy and volume % void content at imposed velocities in the RAVEN

code as high as approximately 1km/s. The density and distribution of contact sites

(locations where reactants are in contact) as a function of time were obtained. A

contact site is shown in Figure (23), where Fe2O3 and Al granules are surrounded by

an epoxy matrix.

Results from the RAVEN code provide the physical basis for determining the initial
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Figure 23: RAVEN code simulation of Fe2O3 − Al.

conditions to be used in the case study. Physical processes such as the collisions of

the constituents, pore collapse, jetting, and plastic flow are represented explicitly

in reference [33]. Therefore, the deformed mixture, after the passage of the shock,

represents a state of the mixture prior to shock induced chemical reactions (see Figure

(23)). Reactants clearly must be transported through the product layer that forms

after reaction.

4.4.1 Surface Reaction Mechanism

The majority of real reactions are complex and take place via the transition state [65].

Heterogeneous chemical reactions involve two or more phases (solid and gas, solid

and liquid, two immiscible liquids) in which one or more reactants undergo chemical

change at an interface [2]. Heterogeneous catalysis such as the reaction N2 + 3H2 →

2NH3 in the Haber-Bosch process involve molecular processes at the gas-solid inter-

face. The fundamental mechanism in this reaction has only recently been understood

through experimentation and modeling by the 2007 Nobel Laureate Gerhard Ertl for

“his studies of chemical processes on solid surfaces”.

For example, consider the single-step reaction in Figure (22) with the reaction

2XY + Z 
 X2Y2Z → 2X + Y2Z. The subscript k = 1 is left out of the following
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equations for convenience. The overall surface reaction is viewed as two separate

physical processes, namely formation of the activated complex X2Y2Z at the transition

state and subsequent formation of the final product 2X + Y2Z.

The first process 2XY + Z 
 X2Y2Z is endothermic. Formation of X2Y2Z at the

surface depends on the product concentration at the surface, free energy ∆µ at the

surface, and the mobility of reactants from the materials to the surface.

The second process X2Y2Z → 2X +Y2Z is exothermic and usually assumed to be

irreversible or −k = 0 since its activation energy is much higher, i.e., ∆−µa � ∆+µa

(see Figure (22)). However, supply of reactants to the reaction surface is limited by

finite mass-transport rate in the proposed model. Additionally, reaction is inhibited

due to formation of products 2X +Y2Z at the surface since the product concentration

is much higher at the surface than in the entire mixture. Therefore, the reverse rate

−k is included in this study. The separation of the reactants due to the formation of

the products is a physical process that occurs [105].

These two processes limit the reaction propagation. The 1D transport assumption

permits these processes. A 3D model may elucidate alternative processes including

mixing. This proposed reaction model only permits significant reaction propagation

if surface temperature and state of stress are sufficiently high.

4.4.1.1 Surface Flux

We idealize the separation of reactants by an equiaccessible planar surface in which

the reaction is supplied by diffusion transport of reactants. The surface reaction rate

is Θ, with the two constituents (A, B) becomes [105]

Θ = kCνA
A CνB

B (4.27)

k = Ao exp

(
−∆µa(T, σ)

RT

)
(4.28)
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where subscripts are used to denote mixture constituents for clarity. The subscript a

denotes activation (see Figure (22)). R is the universal gas constant, T is the temper-

ature, C is the concentration, and Ao is the frequency factor or a model parameter

that is usually fit to experimental results. Here, the activation energy per mole of

reactants µa(T, σ) is a function of temperature and the state of stress. If the stressed

state is considered with only hydrostatic pressure P , the chemical potential becomes

µi(σ, T ) ∼= µi(P
o, T ) + PVi (4.29)

where P o = 1atm is the ambient pressure. Therefore, the change in free energy due

to pressure is

∆µσ =
∑

i

PiVi (4.30)

where the summation must include all mixture constituents with corresponding pres-

sure Pi.

The reaction rate must be equal to the rate at which the reactants reach the surface

by diffusion or turbulent diffusion [65] and by the reaction rate at the surface. The

reaction rate must be equal to the rate at which reactants reach the surface and are

consumed at the surface because reaction can not occur unless both reactants are in

contact. We define the ith constituent mass-transport coefficient as βi = Di(T, σ)/δ,

which controls the transport of the reactants from the material away from the interface

to the reaction interface. Di(T,σ) is the diffusivity constant. The term δ refers to the

distance between a location in the reactant, s(t)− δ, and the surface of the reaction,

s(t). This can be expressed in 1D coordinates as in Figure (24) or in higher dimensions

if s(t)− δ represents lies on a line that is normal to the surface reaction at s(t) and

passes through the point xjI . This distance is required to separate the two reactants.

The concentration of each constituent at the surface is denoted C ′
i.

The mass flux [65] is given as,

Ji = βi (Ci − C ′
i) = Θ (C ′

A, C ′
B) /νi. (4.31)
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Figure 24: 1D grid for the heterogeneous granular level reaction simulation with
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Figure 25: Rate controlling mechanism.

The reaction surface location, with velocity Va in Figure (25) at a given time, is

denoted as s(t) for convenience and is given by the flux in equation (4.32). νi is the

stoichiometric coefficient for the ith constituent. Diffusion mass-transport is defined

on the 1D spatial coordinate 0 <= x < s(t) by the stationary diffusion equation,

similar to the heat equation (4.44), and is given by

JA =

(
DA

∂CA

∂x

)
x=s(t)

=
Θ

νA

= C ′
A

∂s

∂t
. (4.32)

Let A = XY and B = Z from the example reaction with the rate determining

transport mechanism in Figure (25). The surface concentrations C ′
A and C ′

B are

obtained from equations (4.18) and (4.31) with τΘ = 0 and Θ1 is the mass-transport

determining reaction rate to the surface. Since reactant A is transported through the

products, C ′
B = CB. Therefore, the concentration at the surface for reactant A, with

νA = 2 for the class of reactions studied in this thesis, is given by

C ′
A =

−βA +
√

β2
A + 4+k1C

νB
B (βACA + −k1C

′νC
C )

2+k1C
νB
B

(4.33)
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where C = X2Y2Z is the intermediate product. The translation term vAC ′
A = 0

since reactant A does not penetrate the surface s(t). Equation (4.33) represents the

concentration of reactant A in the product layer of the reaction. This equation is

easily obtained using equations (4.27), (4.31), and (4.32).

4.4.2 Mass Transport

Mass transport is referred to as forced interdiffusion [31] since the transport rate

depends on stress and translation velocity v. We assume that diffusivity for reactant

A, DA(T, σ), is a constant and the diffusion equation takes the form,

∂CA

∂t
= DA(T,σ)∇2CA +∇vACA. (4.34)

The diffusion equation is generally 3D. In this thesis the diffusion equation is 1D,

therefore, the operator is given by ∇ = ∂/∂x. The rate of change in the translation

velocity vector vA is obtained from the momentum balance given by,

∂

∂t
(ρAvA) +∇ · (ρAvA × vA) = ∇ · σ (4.35)

where vA is the only unknown because ρA is assumed to be constant in the GLR and

mesoscale reaction models.

In 1D, equation (4.36) becomes,

∂

∂t
(ρAvA) +

∂

∂x
· (ρAvA × vA) = ∇∂σ

∂x
(4.36)

Generally, there are three main energy contributions in a shock induced chemical

reaction, namely shock compaction, pore collapse, and plastic work. All of these

are accounted explicitly by Do and Benson [34]. However, their reaction model has

infinite transport rate. In this thesis, the stress contribution is considered to affect

the transition state in the mass transport model. This is demonstrated for the case

in which the pressure is considered.
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The diffusion constant in equation (4.34) depends on temperature and on the

stress state via the activation energy and is given by,

∆µD(σ) = ∆µDo + ∆µσ (4.37)

with ∆µσ from equation (4.23). ∆µDo is a material parameter obtained from experi-

ments. Both ∆µDo and ∆µσ are constants.

D(T, σ) = Do exp

(
−∆µD(σ)

RT

)
. (4.38)

The spatial coordinate x is defined with the origin x = 0 located at the diffusion

interface in Figure (25). The characteristic length of the reactant B granule is LB.

The reactant lengths are assumed to be proportional to the volume fraction, i.e.,

LA/LB = ξA/ξB.

The concentration of reactant A at x = 0 is Co
A given by equation (4.39) with

Aξ = Aφ = 1, which remains constant with respect to time until reactant A is

depleted at time t∗.

Ci =
φiρ̄

Mi

. (4.39)

The boundary conditions for equation (4.34) are written as

CA = Co
A for t < t∗

∂CA

∂x
= 0 for t ≥ t∗

 at x = 0

CA = C ′
A at x = s(t)

(4.40)

and are applied as shown in Figure (24).

4.4.2.1 Discrete Form

The 1D discrete form of equation (4.34) on a uniform Eulerian grid ∆x with time

step n, omitting the subscript A on the concentration, is

Cn+1
j = Cn

j +
∆tn ·Dn

Al(Tj, Pj)

∆x2

[
Cn

j+1 − 2Cn
j + Cn

j−1

]
. (4.41)
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The uniform grid size is ∆x = 1/(Ng − 1) and Ng is the number of grid points.

Initially, the s(t = 0) = 0 and moves at the velocity defined by equation (4.32). At

the reaction surface s(t) shown in Figure (24), we have a non-uniform grid with the

flux from equation (4.31). The concentration of reactant A is given by

Cn+1
jI = Cn

jI +
2∆tn

∆x + ∆xjI

(
− Θ

vAl

−Dn
Al(Tj, Pj)

[
Cn

jI − Cn
jI−1

∆xjI−1/2

])
(4.42)

since the cell centered at x(jI) has a moving cell edge s(t) and ∆x′ ≥ ∆x/2. At time

t = 0, the node jI = 1.

The stability condition for the diffusion transport is obtained from [63] and stated

as

∆tn+1 ≤ min

[
1

2

(
∆x
2

)2
maxj (Dn

Al(Tj, Pj)n)
,
∆x

2

1
∂sn

∂t

]
. (4.43)

s(t) in Figure (24) moves from left to right. When the new location sn+1 from equation

(4.32) is such that ∆xn+1
jI+1 ≤ ∆x/2, the cells are reconstructed such that mass is

conserved and jI = jI + 1. The time step used in this study is given by multiplying

∆t from equation (4.43) by CFL = 0.8 (0 < CFL ≤ 1), which is the Courant

Friedrichs and Lowey condition.

4.4.3 Post Reaction Granular Level Reaction Heat Transport and Melt-
ing

The stationary form of Fourier’s law is used for the local continua with mixture

temperature T̄ . This permits the temperature calculation of the reacting region

without material flow. The heat flux in the mixture is given by,

q̄ = −k̄q∇T̄ (4.44)

where k̄q is the mixture heat conduction coefficient. k̄q and the mixture density are

volume fraction averaged.

The heat conduction equation is given by,

∂ (ρcvT )

∂t
= ∇ ·

(
k̄q∇T

)
. (4.45)
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If the mass fraction averaged heat capacity is c̄p and the density ρ̄ in equation are

assumed to be constant with respect to time (incompressible) and k̄q is spatially

independent, then equation (4.45) simplifies to give us,

∂T̄

∂t
= κ̄(T )∇2T̄ (4.46)

where κ̄ is the thermal diffusivity with units m2 · s−1 and is given by,

κ̄(T ) =
k̄q

ρ̄c̄p(T )
. (4.47)

Heat is transported in the model in the region containing the reactant products

and the reactant B, i.e., 0 ≤ x ≤ LB in Figure (24), and heat is generated at the

reaction interface. The source term ΨMS(x) given below bridges the granular level

reaction and the mesoscale models. The mesoscale reaction model is discussed later.

The heat conduction equation is given by,

∂
(
ρ̄c̄vT̄

)
∂t

= ∇ ·
(
k̄q∇T̄

)
+ ΨS(x = s(t)) + ΨMS(x). (4.48)

The material parameters and temperature are spatially dependent and are averaged

based on the composition at the spatial coordinate x. k̄q(x) is the volume fraction

(ξ) average heat conduction coefficient and ρ̄(x) is the average density. The mixture

heat capacity c̄v(x) and temperature T̄ (x) are averaged on a mass fraction (φ) basis.

From equations (4.26) and (4.32), the source term ΨS due to the heat supplied or

produced by the exothermic reaction at the interface is given by,

ΨS(x = s(t)) =
∂s

∂t
·
[−∆µo(P o, T̄ )− +∆µo(P o, T̄ )

]
. (4.49)

Heat transfer between the GLR and mesoscale models is necessary since the GLR

model is embedded within the mesoscale model. This means that at each time step

in the mesoscale simulation, the GLR model is run at each contact site or location

in which reactants are in contact. Heat is transferred based on the ensemble average

energy in the GLR, which given by,

ê =

∫ LB

0

T̄ ρ̄c̄vdx. (4.50)
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Implementation in a mesoscale model that relates the ˙̂e to ΨMS(x) is provided later.

According to this model description, diffusion occurs within the GLR model regardless

of the heat transfer between the GLR and mesoscale reaction models.

The latent heat of melting (fusion) ∆Hmi requires energy at the rate given by,

∂ê

∂t
= φ̇i |s→l ∆Hmip, (4.51)

such that the temperature T = Tmi remains constant while the solid phase mass

fraction φi |s> 0 for reactant i.

For the mixture reaction model [88], constituents are assumed to be in thermal

equilibrium and the solid-liquid approach is employed unless otherwise specified. The

heat source term for the binary mixture with reactants i = 1, 2 is written in the form,

ΨS =
Nr∑
k=1

2∑
i=1

φ̇ik ·
[−∆µo

k(P
o, T̄ )− +∆µo

k(P
o, T̄ )

]
(4.52)

where +/−∆µo(P o, T̄ ) are given in equation (4.26).

4.4.4 Boundary Conditions and Initial Conditions

For equation (4.48), the boundaries at x = 0, LB are adiabatic, i.e., the heat flux

q = 0. This is necessary since there is no information for temperatures beyond the

boundaries. This permits the heat to be transferred from the entire 1D domain

instead of only the boundaries. For complete reactions in the case where ˙̂e = 0, the

temperature in the region 0 ≤ x ≤ LB will be approximately equal to the adiabatic

temperature calculated in the homogeneous GLR model.

Initial conditions:

Temperature is initially distributed according to mixture temperature Tb and hot spot

temperature Ths at the reactant interface by,

T (x, t = 0) =

 Tb + (Ths−Tb)

∆x2
hs

(x−∆xhs)
2 ; 0 ≤ x ≤ ∆xhs

Tb ; ∆xhs < x ≤ LB

(4.53)
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where a parabolic distribution is assumed. Note that Tb and Ths are only used to

initialize the temperature. Ths is estimated from the RAVEN code results. ∆xhs is

the size of the hot spot shown in Figure (26-a). ∆xhs depends on the temperature

distribution obtained from the mesoscale simulation. A hot spot is defined as a region

in which reactants are at a significantly higher temperature than the neighboring

material. The definition for the temperature difference and size of the hot spot are a

current topic of research and are discussed further later in this thesis. The point at

which t = 0 is based on the assumed stationary condition in the mesoscale simulation.

For example, at time ∆tst downstream of the shock front, the formation of contact

sites may reach a near-stationary condition when mixing has nearly stopped.

4.4.5 Numerical Solution

The solution to equation (4.46) is similar to the 1D discrete mass transport equations

but with a smaller time step ñ < n in equation (4.54). ñ is obtained from the stability

conditions since it represents the number of time steps.

T ñ+1
j = T ñ

j +
∆tñ · κ̄ñ

j (T n
j )

∆x2

[
T ñ

j+1 − 2T ñ
j + T ñ

j−1

]
+ Ψn

S,j + Ψn
MS,j. (4.54)

To satisfy the constraints used to derive equation (4.46), k̄q is spatially independent

and calculated for all constituents p at the j node, i.e.,

k̄n
q =

Ng∑
j=2

∑
p

ξn
p,jk

n
qp,j. (4.55)

The average heat capacity c̄p,j at each node j only changes at n time steps to conserve

energy. Tj is re-calculated to conserve energy by applying equation (1.17).

Ψn
S,j is added to the interface nodes at x = xjI , xjI+1 proportionally to the respec-

tive cell sizes at time tn, i.e.,

Ψn
S,j =

∆xn
j

2∆x

∆en
rxn

c̄n
v,j ρ̄

n
j

(4.56)
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where ∆erxn is the heat supplied by the GLR model and is given by,

∆en
rxn =

sn+1 − sn

∆x

ρ̄o∑2
p=1 Mpνp

[−∆µo(P o, T )− +∆µo(P o, T )
]
. (4.57)

The change in the average temperature in the GLR model ∆T̂ is due to heat

transport calculated in the mesoscale model and heat generation due to the heat of

reaction in the GLR model. This heat is distributed proportionally to each node

based on the local heat conduction at tn, i.e.,

Ψn
MS,j =

(
T̄ n + ∆T̂ n − T n

j

)∑Ng

i=2 c̄n
v,iρ̄

n
i ∆xn

j

c̄n
p,j ρ̄

n
j ∆xn

j

(4.58)

since k̄q is spatially independent. T̄ is the ensemble average temperature in the contact

site given by,

T̄ n =

∑Ng

i=2 T n
j c̄n

p,j ρ̄
n
j ∆xn

j∑Ng

i=2 c̄n
v,j ρ̄

n
j ∆xn

j

. (4.59)

The adiabatic boundary conditions are applied at the ghost cells x = x1, xNg+1 and

are given by T n+1
1 = T n+1

2 and T n+1
Ng+1 = T n+1

Ng
. For complete reactions in the adiabatic

case (i.e., Ψqk
= 0), the temperature in the region 0 ≤ x ≤ LB will be approximately

equal to the adiabatic temperature calculated in the homogeneous GLR model. Note

that reactants are always in stoichiometric quantities in all comparisons.

The stability condition is given by,

∆tñ+1 ≤ 1

2
CFL ·

(
∆x
2

)2
maxj

(
κ̄n

j

) . (4.60)

4.4.6 Contact Site Description

A contact site from statistical volume element (SVE) or 2D domain in the RAVEN

code [4] is converted to the current model representation as shown in Figure (26).

The model is 1D and the temperature is transferred from the node xi.

Figure (26(a)) is the contact site in a 2D mesoscale reaction model domain with the

finite difference grid. The grid size is chosen to be approximately half the size of the
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contact site in the reaction model. Smaller grids are employed in the RAVEN code. A

statistical volume element in the RAVEN code is the two dimensional representation

of the mixture. Granules in the mixture are located based on the nearest neighbor

distribution obtained from experiments [4]. The mesoscale model grid spacing is

one to ten times smaller than the diameter of the granules, which can range from

hundreds of nanometers to microns in the current study. Therefore, the mass mk for

the kth contact site is much larger than the mass of material mij contained within a

cell area Aij = ∆x2 with unit depth on the uniform mesoscale reaction model grid.

The contact sites are idealized to have cylindrical geometry centered at a node xi, yj

contained within the cell outlined in the dashed lines.

 

(a) Contact site from SVE

 

j 

i

(b) Schematic of idealized
contact site

Figure 26: Contact site from SVE is converted to a homogeneous representation.

Displacement reactions are assumed in the product formation zone according to

the Wagner mechanism [115] (shown in Figure (2)) for two reasons. Displacement re-

actions are reactions in which reactants remain separate from the products (unmixed).

First, the rate determining diffusion process involves the transport of a single reactant

through one of the product constituents (solid or liquid phase), for example reactant

A is transported through product C. This occurs when the diffusion activation en-

ergy for reactant A in product C is much lower than for any other reactant through

the products. The reactant and product may be in liquid or solid state. Second,

the Wagner mechanism has been observed [122] for a reaction similar to the thermite
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reaction, namely Fe + Cu2O → FeO + Cu, in which diffusion of the Fe2+ cations

were found to determine the rate of the reaction. Generally, the Wagner mechanism

is an assumed model to predict the rate-determining mass transport mechanism. The

mass is assumed to separate as shown schematically in Figure (2).

The Wagner mechanism [115] is a displacement mechanism used for reaction mod-

eling. This model describes the mixture of two or more constituents separating in the

parallel direction of the material flow.

Transport of reactant A through the product layer as depicted in Figure (25)

determines the amount of reactants at the reaction surface. Therefore, reactions do

not occur at the A−C interface. The product layer assumption holds for both solid

and liquid phases. However, in this thesis, liquid products are assumed since the

adiabatic temperature from the heat of reaction exceeds the melting temperature of

the reactants. The velocity of the diffusion and reaction surfaces are denoted Va and

Vb, respectively.

Summary of the reaction model:

1. The reaction model consists of a granular reaction model and a mesoscale reac-

tion model.

2. The granular reaction model simulates chemical reactions between a solid and

liquid. Temperature and pressure are included in the activation energy with

affects both the mass transport and the chemical reaction at a surface.

3. The mesoscale reaction model is based on the RAVEN code statistical distribu-

tions for contact site location, amount of reactants, temperature, pressure, and

contact length between reactants. This model uses the granular level reaction

and simulates the heat transport between contact sites.
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4.4.7 Granular Level Reaction

For the 2Al+Fe2O3 thermite reaction, we consider the following transition state [88]

with the one-step reaction mechanism:

2Al + Fe2O3 → AlO + 2Fe2O + Al − Heat

AlO + 2Fe2O + Al → 1/3Al2O3 + 1/2FeAl2O4 + 1/3Al + 3/2Fe + Heat
.

(4.61)

The products Al2O3, FeAl2O4, Al, and Fe are assumed to form between the

reactants and displace according to the Wagner mechanism. Fan et al. [41] suggest

that diffusion of Al in FeAl2O4 with an activation energy ∆GDo of 162kJ/mol [55] is

the rate controlling mechanism (see equation (4.38)). Therefore we assume that the

rate determining mass transport process is the Al through the FeAl2O4. From Figure

(25), we have A = Al, B = Fe2O3, and C = FeAl2O4 for the thermite reaction. The

hydrostatic case is considered, i.e., D(T, P ), with homobaric pressure P defined for

0 ≤ x ≤ LB.

Experimentally measured shock temperatures are reported in the range of 2700K−

3400K for the porous thermite system 2Al + Fe2O3 by Boslough [20]. The powder

contains Al and Fe2O3 with mean granule sizes of ≤ 1µm and ≤ 0.3µm, respectively.

Therefore, the Fe2O3 length LB = 150nm is estimated by the radius of the mean

granule diameter. The approximately stoichiometric mixture is hot pressed to con-

tain ∼ 50% voids and fired from a gas-gun at velocities of 1.1183km/s and 1.293km/s

into a LiF window. Time resolved temperatures are obtained from pyrometry mea-

surements. Thermal equilibration in the fine grained powder is estimated to occur

within ∼ 100ns, which is suggested by Boslough to be the upper bound to the time

that reactions take place.

Transition state:

The transition state (AlO +2Fe2O +Al) is identified based on energy considerations

discussed above [88]. The various transition states considered with corresponding free

92



Table 3: Reaction energies (P o, T ) for the thermite re-
action (4.61) per one mole of reactants, i.e., 2/3Al +
1/3Fe2O3.

Energya,b A0 A1 A2

(kJ/mol) (kJ/mol) (kJ/mol ·K) (kJ/mol ·K2)
+∆µo −2.617E2 −6.868E − 2 −28.11E − 6
tr∆µo −1.461E2 −1.317E − 1 −29.37E − 6
−∆µo −5.054E2 −3.708E − 2 −1.933E − 5
+∆µa 1.156E2 −6.306E − 2 −1.264E − 6

a 2nd order least squares fit to Gibbs free energy [1]
with residual R2 ≥ 0.9992

b P o = 1atm is the reference pressure and ≤ T ≤
3000K.

energies are given by Narayanan [88]. The products formed in equation (4.61) are

taken from the experimental observations by Fan et al. [41]. Their study shows for-

mation of Al2O3 and FeAl2O4 from X-ray diffraction (XRD) of the reacted thermite

mixture. Analysis of the differential scanning calorimetry (DSC) data resulted in an

activation energy of 145kJ/mol for the thermite reaction 8Al + 3Fe2O3 (at ambient

pressure). This compares well with the transition state energy barrier and heat of

formation as a function of temperature obtained from [1]. A second order polynomial

least squares fit in the form ∆µ(T ) = A0 + A1T + A2T
2 was obtained and the coeffi-

cients are given in Table (3). For the contribution from equation (4.23), the pressure

P is assumed to be constant for all reactants, transition state, and products. This

assumption is based on the observations for the reactants by Austin [4], in which pres-

sure nearly equilibrates within a few granules downstream of the shock front. Once

reaction begins, pressures are not equilibrated, however, mechanical equilibrium is

assumed to occur much faster than mass transport.

Reaction kinetics:

For lack of experimental evidence, the parameters in equation (4.18) follow the tra-

ditional Arrhenius form. Therefore, β = η = 0, f(1 − α) = 1, and τΘ = 0 for
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the heterogeneous GLR model calculations. Pressure and temperature dependencies

are only included through the assumed transition state. The remaining unknown

parameters are +A and −A.

Material parameters:

The diffusion activation energy of 162kJ/mol reported by Fan et al. [41] could not

be found in the cited reference [55]. However, Fe diffusion into FeAl2O4 was found

to have an activation energy of 273kJ/mol [55]. In this study, the energy is con-

servatively assumed to be 273kJ/mol with corresponding diffusion constant Do =

3.15× 10−4m2/s calibrated at T = 1470K. To obtain increased accuracy, additional

experimental data is required to calculate the constant Do(T ) and the diffusion acti-

vation energy ∆µDo for 800K < T < 3000K. The constituent heat capacity cvp(T )

values [1] for the temperature range T = [300, 3000]K are least squares fit to piecewise

fourth order polynomials with residuals R2 ≥ 0.98. The chemical reaction relaxation

times τΘ = 0, 10, 100ns are studied here based on the concept that chemical reactions

are delayed by approximately 100ns [78]. Remaining material properties are given

in Table (7). Constituent densities, thermal conductivity, melting temperatures are

taken from [11, 4] unless otherwise specified. Properties are assumed to be the same

for both solid and liquid phases except for the density of melted Al, which is assumed

to be 2380kg m−3. The density for FeAl2O4 is obtained from [117]. The density for

AlO is estimated to be equal to the density of Al2O3 and the density 5700kg m−3 is

estimated for Fe2O [106].

Initial and boundary conditions:

The initial temperature distribution and pressure is obtained from Raven code results,

reported by Austin [5], for the mixture containing Al + Fe2O3 + 20 wt.% epoxy and

2% voids. The granule diameters are 0.30µm for Al and 0.10µm for Fe2O3. For an

imposed granule velocity Vp = 1km sec−1, the stationary pressure is P ∼= 10GPa and

the average hot spot temperature is Ths
∼= 1400K. Although the pressure is twice
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Table 4: Material properties for the reactants in the 2Al + Fe2O3 system in
stoichiometric quantities given by equation (4.61). Properties are assumed to be
the same for both solid and liquid phases.

Property Units Al Fe2O3 Al2O3 FeAl2O4

Molar mass, M g mol−1 26.98 159.7 102.0 173.8
Initial volume fractions, ξo – 0.428 0.572 0 0
Density, ρ kg m−3 2700 5274 5274 2960
Thermal conductivity, kq W m−1K−1 210 5 35 4a

Melting temperature, Tm K 926 1780 – –
Latent heat of melting, ∆Hm kJ kg−1 390 600b – –

a Estimated from [108].
b Estimated from survey of oxides [106].

that of Boslough’s experiments, the mixture temperature Tb
∼= 800K is approximately

200K lower than is calculated for the 50% porous mixture [20] since the work done

by void collapse in the 2% mixture is much smaller. Therefore, the contact site

temperatures Tb = 800K and Ths = 1400K are employed to estimate the initial

conditions between contact sites in Boslough’s experiments.

The pressure in the granular mixture [5] equilibrates within approximately 5ns to

10ns, therefore, the pressure gradients are neglected in this case study. Reactions at

the surface occur on the order of fempto seconds, thus, pressure gradients affect the

reaction kinetics. This is neglected in the current study since these affects are assumed

to be small compared to the concentration gradient. At time t > 0 downstream of the

shock front, the initial pressure Po is assumed to be stationary until relaxation begins

at time t = tP . For demonstration purposes, pressure decreases to P = 0 during the

relaxation time τP is given by,

P (t) = Po

[
1− (t− tP )2 /τ 2

P

]
, tP < t ≤ tP + τP . (4.62)

The adiabatic condition is assumed. For all models, heat is not dissipated to

the surroundings. This assumption permits an equal comparison between these two

models.
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4.5 Thermite System Case Study

4.5.1 Granular Level Reaction Analysis

The Al concentration along the x-coordinate in the product layer (see Figure (25)) is

shown for various times during a reaction in Figure (27). Reaction nearly stops after

time t = tP since the mass-transport strongly depends on the pressure contribution

(see Figure (28)). Although the temperature exceeds 2000K, the thermal contribution

alone is not sufficient to propagate the reaction. Values for the pressure relaxation

in equation (4.62), tP = 804ns and τP = 100ns, have been selected to approximate

temperatures observed in Boslough’s experiments [20]. The pressure relaxes to zero

within 340ns in this case study, however, even much smaller decreases in pressure

will yield similar partial reactions as are demonstrated in this study. This pressure

relaxation is estimated such that the resulting reaction is consistent with experimental

observations [20].
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Figure 27: 1D Al transport through the product layer in the heterogeneous GLR
model. Vertical lines represent x = s(t) at times t in nanoseconds (ns), for the
case: LB = 150nm, +A) = −A0 = 1000, Tb = 800K, Ths = 1400K, Po = 3.9GPa,
tP = 240ns, and τP = 100ns.

Time history for the mixture average temperature T corresponding to the ensemble

in equation (4.50) is shown in Figure (28). Two values for the forward reaction
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rate are given to demonstrate the rate dependence for Boslough’s experiments #2274

(Po = 4.4GPa) and #2279 (Po = 3.9GPa) [20]. For the case in which A0 = 1000 and

Po = 4.4GPa, complete reaction occurs and the mixture temperature is T = 3276K.

This is lower than the estimated 4000K [20] since the heat of melting is included

in the present study. The reaction extent is 72% when A0 = 1000, Po = 3.9GPa,

and the pressure relaxation time tP = 804ns is estimated such that the temperature

approximates the experimentally measured temperature of 2550K.

When A0 = 1000 and Po = 3.9GPa, only .4% reaction occurs with a temperature

of 920K, much less than the experimentally estimated value of 2700K; the reaction

extent is 72% (calculated from the simulation). The pressure contribution determines

the extent of reaction and the pre-exponential factor +Ao determines initial reaction

rate.
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Figure 28: Heterogeneous GLR model, LB = 150nm, −A0 = 0, Tb = 800K, Ths =
1400K, tP = 240ns, and τP = 100ns.

The reaction rate in the equilibrium homogeneous model is exponentially depen-

dent on the mixture temperature T (see equation (4.19)). The use of τΘ ' 100ns

delays the onset of the reaction. However, τΘ and +A0 are not independent parameters

as shown in Figure (29) for the cases +A0 = 10, τΘ = 0 and +A0 = 100, τΘ = 100ns.

Regardless of the values for +A0 and τΘ, reactions always proceed to completion if
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heat is not dissipated from the mixture.
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Figure 29: Homogeneous GLR model, P = 0, −A0 = 0, T (t = 0) = Tb = 800K.

The heterogeneous and homogeneous GLR models are compared in Figure (35).

Both models, presented in this thesis, use the pressure dependent activation energy

from equations (4.22-4.23) for the reaction in equation (4.61). The reaction rate

decreases for increases in pressure since ∆µσ > 0 for P > 0 in the thermite reaction in

equation (4.61). Figure (35) shows that the homogeneous reaction rate increases only

after pressure nearly relaxes to zero. For the heterogeneous GLR model,
∑

i Vi < 0

for the diffusion process Al → FeAl2O4, thus mass transport of Al to the reaction

surface increases. Therefore, the overall reaction rate in the heterogeneous reaction

increases as the pressure increases.

In the heterogeneous GLR model, an increase in −A0 significantly reduces the rate

of reaction as demonstrated in Figure (35). As mentioned earlier, the reverse reaction

in the homogeneous GLR model (see equations (4.18)-(4.19)) has very little effect as

shown in Figure (35) when −A0 is within a few orders of magnitude of +A0 = 0.
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Figure 30: Product formation from heterogeneous media and homogeneous media
GLR models, LB = 150nm, +A0 = 1000, T (t = 0) = Tb = 800K, Ths = 1400K,
Po = 4.4GPa, tP = 240ns, τP = 100ns, and τΘ = 0. For the homogeneous reaction,
the curves for −A0 = 0 and −A0 = 100 are overlapping.

4.6 Ni + Al System Case Study

4.6.1 Granular Level Reaction Model

Estimated contact site and hot spot distributions, hot spot temperatures, contact

length, area, and pressure are summarized for the case study in Table (5). These

parameters are obtained from the RAVEN code.

Table 5: Distribution parameters at t = 4ns for Ni + Al with granule velocity
Up = 1km s−1

Distribution (units) Type µ σ
Contact site NN1 location (µm), NNcs N 1.1 .25
Hot spot NN1 location (µm), NNhs N 2.0 1.0
Hot spot temperature (K), T Log-N 1400 200
Contact length (µm), CL Log-N 0.1 .05
Contact site area (µm2), A Log-N 0.1 .05
Contact site pressure (GPa), P Log-N 2.81 1.0

Transition state:

The transition state (Ni(s) + 3Al(l)) at zero pressure is identified based on energy

considerations discussed in [88]. The various transition states considered with cor-

responding free energies are given by Narayanan [88]. The transition state energy
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barrier and heat of formation as a function of temperature are obtained from [1]. A

second order polynomial least squares fit in the form ∆µ(T ) = A0 + A1T + A2T
2

was obtained and the coefficients are given in Table (6). The quantity +∆µo is from

equation (4.23) and represents the heat of formation. The pressure P is assumed to

be constant for all reactants, transition state, and products.

Table 6: Reaction energies ∆µ(P o, T ) = A0+A1T +A2T
2 for the reaction containing

Ni + 3Al per one mole of reactants, i.e., 3/4Al + 1/4Ni.
Energyab A0 A1 A2

(kJ/mol) (kJ/mol) (kJ/mol ·K) (kJ/mol ·K2)
+∆µo −7.690E − 3 −5.209E1 1.426E4
tr∆µo −7.639E − 3 −6.026E1 2.194E4
−∆µo −6.927E − 3 −4.934E1 −2.456E4
+∆µa 5.116E − 5 −8.167E0 7.672E3
−∆µa −7.119E − 4 −1.092E1 4.650E4
a 2nd order least squares fit to Gibbs free energy [1] with

residual R2 ≥ 0.9992.
b P o = 1atm is the reference pressure and ≤ T ≤ 3000K.

Reaction kinetics:

Parameters β = η = 0, f(1 − α) = 1, and τΘ = 0 are for the heterogeneous media

GLR model calculations. Pressure and temperature dependencies are only included

through the transition state. The remaining unknown parameters are +A0,
−A0.

In the surface reaction, we assume that δ is small compared to the reactant granule

diameters 0.1 − 1µm. The value δ = 1nm is selected in this study since transport

to the surface is dominated by the transport of reactant A in the mixture containing

the products.

Material parameters:

The interdiffusion material parameters are obtained from available experimental re-

sults [58]. The diffusion parameter is estimated as D0 = 2.26× 10−6m2s−1 from [58].

The activation energy is estimated as ∆µDo = 273kJ/mol from the results of a similar

system studied by Fan et al. [41]. This is considered to be a high estimate [100]. The
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remaining parameters and material composition are summarized in Table (7).

Table 7: Material parameters for the constituents in the Ni+Al+20wt.%EPON828
system with the reaction containing Ni + 3Al.

Property Al(s) Ni(s) Al(l) Al3Ni(l) Epon828 Units
Molar mass, M 26.98 58.59 26.98 139.6 – kg/kmol
Stoich. coeff., ν −3 −1 – 1 – –
Initial vol. frac., ξo 0.46 0.10 0 0 0.44 –
Density, ρ 2700 8909 2380 3368 1200 kg/m3

Conductivity, kq 222 90.7 222 189 0.2 W/m ·K
Melting temp., Tm 926 1728 – – 533 K

Initial and boundary conditions:

The granule diameters are approximately 25µm for both Al and Ni granules. For

an imposed granule velocity Vp = 1km sec−1, the stationary pressure is P ∼= 5GPa

and the average hot spot temperature is Ths
∼= 1400K (estimated from RAVEN

simulations as described in Appendix (B)). Although the pressure is twice that of

Boslough’s experiments, the mixture temperature Tb
∼= 800K is approximately 200K

lower than the value that is calculated for the 50% void mixture [20] since the work

done by void collapse in the 2% void mixture is much smaller than in the 50% void

mixture. Therefore, the contact site temperatures Tb = 800K and Ths = 1400K

are employed to estimate the initial conditions between contact sites in Boslough’s

experiments.

The pressure in the granular mixture equilibrates within approximately τ̂ ≈

5 − 10ns, where τ̂ is the time required for pressure to equilibrate. Reactions on

the order of microseconds are considered. Therefore, the pressure gradients are ne-

glected in the case study. At time t > 0 downstream of the shock front, the initial

pressure Po is assumed to be stationary until relaxation begins at time t = tP . The

stationary assumption is based on observations in RAVEN code simulations [4]. Pres-

sures are expected not to be in equilibrium during chemical reactions. As mentioned

previously, these pressure gradients are assumed to be small compared to the effect
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of the concentration gradient with forced diffusion. For demonstration purposes, the

pressure decreases to P = 0 during the relaxation time τP and is given by equation

(4.62).

The adiabatic condition is assumed for both the heterogeneous media-based GLR

model, heat is not dissipated to the surroundings. This assumption permits a compar-

ison between these two models. The numerical solution for both the heterogeneous

and homogeneous media-based GLR models is obtained from the finite difference

method summarized as,

Cn+1
j = Cn

j +
∆tn·Dn

Al(Tj ,Pj)

∆x2

[
Cn

j+1 − 2Cn
j + Cn

j−1

]
Cn+1

jI = Cn
jI + 2∆tn

∆x+∆xjI

(
− Θ

vAl
−Dn

Al(Tj, Pj)
[

Cn
jI−Cn

jI−1

∆xjI−1/2

])
∆tn+1 ≤ min

[
1
2

(∆x
2 )

2

maxj(Dn
Al(Tj ,Pj)n)

, ∆x
2

1
∂sn

∂t

]
.

(4.63)

4.6.2 Granular Level Reaction Analysis

We compare the heterogeneous media-based GLR model to the homogeneous media-

based GLR model in equation (4.18) in Figures (31(a)-31(b)). All reactants are in

stoichiometric quantities. For the heterogeneous media-based model, initial temper-

ature is given by equation (4.53) with Ths = 1400K, Tb = 800K. The homogeneous

media-based model is assumed to initially have the temperature Tb = 800K. The

heterogeneous and homogeneous media-based models are given adiabatic boundary

conditions (no heat losses to the environment). Both models have the pressure depen-

dent activation energy from equations (4.22)-(4.23) for the the reaction in equation

(4.61).

Homogeneous media-based GLR model:

This model is defined by equations (4.18) and (4.19). The assumption is that a

mixture containing the reactants is described by a single rate equation. Therefore,

there is no explicit spatial representation. This model has been applied to shock
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induced chemical reactions by [11, 33, 34, 78, 88]. This model is described here

as a homogeneous model since a homogeneous mixture representation is employed.

Homogeneous is defined as “of uniform structure or composition throughout” [3].

The reaction rate in the equilibrium (τΘ = 0) homogeneous media-based model

is exponentially dependent on the mixture temperature T̄ . The relaxation time,

τΘ ' 100ns, delays the onset of the reaction. Figure (31(a)) shows this trend for

different frequency factors. As Ao increases, the reaction rate increases. However,

changes in the frequency factor have a much more significant effect for this reaction.

Heterogeneous media-based GLR model:

Reaction rate depends strongly on temperature T̂ and pressure P in the GLR model

as shown in Figures (31(b)). As in the homogeneous media-based model, the surface

reaction in the GLR model decreases due to increases in pressure. However,
∑

i Vi < 0

for the diffusion process Al → Al3Ni(l), thus diffusion increases the concentration of

Al reactant at the surface which increases the reaction rate. This is a calculated value,

no assumptions are made. When the reaction is limited by diffusion, the reaction rate

is relatively insensitive to changes in the frequency factor Ao.

Granule size effects are demonstrated in Figure (31(b)). The diameter of the Ni

granule is D = 0.3, 0.5µm, with a stoichiometric quantity of Al in both cases. Figure

(31(b)) shows that the reaction rate of the adiabatic granule system increases with

smaller granule size. The reaction process is initially independent of the granule size,

thus, the heat from reaction is also initially independent of the granule size. As the

granule size decreases, the temperature T̂ increases faster since mass is transported

over a shorter distance to complete the reaction. In contrast, the homogeneous model

is insensitive to granule size.

A sensitivity study for the additional stress term µσ in equation (4.23) is shown in

Figure (32). As pressure increases, initiation occurs. Reaction propagation is faster

with further increases in pressure.
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(a) Homogeneous GLR model, P = 3GPa.
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(b) Heterogeneous GLR model.

Figure 31: Comparison of chemical reaction models under adiabatic conditions.
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Figure 32: Heterogeneous GLR model shown with various pressures under adiabatic
conditions.

104



4.7 Mesoscale Reaction

Granular Level Chemical Reactions:

The granular level reaction model physically represents the material transport on

the granule length scale. Initial temperature, pressure, and amount of constituents at

the contact sites from RAVEN code results are incorporated into the granular level

model. Since the temperature in the granular level reaction is linked to the mesoscale

simulation, the reaction rate depends on heat released by neighboring contact site

reactions during shock induced chemical reactions.

Heterogeneous and homogenous granular level reaction models contain different

mechanisms to describe reaction kinetics in the mixture. The Wagner model is an

ideal mechanism employed in this study to describe the assumed displacement re-

actions with a rate-determining step. However, the true mechanisms in ultra-fast

reactions in metal powders have not yet been determined through experiments. Al-

ternative displacement reaction mechanisms may be incorporated with corresponding

spatially dependent diffusion coefficient and activation energy.

Mesoscale Reactions:

A mesoscale chemical reaction model is used to bridge the heterogeneous media

GLR model to the continuum model. Initial conditions for the granular level reaction

are specified by RAVEN code statistical distributions at each reactant contact site.

The mesoscale reaction model contains many of these contact sites and provides the

non-equilibrium temperature distribution that is initialized based on RAVEN code

statistical distributions. Reaction evolution may proceed in many ways depending

on 1) the distribution of contact sites (related to granule sizes and binder content)

and 2) the temperature and state of stress at the contact sites (related to particle

velocty/shock velocity, plastic flow, pore collapse, and morphology). The resulting

macro-scale continuum reaction is given by the averages taken from the mesoscale

reaction model and accounts for reaction initiation, propagation, and extent with
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only three unknown material parameters, +Ao,
−Ao, τp (forward and reverse Arrhenius

constant and relaxation time).
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Chapter V

1-D CHEMICAL REACTIONS: NUMERICAL

SIMULATIONS

The gas-gun experiment is simulated by incorporating the constitutive and chemi-

cal reaction sub-models into a numerical solution of the conservation equations (see

Figure (5)). The original contribution here is the algorithm for solving the gas-gun

simulation and the mixture 2D model with results for a Taylor test simulation.

The MATLAB codes developed for the following 1D and 2D simulations are given

in Appendix (G) and (H), respectively.

5.1 Summary of Equations

For the 1D strain model with heterogeneous media-based chemical reactions, the

following equations, p+43 equations and p+43 unknowns, are used:
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∂

∂t
(ρ̄) +∇ (ρ̄v̄) = 0 (5.1a)

∂

∂t
(φpρ̄p) +∇ (φpρ̄v̄) = Ψmassp (5.1b)

Ψmassp = ΘMpνp (5.1c)

Ψ̄k,LM =
∑

p

Ψmasspv̄k ; Ψ̄k,AM =
∑

p

Ψmasspeijkxj v̄k (5.1d)

∂

∂t
(ρ̄v̄k) +

∂

∂xk

(
ρ̄v̄k

2
)
− ∂

∂xk

(σ̄kj) = ρ̄f̄k + Ψ̄k,LM (5.1e)

∂

∂t
(ρ̄eijkxj v̄k) +

∂

∂xk

(
ρ̄eijkxj v̄

2
k

)
− ∂

∂xk

(eimnxmσ̄nk) = ρ̄eijkxj f̄k + Ψ̄k,AM (5.1f)

τΘkΘ̇k + Θk = +kk

+Nsk∏
i=1

[Ci]
+νik − −kk

−Nsk∏
i=1

[Ci]
−νik (5.1g)

+kk = +Ak T
+βk P

+ηk +fk(1− ϕ) exp

{
−∆+µak

RT

}
(5.1h)

Θ = kCνA
A CνB

B (5.1i)

k = Ao exp

(
−∆µa(T, σ)

RT

)
(5.1j)

JA =

(
DA

∂CA

∂x

)
x=s(t)

=
Θ

νA

= C ′
A

∂s

∂t
(5.1k)

C ′
A =

−βA +
√

β2
A + 4+k1C

νB
B (βACA + −k1C

′νC
C )

2+k1C
νB
B

(5.1l)

∂CA

∂t
= DA(T, σ)∇2CA +∇vACA (5.1m)

∆µD(σ) = ∆µDo + ∆µσ (5.1n)

D(T, σ) = Do exp

(
−∆µD(σ)

RT

)
(5.1o)

ΨS =
Nr∑
k=1

2∑
i=1

φ̇ik ·
[−∆µo

k(P
o, T̄ )− +∆µo

k(P
o, T̄ )

]
(5.1p)

~̄q = −k̄q∇T̄ + C̄vρ̄~̄vT̄ (5.1q)

∂ (ρcpT )

∂t
−∇ ·

(
k̄q∇T

)
= Sq (5.1r)

P =
βTo

β′
To

[(
ρ

ρo

)β′To

− 1

]
+ CvΓMρo (T − To) (5.1s)
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τu = αiµ(T )b
√

ρ̂ (5.2a)

µ(T ) = µo

[
1− T

Tm

exp

{
θ∗

(
1− Tm

T

)}]
(5.2b)

τ ∗ = τ ∗0 (ρ̂)

[
1−

{
kT

∆G0

ln

(
v0 (ρ̂)

˙̄γp

)}1/q
]1/p

(5.2c)

∂ρ̂

∂ ˙̄γp
= MII ( ˙̄γp)− ka ( ˙̄γp, T ) [ρ̂− ρ̂0] (5.2d)

ka ( ˙̄γp, T ) = ko

(
˙̄γp

γ̇0

)−2m0T

(5.2e)

ε̇ = ε̇0 exp

[
∆G (σt/σ̂t)

kT

]
(5.2f)

σ = σa + [(sI (ε̇, T ) σ̂I)
n + (sε (ε̇, T ) σ̂ε)

n]
1/n

(5.2g)

si =

(
1−

[
kT

goiµ(T )b3
ln

ε̇0i

ε̇

]1/qi

)1/pi

(5.2h)

d

dε
σ̂ε = θ0 (ε̇)

1−
tanh

[
2σ̂ε

σ̂εs

]
tanh(2)

 (5.2i)

µ(T ) = 84.52− 8.839

exp 258
T
− 1

{GPa} (5.2j)

ṙ =
a2ȧ

r2
=

a2ȧ

(r3
o − a3

o + a3)2/3
(5.2k)

r̈ =
∂ζ

∂r
, ζ =

a2ä + 2aȧ2

r
− a4ȧ2

2r4
(5.2l)

∂σ̄rr

∂r
+

2

r
˜̄σ = ρ̄sr̈ (5.2m)

ρ̄sė = −2˜̄σṙ

r
(5.2n)

ρ̄∗s = ρmin + CI (ρ̄s − ρmin) ; 0 ≤ CI ≤ 1 (5.2o)

˙̄γ =
∑

p

γ̇pξp = 2
ṙ

r
(5.2p)

˜̄σ = Ȳ (γ̇, T̄ ) (5.2q)

Ȳ =
∑

p

ξpY
∗
p (5.2r)

Y ∗
p =

1

1− ξp

∑
s 6=p

µIspYpξs (5.2s)
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Equations (5.1-m,n,o,r) and equations (5.2-o,r,s) include new contributions from all

other models. The symbols are summarized as follows: ρ is the density, the overbar

represents a mixture, t is time, v is velocity, φ is the mass fraction, Ψmass is the mass

source term, the subscript p is the phase or constituent, Θ is the reaction rate, M

is the molar mass, ν is the stoichiometric coefficient, Ψk,LM is the linear momentum

source term, Ψk,AM is the angular momentum source term, e is the alternating tensor,

xi is the spatial location in the x-coordinate, σ is the Cauchy stress tensor, f is the

body force or function form of reaction dependence on porosity, τ is the relaxation

time, C is the concentration, k is the reaction coefficient, A is the pre-exponential

factor or Arrhenius constant, T is temperature, P is pressure, µ is Gibbs free energy,

R is the universal gas constant, J is the mass flux, D is the diffusion constant, β is

the mass transport coefficient, q is the heat flux, kq is the heat conduction coefficient,

cp is the heat capacity at constant volume, Sq is the source term for heat generation,

βTo = −V (∂P/∂V )|To is the isothermal bulk modulus at the reference temperature,

β′
To

= (∂β/∂P )|To is the pressure derivative of the isothermal bulk modulus at the

reference temperature, Cv is the specific heat capacity under constant volume, ρo is the

reference density, ΓM is a material parameter similar to the Grüneisen parameter Γ, τu

is the internal (athermal) stress, αi is the dislocation/obstacle interaction coefficient,

µT is the temperature-dependent shear modulus, b is the Burgers vector, ρ̂ is the

dislocation density, where Tm is the melting temperature, θ∗ is a material constant,

˙̄γp is the effective plastic shear strain rate, τ ∗0 (ρ̂) = ∆G0

√
ρ̂/(ba) is the thermally

activated part of the threshold stress, v0 (ρ̂) = fρ̂vDb2 is the attempt frequency factor

at 0K, k is Boltzmann’s constant, ∆G0 is the activation energy at 0K, p and q are

constants that describe the shape of the energy barrier, MII ( ˙̄γp) is the rate-dependent

dislocation multiplication term, ρ̂0 is the initial dislocation density, ka ( ˙̄γp, T ) is the

dislocation annihilation factor, ko is the anihilation factor at 0K, m0 is the strain-

hardening rate-sensetivity constant, γ̇0 = v0 (ρ̂) is the threshold strain rate, σ̂t is the
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mechanical threshold stress, ∆G is the free energy, ε̇0 is a constant, k is Boltzmann’s

constant, r is the radial coordinate in the spherically symmetric pore collapse model,

a is the initial inner radius of the pore, CI is a material parameter, ρmin is the density

of the least dense constituent in the mixture, Y is the yield strength, ξ is the volume

fraction, and µIsp are the friction coefficients between constituents s and p.

5.2 Computational Algorithm

An overview of the implementation is given to clarify the meaning of the theory that

has been presented. Solving the systems of equations and supporting material models

is performed such that the order of accuracy is consistent. Typically, the equation

of state is calculated once per time step where two or more Runge-Kutta steps have

been taken to solve the conservation equations [12]. This reduces the computation

time significantly. Since the influence of the reaction and phase transitions on the

shock velocity are unknown, these quantities are calculated each time the conservation

equations are solved as follows:

1. Calculate mixture averaged reaction rate from equation (A.3), Ψn+1
massp. This is

done by using the heterogeneous media-based chemical reaction model described

in the previous chapter. Results from the RAVEN code are needed for inputs

to initialize the mesoscale reaction model. This is used to calculate the new

mass fractions, φn+1
p , using equations (A.2). Update the concentrations χp

using equation (C.2). The inputs are the initial mass fractions, and all of the

parameters required from the RAVEN code (described in the previous chapter).

2. Conservation of mass, momentum, and energy are solved to give ρ̄n+1, ~̄vn+1,

Ēn+1, where n is denotes the time step.The finite volume equations are given
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by,

ρ̄n
j+1/2 = 1

2

[
m̄nL

j+1/2 + m̄nR
j+1/2

]
− αn

2

(
ρ̄nR

j+1/2 − ρ̄nL
j+1/2

)
m̄n

j+1/2 = 1
2

[
m̄nL

j+1/2v̄
nL
j+1/2 − σ̄nL

j+1/2 + m̄nR
j+1/2v̄

nR
j+1/2 − σ̄nR

j+1/2

]
−αn

2

(
m̄nR

j+1/2 − m̄nL
j+1/2

)
Ēn

j+1/2 = 1
2

[
ĒnL

j+1/2v̄
nL
j+1/2 + q̄nL

j+1/2 − σ̄nL
j+1/2v̄

nL
j+1/2 + ĒnR

j+1/2v̄
nR
j+1/2

+q̄nR
j+1/2 − σ̄nR

j+1/2v̄
nR
j+1/2

]
− αn

2

(
ĒnR

j+1/2 − ĒnL
j+1/2

)
(5.3)

where m = ρv.

3. Use the porous mixture equation of state relationships with ρ̄n+1 and Ēn+1 to

approximately solve Reimann problem at the material interface and the hydro-

static stress at all points in the material. The Reimann problem is given simply

by the form,

Ut + A(U)x = 0. (5.4)

where the subscripts denote differentiation. This correlates to the conservation

of mass and energy and the momentum balance.

4. Return to the previous time step deviators, σ
′n
ij , the yield surface. Plastic work

from this was accounted for when solving the conservation of energy in step 2.

With 1D strain, equivalent stress is given by,

σeq =

√
3

2

(
(σ̄′

xx)
2 + 2

(
σ̄′

yy

)2)
(5.5)

5. Calculate the the stress from the decomposition given by,

σ̄
′
= P̄I − σ̄. (5.6)

6. Update the deviatoric stress from step 5 using the pressure from step 3.

7. Calculate the new mass fractions φp from the melting and chemical reaction

model.
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8. Update the volume fractions for each species and phase, ξop. Calculate new

mixture averaged quantities, heat capacity C̄v, and heat conduction coefficient

k̄q.

9. Repeat steps 1-8 in accordance with the Runge-Kutta time stepping scheme.

These calculations are initiated by specifying initial position and velocity for all

materials within the computational domain. The equation of state in step 3 is updated

from the new mass fractions calculated in the previous time step (step 1) and using the

new density and internal energy from step 2. The reaction equations are calculated

from the updated pressure and temperature in steps 3 and 2, respectively. The

deviatoric stress is not returned to the yield surface until after it has been used in the

conservation of energy (see step 4), thus, allowing the plastic work from the deviators

to be accounted for.

5.3 Simulated Gas-Gun Experiment for the Thermite Sys-
tem

Gas gun experiments are simulated for the 2Al + Fe2O3 + 50 wt.% Epon828 +

αo = 1.01 material up to pressures of ∼ 23GPa [64]. Here, a copper driver plate with

thickness of 2mm is simulated impacting the sample material of 2mm. The material

interface is given by the dashed vertical line close to x = 2mm in Figure (33(a)). The

four plots include the pressure, particle velocity, temperature, and density along the

x-axis of the simulated copper (on the left) and the sample material (on the right).

Included in Figure (33(a)) are the points used to calculate the pressure and particle

velocity used for comparison with experimental data in Figure (34).

The time history of the shock front location is used to calculate the simulated shock

velocity and is shown in Figure (33(b)). The location is calculated from interpolating

the particle velocity at a constant pressure that is approximately 50% of the shock

pressure. Simulation results are shown with CFL = 0.4 and 400 nodes along the
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x-axis.

Figure (34) shows that the homobaric and uniform strain methods bound the

experimental data up to approximately Up = 0.8km/s or P = 6GPa. The pressure

from the homobaric assumption is within the error bars of all but one experimental

point (Up = 607 ± 0.004km/s for pressures P ≤ 10GPa. For comparison, spatially

resolved particle simulations resulted in Us = 2.54+1.44Up which is within 7% error

in low pressure regimes and within 15% error in higher pressure regimes [5].

The shock wave that propagates through the copper plate attached to the sample

material will interact with the interface between the copper and sample material. The

particle velocity in the copper plate attached to the sample is half of the velocity of

the impacting copper plate. However, the interactions are complex and a simulation

of this impact requires an additional plate. This modification of the simulation is

not required to plot the Hugoniot curve for the material. The simulation shows the

correct Us-Up and P-Up data, which is valid to compare with the experimental data.

The simulation data is not expected to overlap with the experiments.

The 1D gas-gun simulations incorporate mixture strength in the stress tensor,

which is not included in most of the previous continuum shock induced chemical

reaction models considered in this study [20, 10, 11, 88]. Simulation results show

reasonable agreement with experimental data. The homobaric and uniform strain

methods bound the experimental data up to approximately 5GPa in Figure (33).

The homobaric method approximates the experimental data much better than the

uniform strain method. These results suggest that mechanical equilibrium is reached

within the rise time of the shock.

5.4 Ni + Al System Simulated Gas-Gun Experiment

Results from the mesoscale reaction model and the spherically symmetric mixture

pore collapse model are included in 1D gas-gun simulation and shown in Figure (37).

114



0 1 2 3 4
0

1

2

3

4

Axial location, mm
P

re
ss

ur
e

(P
),

G
P

a
0 1 2 3 4

0

200

400

600

Axial location, mm

P
ar

ti
cl

e
ve

lo
ci

ty
(U

p)
,m

/
s

0 1 2 3 4
2000

4000

6000

8000

10000

Axial location, mm

D
en

si
ty

,k
g
/
m

3

0 1 2 3 4
300

350

400

Axial location, mm

T
em

p
er

at
ur

e,
K

(a) Simulation results at time t = 200nanoseconds.

0 50 100 150 200
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

A
xi

al
lo

ca
ti

on
,
m

m

Time, nanoseconds

 

 

Linear interpolation
Shock front location

(b) Shock front time history.

Figure 33: Simulation results with the copper flyer impact velocity Vs = 553m/s
for the stoichiometric mixture 2Al + Fe2O3 + 50 wt.% Epon828 + αo = 1.01 with
n = 2 and uniform strain method. The data points used to interpolate P and Up are
shown in the top two plots and appear as bold lines since nx = 400 nodes were used.

This is the fully integrated multi-scale model simulation. Simulation uncertainty is

estimated at a maximum of 3% with 95% confidence based on convergence studies [99].

However, iterative errors are up to 11% due to oscillations in the pressure as a function
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Figure 34: Simulation results compared to experimental data for the stoichiometric
mixture 2Al + Fe2O3 + 50 wt.% Epon828 + αo = 1.01 with n = 2.

of the axial coordinate. These oscillations are a result of combining the advection of

pore geometry with the irreversibility requirement. Therefore, only a qualitative
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ture 2Al + Fe2O3 + αo = 1.66 with n = 2.

comparison can be made.

To simplify computation, a fourth order polynomial is fit to the mesoscale reaction

mass fraction time history. This approach assumes that heat transfer within the gas-

gun simulation does not influence the reaction kinetics, which is reasonable for high

velocity impact. Therefore, over-estimation of the reaction kinetics is expected.

Simulations are conducted only for the Ni + Al system with 45% theoretical

mass density (low density) cases with Cu impact velocities given by the experimental

values [39]. 1 : 1 initial volume ratios are used. Shot #0540 is shown with and without

reaction for comparison. Reasonable agreement is observed between simulation and

experiment for non-reaction cases. Careful adjustments are made to the pore radius

in the pore collapse equation of state. Additionally, a careful selection of spatial

step and CFL is performed to reach the reported values. Due to instability in the

pore collapse equation of state, the following results in Table (8) are only valid for

qualitative assessment. However, the results do represent the fully integrated multi-

scale model. Note that the pressure calculation has deviations of up to 10% due to

the oscillations near the material interface.
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For the simulated reaction cases, +A0 = 1×103, −A0 = 0, and the mesoscale reac-

tion parameters from Table (5) are employed. Reaction proceeds to 23.5% according

to the mesoscale reaction model, resulting in an increase in shock velocity that nearly

matches the experimental increase for the case in which reaction is evidenced [39].
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Figure 36: Gas-gun results from experiments [39] and simulation. MSR reaction
kinetics are included one experiment. 100% reaction is shown for all spherical powder
cases. The red circles represent propagated pressure data for the same pressure load-
ing condition. Error bars are omitted for clarity. Maximum experimental error ranges
of 0.05 (y-axis) and 0.2 (x-axis) are based on measurement uncertainty. Simulation
errors are up to approximately 14%.

For the 60% theoretical mass density cases without reaction, a pressure pulse is

applied to the Ni + Al surface with quadratic dependence on time (see equation

(4.53)). The reason for employing the pressure boundary is to demonstrate increased

accuracy in the equation of state iterations. This shows that reducing oscillations in

at the interface increases the accuracy in the solution given in Table (9). The overall

trend in Figure (37) is matched by the simulations. An increase in shock velocity is

seen in the simulation due to the stiffness in the spherically symmetric pore collapse

equation of state. A further increase in shock velocity occurs due to 100% reaction.

Note that shot #0520 is missing due to the inability to track a shock wave in the

simulation according to the methods developed earlier.
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Table 8: Gas-gun simulation results for the Ni + Al 45% TMD powder mixture
with impact velocity from experiments [38].

Shot Uimpact P Us

Number (km/s) (GPa) (km/s)
0532 1.004 3.30 1.458
0539 0.669 2.01 1.353
0540 0.951 5.77 1.949
0540b 0.951 5.15 2.098
0606 0.912 4.89 1.853
0607 0.430 1.54 0.963
0612 1.012 6.23 1.993

a Based on maximum iterative errors in the equation of state calculation.
b 23.5% reaction occurs according to the mesoscale reaction kinetics.

Table 9: Gas-gun simulation results for the Ni + Al 60% TMD powder mixture
with impact velocity from experiments [38].

Shot P Us Up % Errora

Number (GPa) (km/s) (km/s)
0407 1.55 1.001 0.376 2
0412 3.59 1.461 0.606 4.3
0414 5.48 1.875 0.788 5.7
0428 2.93 1.253 0.539 2
0504 2.16 1.165 0.475 2
0506 2.85 1.350 0.582 4.1
0513 4.09 1.698 0.668 4.7
0514 5.31 1.838 0.773 5.5

a Based on maximum iterative errors in the equation of state calculation.
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The mass fraction time history at at the material interface between the impactor

and the sample material (Ni + Al) is plotted in Figure (38).
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Figure 38: Mesoscale reaction model ensemble mass fractions for various forward
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5.5 2D Simulation

The following finite difference approach for the energetic mixture in Lagrangian co-

ordinates is based on the equations used by the HEMP computer program to solve

120



problems in elasticity and plasticity in plane geometry or cylindrical geometry includ-

ing rotation about the axis of cylindrical symmetry [118].

The 2D simulations are useful for understanding the conditions in which 2D effects

in the gas-gun experiment are significant. For example, reflected waves from the

surface on the outer circumference of the sample material can influence the axial

shock front velocity.

The fundamental equations of motion in x, y coordinates with cylindrical symme-

try and rotation about the x axis are given in Lagrangean coordinates for the mixture

by,

dẋ

dt
=

1

ρ̄

[
∂Σ̄xx

∂x
+

∂T̄xy

∂y
+

T̄xy

y

]
, (5.7)

dẏ

dt
=

1

ρ̄

[
∂T̄xy

∂x
+

∂Σ̄xy

∂y
+

Σ̄yy − Σ̄θθ

y

]
+ ω2y, (5.8)

1

y

d(Ω)

dt
=

1

ρ̄

[
∂T̄θx

∂x
+

∂T̄yθ

∂y
+ 2

T̄yθ

y

]
, (5.9)

where Ω = y2ω and ω is the angular rotation also given by θ̇. θ is the polar coordinate

in cylindrical coordinates that is orthogonal to the x-axis. The state of stress is is

denoted by sn
xx, s

n
yy, T

n
xy and mixture averages are calculated from equation (D.4). ρ̄

is calculated from equation (3.58).

The conservation of mass for the mass element M is given simply by,

dM

dt
= 0. (5.10)

This simply means that no mass leaves or enters the element.

The first law of thermodynamics gives us the rate of change for the internal energy

per original volume Ē as,

˙̄E = −(P̄ +q̄) ˙̄V +V̄
(
s̄xx ˙̄εxx + s̄yy ˙̄εyy + s̄θθ ˙̄εθθ + T̄xy ˙̄εxy + T̄yθ ˙̄εyθ + T̄θx ˙̄εθx

)
+ΨS, (5.11)

where V̄ = ρ̄0/ρ̄ is the mixture relative volume, ρ̄0 is the reference mixture density.

ΨS is given by equation (4.52).
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Velocity strains are given by,

˙̄εxx = ∂ẋ
∂x

, ˙̄εyy = ∂ẏ
∂y

, ˙̄εθθ = ẏ
y
,

˙̄εxy = ∂ẏ
∂y

+ ∂ẋ
∂x

, ˙̄εyθ = y ∂ω
∂y

=
[

∂(yω)
∂y

− ω
]
, ˙̄εθx = ∂(yω)

∂x
.

(5.12)

The stress deviator tensor is given by,

˙̄sxx = 2µ̄
(

˙̄εxx − 1
3

˙̄V
V̄

)
, ˙̄syy = 2µ̄

(
˙̄εyy − 1

3

˙̄V
V̄

)
, ˙̄sθθ = 2µ̄

(
˙̄εθθ − 1

3

˙̄V
V̄

)
,

˙̄Txy = µ̄ ˙̄εxy,
˙̄Tyθ = µ̄ ˙̄εyθ,

˙̄Tθx = µ̄ ˙̄εθx,
(5.13)

where µ̄ is the volume fraction averaged shear modulus.

The mixture pressure P̄ is calculated from the Murnaghan equation of state equa-

tion of state given in equation (D.17). Equation of state parameters are averaged

using the approach by Bennett, Horie, and Hwang [11] in equations (3.1)-(3.4).

The total stresses are a result of equation (D.6) and are given by,

Σ̄xx = −
(
P̄ + q̄

)
+ s̄xx,

Σ̄yy = −
(
P̄ + q̄

)
+ s̄yy,

Σ̄θθ = −
(
P̄ + q̄

)
+ s̄θθ.

(5.14)

Numerical oscillations in the mixture are damped through the use of the artificial

viscosity q̄ given by,

q̄ = C2
0ρL2

(
ds

dt

)2

+ CLρ̄Lā

∣∣∣∣ds

dt
(5.15)

The mixture average is implied in the constants C0 and CL. L is a measure of the grid

size, ā is the local sound speed, and ρ̄ is the local density. Von Mises yield criterion

is employed. For the 1D plain strain problem, the yield stress is given earlier by

equation (D.11). The yield criterion for ideal plasticity is written as,

√
2J̄ −

√
2

3
Ȳ ≤ 0, (5.16)

where Ȳ is the plastic flow stress and 2J̄ is the second invariant of the deviatoric

stress tensor.
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5.5.1 Simulated Bar Impact Experiment

To demonstrate the 2D radially symmetric code, an Al rod of length L = 0.5m with

velocity V = 1000m/s in the x-direction is shown with Lagrangian grid points in

Figure (39). The axial velocity is given in Figure (40). The material crushes up and

expands radially at the fixed boundary condition at x = 0.5m. Soon after this time

(8.5µs), “hour glass” modes skew the mesh. To correct this, an artificial viscosity can

be used [118].

 

y 
(m
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Figure 39: Cylinder along the x-axis shown with grid points at t = 8.5µs.
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Figure 40: Axial velocity of cylinder at t = 8.5µs.
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Chapter VI

UNCERTAINTY QUANTIFICATION

Sources of uncertainty in computer simulations of gas-gun experiments with ESMs are

investigated. This includes a proposed framework needed for model calibration and

validation. Uncertainty due to numerical discretization in the 1D code is quantified.

Since an exact solution can not be obtained, a solution extrapolation is employed with

associated uncertainty based on the grid convergence index (GCI) method [102].

6.1 Validation Approach

The complete system involving the intense dynamic loading of ESMs is decomposed

into three progressively simpler phases: subsystem cases, benchmark cases, and unit

problems as shown in Figure (41). The conceptual ESMs model includes mixture

equation of state, plastic flow and void collapse, reaction initiation criterion and

extent of reaction, and heat conduction. The unit problems with a mixture∗ refer to

cases involving solid and porous mixtures with various morphologies.

In Figure (41), the arrows in bold are chosen to be the primary source of valida-

tion given the current availability of experiments to choose from and given the current

theoretical models that are available. For example, Figure (41) illustrates the sole

reliance on gas-gun experiments to validate the ESM model. It is seen that at least

two of the unit problems are only described at this time by the gas-gun experiment.

Clearly, chemical reactions are the weakest link as no experiments exist that can be

used to isolate the chemical reaction initiation and kinetics in the present study. For-

tunately heat transfer does not play as important of a role in the shock environment,

therefore, many simplifications along this chain are often justified.

The goal is to obtain a purely deterministic model to avoid the need for estimating
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empirical material constants. At present this is not the case. The form of material

parameters that are desired in the benchmark cases depends entirely on the form of the

theoretical model that is used to represent the physical processes. For the continuum

modeling approach used in this thesis, the use of unknown material constants that

are listed in Table 10 are required. In this thesis, the activation energy Ea is included

to generalize the framework for current continuum shock induced chemical reaction

and shock assisted chemical reaction models. Ea is usually the activation energy.

Material parameters in Table 10 and Figure (42) are generalized and grouped

according to the type of the model that uses these parameterss for simplicity of

notation. αp represents a set of material parameters in an EOS relationship for a

solid material constituent that depends on density ρ and specific internal energy e.

For example Murnaghan and Mie-Grüneisen models may be used. ασ represents

the set of material parameters in a constitutive model such as Johnson-Cook and

Drucker-Prager models. Note that an overbar denotes a mixture averaged quantity.

6.1.1 Hierarchy of Experiments

As shown in table 10, the material parameters are obtained from various experi-

ments. To understand the submodels contained in a simulation code, it is necessary

to use a hierarchy of experiments [57]. Essentially one works backwards from the

case studies to the benchmark cases in Figure (41). Figure (42) shows conceptual

process for combining information from several experiments involving various levels

of integration.

Heat capacity and heat conduction are shown for completion in Figure (42) to

illustrate the four experiments highlighted in Figure (41), although strictly speaking,

the uncertainties in the heat capacity experiments propagate to the gas-gun simu-

lations. However, uncertainties in heat capacity C̄v and heat conduction coefficient

k̄ are usually ignored and appropriate mixture rules are applied. Therefore, in the
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Notes:  strictly speaking, the uncertainties in the heat capacity experiments would propagate to the Hugoniot tests, however, the 
uncertainties due to heat capacity can usually be ignored. 
 
Size: 9, 7, 5 
 
 
 
 
 

Basic Partially integrated Fully integrated 

Heat Conduction Experiment for 
Constituents “i”  ik  

Strength Experiments for 
Constituents “i”  iσα  

Hugoniot Experiments for 
Constituents “i”  

ipα  

Heat Capacity Experiments for 
Constituents “i”  ivC  

Hugoniot Experiment for 
MESM  
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Mixture*  { } { } σσ ααα ,, p  

Figure 42: Example of an experimental hierarchy required for tracking uncertainty
from experiments in which four benchmark cases from Figure (41) are considered.
The brackets {·} denote the group of constituent parameters and the overbar denotes
the mixture properties.

fully integrated model, there are only three unknown material parameters that need

to be inferred from ESM gas-gun experiments, Ea, A, φc. These are the activation

energy, Arrhenius constant, and extent of reaction, respectively. If a partially inte-

grated experiment is not available, the parameter(s) are simply left as an unknown

in the fully integrated experiment. For example, if a gas-gun experiment of a porous

component is either deemed an invalid approximation of the ESM material or is sim-

ply not available, then the parameters n and CM become additional unknowns in the

ESM gas-gun experiment.

The Bayesian approach to the analysis is perfectly suited for conducting inference

about models [57]. Bayes’ theorem gives the probability for a parameter vector a for

a given set of data d and information I

p(a|d, I) ∝ p(d|a)p(a|I) . (6.1)

6.2 Calibration

Calibration is the step where inferences are made about the material parameters with

corresponding uncertainties that are introduced in the physics based models, namely

the chemical reaction, plasticity, and pore collapse models. One way to view this is to
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recognize the parameters as degrees of freedom that have corresponding uncertainty

distributions which are also degrees of freedom. The parameters that give the best

agreement between the experimental evidence and the theoretical model are needed.

This is usually quantified by using the minimum chi-squared method[16]. The goal

is to minimize χ2 in equation (6.2), which is the measure of the goodness of fit.

χ2 ≡
∑

i

[di − yi(a)]2

σi

(6.2)

where, di is the ith experimentally measured data point with standard deviation σi,

yi is the numerical solution, and a is the parameter vector.

In this application, it is necessary to use the computational model itself to calibrate

some of the material parameters. Since the interest is in calibrating the theoretical

model and not the computational model, a correction is applied to the numerical re-

sult. If the estimated numerical error from the computational model is approximately

constant over the range of values for the material constants, then the verification re-

sult for a single case is applied to correct the computational solutions approximately.

Otherwise, either the verification procedure is applied for each combination of mate-

rial parameters (brute force method needed during each iteration in the optimization

routine) or construct a surrogate model using a reduced number of points that cover

the required range of material constants (response surface method). Since the simu-

lation results are computationally expensive, the response surface method is chosen.

6.3 Verification Assessment

Verification involves quantifying the error associated with solving the governing equa-

tions regardless of the values of the material coefficients. Therefore this task is per-

formed first. The most important part of verification is to perform spatial and tem-

poral step size refinement studies.

The first step is to identify the metric or quantity of interest for observing con-

vergence. In the interest of length and simplicity, a single metric is chosen, namely

129



the shock velocity Us, which is a convenient quantity for comparison with gas-gun

experiments.

6.3.1 Models of Convergence Error

The exact solution is denoted the symbol F ∗ and the discrete solutions in the simpli-

fied notation are denoted by the symbol Fx,t = F (∆x, ∆t). The general error metric

in equation (6.3) is defined by using the norm of the difference between the continuous

and numerical solutions.

ex,t =‖ F ∗ − Fx,t ‖ (6.3)

For the 1D shock wave speed, the error is the absolute value of the difference, i.e.,

ex,t = |F ∗ − Fx,t|.

The Richardson Extrapolation Estimation (REE) technique assumes that the so-

lution is in the asymptotic convergence regime, neglects higher order terms, and the

discretized solutions are given by equation (6.4-a),

Fx,t = F ∗ + α∗hp∗

i (6.4a)

Fx,t = F̃ + α̃hp̃
i (6.4b)

where α∗ is a fitting constant, p∗ is the convergence rate or order-of-convergence, and

hi is either the spatial or the temporal step size, 1/Ncells. Equation (6.4a) is rarely if

ever observed in practice. F̃ in equation (6.4b) refers to a solution that approximates

F ∗ by extrapolation such as the REE technique or by response surface method (RSM)

for a given set of fitting parameters {λ̃o, α̃, p̃}. The term on the right hand side of

equation (6.4b) is the space-only or time-only error Ansatz [59] and takes the general

form,

ẽx,t = λ̃o + α̃hp̃
i + h.o.t. . (6.5)

with three fitting parameters, {λ̃o, α̃, p̃}.

If an exact solution is known, then p∗ is evaluated exactly using a minimum of

Ng = 2 grid solutions. In many cases such as ours the exact solution is unknown.
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Additionally, the asymptotic region under which equations (6.4) are a reasonable

approximation is unknown. An estimated order-of-convergence is calculated with

three grid points Ng = 3, constant refinement ratio rh, constant α and constant

convergence rate p, as in Roache [102], as:

p̃r = log [(F1 − F3) / (F1 − F2)] / log [rh] . (6.6)

where F1, F2, and F3 are the fine, medium, and coarse grid solutions respectively.

Ng = 3 is superior to Ng = 2 and marginally worse than Ng = 4. If the grid

convergence is monotonic with constant convergence rate, then p̃r = p∗ and the

extrapolated solution F̃ is

F̃ = F ∗ = F1 + (F1 + F2) /
(
rp̃
h − 1

)
(6.7)

However, F̃ = F ∗ is clearly not the case in this thesis as is seen later. Further, p̃

and α̃ are rarely constants. One basic approach to study realistic convergence is to

assume an empirical safety factor Fs to provide the GCI or the uncertainty expressed

as [102]:

GCI = Fs

∣∣∣∣F1 − F2

F1

∣∣∣∣ /(rp̃r

h − 1
)

(6.8)

As mentioned earlier, no consensus has been reached as to the uncertainty that is

represented by a given value of Fs with a given Ng. Therefore, this method is used

as a first approximation only. Throughout this chapter, a conservative safety factor

Fs = 3 with Ng = 3 is assumed [102] to estimate the uncertainty 68% of the time (or

1σ) since Gaussian a distribution is assumed.

Until this point, three main assumptions are made. The error Ansatz in equation

(6.5) assumes that, 1) numerical solution convergence is monotonic, 2) space-time

coupling effects are neglected, and 3) higher order (above single order) terms are

negligible. A non-linear Ansatz model due to Hemez et al. [59] relaxes these three

assumptions and takes the following form in equation (6.9).

êx,t = λo + α(∆x)p + β(∆t)q + δ(∆x)r(∆t)s + h.o.t. (6.9)
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where λo is the intercept or bias error, α, β, δ are regression coefficients, p is the

convergence rate in space, q is the convergence rate in time, and r, s are space-time

coupling orders of convergence.

6.3.2 Optimization Procedure Used to Fit the Error Ansatz Models

The coefficients in equation (6.5) are solved analytically as in equation (6.6). This is

not the case with obtaining the coefficients in equation (6.9). Therefore, a numerical

optimization solver is used to best-fit the coefficients {λo, α, β, δ, p, q, r, s} in equation

(6.9). The best fit is based on the set of numerical solutions Fx,t from NRuns simula-

tions or computer runs with different grid refinements. The objective function to be

minimized is chosen to be the mean squared error (MSE) and is given by,

MSE =

√
1

NRuns

∑
k=1..NRuns

[ẽx,t (k)− êx,t (k)]2 (6.10)

The minimization of equation (6.10) is similar to the approach by Hemez et al. [59]

with a slight difference, namely, F ∗ is replaced by F̃ from equation (6.7) in the error

definition in equation (6.3). Here and from now on, this estimated error is defined as:

ẽx,t = F̃ − Fx,t . (6.11)

In this thesis, better convergence is obtained by not taking the absolute value in

equation (6.11).

The mean squared error in equation (6.10) is minimized using MATLABTM

with the function fminsearch.m. This function implements the Nelder-Mead sim-

plex method [89], a multidimensional unconstrained nonlinear optimizer. The default

termination tolerances (10−4) on the function value and the output quantity are used.

Typically, 200− 2000 iterations are required for convergence in this study. Iterations

are performed until the initial guess and the output coefficients are within the toler-

ance (10−4).
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6.3.3 Grid Convergence Study

The use of both the space-only model and the space-time model is demonstrated

through a case study. Here, the goal is to minimize the uncertainty or convergence

index (GCI) by systematically investigating several subsets the space-time grid re-

finement space. The following four steps are followed in the analysis of the numerical

solution:

1. Extrapolate a solution for the shock velocity F̃ (from equation (6.7) assuming

p̃ = p̃r with associated grid convergence index (GCI) from equation (6.8).

2. Apply the 3-parameter space-only fit using equation (6.5) and optimization

procedure in Section (6.3.2).

3. Fit the 8-parameter space-time model in equation (6.9) using the extrapolated

solution from step (1) and the initial guess for parameters {λ̃o, α̃, p̃} from step

(2).

4. Select the best subset based on minimum convergence index (GCI) from step#1

and the minimum MSE from step#3. p is obtained from the non-linear ansatz

fit to recalculate the extrapolated solution using equation (6.7).

The systematic analysis is conducted in steps#1-3 to i) identify a possible asymp-

totic region within the full set of simulation data and ii) verify the order-of-convergence

obtained in step#1. In step#1, the goal is to seek the three point spatial data set

that provides the lowest GCI since the GCI indicates the degree of asymptotic con-

vergence. Then, use step#2 mainly as a way to improve the initial guess for the 8

parameter fit in step#3 and also serves as a check on the general trends observed.

Step#2 provides an exact solution which is useful to check against the order-of-

convergence in step#1 and step#3. Step#3 exploits the property of the non-linear

equation since the data used in the fit may not necessarily fall within the asymptotic
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regime, however, the goodness of fit or MSE must be relatively small to accurately

represent the simulation data.

These steps are demonstrated and explained below for the simulation of a gas gun

experiment, in which the impactor velocity is 922 m/s. The sample material is fully

dense, i.e., αo = 1.0, and the mixture is in stoichiometric quantities for the reaction

3Al + Ni → NiAl3. Here, the material parameters are assumed to be: Cm = 0.5,

n = 2, Ao = φc = 0. Cm is the proportion of homobaric to uniform strain pressure,

n is the order of the P − α model, Ao is the frequency factor or Arhenius parameter,

and φc is extent of reaction and ranges from 0 to 1. Currently, no analytical solution

exists for the shock velocity in this simulation.

Step #1:

The full set of of grid refinements for this case study includes three spatial grids using

Ncells = {1800, 1350, 800, 600, 450, 400, 300, 200, 150}, and time step refinement with

CFL = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Although not always practical, the

low CFL values are used for completeness. There are four sets of data with constant

spatial refinement ratio {F2f , F2c, F3f , F3c} with respective grid sets Ncells = {[800,

400, 200],[600, 300, 150],[1800, 600, 200],[1350, 450, 150]}. Three point spatial refine-

ments are chosen to reduce the number of simulations required during the calibration

and validation steps.

The space-only model is to fit to each of the four spatial grid sets in Ncells at each

CFL value to obtain the order-of-convergence and extrapolated solutions F̃ and F̃ ′.

For each grid set, the minimum GCI among all of the CFL values is calculated and

listed in Table (12) with its corresponding extrapolated solution F̃ .

The four grid sets have the lowest GCI when CFL < 0.5 and GCI values when

CFL ≥ 0.5 are found to be significantly higher in some cases (see Figure (43(b))).

Therefore, screened data (·)′ for a 3-point spatial grid set is defined as a subset of the
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Table 11: Results for the three point extrapolations in

step#1. The CFL, F̃ , CGI, p̃ correspond to the values
obtained from the three point spatial refinement at the
CFL value that results in the lowest GCI in the subset
Fx,t. CGImax is the highest GCI among all of the CFL
values in the subset.

Fx,t rh CFL p̃r F̃ (m/s) CGI % CGImax%
F2f 2 0.2 2.81 5937.93 0.13 0.25
F2c 2 0.7 2.51 5940.59 0.53 0.53
F3f

a 3 0.4 3.59 5940.33 0.02 0.05
F3c 3 0.5 2.53 5939.74 0.03 0.10

a Best extrapolation based on minimum GCI.

spatial grid containing CFL values up to the CFL value with the lowest corresponding

CGI. For example, if the GCI is lowest when CFL = 0.4 for the spatial grid set

{[800, 400, 200]}, then the corresponding subset ({[800, 400, 200]})′ contains CFL =

{0.1, 0.2, 0.3, 0.4}. Each subset contains at least the three lowest CFL values.

The extrapolated values and associated uncertainties (GCI) are used in the prop-

agation of uncertainty. Then, use the extrapolated solution F̃ corresponding to CFL

value that yields the lowest GCI with corresponding p̃. However, the most conser-

vative GCI over the grid subset denoted CGImax (CGI ′max for screened subsets) are

used and given in Table (11).

Step #2:

In all cases, the 3 parameter (space-only) fit converges within less than 200 iterations.

The spatial order-of-convergence is given in Table (12). The only exception to the

procedure in step#1 is for F ′
all, in which 0.1 ≤ CFL ≤ 0.5 and 300 ≤ Ncells ≤ 1800

are included. This is used for comparing to results from the systematic study in

step#4.
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The maximum difference between the error equation and the estimated error in

equation (6.11) over the grid set (or subset) is defined as

∆ẽ = max
x,t

|ẽ− ê| . (6.12)

The MSE and the ∆ẽ are used to make comparisons between the four grid sets and

their corresponding subsets.

Table 12: Fit the 3 parameter error ansatz in
step#2.

Fx,t λ̃o
c α̃ p̃ MSE c ∆ẽ c

Fall 5.06 −2.8× 106 1.97 8.80 32.84
F2f

b 0.88 −3.2× 107 2.42 5.62 14.90
F2c 8.11 −1.8× 106 1.87 13.31 34.86
F3f

a 1.36 −1.0× 108 2.64 5.59 14.90
F3c 1.83 −9.9× 106 2.22 13.17 34.86

λ̃′
o

c α̃′ p̃′ MSE ′ c ∆ẽ′ c

Fall 2.62 −7.1× 108 2.96 1.37 3.39
F2f

b 1.76 −2.8× 107 2.41 1.55 3.33
F2c 9.75 −1.3× 106 1.81 11.74 33.05
F3f

a 1.55 −7.5× 108 3.04 2.40 5.82
F3c 1.46 −1.7× 107 2.36 4.43 13.75

a Contains the best subset based on minimum
GCI.

b Contains the best subset based on minimum
MSE.

c Units are m/s.

Step #3:

Now the space-time model is fit to each grid set to obtain the unknown equation

parameters. The best fit parameters and order-of-convergence are given in Table

(13).

The numerical solution over the full grid set Fx,t = Ffull is shown in Figure (43(a)).

The space-time fit from equation (6.9) and the estimated error from equation (6.11)

are shown for two CFL values in Figure (43(b)). Figure (43) shows that Fx,t depends

much more on the spatial refinements compared to the temporal refinements. The
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8 parameter ansatz approximates Fx,t relatively well considering the non-monotonic

behavior in Fx,t.

Step #4:

The subset F ′
3f contains the lowest mean squared error (MSE) and the lowest grid

convergence index (GCI), therefore, this is selected as the best subset in this example

problem. p′ = 2.98 is substituted from the 8 parameter ansatz into equation (6.7)

with the spatial values corresponding to CFL = 0.4 to yield F̃ = 5940.29m/s and

GCI = 0.02%, which are nearly identical to the values calculated in Table (11).

The numerical solution is expressed within one standard deviation of the mean as

F̃ = 5940.29± 1.18m/s.

The selection of the subset F ′
3f a not surprising result since F ′

3f includes the

most refined spatial data out of all of the subsets considered in this study. Now

it is necessary to understand this result by exploring the limits of the asymptotic

regime. However, not enough information is available to define the exact range of

the asymptotic region. However, the selection of F ′
3f is elucidated by examining the

results from steps#1-3.

Before analyzing the convergence, the concern is to examine if the spatial order-of-

convergence in this grid set which is approximately p = 2.98 from the 8 parameter fit

to F ′
3f . The value p = 2.98 is higher than expected since 1 ≤ p ≤ 2 from the MUSCL

algorithm and p ≤ 1 from the ghost fluid method applied at the material interface

which is zero order accurate. This value is lower than the extrapolated value p = 3.59

from step#1 given in Table (11) and approximately the same as the 3 parameter fit

p = 3.04. Most of the data in Tables (11) - (13) suggests that p ∼= 2 − 2.5. The 8

parameter fit to Ffull is p = 1.5 which is lower than all of the other values due to

non-monotonic convergence over the entire span considered in this data set. The 8

parameter fit to the screened set F ′
full is p = 2.96, where non-monotonic convergence
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seen in the range 0.6 ≤ CFL ≤ 0.9 and 150 ≤ Ncells ≤ 200 has been removed. This

value is nearly identical to the value p = 2.98 from the 8 parameter fit to F ′
3f , there-

fore, indicating that F ′
3f represents the behavior of the data better than the other

subsets.

Temporal convergence:

The systematic identification of the subsets F ′
x,t significantly reduces the mean squared

error (MSE) in Table (13). The screened subsets F ′
x,t except F ′

2c contain CFL ≤ 0.5

which indicates that asymptotic convergence is more likely to occur when CFL ≤ 0.5.

GCI values when CFL = 0.1 for all four grid subsets are found to be relatively close

to the minimum value, thus, a limit as temporal refinements become infinitely fine

is not observed in this study. In practical applications, CFL ≤ 0.1 is prohibitively

expensive and does not always yield improved results.

Spatial convergence:

From Table (11), it is seen that the grid convergence index (GCI) for the coarse

subsets is approximately twice that of the fine subsets, thus, the coarse subsets may

not be within the asymptotic regime. The mean squared error (MSE) in the fine

subsets tended to improve much more than in the coarse subsets. This observation

provides further evidence that the two coarsest spatial grid sizes are not within the

asymptotic regime. As in the temporal convergence, there is no indication from this

data as to the limit in the asymptotic region when the spatial refinements become

infinitely fine.

6.3.4 Summary

A framework given in this chapter outlines the procedure to identify and quantify the

sources of uncertainty in computational simulations of ESMs. In addition to being a
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necessary part of the validation process, the current systematic investigation of the

design problem from a hierarchial sequence of physical processes demonstrates how

one can reduce the number of unknown material parameters in the fully integrated

experiment. It is possible to eliminate all but three unknown parameters in the con-

tinuum model, which must be obtained by calibration with ESM gas-gun experiments,

namely, {Ea, A, φc} where φc is only used in this chapter for simplification. These

parameters physically represent reaction initiation, kinetics, and extent of reaction,

which are the least understood processes in shock induced chemical reactions.

The verification procedure is demonstrated by using gas-gun simulation results

in which Cu impacts a non-porous stoichiometric Ni3 + Al mixture. The procedure

systematically identifies the best space-time grid refinement subset with the lowest

grid convergence index (GCI) and best linear and non-linear equation fits, i.e., the

lowest mean squared error (MSE) values. This criteria identified the subset F3f

which closely matches the observed order-of-convergence from the linear and non-

linear equation fits to the set F ′
all in which coarse grid refinements are screened out.

By identifying the subset F3f , the i) number of simulations required to obtain the

extrapolated value is reduced, and ii) extrapolated value with the lowest uncertainty

or grid convergence index (GCI) is determined. In all of the cases observed, the 8

parameter non-linear equation fit resulted in a lower mean squared error (MSE) (by

5 times in many cases) compared to the space only 3 parameter linear equation fit.

Therefore, the non-linear equation better approximates the actual numerical error.

The validation framework presented in this thesis is appropriate for the state of

the art models used to study ESMs.
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Figure 43: Shock wave speed with entire range of grid refinement.
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Chapter VII

CONCLUSIONS

This thesis accomplishes the primary goal of developing a fully physics based mechanochem-

ical continuum level description of shock induced chemical reactions. The multi-

scale approach developed in this thesis is focused on integrating granular level and

mesoscale material behavior into a macro-scale continuum model. All of the proposed

models are physically based on the mesoscale RAVEN code results. Mechanical and

chemical processes are implicitly coupled. The proposed mesoscale reaction model is

the first attempt to bridge mesoscale model results into a chemical reaction model.

Temperatures within the heterogeneous granular level reaction are conducted over

the granule length scale. In contrast, the homogeneous model can not spatially de-

scribe the temperature.

Incorporation of the pressure in the activation energy shows qualitative improve-

ment compared to the homogeneous granular level reaction model. The case study

shows that the reaction propagation is controlled by the diffusion process for critical

pressure and temperature conditions that are consistent with experimental results for

a pure thermite mixture. Therefore, the mass-transport process undermines the solid-

liquid reaction initiation criteria. Reactions that initiate do not necessarily propagate

in the granular level reaction; propagation is limited by the mass transport of reac-

tants through the product layer. Reverse reactions are significant in the granular

level reaction, which is a result of the reduced reactant concentration at the reaction

surface. These characteristics are not captured by the homogeneous granular level

reaction model.

Important conclusions for the mesoscale reaction model:
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• Merzhanov criteria are not needed for identification of reaction sites. Only the

temperature and stress is needed at contact sites for reaction initiation according

to the granular level reaction models. Merzhanov criterion is not needed if if

another criterion, such as the implicit criterion in this thesis, is used. But it is

one objective approach.

• The mesoscale reaction model implicitly simulates mass transport due to plastic

flow that forms reaction contact sites via contact site distributions obtained from

RAVEN code.

• Reasonable agrement is observed between the gas-gun simulation and the ex-

periments with the mesoscale reaction model incorporated.

Mixture Equation of State:

The proposed porous mixture equation of state methods introduced in this thesis are

robust and represent homobaric and uniform strain assumptions. These methods are

useful in ESM studies and offer the following advantages over existing porous mixture

equation of state methods:

• Constituent equation of state models are not required to have the same form

and are not required to be easily inverted.

• Any form of pore collapse model may be employed. This permits the use of

history dependent models such as the Carroll-Holt model.

• The mixture equation of state is physically represented since material parame-

ters are not averaged.

• A weighted combination (Cm) of the two proposed methods may be used in

continuum scale codes such as finite element or finite volume codes.
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Spherically Symmetric Pore Collapse Equation of State:

The modified spherically symmetric pore collapse equation of state incorporates mix-

ture rules and compressibility effects, both of which have not been introduced in

previous models. Pore collapse is slower than expected although incorporation into

the gas-gun simulation results in close correlation with the Hugoniot from experimen-

tal data.

Uncertainty Quantification:

From the gas-gun simulations, it is found that:

1. The verification method given in this thesis is well motivated since the deter-

mination of analytical solutions is difficult even for the simple case of a pure Al

target.

2. Although the solution convergence trend may be very different in two cases

(with and without porosity), the systematic verification approach identifies the

same best grid set based on lowest GCI, i.e., F3f .

3. Once the code is verified for one microstructure, no further convergence studies

are required.

Case Studies:

Both case studies are used to demonstrate the capability of the proposed models.

For the Fe2O3 + Al system, simulated reactions agree with experimental results in

which partial reactions occur. Equation of state algorithms were shown to have good

agreement with ESM experimental results for pressures P ≤ 10GPa. The entire

multiscale model approach is combined in the Ni + Al system. Although a pressure

adjustment was required to calibrate the spherically symmetric pore collapse model,

due in part to shock front pressure non-uniformity, comparison between the simulation

and the experimental gas-gun results shows relatively close agreement. The estimated

extent of reaction from the mesoscale reaction model is 23% which shows an increase
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in shock velocity that closely matches the increase observed in experiments. The

100% reaction cases bound the 23% case and have shock velocities higher than the

non reacting cases.

Summary of Contributions:

Table (14) summarizes the main contributions and lists the authors whose work has

been improved upon in this thesis. Although this author list is not exhaustive, these

are the leaders in their respective modeling approaches.

Future Work:

• Perform molecular dynamics simulations to calculate the equation of state for

the Ni + Al system at high temperatures and pressures.

• Use the multiscale approach as a means to develop non-equilibrium thermody-

namics models and calibrate the unknown relaxation times.

• Employ conservative front tracking in the gas-gun simulation code. This will

reduce the overheating at the material interface and increase the order of con-

vergence. The followup verification study can be compared to the study given

in this thesis.
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Appendix A

CONSERVATION EQUATIONS

Conservation of mass and energy and the momentum balance are the governing equa-

tions for hydrodynamic simulations involving the passage of shock waves. The con-

servation equations and momentum balance are respectively given by the following

three equations, written in spatial coordinates.

A.0.5 Conservation of Mass

∂

∂t
(ρ̄) +∇ (ρ̄v̄) = 0 (A.1)

which is supplemented by n-1 independent constituent PDE’s,

∂

∂t
(φρ̄p) +∇ (φpρ̄v̄) = Ψmassp. (A.2)

The rate of mass production is

Ψmassp = ΘMpνp (A.3)

where Θ is the phase transformation rate, Mp is the molar mass, and νp is the stoichio-

metric coefficient for constituent p. The rate of phase transitions including chemical

reaction and melting are calculated in Chapter (4).

A.0.6 Conservation of Momentum

The rate of mass production Ψmassp from equation (A.3) results in a change in mo-

mentum. Assuming the mixture is homokinetic, the linear and angular momentum

source terms are given respectively by,

Ψ̄k,LM =
∑

p

Ψmasspv̄k ; Ψ̄k,AM =
∑

p

Ψmasspeijkxj v̄k (A.4)

147



where eijk is the second order alternating tensor. The conservation of linear momen-

tum is

∂

∂t
(ρ̄v̄k) +

∂

∂xk

(
ρ̄v̄k

2
)
− ∂

∂xk

(σ̄kj) = ρ̄f̄k + Ψ̄k,LM (A.5)

where summation on j is implied and f̄ is the body force. The conservation of angular

momentum is

∂

∂t
(ρ̄eijkxj v̄k) +

∂

∂xk

(
ρ̄eijkxj v̄

2
k

)
− ∂

∂xk

(eimnxmσ̄nk) = ρ̄eijkxj f̄k + Ψ̄k,AM (A.6)

for k = 1, 2, 3.

A.0.7 Conservation of Energy

The rate of mass production Ψmassp results in energy due to change in kinetic energy

and heat release (respectively) in equation(A.7) that result from phase transforma-

tions.

Ψ̄KE =
∑

p

Ψmassp
1

2

∑
k

v̄2
k ; Ψ̄S =

∑
p

Ψmasspµp (A.7)

where µ is the specific chemical potential. Ψ̄S accounts for both heat of fusion when

melting phase transitions occur and heat of reaction when products are formed due

to chemical reaction.

The conservation of energy is given by,

∂

∂t

(
Ē
)

+∇ ·
(
Ēv̄
)

+∇ · q̄ −
∑

k

∑
i

∂

∂xi

(σ̄ikv̄k) =
∑

k

ρ̄fkv̄k + Ψ̄KE + Ψ̄S (A.8)

where E is the total energy defined as

Ē = ρ̄

(
ē +

1

2

∑
k

v̄2
k

)
(A.9)

and e is the specific internal energy. The body force f is assumed to be negligible

compared to the shock pressure and will not be included from this point on.
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Appendix B

RAVEN CODE

B.1 Discrete Granular Simulation Quantities

The RAVEN code is employed as part of the multi-scale framework in Figure (5).

A shock is assumed to cause reactants to contact each other, and temperatures and

pressures increase throughout the region behind the shock. The location of the con-

tact sites, amount of surface area of contact between the reactants, temperature,

and pressure are obtained from the dynamic response of clusters of reactants. This

information is used to formulate reaction initialization in the proposed models. Infor-

mation from the mesoscale reaction is directly input into the macroscale continuum

model. This is described in detail in the Section on the mesoscale reaction model.

B.1.1 Contact Site Distribution

Statistical distributions from the dynamic response of discrete clusters are used to

locate the contact sites with corresponding temperature, contact length, reactant

quantities, and pressure. The method employed to obtain these distributions is de-

scribed below. In the following definitions, contact site and hot spot quantities have

the subscripts cs and hs respectively. A two-point spatial correlation, i.e., the nearest-

neighbour distribution NN1 obtained from the RAVEN code results, is employed to

quantify the spatial positioning of the contact sites. The mean µNN1cs and standard

deviation σNN1cs denote the NN1 distribution in equation (E.2) for the distance be-

tween contact sites. The contact site density ρcs {sites/µm2} is the number of contact

sites ncs per area downstream of the shock.
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B.1.2 Contact Site Temperature

The temperature at the interface between reactants at a contact site is classified into

the following two groups: 1) contact sites classified as hot spots in which plastic

flow has generated high heat at the interface, and 2) all remaining contact sites

with interface temperature close to the average bulk material temperature Tb, the

temperature is Tb < T < Tth, where Tth is the threshold temperature.

The hot spot density ρhs is the number of hot spots nhs per area downstream of the

shock. Let µThs
and σThs

be the mean and standard deviation lognormal temperature

distribution for hot spots.

Tk =

 Log-N(µThs
, σThs

) fork = 1...nhs

Tb for k = nhs + 1...ncs

. (B.1)

The final piece of temperature data required from the RAVEN code is a measure of

the mean bulk temperature of the mixture. The mean bulk temperature is calculated

as the mass average of the temperature field in all volumes of the mixture below the

aforementioned threshold temperature, Tth.

B.1.3 Steady Mechanical State

It is assumed that a “steady” mechanical state is reached some distance behind the

shock front in the absence of chemical reactions. Here, the stress state is nearly

hydrostatic and the mass mixing has reached a terminal state. Under such conditions,

the surface area of contact between reactants per unit shocked volume will approach

a constant value, as shown in Figure (44). The time at which this occurs (demarcated

as τ in the figure) is of importance to our analysis. Here Ac is the contacting surface

area of reactants in the mixture and Vs is the shocked volume.

Distributions of the contact surface area and the contact surface temperature in

the statistical volume element (SVE) are calculated at t = τ . It is also possible to

calculate joint-probability distributions of the contact surface area and temperature
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Figure 44: Contact surface area evolution.

for a higher-order description of the shocked mixture. Since the distribution of “hot”

reactant surfaces is of importance to our analysis, the nearest-neighbor distribution

is computed for contact surface above a prescribed threshold temperature at t =

τ . Since the threshold temperature is somewhat arbitrary, it may be taken as the

minimum melting temperature of all reactants at zero pressure.

B.1.4 Amount of Reactants at a Contact Site

Reactants in stoichiometric quantities at the contact sites occupy a volume in the

mixture that is approximated by the area with unit depth, i.e., Ak at the kth contact

site. The following definitions are for the binary reaction with the entire mixture

contains reactants in stoichiometric quantities. Ak is calculated based on the contact

site configuration that is reached at ∆tst.

In reality, the reactant interface geometry is complex and multiple contact sites

may be located on the surface of a single granule. Although the geometry does not

change significantly after the stationary condition is reached (t = ∆tst), mixing occurs

due to chemical reaction. Material is added and removed from contact sites and new

contact sites may be formed. Therefore, the amount of reactants at a contact site is

difficult if not impossible to estimate accurately.

We assume that Ak remains independent of the chemical reaction process. Ak is

estimated based on the sum of the initial mean areas µA,p = 1
4
πµ2

DI,p for reactants
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p. This represents the mean area of the contact sites. The mean maximum amount

of reactants at a contact site is µA|max = µA,1 + µA,2, which corresponds to a single

contact between two reactants in stoichiometric quantities. The mean area µA with

a lognormal distribution is defined for the binary reactive mixture as

µA =

 µA|max, if µA|max ≤ µA|lim

µA|lim, otherwise
(B.2)

where µA|lim is the mean limit amount of reactants at a contact site such that all of

the reactants are contained within contact sites, i.e.,

µA|lim =
αo · ARAV EN · (1− Af (epoxy))

ncs

(B.3)

where αo is the initial mixture porosity, Af (epoxy) is the epoxy area fraction, and

ARAV EN is the total area in the SVE.

The mean area has a lognormal standard deviation given by,

σA =
1

2

2∑
p=1

(
1

4
πσ2

DI,p) (B.4)

since the reactants p in the mixture are in stoichiometric quantities.

The contact length CL is estimated based on the geometry of the compacted

mixture. Two morphologies are of interest in this thesis, namely spherical and flake.

For spherical, CL ≈ r
√

π, where r is the radius of the median sized undeformed grain

in the mixture. For flake, CL is estimated as the longest dimension of the median

sized undeformed flake in the mixture.

B.2 Boundary Conditions

A shock wave generated by a velocity boundary condition imposed at the particle

velocity Up at one end of the powder in Figure (4). To minimize the numerical

oscillations caused by an abrupt change in the velocity profile, the velocity of the

piston generating the shock is ramped with the quadratic function

u(t) = u min
(
1, (t/tblend)

2) , (B.5)
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where u is the steady state particle velocity and tblend is equal to the first output step

time.

The left and right boundaries are symmetric planes, with normal and tangential

unit vectors n and t, respectively, which impose the following conditions,

u · n = 0, σ · t = 0 (B.6)

on the particle velocity u and Cauchy stress σ. A transmitting boundary condition,

developed by McGlaun [83], permits the wave to pass through the powder without

reflection.

B.3 Numerical Results

To evaluate the results of the computer calculations, the mean values of the parame-

ters were defined by

Φm(y) =
1

l

∫ l

0

Φ(x, y)dx, (B.7)

where Φ(x, y) is a solution variable, x is parallel to the shock front, and y is the

distance from the wall at which the velocity boundary condition is imposed.

The parameters calculated in every element include the total kinetic energy

ETkin =
NMAT∑

i=1

1

2
ρiuiuiVf,i, (B.8)

the internal energy

Eint =
NMAT∑

i=1

[
Ec,i +

∫ t

0

σ
′

i : ε̇p,idt

]
Vf,i, (B.9)

the pressure and the density

P =
NMAT∑

i=1

Pi (ρi, Ei) Vf,i, ρ =
NMAT∑

i=1

ρiVf,i, (B.10)

Here NMAT is the number of materials in the element at the current time, ρi and Vf,i

and Vc,i are, correspondingly, the current density, the volume fraction, and the current
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volume of the ith material. The two latter parameters are connected as follows:

Vf,i =
Vc,i∑NMAT

j=1 Vc,j

,
NMAT∑

j=1

Vf,j = 1, (B.11)

Note that Vc,i is not the specific volume of the ith material. Additionally, two meso-

scopic parameters are the microkinetic energy

Emkin = ETkin − EMkin, EMkin = 1
2
ρumum,

um(y) = 1
l

∫ l

0
uy(x, y)dy,

(B.12)

and the spin

ω =
1

l

(
∂u2

∂x1

− ∂u1

∂x2

)
, (B.13)

where EMkin is the macrokinetic energy.

Note that for the calculation of the microkinetic energy, the mean value of the

velocity um in its definition is used. These parameters are not measurable in the

experiments but they are very important to the overall material behavior.

B.4 Quantities for Pore Collapse Model Calibration

During pore collapse, the most important quantities needed to calibrate the pore

collapse model are the total energy dissipated Ed and the duration of the shock front

τ . Pore collapse model parameters are calibrated to maximize agreement between

RAVEN code and pore collapse model results for Ed and τ . The duration of the shock

front, τ , is measured from RAVEN code simulation and is on the order of 3 particle

diameters [92] for lower pressures (near the pore crush strength). τ decreases as the

shock pressure increases. For example [92], the shock front thickness is approximately

equal to 1 particle diameter for 13 GPa.

The pressure boundary condition for the pore collapse model is calculated from the

RAVEN code results. Spatial distributions of pressure calculated in the finite element

simulations are highly non-uniform due to the heterogeneity of powder microstruc-

tures. Therefore, averaging techniques must be used to convert the heterogeneous
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pressure distributions to measures that can be used to calibrate the pore collapse

model. In a method similar to that used by Benson and Conley [21], a slice of the

microstructure has been taken at the horizontal centreline of the SVE. The values

of pressure for the nodes that fall on the horizontal centreline are recorded. This

construction yields a 1D distribution of pressure along the axial direction (y) of the

microstructure, which shall be known as the centreline pressure Pc (averaging has not

been performed here). If one imagines taking a horizontal slice of the microstruc-

ture at every nodal position in the transverse direction (x) and averaging the values,

transversely averaged 1D profiles of pressure are obtained along the axial direction of

the SVE as

P̄j =
1

Nx

Nx∑
k=1

Pj,k. (B.14)

Here, P̄j is the transversely averaged pressure on the centreline at node j, Nz is the

number of nodes in the transverse direction and Pj,k is the pressure value at the node

(j, k). The 1D transversely averaged pressure profiles are averaged along the axial

position of the SVE (behind the shock front) to obtain the stationary pressure Pst,

which may be compared with the propagated stress in experiments.

The pressure boundary condition for the pore collapse model is calculated from the

RAVEN code results by using the final pressure or stationary pressure Pst downstream

of the shock wave in the RAVEN code given by,

Pst =
ρfu

2(
ρf

ρo
− 1
) . (B.15)
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Appendix C

CHEMICAL KINETICS

The general form for the chemical reactions k = 1...Nr is written from [67] as

+Nsk∑
i=1

+νik [Ci] 


−Nsk∑
i=1

−νik [Ci] (C.1)

for +/−Ns reactant and product species, respectively. In the equations, +() denotes

the reactant group and −() denotes the product group or forward and backward

processes, respectively. νik is the stoichiometric coefficient. Ci (mol/m3) is the molar

concentration species i defined as

Ci =
φiρ̄

Mi

(C.2)

and changes in the rate given by,

Ċi =
Nr∑
k=1

νikΘk. (C.3)

The volume fraction is (ξ) and the average density is ρ̄ =
∑

i ξiρi for all constituents

i in the mixture. φi is the mass fraction and Mi is the molar mass for constituent i.

Θk is the chemical reaction rate for reaction k. In the current study, only singe step

reactions are considered, therefore, k = 1 is used.

The Arrhenius equation, introduced in equation (1.3), is rewritten in a generalized

form in equations (C.4-C.5). This equation comes from [88, 78]. The reaction rate

for reaction k is given by,

τΘkΘ̇k + Θk = +kk

+Nsk∏
i=1

[Ci]
+νik − −kk

−Nsk∏
i=1

[Ci]
−νik . (C.4)

The equilibrium form is obtained by letting τΘ = 0 and is known as the parabolic

rate law used in many chemical reaction systems [96]. This is similar to the approach
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taken in CHEMKIN [67] and by Do and Benson [33]. The modified Arrhenius rate

coefficients are given by [105] as,

+kk = +Ak T
+βk P

+ηk +fk(1− ϕ) exp
{
−∆+µak

RT

}
,

−kk = −Ak T
−βk P

−ηk −fk(1− ϕ) exp
{
−∆−µak

RT

} . (C.5)

ϕ is the global degree of conversion of the reactant and is defined by the conversion

of the reactants, i. e., ϕ = 1− (φ1 +φ2) for binary reactions or reactions in which two

reactants are considered. R is the universal gas constant (8.314472J ·K−1 ·mol−1).

T is the reacting temperature or temperature at the location where the reactants are

in contact. P is the pressure. A is the pre-exponential or frequency factor. µa is

the activation energy. The traditional Arrhenius form has β and η equal to zero and

f(1− ϕ) = 1. In the modified form [105], β and η can be different from zero and are

usually determined empirically.

C.1 Transition State

The main contribution developed in this section is the addition of the stress in the

calculation of the transition state energy. This has not been attempted in any previous

study on shock induced chemical reactions.

Both reaction and diffusion rates depend on the change in the free enthalpy ∆µa

with the assumed Arrhenius kinetic rate parameter given by,

k = ko exp

(
−∆µa

RT

)
. (C.6)

∆µa is the energy required to reach the transition state. ko is related to the frequency

of the particle in its potential well. This refers to the reactant and product states.

The exponential term represents the probability (from Boltzmann statistics) that an

attempt will succeed in reaching the transition state and depends on ∆µa and T .

The transition state is assumed in this thesis to be the intermediate reaction step

between the reactant mixture and the product state. For example, the transition
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state is X2Y2Z in the reaction 2XY + Z → X2Y2Z → 2X + Y2Z, where v1 = −2,

v2 = −1, v3 = 2, and v4 = 1 are the stoichiometric coefficients corresponding to

the quantities, XY,Z, X, Y2Z (see Figure(45)). The opposite signs for reactants and

products is for the purpose of the mass balance,

∑
p

Mpvp = 0 (C.7)

where vp is the stochiometric coefficient for constituent p.

The total differential of the internal energy dU in equation (C.8) considers the

energy in a stressed solid where dS is the differential entropy production [105].

dU = TdS + V σ̄ : dε̄ +
∑

µidni (C.8)

where V is the partial molar volume and dni is the number of moles of component i.

Here, ε and σ are symmetric tensors [105]. The chemical potential in equation (C.8)

is related to the Gibbs free energy µ and Helmholtz free energy H, i.e,

µi(σ, T ) =

(
∂µ

∂ni

)
nj ,σ,T

=

(
∂H

∂ni

)
nj ,σ,T

− V σjk · dεjk. (C.9)

We neglect the first term on the RHS of equation (C.9) since it is usually small

compared to the second term [105], which is the reversible work done at a given stress

by the volume expansion V dε if dni is added to the system under stress [105].

If the stressed state is considered with only hydrostatic pressure P , the chemical

potential becomes

µi(σ, T ) ∼= µi(P
o, T ) + PVi (C.10)

where P o = 1atm is the ambient pressure. Therefore, the change in free energy due

to pressure is

∆µσ =
∑

i

PiVi (C.11)

where the summation must include all mixture constituents with corresponding pres-

sure Pi. Figure (45) shows an ideal case for ∆µσ when both the reactants and the
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products are at P = 0 and the transition state is at P < 0. Generally this is not the

case, therefore, it is assumed in all computations shown in this thesis that the pres-

sure is constant for all reactants, transition state, and products. Under this constant

pressure assumption, when P > 0 as is the case for shock compression, ∆µσ < 0

as shown in Figure (45) is obtained only when
∑

i Vi < 0 which corresponds to a

transition state molar volume less than the reactant molar volume. This means that

reactions may proceed at an increased rate due to an increase in pressure.

The partial molar volume of constituent i is

Vi =
Mi

ρi

vi. (C.12)

The zero stress (or ambient pressure P o = 1atm) chemical potential or thermal

contribution is defined in equation (C.13).

µp(P
o, T ) = ∆µp(P

o, T ) = ∆Hf
op

(P o, T o) +
∫ T

T ′=To
cpp(P

o, T ′)dT ′

−T ·
[
∆Sp(P

o, T o)−
∫ T

T ′=To

cpp (P o,T ′)

T ′ dT ′
] (C.13)

where T o = 298K is the reference temperature and cpp is the heat capacity for constant

pressure for constituent p. The stoichiometric mixture change in free energy for

P = P o is given by

+/−∆µo(P o, T ) =
∑

p

µp(P
o, T ) · vp (C.14)

and is shown for both reactants and products respectively in Figure (45).
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Appendix D

CONSTITUENT MATERIAL MODELS AND

PROPERTIES

D.1 Mixture Strength

In the macro-scale, each constituent in a mixture is separated by interfaces with

other constituents or voids. Physical discreteness is transformed to a mathematical

continuum. A continuum is defined in a Euclidean space with each point in the

space is identical as a particle and is continuously distributed throughout the volume

and during a deformation points in the neighborhood of a point will remain in the

corresponding neighborhood in the deformed domain after deformation.

We follow the partial traction and partial stress description by Trusdell, Rajagopal,

and Tao [98] in which S is a surface in the body. nS is the normal vector to S at

the point x contained within the body. The notation presented here is altered from

the form given by Rajagopal and Tao [98] by defining the traction vector tp and the

Cauchy stress tensor σp associated with each constituent p in the mixture, where

tp = (σp)
TnS . (D.1)

Since this thesis is focused on small particle mixtures such as micron-scale or nano-

scale inter-metallic particles, we assume the probability of the mixture constituent p

in contact with S is equal to its occupied volume fraction [77], i.e.,

ςp = ξp. (D.2)

The physical basis for this assumption comes from reducing the size of particles

with uniform geometry. This assumption is valid when mixtures contain granules
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of the same size and dimension, thus, is invalid for mixtures containing particles

with different geometry, e.g., both flake and spherical particles as shown in Figure

(46). In this case, the cut-away shows that the cross section of a flake can take

up a disproportionate part of the total surface area. Therefore, the mixture rule in

equation (D.2) would be invalid for such a mixture.

 
Figure 46: Schematic for mixtures containing flake and spherical particles.

Using the assumption in equation (D.2), the total mixture traction t̄ and Cauchy

stress tensor σ̄ are given by [98],

t̄ =
∑

p

tp, (D.3)

and

σ̄ =
∑

p

σp, (D.4)

so that

t̄ = σ̄TnS . (D.5)

The Cauchy stress tensor in equation (D.4) is decomposed into its hydrostatic P

and deviatoric σ
′
components,

σ̄ = −P̄I + σ̄
′

(D.6)

where I is the second-order identity tensor and the assumption is that the mixture

is isotropic.

Thermomechanical constitutive relationships include an equation of state in the

form Pp = fp(ρ, e) and a strength relationship in the form σ
′
p = σ

′
p

(
D, T̄ , z

)
for

constituent p, where D is the symmetric part of the velocity gradient defined. T̄
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is the mixture temperature. z denotes internal state variables [77]. Note that the

overbar denotes mixture averaged quantities. The velocity gradient is defined as

L = ∇v =
∂v

∂x
(D.7)

Here, we have adopted the notation used by Rajagopal and Tao [98] to express ∇ as

the gradient from an Eulerian point of view. Then we have the symmetric part of the

velocity gradient defined as

D = 1/2
(
L + LT

)
. (D.8)

Thermodynamic equilibrium is assumed between mixture constituents only in the

macro-scale model. According to the thermodynamic equilibrium assumption and

using equation (D.2), the mixture average shear modulus is written as,

µ̄(T̄ ) =
1

αo

∑
p

ξpµp(T̄ ). (D.9)

µp(T̄ ) is assumed to depend linearly on temperature such that µp(T̄ = To) = µo and

µp(T̄ = Tm,p) = 0. Tm is the melting temperature. µ̄(T̄ ) = 0 when T ≥ Tm,p for any

constituent p in the mixture. αo = ρ/ρd is the porosity where ρd is the non-porous

density and the subscript o denotes the initial or zero pressure state.

The material is assumed to yield when the equivalent stress exceeds the mixture

yield stress, i.e., σeq > Ȳmix. Von Mises or maximum distortion energy criterion, is

used and the radial return method is applied to the stress deviators. The equivalent

stress is

σeq =
√

3J2

=

√
(σ11−σ22)2+(σ22−σ33)2+(σ33−σ11)2+6(σ2

12+σ2
23+σ2

31)

2

=
√

3
2
σ
′
ijσ

′
ij

(D.10)

where J2 is the second deviatoric stress invariant and σ
′
ij are components of the stress

deviator tensor. Subscripts ij represent the coordinates.

With 1D strain, equivalent stress is given by,

σeq =

√
3

2

(
(σ̄′

xx)
2 + 2

(
σ̄′

yy

)2)
(D.11)
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where the shock propagates along the x-axis. The stress deviators are given in rate

form by,

˙̄σ
′

xx =
4

3
µ̄

∂v̄x

∂x
, ˙̄σ

′

yy = ˙̄σzz = −2

3
µ̄

∂v̄x

∂x
. (D.12)

Equation (D.12) is valid for small strains and is appropriate for mixtures containing

binders such as epoxy since since these materials yield at small strains.

The porous mixture yield strength is given by,

Ȳmix =
1

α
Ȳ (D.13)

where the assumption in equation (D.2) gives,

Ȳ =
∑

p

ξpYp. (D.14)

Constituent yield strength Yp generally depends on the effective mixture shear strain

rate ˙̄γ and mass-fraction averaged temperature T̄ , i.e., Yp = Yp( ˙̄γ, T̄ ). Individual

strength models are discussed in Appendix (D.3).

D.2 Constituent Equation of State

The relationship needed to link pressure to the density and internal energy of the

material is called the equation of state (EOS). The two most commonly used models

used for the high pressure regimes found in shock physics are the Grüneisen and the

Murnaghan EOS. Much of the experimental EOS data that has been gathered for

solids and liquids contains material parameters for these two models.

The Mie-Grüneisen EOS is extensively used in the determination of shock, resid-

ual temperatures, and for predicting the shock response of porous materials. The

Grüneisen EOS can easily be derived from the Rankine-Hugoniot equations [85] and

is written in terms of the specific energy e or temperature T and specific volume v

as,

P (e, v) =
C2

o (vo − v)

[vo − S1 (vo − v)]2
+

Γ

v

[
e− 1

2

(
Co (vo − v)

vo − S1 (vo − v)

)2
]

(D.15)
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where Co is the acoustic wave speed, S1 is the slope of the linear Us − Up curve,Up is

the particle velocity, and Γ is the Grüneisen parameter. Equation (D.15) is not easily

inverted, i.e., solved for v.

The Grüneisen parameter is defined as

Γ = V

(
∂P

∂e

)
V

=
Γoρo

ρ
. (D.16)

The Murnaghan EOS [86] is derived from the variation of the bulk modulus with

respect to pressure and takes the form in terms of the reference temperature To as

P =
βTo

β′
To

[(
ρ

ρo

)β′To

− 1

]
+ CvΓMρo (T − To) (D.17)

where βTo = −V (∂P/∂V )|To is the isothermal bulk modulus at the reference temper-

ature, β′
To

= (∂β/∂P )|To is the pressure derivative of the isothermal bulk modulus

at the reference temperature, Cv is the specific heat capacity under constant volume,

ρo is the reference density, and ΓM is a material parameter similar to the Grüneisen

parameter Γ. Equation (D.17) is easily inverted, i.e., solved for ρ.

EOS parameters are given in Table (15). For simplicity, the Grüneisen parameter

is assumed to be constant and is estimated using the common approximation Γ =

2S1 − 1 [85]. All other Grüneisen parameters were obtained from [80] where values

for Al(s) were taken from the Al − 1100 data. Further details are given by R. A.

Austin [4]. All of the Murnaghan parameters are obtained from Bennett, Horie, and

Hwang [11] with the exception of the isothermal bulk modulus[20] βTo since these

values are reported one order of magnitude too low.

D.3 Constituent Strength Models

Strength models are available for Ni and Al for a range of strain-rates and effective

plastic strain. A brief description of the two models used in this thesis is provided

here; the literature should be referenced for complete details and material parameters.

Both models are not valid for strain rates ε̇ > 105s−1.

165



D.3.1 Aluminum

A constitutive model for the stress-strain response of high-purity aluminium has been

proposed by Klepaczko et al [69]. Here, thermally activated mechanisms are used to

model the kinetics of dislocation glide and the rate-sensitive generation of dislocations

is taken into account. Thus, the model is sensitive to variations in temperature and

strain rate. The current state of the microstructure is tracked through the disloca-

tion density, which serves as a single, physically based internal state variable. The

evolution of the dislocation density is based on the competing processes of dislocation

generation and annihilation.

It is assumed that the flow stress in shear may be decomposed as τ = τu + τ ∗,

where τu is the internal (athermal) stress and τ ∗ is the effective (thermally activated)

stress. The decomposition of the flow stress assumes the existence of different barriers

that impede the motion of dislocations. The internal stress is associated with long-

range obstacles that are athermal in character (e.g. grain walls, cell walls and cell

dislocations). The internal stress is expressed as

τu = αiµ(T )b
√

ρ̂ (D.18)

where αi is the dislocation/obstacle interaction coefficient, µT is the temperature-

dependent shear modulus in equation (D.19), b is the Burgers vector, and ρ̂ is the

dislocation density.

µ(T ) = µo

[
1− T

Tm

exp

{
θ∗

(
1− Tm

T

)}]
(D.19)

where Tm is the melting temperature and θ∗ is a material constant.

The effective stress is associated with weaker obstacles (e.g. forest dislocations

and Peierls barriers) that may be overcome by thermal activation. The effective stress

is cast in a generalized Arrhenius form,

τ ∗ = τ ∗0 (ρ̂)

[
1−

{
kT

∆G0

ln

(
v0 (ρ̂)

˙̄γp

)}1/q
]1/p

(D.20)
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where ˙̄γp is the effective plastic shear strain rate, τ ∗0 (ρ̂) = ∆G0

√
ρ̂/(ba) is the ther-

mally activated part of the threshold stress (i.e. the stress barrier associated with

short range obstacles at 0 K with activation distance a), v0 (ρ̂) = fρ̂vDb2 is the at-

tempt frequency factor at 0K, k is Boltzmann’s constant, ∆G0 is the activation energy

at 0K, and p and q are constants that describe the shape of the energy barrier. Here,

f is the fraction of mobile dislocations and vD is the Debye frequency. The disloca-

tion density is updated to account for the evolution of the microstructure during a

general load history. The rate of change in the dislocation density with respect to the

effective plastic shear strain is expressed as

∂ρ̂

∂ ˙̄γp
= MII ( ˙̄γp)− ka ( ˙̄γp, T ) [ρ̂− ρ̂0] . (D.21)

Here, MII ( ˙̄γp) is the rate-dependent dislocation multiplication term, ρ̂0 is the initial

dislocation density, and ka ( ˙̄γp, T ) is the dislocation annihilation factor given by

ka ( ˙̄γp, T ) = ko

(
˙̄γp

γ̇0

)−2m0T

(D.22)

where ko is the anihilation factor at 0K, m0 is the strain-hardening rate-sensetivity

const., and γ̇0 = v0 (ρ̂) is the threshold strain rate.

D.3.2 Nickel

An internal state variable model for noncrystalline high-purity nickel (Ni270) is pro-

posed by Follansbee et al [43]. State variables are defined for dislocations interacting

with interstitial carbon atoms (55 ppm for Ni270) and for dislocations interacting

with other dislocations. The following material parameter values are for Ni270.

Thermal activation is similar to the Klepaczko model in that the deformation

kinetics at constant structure are described using an Arrhenius expression of the

form

ε̇ = ε̇0 exp

[
∆G (σt/σ̂t)

kT

]
(D.23)
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where σ̂t is the mechanical threshold stress, ∆G is the free energy, ε̇0 is a constant,

and k is Boltzmann’s constant.

The yield stress in equation (D.24) is decomposed into the athermal component

σa = 50MPa and the thermally activated component s(ε̇, T ). The subscript I denotes

the contribution from dislocation interactions with carbon atoms and the subscript ε

denotes the contribution from interactions with stored dislocations. The mechanical

threshold stresses σ̂ are the internal state variables in this model.

σ = σa + [(sI (ε̇, T ) σ̂I)
n + (sε (ε̇, T ) σ̂ε)

n]
1/n

(D.24)

where n = 1 is the exponent in the power law superposition rule employed [43]. The

phenomenological relation used for describing s is given by

si =

(
1−

[
kT

goiµ(T )b3
ln

ε̇0i

ε̇

]1/qi

)1/pi

(D.25)

where Burgers vector is b = 2.517Å and goi is the normalized total activation free

energy that characterizes obstacle i and ε̇0i = 107s−1. goI = 0.103 corresponding to

σ̂ = 11MPa and goε = 1 (typical for long-range dislocation/dislocation interactions

which are less thermally activated) [43]. The material parameters pi and qi have

physical interpretations [71] similar to those used in the Klepaczko model. Here,

pε = pI = 2/3 and qε = qI = 1 which correspond to box-like obstacles.

The mechanical threshold stress evolves according to

d

dε
σ̂ε = θ0 (ε̇)

1−
tanh

[
2σ̂ε

σ̂εs

]
tanh(2)

 (D.26)

where σ̂εs is the steady state value of σ̂ε and θ0 is the Stage II hardening rate. These

parameters are fit to strain-rate data [43] and given by θ0 = 5.04 + 0.103 ln(ε̇) GPa

and σ̂εs = 870.8 + 12.8 ln(ε̇) MPa.

The temperature dependent shear modulus is given by

µ(T ) = 84.52− 8.839

exp 258
T
− 1

{GPa} . (D.27)

The remaining constituent material properties are listed in Table (16).
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D.4 Hollow Sphere Pore Collapse Results

As with the modified Carroll-Holt model, computation is performed with 4th order

Runge-Kutta and a time step of 0.5ns. Figures (47-49) show the sensitivity to changes

in the material parameters with respect to the pore closure, temperature, stress, and

strain rate. These results show that the temperature near the center of the pore,

r = 0, is much higher than in the modified Carroll-Holt model. Additionally, strain

rates in the hollow sphere model are significantly higher.
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Figure 47: Pore collapse with P = 5GPa, a
′
o = 10µm, and µf = 1 with CI = 0 in

the solid line and CI = 1 in the dashed line. Temperature, stress, and strain rate are
given at the point of pore closure.

D.5 Bisection Method Applied to the Mixture Equation of
State

The equation of state for the mixture takes the form,

P̄ = f(ρ̄T̄ ) (D.28)
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Figure 48: Pore collapse with P = 5GPa, CI = 1, and µf = 1 with a
′
o = 10µm in

the solid line and a
′
o = 20µm in the dashed line. Temperature, stress, and strain rate

are given at the point of pore closure.

where P̄ is the mixture pressure, ρ̄ is the mixture density, and T̄ is the mixture temper-

ature. As the density and temperature increase, the pressure increases monotonically.

This is proved by the second law of thermodynamics, i.e.,

δWu < −dU + TRdS − PRdV +
∑

µiRdNi (D.29)

where δwu is the amount of useful work done by the sub-system, over and beyond

the work PRdV done by the sub-system expanding against the surrounding external

pressure. µiR is the chemical potential defined in equation (C.9) and Ni is the number

of particles of each species i. Any increase in temperature or pressure results in usable

work. In addition, energy contributions from chemical interactions generates useful

work. f(ρ̄T̄ ) is monotonic and continuous since dρ̄ is proportional to dV .

The bisection method repeatedly divides an interval in half and then selects the

subinterval in which a root exists. For the mixture equation of state, the root is

located at ρ̄∗ to give the pressure P̄ ∗ where ρ̄∗ is known. Given two points, f(ρ̄1, T̄ )
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Figure 49: Pore collapse with P = 5GPa, a
′
o = 10µm, and CI = 1 with µf = 0 in

the solid line and µf = 1 in the dashed line. The lines nearly overlap in the upper
left plot. Temperature, stress, and strain rate are given at the point of pore closure.

and f(ρ̄2, T̄ ) such that ρ̄1 < ρ̄∗ < ρ̄2, we know by the intermediate value theorem that

f must have at least one root in the interval [f(ρ̄1), f(ρ̄2)] as long as f is continuous

on this interval. The bisection method divides the interval in two by computing

f(ρ̄3, T̄ ) = 1/2[f(ρ̄3, T̄ ) + f(ρ̄3, T̄ )]. There are two possibilities, either ρ̄3 < ρ̄∗ or

ρ̄3 > ρ̄∗. Since f is monotonic, if ρ̄3 < ρ̄∗, then the root now lies within the interval

[f(ρ̄3), f(ρ̄2)]. If ρ̄3 > ρ̄∗, then the root lies within the interval [f(ρ̄1), f(ρ̄3)].
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Table 16: Material properties.

Parameter Al − 1100 [66] Ni Units
Shear modulus, µ 26.0 76 GPa
Melting temperature, Tm 926 1728.15 K
Latent heat of melting, ∆Hm 390 305.6 kJ · kg−1
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Appendix E

SYNTHETIC ANNEALING

The MSR and DPS model discussed in this thesis employ the nearest-neighbour NN1

distribution to quantitatively measure a micro structure distribution. For the MSR

model, contact site locations with correlated temperature distributions are determined

by a synthetic annealing procedure. The DPS model requires algorithms that synthet-

ically generate microstructure based on prescribed mixture parameters. Important

NN1 distribution definitions are given here. The detailed annealing procedure is

given by Austin [4].

For 2D representations, spatial locations of particles (xk, yk) are given randomly

by a uniform distribution, i.e., ui ∈ [0, 1],

(xk, yk) = (uiX, ui+1Y ) (E.1)

where X and Y are scalar dimensions. This procedure is supplemented by the addition

of certain conditions such as to prevent excessive overlaps between particles.

Experimental results suggest that the NN1 distribution follow the Gaussian or

normal distribution, which is given approximately by,

P [dk| (di − δd/2) < dk ≤ (di + δd/2)] = aNN · exp

{
−1

2

(
di − µ

σ

)2
}

(E.2)

for i = 1, ..Nd, where Nd is the number of bins selected to discretize NN1, δd is

the width of the bins, µ is the mean, σ is the standard deviation, di is the distance

between the site and its nearest-neighbour, aNN is the scaling parameter so that the

sum of the probabilities of each value of di sum to unity, i.e., aNN ·
∑Nd

i=1 P (di) = 1.

Let P (di)|syn denote the synthetic probability obtained from the annealed config-

uration and P (di)|act denote the actual or experimental distribution from equation
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(E.2). The objective function to be minimized is

eNN =

√√√√ Nd∑
i=1

(P (di)|syn − P (di)|act)
2. (E.3)

The coordinates (xk, yk) are randomly perturbed using an iterative simulated an-

nealing technique [68] until NN1 distributions closely match the experimental obser-

vations, i.e., eNN is sufficiently small.

175



Appendix F

NUMERICAL INTEGRATION

F.1 Hyperbolic Equations

The states on the left and right side of the discontinuity uL and uR (u is the density,

velocity, or energy) are approximated by extrapolating the cell average by monotone

upstream-centered schemes for conservation laws reconstruction, therefore, the flux

at the interface FI at time tn is defined by,

F n,L
I = f (un

L)− vnun
L = f (un

R)− vnun
R = F n,R

I (F.1)

where f(u) is the hyperbolic equation and v is the material velocity.

We denote the numerical approximation of Un
j and F

n+1/2
j+1/2 be Un

j and Fn+1/2
j+1/2

respectively. The monotone upstream-centered schemes for conservation laws recon-

struction is used with Lax-Friedrich’s Flux [107] given by,

Fn
j+1/2 =

1

2

[
f
(
UnL

j+1/2

)
+ f

(
UnR

j+1/2

)]
− αn

2

(
UnR

j+1/2 − UnL
j+1/2

)
(F.2)

where UnL
j+1/2 and UnR

j+1/2 are the left and right hand values (respectively) from the

monotone upstream-centered schemes for conservation laws reconstruction at xj+1/2

and α is the maximum eigenvalue of the characteristics. To calculate α we first

calculate the acoustic sound speed C in equation (F.3).

C2 =

(
∂P

∂ρ

)
e

+
P

ρ2

(
∂P

∂e

)
ρ

. (F.3)

v is the material velocity. The maximum eigenvalue is approximated by,

αi = max
i
{Ci − vi , Ci , Ci + vi} (F.4)

for all i nodes in the sample material (may be 1D, 2D or 3D with appropriate number

scheme). For example, Ci is the acoustic sound speed for the ith node. The maximum
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value maxi αi is used to calculate the maximum allowable time step. In the case when

the computation of the EOS is iterative, we numerically approximate the derivatives

with centered differences in ρ and T .

F.2 Interface Tracking

The ghost fluid method [42] is employed with a minor difference. Instead of the

entropy extrapolation used in [42], the density and specific internal energy are ex-

trapolated to first order as shown in Figure (50). The interface velocity is the average

of the velocity at nodes j and j + 1.
 

i 

P  V 

P=pressure 
V=velocity 
ρ=density 
e=energy 

Interface 

Fluid 2 

P  V P  V 

ρ, e 

i-2 i-1 i+1 i+2 i+3 

Fluid 1 Ghost Cells 

Figure 50: Ghost fluid method with density extrapolation.

F.3 Equation of State Algorithm Code

The following MATLAB function is used to compute the homobaric equation of state.

function [P,alpha,v] = ...

homobaric(rho_bar,T,P_us,alphao,n,Pe,Ps,rhodo,phi,eos,eos_type, wflag)

global Tol_rho % Homobaric EOS tollerance on density (nominal 0.0001)

global max_iter_ho % nominal -> max_iter = 15

% Written by: Derek Reding
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% Last updated on: 01/17/07

% Homobaric Case - COMMENTS---------------------------------------

% INPUTS:

% rho_bar = input mixture density - remains constant (kg/m^3)

% T = temperature - remains constant (degrees K)

% P_us = pressure from uniform strain case for SAME rho_bar (Pa)

% alphao = initial porosity at P=0

% n = polynomial for porosity pressure dependence (quadratic -> n=2)

% Pe = elastic limit (Pa)

% Ps = pore collapse strength (Pa)

% rhodo = initial constitutent density - (vector)

% phi = constituent mass fractions - (vector)

% v = input volume fractions (sum(v)~=1 if alpha>1) - (vector)

% eos = equation of state constants (4) for each material using

% either Gruneisen or Murnhaghan EOS models

% eos(k,1) = Beta_To (bulk modulus) (Pa)

% Murnaghan

% eos(k,1) = Beta_To (bulk modulus) (Pa)

% eos(k,2) = n (slope of bulk modulus)

% eos(k,3) = Gamma (Gruniesen constant - Murnhagan)

% eos(k,4) = Cv (specific heat capacity) (J/Kg*K)

% Gruneisen

% eos(k,1) = C (acoustic velocity) (m/s)

% eos(k,2) = Gamma (Gruniesen constant)

% eos(k,3) = S (slope of Up-Us)

% eos(k,4) = Cv (specific heat capacity) (J/Kg*K)

% eos_type = 1 for Murnaghan EOS, 2 for Gruneisen

% wflag = when wflag==1, suppress homogeneous warnings with error<1%

% OUTPUTS:

% P = output mixture averaged pressure - uniform strain (Pa)

% alpha = output porosity
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% v = output volume fractions (sum(v)~=1 if alpha>1) - (vector)

% CONSTANTS:

To = 298; % deg K

%--------------------------------------------------------------------------

% initialize bounds on Pressure

P_L = 0; Note: using P_L = P_ho(k-1) may be faster, but not needed

for k = 1:length(rhodo) % calculate thermal pressure for each constituent

if eos_type(k) == 1 % then use Murnhaghan EOS

P_min(k) = eos(k,3)*rhodo(k)*eos(k,4)*(T-To);

else % then use Gruneisen EOS

P_min(k) = eos(k,2)*rhodo(k)*eos(k,4)*(T-To);

end

end

P_L = max(P_min); % limiting case

if P_L>=P_us % then no iterations required!!!

% disp(’Temperature exceeding normal limiting case’)

P = P_L;

alpha = p_alpha(P,alphao,Pe,Ps,n);

% Calculate constituent densities

for k = 1:length(rhodo)

if eos_type(k) == 1 % then use Murnhaghan EOS

rd(k) = BM_EOSinv(rhodo(k),P,T,eos(k,1),eos(k,2),eos(k,3),eos(k,4));

elseif eos_type(k) == 2 % then use Gruneisen EOS

rd(k) = MG_EOSinv(rhodo(k),P,T,eos(k,1),eos(k,2),eos(k,3),eos(k,4));

end

end

% re-scale vol fracs

v = rho_bar*phi./rd; % calculate new v’s (only for homobaric case)

v_sum = sum(v); % sum volume fractions, v_sum<=1
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v = v/(alpha*v_sum); % porous volume fractions

else % Iterate: normal case where temperature does not dominate mix EOS

P_U = P_us; % NORMAL limiting case (P from US for SAME rho_bar)

n_iter = 0; % number of iterations (initialize)

breaker = 0; % break

while(breaker==0) % iterate to find P that satisfies Homo-mix rule

P_bar = 1/2*(P_U + P_L);

alpha_star = p_alpha(P_bar,alphao,Pe,Ps,n);

% Calculate constituent densities

for k = 1:length(rhodo)

if eos_type(k) == 1 % then use Murnhaghan EOS

rd(k) = BM_EOSinv(rhodo(k),P_bar,T,eos(k,1),eos(k,2),eos(k,3),eos(k,4));

elseif eos_type(k) == 2 % then use Gruneisen EOS

rd(k) = MG_EOSinv(rhodo(k),P_bar,T,eos(k,1),eos(k,2),eos(k,3),eos(k,4));

end

end

% re-scale vol fracs

v = rho_bar*phi./rd; % calculate new v’s (only for homobaric case)

% note: (try using bulk modulus and/or shear modulus for

% proportional scaling instead of density)

% re-scale vol fracs (overwrite old v’s)

v_sum = sum(v); % sum volume fractions, v_sum<=1

v = v/(alpha_star*v_sum);

% apply mixture rule to get new average density (new guess)

rho_star = rd*v’; % volume average - density (dot product)

error = max( abs((rho_star - rho_bar)/rho_bar) ); % error in density

if error<=Tol_rho

breaker =1; % density is within tolerance

elseif rho_star > rho_bar % density too high, P_bar too high

P_U = P_bar;

else
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P_L = P_bar;

end

n_iter = n_iter+1;

if n_iter ==max_iter_ho

% fprintf(’Error: Homobaric solution does not converge\n’)

if (wflag~=0) & (error*100>wflag)

fprintf([’Homobaric solution solution does not converge, error = ’,...

num2str(error*100) ,’ %%, ’])

fprintf([’Pressure is = ’,num2str(P_bar/(1e9)),’ GPa \n’])

end

breaker =1;

end

end % end iteration on P - loop

P = P_bar;

alpha = alpha_star;

end % end of NORMAL iteration case

The following Matlab function is used to compute the uniform strain equation of

state.

function [P,alpha] = ...

uniform_strain(rho_bar,T,alpha_min,alphao,n,Pe,Ps,...

rhodo_bar,v,eos,eos_type)

global Tol_alpha % Uniform Strain EOS tollerance on alpha (nominal 0.0001)

global max_iter_us % nominal -> max_iter = 20

% Note: Nominal tollerance MUST BE LESS THAN 0.001

% Written by: Derek Reding

% Last updated on: 01/17/07
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% Uniform Strain Case - COMMENTS---------------------------------------

% INPUTS:

% rho_bar = input mixture density - remains constant (kg/m^3)

% T = temperature - remains constant (degrees K)

% alpha_min = minimum previous value of alpha (irreversible for P>Pe,

% otherwise alphaU=alphao)

% alphao = initial porosity at P=0

% n = polynomial for porosity pressure dependence (quadratic -> n=2)

% Pe = elastic limit (Pa)

% Ps = pore collapse strength (Pa)

% rhodo_bar = dense mixture average initial density (P=0)

% v = input volume fractions (sum(v)~=1 if alpha>1) - (vector)

% note: for uniform strain, v = vo, where vo is altered for phase changes

% eos = equation of state constants (4) for each material using

% either Gruneisen or Murnhaghan EOS models

% eos(k,1) = Beta_To (bulk modulus) (Pa)

% Murnaghan

% eos(k,1) = Beta_To (bulk modulus) (Pa)

% eos(k,2) = n (slope of bulk modulus)

% eos(k,3) = Gamma (Gruniesen constant - Murnhagan)

% eos(k,4) = Cv (specific heat capacity) (J/Kg*K)

% Gruneisen

% eos(k,1) = C (acoustic velocity) (m/s)

% eos(k,2) = Gamma (Gruniesen constant)

% eos(k,3) = S (slope of Up-Us)

% eos(k,4) = Cv (specific heat capacity) (J/Kg*K)

% eos_type = 1 for Murnaghan EOS, 2 for Gruneisen

% OUTPUTS:

% P = output mixture averaged pressure - uniform strain (Pa)

% alpha = output porosity

% v = output volume fractions (sum(v)~=1 if alpha>1) - (vector) (not
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% needed -discontinued)

% CONSTANTS:

% Tol_alpha = 0.0001; % tollerance, e.g. Tol_alpha = 0.001 = 0.1% error

% max_iter_us = 20; % nominal -> max_iter_us = 15

%--------------------------------------------------------------------------

% initialize lower bound on alpha

% alpha_L = rhodo_bar/rho_bar; % not working so well...

alpha_L = 1;

if alpha_L<1 % ensure that lower bound is greater than 1

alpha_L = 1;

end

% initialize upper bound on alpha

alpha_U = alphao; % use if Pressure is not MONOTONIC

% alpha_U = alpha_old; % use if we know that Pressure is MONOTONIC

% note: using alpha_old does not help much. Also, as long as alpha is

% irreversible, this pressure monotinicity does not matter.

n_iter = 0; % number of iterations (initialize)

breaker = 0; % break

if (((rho_bar*alphao)/rhodo_bar == 1) && (alphao~=1))

P = 0;

alpha = alphao;

else

while(breaker==0)

alpha_star = 1/2*(alpha_U + alpha_L);

rho_in = rho_bar*alpha_star; % updated rho_in

% re-scale vol fracs (overwrite old v’s)

v_sum = sum(v); % sum volume fractions, v_sum<=1

v = v/v_sum; % v = v/(alpha_star*v_sum);

% Calculate constituent pressures

for k = 1:length(v)

if eos_type(k) == 1 % then use Murnhaghan EOS
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Pd(k) = BM_EOS(rhodo_bar,rho_in,T,eos(k,1),eos(k,2),eos(k,3),eos(k,4));

elseif eos_type(k) == 2 % then use Gruneisen EOS

Pd(k) = MG_EOS(rhodo_bar,rho_in,T,eos(k,1),eos(k,2),eos(k,3),eos(k,4));

end

if Pd(k)<0

Pd(k) = 0; % can not have negative pressures!

end

end

% Calculate average pressure

P_bar = Pd*v’; % volume average (old: P_bar = alpha_star*Pd*v’;)

% calculate corresponding porosity from p-alpha model

alpha_inv = p_alpha(P_bar,alphao,Pe,Ps,n);

error = (alpha_star-alpha_inv)/alpha_star; % true error

if abs(error)<=Tol_alpha % if difference is below tolerance, break

breaker =1;

elseif alpha_star >= alpha_inv

alpha_U = alpha_star;

n_iter = n_iter+1;

else

alpha_L = alpha_star;

n_iter = n_iter+1;

end

if n_iter == max_iter_us

fprintf([’Uniform Strain solution does not converge, pct_error = ’,...

num2str(error*100) ,’\n’])

breaker =1;

end

end

% output quantities

P = P_bar;

alpha = alpha_star;

% ONLY after convergence has occured, check to see if alpha is higher than
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% any previous value at this location in x (irreversibility)

if alpha>alpha_min

alpha = alpha_min;

end

% numerical error can produce negative pressures -> fix

if (P<0) && (rho_bar>=rhodo_bar/alphao)

P = 0;

end

end

185



Appendix G

GAS-GUN SIMULATION CODE

The following MATLAB functions are used to compute the 1D gas-gun simulation.

function [Us_obs,Up_bar ,P_bar ] = ...

main_rxn_impact(Ao,phi_max,dt_rxn,T_rxn,Tmelt, n,Pe,Ps,alphao, ...

dt_ro,n_r, a_o,C_I,mu_f, Cm, wflag,select_mat,pltflag, ...

vo,Velocity,Tf,L1,L2,nx_b,CFL, n_extra,nx,Pmax, select_mix, ...

V_p,t_ramp,select_bc, select_pore, select_impact)

global crossing % number of cells that the material interface has crossed

%

% Written by: Derek Reding

% last updated on: 10-01-07

% ghost fluid method, 2nd order RK (not on fluxes)

%

% Notes: 1) include strain rate sensetive Fe2O3 constitutive models, mu,yo

% 2) work on Ni+Al heat of rxn

% 3) for Ni+Al, make kq, mu, yo functions of Temperature!

% 4) create option to calculate P in BOTH steps

% 5) Find EOS parameters, kq, Cp, for feAl2O3 (Hercynite)

% 6) use liquid densities, rho when phi_L>0

% 7) update conductivity at the material interface

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% INPUTS:

% Ao = % frequency factor (nominal Ao = 100000)

% phi_max = .1; % fraction of reaction completion (phi_max<=1)

% dt_rxn = maximum time step used in chemical reactions (sec)

% T_rxn = temperature at which reaction initiates (K)
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% Tmelt = melting temperature of Al (K)(particle size dependent)

% n = P-alpha model polynomial order (n), quadratic -> n=2

% Pe = elastic pore strength (Pa) (Pe = 250e6) Nominal

% Ps = pore collapse strength (Pa) (Ps = 3e9) Nominal

% alphao = Initial Distension ratio (alphao>=1)

% dt_ro = pore collapse - pore collapse EOS time step (sec) (max allowable)

% n_r = pore collapse - number of 1D spatial grids in radial dir. (r-coord)

% a_o = pore collapse -initial pore radius (m)

% C_I = pore collapse - scaling factor to affect mix density (0<=mu_f<=1)

% mu_f = pore collapse -non-dimensional friction coefficient (0<=mu_f<=1)

% Cm = P-alpha model - fraction of Homobaric Pressure assumed

% e.g. for pure Uniform Strain, Cm=0. for Homobaric, Cm=1

% wflag = flag, when wflag==1, suppress homogeneous warnings with error<1%

% select_mat = if select_mat = 1, choose Ni+Al

% if select_mat = 2, choose Al+Fe2O3

% vo = volume fractions of dense mixture [1,nc+1]

% Velocity = impact velocity (m/s)

% Tf = total run time (sec)

% L1 = length of impactor (m)

% L2 = length of target (m)

% nx_b = number of elements for inside of body

% CFL = fraction of maximum allowable time step

% n_extra = extra nodes on either side of materials

% nx = total number of cells plus a few on the end

% Pmax = max pressure,(Pa) must be known a-priori for Us_obs calc and Homo

% select_mix = choice of EOS mixture rule

% select_mix = 1 -> Bennett-Horie mix rule (simple)

% select_mix = 2 -> Rigorous mixture rules (use Cm)

% V_p = particle velocity (m/s)

% t_ramp = % if select_bc = 1, use particle velocity bc

% if select_bc = 2, use impacting plate

% select_bc =1 for velocity bc, =2 for impacting plate

% select_pore = choice of collapse model:
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% select_pore = 1 -> Holt-Carrol

% select_pore = 2 -> P-alpha

%

% OUTPUTS:

% U_obs = observed shock velocity (m/s)

% Up_bar = observed particle velocity (m/s)

% P_bar = observed pressure in sample mixture (target) (Pa)

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% INITIALIZATION

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% Material Properties

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% Define impactor material

if select_impact == 1 % DEFINE STEEL MATERIAL PROPERTIES

rho_sto = 7.77e3; % Density of steel

kq_st = 31; % thermal conductivity of steel = 31 (W/mK)

Cv_st = 440; % specific heat capacity constant volume (J/Kg*K)

Cp_st = 150; % specific heat capacity constant pressure (J/Kg*K)

E_st = 200e9; % Elastic Modulus (Pa)

mu_st = 80e9; % Shear Modulus (Pa)

yield_st = 250e6; % Elastic Yield Strength (Pa)

% Gruneisen EOS

Gammag_st = 2.170;

C_st = 4570; % Acoustic wave speed (m/s)

S_st = 1.49; % slope of Us - Up curve

eos_st = [C_st,Gammag_st,S_st,Cv_st];

else % DEFINE COPPER MATERIAL PROPERTIES
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rho_sto = 8.93e3; % Density of steel (COPPER - Huayun ’2002)

kq_st = 401; % thermal conductivity of steel = 31 (W/mK)

Cv_st = 385; % specific heat capacity constant volume (J/Kg*K)

Cp_st = 385; % specific heat capacity constant P (J/Kg*K) - update

E_st = 117e9; % Elastic Modulus (Pa)

mu_st = 46e9; % Shear Modulus (Pa)

yield_st = 33e6; % Elastic Yield Strength (Pa)

% Gruneisen EOS

Gammag_st = 2.0; % approx of S = 2*S1 - 1

C_st = 3933; % Acoustic wave speed (m/s) (COPPER - Michell ’1981)

% note C has uncertaity -> +/- 42 (m/s)

S_st = 1.500; % slope of Us - Up curve (COPPER - Michell ’1981)

% note S has uncertaity -> +/- 0.025 (m/s)

eos_st = [C_st,Gammag_st,S_st,Cv_st];

end

%--------------------------------------------------------------------------

% Sample Material properties for

% select_mat = 1, Reaction: 3Al + Ni -> Al3Ni + epoxy + pores

% select_mat = 2, Reaction: 2Al + Fe2O3 -> Al2O3 + 2Fe + epoxy + pores

%--------------------------------------------------------------------------

if select_bc == 1 % apply velocity bc to sample

nx = nx_b + n_extra/2;

else % use impacting plate (L1)

nx = nx_b + n_extra;

end

if select_mat == 1

[rhod_m,vo_m,v_m,rhood,rho_react,phi_ep, ...

rho_o,phi_m,yield_mix, eos,eos_type, ...

plast_const,pore_hist,pore_hist_r,r0] = ...
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sample_material_NiAl(vo,alphao,a_o,nx,n_r);

elseif select_mat == 2

[rhod_m,vo_m,v_m,rhood,rho_react,phi_ep, ...

rho_o,phi_m,yield_mix, eos,eos_type, ...

plast_const,pore_hist,pore_hist_r,r0] = ...

sample_material_FeAl(vo,alphao,a_o,nx,n_r);

else

error(’Must enter a valid material selection, select_mat=1,2’)

end

%--------------------------------------------------------------------------

% Constants

%--------------------------------------------------------------------------

R = 8.3145; % universal gas constant (J K-1 mol-1 )

To = 298; % reference temperature (K)

% R = 1.3806505*10e-23; % universal gas constant (joule/kelvin )

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% INITIALIZE NUMERICAL MODEL

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% emp=zeros(1,nx); vx=emp; rho=emp; Cv=emp; kq=emp; mu=emp;

if select_bc == 1 % apply velocity bc to sample

dx = L2/nx_b; x = dx/2:dx:L2-dx/2+ n_extra/2*dx;

x_start = dx/2;

x_end = nx*dx - n_extra/2*dx - dx/2;

% Initialize Interface locations

jL = 1; % not used - passed as filler into const. function

sigmaI = dx; jI = 1;

sigmaR = x_end + dx/2; jR = nx - n_extra/2;

% RHS material only
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vx = zeros(1,nx);

rho = rhood’/alphao;

% Calculate INITIAL DENSE mixture averaged quantities

% Mixture heat capacity, Cp_bar (J/mol-K)

% Mixture thermal conductivity, kq_bar (W/mK)

% Mixture shear modulus, mu_bar (Pa)

if select_mat==1 % Ni+Al

[Cp_bar] = cp_AlNi(T,phi_m(1,:)); % (J/kg-K) [1,1]

Cp = Cp_bar*ones(1,nx);

[kq_bar] = kq_ni_al(T,phi_m(1,:)); % (W/mK) [1,1]

kq = kq_bar*ones(1,nx);

[mu_bar] = mu_ni_al(T,phi_m(1,:)); % Shear Modulus (Pa)

mu = mu/3; % Temperature problems when mu is too high

else % Fe2O3+Al

[Cp_bar] = cp_fe2o3_al(To,phi_m(1,:)); % (J/kg-K) [1,1]

Cp = Cp_bar*ones(1,nx);

[kq_bar] = kq_fe2o3_al(To,phi_m(1,:)); % (W/mK) [1,1]

kq = kq_bar*ones(1,nx);

[mu_bar] = mu_fe2o3_al(To,phi_m(1,:)); % (Pa) [1,1]

mu = mu_bar*ones(1,nx);

mu = mu/3; % Temperature problems when mu is too high

end

m = rho.*vx; % momentum

P = zeros(1,nx); % Pressure (Pa)

sigmax = zeros(1,nx); % Stress in x-direction (Pa)

sigmax_dev = zeros(1,nx); % Deviatoric Stress (Pa)

T = To*ones(1,nx); % Temperature (K)

e = Cp.*T; % specific internal energy of dense material (J/kg)

% specific total energy (J/m^3)

E = alphao*rho.*e + 1/2*alphao*rho.*vx.^2;

q = zeros(1,nx); % Heat flux (W/m^2)

phi_L = zeros(1,nx); % fraction of reactants in liquid state
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% assume: 0<=phi_L<=1-phi_ep, with porportional melting (non-physical)

% this is consistent with the solid-liquid approach Meyers’94

% generally, constituents with lower melting temp will melt first

else % use impacting plate (L1)

dx = (L1+L2)/(nx_b); x=dx/2:dx:(L1+L2)-dx/2+ n_extra*dx;

x_start = n_extra/2*dx + dx/2;

x_end = nx*dx - n_extra/2*dx - dx/2;

% Initialize Interface locations

sigmaL = x_start - dx/2; jL = n_extra/2 + 1;

sigmaI = L1 + x_start - dx/2; jI = round(n_extra/2 + L1/dx);

sigmaR = x_end + dx/2; jR = nx - n_extra/2;

% LHS material

vx(1:jI) = Velocity*ones(1,jI); % Velocity (m/s)

rho(1:jI) = rho_sto*ones(1,jI); % Density (kg/m^3)

Cp(1:jI) = Cp_st*ones(1,jI); % heat capacity

kq(1:jI) = kq_st*ones(1,jI); % conductivity

mu(1:jI) = mu_st*ones(1,jI); % shear strength

% RHS material

vx(jI+1:nx) = zeros(1,nx-jI); % Velocity (m/s)

rho(jI+1:nx) = rhood(jI+1:nx)/alphao; % Density (kg/m^3)

% rhood(jI+1)

% rho(jI+1)

% Calculate INITIAL DENSE mixture averaged quantities

% Mixture heat capacity, Cp_bar (J/mol-K)

% Mixture thermal conductivity, kq_bar (W/mK)

% Mixture shear modulus, mu_bar (Pa)

if select_mat==1 % Ni+Al

% Cp_bar = 710.0905

% kq_bar = 166.8464

% mu_bar = 4.6423e+010

[Cp_bar] = cp_AlNi(To,phi_m(1,:)); % (J/kg-K) [1,1]
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Cp(jI+1:nx) = Cp_bar*ones(1,nx-jI);

[kq_bar] = kq_ni_al(To,phi_m(1,:)); % (W/mK) [1,1]

kq(jI+1:nx) = kq_bar*ones(1,nx-jI);

[mu_bar] = mu_ni_al(To,phi_m(1,:)); % Shear Modulus (Pa)

mu(jI+1:nx) = mu_bar*ones(1,nx-jI)/3;

% note: Temperature problems when mu is too high, so /3

else % Fe2O3+Al

% Cp_bar = 714.8628

% kq_bar = 59.8052

% mu_bar = 8.3936e+010

[Cp_bar] = cp_fe2o3_al(To,phi_m(1,:)); % (J/kg-K) [1,1]

Cp(jI+1:nx) = Cp_bar*ones(1,nx-jI);

[kq_bar] = kq_fe2o3_al(To,phi_m(1,:)); % (W/mK) [1,1]

kq(jI+1:nx) = kq_bar*ones(1,nx-jI);

[mu_bar] = mu_fe2o3_al(To,phi_m(1,:)); % (Pa) [1,1]

mu(jI+1:nx) = mu_bar*ones(1,nx-jI)/3;

% note: Temperature problems when mu is too high, so /3

end

m = rho.*vx; % momentum

P = zeros(1,nx); % Pressure (Pa)

sigmax = zeros(1,nx); % Stress in x-direction (Pa)

sigmax_dev = zeros(1,nx); % Deviatoric Stress (Pa)

T = 298*ones(1,nx); % Temperature (K)

% e(jL:jI) = Cp(jL:jI).*T(jL:jI); % specific internal energy (J/kg)

% e(jI+1:jR) = Cp(jI+1:jR).*T(jI+1:jR);

e = Cp.*T; % specific internal energy of dense material (J/kg)

% E = specific total energy (J/m^3)

E(jL:jI) = rho(jL:jI).*(e(jL:jI) + 1/2*vx(jL:jI).^2);

E(jI+1:jR) = alphao*rho(jI+1:jR).*(e(jI+1:jR) + 1/2*vx(jI+1:jR).^2);

q = zeros(1,nx); % Heat flux (W/m^2)

phi_L = zeros(1,nx); % fraction of reactants in liquid state

% assume: 0<=phi_L<=1-phi_ep, with porportional melting (non-physical)

% this is consistent with the solid-liquid approach Meyers’94
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% generally, constituents with lower melting temp will melt first

end

jIo = jI; % store to track how many cells have been crossed

% Calculate Initial time step ---------------

% find maximum eigenvalue in the steel material

[alpha_st] = alpha_steel(rho(jL),P(jL),e(jL),vx(jL), ...

rho_sto,C_st,Gammag_st,S_st);

% find the maximum eigenvalue in the porous material

C = zeros(1,nx);

[Po,alphapo,C(jI+1)]=rsm_eos2(rho(jI+1),T(jI+1), ...

alphao,alphao,alphao,n,Cm,Pe,Ps, Pmax, wflag, select_mix, ...

rhod_m,rhood(jI+1),vo_m(jI+1,:),phi_m(jI+1,:),eos,eos_type, Cp(jI+1));

alpha_mix = max([C(jI+1)-vx(jI+1), C(jI+1), C(jI+1)+vx(jI+1)]);

% alpha_mix = 1.5524e+003 3Al+Ni

% alpha_mix = 1.4728e+003 2Al+Fe2O3

alpha_max = max([alpha_st,alpha_mix]);

dt = CFL*dx/alpha_max;

if select_bc == 1 % apply velocity bc to sample

dt = 0.01e-9; % initial guess for minimum time step (sec)

else % use impacting plate (L1)

for j=jL:jI % define local values

alpha(j) = alpha_st;

end

end

% define local values

for j=jI+1:jR

alpha(j) = alpha_mix;

end

Co = C(jI+1); % initial acoustic velocity in mixture

C = ones(1,nx)*Co; %(approximated using P-alpha for first small time step)
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%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% RUN MAIN CODE (ghost fluid method)

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

time(1) = 0; counter = 0; k = 1;

flag_tf = 1; breaker = 0;

emp = zeros(1,nx);

rho1 = emp; m1 = emp; E1 = emp; vx1=emp; e1 = emp; T1 = emp;

rho2 = emp; m2 = emp; E2 = emp; vx2=emp; e2 = emp; T2 = emp;

alphap = alphao*ones(1,nx);

% fprintf([’Initial density is = ’,num2str(rho(jI+1)),’ kg/m^3 \n’])

% for kk=1:10

while(breaker == 0)

% dt

k_time=k;

% % k_iter_junk = k

% % % % % % % time_junk = time(k)

if select_bc == 1 % apply velocity bc (quadratic pg 99 Austin)

if time(k)<t_ramp

vx(jI+1) = (time(k)/t_ramp)^2*V_p;

else % use impacting plate (L1)

vx(jI+1) = V_p;

end

jT = jI+1; % starting counter

else % use impacting plate (L1)

jT = jL; % starting counter

end

%----------------------------------------------------------------------

% Begin first step

%----------------------------------------------------------------------

% 1) CONSERVATION EQUATIONS at t(n+1)
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if select_bc == 1 % apply velocity bc

[rho1,phi_m1,m1,E1,e1,vx1,T1,phi_L1]= ...

muscl_rxn_reimann_vel(rho,phi_m,e,T,Cp,vx, alphap,sigmax,q,...

phi_max,Ao,T_rxn,Tmelt,dt_rxn,rho_react,phi_ep, ...

select_mat,phi_L,vo, alpha,dt,dx,x,nx, jI,jR);

else % use impacting plate (L1)

[rho1,phi_m1,m1,E1,e1,vx1,T1,phi_L1] = ...

muscl_rxn_reimann(rho,phi_m,e,T,Cp,vx, alphap,sigmax,q, ...

phi_max,Ao,T_rxn,Tmelt,dt_rxn, rho_react,phi_ep, ...

select_mat,phi_L,vo, alpha,dt,dx,x,nx, jL,jI,jR);

end

% calculate vo_m, rhood using new mass fractions, phi_m1

[vo_m,rhood] = avg_mix_rxn_new(phi_m1,rhod_m,jI,jR);

% phi_junk = phi_m1(jI+1)

for j=jT:jR

if T1(j)<0

error(’Temperature is below zero! See First step in main funciton’);

end

end

% 2) CONSTITUTIVE at t(n+1)

% % fprintf([’C before first step = ’, num2str(C) ,’ , \n’])

step = 1; % first step in 2-step time scheme (for EOS)

if select_bc == 1 % apply velocity bc (quadratic pg 99 Austin)

[sigmax1,sigmay1,sigmax_dev1,sigmay_dev1,P1,q1,alphap1,C1, ...

pore_hist1,pore_hist_r1] = ...

const_rxn_reimann_vel(rho1,phi_m1,vo_m,vo,T,T1,vx,sigmax_dev,q,kq, ...

eos,eos_type,rhood,rhod_m,rho_o,alphao,alphap,Co,C,P, ...

yield_st,yield_mix,mu,Cp, rho_sto, eos_st, Pmax, wflag, select_mix, ...

plast_const,pore_hist,pore_hist_r, r0, dt_ro,n_r, a_o,C_I,mu_f, ...

select_pore, n,Cm,Pe,Ps, nx,dx,dt, jI,jR, step,k_time);

else % use impacting plate (L1)

% junk_alpha = alphap(jI)
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[sigmax1,sigmay1,sigmax_dev1,sigmay_dev1,P1,q1,alphap1,C1, ...

pore_hist1,pore_hist_r1] = ...

const_rxn_reimann(rho1,phi_m1,vo_m,vo,T,T1,vx,sigmax_dev,q,kq, ...

eos,eos_type,rhood,rhod_m,rho_o,alphao,alphap,Co,C,P, ...

yield_st,yield_mix,mu,Cp, rho_sto, eos_st, Pmax, wflag, select_mix, ...

plast_const,pore_hist,pore_hist_r, r0, dt_ro,n_r, a_o,C_I,mu_f, ...

select_pore, n,Cm,Pe,Ps, nx,dx,dt, jL,jI,jR, step,k_time);

end

% % fprintf([’C after first step = ’, num2str(C1) ,’ , \n\n’])

% 3) Update Cp, k_q and mu at t(n+1)

% Note: v_m=vo_m only for US assumption

for j=jI+1:jR

% [Cp(j)] = cp_fe2o3_al(T1(j),phi_m(j,:)); % (J/kg-K) [1,1]

% Note: upadate k_m as a function of T here

% kq(j) = (kq_m(j,:)*vo’)/alphap1(j);

% mu(j) = (mu_mix(j,:)*vo’)/alphap1(j);

end

%----------------------------------------------------------------------

% Begin second step

%----------------------------------------------------------------------

% 1) CONSERVATION EQUATIONS at t(n+2)

if select_bc == 1 % apply velocity bc (quadratic pg 99 Austin)

[rho2,phi_m2,m2,E2,e2,vx2,T2,phi_L2]=...

muscl_rxn_reimann_vel(rho1,phi_m1,e1,T1,Cp,vx1, alphap1,...

sigmax1, q1,phi_max,Ao,T_rxn,Tmelt,dt_rxn,rho_react,phi_ep,...

select_mat,phi_L1,vo, alpha,dt,dx,x,nx, jI,jR);

else % use impacting plate (L1)

[rho2,phi_m2,m2,E2,e2,vx2,T2,phi_L2] = ...

muscl_rxn_reimann(rho1,phi_m1,e1,T1,Cp,vx1, alphap1,...

sigmax1,q1, phi_max,Ao,T_rxn,Tmelt,dt_rxn,rho_react,phi_ep,...

select_mat,phi_L1,vo, alpha,dt,dx,x,nx, jL,jI,jR);

end
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% calculate vo_m, rhood using new mass fractions

[vo_m,rhood] = avg_mix_rxn_new(phi_m2,rhod_m,jI,jR);

% 2) CONSTITUTIVE at t(n+2)

% % % fprintf([’C before second step = ’, num2str(C1) ,’ , \n’])

step = 2; % second step in 2-step time scheme

if select_bc == 1 % apply velocity bc (quadratic pg 99 Austin)

% Note: pore_hist2,pore_hist_r2 are not used after this

% ********** IMPORTANT **************

% Potential problem: if a(j) does not correspond with the old

% alphap(j), then everything gets messed up

[sigmax2,sigmay2,sigmax_dev2,sigmay_dev2,P2,q2,alphap2,C2, ...

pore_hist2,pore_hist_r2] = ...

const_rxn_reimann_vel(rho2,phi_m2,vo_m,vo,T1,T2,vx1,sigmax_dev1,q1,kq, ...

eos,eos_type,rhood,rhod_m,rho_o,alphao,alphap1,Co,C1,P1, ...

yield_st,yield_mix,mu,Cp, rho_sto, eos_st, Pmax, wflag, select_mix, ...

plast_const,pore_hist1,pore_hist_r1, r0, dt_ro,n_r, a_o,C_I,mu_f, ...

select_pore, n,Cm,Pe,Ps, nx,dx,dt, jI,jR, step,k_time);

else % use impacting plate (L1)

[sigmax2,sigmay2,sigmax_dev2,sigmay_dev2,P2,q2,alphap2,C2, ...

pore_hist2,pore_hist_r2] = ...

const_rxn_reimann(rho2,phi_m2,vo_m,vo,T1,T2,vx1,sigmax_dev1,q1,kq, ...

eos,eos_type,rhood,rhod_m,rho_o,alphao,alphap1,Co,C1,P1, ...

yield_st,yield_mix,mu,Cp, rho_sto, eos_st, Pmax, wflag, select_mix, ...

plast_const,pore_hist1,pore_hist_r1, r0, dt_ro,n_r, a_o,C_I,mu_f, ...

select_pore, n,Cm,Pe,Ps, nx,dx,dt, jL,jI,jR, step,k_time);

end

%----------------------------------------------------------------------

% Calculate new values (2nd Order R-K scheme)

%----------------------------------------------------------------------

% a) calculate new values at t(n+1)

% Note: Update alphap only for calculating new Cp,kq,mu, thus this is
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% approximate i.e., see rho average above

if select_pore==1 %--------- Holt-Carrol ------------------

alphap = alphap1;

else %--------- P-alpha ------------------

alphap = 1/2*(alphap1 + alphap2);

% alphap = alphap1;

end

rho(jT:jR) = 1/2*(rho(jT:jR) + rho2(jT:jR));

% % % rho(jT:jR) = rho1(jT:jR);

m(jT:jR) = 1/2*(m(jT:jR) + m2(jT:jR));

E(jT:jR) = 1/2*(E(jT:jR) + E2(jT:jR));

vx(jT:jR) = m(jT:jR)./rho(jT:jR);

% e(jT:jR) = E(jT:jR)./rho(jT:jR) -1/2*vx(jT:jR).^2;

if select_bc == 1 % apply velocity bc (quadratic pg 99 Austin)

e(jT:jR) = E(jT:jR)./(rho(jT:jR).*alphap(jT:jR)) -1/2*vx(jT:jR).^2;

else % use impacting plate (L1)

e(jT:jI) = E(jT:jI)./rho(jT:jI) -1/2*vx(jT:jI).^2;

e(jI+1:jR) = E(jI+1:jR)./(rho(jI+1:jR).*alphap(jI+1:jR))...

-1/2*vx(jI+1:jR).^2;

end

if select_bc == 2 % use impacting plate (L1)

E(jI) = 1/2*(E(jI) + E(jI-1)); % help reduce overheat @ interface

e(jI) = 1/2*(e(jI) + e(jI-1)); % these two lines are optional

end

T(jT:jI) = e(jT:jI)./Cp(jT:jI);

% DT(jT:jR) = 1/2*(DT1(jT:jR) + DT2(jT:jR));

% DT_tot(jT:jR) = DT_tot(jT:jR) + DT(jT:jR);

phi_m = 1/2*(phi_m1 + phi_m2);

phi_L = 1/2*(phi_L1 + phi_L2);
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% v_m = 1/2*(v_m1 + v_m2);

for j=jI+1:jR

% Note: upadate Cp_m,kq_m,mu_mix as a function of T here

if select_mat == 1 % Ni+Al

[Cp_bar(j)] = cp_AlNi(T(j),phi_m(j,:)); % (J/kg-K) [1,1]

else % Fe2O3+Al

[Cp(j)] = cp_fe2o3_al(T(j),phi_m(j,:)); % (J/kg-K) [1,1]

end

% Cp(j) = (Cp_m(j,:)*phi_m(j,:)’)/alphap(j);

% kq(j) = (kq_m(j,:)*vo’)/alphap(j);

% mu(j) = (mu_mix(j,:)*vo’)/alphap1(j);

end

% % T(jI+1:jR) = e(jI+1:jR)./(Cp(jI+1:jR)./alphap(jI+1:jR));

% Re-calculate temperature using new Cp(T) - for consistency purposes

T(jI+1:jR) = e(jI+1:jR)./Cp(jI+1:jR);

% calculate vo_m, rhood using new mass fractions (P = 0)

% nc = 6;

% [vo_m,rhood] = avg_mix_rxn(phi_m, rhod_m,nc,nx_b,jI,jR,select_mat);

[vo_m,rhood] = avg_mix_rxn_new(phi_m,rhod_m,jI,jR);

% % C = 1/2*(C1+C2); % local speed of sound

C = C1;

sigmax(jT:jR) = sigmax1(jT:jR);

sigmax_dev(jT:jR) = sigmax_dev1(jT:jR);

P(jT:jR) = P1(jT:jR); %update to use EOS for new rho,T

q(jT:jR) = 1/2*(q(jT:jR) + q2(jT:jR));

% Update pore collapse history parameters to t(n+1) -------------------

% note: consider to eliminate this step by letting pore_hist=pore_hist1

% in the output of t(n+1) const function, consider to average t(n),t(n+2)
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if select_pore==1 % --------- Holt-Carrol ------------------

% pore_hist = x(2,1) = [a,adot]

pore_hist = pore_hist1; % stay consistent with P,sigma above

pore_hist_r = pore_hist_r1; % stay consistent with P,sigma above

% pore_hist = 1/2*(pore_hist+pore_hist2);

end

% end Update pore collapse history parameters to t(n+1) ---------------

% b) Reconstruct new interfaces at t(n+1)

if select_bc == 1 % apply velocity bc to sample

sigma_in = ([sigmaI,sigmaR]); j_int = ([jI,jR]);

[sigma_out,j_int] = interface_reimann_vel(...

sigma_in, vx, x,nx,dx,dt, j_int);

sigmaI=sigma_out(1); sigmaR=sigma_out(2);

jI1 = j_int(1); jR1 = j_int(2);

else % use impacting plate (L1)

sigma_in = ([sigmaL,sigmaI,sigmaR]); j_int = ([jL,jI,jR]);

[sigma_out,j_int] = interface_reimann(...

sigma_in, vx, x,nx,dx,dt, j_int);

sigmaL=sigma_out(1); sigmaI=sigma_out(2); sigmaR=sigma_out(3);

jL1 = j_int(1); jI1 = j_int(2); jR1 = j_int(3);

end

% c) advect values on free edges

if jI1>jI % Contact interface (extrapolate from LHS)

crossing=jI-jIo+1;

fprintf(’\n interface has crossed node %i \n ’,crossing);

end

if select_bc == 2 % use impacting plate (L1)

if jL1<jL % LHS

error_flag =1

end

% once material crosses cell edge, it becomes the impactor material
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if jI1>jI % Contact interface (extrapolate from LHS)

vx(jI1) = vx(jI);

rho(jI1) = 2*rho(jI) - rho(jI-1);

E(jI1) = 1/2*(E(jI) + E(jI-1)); % to prevent over heating

e(jI1) = 1/2*(e(jI) + e(jI-1)); % to prevent over heating

T(jI1) = 1/2*(T(jI) + T(jI-1)); % to prevent over heating

q(jI1) = 1/2*(q(jI) + q(jI-1)); %

Cp(jI1) = Cp(jI); % material property for impactor

kq(jI1) = kq(jI); % material property for impactor

mu(jI1) = mu(jI); % material property for impactor

% keep plastic flow within same material

sigmax_dev(jI1) = sigmax_dev(jI);

sigmax(jI1) = sigmax(jI);

% P(jI1) = P(jI);

end

jL = jL1; % update left index

end

if jR1>jR % RHS

rho(jR+1) = rho(jR);

elseif jR1<jR

error_flag = 2

end

jI = jI1; jR = jR1; % update remaining indicies

%----------------------------------------------------------------------

% Calculate shock speed

%----------------------------------------------------------------------

% Track shock front location (for calculating Shock Speed Us)

[x_Us(k)] = track_Us(P,Pmax,x,jL,jR);

%----------------------------------------------------------------------

% Calculate new time step

%----------------------------------------------------------------------

% - find the maximum eigenvalue in the porous material (alpha_max)

if select_bc == 1 % apply velocity bc to sample
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for j=jI+1:jR

alpha(j) = max([C(j)-vx(j), C(j), C(j)+vx(j)]);

end

alpha_max = max(abs(alpha(jI+1:jR)));

else % use impacting plate (L1)

% find maximum eigenvalue in the steel material

for j=jL:jI

[alpha(j)] = alpha_steel(rho(j),P(j),e(j),vx(j), ...

rho_sto,C_st,Gammag_st,S_st);

end

for j=jI+1:jR

alpha(j) = max([C(j)-vx(j), C(j), C(j)+vx(j)]);

end

alpha_max = max(abs(alpha(jL:jR)));

end

dt = CFL*dx/alpha_max;

if select_pore==1 % --------- Holt-Carrol ------------------

if k==1

dt = .5e-9;

end

if k==2

Co = C(jI+1);

% C is approximated using P-alpha for first small time step

C = ones(1,nx)*Co;

end

end

time(k+1) = time(k) + dt*flag_tf;

if time(k+1)>=Tf

if time(k+1) ==Tf

breaker = 1;

else
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dt = Tf - time(k); % Correct final time step

time(k+1) = Tf; % Ensure final time is correct

flag_tf = 0;

k = k+1;

end

else

k = k+1;

counter = counter +1;

if counter == 10

% fprintf(’time = %6.2f \n’,k); %nt = k

fprintf(’time = %6.4g ns after %i time steps\n ’,time(k)*1e9,k-1);

% disp(’time = %g, after %g time steps’,[time(k),k]); %nt = k

% time_out = time(k)

counter = 0;

end

end

% Store pressure history at the interface (inside sample material)

P_hist(k) = P(jI+1);

end

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% POST PROCESSING

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% % Shock Speed (linear fit of the location of the shock front vs time)

nfig = 5; % number for figure showing the interpolation data

[Us_obs] = plot_Us(x_Us,time,k,nfig);

% % Pressure and Up

g1 = 1;

P_choose(g1) = P(jI+3); % start measuring within the bulk material

xPavg(g1) = x(jI+3);

g2 = 1;

Up_choose(g2) = vx(jI+3); % start measuring within the bulk material
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xUpavg(g2) = x(jI+3);

param_error = 0.02; % within param_error% of P,Up (nominal = 0.05 = 5%)

for j=jI+4:jR

if abs(P(j)-P_choose(1))/P_choose(1) < param_error

g1 = g1 + 1;

P_choose(g1) = P(j);

xPavg(g1) = x(j);

end

if abs(vx(j)-Up_choose(1))/Up_choose(1) < param_error

g2 = g2 + 1;

Up_choose(g2) = vx(j);

xUpavg(g2) = x(j);

end

end

P_bar = mean(P_choose); % calculate the average pressure

Up_bar = mean(Up_choose); % calculate the average Up

fprintf(’Us_obs = %6.3f m/s, P_bar= %6.3f GPa, Up_bar = %6.3f m/s\n’, ...

Us_obs,P_bar/1e9,Up_bar)

function [rho,phi,m,E,e,vx,T,phi_L] = ...

muscl_rxn_reimann(rho,phi,e,T,Cp,vx,...

alphap,sigmax,q, phi_max,Ao, T_rxn,Tmelt,dt_rxn,rho_react,phi_ep,...

select_mat, phi_L,vo, alpha,dt,dx,x,nx, jL,jI,jR)

%

% Written by: Derek Reding

% Last modified: 10-01-07

% Solves the conservation equations using linear stensil (MUSCL algorithm)

% includes reaction

%--------------------------------------------------------------------------

% INPUTS:

% rho = porous mixture density [1,nx]
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% phi = mass fractions [nc,nx,nt]

% e = specific internal energy of dense material (J/kg) [1,nx]

% T = temperature of dense material (K) [1,nx]

% Cp = specific heat capacity constant pressure (J/Kg*K) [1,nx]

% vx = mix velocity parallel to the motion of the shock front (m/s) [1,nx]

% alphap = current distension ratio (alphao>=1) [1,nx]

% sigmax = un-returned deviatoric stress in x-dir (Pa) [1,nx]

% q = heat flux (W/m^2) [1,nx]

% phi_max = fraction of reaction completion (phi_max<=1) [1,1]

% Ao = frequency factor (nominal Ao = 10e3) [1,1]

% T_rxn = temperature at which reaction initiates (K) [1,1]

% Tmelt = melting temperature of Al (K)(particle size dependent) [1,1]

% dt_rxn = maximum time step used in chemical reactions (sec) [1,1]

% rho_react = basis for internal energy definition (kg/m^3) [1,1]

% phi_ep = mass fraction of epoxy [1,1]

% select_mat = 2; if select_mat = 1, choose Ni+Al

% if select_mat = 2, choose Al+Fe2O3

% phi_L = fraction of reactants in liquid state [1,nx]

% vo = volume fractions of dense mixture [1,nc+1]

% alpha = maximum eigenvalue at each node [1,nx]

% dt = time step (sec) [1,1]

% dx = spatial step size (m) [1,1]

% x = spatial coordinates (uniform grid) (m) [1,nx]

% nx = total number of cells plus a few on the end [1,1]

% jL = index of node within (impactor) material at the left boundary

% jI = index of node within (impactor) material at the interface boundary

% jR = index of node within (sample/mixture) material at the right boundary

%

% OUTPUTS:

% rho = updated porous mixture density from conservation laws [1,nx]

% phi = mass fractions for the mixture [nc,nx,nt]

% m = updated momentum (kg/m^2) [1,nx]

% E = updated specific total energy of dense material (J/m^3) [1,nx]
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% e = updated specific internal energy of dense material (J/kg) [1,nx]

% vx = mix velocity parallel to the motion of the shock front (m/s) [1,nx]

% T = updated temperature of dense material (K) [1,nx]

% phi_L = updated fraction of reactants in liquid state [1,nx]

%

%--------------------------------------------------------------------------

ns = length(phi(1,:)); % number of species in mixture

DE = zeros(1,nx); % Change in energy due to reaction

sigmax_interface = 1/2*( sigmax(jI) + sigmax(jI+1) ); % 1st order interp

% sigmax_interface = (sigmax(jI) + sigmax(jI+1)) - ...

% 1/2*(sigmax(jI-1) + sigmax(jI+2)); % 2nd order interpolation

% material 1

% left bc - free surface (extrapolate values)

rho(jL-1) = 2*rho(jL)-rho(jL+1);

phi(jL-1) = phi(jL);

phi_L(jL-1) = phi_L(jL);

vx(jL-1) = vx(jL);

sigmax(jL-1) = 0;

e(jL-1) = e(jL);

q(jL-1) = 0;

% right bc - ghost cell at interface

% rho_int(1) = 2*rho(jI)-rho(jI-1);

rho_int(1) =1/2*(rho(jI)+rho(jI-1));

vx_int(1) = vx(jI+1); % velocity of Pa = velocity of B

sigmax_int(1) = sigmax_interface; % stress in x-dir is equal !!!

% % % sigmax_int(1) = sigmax(jI+1); % stress in x-dir is equal !!!

e_int(1) = e(jI); % to prevent over heating

q_int(1) = q(jI); %

% material 2

%left bc - ghost cell at interface

% rho_int(2) = 2*rho(jI+1)-rho(jI+2);
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rho_int(2) =1/2*(rho(jI+1)+rho(jI+2));

vx_int(2) = vx(jI);

sigmax_int(2) = sigmax_interface; % stress in x-dir is equal !!!

% % % sigmax_int(2) = sigmax(jI); % stress in x-dir is equal !!!

e_int(2) = e(jI+1);

q_int(2) = q(jI+1);

% right bc - free surface (extrapolate values)

rho(jR+1) = 2*rho(jR)-rho(jR-1);

phi(jR+1) = phi(jR);

phi_L(jR+1) = phi_L(jR);

vx(jR+1) = vx(jR);

sigmax(jR+1) = 0;

e(jR+1) = e(jR);

q(jR+1) = 0;

% function values on regular cells and free surface ghost cells

m(jL-1:jR+1) = rho(jL-1:jR+1).*vx(jL-1:jR+1);

for j=jL-1:jR+1

fphi(j,:) = m(j)*phi(j,:);

fphi_L(j) = m(j)*phi_L(j);

end

phi(jI,:) = phi(jI+1,:); fphi(jI,:) = fphi(jI+1,:); % redundant statment

phi_L(jI) = phi_L(jI+1); fphi_L(jI) = fphi_L(jI+1);

f_m(jL-1:jR+1) = m(jL-1:jR+1).*vx(jL-1:jR+1) - sigmax(jL-1:jR+1);

% E(jL-1:jR+1) = rho(jL-1:jR+1).*(e(jL-1:jR+1) + 1/2*vx(jL-1:jR+1).^2);

E(jL-1:jI) = rho(jL-1:jI).*(e(jL-1:jI) + 1/2*vx(jL-1:jI).^2);

E(jI+1:jR+1) = rho(jI+1:jR+1).*alphap(jI+1:jR+1).*(e(jI+1:jR+1) + ...

1/2*vx(jI+1:jR+1).^2);

f1_E(jL-1:jR+1) = E(jL-1:jR+1).*vx(jL-1:jR+1);

f2_E(jL-1:jR+1) = - sigmax(jL-1:jR+1).*vx(jL-1:jR+1);

f3_E(jL-1:jR+1) = q(jL-1:jR+1);

% function values on intersecting ghost cells
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m_int = rho_int.*vx_int;

% % % f_phi_int(1,:) = m_int(1)*phi_int(1,:);

% % % f_phi_int(2,:) = m_int(2)*phi_int(2,:);

f_m_int = m_int.*vx_int - sigmax_int;

% E_int = rho_int.*(e_int + 1/2*vx_int.^2);

E_int(1) = rho_int(1).*(e_int(1) + 1/2*vx_int(1).^2);

E_int(2) = alphap(jI+1)*rho_int(2).*(e_int(2) + 1/2*vx_int(2).^2);

f1_E_int = E_int.*vx_int;

f2_E_int = - sigmax_int.*vx_int;

f3_E_int = q_int;

for j = jL-1 : jR+1

if j == jL-1

slope_rho = (rho(j+1)-rho(j))/dx; %cons mass

slope_phi = zeros(1,ns); % cons species

slope_phif = zeros(1,ns);

slope_phi_L = 0; % mass fraction of liquid reactants

slope_phif_L = 0;

slope_m = (m(j+1)-m(j))/dx; % cons mom

slope_mf = (f_m(j+1)-f_m(j))/dx;

slope_E = (E(j+1)-E(j))/dx; % cons energy

slope_Ef1 = (f1_E(j+1)-f1_E(j))/dx;

slope_Ef2 = (f2_E(j+1)-f2_E(j))/dx;

slope_Ef3 = (f3_E(j+1)-f3_E(j))/dx;

elseif j == jI

slope_rho = minmod((rho_int(1)-rho(j))/dx,(rho(j)-rho(j-1))/dx);

slope_phi = zeros(1,ns);

slope_phif = zeros(1,ns);

slope_phi_L = 0;

slope_phif_L = 0;

slope_m = minmod((m_int(1)-m(j))/dx,(m(j)-m(j-1))/dx);

slope_mf = minmod((f_m_int(1)-f_m(j))/dx,(f_m(j)-f_m(j-1))/dx);

slope_E = minmod((E_int(1)-E(j))/dx,(E(j)-E(j-1))/dx);
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slope_Ef1= minmod((f1_E_int(1)-f1_E(j))/dx,(f1_E(j)-f1_E(j-1))/dx);

slope_Ef2= minmod((f2_E_int(1)-f2_E(j))/dx,(f2_E(j)-f2_E(j-1))/dx);

slope_Ef3= minmod((f3_E_int(1)-f3_E(j))/dx,(f3_E(j)-f3_E(j-1))/dx);

s_rho_i(2) = (rho(j+1)-rho_int(2))/dx; % material 2 ghost cell

s_m_i(2) = (m(j+1)-m_int(2))/dx;

s_mf_i(2) = (f_m(j+1)-f_m_int(2))/dx;

s_E_i(2) = (E(j+1)-E_int(2))/dx;

s_Ef1_i(2) = (f1_E(j+1)-f1_E_int(2))/dx;

s_Ef2_i(2) = (f2_E(j+1)-f2_E_int(2))/dx;

s_Ef3_i(2) = (f3_E(j+1)-f3_E_int(2))/dx;

[rho_p_i(2),rho_m_i(2),m_p_i(2),m_m_i(2), f_m_p_i(2),f_m_m_i(2),...

E_p_i(2),E_m_i(2),f1_E_p_i(2),f1_E_m_i(2), f2_E_p_i(2),...

f2_E_m_i(2), f3_E_p_i(2),f3_E_m_i(2)] = ...

muscl_reconstruction(rho_int(2),s_rho_i(2),m_int(2), ...

s_m_i(2),f_m_int(2), s_mf_i(2), E_int(2),s_E_i(2), ...

f1_E_int(2),s_Ef1_i(2),f2_E_int(2),s_Ef2_i(2),f3_E_int(2), ...

s_Ef3_i(2) ,dx);

phi_p_i(2,:) = phi(jI+1,:); phi_m_i(2,:) = phi(jI+1,:);

fphi_p_i(2,:) = fphi(jI+1,:); fphi_m_i(2,:) = fphi(jI+1,:);

phi_L_p_i(2) = phi_L(jI+1); phi_L_m_i(2) = phi_L(jI+1);

fphi_L_p_i(2) = fphi_L(jI+1); fphi_L_m_i(2) = fphi_L(jI+1);

elseif j == jI+1

slope_rho = minmod((rho(j+1)-rho(j))/dx,(rho(j)-rho_int(2))/dx);

slope_phi = zeros(1,ns);

slope_phif = zeros(1,ns);

slope_phi_L = 0;

slope_phif_L = 0;

slope_m = minmod((m(j+1)-m(j))/dx,(m(j)-m_int(2))/dx);

slope_mf = minmod((f_m(j+1)-f_m(j))/dx,(f_m(j)-f_m_int(2))/dx);

slope_E = minmod((E(j+1)-E(j))/dx,(E(j)-E_int(2))/dx);

slope_Ef1= minmod((f1_E(j+1)-f1_E(j))/dx,(f1_E(j)-f1_E_int(2))/dx);
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slope_Ef2= minmod((f2_E(j+1)-f2_E(j))/dx,(f2_E(j)-f2_E_int(2))/dx);

slope_Ef3= minmod((f3_E(j+1)-f3_E(j))/dx,(f3_E(j)-f3_E_int(2))/dx);

s_rho_i(1) = (rho_int(1)-rho(j-1))/dx; % material 1 ghost cell

s_m_i(1) = (m_int(1)-m(j-1))/dx;

s_mf_i(1) = (f_m_int(1)-f_m(j-1))/dx;

s_E_i(1) = (E_int(1)-E(j-1))/dx;

s_Ef1_i(1) = (f1_E_int(1)-f1_E(j-1))/dx;

s_Ef2_i(1) = (f2_E_int(1)-f2_E(j-1))/dx;

s_Ef3_i(1) = (f3_E_int(1)-f3_E(j-1))/dx;

[rho_p_i(1),rho_m_i(1),m_p_i(1),m_m_i(1), f_m_p_i(1),f_m_m_i(1),...

E_p_i(1),E_m_i(1),f1_E_p_i(1),f1_E_m_i(1), f2_E_p_i(1), ...

f2_E_m_i(1), f3_E_p_i(1),f3_E_m_i(1)] = ...

muscl_reconstruction( rho_int(1),s_rho_i(1),m_int(1), ...

s_m_i(1),f_m_int(1), s_mf_i(1), E_int(1),s_E_i(1), ...

f1_E_int(1),s_Ef1_i(1), f2_E_int(1),s_Ef2_i(1), ...

f3_E_int(1), s_Ef3_i(1) ,dx);

phi_p_i(1,:) = phi(j,:); phi_m_i(1,:) = phi(j,:);

fphi_p_i(1,:) = fphi(j,:); fphi_m_i(1,:) = fphi(j,:);

phi_L_p_i(1) = phi_L(j); phi_L_m_i(1) = phi_L(j);

fphi_L_p_i(1) = fphi_L(j); fphi_L_m_i(1) = fphi_L(j);

elseif j == jR+1

slope_rho = (rho(j)-rho(j-1))/dx; %cons mass

slope_phi = zeros(1,ns); % cons species

slope_phif = zeros(1,ns);

slope_phi_L = 0; % cons species

slope_phif_L = 0;

slope_m = (m(j)-m(j-1))/dx; % cons mom

slope_mf = (f_m(j)-f_m(j-1))/dx;

slope_E = (E(j)-E(j-1))/dx; % cons energy

slope_Ef1 = (f1_E(j)-f1_E(j-1))/dx;

slope_Ef2 = (f2_E(j)-f2_E(j-1))/dx;
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slope_Ef3 = (f3_E(j)-f3_E(j-1))/dx;

else % main nodes

slope_rho = minmod((rho(j+1)-rho(j))/dx,(rho(j)-rho(j-1))/dx);

for k=1:ns

slope_phi(1,k) = minmod((phi(j+1,k)-phi(j,k))/dx,...

(phi(j,k)-phi(j-1,k))/dx);

slope_phif(1,k) = minmod((fphi(j+1,k)-fphi(j,k))/dx,...

(fphi(j,k)-fphi(j-1,k))/dx);

end

slope_phi_L(1) = minmod((phi_L(j+1)-phi_L(j))/dx,...

(phi_L(j)-phi_L(j-1))/dx);

slope_phif_L(1) = minmod((fphi_L(j+1)-fphi_L(j))/dx,...

(fphi_L(j)-fphi_L(j-1))/dx);

slope_m = minmod((m(j+1)-m(j))/dx,(m(j)-m(j-1))/dx);

slope_mf = minmod((f_m(j+1)-f_m(j))/dx,(f_m(j)-f_m(j-1))/dx);

slope_E = minmod((E(j+1)-E(j))/dx,(E(j)-E(j-1))/dx);

slope_Ef1= minmod((f1_E(j+1)-f1_E(j))/dx,(f1_E(j)-f1_E(j-1))/dx);

slope_Ef2= minmod((f2_E(j+1)-f2_E(j))/dx,(f2_E(j)-f2_E(j-1))/dx);

slope_Ef3= minmod((f3_E(j+1)-f3_E(j))/dx,(f3_E(j)-f3_E(j-1))/dx);

end

[rho_p(j),rho_m(j), m_p(j),m_m(j), f_m_p(j),f_m_m(j), E_p(j),E_m(j),...

f1_E_p(j),f1_E_m(j), f2_E_p(j),f2_E_m(j), f3_E_p(j),f3_E_m(j)]=...

muscl_reconstruction(rho(j),slope_rho,m(j),slope_m,f_m(j),...

slope_mf,E(j),slope_E,f1_E(j),slope_Ef1, f2_E(j),slope_Ef2, ...

f3_E(j),slope_Ef3,dx);

% cons mass species

phi_p(j,:) = phi(j,:) + slope_phi(1,:)*dx/2;

phi_m(j,:) = phi(j,:) - slope_phi*dx/2;

fphi_p(j,:) = fphi(j,:) + slope_phif*dx/2;

fphi_m(j,:) = phi(j,:) - slope_phif*dx/2;

% mass fraction of liquid reactants

phi_L_p(j) = phi_L(j) + slope_phi_L(1)*dx/2;

phi_L_m(j) = phi_L(j) - slope_phi_L*dx/2;
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fphi_L_p(j) = fphi_L(j) + slope_phif_L*dx/2;

fphi_L_m(j) = phi_L(j) - slope_phif_L*dx/2;

end

% CALCULATE FLUXES at t^n (for F(j) evaluated at x(j+1/2))

% Use Lax Friedrichs Flux, LFF

F_rho=zeros(1,nx); F_m=zeros(1,nx); F_E=zeros(1,nx);

F_phi=zeros(nx,ns); F_phi_L=zeros(1,nx);

for j=jL-1:jR

if j==jI

% for material 1

[F_rho_i(1),F_m_i(1),F_E_i(1)] = LF_flux(rho_p(j), ...

rho_m_i(1), m_p(j),m_m_i(1), f_m_p(j),f_m_m_i(1), ...

E_p(j),E_m_i(1),f1_E_p(j),f1_E_m_i(1), f2_E_p(j), ...

f2_E_m_i(1), f3_E_p(j), f3_E_m_i(1), alpha(j));

% for material 2

[F_rho_i(2),F_m_i(2),F_E_i(2)] = LF_flux(rho_p_i(2), ...

rho_m(j+1), m_p_i(2),m_m(j+1), f_m_p_i(2),f_m_m(j+1), ...

E_p_i(2),E_m(j+1), f1_E_p_i(2),f1_E_m(j+1),f2_E_p_i(2), ...

f2_E_m(j+1),f3_E_p_i(2), f3_E_m(j+1), alpha(j));

for k=1:ns % cons mass species

F_phi_i(1,k) = 1/2*( fphi_p(j,k) + fphi_m_i(1,k) ) - ...

1/2*alpha(j)*( phi_m_i(1,k) - phi_p(j,k) );

F_phi_i(2,k) = 1/2*( fphi_p_i(2,k) + fphi_m(j+1,k) ) - ...

1/2*alpha(j)*( phi_m(j+1,k) - phi_p_i(2,k) );

end

% mass fraction of liquid reactants

F_phi_L_i(1) = 1/2*( fphi_L_p(j) + fphi_L_m_i(1) ) - ...

1/2*alpha(j)*( phi_L_m_i(1) - phi_L_p(j) );

F_phi_L_i(2) = 1/2*( fphi_L_p_i(2) + fphi_L_m(j+1) ) - ...

1/2*alpha(j)*( phi_L_m(j+1) - phi_L_p_i(2) );
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else % for general cells and for free surfaces

[F_rho(j),F_m(j),F_E(j)]=LF_flux(rho_p(j),rho_m(j+1),...

m_p(j),m_m(j+1), f_m_p(j),f_m_m(j+1), E_p(j),E_m(j+1),...

f1_E_p(j),f1_E_m(j+1), f2_E_p(j),f2_E_m(j+1), ...

f3_E_p(j),f3_E_m(j+1), alpha(j));

F_phi(j,:) = 1/2*( phi_p(j,:) + phi_m(j+1,:) ) - ...

1/2*alpha(j)*( phi_m(j+1,:) - phi_p(j,:) );

F_phi_L(j) = 1/2*( phi_L_p(j) + phi_L_m(j+1) ) - ...

1/2*alpha(j)*( phi_L_m(j+1) - phi_L_p(j) );

end

end

% Calculate U(n+1)

for j=jL:jR

if j==jI

rho(j) = rho(j) - (dt)*(1/dx)*( F_rho_i(1) - F_rho(j-1) );

m(j) = m(j) - (dt)*(1/dx)*( F_m_i(1) - F_m(j-1) );

E(j) = E(j) - (dt)*(1/dx)*( F_E_i(1) - F_E(j-1) );

elseif j==jI+1

rho(j) = rho(j) - (dt)*(1/dx)*( F_rho(j) - F_rho_i(2) );

m(j) = m(j) - (dt)*(1/dx)*( F_m(j) - F_m_i(2) );

E(j) = E(j) - (dt)*(1/dx)*( F_E(j) - F_E_i(2) );

else

rho(j) = rho(j) - (dt)*(1/dx)*( F_rho(j) - F_rho(j-1) );

if j>jI+1

dphi = - dt/dx*( F_phi(j,:) - F_phi(j-1,:) );

phi(j,:) = phi(j,:) + dphi;

dphi_L = - dt/dx*( F_phi_L(j) - F_phi_L(j-1) );

phi_L(j) = phi_L(j) + dphi_L;

end

m(j) = m(j) - (dt)*(1/dx)*( F_m(j) - F_m(j-1) );

E(j) = E(j) - (dt)*(1/dx)*( F_E(j) - F_E(j-1) );

end
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end

%--------------------------------------------------------------------------

% Add contributions due to chemical reaction and latent heat of melting

% Initialize

%--------------------------------------------------------------------------

% Tmelt = 660 + 273; % melting temp of Al (K)(particle size dependent)

% Tmelt = 600;

if select_mat==1 % Ni + Al fprintf(’Update muscl_rxn_reimann_vel.m \n’)

% 3Al(s) + Ni(s) --> 3Al(l) + Ni(s) --> Al3Ni(l)

nc = 3;

% Molar masses (kg/mol)

M_m = [0.0269815 0.0585934 0.13963802];

G = [-3 -1 1 ]; % Stoich coefs [Al Ni]

% G = [-3 -1 3 1 1 ]; % Stoich coefs [Al Ni]

M_prod = M_m(nc)*G(nc)’/4; % (kg/1 mole of reactants)

M_react = M_m(1:2)*abs(G(1:2))’/4; % (kg/1 mole of reactants)

rhod_m = [2700 8909 3368 1200]; % density (kg/m^3)

%--------------- Activation Energy due to Pressure --------------------

else % Al + Fe2O3

% 2Al + Fe2O3 -> AlO + 2FeO + Al -> 1/3Al2O3 + 1/2FeAl2O4 + 1/3Al + 3/2Fe

% Note: 1 mole reactants is 2/3Al + 1/3Fe2O3

nc = 6; % number of constituents that participate in the rxn

% Reactant/Product Molar mass (kg/mol)

M_m=([0.026981539 0.1596922 0.101961278 0.1738077 0.026981539 ...

0.055847]);

G = ([-2 -1 1/3 1/2 1/3 3/2]); % Reactant Stoich coefs

M_prod = M_m(3:nc)*G(3:nc)’/3; % (kg/1 mole of reactants)

M_react = M_m(1:2)*abs(G(1:2))’/3; % (kg/1 mole of reactants)

rhod_m=([2380 5274 2960 3950 2380 5274 1200]); % density (kg/m^3)

%--------------- Activation Energy due to Pressure --------------------

% For Reaction Process:

% consider reactants [Al Fe2O3] and transition state [AlO Fe2O Al]

% combined = [Al Fe2O3 AlO Fe2O Al ] (reactant->transition state)
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% Molar mass (kg/m^3)

M_tr = [0.026981539 0.1596922 0.0429815 0.12769 0.0269815];

v_tr = [-2 -1 1 2 1]; % Stoich coeffs for 1 mole reactants

rho_tr = [2380 5274 2960 5700 2380]; % density (kg/m^3)

% Calculate molar volume (m^3/mol)

V = M_tr.*v_tr./rho_tr; % no implied volume constraints

DV = V*ones(1,5)’; % sum of all molar volumes

% Calculate energy contribution due to Pressure

% % % dG_sigma_rxn = P(j)*DV; % (J/mol)

% Note: transition state values are mass fractions for lack of densities

end

% Chemical Reaction:

for j=jI+1:jR

if T(j)>=T_rxn % if temperature exceeds that of Aluminum rxn occurs

phi_sum = sum( phi(j,1:2) );

if phi_sum>0

% fprintf(’Reacting!! \n’)

rhodd = rho(j)*alphap(j);

[phi(j,:),DE]=reaction_bin(T(j),rhodd,phi(j,:),...

Ao,G,M_m,M_react,rho_react,phi_max,phi_ep,nc, ...

dt_rxn,dt,select_mat);

% add heat contribution in dense mixture from reaction (J/m^3)

E(j) = E(j) + DE;

end

end

end

% Heat of melting:

% strategy: use e, rho since these have not been updated

vx(jL:jR) = m(jL:jR)./rho(jL:jR);

e(jL:jI) = E(jL:jI)./rho(jL:jI) -1/2*vx(jL:jI).^2;

e(jI+1:jR) = E(jI+1:jR)./(rho(jI+1:jR).*alphap(jI+1:jR)) ...
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- 1/2*vx(jI+1:jR).^2;

T(jL:jR) = e(jL:jR)./Cp(jL:jR);

% Tmelt = 10000; uncomment to observe condition where melt doesn’t occur

for j=jI+1:jR

if T(j)>Tmelt % if temperature exceeds melting may occur

if phi_L(j)<1-phi_ep % if some non-melted constituents remain

% assume: epoxy is amorphous, thus, no melting heat needed

% fprintf(’melting!\n’)

dG_heat = 390*1e3; % latent heat for Al (J/kg) (10.71 J/mol)

% note: Ni has dG_heat = 305 kJ/kg (Matweb)

% 312 kJ/kg used for Ni3+Al reaction by Ben-Hor Ballotechnic 1994

%

phi_temp = zeros(1,nc+1);

phi_temp(1:2) = phi_m(j,1:2)/sum(phi_m(j,1:2));

if select_mat ==1 % Al + Ni

rhod_noep = vo(1:2)*[2700 8909]’/sum( vo(1:2) ) ;

[Cp_bar] = cp_AlNi(T(j),phi_temp); % (J/kg-K) [1,1]

else % Al + Fe2O3

rhod_noep = vo(1:2)*[2700 5274]’/sum( vo(1:2) ) ;

[Cp_bar] = cp_fe2o3_al(T(j),phi_temp); % (J/kg-K) [1,1]

end

% Calculate change in mass fractions to liquid

DT_melt = (T(j)-Tmelt);

rhodd = rho(j)*alphap(j);

Dphi_L = DT_melt*rhodd*Cp_bar/(dG_heat*rhod_noep);

phi_star = phi_L(j) + Dphi_L; % new liquid mass fraction

% [DT_melt,phi_star,Cp_bar,rhodd,rhod_noep,dG_heat])

% Calculate the heat contribution from melting (J/m^3)

De = Cp(j)*DT_melt; % (J/m^3)

% Subtract this energy contribution from the internal energy

e(j) = e(j) - De;
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% Subtract this energy contribution from the total energy

E(j) = E(j) - rho(j)*alphap(j)*De;

% Adjust temperature and update liquid mass fraction:

if phi_star<=1-phi_ep % not all reactants are melted

phi_L(j) = phi_star;

T(j) = Tmelt;

else % melting is complete

phi_L(j) = 1 - phi_ep;

T(j) = Tmelt + dG_heat*rhod_noep*(phi_star-1+phi_ep)/...

(rho(j)*alphap(j)*Cp(j));

De = Cp(j)*(T(j)-Tmelt); % (J/m^3)

% add back energy

e(j) = e(j) + De;

E(j) = E(j) + rho(j)*alphap(j)*De;

end

end

end

end

function [F_rho,F_m,F_E] = ...

LF_flux(rho_L,rho_R, m_L,m_R, f_m_L,f_m_R, ...

E_L,E_R,f1_E_L,f1_E_R, f2_E_L,f2_E_R, f3_E_L,f3_E_R, alpha)

% Note: Lax Friedrichs flux routine

%cons mass

F_rho = 1/2*( m_L + m_R ) - 1/2*alpha*( rho_R - rho_L );

% cons mom

F_m = 1/2*( f_m_L + f_m_R ) - 1/2*alpha*( m_R - m_L );

% cons energy

F_E = 1/2*( f1_E_L+f1_E_R + (f2_E_L+f2_E_R) + (f3_E_L+f3_E_R) )...

- 1/2*alpha*( E_R - E_L );
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function [rho_p,rho_m, m_p,m_m, f_m_p,f_m_m, ...

E_p,E_m, f1_E_p,f1_E_m, f2_E_p,f2_E_m, f3_E_p,f3_E_m]=...

muscl_reconstruction(rho,slope_rho,m,slope_m,f_m,slope_mf,...

E,slope_E,f1_E,slope_Ef1,f2_E,slope_Ef2,f3_E,slope_Ef3 ,dx);

%--------------------------------------------------------------------------

%cons mass

rho_p = rho + slope_rho*dx/2;

rho_m = rho - slope_rho*dx/2;

% cons mom

m_p = m + slope_m*dx/2;

m_m = m - slope_m*dx/2;

f_m_p = f_m + slope_mf*dx/2;

f_m_m = f_m - slope_mf*dx/2;

% cons energy

E_p = E + slope_E*dx/2;

E_m = E - slope_E*dx/2;

f1_E_p = f1_E + slope_Ef1*dx/2;

f1_E_m = f1_E - slope_Ef1*dx/2;

f2_E_p = f2_E + slope_Ef2*dx/2;

f2_E_m = f2_E - slope_Ef2*dx/2;

f3_E_p = f3_E + slope_Ef3*dx/2;

f3_E_m = f3_E - slope_Ef3*dx/2;

function [phi,DE]=reaction_bin(T,rho,phi, ...

Ao,G,M_m,M_react,rho_react,phi_max,phi_ep,nc, dt_rxn,dt,select_mat)

%

% By: Derek Reding

% Last modified on 09/27/07

% Note: this function only calculates elementary reactions with two

% reactants, one of which must be aluminum with Tm

%
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% Assume: adiabatic heating occurs during the time [t(n), t(n+1)]

% Reason: dt may be far too long for T(n) to be accurate, thus leading to

% extremly high values for Ao

%

% INPUTS:

% T = mixture temperature (K) at time t(n)

% Cp_bar = mixture heat capacity (dense mixture)

% rho = mix. density @ t(n) (non-porous - energy considerations) (kg/m^3)

% phi = mass fractions at time t(n) (note: avoid confusion with phi_m)

% Ao = constant frequency factor

% G = stoichiometric coefficients

% M_m = molar mass for each constituent (kg/mol) [1,nc=6]

% rho_react = basis for internal energy definition (kg/m^3) [1,1]

% phi_max = .1; % fraction of reaction completion (phi_max<=1)

% phi_ep = mass fraction of inert material or binder such as epoxy

% nc = number of constituents in mixture (except binder)

% dt_rxn = maximum time step used in chemical reactions (sec)

% dt = time step in the continuum (sec)

%

% OUTPUTS:

% phi = new mass fractions @ t(n+1) [1,nc]

% DE = total energy contribution from reaction in dense mix (J/m^3) [1,1]

%

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% Initialize time step and material parameters

%--------------------------------------------------------------------------

R = 8.3145; % Universal Gas Constant (J/mol*K)

if dt_rxn>dt/2 % find correct reaction time step size, dt_r (sec)

nt=2;

dt_r = dt/2;

else

nt = ceil(dt/dt_rxn);
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dt_r = dt/nt;

end

phi_in = phi; % save initial mass fractions

if select_mat==1 % Ni + Al

[Cp_bar] = cp_AlNi(T,phi); % (J/kg-K) [1,1]

if T>3000 % dG’s are not valid for T>3000K

T = 3000;

end

% dG_rxn = forward activation energy (J/1mol reactants)

dG_rxn = -7.9*T + 7426.5; % (R^2=0.9999)

dG_rxn = -6.71377e+01*T + 1.17975e+05; % (R^2=0.99899)

else % Fe2O3 + Al

if T>3000 % dG’s are not valid for T>3000K

T = 3000;

end

[Cp_bar] = cp_fe2o3_al(T,phi); % (J/kg-K) [1,1]

% dG_rxn = forward activation energy (J/1mol reactants)

% source --> "Reaction_enthalpy_Fe2O3Al.xls"

% in directory --> D:\Material Properties\Enthalpy_calculations\

dG_rxn = -6.71377e+01*T + 1.17975e+05; % (R^2=0.99899)

end % if select_mat

% Initialize the specific internal energy, E (J/m^3)

E = T*rho*Cp_bar; % J/m^3

E_in = E; % save initial specific internal energy

%--------------------------------------------------------------------------

% Caclulate reaction rate

%--------------------------------------------------------------------------

% DPHI_tot = zeros(1,nt);

for k=1:nt

if select_mat==1 % Ni + Al

if T>3000 % dG’s are not valid for T>3000K

221



T = 3000;

end

[Cp_bar] = cp_AlNi(T,phi); % (J/kg-K) [1,1]

% dG_rxn = forward activation energy (J/1mol reactants)

dG_rxn = -7.9*T + 7426.5; % (R^2=0.9999)

else % Fe2O3 + Al

if T>3000 % dG’s are not valid for T>3000K

T = 3000;

end

[Cp_bar] = cp_fe2o3_al(T,phi); % (J/kg-K) [1,1]

% dG_rxn = forward activation energy (J/1mol reactants)

% source --> "Reaction_enthalpy_Fe2O3Al.xls"

% in directory --> D:\Material Properties\Enthalpy_calculations\

dG_rxn = -6.71377e+01*T + 1.17975e+05; % (R^2=0.99899)

end % if select_mat

% + dG_sigma_rxn; % add in the sigma term later

kf = Ao*exp( -dG_rxn/(R*T) ); % Forward rxn rate constant

C = rho*phi(1:2)./M_m(1:2); % Reactant Molarity (mol/m^3)

THETA = kf*C(1)^abs(G(1))*C(2)^abs(G(2)); % Fwd rxn rate

[phi,DPHI] = phi_cutoff(rho,phi, ...

THETA,phi_max,phi_ep, M_m,G,dt_rxn,nc);

if select_mat==1 % Ni + Al

T_in = T;

if T_in>4300; T_in = 4300; end

dH_rxn = 4*(7.6305e-4*T_in^2 + 2.7527*T_in - 3.8825e4); % (R^2=0.9995)

else % Fe2O3 + Al

% dH_rxn is for 1 mol of reactants, i.e., 2/3Al+1/3Fe2O3

% source --> "Reaction_enthalpy_Fe2O3Al.xls"

% in directory--> D:\Material Properties\Enthalpy_calculations\

% (J/1 mol reactants) (R^2=.984727)

dH_rxn = 1.64536e+01*T - 2.41575e+05;

end

dH_rxn2 = dH_rxn/M_react; % convert units to (J/kg reactants)
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dH_rxn3 = dH_rxn2*rho_react; % convert units to (J/m^3 reactants)

% note: DPHI approches -> 1-phi_ep

% DPHI_tot(k) = DPHI_tot(k-1) + DPHI;

dPHI_rxn = DPHI*dH_rxn3; % *3/M_prod

DE = dPHI_rxn;

E = E + DE;

% Calculate new temperature for reaction kinetics only

T = E/(rho*Cp_bar); % assume Cp_bar is still valid (small dT) (K)

end

DE = E - E_in; % change in specific internal energy (J/m^3) [1,1]

dphi = phi_in - phi; % change in mass fractions [1,nc]

function [Cp_bar] = cp_fe2o3_al(T,phi_m)

%

% By: Derek Reding

% Last modified on: 9/11/07

%

% Calculate the mass fraction average heat capacity Cp (J/kg-K)

% Notes: 1) 1 mole of reactants = 2/3Al + 1/3Fe2O3

% 2) mixture constituents = [Al,Fe2O3,Al2O3,FeAl2O4,Al,Fe,epoxy]

%--------------------------------------------------------------------------

% INPUTS:

% T = mixture temperature (K) [1,1]

% phi_m = mixture mass fractions [1,nc+1=7]

% M_m = molar mass for each constituent (kg/mol) [1,nc=6]

% OUTPUTS:

% Cp_bar = mixture heat capacity (J/kg-K) [1,1]

%

%--------------------------------------------------------------------------

% Reactant/Product Molar mass (kg/mol)

M_m=([0.026981539 0.1596922 0.101961278 0.1738077 0.026981539 ...

0.055847]);
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if T>3000

T = 3000; % Cp’s are not valid for T>3000K

end

Cp = zeros(1,7);

Cp(1) = -9.2979*1e-13*T^4 + 8.0633*1e-09*T^3 - ...

2.5213*1e-05*T^2 + 3.3461*1e-02*T + 1.5992*1e+01; % (R^2=.9777)

if T<=1000 % transition temperature (K)

Cp(2) = -3.5429e-09*T^4 + 8.7446e-06*T^3 - 7.7377e-03*T^2 ...

+ 2.9905e+00*T - 3.0263e+02; % (R^2=.98368)

else

Cp(2) = 2.7499e-12*T^4 - 2.5802e-08*T^3 + 8.9653e-05*T^2 ...

- 1.3678e-01*T + 2.1403e+02; % (R^2=.99329)

end

Cp(3) = -1.9698*1e-11*T^4 + 1.2227*1e-07*T^3 - 2.7867*1e-04*T^2 + ...

2.8563*1e-01*T + 1.6792*1e+01; % (R^2=.9970)

Cp(4) = -1.1724*1e-11*T^4+9.1082*1e-08*T^3-2.5579*1e-04*T^2+ ...

3.0990*1e-01*T + 5.6442*1e1; % (R^2=.98717)

Cp(5) = Cp(1);

if T<=1184.81 % transition temperature (K)

Cp(6) = -4.4740e-10*T^4 + 1.1487e-06*T^3 - 1.0138e-03*T^2 + ...

3.9130e-01*T - 2.8708e+01; % (R^2=.96505)

else

Cp(6) = 1.4008e-11*T^4 - 1.1806e-07*T^3 + 3.5479e-04*T^2 - ...

4.3974e-01*T + 2.2584e+02; % (R^2=.97222)

end

Cp(7) = 2100; % EPON828 (J/kg-K)

Cp(1:6) = Cp(1:6)./M_m; % convert units to (J/kg-K)

Cp_bar = Cp*phi_m’; % mixture heat capacity (J/kg-K)

function [sigmax,sigmay,sdev,sigmay_dev,P,q,alphap,C, pore_hist,pore_hist_r] = ...

const_rxn_reimann(rho_new,phi_m,vo_m,vo,T,T_new,vx,sdev,q,kq, ...

eos,eos_type,rhood,rhod_m,rho_o,alphao,alphap,Co,C,P, ...
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yield_st,yield_mix,mu,Cv, rho_sto, eos_st, Pmax, wflag,select_mix, ...

plast_const,pore_hist,pore_hist_r, r0, dt_ro,n_r, a_o,C_I,mu_f, ...

select_pore, n,Cm,Pe,Ps, nx,dx,dt, jL,jI,jR, step,k_time);

global trigger_dense % density diff req. for pore-collapse EOS activation

global Tol_rho % Homobaric EOS tollerance on % density (nominal 0.0001)

global eps1 % fraction of e,rho for numerical approx. of acoustic velocity

%

% Written by: Derek Reding

% Last modified on 08-14-07

% function to compute the CONSTITUTIVE LAWS

%--------------------------------------------------------------------------

% INPUTS:

% rho_new = updated porous mixture density from conservation laws

% phi_m = mass fractions for the mixture [nc,nx,nt]

% vo_m = initial (P=0) volume fractions for mixture

% vo = volume fractions of dense mixture [1,nc+1]

% T = previous time step mixture temperature (K) [1,nx]

% T_new = updated mixture temperature (K) from conservation laws [1,nx]

% vx = mix velocity parallel to the motion of the shock front (m/s) [1,nx]

% sdev = previous time step (un-returned) deviatoric stress in x-dir (Pa)

% q = previous time step heat flux (W/m^2)

% kq = updated mixture averaged (volume fracs) thermal conductivity (W/mK)

% eos = set of eos material parameters for all mixture components (matrix)

% eos_type = specifies to use either Mei-Gruneisen or Murnaghan EOS model

% rhood = updated dense mixture initial density (kg/m^3)

% rhod_m = initial mixture constituent densities at P=0

% rho_o = initial porous mix density (without rxn => test values) (kg/m^3)

% alphao = Initial Distension ratio (alphao>=1)

% Co = Initial speed of sound in porous mixture material (m/s)

% C = speed of sound in porous mixture material (m/s)

% P = Pressure (Pa)

% yield_st = yield strength of steel or impactor (e.g. copper) (Pa)

% yield_mix = yield strength of mixture (Pa)
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% mu = elastic shear strength (Pa) (mixture and steel)

% Cv = heat capacity (J/Kg*K) (mixture and steel)

% rho_sto = initial density of steel (P=0) (kg/m^3)

% eos_st = set of eos material parameters for steel (vector)

% Pmax = max pressure,(Pa) must be known a-priori for Us_obs calc and Homo

% wflag = when wflag==1, suppress homogeneous warnings with error<1%

% select_mix = choice of EOS mixture rule

% select_mix = 1 -> Bennett-Horie mix rule (simple)

% select_mix = 2 -> Rigorous mixture rules (use Cm)

% plast_const = [nc,:] = constitutive parameters for each constituent

% pore_hist = x(2,nx) = position and velocity of the inner surface (r=a)

% pore_hist_r(4,n_r,nx) = [T,gamma_p,rho_hat,sigma_e]

% r0 = initial lagrangean coordinates in pore collapse EOS a0<r<b0

% dt_ro = pore collapse - pore collapse EOS time step (sec) (max allowable)

% n_r = pore collapse - number of 1D spatial grids in radial dir. (r-coord)

% a_o = pore collapse -initial pore radius (m)

% C_I = pore collapse - scaling factor to affect mix density (0<=mu_f<=1)

% mu_f = pore collapse -non-dimensional friction coefficient (0<=mu_f<=1)

% select_pore = choice of collapse model:

% select_pore = 1 -> Holt-Carrol

% select_pore = 2 -> P-alpha

% n = P-alpha model polynomial order (n), quadratic -> n=2

% Cm = fraction of Homobaric Pressure assumed

% e.g. for pure Uniform Strain, Cm=0. for Homobaric, Cm=1

% Pe = elastic pore strength (Pa) (Pe = 250e6) Nominal

% Ps = pore collapse strength (Pa) (Ps = 3e9) Nominal

% nx = total number of cells plus a few on the end

% dx = spatial step size (m)

% dt = time step (sec)

% jL = index of node within (impactor) material at the left boundary

% jI = index of node within (impactor) material at the interface boundary

% jR = index of node within (sample/mixture) material at the right boundary

% step = step in 2-step time scheme (first or second)
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% k_time = time step counter value

%

%--------------------------------------------------------------------------

% OUTPUTS:

% sigmax = stress in x-direction (Pa)

% sigmay = stress in y-direction (Pa)

% sdev = (un-returned) deviatoric stress in x-direction (Pa)

% sigmay_dev = (un-returned) deviatoric stress in y-direction (Pa)

% P = Pressure (Pa)

% q = heat flux (W/m^2)

% alphap = Distension ratio (alphao>=1)

% C = speed of sound in porous mixture material (m/s)

% pore_hist = x(nc,nx) = position and velocity of the inner surface (r=a)

% pore_hist_r(4,n_r,nx) = [T,gamma_p,rho_hat,sigma_e]

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% a) Pressure EOS -> P(n+1)

C_st=eos_st(1); Gammag_st=eos_st(2); S_st=eos_st(3); Cv_st=eos_st(4);

for j=jL:jI

if rho_new(j) == rho_sto

P(j) = 0;

else

[P(j)] = MG_EOS(rho_sto,rho_new(j),T_new(j), ...

C_st,Gammag_st,S_st,Cv_st);

end

C(j) = C_st;

end

%--------------------------------------------------------------------------

% Solve the EOS for mixture

%--------------------------------------------------------------------------

% Calculate Pressure

v_m = vo_m; % this is modfied only when homobaric assumption is used

for j=jI+1:jR
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rho_bar = rho_new(j); % current porous mixture density

if T_new(j)<298 % correct when oscillations occur in the temperature

T_in = 298; % prevent contribution for this case

else

T_in = T_new(j); % current temperature

end

alpha_min=alphao; % no-irreversibility for now (function of x)

if rho_bar<rho_o*(1+trigger_dense) % no density change->no calc. req.

P(j) = 0; alphap(j) = alphao; C(j) = Co;

else

if select_pore==1 %--------- Holt-Carrol ------------------

if step==1 % when step==2, then P,C remain unchanged

% Note: alphap,rho_bar = constant (incompressibility assumption)

rhod_s = rhod_m*vo’; % initial solid mixture density (constant)

alphap(j) = rhod_s/rho_bar; % new porosity (assume incompressible)

Tol_alpha_eos = 2*Tol_rho+2*eps1;

if alphap(j)< (1 + Tol_alpha_eos);

alphap(j)=1;

% rho_bar;

end

alphap_hist = 1 + (alphao-1)*pore_hist(1,j).^3/a_o^3;

% Enforce irreversible pore collapse condition

if alphap(j)<alphap_hist % *(1-2*Tol_rho-2*eps1)

[P_new,C(j), pore_hist(:,j),pore_hist_r(:,:,j)] = ...

rsm_eos2_pore(rho_bar,T_in, alphao,alphap(j), n,Cm,Pe,Ps, ...

wflag, dt_ro,n_r, a_o,C_I,mu_f, plast_const, ...

pore_hist(:,j),pore_hist_r(:,:,j), r0, rhod_m,vo,phi_m(j,:), ...

eos,eos_type, Cv(j), dt, select_mix, Co,k_time);

if C(j)==0
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fprintf([’C_flag = ’, num2str(C(j)) ,’ , \n’])

end

% ensure monotonic pressure increase

% - this may arrise from numerical instability

if P_new>P(j)

P(j) = P_new;

end

else % Pore can not expand (P,C = unchanged)

end

end % end if step==1

else %--------- P-alpha ------------------

[P(j),alphap(j),C(j)]=rsm_eos2(rho_bar,T_in, ...

alpha_min,alphao,alphap(j), n,Cm,Pe,Ps, Pmax, wflag,select_mix,...

rhod_m,rhood(j),vo_m(j,:),phi_m(j,:),eos,eos_type,Cv(j));

end

if P(j)<0

% warning(’Pressure is negative, %10.2f, at node %i’,P(j),j);

P(j) = 0;

end

end % end (rho_bar==rho_o) conditional

end % main loop on j

% Equilibrate pressure at the interface

P_avg = 1/2*(P(jI)+P(jI+1)); % 1st order interpolation

[alpha(jI+1)] = p_alpha(P_avg,alphao,Pe,Ps,n);

P(jI) = P_avg;

P(jI+1) = P_avg;

%--------------------------------------------------------------------------

% b)Apply Radial Return to previous time step deviators t(n)

for j=jL:jI % within impactor material
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s_eq = 3/2*sdev(j); % J2 yield stress for 1-D strain

if abs( s_eq ) > yield_st % yield criteria

sdev(j) = yield_st*sdev(j)/s_eq; % deviatoric stress in x-dir

end

end

for j=jI+1:jR % within sample material

s_eq = 3/2*sdev(j); % J2 yield stress for 1-D strain

if abs( s_eq ) > yield_mix % yield criteria

sdev(j) = yield_mix*sdev(j)/s_eq; % deviatoric stress in x-dir

end

end

%--------------------------------------------------------------------------

% c) Stress deviators and heat flux at t(n+1)

% material 1

% left bc - free surface (extrapolate values)

vx(jL-1) = vx(jL);

sdev(jL-1) = 0;

T(jL-1) = 300;

q(jL-1) = 0;

% right bc - ghost cell at interface

vx_int(1) = vx(jI+1); % velocity of Pa = velocity of B

sdev_int(1) = sdev(jI+1); % stress in x-dir is equal

T_int(1) = T(jI); % to prevent over heating

q_int(1) = q(jI); %

% material 2

%left bc - ghost cell at interface

vx_int(2) = vx(jI);

sdev_int(2) = sdev(jI);

T_int(2) = T(jI+1);

% T_int(2) = (2*T(jI+1)+T(jI+2))/3;

q_int(2) = q(jI+1);
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% right bc - free surface (extrapolate values)

vx(jR+1) = vx(jR);

sdev(jR+1) = 0;

T(jR+1) = 300;

q(jR+1) = 0;

for j=jL-1:jR+1

if j == jL-1

slope_sdev(j) = (sdev(j+1)-sdev(j))/dx;

slope_vx(j) = (vx(j+1)-vx(j))/dx;

slope_T(j) = (T(j+1)-T(j))/dx;

slope_q(j) = (q(j+1)-q(j))/dx;

elseif j == jI

slope_sdev(j) = minmod((sdev_int(1)-sdev(j))/dx,...

(sdev(j)-sdev(j-1))/dx);

slope_vx(j) = minmod( (vx_int(1)-vx(j))/dx , (vx(j)-vx(j-1))/dx );

slope_T(j) = minmod( (T_int(1)-T(j))/dx , (T(j)-T(j-1))/dx );

slope_q(j) = minmod( (q_int(1)-q(j))/dx , (q(j)-q(j-1))/dx );

s_sdev_i(2) = (sdev(j+1)-sdev_int(2))/dx;

s_vx_i(2) = (vx(j+1)-vx_int(2))/dx;

s_T_i(2) = (T(j+1)-T_int(2))/dx;

s_q_i(2) = (q(j+1)-q_int(2))/dx;

[sdev_p_i(2),sdev_m_i(2),vx_p_i(2),vx_m_i(2), T_p_i(2),T_m_i(2),...

q_p_i(2),q_m_i(2)] = muscl_reconstruction2( ...

sdev_int(2),s_sdev_i(2),vx_int(2),s_vx_i(2),T_int(2),...

s_T_i(2),q_int(2),s_q_i(2), dx);

elseif j == jI+1

slope_sdev(j) = minmod((sdev(j+1)-sdev(j))/dx,...

(sdev(j)-sdev_int(2))/dx);

slope_vx(j) = minmod( (vx(j+1)-vx(j))/dx , (vx(j)-vx_int(2))/dx );
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slope_T(j) = minmod( (T(j+1)-T(j))/dx , (T(j)-T_int(2))/dx );

slope_q(j) = minmod( (q(j+1)-q(j))/dx , (q(j)-q_int(2))/dx );

s_sdev_i(1) = (sdev_int(1)-sdev(j-1))/dx;

s_vx_i(1) = (vx_int(1)-vx(j-1))/dx;

s_T_i(1) = (T_int(1)-T(j-1))/dx;

s_q_i(1) = (q_int(1)-q(j-1))/dx;

[sdev_p_i(1),sdev_m_i(1),vx_p_i(1),vx_m_i(1), T_p_i(1),T_m_i(1),...

q_p_i(1),q_m_i(1)] = muscl_reconstruction2( ...

sdev_int(1),s_sdev_i(1),vx_int(1),s_vx_i(1),T_int(1),...

s_T_i(1),q_int(1),s_q_i(1), dx);

else % main nodes

slope_sdev(j) = minmod((sdev(j+1)-sdev(j))/dx,...

(sdev(j)-sdev(j-1))/dx);

slope_vx(j) = minmod( (vx(j+1)-vx(j))/dx , (vx(j)-vx(j-1))/dx );

slope_T(j) = minmod( (T(j+1)-T(j))/dx , (T(j)-T(j-1))/dx );

slope_q(j) = minmod( (q(j+1)-q(j))/dx , (q(j)-q(j-1))/dx );

end

[sdev_p(j),sdev_m(j),vx_p(j),vx_m(j), T_p(j),T_m(j),...

q_p(j),q_m(j)] = muscl_reconstruction2( ...

sdev(j),slope_sdev(j),vx(j),slope_vx(j),T(j),...

slope_T(j),q(j),slope_q(j), dx);

end

% Deviatoric stress and heat flux in x-direction at t(n+1)

for j=jL:jR

if j == jI

[sdev(j), q(j)] = upwind_flux( ...

sdev_p(j-1),sdev_p(j),sdev_m(j), sdev_m_i(1), q_p(j-1), ...

q_p(j),q_m(j),q_m_i(1), vx_m(j),vx_m_i(1), T_p(j),T_p(j-1), ...
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sdev(j),q(j), vx(j), mu(j),kq(j),dx,dt);

elseif j == jI+1

[sdev(j), q(j)] = upwind_flux( ...

sdev_p_i(2),sdev_p(j),sdev_m(j), sdev_m(j+1), q_p_i(2),...

q_p(j),q_m(j),q_m(j+1), vx_m(j),vx_m(j+1), T_p(j),T_p_i(2),...

sdev(j),q(j), vx(j), mu(j),kq(j),dx,dt);

else % general cells

[sdev(j), q(j)] = upwind_flux( ...

sdev_p(j-1),sdev_p(j),sdev_m(j), sdev_m(j+1), q_p(j-1),...

q_p(j),q_m(j),q_m(j+1), vx_m(j),vx_m(j+1), T_p(j),T_p(j-1),...

sdev(j),q(j), vx(j), mu(j),kq(j),dx,dt);

end

end

sigmay_dev = -1/2*sdev; % deviatoric stress in y-direction t(n+1)

%--------------------------------------------------------------------------

% d) Re-calculate stresses/deviators to include effects of new Pressure

% stress(n+1) = -P(n+1) + sdev(n+1)

sigmax(jL:jR) = - P(jL:jR) + sdev(jL:jR);

sigmay(jL:jR) = - P(jL:jR) + sigmay_dev(jL:jR);

% recalculate deviators to match new stresses

sdev(jL:jR) = 2/3*(sigmax(jL:jR)-sigmay(jL:jR));

sigmay_dev(jL:jR) = -1/2*sdev(jL:jR);

function [P,alphap,C] = rsm_eos2(rho,T,alpha_min,alphao,alphap, ...

n,Cm,Pe,Ps,Pmax,wflag,select_mix, ...

rhod_m,rhood,vo_m,phi_m,eos,eos_type,Cv)

global eps1 % fraction of e,rho for numerical approx. of acoustic velocity

%

% Written by: Derek Reding

% Last modified on 08-14-07
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% function that performs the calculation of wave speed for mixture material

% UNIFORM STRAIN ASSUMPION AND HOMOBARIC ASSUMPTION

% ( Note: see rsm_eos1 for more detials on RSM)

%

% INPUTS:

% Pmax = max pressure,(Pa) must be known a-priori for Us_obs calc and Homo

% select_mix = choice of EOS mixture rule

% select_mix = 1 -> Bennett-Horie mix rule (simple)

% select_mix = 2 -> Rigorous mixture rules (use Cm)

%--------------------------------------------------------------------------

e = Cv*T; % internal energy

d_e = eps1*e;

eU = e + d_e; % add differential amount

eL = e - d_e; % subtract differential amount

TU = eU/Cv; TL = eL/Cv; % convert to temperatures

d_rho = eps1*rho; % mixture density

rhoU = rho + d_rho;

rhoL = rho - d_rho;

if select_mix==1 % -> Bennett-Horie mix rule (simple)

if alphap>1 % then continue with iterative Homobaric solution

[PU,alphap] = p_alpha_benhor94(rhoU,T,Pmax, ...

alphao,n,Pe,Ps, rhod_m,phi_m,eos, wflag);

[PL,alphap] = p_alpha_benhor94(rhoL,T,Pmax, ...

alphao,n,Pe,Ps, rhod_m,phi_m,eos, wflag);

DP_rho = (PU - PL)/(2*d_rho);

[PU,alphap] = p_alpha_benhor94(rho,TU,Pmax, ...

alphao,n,Pe,Ps, rhod_m,phi_m,eos, wflag);

[PL,alphap] = p_alpha_benhor94(rho,TL,Pmax, ...

alphao,n,Pe,Ps, rhod_m,phi_m,eos, wflag);

DP_e = (PU - PL)/(eU-eL);
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[P,alphap] = p_alpha_benhor94(rho,T,Pmax, ...

alphao,n,Pe,Ps, rhod_m,phi_m,eos, wflag);

C = sqrt(DP_rho + P/rho^2*DP_e);

% C = sqrt(DP_rho);

else % alphap=1, dense mixture (note: alphap must be zero)

[P,C] = ben_hor94(rho,T,phi_m, eos,rhod_m);

end % alpha if statement

else % -> Rigorous mixture rules (use Cm)

[PU,alphap,v_m] = homo_and_us(rhoU,T,alpha_min,alphao, ...

n,Cm,Pe,Ps,wflag, rhod_m,rhood,vo_m,phi_m,eos,eos_type);

[PL,alphap,v_m] = homo_and_us(rhoL,T,alpha_min,alphao, ...

n,Cm,Pe,Ps,wflag, rhod_m,rhood,vo_m,phi_m,eos,eos_type);

DP_rho = (PU - PL)/(2*d_rho);

[PU,alphap,v_m] = homo_and_us(rho,TU,alpha_min,alphao, ...

n,Cm,Pe,Ps,wflag, rhod_m,rhood,vo_m,phi_m,eos,eos_type);

[PL,alphap,v_m] = homo_and_us(rho,TL,alpha_min,alphao, ...

n,Cm,Pe,Ps,wflag, rhod_m,rhood,vo_m,phi_m,eos,eos_type);

DP_e = (PU - PL)/(eU-eL);

[P,alphap,v_m] = homo_and_us(rho,T,alpha_min,alphao, ...

n,Cm,Pe,Ps,wflag, rhod_m,rhood,vo_m,phi_m,eos,eos_type);

C = sqrt(DP_rho + P/rho^2*DP_e);

end

function [P,alpha] = p_alpha_benhor94(rho_bar,T,Pmax, ...

alphao,n,Pe,Ps, rhod_m,phi_m, eos, wflag)

global Tol_rho % Homobaric EOS tollerance on density (nominal 0.0001)

global max_iter_ho % nominal -> max_iter = 15
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% Written by: Derek Reding

% Last updated on: 08/07/07

%

% Homobaric Case - COMMENTS---------------------------------------

% INPUTS:

% rho_bar = input mixture density - remains constant (kg/m^3)

% T = temperature - remains constant (degrees K)

% P_us = pressure from uniform strain case for SAME rho_bar (Pa)

% alphao = initial porosity at P=0

% n = polynomial for porosity pressure dependence (quadratic -> n=2)

% Pe = elastic limit (Pa)

% Ps = pore collapse strength (Pa)

% rhod_m = initial mixture constituent densities at P=0

% phi_m = constituent mass fractions - (vector)

% v = input volume fractions (sum(v)~=1 if alpha>1) - (vector)

% eos = equation of state constants (4) for each material using

% either Gruneisen or Murnhaghan EOS models

% eos(k,1) = Beta_To (bulk modulus) (Pa)

% Murnaghan

% eos(k,1) = Beta_To (bulk modulus) (Pa)

% eos(k,2) = n (slope of bulk modulus)

% eos(k,3) = Gamma (Gruniesen constant - Murnhagan)

% eos(k,4) = Cv (specific heat capacity) (J/Kg*K)

% Gruneisen

% eos(k,1) = C (acoustic velocity) (m/s)

% eos(k,2) = Gamma (Gruniesen constant)

% eos(k,3) = S (slope of Up-Us)

% eos(k,4) = Cv (specific heat capacity) (J/Kg*K)

% eos_type = 1 for Murnaghan EOS, 2 for Gruneisen

% wflag = when wflag==1, suppress homogeneous warnings with error<1%

%

% OUTPUTS:
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% P = output mixture averaged pressure - uniform strain (Pa)

% alpha = output porosity

% v = output volume fractions (sum(v)~=1 if alpha>1) - (vector)

%

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% CONSTANTS:

To = 298; % deg K

% Tol_rho = 0.0001; % tollerance, e.g. Tol_alpha = 0.01 = 1% error

% max_iter = 35; % nominal -> max_iter = 15

%--------------------------------------------------------------------------

% fully dense initial mixture density {kg/m^3}

rho_bardo = 1/sum(phi_m./rhod_m);

% Initialize parameter vectors

Beta_M = eos(:,1)’;

n_M = eos(:,2)’;

Gamma_M = eos(:,3)’;

Cv_M = eos(:,4)’;

nc = length(Beta_M); % number of constituents

% Apply mixture rules for Ben-Horie ’94 (ballotechnic) ----------

% we apply Beta_So rule to Beta_To (since assume Beta_So = Beta_To approx.)

% Mixture averaged isothermal bulk modulus (Pa)

Beta_bh = 1/rho_bar*1/sum(phi_m./rhod_m./Beta_M);

n_bh = rho_bardo*Beta_bh^2*sum( phi_m./rhod_m.*(ones(1,nc) + n_M)./Beta_M.^2 ) -1;

CvGamma = Beta_bh*sum( phi_m.*Cv_M.*Gamma_M./Beta_M);

Gamma_bh = 2; % arbitraty value

Cv_bh = CvGamma/Gamma_bh;

% % Beta_bh = 8.5862e+010;

% % n_bh = 4.0134;

% % CvGamma = 1.6166e+003;

% % Gamma_bh = 2;
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% % Cv_bh = 808.3058;

%------------------------------------------------------------------------

% initialize bounds on Pressure

% P_L = 0; % Note: using P_L = P_ho(k-1) may be faster, but not needed

% P_L = 0 does not allow will have problems if themal contribution to

% pressure is higher than P_bar, thus we have the following:

% Pt = Gamma*rho_o*Cv*(T-To); % pressure from Thermal contribution (Pa)

% P_min = Cv_Gamma*;

P_U = Pmax*2;

P_L = 0;

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

% Begin iterations

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

n_iter = 0; % number of iterations (initialize)

breaker = 0; % break

while(breaker==0) % iterate to find P that satisfies Homo-mix rule

P_bar = 1/2*(P_U + P_L);

alpha_star = p_alpha(P_bar,alphao,Pe,Ps,n);

% Calculate mixture density

rd = BM_EOSinv(rho_bardo,P_bar,T,Beta_bh, n_bh, Gamma_bh, Cv_bh);

rho_star = rd/alpha_star; % porous mixture density

error = max( abs((rho_star - rho_bar)/rho_bar) ); % error in density

if error<=Tol_rho

breaker =1; % density is within tolerance

elseif rho_star > rho_bar % density too high, P_bar too high

P_U = P_bar;

else

P_L = P_bar;
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end

n_iter = n_iter+1;

if n_iter ==max_iter_ho

% fprintf(’Error: Homobaric solution does not converge\n’)

if (wflag~=0) & (error*100>wflag)

fprintf([’p_alpha_benhor94 does not converge, error = ’,...

num2str(error*100) ,’ %%, ’])

fprintf([’Pressure is = ’,num2str(P_bar/(1e9)),’ GPa \n’])

end

breaker =1;

end

end % end iteration on P - loop

P = P_bar;

alpha = alpha_star;

% Assure that complete pore closure can occur -----------------------------

error_alpha = alpha-1;

if error_alpha<Tol_rho % 0.01

alpha = 1;

end

function [rho] = BM_EOSinv(rho_o,P,T,beta,n,Gamma,Cv)

% Birch Murnhagan EOS Inverse

To = 298; % deg K

rho = rho_o*(n/(beta)*(P - Gamma*rho_o*Cv*(T-To) ) + 1)^(1/n);

% P = beta/n*((rho/rho_o)^n - 1) + Gamma*rho_o*Cv*(T-To);

function [vo_m,rhood] = avg_mix_rxn_new(phi,rho,jI,jR)

% Last updated on 09/27/07 By Derek Reding

% Calculates updated original volume fractions

% (vo_m changes after reaction occurs, thus rhood changes too)

%--------------------------------------------------------------------------
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% INPUTS:

% phi = mass fractions of constituents

% rho = constituent densities at P=0, T=300K

% nc = number of constituents that take place in the reaction

% nx = total number of cells plus a few on the end

% jI = index of node within (impactor) material at the interface boundary

% jR = index of node within (sample/mixture) material at the right boundary

% selection = if selection = 1, choose Ni+Al

% if selection = 2, choose Al+Fe2O3

% OUTPUTS:

% vo_m = Volume Fractions of solid mixture (dense, d)

% rhood = initial dense mixture avg density (changes time,x) (kg/m^3)

%--------------------------------------------------------------------------

for j=jI+1:jR

rhood(j) = 1/sum(phi(j,:)./rho);

vo_m(j,:) = phi(j,:).*rhood(j)./rho;

end

function [sigma1,jI1] = ...

interface_steel_nial_reimann(sigma, vx, x,nx,dx,dt, jI )

% Last modified on: 10-30-06

% Calculates new interfaces and and updates the location of

% new interface nodes

% At the interface, jI, velocity is simply averaged (note: this should be

% updated to extrapolate the velocity instead

%--------------------------------------------------------------------------

% UPDATE LOCATION OF SURFACES

vxI(1) = vx(jI(1)); %velocity at the LHS free interface

vxI(2) = 1/2*(vx(jI(2))+vx(jI(2)+1)); %velocity at the contact interface

vxI(3) = vx(jI(3)); %velocity at the RHS free interface

for i=1:3

dsigma = vxI(i)*dt;

240



sigma1(i) = sigma(i) + dsigma;

end

%--------------------------------------------------------------------------

% UPDATE LOCATION OF NODES AT THE SURFACES

% LHS

if vxI(1)>=0

if x(jI(1)) - sigma1(1) < 0 % interface crossed cell center jI

jI1(1) = jI(1)+1;

else

jI1(1) = jI(1);

end

else

if x(jI(1)) - sigma1(1) > dx % interface crossed cell center jI-1

jI1(1) = jI(1)-1;

else

jI1(1) = jI(1);

end

end

% contact and RHS

for i=2:3

if vxI(i)>=0

if sigma1(i) - x(jI(i)) > dx % interface crossed cell center jI+1

jI1(i) = jI(i)+1;

else

jI1(i) = jI(i);

end

else

if sigma1(i) - x(jI(i)) < 0 % interface crossed cell center jI

jI1(i) = jI(i)-1;

else

jI1(i) = jI(i);
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end

end

end

function [phi_out,DPHI] = ...

phi_cutoff(rho,phi_m,THETA,phi_max,phi_ep, M_m,G,dt_rxn,nc)

% function [phi_out,dphi_out,DTHETA_out,DPHI] = ...

% phi_cutoff(rho,phi_m,THETA,phi_max,phi_ep, M_m,G,dt_rxn,nc)

%

% Written by: Derek Reding

% Last edited on: 09/11/07

% Note: - can only be used for binary reactions

% - only forward reaction considered

% - used by "reaction_bin_tester.m"

%--------------------------------------------------------------------------

% Inputs:

% rho = porous mixture density (kg/m^3)

% phi_m = mass fractions (before this reaction step)

% PHI_mass = rate of formation of mass fractions (NON-intert constituents)

% THETA = reaction rate

% phi_max = fraction of reaction completion (0<=phi_max<=1)

% phi_ep = mass fraction of epoxy or other inert material

% M_m = molar mass

% G = stoichiometric coefficient

% dt_rxn = time step for the reaction step (sec) (note: dt_rxn<=dt)

% ns = total number of species or constituents in the mixture

% nc = number of NON-intert constituents

% nr = number of reactant constituents = 2 for this function

%--------------------------------------------------------------------------

% Outputs:

% phi_new = new mass fractions for only

% dphi_out = updated change in mass fractions

% DTHETA_out = Actual change in concentration
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%--------------------------------------------------------------------------

PHI_mass = THETA*M_m.*G/rho; % rate mass fraction source term [1,nc]

dphi = dt_rxn*PHI_mass; % change in mass fractions

% sum_dphi = sum(dphi)

% trial mass fracs of reactants and products (after reaction)

phit = phi_m(1:nc) + dphi; % [1,nc]

% sum_phit = sum(phit)

DTHETA_out = dt_rxn*THETA; % initialize change in concentration, Dtheta

if phit(1)<=0 % if reactant 1 runs out

% disp(’reactant 1 ran out’);

DTHETA = -1/G(1)*(-phit(1))/M_m(1)*rho; % Correction to make phi(1)=0

DTHETA_out = DTHETA_out - DTHETA; % Actual change, Dtheta

for j=1:nc

phit(j) = phit(j) - DTHETA*M_m(j)*G(j)/rho;

end

if phit(1)<0; phit(1)=0; end % prevent roundoff errors

end

if phit(2)<=0 % if reactant 2 runs out

% disp(’reactant 2 ran out’);

DTHETA = -1/G(2)*(-phit(2))/M_m(2)*rho; % Correction to make phi(1)=0

DTHETA_out = DTHETA_out - DTHETA; % Actual change, Dtheta

for j=1:nc

phit(j) = phit(j) - DTHETA*M_m(j)*G(j)/rho;

end

if phit(1)<0; phit(1)=0; end % prevent roundoff errors

if phit(2)<0; phit(2)=0; end % prevent roundoff errors

end

% if maximum limit for product formation occurs

phi_prod = sum(phit(3:nc)); % sum up product mass fractions
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phi_max2 = phi_max-phi_ep;

if phi_prod>phi_max2

% disp(’maximum reaction products have been formed’);

phi_ex = phi_prod - phi_max2; % excess mass fraction for product(s)

% Correction -> phi(products)=0

DTHETA = -phi_ex/(-G(3:nc)*M_m(3:nc)’)*rho;

DTHETA_out = DTHETA_out - DTHETA; % Actual change, Dtheta

for j=1:nc

phit(j) = phit(j) - DTHETA*M_m(j)*G(j)/rho;

end

end

%--------------------------------------------------------------------------

phi_out = phit/(sum(phit)+phi_ep) ; % Enforce consistency

phi_out(nc+1) = phi_ep;

% phi_junk = phi_out

% sum_phi_junk = sum(phi_junk)

dphi_out = phi_out(1:nc) - phi_m(1:nc);

DPHI = sum(dphi_out(1:2)); % note: DPHI<=0
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Appendix H

2-D SIMULATION CODE

% Program to calculate the axisymmetric (about the x-axis) problem from

% Wilkins "Computer Simulation of Dynamic Phenomena", 1999.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% COMPLETE VERSION

% - progress for the hour glass viscosity

% - assume acceleration is only in x-direction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Simulation of a rod impacting a rigid wall

close all;

clear all;

clc;

warning off MATLAB:divideByZero

% SPECIFY INITIAL CONDITIONS

t_run = 1e-4; % specify the run time for the simulation (s)

vel = 300; % velocity in x-direction at t=0 (m/s)

Vo = 1; % Vo = rho_o/rho_i

S_init = 0; % initial stress throughout rod is zero

omega_init = 0; % initial angular velocity about the x-axis

thetao = 0; % initial angle of the projectile about the x-axis

cfl = .25; % cfl condition

% GEOMETRY OF CYLINDRICAL OBJECT

% Lo = .5; % Lo = 0.1; % length (m) along x-direction

% R = .1; % R = 0.01; % radius (m) along y-direction
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Lo =.05; % length (m) along x-direction

R = .01; % radius (m) along y-direction

nx = 50; % nx = 103; % number of nodes in the x-direction

ny = 8; % ny = 13; % number of nodes in the y-direction

% nx = 20;

% ny = 10;

dx = Lo/(nx-1);

dy = R/(ny-1);

% Material properties

rho_al = 2700; % density of aluminum (kg/m^3)

E_al = 70e9; % modulus of elasticity (Pa)

G_al = E_al/2.6; % shear modulus (Pa)

K_al = 70e9/1.2; % bulk modulus (Pa)

Yo_al = 290e6;

% Flow stress for 6070 Aluminum (Pa)->69e6 Pa (2.9e-3 Mbars = 290e6 Pa)

Co = 2; % quadratic q constant (Co=2 for 1D strain) p94

CL = 1; % linear q constant (CL=1 for 1D strain)

% Mie-Gruneisen EOS -------------------

C_al = 5380; % Sound speed (m/s)

S_al = 1.34; % Slope of Us-Up curve

Gammag_al = 2.0; % Gamma

Cv_al = 931;

To = 298;

Eo = Cv_al*To;

k = 1; % initialize time step for t = to

for j=1:ny

for i=1:nx

% INITIAL COORDINATES

x(i,j,k) = (i-1)*dx;

y(i,j,k) = (j-1)*dy;

Theta(i,j,k) = thetao;
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% INITIAL VELOCITY

vxh(i,j,k) = vel; % initial velocity in x-direction at k=1/2

if i==nx

vxh(i,j,k) = 0; % fixed wall

end

vyh(i,j,k) = 0; % initial velocity in y-direction at k=1/2

Omegah(i,j,k) = 0; % initial angular velocity about x-axis at k=1/2

omegah(i,j,k) = omega_init; % initial velocity about x-axis at k=1/2

end

end

% MASS ZONING for k==1 (pg 86)

xin(1:nx,1:ny) = x(1:nx,1:ny,k); yin(1:nx,1:ny) = y(1:nx,1:ny,k);

[Aout,v0out,Mout,Vout] = masso_fun(xin,yin,nx,ny,Vo,rho_al);

A(1:nx-1,1:ny-1,k) = Aout; v(1:nx-1,1:ny-1,k) = v0out;

M(1:nx-1,1:ny-1) = Mout; V(1:nx-1,1:ny-1,k) = Vout;

rho(1:nx-1,1:ny-1,k) = rho_al; % initialize density as the reference density

for j=1:ny-1

for i=1:nx-1

% INITIAL STRESS

Sxx(i,j,k) = 0; Syy(i,j,k) = 0; Stt(i,j,k) = 0;

% stress is zero throughout the rod at k = 1

Sxy(i,j,k) = 0; Syt(i,j,k) = 0; Stx(i,j,k) = 0;

sxx(i,j,k) = 0; syy(i,j,k) = 0; stt(i,j,k) = 0;

% stress deviators at k = 1

% INITIAL STRAIN

exxh(i,j,k) = 0; eyyh(i,j,k) = 0; etth(i,j,k) = 0;

% Initial strains at k = 1/2 are zero

exyh(i,j,k) = 0; eyth(i,j,k) = 0; etxh(i,j,k) = 0;

edxxh(i,j,k) = 0; edyyh(i,j,k) = 0; edtth(i,j,k) = 0;

% strain rates at k = 1/2

edxyh(i,j,k) = 0; edyth(i,j,k) = 0; edxth(i,j,k) = 0;
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ep(i,j,k) = 0; % plastic strain at k = 1/2

% INITIAL ENERGY/PRESSURE E(t=0)/P(t=0) for k=1

E(i,j,k) = Eo;

P(i,j,k) = 0;

% INITIAL ARTIFICIAL VISCOSITY FOR CALCULATING SHOCKS

qh(i,j,k) = 0; % dsth = 0 initially, therefore there is

no viscous damping at k=1/2

% INITIAL Strain in the direction of the acceleration

dsth(i,j,k) = 0; % initially there is no strain rate at k=1/2

end

end

% Calculate "initial time step" (initial guess) k=1/2, k=1, k=3/2

xin(1:nx,1:ny) = x(1:nx,1:ny,k); yin(1:nx,1:ny) = y(1:nx,1:ny,k);

Ain(1:nx-1,1:ny-1) = A(1:nx-1,1:ny-1,k); dsthin(1:nx-1,1:ny-1) =

dsth(1:nx-1,1:ny-1,k);

[dthout] = timeo_fun(xin,yin,Ain,rho_al,K_al,Co,CL,dsthin,nx,ny,cfl);

dth(k) = dthout; % initial time step k=1/2

dth(k+1) = dth(k); % initially guess the time step for k=3/2

dt(k) = 1/2*(dth(k)+dth(k+1)); % initially this is the first

guess for dt for k=1

t(k) = 0; % initialize run time

%--------------------------------------------------------------------------

% Main program (for t>0)

nt = 10;

for k=1:nt

% while(1)

% EQUATIONS OF MOTION (get x,y for k+1)

xin(1:nx,1:ny) = x(1:nx,1:ny,k); yin(1:nx,1:ny) = y(1:nx,1:ny,k);

Thetain = Theta(1:nx,1:ny,k);

vxhin(1:nx,1:ny) = vxh(1:nx,1:ny,k); vyhin(1:nx,1:ny) = ...

vyh(1:nx,1:ny,k);

omegahin(1:nx,1:ny) = omegah(1:nx,1:ny,k); Omegahin(1:nx,1:ny) = ...
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Omegah(1:nx,1:ny,k);

Sxxin(1:nx-1,1:ny-1) = Sxx(1:nx-1,1:ny-1,k); Syyin(1:nx-1,1:ny-1) =

Syy(1:nx-1,1:ny-1,k); Sttin(1:nx-1,1:ny-1) = Stt(1:nx-1,1:ny-1,k);

Sxyin(1:nx-1,1:ny-1) = Sxy(1:nx-1,1:ny-1,k); Stxin(1:nx-1,1:ny-1) =

Stx(1:nx-1,1:ny-1,k); Sytin(1:nx-1,1:ny-1) = Syt(1:nx-1,1:ny-1,k);

Ain(1:nx-1,1:ny-1) = A(1:nx-1,1:ny-1,k); Vin(1:nx-1,1:ny-1) =

V(1:nx-1,1:ny-1,k); rhoin(1:nx-1,1:ny-1) = rho(1:nx-1,1:ny-1,k);

dthin = dth(k+1); dtin = dt(k);

[xout,yout,Thetaout,xhout,yhout,vxhout,vyhout,

omegahout,Omegahout] =velocity_fun10(xin,yin,Thetain,vxhin,...

vyhin,omegahin, Omegahin,Sxxin,Syyin,...

Sttin,Sxyin,Stxin,Sytin,Ain,M,Vin,dtin,dthin,nx,ny,Vo,rhoin,k);

x(1:nx,1:ny,k+1) = xout; y(1:nx,1:ny,k+1) = yout;

Theta(1:nx,1:ny,k+1) = Thetaout;

xh(1:nx,1:ny,k+1) = xhout; yh(1:nx,1:ny,k+1) = yhout;

vxh(1:nx,1:ny,k+1) = vxhout; vyh(1:nx,1:ny,k+1) = vyhout;

omegah(1:nx,1:ny,k+1) = omegahout;

Omegah(1:nx,1:ny,k+1) = Omegahout;

% vyhout_junk = vyh(nx,1,k+1)

% % vxhout_junk = vxh(2,1,k+1)

% % x_junk = x(2,1,k+1)

% y_junk = y(2,1,k+1)

if k==5

i=nx-1; j=ny;

vy_junk1 = vyh(i+1,j,k)

vy_junk2 = vyh(i+1,j,k+1)

end

% MASS ZONING (get A,V for k+1)

xin(1:nx,1:ny) = x(1:nx,1:ny,k+1); yin(1:nx,1:ny) = ...

y(1:nx,1:ny,k+1); Min=M; % conservation of mass M=const

[Aout,vout,Vout,rho_out] = mass_fun(xin,yin,nx,ny,Vo,rho_al,Min);
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A(1:nx-1,1:ny-1,k+1) = Aout; v(1:nx-1,1:ny-1,k+1) = vout;

V(1:nx-1,1:ny-1,k+1) = Vout; rho(1:nx-1,1:ny-1,k+1) = rho_out;

for j=1:ny-1

for i=1:nx-1

% k = 1

Ah(i,j,k+1) = 1/2*(A(i,j,k)+A(i,j,k+1));

% area at k=3/2

Vh(i,j,k+1) = 1/2*(V(i,j,k)+V(i,j,k+1));

% volume at k=3/2

DVh(i,j,k+1) = 1/2*(V(i,j,k+1)-V(i,j,k));

% change in volume at k=3/2

% CALCULATION OF INCREMENTAL STRAIN (pg 89-90)

calculate the strain at the k = 3/2 time step

edxxh(i,j,k+1) = 1/(2*Ah(i,j,k+1))*((vxh(i+1,j,k+1)-

vxh(i,j+1,k+1))*

(yh(i+1,j+1,k+1)-yh(i,j,k+1)) ...

- (yh(i+1,j,k+1)-yh(i,j+1,k+1))*(vxh(i+1,j+1,k+1)

-vxh(i,j,k+1)) );

edyyh(i,j,k+1) = - 1/(2*Ah(i,j,k+1))*( (vyh(i+1,j,k+1)-

vyh(i,j+1,k+1))*(xh(i+1,j+1,k+1)-xh(i,j,k+1)) ...

- (xh(i+1,j,k+1)-xh(i,j+1,k+1))*(vyh(i+1,j+1,k+1)-

vyh(i,j,k+1)) );

edtth(i,j,k+1) = DVh(i,j,k+1)/(Vh(i,j,k+1)*dth(k+1)) -

(edxxh(i,j,k+1)+edyyh(i,j,k+1));

edxyh(i,j,k+1) = 1/(2*Ah(i,j,k+1))*( (vyh(i+1,j,k+1)-

vyh(i,j+1,k+1))

*(yh(i+1,j+1,k+1)-yh(i,j,k+1)) ...

- (yh(i+1,j,k+1)-yh(i,j+1,k+1))*(vyh(i+1,j+1,k+1)-

vyh(i,j,k+1)) + ((vxh(i+1,j,k+1)-vxh(i,j+1,k+1))*

(xh(i+1,j+1,k+1)-xh(i,j,k+1)) ...
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- (xh(i+1,j,k+1)-xh(i,j+1,k+1))*(vxh(i+1,j+1,k+1)

- vxh(i,j,k+1))) );

edyth(i,j,k+1) = - 1/(2*Ah(i,j,k+1))*(

(yh(i+1,j,k+1)*omegah(i+1,j,k+1)-yh(i,j+1,k+1)*

omegah(i,j+1,k+1))*(xh(i+1,j+1,k+1)-xh(i,j,k+1)) ...

- (xh(i+1,j,k+1)-xh(i,j+1,k+1))*(omegah(i+1,j+1,k+1)*

yh(i+1,j+1,k+1)-omegah(i,j,k+1)*yh(i,j,k+1)) ) ...

- 1/4*(omegah(i,j,k+1)+omegah(i+1,j,k+1)+

omegah(i+1,j+1,k+1)+omegah(i,j+1,k+1));

edtxh(i,j,k+1) = 1/(2*Ah(i,j,k+1))*( (yh(i+1,j,k+1)*

omegah(i+1,j,k+1)-yh(i,j+1,k+1)*

omegah(i,j+1,k+1))*(yh(i+1,j+1,k+1)-yh(i,j,k+1)) ...

- (yh(i+1,j,k+1)-yh(i,j+1,k+1))*(omegah(i+1,j+1,k+1)*

yh(i+1,j+1,k+1)-omegah(i,j,k+1)*yh(i,j,k+1)) );

Dexxh(i,j,k+1) = edxxh(i,j,k+1)*dth(k+1);

% incremental strains at k+1/2

Deyyh(i,j,k+1) = edyyh(i,j,k+1)*dth(k+1);

Detth(i,j,k+1) = edtth(i,j,k+1)*dth(k+1);

Dexyh(i,j,k+1) = edxyh(i,j,k+1)*dth(k+1);

Deyth(i,j,k+1) = edyth(i,j,k+1)*dth(k+1);

Detxh(i,j,k+1) = edtxh(i,j,k+1)*dth(k+1);

% ARTIFICIAL VISCOSITY FOR CALCULATING SHOCKS

% Calculate the rate of strain in the direction of

the acceleration, dsth

vx_aveh_l = 1/4*(vxh(i,j,k) + vxh(i+1,j,k) + vxh(i+1,j+1,k)

+ vxh(i,j+1,k)); % for k-1/2

vy_aveh_l = 1/4*(vyh(i,j,k) + vyh(i+1,j,k) + vyh(i+1,j+1,k)

+ vyh(i,j+1,k)); % for k-1/2

vx_aveh_u = 1/4*(vxh(i,j,k+1) + vxh(i+1,j,k+1) +

vxh(i+1,j+1,k+1) + vxh(i,j+1,k+1)); % for k+1/2

vy_aveh_u = 1/4*(vyh(i,j,k+1) + vyh(i+1,j,k+1) +
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vyh(i+1,j+1,k+1) + vyh(i,j+1,k+1)); % for k+1/2

Ax = (vx_aveh_u - vx_aveh_l); % for k

Ay = (vy_aveh_u - vy_aveh_l); % for k

if (Ax^2+Ay^2)>0

cosa = Ax/sqrt(Ax^2+Ay^2);

sina = Ay/sqrt(Ax^2+Ay^2);

else

cosa = 1;

sina = 0;

end

% calculate d/dx(vx) (vx_x) with x, y at k=3/2 x(1), y(1)

vx_x(i,j,k) = edxxh(i,j,k+1);

vy_y(i,j,k) = edyyh(i,j,k+1);

vxy_xy(i,j,k) = edxyh(i,j,k+1);

dsth(i,j,k+1) = vx_x(i,j,k)*cosa^2; % k=3/2

% Determine the characteristic length (assume that the

shock moves along the x-axis for now)

L_char(i,j,k+1) = 1/2*(x(i+1,j,k+1)+x(i+1,j+1,k+1)) -

1/2*(x(i,j,k+1)+x(i,j+1,k+1));

% real characteristic length ???

if ((nt == 2) && (i==nx-2))

% fprintf(’L_char = %f’,L_char(i,j,k+1))

end

% Determine the local sound speed

a(i,j,k) = sqrt(abs(P(i,j,k))/rho_al);

if dsth(i,j,k+1) >= 0

qh(i,j,k+1) = 0; % k=3/2

else

qh(i,j,k+1) = Co^2*rho_al*L_char(i,j,k+1)^2*
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dsth(i,j,k+1)^2 + CL*rho_al*a(i,j,k)*

abs(dsth(i,j,k+1)); % k=3/2

end

% CALCULATION OF STRESSES (90-91) (for k = 2)

% lower case s refers to deviators

sin_omegah(i,j,k+1) = 1/2*( 1/(2*Ah(i,j,k+1))*(

(vyh(i+1,j,k+1)-vyh(i,j+1,k+1))*(yh(i+1,j+1,k+1)-

yh(i,j,k+1)) ...

- (yh(i+1,j,k+1)-yh(i,j+1,k+1))*(vyh(i+1,j+1,k+1)

-vyh(i,j,k+1)) ...

- ((vxh(i+1,j,k+1)-vxh(i,j+1,k+1))*(xh(i+1,j+1,k+1)

-xh(i,j,k+1)) ...

- (xh(i+1,j,k+1)-xh(i,j+1,k+1))*(vxh(i+1,j+1,k+1)-

vxh(i,j,k+1))) ) )*dth(k+1); % k=1

omega_h(i,j,k+1) = asin(sin_omegah(i,j,k+1));

cos2omegah(i,j,k+1) = cos(2*omega_h(i,j,k+1));

dxx(i,j,k) = (sxx(i,j,k)-syy(i,j,k))/2*

(cos2omegah(i,j,k+1)-1) - Sxy(i,j,k)*2*sin_omegah(i,j,k+1);

dyy(i,j,k) = -dxx(i,j,k);

dxy(i,j,k) = Sxy(i,j,k)*(cos2omegah(i,j,k+1)-1) +

(sxx(i,j,k)-syy(i,j,k))/2*(2*sin_omegah(i,j,k+1));

% deviatoric stresses

sxx(i,j,k+1) = sxx(i,j,k) + 2*G_al*(Dexxh(i,j,k+1)-

1/3*DVh(i,j,k+1)/Vh(i,j,k+1)) + dxx(i,j,k); % + qxx(i,j,k);

syy(i,j,k+1) = syy(i,j,k) + 2*G_al*(Deyyh(i,j,k+1)-

1/3*DVh(i,j,k+1)/Vh(i,j,k+1)) + dyy(i,j,k); % + qyy(i,j,k);

stt(i,j,k+1) = stt(i,j,k) + 2*G_al*(Detth(i,j,k+1)-

1/3*DVh(i,j,k+1)/Vh(i,j,k+1));

Sxy(i,j,k+1) = Sxy(i,j,k) + G_al*Dexyh(i,j,k+1) +

dxy(i,j,k); % + qxy(i,j,k); % Shear Stresses
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Syt(i,j,k+1) = Syt(i,j,k) + G_al*Deyth(i,j,k+1);

Stx(i,j,k+1) = Stx(i,j,k) + G_al*Detxh(i,j,k+1);

% MATERIAL INTERNAL ENERGY (pg 96) (needs dt(k=3/2))

sxxh(i,j,k+1) = 1/2*(sxx(i,j,k) + sxx(i,j,k+1));

% average stresses for k=3/2

syyh(i,j,k+1) = 1/2*(syy(i,j,k) + syy(i,j,k+1));

stth(i,j,k+1) = 1/2*(stt(i,j,k) + stt(i,j,k+1));

Sxyh(i,j,k+1) = 1/2*(Sxy(i,j,k) + Sxy(i,j,k+1));

Syth(i,j,k+1) = 1/2*(Syt(i,j,k) + Syt(i,j,k+1));

Stxh(i,j,k+1) = 1/2*(Stx(i,j,k) + Stx(i,j,k+1));

DZh(i,j,k+1) = Vh(i,j,k)*(sxxh(i,j,k+1)*edxxh(i,j,k+1)

+ syyh(i,j,k+1)*edyyh(i,j,k+1) ...

+ stt(i,j,k+1)*edtth(i,j,k+1) + Sxy(i,j,k+1)*

edxyh(i,j,k+1) + Syt(i,j,k+1)*edyth(i,j,k+1) + ...

Stx(i,j,k+1)*edtxh(i,j,k+1) )*dth(k+1);

% EOS from pages 96 and pg 63

if V(i,j,k+1)>1; V(i,j,k+1)=1; end

rho_in = rho_al/V(i,j,k+1); rho_o = rho_al;

Cv=Cv_al; T = E(i,j,k)/Cv; % Approximate, should

include E(i,j,k+1) in P(E,V)

Gamma = Gammag_al; S1 = S_al; C = C_al;

P(i,j,k+1) = MG_EOS(rho_o,rho_in,T,C,Gamma,S1,Cv);

% pressure (Pa)

P(i,j,k+1) = P(i,j,k+1)/100; % convert to units (mbar)

q_bar(i,j,k) = 1/2*(qh(i,j,k)+qh(i,j,k+1));

% averaged artificial viscosity

E(i,j,k+1) = E(i,j,k) - ( P(i,j,k) + q_bar(i,j,k) )

*DVh(i,j,k+1) + DZh(i,j,k+1) ...

- 1/2*(P(i,j,k+1) - P(i,j,k))*DVh(i,j,k+1);

% CALCULATION OF TOTAL STRESSES (90-91) (for k = 2)
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Sxx(i,j,k+1) = sxx(i,j,k+1) - (P(i,j,k+1) + qh(i,j,k+1));

Syy(i,j,k+1) = syy(i,j,k+1) - (P(i,j,k+1) + qh(i,j,k+1));

Stt(i,j,k+1) = stt(i,j,k+1) - (P(i,j,k+1) + qh(i,j,k+1));

% VON MISES YIELD CONDITION (pg 92)

J(i,j,k+1) = (sxx(i,j,k+1)^2+syy(i,j,k+1)^2+

stt(i,j,k+1)^2)/2 ...

+ Sxy(i,j,k+1)^2 + Syt(i,j,k+1)^2 + Stx(i,j,k+1)^2;

m(i,j,k+1) = sqrt(2/3)*Yo_al/sqrt(2*J(i,j,k+1));

if m(i,j,k+1)<1

sxx(i,j,k+1) = sxx(i,j,k+1)*m(i,j,k+1);

syy(i,j,k+1) = syy(i,j,k+1)*m(i,j,k+1);

stt(i,j,k+1) = stt(i,j,k+1)*m(i,j,k+1);

Sxy(i,j,k+1) = Sxy(i,j,k+1)*m(i,j,k+1);

Syt(i,j,k+1) = Syt(i,j,k+1)*m(i,j,k+1);

Stx(i,j,k+1) = Stx(i,j,k+1)*m(i,j,k+1);

end

% EQUIVALENT PLASTIC STRAIN (pg 92)

for strain at (k=3/2)

% Simply used for observation - both plastic and elastic

strain are still included in the incremental strains above

Dep(i,j,k+1) = (1/m(i,j,k+1)-1)*Yo_al/(3*G_al);

if Dep(i,j,k+1) >= 0

ep(i,j,k+1) = ep(i,j,k) + Dep(i,j,k+1);

else

ep(i,j,k+1) = 0;

end

end % loop on nx

end % loop on ny

% Calculate dt(k+3/2)

xin(1:nx,1:ny) = x(1:nx,1:ny,k+1);
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yin(1:nx,1:ny) = y(1:nx,1:ny,k+1);

Ain(1:nx-1,1:ny-1) = A(1:nx-1,1:ny-1,k+1);

rhoin(1:nx-1,1:ny-1) = rho(1:nx-1,1:ny-1,k+1);

dsthin(1:nx-1,1:ny-1) = dsth(1:nx-1,1:ny-1,k+1);

dthin = dth(k+1); Pin(1:nx-1,1:ny-1) = P(1:nx-1,1:ny-1,k+1);

[dthout] = time_fun10(xin,yin,Ain,rhoin,K_al,Co,CL,dsthin,

nx,ny,cfl,dthin,Pin);

dth(k+2) = dthout; % dt(k+3/2)

dt(k+1) = 1/2*(dth(k+1)+dth(k+2)); % dt(k+1)

t(k+1) = t(k) + dt(k+1); % update the total run time t(k+1)

end

% function to do the mass zoning

function [A,v,V,rho] = mass_fun(x,y,nx,ny,Vo,rho_al,M)

% MASS ZONING (pg 86)

% Calculation of the initial volume/mass of the zones (k)

for j=1:ny-1

for i=1:nx-1

y1 = y(i,j); y3 = y(i+1,j+1);

y2 = y(i+1,j); y4 = y(i,j+1);

x1 = x(i,j); x3 = x(i+1,j+1);

x2 = x(i+1,j); x4 = x(i,j+1);

ybar_a(i,j) = 1/3*(y2+y3+y4);

ybar_b(i,j) = 1/3*(y1+y2+y4);

A_a(i,j) = 1/2*( x2*(y3-y4) + x3*(y4-y2) + x2*(y2-y3) );

A_b(i,j) = 1/2*( x2*(y4-y1) + x4*(y1-y2) + x1*(y2-y4) );

A(i,j) = A_a(i,j) + A_b(i,j); % ?????? not sure about this

v(i,j) = ybar_a(i,j)*A_a(i,j) + ybar_b(i,j)*A_b(i,j);

% calculation of the volume of the zones for k

V(i,j) = (rho_al/M(i,j))*v(i,j); % conservation of mass (pg 88)

rho(i,j) = rho_al/V(i,j); % calculation of density

end
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end

% function to calculate the velocity of the nodes at k+1/2 given the

% stresses at k

function [xout,yout,Thetaout,xhout,yhout,vxhout,vyhout,omegahout,

Omegahout] = ...

velocity_fun10(x,y,Theta,vxh,vyh,omegah,Omegah,Sxx,Syy,Stt,

Sxy,Stx,Syt, ...

A,M,V,dt,dth,nx,ny,Vo,rho,k)

% EQUATIONS OF MOTION (pg 87-88)

for j=1:ny

for i=1:nx

% node values

if j>1

y1 = y(i,j-1); x1 = x(i,j-1);

end

if i<nx

y2 = y(i+1,j); x2 = x(i+1,j);

end

if j<ny

y3 = y(i,j+1); x3 = x(i,j+1);

end

if i>1

y4 = y(i-1,j); x4 = x(i-1,j);

end

% zone values

if ((i<nx) && (j<ny))

A1 = A(i,j); V1 = V(i,j); M1 = M(i,j); rho1 = rho(i,j);

Sxx1 = Sxx(i,j); Syy1 = Syy(i,j); Stt1 = Stt(i,j);

Sxy1 = Sxy(i,j); Stx1 = Stx(i,j); Syt1 = Syt(i,j);

end
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if ((i>1) && (j<ny))

A2 = A(i-1,j); V2 = V(i-1,j); M2 = M(i-1,j);

rho2 = rho(i-1,j);

Sxx2 = Sxx(i-1,j); Syy2 = Syy(i-1,j);

Stt2 = Stt(i-1,j); Sxy2 = Sxy(i-1,j);

Stx2 = Stx(i-1,j); Syt2 = Syt(i-1,j);

end

if ((i>1) && (j>1))

A3 = A(i-1,j-1); V3 = V(i-1,j-1); M3 = M(i-1,j-1);

rho3 = rho(i-1,j-1); Sxx3 = Sxx(i-1,j-1);

Syy3 = Syy(i-1,j-1); Stt3 = Stt(i-1,j-1);

Sxy3 = Sxy(i-1,j-1); Stx3 = Stx(i-1,j-1);

Syt3 = Syt(i-1,j-1);

end

if ((i<nx) && (j>1))

A4 = A(i,j-1); V4 = V(i,j-1); M4 = M(i,j-1);

rho4 = rho(i,j-1); Sxx4 = Sxx(i,j-1); Syy4 = Syy(i,j-1);

Stt4 = Stt(i,j-1); Sxy4 = Sxy(i,j-1);

Stx4 = Stx(i,j-1); Syt4 = Syt(i,j-1);

end

% CALCULATE THE VELOCITY (for k+1/2)

% Define velocities at the boundary zones

if j==1 % fixed bc along x-axis

if i==nx % lower right hand corner

vxhout(i,j) = 0; vyhout(i,j) = 0;

Omegahout(i,j) = 0;

elseif i==1 % lower left hand corner

phi(i,j) = 1/4*( rho1*A1/V1 );

alpha(i,j) = ( Sxy1*A1/M1 );

vxhout(i,j) = vxh(i,j) - dt/(2*phi(i,j))*(Sxx1*(y2-y3)

- Sxy1*(x2-x3) ) + dt*alpha(i,j);
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vyhout(i,j) = 0;

Omegahout(i,j) = 0;

else % fixed bc along x-axis (general)

phi(i,j) = 1/4*( rho1*A1/V1 + rho2*A2/V2 );

alpha(i,j) = 1/2*( Sxy1*A1/M1 + Sxy2*A2/M2 );

vxhout(i,j) = vxh(i,j) - dt/(2*phi(i,j))*

( Sxx1*(y2-y3) + ...

Sxx2*(y3-y4) - Sxy1*(x2-x3) - Sxy2*(x3-x4) )

+ dt*alpha(i,j);

vyhout(i,j) = 0;

Omegahout(i,j) = 0;

end

elseif i==nx % fixed bc in x-direction at the wall

interface (x=Bar_length)

% (and the point is not along the x-axis, j=1)

if j==ny % upper right hand corner

phi(i,j) = 1/4*( rho3*A3/V3 );

beta(i,j) = ( (Syy3-Stt3)*A3/M3 );

Omegahout(i,j) = 0;

vxhout(i,j) = 0;

vyhout(i,j) = vyh(i,j) + dt/(2*phi(i,j))*(

Syy3*(x4-x1) - Sxy3*(y4-y1) ) + dt*beta(i,j);

else % along the fixed boundary on the right hand side

phi(i,j) = 1/4*( rho2*A2/V2 + rho3*A3/V3 );

beta(i,j) = 1/2*( (Syy2-Stt2)*A2/M2 + (Syy3-Stt3)*A3/M3 );

Omegahout(i,j) = 0;

vxhout(i,j) = 0;

vyhout(i,j) = vyh(i,j) + dt/(2*phi(i,j))*(

Syy2*(x3-x4) + Syy3*(x4-x1) - Sxy2*(y3-y4) ...

- Sxy3*(y4-y1) ) + dt*beta(i,j);

end

elseif i==1 % free bc along the free back end of the rod

% (and the point is not along the x-axis, j=2)
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if j==ny % upper left hand corner

phi(i,j) = 1/4*( rho4*A4/V4 );

alpha(i,j) = ( Sxy4*A4/M4 );

beta(i,j) = ( (Syy4-Stt4)*A4/M4 );

Gamma(i,j) = ( Syt4*A4/M4 );

Omegahout(i,j) = Omegah(i,j) - (dt/(2*phi(i,j))*(

Stx4*(y1-y2) - Syt4*(x1-x2) ) -

dt*2*Gamma(i,j) )*y(i,j);

vxhout(i,j) = vxh(i,j) - dt/(2*phi(i,j))*( Sxx4*(y1-y2)

- Sxy4*(x1-x2) ) + dt*alpha(i,j);

vyhout(i,j) = vyh(i,j) + dt/(2*phi(i,j))*( Syy4*(x1-x2)

- Sxy4*(y1-y2) ) + dt*( beta(i,j)+

(omegah(i,j))^2*y(i,j) );

else % free bc along the left hand side

phi(i,j) = 1/4*( rho1*A1/V1 + rho4*A4/V4 );

alpha(i,j) = 1/2*( Sxy1*A1/M1 + Sxy4*A4/M4 );

beta(i,j) = 1/2*( (Syy1-Stt1)*A1/M1 + (Syy4-Stt4)*A4/M4 );

Gamma(i,j) = 1/2*( Syt1*A1/M1 + Syt4*A4/M4 );

Omegahout(i,j) = Omegah(i,j) - ( dt/(2*phi(i,j))*

( Stx1*(y2-y3) + Stx4*(y1-y2) - Syt1*(x2-x3) ...

- Syt4*(x1-x2) ) - dt*2*Gamma(i,j) )*y(i,j);

vxhout(i,j) = vxh(i,j) - dt/(2*phi(i,j))*

( Sxx1*(y2-y3) + Sxx4*(y1-y2) - Sxy1*(x2-x3) ...

- Sxy4*(x1-x2) ) + dt*alpha(i,j);

vyhout(i,j) = vyh(i,j) + dt/(2*phi(i,j))*

( Syy1*(x2-x3) + Syy4*(x1-x2) ...

- Sxy1*(y2-y3) - Sxy4*(y1-y2) ) +

dt*(beta(i,j)+(omegah(i,j))^2*y(i,j));

end

elseif j==ny % free bc along the outer surface of

the rod along the length

phi(i,j) = 1/4*( rho3*A3/V3 + rho4*A4/V4 );

alpha(i,j) = 1/2*( Sxy3*A3/M3 + Sxy4*A4/M4 );
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beta(i,j) = 1/2*( (Syy3-Stt3)*A3/M3 +

(Syy4-Stt4)*A4/M4 );

Gamma(i,j) = 1/2*( Syt3*A3/M3 + Syt4*A4/M4 );

Omegahout(i,j) = Omegah(i,j) - (dt/(2*phi(i,j))*(

Stx3*(y4-y1) + Stx4*(y1-y2) - Syt3*(x4-x1) ...

- Syt4*(x1-x2) ) - dt*2*Gamma(i,j) )*y(i,j);

vxhout(i,j) = vxh(i,j) - dt/(2*phi(i,j))*( Sxx3*(y4-y1)

+ Sxx4*(y1-y2) - Sxy3*(x4-x1) ...

- Sxy4*(x1-x2) ) + dt*alpha(i,j);

vyhout(i,j) = vyh(i,j) + dt/(2*phi(i,j))*( Syy3*(x4-x1)

+ Syy4*(x1-x2) - Sxy3*(y4-y1) ...

- Sxy4*(y1-y2) ) + dt*(beta(i,j)+

(omegah(i,j))^2*y(i,j));

if k==5 & i==nx-1

vy_junk_inner = vyh(i,j)

end

else % Define velocities at general zones

phi(i,j) = 1/4*( rho1*A1/V1 + rho2*A2/V2 + rho3*A3/V3

+ rho4*A4/V4 );

alpha(i,j) = 1/4*( Sxy1*A1/M1 + Sxy2*A2/M2 + Sxy3*A3/M3

+ Sxy4*A4/M4 );

Gamma(i,j) = 1/4*( Syt1*(A1/M1) + Syt2*(A2/M2) + Syt3*(A3/M3)

+ Syt4*(A4/M4) );

beta(i,j) = 1/4*( (Syy1-Stt1)*A1/M1 + (Syy2-Stt2)*A2/M2

+(Syy3-Stt3)*A3/M3 + (Syy4-Stt4)*A4/M4 );

Omegahout(i,j) = Omegah(i,j) - ( dt/(2*phi(i,j))*

(Stx1*(y2-y3) + Stx2*(y3-y4) + Stx3*(y4-y1) ...

+ Stx4*(y1-y2) - Syt1*(x2-x3) - Syt2*(x3-x4) -

Syt3*(x4-x1) - Syt4*(x1-x2) ) - dt*2*Gamma(i,j) )*y(i,j);

% vxhout(i,j) = vxh(i,j) - dt/(2*phi(i,j))*(Sxx1*(y2-y3)

+ Sxx2*(y3-y4) + Sxx3*(y4-y1) + Sxx4*(y1-y2) - Sxy1*(x2-x3) ...

% - Sxy2*(x3-x4) - Sxy3*(x4-x1) - Sxy4*(x1-x2) )
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+ dt*alpha(i,j);

vxhout(i,j) = vxh(i,j) - dt/(2*phi(i,j))*(Sxx1*(y2-y3)

+ Sxx2*(y3-y4) + Sxx3*(y4-y1) + Sxx4*(y1-y2) - Sxy1*(x2-x3) ...

- Sxy2*(x3-x4) - Sxy3*(x4-x1) - Sxy4*(x1-x2) )

+ dt*alpha(i,j);

vyhout(i,j) = vyh(i,j) + dt/(2*phi(i,j))*(Syy1*(x2-x3)

+ Syy2*(x3-x4) + Syy3*(x4-x1) + Syy4*(x1-x2) - Sxy1*(y2-y3) ...

- Sxy2*(y3-y4) - Sxy3*(y4-y1) - Sxy4*(y1-y2) ) + dt*(

beta(i,j)+(omegah(i,j))^2*y(i,j) );

end

% calculate new (x, y) coordinates for k+1

xout(i,j) = x(i,j) + vxhout(i,j)*dth; % use dth(k+1)

yout(i,j) = y(i,j) + vyhout(i,j)*dth;

% calculate half steps (averaged values of x,y for k+1/2)

xhout(i,j) = 1/2*(x(i,j)+xout(i,j)); % x at k+1/2

yhout(i,j) = 1/2*(y(i,j)+yout(i,j)); % y at k+1/2

% calculate the angular velocity at k+1/2

if j==1

omegahout(i,j) = 0;

else

omegahout(i,j) = Omegahout(i,j)/(yhout(i,j))^2;

end

Thetaout(i,j) = Theta(i,j) + omegahout(i,j)*dth;

end

end

function [P] = MG_EOS(rho_o,rho,T,C,Gamma,S1,Cv)

% Mie Gruneisen EOS

% C = C*1000; % convert from km/s to m/s

To = 298; % deg K

N = 1 - rho_o/rho;

Ph = rho_o*C^2*N/(1 - S1*N)^2;
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P = Ph + Gamma*rho*Cv*(T-To);

% P = rho_o*C^2*N*(1-(Gamma/2)*N/(1-N))/(1 - S1*N)^2 +

% Gamma*rho*Cv*(T-To);

function [dthout] = time_fun(x,y,A,rho,K_al,Co,CL,dsth,nx,ny,cfl,dthin,P)

% function to calculate the time step for k+3/2

% change rho from reference density to calculated value from EOS

for j=1:ny-1

for i=1:nx-1

d1 = sqrt((x(i+1,j+1)-x(i,j))^2 + (y(i+1,j+1)-y(i,j))^2);

d2 = sqrt((x(i+1,j)-x(i,j+1))^2 + (y(i,j+1)-y(i+1,j))^2);

d_max = max(d1,d2); % largest diagonal dimension in each zone

L_d(i,j) = A(i,j)/d_max; % minimum zone thickness

a = sqrt(P(i,j)/rho(i,j)); % local speed of sound

b = 8*(Co^2+CL)*L_d(i,j)*dsth(i,j);

dth_ij(i,j) = 0.67*L_d(i,j)/sqrt(a^2+b^2);

end

end

dthout = min(min(dth_ij(2:nx-1,2:ny-1)))*cfl; % initial time step is k=1/2

if dthout>1.1*dthin

dthout = 1.1*dthin;

end
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