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SUMMARY

The objective of the proposed research is to design and evaluate end-to-end

solutions to support the Quality of Experience (QoE) for the Internet Protocol Televi-

sion (IPTV) service. IPTV is a system that integrates voice, video, and data delivery

into a single Internet Protocol (IP) framework to enable interactive broadcasting ser-

vices at the subscribers. It promises significant advantages for both service providers

and subscribers. For instance, unlike conventional broadcasting systems, IPTV broad-

casts will not be restricted by the limited number of channels in the broadcast/radio

spectrum. Furthermore, IPTV will provide its subscribers with the opportunity to

access and interact with a wide variety of high-quality on-demand video content over

the Internet. However, these advantages come at the expense of stricter quality of

service (QoS) requirements than traditional Internet applications. Since IPTV is con-

sidered as a real-time broadcast service over the Internet, the success of the IPTV

service depends on the QoE perceived by the end-users. The characteristics of the

video traffic as well as the high-quality requirements of the IPTV broadcast impose

strict requirements on transmission delay. IPTV framework has to provide mecha-

nisms to satisfy the stringent delay, jitter, and packet loss requirements of the IPTV

service over lossy transmission channels with varying characteristics.

The proposed research focuses on error recovery and channel change latency prob-

lems in IPTV networks. Our specific aim is to develop a content delivery framework

that integrates content features, IPTV application requirements, and network charac-

teristics in such a way that the network resource utilization can be optimized for the

given constraints on the user perceived service quality. To achieve the desired QoE

levels, the proposed research focuses on the design of resource optimal server-based

xix



and peer-assisted delivery techniques. First, by analyzing the tradeoffs on the use of

proactive and reactive repair techniques, a solution that optimizes the error recov-

ery overhead is proposed. Further analysis on the proposed solution is performed by

also focusing on the use of multicast error recovery techniques. By investigating the

tradeoffs on the use of network-assisted and client-based channel change solutions,

distributed content delivery frameworks are proposed to optimize the error recov-

ery performance. Next, bandwidth and latency tradeoffs associated with the use of

concurrent delivery streams to support the IPTV channel change are analyzed, and

the results are used to develop a resource-optimal channel change framework that

greatly improves the latency performance in the network. For both problems studied

in this research, scalability concerns for the IPTV service are addressed by properly

integrating peer-based delivery techniques into server-based solutions.
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CHAPTER I

INTRODUCTION

Internet Protocol Television (IPTV) is a system that is used to deliver the Internet

television services across the Internet Protocol (IP) infrastructure [107, 111]. IPTV

integrates voice, video and data delivery into a single IP framework to enable inter-

active broadcasting services to the subscribers. It promises significant advantages for

both service providers and subscribers. Unlike conventional broadcasting systems,

IPTV broadcasts will not be restricted by the limited number of channels in the

broadcast/radio spectrum. Furthermore, IPTV will provide its subscribers with the

opportunity to access and interact with a wide variety of high-quality on-demand

video content over the Internet.

However, these advantages come at the expense of stricter quality of service (QoS)

requirements than more traditional Internet applications, such as Voice over IP (VoIP)

or Video on Demand (VoD) [51, 30]. Since IPTV is considered as a real-time broad-

cast service over the Internet, the success of the IPTV service depends on the quality

of experience (QoE) perceived by the end-users. The IPTV system has to support a

wide-range of transmission channel characteristics (i.e., varying packet loss rates and

transmission delays) between the content providers and the end-users. The charac-

teristics of video traffic as well as the high-quality requirements of IPTV broadcast

impose strict requirements on transmission delay. IPTV framework has to provide

mechanisms to satisfy the stringent delay, jitter, and bandwidth requirements over

lossy transmission channels.

The objective of the proposed research is to design and evaluate end-to-end so-

lutions for reliable IPTV service. The main focus of the proposed research is on the

1
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Figure 1: Architectural framework for an IPTV network.

design of (i) effective packet-loss recovery techniques to suppress the negative impact

of packet losses on the perceived broadcast quality and (ii) resource-efficient chan-

nel change techniques. Our specific aim is to develop an error-recovery framework

and a channel change framework that integrate content features, IPTV application

requirements, and network characteristics in such a way that the network resource

utilization can be optimized for the given constraints on the user-perceived quality. To

achieve the desired quality of experience, the proposed research focuses on two main

research topics: the design of resource optimal server-based and peer-based content

delivery techniques. Within the proposed framework, first the tradeoffs on the use of

proactive and reactive repair techniques are analyzed and a solution that optimizes

the error recovery overhead is proposed. Further analysis on the proposed solution is

performed by also focusing on the use of multicast error recovery techniques. Scala-

bility concerns for the IPTV error recovery are addressed by integrating peer-based

2



error recovery techniques into the proposed server-based error recovery framework.

The impact of channel dynamics on error recovery is investigated by focusing on the

use of IPTV over wireless networks. Consequently, we propose resource-optimal peer-

based recovery techniques for systems that cannot make efficient use of server-based

error recovery. We next focus on the channel change problem in IPTV networks and

propose a realistic evaluation framework to analyze the tradeoffs associated with the

delivery of concurrent channel change streams. The overreliance of the concurrent

delivery techniques on the availability of access network bandwidth leads us to de-

velop a peer-assisted server-based channel change framework that effectively addresses

the service quality requirements of the IPTV service during channel change without

introducing significant overhead in the network.

The rest of the chapter is organized as follows. In Section 1.1 we present a brief

overview of the reliable content delivery techniques and their use within the IPTV

framework. In Section 1.2 we examine the channel change problem in IPTV networks,

and present an overview of earlier approaches developed to minimize its impact on

IPTV service quality. The organization of the thesis and our contributions are stated

in Section 1.3.

1.1 Error Recovery Problems in IPTV Networks

Internet Protocol Television (IPTV) is a system to deliver broadcast-quality video

content over the Internet Protocol (IP) infrastructure [106, 72]. IPTV is offered by

the service providers as part of the triple play service, which consists of voice over

IP (VoIP) and Internet services. Since the IPTV service supports linear broadcast,

time-shifted broadcast, and video-on-demand services, there is virtually unlimited

content that can be delivered to users at anytime. Furthermore, interactive services

offered within the IPTV service can significantly enhance the user experience.

3



However, despite these advantages, IPTV presents the challenge of delivering con-

sistent quality of experience (QoE) to end-users over the packet-switched IP networks

[13, 84, 88, 7]. The key issues that significantly affect the user experience are net-

work congestion, link-errors over the access network, slow channel change times, and

insufficient feedback. To achieve the desired Visual Quality of Experience (VQE), we

need to improve the video quality at the end-users while utilizing network resources as

efficiently as possible. However, the expected penetration levels for the IPTV service

make this a very challenging task because of scalability-related concerns. Addition-

ally, as the IPTV content is highly sensitive to packet loss, delay, and jitter [37],

supporting large-scale distribution of high-bandwidth IPTV streams requires service

providers to upgrade their network infrastructure [51, 31] in a way that the level of

interruption in the core and distribution networks are minimized. Furthermore, in-

telligent protocol designs are required to minimize the detrimental impact of packet

loss and jitter, to speed up the channel change process, and to monitor the quality of

experience [17, 4, 9].

To deliver satisfactory quality of experience, Digital Video Broadcast (DVB) stan-

dard suggests a maximum of one video-artifact per two-hour broadcast [1], which

corresponds to target packet loss rates on the order of 10−6 to 10−7.1 Considering

the transmission link characteristics of DSL networks, which represent the most com-

mon broadband technology along the last-mile, achieving the required target packet

loss rate becomes a challenging task. Strong signal attenuation and external noises

(i.e., background, crosstalk, and impulse noises) have a significant impact on the link

quality perceived by the end-users. The noises observed along the last-mile typically

generate bit-error rates of 10−7, which translates to packet loss rates on the order of

10−3. The impact of crosstalk noise can be mitigated using coding techniques such

1If the errors are random, the upperbound on the packet loss rate is on the order of 10−6− 10−7.
On the other hand, if the errors occur in bursts, the upperbound on the packet loss rate is given by
10−5 − 10−6 [19].

4



as Trellis Coding [103]. The characteristics of the impulse noise (e.g., non-stationary

and state-dependent behaviors), on the other hand, make the statistical analysis diffi-

cult [40, 74, 75, 77]. To reduce the impact of impulse noise, cycling redundancy check

(CRC) and FEC coding is applied to the incoming data at the ADSL transceiver unit

(ATU). The resulting codewords are then interleaved before the Tone Ordering mod-

ule encodes them into discrete multi-tone (DMT) symbols. As a result, protection

can be offered up to a certain number of impulse noise events, which is referred to as

the Impulse Noise Protection (INP). If the number of impulse noise events is higher

than INP, then the whole interleaved block is lost. On the other hand, to minimize

the impact of packet losses caused by network failure events, various technologies

can be used such as Multi-protocol Label Switching Traffic Engineering (MPLS-TE)

Fast Reroute or Multicast-only Fast Reroute [70, 50, 3, 110]. However, to achieve

satisfactory results, we need to complement these network level approaches with the

appropriate application level approaches.

In short, the protection offered by the network is limited and in certain cases may

not be sufficient to support the end-to-end QoS requirements of the IPTV service.

When the IPTV QoS requirements cannot be met by the network infrastructure,

IPTV services need to rely on protocols that are offered above the IP layer [69, 30].

Considering the nature of the content delivered to end-users, one possible solution is

the use of error concealment techniques [102]. Error concealment makes use of the

residual redundancy in the multimedia stream and can achieve satisfactory results

in the perceived quality [55]. However, because of concerns on decoding complexity

and bandwidth overhead, currently deployed error-control mechanisms are typically

based on multicast forward error correction (FEC) and unicast repair techniques (i.e.,

automatic repeat request, ARQ).

For the multicast FEC service, application-layer forward error correction (AL-

FEC) techniques are typically considered [69]. AL-FEC is an end-to-end error control
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technique that operates at the application layer, the layer above the IP layer [100].

To enable its operation, IPTV stream is partitioned into source transmission blocks

so that erasure coding can be applied on each block separately to create the repair

packets necessary to recover from a certain amount of packet loss. There are various

erasure codes that can be utilized, e.g., optimal parity check and Reed-Solomon (RS)

codes [82], or near-optimal Raptor codes [94]. Among these codes, Reed-Solomon

codes can achieve the best recovery performance. However, RS codes are not gener-

ally preferred for the IPTV framework due to the complexity required to implement

them [69]. Instead, parity check and raptor codes are the more preferred choices to

implement the AL-FEC.

To implement AL-FEC within the IPTV framework, multiple approaches can be

used. For instance, we can apply AL-FEC directly on the UDP flows, on the RTP

packet streams, or within the MPEG-2 TS 2. DVB specifications provide the option

of incorporating AL-FEC on top of RTP or UDP. The solution proposed by the

DVB standardization group to implement AL-FEC (see [10]) uses a combination of

parity check based Pro-MPEG COP3 code [6] and the Raptor code [94]. Assuming a

layered video service is implemented, parity check code is utilized in the base layer,

whereas Raptor code is utilized in the enhancement layer. There are typically two

approaches to generate the repair packets for the COP3 code, which are referred to as

one dimensional and two dimensional approaches. We illustrate these approaches in

Figure 2. In the given figure, the source packets, on which the AL-FEC is applied, are

the RTP packets. To generate the repair packets, we first interleave the source packets.

One-dimensional code is generated by applying parity check on each row or column

(for instance by using the exclusive OR operation [18]). For the two-dimensional

code, parity check is applied on both the row and the column to generate a total of

2IPTV content is typically delivered using the real-time transport protocol (RTP) [5] 3, for which
the packets are generated by encapsulating multiple fixed-length (188 bytes) MPEG-2 transport
stream (TS) packets [2].
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D + L repair packets. However, note that, certain limits are imposed on the use of

the D and L parameters by the Pro-MPEG Forum, as stated in [6] 4.

p1 p2 pL

pL+1 pL+2 p2L
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RTP packets

FEC packets

Figure 2: Application layer FEC implementation.

For the unicast repair service, the most common choices are requesting the repair

packets from a dedicated retransmission server (server-based repair) [19, 80, 20] or

from other users (peer-based repair)[64, 68, 67]. The former approach assumes that

the retransmission server receives the source packets through the IPTV multicast

and holds on to the received source packets until the timer to keep them in the cache

expires. Error recovery process is initiated once the users make a recovery request to

the retransmission server, which responds by sending the repair packets using unicast.

Peer-based recovery approach, on the other hand, requires the repair packets to be

transmitted by the users connected to the same IPTV multicast session. For the

wireline networks, both approaches are shown to be effective in quickly recovering

from packet losses observed along the last-mile.

To investigate the performance comparisons of multicast FEC and unicast repair

techniques, various research studies have been performed. These studies essentially

4The limits on the values of L and D are stated as follows: L × D < 100, 1 ≤ L ≤ 20, and
4 ≤ D ≤ 20.
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focus on analyzing the tradeoffs of utilizing FEC vs. ARQ to recover from packet

losses [29, 8]. These studies typically focus on the impact of three potential sources

for packet loss in DSL networks: stationary noise causing random loss, impulse noise

causing bursty loss, and outages. The comparisons between the FEC and ARQ

approaches lead to the conclusion of ARQ being the better approach for typical loss

scenarios. One reason for that is, compared to ARQ, performance of FEC has been

shown to be more dependent on the loss characteristics of the network, especially if

the losses are bursty in-nature. On the other hand, for the outage scenarios, it has

been shown that achieving the targeted service quality levels significantly increases

the error recovery costs for both FEC and ARQ.

Even though the initial IPTV-related studies have focused on the implementation

of IPTV over the wireline networks, as the wireless broadband technologies became

more accessible, some of the focus has shifted to the development of protocols to

support IPTV traffic over the wireless networks [83, 99, 91, 54, 93, 96, 63, 104].

Some of these works focused on the reliability issues observed in a home network

[112, 76]. For instance, in [112] the authors address the typical losses observed in

a home network and propose modifications to the set-top box (STB) and the home

gateway modules to recover from these losses using AL-FEC. In [104], the authors

propose a hybrid adaptive FEC and ARQ mechanism to recover from losses observed

at the last hop. In [63] the authors propose a hybrid error recovery approach, which

integrates application layer FEC with MAC layer ARQ. Many of the other works focus

on developing techniques to efficiently deliver the IPTV content over the WiMAX

networks [26, 43, 92]. For instance, in [43] the authors propose a cooperative MIMO-

based error recovery approach to support error recovery for the WiMAX networks. In

[92] the authors propose a cross-layer framework, which is used to overcome multiuser

channel diversity in wireless networks. To achieve the stated objective, the authors

utilize multiple description coding (MDC) on scalable video bitstreams at the source
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together with superposition coding (SCM) on multicast signals at the channel.

1.2 Channel Change Problems in IPTV Networks

In IPTV networks, channel change latency (or zapping delay) is another major con-

cern in achieving the targeted Quality of Experience (QoE) levels at the user side

[51, 30]. The reason for that is because, unlike the traditional broadcast systems

where the viewers have immediate access to all the available channels locally, in

IPTV networks, the users have immediate access to only a limited number of chan-

nels locally. 5 As a result, channel change requests oftentimes need to go through

the network. As the requests and the IPTV content are delivered over the IP infras-

tructure, users typically experience longer latency values for the displayed content

up to a few seconds, much higher than the acceptable level of ≤ 0.5 seconds [53].

Additionally, due to network dynamics (i.e., time varying characteristics of the con-

nection quality and/or network/user resource availability), perceived latency values

at the client side can vary significantly, thereby making it more difficult to achieve

the desired service quality levels.

We illustrate the timing for the basis channel change operation in IPTV networks

in Figure 3. The channel change process in IPTV networks can be summarized

as follows. After a client makes a channel change request, the set-top box (STB)

first checks whether the requested content is already available (which can happen, for

instance, if the client has already subscribed to the multicast session for the requested

channel). If that is the case, STB decodes the available content and starts displaying

the channel. If, however, the requested content is not locally available at the STB,

then an IGMP leave message is generated by the STB for the currently viewed channel

5The number of channels locally available at the client side depends on various factors, such as,
average bandwidth requirement for an IPTV session and the downlink bandwidth availability at the
access network. For instance, a 18MBps downlink connection at the client side can support at most
six standard definition streams of 3Mbps delivery rate, or two high definition streams of 8Mbps
delivery rate, or a combination of these two, i.e., one high definition stream and three standard
definition streams.
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Figure 3: Basis channel change framework.

and an IGMP join message is generated for the requested session. The request message

is then forwarded through the residential gateway towards the network until an IGMP

proxy server is found that has immediate access to the requested content. Depending

on the IGMP reports generated by the downlink servers, multicast tables may need

to be updated to ensure that the requested session’s multicast data is forwarded

towards the client’s access network. After the STB starts receiving the content for

the targeted session, it first needs to wait for the delivery of the next intra-coded

key-frame. As soon as the client finishes receiving the key-frame packets, it initiates

the buffering operations-by filling the dejittering and the decoding buffers-before the

received content can be displayed on the client’s audio-visual (AV) equipment.

In general, there are three major factors that contribute to the perceived channel

change latency at the client side [20]:

• The first contributing factor is the Internet Group Management Protocol (IGMP)

signaling latency, which represents the latency caused by the multicast session

leave and join events. The signaling latency is typically considered to have min-

imal impact on the overall channel change latency, since it usually has a value
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of ≈ 100ms and its value does not show significant variations in time.

• The second contributing factor is the key information acquisition latency, which

represents the total latency associated with the acquisition of the program spe-

cific information (PSI) and the random access point (i.e., key-frame or I-frame).

Here, RAP acquisition delay represents the major contributing element to the

key information acquisition latency. That is because the average values for the

RAP acquisition delay is considered to be within the range of 250ms-to-1s,

whereas the average delay to acquire the PSI tables is assumed to be around

100ms [95].

• The third contributing factor to channel change latency is the buffering latency,

which corresponds to waiting times associated with the error recovery, dejit-

tering, and decoding phases. Error recovery phase is used for the clients to

recover from their losses using proactive FEC or reactive ARQ. Hence, buffer-

ing requirements for the error recovery phase are determined based on the user

perceived quality along the downlink transmission channel and the level of re-

covery support provided by the network. Dejittering phase is used to smooth

out the jitter in the received content, and, in general, has little impact on

the channel change latency (especially for the content delivered over wireline

transmission channels). Conversely, latency associated with the decoding phase,

which represents the minimum time required by the decoding buffers to avoid

an underflow situation, is as important as the RAP acquisition latency and is

the second major contributor to the channel change latency.

In IPTV networks, implementing the basis channel change operation as is, with-

out utilizing additional means to reduce the user-perceived latency, is known to cause

unsatisfactory quality of experience results [30]. The main reason for that is because
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the aggregate value for the RAP acquisition and buffering latencies oftentimes ex-

ceeds the minimum acceptable latency threshold. To minimize the occurrence rate of

such scenarios, various studies have been performed that aim to improve the overall

latency performance in IPTV networks. These studies have so far focused on propos-

ing modifications at the content level (i.e., during the video coding and processing

phases), at the client level (i.e., upgrades in the set-top box), and at the network

level (i.e., upgrades to the network infrastructure). We next give a detailed overview

of these approaches.

1.2.1 Content-adaptive Solutions

Content-adaptive solutions represent the approaches that focus on the video coding

aspect of the latency problem. To efficiently support the delivery of the channel

change content from the head-end servers, these solutions typically require the use

of additional tune-in streams to accompany each of the supported source streams.

Tune-in streams are generally used to deliver lower-quality-but which enables quick

channel switching-content to the end users. For instance, the architecture proposed

in [23] requires the encoder to generate additional lower-quality key-frames, which

are then transmitted together with the corresponding source stream. Doing so helps

the channel switching clients to promptly start the decoding process for the received

content, without waiting for the original key-frame packets to be received from the

source stream. To improve the resource utilization efficiency associated with the de-

livery of the tune-in streams, source stream can be encoded with less number of RAPs

[23, 48]. It is also possible to reduce the decoding latency by increasing the transmis-

sion frequency of the synchronization frames, when compared to the original GOP

transmission scenario [47]. Here synchronization frames correspond to the random

access points.

Note that, lower-quality tune-in streams are essentially used to synchronize faster
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with the source stream, which normally occurs after the clients receive a full-resolution

key-frame from the source stream. However, tune-in streams can also be used to

deliver full-resolution key-frames to the channel switching clients [11, 16]. For the

given scenario, channel switching client joins the source stream as soon as all the key-

frame packets are received from the tune-in stream. Consequently, channel switching

clients typically experience a lower-quality viewing period until the next full-resolution

key-frame is received from the source stream [48, 46]. To minimize the drift problem

that may occur during the decoding phase, key-frames transmitted along the tune-

in streams can be generated with that objective in mind, for instance, by using the

decoded version of the source stream to generate the tune-in streams [46].

The last set of approaches within this category focus on the specific characteristics

of the video coding technique that is used to generate the IPTV content. For instance,

scalable video coding (SVC) option of the H.264 codec can be used to generate, for

each session, two data streams, one of which carries the base layer and the other carries

the enhancement layer [61, 62]. Here base layer stream is typically used to gain quick,

but, low-quality access to the channel change data. Since the bandwidth requirements

for the base-layer streams are much smaller than that of the originally encoded source

stream, channel switching client can subscribe to a number of base layer streams

corresponding to, for instance, the most accessed channels or the channels adjacent to

the previously viewed channel. In doing so, channel change latency for the subsequent

requests can be significantly reduced at the cost of lower quality viewing during the

given surfing period 6. Upon settling on the last accessed channel, channel switching

client can join the enhancement layer stream associated with the last selected session

to achieve the highest quality of experience. Similar performance improvements in

channel change latency can be achieved by integrating the gradual decoder refresh

6Surfing period refers to the period, during which the client makes frequent channel change
requests.
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option in H.264 into the tune-in streams, with minimal quality loss observed during

the switch from the tune-in stream to the source stream [45].

1.2.2 Network-assisted Solutions

Network-assisted solutions represent the approaches that require the use of additional

streams to directly support the channel change process at the network infrastructure.

These streams are typically created at two distinct locations in the network: (i) at

the head-end servers located at the Video Hub Office (VHO), or (ii) at the dedicated

servers installed near the access network (e.g., at the Video Switching Office (VSO)).

For instance, in [49] the authors propose to combine tune-in streams, which are

created at the head-end servers, with in-advance delivery of popular channels to the

edge network to reduce the channel change latency. To meet the service quality

requirements, channel change parameters for the given approach, that is, the set of

IPTV channels delivered to the edge routers and the key-frame transmission rate

for the tune-in streams, are dynamically determined based on the tradeoffs between

network utilization and channel change latency.

On the other hand, the approach proposed in [30] focuses on the use of dedicated

servers installed near the edge network to support the channel change process. Specif-

ically, the dedicated server is used to implement a unicast-based burst transmission

strategy to deliver accelerated high-rate data bursts to the channel switching clients

to allow these clients to quickly fill up their STB buffers and initiate their decod-

ing phases. A similar approach is proposed in [20], where the authors integrate the

channel change mechanism into a previously developed service provider-driven error

control framework to deliver better quality of experience to the channel switching

clients [19]. Note that, these approaches typically deliver unicast bursts to channel

switching clients until they fully synchronize with their corresponding source streams.

As a direct consequence of this, average servicing time for the channel change requests
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can be quite significant (close to 10 seconds or more). Hence, the amount of data

that needs to be delivered per request can easily become overwhelming for the server,

especially during globally shared surfing periods (or commercials).
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Figure 4: Channel change system that uses unicast bursts.

To address the scalability problems that may arise with the use of unicast-based

delivery techniques and minimize the overhead associated with the delivery of channel

change data to the clients, a few studies have adopted the multicast-based transmis-

sion strategy. For instance, in [21] dedicated server is used to multicast time-shifted

replicas of the source stream to minimize the channel change latency. These channel

change streams are delivered at a rate that is higher than the source multicast rate

to enable for faster convergence to the source streams. In doing so, overhead associ-

ated with the delivery of these additional streams can be significantly reduced, as the

server stops the delivery of inactive streams after the clients converge to the source

streams. In [86] to also reduce the buffering latency the authors propose a similar
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approach, which uses higher rate tune-in streams that deliver constantly shifted and

reordered version of the source stream to the clients. However, since the ordering rule

does not take into account the type of packets delivered along the tune-in stream,

performance improvements strictly depend on the time of request. To minimize the

performance loss caused by this limitation, in [85] a new ordering rule is proposed for

the tune-in stream by taking into account the type of each packet transmitted along

the source stream. In doing so, latency performance can be further improved (e.g.,

by an additional 250ms) when compared to the approach proposed in [86].

1.2.3 Client-side Solutions

Client side solutions represent the approaches that aim to limit the system up-

dates/upgrades to the client side, thereby allowing them to be implemented on a

wider scale, potentially independent and irrespective of the support offered by the

IPTV service provider. These approaches typically require the clients to prejoin a

selective set of channels concurrently during the channel switching process; if the

targeted session is one of the pre-joined channels, then channel change latency can

be significantly reduced.

For instance, the solution proposed in [25], which is considered as one of the earliest

studies on this topic, uses an adjacent-channel join approach, where the clients join

to channels that are adjacent to the previously selected channel during the channel

change process. If the received channel switching request targets one of the adjacent

channels, then the client can immediately start watching the selected channel without

experiencing additional network latency. However, if the adjacent channels do not

represent the optimal set of sessions for the clients to prejoin (i.e., selections are

oftentimes a miss rather than a hit), then the overhead associated with the delivery

of these streams can become a major concern. To limit the disruptive impact of

inaccurate channel selection decisions, the set of prejoined channels can be determined
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by using the channel popularity information aggregated at a dedicated rating server

[60]. The accuracy of the channel switching decisions can be further improved by

integrating the clients’ remote control behaviors and personal preferences into the

decision process [52]. However, in general, it is sufficient to use the information

on channel access frequencies and viewing durations to estimate the set of channels

delivered to the clients [73].

Note that, an important limiting factor for the client-side solutions is the band-

width required to receive and deliver extra channels to the clients. If the number of

IPTV clients connected to the same access point is sufficiently high, then the resulting

overhead associated with the channel change process can be overwhelming. To limit

this overhead, a finite-duration multichannel delivery approach can be used to limit

the duration for the clients to join multiple sessions simultaneously. For instance, in

[98], clients are required to join two-to-three additional multicast streams, each of

which corresponds to an adjacent channel, after each channel change request. For the

given approach, clients stop receiving the prejoined sessions after a predetermined

idle period, during which no channel change request is made. The finite-duration

multichannel delivery approach is shown to provide significant savings in the channel

change overhead. This approach is further extended in [108] to also cover for the

random channel switching scenarios. Note that, since finite-duration multichannel

delivery approaches require the clients to join additional streams after the first chan-

nel switching request is made (i.e., the request that starts a surfing period), latency

perceived during the first channel change event does not change. To address this prob-

lem, in [58] the authors propose a predictive tuning approach with special emphasis

on the latency experienced during the first channel switching event. To optimize the

overall latency performance, clients are required to prejoin different numbers of chan-

nels during the surfing and the viewing periods. The optimal number of channels to

prejoin is determined using a Semi-Markov based analysis. Resource usage efficiency
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for the given framework can be further improved by incorporating the button pushing

preferences into channel switching behavior analysis.

The last set of approaches considered in this category focus on channel reordering

schemes. Specifically, by clustering channels with high access rates, channel switching

performance can be indirectly improved by reducing the number of channel switching

requests required to reach the targeted session for typical button-pushing activities

(i.e., up and down) [59]. This approach can be further improved by using a circular

channel reordering scheme that interleaves popular channels in alternating-upward

and downward-directions to evenly distribute the accessing load in either directions

[79].

1.3 Organization and Contributions of the Thesis

The rest of the thesis is organized in chapters, each of which discusses a separate

research problem. Introduction section within each chapter presents the motivation

for the stated problem and discusses the related work. Proposed architectures and

the results on the experimental and the theoretical studies are presented within the

chapter bodies. Discussions on the findings for the proposed research are presented

within the conclusion section of each chapter. The architectures proposed to address

the error recovery problem in IPTV networks are discussed in Chapters 2-5, and

the architectures proposed to address the channel change problem in IPTV networks

are discussed in Chapters 6-7. The outline of the thesis and our contributions are

summarized as follows.

In Chapter 2 we propose a novel performance evaluation framework for IPTV net-

works to develop resource efficient error control techniques. Specifically, the proposed

framework is used to analyze the performance tradeoffs associated with the delivery

of repair packets using proactive and reactive error recovery techniques. Then, using

the basic characteristics of the proposed framework, a practical server-based error
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recovery protocol is proposed to achieve the optimal tradeoffs in IPTV error recovery.

In Chapter 3 we address the error recovery problem for the correlated packet loss

scenarios. For that purpose, we develop novel spatial loss correlation models that are

applicable to IPTV networks. We then design an error recovery framework that is

capable of exploiting the spatial correlation characteristics of the network. Finally,

using the proposed packet loss models and recovery protocols, performance tradeoffs

associated with the use of unicast- and multicast-based error recovery strategies are

analyzed for correlated packet loss scenarios in IPTV networks.

In Chapter 4 we investigate the use of peer-based error recovery strategies within

a server-based error recovery framework to address the scalability concerns in IPTV

networks. For that purpose, a novel server-assisted peer-based error recovery solution

is proposed to minimize the probability of the Error Recovery Server entering a non-

responsive state by pushing the error recovery load towards the end-users whenever

possible. The information on the perceived network characteristics is used to make

resource-optimal decisions to find the recovery-peers. During the decision process,

latency and fairness requirements are simultaneously evaluated to avoid overutilizing

the resources at the peers and the Error Recovery Server.

In Chapter 5 we focus on the reliable delivery of IPTV content over wireless ac-

cess networks and propose a novel resource-efficient cooperative multiple-input single-

output (MISO) technique to deliver multicast IPTV content in WiMAX networks.

To support the strict service quality requirements for the IPTV service within a co-

operative diversity-driven framework, a two-phased transmission strategy is utilized

which consists of a multicast phase (to deliver from the base station to the clients)

and a cooperation phase (for delivery within the active client set). To maximize the

session throughput for a given set of clients, an adaptive rate selection technique is

proposed within the given cooperative recovery framework.
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In Chapter 6 we focus on the channel change problem in IPTV networks and pro-

pose a realistic analytical framework to evaluate the performance of concurrent stream

delivery-based (CSD) channel switching techniques in IPTV networks. Results from

the latest statistical research on user distributions and channel switching activities

in IPTV networks are utilized to develop the proposed framework and improve the

accuracy of performance evaluations for CSD-based channel switching techniques.

In Chapter 7 we address the scalability-related concerns in server-based channel

change frameworks by proposing a novel user-assisted server-based channel change

framework. The proposed solution integrates the capabilities of a dedicated channel

change server with that of the IPTV subscribers to create a resource-efficient and

scalable channel change framework.
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CHAPTER II

A GENERALIZED HYBRID FEC/ARQ-BASED ERROR

RECOVERY FRAMEWORK FOR IPTV NETWORKS

2.1 Introduction

The success of the IPTV broadcast depends on the quality of experience (QoE) per-

ceived by the end-users [84, 88, 51, 13]. Since IPTV is a real-time broadcast service,

it is often associated with stringent quality of service (QoS) requirements. The gen-

eral consensus on the minimum acceptable QoS level can be stated as at most one

perceivable error during a two-to-four hour broadcast . Because of these strict quality

requirements, strong error recovery techniques are required to protect the content

that is delivered to end-users and recover from the occasional packet losses observed

at different sections of the network. To guarantee the required protection levels,

proactive (FEC-based) and/or reactive (ARQ-based) error recovery techniques are

typically utilized [29, 69, 19].

Figure 5 depicts a general error-recovery framework, which consists of proactive

forward error correction (FEC) coding and reactive repair services. In proactive FEC

coding, the level of protection provided by the FEC code is selected to ensure that

a substantial portion of packet losses caused by the inherent characteristics of the

network (e.g., Repetitive Electrical Impulse Noise (REIN) for the DSL networks) can

be recovered. In reactive repair service, as illustrated in Figure 5, each unrecoverable

packet loss triggers a repair request from the set-top box (STB) to the Error Recovery

Server (ERServ). Reactive repair service can be utilized together with the proactive

FEC coding to assist proactive error correction or without any proactive FEC coding.

We can state the characteristics of the proactive recovery as follows. Here, repair
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Figure 5: IPTV error control techniques.

packets are transmitted together with the source packets but over different multicast

sessions. In doing so, multi-layer error protection services can be offered to any

user requesting the service. The protection level for proactive repair is typically

determined at the beginning of a session and preserved throughout the session. If

a single multicast session is used for the delivery of proactive repair packets, then

recovery strength is selected based on a highly conservative estimate of the packet

loss rate, which may lead to inefficient bandwidth utilization.

Reactive repair service, on the other hand, is initiated by the end-user after a

packet loss is observed. End users initiate the reactive recovery process by sending a

request packet to the Error Recovery Server. After receiving a repair packet request,

the Error Recovery Server responds to the request by sending a unicast repair packet

to the user making the request. Reactive repair service significantly reduces the error

recovery overhead, since repair packets are only transmitted after a packet loss is

observed. However, effectiveness of the reactive recovery process is limited for two

main reasons. First, since reactive recovery service is initiated after a packet loss

is observed, round-trip-time (RTT) between an end-user and the Error Recovery
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Server becomes a critical measure of success. Because of the time-varying network

characteristics, there is a non-zero probability of failing to deliver the repair packet

on-time. Second, since the Error Recovery Server is expected to serve thousands of

users, the probability that the server becomes overloaded with too many requests

has a non-negligible probability. During such periods, incoming requests experience

significant delays at the Error Recovery Server, which in turn may result in late

deliveries for many users. Consequently, these users would suffer from occasional

quality degradations. From a quality of experience point of view, neither of these

cases is acceptable.

If we compare reactive and proactive error recovery approaches, we observe that

each approach is advantageous in certain scenarios and disadvantageous in others.

For instance, if users observe high packet loss rates, a proactive approach would be

preferred over a reactive approach, and vice versa. In short, network characteristics

play a major role in finding an optimal solution. However, since network dynamics

create a highly complicated and non-stationary system view at any given point in

time, neither approach alone would be sufficient to reach an optimal solution. Fur-

thermore, the rate at which the changes occur may be so fast that the system cannot

take immediate action to reach optimal performance. As a result of these changes,

sudden performance degradations may be observed by the end-users.

To make the IPTV system react to changes in the network state in a timely man-

ner and preserve the end-user service quality, we need to utilize both error recovery

approaches at the same time. However, utilizing both approaches at the same time

without introducing limits to their usage would lead to over-utilization of the system

resources. Furthermore, as the number of users increases, scalability problems may

arise. In short, to effectively combat the time-varying packet-loss dynamics, it be-

comes necessary to implement a hybrid error recovery service, where the constraints

on visual quality and resource utilization are simultaneously evaluated. In this study,
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our objective is to develop a hybrid error recovery architecture that can be utilized

to evaluate the performance tradeoffs associated with the use of the IPTV service.

We present a detailed analysis of the proposed error recovery framework, which can

be used to achieve effective and resource efficient error control in IPTV networks.

The rest of the chapter is organized as follows. In Section 2.2 we present our

system model. In Section 2.3 we develop the equations necessary to analyze the

performance of the proposed framework. In Section 2.4 we state the optimization

problem for the given system. In Section 2.5 we present a practical error recovery

solution that makes use of the proposed framework. In Section 2.6 we present the

simulation results for the proposed framework. Section 2.7 concludes the chapter.

2.2 System Model

We use the IPTV system architecture shown in Figure 6 for our analysis. In the given

system, an Error Recovery Server (ERServ) is placed between the Headend Server

(HeServ) and the end-users. HeServ is responsible for the broadcast of source video

packets towards the end-users and the ERServ, the latter of which caches the received

source packets until the deadline to keep them expires. To serve all the users in the

network, multiple error recovery servers are typically utilized, each of which targets

a distinct set of users. The process to distribute the end-users to multiple ERServs

is out of the scope of this study, hence we will omit its discussion. Throughout the

rest of the chapter, we will therefore focus on the operation of a single ERServ.

Proactive error control relies on the use of application-layer FEC (AL-FEC), which

uses interleaved parity coding on a group of video source packets (which we refer to as

the transmission block) to create the FEC packets. This process is typically achieved

on either one or two dimensions. Generated AL-FEC packets are assumed to be

delivered to end-users error free (for instance, by transmitting them on a different

transmission block).
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Figure 6: IPTV error recovery framework.

Reactive error recovery process initiates after an end-user decides that a source

packet is lost (or cannot be recoverable). The end-user observing the loss sends a

repair packet request directly to the ERServ. If more than one packet is lost within

the decision period, then the end-user sends a cumulative repair packet request for

all the packets lost within that group. Each request at the ERServ is processed

on a first-come-first-serve basis. After the request is processed, ERServ makes the

decision on how to respond to the repair packet request (i.e., whether to respond,

when and how to respond, etc.). In our study, we assume that the ERServ responds

to each of the received repair packet requests immediately, and we assume the use of

a unicast-based source packet retransmission approach at the ERServ.

To model the packet loss process we use the following approach. We assume the

packet losses to be bursty, and to account for the varying situations that corresponds

to differing burst-length scenarios, we consider the use of a Markov Modulated Inho-

mogeneous Poisson Process (MM-IPP) with K-states, where the states represent the

25



varying burst lengths. In the current study, we focus on a single-type burst length

to develop our model. Furthermore, to have a better understanding of the under-

lying techniques, we will restrict the arrivals within each state to errors affecting a

single packet. The arrival rates within each state will then be adjusted accordingly

to emulate the worst-case scenarios for the bursty packet loss process.

In the next section, we present an in-depth analysis of the proposed error recovery

framework.

2.3 Analysis of the Error Recovery Framework

The objective, here, is to minimize the error-recovery overhead for the IPTV networks

under a given set of visual quality constraints. Our main focus then becomes to

find the resource optimal proactive and reactive protection parameters for all users

connected to the same Error Recovery Server. We use the parameter χ to represent

the error-recovery overhead. The visual quality constraint refers to the minimum end-

user experience required to satisfy the quality demands of an end-user. The parameter

Υ is used to represent the upperbound on the visual-quality loss performance.

We state the optimization problem as follows:

minχ s.t. Θ ≤ Υ (1)

where Θ represents the visual quality-loss performance observed during the transmis-

sion period of a given IPTV multicast session.

We assume that the quality-loss metric at each user can be analyzed independently.

Therefore, Θ can be expressed as a combination of the individual quality loss metrics,

i.e., θ(ν) ≤ Υ, ∀ν ∈ U , where U represents the set of end-users and θ(ν) represents

the amount of quality degradation observed by the user ν during an active session.

The error recovery process requires the source data to be partitioned into transmis-

sion blocks. For the proactive error recovery process, each of these blocks is evaluated

separately and independent of the other transmission blocks. One consequence of this
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assumption is that unrecoverable packet losses observed in a transmission block has

no impact on the visual quality performance of another transmission block. 1 Based

on these assumptions, we can restate the optimization problem as follows:

θ(ν) =
∑
∀π∈Π

θ(ν, π) ≤ Υ, ∀ν ∈ U (2)

where θ(ν, π) represents the quality loss observed by the user ν during the transmission

block π, and Π represents the set of transmission blocks in a given session, S.

To represent the visual quality loss performance, we use the unrecoverable packet

loss rate. The assumption on the inter-block independence regarding the visual qual-

ity loss performance allows us to focus on the quality performance within a single

transmission block. If we take the expectation of both sides in (2), we achieve the

desired form:

E[θ(ν, π)] ≤ Υ

|Π|
(3)

where the operator | · | represents the size of a given set.

The parameter Υ is used to represent the number of unrecoverable packet losses

within a given period, i.e., ℓ(⊤) losses within ⊤ time units. If the parameter π

represents the average duration of a transmission block, then the right hand side of

(3) becomes:

Υ =
|Π| × ℓ(π)×⊤

⊤C

(4)

where ℓ(π) represents the upperbound on the number of unrecoverable packet losses

within a single transmission block and ⊤C represents the duration of an active session.

To determine the unrecoverable packet loss count within a transmission block,

we can compare the delivery times of each data packet with the respective decoding

1Note that, in reality, depending on the location of the packet losses observed within the GOP
structure, losses can have a propagative impact. This is especially true for the I-frame and the
P-frame packets. Therefore, the results presented in this chapter represent an upperbound on the
user perceived performance.
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deadlines:

ϕ(ν, π) = |π| −
∑
pi∈π

I(T ν
A(pi) ≤ τ νπ ) (5)

where |π| represents the total number of packets transmitted for a given transmission

block π, T ν
A(pi) represents delivery time for pi to ν, τ

ν
π represents the decoding deadline

for pi, and I(ϵ) represents the indicator function that is used to check the occurrence

of an event (i.e., I(ϵ) is equal to 1 if the event occurred, and 0 otherwise).

To average the impact of random events that take place within each transmission

block, we take the expectation of the indicator function, which results in the following

approximation:

E [I(T ν
A(pi) ≤ τ νπ )] = P (TA(ν, pi) ≤ τ νπ ) (6)

The righthand side of (6) represents the cumulative distribution function (cdf)

corresponding to the packet arrival times. We use the function F ν,pi
TA

(t) to represent

the distribution of packet arrival times at the user ν. To determine the equation

for this distribution function, we need to analyze all possible scenarios that lead

to a successful packet delivery. Specifically, we consider the successful delivery of

both the original source packet transmissions from the HeServ and the repair packet

transmissions from the ERServ. In short, we use the following equation to represent

the function F ν,pi
TA

(t):

F ν,pi
TA

(τ νπ ) = PS0(ν, pi) + PF0(ν, pi)× PC(ν, pi) (7)

where, PS0(ν, pi) represents the probability of successfully delivering the source packet

during the initial transmission from the head-end server, PF0(ν, pi) represents the

probability of failing the initial delivery, and PC(ν, pi) represents the probability of

successfully recovering from the failed, initial delivery.

To solve the equation for F ν,pi
TA

(τ νπ ), we follow a three-step methodology. 2

2Hereafter, we will simplify the notation for F ν,pi

TA
(τνπ ) and use Ps(ν, pi) instead.
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• In the first step, we find the initial success and failure probabilities, which is

essentially based on the error function associated with the end-to-end delivery

path.

• In the second step, we find the probability of recovering from a packet loss by

treating each packet equally for the reactive recovery process (i.e., we assume

all packets have the same reactive recovery limit).

• In the last step, we combine the impact of packet delivery times and latency

measures to update the equation for the reactive recovery limit; and we do this

for each packet separately.

Note that, the third step is where the impact of early packet losses is integrated

into the proposed calculations. In the next section, we present the methodology that

is used to develop the equations required to establish a resource-optimal error recovery

protocol.

2.3.1 Finding the Initial Success and Failure Probabilities:

To find PS0(ν, pi), we separate the end-to-end network into two sections: the core

network and the access network. We initially focus on the packet loss events occurring

in the access network. To find the error function corresponding to the access network,

we need to analyze the nature of packet loss events observed along the last-mile. As

DSL technology is one of the most widely used broadband access technologies, we

focus on the characteristics of the DSL networks to determine the error function.

Specifically, we consider a bursty packet-loss scenario, where the burst length

varies based on a memoryless discrete distribution function. We represent this distri-

bution function with σ, i.e., NB =
(∑

jσ[j]
)
, where NB represents the average burst

length. The arrival process for the burst-loss case is based on an Inhomogeneous

Poisson Process (IPP). In our study, we analyze the impact of packet loss events by
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focusing on a single transmission block. Additionally, we analyze each packet loss

event independent of the previous or the future loss events. To enable the proposed

analysis, we transform the IPP-based bursty packet-loss arrival process (BLP) to an

IPP-based single packet-loss arrival process. For that purpose, we approximate the

bursty packet-loss process using a two-state Markov modulated IPP (MM-IPP).

The arrival rate for the single packet-loss IPP is represented with λ(t). We dis-

cretize the observation period into Λ intervals, within which we use a homogeneous

arrival rate, i.e., λ(t) = λS(i), where Ti ≤ t < Ti+1, 0 ≤ i < Λ, and λS(i) repre-

sents the poisson arrival rate for the individual packet loss events within the interval

[Ti, Ti+1).

To find these rates, we equate the average number of packet losses observed for

both cases (single-loss and bursty-loss) within a given timeframe:

β∑
j=0

λS(j)×
[
Tj+1 + ⌈t− Tj+1⌉+ − Tj

]
= ÑB(t)× λB(t) (8)

where λB[t] represents the accumulative arrival rate for the BLP within the interval

(0, t), ÑB(t) represents the weighted average of the packet loss count during a burst

error period under the given boundary conditions, and β is equal to max
j

[Tj ≤ t].

ÑB(t) is found by using
∑

∀j Ñ
j
B(t) × σ[j], where Ñ j

B(t) represents the expected

number of packets to be affected by a burst error and it is given by:

=



k−(t)∑
l=1

λB[lτp]

λB[t]/(k+(t)− l)
+
λB[t]× k+(t)

λB[t]

 if t ≤ TB(j)

λB[t− TB(j)]

λB[t]/j
+

j∑
l=1

λB[TB(j) + lτp]

λB[t]/(j − l)
otherwise

(9)

where τp represents the single packet transmission time, TB(j) represents the duration

of a burst error, which affects j packets consecutively, and λB[t] is the burst arrival

rate within the packet transmission period that includes t (i.e., λB[t] =
∫ t

lτp
λB(s)ds,

where lτp ≤ t ≤ (l + 1)τp). The parameters k+ and k− are equal to ⌊t/τp⌋ and

max{k−(t) + 1, ⌈t/τp⌉}.
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Equation (9) makes use of the fact that, for a poisson process, within an observa-

tion interval for which an event has occurred, the location of the event is uniformly

distributed. Using this information, we divide the observation interval into two non-

overlapping periods, allowing us to find the average packet loss count for the given

burst.

The next step in the proposed transformation process is to use the Markov mod-

ulation on the resulting arrival rates so as to emulate the distribution of packet losses

within a given transmission block. For that purpose, we multiply the initially selected

poisson arrival rates with the compaction ratio used to establish the Markov states.

In doing so, we can limit the deviations corresponding to the probabilistic nature of

events observed for the high-packet loss scenarios, while preserving the average packet

loss arrival rates.

Consequently, the error function becomes equal to
(
1− e

−
∫ Ti
Ti−1

λS(t)dt
)
. This func-

tion is mostly useful in finding the packet loss count within a given timeframe. For the

other evaluation scenarios, utilizing a parameter that represents the steady state value

for the packet loss rate would be more useful. To find this parameter, we approximate

the BLP using an M/G/1 queue. For the given queueing model, the arrival rate is

equal to the burst packet loss rate, λB(t), and the service time is equal to the duration

of a single burst. We use ΞE to represent the expected length of a burst-loss period

and ΞV to represent the variance for the burst-length distribution. Then, using the

steady state equations for the resultingM/G/1 queueing system, we can find the frac-

tion of time that the system is in a burst-error state (γ) using γ = B/(B + T/λB[T ]),

where λB[T ] represents the accumulative arrival rate for the BLP within the interval

(0, T ) and B represents the average duration for the burst-error state, which can be

found by using ΞE/(1− (λB[T ]/T )ΞE).

We use γ(ν) to represent the probability of a user ν observing a packet loss. Note

that, γ(ν) actually represents the probability that the system is in a burst-error state
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at a random point in time. Combining these equations, we can express the equation

for the modified error function corresponding to a packet pi, eL(ν, pi), as follows:

eL(ν, pi) = 1− T

λB[T ]

(∑
∀j

j × τp × σ[j]

)−1

(10)

which leads to the equation of PS0(ν, pi) = 1− γ(ν).

2.3.2 Finding the Successful Recovery Probability:

To find the probability of successfully recovering from a packet loss, PC(ν, pi), we use

the following equation:

PC(ν, pi) = PFEC(ν, pi) + PNFEC(ν, pi)

×
κR(ν,pi)∑

k=1

Rk(ν, pi) (11)

where PFEC(ν, pi) refers to the probability of recovering from the packet loss using

FEC, PNFEC(ν, pi) refers to the probability of failing to recover from the packet loss

using FEC (i.e., PNFEC(ν, pi) = 1 − PFEC(ν, pi)), κR(ν, pi) refers to the maximum

number of times a user ν is allowed to request a repair packet for pi
3, and Rk(ν, pi)

refers to the success probability for the reactive recovery process, which can be ex-

pressed using the following equation:

Rk(ν, pi) =


PS1(ν, pi) if k = 1

k−1∏
j=1

PFj(ν, pi)× PSk(ν, pi) if k > 1
(12)

Here PSk(ν, pi) represents the probability of successfully delivering the kth re-

transmission of pi to ν and PFk(ν, pi) refers to the probability of failing to deliver the

kth retransmission of pi to ν (i.e., PSk(ν, pi) = 1− PFk(ν, pi)).

3The maximum number of retransmissions is found by using (i) the limits imposed on the opera-
tion of the Error Recovery Server (e.g., the upperbound on the retransmission requests that can be
accepted for a particular user at the ERServ) and (ii) the restrictions imposed by the link between
the user and the ERServ (e.g., end-to-end delay).
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We can find the equation for PFEC(ν, pi) by recursively checking the state of de-

livery for the previously transmitted packets, which results in the following equation:

PFEC(ν, pi) =


1 if 0 < i ≤ κP (ν)

1−
i−1∑

j=κP (ν)

eν,j × P
(u)
ν,j (κP (ν)− 1)× Ω

(1)
fec(ν, pj) if κP (ν) < i ≤ |π|

(13)

where κP (ν) represents the proactive recovery strength, Ω
(1)
fec(ν, pj) represents the

impact of non-distinct packet losses4, P
(u)
ν,i (κP (ν) − 1) represents the probability of

{κP (ν) − 1} unrestricted packet losses 5 happening before pi is transmitted by the

access point, and eν,j is equal to 1− e
−

∫ Tj
Tj−1

λS(t)dt.

The approach that is used to determine the equation for Ω
(1)
fec(ν, pj) is presented

in the Appendix. We can state the equation for P
(u)
ν,i (κP (ν)− 1) as follows:

P
(u)
ν,i (κP (ν)− 1) =

e
−

Ti−1∫
0

λS(t)dt
×
[
(κP (ν)− 1)!

]−1

[
Ti−1∫
0

λS(t)dt

]1−κP (ν)
(14)

To illustrate the importance of these equations, we created a simple packet loss

scenario where the loss events are generated using the beta distribution with param-

eters (α = 1, β = 5). We focus on an interval of 100ms, which represents the size of

a transmission block. We use 5ms as the packet interarrival time (τp) (i.e., a trans-

mission block consists of 20 packets). For the simulations, we vary the packet loss

rate (γ). In Figure 7, we show the results for γ = 0.01, and in Figure 8, we show

the results for γ = 0.05. For each of these cases, we varied the FEC strength using

values taken from the interval [1,5]. We observe from the results that FEC alone is

sufficient for full recovery as long as the FEC strength is kept at or above 3. How-

ever, FEC protection of 3 packets per transmission block suggests a constant error

4If multiple packet loss events occur during a single packet’s transmission period, we consider
these events as non-distinct packet loss events.

5An unrestricted packet loss scenario covers both distinct and non-distinct packet loss scenarios.
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Figure 7: Probability of proactive recovery, when γ = 0.01.

recovery overhead of 15%. To reduce this overhead, we can limit the FEC strength.

For instance, by reducing the FEC strength to 1, we can reduce the error recovery

overhead to 5%. The results also show that the probability of full recovery using

only proactive recovery decreases significantly as the error rate increases. Hence, to

compensate for the limitations imposed by the proactive recovery, we need to use

reactive repair techniques.

The next step to determine the probability of successful recovery is to find the

equations corresponding to the functions PSk(ν, pi) and PFk(ν, pi). These functions

represent the success and failure probabilities for the kth retransmission attempt,

where 1 ≤ k ≤ min(ς(ν, pi), κR(ν, pi)). Here, ς(ν, pi) is used to represent the maximum

number of retransmissions allowed for pi, and its value depends on two variables: time

left until the decoding deadline and the capabilities of the Error Recovery Server.

Initially, we assume this limit to be independent of the other retransmission attempts

taking place within the same transmission block.

To find the impact of the remaining time on the success rate of the retransmissions,
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we use the parameter ∆k(ν, pi), which represents the expected delivery time for the

kth retransmission. Then, the upperbound on the number of retransmissions can be

found as follows:

ς̂ı(ν, pi) = max{k : ∆k(ν, pi) < τ νπ < ∆k+1(ν, pi)} (15)

To estimate the arrival times for the repair packets, we use the cumulative distribu-

tion function corresponding to the arrival times for the repair packets. We represent

this function with A(δk(ν, pi),∆k(ν, pi)). We can then estimate the probability of

failure using the probability density function corresponding to A(·), which we refer

to as a(·), using the following equation:

PFk(ν, pi) =

∫
t

Ploss(t)× a(t)× dt (16)

where Ploss(t) represents the probability of losing the repair packet that is expected

to be delivered by the time t.
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2.3.3 Finding an Accurate Estimate For κR(ν):

So far, the retransmission limit is assumed to be independent of the previous packet

losses and the retransmission requests. However, because of the servicing limitations

at the Error Recovery Server (ERServ), it is possible to have a strict limit on the

number of requests that the ERServ can respond within a specific timeframe (which

also suggests a limit on per user requests). We use the parameter ϖ(ν) to represent

this limit, which actually refers to the maximum number of repair packet requests ν

can send to the ERServ during each transmission block.

We use the parameter ϖmax(ν, pi) to represent the maximum number of requests

that can be sent for pi, and we find its value using ϖmax(ν, pi) = ϖ(ν) − ϖ(ν,−→pi ),

whereϖ(ν,−→pi ) represents the number of requests sent for packets that are transmitted

before pi and belong to the set {p1, p2, · · · , pi−1} 6.

To find the retransmission limit for each packet, we use the information on delivery

times for all packets that are delivered earlier than the delivery time of the given

packet. We use the vector u⃗νk to represent the transmission order set for the kth

source packet at the user ν. This set includes the source packet and all possible repair

packet transmissions. The comparison point we use for the ordering is the expected

delivery time for each possible combination of source and repair packet transmissions

within a transmission block 7. We also create a subset of u⃗νk, which is referred to as

u⃗r
νk, from the elements that corresponds to the repair packet transmissions only.

The number of retransmission requests that ν can send for pi before the lth re-

transmission of pk is calculated using the following equation:

ûkνi(l) =
∑
∀j>1

(j − 1)×
(
I[u⃗r

νi(j − 1) < u⃗r
νk(l)]× I[u⃗r

νi(j) > u⃗r
νk(l)]

)
(17)

To integrate the impact of proactive recovery, we use the early packet loss scenarios

6ϖ(ν,−→pi ) =
∑i−1

j=1 ϖ(ν, pj), where ϖ(ν, pi) represents the requests sent for pi.
7The order within the given sets is an event-triggered one, that is, unless a packet failure occurs

the next event cannot be initiated.
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wk
ν,κP

(l) =



k−1∑
s=κP

µs(κP )

µ(k, κP )

ûk
νs(l)∑

rs+1=0

· · ·
ûk
νη(l)∑
rη=0

I

l + ∑
∀pj ̸=pk
j≥s

rj ≤ κR(ν)

 if k > κP

×
∏

∀pi ̸=pk
i≥s

Ṕ i
ν(ri, û

k
νi(l))

0 otherwise

that are correctable using proactive repair. We use (18) to determine the limits

associated with each repair packet, where Ṕ i
ν(ri, û

k
νi(l)) is given as follows:

Ṕ i
ν(ri, û

k
νi(l)) = P

(i)
Sν (ri)

I[ri ̸=ûk
νi(l)] ×

ri∏
j=1

P
(i)
Fν(rj) (18)

Here P
(i)
Sν (rj) refers to the probability of successfully delivering the rjth retrans-

mission of pi to ν and µ(k, κP ) is found by using
∑k−1

s=κP
µs(κP ) where µs(κP ) is given

as follows:

µs(κP ) =

(
(s− 1)!

(s− κP )!(κP − 1)!

)
× γκP × (1− γ)(s−κP ) (19)

The methodology used to develop (18) can be explained as follows. Here, the initial

selection focuses on the packet p[κ] on which the last FEC packet is used. Then, we

search for the packet loss scenarios that would lead to p[κ] being lost. After these

scenarios are determined, we sum up the occurrence probabilities of these scenarios

and we report the result as µ[κ]. Then, we focus on the second part of packet loss

scenarios that take place after p[κ]. In this case, we determine the possible scenarios

for which the desired retry count is attainable for the initially considered packet.

To illustrate the impact of these parameters, we simulated (18) using the following

scenario: transmission block length of 10-packets, γ selected from the set of { 0.005,

0.01, 0.05, 0.1 }, end-to-end delay of 20ms between the end-user and the ERServ,

global retransmission limit of 5 requests per transmission block, a packet interarrival

time of 5ms, and a decoding deadline of 125ms. In Figure 9, we show the results for
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the first packet in the transmission sequence 8. In the figure, the x-axis corresponds

to the retransmission attempts that are selected from the interval of [1,5]. From these

results, we observe that as the retry count increases, the probability of ever requesting

another retransmission decreases. The rate of decrease depends on the steady-state

error probabilities.
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Figure 9: Retransmission probability distribution.

To finalize the equation corresponding to a successful recovery, we use these

packet-specific retransmission limits, which are selected from w⃗ν , as weight factors

within the final equation. These weights represent the potential impact of the ear-

lier retransmission attempts. In other words, they represent the probability of ever

reaching the given retransmission count. To find the value of this weight parameter,

we use the probability of having at least one retry chance left at the time of making

the request for the repair packet.

8Since the first packet always has the highest probability of utilizing its maximum allowed retry
count compared to all the other packets coming after in sequence, the results on the first packet
represent the upperbound on the retry usage probability.
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Consequently, we rewrite the equation for PC(ν, pi) as follows:

PC(ν, pi) = PFEC(ν, pi) + PNFEC(ν, pi)×
κR(ν,pi)∑

k=1

ωi
ν(k)×Rk(ν, pi) (20)

We can then integrate (20) into (7) to finalize the equation for the probability of

a successful recovery.

2.4 Optimization Problem

Using the functions we developed earlier, we can restate the optimization problem

initially defined in (1) as follows:

min
∑
ν

H(ν, π) (21)

s.t.
[
Γ−G(ν, π)

]
< 0, ∀ν (22)

where the constant Γ is equal to
(
|π| − ℓ(π)⊤/⊤sim

)
, and the functions G and H

correspond to the following equations:

H(ν, π) =
∑
pi∈π

[
øP,i(ν)× PFEC(ν, pi) + øR,i(ν)× PNFEC(ν, pi)

×
κR(ν,pi)∑

k=1

k × ωi
ν(k)×Rk(ν, pi)

]
(23)

G(ν, π) =
∑
pi∈π

[
PS0(ν, pi) + PF0(ν, pi)×

(
PFEC(ν, pi) + PNFEC(ν, pi)

×
κR(ν,pi)∑

k=1

ωi
ν(k)×Rk(ν, pi)

)]
(24)

where øP,i(ν) represents the proactive recovery overhead and øR,i(ν) represents the

reactive recovery overhead.

If the error recovery parameters were to take their values from a continuous set,

then a quick solution to the optimization problem would be found using the La-

grangian in the continuous space. However, since the parameters take their values

from the discrete space, we cannot use the first-order derivatives to find the necessary
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conditions, unlike the case for the continuous space. Instead, we need to use the

discrete Lagrangian function, Ld(κP , κR, λ, µ) to solve the optimization problem (see

[101] for details). Then, we can state the discrete Lagrangian function as follows:

Ld(κP , κR, λ, µ) =
∑
ν

H(ν, π) +
∑
ν

λν ×K
(
Γ−G(ν, π)

)
+
∑
ν

µν ×K
(
max(0,Γ−G(ν, π))

)
(25)

In the above equation,K represents a continuous function that is used to transform

the function G. IfK(x) is a continuous function satisfyingK(x) = 0 ⇐⇒ x = 0, and

is non-negative (or non-positive), then in the discrete space, the following is true: the

saddle points (i.e., local minima satisfying the discrete-space first-order conditions)

and the constrained local minima in the discrete space correspond to the same set of

points. One possible choice for K, which satisfies the requirement at x = 0, is the

square function. Also note that the max function is used to convert the inequality

constraint into an equality constraint [90].

In short, to solve the discrete Lagrangian optimization problem, it is sufficient to

find the discrete saddle points. We refer to the input variable set using the vector

x, where x = {κP (1), · · · , κP (ν), κR(1), · · · , κR(ν)}. We use the vectors λ and µ to

represent the Lagrange parameter sets, i.e., λ = [λ1 · · ·λN ]T and µ = [µ1 · · ·µN ]
T . We

use the parameters Cλ and Cµ to represent the positive adjustment factors, which are

used to control how fast the Lagrange multipliers change (where Cλ = [cλ1 · · · cλN ]⊗IN

and Cµ = [cµ1 · · · cµN ]⊗IN 9). To represent the incremental functions that correspond

to the change in Lagrange parameters, we use Kλ and Kµ:

Kλ,ν = K(Γ−G(ν, π)) (26)

Kµ,ν = K(max[0,Γ−G(ν, π)]) (27)

To find the saddle point, the following iterative discrete first-order method is used

9⊗ represents time vector-multiply operator and IN represents the identity matrix of size N
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[105]:

xk+1 = xk ⊕△xLd(x
k, λk, µk) (28)

λk+1 = λk + Cλ ⊗Kλ (29)

µk+1 = µk + Cµ ⊗Kµ (30)

where ⊕ represents the vector-add operator, and △x represents the direction for the

maximum potential drop. In the next section, we present a practical approach that

can be used to find a near-optimal solution.

2.5 A Centralized Server-based Error Recovery Protocol

To minimize the error recovery overhead, it is of critical importance for the Error

Recovery Server to react to packet losses in a timely manner. If the response is delayed

for too long, further chances to request additional retransmissions may be lost. By

having more chances to implement the reactive repair process, we can increase the

probability of a successful recovery. Therefore, to increase the reactive repair success

rate, we need to minimize the servicing overhead at the Error Recovery Server (i.e.,

both processing and queuing overheads).

If the number of users connected to the same Error Recovery Server is small,

imposing a limit on the maximum number of repair requests for each user within a

specific time-frame may not be necessary. The reason for this is because the repair

requests that have been accumulated at the Error Recovery Server will not have a

significant impact on the servicing overhead. However, as the number of users con-

nected to the same Error Recovery Server increases, requests will start to experience

significant delays, thereby limiting the number of requests that can be served. Conse-

quently, end-users that mostly rely on the reactive repair process to recover from the

observed packet losses will fail to recover from these losses. These tradeoffs, which

are considered for the reactive repair process, represents our starting point to design

a practical resource-optimal error recovery protocol.
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We start by defining a new metric to represent the maximum number of requests

that the Error Recovery Server is capable of serving within a time-frame of T . We refer

to this metric as κR(T ). If Ti represents the duration of the ith transmission block,

then κR(Ti) represents the upper-bound on the number of repair packet requests that

the users connected to the same Error Recovery Server can make (i.e.,
∑

∀ν κR,i(ν) ≤

κR(Ti)).

Next, we determine the optimal proactive and reactive error recovery parameters

for each user, independently, using the equations that are developed for the proposed

hybrid FEC/ARQ-based error recovery framework. Specifically, for each user we

determine the parameter set Ψ(ν) as follows:

Ψν = {ψν(j)} (31)

s.t. ψν(j) =
{
κ
(j)
P (ν), κ

(j)
R (ν), Qν(j)

}
(32)

OR

(
κ
(j)
P (ν)

)
= κ

(j)
R (ν) (33)

Qν(j) = Q(κ
(j)
P , κ

(j)
R , eν) (34)

where the functionO(κP ) is used to find the optimal reactive error recovery parameter,

when the proactive error recovery parameter is equal to κP , and Qν(j) represents the

error recovery overhead associated with the jth error recovery scenario. We express

the function Qν(j) using the overhead function H (which is defined in Section 2.4) as

follows:

Qν(j) = H(ν, π|κP (ν) = κ
(j)
P , κR(ν) = κ

(j)
R ) (35)

We initialize the proposed algorithm by comparing the optimal reactive error

recovery parameters to the operational capacity of the Error Recovery Server, referred

to as ξ, using the equation R(N) × (1/κR), where R(N) represents the cumulative

retry count for all users belonging to the multicast set N . R(N) is a function of the

initially selected optimal error recovery parameters (i.e., κ
(0)
P and κ

(0)
R

10), and the

10Under normal conditions, the 0th case should correspond to the case of only reactive recovery(no
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user-specific error distribution functions. We want to make sure that the probability

of ξ being larger than one stays below a certain threshold, ξmin. To not be overly

restrictive, we can assume that less than one violation takes place within a time-frame

of Tξ. Then, we select the threshold ξmin accordingly, instead of making it equal to

zero, i.e., ξmin = 1/Tξ − ϵξ, where ϵξ is a positive metric that is used to vary the level

of strictness for our estimates.

To represent the probability of the total retransmission count staying below the

server-set threshold, we define the function FR(N)(κR), i.e., FR(N)(κR) = P (R(N) <

κR). To satisfy the server-side constraints regarding the retransmission count, we

need to satisfy the condition set by the following inequality:

FR(N)(κR) ≥ 1− ξmin (36)

The equation for R(N) is given by Lπ −
∑

∀ν κP (ν), where Lπ represents the

total source and repair packet loss count within a transmission block of size π (i.e.,

Lπ = Lπ(src) + Lπ(rty), where Lπ(src) is the source packet loss count and Lπ(rty)

is the repair packet loss count). We can estimate the value of the source packet loss

count using the packet loss distribution function which is based on the Inhomogeneous

Poisson Process:

λ(π(src)) =

∫ π

0

(∑
∀ν∈N

λν(u)

)
du (37)

If the poisson rates can be discretized, then the source packet loss count can be

found using the following equation:

λ(π(src)) =

β∑
j=0

(∑
∀ν∈N

λS,ν(j)

)
×
[
Tj+1 + ⌈π − Tj+1⌉+ − Tj

]
(38)

where Tj represents the occurrence time for the jth rate-change, and β represents the

total number of rate-change points. We find the rate-change points by combining all

FEC packet is used). However, if the error rate is higher than a certain threshold, then the 0th case
requires the use of FEC packets and it becomes a joint-recovery scenario. The reason for this is
because in some extreme cases, FEC-usage may have positive impact on the error recovery overhead.
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the user specific rate-change point sets into a single set.

Note that, in reality, delivery times vary from one user to another when the

timing is based on a reference timer, thereby making it difficult to form a synchronous

set of rate-change points. However, this synchronization problem mostly affects the

instantaneous packet loss rates rather than the cumulative packet loss rates. The

reason for this is because when losses are considered, non-overlapping periods for the

same transmission block can be compensated with the last-section of the previous

transmission block or the first-section of the subsequent transmission block. In short,

synchronous packet loss rates will be used (i) to represent the instantaneous packet

loss rates, and (ii) to find the cumulative packet loss rate.

Then, using the characteristics of the poisson process, we can find the probability

of observing k packet losses within a timeframe of π as follows:

P (Lπ(src) = k) =
e−λ(π(src)) × λ(π(src))k

k!
(39)

Next, we need to find the reactive repair packet loss rate, which is used to estimate

the impact of the additional recovery requests. For that purpose, we define a new

metric that represents the weight of the additional retransmissions. We refer to this

metric as lω and find its value using the following equation:

lω =

∑
∀ν∈N

γν × lω,ν∑
∀ν∈N

γν
(40)

where the value for user-dependent parameter lω,ν is found as follows:

lω,ν = |π|−1 ×
|π|∑

j=κP,ν+1

κj
P,ν∑

k=1

k × γkν × (1− γν)× ωj
ν(k) (41)

Using the parameter lω,ν , we can state the equation for Lπ(rty) using
(
Lπ(src)−∑

∀ν κP (ν)
)
× (lω − 1). This equation is then used to restate the equation for R(N),

which takes the form of lω ×
(
Lπ(src)−

∑
∀ν κP (ν)

)
.

44



Consequently, the equation for FR(N)(κR) is stated as follows:

FR(N)(κR) =

∑
∀ν κP (ν)+⌊κR/lω⌋∑

k=0

e−λ(π(src)) × λ(π(src))k

k!
(42)

Algorithm 1 Error recovery parameter initialization.
s = 0;
∀ν ∈ N do sν = s;
find σ = FR({sν})(κR)
σ′ = σ;
while σ′ < 1− ξmin do

find umin = min
ν∈N

([
Q(min(sν ,s)+1)

ν −Q(sν)
ν

]
> ϵq

)
if umin = ∅ then

s = s+ 1;
else

update σ′

sumin = sumin + 1;
end if

end while

The pseudocode that is used to initialize the error recovery parameters is shown

in Algorithm 1. Starting with the user that observes the minimum overhead increase,

we adjust the FEC strengths step-by-step so as to minimize the change in the accu-

mulative overhead. Note that when the FEC strength is increased, the increase we

observe in the error recovery overhead depends on the distribution of packet losses

observed over different transmission blocks. The overhead metric that we use in our

estimations takes into account the packet loss distribution.

The first parameter update for the error recovery process takes place during the

channel initialization phase. Using the initialization process, we optimally allocate

the network resources based on the initial network state. Then, to account for the

variations in the network state, we implement three other update procedures corre-

sponding to join, leave, and error-update events. Next, we explain the parameter

update procedures for each of these events.
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2.5.1 Event I: Session Join

When a user joins an active multicast session, we first check the impact of this join-

event on the overall network utilization. During the initialization phase, if the con-

straints set by the Error Recovery Server are not violated, then the error recovery

parameters selected for the new user can be used without any problem. On the other

hand, if the join-event violates the server-side constraints, then the error recovery

sources need to be reallocated. For this purpose, we use Algorithm 2, which allows

the system to increment the error recovery parameters starting from the level deter-

mined during the initialization phase. This process is essentially a continuum of the

initial setup phase except for the initial error recovery parameters selected for the

new user.

Algorithm 2 Resource update after u′ joins the active receiver set.
s = min

∀ν∈N
sν ;

N = N ∪ u′

su′ = 0;
find σ = FR({sν})(κR)
if σ ≥ 1− ξmin then

do Nothing.
else

σ′ = σ;
while σ′ < 1− ξmin do

find umin = min
ν∈N

([
Q(min(sν ,s)+1)

ν −Q(sν)
ν

]
> ϵq

)
if umin = ∅ then

s = s+ 1;
if su′ < s then

su′ = su′ + 1;
end if

else
update σ′

sumin = sumin + 1;
end if

end while
end if
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2.5.2 Event II: Session Leave

When a user leaves an active channel, the portion of the error recovery resources

used by this user needs to be freed. Then, to facilitate optimal resource utilization,

we redistribute the resources that are freed as a result of the leave-event among the

current active users. Typically, the most efficient redistribution approach is to deliver

these resources to as many users as possible. As the number of end-users that take

advantage of this resource availability increases, the amount of resources allocated for

the proactive error control decreases. For this purpose, we reverse the operation of the

original resource allocation policy. Specifically, we target the end-users that observe

the maximum decrease in the error recovery overhead by having one-step decrease

in the proactive recovery strength. To further improve the fairness, we restrict the

search process to users with the highest proactive recovery strength. We present the

pseudocode for the proposed local resource reallocation approach in Algorithm 3.

Algorithm 3 Resource update after u′ leaves active receiver set.

N = N\u′;
s∗ = max

∀ν∈N
sν ;

N(s∗) = {∀ν : sν = s∗};
find σ = FR({sν})(κR)
σ′ = σ;
while σ′ ≥ 1− ξmin do

find umax = max
ν∈N(s∗)

([
Q(s∗)

ν −Q(s∗−1)
ν

]
> ϵq

)
if umax = ∅ then

s∗ = s∗ − 1;
N(s∗) = {∀ν : sν = s∗};

else
sumax = s∗ − 1;
N(s∗) = N(s∗)\umax;
update σ′

end if
end while
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2.5.3 Event III: Session Update

The last case we investigate is the error update event, which refers to a change in

the average error rate observed by an end-user. Since error rate has a direct impact

on how the optimal error recovery parameters are selected, a change in the perceived

channel state (i.e., error rate) requires these parameters to be updated. Specifically,

if the error rate increases, then the optimal proactive and/or reactive parameters also

increase, and vice versa. Regardless of the nature of these changes, we may need to

update the error recovery parameters for the given active user set. The pseudocode

for the required procedure is given in Algorithm 4.

Algorithm 4 Integrating the packet loss rate variations observed by u.
Ψu,pre = Ψu & Ψu → Ψu,cur;
smin = min

∀ν∈N
sν , smax = max

∀ν∈N
sν ;

su,pre = su;
if γcur(u) > γpre(u) then

su = smax;
σ = FR({sν})(κR);
if σ ≥ 1− ξmin then

while σ ≥ 1− ξmin do
su = su − 1;
σ = FR({sν})(κR);

end while
su = su + 1;

else
initiate Update Process1

end if
else

σcur = FR({sν})(κR);
while σcur ≥ 1− ξmin and su ≥ 0 do

σ = σcur;
su = su − 1;
σcur = FR({sν})(κR);

end while
su = su + 1;
if su = 0 then

if σ ≥ 1− ξmin then
initiate Update Process2

end if
end if

end if
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The proposed update procedure uses two child processes to finalize the update cor-

responding to each possible scenario, that is, error rate increase or decrease. Update

Process1 refers to the join-event update process, which is used to redistribute the

resources currently in use, and Update Process2 refers to the leave-event update

process, which is used to redistribute the freed resources within the active user set.

2.6 Performance Analysis

In this section, we evaluate the performance of the proposed error recovery frame-

work using a simulation based study. We implement the proposed error recovery

framework in Matlab. The simulation parameters are chosen as follows. To evaluate

the overhead performance for the worst-case scenarios, the number of users is varied

between 1 × 103 and 1 × 104. To generate the packet loss events, Poisson process is

used. Packet loss rates are chosen independently from the range
(
1× 10−3, 2× 10−1

)
using the log-domain approach, which assigns the packet loss rate values using the

uniform distribution in the log-domain. To be specific, log(ploss), which represents

the logarithmic value for the packet loss rate, is selected uniformly from the inter-

val
(
log(ploss,min), log(ploss,max)

)
, where the values for the minimum packet loss rate,

ploss,min, and the maximum packet loss rate, ploss,max, are varied depending on the

simulation scenario. 11

IPTV multicast transmission rate is given by 3Mbps. We assume each IPTV

packet to have a length of 1356Bytes. Error Recovery Server is assumed to have a

transmission capacity of 100Mbps, which suggests a servicing rate of at most 9218

single repair packet requests per second. 12 To minimize the latency associated

with the error recovery process, we use a transmission block size of 100ms, and an

11Note that, assigning the packet loss rate values in the log-domain allows us to skew the packet loss
distribution towards the low loss probability state, thereby creating a much more realistic scenario
in regards to the users’ expected packet loss rates.

12Maximum value for the servicing capacity is achieved when the processing delay at the server
becomes negligible when compared to the transmission delay. For the sake of simplicity, in our
simulations, we assume the previous statement to be true.

49



initial startup latency of 160ms, which gives the client an additional 60ms to recover

from its losses during a given transmission block. We assume an end-to-end delay of

50ms between the client and the Error Recovery Server, which is typically sufficient to

recover from all the losses a client observes within a transmission block. The reported

results are the average of 10 simulation runs, each of which represents a 4-hour long

IPTV broadcast.

In our simulations, we focus on two critical performance metrics: recovery cost

and the level of fairness in the distribution of the recovery costs. Here, with the

recovery cost metric, we refer to the average error recovery overhead observed at

the client side. Since one crucial objective of the proposed recovery framework is to

minimize the probability of a server overload, as long as the given objective is met,

the resulting overhead at the server side does not constitute a critical concern in our

performance evaluations. The second performance metric is used to analyze how the

recovery load is distributed among the users, each of which is characterized with a

different packet loss function.

We show the first set of results in Figure 10, which depicts the average overhead

observed at the client side as the number of users connected to the same Error Recov-

ery Server is varied between 1, 000 and 10, 000. Here, log-normalized assignments for

the packet loss rates resulted in an average packet loss rate of 6.3× 10−2. The same

figure also shows the results for three different scenarios: (i) when proactive recovery

is not used (Approach 1 ), (ii) when clients are assigned FEC rates based on the mean

packet loss rate (Approach 2 ) 13, and (iii) when clients are assigned FEC rates based

on the worst case scenario (Approach 3 ), i.e., to ensure that, for the given simulation

scenario, no more than 1 packet loss is observed during a 4-hour long IPTV broadcast

13Assuming that ni represents the average number of packet losses the ith client observes within
a transmission block, for Approach 2, the proactive recovery strength is selected by using κp = ⌈ni⌉,
where ⌈·⌉ represents the ceiling operation. Here, ceiling operation is chosen over rounding up ni to
the nearest integer, as the former achieved significantly better results in the servicing capacity when
compared to the latter approach.
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Figure 10: Recovery overhead performance for various recovery approaches.

when only proactive recovery is used.

The first approach represents the ideal (or the best-case) scenario, from the users’

perspective, since it achieves the least overhead at the client side. However, its per-

formance depends on the transmission capacity at the Error Recovery Server. When

the number of requests received during a specific time-frame exceeds the servicing

threshold at the Error Recovery Server, then the users may experience significant

performance degradations. Hence it is mostly useful when the number of users con-

nected to the server is sufficiently small, or when the accumulative packet loss rate is

not significant. The second approach is typically effective when the number of users

is manageable by the server. The third approach is mostly effective when the number

of requests is significantly higher than the servicing capacity at the Error Recovery

Server.

For the given simulation scenario, we observe the following comparative results
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for the error recovery overhead:

• Approach 1 achieves the least per-user overhead at the client side, 191.36Kbps,

since a client receives a single repair packet per each packet lost. However,

to ensure that the quality requirements for the IPTV service are met at the

client side, we need to increase the server capacity to more than 200Mbps when

N = 1000.

• Approach 2 results in an overhead of 275.84Kbps, which represents a 44% in-

crease when compared to the ideal scenario. The second approach can only

achieve the service quality objectives when N ≤ 2000. When the number of

users is increased to 3000, the server becomes overloaded more than 15% of

time, suggesting a critical threshold for the servicing capacity. As the num-

ber of users is increased further, we start to observe a near-continual overload

state at the server side. Hence, Approach 2 fails to satisfy the service quality

requirements for the IPTV clients for most of the considered scenarios.

• Approach 3 results in an overhead of 1.116Mbps, which suggests close to six

times increase in the per-user recovery overhead when compared to Approach

1, and a 37% increase in the minimum required bandwidth usage over the

3Mbps-rate for the IPTV multicast. Even though the third approach succeeds

in satisfying the packet loss requirements for the IPTV service, for all the con-

sidered scenarios, bandwidth requirements at the client side exceed the typically

permitted levels, leading to highly inefficient resource utilization results.

• Proposed error recovery framework results in an average overhead of 322.3Kbps,

which is only a 68.6% increase in the overhead when compared to the ideal sce-

nario. Since the proposed framework evaluates the impact of proactive and

reactive recovery schemes on the system together as a whole, by jointly con-

sidering the requirements at the clients and the server side, it can successfully
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achieve the quality objectives with limited increase in the error recovery over-

head.

In short, comparing the results of the proposed framework to that of Approach 2,

we can make the following observations: allocating resources for the clients indepen-

dently (i) overestimates the bandwidth requirements for the low loss and/or sparsely

connected scenarios and (ii) underestimates the bandwidth requirements for the high

loss and/or densely connected scenarios.
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Figure 11: Distribution of FEC packets to IPTV clients.

Next, in Figure 11, we illustrate the relationship between the selected FEC rates

and the user perceived packet loss rates as we vary the number of users. We observe

that, for all the cases considered, the distribution for the FEC rates assigned to the
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users closely follow the packet loss rates experienced by the users. If the packet

loss rate experienced by a user is less than a specific threshold, then such user is

not considered for proactive recovery. If, on the other hand, the packet loss rate

experienced by a user is higher than the given threshold, then the FEC rates are

increased to the level which limits the server overload occurrences to no more than

one instance during the considered continual viewing period.

We also observe in Figure 11 that increasing the system load had limited impact

on the worst-case scenario for the FEC rate allocations (e.g., when N = 3000, the

maximum value for the FEC rate is 7 packets per transmission block, whereas, when

N = 8000, the maximum value for the FEC rate is 8 packets per transmission block).

Note that, here, increasing the number of users essentially shifts the FEC curves

towards the lower loss regions to minimize the increase in recovery overhead per user.

In doing so, we can fairly distribute the recovery overhead to the users that experience

varying packet loss rates.

To further investigate the fairness characteristics of the proposed framework, we

compare the resulting assignments for each user to the respective assignments when

the second approach is implemented. Specifically, we want to determine the relation-

ship between the level of shifting we observe for the FEC rate assignments and the

user perceived packet loss rates. We show these results in Figure 12. In general, we

expect the users with lowest packet loss rates to observe the least amount of changes

in their assigned FEC rate values. The results shown in Figure 12 validates these

expectations. We observe similar trends for all the considered scenarios. As the users

start to observe smaller packet loss rates, the changes these users observe in their FEC

rate assignments also decrease, and vice versa. In short, the proposed framework is

capable of deciding on the proactive recovery strengths and distributing the recovery

resources in a fair manner.

54



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of packet loss (pkts/sec)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

fo
r 

th
e 

pa
ck

et
 lo

ss
 r

at
es

 

 

FEC
proposed

 - FEC
average

 = -2

FEC
proposed

 - FEC
average

 = -1

(a) 1000 users

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of packet loss (pkts/sec)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

fo
r 

th
e 

pa
ck

et
 lo

ss
 r

at
es

 

 

FEC
proposed

 - FEC
average

 = -1

FEC
proposed

 - FEC
average

 = 0

FEC
proposed

 - FEC
average

 = 1

(b) 3000 users

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of packet loss (pkts/sec)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

fo
r 

th
e 

pa
ck

et
 lo

ss
 r

at
es

 

 

FEC
proposed

 - FEC
average

 = 0

FEC
proposed

 - FEC
average

 = 1

FEC
proposed

 - FEC
average

 = 2

(c) 5000 users

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of packet loss (pkts/sec)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

fo
r 

th
e 

pa
ck

et
 lo

ss
 r

at
es

 

 

FEC
proposed

 - FEC
average

 = 0

FEC
proposed

 - FEC
average

 = 1

FEC
proposed

 - FEC
average

 = 2

(d) 8000 users

Figure 12: Change in the number of selected FEC packets when compared to the
average loss-rate based FEC assignment scenario.
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2.7 Conclusions

In this chapter, we presented a general error recovery framework for the IPTV net-

works by focusing on the cumulative impact of transmission medium, error recovery

parameters, session latency, and transmission delays with the objective of designing a

resource efficient error recovery protocol that is capable of achieving the service qual-

ity requirements for the IPTV service. We started the chapter by giving an in-depth

theoretical analysis for the proposed error recovery system. Using the proposed sys-

tem, we then developed an optimization problem to find the error recovery parameters

that require the least amount of network resources while allowing the service quality

to stay above a certain threshold. To solve the optimization problem, we specifically

focused on the servicing requirements at the Error Recovery Server, and developed a

practical recovery protocol that aims to minimize the probability of server overload

while using the least amount of resources at the clients. We evaluated the perfor-

mance of the proposed error recovery protocol using a simulation based study and

observed significant improvements in per-client resource utilization with the proposed

scheme. The proposed framework is also shown to be effective in fairly distributing

the resources to the clients.
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CHAPTER III

SUPPORTING RELIABLE CONTENT DELIVERY IN

GROUP CORRELATED IPTV NETWORKS

3.1 Introduction

In Chapter 2, we proposed a generalized hybrid FEC/ARQ-based error recovery

framework for IPTV networks that relies on the use of a dedicated server, which

is installed between the content delivery server and the end users. We referred to this

server as the Error Recovery Server (ERServ). The solution we proposed in Chapter 2

is based on the assumption that the users observe uncorrelated packet losses, which

allowed us to pursue a unicast-based transmission strategy to achieve the optimal

solution.

However, if the users start to observe correlated packet losses, then the unicast-

based strategy will no longer be sufficient to achieve the optimal solution. Especially

if the number of users connected to an ERServ is on the order of thousands and the

average error rate is high, then the number of repair packets an ERServ may need

to transmit within a short time-frame can easily exceed the manageable levels. As a

result, the dedicated server may become overloaded with too many request messages

and enter a non-responsive state. This may lead to many requests getting dropped

at the entry to the server, and the ones being admitted to the server to experience

significant delays. In such scenarios, a multicast-based recovery may become the

better and the more effective option in responding to the error recovery requests in a

timely manner compared to unicast-based recovery. Therefore, in networks where the

users observe correlated packet losses, it becomes crucial to investigate the tradeoffs

between unicast- and multicast-based recovery techniques so as to determine the most
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suitable approach to maximize the servicing capacity of the network.

Therefore, in this chapter, our objective is to investigate the impact of different

levels of correlations among the users’ packet loss processes on the error recovery over-

head when multicast- and unicast-based recovery techniques are evaluated together.

To achieve this objective, we first propose the group loss correlation model to generate

spatially correlated packet loss events. We test our approach using three different loss

processes, namely, the Poisson process, K-state Markov-modulated Poisson Process

(MMPP) and the 2-state Discrete Time Markov Chain (DTMC). We then propose a

simple, yet, effective approach to integrate the parity-check-based Application-layer

Forward Error Correction packets into the reactive multicast-based recovery process

and investigate its effectiveness in reducing the error recovery overhead, thereby im-

proving the servicing capacity of the network.

The rest of the chapter is organized as follows. In Section 3.2 we present our

system model. In Section 3.3 we simulate the proposed error recovery framework and

analyze its performance in various scenarios. Section 3.4 concludes the chapter.

3.2 System Model

We consider an IPTV system that consists of a single Error Recovery Server (ERServ)

and N users 1, each of which is connected to a single IPTV multicast session. Assum-

ing that the ERServ serves κ multicast sessions in total, then we have
∑κ

i=1 |Ni| = N ,

where Ni represents the set of users connected to the ith multicast session.

To evaluate the end-to-end delivery performance of data traffic over the access

links, various packet loss models have been considered. For instance, for the DSL-

based access networks (which represent the most widely used access network for the

IPTV clients), multi-state semi-Markov model with mixed exponential and Pareto dis-

tributions is considered to achieve the best results in terms of accurately representing

1Hereafter, we will use the terms user and client interchangeably.
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the realistic conditions. However, because of the difficulties involved in the practical

implementation of such models to evaluate the networking performance, some simpli-

fications have been made to these models by using either a two-state Markov model

(with the good and bad states representing the error-free and erroneous periods) or a

model based on the Poisson process (i.e., exponentially distributed interarrival times

for the error-bursts). These simplified models are typically used to implement uncor-

related packet loss scenarios (e.g., Poisson process) or temporally correlated bursty

packet loss scenarios (e.g., Markov model). Note that, these approaches are mainly

proposed to represent independent (and user-specific) packet loss scenarios. There-

fore, neither approach is alone sufficient to generate spatially correlated data sets,

which correspond to the packet loss observations of different clients.

Here, to form the spatially correlated packet loss scenarios, we introduce an ap-

proach that we refer to as the group loss correlation model, which utilizes an aggregate

packet loss model to project the correlation statistics onto a given user set. For this

purpose, we consider three different packet loss models. The first model uses Poisson

distribution to generate the individual single packet loss events. The second model

is based on a K-state Markov-modulated Poisson Process (MMPP) [34, 39], which

also generates the packet loss events on a packet-by-packet basis. Finally, the third

model is based on the two-state Discrete Time Markov Chain (DTMC), which is also

known as the Gilbert-Elliot (GE) model [36, 33]. We use the third model to generate

correlated and bursty packet loss events.

Next we present the discussion on each of these models and explain the methodol-

ogy we use to make the necessary transition from the aggregate packet loss process to

the individual ones, each of which represents the group correlated packet loss process

for each user.
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3.2.1 Poisson Process

To generate the packet loss events at each user, we use the following procedure.

Assuming that λ
(i)
νj represents the arrival rate for the packet loss events at a user νj,

where νj ∈ Ni, then we use the equation λ
(i)
T =

∑
∀νj∈Ni

λ
(i)
νj to represent the aggregate

packet loss rate for users connected to the ith multicast session.

To determine the value of the group correlation metric for the set Ni, we use the

following equation:

ρ
(i)
G =

λ
(i)
T − λ

(i)
G

λ
(i)
T

(43)

where ρ
(i)
G represents the group correlation metric and λ

(i)
G represents the arrival rate

(or packet loss event generation rate) for the group correlation loss process. 2

Next, we use the packet loss arrival rate for the group loss model-selected based

on the desired loss correlation ratio-to individually generate the packet loss events at

each user. For that purpose, we create a user-specific binomial parameter to represent

the occurrence probability of a loss event. We refer to this binomial parameter using

p
(i)
j , ∀νj ∈ Ni. We can find the value of p

(i)
j by using the characteristics of the

poisson process. Specifically, we focus on packet loss events that take place during

the transmission period of a single packet (referred to as τp), and by equating, for

each user, the packet loss probability in group correlation model with the individual

packet loss probability, we obtain the following equality:

e−λ
(i)
j τp =

∞∑
k=0

e−λ
(i)
G τp × (λ

(i)
G τp)

k

k!
× (1− p

(i)
j )k (44)

which leads to p
(i)
j = λ

(i)
j /λ

(i)
G .

Figure 13 illustrates the impact of different group correlation metrics on the dis-

tribution of pairwise correlated losses 3, when the individual packet loss rates for

2The feasible set for the correlation metric values needs to ensure that λ
(i)
G ≥ λj , ∀νj ∈ Ni. For

instance, if λνj = λνk
, ∀{νj , νk} ∈ Ni, then ρ

(i)
G ≤ (|Ni| − 1)/|Ni|.

3Pairwise correlated loss rate represents the ratio of the number of pairwise correlated losses to
the total number of packet losses observed at any given user.
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the users are randomly selected from the interval (10−2, 10−1). 4 Compared to the

uncorrelated loss scenario, when ρG is assigned a value close to or less than 0.5, no

dramatic changes are observed in the distribution of pairwise correlated losses. As

we continue to increase the value of ρG, geometric growth observed for the resulting

ratios becomes more noticeable. Consequently, when the value of ρG becomes close

to 0.9, we start to observe evenly distributed pairwise correlated loss ratios for the

given user set.
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Figure 13: Pairwise correlation results.

3.2.2 Markov-modulated Poisson Process (MMPP)

The second approach to generate the group correlated loss process is based on the

doubly stochastic Markov-modulated Poisson Process (MMPP) [34]. To generate

4Unless otherwise stated, in our simulations, packet loss rates for all the clients are selected from
an interval of (10−2, 10−1).
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the packet loss events using a K-state MMPP process, we utilize K distinct Poisson

processes, each of which is represented with an arrival rate of λi, where i ≤ K, and

for which the transitions from one state (or process) to another are triggered based

on the underlying Markov process. Here, the sojourn times and the state transition

probabilities are determined by the Markov process, whereas the arrivals within each

state are determined by the corresponding Poisson process.

We use the following methodology to generate the MMPP-based correlated packet

loss events. We start by focusing on a specific group of users, which is represented with

the set Ni. Let us assume that the number of states for the underlying Markov model

is given asKi and the generator matrixG(i) corresponding to the generalized process is

also known beforehand, i.e., [G(i)]j,k = pjk if j ̸= k and [G(i)]j,j = −pj = −
∑

∀k ̸=j pjk,

where pj,k represents the transition rate from state sj to state sk, and 1/pj represents

the mean sojourn time for sj. We can then use the following set of equations to find

the steady state probabilities associated with each available state:

π
(i)
j × p

(i)
j =

∑
k≤Ki
k ̸=j

π
(i)
k × p

(i)
kj and

∑
j≤Ki

π
(i)
j = 1 (45)

where π
(i)
j represents the steady state probability corresponding to state sj (where

j ≤ Ki).

Let us also assume that the individual packet loss rates at each client within Ni

to be known. The proposed model suggests that the state transitions at the clients

follow the transitions observed for the generalized process, thereby allowing us to have

direct access to the state transition probability information at each client. 5 Next, at

each client νj ∈ Ni, and for each state sk (where k ≤ Ki), we randomly assign a loss

5Note that, the actual superposed generalized process may need to consist of
∏

∀i∈Ni
Ki states.

Further simplifications can be made to reduce the size of the generalized process [41]. However, accu-
rately capturing correlations among the individual processes using (simplified) superposed processes
may not be very practical. Instead, we can assume the individual processes as the superposition
of two processes, an uncorrelated one and a correlated one. In our study, we essentially focus our
attention on the latter.
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rate parameter, referred to as α
(i)
j,k, selected from an interval of (0, 1).

To determine the values for the actual packet loss rates associated with each

channel state, we use a (unit) loss rate metric, which is represented with the parameter

µ
(i)
j for client νj ∈ Ni. It then becomes sufficient to solve the following equation to

determine the state-dependent loss event generation rates:

λ
(i)
j,k = µ

(i)
j ×

∑
k≤Ki

α
(i)
j,k × π

(i)
k (46)

We determine the state-dependent loss rates for the generalized process using

a similar procedure. To be specific, we first determine the average loss rate for

the generalized loss process (λ
(i)
G ) based on the selected correlation ratio (ρ

(i)
G ) using

equation (43). After we find the value for λ
(i)
G , we assign random weights to each

available state sk (i.e., α
(i)
G,k, where k ≤ Ki) using the almost same procedure as

before, with a slight difference observed in the estimation of the unit loss rate metric.

Specifically, for each state sj, we identify the maximum valued loss event generation

rate that is utilized by the given set of users, i.e., λ
(i)
max,k = max

∀νj∈Ni

λ
(i)
j,k. In the next

step, we define the state-dependent loss event generation rates for the generalized

process using the following equation:

λ
(i)
G,k = λ

(i)
max,k + α

(i)
G,k × µ

(i)
G (47)

where k ≤ Ki.

For example, in the case of 2-state availability, i.e., Ki = 2, then we can simplify

the equation for µ
(i)
j as follows:

µ
(i)
j =

λ
(i)
j × (p

(i)
1 + p

(i)
2 )

α
(i)
j,1 × p

(i)
2 + α

(i)
j,2 × p

(i)
1

(48)

Then, the weight for the generalized loss process is determined as follows:

µ
(i)
G =

λ
(i)
G × (p

(i)
1 + p

(i)
2 )− λ

(i)
max,1 × p

(i)
2 − λ

(i)
max,2 × p1

α
(i)
G,1 × p

(i)
2 + α

(i)
G,2 × p

(i)
1

(49)
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After we determine the state-dependent (packet loss) event generation rates for

both the individual processes and the generalized process, we can utilize the approach

presented in the previous section for the Poisson loss scenario. Specifically, at each

observation instance for the packet loss events corresponding to the generalized pro-

cess, we can find the probability of a client νj to also observe a packet loss event at

the same instance, pL,j, using the following equation:

p
(i)
L,j =

λ
(i)
j,k

λ
(i)
G,k

(50)

where k represents the index for the active channel state (i.e., k ≤ Ki).

3.2.3 Two-state Discrete Time Markov Chain (DTMC)

The third proposed group correlation model is based on the well-known Gilbert-Elliot

(GE) model, which has been extensively studied to model the bursty loss scenarios at

the bit level [32] or the packet level [38]. The Gilbert-Elliot model represents a two

state Markov chain in which the two states represent a good state (with low error

rate) and a bad state (with high error rate). A further simplified version of this model

(which is generally referred to as the Gilbert model) considers a loss rate of 0 in the

good state and a loss rate of 1 in the bad state, which suggests the following: all the

loss events occur when the channel is in the bad state, and any self transition during

the bad state triggers bursty losses.

For the considered packet loss model, the 2 × 2 state transition matrix is given

as

(
1− p p

q 1− q

)
, where the parameter p represents the probability of making a

transition from the good state to the bad state, and the parameter q represents

the probability of making a transition from the bad state to the good state. The

Gilbert-Elliot model parameters are typically determined using the statistical data

obtained through analyzing observations of preferably long durations. Simplifications

have been made to acquire approximate model parameters with less information. For
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instance, for the Gilbert model, it is sufficient to know the expected burst length,

which is represented with the parameter L̂B, and the average loss rate, which is

represented with the parameter pL
6, to determine the values for the state transition

probabilities as follows:

q =
1

L̂B

and p =
pL × q

(1− pL)
(51)

Therefore, by choosing the mean burst length and the packet loss rates associated

with the given transmission channel, we can determine the parameters corresponding

to the given two state on-off based Markov model. 7

We generate the correlated loss events using the Gilbert model as follows. We

start by defining the initial parameter values corresponding to the perceived loss

events (i.e., mean burst length and packet loss rate) for each user in Ni. Next, we

select the desired correlation ratio for the given set of clients, i.e., ρ
(i)
G . The selected

correlation ratio is then used to find the average loss rate for the generalized loss

process as follows:

p
(i)
L,G = (1− ρ

(i)
G )×

∑
∀νj∈Ni

p
(i)
L,j (52)

To find the value for the mean burst length corresponding to the generalized loss

process, which is referred to as L̂
(i)
B , we use the following approximation. We assume

the mean burst length for the correlated loss scenario to be equal to the mean burst

length for the uncorrelated loss scenario (i.e., when the given set of clients observe

independent packet losses). Then, using L̂
(i)
B and p

(i)
L,G, we can determine the Markov

state transition rates for the generalized process.

Next, we need to determine the user-specific Markov state parameters. For that

purpose, we make the following assumption: client losses occur only during the loss

periods associated with the generalized process. We also allow each client to observe

6Note that, if the actual loss process is based on the Poisson model, then, for client i, pL,i equals
λi × lP /WM , where lP represents the packet length and WM represents the IPTV multicast rate.

7Note that, for DSL-based access networks, a bursty error period typically lasts for 8ms, which
suggests 2-to-3 packets long bursty loss periods for the SD-IPTV broadcasts.
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independent packet losses within these loss periods, associated with the generalized

process. 8 By using the steady state probabilities for the group loss model, we can

update the values for the individual client loss probabilities. Specifically, we use the

following equations to find the Markov model parameters for each user νj in Ni:

q
(i)
j =

1

L̂
(i)
B,j

and p
(i)
j =

p
(i)
L,j × q

(i)
j

W
(i)
M × p

(i)
G /(l

(i)
P × (p

(i)
G + q

(i)
G ))− p

(i)
L,j

(53)

3.2.4 Analyzing the Correlation Statistics

Next, to more accurately capture the correlation statistics for the given group corre-

lation model, we focus on the two approaches used by Yajnik et.al in [109]. The first

approach is based on finding the covariance measure using the following equation:

Cov
(i)
j,k =

ne(I
(i)
j , I

(i)
k )

n
(i)
p − 1

− µ
I
(i)
j

× µ
I
(i)
k

(54)

where I
(i)
j and I

(i)
k represent the binary valued variables that correspond to the loss

events observed at {νj, νk} ∈ Ni
9, ne(I

(i)
j , I

(i)
k ) represents the total number of simul-

taneous loss events observed by {νj, νk} out of n
(i)
p source packet transmissions, and

µ
I
(i)
j

represents the expected packet loss ratio for νj.

Then, for the group correlation model corresponding to the Poisson-based packet

loss scenario, the expected value for the covariance metric is found as follows:

E1[Cov
(i)
m,n] =

∞∑
l=1

(λ
(i)
G τp)

l × e−λ
(i)
G τp/l!

(1− (p̄
(i)
m )l)−1/(1− (p̄

(i)
n )l)

− λ
(i)
m λ

(i)
n

τ−2
p

(55)

where {νm, νn} ∈ Ni and p̄
(i)
m equals 1− p

(i)
m .

We can extend the above results to find the values for the covariance metrics in

the MMPP-based loss scenarios as follows:

E2[Cov
(i)
m,n] =

∑
k≤Ki

πk ×
∞∑
l=1

(λ
(i)
G,kτp)

l × e−λ
(i)
G,kτp/l!

(1− (p̄
(i)
m,k)

l)−1/(1− (p̄
(i)
n,k)

l)
−
λ
(i)
m,kλ

(i)
n,k

τ−2
p

(56)

8Therefore, the correlated loss processes are essentially formed by restricting the time frames for
which the client losses can occur.

9I
(i)
j equals 1 if νj observes a packet loss, and equals 0 otherwise.
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where πk represents the steady state probability corresponding to state sk.

For the Gilbert-Elliot model, the expected values for the covariance metrics can

be obtained by using the following equation:

E3[Cov
(i)
m,n] =

∞∑
b=1

q
(i)
G (1− q

(i)
G )b−1

(L̂
(i)
B (1 + q

(i)
G /p

(i)
G ))

b∑
k=1

(b− 1)!

(k − 1)!(b− k)!

(π
(i)
m,2π

(i)
n,2)

k

(π
(i)
m,2π̄

(i)
n,2 + π

(i)
n,2π̄

(i)
m,2)

k−b
− p

(i)
L,mp

(i)
L,n (57)

where π
(i)
j,2 represents, for client νj ∈ Ni, the steady state probability of being in the

bad state and π̄
(i)
j,2 = 1− π

(i)
j,2.
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Figure 14: Comparative group loss results based on the covariance metric, when
Poisson process is used.

Figure 14 demonstrates the relationship between ρG and the cumulative distribu-

tion for the covariance metrics, when Ni = 20. 10 If we compare the results from

10Note that, the convergence effect observed beyond the 0.9 value line for the ρG > 0 scenarios
is created by the autovariance effect. We included the autocovariance results to illustrate their
relationship to the crosscovariance results.
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Figure 14 to the results from Figure 13, we observe that the distribution for the

covariance metrics gives a more clear representation of the actual impact of the cor-

relation metric, ρG. We observe similar results for the more general 2-state MMPP

model, as shown in Figure 15, and the Gilbert-Elliot model, as shown in Figure 16.
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Figure 15: Comparative group loss results based on the covariance metric, when
2-state MMPP model is used.

The second approach to quantify the correlation statistics considered in [109] is

based on finding the distribution for the simultaneous packet loss count. Figure 17

shows the results for the second approach where the Poisson-process-based loss cor-

relation model is used. Here, the results also reflect our earlier observations for the

covariance metrics. The results also suggest that when the value assigned for ρG is

not very high, we may observe a noticeable increase in the user overhead. However,

if we group the source packets into recovery blocks, we may observe the opposite.

In Figure 18, we show the distribution of packet loss events when five consecutively
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Figure 16: Comparative group loss results based on the covariance metric, when
2-state DTMC model is used.

transmitted packets are evaluated together. We observe that, in many cases, more

than half of the users observe at least one packet loss during the transmission time

of a source block of five packets.

3.2.5 Group-based Recovery Approach

Therefore, to exploit the overhead efficiency for multicast-based recovery in block

transmission scenarios, we propose a joint recovery approach that exploits the ad-

vantage introduced by the use of Application Layer FEC (AL-FEC) packets and

the decision thresholds within a multicast-based recovery framework. Here, multi-

cast decision threshold represents the minimum number of repair requests ERServ

needs to receive for a specific packet to initiate a multicast-based recovery for the

given packet. If the number of received requests for the given packet is less than

the multicast threshold, then ERServ uses unicast-based recovery, otherwise, it uses
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Figure 17: Probability distribution for packet loss events, when Ni = 20 and L = 5.

multicast-based recovery.

The proposed AL-FEC-based multicast recovery process is essentially based on the

grouping of the source packets into Lfec sized recovery blocks. Each of these source

packet blocks is protected by a single AL-FEC packet. Therefore, each received

request is evaluated together with all the other received requests corresponding to

the same recovery block.

To initiate the error recovery process, ERServ does an initial multicast of the AL-

FEC packet associated with recovery block corresponding to the received requests. If

the received AL-FEC packet is not sufficient to recover from the losses observed at

all the concerned users (e.g., for users observing multiple failed deliveries within the

same recovery block), then the multicast threshold metric is used to decide whether to

perform a multicast- or a unicast-based retransmission. Specifically, if the number of

non-recovered losses for a given packet (i.e., losses that cannot be recovered using the

70



2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of distinct losses within an FEC block of size 5

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n 

fo
r 

th
e 

nu
m

be
r 

of
 d

is
tin

ct
 lo

ss
es

 

 

ρ
G

 = 0.9

ρ
G

 = 0.7

ρ
G

 = 0.5

Figure 18: Probability distribution for packet loss events, when Ni = 20 and L = 5.

AL-FEC packet) is higher than the multicast threshold, then the ERServ performs

a multicast-based recovery by transmitting the source packet to all the users within

that multicast group. Otherwise, the ERServ performs a unicast-based recovery by

sending the source packet to only the users that require additional repair packets to

recover from their losses.

3.3 Performance Analysis

In this section, we evaluate the impact of correlated user losses on the IPTV error

recovery performance. We specifically compare the performances of multicast- and

unicast-based recovery approaches by measuring the error recovery overhead at the

ERServ and the end-users. The performance evaluations presented in this section

mainly focus on the results corresponding to the Poisson process-based group cor-

relation loss model, as the given model is sufficient to illustrate the impact of the

proposed error recovery technique in IPTV networks.
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Figure 19: Impact of the size of correlated user set on the error recovery overhead.

The first set of results, as shown in Figure 19, illustrate the dependence of mul-

ticast recovery overhead on ρG and Ni. We observe that, as the size of the user set

increases, so does the multicast recovery overhead at the user side. To minimize this

overhead, we need to keep the size of multicast recovery groups small.

Table 1: Error Recovery Overhead (in Mbps) when Lfec = 5
Ni = 20 Ni = 50

ρG 0.5 0.7 0.9 0.5 0.7 0.9

W
(u)
S 2.24 2.25 2.28 5.75 5.73 5.66

W
(m)
S 0.894 0.594 0.223 1.51 1.18 0.512

W
(m)
U 0.782 0.482 0.109 1.39 1.07 0.399

W
(m)
S,fec 0.414 0.428 0.269 0.294 0.470 0.458

W
(m)
U,fec 0.339 0.334 0.114 0.260 0.410 0.361

Next, we study the impact of using AL-FEC, when the length of the recovery

block equals five. The comparative results for unicast recovery and multicast recovery

72



with/without FEC are shown in Table 1.11 We observed significant improvements

when using FEC-based multicast, especially when ρG is not assigned a very high

value. However, the advantage of using FEC disappears when packet loss events are

shared by most of the users. We also observed that, as we increase the size of the

user set, the performance of FEC-based multicast started to show better results for

low-to-mid loss correlation scenarios. This is caused by the increased rate of loss

events that occur within an FEC-protected block. Consequently, by allowing more

users to take advantage of the FEC-based multicast, we can effectively reduce the

number of further required retransmission requests.

We next analyze the impact of FEC-based multicast and multicast decision thresh-

old (δthr) on the error recovery performance. The results are shown in Figure 20 for

20 users and in Figure 21 for 50 users. In our simulations, δthr is selected from the

set {1, 3, 5}. We achieved the best performance tradeoffs with regards to the recovery

overhead when FEC-based multicast is employed. For the non-FEC-based multicast

recovery, the resulting performance strongly depends on the value of δthr, whereas

utilizing an FEC-based initial multicast minimizes the need for dynamically varying

the multicast decision thresholds.

For the non-FEC-based multicast recovery scenario, we also observed significant

fluctuations in the error recovery performance as we varied the values of ρG and

Ni. Here, FEC-based multicast can be used to reduce the dependence of the error

recovery performance on the varying network conditions, and, in doing so, improve

the scalability performance of the IPTV networks.

Next we study the impact of varying block sizes on the FEC-based multicast

recovery. The results are shown in Figure 22, when Lfec ∈ {5, 10} and δthr = 0. We

observed that regardless of the size of the user set, increasing the FEC-block size does

11W
(app)
loc represents the overhead at loc (server, S, or, user, U) for app-based recovery (unicast,

U, or, multicast, M).
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Figure 20: Impact of decision threshold on error recovery overhead when Ni = 20.
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Figure 21: Impact of decision threshold on error recovery overhead when Ni = 50.

not significantly improve the recovery performance. However, as shown in Figure 23,

at higher FEC-block sizes, error recovery performance becomes more dependent on

the value of decision threshold, δthr.

3.4 Conclusions

In this chapter, we studied the impact of spatially correlated packet losses on the error

recovery performance in IPTV networks. We proposed three different group corre-

lation loss models to create spatially correlated packet loss events to investigate the
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Figure 22: Impact of FEC block size on error recovery overhead.
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Figure 23: Impact of multicast decision threshold when FEC block size equals 10.

error recovery tradeoffs in IPTV networks at different correlation levels. Furthermore,

to exploit the correlated losses in the network, we proposed an FEC-based multicast

approach to improve the scalability performance of the IPTV network while limiting

the overhead at the client side. The simulation results showed significant performance

improvements for the proposed joint error recovery framework for group correlated

IPTV networks.
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CHAPTER IV

A SERVER-ASSISTED PEER-BASED ERROR

RECOVERY FRAMEWORK FOR IPTV NETWORKS

4.1 Introduction

In the previous chapters, we investigated the use of server-based error recovery so-

lutions to combat the lossy nature of the transmission medium along the last mile

in, first, uncorrelated, and then, correlated packet loss scenarios. In these chapters,

through theoretical and experimental studies, we showed the effectiveness of using

server-based recovery techniques to achieve the desired service quality levels in IPTV

networks. However, in general, there is a strong correlation between the performance

of server-based solutions and the system capacity. Since server-based solutions often-

times utilize unicast-based delivery techniques, as the number of users connected to

an Error Recovery Server increases, scalability problems may arise quickly. In such

scenarios, because of an increased likelihood of receiving too many requests within a

short time-frame, requests at the Error Recovery Server would experience significant

queueing delays. Since IPTV requires low latency to attain the acceptable service

quality levels, additional queueing delays may prevent the repair packets to be de-

livered in time for decoding. Considering the strict packet loss requirements for the

IPTV service, end-users may observe unacceptable performance degradations.

To limit the problems encountered during server-based recovery, peer-based re-

covery techniques are proposed (e.g., [64]) that allow the users to send their error

recovery requests to their peers (i.e., users connected to the same multicast session).

For instance, in [64], each user, observing a packet loss, sends its repair request to a

few selected peers to maximize the probability of a successful recovery. Error recovery
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server is only utilized when the number of peers is less than a threshold. However,

since multiple peers are needed to repair a single packet, if the users observe high

packet loss rates, repair packet traffic can significantly overburden the uplink connec-

tion at the end-users.

To limit the performance degradation impact of high packet loss rates on the

recovery peers, in this chapter, we propose a server-assisted peer-based error recovery

technique, which utilizes the Error Recovery Server as a backup for the peer-recovery

process instead of probing multiple peers for a single packet loss. In the proposed

approach, Error Recovery Server is utilized to help recover lost packets whenever

peer-based recovery fails to achieve its objective. We introduce a recovery framework

that uses control message exchanges within the network to increase the efficiency of

the error recovery process. We also propose a fair resource allocation technique that

efficiently integrates user capabilities into the user selection process. We analyze the

proposed peer-based recovery model and develop equations required to evaluate its

performance. We essentially measure how the proposed approach fares against server-

based recovery in terms of recovery overhead, success rate, scalability, and latency.

We show that we can significantly improve the scalability performance of the error

recovery process without introducing significant overhead with respect to the latency

and peer usage ratio performance measures.

The rest of the chapter is organized as follows. In Section 4.2 we present the

system model for the proposed peer-based recovery framework. Section 4.3 presents a

detailed analysis of the proposed error recovery architecture. Performance evaluations

are presented in Section 4.4. Section 4.5 concludes the chapter.

4.2 System Model

The proposed system consists of a single Error Recovery Server, S, and N users.

These users are connected to one of the M multicast sessions that are supported by
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S. In Figure 24, we illustrate the basic message exchange process that is utilized by

the end-users to initiate, proceed with, and finalize the error recovery process. Note

that, each recovery attempt involves the Error Recovery Server, the user making the

request, and the selected recovery-peer. We can explain the basic operation for the

error recovery process as follows.

REPAIR-PACKET

REQUEST-CANCEL

PEER-REQUEST

PEER-REQUEST

REQUEST-ACCEPT

REPAIR-PACKET

REQUEST-REJECT

ERROR RECOVERY 
SERVER

DSLAM

STB

STB

DSLAM

Recovery 
peer

User making a 
repair request

Figure 24: Message exchanges for the peer-based error recovery framework.

The protocol initiates after a packet loss is observed. We refer to the user observ-

ing the loss as ν. The first objective is to find ν’s recovery-peer. For that purpose, ν

uses a potential list of candidate peers (which is generated using the information re-

ceived from the Error Recovery Server) and selects the recovery-peer using a weighted

assignment procedure, for which the details (i.e., how the weights are assigned) are

presented in the next section. After the recovery-peer is selected, ν prepares the peer-

request packet, using the information on the loss and the recovery-peer. Then, ν sends

peer-request to both the recovery-peer and the Error Recovery Server. By sending

peer-request packet to also the Error Recovery Server, we enable the timely process

for the server to act as a recovery-peer, if needed (e.g., when the initial recovery-

peer has left the multicast session and ν is not informed of that before making its
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request). In doing so, we can limit the problems that may arise because of having

outdated information on the other peers. Additionally, we can enable quick recovery

if peer-request packet fails to reach its destination. For this purpose, we associate

each peer-request packet with a timeout period and we require each recovery-peer to

send a request-update packet to the Error Recovery Server as soon as the recovery

request is received and accepted. Consequently, the proposed approach can minimize

the need to probe multiple end-users in response to a single packet loss. Furthermore,

it allows the recovery-peer to reject a received request for not having sufficient re-

sources to respond to the request in time. In short, the recovery-peer uses two types

of request-update messages to send to Error Recovery Server: (i) request-accept and

(ii) request-reject.

If the request is accepted by the recovery-peer, it sends request-accept packet to the

Error Recovery Server and repair packet to ν, which then acknowledges the delivery

by sending a request-cancel message to the Error Recovery Server. However, if the

Error Recovery Server does not receive the request-cancel message in time, then the

server assumes peer-based recovery failed, and proceeds with the recovery process by

sending the repair packet directly to ν. Similarly, if the request is rejected by the

recovery-peer, or the recovery-peer fails to update the Error Recovery Server in time,

then the Error Recovery Server finalizes the recovery process by sending the repair

packet to ν. The proposed approach can limit the disruptive effects of losing the

repair packet before it reaches its destination, while also avoiding unnecessary repair

packet transmissions by the Error Recovery Server.

Note that since the overhead associated with the transmission of a control packet

is considered to be negligibly small when compared to the size of a repair packet (ap-

proximately 25 times smaller), with the proposed message exchanges, total recovery

overhead at the Error Recovery Server can be significantly reduced. Furthermore, by

assigning a higher priority to control message transmissions on the uplink channel
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compared to repair packet transmissions, we can allow the Error Recovery Server to

select a reasonably small value for the timeout period without observing a noticeable

increase in the incorrect decision rate 1.

4.3 Performance Analysis

In this section, we present the technical details on the proposed peer-based error

recovery framework and analyze its performance. We start by establishing an upper

bound on each user’s contribution to the error recovery process, after taking into

account the user specific resource limitations. Then, we integrate the impact of

delivery latency into the recovery framework to finalize the expected values for user

contributions to achieve a fair resource allocation. Lastly, we determine the equations

that represent the error recovery overhead and the success rate for the proposed error

recovery framework.

4.3.1 Impact of Bandwidth Constraints

To determine each user’s contribution to the peer-based error recovery process, we

need to find the maximum number of requests each user can serve, which is given as

the minimum of peer-request receiving rate and request-update transmission rate:

n∗
i = min(nu

i , n
d
i ) (58)

where n∗
i represents the maximum number of repair packet requests that i can serve

within unit time-frame, nu
i represents the request-update transmission rate, and nd

i

represents the peer-request receive rate. Our goal in this section is to find the values of

nd
i and n

u
i . For that purpose, we need to find the equations that represent bandwidth

constraints on the downlink and uplink channels.

We use di and ui to represent the downlink and the uplink bandwidth constraints

1If the number of packets that belong to the same protection period (or transmission block), is
sufficiently high, then a high timeout value can be selected without affecting the probability of a
successful delivery.
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for i. Downlink bandwidth is reserved for the delivery of source packets, repair

packets, and peer-recovery requests, whereas uplink bandwidth is reserved for the

transmission of repair packets and control messages.

We use β
(i)
sd and β

(i)
er to represent the portion of downlink bandwidth that is used

for data transmissions and error recovery, i.e., di = β
(i)
sd + β

(i)
er . Since β

(i)
sd is assumed

as a constant-valued parameter, our focus will be on β
(i)
er , which is a summation

of repair packet load, βr,i
er , and control message load, βq,i

er , i.e., β
(i)
er = βr,i

er + βq,i
er .

We use d∗i to represent the upperbound on β
(i)
er , and lr (or lq) to represent the size

of a repair (or control) packet. Using these parameters, we achieve the inequality of

(lrn
d
r,i+lqn

d
q,i) ≤ d∗i , where n

d
r,i and n

d
q,i represent the average number of repair packets

and control messages transmitted within unit time-frame.

To find the maximum number of requests that can be received on the downlink

channel, we use E[nd
r,i], which represents the expected number of repair packets re-

ceived within unit time-frame. We can find the value of E[nd
r,i] using packet loss rates

and the expected number of repair packets that are received for each repair request.

Consequently, we state the upperbound on the value of nd
i (or nd

q,i) as follows:

nd
i = (1/lq)×

(
d∗i − lrE[n

d
r,i]
)

(59)

We use a similar methodology to find the number of repair packets that can be

transmitted on the uplink channel, which is reserved for the transmission of repair

packets and two types of control messages (i.e., request-update and request-peer 2).

We use βr,i
er,u and βq,i

er,u to represent the portion of uplink bandwidth that is used for

repair and control packet transmissions (i.e., ui = βr,i
er,u + βq,i

er,u). To find the limits on

uplink bandwidth utilization, we assume that the number of request-update messages

transmitted by a recovery-peer equals the number of repair packets the same user

transmits 3. To estimate the number of request-peer messages transmitted within unit

2Request-update is sent by the recovery-peer, whereas request-peer is sent by the user observing
the loss.

3It is possible for uplink channel to be congested causing extra delay for incoming requests. If
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time-frame, we use the information on the average packet loss rate for the downlink

channel, which is represented with λ
(d)
i . The following inequality is then used to find

the upperbound on the number of repair packets that user i can transmit within unit

time-frame:

nu
i ≤

(
u∗i − 3λ

(d)
i lq

)
/
(
lr + lq

)
(60)

Next, we integrate the maximum values of nd
i and n

u
i into (58) to find the servicing

rate for each user as a recovery-peer. These servicing rates are used to select the

recovery-peers based on the following approach. Assume that Mi[n] represents the

set of recovery-peers 4 that can serve i’s request for the nth source packet on time.

Then i selects j as its recovery-peer to recover from the loss of the nth source packet

with probability pi,j[n]:

pi,j[n] =
[ ∑
∀k∈Mi[n]

(n∗
k/n

∗
j)
]−1

(61)

Therefore, the average probability of selecting j as i’s recovery-peer, pi,j, is given by(∑
∀n∈π pi,j[n]/|π|

)
, where |π| represents the size of transmission block π.

Note that, because of the varying round-trip-times between different user pairs,

recovery-peer sets differ from one packet transmission time to another. As a result,

there is a non-negligible probability of underutilizing some of the recovery-peers,

which may lead to overutilization of recovery resources at some other recovery-peers,

including the Error Recovery Server. We need to take into account these differences

in our decision process so that we can improve the accuracy of our calculations as well

as the fairness during the peer-assignment process. The next subsection proposes a

solution to minimize the impact of time-varying peer-recovery sets.

such congestion leads to a failed delivery, then recovery-peer (i) stops the delivery attempt for the
repair packet and (ii) informs the Error Recovery Server regarding its decision.

4The recovery-peer set also includes the Error Recovery Server, for which the expected servicing

rate is given as wS = n∗
0 = ⌈

∑
∀j∈Mi

λ
(d)
j −

∑
∀j∈Mi

n∗
j⌉+, where ⌈x⌉+ = max(x, 0).

83



4.3.2 Parameter Update to Improve Fairness

Assume that for a given transmission block there are K distinct periods with different

recovery-peer sets. We use Uk to represent the recovery-peer set during the kth period

5. To allocate recovery resources using the initially assigned rates, we use Algorithm 5,

which shows the parameter update procedure performed at a single user.

To evenly distribute the error recovery resources among the recovery-peers, our

goal is to select the peers, which cannot be used during the later periods, at a higher

rate, whenever it is possible. We refer to the recovery-peers that cannot be used during

the subsequent transmission periods as departing peers. Therefore, rate assignment

process initiates with the selection of the departing peers’ rates. To do this, we

increase their rates in such a way that, on average, they can be selected at the desired

rates. After the rates for the departing peers are selected, we distribute the unused

portion of the overall error recovery bandwidth to other recovery-peers based on their

initially assigned rates. If it is not possible for the departing peers to get assigned at

the desired rates, we maximize their overall assignment rates by only selecting them

as recovery-peers during the given transmission period. After we assign the rates to

all possible recovery-peers, we update non-departing peers’ rates by subtracting the

already assigned portion during the current transmission period.

The resulting weight parameters are then used to find the peer selection rates

for user ν, i.e., pν,j[n] = w
(l)
ν,j, where n represents a packet sequence number from

the given transmission block, l is given by
∑

1≤k≤l−1 Tν,k ≤ nτ <
∑

1≤k≤l Tν,k, and τ

represents the inter-arrival time for the source packets.

To further improve the fairness performance of the rate assignment process and

achieve a more scalable error recovery, we propose an approach that utilizes the impact

of relative user distances on usage rates. We can explain our reasoning for the selected

5Note that Uk−1 ⊃ Uk ⊃ Uk+1.
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approach as follows. Compared to nearby peers, far-distant peers are more likely to be

used at a rate less than their fair shares, leading to the Error Recovery Server being

utilized more than needed. Furthermore, we start observing discrepancy between

usage rates of near-by and far-away peers. To improve the scalability performance,

we need to avoid overutilizing recovery resources at the Error Recovery Server, as

long as the resources at the recovery peers are sufficient to support the error recovery

process. To achieve this objective, we increase the initially assigned weights for the

nearby peers using the following methodology.

Assume that the current usage rate for user i is given by ωi
6 and the desired usage

rate is given by ω∗
i . Then, for user i, the unused portion of the recovery bandwidth,

which is referred to as β
(i)
u , is found by using:

β(i)
u = (ω∗

i − ωi)×
∑

∀j∈M λj∑
∀j∈M ω∗

j

(62)

We redistribute these unused recovery resources to the nearby users, since they

are the ones that are utilized during the latter sections of a transmission block. We

represent the users that can send a request to user j during the last k sections of a

transmission block using the set U
(j,k)
R . The rate of increase in j’s usage ratio by i

that belongs to the set U
(j,k)
R is given by:

β(j,i)
u =

[ ∑
∀i∈U(j,k)

R

(λi/β
(j)
u )
]−1

(63)

We can then find the usage ratio that user i can redirect from the Error Recovery

Server to its recovery-peers by using:

ω̃i =
∑
∀j∈M

β(j,i)
u (64)

where i ∈M .

6The value of ωi is found by using (
∑

∀j(λ
(d)
j × pj,i)).
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Ω
(D)
U =

∑
∀i∈M

lrλ̆
(d)
i

N2

( ∑
∀m

Nm≤1

λ
(d)
i

N−1
m

+
∑
∀m

Nm>1

Nm

[
λ
(d)
i

(
ω̃
(i)
S + ˘̃ω

(i)

S

∑
∀j∈M
j ̸=i

p̄i,jλ̆
(d)
j

[
ζ(j)m + ζ̆(j)m

×
(
ϱj + ϱ̆jλ̆

(u)
j

)])
+
∑
∀j∈U
j ̸=i

lq
lr
λ
(d)
j γj,ip̃j,i

])
(68)

Ω
(U)
U =

∑
∀i∈M

lq
N2

( ∑
∀m

Nm≤1

λ
(d)
i

N−1
m

+
∑
∀m

Nm>1

λ̆
(d)
i

N−1
m

[
λ
(d)
i

(
ω̃
(i)
S + ˘̃ω

(i)

S

[
2 +

∑
∀j∈Um
j ̸=i

p̄i,jλ̆
(d)
j ζ̆(j)m ϱ̆jλ̆

(u)
j

])

+
∑

∀j∈Um
j ̸=i

λ
(d)
j p̄j,iζ̆

(i)
m

(
1 +

lr
lq
ϱ̆i

)])
(69)

If the value of ω̃i is greater than the value of ω
(i)
S , then we adjust the extra usage

parameter targeting a recovery peer by using:

ω̃i,j = β(j,i)
u × (ω

(i)
S /ω̃i) (65)

On the other hand, if the value of ω̃i is less than the value of ω
(i)
S , then the extra

usage parameter targeting the recovery-peer j becomes ω̃i,j = β
(j,i)
u . Then, the final

usage ratio for the Error Recovery Server by user i becomes ω̃
(i)
S = ⌈ω(i)

S − ω̃i⌉+.

Consequently, the equations that represent the finalized usage rates for the Error

Recovery Server and the recovery-peers are given by:

ω̃S =
∑
∀i∈M

λ
(d)
i × ω̃

(i)
S (66)

and

p̃i,j = pi,j + I(ω
(i)
S ≤ ω̃i)× ω

(i)
S × (β(j,i)

u /ω̃i) + I(ω
(i)
S > ω̃i)× β(j,i)

u (67)

4.3.3 Error Recovery Overhead and Probability of a Successful Recovery

In this section, we find the equations that represent the error recovery overhead

and the probability of a successful recovery using the updated assignment rates for

the recovery-peers. For the sake of simplicity, we assume that the request packets
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transmitted on the uplink channel experience no error. 7 Hence, we observe two

distinct packet loss scenarios: (i) losing all types of packets on the downlink channel,

and (ii) losing repair packets on the uplink channel.

Using the delivery scenarios illustrated in Figure 24, we find the average recovery

overhead at the end-users by using (68) and (69), where Ω
(D)
U (or Ω

(D)
U ) represents

the error recovery overhead on the downlink (or uplink) channel, ζ
(j)
m represents the

probability of recovery-peer j leaving the multicast session m, ϱj represents the prob-

ability of rejecting a received recovery request (which can happen when the queueing

time at the recovery-peer exceeds the maximum allowed delay 8), Nm represents the

number of users within m, x̆ = (1− x), and p̄i,j = p̃i,j/(
∑

∀j p̃i,j).

To find the value of Nm, we assume that the users served by an Error Recovery

Server are distributed to each multicast session using the Zipf distribution, which is

found as an accurate model to represent the popularity of channels in a large IPTV

system [81]:

f(r; s,M) =
1/rs∑

1≤l≤M(1/ls)
=
[ ∑
1≤l≤M

(rs/ls)
]−1

(70)

where r represents the popularity rank of a given channel and s represents the value

of the exponent that characterizes the given distribution.

Therefore, the expected number of users belonging to the mth multicast session,

which is considered as the rmth most popular multicast session, is given by:

E[Nm] =

(
N/rsm

)∑
1≤l≤M

(
1/ls

) (71)

To find the downlink overhead at the Error Recovery Server, ΩS, we focus on

two recovery scenarios: (i) indirect recovery, where the server assists an ongoing

peer-recovery process, and (ii) direct recovery, where a user makes a direct recovery

request to the server.

7Since the request packets can be protected without introducing significant overhead, their first-
hop delivery is assumed to be error-free.

8To find the value of ϱj , we can model the uplink queue at each recovery-peer using the M/D/1
queueing model. Due to space considerations, we leave its discussion to a future work.
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Ω
(D)
S =

∑
∀i∈M

λ
(d)
i × lr
N

×

[ ∑
∀m

Nm≤1

Nm +
∑
∀m

Nm>1

Nm ×

(
ω̃
(i)
S + ˘̃ω

(i)

S ×
∑
∀j∈m
j ̸=i

p̄i,j

×
[
ζ(j)m + ζ̆(j)m × ϱj

])]
(72)

Ω
(U)
S =

∑
∀i∈M

λ
(d)
i × lq
N

×

[ ∑
∀m

Nm≤1

Nm +
∑
∀m

Nm>1

Nm ×

(
ω̃
(i)
S + ˘̃ω

(i)

S ×
∑
∀j∈m
j ̸=i

p̄i,j

×
[
λ
(d)
j + λ̆

(d)
j ×

(
2ζ(j)m + ζ̆(j)m

[
2× ϱj + 3× λ̆

(u)
j × ϱ̆j

]) ])]
(73)

Indirect recovery occurs when the selected recovery peer cannot transmit the repair

packet, because of not receiving a request-peer message or not having the resources to

support the recovery. Direct recovery, on the other hand, occurs when a user makes

a direct request to the Error Recovery Server, for reasons stated earlier. To find the

uplink overhead at the Error Recovery Server, we use the number of control packets

that are expected to be received by the Error Recovery Server. Consequently, the

resulting overhead equations are given by (72) and (73).

To find the expected probability of a failed repair packet delivery, we use the

following equation, which is simplified by assuming equal packet loss rates for all the

users:

er =
λ(d)

N
×

[ ∑
∀m

Nm≤1

Nm +
∑
∀m

Nm>1

Nm ×

(
ω̃S + ˘̃ωS ×

[
λ(d) + λ̆(d) × ζ + λ̆(d) × ζ̆

×
(
ϱ+ ϱ̆×

[
λ(u) + λ̆(u) × λ(d)

]) ])]
(74)

4.4 Performance Analysis

To find the performance of the weight assignment algorithm, we use a simulation

model, in which the delay parameters are distributed randomly to a given set of users.
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For that purpose, we use an approach that separates the end-to-end link between any

two nodes in the network into two components that operates similarly for all the users

in the network: link from the user to the access point and link between two access

points. The delay component for the former link is referred to as the local-delay,

whereas the delay component for the latter link is referred to as the network-delay.

For our calculations, Error Recovery Server acts similar to an access point. We assume

that the delay between an end-user and its access point is the same for all users and

the delay between two access points is a function of the distance in-between. To find

a valid set of delay parameters, we create an A×A sized network 9 and distribute the

users uniformly within the given region, while placing the Error Recovery Server at

the center. For a square shaped network, the average distance to the Error Recovery

Server, du,S, is given by:

du,S = (A/6)
[√

2 + ln
(
1 +

√
2
)]

(75)

Similarly, the average distance between two users, du,u, is given by:

du,u = (A/5)
[
(
√
2 + 2)/5 + ln(

√
2 + 1)− 2× ln(

√
2− 1)

]
(76)

Next, we assign a specific value to the average forward-trip-time (FTT) between

an end-user and the Error Recovery Server, which is referred to as δ, (e.g., δ = 20ms).

We assume that, for the Error Recovery Server, ratio between local-delay, δl, and the

average end-to-end delay, which is referred to as ϕ, is a parameter of choice. We

can then find the value of δl using
(
ϕ × δ

)
, the value of unit-distance network-delay

metric, dυ, using
(
δ × (1 − ϕ)/du,S

)
, and the value of end-to-end delay di,j, using

ϖi,j × δl + dυ × Di,j, where Di,j represents the distance between the ith and jth

nodes, and ϖi,j represents a constant that equals 1 when one of the nodes is the

Error Recovery Server and 2 when both nodes are end-users.

9The size of the network does not have any impact in our calculations, since the only important
measure is the relative distance.
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Figure 25: Deviation from the originally assigned rates, when N = 100.

In Figure 25, we show how much the proposed weight distribution algorithm and

the original assignment policy deviate from the desired results. For the simulation,

the parameters are selected as follows: N = 100, δ = 20ms, ϕ = 0.5, T0 = 100ms,

|π| = 20, ∆ = 150ms (∆ represents the maximum latency), and the user weights

are randomly selected from the interval [1, 20]. Note that, deviation from the desired

rate represents the usage rate that cannot be utilized at the recovery-peers. As the

deviation increases, the usage rate at the Error Recovery Server also increases. Using

the proposed algorithm, we observe an initial improvement of 50% − 60%. If we

integrate the proposed weight reassignment process, which targets nearby users that

are reachable during the last 20ms of a transmission block, into Algorithm 5, then

the improvements increase to 85% (which suggests an average server utilization rate

of 3− 4%).

In Figure 26 we compare the expected error rate performance of the proposed

approach with the server-based recovery approach at various values for the probability
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of a recovery-peer leaving the multicast session, when the users observe the same

packet loss rates (0.5 × 10−3). We assume that the users are distributed to 200

multicast sessions 10. We observe that the proposed peer-based recovery approach

outperforms the server-based recovery approach because of the multi-step recovery

strategy implemented to recover the lost packets, i.e., Error Recovery Server transmits

the repair packet if the recovery-peer fails to deliver the repair packet. We also observe

that as the rate of leaving a multicast session increases, the probability of failing to

deliver the repair packet also increases. That is because, the system at that point

reverts to a server-based error recovery system.
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Figure 26: Probability of failing to deliver the repair packet, when ζ is varied.

In Figure 27, we present the theoretical results that show the overhead at the Error

Recovery Server. The proposed approach achieves significant improvements in server

10Changing the number of multicast sessions does not affect the limiting values for the error
recovery performance. It only affects the point the limiting values are reached, i.e., the lower the
number of sessions is, the lower the user count for the system is to reach the limiting values.
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usage efficiency compared to a server-based error recovery approach. Specifically,

under the same limitations for the transmission capacity, the proposed peer-assisted

recovery approach can support 10 times more users when compared to a solely server-

based recovery approach. We also observe that, as the number of users increases, the

majority of the error recovery traffic occurs on the uplink channel, which still stays

at a manageable level.
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Figure 27: Overhead at the Error Recovery Server.

In Figure 28, we present the theoretical results that show the downlink and uplink

error recovery overhead at the end-users when the probability of leaving a session is

varied. As the number of users connected to the same Error Recovery Server increases,

the downlink overhead stays almost the same, whereas the uplink overhead increases

until it reaches a certain limit. The reason for observing only a slight increase in

the downlink overhead is because the size of a control packet is much smaller than

the size of a repair packet, hence the increased number of requests does not affect
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the end result significantly. On the other hand, as the number of users increases,

the expected number of users with no recovery peer decreases, causing the increase

observed in the uplink overhead. In Figure 28, the results on the left represent the

overhead for mostly server-based recovery, whereas the results on the right represent

the overhead for mostly peer-based recovery. Also note that, changing the value of ζ

does not have a significant impact of the final results.

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

Number of users (N)

A
v
er

ag
e 

b
an

d
w

id
th

 u
ti

li
za

ti
o
n
 a

t 
th

e 
en

d
-u

se
rs

 (
M

b
p
s)

 

 

Downlink overhead (ζ = 0)

Uplink overhead (ζ = 0)

Downlink overhead (ζ = 0.05)

Uplink overhead (ζ = 0.05)

Figure 28: Error recovery overhead at the end-users.

In Figure 29, we show the level of change observed in the recovery latency measure

as the number of users connected to a multicast session is increased and the value

of ϕ is varied. Compared to the 40ms average round-trip-time required to receive

the repair packet from the Error Recovery Server, additional delay incurred during

the peer-based recovery phase is not significant. We also need to note the tradeoff

between latency and scalability. Unlike a pure peer-based architecture, the proposed
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framework supports lower latency threshold values. If the latency measure is de-

creased, then nearby users and the Error Recovery Server are utilized more often.

As a result, we observe an increase in the usage rate for the Error Recovery Server.

However, with a large enough transmission block size, we can limit the usage rate

of the Error Recovery Server by limiting its use to packets that are expected to be

delivered near the decoding deadline.
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Figure 29: Impact of peer-based recovery on round-trip-times.

4.5 Conclusions

In this chapter, we presented a server-assisted peer-based error recovery framework

for the IPTV networks. By introducing a reliable message exchange procedure, we

have limited the use of Error Recovery Server by fairly distributing the recovery load

to end-users. Our analysis showed the significant advantages of utilizing a peer-based

framework, as it significantly improved the scalability and error recovery performance
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of IPTV networks while limiting the recovery overhead and latency.
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Algorithm 5 Weight initialization algorithm at user ν.
i = 1;
Wν,0 =

∑
∀u∈Uν,1

ων,u;

Tν,0 =
∑

∀i≤K Tν,i;
ω∗
ν,u = ων,u/Wν,0 and ω̌ν,u = 0, ∀u ∈ Uν,1;

while i < K do
Ûν,i = Uν,i \ Uν,i+1;

Ŵν,i =
∑

∀u∈Ûν,i
ων,u;

W̃ν,i =
∑

∀u∈Ûν,i
(ω∗

ν,u − ω̌ν,u);

Wν,i+1 =
∑

∀u∈Uν,i+1
ων,u;

rν,i = Tν,i/Tν,0;

αν,i = W̃ν,i/rν,i;
if αν,i < 1 then

find ω
(i)
ν,u = αν,iων,u/Ŵν,i, ∀u ∈ Ûν,i;

α̂ν,i = 1− αν,i;

find δω
(i)
ν,u = α̂ν,iων,u/Wν,i+1, ∀u ∈ Uν,i+1;

if δω
(i)
ν,urν,i + ω̌ν,u ≤ ω∗

ν,u then

ω
(i)
ν,u = δω

(i)
ν,u;

else
ω
(i)
ν,u = (ω∗

ν,u − ω̌ν,u)/rν,i;
end if
update ω̌ν,u = ω̌ν,u + ω

(i)
ν,urν,i, ∀u ∈ Uν,i+1;

else
find ω

(i)
ν,u = ων,u/Ŵν,i, ∀u ∈ Ûν,i;

set ω
(i)
ν,u = 0, ∀u ∈ Uν,i+1;

end if
end while
Ŵν,K =

∑
∀u∈Uν,K

ων,u;

W̃ν,K =
∑

∀u∈Ûν,K
(ω∗

ν,u − ω̌ν,u);

αν,K = W̃ν,K/(Tν,K/Tν,0);

find ω
(K)
ν,u = min(αν,K , 1)ων,u/Ŵν,K , ∀u ∈ Uν,K ;

set ω
(K)
ν,S = 1−min(αν,K , 1);
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CHAPTER V

COOPERATIVE DIVERSITY-DRIVEN ERROR

RECOVERY FRAMEWORK FOR WIRELESS IPTV

NETWORKS

5.1 Introduction

In the previous chapters, we focused on the design of error recovery techniques to

support reliable delivery of IPTV content over wireline access networks (with specific

emphasis on the DSL-based access networks). Similar to DSL- and cable-based high-

capacity last-mile access technologies, next-generation wireless broadband metropoli-

tan area networks also present end-users with an opportunity to access high-speed

Internet over the broadband wireless channel (e.g., WiMAX) [91, 83]. WiMAX, for

instance, appear as a promising technology to deliver IPTV content to end-users, be-

cause of its features, such as the high servicing capacity which makes it possible for a

single WiMAX cell to carry many users receiving the same IPTV content creating a

significant potential for the distribution of the IPTV content over WiMAX networks.

To meet the service quality requirements of users requesting IPTV content over

the WiMAX networks, we need robust and resource efficient content delivery tech-

niques [28, 26]. However, because of the characteristics of the wireless channel, e.g.,

high packet loss rates and high delays, the typical approaches proposed to support

reliable IPTV communications, which utilize a server-based recovery framework, may

not be suitable for the current scenario. If we focus on the strengths of the WiMAX

technology, we can see that it would be possible to utilize a peer-based recovery

approach that can effectively address the inadequacies of employing server-based re-

covery techniques. Peer-based recovery allows the users to recover from their losses by
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communicating with other users within their network. Peer-based recovery not only

reduces the recovery response time, but also reduces the overhead of going through

the base station to retrieve the recovery data.

To achieve peer-based recovery within a wireless framework, we use cooperative

diversity, which refers to the use of virtual multiple-input-multiple-output (MIMO)

arrays, where the users represent the elements of an array [78, 56, 89]. In a coopera-

tive diversity-driven error recovery framework, reliable users act as a transmit array

for unreliable users. With cooperative diversity, we can significantly improve the re-

source utilization efficiency in the network [87, 24, 27, 14, 15, 22, 65, 42, 66, 57, 71].

In [44], the authors propose a cooperative diversity-driven peer-based error recovery

approach, which uses a two-phase transmission technique to improve the reliability

of IPTV content delivery. The first phase is reserved for the base station’s multicast.

The second phase is reserved for cooperative communications, during which the users

that have successfully received the content from the base station cooperatively trans-

mit to also make the other users reliable. Cooperation allows the unreliable users

to recover from their losses without the need to go through the base station once

again. Consequently, temporary impairments introduced by the wireless channel can

be overcome by using multiple transmission sources that utilize diverse transmission

channels.

However, considering the practical difficulties involved in supporting efficient power

control for a pure virtual MIMO system, it may be desirable to reduce the virtual

MIMO system to a virtual multiple-input-single-output (MISO) system, where the

cooperative transmitters target a single user instead of a group of users. By im-

plementing a MISO-based error recovery system, power-control techniques can be

utilized more efficiently to further limit the burden on the transmitting peers from

an energy usage point of view.

In this chapter, our objective is to investigate the impact of using a virtual MISO
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system by proposing a resource-efficient content delivery framework. Within a two-

phase cooperative communication framework, we propose a rate selection algorithm

that is used to find resource-optimal cooperation sets and cooperation parameters.

The cooperation sets are formed by distributing the successful receivers from the first

phase into multiple groups, each of which targets and transmits to a distinct user

during the cooperation phase. In doing so, each group can simultaneously deliver

the desired content to the users that failed to receive the content during the first

phase. The proposed approach is then compared to cooperative MIMO and direct

transmission techniques to measure its performance, in terms of throughput, delay,

overhead, and energy usage, with respect to these approaches.

The rest of the chapter is organized as follows. In Section 5.2, we present the

network model. Section 5.3 presents the channel model. We present the proposed

resource allocation algorithm in Section 5.4. We evaluate the performance of the

proposed content delivery framework in Section 5.5. Section 5.6 concludes the chapter.

5.2 Network Model

We consider a WiMAX network that consists of a base station, which is referred to

as S, and N users. We focus on the performance of a single multicast group within

this network, which we refer to as M , i.e., and we assume |M | = N 1. At the media

access control (MAC) layer, the transmissions are grouped into superframes, each

of which consists of multiple frames. An IPTV multicast session is assigned one or

more frames within a superframe. To allocate resources over the downlink and uplink

channels, time division duplexing (TDD) is used. At the physical layer, orthogonal

frequency division multiplexing (OFDM) is used. Access to the transmission medium

is granted using time division multiplexing (TDM) at the base station. Base station

1|X| represents the size of the set X.
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broadcasts the framing structure to the subscriber nodes using downlink map (DL-

MAP) messages. To inform the base station regarding the perceived transmission

quality in-between, subscriber stations utilize the Channel Quality Indicator channel

for their feedbacks.

To reliably deliver the IPTV content to end-users, based on the principles of co-

operative communications, we use a two phase transmission strategy. The first phase

is reserved for the base station’s multicast to the subscriber nodes that belong to the

given session. However, because of the varying wireless channel characteristics, only a

subset of the targeted users can successfully receive the data transmitted during this

multicast. To help the users that have failed to receive the initial multicast recover

from their losses, a second transmission phase is utilized. During the second transmis-

sion phase, which we refer to as the cooperation phase, successful receivers from the

multicast phase cooperatively transmit to the failed users (from the multicast phase)

to also make them reliable. Also note that, here, the formation of the transmitter sets

is based on the decode and forward approach. Hence, a user can become a cooperative

transmitter, only if it has successfully received the IPTV multicast during the first

phase. For the given multicast group, M , we use MR to represent the cooperative

transmitter set and MNR to represent the cooperative receiver set 2.

To determine the cooperation sets and assign the cooperative transmitters to each

of the receivers, we utilize a rate-adaptive transmission strategy. Specifically, base

station uses the channel quality information to select the transmission rate that will

be used during the initial multicast. Note that, transmission rate selected for the

initial multicast determines the set of users that can or cannot successfully receive

the initial IPTV multicast. The sets of reliable and unreliable users are then used

to optimize the performance during the cooperation phase. Therefore, to achieve an

overall acceptable performance, initially selected transmission rate needs to ensure

2Note that the subscript R represents reliable, and the subscript NR represents non-reliable.
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that, on average, a certain number of users can become reliable by the end of the first

phase.

As the first transmission phase ends, base station requests feedback from the users

associated with the given multicast session. The feedback received from the multi-

cast group is then used by the base station to determine the cooperation parameters,

i.e., cooperation groups and transmission rates, that will be used by the users within

each of the selected cooperation groups. Before making the final decision, we assume

that the base station utilizes the statistical data on the average signal-to-noise ra-

tio observed by each possible transmitter-receiver pair within the given multicast set.

Specifically, we assume the base station to approximate the average SNR values using

the location information for each of these users. Furthermore, because of utilizing a

MISO-based cooperation strategy, we assume the base station to select the cooper-

ation parameters based on the fact that a cooperative transmitter can only target a

single receiver. After the cooperation parameters are determined by the base station,

it multicasts this information to the targeted users, which also signals the beginning

of the second transmission phase.

5.3 Channel Model

We assume the wireless channel fading to follow the Rayleigh distribution, i.e., re-

ceived signal-to-noise ratio (SNR) is assumed to be exponentially distributed. To

determine the average SNR, we use the information on the transmit power and the

distance between the transmitter and the receiver stations.

5.3.1 Success Probability During the Multicast Phase

Since the received SNR is assumed to be exponentially distributed, probability of

successfully delivering the multicast data during the first transmission phase is deter-

mined by using the following equation [12]:

Ps,1(i) = e−(2R
(1)−1)/ξ̄i (77)
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where Ps,1(i) represents the probability of a receiver i successfully receiving the mul-

ticast data, R(1) represents the multicast transmission rate used by the base station,

and ξ̄i represents the average SNR for the channel between the base station and i.

Note that (77) is derived from Shannon’s theorem (i.e., for unit bandwidth, to sup-

port transmission rate R, received signal-to-noise ratio needs to satisfy the following

inequality ξ ≥ 2R − 1).

5.3.2 Success Probability During the Cooperation Phase

To find the probability of a successful recovery during the cooperation phase, we start

by assuming independent fading distributions for each of the channels that is used to

transmit data (i.e., channels between each cooperative transmitter and its targeted

receiver). In doing so, we can approximate the distribution that corresponds to the

received SNR during the cooperation phase using the following equation, which repre-

sents the distribution corresponding to the sum of independent exponential variables

3:

f
S
(l)
X
(x) =

 ∏
∀i∈C(l)

λi,l

 ∑
∀k∈C(l)

e−λk,lx∏
∀j∈C(l)
j ̸=k

(λj,l − λk,l)
(78)

where λi,l represents the inverse of the average SNR for the channel between the

cooperative transmitter i and its targeted receiver l, C(l) represents the set of coop-

erative transmitters targeting l, and S
(l)
X represents the total received SNR at l (i.e.,

S
(l)
X =

∑
∀i∈C(l) 1/λi,l).

Let us assume that the parameter ξ̄ij represents the average signal-to-noise ratio

for the channel between receiver i and its transmitter j. Therefore, if we insert the

3For the given distribution to be valid, pairwise SNR values, which correspond to each possible
combination for the cooperation process, need to be different, which typically suggest the user
distances to have distinct values.
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related SNR parameters into (78), we obtain the following equation:

f(ξi) =
∑

k∈C(i)

[
e−ξi/ξ̄ik

ξ̄ik
×
∏

∀l∈C(i)
l ̸=k

ξ̄ik
ξ̄ik − ξ̄il

]
(79)

If the transmission rate equals R, then to estimate the probability of a successful

transmission during the second phase, we can use the following equation:

p(i)s (R) = 1−
∑

k∈C(i)

[
(1− e−(2R−1)/ξ̄ik)

∏
∀l∈C(i)
l ̸=k

1

1− ξ̄il/ξ̄ik

]
(80)

If we assume equal gain for all the transmit-receive pairs, we can further approx-

imate the average SNR, ξ̄ij, using

ξ̄ij =
Pt,j ×G

N0 × dκij
(81)

where Pt,j represents the transmit power used by the transmitter j, κ represents the

path loss coefficient for the propagation medium, and N0 represents the noise power.

Consequently, we can state the equation that represents the probability of success

during the cooperative transmission phase as follows:

p(i)s (R) = 1−
∑

k∈C(i)

(1− e−CRdκik/Pt,k)
∏

∀l∈C(i)
l ̸=k

[
1− Pt,l/d

κ
il

Pt,k/dκik

]−1

(82)

where CR equals
(
(2R−1)N0/G

)
. Note that, if no transmit power control technique is

employed, then the cooperative transmitters are all assumed to use the same transmit

power (i.e., Pt,j = P
(i)
t , ∀j ∈ C(i)), which can further simplify (82) to become as

follows:

p(i)s (R) = 1−
∑

k∈C(i)

[(
1− e−C̃Rdκik

) ∏
∀l∈C(i)
l ̸=k

dκil
dκil − dκik

]
(83)

where C̃R equals to CR/Pt.

5.4 Proposed Rate Adaptation Framework

To determine the resource-optimal multicast and cooperative transmission rates, we

need to utilize a dynamic rate selection algorithm that takes into account the perceived
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channel characteristics in the network. To find these rates, we start by focusing on the

operation during the cooperation phase. Assume that the set of users that became

reliable during the initial multicast is given, which is defined as MR in Section 5.2.

First, we divide the set of cooperative users within MR into m subgroups, where m

equals the number of receivers for the second phase, i.e., m = |MNR| = |M | − |MR|.

Note that because of using a single multicast session in our calculations, we have

|M | = N . Using the basic characteristics of cooperative MISO, i.e., each transmit-

ter within MR is assigned to a single receiver within MNR, we have the following,∑
∀i |MC,i| = |MR|. We can represent the formation of these groups with a single

parameter, which is defined as coverage ratio ϱ (see [44]) and represents the average

success (or reliability) rate during the first phase:

ϱ = |MR|/N (84)

The value of coverage ratio varies based on the transmission rate used for the

initial multicast. For instance, if the base station uses a lower transmission rate,

then we can increase the average number of users that can successfully decode the

multicast data, thereby increasing the coverage ratio, and vice versa.

After the coverage ratio is selected, we can find the transmitters for the coopera-

tion phase, MR, which is then used to approximate the average probability of success

during the cooperation phase using the following equation:

P
(2)
S =

∑
<MR>

PMR

∏
∀i∈MNR

p(i)s (C(i), R
(2)
C(i)) (85)

where < MR > represents the set of possible cooperative group formations, PMR
rep-

resents the probability of observing a given cooperative grouping, and p
(i)
s (C(i), R

(2)
NR)

represents the probability of successfully receiving the cooperatively transmitted data

when the cooperative transmission rate used by i’s cooperative transmitters within

C(i) equals R
(2)
C(i).
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The cooperative transmission rate that satisfies the constraints on the successful

delivery rate while also achieving the maximum session throughput during the second

phase, R
(2)
NR, is found as follows 4:

R
(2)
NR = min

i∈MNR

Ropt,i (86)

where Ropt,i represents the maximum cooperative transmission rate that can be used

by C(i).

We use the probability of success measure, which is referred to as δS, as the opti-

mality criteria during the rate selection process. Specifically, an optimal rate selection

process needs to ensure that the average probability of success during the coopera-

tion phase is kept at or above δS. The value of the success threshold determines the

extra overhead required to satisfy the minimum service quality requirements associ-

ated with the given IPTV multicast session. If a lower value is selected, we would

observe an increase in the number of users that would request retransmission from

the base station. Considering the delay constraints imposed by the IPTV service,

we cannot allow too many retransmission attempts through the base station. Each

user can reserve additional bandwidth for the delivery of proactive recovery packets,

however, considering the wireless channel characteristics, the associated cost may be

significantly higher than the desired overhead. For these reasons, we need to assign

a sufficiently high value to δS without significantly increasing the expected duration

for the cooperation phase, i.e., in our calculations, we assume that δS = 0.99.

After selecting the success threshold metric, we can find the maximum allowed

transmission rate for each user within MNR as follows 5:

Ropt,i = max
R

(
p(i)s (R) ≥ δS

)
(87)

4Note that the selected cooperative transmission rate is expected to be shared by all the cooper-
ative transmitters to maximize the energy efficiency during the cooperation phase.

5Note that, any transmission rate that is lower than Ropt,i is a feasible solution.
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Note that, since the optimal transmission rates are determined by the set of coop-

erative transmitters, the process to assign cooperative transmitters to each receiver,

before the second phase starts, carries a critical importance to increase the efficiency

of the cooperation phase. For that purpose, we propose an efficient rate assignment

technique which is initiated after the base station finishes collecting information on

the targeted users’ delivery status at the end of the initial multicast. The operation

of the proposed rate selection algorithm is explained as follows.

5.4.1 Proposed Algorithm to Achieve Dynamic Rate Selection

We initialize the cooperation sets by assigning each transmitter (within MR) to the

receiver (within MNR) with the highest average channel quality in-between. In prac-

tice, this suggests that users withinMR join the cooperation set of the closest receiver.

To maximize the cooperative transmission rate, we need to increase the rate that is

observed by the users with the lowest cooperation gain. For that purpose, we use the

following observation: the highest cooperation gain is achieved when the receivers are

assigned transmitters within short distance, which suggests that far-distance trans-

mitters can be removed from the cooperation sets with no significant effect on the

initially selected cooperative transmission rate. Therefore, to improve the optimal

rate, we reassign the long distance transmitters that initially target receivers with

high transmission rates to receivers that observe low transmission rates. Algorithm 6

presents the proposed suboptimal recursive search procedure that is used to reassign

the transmitters.

The reassignment process starts with the selection of the receiver that is the target

of the lowest cooperative transmission rate. We refer to this receiver using nmin(S).

Next, we search for the close distance transmitters that are not initially assigned to the

cooperation set of nmin(S). We analyze the impact of reassigning these transmitters,

on both nmin(S) and the originally assigned receiver ν. If the optimal rate for ν does
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Algorithm 6 Cooperation set formation.

find nmin(S) = argmin
∀ni∈MNR

Ropt(ni);

Rmin = Ropt(nmin(S));
n̂ = nmin(S);
update-status = true;
ncur = n̂
while update-status = true do
chk-loc = 0; //Position in proximity-ordered reliable neighbor set
while ncur = n̂ do
chk-loc = chk-loc +1;
ctxcur = Nord(ncur, chk-loc); //ID of the reliable neighbor at the given position
rxn = Rx(ctxcur); // ID of ctxcur’s initial target
C(rxn, ctxcur) = 0; // Reset cooperation status between rxn and ctxcur
update Ropt(rxn);
if Ropt(rxn) > Rmin then
Rx(ctxcur) = ncur;
C(ncur, ctxcur) = 1;
update Ropt(ncur)
n̂ = argmin

∀ni∈MNR

Ropt(ni);

else
C(rxn, ctxcur) = 1;

end if
end while
if n̂ = ncur then
update-status = false; // No update for cooperation set is possible

end if
end while
R

(2)
NR = min

∀ni∈MNR

Ropt(ni);

not become lower than the optimal rate selected for nmin(S) before the reassignment,

we accept the selected reassignment. We repeat this search for nmin(S) as long as it

remains as the receiver that experiences the lowest transmission rate. If at some point

during the execution of the algorithm another receiver n′
min(S) replaces nmin(S) as the

receiver with the lowest transmission rate, then we initiate a new recursive search

process, this time for n′
min(S).

We continue to execute the above reassignment process, as long as the process

continues to improve the globally optimal rate. We stop the search process when

107



no further changes can be made, i.e., the receiver that experiences the minimum

transmission rate cannot improve its rate any further and the receiver with the min-

imum optimal rate cannot be changed. The last selected optimal rate becomes the

cooperative transmission rate that will be used during the second phase. Note that

the cooperative transmitter set that is used for the recursive search process depends

on the transmission rate that is used during the initial multicast, i.e., varying the

coverage ratio also varies the effectiveness of the proposed recursive search process.

5.4.2 Finding the Expected Values for Effective Throughput and Recov-
ery Overhead

Consequently, using the multicast and cooperative transmission rates, we can deter-

mine the session throughput that is experienced by a receiver i as follows:

Ti =
R

(1)
R

Tf/T
(1)
R

×
(
P

(1)
S,i (RR) +

[
1− P

(1)
S,i (RR)

]
× P

(2)
S,i (RNR)

)
(88)

where TR represents the duration of the initial multicast phase and Tf represents

the duration of a superframe. If multiple frames are assigned to the same multicast

session within a superframe, then we sum up the throughput achieved during each

transmission frame.

To find the error recovery overhead associated with the cooperative recovery pro-

cess, we use the following equation:

O =
∑
∀ı∈M

R
(1)
R

Tf/T
(1)
R

×
[
1− P

(2)
S,i (RNR)

]
×
[
1− P

(1)
S,i (RR)

]
(89)

Here, error recovery overhead represents the additional transmissions required to com-

pensate for the losses that cannot be recovered during the cooperation phase. Re-

transmission process utilizes a unicast-based approach. To be specific, repair packets

are transmitted directly from the source or the designated Error Recovery Server

to the end-user. Users can further minimize the latency associated with the error

recovery process by using proactive recovery.
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5.5 Performance Analysis

In this section, using simulations, we evaluate the performance of the proposed er-

ror recovery system by investigating the impact of initial rate selection on session

throughput, recovery overhead, delivery latency, and energy utilization. The pro-

posed framework is compared to a cooperative MIMO system, where we have a single

cooperative transmitter set simultaneously targeting all the unreliable users, and a

non-cooperative direct transmission system, where we use unicast-based error recov-

ery (i.e., retransmissions going through the base station). Note that for the direct

transmission system, we limit the number of failures during the initial multicast by

keeping the average success ratio above a specific threshold, which is achieved by

selecting the multicast transmission rate accordingly.

We carried out our simulations using a circular shaped network with a radius of

8000m. The subscriber nodes are distributed randomly within the network region

with the base station being placed at the center. The simulations present the results

for a single multicast session. In doing so, we can observe the average IPTV multicast

performance, when the multicast session is selected randomly by the base station. We

assume that the number of users connected to the given multicast session equals 50 6.

We assume a transmit power to noise power ratio of 171dB for the channel between

base station and subscriber nodes, and a transmit power to noise power ratio of

162.8dB for the channel between any two subscriber nodes. The path loss coefficient

is given as 4.375.

For the simulations, we used 100 different topologies, and simulated each topology

10 times using different random seeds. To vary the transmission rates, we used the

coverage ratio parameter (i.e., average ratio of users that are made reliable at the

6Note that, since channel popularity for the IPTV service is modeled using Zipf distribution, if
the total number of IPTV subscribers for a given WiMAX network is very close to the capacity of
the network, then it is possible to have that many or more subscribers connected to the same session.
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end of the first transmission phase). We varied the expected coverage ratio from 0.55

to 0.95 7.
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Figure 30: Normalized throughput of a single multicast session.

In Figure 30, we show the throughput results that do not take into account the

unicast-based recovery overhead. The throughput results are normalized using the

best results we obtained for the cooperative MIMO system. For the direct transmis-

sion scenario, we focused on a single-phase transmission, and determined the mini-

mum required rate to deliver at the desired success rates of 0.99, 0.9, and 0.8 8. For

the cooperative transmission scenarios, we use a success ratio of 0.99. From the re-

sults, we observe that the direct transmission scenario requires an additional overhead

of at least 20% per user to perform as good as a cooperative MISO system. The best

7Note that coverage ratio values that are less than 0.50 usually lead to users that cannot be
recovered during the cooperation phase, since the number of potential transmitters would be less
than the number of potential receivers.

8For the direct transmission scenario, success ratio determines the average overhead required to
maintain the desired packet loss characteristics of a typical IPTV system.
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results for the proposed system is achieved when the coverage ratio is close to 0.55,

which coincides with the results of the considered cooperative MIMO system.
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Figure 31: Normalized delivery latency to finalize the IPTV multicast.

We present the latency results in Figure 31. The normalized results are obtained

by assuming the transmission of a unit-size data content. Here, for the proposed

cooperative multicast framework, delivery latency equals the summation of the du-

ration of multicast and cooperation phases, whereas for the direct transmission case

delivery latency equals the duration of the multicast phase. 9 We observe that

the aggregate value for the latency does not vary significantly as the coverage ratio

changes, with cooperative MIMO performing better than cooperative MISO because

of using higher transmission rates during the cooperation phase. Direct transmis-

sion scenario can only perform as good as the cooperative multicast approach, if the

success threshold is kept at 80% or lower during the multicast. However, because of

9Note that, additional latency to deliver unicast-based retransmission data is not included.
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the additionally required retransmissions, unless a user allocates a significant portion

of its bandwidth for the transmission of proactive repair packets, actual latency for

some users would be much higher than the value shown in the figure, which suggests

a significant advantage for cooperative multicast scenarios.
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Figure 32: Error recovery overhead comparison between different multicast strate-
gies.

We illustrate the overhead performance in Figure 32, which shows the number

of additional retransmissions required for each multicast. The results suggest that

with cooperative MISO, at the 0.55 coverage ratio, for each transmission phase, we

require one more transmission from the base station to recover from all the losses. For

cooperative MIMO, we need one more transmission from the base station for every

4 transmission phases. Direct transmission, on the other hand, can present similar

advantages only if a very high value is selected for the success threshold, i.e., 0.99,

which significantly lowers the session throughput and increases the delivery latency.

In Figure 33, we compare the energy utilization performance of the proposed MISO
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Figure 33: Normalized energy usage comparison between different cooperation strate-
gies.

approach to that of the considered cooperative MIMO approach. The results show

the energy utilization during the cooperation phase, and they are normalized with

respect to the transmission of unit size data, which takes into account the decrease in

the minimum required transmit power to ensure reliable delivery. When the coverage

ratio is close to 0.55, which achieves the highest throughput efficiency, we observe that

the proposed approach can reduce the energy utilization by ≈ 50%. The improvement

in energy utilization gradually reduces to ≈ 30% as the coverage ratio increase to 0.95.

5.6 Conclusions

In this chapter, we proposed a resource efficient adaptive rate selection strategy for

a two-phase cooperative MISO-based error recovery framework. We presented the

analytical framework, which allows us to determine a pseudo-optimal rate selection

strategy. We showed that in a two-phase cooperative recovery framework, depending
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on the initial size of the cooperation set, selection of the pseudo-optimal transmission

rates allowed the proposed cooperative MISO framework to perform very close to

a cooperative MIMO framework. Furthermore, we observed that the proposed sys-

tem presents a good balance between cooperative MIMO and non-cooperative trans-

mission systems with further gains to be achieved with the use of content-adaptive

cooperative error control techniques.

114



CHAPTER VI

ANALYZING PERFORMANCE TRADEOFFS FOR THE

DELIVERY OF CONCURRENT CHANNEL CHANGE

STREAMS TO ENABLE FAST CHANNEL CHANGE IN

IPTV NETWORKS

6.1 Introduction

In IPTV networks, channel change latency is a major concern in bringing the per-

ceived performance of IPTV networks close to that of traditional broadcast networks.

To minimize the channel change latency, previous research has mostly focused on

modifications at the network level [95], for instance, by utilizing a dedicated server

for the delivery of additional channel change streams, or, at the client level, by utiliz-

ing concurrently delivered source streams to support the channel change process. In

this chapter, our focus is on the latter, i.e., IPTV clients join complementary IPTV

streams immediately after making a channel change request. Specifically, we propose

an analytical framework to evaluate the performance tradeoffs associated with the

use of concurrent stream delivery (CSD) techniques to improve the zap response time

in IPTV networks.

The performance tradeoffs associated with the delivery of complementary streams

have been previously investigated by Sun et al. in [98], for the sequential switching

case, and in [108] for the random switching case. Even though the proposed re-

search in [98, 108] presents a good starting point to analyze the performance of CSD

techniques, the assumptions and the simplicity of the models utilized by the authors

to perform their analysis may prevent the proposed frameworks from capturing the
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actual performance tradeoffs associated with the use of CSD-based techniques.

Our research addresses these concerns by creating a more generalized evaluation

framework to accurately capture the perceived performance in real-life implementa-

tions. Specifically, we propose the following modifications to [98] and [108]:

• Arrival process for the channel change requests: In [98, 108], the authors used

exponential distribution to approximate the distribution for the interarrival

times corresponding to the channel change requests. However, as shown in [81],

the actual request arrival process, under a time-invariant assumption, closely

resembles to a hyper-exponential (or mixtures of exponentials) distribution. For

that reason, in this study, we will utilize the hyper-exponential distribution to

approximate the request generation process.

• Synchronization time: In [98, 108] the synchronization (or display) time associ-

ated with each request is modeled by using a constant-valued parameter (based

on either the average statistics or the worst-case scenario). However, in prac-

tice, the actual synchronization time may differ from one request to another,

and among requests from different sessions. Our analysis and the models we

proposed in this study take into account the time-varying nature of the syn-

chronization latency.

• Sessions to switch to: In [98, 108], transitions from one session to another

is limited to one (going up only) or two cases only (going up and random

selection). However, the analysis performed by the authors in [81] suggests a

more complex model to approximate the distribution for the channel switch

events. Furthermore, more importantly, in [98, 108] the authors do not consider

the impact of incorrect session join decisions (which may account for half of the

channel change events) on the performance metrics. Channel switching model

used in our analysis incorporates all the possible scenarios corresponding to the
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distribution of successive channel change events.

In short, our research addresses the above limitations to develop a more realistic

model to analyze the performance tradeoffs associated with the use of concurrently

delivered channel change streams. Using the proposed framework, we evaluate the

level of improvement perceived in the latency performance at the clients and the

corresponding bandwidth requirements to achieve the stated latency improvements.

We compare both approaches in identical scenarios to illustrate the limitations of the

exponential-based frameworks.

6.2 System Model

We assume an IPTV network that consists of N clients and M active IPTV sessions,

i.e., the set of active users and active sessions are represented with parameters {N}

and {M}. To find the maximum overhead associated with these clients, we focus on

the closest common access point shared by these clients. We next give an overview of

the modifications proposed for the arrival process and the state transitions associated

with the channel switching events.

6.2.1 Arrival Process for the Channel Change Requests

We model the arrival process for the channel change requests using the hyperexpo-

nential distribution, which has the following probability density function:

f(w;λ,p) =
κ∑

i=1

pi × λi × e−λiw (90)

where κ represents the order for the hyperexponential distribution, pi represents the

probability of selecting the ith exponential distribution (which has an arrival rate of

λi) from the given mixture model. 1

1λ = {λ1, λ2, . . . , λκ} and p = {p1, p2, . . . , pκ}. Hereafter, presented results will assume the
following parameter values: κ = 3, λ = [6, 1, 0.2], and p = [0.45, 0.35, 0.2], with a mean request
arrival rate of 3.09. Note that, the parameter values are chosen based on the mean request arrival
rate to reflect the respective frequencies of different zapping activities.

117



Therefore, the cumulative distribution function for the hyperexponential distribu-

tion, F (w;λ,p), is given by:

F (w;λ,p) = 1−
κ∑

i=1

pi × e−λiw (91)

Since channel change events are generated using the hyperexponential renewal

process, to find the distributions associated with the consecutive arrival events, we

need to solve for the n-fold convolution of F (w), which is given by:

Fn(w) =

∫ w

0

F (w − x)× fn−1(x)× dx (92)

where fn−1(x) = d(Fn−1(x))/dx.

We can then represent the generalized equation for Fn(w;λ,p) as follows:

Fn(w;λ,p) =
κ∑

i=1

n∑
j=1

(
aij

λji

)
× Γ(j, λiw) (93)

where aij is a constant whose value depends on (λ,p) and Γ represents the lower

incomplete Gamma function, i.e., Γ(a, x) =
∫ x

0
e−t × ta−1 × dt.

6.2.2 State transitions

In [81] the analysis performed by the authors suggests the use of Zipf distribution for

the most popular IPTV sessions (i.e., top 10%), while using exponential distribution

for the less popular sessions. 2 Accordingly, we can state the equations for the steady

state probabilities corresponding to each session as follows:

πi =


ϕ1 × i−αzpf/ϕ if i ≤ ⌊M

10
⌋,

e−αexp×i+ϕ2/ϕ otherwise.

(94)

where i represents the rank of a session, αzpf represents the exponent for the Zipf

distribution, αexp represents the rate for the exponential distribution, {ϕ1, ϕ2} repre-

sents the weights associated with the given distributions, and ϕ is the normalization

2These distributions can accurately capture the steady state access rates for the majority of the
sessions, i.e., ∼98% of the total available sessions.
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metric, which is used to ensure that
∑

∀i πi = 1. 3

Next, to approximate the probability of making a transition from one session to

another, we use the following relationship:

Pik =



0 if k = i,

pu if k = (i+ 1)M ,

pd if k = (i− 1)M ,(∑
j∈M ′(i) πj/(ϱ× πk)

)−1
if k ∈M ′(i).

(95)

where pu (or pd) represents the probability of making a sequential switch to the

one higher (or lower) numbered (or ranked) session, ϱ equals (1 − pu − pd) and it

represents the probability of performing a targeted (or non-sequential) switch, M ′(i)

equals {M}\M(i), whereM(i) represents the neighborhood sessions for the ith session

(i.e., M(i) = {(i− 1)M , i, (i+ 1)M}), and (·)M represents the modulo operator. 4

To determine the n-step transition probabilities, we can make use of the Markovian

assumption and utilize the nth order transition probability matrix Pn, for which the

equation is given by Pn =
∏n

i=1P, where P is formed by using (95).

To generate the channel change events, we use the terminating renewal process,

which refers to a renewal process that terminates after a random number of renewals

[97]. The number of renewals is determined based on the Bernoulli process, for which

the probability of continuing the trials (or channel switches) is given by ph.
5

6.3 Performance Analysis

In this section, we derive the equations corresponding to the following measures:

(i) watching probabilities, (ii) surfing durations, (iii) latency distributions, and (iv)

bandwidth allocations. Our study essentially focuses on the performance perceived

3Note that, as long as the weight corresponding to one of these distributions is known, we can
determine the value of the other weight using ϕ2 = αexp ×M/10− αzpf × ln (M/10) + lnϕ1.

4In our analysis, we assume the following values for pu and pd [81]: pu = 0.4032 and pd = 0.1568.
5For the terminating renewal process, the expected number of renewals is equal to ph/(1− ph).
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during the surfing periods. Here, a surfing period refers to the duration during which

the client makes successive channel change requests until the client makes a surf-

termination request and settles on the last selected channel.

6.3.1 Channel Watching Probability

We use Pω(i, t) to represent the probability of watching the ith session t time units

after the surfing period begins (i.e., t ≥ 0 and t = 0 represents the initialization

point). To find the equation for Pω(i, t), we condition on the initial channel state as

follows:

Pω(i, t) =
M∑
k=1

πk × Pki(t) (96)

where Pki(t) represents the probability of making a channel switch from the kth

session to the ith session at time t.

To find the equation for Pki(t), we condition on the number of channel change

requests that occur within the timeframe (0, t). Using the characteristics of the ter-

minating renewal model, we observe two possible scenarios depending on the last

accessed state. Specifically, if n channel change requests are observed within a given

timeframe, then the result is triggered by either n renewals with no terminating re-

quest or more than n+ 1 renewals with the (n+ 1)th renewal being the terminating

request. We can express the equation corresponding to these cases as follows:

Pki(t) = lim
m∗→∞

m∗∑
m=0

pmh ×Pm
ki ×

[
F ′
m(t) + (1− ph)× Fm+1(t)

]
(97)

where F ′
m(t) is given by Fm(t)− Fm+1(t).

6

6Note that, as we increase the value of m, we start to observe a linear increase in the ratio of
Fm/Fm+1. Using this relationship, we can estimate the required parameters using only a small subset
of Fm(t) values. Because of the difficulties involved in finding a closed form expression for (97), the
above relationship can help significantly in finding an accurate approximation for the summation as
m∗ → ∞.
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6.3.2 Probability of Concurrent Stream Delivery

For the considered concurrent stream delivery approach, we assume a delivery dura-

tion of δ time units for the additional channel change streams after a channel change

request is made. If no request is made within this δ-long period, then the client stops

receiving the additional streams. If, on the other hand, the client makes another

channel change request before the concurrent delivery deadline expires, then the up-

coming deadline is extended to expire δ time units after the time of the last made

request.

Therefore, to find the probability of delivering extra channel change streams at

time t, we need to determine whether or not the client has made any channel change

request during the last min(δ, t) time units. When t > δ, we use the following equation

to find the probability of making a channel change request within (t− δ, t):

P (nq(t− δ, t) ≥ 1) =
∞∑
n=1

pnh ×
(
Fn(δ)− Fn+1(δ)

)
(98)

where nq(t1, t2) represents the number of requests that the client makes within (t1, t2).

As we mentioned in the previous subsection, we also need to address the restriction

imposed on the delivery of extra channel change streams by the terminating renewal

process. Specifically, there should be no terminating request that is made within

(0, t− δ). The probability corresponding to this restriction is calculated as follows:

Pτ (t− δ) = 1− F1(t− δ) +
∞∑

m=1

pmh × F ′
m(t− δ) (99)

On the other hand, when t ≤ δ, we only need to find the probability of making at

least one channel change request within (0, t), with also the restriction of not making

any terminating request within the timeframe (0, t).
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Combining these two scenarios, we can state the general equation for the proba-

bility of delivering extra channel change streams as follows:

E(t) =


Pτ (t− δ)× P (nq(t− δ, t) ≥ 1) if t > δ,

P (nq(t− δ, t) ≥ 1) if t ≤ δ

(100)

In Figure 34, we illustrate the impact of varying the value of δ on the probability

of delivering concurrent streams. Except for the first few seconds where we observe an

initial jump, we observe a gradual decrease in the value of E(t), which, after a while,

converges to approximately the same value for all the considered δ values (which is

caused by the clients terminating the surfing process).
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Figure 34: Dependence of E(t) on the δ parameter.

6.3.3 Expected Bandwidth Allocation During the Surfing Period

To find the bandwidth requirements at the access link, we need to determine the

steady state probability of delivering each session through the access point to the
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clients. There are two possible scenarios for the clients to receive data from the

active sessions, i.e., watching the session or requesting it as one of the concurrently

delivered extra sessions.

We can therefore state the equation for the probability of receiving the ith session

at time t as follows:

R(i, t) = Pω(i, t) + E(t)× S(i, t) (101)

where S(i, t) represents the probability of receiving the ith session as one of the

additional channel change streams. The equation for S(t) is given as follows:

S(i, t) =



∑M
j=2 Pω(j, t) if i = 1,

Pω(1, t) + Pω(3, t) + Pω(M, t) if i = 2,

Pω(1, t) + Pω(2, t) + Pω(4, t) if i = 3,

Pω(2, t) + Pω(3, t) + Pω(5, t) if i = 4,

Pω(i− 1, t) + Pω(i+ 1, t) otherwise.

(102)

We can then determine the expected bandwidth utilization using the probability

of delivering each session to the clients connected to the same access point as follows:

E[W (t)] = WM −
M∑

m=1

w(m)×
[
1−R(m, t)

]N
(103)

where w(m) represents the multicast transmission rate for the mth session, and WM

equals
∑M

m=1w(m).

In Figure 35 we illustrate the bandwidth utilization at the access point when δ

equals 6s. In accordance with the results corresponding to the concurrent delivery

rates, bandwidth utilization peaks initially as the clients enter the surfing period,

after which it starts to decrease as it converges to the steady state values due to the

users exiting the surfing period.
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Figure 35: E[W ] as we vary {N,M}, when δ = 6s and w(m) = 3Mbps, ∀m ∈ {M}.

6.3.4 Expected Channel Change Latency

In this section, we derive the equations for the channel change latency. Our main focus

is on finding the expected value for the accumulative latency during a surfing period

and the mean latency per request. We carry out our analysis by initially focusing

on the first four requests-to summarize our approach in detail-and then presenting a

general formula to represent the rest.

Since the surfing period initiates with no extra channels being delivered, to find

the latency for the first channel change request, we use the average waiting time for

an arbitrarily received request. Let us assume that the distribution for the synchro-

nization (or display) latency is given by gi(t) for the ith session. Then the expected

latency for the first channel change request is given by the following equation:

Li,1 =

∫ gi,max

gi,min

t× gi(t)× dt (104)
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where gi,min and gi,max represent the boundary values for the display latency and gi(t)

represent the distribution for the display latency. For the rest of the chapter, we

will assume a uniform distribution for the display latency, i.e., gi(t) = 1/gd, where

gd = gi,max − gi,min.
7 Based on these assumptions, the expected latency for the first

request becomes equal to gs/2, where gs = gi,max + gi,min.

To find the latency for the higher order requests, we need to determine the possible

scenarios for each of these requests. Specifically, for the second channel change request,

we observe four different scenarios:

Scenario 2.1 : The request arrives within (0, gi,max) of the first request, where gi,max <

δ, and the request is targeting a session that is already being delivered because of the

previously received request, i.e., s2 ∈ {N1}, where si represents the session targeted

by the ith request (1 ≤ si ≤ M) and {Nj} represents the extra sessions delivered

based on the jth request (j ≥ 1). In this case, the equation for the expected latency

is given as follows:

li,2 =

∫ gi,max

gi,min

1

gd

∫ t

0

(t− w)× f(w)× dw × dt (105)

Scenario 2.2 : The request arrives within (gi,max, δ) of the first request, and s2 ∈ {N1}.

In this case, the latency equals 0, i.e., li,2 = 0.

Scenario 2.3 : The request arrives within (δ,∞) of the first request. In this case, it

does not matter whether or not the current session is delivered based on the previous

request, since the system delivers the additional streams for a δ-long period. Hence,

for the current case, li,2 = Li,1.

Scenario 2.4 : The request targets a session that is not included among the concur-

rently delivered extra sessions, i.e., s2 ̸∈ {N1}. If that is the case, then li,2 = Li,1.

Therefore, combining the above scenarios we can find the expected latency during

7Note that the distribution selected to represent the synchronization latency does not affect the
approach we implement to find the expected latency.
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Table 2: Sample values for the ρn metric
M ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
100 1 0.7114 0.2673 0.1899 0.0837 0.0635

600 1 0.7089 0.2571 0.1826 0.0778 0.0592

the second channel change as follows:

Li,2 =
gs
2
×

κ∑
j=1

pj ×
(
1 + ρ2 × e−(λj×δ)

)
− ρ2 ×

κ∑
j=1

(
pj
λj

)
× (1 +

gi,j
gd

) (106)

where ρ2 represents the probability of s2 ∈ N1 and gi,j equals (e
−(λj×gi,max) − e−(λj×gi,min))/λj.

In general, we can determine the value of ρn (where n ≥ 2) using the following

equation:

ρn =
∑
∀s1

π∗
s1

∑
∀s2

. . .
∑
∀sn−1

n−2∏
j=1

psjsj+1

n−1∏
j=1

∣∣∣Qsj

∣∣∣∗ × P sn−1
(107)

where π∗
s1

represents the probability of receiving s1 with the first channel change

request, |Qs|∗ represents a 1×M row vector for the sth IPTV session which consists

of elements that identify the delivery status of the additional channel change streams

8, and P s represents the M × 1 1-step transition probability vector for the sth IPTV

session 9.

The values for the first few ρn metrics (when n ≥ 1) are shown in Table 2. In

general, the value of ρn does not show significant variations as the number of sessions

is varied.

For the third channel change request, we combine the possible scenarios based

on the latency expectations and determine four major scenarios, which are listed as

follows:

Scenario 3.1 : The second and the third requests arrive within (0, gi,max) of the first

8Qs(j) = 1, if sj is among the additional channel change streams delivered to the zapping user
when the user made a channel change request, which targets session s.

9P s(j) equals pssj .
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request, and s3 ∈ {N1, N2}. In this case, the expected latency is given as follows:

li,3 =

∫ gi,max

gi,min

∫ t

0

∫ t−w1

0

gi(t)× f(w1)× f(w2)

(t− w1 − w2)−1
× dw2 × dw1 × dt (108)

=
gs
2
−

κ∑
j=1

(
pj × gij
gd

)
×
(
s+

1

λj

)
+

κ∑
j=1

p2j ×
(
gmin,ij − gmax,ij

λj × gd

)

+
κ∑

j=1

∑
k=1
k ̸=j

pk × pj × (gij − gik)

gd × (λj − λk)
− 2×

κ∑
j=1

pj
λj

(109)

where gmax,ij equals e
−λj×gi,max × (gi,max+1/λj) and gmin,ij equals e

−λj×gi,min × (gi,min+

1/λj).

Scenario 3.2 : We have s3 ∈ {N2} but s3 ̸∈ {N1} with no restriction on the arrival

times for the second and third requests. In this case, the expected latency equals Li,2.

Scenario 3.3 : The second request arrives within (0, gi,max) of the first request and the

third request arrives δ seconds after the second request, OR s3 ̸∈ {N2}. For these

cases, the expected latency equals Li,1.

Scenario 3.4 : The second and the third requests arrive within (gi,max, δ) of the first

request, and s3 ∈ {N1, N2}, OR, the second request arrives within (0, gi,max) and the

3rd request arrives within (gi,max, δ) of the first request, and s3 ∈ {N1, N2}. For these

cases, the expected latency equals 0.

Consequently, we can express the expected latency for the third channel change

request by using the following equation:

Li,3 = (1− ρ2)× Li,1 + (ρ2 − ρ3)× Li,2 + ρ3 × L∗
i,3 (110)

where

L∗
i,3 =

( κ∑
j=1

pj × e−(λj×δ)
)
×
[
Li,1 ×

(
1−

κ∑
j=1

pj × e−(λj×δ)
)
+ Li,2

]
+ li,3 (111)

For the higher order requests, except for a small number of scenarios, we can use

the equations corresponding to the previously received requests (i.e., the lower order

requests) to determine the final equation for the expected latency. To exemplify this
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process, we next examine the possible scenarios for the fourth channel change request

and list them as follows:

Scenario 4.1 : If s4 ∈ {N2, N3} but s4 ̸∈ {N1}, then the expected latency equals Li,3.

Scenario 4.2 : If s4 ∈ {N3} but s4 ̸∈ {N2}, then the expected latency equals Li,2.

Scenario 4.3 : If s4 ̸∈ {N3}, then the expected latency equals Li,1.

Scenario 4.4 : If s4 ∈ {N1, N2, N3}, then we can determine four major scenarios, for

which the categorization can be made based on the interarrival times between the

consecutive requests. Specifically, we can list these four cases as follows:

Scenario 4.4.1 : If the 2nd request arrives within (δ,∞), then the expected latency

equals Li,3.

Scenario 4.4.2 : If the 2nd request arrives within (gi,max, δ) and if the 3rd request

arrives ∆t3 seconds later, where ∆t3 > δ, then the expected latency equals Li,2.

Scenario 4.4.3 : If the 2nd request arrives within (0, δ) and the 3rd requests arrives

∆t3 seconds later, where gi,max < ∆t3 ≤ δ, OR if the 2nd request arrives within

(0, gi,max), and ∆t3 ≤ gi,max, and the 4th requests arrives ∆t4 seconds later, where

∆t4 > δ, then the expected latency equals Li,1.

Scenario 4.4.4 : If all the requests arrive within (0, gi,max) then the expected latency

is calculated as follows:

li,4 =

∫ gi,max

gi,min

∫ t

0

∫ t−w1

0

gi(t)× f2(w1)× f(w2)

(t− w1 − w2)−1
× dw2 × dw1 × dt

=

∫ gi,max

gi,min

gi(t)×
(
t× F3(t)− F ∗

3 (t)
)
× dt (112)

where F ∗
3 (t) is given by

∫ t

0
w × f3(w)× dw.

We can then calculate the expected latency for the 4th request by using the

following equation:

Li,4 = (1− ρ2)× Li,1 + (ρ2 − ρ3)× Li,2 + (ρ3 − ρ4)× Li,3 + ρ4 × L∗
i,4 (113)
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where

L∗
i,4 = li,4 +∆Λ ×

3∑
j=1

Li,j × (1−∆Λ)
3−j (114)

where ∆Λ equals
∑κ

j=1 pj × e−(λj×δ).

In Figure 36 we illustrate the impact of varying the δ parameter and gmin /max

values on the expected latency for the second, third, and fourth requests. As ex-

pected, increasing the δ value initially decreases the latency, since the probability of

a request arriving during a concurrent stream delivery period increases. However, δ

is also shown to have a limited impact on the latency, as the expected latency starts

to converge as δ is increased beyond a certain limit, which depends on the system

parameters. We also observe that the difference among the expected latency values

of different requests decreases as we increase the value of δ.
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Figure 36: Expected latency for the kth request, when k is selected from [2, 3, 4].

In short, to find the higher order Li,k values, we need to perform two additional
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calculations at each step. For instance, for the 4th request, these calculations are

performed to determine the values, which correspond to L∗
i,4 and ρ4. Consequently,

we can determine the total expected channel change latency (during a single surfing

period) by using the following equation:

E[Lsp] =
M∑
i=1

πi × E[Lsp,i] (115)

where

E[Lsp,i] =
∞∑
j=1

j∑
k=1

pjh × (1− ph)× Li,k (116)

=
∞∑
j=1

pjh × Li,j (117)

We can approximate the equation for E[Lsp,i] as follows:

E[Lsp,i] =
∞∑
j=1

L∗
i,j ×

[1 + ph × (ρj − ρj+1)

ρ−1
j × p−j

h

]
+ ρj × (ρj − ρj+1)

×L∗
i,j ×

∞∑
k=j+1

pk+1
h

k∏
l=j+1

(1 + ρl − ρl+1) (118)

where L∗
i,1 equals Li,1, L

∗
i,2 equals

(
Li,2 − (1− ρ2)× Li,1

)
/ρ2, and L

∗
i,3 is given by:

L∗
i,3 =

Li,3 − (1− ρ2)× Li,1 − (ρ2 − ρ3)× Li,2

ρ3
(119)

We can further simplify (118) by approximating the sum of elements corresponding

to the higher order latencies (i.e., j ≥ 5) as follows:

E[Lspi ]|∞5 ≈
L∗

i,5 × p5h × ρ5

(1− ph)
×
(
1 +

ph × (ρ5 − ρ6)

(1− ph)

)
(120)

Similarly, we can determine the average latency per request using E[L] =
∑M

i=1 πi×

E[Li], where the equation for E[Li] is given as follows:

E[Li] =
∞∑
j=1

Li,j × (1− ph)×
(
− ln(1− ph)−

j−1∑
k=1

pkh
k

)
(121)
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In Figure 37 we illustrate the impact of varying the δ and ph values on the mean

value for the latency per request. 10 Compared to waiting for the next GOP sequence

to initiate the decoding process, CSD technique leads to noticeable improvements

in the latency performance. However, the improvements are not significant enough

to justify the increased bandwidth requirements at the access point as shown in

Figure 35.
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Figure 37: Expected value for the channel change latency per received request.

We can also express the probability of the channel change latency being equal to

10Note that in the figure we show the weighted results, which also assumes the terminate request
case, which has a latency of 0. We will shortly illustrate the results that excludes the given scenario,
which leads to an expected latency of E[L]/ph.
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zero as follows (when g(t) = 1/gd):

PLi1,0 = 0 (122)

PLi2,0 = ρ2 ×
[
−

κ∑
j=1

pj × e−(λj×δ) −
κ∑

j=1

pj × gi,j
gd

]
(123)

PLi3,0 = (ρ3 − ρ2)×
κ∑

j=1

pj ×
[gi,j
gd

+ e−(λj×δ)
]

+ρ3 ×
κ∑

j=1

(1− e−(λj×δ))

gd/pj
×
[ κ∑

k=1
k ̸=j

pk × (gi,k − gi,j)

(λj − λk)/λk

+pj × (gmin,ij − gmax,ij)
]

(124)

and

PLi4,0 = P̃ ∗
Li4,0 + PLi3,0 ×

(
ρ3 − ρ4 + ρ4 ×

κ∑
j=1

pj × e−(λj×δ)
)
+ PLi2,0

×
(
ρ2 − ρ3 + ρ3 × (1−

κ∑
j=1

pj × e−(λj×δ))
κ∑

j=1

pk × e−(λk×δ)
)

(125)

where

P̃ ∗
Li4,0 =

(
∆Λ − 1

)
×
∑κ

j=1 pj × (δj +
gij
gd
)

1−∆Λ +
∑κ

j=1 pj × (1 +
gij
gd
)

+
κ∑

j=1

p3jv × δj × gij

(
g∗ij
gij

− 1)−1

+
κ∑

j=1

κ∑
k=1
k ̸=j

pj × pk
λ∗jk

[
gij − gik

λ−1
k

( κ∑
m=1
m̸=j

δj × λ∗jm − λjm

λ∗jm × p−1
m

+
δj × λ∗jk + λj

λ∗jk × p−1
k

)
+

(δj + 1)× λ∗jk + 3× λk

p−1
k × (g∗ik − gik)−1

]

−
κ∑

j=1

κ∑
k=1

κ∑
m=1

pj × pk × pm × δj × (gik + gd) (126)

where δj equals e−λjδ, g∗i,k equals gmin,ik − gmax,ik + gik, λ
∗
jk equals λj − λk, and λjk

equals λj + λk.

We compare the impact of δ and (gmin, gmax) values on the probability of zero

channel change latency in Figure 38. For the most part, we observe better latency

results at the higher request counts, especially when the value of δ is kept above a

certain limit.
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Figure 38: PLik,0 when k is selected from the set [2, 3, 4], and δ (in log-scale) is
selected from (2s, 20s).

In Figure 39, we illustrate the impact of increasing the request count on the value

of P ∗
Lik,0, where P

∗
Lik,0 is defined as PLik,0 −

∑k−1
j=1(ρj − ρj+1) × PLij,0. Specifically,

we focus on the scenario when sj ∈ {N1, N2, . . . , Nj−1}. At the limit, increasing the

order count has the impact of increasing the probability of observing zero latency,

when the last observed session is delivered during the concurrent delivery period of

the previously switched sessions.

6.4 Discussions

In this section, we compare the proposed analytical framework, within which the

channel change requests are generated based on the mixture exponential distribution,

to the referred channel change framework, which assumes exponentially distributed

request interarrival times. For both scenarios, we use the same values for the mean
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Figure 39: P ∗
Lik,0 when k is selected from the set [2, 3, 4].

request arrival rate, λ̄ = 3.09. We assume the concurrent delivery of three additional

channel change streams during a surfing period. To improve the accuracy of our

comparisons, for both scenarios, we use the same channel state transition matrix,

which assumes the following initial parameter values: αzpf = 0.513, αexp = 0.06, and

ϕ1 = 12.642 [81]. 11

In Figure 40, we illustrate the difference in bandwidth requirements for variousM

and N values, when δ equals 6s. In general, we observe that the exponential-based

framework overestimates the bandwidth requirements for the early periods (when

t ≤ 2δ), while underestimating the bandwidth requirements for the later periods.

The deviation rate increases as the number of users decreases, or as the duration of

the surfing period is increased, and vice versa. Also note that as the duration of the

11The values for ϕ2 and ϕ are selected based on the number of available sessions, e.g., if M = 100
then ϕ2 = 1.4158 and ϕ = 331.472, if M = 200 then ϕ2 = 1.12 and ϕ = 392.249.
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observation period increases, the results for both approaches start to converge, with

the ratio becoming very close to 1.
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Figure 40: Exponential vs. mixture of exponentials bandwidth comparison as we
vary {N,M} when δ = 6s.

In Figure 41, we compare the expected latency performance of the two frame-

works. Based on these results, we observe two major differences between the two

frameworks. The first difference is that the exponential based approach overesti-

mates the improvements in the expected latency performance. The second difference

is that the exponential based framework cannot capture the variations in the latency

performance at the desired accuracy level. We also consider the following factors to

have an effect on the observed differences: exclusion of incorrect channel change deci-

sions from performance evaluations in the referred framework and the limited number

of choices implemented to model the state transition events.

In Figure 42, we illustrate the ratio between the expected latency values for the
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Figure 41: Exponential vs. mixture of exponentials latency per request comparison.

proposed and the referred frameworks as we vary the value of ph and the mean display

latency values. We notice that the percentile difference between the two approaches

decreases as the value of ph decreases, since the number of possible channel change

scenarios decreases, or the mean display latency value increases, since the impact of

earlier channel change events increases.

6.5 Conclusions

In this chapter, we proposed a novel analytical framework to evaluate the performance

of concurrent stream delivery techniques in IPTV networks. By integrating all the

major contributing factors within the proposed framework, our model was able to

closely approximate the realistic conditions. Exemplary performance evaluations,

which showed close to 40% differences in latency and bandwidth results compared

to the exponential based framework, emphasized the importance of the proposed
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Figure 42: Exponential vs. mixture of exponentials latency per request comparison.

extensions. Our observations also suggest the need of a more exhaustive study on

concurrent delivery based channel change techniques, as the perceived improvements

in the latency performance were not sufficient to justify the significant increase on

bandwidth requirements at the access network.
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CHAPTER VII

A PEER-ASSISTED DELIVERY FRAMEWORK TO

SUPPORT IPTV CHANNEL CHANGE

7.1 Introduction

Channel change latency refers to the delay from the time a channel change request is

made to the time the selected channel is displayed on the user equipment. Traditional

broadcast technologies typically offer very small channel change delays, since the users

of these technologies can simultaneously receive the content for all the available chan-

nels. As a result, for these technologies, channel change delay essentially represents

the time to locally make the necessary adjustments to switch to the content received

on a different frequency or the time to decode the received content.

On the other hand, IPTV networks utilize the Switched Digital Video (SDV) ar-

chitecture, which allows the users to have simultaneous access to a limited number of

channels. The maximum number of channels an end-user can simultaneously receive

depends on a few factors, such as user bandwidth availability and stream bandwidth

requirements. To initiate and proceed with the channel change process, IPTV users

need to perform session-join and -leave tasks at the network level by communicating

directly with the multicast proxy servers. As a consequence of performing channel

change operations at the network level, we observe signaling (IGMP join/leave), ran-

dom access point (RAP) acquisition (i.e., receiving key frames), and buffering delays.

To achieve the desired latency performance, previous research has mostly focused on

minimizing the RAP acquisition delay. For instance, by using a dedicated server to

unicast transmit the channel change data to end-users before the zapping user joins

the multicast session [20, 35], by creating separate multicast sessions with different
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key frame delivery times [49, 21], by using concurrently delivered streams during surf-

ing periods [98, 108], or by focusing on the characteristics of the broadcast content

and the method used to deliver it at the same time (for details, see [95] and references

within).

In the previous chapter, we focused on the use of concurrently delivered streams

and its impact on the latency performance and the network overhead. We observed

significant increase in the required overhead to achieve the desired latency perfor-

mance. Even though client-based solutions are typically preferred over other schemes

as they require the least amount of changes in the network infrastructure, the per-

ceived results in channel change overhead suggested the use of a more network-centric

approach to solve the latency problem. Since server-based solutions were shown to

achieve the optimal performance in reducing the channel change latency (when com-

pared to all the considered channel change techniques), in this chapter our focus is

on the design of a server-based channel change framework.

In server-based channel change solutions, the dedicated servers typically respond

to each received request individually, by creating a distinct unicast channel-change

stream for each received request. However, these performance improvements come at

the expense of an increased server load. As the number of users connected to a chan-

nel change server increases, we may start to observe more frequent server overloads.

Figure 43 illustrates the relationship between cumulative channel change rate and the

probability of a server overload. Notice that, as the channel switching rate increases,

server overload probability may reach unacceptable levels. That is especially true,

when the IPTV broadcasts use longer group-of-picture (GOP) durations. To keep

the probability of server overload within acceptable limits, we may need to imple-

ment highly selective request admission policies, which may, as a result, mitigate the

advantage of implementing server-based channel change policies.

To maximize the efficiency of a server-based channel change policy, we need to
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Figure 43: Probability of the server being overloaded as the request arrival rates
(λQ), request admission rates, and GOP durations (TGOP ) are varied.

support it with resource efficient delivery techniques. The proposed research achieves

this objective by creating a distributed delivery framework, which makes use of the

resource availability at the session peers. To the best of our knowledge, for IPTV

networks, the current research offers the most comprehensive discussion on how to

combine the strengths of a dedicated server with that of the session peers to achieve a

scalable, low latency, and resource efficient channel change framework. In our study,

we essentially focus on IPTV sessions with longer GOP durations, since they display

the worst synchronization latency characteristics. Through simulations, we showed

that our approach is highly effective in reducing the channel change latency while

also keeping the overhead at manageable levels.
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7.2 Proposed Channel Change Architecture

Figure 44 illustrates the main features of the proposed channel change framework,

which consists of a group of dedicated servers, referred to as the Channel Switch

Coordinators (CSCs), and the session peers. 1 For the given framework, CSC servers

are mainly responsible for managing and coordinating the channel change requests

received from the session peers.
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Figure 44: Proposed fast channel change framework.

To initiate the channel change process, zapping user sends a request message,

with information on the targeted channel change event, to its corresponding CSC

1Hereafter, we refer to active IPTV clients as session peers. In Figure 44, support peers correspond
to the session peers that are capable of supporting the channel change process by sending channel
change packets to the zapping users.
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server. After the CSC server receives the channel change request, it determines the

parameters associated with the channel change request (i.e., support peers and the

sequence numbers of the packets that will be transmitted by each support peer).

To coordinate the channel change events, CSC server creates a multicast control

channel (MCC), through which it delivers the basic information on the κmost popular

multicast sessions. 2 Specifically, over MCC, CSC server multicasts the location of

the next key frame 3 for each of the κ sessions included in the multicast. Since the

number of sessions targeted by each MCC transmission is expected to be small and

the key frames are not frequently transmitted (i.e., one frame per group-of-picture

(GOP)), control channel overhead at the end-users will also be small. Note that, if the

key frame transmission frequencies differ from one session to another, then the CSC

server can aggregate multiple MCC update messages in such a way that the end-users

can be guaranteed to receive up-to-date information on each of the κ channels TJ time

units before the respective delivery times of the key frames. Here the parameter TJ

refers to the IGMP signaling latency perceived during a channel change event.

...

I-Frame (GOP[n])

...

I-Frame (GOP[n+1])

TJ

TX

TJ

Join with no fast 

channel change 

request

Join with fast 

channel change 

request 

No join only fast 

channel change 

request

Sn+1Sn

Figure 45: Timing for the session join and channel change operations.

We next summarize the channel change operation for the given framework, from

the point of view of an IPTV client, referred to as ν. Assume that ν decides to make

a channel switch from session sC to session sN .
4 We illustrate the timing process

2CSC server acquires this information, as well as information on the framing structure used
for the subsequent group of pictures (GOPs), from the head-end server, through head-end server’s
periodic multicasts to all the active CSC servers.

3Hereafter, we will use the terms key-frame and I-frame interchangeably.
4The subscripts C and N refer to Current Channel and Next Channel.
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for the channel change operation in Figure 45. Channel change process initiates as

ν transmits an IGMP leave message to the Multicast Proxy Server. If the channel

change request is made within the interval JI,n+1
5, then ν also sends an IGMP join

message to start receiving packets from sN ’s source multicast. Furthermore, if the

IGMP join message is sent during an interval of [Sn+1 − TJ , Sn+1 + TI − TJ ]), then ν

also sends a channel change update message to the CSC server. If additional channel

change packets are required by ν to finalize its channel change process, then the CSC

server delivers the requested packets directly to ν, without forwarding the request to

the potential support peers within sN .

If the expected delay to receive the next I-frame from sN ’s source multicast is

outside the interval of JI,n+1, then ν postpones the transmission of its IGMP join

message. There are two reasons for this decision. The first reason is to reduce the

downlink bandwidth utilization at ν, by limiting the duration for simultaneously

receiving the channel change packets and the source multicast. The second reason

is to speed up the channel change process. That is because if ν cannot receive the

I-frame packets from sN ’s source multicast, then joining the multicast session of

sN may significantly reduce the available bandwidth at ν that will be used for the

delivery of I-frame packets through the CSC server. Additionally, as ν synchronizes

through the CSC server, it can also opt out from receiving the lower-priority packets,

such as the B-frame packets, without perceiving noticeable quality degradations [95].

The only exception to the above scenario is when ν can partially receive the I-frame

packets from sN ’s source multicast. If that is the case, then ν sends the IGMP join

message immediately to limit the number of packets delivered through the CSC server.

Otherwise, ν waits for an update message from the CSC server with information on

5In Figure 45, JI,n+1 corresponds to the timeframe of [Sn+1 − TX , Sn+1 + TI − TJ ], where TI

represents the transmission duration for an I-frame, TX represents the minimum acceptable latency
required to successfully initiate the fast channel change process, and Sn+1 represents the start of
delivery time for the next GOP sequence, which has a sequence number of n+ 1.
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when to join sN ’s source multicast.

At the CSC server, after the channel change request is received, the first thing

that the server checks is whether or not the targeted session utilizes support peers.

For that purpose, we use a peer support threshold for each session. Specifically, if the

number of users connected to sN is below the peer support threshold, then channel

change packets can only be delivered through the CSC server, i.e., session peers are

not probed for any received channel change request targeting sN . If that is the case,

then the CSC server also needs to make a decision on whether or not to accept the

request. For instance, if the immediate load at the CSC server is close to a critical level

(because of servicing the previously received and admitted channel change requests),

then the CSC server rejects ν’s request and sends an update message to ν so that the

user can join sN ’s multicast at the start of sN ’s next GOP sequence.

On the other hand, if the received request can be served with the help of the

support peers, then the proposed framework considers the use of three possible ap-

proaches to help proceed with the channel change process. We can summarize the

proposed approaches as follows:

• Approach 1 : The first approach uses only the session peers to deliver the channel

change packets.

• Approach 2 : The second approach uses both the CSC server and the session

peers to deliver the channel change packets. Here, CSC server is only used

to ensure that the channel change process proceeds in a timely manner. For

that purpose, CSC server is only allowed to send channel change packets, until

the packets transmitted by the support peers arrive to the access point of the

zapping user. In short, the second approach takes advantage of the fast response

time through the CSC server by sending an initial burst of channel change

packets to the zapping user.
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• Approach 3 : The third approach uses only the CSC server to deliver the channel

change packets.

Join with no 

fast channel 

change request

No join only 

fast channel 

change request

Approach 1: Session 

peers

Approach 2: Session 

peers and CSC server

Approach 3: CSC 

server

Figure 46: Timing for the three channel change approaches.

We illustrate the timing-based relationship for the considered synchronization ap-

proaches in Figure 46. The decision on which synchronization technique to use for

any received request depends mainly on the arrival time for the request, expected

servicing time, the level of support offered by the session peers and the CSC server,

and the GOP duration. Our main objective here is to distribute the channel change

overhead to the session peers as much as possible. Hence, as long as a channel change

request can be served within the synchronization latency deadline 6, the approach

that requires the least amount of resources at the CSC server (which suggests that

the selected approach is expected to meet the latency deadline the latest) will be

selected by the CSC server.

Consequently, by utilizing the CSC server during the channel change process,

we can minimize the negative impact of the peer-delivery latency and increase the

acceptance rate of requests that can utilize the fast channel change process. When

the CSC server decides to proceed with the fast channel change process using mainly

the support peers, it uses a fair selection policy to assign the peers to each received

6Synchronization latency deadline represents the latest point in time for a fast channel change
process to stay advantageous over waiting for the next key frame from the session multicast. This
point is initially set to the expected start of delivery time for the next key frame through the session
multicast.
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request. In addition to selecting the peers for the channel change process, CSC server

is also responsible for assigning each selected peer with the sequence number of the

packets each will be transmitting during the synchronization phase. After the CSC

server makes its decision on the channel change parameters, if needed (which is the

case for approaches Approach 1 and Approach 2), it multicasts this information to the

session peers to enable the timely delivery of the requested channel change packets.

7.

Finally, to improve the reliability of the channel change process, CSC server is

required to transmit a certain number of proactive Application-layer FEC (AL-FEC)

packets for each of the received and accepted channel change request. The rate of

AL-FEC protection depends on the approach being selected and the average packet

loss rate observed on each end-to-end connection. In doing so, even if ν fails to receive

some of the channel change packets from the session peers, proactively received AL-

FEC packets from the CSC server will allow the user to recover from such losses with

no extra delay.

7.3 Analytical Framework

In this section, we present the methodology used to analyze the proposed channel

change framework. For the analysis, we focus on the channel change operations at

a single CSC server. We assume steady state conditions for the given system, i.e.,

N(t) = N , where N(t) represents the number of IPTV clients connected to the CSC

server at time t. The number of IPTV sessions is given byM . To distribute the users

to each of the M available sessions, we use the Zipf distribution [81]:

πj =
1/js∑

1≤m≤M 1/ms
(127)

7Note that, each user is assigned a unique ID by the CSC server after each distinct join event.
In doing so, the amount of information to be carried within a multicast request message can be
significantly reduced.
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where πj is the probability of an arbitrary user being connected to the jth most

popular multicast session and s represents the shape parameter for the given Zipf

distribution. 8

7.3.1 Modeling the Channel Switch Rates

To analyze the performance of a given IPTV network, we first need a model to ap-

proximate the channel switching rates in the network while satisfying the system

constraints (e.g., steady state conditions). We use the following approach to approx-

imate the channel switching rates for each session.

The steady state assumption dictates that the probability of switching from sj

to si is given by πi/(1 − πj).
9 We assume that the arrival process for the channel

change events follows the Poisson distribution, and we use λj to represent the channel

switching rate to sj. Then, we can determine the entry rate for sj using the following

equation:

n+
j =

∑
∀m̸=j

Nm × λm × πj
1− πm

(128)

where n+
j represents the request rate for the channel change events targeting sj, and

Nj represents the number of users connected to sj, i.e., Nj = N × πj.

Similarly, we can determine the exit rate from sj to another session as follows:

n−
j = Nj × λj (129)

where n−
j represents the departure rate from sj.

The steady state assumption allows us to consider the entry and exit rates for

each session to be equal, i.e., n+
j = n−

j , ∀sj. The reason for that is because, on

the average, we expect the size of each session to stay the same throughout the

observation period. In doing so, we can preserve the state of each active session as

8Here, session ID also represents the popularity rank of a given channel.
9Here, the index used for the session ID refers to the popularity rank of the given session, i.e.,

sj represents the jth most popular IPTV session.
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they were initially determined by the selected Zipf distribution. Consequently, we

can use the following equation to represent the relationship between two different

sessions’s channel switching rates:

λj/(1− πj) = λi/(1− πi) (130)

If the accumulative channel switching rate for sessions connected to the same CSC

server is known, we can use its value to determine the channel switching rates for each

session:

λj =
λT × (1− πj)

N × (1−
∑

∀i π
2
i )

(131)

where λT represents the total channel switching rate for all the sessions connected to

a given CSC server. .

Figure 47 illustrates the dependence of the channel switching rate on the number

of active sessions (M), when N = 1000 and λT = 10. 10 The approach presented here

to characterize the channel switching events allows us to achieve minimal change in

entry rates under different M values.

7.3.2 Resource Allocation at the Session Peers

Since session peers can offer varying levels of support for the channel change process,

we need to define the minimum level of peer support required for a session peer to

actively participate in the channel change process as a support peer.

We use the parameter ωu,min to represent the minimum level of peer support

required for the channel change process, and calculate its value as follows:

ωu,min =
lP
τS

(132)

where lP represents the packet size and τS represents the upperbound on the packet

transmission time at the session peers. Here, ωu,min is essentially used to find the

10The given values suggest a total of 36 zapping events per hour per user.
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Figure 47: Channel switching rate for each active session when λT = 10.

instantaneous channel-change support offered by the session peers. 11 By varying the

value of τS, we can vary the number of connections available at each session peer for

the channel change process.

Next, we need to find the total peer support available for each active session’s

channel change process. To do that, we need to find the individual support offered

by each session peer using the following equation:

φν =
W

(ν)
u

ωu,min

(133)

where W
(ν)
u represents the uplink bandwidth availability at ν. 12

11Instantaneous support refers to the number of simultaneous connections available at a given
session peer, at any given point in time.

12Since the available bandwidth varies in time, φν is essentially a time-dependent parameter. In

this study, we assume the value of W
(ν)
u to stay the same during a given observation period.
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To find the total peer support for session sj, we use the following equation:

φ(j) =
∑
∀ν∈sj

⌊φν⌋ (134)

where φ(j) represents the maximum (or idle-state) peer support available for sj.

Note that the instantaneous peer support depends on the previously received ac-

tive requests, hence, its value varies in time. We use the parameter Φj(t) to represent

the instantaneous peer support offered by sj at time t. 13 Therefore, any channel

change request that is received at time t for sj and requires more than Φj(t) packet

transmissions will require support from the CSC server. The level of support offered

by the CSC server is expected to change in time depending on the service completion

time of the past requests and the arrival time of the future requests. However, to

avoid the additional overhead of going through the session peers after each update,

initially selected channel change parameters will be preserved during the synchroniza-

tion phase.

To find the parameters for the channel change process (i.e., available session peers,

delivery rate, and the transmission order), we start by determining, at each session

peer, for each incoming request, the amount of unreserved resources during the next τS

period. Let us initially assume that, at support peer ν, there are µν active requests,

each of which has a completion time of eν,l, where l ≤ µν . Assume that the last

request is expected to be received by ν at time T (µν +1). We can then calculate the

unreserved resources that the latest received request can utilize at ν as follows:

φν(Tµν+1) = φν −
µν∑
l=1

eν,l − T (µν + 1)

τS
(135)

13Note that t normally represents the delivery time of the request to the session peers. However,
since the decision for selecting the session peers is made at the CSC server, to keep the convention
the same for all the session peers, we use t to represent the arrival time of the request to the CSC
server.
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Consequently, we can use the following equation to find the instantaneous peer-

based resource availability for sk at t:

Φk(t) =
∑
∀ν∈sk

φν(t) (136)

After the value of Φk(t) is determined, the requested resources are then distributed

to the available support peers using a weighted round robin based approach. Specifi-

cally, for each active session with available peer support, CSC server creates a predes-

ignated assignment order (e.g., using peer IDs, which are updated after each join/leave

event), which is then combined with the selected weights to allocate the resources.

The selected weights represent the idle resource availability at each support peer.

Also note that, if Φk(t) is less than the minimum required resources for the received

channel change request, then the portion of the requested resources that cannot be

delivered by the support peers will be provided by the CSC server.

7.3.3 Approximating the Peer-Support Threshold

For the peer-assisted channel change process to be effective, the number of clients

connected to a given session needs to be higher than a certain threshold. That is

because, if the synchronization packets are requested from a small set of support

peers, then the uplink bandwidth limitations at these users may cause a significant

increase in the synchronization latency. As a result of these limitations, CSC server

may be asked to deliver more packets than required, had the server been selected

as the prior choice for the delivery of the synchronization packets. Since support

peers are essentially utilized to reduce the instantaneous load at the CSC server,

using support peers for sessions that do not meet the peer threshold criteria is not a

preferable approach.

To find the optimal threshold, we can make use of two different approaches. The

first approach focuses on long-term resource utilization at the CSC server. For that

purpose, we reserve a small number of simultaneously active unicast-based streams at
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the CSC server to deliver the channel change packets. The second approach, on the

other hand, focuses on short-term resource utilization at the CSC server. Specifically,

we increase the instantaneous bandwidth availability at the CSC server for the given

request to speed up the synchronization process. Compared to the first approach,

the second approach may lead to less overhead at the CSC server while also causing

smaller latency values. For that reason, our analysis focuses on the second approach.

Assume that the parameter ∆
(s)
rqs represents the average request size at the CSC

server, when the server is the prior choice for delivering the synchronization packets.

Similarly, assume that the parameter ∆
(p)
rqs(k) represents the average request size at

the CSC server, when a k-sized subset of the available support peers act as the prior

choice for delivering the synchronization packets. Then, the minimum number of

synchronization streams that are required to satisfy the bandwidth requirements at

the CSC server can be found as follows:

∆(p)
rqs(δp) ≤ ∆(s)

rqs ≤ ∆(p)
rqs(δp + 1) (137)

where δp represents the resource optimal peer-support threshold for the proposed

channel change framework. 14

To find an accurate estimate for δp, we need information on the following param-

eters: bandwidth availability at the CSC server (WS) and the session peers (WU),

mean GOP duration for the given session (TGOP ), minimum required uplink band-

width availability at the session peers (i.e., lp/τS), end-to-end delays (uplink or down-

link propagation delays, du and dd), and maximum allowed synchronization latency

(TL,max). Furthermore, we also need to utilize a recursive update procedure to find

the actual delivery time of each channel change packet. However, to limit the addi-

tional complexity involved in finding the actual value for the δp metric, we simplify

14Depending on the uplink bandwidth availability at the session peers, it is possible for some peers
to support multiple (or zero) synchronization streams (SSs). Therefore, the case of having δp SSs
can be considered as having δp session peers with each supporting a single SS.
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the estimation process by removing the recursive update part. Instead, we assume

the synchronization packets to be available at the session peers when they receive the

multicast-transmitted request message from the CSC server. 15

We illustrate the timing for the synchronization phase in Figure 48. To find the

peer-threshold, we focus on two distinct intervals, which are shown as I1 and I2 in

Figure 48. First, we find the maximum number of packets that can be delivered to

the zapping user during I2. We refer to this parameter as n+
J . Then, we find the

minimum number of synchronization streams, which can guarantee that at most n+
J

number of packets are queued at the zapping user’s access point by the end of I1.

I2

3. Zapping user starts 

receiving channel 

change packets

B-Frames P-FrameSynchronization Block

T1 T2 T3 T4

1. User makes a 

channel change 

request

2. Request 

received by the 

session peers

4. User starts 

receiving the 

source multicast

5. Successful 

synchronization with 

the source multicast

I1

Figure 48: Timing for the synchronization phase.

To find the value of n+
J , we use the information on the interframe spacing between

the two P-frames, which we refer to as TP,P (or TP,I for the last P-frame, which rep-

resents the interframe spacing between the last P-frame of the current GOP sequence

and the I-frame of the next GOP sequence). The maximum number of packets that

can be delivered after the user joins the source multicast is found as follows:

n+
J =

TP,P × (WU −WM)

lp
(138)

where WM represents the delivery rate for the IPTV multicast.

To successfully complete the synchronization phase during the selected synchro-

nization block, the number of packets, which are queued at the zapping user’s access

15Note that, because of the limited bandwidth availability at the user side and the use of sequential
transmissions for the channel change packets, we expect our results to be close to the actual results.
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point by the end of I1 (which is referred to as nq,J), needs to be smaller than or equal

to n+
J . To approximate the value of nq,J , we use the following equation:

nq,J = nreq −min{γu(τS)× δp, nd,max} (139)

where γu(τS) represents the maximum number of packets that can be delivered to the

zapping user with a single channel change stream, which transmits data at a rate of

τ−1
S , and nd,max represents the maximum number of packets that can be received over

zapping user’s downlink connection.

To find the value of γu(τS), we use the following equation:

γu(τS) =
(T ∗

P − Treq)− (2du + dd)

τS
(140)

where Treq represents the time when the channel change request is made, and T ∗
P

represents the time to start the delivery of the targeted P-frame (from the source

multicast) to the zapping user’s access point. For the given equation, we make two

assumptions: (i) session peers observe the same uplink and downlink propagation

delays, and (ii) end-to-end delay between the two access points is negligible compared

to the propagation delay observed along the last mile.

To find the value of nd,max, we use the following equation:

nd,max =
(T ∗

P − Treq)− (2du + dd + τS)

lp/WM

(141)

To approximate the value of T ∗
P we use the following equation, which uses the

assumption that the jitter for the delivered packets is negligible:

T ∗
P = TS,GOP + (ηI + (κ− 1)(ηP + ηB))× lp/vWM (142)

where TS,GOP represents the transmission start time for the current GOP sequence,

κ represents the order of the P-frame (which the zapping user receives first through

the source multicast), and the parameters {ηI , ηP , ηB} represent the sizes of I-, P-,

and B-frames.
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Table 3: Approximate Peer Threshold Values
τS 50ms 100ms 150ms

TGOP = 1s
δp,max = 3 δp,max = 4 δp,max = 5
E[δp] = 1.87 E[δp] = 2.58 E[δp] = 3.02

TGOP = 2s
δp,max = 5 δp,max = 5 δp,max = 5
E[δp] = 1.92 E[δp] = 2.63 E[δp] = 3.06

Consequently, the solution to the following inequality is used to find the peer-

support threshold:

min(γu(τS)× δp, nd,max) ≥ ηI + ηP × (κ− 1)− n+
J (143)

which leads to the following equation for δp:
16:

δp =
ηI + ηp × (κ− 1)− n+

join

γu(τS)
(144)

Table 3 shows the minimum required peer-threshold values (i.e., worst-case and

mean values), when the following parameters are used for the delivery of the source

and channel change packets: WM = 3Mbps, WU = 4.5Mbps, TJ = 100ms, du = dd =

20ms, and 0s delay between access points and the CSC server. In our simulations,

we used two different GOP durations (1s and 2s) and three different τS values (50ms,

100ms, and 150ms). For the considered set of system parameters, optimal results

can be attained when the peer-threshold value is selected from {2, 4}. Also note

that, changing the GOP duration only affects the worst-case threshold values, i.e.,

the mean peer-threshold values, which are obtained by taking the average of the

minimum required peer-threshold values over the duration of a single GOP, stayed

almost the same.

7.4 Performance Analysis

In this section we present the simulation results for the proposed channel change

framework. For our simulations, we used the CSIM discrete event simulation software.

16Note that, if δp > δp,max = nd,max/γu, then the synchronization phase is considered to be
unsuccessful.
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Table 4: Simulation Parameters
Total number of users, N 1000
Total number of sessions, M 100
Exponent for the Zipf distribution, s 1
Delivery rate for the IPTV multicast, WM 3Mbps
Downlink bandwidth availability at the users, WU [3.6, 5.4] Mbps
Uplink delay for the access network, du 20ms
Downlink delay for the access network, dd 20ms
Group-of-picture (GOP) duration, TGOP {1s, 2s}
Session join delay, TJ 100ms
Transmission delay for the synchronization phase, τS 50ms
Packet length for the MPEG-2 Transport Stream, lP 1356Bytes
Ratio of I-frame length to P-frame length, ρI/ρP 3
Ratio of P-frame length to B-frame length, ρP/ρB 2.5
Peer threshold, δp 2

The parameters that are used in our simulations are shown in Table 4. We used

30fps as the frame generation rate. The frames within a GOP are sequenced as

IBBPBB · · · , which also assumed a constant ratio among the I-, P-, and B-frame

sizes. We performed 10 simulation runs each time starting with a different random

seed. Each simulation run corresponds to an 8-hour long IPTV broadcast. The

reported results represent the average of the results from each of these simulation

runs.

In our simulations, to measure the perceived channel change latency, we mostly

focused on the synchronization latency and set the boundary conditions (i.e., deadline

for accepting a request) according to its value. Figure 49 illustrates how the synchro-

nization latency values relate to the display latency values, when WU = 4.5Mbps.

On the average, we observed a difference of 250ms between the two values. There-

fore, to achieve the desired display latency performance, we can allocate the resources

assuming a less strict limit on the synchronization time-frame.

Figure 50 shows the cumulative distribution function corresponding to the syn-

chronization latency values for the TGOP = 1s scenario. Similarly, Figure 51 shows

157



0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

Perceived time for the channel change request (ms)

D
el

iv
er

y 
tim

e 
fo

r 
th

e 
ta

rg
et

ed
 s

et
 o

f p
ac

ke
ts

 (
m

s)

 

 

Display time - Peer-based
Synchronization time - Peer-based
Display time - Joint
Synchronization time - Joint
Display time - Server-based
Synchronization time - Server-based

Figure 49: Comparison between the stream synchronization time and the user-
perceived content display time.

the same set of results for the TGOP = 2s scenario. For each of these scenarios, we

varied the downlink bandwidth availability at the client side. We then compared their

results to that of the Wait approach, which required the users to wait for the next

I-frame transmission from the targeted session’s source multicast. When compared

to the Wait approach, the proposed channel change framework achieved 40%-to-60%

performance improvements in the synchronization latency. Table 5 also presents the

results corresponding to the average display latency for the proposed channel change

framework. Notice that, even at presumably low user bandwidth availability, we were

able to keep the average display latency below 500ms. Also note that the rate of

increase in the perceived latency values is much smaller than the rate of increase in

the GOP duration, showing the efficiency of utilizing a distributed framework.

In Figure 52, we show the results corresponding to the channel change overhead
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Table 5: Perceived Display Latency Values
WU/WM 1.2 1.5 1.8
TGOP = 1s 329ms 270ms 238ms
TGOP = 2s 451ms 354ms 297ms
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Figure 50: Cumulative distribution function for the synchronization time, when GOP
duration equals 1s.

at the session peers and the CSC server, as we vary the channel change rates. For the

simulations, we assumed that the session peers utilize a single channel change stream

to deliver the requested packets. At the session peers, we observed an average uplink

bandwidth utilization that is less than 80Kbps, which is considered as an acceptable

overhead for the end users. As the zapping rate reached 100, uplink bandwidth

utilization at each session peer reached its limit. That is to say, as the zapping rate

is further increased, all the received requests were mostly serviced by the CSC server.

As a result, bandwidth requirements at the CSC server increased at a rate faster than

the rate of increase for the channel change rates.
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Figure 51: Cumulative distribution function for the synchronization time, when GOP
duration equals 2s.

Note that, if the CSC server would have a downlink capacity of 100Mbps, then,

for the selected system parameters, the proposed framework reaches a critical state

when the zapping rate reaches 250. If that happens, to stabilize the system, we

need to increase the number of available streams at the session peers. We can also

implement a dynamic request admission policy at the CSC server to maximize the

acceptance rate for the received requests without significantly affecting the average

latency performance.

In Figure 52 we also compare the overhead performance of the proposed framework

to a server-based-only channel change policy, which requires the zapping user to

immediately send an IGMP join message for the targeted session’s multicast. 17 For

17Note that by immediately sending the IGMP join message, we can minimize the overhead at
the channel change server.
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the given policy, if the earliest display time is expected to be higher than the earliest

display time for the Wait approach, then the channel change request is not accepted.

Results shown in Figure 52 validate our expectations. Compared to a server-based-

only channel change policy, distributing the channel change overhead to the session

peers significantly improved the servicing capacity of the network.
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Figure 52: Channel change overhead at the session peers and the CSC server.

Finally, we also observed that increasing the GOP duration had a limited impact

on the channel change overhead. The proposed framework allowed more efficient use

of the waiting period to deliver the channel change packets. Also, since the ratio

of the peer-serviceable portion of a GOP sequence increases as the duration of the

GOP increases, session peers can more effectively contribute to servicing the received

requests, leading to a reduced bandwidth demand at the CSC server.
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7.5 Conclusions

In this chapter, we proposed a semi-distributed channel change framework for the

IPTV networks. The proposed approach combines the capabilities of a dedicated

server, referred to as the Channel Switch Coordinator (CSC), with that of the session

peers to create a resource efficient, scalable, and reliable channel change framework for

the IPTV networks. By making use of the uplink bandwidth availability at the session

peers, we distributed the channel change overhead to a large number of session peers.

In doing so, we were able to utilize the CSC server more efficiently. As a result,

we were able to significantly speed up the channel change process for the IPTV

sessions. For all the considered scenarios, the proposed framework was able to keep

the channel change latency below the critical latency threshold of 500 milliseconds.

Even as we increased the GOP duration to 2 seconds, the average latency continued to

stay within the acceptable boundaries. Finally, when compared to a pure centralized

channel change policy, we observed significant improvements in terms of bandwidth

utilization and system scalability.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Thesis Contributions

In this thesis, we addressed the challenges in delivering broadcast quality content over

IPTV networks. Our thesis focused on two specific problems in regards to achieving

the desired quality of experience levels in IPTV networks, namely the error recovery

problem and the channel change latency problem.

The first part of the thesis focused on the error recovery problem in IPTV net-

works. We started by proposing a generalized error recovery framework, first, to

investigate the tradeoffs associated with the delivery of proactive and reactive re-

pair packets in IPTV networks, and second, to develop a practical error recovery

protocol to achieve resource-optimal recovery in IPTV networks. We next focused

on the impact of correlated packet losses in IPTV error recovery. For that purpose,

we first developed three group loss correlation models that are applicable to IPTV

networks. We then developed a server-assisted error recovery framework to exploit

the clients’ correlated losses and used the earlier developed loss correlation models to

validate the performance improvements in IPTV error recovery. Next, to minimize

the impact of scalability problems that arise with the use of server-based error re-

covery frameworks, we proposed a distributed error recovery framework that utilized

the support of session peers during the error recovery phase. The results suggested

remarkable improvements in the scalability performance without introducing signifi-

cant overhead at the session peers. We lastly focused on the delivery of IPTV content

over wide-area wireless access networks, and especially over the WiMAX networks,

and addressed the reliable delivery concerns over these networks. For that purpose,
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we proposed a cooperative-diversity driven delivery framework to support quick and

resource-efficient error recovery in WiMAX-based IPTV networks. The proposed ap-

proach is shown to achieve great results in error recovery with limited use of additional

energy resources.

The second part of the thesis focused on the channel change latency problem in

IPTV networks. We started our study by focusing on the analysis of generalized

client-based solutions that utilize concurrently delivered support streams to reduce

the channel change latency. Client-based solution framework is chosen initially due

to the practical advantages it presents, such as higher accessibility rate for the clients

and a wider adoption possibility. We presented a realistic theoretical framework to

analyze in detail the performance of channel change protocols that relies on the use of

concurrently delivered support streams. The results suggested significant limitations

on the use of client-based solutions due to the overhead they introduce near the

access network, and the insufficient gains in the channel change latency performance

to validate the additional overhead. Combining these results with the results from

the first part of our thesis, we focused on the design of a semi-distributed channel

change framework that is capable of supporting the channel change process using

session peers whenever possible and/or needed. The results suggested remarkable

improvements in the latency performance without introducing significant overhead in

the network, while satisfying the requirements for a scalable implementation.

8.2 Future Research Directions

In this thesis, we focused on the error recovery and the channel change latency prob-

lems separately. Even though it is possible to implement these approaches inde-

pendently, in some scenarios (i.e., depending on the location of processing/support),

achieving the optimal performance may necessitate jointly evaluating the performance
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of these frameworks. For instance, if we use the session peers to simultaneously sup-

port the error recovery process and the channel change process, then the reciprocal

impact of each of these approaches needs to be carefully investigated. In doing so,

we can allocate the resources more efficiently and without overloading certain nodes

in the network.

Additionally, for the IPTV channel change, we strictly limited our study and

discussions on client-based and/or peer-assisted solutions. However, since IPTV is

considered as a service provider-driven technology, in some scenarios, it may be de-

sirable (or required) to implement the channel change procedure strictly at the net-

work infrastructure through the help of dedicated servers. Therefore, we need to

also investigate scalable server-driven solutions to achieve that objective. Current

server-driven studies typically focus on developing either multicast-based techniques

or unicast-based techniques. However, to optimize the resource usage efficiency in

the network, any server-driven framework should be capable of simultaneously sup-

porting and utilizing both of these approaches. For that purpose, we need to evaluate

the performance tradeoffs associated with the use of these approaches at any given

point in time, and based on the attained results, we need to decide on a schedule to

select the approach that achieves the optimal resource utilization, and allocate the

resources accordingly to each of these approaches.
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