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SUMMARY 
 
 
 

We propose a mathematical framework that integrates low-level sensory signals 

from monitoring engineering systems and their components with high-level decision 

models for maintenance optimization.  Our objective is to derive optimal adaptive 

maintenance strategies that capitalize on condition monitoring information to update 

maintenance actions based upon the current state of health of the system.  We refer to this 

sensor-based decision methodology as “sense-and-respond logistics”. 

As a first step, we develop and extend degradation models to compute and 

periodically update the remaining life distribution of fielded components using in situ 

degradation signals.  Next, we integrate these sensory updated remaining life 

distributions with maintenance decision models to; (1) determine, in real-time, the 

optimal time to replace a component such that the lost opportunity costs due to early 

replacements are minimized and system utilization is increased, and (2) sequentially 

determine the optimal time to order a spare part such that inventory holding costs are 

minimized while preventing stock outs. 

Lastly, we integrate the proposed degradation model with Markov process models 

to derive structured replacement and spare parts ordering policies.  In particular, we show 

that the optimal maintenance policy for our problem setting is a monotonically non-

decreasing control limit type policy.  We validate our methodology using real-world data 

from monitoring a piece of rotating machinery using vibration accelerometers.  We also 

demonstrate that the proposed sense-and-respond decision methodology results in better 

decisions and reduced costs compared to other traditional approaches. 
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CHAPTER 1  
INTRODUCTION 

 
 
 

Unexpected failures of engineering systems can have a significant impact on 

manufacturing and service applications, national infrastructure (nuclear power plants and 

civil structures), healthcare applications, and military operations.  For example, 

unexpected failures in Just-In-Time production systems, such as production lines in the 

automotive industry, can immediately halt delivery schedules because there is not enough 

work-in-process to buffer any interruptions.  Similar arguments can be made about 

numerous applications in the service and logistics sector.  The reliability of transportation 

fleets, such as airlines and railways, is necessary to ensure that personnel, raw materials, 

finished goods, and spare parts are delivered on schedule to eliminate waste of perishable 

goods and prevent other costly stock outs.  In healthcare applications, sudden failures of 

medical equipment, such as pacemakers, operation room equipment, and health 

monitoring systems can have fatal repercussions.  In homeland security applications, the 

reliability of sensor systems is necessary to ensure fidelity of the data streams 

communicated by this technology.  More seriously, the sudden failure of civil 

infrastructure (e.g. bridges and buildings) can result in human fatalities.  Motivated by 

previous discussion, a large body of the literature has been targeted towards predicting 

unexpected failures in an effort to eliminate or minimize their negative impacts. 

Accurately predicting unexpected failures is a very challenging problem due to 

two primary components, (1) our limited understanding of the physics-of-failure, and (2) 

the high level of uncertainty associated with the degradation processes that occur prior to 

failure.  Numerous research efforts have developed methodologies that address these 
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challenges and attempt to predict sudden failures accurately.  The next step is to use this 

information to determine good and economical maintenance strategies.  This represents 

another significant research challenge.  The costs of maintenance operations can 

represent up to 15-60% of the cost of produced goods in manufacturing and production 

plants [1].  These significant costs primarily arise due to ineffective maintenance 

planning.  For example, early replacement of a piece of equipment reduces its utilization 

and results in lost opportunity costs.  On the other hand, delayed replacement involves the 

risk of expensive catastrophic failures.  Consequently, extensive investigation of decision 

models for optimizing maintenance decisions has been studied in the literature.  A 

plethora of approaches have been followed to devise efficient maintenance strategies for 

operating components and systems.  Condition-based maintenance (CBM) is one of these 

approaches whereby the maintenance actions are triggered by accurate assessments of the 

system’s condition/health.  Recent advances in sensor technology now enable us to 

continuously monitor the health of operating systems and components using dedicated 

sensors.  These sensors provide rich streams of real-time signals that are typically 

correlated with the severity of the system’s underlying degradation process, and can be 

used to determine cost-effective maintenance policies. 

In this dissertation, we focus on developing a mathematical framework that 

integrates low-level sensor-based information from the condition monitoring of 

engineering systems with high-level mathematical models for maintenance optimization.  

Our objective is to determine adaptive maintenance policies, with a special emphasis on 

equipment replacement and spare parts inventory policies. 
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1.1 Reliability and Failure Time Prediction 

Estimating component failure times has been extensively studied in the field of 

reliability theory.  Historically, reliability models have focused on evaluating failure 

measures for a population of components, primarily, by collecting and analyzing failure 

data [2-6].  One approach is to utilize actual in-field performance data through warranty 

reports of failed components to estimate time-to-failure [2, 10].  In other cases, traditional 

reliability testing is used to derive generalized failure distributions for a population of 

components [4, 11].  Increased product lifecycles and improved reliability have made 

traditional reliability testing more difficult.  Consequently, there has been an increased 

interest on pursuing accelerated reliability/degradation testing [12, 13].   

The uncertainty associated with degradation and failure processes is usually 

characterized by parametric and empirical failure distributions.  One drawback of this 

approach is that it does not pay much attention to the fact that even the failure of identical 

components can differ drastically due to many factors including inherent material in-

homogeneity, variations in processing technology, and differences in environmental and 

operating conditions.  Since failure time distributions are unaffected by the underlying 

physical process, they do not distinguish between the different degradation characteristics 

of individual components and do not capture the unit-to-unit variability among identical 

components.  Research efforts on condition monitoring and degradation modeling 

address this aspect as discussed next. 

1.2 Condition Monitoring and Degradation Modeling  

Degradation processes involve a gradual accumulation of damage, which 

eventually leads to failure.  In some applications, the physical transitions that occur 
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during degradation can be directly observed, e.g., the length of a crack.  However, in 

most engineering systems, it is only possible to make indirect observations by monitoring 

some manifestations of the degradation process, such as temperature changes, vibration 

levels, etc. [14].  In many applications, these manifestations can be monitored directly or 

indirectly using dedicated sensors (e.g. temperature thermocouples and vibration 

accelerometers).  Condition Monitoring techniques utilize real-time sensor-based 

information to evaluate the health of a component during operation [8, 9, 15].  The 

magnitude (or amplitude) of these condition-based signals can be used to assess the 

severity of the degradation state of the component that is being monitored and can be 

used to prevent unexpected failures.  One of the main shortcomings associated with 

condition monitoring is that it relies solely on real-time sensory information from the 

individual component and does not capture the failure characteristics of a component’s 

population.  In many cases, slight deviations in the sensory signals may be classified as 

failures although they may be originating from minor changes in the operational or 

environmental conditions. 

The measures described above are usually correlated with the physical 

degradation process that evolve over time, and are known as degradation signals.  Many 

components exhibit characteristic patterns in their degradation signals that evolve with as 

the component’s degradation progresses [15].  Degradation modeling focuses on 

mathematically modeling these degradation signals to predict their future evolution.  

Different tools have been used to model the evolutionary paths of the degradation signals 

such as random coefficients models [16-20], Brownian motion [3, 13, 21, 22], Gamma 

processes [22-27], Markov processes [28], and semi-Markov processes [29].  Very few 
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works, however, focused on integrating the failure characteristics of component 

populations from reliability testing with degradation rates of individual components from 

condition monitoring.   

In this research, we present a degradation model that combines the two aspects 

discussed above.  In particular, we perform degradation testing on a sample of 

components to determine the failure time distribution of the population.  Next, we utilize 

sensory signals acquired from monitoring fielded components to revise their RLD based 

on their current health state.   

1.3 Decision Models for Equipment Replacement and Spare Parts Inventory 

Maintenance optimization models have been studied extensively in the literature.  

Generally, most of the maintenance decision models focus on establishing inspection [30, 

31, 32], repair [34, 35] or replacement policies [33, 36, 37].  General surveys on 

mathematical optimization models used in maintenance applications can be found in [38-

41].  For the purpose of this research, we focus our attention on two primary decision 

policies, equipment replacement and spare parts inventory models. 

The uncertainty of failure processes is among the primary sources of difficulty 

encountered in developing efficient and accurate maintenance-related replacement and 

spare parts inventory models.  Precise reliability assessment is key to making sound 

maintenance decisions.  For instance, deciding which component to replace and when, 

requires a careful balance between the cost associated with premature replacement and 

the cost of unexpected failure.  Furthermore, the ordering time of spare parts and their 

stocking quantities need to be planned such that holding costs are kept to a minimum 

while avoiding stock outs.   
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Some of the existing models are age dependent, and use failure time distributions 

to evaluate replacement and spare parts inventory policies.  For example, the renewal 

theoretic age replacement model utilizes the probability of failure to strike a balance 

between the costs associated with premature replacement and the costs of unexpected 

failure during the component’s life cycles [42].  Similar models also exist for evaluating 

optimal ordering times of a spare part in a single buffer inventory system [43].  In this 

class of models, decisions are solely based on the failure time distributions of the 

component’s population and do not account for the degradation state of the individual 

components.  Other replacement and inventory models make the simplifying assumption 

that failures are random and can be modeled, for example, as a Poisson Process [44-49].  

Such assumptions often compromise the accuracy of the decision making process, 

especially since they do not account for variations in the degradation processes. 

Another class of maintenance optimization models assumes that the component or 

system can be in some state of degradation from a set of possible states.  We refer to 

these models as “state models”.  Numerous approaches have been used to characterize the 

transitions between the degradation states, such as Markov processes [36,50, 51] and 

semi-Markov processes [30, 33, 52].  This category primarily focuses on establishing 

special appealing structures of the optimal policies, such as control limit (threshold) 

replacement policies.   

Other research efforts focus on determining optimal maintenance policies based 

upon the condition of the system that can be captured using condition monitoring 

techniques. This class is known as condition-based maintenance (CBM) [53-55].  In our 

research, we integrate the benefits of the two previous categories by leveraging the 
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benefits of real-time sensory-signals from condition monitoring with Markov decision 

processes (MDPs) to determine optimal structured replacement policies. 

1.4 Research Tasks 

Our research objective is to develop a mathematical framework for integrating 

real-time condition-based signals with maintenance related operational and logistical 

decisions.  The research tasks involved in achieving this objective are summarized below. 

1.4.1 Sensor-Based Degradation Modeling 

In this task, we present and extend stochastic degradation models for computing 

and updating the remaining life distributions (RLDs) of partially degraded 

components/systems using real-time condition monitoring sensory-signals.  The failure 

characteristics of component’s populations derived from reliability and degradation 

testing are first used to estimate preliminary failure time distributions.  Next, real-time 

signals are used to update the RLD of individual components that degrade differently 

using Bayesian techniques.  Consequently, the updated RLDs evolve according to the 

latest degradation state of the component being monitored.   

We focus on a base-case random-coefficients degradation model with an 

exponential functional form and Brownian error terms, and extend it in two different 

directions.  First, we study the performance of the model under different assumptions.  

More specifically, we study the effect of assuming dependent stochastic model 

parameters versus independent parameters in the original model, and assess the prediction 

accuracy under this dependency assumption.  Second, we study the computational 

challenges associated with computing the RLDs and their moments.  In the original 
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model, the sensory-updated RLDs cannot be characterized using parametric distributions 

and their moments do not exist.  Such difficulties hinder the implementation of this 

sensor-based framework, especially from the standpoint of computational efficiency of 

embedded algorithms.  We identify a procedure by which we can compute a conservative 

mean of the sensory-updated RLDs and express the mean and variance using easy to 

evaluate closed-form expressions.  This is accomplished using the first passage time of 

Brownian motion with positive drift, which follows an Inverse Gaussian (IG) 

distribution, as an approximation of the RLD.  We show that the mean of the IG 

distribution is a conservative lower bound of the mean remaining life using Jensen’s 

inequality.  The approach is validated using real-world vibration-based degradation data. 

1.4.2 Renewal-based Replacement and Spare Parts Ordering Policies 

This task focuses on integrating the sensory-updated RLDs with replacement and 

spare parts inventory decisions models.  We consider a conventional renewal theoretic 

age replacement and spare part ordering model [42, 43], and develop a heuristic decision 

model wherein the failure time distributions used in the conventional approach are 

replaced with the dynamically evolving RLDs.  Each time we acquire a signal from 

monitoring the component, we use it to update the RLD and, in turn, update previous 

replacement or inventory decisions.  We refer to this methodology as “sense-and-respond 

logistics”, which is summarized in Figure 1 . 

Using a simulation case study, we demonstrate that the sense-and-respond 

logistics policy results in better decision policies and reduced total maintenance costs, 

compared to the traditional reliability-based approach.  This is primarily due to the 

improved failure prediction accuracy offered by the degradation model.   
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Figure 1 Summary of the sense-and-respond logistics framework 
 
 
 

This approach is a heuristic in the sense that updating epochs do not explicitly 

represent regeneration points of the system.  In the following task, we determine exact 

sensor-based replacement and inventory policies. 
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1.4.3 Structured Replacement and Spare Parts Ordering Policies 

We present a generic single-unit replacement problem, and develop a Markov 

decision process (MDP) model that utilizes sensory signals to determine the optimal 

replacement time.  We use the degradation modeling framework developed in task 1.4.1 

to compute and update the predictive distribution of the degradation signal, as opposed to 

other state models that commonly assume arbitrary transition probabilities between the 

system states. 

We show that the optimal replacement policy under the infinite horizon expected 

discounted cost criterion is a monotonically non-decreasing control limit policy that 

optimally balances the cost of failure, the cost of preventive replacement, and the cost of 

observing sensor data. This result might seem counterintuitive, since one would typically 

expect a monotonically non-increasing control limit policy, or in other words, that the 

urgency to preventively replace the system increases as the system ages.  We provide 

explanation and provide mathematical proofs of this counterintuitive result.   

Under a monotonic control limit policy, the system is kept operating until the 

observed signal exceeds a certain control limit, which is monotone in the system’s age.  

In the event that the decision at some decision epoch, given an observed signal, is to 

continue operation, the monotonic replacement control limit can be used to determine the 

optimal time to order a spare part.  This methodology is illustrated in Figure 2.  Finally, 

we present a case study based on real-world vibration data from rotating machinery and 

study the performance of the policy under different cost settings. 
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1.5 Thesis Organization 

Chapter 2 surveys some of the related literature on engineering reliability and 

failure time prediction, condition monitoring, degradation modeling, and decision models 

for equipment replacement and spare parts inventory policies, both in systems with single 

and multiple components.  Chapter 3 presents the sensor-based degradation modeling 

framework that use real-time sensory signals to compute and update the RLD of partially 

degraded components.  We present in detail a base-case random-coefficients degradation 

model with an exponential functional form and Brownian error terms.  Next, we re-derive 

the expressions for the posterior distributions of the stochastic model parameters under 

the dependency assumption.  We also provide closed-form expressions for a conservative 

lower bound of the mean remaining life that are easy to compute using the first passage 

time of a Brownian motion with positive drift.  Chapter 4 presents an approximate 

renewal-based decision methodology for computing the optimal replacement and spare 

parts ordering times based on the observed sensory signals.  In Chapter 5, we present 

exact structured replacement and inventory policies using Markov decision processes 

(MDP).  Finally conclusions and future extensions are outlined in Chapter 6. 
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CHAPTER 2  
 LITERATURE REVIEW 

 
 
 

The proposed research integrates established research disciplines in a single 

framework.  In particular, these disciplines include failure time prediction of engineering 

systems and maintenance optimization models.  This chapter surveys the relevant 

literature on these research areas. 

2.1 Failure Time Prediction in Engineering Systems 

There is a large body of the literature dedicated to estimating the failure time of 

engineering systems and their components.  This literature can be generally categorized 

into: (1) conventional reliability approaches that focus on collecting and analyzing failure 

data, and (2) condition monitoring approaches that focus on collecting sensory 

information from operating systems to assess their state of health and predict their 

remaining life. 

2.1.1 Conventional Reliability Approach 

Early foundations of Reliability were found in actuarial concepts used in the 

insurance industry [56].  It was not until World War II that reliability became a subject of 

study [57].  In classical reliability, system and component failures are treated as random 

occurrences.  The focus is on modeling the pattern of these random processes by some 

probability distribution.  Several parametric distributions were in use during the 1950s 

and 1960s to model failure times, such as the exponential, Weibull, normal, and gamma 

distributions [58-61].  It is also common to encounter cases where no theoretical 

distribution adequately fits the data.  The focus in this case is on using nonparametric 
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(empirical methods) that derive the failure distribution directly from the failure data (see 

for example [62-66]). 

After collecting relevant failure data, statistical inferences are used to provide 

generalized reliability characteristics and failure time distributions of component 

families.  One approach to collect necessary data is to utilize actual in-field performance 

data.  Hu and Lawless [10] consider nonparametric estimation of lifetime distributions 

using automobile failure data from warranty reports.  Bharatendra and Singh [67] discuss 

parameter estimation methods that address data incompleteness using incomplete and 

unclean warranty data.  Kalbfleisch and Lawless [2] suggest a procedure for the 

collection of field failure data and use a regression model to estimate lifetime 

distributions from this data.  In other cases, traditional reliability testing is used to 

collected the data and derive generalized failure distributions.  Coit and Jin [4] derive 

maximum likelihood estimators for the gamma distribution based on data records from 

reliability testing to model diverse-to-failure behavior.  With increased product lifecycles 

and improved reliability (e.g. airplane engines and other aviation components), traditional 

reliability testing is more difficult, time consuming, and sometimes infeasible.  

Consequently, there has been an increased interest on pursuing accelerated 

lifetime/degradation testing (ALT).  Doksum and Hoyland [12] use reliability 

information obtained from a series of accelerated reliability tests to model the 

degradation of cable insulation under variable stress levels as an inverse Gaussian 

process.  Whitmore and Schnkelberg [13] model the degradation of self-regulating heat 

cables subject to high stress reliability testing.  Zhang and Meeker [68] propose Bayesian 

methods for planning accelerated life tests satisfying practical constraints.  Xu and Fei 
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[69] present guidelines for planning two-factor step stress accelerated life tests with no 

interaction between the factors.  Zhao and Elsayed [70] present a general likelihood 

formulation for step-stress accelerated life tests that use the Weibull and the lognormal 

distribution. 

As mentioned earlier, the conventional reliability approach treats failure as a 

random shocks process rather than a process of evolution across degradation states.  

Hence, these models do not consider the condition of individual components that 

typically degrade differently due to natural variations and different operating conditions.  

To address different degradation characteristics of identical components from the same 

population, research efforts resort to condition monitoring discussed next. 

2.1.2 Condition Monitoring 

Condition monitoring is the process of collecting real-time sensory information 

from a functioning device to determine its state of health.  The focus in condition 

monitoring is on diagnosing faults and health classification rather than explicitly 

predicting the failure time.  (Degradation modeling, discussed in the next section, uses 

condition monitoring information to predict the remaining life of operating components). 

Condition monitoring is used in numerous applications including a wide variety 

of different components such as bearings [71-73], machine tools [8, 74, 75], gears [76, 

77], engines [78], and generators [79, 80], among others.  In condition monitoring, 

various condition phenomena such as temperature [83], degree of wear [84, 85], and 

vibration [76, 81, 82] that are directly or indirectly associated with degradation are 

captured using sensors.   
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The evolution of these phenomena is characterized by degradation signals, which 

are commonly used to assess the extent of component degradation, diagnose faults, or as 

triggers for maintenance activities.  Christer et al. [86] use the Conductance Ratio as a 

measure to assess the erosion condition of the inductors in a furnace.  Christer and Wang 

[87] monitor the cumulative wear of components as a basis for determining its 

maintenance policy.  Vlok et al. [88] use condition monitoring to measure the vibration 

level of a circulating pump in a mining application and utilize this information to 

determine the optimal replacement policy using the proportional hazards model (PHM).  

Pedregal and Carnero [89] present a state space model to forecast the state of a turbine 

using vibration monitoring data.  The authors use recursive Kalman-Filter algorithms to 

estimate the probability of failure, then present a cost model for making preventive 

replacement decisions. 

One major drawback of condition monitoring techniques is that they might give 

“false alarms”.  In other words, these techniques can interpret deviations from normal 

running conditions due to slight changes in operational/environmental conditions as 

failure.  Banjevic et al. [90] develop a software tool (EXAKT) for optimizing predictive 

maintenance based on condition monitoring oil debris and vibration data.  The authors 

discuss and report experience with collecting, preprocessing, and using real-world data, 

and the common problems associated with it.  Another drawback of condition monitoring 

is that it focuses on the degradation characteristics of the individual component being 

monitored and pays little attention to the failure behavior and characteristics of the 

component’s population.  Furthermore, classical condition monitoring is useful for 

diagnostic purposes and identifying faults.  In contrast, degradation modeling uses 
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sensory-data from condition monitoring for prognostic purposes and estimating the 

remaining lives of fielded components. 

2.1.3 Degradation Modeling 

The measures captured by condition monitoring sensors are usually correlated 

with the physical degradation process of components.  These measures commonly evolve 

following characteristic patterns known as degradation signals [15].  Degradation 

modeling focuses on mathematically modeling these degradation signals to predict their 

future evolution.  The remaining life of the component is defined as the time elapsed until 

the degradation signal crosses a pre-specified failure threshold.  Different tools are used 

to model the evolutionary paths of the degradation signals. Grall et al. [55] model a 

single-unit gradually deteriorating system using a Gamma process, and then develop a 

cost model to optimize the predictive maintenance of the system.    Liao et al. [26] use a 

Gamma process to model continuously degrading systems under continuous condition 

monitoring.  The authors then derive maintenance policies that achieve the maximum 

availability level of the system.  Some other research efforts use Markov chains to model 

degradation signals.  Kharoufeh and Cox [28] present a hybrid approach for estimating 

the residual life distribution of a single-unit system.  The degradation rate of the system is 

assumed to be dependent on external factors in the operating environment.  The evolution 

of these factors is modeled as a Continuous-time Markov Chain.  Their hybrid approach 

includes two models: In the first, real sensor data provide information on the degradation 

state of the system, and in the second, information on the cumulative degradation up to 

some point in time is provided.  Brownian motion (BM), also known is Wiener process, 

is also commonly used to model the evolution of degradation signals.  Doksum and 
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Hoyland [12] model the accumulated decay of cable insulation Wiener process with drift 

and diffusion.  The associated failure time follows the inverse Gaussian (IG) distribution.  

Whitmore and Schnkelberg [13] model the degradation of self-regulating heat cables 

subject to high stress reliability testing as a Wiener process with a constant rate of 

degradation.  Whitmore [91] describes a statistical model that takes inherent randomness 

of degradation and measurement errors created by imperfect instruments, procedures, and 

environments into account.  The degradation processes are modeled using a Wiener 

diffusion process.  Modeling approaches other than random coefficients models were also 

used to model degradation using condition monitoring data.   

Other modeling approaches are also used in the literature.  Goode et al. [55] 

develop an exponential model for the growth of the vibration signal of a hot strip mill.  

Yang and Jeang [97] present a statistical model to model cutting tool wear in metal 

cutting processes by monitoring surface roughness of manufactured products.  Tseng and 

Hamada [98] present a study to measure and improve the lifetime of fluorescent lamps by 

monitoring their luminous intensity.   

Random coefficients model is a common tool used in many research efforts.  We 

focus on this class of models to model the path of degradation signals in this research.  A 

useful review on the use of random coefficients models is provided by Johnson [94].  Lu 

and Meeker [16] develop a random coefficients model to estimate the failure time 

distribution based on degradation data from a population of components.  Robinson and 

Crowder [92] model fatigue crack growth as a nonlinear regression model with random 

coefficients.  Two-stage least-squares, maximum likelihood principles, and Bayesian 

approaches are used to estimate the model parameters.  Mallet [95] presents a general 
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method and uses maximum likelihood estimation to estimate the parameters of the 

random coefficients in this type of models.  Chen and Zheng [93] use degradation data to 

obtain predictive intervals of components’ lifetimes using random a coefficients model.    

Bae and Kvam [99] use a nonlinear random coefficients model with a nonparametric 

degradation path to capture the burn-in characteristics of vacuum fluorescent displays.  

Su et al. [100] present a random coefficients model with random sample sizes, and shows 

the influence of the sample size on estimating the model parameters in a semiconductor 

application.   

We notice that very few research efforts target the integration of reliability 

information with condition-based sensory signals to predict the remaining life of 

components.  Gebraeel et al. [19] use a Bayesian updating methodology to predict and 

continuously update the RLD of individual components using a random coefficients 

model.  The authors model the degradation signal as a continuous time stochastic process 

having an exponential functional form plus measurement noise error terms.  The authors 

consider error terms that are independent and identically distributed (iid), and Brownian 

error terms.  The stochastic model parameters on the other hand are assumed to be 

independent.  In [20], Gebraeel tests the effect of assuming dependence of the stochastic 

parameters for the exponential model with iid error terms.  Approximate expressions for 

the RLD are provided.  Elwany and Gebraeel [101] further extend these works by 

providing closed-form easy to compute expressions of the mean remaining life using the 

first passage time of Brownian motion with positive drift.  Gebraeel et al. [102] consider 

the case where no prior degradation knowledge is available.  The authors use historical 
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failure data and assume that it follows the Bernstein distribution to estimate the prior 

parameters of the degradation models.   

2.2 Maintenance Optimization Models 

Predicting the lifetime of engineering systems is the first and necessary step 

towards minimizing the impact of unexpected system failures.  There still exists the need 

to develop mathematical decision models to determine cost-effective maintenance 

strategies.  Maintenance optimization models are studied extensively in the literature.  

Maintenance decision models focus on establishing economical policies for inspection 

[30-32], repair [34, 35] replacement [33, 36, 37], and spare parts inventory [103-105].  

Wang [38] provides the most recent review of maintenance models for deteriorating 

systems.  Valdez-Flores and Feldman’s [39] survey focuses on maintenance optimization 

models for single-unit systems.  They consider models for repair, replacement, and 

inspection.  Other general surveys on mathematical optimization models used in 

maintenance applications can be found in Dekker [40] and Scarf [41]. 

For the sake of relevance to the current research, we categorize the works on 

maintenance optimization into; (1) Reliability-based models that use the failure time 

distribution of components and systems to determine optimal maintenance strategies, and 

(2) State models that characterize degrading systems using a set of states and model the 

transition between these states using tools such as Markov processes and semi-Markov 

processes.  We focus our attention on maintenance decision models for determining 

optimal equipment replacement and spare parts provisioning policies. 
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2.2.1 Reliability-based Models 

This class of maintenance optimization models relies on the failure time 

distribution of the system to derive optimal maintenance strategies.  The objective in 

these models is typically to determine maintenance policies that minimize the long-run 

average maintenance costs.   

2.2.1.1 Models for Single-unit Systems 

This segment of the literature focuses on systems with only one operating unit.  

Aronis et al. [44] present an approach to determine the parameter of an (S, S-1) inventory 

policy for spare parts of electronic equipment.  The demand is considered to be generated 

by random failures of the component assumed to follow a Poisson process.  The authors 

determine the demand distribution using a Bayesian approach based on the prior 

distribution and historical data on failure rates. The demand distribution is then used to 

determine the optimal inventory policy for the spare parts.  In other works, such as 

Vaughan [106] the demand is generated both from random failures and regular scheduled 

preventive maintenance.  The proposed model is used to determine the optimal inventory 

policy for spare parts.  Belzunce et al. [107] use the failure time distribution of 

components to determine planned replacement policies.  They consider both age and 

block replacement policies and compare the resulting expected failure times of the 

components upon the implementation of either policy with the case where no planned 

replacements are made.  Pongpech and Murthy [108] derive periodic preventive 

replacement policies for leased equipment that achieve a tradeoff between penalty and 

maintenance costs based on the failure time distribution of the equipment.  Wang and 

Zhang [109] derive an optimal replacement policy for a simple deteriorating system with 
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repair.  The operating time of the system after repair is assumed to follow a stochastically 

decreasing geometric process.  An explicit expression for the average cost rate of the 

system is derived.   

Some studies focus on determining replacement policies and spare parts 

provisioning policies simultaneously rather than separately.  In certain cases under 

specific assumptions, it is shown that sequential or joint policies can result in better 

decisions and reduced costs.  Armstrong and Atkins [42] consider age replacement and 

inventory ordering decisions for a simple system with one component subject to random 

failures.  The authors propose cycle-based replacement and inventory cost functions, with 

the objective of computing optimal replacement and inventory ordering times that 

minimize these cost functions.  Two alternative models are proposed; in the first model, 

the replacement and inventory decisions are made sequentially, whereas the second 

model considers jointly optimized replacement and inventory decisions.  The authors 

later extend their model to incorporate variable lead time [43].  Cheung and Hausman 

[110] formulate an analytical model for the joint implementation of preventive 

replacement and spare parts safety stocks in unreliable environments.  The objective is to 

minimize the total expected costs of the system, which is subject to random failures.  Aka 

et al. [111] address the joint optimization of replacement and spare part inventory 

decisions for systems with machines operating in parallel.  Mine and Kawai [112] 

determine joint ordering and replacement policies for a 1-unit system with a component 

that degrades.  The objective is to minimize the average cost rate over an infinite time 

horizon.  Other works that consider sequential or joint optimization of both decisions can 

be found in [113-117]. 
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2.2.1.2 Models for Multiple-unit Systems 

Although the focus of the current research is on single-unit systems, the sensor-

based decision making framework represents a very promising potential to be extended to 

more complex systems with more than one unit operating in series, in parallel, or a 

combination of both.  The literature is rich with models that consider multiple-unit 

systems.  The literature on multiple-component replacement can generally be categorized 

into: asset replacement problems, age/block replacement policies, and opportunistic 

replacement policies. 

In asset replacement problems, multiple assets (equipment) operate either in series 

or in parallel and it is required to find replacement policies for these assets that would 

minimize total discounted costs over a finite planning horizon.  Assets typically have 

economic interdependence in this class of replacement problems.  Although these 

problems are deterministic in the sense that it is known with certainty how many assets 

are required at each time period, they are difficult to analyze due to the combinatorial 

nature of replacing components of a group of assets.  Hartman [118] presents an asset 

replacement problem for a system that has multiple stations operating in series, each of 

which has a set of assets operating in parallel.  The author presented an integer program 

with the objective of minimizing asset purchase, operating, maintenance, and storage 

costs, less salvage values over a finite horizon.  Constraints represented the capacity, 

budget, and balance constraints of the system.  Jones et al. [119] study the parallel 

machine replacement problem.  The decision rules include replacing whole clusters of 

machines based on their ages, and a proof of their optimality is provided.   
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We note that asset replacement problems do not take into account the probability 

of equipment failure.  It is assumed that the machines operate without failure, and just 

experience a decline in their book values with time due to depreciation.  Block 

replacement policies determine replacement decision rules for multiple components 

taking into account the failure probability obtained from failure time distributions.  In 

such policies, the decision rule is to determine regular time intervals at which a whole 

subset of components is replaced simultaneously.  This is a generalization of the single 

unit age replacement policy where a component is replaced upon reaching a threshold age 

T or upon failure, whichever occurs first.  Jhang and Sheu-Huei [120] develop block 

replacement decision rules for multiple unreliable components from a mining application.  

The authors derive an expression for the long-run average cost and determine the 

replacement policy that minimizes this expression.  Sheu-Huei [121] considers a 

modified block replacement policy where the system is either replaced or minimally 

repaired at regular time intervals.  The author obtained the expected cost rate of the 

system using renewal reward theory.  Yoo et al. [122] determine joint optimal block 

replacement and spare parts inventory policies for multiple component systems by 

minimizing their long run average cost.  Acharya et el. [123] also determine joint block 

replacement and spare parts ordering policies for multiple component systems.  

Specifically, the authors develop decision policies to determine the optimal preventive 

block replacement interval, the optimal level up to which spares are to be ordered, and 

the optimal ordering interval that minimizes the total cost of replacement, spares 

procurement, and inventory carrying cost rate.   
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One disadvantage of block replacement policies is the potential loss due to 

replacing as-good-as-new components at regular intervals regardless of their state or age.  

In opportunistic replacement, on the other hand, preventive replacement of a component 

can be performed at any opportunity created by another component’s failure, another 

component’s planned preventive replacement, or the individual component’s planned 

replacement time.  Works in the literature demonstrate that the cost of replacing several 

components simultaneously can be less than the costs of performing many separate 

replacements.  Zheng and Fard [124] propose an opportunistic replacement policy for a 

system with multiple components characterized by increasing hazard rates.  The authors 

determine a threshold hazard rate L and a hazard tolerance u.  A unit is replaced upon 

failure if its hazard rate lies in the interval [0, L-u] or replaced preventively when its 

hazard rate reaches the threshold L.  Whenever a component is preventively replaced, all 

other components that have hazard rates between [L-u, L] are opportunistically replaced. 

The parameters L and u are computed such that the total maintenance cost rate of the 

system is minimized.   

2.2.2 State Models 

In state models, the degradation of the components and systems is modeled as a 

set of states that denote different deterioration stages.  For example, a discrete set of 

states, { }NS ,,1,0 K= , can be used to denote the set of possible degradation states that the 

system can assume, with 0 being the “good-as-new” state and N the “failed” state.  

Different modeling tools are used to model the transition between these states as 

discussed next. 
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2.2.2.1 Markov Process Models 

In this class of models, the transition between the system states is modeled as a 

Markovian process.  Ross [36] considers the problem of sequentially scheduling 

inspections for a Markovian deteriorating production system.  On performing an 

inspection, the decision maker can also decide whether or not to replace the system, 

restoring it to the good-as-new condition.  The author provids a general framework to 

handle problems of this nature, and then discusses in detail a 2-state version.  Albin and 

Chao [50] consider a multi-component system with failure dependence.  One of the 

components is assumed to deteriorate according to a continuous-time Markov process, 

and its degradation affects the life distribution of the other components in the system.  An 

efficient algorithm that exploits the system structure is proposed to determine optimal 

replacement policies.  Chan and Asgarpooh [125] find an optimum maintenance policy 

for a component that experiences both random failure and failure due to deterioration.  

The state probabilities are calculated using Markov processes and the optimal value of 

the mean time to preventive maintenance is determined by maximizing the availability of 

the single component with respect to the mean time to minimal preventive maintenance. 

A lot of works focus on establishing special structures of the maintenance policies 

for degrading systems under specific assumptions.  These structures can sometimes be 

useful for many practical purposes.  They can be exploited to develop computationally 

efficient algorithms.  They also facilitate the implementation of the optimal policy from a 

practical standpoint.  For example, under a control limit policy (CLP), the system is kept 

operating until the signal exceeds a certain state, known as the control limit.  If the 

system state exceeds this control limit, a preventive maintenance action is performed.  



27 

Control limit policies are widely discussed in the literature.  Kolesar [51] discusses the 

optimality of control limit replacement rules for equipment subject to a stationary 

Markovian degradation process, and shows that linear programming is an efficient 

method for computing optimal policies.  Wood [126] investigates optimal repair policies 

for constantly monitoring systems deteriorating according to a continuous-time Markov 

process.  The author shows that under certain conditions, the optimal restoration policy is 

a control limit rule, and presents other several situations in which a control limit rule is 

counter-intuitively not optimal.  Douer and Yechiali [34] derive a generalized control 

limit rule for the optimal repair and replacement of Markovian deteriorating systems 

under the total expected discounted cost and long-run average cost criteria.  Anderson 

[128] formulates maintenance models for machines operating under Markovian 

deterioration as continuous time Markov decision processes under the infinite horizon 

expected discounted reward.  The author presents conditions under which the optimal 

maintenance policy exhibits monotonic control limit structures for replacement, and the 

preventive repair prior to replacement is a non-increasing function of the machine state.  

Ohnishi et al. [129] investigate a system that deteriorates according to a continuous-time 

Markov process.  It is assumed that the system state can only be identified through 

inspection.  The paper derives an optimal policy minimizing the expected total long-run 

average cost per unit time.  Under reasonable assumptions reflecting the practical 

meaning of deterioration, it is shown a control limit rule holds for replacement, and the 

time interval between successive inspections decreases as the degree of deterioration 

increases. 
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Maintenance policies under Markovian deterioration has been studied in 

numerous other research efforts (see for example [130-133]).  Under the Markovian 

formulation, the deterioration of the system is only indicated by the changes of states but 

not the age.  This assumption may not be valid in practice, and has been studied primarily 

because of its attractive mathematical tractability.  To model aging and cumulative 

damage in degrading systems, semi-Markov processes formulation is more commonly 

used. 

2.2.2.2 Semi-Markov Process Models 

In real-life systems, the behavior of the degrading system typically changes as the 

system ages.  For example, the transition probabilities or associated costs may exhibit 

characteristic behaviors depending on the cumulative age of the system.  Many research 

efforts resort to semi-Markov process models to capture this practical feature.  Care needs 

to be taken in using the term age in the context of semi-Markov processes.  Beynamini 

and Yechiali [33] state that “while the sojourn time is measured from the last transition or 

maintenance action, true age accumulates through the system’s life cycle”.  The outcomes 

of this cumulative aging may or may not be reversed through maintenance actions.   

As in the case with Markov process models, semi-Markov process models focus 

on establishing structured maintenance policies.  Kao [52] uses a discrete-time semi-

Markov process to model a deteriorating system.  State-dependent and age-dependent 

replacement rules are proposed.  The system operating costs and replacement costs are 

functions of the underlying state.  Sufficient conditions for the existence of optimal 

control limit state dependent replacement rules are derived.  Feldman [134] derives 

optimal control limit replacement rules for a system subject to random shocks.  A semi-
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Markov process formulation is used to allow for both the time between shocks and the 

damage due to the next shock to be dependent on the present cumulative damage level. 

Gottlieb [135] extends this study to the case where the failure rate of the system need not 

be increasing.  So [127] uses a parametric analysis to establish sufficient conditions for 

the optimality of control limit replacement policies under semi-Markovian deterioration.  

Lam and Yeh [136] present algorithms for deriving optimal maintenance policies to 

minimize the mean long-run cost-rate for continuous-time semi-Markov deteriorating 

systems.  The degree of deterioration is known only through inspection, and the durations 

of inspection and replacement are assumed to be non-negligible.  The authors consider 

five maintenance strategies and develop iterative algorithms to derive the optimal policy 

for each strategy.  Sufficient conditions are established for the optimality of structural 

polices.  Benyamini and Yechiali [33] determine conditions under which control limit 

policies are optimal for a non-stationary age dependent degradation process.  The authors 

discuss both “replacement-only” models, whereby the only possible maintenance action 

is to preventively replace the system, and “repair-replacement models”.  Yeh [30] derives 

optimal replacement and inspection policies for semi-Markovian deteriorating systems.  

The authors approximate the distribution of the sojourn time for the semi-Markovian 

model by acyclic phase-type distributions, and use this approximation to transform it to a 

Markovian maintenance model.  Dimitrakos and Kyriakidis [137] consider a system 

consisting of a deteriorating installation that transfers raw material to a production unit, 

and a buffer built between the installation and the production to account for unexpected 

failures.  The authors consider the problem of optimal preventive maintenance of the 

installation, under the assumption that the repair times follow some known continuous 
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distributions.  An efficient semi-Markov decision algorithm is proposed, which operates 

on the class of control limit policies.  Chen and Trivedi [138] build a semi-Markov 

decision process for the maintenance policy optimization and present an approach for the 

joint optimization of inspection rate and maintenance policy.  The authors describe a 

special case where the optimal policy is a dynamic threshold-type scheme with threshold 

value depending on the inspection rate.  

Most of the state models assume that the degradation state of the system is fully 

observable through perfect inspection or monitoring.  In other words, they assume that 

inspection and/or monitoring reveal the underlying state of the system with certainty.  In 

some practical real-world cases, it is reasonable to consider the case were inspection only 

partially reflects this underlying state.  In such cases, there exist probability distributions 

on the underlying degradation state of the system after taking observations.  A common 

approach to handle this class of problems is to use partially observable Markov Decision 

Processes (POMDP). 

2.2.2.3 Partially Observable Markov Process Models 

In this class of models, maintenance policies are only made on the basis of noise-

corrupted observations.  Sources of such noise can include, for example, human error due 

to an inexperienced inspector, or an unreliable sensor.  In a POMDP, there exist a set of 

probability distributions over the underlying deterioration states as stated by Monohan 

[139].  Makis and Jiang [140] formulate the replacement problem for a technical system 

which can be in one of N operational states or a failure state as an optimal stopping 

problem with partial observation.  The problem is transferred to one with complete 

information by applying the projection theorem to a smooth semi-martingale process in 
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the objective function.  Afterwards, the dynamic equation is derived and analyzed in the 

piecewise deterministic Markov process stopping framework.  This is used to find a 

replacement policy minimizing the long run expected average cost per unit time.  White 

[141] studies the problem of optimally controlling a production process with countable 

state space.  At each discrete time epoch, the three available decisions are: produce, 

inspect while producing, or repair the process.  It is assumed that imperfect observations 

are received at both times of production and inspection.  The author determines several 

results associated with the two-state case, which are sufficient for simple 

characterizations of an optimal policy.  In [142], White derives bounds on the optimal 

cost function for a partially observable replacement problem.  This is done by 

characterizing the structure of optimal strategies for completely observed case and the 

completely unobserved case as having a generalized control limit form.  Sinuany-Stern et 

al. [143] suggest a simple heuristic decision rule to handle replacement type problems of 

large size based on the Howard solution of the fully observable version of the problem.  

The authors present a simulation experimental design to compare the performance of this 

heuristic relative to generic POMDP solution algorithms.  Kuo [144] studies the joint 

machine maintenance and product quality control problem with an unobservable state of 

the production system.  The authors include the timing of the sampling action and the 

sample size directly in the action space of the POMDP and derive some properties of the 

optimal value function that facilitates searching for the optimal maintenance and quality 

control problem.  Rosenfield [145] presents a model of a deteriorating process with 

imperfect information.  With each decision epoch, the decision maker decides whether to 

repair, inspect at a cost, or do nothing.  The author shows that the optimal policy is an at-
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most-four-regions type policy.   Maillart [146] examines the problem of adaptively 

scheduling perfect observations, imperfect observations, and maintenance actions for a 

multistate Markovian deteriorating system with obvious failures.  Structural properties of 

the perfect observation case are established, and used in a heuristic to solve the imperfect 

observation problem.  Smallwood and Sondik [147] discuss finite horizon POMDPs and 

present an algorithm to calculate the optimal control policy and payoff function.  The 

results are illustrated by an example for the machine-maintenance problem.  Sondik [148] 

later extends this work to the infinite horizon discounted cost criterion.  Hopp and Kuo 

[149] formulate the maintenance problem of aircraft engine components subject to stress 

as a POMDP.  The authors use this approach because cracks that characterize the 

deterioration of the components are not easily observable.  Consequently, decisions are 

made on the basis of stress information collected via sensors.  Optimal structured 

maintenance schedules are derives for the problem.  Albright [150] examines conditions 

that guarantee monotonicity of the reward function and optimal actions in two-states 

POMDPs, and provides examples of maintenance systems where the results hold.  

Excellent reviews on POMDPS, applications and solution algorithms, are provided by 

Fernandez-Gaucherand et al. [152], White [151], and Monahan [139]. 

2.2.3 Condition Based Maintenance (CBM) 

Reliability-based models and state models usually pay little attention to sensory 

information from condition monitoring.  Reliability-based models rely on failure time 

distributions derived from reliability testing of components’ populations.  On the other 

hand, in most cases, state models model the transition between the degradation states of 

the system using arbitrary transition probability matrices.  The literature on CBM utilizes 
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condition monitoring information to determine optimal maintenance policies.  Bloch and 

Geitner [153] state that the majority of machine failures are preceded by certain signs, 

conditions, or indicators that a failure was going to occur.  Mann Jr. et al. [154] explore 

the benefits of CBM versus traditional reliability-based maintenance, and provide a brief 

review of research efforts in this area.  Jardine et al. [155] provide an up-to-date and 

excellent review on the recent research and developments in diagnostics and prognostics 

of mechanical systems implementing CBM.  Emphasis is put on models, algorithms, and 

technologies for data processing and maintenance decision making.  

One approach of CBM is to trigger maintenance actions when the system’s 

condition reaches some alarm or failure threshold.  Christer and Wang [156] address a 

cost-effective condition monitoring policy of a production plant.  A condition monitoring 

test is assumed in which the state of wear of a component is recorded as a (0,1) signal 

depending upon whether or not the wear is below a critical level.  Aven [157] considers a 

unit subject to random deterioration, and bases the replacement of the system upon 

measurements of wear characteristics and damage inflicted on the system.  Coolen et al. 

[158] presents a basic model for the economic evaluation and optimization of the interval 

between successive condition measurements when measurement are costly and cannot be 

made continuously.   

Another approach involves using Proportional Hazard Models (PHM).  Makis et. 

al. [159] blend PHM with vibration and oil debris analysis to model condition-based 

replacement decision problems.  Koomsap et al. [160] integrate process control and CBM 

of manufacturing systems using a Weibull hazard function.  In [161], Koomsap et al. use 

condition monitoring along with the Weibull hazard function to estimate the lifetime of a 
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CO2 laser.  Lin et al. [162] proposes the application of principal components proportional 

hazards regression model in condition-based maintenance.  Principal component analysis 

is applied to the PHM covariates to reduce the number of variables in the model and 

eliminate possible colinearity between the covariates.  Jardine et al. [163] discuss a work 

completed at Cardinal River Coals in Canada to improve the existing oil analysis 

condition monitoring program.  The PHM is used to find the key condition variables 

relating to failures from among the 19 elements monitored.  Jardine et al. [164] report the 

development of an optimal maintenance program for critical bearings on machinery in the 

food industry subject to vibration monitoring.  The PHM is used to identify the risk 

curve, and then cost data is blended with risk to identify the optimal maintenance 

program. 

Some CBM research efforts also focus on establishing structured policies based 

on condition monitoring information.  Makis and Jardine [165] establish control limit 

replacement policies for deteriorating systems subject to condition monitoring using the 

proportional hazard model (PHM).  Makis et al. [166] propose a CBM model when only 

partial information is available through a signal process with no monotone behavior.  The 

optimal replacement policy is shown to be a control limit policy and an algorithm is 

developed to find the limit for an −ε optimal policy.  Barbera et al. [167] discuss a 

condition based maintenance model for a two-unit system in series with exponential 

failures and fixed inspection intervals.  A condition indicator variable for each unit is 

used to decide whether to repair the unit or to overhaul the whole system.  After a 

maintenance action is performed, the condition indicator takes on its initial value.  Lu et 

al. [168] investigate the structure of a discrete-time Markov deteriorating system 
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monitored by multiple dependent monitors.  The authors find that the expected optimal 

cost function over an infinite horizon is monotone given that the transition probability 

matrix is totally positive of order 2 and the conditional probability of the monitors having 

the property of weak multivariate monotone likelihood ratio.  The optimal policy is 

shown to have an at-most-four-region structure.   

In this research, we propose a mathematical framework that integrates various 

aspects of the discussed literature. In particular, we use condition monitoring sensory 

information to determine, and update, optimal replacement and spare parts ordering 

policies.  We utilize reliability-based approaches to determine approximate decision 

policies.  We also model the deterioration of single-unit systems as a non-stationary 

Markov process whose transition probability matrix is based upon sensory information 

from condition monitoring.  This is used to establish monotone control limit replacement 

and spare parts ordering policies.  The next chapters discuss these methodologies in 

detail.  We start by presenting sensor-based degradation models for exponentially 

degrading components in the following chapter. 
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CHAPTER 3  
SENSOR-BASED DEGRADATION MODELING 

 
 
 

In this chapter, we present a degradation modeling framework for computing and 

updating the RLD of degrading components using real-time sensory signals.  Our 

approach is to model the evolutionary path of the sensory-signals using a random 

coefficients model with deterministic and stochastic model parameters, and superimposed 

error terms.  The stochastic parameters are assumed to follow some prior distribution, 

whose parameters can be estimated from a database of degradation signals acquired from 

accelerated degradation testing of an initial sample of components.  This prior 

distribution can be used to compute an initial failure time distribution of the population.  

Real-time signals from monitoring each individual component are then used to update the 

predictive distribution of the future degradation signal using Bayesian techniques.  This 

predictive distribution can then be used to revise the RLD of the component by 

evaluating the distribution of the time taken by the future degradation signal to cross a 

pre-determined failure threshold. 

3.1 Degradation Model Development 

Consider a component that degrades during its operation.  Dedicated sensors are 

used to observe real-time signals at deterministic and equally spaces time epochs k , 

K,1,0=k , with t  denoting the time between two consecutive observations.  Define 

{ }0, ≥= kSkS  as a stochastic process, where kS  denotes the value (amplitude) of the 

degradation signal at time K,1,0, =⋅= kkttk .  This signal evolves according to a 

parametric model ( ) ( )kkk tthS εφ +Θ= ,; .  The term ( )⋅h  represents the functional form 
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characterizing the evolution of the signal, kS .  The choice of this functional form depends 

on the type of component being modeled and can take a variety of forms (e.g. linear, 

exponential, etc.) depending on the type of component being modeled.  The parameter φ  

is deterministic that captures constant degradation characteristics over the components’ 

population, such as a fixed initial level of degradation.  The parameter Θ  is a stochastic 

parameter (or vector of parameters) that captures unit-to-unit variability, i.e. the random 

degradation characteristics of the individual components being monitored.  The term 

( )ktε  is an error term used to model measurement noise and signal fluctuations. 

In applications where preliminary degradation stages do not accelerate the 

degradation process, a linear functional form may be suitable.  The wear of break pads on 

automotive wheels is a good example.  Initial wear does not speed up subsequent wear of 

the brake pads.  In contrast, the exponential functional form is more suitable for 

applications where the initial degradation level increases the rate of subsequent 

degradation.  This type of degradation process is common in many mechanical systems, 

especially rotating machinery and rolling elements bearing applications.  In bearings, the 

formation of spalls (pits) on the surface of bearing raceways is an initial form of 

degradation.  These spalls become weak points and increase the rate of subsequent 

degradation [19, 97, 102].   

Most previous research efforts assumed the error terms to be iid normal with 

mean zero and variance 2σ  across the population of components [19, 20, 47].  Some 

other research efforts used Brownian motion (BM) to model the error terms [12, 13, 21].  

Brownian error terms are more appropriate for applications where successive error 

fluctuations in sensor readings are correlated.  In this research, we focus on modeling 
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components whose degradation signals evolve according to an exponential functional 

form, and error terms that follow a Brownian motion (BM) with mean zero and variance 

parameter 2σ .  Brownian motion is a stochastic process ( ){ }, 0W t t ≥  with the following 

properties [170]: 

(1) If nttt <<< K10 , then ( )0tW , ( ) ( ) ,,01 KtWtW − ( ) ( )1−− nn tWtW  are mutually 

independent.  

(2) If 0, ≥ts , then ( ) ( ) AsWtsW ∈−+  (real values) and its probability is given by: 

( ) ( ){ } 21 2 2Pr (2 ) e x t

A

W s t W s t dxπ − −+ − = ∫ . 

(3) With probability one, ( )tWt → . 

Properties 1 and 2 state that the process ( )W t  has independent increments and 

that these increments are normally distributed with mean zero and variance t .  Property 3 

states that ( )W t , t ≥ 0, almost surely has continuous paths [170]. 

3.1.1 Random-Coefficients Degradation Model with Exponential Functional Form 

and Brownian Error Terms 

Using the exponential functional form, the degradation signal is expressed as 

follows: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−+⋅+= kkkk tttS

2
exp

2σεβθφ     

( ) ( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

⋅−⋅ kk
k

ttt ee 2

2σ
εβθφ           (1) 
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where φ  is a known constant, θ  is  a lognormal random variable, i.e., ( )θθ ln=′  is normal 

with mean 0μ and variance 2
0σ , β  is  a normal random variable, independent of θ , with 

mean 1μ and variance 2
1σ , and ( )ktε  is the error term that follows a BM with mean 0 and 

variance 2σ .  For mathematical convenience, we work with the logarithm of the 

degradation signal.  We define kl  as the logarithm of degradation signal amplitude: 

( ) ( ) kkkkk tttS ⋅−+⋅+=−=
2

lnln
2σεβθφl      

( )kk tt εβθ +⋅+= ''                               (2) 

where 
2

'
2σββ −= .  In expression (2), θ ′ and β ′  are independent and follow prior normal 

distributions ( )θπ ′  with mean 0μ  and variance 2
0σ , and ( )βπ ′  with mean 1μ′ and variance 

2
1σ , respectively.  Note that 

2

2

11
σμμ −=′ .  In practice, prior information about these 

distributions can be gathered by performing degradation testing on a sample of identical 

components.  The resulting database of degradation signals are then used to estimate the 

parameters of the prior distributions.  These prior distributions can be used to compute 

the failure time distribution of the component’s population by evaluating the distribution 

of time at which the degradation signal crosses a predetermined failure threshold.  Real-

time condition monitoring signals are then used to update the parameters of the prior 

distributions and, subsequently, revise the RLD of the individual components.  We 

discuss next a Bayesian methodology to update the prior distributions parameters given 

observed sensory signals. 
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3.1.2 Bayesian Updating of the Prior Distributions Parameters  

We start by defining 1−−≡Δ kkk ll , K,2,1=k , as the difference between the value 

of the degradation signal logarithm at times kt  and 1−kt , with 00 l=Δ .  Based on the 

properties of BM, kΔ  is normally distributed with mean 0 and variance 2tσ .  The prior 

distributions of the stochastic parameters are updated by computing the joint distribution 

of 'θ  and 'β  given the observed data, ( )kΔΔ′′ ,,|,Pr 0 Kβθ .  From Bayes theorem we 

have: 

( ) ( ) ( ) ( )βπθπβθβθ ′⋅′⋅′′ΔΔ∝ΔΔ′′ ,|,,,,|,Pr 00 kk f KK      (3) 

where ( )βθ ′′ΔΔ ,|,,0 kf K  is the likelihood function of kΔΔ ,,0 K  given 'θ  and 'β .  By 

the properties of BM, the error increments ( ) ( )1−− kk tt εε , are independent normal random 

variables.  Therefore ( )βθ ′′ΔΔ ,|,,0 kf K  can be expressed as:  

( ) ( ) ( )( )
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Generally, however, θ ′ and β ′  are unknown. The posterior (updated) distribution 

of θ ′ and β ′  can be found by evaluating ( )kΔΔ′′ ,,|,Pr 0 Kβθ  given the observed signals. 

Proposition 1. The posterior distribution of the stochastic parameters θ ′ and β ′  given the 

observed data kΔΔ ,,0 K , ( )βθψ ′′, , is bivariate normal with the following parameters: 
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Proof. Given the prior distributions ( )θπ ′  and ( )βπ ′ , we can find the posterior distribution 

( )βθψ ′′,  as follows: 

( ) ( ) ( ) ( )βπθπβθβθ ′⋅′⋅′′ΔΔ∝ΔΔ′′ ,|,,,,|,Pr 00 kk f KK      

  

( ) ( )( )
( )

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ′−′

−⋅
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −′

−⋅

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−

−′−Δ
−

′−′−Δ
−∝ ∑

= −

−

2
1

2
1

2
0

2
0

1 1
2

2
1

0
2

2
00

2
exp

2
exp

22
exp

σ
μβ

σ
μθ

σ
β

σ
βθ k

i ii

iii

tt
tt

t
t

  

.122

2
2
1exp

22
1

2

2
1

0

2
1

0
2
0

2
0

2
00

2
1

2

22
12

0
2
0

2
0

22
02

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎟
⎠
⎞

⎜
⎝
⎛′′+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
′+Δ

′−

⎪⎩

⎪
⎨
⎧

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +Δ
′−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
′+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
′−∝

∑
=

σ
βθ

σσ

σμσ
β

σσ
σμ

θ
σσ

σσ
β

σσ
σσ

θ

k

i
i

k

t
tt

t
t

   (10) 

Since the parameters θ ′ and β ′  follow a bivariate posterior normal distribution 

with means ( ) ( )( )kk kk ll ,,, βθ μμ ′′ , variances ( ) ( )( )kk 22 , βθ σσ ′′ , and correlation coefficient 

( )kρ , defined in Proposition 1 above, then ( )kΔΔ′′ ,,|,Pr 0 Kβθ  takes the form: 
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By comparing coefficients in equations (10) and (11), we get the expressions of 

the posterior parameters of ( )βθπ ′′,  in Proposition 1, where k

k

i
k l=Δ∑

=0

,  ■ 

3.1.3 Computing the Remaining Life Distribution 

The updated posterior parameters in Proposition 1 can be used to update the 

predictive distribution of the future degradation signal.  We define the random variable 

( )τ+Γ kt  as the logarithm of the degradation signal after τ  time units.  The predictive 

distribution of ( )τ+Γ kt  is given in the following Proposition. 

Proposition 2. The predictive distribution of the random variable ( )τ+Γ kt  is normal with 

the following mean and variance: 

( ) ( )τμτμ β kkk kt ll ,~
'+=+     (12) 

( ) ( ) .~ 2222 τστστσ β +=+ ′ ktk        (13) 

Proof. From equation (2), we can express the difference increment ( ) kkt l−+Γ τ  as: 

( ) ( ) ( )τετετβτ −++′=−+Γ kkk tt l  

where, ∑
=

Δ=
k

i
kk

0

l .  Therefore, given kΔΔ ,,0 K , the random variable ( )τ+Γ kt  is follows 

a normal distribution with mean and variance:  

( ) [ ] ( )τμτβτμ β kkkk kt lll ,E~
′+=′+=+      

( ) [ ] ( ) ( )[ ] ( ) .VV~ 22222 τστσεεβττσ β +=−++′=+ ′ ktttt kkk              ■ 
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We can now evaluate the RLD by computing the distribution of the time until the 

degradation signals reaches the failure threshold ξ .  Let T  be a random variable 

denoting the remaining life of a partially degraded component given that we have 

observed kΔΔ ,,0 K .  Therefore, its distribution is given by: 

( ) ( )( )kkk tT ΔΔ≥+Γ=ΔΔ≤ ,,|Pr,,|Pr 00 KK ξττ ,    

( )( )kkt ΔΔ≤+Γ−= ,,|Pr1 0 Kξτ         
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where ( )⋅Φ  is the standard normal CDF.  The conditional distribution of ( )τ+Γ kt  can be 

used to show that ( ) 0lim
0

,,| 0
=

→
ΔΔ

t
T k

F τK , therefore, the domain of T  is ( )0, ∞ .  Notice that, in 

reality, this is an approximation because it is possible that the fluctuations of the signal 

may have already crossed the failure threshold, signifying failure, prior to predicting the 

remaining life.  We address this issue in Section 3.2. 

3.1.4 Exponential Degradation Model with Dependent Stochastic Parameters 

Although the authors in [19] assumed that the prior distributions of the stochastic 

parameters are independent, the updated (posterior) distribution was assumed to be 

bivariate normal.  To avoid this inconsistency, we consider that case where θ ′ and β ′  are 

assumed to follow a prior bivariate normal distribution, ( )βθπ ′′,  with means ( )10 , μμ ′ , 
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variances ( )2
1

2
0 , σσ  and correlation coefficient, 0ρ .  This assumption results in different 

expressions for the updated parameters of the posterior distribution ( )βθψ ′′, . 

Proposition 3. Assume that the prior distribution of θ ′ and β ′  is a bivariate normal 

distribution ( )βθπ ′′, . Then their posterior distribution given the observed data kΔΔ ,,0 K , 

( )βθψ ′′, , is bivariate normal with the following parameters: 
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Proof. The proof goes along the same steps followed to establish Proposition 1.  The 

likelihood function of kΔΔ ,,0 K  given 'θ  and 'β  is given by equation (4).  The posterior 

(updated) distribution of θ ′ and β ′  is found by evaluating ( )kΔΔ′′ ,,|,Pr 0 Kβθ  given the 

observed signals: 
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where the terms A, B, C, D, and E are given in Proposition 3 above.  Since θ ′ and β ′  

follow a bivariate posterior normal distribution with means ( ) ( )( )kk kk ll ,,, βθ μμ ′′ , 

variances ( ) ( )( )kk 22 , βθ σσ ′′ , and correlation coefficient ( )kρ , then ( )kΔΔ′′ ,,|,Pr 0 Kβθ  takes 

the form given in equation (11).  By comparing coefficients in (11) and (20), we obtain 

the expressions for the posterior parameters given above. ■ 

The predictive distribution of ( )τ+Γ kt  for this model is similar to the model with 

independent parameters, and is normal with mean and variance given in Proposition 2.  

Hence, the RLD of the component can be computed using equation (14). 
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3.2 Conservative Lower Bound on the Mean Remaining Life 

The remaining life distributions computed using the methods presented in the 

previous Section are approximations that work well if the variance of the error terms are 

small [19].  We notice that the RLD was estimated as the distribution of the time it takes 

the trajectory of the degradation signal to cross the failure threshold given an observed 

degradation signal.  As mentioned earlier, in reality this is an approximation.  The RLD 

computed in equation (14) does not represent the first passage time distribution of the 

degradation signal to the failure threshold.  In cases where the variance of the error terms 

is large, the signal fluctuations are also large, and these approximations can be 

significantly imprecise.   

Furthermore, the RLDs expressed in equation (14) are similar to the Bernstein 

distribution [171].  Tere do not exist closed form expressions for their moments.  These 

moments, such as the expected remaining life and other parameters like the variance, are 

of great importance in developing sensor-based decision methodologies for maintenance 

management and spare parts logistics as will be discussed in the coming chapters.  The 

need arises to input these quantities into other algorithms for maintenance optimization, 

and the absence of closed form expressions for them causes significant difficulties, 

especially from the standpoint of computational efficiency.  For example, Elwany and 

Gebraeel [37, 101] estimated the remaining life using the median of the RLD that had to 

be computed numerically. 

In this section, we identify closed-form expressions for a conservative lower-

bound of the mean remaining life.  To do this, we use the properties of the Brownian 

error terms, and show that the Inverse Gaussian (IG) distribution provides a good 
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approximation of the RLD, and its mean represents a lower bound on the mean remaining 

life.  The IG distribution is widely used to model the failure time of components and 

systems.  It characterizes the first passage time distribution of BM with positive drift, 

which is used to model degradation in many research efforts.  For example, Doksum and 

Hoyland [12] model the accumulated decay of cable insulation for units subject to 

accelerated testing under variable stress levels.  Accumulated decay is modeled as a BM 

with drift and the resulting failure time follows the IG distribution.  Whitmore and 

Schnkelberg [13] model the degradation of self-regulating heat cables subject to high 

stress reliability testing as a BM with constant rate of degradation.  Pettit and Young 

[172] use a combination of failure time and degradation data from testing a sample of 

components to obtain the failure time distribution of components’ populations.  Brownian 

motion with drift and diffusion is used to model degradation.  A Bayesian approach is 

used to compute the posterior densities of the drift and diffusion given data sets obtained 

from reliability testing for a fixed duration.  Elsayed and Liao [3] propose a Geometric 

BM degradation rate model that utilizes field data to estimate reliability.  Other works 

that model degradation using BM and the IG distribution include [173-177].  Excellent 

reviews on the IG distribution, its applications, properties, and estimation of parameters 

is provided by Chhikara  et al. [178] and Seshdari [179]. 

3.2.1 First Passage Time Distribution of Brownian motion with Positive Drift 

Let ( ){ }0, >ttX  be a BM process with drift 0>δ and variance parameter 2σ , having 

the following form: 

( ) ( )tWttX += δ      (21) 
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where ( )tW  is a standard BM with mean zero and variance parameter 2σ .  Then ( )tX  has 

the following properties: 

1. ( ) 00 =X . 

2. The increments ( ) ( )j i j iX t X t , t t− > are independent and identically normally 

distributed with mean ( )ij tt −δ  and variance ( )ij tt −2σ . 

Given some critical level ξ , let δξν = , 22 σξγ = , and define the random 

variable T  to be the first passage time of ( )X t  to ξ .  Then T  has an IG distribution with 

mean ν and shape parameter γ , ( )γν ,IG , with the following PDF [178]: 

( ) ( ) 0,,
2

exp
2

,;
2

23
>
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⎪
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⎪
⎨
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π
γγν t

t
t

t
tfT       (22) 

The IG has very useful properties such as the existence of closed form 

expressions for the probability density function (PDF), cumulative distribution function 

(CDF), moment generating function (MGF), and well defined statistics such as the 

population mean, mode, and variance.  Table 1 summarizes these properties of the 

inverse Gaussian Distribution [178, 179].  We show next how to use the mean of the IG 

as a conservative lower bound on the mean remaining life for the exponential degradation 

model with Brownian errors. 
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3.2.2 Conservative Lower-Bound on the Mean Remaining Life 

We start by re-writing the logged degradation signal model in equation (2) as: 

( )kkk tt εβθ +′=′−l      (23) 

and noticing the similarity between expression (23) and BM with positive drift in (21).  

Hence, at each updating epoch k , we can approximate the first passage distribution of the 

degradation signal to the failure threshold ξ  with an IG distribution with mean ( ) ( )kk ωη  

and shape parameter ( ) 2ση k defined as: 

( ) ( )
( ) ,

,......2,1ln
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In other words, the mean of the first passage time distribution to the failure 

threshold ξ , which is IG, is expressed as ( )( ) βξ ′− klln , where ( )( )kl−ξln  represents the 

critical level at time kt and β ′  is the drift of the Brownian motion at time tk.  Since β ′  is 

a random variable, we use its expectation, ( )kk l,βμ ′ , to estimate the updated drift at each 

updating epoch.  We state the following Proposition: 

Proposition 4.  The mean of the IG distribution, ( ) ( )kk ωη  , is a conservative lower 

bound on the mean remaining life. 

Proof. We know that for any positive random variable, 0>Y , the following inequality 

holds (Jensen’s inequality [180]); 

[ ]YEY
E 11

≥⎥⎦
⎤

⎢⎣
⎡         (26) 
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therefore, for each updating epoch, we can write: 
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■ 

3.3 Case Study for Rotating Machinery Application 

We present a case study to validate the proposed degradation modeling 

framework and assess its performance in predicting failures accurately.  In this case 

study, real-world vibration-based degradation signals acquired from a rotating machinery 

application are used to demonstrate our degradation model.  An experimental testing rig 

is used to perform accelerated degradation tests on several rolling element thrust 

bearings.  The bearings are installed into the testing chamber and are run until failure.  

During each test, the bearing’s degradation state is monitored using vibration signals. 

There are two primary reasons for choosing bearings to implement and validate 

the degradation model; first the exponential functional form is well suited for modeling 

bearing degradation.  This assumption is supported by existing literature on bearing 

condition monitoring and degradation modeling, such as Harris [182], Shao and Nezu in 

[181] and Gebraeel et al. in [19].  Second, the relatively low cost of thrust bearings 

provide the capability of high volume destructive testing for validation purposes.   

3.3.1 Degradation of Rolling Elements Thrust Bearings 

Rolling bearings are used to support rotating machine components.  They are 

composed of two hardened steel raceways.  One of the races is usually connected to the 

rotating part of the machine (the inner race in radial bearings and upper race in thrust 
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bearings).  The second race is fixed to a stationary housing (outer race in radial bearings 

and lower race in thrust bearings).  Rolling elements (usually steel balls, cylinder, and 

needles) found in between the two races facilitate the relative rotational motion.  

Although there are several physical phenomena that characterize bearing degradation, we 

focus our attention on bearing vibration.   

3.3.2 Experimental Test Rig for the Degradation Testing of Bearings 

Because bearing degradation is time-consuming, investigating the natural failure 

of several test bearings is a challenging task.  Several researchers have resorted to 

introducing artificial defects as one way to accelerate the failure process.  However, we 

believe that artificially induced defects may interfere with the bearing’s natural 

degradation process.  As a result, an experimental testing rig is specifically designed and 

fabricated to perform accelerated degradation tests on thrust ball bearings (Figure 3).     

Each test bearing is placed in a testing chamber where the lower race of the 

bearing is fixed to a stationary housing and its upper race is fastened to a rotating shaft.  

Each bearing is run until failure at a constant rotational speed of 2200 rpm and is 

subjected to a constant load of 200 lbs.  The testing chamber is connected to a lubricating 

system that provides continuous cooling and lubrication during each test run.  Bearings 

degradation begins with the creation of subsurface cracks within the steel raceways and 

culminates in the formation of spalls (pits) on the surface of the races.  The passage of 

rolling elements (steel balls) over the spalls excites defective vibration frequencies 

unique to the bearing.  These frequencies are computed using physical formulas that are 

functions of the bearing geometry, rotational speed, and number of rolling elements 

[182]. 
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Figure 3 Experimental test rig for monitoring bearing degradation. 
 
 
 

For the thrust ball bearings used in this case study, the formulas reduce to the 

following expressions: 

1. The Ball-Passing Frequency (BPF) is the fundamental defective frequency and is 
excited by a defect on the surface of the bearing’s raceways: 

60
RPM

2
1BPF ××= z      (28) 

2. The Fundamental Train Frequency (FTF) is related to the formation of cracks in the 
bearing’s cage that holds the rolling elements in place: 

60
RPM

2
1FTF =      (29) 

3. The Ball Spin Frequency (BSF) is excited due to a defective rolling element (chipped 
steel ball): 
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60

RPM
2
1BSF       (30) 

where, rd  is the diameter of the rolling elements; cd  is the diameter of the cage, (dout + 

din)/2, z  is the number of rolling elements, and RPM is the rotational speed in revolutions 

per minute.  Usually, the first signs of bearing degradation manifest themselves through 

the excitation of the BPF.  As degradation progresses over time, harmonic frequencies, 

integer multiples of the BPF, begin to appear in the vibration spectrum.  Accelerometers 

attached to the testing chamber are used to capture the vibration signals created during 

each test run.  Time varying vibration signals are acquired using a data acquisition 

program designed in LABVIEW.  The time domain signals are transformed into 

frequency domain using standard Fast Fourier Transform (FFT).  Figure 4 shows an 

example of the evolution of a sample of vibration spectra from the beginning of a test 

until bearing failure.  

The amplitude of the defective frequency and its harmonics are correlated with 

the severity of the bearing’s degradation.  This is clear by observing the evolution of the 

vibration spectra along the “Percentage of Life Accomplished” axis in Figure 4, where 

0% corresponds to a brand new bearing and 100% corresponds to a bearing’s vibration 

spectrum at the point of failure.  This observation was used to construct a vibration-based 

degradation signal.  There are several possible ways to develop a degradation signal.  In 

this paper, we use the average amplitude of the BPF and its first six harmonic frequencies 

to develop a vibration-based degradation signal.  Higher order harmonics were observed 

to behave irregularly; consequently we limited ourselves to the first six harmonics.   
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Figure 4 Evolution of the vibration spectra of a degrading bearing over its service life. 
 
 
 

Figure 5 presents an example of the vibration-based signal for one of the test 

bearings.  We would like to emphasize that each point on the signal corresponds to an 

aggregation of the information in one single vibration spectrum.  Recall that a vibration 

spectrum for a single test bearing is acquired every 2 minutes for the entire duration of 

the test run, until failure.  The degradation signal used in this work is similar to the 

degradation signal used in [19, 20, 101].  It consists of two distinct parts.  The first is 

characterized by a flat region (Phase-I), which typically corresponds to non-defective 

bearing operation.  This phase extends from the beginning of the test until the first 

instance of spall formation.  At the instance of spall formation, a noticeable spike in the 

amplitude of the degradation signal.  The time associated with this spike is referred to as 

the “first defect time”.  The second part of the degradation signal, phase-II, begins from 

the first defect time, and continues until bearing failure, i.e., until the signal reaches the 
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pre-specified failure threshold.  This phase is characterized by an increasing trend in the 

degradation signal significant due to the signals noise associated with the randomness of 

the degradation process.  This phase corresponds to a partially degraded system that has 

not failed yet. 
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Figure 5 Vibration-based degradation signal. 
 
 
 

The failure threshold is defined using the root mean square (RMS) of the overall 

vibration acceleration.  According to industrial standards for machinery vibration, ISO 

2372, 2.0-2.2 Gs represents a ‘vibration-based danger level’ for applications involving 

general-purpose machinery.  For the degradation signal developed in this paper, we 

define the failure threshold as the amplitude of the degradation signal corresponding to 

2.2 Gs of overall vibration.  After observing several degradation signals, the failure 
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threshold of the degradation signals was identified as 0.025 Vrms (root mean Square 

volts).  Figure 6 shows two sample thrust ball bearings.  The bearing on the right is new, 

while the one on the left is a failed bearing.  We would like to point out that at a threshold 

of 0.025 Vrms, the groove was observed to have spread along the entire surface of the 

bearing’s raceway.  

 
 
 

 

Figure 6 A new bearing (right) and a failed bearing (left). 
 
 
 

3.3.3 Model Implementation 

The experimental test rig was used to test 50 bearings to failure.  The first set of 

25 bearings was used to build a database of degradation signals.  This database was used 

to estimate the parameters of the prior distribution.  The second set of 25 bearings was 

used for validation purposes as described next. 
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3.3.3.1 Estimating the Prior Distributions Parameters 

The assumption that the error terms follow a BM requires that 0)( 0 =tε , thus the 

value of the initial degradation is given by θ ′=0l .  To estimate β ′ , we utilize the 

property of BM that the error increments are independent.  We define the random 

variables kR  as follows: 

2
.,..,12,0

1

1 f

kk

kk
k

t
k

tt
R =

−
−

=
−

−ll      (31) 

where 1−− kk tt  is 2 minutes, for this example, and ft  is the observed failure time of the 

bearing.  The random variables kR  are independent iid with mean 'β .  We use R  to 

estimate 'β  for each bearing.  The values of 'θ  and 'β  for the 25 test bearing are then 

used to estimate the prior means, variances, correlation coefficient, and the variance 

parameter of the Brownian error terms.  The computed values of these parameters are 

031.60 −=μ , 3
1 10061.8 −×=′μ , 346.02

0 =σ , 52
1 10034.1 −×=σ , 3464.00 −=ρ , and 0073.02 =σ .  

Recall that the constant deterministic parameter φ  represents a fixed initial level of 

degradation for the whole population, and was observed to be rmsV002.0≈ .  We set φ  

equal to zero, without loss of generality, for simplification. 

3.3.3.2 Testing the Model Assumptions 

Recall that we modify the assumption in the original model by Gebraeel et al. 

[19] that θ ′  and β ′  follow independent prior distributions.  Assuming dependence 

between θ ′  and β ′  is justified by the prior correlation coefficient, 3464.00 −=ρ .  There is 

no explicit goodness-of-fit test for the bivariate normal distribution.  However, there are 

consequences that must be satisfied in order not to reject the assumption [183]: 
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1. The marginal distribution of each random variable has to follow a univariate normal 

distribution. 

2. Given that the data consists of pairs of observations, ( )ji βθ ′′, , where 25,,1, K=ji , 

roughly 50% of the sample observations [ ]ji βθ ′′= ,x  must lie within the contour of an 

ellipse defined by: 

( ) ( ) )5.0(2
2

1 χμμ ≤−Σ− − xx T       (32) 

where μ  is estimated by x , and 1−Σ  is estimated by 1−S  with S  being the sample 

covariance matrix. 

3. A plot of the squared generalized distances given by equation (33) versus the 

corresponding chi-square percentiles has to follow a straight line.   

( ) ( ) njSd j
T

jj ,...,2,1,12 =−−= − xxxx     (33) 

The three consequences were evaluated and found to hold true for the values of 

θ ′  and β ′ .  Consequently, the assumption that θ ′  and β ′  follow a bivariate normal 

distribution was not rejected. 

The error term, ( )ktε , is assumed to follow a Brownian motion with mean zero 

and variance parameter 2σ .  By properties of BM, the increments ( ) ( )1−− kk tt εε  are 

independent and normally distributed with mean zero and variance t2σ .  Figure 7 shows 

a plot of the computed error increments.  The mean and of these increments was 

computed to be equal to 01048.9 6 ≈× − , justifying the assumption. 
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Figure 7 Plot of the computed error increments. 
 
 
 

3.3.3.3 Updating the RLD 

The second group of 25 validation bearings, 26 to 50, was used to evaluate the 

prediction accuracy of the model.  The bearings were run-to-failure under the same 

loading and operating conditions.  Every two minutes a vibration acquisition was 

performed, and the degradation signal evaluated and used to update the RLD and predict 

the remaining life of the bearing.  We evaluated the RLD using two methods: 

 

1. Method I – Approximate expressions with independent stochastic parameters:   

we use the exponential degradation model with independent stochastic parameters 

presented in Section 3.1.2.  Each time a signal is acquired, the parameters of the prior 

distributions are updated using equations (5-9), and the RLD is computed using 

equation (14).   

2. Method II – Closed-form expressions with dependent stochastic parameters:  

we use the exponential degradation model with dependent stochastic parameters 
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presented in Section 3.2.  Each time a signal is acquired, the parameters of the prior 

distributions are updated using equations (15-19), and the RLD is approximated by 

the IG distribution.  At each updating epoch, the updated posterior mean, ( )kk l,βμ ′ , 

was taken to be the updated degradation signal’s trajectory (drift).  

For demonstration, Figure 8 and Figure 9 display the updated CDF and PDF, 

respectively, of the RLD at various degradation percentiles of Bearing #50 using Method 

II. 
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Figure 8 Updated CDF of Bearing #50 at different degradation percentiles. 
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Figure 9 Updated PDF of Bearing #50 at different degradation percentiles. 
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3.3.3.4 Implementation Results  

After the failure time was observed for a given bearing, we computed a prediction 

error for each predicted remaining life evaluated at each updating epoch using: 

( )
100

~
×

−+
= j

N

j
N

j
k

j
kj

k t

ttp
D      (34) 

where, j
kD  is the percentage prediction error associated with bearing j , computed at 

epoch k ; j
Nt  is the actual observed failure time of bearing j ; j

kp  is the current total 

operating time of bearing j  at epoch k .  This is obtained by summing the predicted 

remaining life and the total time the bearing has been in operation, where  j
kt

~  is the 

remaining life estimator at the k th updating epoch.  The prediction errors are then 

grouped by degradation percentile.  We define a degradation percentile as the percentage 

duration in the degradation phase, given that we have observed the bearing’s failure time.   

For Method I, the median of the RLD is used to estimate the remaining life, j
kt

~ , at 

each updating epoch.  This is because the RLD computed in Method I does not have 

closed-form moments as discussed previously.  Using the median of the RLD as an 

estimate of the remaining life is common practice [57], especially in cases where the 

RLD is skewed, as demonstrated in Figure 9.  The median is computed numerically as the 

value of the remaining life at which the CDF is equal to 0.5.  Figure 10 displays the 95% 

CI of the prediction errors for the 25 validation bearings (bearings 26 to 50) using 

Method I. 

For Method II, the mean remaining life is used to estimate the remaining life, j
kt

~ .  

At each updating epoch, the conservative lower bound of the mean remaining life is 
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computed as ( )( ) ( )kk k ll ,ln βμξ ′− .   For consistency, when comparing the results with 

Method I, we perform the error analysis for Method II using the median to estimate the 

remaining life.  Figure 10 and Figure 11 display the 95% CI of the prediction errors for 

the same set of validation bearings using Method II.  The error analyses are based on the 

mean remaining life and the median remaining life, respectively.  
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Figure 10 Method I - 95% CI for the prediction error bas on the median. 
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Figure 11 Method II - 95% CI for the prediction error based on the median. 
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Figure 12 Method II - 95% CI for the prediction error based on the mean. 
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The prediction accuracy of both methods is comparable.  We notice that Method 

II, in which the stochastic model parameters are assumed to be dependent, provides better 

prediction accuracy at late degradation percentiles (70th percentile onwards) compared to 

Method I.  This is favorable because the risk of failure is expected to be high at late 

degradation percentile after degradation has progressed.   

We also notice that, for Method II, using the median as an estimate of the 

remaining life results in better prediction accuracy compared to using the mean.  The 

benefit of using the mean is the existence of a closed-form expression to compute it, 

unlike the median. This facilitates computations and is suitable for real-time decision 

making applications. 

3.3.3.5 Benchmarking 

Our prediction results are benchmarked against two other procedures for 

predicting failure: 

1. Benchmark I is based on the work done by Gebraeel [20].  The degradation model 

assumes that the stochastic model parameters are jointly distributed and follow a 

bivariate normal distribution.  However, the error terms are assumed to be iid normal 

with mean 0 and variance 2σ  rather than to follow a BM. 

2. Benchmark II is based on the degradation model proposed by Lu and Meeker [16].  

This benchmark demonstrates the importance of sensory-updating using real-time 

degradation information.  In [16], the path of the degradation signal is still assumed to 

follow an exponential functional form.  However, no updating of the remaining life 

distribution is performed based on condition monitoring information.  Thus, the 
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degradation model is based entirely on the degradation characteristics of the sample 

bearings (bearings 1 to 25) used to estimate the prior parameters. 

The 95% CI for prediction errors of the same set of 25 validation bearing are 

outlined in Figure 13 and Figure 14 for Benchmark I and Benchmark II, respectively.  It 

is evident that the methods presented in this research provide considerably better 

prediction accuracy.  This offers a powerful tool for optimizing maintenance policies.  In 

the next chapters, we integrate the sensor-based degradation modeling framework 

presented in this chapter with maintenance decision models. 
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Figure 13 Benchmark I (Gebraeel [20]) - 95% CI for the prediction error. 
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Figure 14 Benchmark II (Lu and Meeker [16]) - 95% CI for the prediction error. 
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CHAPTER 4   
SENSE-AND-RESPOND LOGISTICS FRAMEWORK 

 
 
 

In this chapter, we develop sensor-driven prognostic models for supporting 

component replacement and spare parts inventory decision making.  This is achieved 

through presenting a mathematical framework for integrating degradation-based sensory 

data streams from condition monitoring with high-level logistical decision models.  The 

integration provides an effective “Sense and Respond” architecture for decision making.  

In particular, the sensory-updated RLDs computed using sensor-based degradation 

models discussed in Chapter 3 are integrated with replacement and spare parts inventory 

models in place of the traditional failure time distributions.  Each time we monitor a 

component, the signals are used to update the remaining life and, in turn, update any 

previous replacement or inventory decisions.  

4.1 Traditional Reliability-based Replacement and Spare Parts Inventory Model 

We start by reviewing the work by Armstrong and Atkins [42], which represents a 

good example of the traditional approach for determining replacement and spare parts 

inventory policies.  The authors consider a single-unit system with room to store only one 

spare part.  The component is subject to random failure with a failure time probability 

density function (PDF) ( )⋅f and cumulative density function (CDF) ( )⋅F .  Each time the 

component fails, the system incurs a failure cost.  This cost is usually high and includes 

cost of corrective maintenance, labor, lost production, etc.  In the event that the 

component is replaced according to a planned schedule, the system incurs a planned 

replacement cost, which is the regular cost of preventive maintenance, labor, and cost of 
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the part itself.   Typically, the planned replacement cost is less than the cost incurred due 

to sudden failure.  Whether planned or failure replacements occur, it is necessary to have 

a spare part available in stock in order to perform the replacement action.  The system 

incurs a holding cost per unit time to store.  If the spare part is unavailable at the required 

replacement time, the system incurs a shortage cost per unit time.  The objective is to 

determine the optimal planned replacement time, ∗
rt , and the optimal spare part ordering 

time, ∗
ot , such that the total cost rate of the system is minimized.  The lead time, LT , is 

assumed to be fixed, thus,  ro tLTt ≤+  for all values of rt  and ot .  When the component 

is replaced, the system is restored to its initial, as good as new, condition.  In other words, 

planned and unplanned replacements are considered to be regeneration points of the 

system.  The objective is to minimize the system’s long-run average cost per unit time per 

cycle, where a cycle is defined by the random time between two successive planned or 

unplanned replacements. 

4.1.1 Replacement Policy 

Given the failure time distribution of a component, the objective of the 

replacement model is to find the optimum planned replacement time, ∗
rt .  The optimal 

replacement time is value of the replacement time, [ )∞∈ ,0rt , that minimizes the expected 

costs of preventive replacement and failure replacement.  The long-run average cost per 

cycle is expressed as: 

( ) ( )

( )∫

+
=

rt
rr

r

dxxF

tFctFc
C

0

21

.

     (35) 
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where rC  is the expected long-run replacement cost, 1c  is the planned replacement cost, 

2c  is the failure replacement cost, and ( ) ( )xFxF −=1 , where ( )xF  is the CDF of the 

component’s failure time evaluated at [ )∞∈ ,0x .  The numerator represents the expected 

cost per cycle and the denominator represents the expected cycle length.   

4.1.2 Inventory Ordering Policy 

The authors in [42] consider a sequential decision making process where the 

optimal replacement time is first evaluated followed by the optimal ordering time.  Once 

the optimum replacement time, ∗
rt , has been computed, it is then used to decide when to 

order the spare part.  Due to the assumption of single unit storage capacity, the order 

quantity is always a single unit.  The optimal ordering time, ∗
ot , is the value of the 

ordering time, [ )∞∈ ,0ot ,that minimizes the holding cost of spare parts and the cost of 

stock outs.  The long-run average inventory cost per cycle is expressed as: 

( ) ( )
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      (36) 

where oC  is the expected long-run ordering cost, hk  is the holding cost per unit time, sk  is 

the shortage cost per unit time, and LT  is the fixed lead time elapsed from the moment of 

placing the order up till order receipt.  We note that the expected cycle length is not the 

same for the replacement policy case due to the possibility of stock-outs occurring and 

resulting in a longer cycle. 
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4.2 Sensor-based Replacement and Spare Parts Inventory Policies 

In this research, we extend the traditional approach discussed above for 

determining replacement and inventory policies.  Rather than using the failure time 

distribution of the components’ population, we incorporate sensory-updated remaining 

life distributions (RLDs) obtained using the degradation modeling framework discussed 

in Chapter 3.  These updated RLDs capture the underlying state of degradation of the 

components using real- time sensory signals.  The impact of doing this is twofold; first 

the increased accuracy of failure prediction results in more sound decision policies and 

less costs.  Second, it allows for dynamically updating the decision policies based on the 

health of the component. 

Next we consider online sensory signals obtained at a specific updating time kt .  

Each time a signal is acquired, the RLD of the degraded component is updated.  The 

updated RLD is then used to compute the optimal replacement and the optimal spare part 

ordering times.  The long-run average replacement and inventory costs can now be 

expressed in terms of the updated RLDs as follows,  

( ) ( )

( )∫ +

+
= k

r

rr

r t

k

kkkk

k

tdxxF

tFctFc
C

0

21

.

         (37) 

( ) ( )

( ) ( ) k

t
k

LTt

t

k

t

LTt

k
s

LTt

t

k
h

k

tdxxFdxxF

dxxFkdxxFk

C k
r

k
o

k
o

k
r

k
o

k
o

k
o

o

++

+

=

∫∫

∫∫
+

+

+

0

..

..

           (38) 



73 

where k
rC  and k

oC  are the replacement and inventory ordering cost rates per cycle, 

respectively, at updating time kt .  ( )xF k  is the updated CDF of the remaining life at the 

updating time kt , evaluated at [ )∞∈ ,0x .  In other words, given that the component has 

survived up to time kt , and that we have observed a partial degradation signal up to time 

kt , ( )xF k  is the cumulative probability that the component fails after an additional 

[ )∞∈ ,0x  time units.  The terms ∗k
rt  and ∗k

ot  are the optimal replacement and inventory 

ordering times, respectively, at the given updating epoch.  Note that kt , the updating time, 

has been added in the denominator to the cycle time.  Each cycle is now composed of two 

components, a fixed term given by the time up to which the component has survived and 

a random component given by integrals of the remaining life distribution. 

An important note to make is that we use renewal theory as a heuristic to 

approximate the replacement and inventory decisions.  In reality, updating epochs do not 

explicitly represent regeneration points of the system.  In the next chapter, we discuss and 

propose exact structured replacement and inventory policies. 

4.2.1 Model Implementation 

We present a case study based on the real-world data used to validate the sensor-

based degradation model in Chapter 3.  The case study illustrates utilizing the sensory-

updated RLDs to determine and dynamically update replacement and inventory decisions 

using the proposed sensor-based methodology.   

During monitoring an individual bearing and acquiring its degradation signal, 

each time the RLD is updated, the updated CDF, ( )xF k , is used to compute the optimal 

replacement time, ∗k
rt , at time kt  using equation (37).  This quantity is, in turn, used to 
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compute the optimal inventory ordering time, ∗k
ot , using equation (38).  The following 

data was used: c1 = $ 25,  c2 = $ 100, kh = $0.10/unit time, ks = $350/unit time, and LT = 4 

time units.  Figure 15 shows the evolution of the updated optimal replacement and 

inventory ordering times at different degradation percentiles, and Table 2 displays 

numerical results. 
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Figure 15 Updated optimal replacement and spare part inventory ordering times. 
 
 
 

We note from the results that the constraint imposed on the inventory ordering 

time, ro tLTt ≤+ , is satisfied for all degradation percentiles. Figure 16 below summarizes 

the proposed methodology. 
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Table 2 Numerical results of the case study. 

Degradation 
Percentile (%) tr to 

0 86 24 
10 54 14 
20 50 16 
30 46 16 
40 24 8 
50 22 8 
60 22 8 
70 12 4 
80 12 4 
90 0 0 
100 0 0 
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Figure 16 Summary of the sense-and-respond decision making framework. 
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The first step is to observe real-time degradation signal from the component 

during operation.  Each time we acquire a signal, the RLD is updated using the 

degradation modeling framework, as shown in step two.  The type of degradation model 

to be used (functional form and assumptions regarding the model parameters and error 

terms) is chosen according to the application.  At each updating epoch, the updated RLD 

is used to compute optimal replacement and inventory ordering times.  Steps three and 

four show replacement and inventory cost rate curves, respectively, for three different 

degradation percentiles.  When the replacement and inventory ordering policies are 

jointly optimized, steps three and four are performed simultaneously. 

4.2.2 Sensor-based Versus Reliability-based Decision Policies 

We highlight the advantages of the senor-based decision methodology versus the 

traditional reliability-based approach.  This is achieved by demonstrating, through two 

case studies, that implementing these sensor-based policies can result in reduced 

maintenance costs, primarily due to the better decisions resulting from improved failure 

prediction.    

4.2.2.1 Case Study 1 – Single-unit System 

The bearing degradation data from our experimental test rig is used for this case 

study.  We evaluate the system costs associated with implementing traditional policies 

over a finite planning horizon and compare these costs to the costs incurred when sensor-

based policies are implemented to the same population of components over the same 

horizon. 

 Traditional decision policy:  First, a Weibull distribution was fit to the actual 

failure times of the set of 25 bearings used to estimate the prior distribution parameters.  
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The Weibull distribution is very commonly used to characterize failure times of 

component populations.  The failure data yielded a Weibull distribution with scale 

parameter 47.797=ϕ  and shape parameter 65.2=γ .  This failure time distribution was 

used to compute optimal replacement and inventory ordering times using equations (35-

36) based on the same cost data used in the previous section.  The computed optimal 

times were  440=∗
rt  time units and 60=∗

ot time units. 

Next, 9 random failure times were generated from the given distribution and the 

decision policy computed above was implemented.  The costs associated with this 

decision policy over the 9 failure cycles were then computed and found to be 

4.500$=totC .  Table 3 below summarizes the results 

 Sensor-based decision policy:  The same generated failure times were 

considered, but dynamic sensor-based decision policies were implemented using the data 

from 9 validation bearings.  The remaining life distribution of the bearing, replacement 

time, and inventory ordering times are updated every 2 minutes.  The process continues 

until the updated optimal replacement time is less than the inventory lead time.  This 

results in a planned replacement.  Otherwise, if failure occurs prior to a planned 

replacement, a failure replacement is performed at a higher cost.  For the 9 bearings, over   

the same planning horizon, the total costs associated were computed and found to be 

6.228$=totC .  Following the traditional decision policy resulted in 3 failures over the 9 

cycles, whereas the sensor-based decision policy resulted in no failures due to the higher 

prediction accuracy and the dynamic updating of replacement and inventory ordering 

times.   
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Table 3 Results summary for the traditional decision policy. 

Cycle Failure 
Time 

(Units) 
Failure/Planned Replacement 

Time (Units) 

Inventory 
Ordering Time 

(Units) 

Cycle 
Cost ($) 

1 919.62 P 440 380 30.6 

2 552.82 P 880 820 30.6 

3 430.49 F 1310.49 1250.49 105.6 

4 290.58 F 1601.07 1541.07 105.6 

5 697.89 P 2041.07 1981.07 30.6 

6 432.67 F 2473.74 2413.74 105.6 

7 1070.82 P 2913.74 2853.74 30.6 

8 448.84 P 3353.74 3293.74 30.6 

9 1017.82 P 3793.74 3733.74 30.6 

Total     500.4 
 

 
 
 

4.2.2.2 Case Study 2 – Simulated Manufacturing System 

Case study 1 demonstrated highlighted that the sensor-based decision 

methodology outperforms the traditional approach in a single unit system.  In this section, 

we present a case study that extends this to a manufacturing system with more than one 

component.  shows the series/parallel configuration of the system used in this study.  

Failure of any of the three series work cells results in system failure.  Note that in order 

for work cells A or C to fail, both workstations in the work cells must fail due to 

redundancy.   

Pre-processed parts are assumed to arrive at work cell A in accordance to a 

Poisson process with mean 4 parts/minute.  Upon arrival, the part is processed on either 

workstations 1 or 2, whichever is available.  Next, it enters workstation 3, after which it 
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finally gets processed on either workstations 4 or 5.  Upon completion, the part goes to 

the shipping department for packaging and shipping.  Processing times on the 

workstations in work cells A, C are assumed to follow a triangular distribution with 

parameters (4.25, 4.75, and 5.25 minutes), while those in work cell B are assumed to 

follow a triangular distribution with parameters (2.25, 2.75, and 3.00 minutes). 
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Figure 17 Configuration of the simulated manufacturing system. 
 
 
 

The manufacturing system becomes unavailable if a random system failure occurs 

or a planned system replacement is performed.  Downtime resulting from a system failure 

is assumed to be random and follows a normal distribution with mean 300 minutes and 

variance 30 minutes.  Downtime resulting from a planned replacement routine is assumed 

to be random and follow a Normal distribution with mean 30 minutes and variance 5 

minutes.  The downtime resulting from an unplanned system failure is assumed to be 

greater since the demand for replacement parts and maintenance personnel is unexpected.  

Furthermore, we assume that each workstation degrades gradually until it fails.  

Degradation of the workstations is represented by the evolution of the vibration signals 

from monitoring the bearings. 
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In this study, maintenance decisions are performed based on the condition of the 

entire manufacturing system.  In other words, given the optimal replacement and ordering 

times of each workstation, a single planned maintenance routine is scheduled for the 

entire manufacturing system.  Similarly, failure of one of the work cells results in an 

unexpected failure of the entire system, at which time the entire system would be shut 

down for maintenance.  

 Traditional Maintenance Policy: Workstations are assumed subject to random 

failures with Weibull distributed failure times.  The parameters of this distribution were 

estimated using the same initial set of 25 bearings.  Next, the Weibull CDF was used to 

compute optimal system replacement and spare parts ordering times, and the decision 

policies are implemented. 

 Sensor-Based Maintenance Policy: The underlying assumption for this 

decision policy is that condition monitoring is used to acquire data every 2 minutes.  

Although these degradation signals are associated with individual bearings, for the 

purpose of this research they were used to simulate the degradation of the entire 

workstations.  As we continue to monitor the manufacturing system during operation, we 

update the RLDs use them to compute and dynamically update optimal replacement and 

inventory ordering times for the system.  This updating process continues until a stopping 

criterion is satisfied, after which we stop updating and implement the most recently 

updated decision policies.  The stopping criterion we used is to stop updating once 

LTtt system
o

system
r +≤ .  In this expression, { } { }{ }54321 ,max,,,maxmin rrrrr

system
r tttttt = , where j

rt is 

the computed optimal replacement time of workstation 5,,1, K=jj .  The system 

replacement time is then used to compute the system ordering time, system
ot .  This stopping 
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rule attempts to eliminate spare part holding time and ensure just-in-time spare part 

delivery. 

Arena simulation was used to simulate the continuous operation of the 

manufacturing system.  Each simulation consists of five runs, each running for 365-days.  

Separate runs were performed for each decision policy.  We used the following data: 

20=LT  minutes, 30$1 =c , 400$2 =c , 10.0$=hk /minute, 10$=hk /minute.  Workstation 

utilization and throughput were used to assess the performance of each maintenance 

policy.  Table 4 summarizes the results, showing that the sensor-based policy 

outperforms the traditional policy.  We also note that the Sensor-based policy results in a 

lower number of failure replacements. 

 
 
 

Table 4 Summary of Simulation study results. 

Policy 

Traditional 
Sensor-Based 

No. of Failure Replacements Nf No. of Planned Replacements Np 
Mean St’d Deviation Mean St’d Deviation 
322.0 55.9 8141.3 104.4 
193.0 21.7 5140.7 155.0 

Utilization 

0.8664 
0.9163 

Policy 

Traditional 
Sensor-Based 

No. of Failure Replacements Nf No. of Planned Replacements Np 
Mean St’d Deviation Mean St’d Deviation 
322.0 55.9 8141.3 104.4 
193.0 21.7 5140.7 155.0 

Policy 

Traditional 
Sensor-Based 

No. of Failure Replacements Nf No. of Planned Replacements Np 
Mean St’d Deviation Mean St’d Deviation 
322.0 55.9 8141.3 104.4 
193.0 21.7 5140.7 155.0 

Utilization 

0.8664 
0.9163 

 

 
 
 

The total maintenance costs were also used to measure the performance of each 

policy, where the total maintenance costs are the sum of total inventory and total 

replacement costs.  Figure 18 and Table 5 show average inventory cost, replacement cost, 

and total cost for each decision policy.  The total maintenance costs for the sensor-based 

decision policy results in 35% saving in total maintenance costs than the traditional 

approach.    
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Figure 18 Maintenance Costs for the two policies 
 
 
 

Table 5 Summary of the maintenance costs for the two policies 

Policy Mean St'd Dev Mean St'd Dev Mean St'd Dev
Traditional $57,174 $9,266 $372,907 $17,463 $430,080 $26,729

Sensor-Based $47,700 $5,565 $231,420 $9,147 $279,120 $14,717

Inv Cost Rep Cost Total Cost

 

 
 
 

4.3 User Interface for Sense-and-Respond Logistics Framework 

To facilitate real-world application, we have built a graphical user interface (GUI) 

to implement the sense-and-respond logistics methodology.  The user interface is linked 

to the experimental test rig discussed in Section 3.3.2.  Two photographs of the test rig 

are displayed in Figure 19 and Figure 20.  
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Figure 19 Photograph of the experimental test rig. 
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Figure 20 Experimental test rig linked to the data acquisition computer. 
 
 
 

The user interface was developed using LABVIEW.  This user interface links the 

test rig to the computer for two primary purposes; (1) to acquire the vibration-based 

degradation signals captured by the accelerometers through a DAQ (data acquisition) 

board, and (2) to provide closed loop control of the shaft rotational speed and the load 

applied by the hydraulic unit.  Shows a snap shot of the GUI screen in which the 

parameters of one degradation test are set up.  In particular, values for the shaft rotational 

speed (RPM), load applied to the bearing (lb), and the time between successive 

acquisition epochs (minutes) are entered in this screen. 
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Figure 21 Snapshot of the GUI screen used to enter the parameters of an experiment. 
 
 
 

When an experiment is started, the data logger subroutine automatically runs.  

This portion of the GUI has many modules.  We display two modules of interest; first, the 

GUI screen that displays the vibration spectrum (in the frequency domain) in Figure 22.   
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Figure 22 Snapshot of the GUI screen that captures the degradation signal and the 
experiment parameters. 

 
 
 

This screen displays the degradation signal (lower plot), and tracks the value of 

the shaft rotational speed and load applied on the bearing to assure proper control of these 

parameters.  The second module is the sense-respond-logistics screen shown in Figure 23.  

This screen plots the RLD, replacement cost curve, inventory cost curve, optimal 

replacement and spare parts ordering times, and the mean remaining life.  These curves 

are computed using a MATLAB code embedded within the LABVIEW block diagram. 
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Figure 23 Snapshot of the sense-and-respond logistics GUI screen. 
 
 
 

As discussed earlier in this chapter, we use the renewal-reward equation to 

determine optimal replacement and inventory ordering times in the sensor-based decision 

model as a heuristic to approximate decision policies.  This is a heuristic approximation 

since updating epochs do not explicitly represent regeneration points of the system like 

the events of failure or replacement.  In the next chapter, we present exact structured 

maintenance policies for the single-unit sensor-based problem. 
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CHAPTER 5  
SENSOR-BASED STRUCTURED MAINTENANCE POLICIES 

 
 
 

In this chapter, we focus on deriving structured maintenance policies for single-

unit degrading systems whose degradation signal grows exponentially.  First, we present 

a somewhat generic, single-unit semi-Markov decision process model that utilizes 

sensory signals to determine the optimal replacement time.  Second, we model the 

amplitude (or level) of a degradation signal using the exponential degradation model 

presented in Chapter 3, wherein real-time signals are used to update the predictive 

distribution of the degradation signal using Bayesian techniques. 

Next, we integrate the predictive distribution of the degradation signal with the 

semi-Markov decision process model to derive the optimal sensor-based replacement 

policy for a single unit system.  We show that the optimal policy under the infinite 

horizon expected discounted cost criterion is a monotonically non-decreasing control 

limit policy that optimally balances the cost of failure, the cost of preventive replacement, 

and the cost of observing sensor data.  This result might seem counterintuitive.  One 

would typically expect a monotonically non-increasing control limit policy, or in other 

words, that the urgency to preventively replace the system increases as the system ages.  

We provide explanation and provide mathematical proofs of this result.  We present a 

case study based on the real-world vibration data used to validate the models discussed in 

previous chapters, and study the performance of the policy under different cost settings. 

Finally, we utilize the optimal replacement policy to sequentially derive a 

structured policy for spare parts ordering.  In particular, at each decision epoch, we 

compute the expected replacement time at the next decision epoch.  In other words, we 
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compute the distribution of the time it takes the signal trajectory to cross the 

monotonically non-decreasing replacement control limit.  To achieve this, we discuss 

computing the first passage time distribution of a BM to a time-varying piecewise linear 

threshold.  Our ordering criterion is to order a spare part when the expected replacement 

time at the next decision epoch is less than the ordering lead time.  This ordering criterion 

attempts to eliminate spare part holding time and ensure just-in-time spare part delivery.  

We show that the optimal spare part ordering policy also has a monotonic non-decreasing 

control limit structure. 

5.1 Sensor-based Replacement Problem 

We start by presenting a single-unit replacement problem.  First, we formulate the 

problem as an MDP, then we establish structural properties of the optimal replacement 

policy. 

5.1.1 Model Formulation 

Consider a single-unit system that degrades during its operation.  Dedicated 

sensors are used to observe real-time signals at equally spaced discrete time epochs 

K,1,0, =kk , with t  being the constant time between two consecutive observations.  Each 

time we observe the signal, if it does not exceed the failure threshold, then our goal is to 

decide whether to instantaneously perform a preventive replacement of the system at cost 

1c , or continue to the next observation time.  If we decide to wait, we incur an 

observation cost, 3c , and run the risk of sudden failure (within the t  time units until the 

next observation), in which case we will be forced to perform a failure (reactive) 

replacement at a cost 2c > 1c .  As discussed before, ordering the costs in this manner 
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reflects the fact that reactive replacements may include additional costs such as lost 

production and overtime labor.  In the automotive industry for instance, an unexpected 

failure can result in stopping an assembly line, resulting in very high lost production 

costs.  

Let W = (K, Ρ) be the state space, where { }K,1,0=K  represents the set of 

observation numbers.  In other words, at observation K∈k  the system is kttk =  time 

units old.  Let ∈kS  Ρ+ represent the amplitude or level of the degradation signal at 

observation K∈k .  We use the signal logarithm, kl , to define the degradation states for 

mathematical convenience.  Hence, kl  takes on any value in the set of all real numbers Ρ.  

We will refer to kl  as the “observed signal” here forth.  

Let 10 << λ  be a discount factor, and let ( )kkV l,  be the total expected infinite 

horizon discounted cost when the system starts in state ( ) W∈kk l, .  The optimality 

equations can be expressed as follows: 

( ) ( )
( ) ( )[ ]( ){ } ( ) W∈∀

⎩
⎨
⎧

′≤+++

′>+
= k

k

k
k k

LkVEcVc
Vc

kV l
ll

ll
l ,,

,1,,0min
,,0

,
301

02

ξλ
ξ  (39) 

for all ( ) W∈kk l, , where 0l  is the initial observation for each identical component, 

assumed to be a known constant, and  ( )ξξ ln=′  whereξ  is a pre-determined failure 

threshold as defined previously.  We assume that if the observed signal crosses the 

threshold ξ ′  between observations and then returns to a value below this threshold at the 

next observation time, this does not constitute a failure.   

Equation (39) follows from the logic that if the observed signal at the current 

decision epoch, kl , exceeds the failure threshold ξ ′ , we perform an instantaneous failure 
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replacement at cost 2c  and restart with a new component.  On the other hand, if the 

observed signal is below the failure threshold, we can either choose to preventively 

replace the component with an identical new component, or do nothing and continue to 

observe a new signal at the next observation time.  If we choose to preventively replace 

the system, we incur a cost 1c  and restart with a new system.  Otherwise, we continue and 

observe a new signal value with an expected cost-to-go ( )[ ]LkVE ,1+ , while incurring an 

observation cost c3.  The term L  is a random variable denoting the observed signal at the 

next observation time; i.e. ( )ttL k +Γ=  .  We suppress L’s dependence on k for notational 

convenience.  The exponential degradation modeling framework with independent 

stochastic parameters, presented in Chapter 3 is used to characterize the evolution of the 

system’s degradation, and will be utilized to determine the form of the expected cost-to-

go, ( )[ ]LkVE ,1+ .  We now present two important Propositions that will be used to 

establish the structural properties of the optimal replacement policy. 

Proposition 5. The random variable L  is stochastically increasing in kl . 

Proof. Consider two different observed signals,  +
kl  and −

kl , at the same epoch k , such 

that −+ ≥ kk ll .  Let the random variables +L  and −L  denote the signal logarithm at the next 

observation time given the two observed signals +
kl  and −

kl , respectively. We need to 

show that ( ) ( ) xxFxF LL ∀≤ −+ , where ( )⋅XF  is the CDF of the random variable X .  Recall 

from Proposition 2 that the distribution of L  can be expressed as follows: 

( ) ( )
( )

( )( ).,

~
,~

k

k
L

kg
k
kx

xF

l

l

Φ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Φ=

σ
μ

         (40) 
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where ( ) ( )
( )k
kxkg k

k σ
μ
~

,~
, l
l

−
=  and ( )⋅Φ , and notice that in computing ( )kk l,~μ  and ( )kσ~  using 

equations (12) and (13), respectively, we set t=τ , since we are interested in the next 

observation epoch, 1+k .   

Since ( )⋅Φ  is a monotonically non-decreasing function, it suffices to show that 

( ) ( )−+ ≤ kk kgkg ll ,,  to establish that ( ) ( )xFxF LL −+ ≤ . To do so, we show that ( ) ( )−+ ≥ kk kk ll ,~,~ μμ  

and that the denominator of (40), ( )k2~σ , is constant in kl , which implies the intended 

result.   

We start by showing that ( ) ( )−+ ≥ kk kk ll ,~,~ μμ .  Since −+ ≥ kk ll , from equation (5) we 

have: 
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  ( ) ( )−
′

+
′ ≥⇒ kk kk ll ,, ββ μμ .      

By inspecting equation (13), we notice that ( )k2~σ  does not depend on the signal 

amplitude, hence the denominator of ( )xFL+  is equal to that of ( )xFL−  .  We have, then, 

established that: ( ) ( ) ( ) ( ) xxFxFkgkg LLkk ∀≤⇒≤ −+
−+ ll ,, . ■ 

Proposition 6. The random variable L  is stochastically decreasing in k . 
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Proof. Consider two observed signals,  +kl  and −kl , at different observation epochs +k  

and −k , such that −+ ≥ kk  and lll == −+ kk .  Let the random variables +L  and −L  denote 

the signal logarithm at the next observation times for the two observed signal increments 

+kl  and −kl , respectively.  To establish the result, it suffices to show that 

( ) ( )+−
+− ≤ kk kgkg ll ,, .  We start by expressing the numerator of ( )−

−
kkg l,  as follows for 

any fixed x : 

( ) ( )−−−
−
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− −−=− kkk kxkx lll ,,~

βμμ       
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Similarly, we express ( )−k2~σ  as follows: 
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Note that the terms −kA and −kB  depend only on the observed signal, −kl .  Thus, 

for any two observations such that lll == −+ kk , we can define AAA kk == +−  and 

BBB kk == +− .  Next, we express the difference between ( )−
−

kkg l,  and ( )+
+

kkg l,  as 

follows: 
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It is clear from the above expression that the sign of the difference depends only 

on the sign of the numerator.  We now examine the numerator: 

( ) ( )( ) ( ) ( )( )+−
+−−+ −⋅−−⋅ kk kxkkxk ll ,~~,~~ 22 μσμσ      
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Since −+ ≥⇒≥ −+
kk CCkk , then: 

022 ≤+−+ ++−− kkkk FCECFCEC  0≥+−+⇒
−+

F
C

EF
C

E

kk

.  Therefore: 

( ) ( ) ( ) ( ) xxFxFkgkg LLkk ∀≤⇒≤ +−+−
+− ll ,, .   ■ 

In the next section, the results presented in Propositions 5 and 6 are used to derive 

structural properties of the optimal policy for the sensor-based single-unit replacement 

model formulated above.  

5.1.2 Structural Properties of the Optimal Policy 

In some cases, it is possible to show that the optimal policy for a sequential 

decision problem has a certain structure.  These structures can sometimes be useful for 

many practical purposes.  For example, they can be exploited to develop computationally 

efficient algorithms.  They also facilitate the implementation of the optimal policy from a 

practical standpoint.   
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We will focus our attention on control limit policies (CLPs).  Under a monotonic 

control limit policy, the system is kept operating until the signal exceeds a certain control 

limit, *
kl , which is monotone in k .  If the system state exceeds this control limit, a 

preventive replacement is performed.  Control limit policies have been widely discussed 

in the literature [51, 34, 33, 184].  We start by stating two theorems necessary for 

establishing a control limit structure for the optimal replacement policy. 

Theorem 1. The value function, ( )kkV l, , is non-decreasing in kl  for all K∈k . 

Proof. Let ( )k
n kV l,  denote the value function at the thn  iteration of the value iteration 

algorithm.  We start by defining the initial value for 0=n : 

( ) ∈∀= kkkV ll 0,0 Ρ 

which is non-decreasing in kl .  Next, assume that ( )k
n kV l,  is non-decreasing in kl , then 

from equation (39): 

( )
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   (41) 

Recall from Proposition 2 that the random variable L  is stochastically increasing 

in kl .  Since ( )k
n kV l,  is non-decreasing by the induction hypothesis, ( )[ ]LkVE n ,1+ is 

also non-decreasing by the standard result in Ross [185] (Proposition 9.1.2, p. 405).  

Notice that since all of the terms on the right hand side of equation (41) are non-

decreasing in kl , then ( )k
n kV l,1+  is also no-decreasing, which establishes the result.     ■ 

Theorem 2. The value function, ( )kkV l, , is non-increasing in k for all kl . 
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Proof. This proof is also done by induction, similar to Theorem.  We define the initial 

value for 0=n  as 

( ) K∈∀= kkV k 0,0 l . 

Next, assume that ( )k
n kV l,  is non-increasing in kl , then: 

( ) ( )
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By similar reasoning to the proof of Theorem1, by Proposition 6 and the induction 

hypothesis ( )[ ]LkVE n ,1+ is non-increasing in k .  Therefore ( )k
n kV l,1+  is also non-

increasing, which completes the proof.    ■ 

Next, we show in Theorem  that for the infinite horizon sensor-based replacement 

problem, under the discounted cost criterion, the optimal policy is a monotonically non-

increasing control limit policy.   

Theorem 3. For all decision epochs K∈k , ξ ′≤∃ *
kl  such that the optimal decision is to 

preventively replace if and only if *
kk ll ≥ .  The control limit *

kl  is monotonically non-

decreasing in k . 

Proof. Assume that the result holds and consider the inequality  

     ( ) ( )[ ]( )LkVEcVc ,1,0 301 ++≤+ λl .              (42)  

The left hand side of inequality (42) is constant in kl .  On the other hand, by 

Theorem 1 and Proposition 5, the right hand side is non-decreasing in kl .  Therefore, 

inequality (42) holds for any pair ( ) W∈kk l,  such that *
kk ll ≥ .  In other words, given that 

the optimal decision in state ( )*, kk l  is to replace, the optimal decision for any pair 
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( ) W∈kk l,  such that *
kk ll ≥  is also to replace.  Therefore the optimal replacement policy 

is a control limit policy with control limit *
kl .  

Similarly, the right hand side of inequality (42) is non-increasing in k  by 

Proposition 6 and Theorem 2. Hence, for each observed signal ∈l Ρ, there exists a 

threshold age *
lk  such that the optimal decision for any pair ( ) W∈kk l,  with ∗≤ lkk  is to 

preventively replace.  By the existence a control limit *
kl  for each age k  and a threshold 

age *
lk  for each observed signal l , the control limit *

kl  is non-decreasing in age k . ■ 

Theorem 3 may seem counterintuitive.  One might intuitively expect the control 

limit to be monotonically non-increasing in the sense that the urgency for preventive 

replacement increases as the system ages, i.e., replacements are triggered by smaller 

signal values in older systems. This counterintuitive structure of the optimal policy is not 

uncommon.  For example, Benyamini and Yechiali state on p. 57 in [33] that “certain 

two-dimensional bisections may not be as simple or intuitive as one would expect of a 

control limit policy”.  The structure of the optimal policy in Theorem 3 can be justified as 

follows: notice from equation (8) that ( )k2
βσ ′  only depends on the age k  and other given 

constants.  Furthermore, since k is in the denominator of ( )k2
βσ ′ , we conclude that ( )k2

βσ ′  

is non-increasing in  k .  By inspecting equation (13), we conclude that the variance of the 

future signal logarithm, L , is also non-increasing in k .  In other words, there is increased 

accuracy (less variability) in predicting the future signal value, which results in the 

optimal policy being more tolerant of large signal values in older systems. 
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5.1.3 Computing the Optimal Policy 

The optimal replacement policy can be computed using one of many existing 

algorithms such as policy iteration.  However, the specific form of the problem and the 

control limit structure of the optimal policy can be exploited to decrease the 

computational burden associated with such problems, especially when the state space 

becomes large.  We use Puterman’s monotone policy iteration (Puterman [186], p. 428) 

to take advantage of the results established above.  As a first step, we define tk
~ to be the 

maximum allowable system age for some integer ∞<k
~ .  If the system reaches this age, 

we enforce a preventive replacement at cost 1c .  The idea is to set k
~ to be very large so as 

not to influence the optimal policy, and then truncate the state space prior to this limit 

when reporting the optimal policy.   

Next, we discretize the set of possible signal values by defining 

{ }ξξ ,,,2, Δ−ΔΔ=Λ K , where mξ=Δ  for some positive integer ∞<m .  Our state space 

becomes { } ( ){ }0,0 l∪Λ×= KW  where { }k
~

,,1K=K  and ol  is the initial observation, 

assumed to be a known constant.  The detailed algorithm is outlined below. 

Let ( )*~*
1 ,, klKl=υ  be an arbitrary replacement policy, where  ξ ′≤*

kl  is the control 

limit when the system is kt units old, K∈k .  This representation of the policy results in a 

k
~ -dimensional vector rather than a mk ×

~ - dimensional vector of actions for each state.  

Next, let υP and υr  be the transition probability matrix and vector of rewards, 

respectively, corresponding to policy υ .  Furthermore, define i
υP  as the row 

corresponding to the ith state in υP , Λ∈i .  The following algorithm can be used to find 

the optimal policy: 
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1. Initialization: set  j = 0.  Start with an arbitrary initial policy υ . 

2. Policy Evaluation: evaluate current policy by solving:  jjjj υυυυ λ vPrv += . 

3. Policy Improvement: check whether shifting the control limit *
jl  up or down results 

in an improvement: 

 If  ( )013 ,0
*

ll
jj

k
j vcc υυυ

λ +<+ vP , 

  Set Δ+= **
jj ll , 

  Go to step 2. 

If  ( ) j
k
jj cvc υυυ λ vP Δ−+<+
*

301 ,0 l
l , 

  Set Δ−= **
jj ll  

  Go to step 2. 

 Otherwise go to step 4. 

4. Check for Optimality: if kj
~

= , Stop.  Set optimal policy υυ =* .  Otherwise, 

increment j by 1, go to step 2. 

Notice that in the policy improvement step, step 3, we only need to explore a 

small subset of the state space represented by one step above or below the current control 

limit.  Moreover, if some shift is found to be improving for some K∈k  in one iteration, 

we only need to check for improvement in the same direction in subsequent iterations.  

The computational saving compared to the standard policy iteration algorithm is evident. 

Another advantage of this algorithm is in the policy evaluation step, step 2.  

Policy evaluation includes solving a system of linear equations, one corresponding to 

each state.  We notice in our algorithm that if a shift is found to be improving in step 3, 

we need to re-evaluate the improved policy by solving a new system of linear equations.  
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However, this new system differs only very slightly from the previous iteration.  We can 

improve the computational efficiency by updating the solution to the new system of 

equations given the solution to the previous system.  This can be done, for example, using 

QR-decomposition [187]. 

An issue that typically arises in solving large instances of Markov decision 

processes is the limited capacity of computer memory allocated to store different 

variables and parameters.  The specific form of the replacement problem can also be 

useful for improving memory allocation.  Specifically, recall that when the system is in 

some state ( )kk l, , the system is kt  units old.  Hence, it can only make a transition in the 

next decision epoch to the subset of the state space where the system age is equal to 

( )tk 1+ .  In other words, the transition probability from any state ( )kk l,  to ( )jj l,  is non-

zero if and only if 1+= kj , otherwise it is equal to zero.  Therefore, the transition 

probability matrix corresponding to every stationary policy is a sparse matrix.  This can 

be utilized for better computer memory utilization, where only non-zero elements need to 

be stored.  In general, the total number of elements in the transition probability matrix 

corresponding to each stationary policy is ( ) ( ) 22 ~~~
kmkmkm =××× , whereas the number of 

non-zero elements that need to be stored is equal to ( ) ( ) kmkmm
~~ 2=×× . 

5.1.4 Case Study 

We present a numerical case study based on real-world data acquired from 

degradation testing of bearings using our experimental test rig.  Recall that that the failure 

threshold 025.0=ξ and the values of the prior parameters are 031.60 −=μ , 3
1 10061.8 −×=′μ , 

346.02
0 =σ , 52

1 10034.1 −×=σ , and 0073.02 =σ .  Next, we solve for the optimal replacement 
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policy given the planned replacement cost, 1c , the failure replacement cost, 2c , and the 

observation cost, 3c . Figure 24 shows a schematic of the optimal control policy and how 

it relates to the degradation signal.  The stepped line represents the control limit at 

various ages of the system.  If the observed signal falls below this line (white area), the 

optimal decision is to continue observing.  Otherwise, if it falls above the stepped line 

(gray area) the optimal decision is to preventively replace. 
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Figure 24 Schematic representation of a monotonically non-decreasing control limit 
replacement policy. 

 
 
 

We use a test instance with the following cost data: 00.3$1 =c , 00.12$2 =c , and 

005.0$3 =c .  The initial signal was set to ( ) 9078.6001.0log0 −==l .  To determine a suitable 

value for the maximum age k
~ , we examine our data to determine the time at which the 
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degradation signal is estimated to cross the failure threshold.  Notice from equation (23) 

that the logged degradation signal model is similar to a Brownian motion with positive 

drift β ′  and starting at θ ′ .  We generated 310  realizations of β ′  using its prior 

distribution ( )βπ ′ .  For each realization, we simulated 310  signals as a Brownian motion 

with drift β ′ , using 0μ  as a fixed intercept.  A histogram of the first passage times for the 

610  simulated signals is shown in Figure 25. 
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Figure 25 Histogram of the first passage time for the 106 simulated signals. 
 
 
 

The maximum age was set equal to the 99th percentile, 2500
~

=k .  A discretization 

scheme with 20=m  and a discount factor of 0.99 were used.  The optimal policy is 
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shown in Figure 26 (middle curve), with a computed optimal value function 

( ) 024.38,0 0
* =lV .   

If the cost ratio 12 cc is small (i.e., the cost of failure replacement, c2, is close to 

the cost of planned replacement, c1), one would expect a policy that is relatively tolerant 

to sudden failures of system.  In other words, we would expect that the control limit 

would be closer to the failure threshold compared to another scenario where the cost of 

failure replacement is much higher than that of the planned replacement.  To validate this 

claim, we set 2c  at $4.00 and $50.00, respectively, then solve for the optimal policy.  In 

both cases the cost of planned replacement was kept at 00.3$1 =c .  The resulting control 

limits are displayed in Figure 26 for 00.4$2 =c (upper curve) and 00.50$2 =c (lower curve).  

We can verify that having a smaller ratio between the costs of planned replacement and 

failure replacement results in a less conservative control limit structure.  This is apparent 

in the higher control limit over the system’s lifetime (i.e., closer to the failure threshold). 
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Figure 26 Optimal replacement policies. 
 
 
 

5.2 Spare Parts Provisioning Policy 

Our objective now is to determine a policy for ordering spare parts such that a 

part will be in stock when the need to replace the system arises.  The monotonic control 

limit replacement policy established in Theorem 3, dictates that the system should be 

replaced whenever the observed signal, kl , crosses the replacement control limit, *
jl , at 

epoch any k .  We can treat the non-decreasing replacement control limit (such as the one 

shown in Figure 24) as a “replacement threshold”, as opposed to a “failure threshold”.  

This replacement threshold can be used to get the distribution of the time taken by the 

signal to cross it.  We refer to this distribution as the “replacement time distribution” 

(RTD).  This RTD is then used to derive a spare parts provisioning policy. 
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5.2.1 Spare Part Ordering Criterion 

Our approach is to use the RTD, at each epoch k , to compute the expected 

replacement time at the next epoch 1+k .  Let ( )kTR  be a random variable denoting the 

replacement time at epoch  k .  We can then define the following: 

Ordering Criterion. At each decision epoch, K∈k , order a spare part if the following 

holds: 

( )[ ] LTkTE kR ≤=+ ll|1      (43) 

where LT is the constant ordering lead time.  The term on the left hand side of inequality 

(43) represents the conditional expectation of the replacement time at the next decision 

epoch, given that the current observed signal, kl , is equal to some value l .  As discussed 

before, this ordering criterion attempts to eliminate spare part holding time and ensure 

just-in-time spare part delivery.   

5.2.1.1 Structural Properties of the Spare Parts Provisioning Policy 

We start by presenting two important Lemmas and Propositions that will be used 

to establish the structural properties of the spare parts provisioning policy proposed 

above. 

Lemma 1. The random variable ( )kTR  is stochastically decreasing in kl , given a constant 

threshold ξ . 

Proof. We notice from equation (14) that the CDF of ( )kTR , can be expressed as: 

( )( ) ( )
( ) ( )( ),,~

~
,,|Pr 0 k

k

k
kR kg

t
t

kT lK ′Φ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−+
Φ=ΔΔ≤

τσ
ξτμ
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where ( ) ( )
( )τσ

ξτμ
+

−+
=′

k

k
k t

t
kg ~

~
, l .  Consider two different observed signals,  +

kl  and −
kl , at the 

same epoch k , such that −+ ≥ kk ll , and let ( )+kTR  and ( )−kTR  be random variables denoting 

the replacement time given the observed signals +
kl  and −

kl , respectively.  By comparing 

( )kkg l,′  to ( )kkg l,  in the proof of Proposition 5, it follows directly that 

( ) ( ) ( ) ( ) ( ) ( ) .,, xxFxFkgkg kTkTkk
RR

∀≥⇒′≥′ −+
−+ ll ■ 

Lemma 2. The random variable ( )kTR  is stochastically increasing in k , given a constant 

threshold ξ . 

Proof. Following a similar argument to the proof of Lemma 1, the result holds directly by 

Proposition 6. ■ 

Lemmas 1 and 2 establish stochastic ordering results for ( )kTR  given a constant 

threshold.  We now use these Lemmas to establish similar results for  ( )kTR  given a 

monotonically increasing threshold. 

Proposition 7. The random variable ( )kTR  is stochastically decreasing in kl , given a 

monotonically non-decreasing piecewise linear threshold. 

Proof. Consider two different observed signals,  +
kl  and −

kl , at the same epoch k , such 

that −+ ≥ kk ll , and let ( )+kTR  and ( )−kTR  be random variables denoting the replacement 

time given the observed signals +
kl  and −

kl , respectively, and the threshold ξ .  

Furthermore, let ( )′kTR  be a random variable denoting the replacement time at epoch k  

given −
kl  and threshold ξξ ≥+ .  By Lemma 1, we know that: 

( ) ( ) ( ) ( ) .xxFxF kTkT RR
∀≥ −+     (44) 
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Recall that the distribution of ( )kTR  is given by ( )( )kkg l,′Φ .  Since ξξ ≥+  by 

assumption, then we can write: 

( ) ( ) ( ) ( ) ,xxFxF
kTkT RR

∀≥ ′−     (45) 

which can be combined with inequality (44) to establish that: 

( ) ( ) ( ) ( ) ,xxFxF
kTkT RR

∀≥ ′+     (46) 

and hence, the result is established. ■ 

A similar argument can be followed to prove the following proposition that we 

state without proof. 

Proposition 8. The random variable ( )kTR  is stochastically increasing in k , given a 

monotonically non-decreasing piecewise linear threshold. 

The above results can be used to establish a monotonically non-decreasing control 

limit for the proposed spare parts provisioning policy as shown in the next theorem. 

Theorem 4. For all decision epochs K∈k , **
kk l≤∃ ϑ  such that the optimal decision is to 

order if and only if *
kk ϑ≥l .  The control limit *

kϑ  is monotonically non-decreasing in k . 

Proof. The conditional expectation ( )[ ]ll =+ kR kTE |1  can be expressed as: 

( )[ ] ( )[ ] ( )∫
∗

+
+==+

1

0
| ..1|1

k

k
dfkTEkTE LRkR

l

l llll ,   (47) 

where ( )ll kLf |  is the updated density of the predictive distribution of the random variable 

L  at the current epoch k , given an observed signal kl .  In equation (47) above, 

( )[ ]1+kTE R  is non-increasing in kl , since ( )1+kTR is stochastically decreasing in kl  by 

Proposition 7.  Furthermore, since ( )ll kLf |  is stochastically non-decreasing in kl , by 
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Proposition 5, then ( )[ ]ll =+ kR kTE |1  is non-increasing in kl . Now we assume that the 

result in Theorem 4 holds, and consider the inequality: 

( )[ ] LTkTE kR ≤=+ ll|1      (48) 

The right hand side of this inequality is constant by assumption, and the left hand 

side is non-increasing in kl .  Therefore, the inequality for any pair ( ) W∈kk l,  such that 

*
kk ϑ≥l .  In other words, given that the optimal decision when the observed signal is *

kϑ  is 

to order a spare part, the optimal decision for any *
kk ϑ≥l  is also to order.  Therefore the 

proposed spare parts provisioning policy is a control limit policy with control limit *
kϑ .  

Similarly, the left hand side of inequality (48) is non-decreasing in k  by 

Propositions 6 and 8. Hence, for each observed signal ∈l Ρ, there exists a threshold age 

lk ′  such that the optimal decision for any lkk ′≤  is to order.  By the existence a control 

limit *
kϑ  for each age k  and a threshold age lk ′  for each observed signal l , the control 

limit *
kϑ  is non-decreasing in age k . ■ 

5.2.2 Optimal Time to Order 

As we have discussed previously in Chapter 3, the expression for determining the 

distribution of ( )kTR  does not have closed form moments.  This imposes difficulties in 

implementing the spare part ordering criterion.  We resort to the methodology proposed 

in Section 3.2 to obtain a closed form expression for the mean replacement time. 

5.2.2.1 Computing the Mean Replacement Time 

We start by re-visiting the discussion in Section 3.2 for determining a closed-form 

lower bound on the mean remaining life/replacement time given a constant threshold.  
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We have shown in Proposition 4 that when we use the updated posterior mean of the 

stochastic parameter β ′ , ( )kk l,βμ ′  , to estimate the constant drift, we obtain a 

conservative lower bound on the mean replacement time.  This method can be used 

within the spare part ordering framework discussed in this chapter.  Another possible 

approach is to notice that the RTD follows an IG distribution for a fixed value of β ′ .  In 

other words, ( )βτ ′|
RTf  is IG.  Therefore, the RTD can be determined by computing: 

( ) ββτ
β

′′∫
′

df
RT .|      (49) 

This integral can only be computed numerically.  We choose to use Monte Carlo 

methods to estimate the mean replacement time.  That is, at each updating epoch, we 

generate n realizations of β ′  from its posterior distribution.  For each realization, we 

compute the mean of the resulting IG distribution, ( )βτ ′|
RTf .  When n  is sufficiently 

large, the average of the mean replacement times computed for each realization of β ′  

will give a good estimate of the mean replacement time by the Strong Law of Large 

Number (SLLN). 

This method for estimating the mean replacement time works in the case of a 

constant threshold.  Recall that the replacement threshold is a monotonically non-

decreasing piecewise linear threshold.  Therefore, we need to consider the first passage 

time distribution of BM to this type of thresholds. 
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5.2.2.2 First Passage Time Distribution of Brownian motion to Monotonically Non-

Decreasing Piecewise Linear Threshold 

The problem of determining the first passage time to a time-varying threshold for 

BM is relevant in many applications, such as biology [188], economics [191], 

epidemiology [190-193], statistics [194-198], genetics [199], and mathematical finance 

[189].  Despite its importance and wide applications, explicit analytic solutions to the 

first passage time do no exist except for very instances.  Abundo [200-202] discussed the 

distribution of the first passage time of BM to a piecewise linear threshold as follows: 

Define the piecewise linear threshold, ( )tu : 

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<≤+

<≤+
<+

=

++ .,
.
.

,
,

11

2122

111

fnnn TtTtba

TtTtba
Tttba

tu      

Then the first passage time distribution of the Brownian motion, ( )tW , to ( )tu  is 

given by: 

( )( ) ( )∫ ∞−
⋅=⎟

⎟
⎠

⎞
⎜
⎜
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⎛
<

1 ,,supPr 1
],0[

k

fnt
T

TTtuW
f

Kγ        

[ ] ( )( ) 11
2

111,0 2|Pr 1
2
1

11
dctecWtbaW Tc

TtT ⋅=+<∩ − π   (50) 

where ( )fn TT ,,1 Kγ  is defined inductively by: 
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( ) ( )∫
∞−

− ⋅−−−−=
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2
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TTc
⋅

−

−−

π
   (51) 

and ( )1221111 ,min TbaTbak ++= , ( )123312222 ,min cTbacTbak −+−+= . 

It is evident from equations (50) and (51) that computing this analytical 

expression is computationally burdensome, especially if the piecewise linear threshold 

has a large number of jumps.  We propose next heuristic approaches to compute the mean 

replacement time to a piecewise linear threshold that make computations easier to 

provide the capability for real-time decision making. 

5.2.2.3 Heuristic Approaches to Compute the Mean Replacement Time 

The following heuristic approaches can be to compute the mean replacement time 

with less computational burden than the analytical method presented in Section 5.2.2.2: 

1. Heuristic I: 

a. Approximate the piecewise linear replacement control limit by a straight line 

with slope s , as depicted in . 

b. Rotate the degradation signal data using: 

kktbSS kk ∀⋅−=′      (52) 

c. At each updating epoch k , generate n realizations of β ′ ; for each realization, 

compute the mean replacement time as the mean of the first passage 
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distribution of kS ′  to a constant threshold equal to the intercept of the straight 

line at 0=k .  (Notice that the first passage time distribution is IG). 

d. Estimate the mean replacement time as the average of the n  replacement 

times for each value of β ′ . 
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Figure 27 Schematic representation of Heuristic I 
 
 
 

2. Heuristic I: 

a. At each updating epoch k , take the replacement control limit, ∗
kl  , to be the 

constant threshold from epoch k  onwards. 

b. Generate n realizations of β ′ ; for each realization, compute the mean 

replacement time as the mean of the first passage distribution of kS  to the 
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constant threshold from step (a). (Notice that the first passage time 

distribution is IG). 

c. Estimate the mean replacement time as the average of the n  replacement 

times for each value of β ′ . 

3. Heuristic III: 

a. At each updating epoch k , generate n realizations of β ′ .  For each 

realizations, simulate m degradation signals as BM with drift β ′ . 

b. For each simulated signal, observe the first passage time to the piecewise 

linear replacement threshold. 

c. Estimate the mean replacement time as the average of the nm ×  replacement 

times for each simulated signal. 

Heuristics I and II are only useful when the jumps of the piecewise replacement 

threshold are small.  If these jumps are large, the estimate of the mean replacement time 

becomes inaccurate.  We assess the performance of these heuristics now using our 

bearing degradation signals. 

First, we compute the optimal replacement policy using the cost data 50.2$1 =c , 

00.25$2 =c , and 002.0$3 =c .  The optimal policy is shown in Figure 28.  Next, we 

consider one of the validation bearings, Bearing # 47, and compute the expected 

replacement time at each updating epoch using the three heuristic approaches discussed 

above, and the analytical method discussed in Section 5.2.2.2.  The data for Bearing # 47 

is displayed in Figure 29. 
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Figure 28 Optimal replacement policy. 
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Figure 29 Degradation data for Bearing # 47. 
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Figure 30, Figure 31, and Figure 32 show the prediction results using Heuristic I, 

Heuristic II, and Heuristic III, respectively, for different numbers of β ′  realizations and 

simulated degradation signals at each epoch.  Figure 33 benchmarks the results of 

Heuristic II using 10,000 β ′  realization and Heuristic III using 40,000 simulated signals 

at each epoch against the analytical approach. 

 
 
 
 

0

100

200

300

400

500

0 20 40 60Time (Minutes)

Ex
pe

ct
ed

 R
ep

la
ce

m
en

t T
im

e 
(M

in
ut

es
)

100 1000 10000  

Figure 30 Prediction results using Heuristic I. 
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Figure 31 Prediction results using Heuristic II. 
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Figure 32 Prediction results using Heuristic III. 
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Figure 33 Benchmarking against analytical method. 
 
 
 

The following conclusions can be made by inspecting the above results: 

1. The proposed Heuristic approaches yield good results in comparison to the 

analytical method.  This is represented in Figure 33, which shows the 

predictions made using Heuristics II and III being sufficiently close to the 

predictions made using the analytical method.  Hence, these Heuristics can 

be used for real-world applications to enhance real-time decision making.  

We stress on the fact that Heuristics I and II work satisfactorily for this 

example because of the small jumps in the piecewise replacement 

threshold shown in Figure 28. 

2. The number of β ′  realizations and simulated degradation signals in using 

Heuristics I, II, and III, respectively, need not be excessively large to yield 
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good results.  Based on the results shown above, an order of 100 

realizations/simulations would suffice.  This helps achieve further 

reduction in the computation time, which is attractive for practical 

purposes.  Summarizes the computation times for different approaches for 

the precious case study, emphasizing the computational savings offered by 

the heuristic approaches. 

 
 
 

Table 6 Summary of computations times for different approaches 

Method Number Of β ′  Realizations/ 
Simulated Signals 

Elapsed Time (Seconds) 

Heuristic I 

100 0.68 

1000 2.22 

10,000 21.68 

Heuristic II 

100 0.45 

1000 2.56 

10,000 24.93 

Heuristic III 

100 1.15 

10,000 93.39 

40,000 371.31 

Analytical Method 
10 76.55 

100 750.45 
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Finally, a one-step-look-ahead implementation of the spare part ordering policy 

was implemented for this example, setting the lead time 20=LT minutes.  For Bearing 

#47, at each updating epoch and given the observed signal, the expected replacement 

time at the next updating epoch was computed using  Heuristics II and III.  The optimal 

time to order the spare part was computed to be after 34 minutes.  In summary, for 

Bearing #47, given the cost data and lead time for this example, the optimal replacement 

policy is shown in Figure 28.  The optimal decisions are to replace the component after 

62 minutes, at which the observed signal exceeds the replacement control limit, and order 

a spare part after 34 minutes. 

In the next chapter, we outline the conclusions and contributions of this research 

and discuss future extensions. 
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CHAPTER 6  
CONCLUSIONS AND FUTURE EXTENSIONS 

 
 
 

In this thesis, we developed a mathematical framework that capitalizes on real-

time in situ signals from monitoring fielded components to derive adaptive structured 

maintenance policies for single-unit systems.  We outline the thesis contribution next. 

6.1 Thesis Contributions 

Within the existing literature on maintenance optimization, there is a lack of 

research efforts that target utilizing real-time condition monitoring data streams with 

maintenance decision models for real-time adaptive decision making.  The contributions 

of this research can be categorized into the following items: 

1. Degradation Modeling: 

a. Extending existing exponential degradation models by assuming the joint 

distribution of the stochastic model parameters and assessing the effect of this 

assumption on the model prediction accuracy. 

b. Deriving closed-form and easy to compute expressions for the lower bound on 

the mean remaining life. 

c. Providing a computationally efficient method to compute the remaining life 

distribution and its moments using the IG distribution. 

2. Maintenance Decision Models: 

a. Developing heuristic replacement and spare parts ordering policies through 

integrating the proposed degradation modeling framework with traditional 

reliability-based decision models. 
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b. Integrating the degradation models with semi-Markov process models to 

determine optimal structured sensor-based replacement and spare parts 

ordering policies. 

c. Validating both the proposed degradation models and sensor-based decision 

methodology using real-world data from rotating machinery, and developing a 

user friendly GUI interface for implementing the “sense-and-respond” 

logistics framework. 

Validation results show that using sensory signals from fielded components result in 

better maintenance decisions than traditional reliability-based approaches and state 

models, through reduced costs and better system utilization. 

6.2 Directions for Future Research 

This thesis contributes in laying the foundations of sensor-based maintenance 

decision making.  The findings of the current research motivate future extensions that 

include, but are not limited to, the following directions: 

1. Structured maintenance policies under partial observations: 

In our proposed sensor-based maintenance policies, we assume that observed sensory 

signals fully capture the underlying degradation state of the system.  This might not be 

the case in some real-world applications, where the acquired signals only reveal some 

partial information about the underlying system state.  Partially observable Markov 

decision process models (POMDP) have been used for this class of problems.  In the 

basic POMDP model, there is a set { }N,,1K=Θ  that describes the underlying system 

states.  The stochastic process governing the transitions between these states is referred 

to as the core process, and is not directly observable; that is, its realizations are not 
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determined with certainty.  Alternatively, there is a finite message space, { }M,,1K=Ω , 

governed by a stochastic process referred to as the observation process.  The core 

process and observation process are related through an MN × information matrix of 

probabilities, Q .  There is a plethora of works on POMDP applications and solution 

algorithms.  However, most of these efforts assume arbitrary probabilities for both the 

core and observation processes, and the information matrix.  The main challenge in 

our case is to determine these probabilities based on in situ degradation signals, like 

we have demonstrated for the perfect observation case in Chapter 5.  This research 

direction is attractive and has lot of potential practical significance.  For example, one 

can derive bounds on the optimal cost function for a partially observable replacement 

problem by characterizing the structure of optimal strategies for completely observed 

and the completely unobserved cases, such as in the work done by White [142].  Also, 

special structures of the optimal sensor-based maintenance policies under partial 

observation need to be investigated. 

 

2. Repair as a possible maintenance action:   

In our model, we only considered that the actions available at each decision epoch are 

to preventively replace the system with a new one, or do nothing and continue to 

observe.  We plan to provide a new formulation of the MDP replacement model where 

the “repair” action is included in the action space.  This action does not necessarily 

result in moving the system to the good-as-new state, but can possibly result in moving 

the system to some better degradation state.  We will investigate the structure of the 
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optimal policy for the new model and carefully investigate the necessary conditions 

for this structure to hold. 

 

3. Sensor-based Maintenance Policies for Systems with Multiple Components:   

The proposed maintenance policies address single-unit systems.  Further investigation 

is needed to extend our sensor-based decision methodology to systems with multiple 

components.  Some challenges in this research direction include: (1) deriving 

expressions for the updated system remaining life distribution, (2) interpreting large 

data streams and using this sensor based information to identify priority clusters of 

components for performing replacement, and (3) developing special algorithms for 

solving the resulting complex models in real time.   

Systematic approaches need to be used to identify economical multi-component 

sensor-driven replacement models and their appropriate applications.   In particular, 

sensor-based block replacement and opportunistic replacement policies can be 

revisited.  In opportunistic replacement, for example, preventive replacement of a 

component can be performed at any opportunity created by another component’s 

failure, another component’s planned preventive replacement, or the individual 

component’s planned replacement time. Also, inventory models with space to store 

more than one unit (single buffer) need to be considered. 

   

4. New sensor-based decision models:  

This task includes developing new decision models that consider: 

 Different objective functions; such as system availability. 
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  Constraints; such as warehouse capacity, customer service level, and budget 

constraints. 

  Assumptions; such as assuming variable inventory lead time. 

 

5. Large-Scale Condition-Based Supply Chain Management:   

The proposed research is a starting point towards establishing the foundation of real-

time condition-based decision making methodologies for supply chain management.  

There is good potential to capitalize on the benefits of emerging trends in sensor 

technology and advanced monitoring systems to create dynamic decision making 

strategies in which decisions are based on real-time information (for example, 

integrating condition-based spare parts inventory policies with distribution decisions 

and vehicle dispatching).  This will have positive impact both in industries with 

emphasis on manufacturing systems, such as the automotive industry and aerospace 

industry, and other application domains, such as health care applications and military 

operations, among others. 
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