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SUMMARY

Today, wireless sensor networks (WSNs) are no longer a nascent technol-

ogy and future networks, especially Cyber-Physical Systems (CPS) [5] will integrate

more sensor-based systems into a variety of application scenarios. Typical appli-

cation areas include medical, environmental, military, and commercial enterprises.

Providing security to this diverse set of sensor-based applications is necessary for the

healthy operations of the overall system because untrusted entities may target the

proper functioning of applications and disturb the critical decision-making processes

by injecting false information into the network. One way to address this issue is to

employ en-route-filtering-based solutions utilizing keys generated by either static or

dynamic key management schemes in the WSN literature. However, current schemes

are complicated for resource-constrained sensors as they utilize many keys and more

importantly as they transmit many keying messages in the network, which increases

the energy consumption of WSNs that are already severely limited in the technical ca-

pabilities and resources (i.e., power, computational capacities, and memory) available

to them [6].

Nonetheless, further improvements without too much overhead are still possible

by sharing a dynamically created cryptic credential. Building upon this idea, the

purpose of this thesis is to introduce an efficient and secure communication frame-

work for WSNs. Specifically, three protocols are suggested as contributions using

virtual energies and local times onboard the sensors as dynamic cryptic credentials:

(1) Virtual Energy-Based Encryption and Keying (VEBEK) [4]; (2) TIme-Based

DynamiC Keying and En-Route Filtering (TICK) [7]; (3) Secure Source-Based Loose

Time Synchronization (SOBAS) for WSNs [8].



CHAPTER I

INTRODUCTION

Wireless sensors are small wireless devices that communicate with each other in an

ad-hoc manner over wireless channels, forming Wireless Sensor Networks (WSNs).

Throughout the last decade, their introduction to the networking field has rapidly

attracted the attention of academia and industry. Thus, today, WSNs are no longer a

nascent technology and future networks, especially Cyber-Physical Systems (CPS) [5],

will require the integration of more sensor-based systems into a variety of application

scenarios such as in military operations, medical systems, aerospace systems, trans-

portation vehicles and intelligent highways, robotic systems, process control, factory

automation, building and environmental control, and smart spaces [9].

Securing the diverse set of sensor-based applications is necessary for the healthy

operations of the overall system because adversaries may target the proper function-

ing of applications and disturb the critical decision-making processes by injecting

false information into the network. For instance, it is very important to provide

authentic and accurate data to surrounding sensor nodes and to the sink to trigger

time-critical responses (e.g., troop movement, evacuation, and first response deploy-

ment.) Therefore, protocols should be resilient against false data injected into the

network by malicious entities. However, securing sensor networks poses unique chal-

lenges to protocol builders because these tiny wireless devices are deployed in large

numbers, usually in unattended environments, and are severely limited in the tech-

nical capabilities and resources (e.g., power, computational capacities, and memory)

available to them [6].

1



One way to eliminate injected malicious data from WSNs is to utilize an en-route-

filtering scheme as in [1, 2, 3]. The en-route-filtering schemes generally utilize keys

generated by either static [10] and dynamic [11] key management schemes [6]. In

static key management schemes, key management functions (i.e., key generation and

distribution) are handled statically. The sensors have a fixed number of keys loaded

either prior to or shortly after network deployment. Thus, with static management,

once an attacker compromises a sensor node, the attacker will have access to all the

keys in the network. On the other hand, dynamic key management schemes perform

keying functions either periodically or on demand as needed by the network. The sen-

sors dynamically exchange keys to communicate. Although dynamic schemes provide

more attack-resillient services to WSNs, one significant disadvantage with them is

that they increase the communication overhead due to keys refreshed or redistributed

from time to time in the network [12]. Moreover, the common observation with cur-

rent en-route-filtering schemes [1, 2, 3] are as follows: (1) They are complicated for

resource-constrained sensors as they utilize many keys; (2) they transmit many key-

ing messages in the network, which increases the energy consumption of WSNs; (3)

they have not been designed to handle dire communication scenarios; and (4) the

energy cost, especially the communication cost, associated with the operations of the

protocols are often not discussed by researchers when building secure WSN protocols.

Nonetheless, further improvements for dynamic key management and en-route-

filtering schemes without too much overhead are still possible by sharing a dynamically

created cryptic credential. Specifically, depending on a unique piece of information

that a sensor posseses, keys can be generated instead of being exchanged. For this, the

residual battery life or energy on a node [13], virtual energies, local time in the node,

or identity of the node could be utilized as the shared dynamic cryptic credential and

would be updated appropriately as necessary.
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1.1 Research Objectives and Solutions

The objective of this thesis is to develop efficient and secure communication frame-

works for WSN applications by building upon the idea of sharing a dynamic cryptic

credential. More specifically, motivated with the downsides of current dynamic key

management and en-route-filtering schemes and the fact that the communication cost

is the most dominant factor in a sensor’s energy consumption [14, 15], in this the-

sis, the problem of providing security to sensor-based applications is tackled with

a new approach. As opposed to other ”chatty” dynamic key management and en-

route filtering schemes, we focus on eliminating specific control messages for keying

or rekeying in the network so that some of the energy savings from transmission cost

can be utilized for the computation of local security operations. Specifically, the fol-

lowing four areas are investigated under this thesis and each of them is described in

the following subsections:

• Designing Secure Protocols for Wireless Sensor Networks

• Virtual Energy-Based Encryption and Keying (VEBEK) protocol for Wireless

Sensor Networks

• TIme-Based Dynamic Keying and En-Route Filtering (TICK) for Wireless Sen-

sor Networks

• Secure SOurce-BAsed Loose Time Synchronization (SOBAS) for Wireless Sen-

sor Networks

1.1.1 Designing Secure Protocols for Wireless Sensor Networks

Over the years, a myriad of protocols have been proposed for resource-limited Wireless

Sensor Networks (WSNs). Similarly, security research for WSNs has also evolved

over the years. Although fundamental notions of WSN research are well established,

optimization of the limited resources has motivated new research directions in the

3



field. In this research, we present general principles to aid in the design of secure WSN

protocols [6]. Therefore, building upon both the established and the new concepts,

envisioned applications, and the experience garnered from the WSNs research, we

first review the desired security services (i.e., confidentiality, authentication, integrity,

access control, availability, and nonrepudiation) from WSNs perspective. Then, we

question which services would be necessary for resource-constrained WSNs and when

it would be most reasonable to implement them for a WSN application.

1.1.2 Virtual Energy-Based Encryption and Keying (VEBEK) protocol
for Wireless Sensor Networks

Since the communication cost is the most dominant factor in a sensor’s energy con-

sumption, in this work, we introduce an energy-efficient Virtual Energy-Based En-

cryption and Keying (VEBEK) scheme [4] for WSNs that significantly reduces the

number of transmissions needed for rekeying to avoid stale keys. It is the first pro-

tocol in this thesis that is based on the idea of sharing a dynamic cryptic credential.

VEBEK is a secure communication framework where sensed data is encoded using a

scheme based on a permutation code generated via the RC4 encryption mechanism.

The key to the RC4 encryption mechanism dynamically changes as a function of the

residual virtual energy of the sensor. Thus, a one-time dynamic key is employed for

one packet only and different keys are used for the successive packets of the stream.

The intermediate nodes along the path to the sink are able to verify the authenticity

and integrity of the incoming packets using a predicted value of the key generated

by the sender’s virtual energy, thus requiring no need for specific rekeying messages.

VEBEK is able to efficiently detect and filter false data injected into the network

by malicious outsiders. We have evaluated VEBEK’s feasibility and performance

analytically and through simulations. Our results show that VEBEK, without in-

curring transmission overhead (increasing packet size or sending control messages for

rekeying), is able to eliminate malicious data from the network in an energy efficient

4



manner. We also show that our framework performs better than other comparable

schemes in the literature with an overall 60%−100% improvement in energy savings

without the assumption of a reliable medium access control (MAC) layer.

1.1.3 TIme-Based Dynamic Keying and En-Route Filtering (TICK) for
Wireless Sensor Networks

In this thesis, the TIme-Based DynamiC Keying and En-Route Filtering (TICK) pro-

tocol [7] for WSNs is the second application based on the idea of sharing a dynamic

cryptic credential. As opposed to current chatty schemes that incur regular keying

message overhead, it avoids the transmission of explicit keying messages needed to

avoid stale keys. Nodes intelligently use their local time values as a one-time dynamic

key to encrypt each message. TICK secures events as they occur and provides a mech-

anism to prevent malicious nodes from injecting false packets into the network. TICK

is as a worst case two times more energy efficient than existing related work. Both an

analytical framework and simulation results are presented to verify the feasibility of

TICK as well as the energy consumption of the scheme under normal operation and

attack from malicious nodes.

1.1.4 Secure SOurce-BAsed Loose Time Synchronization (SOBAS) for
Wireless Sensor Networks

Many applications that will utilize WSNs will require that event reports extracted

from the network are received in the order that they were sensed. One effective way

to achieve this goal is to time-stamp the messages/reports using clocks available on-

board the sensors. However, effects of the physical environment that cause drift in the

clocks of sensors has necessitated the need for synchronization protocols for WSNs.

Further, given that these WSNs may be deployed in hostile regions, it is imperative

that this synchronization process is secured against malicious intruders. To address

this concern, in this research, the Secure SOurce-BASed Loose-Time Synchronization

(SOBAS) protocol [8] is developed for WSNs. Essentially, SOBAS is a derivative of

5



the TICK protocol and supports WSN applications that do not need perfect syn-

chronization. SOBAS is used to securely synchronize the data path in the network,

without the transmission of explicit synchronization control messages. Instead of

synchronizing each sensor globally as opposed to approaches providing perfect syn-

chronization, we focus on ensuring that each source node is synchronized with the

sink and nodes along the data delivery path such that event reports generated by the

sink are ordered properly. As in TICK, nodes use their local time values as a one-time

dynamic key to encrypt each message. Once the message arrives at the sink (or at

the next sensor), it attempts to guess the drift value of the source by trying several

keys (time values) within a specific window to attempt to decode the message. Once

the key is intelligently guessed, the sink knows the drift value for the source node and

can now compensate for that value before sending the complete report to an external

network/application. Further, the one-time dynamically changing encryption oper-

ation prevents malicious nodes from injecting false timing packets into the network.

With SOBAS, we are able to achieve our main goal of synchronizing events loosely at

the sink and at the data delivery path as quick, as accurate, and as surreptitious as

possible. SOBAS is perfectly suitable for WSN applications that do not need perfect

synchronization and it is able to provide 7.24µs clock precision on the data delivery

path given today’s sensor technology. Simulations show that SOBAS is an energy

efficient scheme under normal operation and attack from malicious nodes.

1.2 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 discusses general

principles for researchers who seek to design secure WSN protocols. The VEBEK

protocol is introduced in Chapter 3. While Chapter 4 presents the TICK scheme,

the SOBAS protocol is introduced in Chapter 5. Finally, Chapter 6 summarizes the

research results and suggests a number of problems for future investigation.
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CHAPTER II

DESIGNING SECURE PROTOCOLS FOR WIRELESS

SENSOR NETWORKS

The main goal of this chapter is to present general principles to aid in the design of

secure WSN protocols. Building upon the established concepts and the experience

garnered from the previous research efforts in the literature, all the security services

from the WSNs’ perspective (confidentiality, authentication, integrity, access control,

availability, and nonrepudiation) are studied. Questions of which services would be

necessary for resource-constrained WSNs and when it would be most reasonable to im-

plement them for a WSN application are discussed. Suggestions for protocol designers

to consider before attempting to build secure WSN protocols were first introduced in

[6].

The remainder of this chapter is organized as follows. A motivation for the chapter

is given in Section 2.1. Related work is presented in Section 2.2. Section 2.3 briely

gives the communication and the threat models for WSNs. In the threat models

section, we also introduce a new threat model, called Target-Based attacks as a

complementary threat model to those in the current literature. Desired security

services are explored in Section 2.4. Finally, Section 2.5 concludes the chapter by

discussing which service should be provided for a particular scenario.

2.1 Motivation

Throughout the last decade, the introduction of WSNs to the networking field has

gathered the attention of academia and industry. Today, WSNs are no longer a
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nascent technology and future advances in technology will bring more sensor applica-

tions into our daily lives as well as into many diverse and challenging application sce-

narios. For example, WSNs would be very instrumental in applications from real-time

target tracking, homeland security, battlefield surveillance, surveillance of territorial

waters, to biological and chemical attack detection [9].

In this regard, designing secure protocols for wireless sensor networks is vital.

However, designing secure protocols for WSNs first requires the detailed understand-

ing of the WSN technology and its relevant security aspects. Compared to other

wireless networking technologies, WSNs have unique characteristics that need to be

taken into account when building protocols. Among many factors, the available re-

sources (e.g., power, computational capacities, and memory) onboard the sensor nodes

are severely limited. For instance, a typical sensor [16] operates at the frequency of

2.4 GHz, has a data rate of 250Kbps, 128KB of program flash memory, 512KB of

memory for measurements, transmit powers between 100µW and 1mW, and 30m to

100m of communications range. Thus, the most important design parameter for WSN

protocols is to be energy efficient. This fundamental fact heavily influences protocols

that are designed for the WSN.

Although, over the years, a myriad of protocols have been proposed for WSNs

and fundamental notions have been established well, trying to be energy efficient and

optimize the limited resources available in WSN protocols have further brought new

notions and directions in the WSN research. Some of these notions are directly in

contrast to what have been considered and studied as reasonable for other types of

wireless networks. For instance, today, it is believed that not all the communication

layers from the protocol stack are needed to be implemented in the sensors [17]. This

is reasonable as it both saves space from the implementation and reduces complexity.

Thus, this chapter constitutes a bridge between salient features of the WSN protocols,

applications and their security aspects by addressing the desired security services for
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WSNs.

The main goal of this chapter is to provide a basin of concepts for protocol design-

ers to consider before attempting to build secure WSN protocols. Specifically, building

upon the established concepts and the experience garnered from the previous research

efforts in the literature, we sift through all the security services (confidentiality, au-

thentication, integrity, access control, availability, and nonrepudiation). First, what

a particular security service means from the WSN’s perspective is discussed. Second,

how that service has been studied in the literature is briefly addressed. Finally, we

present further suggestions by questioning the need of that service for WSNs. We

believe further improvements can be accomplished by unbundling some of the unnec-

essary security services, which may be contrary to most of the established principles.

2.2 Related Work

There are many surveys on WSN security. Some provide classifications and address

the relevant issues from a general perspective [18], [19], [20], [21] [22], [23]. On the

other hand, some others focus only on a particular layer of protocols such as [19],

[24] or approach the problems from a single security problem perspective [25], [26],

[27]. Overall, these are all useful studies that would constitute a good starting point

for security research in the WSN domain. However, some of them address security

from a traditional perspective as applicable to other existing wireless networks. More-

over, there are very few dedicated studies such as [28], [29] which primarily focus on

vulnerabilities of various WSN protocols.

We fundamentally differ from earlier efforts in two ways: (1) We question and

identify the need of a particular security service for WSNs, and provide suggestions

to protocol builders to consider before attempting to build secure WSN protocols.

(2) Given the unique features of WSNs, we introduce a new threat model, called

Target-Based attacks as a complementary threat model to the current literature.
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Figure 1: WSNs communication model

2.3 The WSN Communication & Threat Models

In this section, we articulate the communication and the threat models for the WSN,

which is significant to capture the security aspect of the problem. In WSNs, only

sensor-to-sensor, sink-to-sensor, and sensor-to-sink communications can occur. In

some applications, where more than one sink is present, there may be a sink-to-sink

communication as well. The possible communications are illustrated in Figure 1.

There are several threats to a WSN protocol. Conceptually, the threats could be

listed from different perspectives. The previous research have listed threats according

to how attacks are accomplished (e.g., Passive-Active Attacks)[30], on which layer of

the communication stack they are realized (e.g., Layered Attacks) [22], and finally

whether the malicious node becomes a member of the network during the attack or

not (e.g., Member and Non-Member Attacks) [31]. Essentially, current literature for

threat models resemble the ones done for wireless networks in general, which is a

legitimate starting point, because many of the attacks could be borrowed from the

literature for wireless networks. However, given the unique nature of a WSN, threats

can be studied from another perspective. For instance, different functionalities could

have been implemented at different parts of the network in order to efficiently utilize

the resources of the WSN. Thus, an attacker first identifies where the critical func-

tionalities are implemented in the network and then perpetrates its malicious intent

on those identified targets. Thus, motivated to define another proper threat model
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Figure 2: WSNs threat model including the new Target-Based Attacks

for WSNs, in this chapter, we also introduce a new threat model, Target-Based Threat

Model , which is distinguished according to where and on which networking compo-

nents the attacks are targeted (i.e., Sink, Neighbor, and Source Attacks). Target-

based model complements the previous research on the issue. In reality, there is no

hard line between these attacking types. The threat model for the WSN is given in

Figure 2.

2.4 Desired Security Services from the WSNs Perspective

A structured definition of desired security services and mechanisms for the intercon-

nection of open systems have been developed as an international standard by the

International Telecommunication Union (ITU) inside Recommendation X.800 [32],

which is referred to as the Security Architecture for OSI. This security architec-

ture has been a valuable guideline for many researchers and practitioners who aim

to develop secure systems. Thus, in this section we look at this reference security

architecture from the perspective of WSNs.

Inside X.800, there are five major service categories: Authentication, Access Con-

trol, Data Confidentiality, Data Integrity, and Nonrepudiation. Although Availability

has not originally been considered as one of the security services in X.800, it is also
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included in our discussion below, as it pertains to desired security services for WSNs.

Similar to other WSNs protocols and applications, three performance metrics are

pertinent when providing security services for WSNs. These performance metrics

are independent of the chosen encyption mechanism. One is the storage, another is

the communication, and the last is computational cost. For WSNs, the communi-

cation cost is the costliest among all the others and the chosen security mechanism

implemented should try to use these scare resources efficiently.

These security services are studied below. Specifically, first, what the particular

security service means in the WSN’s domain is given; and second, how that service

has been addressed in the literature is articulated briefly.

2.4.1 Confidentiality

2.4.1.1 WSN Perspective Definition:

Confidentiality refers to the protection of the exchanged content (e.g., gathered data,

reports, commands) among the sink(s) and the sensors. An adversary which has the

privilege to access the content, should not be able to decode the exchanged messages

in the network.

2.4.1.2 Current Approaches:

Providing a confidential service to WSN applications requires the usage of crypto-

graphic measures like encryption techniques. In general, two distinct forms of encryp-

tion approaches are in common use: symmetric and asymmetric key based schemes.

Symmetric key based encryption uses the same key at both ends of the communi-

cation to encrypt and decrypt the information from ciphertext to plaintext and vice

verse. On the other hand, with asymmetric key based encryption, a different key (one

private and one public) are utilized to convert and recover the information.

The general important observation about encryption mechanisms is that one can-

not claim that one encryption method is superior to another as it is essentially a
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matter of the key size and the computational effort in breaking the encryption algo-

rithm [30]. The second aspect to confidentiality research in WSNs entails designing

efficient key management schemes because regardless of the encryption mechanism

chosen for WSNs, the keys must be made available to the communicating nodes (e.g.,

sources, sink(s)) to maintain the privacy of the channels. The key management pro-

cess involves two fundamental steps: generation (after an analysis) and distribution

of keys; and it is triggered by keying events (e.g., due to node addition, stale keys)

in the network. Nonetheless, it is not an easy task and even in some applications it

may be daunting operation to visit a large number of sensors and update their keys

(e.g., for underwater sensor applications). Thus, intelligent key management schemes

are necessary for WSN.

There are two further observations for confidentiality research in WSNs. First,

the research mainly focuses on different keying mechanisms rather than on building

efficient symmetric or asymmetric encryption algorithms. This is reasonable because

it is not easy to devise a new encryption technique due to the complex and rigorous

mathematical processes involved. Second, as for the keying mechanisms, it is seen

that current research mainly revolves around the key distribution step because for

the resource limited WSN, it is not efficient to repeat the analysis and key generation

with every occurrence of a keying event.

The following list gives an overview of the research for both the encryption and

key management mechanisms for WSNs.

• Encryption mechanisms : In recent works, the feasibility of two encryption tech-

niques have been well scrutinized and understood for the WSN domain. With

the current technological advances in the field of micro-electro-mechanical sys-

tems, symmetric encryption techniques is more tailored to WSNs. There are

several reasons for this. First of all, using the same key at both ends saves

the storage space. For instance in a simple worst case scenario assume that
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there are N number of nodes in the network. While for symmetric encryp-

tion, a given node must posses N -1 number of keys in order to communicate

to the other N -1 nodes, for asymmetric encryption, the same node must have

N keys, N -1 for others’ public keys, one for its own private key. Considering

the fact that the key sizes for symmetric algorithms (e.g., 128 bits for AES)

are generally smaller than those of asymmetric ones (e.g., recommended 1024

bits for RSA and 160 bits for Elliptic Curve Cryptography (ECC) Based Pub-

lic Key Scheme), one can conclude that depending on the specified key size

of the particular algotrithm chosen, the symmetric encryption algorithms may

help reduce the per-node storage space. Secondly, the symmetric encryption

algorithms have been known to utilize the resources more efficiently than their

asymmetric counterparts as their cryptographic operations take less time and

require much less energy consumption than that of asymmetric cryptographic

ones [10]. This is primarily due to the fact that the symmetric encryption al-

gorithms are faster in computation as they employ more primitive operations

in their algorithms, like substitution and permutation of symbols that are im-

plemented at the hardware level via shifts and XORs, rather than operations

applying mathematical functions like modular arithmetic and exponentiation,

which are the basis of public key encryption mechanisms. Lastly, the exchange

of smaller size keys, when needed in a WSN application, consumes less commu-

nication resources, which favors symmetric schemes. A detailed discussion of

key mechanisms are given below.

• Key management mechanisms: As mentioned above, there are two fundamen-

tal steps in the key management process: generation and distribution of keys.

The key generation step deals with generation of the keys. Depending on the

key type that is going to be deployed in the WSN, the keys can be generated

once or multiple times during the lifetime of the WSN. The practical approach
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adopted so far in this avenue of research has been to generate one time different

keys such as session, network-wise, master, and group-wise keys depending on

the topology and on the application requirements of WSNs. While this helps

decrease the computation cost for WSNs, it may increase the storage cost on

nodes depending on the key distribution scheme. The second step is the distri-

bution of keys. The keys should be made available to the nodes without allowing

others to see the keys. Traditionally, the keys have been exchanged between the

end-points of the communication directly, or indirectly through trusted inter-

mediaries (e.g., Key Distribution Center). The keys could be distributed to the

sensors before the network is deployed or they could be re-distributed to nodes

on demand as triggered by keying events. In the jargon of security research

for WSNs, the former is phrased as Static Key management whereas the latter

is as Dynamic Key management. For WSNs, the communication cost domi-

nates other critical cost parameters, e.g., storage and computation [33]. Thus,

the research for key distribution has focused more on static key management

schemes. Static key management schemes perform key management functions

statically prior to or shortly after network deployment. One famous pioneering

work in this avenue is by Eschenauer and Gligor [10, 33], where each sensor in

the WSN is pre-configured with a random subset of keys from a large key pool.

To agree on a key for communication, two sensor nodes find one common key

within their subsets and use this key as their shared secret key. On the other

hand, dynamic key management schemes perform the key management steps

either periodically or on demand due to keying events in the network. The

leading approach in dynamic keying schemes involves exclusion-based systems

[11], the basic notion of which requires each node to have k keys out of k +m

keys. m keys are disguised from the attackers and are used only when new keys

need to be created once keying events are triggered in the network.
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2.4.2 Authentication

2.4.2.1 WSN Perspective Definition:

Authentication service involves genuineness of the communication. An authentica-

tion mechanism verifies if the exchanged information is emanating from the legitimate

participant of the WSN. This is needed because a malicious entity (e.g., a compro-

mised node) may be able to inject counterfeit content or resend the same content

into the network. Moreover, the X.800 specification recommends two sub-cases for

authentication. The first involves the authentication of a peer entity and the second

deals with the authentication of the origin of the data. For WSNs, the former means

authentication of all the nodes that participate in the communication. Authentication

can be done between two nodes communicating or one node (e.g., cluster head) and

several other nodes around that node (i.e, broadcast authentication). The latter can

be implemented at the sink or at an intermediary sensor node where data aggregation

takes place.

2.4.2.2 Current Approaches:

There are several traditional methods of authentication in the literature [30]. One is

password and depends on the premise of showing that one knows a secret. The node

sends a password with its login information. The receiver verifies that the node is

legitimate by checking that the password is associated with the sender node.

The other method is cryptographic-based, which is also called challenge-response.

A classic technique to provide authentication would be to utilize Message Authen-

tication Codes (MACs). The authenticated sensor node is required to provide the

MAC code to be authenticated by the the authenticator sensor node. For MACs,

hashes, symmetric key-based encryption, asymmetric key-based encryption methods

may all be utilized. Thus, there are several practical ways of creating MACs, but

simply creating a MAC involves possesing the same secret at both ends and either
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encrypting the hash of the content with that key or hashing both the key and the

content together. However, as discussed in the confidentiality subsection above, the

encryption mechanisms have their associated costs, thus they should be employed

with caution.

The last authentication method is address-based or identy-based. For this, the

authenticator sensor node can check the identity or the location of the sender node.

The passwords are not sent across the network with these schemes. In comparison

to the previous two mechanism, this method would be very practical for WSNs but

would not provide a strong authentication mechanism because it is trivial to spoof a

sensor ID.

Two of the former leading works include SPINS [34] and TinySec [35]. They both

employ symmetric encryption algorithms and work at the link layer.

2.4.3 Integrity

2.4.3.1 WSN Perspective Definition:

The recipients in the WSN should be able to detect if the exchanged content between

the communicating participants of the WSN have been altered. Furthermore, for

the WSN, the integrity service should also ensure that the exchanged content is not

deleted, replication of old data, counterfeit, or stale.

2.4.3.2 Current Approaches:

Integrity of the exchanged content is usually provided with the digest of the content

appended to the content itself. When the recipient sensor node receives the message

it checks to see if the digest of the content that it computes and the digest received

equals each other. If they are equal, then it accepts it as a legitimate message.

Content digests in integrity are created with the usage of hashing algorithms.

There are many hashing algorithms in use today. Usually, hashing algorithms do not

require the presence of keys unless they are specifically designed to work with keys
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like keyed-hashing (e.g., HMAC, CMAC). Thus, their impact on a sensor node is

only confined by their computational efficiencies. However, as for the keyed-hashing

algorithms, previously discussed issues emanating from key generation, key storage,

and key exchange are also pertinent here, hence the keyed-hashing techniques must

utilize the resources (computation, communication, and storage) efficiently.

Staleness of the data is of utmost significance in the integrity checking because

decision processes of some applications may especially depend on if the data is recent

or not. For example, in one very specific WSN application, a certain territory (e.g.,

territorial waters) could be protected with mines that are detonated by sinks. The

freshness and the correct timing of the messages from the sensor nodes in this type

of application is very important. A simple solution for these types of applications

would be to use counters for the exchanged content. Lastly, another desired aspect

of the integrity service may involve providing a recovery mechanism from the altered

content.

2.4.4 Access Control

2.4.4.1 WSN Perspective Definition:

With access control, unauthorized use of a resource is prevented in WSNs. It addresses

which participant of the network reaches which content or service. For instance, sensor

nodes should not be allowed to have the privileges of sinks such as changing network-

wide parameters of the WSN protocols. Thus, limiting services or functionalities

depending on the participant would be appropriate.

2.4.4.2 Current Approaches:

One of the most challenging security services for WSNs is access control; perhaps,

this is why access control for WSNs is one of the security services that have not

been studied well in the literature [36]. We believe that part of this is because it is

hard to formulate an access control scenario for WSNs. In practical implementations,
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normally there is one terminating point (i.e., sink) in the network where all the data

collected from the network is collected. Thus, other sensors are not expected to access

any resource that may be hosted by other nodes. This is a reasonable expectation

for WSN applications where sensors send their readings based on an event. However,

there may be sensor applications where source sensor nodes are queried by other

sensor nodes as well. For these circumstances, an access control policy can be used.

An access control policy should prevent unauthorized nodes from accessing important

information.

Setting access policies may also be practical and instrumental for cluster-based or

hierarchical sensor node implementations.

2.4.5 Nonrepudiation

2.4.5.1 WSN Perspective Definition:

Nonrepudiation ensures that a sensor can not refute the reception of a message from

the other involved party or the sending of a message to the other involved party in the

communication. According to the X.800 recommendation, the former is destination

nonrepudiation and the latter is called origin nonrepudiation.

2.4.5.2 Current Approaches:

Similar to access control, nonrepudiation has not been formulated well for the WSN’s

domain. This could be attributed to the lack of need of such a service for WSNs.

Or, it could have been thought to exist inside integrity or authentication services

implicitly.

Although the need for nonrepudiation service may not seem to be obvious, we

think that it is an achievable important service to contemplate and that there are

some practical advantageous in providing this service. A digital signature scheme

(DSS) [30], which is based on utilizing encryption methods would also address nonre-

pudiation. Symmetric and asymmetric encryptions can be utilized for DSS. However,
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their viabilities should be explored in more detail for WSNs. For instance, on the

one hand, using the same key for both signature and verification may be vulnerable

to another sensor’s impersonation of the original sensor’s signature. On the other

hand, however, employing asymmetric encryption based algorithms may be costly.

Naturally, providing nonrepudiation service may facilitate the endorsement or proof

by another entity for a sent or received message in the WSN. Thus, alternatively,

some other trusted node, either the sink or an aggregator node, in the network could

provide this service.

2.4.6 Availability

2.4.6.1 WSN Perspective Definition:

Due to threats to the WSN, some portion of the network or some of the functionalities

or services provided by the network could be damaged and unavailable to the partici-

pants of the network. For instance, some sensors could die earlier than their expected

lifetimes. Thus, availability service ensures that the necessary functionalities or the

services provided by the WSN are always carried out, even in the case of attacks or

premature deaths.

2.4.6.2 Current Approaches:

Availability is a security service that has not been originally considered as one of

the security services inside the X.800 recommendation. It may be claimed that it

is independent of the security services. The outcome of the secure services provided

by the network should guarantee the operations and functionalities aimed by the

WSN application. Availability service for WSNs have been mostly studied from

the perspective of Denial-of-Service type attacks [21] in the literature. One other

pertinent study regarding availability has focused on the connectivity properties of

WSNs [23].
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2.5 When to Employ Specific Security Services

Sensor nodes are severely limited in their capabilities. There are three important

design parameters for WSNs: communication, computation, and storage cost. The

cost of communication dominates over those of the computation and storage. So,

any security service designed for WSNs should always try to minimize the cost of

these parameters. Thus, providing a security service comes with its associated costs

naturally as it is an additional service on top of whatever is provided by the network.

When we look at the security services in general, we see that they are often

provided as bundled services. Another observation from the literature is that in com-

parison to other security services, confidentiality has been explored more because it

is fundamental to all of the other security services, except for availability. We be-

lieve that for resource constrained devices like sensor nodes in WSNs, there can be

further minimization of the associated cost by just unbundling the unnecessary ser-

vices. This would require the understanding of the needs of the network. Therefore,

security services should be tailored to the applications, as it would be a waste of

important resources in the network if all the security services are unnecessarily im-

plemented. Looking at the security services and the improvements in the field, below

is a discussion of how the security services should be analyzed for WSNs.

• Confidentiality of data should always be questioned as the confidentiality will

always be the most costly security service among all the security services. Unless

it is utmost necessary for the WSN, it may not have to be employed. An integrity

check on the data may suffice to determine the activity of a malicious entity in

the WSN. Thus, confidentiality can be unbundled from the rest of the services

and provided as an additional security service for the WSN and be addressed

separately from the other services.

• The authentication service can be considered as a prevention mechanism for
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WSNs applications. This is reasonable because when authenticating an un-

trusted sensor node, if that node is a malicious one, it may have or not have

perpetrated its malicious intent yet. With authentication, the malicious node

may be blocked from its intended activity. Thus, authentication may be used

as a prevention mechanism. Furthermore, authentication may be necessary for

aggregator sensor nodes that collect the sensors’ readings, where the agregator

sensor nodes asks the source sensor nodes for their sensor readings. The source

nodes may need to authenticate the aggregator node.

• Providing integrity definitely determines if a malicious activity exists in the

network. It can be considered as a detection mechanism rather than a preven-

tion mechanism like authentication. Specifically, integrity check for WSNs can

be done either at every sensor node or at data-aggregating nodes or sink(s).

Checking at every node increases the computation cost, but eliminates the fake

data immediately and prevents that data from propagating further. On the

other hand, checking the integrity at aggregator nodes or sinks save from the

computation, but not from the communication cost. This is an application spe-

cific parameter that should be considered when providing integrity for WSNs,

which is a topic for further investigation.

• Intelligent bundling of the services is possible. For instance, the integrity can be

embedded inside an authentication service. The nice thing about asymmetric

systems is that they can be used for both authentication and integrity pur-

poses. It is even possible to use an asymmetric encryption algorithm to provide

authentication, integrity, and nonrepudiation. Although asymmetric encryp-

tion mechanisms are costlier than symmetric encryption mechanisms, further

security services can be addressed in an all-in-one fashion. However, their ap-

plicability for WSNs needs further investigation.
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• Access control comes naturally after authentication; thus, it may be beneficial

to bundle these two. However, confidentiality and access control are separate

issues that can be de-coupled and addressed separately.

• It is always cost effective for WSNs to employ security algorithms with smaller

key sizes. Smaller key sizes will help save the network storage, and further, if

the keys are exchanged in the network, it will save from the communication

as well because communication of smaller keys consumes less communication

overhead. Moreover, when smaller keys and asymmetric encryption is necessary,

ECC based algorithms should be favored over the others as ECC based ones,

have much better efficient utilization of the resources in place of others (e.g.,

RSA)

• Usage of different keys such as session, network-wise, master, and group-wise

keys should be considered to isolate and to futher help counter malicious activ-

ities. Furthemore, albeit costlier than the static key management schemes, dy-

namic key management schemes are more tailored to WSN applications. There

may be ways to generate keys dynamically without too much overhead. For

instance, depending on something unique that a sensor posses, keys can be

generated instead of being exchanged. For instance, the residual battery life

or energy on a node [4, 13] or identity of the node could be utilized for this.

However, depending on the application type and the needs, if the lifetime of the

network is more important than security, then static key management schemes

may be preferred in place of dynamic.

• Due to the resource constrainted nature of WSNs, there have been new ideas

that are shaping the future of WSNs. Some of the promising ones include

collaboration of sensors for the distributed networking functionalities, and de-

layering of the TCP/IP stack. There would be further savings of scarce resources
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of WSNs if these are considered when building secure WSN protocols. For

instance, collaborative security, application-oriented security, and non-layered

security approaches may be promising, but they need further investigation.

• Availability should not be considered outside of security services, the network

should have worst case secure data delivery scenarios in case of any security

breach or malicious attack. However, this can be thought of in a layered fash-

ion. Unless there is a security problem in the network, the alternative availabil-

ity mechanism may not be considered. However, this is again an application

oriented issue for WSNs. For some applications, where the timely collection of

data is utmost important, the availability should be considered at the same as

security services.

• For application where different types of sensor nodes co-exist or a composite

of events [37] occur in the same WSN application, it may be very important

to provide an access control service. Similarly, having access policies may be

instrumental for cluster-based or hierarchical sensor node implementations.
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CHAPTER III

VEBEK: V IRTUAL ENERGY-BASED ENCRYPTION

AND KEYING FOR WIRELESS SENSOR NETWORKS

In this chapter, V irtual Energy-Based Encryption and K eying protocol for Wireless

Sensor Networks is introduced. VEBEK is a secure communication framework where

sensed data is encoded using a scheme based on a permutation code generated via the

RC4 encryption mechanism. The key to RC4 dynamically changes as a function of

the residual virtual energy of the sensor. Thus, a one-time dynamic key is employed

for one packet only and different keys are used for the successive packets of the stream

without specific rekeying messages. The nodes forwarding the data along the path to

the sink are able to verify the authenticity and integrity of the data and to provide

non-repudiation. Moreover, the protocol is able to continue its operations under

dire communication cases as it may be operating in an high-error-prone deployment

area like under water. The initial concept of dynamic energy-based encoding and

filtering was originally introduced by the DEEF [13] framework, then it was revised

and significantly enhanced in the VEBEK protocol [4].

This chapter proceeds as follows. A motivation for the VEBEK scheme is given

in Section 3.1. Related work is presented in Section 3.2. To further motivate the

work, an analysis of the rekeying cost with and without explicit control messages

is given in Section 3.3. Section 3.4 discusses the semantics of VEBEK. VEBEK’s

different operational modes are discussed in Section 3.5. An analytical framework

and performance evaluation results including a comparison with other relevant works

are given in Section 3.6. Finally, Section 3.7 concludes the chapter by summarizing

the design rationale and benefits of the VEBEK framework.
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3.1 Motivation

Rapidly developed WSN technology is no longer nascent and will be used in a variety

of application scenarios. Typical application areas include environmental, military,

and commercial enterprises [9]. For example, in a battlefield scenario, sensors may

be used to detect the location of enemy sniper fire or to detect harmful chemical

agents before they reach troops. In another potential scenario, sensor nodes forming

a network under water could be used for oceanographic data collection, pollution

monitoring, assisted navigation, military surveillance, and mine reconnaissance oper-

ations. Future improvements in technology will bring more sensor applications into

our daily lives and the use of sensors will also evolve from merely capturing data to

a system that can be used for real-time compound event alerting [37].

From a security standpoint, it is very important to provide authentic and accurate

data to surrounding sensor nodes and to the sink to trigger time-critical responses

(e.g., troop movement, evacuation, first response deployment) [6]. Protocols should be

resilient against false data injected into the network by malicious nodes. Otherwise,

consequences for propagating false data or redundant data are costly, depleting limited

network resources and wasting response efforts.

However, securing sensor networks poses unique challenges to protocol builders

because these tiny wireless devices are deployed in large numbers, usually in unat-

tended environments, and are severely limited in their capabilities and resources (e.g.,

power, computational capacity, and memory). For instance, a typical sensor [16] op-

erates at the frequency of 2.4 GHz, has a data rate of 250Kbps, 128KB of program

flash memory, 512KB of memory for measurements, transmit power between 100µW

and 1mW, and a communications range of 30m to 100m. Therefore, protocol builders

must be cautious about utilizing the limited resources onboard the sensors efficiently.

In this chapter, we focus on keying mechanisms for WSNs. There are two fun-

damental key management schemes for WSNs: static and dynamic. In static key
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management schemes, key management functions (i.e., key generation and distribu-

tion) are handled statically. That is, the sensors have a fixed number of keys loaded

either prior to or shortly after network deployment. On the other hand, dynamic

key management schemes perform keying functions (rekeying) either periodically or

on demand as needed by the network. The sensors dynamically exchange keys to

communicate. Although dynamic schemes are more attack-resilient than static ones,

one significant disadvantage is that they increase the communication overhead due

to keys being refreshed or redistributed from time to time in the network. There are

many reasons for key refreshment, including: updating keys after a key revocation

has occurred, refreshing the key such that it does not become stale, or changing keys

due to dynamic changes in the topology. In this chapter, we seek to minimize the

overhead associated with refreshing keys to avoid them becoming stale. Because the

communication cost is the most dominant factor in a sensor’s energy consumption

[14] [15], the message transmission cost for rekeying is an important issue in a WSN

deployment (as analyzed in the next section). Furthermore, for certain WSN applica-

tions (e.g., military applications), it may be very important to minimize the number

of messages to decrease the probability of detection if deployed in an enemy terri-

tory. That is, being less ”chatty” intuitively decreases the number of opportunities

for malicious entities to eavesdrop or intercept packets.

The purpose of this chapter is to develop an efficient and secure communication

framework for WSN applications. Specifically, in this chapter we introduce Virtual

Energy-Based Encryption and Keying (VEBEK) for WSNs, which is primarily in-

spired by our previous work [13]. VEBEK’s secure communication framework pro-

vides a technique to verify data in line and drop false packets from malicious nodes,

thus maintaining the health of the sensor network. VEBEK dynamically updates keys

without exchanging messages for key renewals and embeds integrity into packets as

opposed to enlarging the packet by appending message authentication codes (MACs).
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Specifically, each sensed data is protected using a simple encoding scheme based on

a permutation code generated with the RC4 encryption scheme and sent toward the

sink. The key to the encryption scheme dynamically changes as a function of the

residual virtual energy of the sensor, thus requiring no need for rekeying. Therefore,

a one-time dynamic key is used for one message generated by the source sensor and

different keys are used for the successive packets of the stream. The nodes forwarding

the data along the path to the sink are able to verify the authenticity and integrity

of the data and to provide non-repudiation. The protocol is able to continue its oper-

ations under dire communication cases as it may be operating in a high-error-prone

deployment area like under water. VEBEK unbundles key generation from other secu-

rity services, namely authentication, integrity, and non-repudiation; thus, its flexible

modular architecture allows for adoption of other encryption mechanisms if desired.

The contributions of this chapter are as follows: (1) a dynamic en-route filtering

mechanism that does not exchange explicit control messages for rekeying; (2) provi-

sion of one-time keys for each packet transmitted to avoid stale keys; (3) a modular

and flexible security architecture with a simple technique for ensuring authenticity,

integrity and non-repudiation of data without enlarging packets with MACs; (4) a

robust secure communication framework that is operational in dire communication

situations and over unreliable MACs. Both analytical and simulation results verify

the feasibility of VEBEK. We also illustrate that VEBEK is significantly more energy

efficient than other comparable schemes in the literature with an overall 60%−100%

improvement.

3.2 Related Work

En-route dynamic filtering of malicious packets has been the focus of several studies,

including dynamic en-route filtering (DEF) by Yu and Guan [1], statistical en-route

filtering (SEF) [2], and Secure Ticket-Based En-route Filtering (STEF) [3]. As the

28



details are given in the performance evaluation section (Section 3.6) where they were

compared with the VEBEK framework, the reader is referred to that section for

further details as not to replicate the same information here. Moreover, Ma’s work

[38] applies the same filtering concept at the sink and utilizes packets with multiple

MACs appended. A work [39] proposed by Hyun and Kim uses relative location

information to make the compromised data meaningless and to protect the data

without cryptographic methods. In [40], using static pairwise keys and two MACs

appended to the sensor reports, ”an interleaved hop-by-hop authentication scheme for

filtering of injected false data” was proposed by Zhu et al to address both the insider

and outsider threats. However, the common downside of all these schemes is that they

are complicated for resource-constrained sensors and they either utilize many keys or

they transmit many messages in the network, which increases the energy consumption

of WSNs. Also, these studies have not been designed to handle dire communication

scenarios unlike VEBEK. Another significant observation with all of these works

is that a realistic energy analysis of the protocols was not presented. Lastly, the

concept of dynamic energy-based encoding and filtering was originally introduced by

the DEEF [13] framework. Essentially, VEBEK has been largely inspired by DEEF.

However, VEBEK improves DEEF in several ways. First, VEBEK utilizes virtual

energy in place of actual battery levels to create dynamic keys. VEBEK’s approach

is more reasonable because in real life, battery levels may fluctuate and the differences

in battery levels across nodes may spur synchronization problems, which can cause

packet drops. Second, VEBEK integrates handling of communication errors into its

logic, which is missing in DEEF. Lastly, VEBEK is implemented based on a realistic

WSN routing protocol, i.e., Directed Diffusion [41], while DEEF articulates the topic

only theoretically.

Another crucial idea of this chapter is the notion of sharing a dynamic cryptic

credential (i.e., virtual energy) among the sensors. A similar approach was suggested
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inside the SPINS study [42] via the SNEP protocol. In particular, nodes share a

secret counter when generating keys and it is updated for every new key. However,

the SNEP protocol does not consider dropped packets in the network due to com-

munication errors. Although another study, Minisec [43], recognizes this issue, the

solution suggested by the study still increases the packet size by including some parts

of a counter value into the packet structure. Finally, one useful pertinent work [15]

surveys cryptographic primitives and implementations for sensor nodes.

3.3 An Analysis of the Rekeying Cost for WSNs

One significant aspect of confidentiality research in WSNs entails designing efficient

key management schemes. This is because regardless of the encryption mechanism

chosen for WSNs, the keys must be made available to the communicating nodes (e.g.,

sources, sink(s)). The keys could be distributed to the sensors before the network

deployment or they could be re-distributed (rekeying) to nodes on demand as triggered

by keying events. The former is static key [10] management and the latter is dynamic

key [11] management. There are myriads of variations of these basic schemes in

the literature. In this chapter, we only consider dynamic keying mechanisms in our

analysis since VEBEK uses the dynamic keying paradigm. The main motivation

behind VEBEK is that the communication cost is the most dominant factor in a

sensor’s energy consumption [14] [15]. Thus, in this section, we present a simple

analysis for the rekeying cost with and without the transmission of explicit control

messages. Rekeying with control messages is the approach of existing dynamic keying

schemes whereas rekeying without extra control messages is the primary feature of

the VEBEK framework.

Dynamic keying schemes go through the phase of rekeying either periodically or on

demand as needed by the network to refresh the security of the system. With rekeying,

the sensors dynamically exchange keys that are used for securing the communication.
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Hence, the energy cost function for the keying process from a source sensor to the

sink while sending a message on a particular path with dynamic key-based schemes

can be written as follows (assuming computation cost, Ecomp, would approximately

be fixed):

EDyn = (EKdisc
+ Ecomp) ∗ E[ηh] ∗

χ

τ
(1)

where χ is the number of packets in a message, τ is the key refresh rate in packets

per key, EKdisc
is the cost of shared-key discovery with the next hop sensor after

initial deployment, and E[ηh] is the expected number of hops. In dynamic key-based

schemes, τ may change periodically, on-demand, or after a node-compromise. A good

analytical lower bound for E[ηh] is given in [44] as

E[ηh] =
D − tr
E[dh]

+ 1 (2)

where D is the end-to-end distance (m) between the sink and the source sensor node,

tr is the approximated transmission range (m), and E[dh] is the expected hop distance

(m) [45]. An accurate estimation of E[dh] can be found in [45]. Finally, EKdisc
, can

be written as follows:

EKdisc
= {(E[Ne] + 1) ∗ Enode ∗M −E[Ne] ∗ (Etx + Erx)} (3)

Enode = Etx + Erx + Ecomp (4)

where Enode is the approximate cost per node for key generation and transmission,

E[Ne] is the expected number of neighbors for a given sensor, M is the number of

key establishment messages between two nodes, and Etx and Erx are the energy cost

of transmission and reception, respectively. Given the transmission range of sensors

(assuming bi-directional communication links for simplicity), tr, total deployment

area, A, total number of sensors deployed, N , E[Ne] can be computed as

E[Ne] =
N ∗ π ∗ t2r

A
(5)
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Figure 3: Keying cost of dynamic key-based schemes based on E[nh] vs. VEBEK.

On the other hand, VEBEK does rekeying without messages. There are two op-

erational modes of VEBEK (VEBEK-I and VEBEK-II). The details of these modes

are given in Section IV. However, for now it suffices to know that VEBEK-I is rep-

resentative of a dynamic system without rekeying messages, but with some initial

neighborhood info exchange whereas VEBEK-II is a dynamic system without rekey-

ing messages and without any initial neighborhood info exchange. Using the energy

values given in [16], Figure 3 shows the analytical results for the above expressions.

For both VEBEK modes, we assume there would be a fixed cost of Ecomp
1 because

VEBEK does not exchange messages to refresh keys, but for VEBEK-I, we also in-

cluded the cost of EKdisc
.

With this initial analysis, we see that dynamic key-based schemes, in this scenario,

spend a large amount of their energy transmitting rekeying messages. With this

observation, the VEBEK framework is motivated to provide the same benefits of

dynamic key-based schemes, but with low energy consumption. It does not exchange

extra control messages for key renewal. Hence, energy is only consumed for generating

the keys necessary for protecting the communication. The keys are dynamic; thus,

1A more rigorous analysis is presented in Section V.
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one key per packet is employed. This makes VEBEK more resilient to certain attacks

(e.g., replay attacks, brute-force attacks, masquerade attacks).

3.4 Semantics of VEBEK

The VEBEK framework is comprised of three modules: Virtual Energy-Based Keying,

Crypto, and Forwarding.

The virtual energy-based keying process involves the creation of dynamic keys.

Contrary to other dynamic keying schemes, it does not exchange extra messages to

establish keys. A sensor node computes keys based on its residual virtual energy of

the sensor. The key is then fed into the crypto module.

The crypto module in VEBEK employs a simple encoding process, which is essen-

tially the process of permutation of the bits in the packet according to the dynamically

created permutation code generated via RC4. The encoding is a simple encryption

mechanism adopted for VEBEK. However, VEBEK’s flexible architecture allows for

adoption of stronger encryption mechanisms in lieu of encoding.

Lastly, the forwarding module handles the process of sending or receiving of en-

coded packets along the path to the sink.

A high level view of the VEBEK framework and its underlying modules are shown

in Figure 4. These modules are explained in further detail below. Important notations

used are given in Table 1.

Table 1: Notations Used in VEBEK

Etx Tx energy Esens Sensing energy EF w Forwarding energy Pdrop Drop probability
Erx Rx energy Esa Staying alive energy EKdisc Key discovery energy ϕ Synch ratio
Ecomp Computation energy Evc Virtual cost EDyn Dynamic keying cost l packet size
Eenc Encoding energy Ep Perceived energy ESo Source node energy N # of nodes
Edec Decoding energy Eb Bridge energy E[ηh] Expected # of hops r # of watched nodes
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Figure 4: Modular structure of the VEBEK framework.

3.4.1 Virtual Energy-based Keying Module

The virtual energy-based keying module of the VEBEK framework is one of the

primary contributions of this chapter. It is essentially the method used for handling

the keying process. It produces a dynamic key that is then fed into the crypto module.

In VEBEK, each sensor node has a certain virtual energy value when it is first

deployed in the network. The rationale for using virtual energy as opposed to real

battery levels as used in DEEF [13], is that in reality battery levels may fluctuate

and the differences in battery levels across nodes may spur synchronization problems,

which can cause packet drops. These concerns have been addressed in VEBEK and

are discussed in detail in the performance evaluation section (Section V).

After deployment, sensor nodes traverse several functional states. The states

mainly include node-stay-alive, packet reception, transmission, encoding and decod-

ing. As each of these actions occur, the virtual energy in a sensor node is depleted.

The current value of the virtual energy, Evc, in the node is used as the key to the key

generation function, F . During the initial deployment, each sensor node will have the

same energy level Eini, therefore the initial key, K1, is a function of the initial virtual

energy value and an initialization vector (IV ). The IV s are pre-distributed to the

sensors. Subsequent keys, Kj, are a function of the current virtual energy, Evc, and

the previous key Kj−1. VEBEK’s virtual energy-based keying module ensures that

each detected packet2 is associated with a new unique key generated based on the

2Indeed, the same key can be used for a certain number of transmissions, n, to further save
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transient value of the virtual energy. After the dynamic key is generated, it is passed

to the crypto module, where the desired security services are implemented. The pro-

cess of key generation is initiated when data is sensed; thus, no explicit mechanism

is needed to refresh or update keys. Moreover, the dynamic nature of the keys makes

it difficult for attackers to intercept enough packets to break the encoding algorithm.

The details are given in Algorithm 1. As mentioned above, each node computes and

Algorithm 1 Compute Dynamic Key
1: ComputeDynamicKey(Evc, IDclr)
2: begin

3: j ← tx
IDclr
cnt

4: if j = 1 then

5: Kj ← F (Eini, IV )
6: else

7: Kj ← F (K(j−1), Evc)
8: end if

9: return Kj

10: end

updates the transient value of its virtual energy after performing some actions. Each

action (or state traversal) on a node is associated with a certain predetermined cost.

Since a sensor node will be either forwarding some other sensor’s data or injecting

its own data into the network, the set of actions and their associated energies for

VEBEK includes packet reception (Erx), packet transmission (Etx), packet encoding

(Eenc), packet decoding (Edec) energies, and the energy required to keep a node alive

in the idle state (Ea).
3 Specifically, the transient value of the virtual energy, Ev, is

computed by decrementing the total of these predefined associated costs, Evc, from

the previous virtual energy value.

The exact procedure to compute virtual cost, Evc, slightly differs if a sensor node is

the originator of the data or the forwarder (i.e., receiver of data from another sensor).

In order to successfully decode and authenticate a packet, a receiving node must keep

energy.
3The set of actions can be extended to include other actions depending on the WSN application

or functionality of the network.
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track of the energy of the sending node to derive the key needed for decoding. In

VEBEK, the operation of tracking the energy of the sending node at the receiver is

called watching and the energy value that is associated with the watched sensor is

called Virtual Perceived Energy (Ep) as in [13]. More formal definitions for watching

are given as follows.

Definition 1 Given a finite number of sensor nodes, N (N = {1, .., N}), deployed

in a region, watching is defined as a node’s responsibility for monitoring and filtering

packets coming from a certain (configurable) number of sensor nodes, r, where r <=

N . ⋖ is used to denote the watching operation.

Definition 2 Given a sensor node i, the total number of watched nodes, r, which

the node is configured to watch, constitutes a watching list, WLi for node i and

WLi = (1, 2, .., r). Node i watches node k if IDk ∈WLi.

Deciding which nodes to watch and how many depends on the preferred configuration

of the VEBEK authentication algorithm, which we designate as the operational mode

of the framework. Specifically, we propose two operational modes VEBEK-I and

VEBEK-II and they are discussed in the next section.

When an event is detected by a source sensor, that node has remained alive for t

units of time since the last event (or since the network deployment if this is the first

event detected). After detection of the event, the node sends the l-bit length packet

toward the sink. In this case, the following is the virtual cost associated with the

source node:

Evc = l ∗ (etx + eenc) + t ∗ ea + Esynch (6)

In the case where a node receives data from another node, the virtual perceived

energy value can be updated by decrementing the cost associated with the actions

performed by the sending node using the following cost equation. Thus, assuming

that the receiving node has the initial virtual energy value of the sending node and
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Figure 5: An illustration of the watching concept with forwarding.

that the packet is successfully received and decoded associated with a given source

sensor, k, the virtual cost of the perceived energy is computed as follows:

Ek
p = l ∗ (erx + edec + etx + eenc) + t ∗ 2 ∗ ea (7)

where in both the equations, the small e′s refer to the one bit energy costs of the

associated parameter. However, Esynch in (6) refers to a value to synchronize the

source with the watcher-forwarders toward the sink as watcher-forwarder nodes spend

more virtual energy due to packet reception and decoding operations, which are not

present in source nodes. Hence, Esynch = l ∗ (erx + edec) + ea ∗ t. The watching

concept is illustrated with an example in Figure 5. In the figure, there is one source

sensor node, A, and other nodes B, C, and D are located along the path to the sink.

Every node watches its downstream node, i.e., B watches A (B ⋖ A); C watches B

(C ⋖ B); D watches C (D ⋖ C). All the nodes have the initial virtual energy of

2000mJ and as packets are inserted into the network from the source node (A) over

time, nodes decrement their virtual energy values. For instance, as shown in Figure

5, node A starts with the value of 2000mJ as the first key to encode the packet (key

generation based on the virtual energies is explained in the crypto module). Node

A sends the first packet and decrements its virtual energy to 1998mJ. In the figure,

the diagonal arrows on the nodes represent the virtual energy transition from one
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packet transmission to a subsequent one. After node B receives this first packet, it

uses the virtual perceived energy value (Ep=2000mJ) as the key to decode the packet,

and updates its Ep (1998mJ) after sending the packet. Note that nodes C and D do

the similar operations as B on the packet. Finally, when the packet travels up to

the sink, the virtual energy becomes a shared dynamic cryptic credential among the

nodes along the path.

3.4.2 Crypto Module

Due to the resource constraints of WSNs, traditional digital signatures or encryption

mechanisms requiring expensive cryptography is not viable. The scheme must be sim-

ple, yet effective. Thus, in this subsection we introduce a simple encoding operation

similar to that used in [13]. The encoding operation is essentially the process of per-

mutation of the bits in the packet according to the dynamically created permutation

code via the RC4 encryption mechanism. The key to RC4 is created by the previous

module (virtual energy-based keying module). The purpose of the crypto module is

to provide simple confidentiality of the packet header and payload while ensuring the

authenticity and integrity of sensed data without incurring transmission overhead of

traditional schemes. However, since the key generation and handling process is done

in another module, VEBEK’s flexible architecture allows for adoption of stronger

encryption mechanisms in lieu of encoding.

The packets in VEBEK consists of the ID (i -bits), type (t-bits) (assuming each

node has a type identifier), and data (d -bits) fields. Each node sends these to its next

hop. However, the sensors’ ID, type, and the sensed data are transmitted in a pseudo

random fashion according to the result of RC4. More specifically, the RC4 encryption

algorithm takes the key and the packet fields (byte-by-byte) as inputs and produces

the result as a permutation code as depicted in Figure 6. The concatenation of each

8-bit output becomes the resultant permutation code. As mentioned earlier, the key
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Figure 6: An illustration of the use of RC4 encryption mechanism in VEBEK.

to the RC4 mechanism is taken from the core virtual energy-based keying module,

which is responsible for generating the dynamic key according to the residual virtual

energy level. The resultant permutation code is used to encode the 〈ID|type|data〉

message. Then, an additional copy of the ID is also transmitted in the clear along

with the encoded message. The format of the final packet to be transmitted becomes

Packet = [ID, {ID, type, data}k] where {x}k constitutes encoding x with key k.

Thus, instead of the traditional approach of sending the hash value (e.g., message

digests, message authentication codes) along with the information to be sent, we use

the result of the permutation code value locally. When the next node along the path

to the sink receives the packet, it generates the local permutation code to decode the

packet.

Another significant step in the crypto module involves how the permutation code

dictates the details of the encoding and decoding operations over the fields of the

packet when generated by a source sensor or received by a forwarder sensor.

Specifically, the permutation code P can be mapped to a set of actions to be taken

on the data stream combination. As an example, the actions and their corresponding

bit values can include simple operations such as shift, interleaving, taking the 1’s

complement, etc. Other example operations can be seen in Table 2.

For example, if a node computed the following permutation code P = {1100100101},

the string in Figure 7.a becomes the string in Figure 7.d before it is transmitted. The

receiver will perform the same operations (since the inputs to RC4 are stored and

updated on each sensor) to accurately decode the packet. To ensure correctness, the

receiver compares the plaintext ID with the decoded ID. Moreover, although it is
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Table 2: VEBEK Example Encoding Operations

Order of fields in pkt 1’s complement
ID, Type, Data 00 Yes 1
ID, Data, Type 01 No 0
Data, ID, Type 10 Circular Shift
Data, Type, ID 11 Yes 1
Order of bits in field No 0
Little Endian 0 1-bit interleave
Big Endian 1 Yes 1
Shift Direction No 0
Left 1 Shift Amount
Right 0

Figure 7: Illustration of a sample encoding operation.

theoretically possible (1 in 2i+t+d) for a hacker to accurately inject data, it becomes

increasingly unlikely as the packet grows.

The benefits of this simple encoding scheme are: 1) since there is no hash code

or message digest to transmit, the packet size does not grow, avoiding bandwidth

overhead on an already resource constrained network, thus increasing the network

lifetime; 2) the technique is simple, thus ideal for devices with limited resources (e.g.,

PDAs); and 3) the input to the RC4 encryption mechanism, namely the key, changes

dynamically without sending control messages to rekey.
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3.4.3 Forwarding Module

The final module in the VEBEK communication architecture is the forwarding mod-

ule. The forwarding module is responsible for the sending of packets (reports) initiated

at the current node (source node) or received packets from other sensors (forwarding

nodes) along the path to the sink. The reports traverse the network through forward-

ing nodes and finally reach the terminating node, the sink. The operations of the

forwarding module are explained in this subsection.

3.4.3.1 Source Node Algorithm

When an event is detected by a source node the next step is for the report to be

secured. The source node uses the local virtual energy value and an IV (or previous

key value if not the first transmission) to construct the next key. As discussed earlier,

this dynamic key generation process is primarily handled by the VEBEK module. The

source sensor fetches the current value of the virtual energy from the VEBEK module.

Then, the key is used as input into the RC4 algorithm inside the crypto module to

create a permutation code for encoding the 〈ID|type|data〉 message. The encoded

message and the cleartext ID of the originating node are transmitted to the next hop

(forwarding node or sink) using the following format: [ID, {ID, type, data}Pc], where

{x}Pc constitutes encoding x with permutation code Pc. The local virtual energy

value is updated and stored for use with the transmission of the next report.

3.4.3.2 Forwarder Node Algorithm

Once the forwarding node receives the packet it will first check its watch-list to deter-

mine if the packet came from a node it is watching. If the node is not being watched

by the current node, the packet is forwarded without modification or authentica-

tion. Although this node performed actions on the packet (received and forwarded

the packet), its local virtual perceived energy value is not updated. This is done to

maintain synchronization with nodes watching it further up the route. If the node is
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being watched by the current node, the forwarding node checks the associated cur-

rent virtual energy record (Algorithm 2) stored for the sending node and extracts

the energy value to derive the key. It then authenticates the message by decoding

the message and comparing the plaintext node ID with the encoded node ID. If the

packet is authentic, an updated virtual energy value is stored in the record associated

with the sending node. If the packet is not authentic it is discarded. Again, the

virtual energy value associated with the current sending node is only updated if this

node has performed encoding on the packet.

3.4.3.3 Addressing Communication Errors via Virtual Bridge Energy

In VEBEK, to authenticate a packet, a node must keep track of the virtual energy

of the sending node to derive the key needed for decoding. Ideally, once the authen-

ticating node has the initial virtual energy value of the sending node, the value can

be updated by decrementing the cost associated with the actions performed by the

sending node using the cost equations defined in the previous sub-sections on every

successful packet reception. However, communication errors may cause some of the

packets to be lost or dropped. Some errors may be due to the deployment region (e.g.,

underwater shadow zones) while operating on unreliable underlying protocols (e.g.,

MAC protocol). For instance, ACK or data packets can be lost and the sender may

not be able to determine which one actually was lost. Moroever, malicious packets

inserted by attackers who impersonate legitimate sensors will be dropped intention-

ally by other legitimate sensors to filter the bad data out of the network. In such

communication errors or intentional packet drop cases, the virtual energy value used

to encode the next data packet at the sending node may differ from the virtual energy

value that is stored for the sending node at its corresponding watching node. Specif-

ically, the node that should have received the dropped packet and the nodes above

that node on the path to the sink lose synchronization with the nodes below (because
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Algorithm 2 Forwarding Node Algorithm with Communication Error Handling
1: Forwarder(i← currentNode, k ←WatchedNode, WLi ←WatchList)
2: begin
3: enc← 0; src← 0; j ← 0
4: Erxi

, 〈IDclr, {msg}K〉 ← ReceivePacket()
5: if IDclr ∈ WLi then
6: while (keyFound = 0)and(j <= thresHold) do
7: Ek

pi
← FetchV irtualEnergy(i, IDclr, enc, src)

8: K ← ComputeDynamicKey(Ek
pi

, IDclr)

9: Pc← RC4(K, IDclr)
10: Edeci

, MsgID ← decode(Pc,{msg}K )
11: if IDclr = MsgID then
12: keyFound← true

13: else
14: j + +
15: Ek

pi
← Ek

pi
−Etxi

−Eenci
−Erxi

− Edeci
− 2 ∗ Eai

16: end if
17: end while
18: if keyFound = true then
19: if j > 1 then
20: reEncode← true

21: else
22: if Ebi

> 0 then
23: reEncode← true

24: else
25: reEncode← false

26: end if
27: end if
28: if reEncode = true then
29: enc← 1
30: Ebi

← FetchV irtualEnergy(i, IDclr , enc, src)
31: K ← ComputeDynamicKey(Ebi

, IDclr)
32: Pc← RC4(K, IDclr)
33: Eenci

, {msg}Pc ← encode(Pc, msg)
34: packet← 〈IDclr , {msg}Pc〉
35: Etxi

← ForwardPacket()
36: Ebi

← Ebi
− Etxi

− Eenci
− Erxi

− Edeci
− 2 ∗ Eai

37: else
38: ForwardPacket() //Without any modification
39: end if
40: else
41: DropPacket() //Packet not valid
42: end if
43: else
44: ForwardPacket() //Without any modification
45: end if
46: end

the upper portion never sees the lost packet and does not know to decrement the vir-

tual energy associated with servicing the lost transmission). If another packet were

to be forwarded by the current watching node using its current virtual energy, the

upstream node(s) that watch this particular node would discard the packet. Thus,

this situation needs to be resolved for proper functioning of the VEBEK framework.

An illustration of this case is given in Figure 8.

To resolve potential loss of packets due to possible communication errors in the
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Figure 8: Illustration of the watching concept with forwarding when there is a packet
loss.

network, all the nodes are configured to store an additional virtual energy value,

which we refer to as the Virtual Bridge Energy, Ebi
, value to allow resynchronization

(bridging) of the network at the next watching sensor node that determines that

packets were lost.

Definition 3 Given a node, i, bridging is defined as the process of encoding the

incoming packet coming from any sensor node in WLi for the upstream sensor node,

j, with the key generated using the local copy of Ebi
.

That is, as subsequent packets generated from the node of interest pass through the

next watching node, the next watching node will decode the packet with the virtual

perceived energy key of the originating node and re-encode the packet with the virtual

bridge energy key, thus the network will be kept synchronized. It is important to

note that once this value is activated for a watched node, it will be always used for

packets coming from that node and used even if an error does not occur for the later

transmissions of the same watched node. The watching node always updates and uses

this parameter to keep the network bridged.

Another pertinent point is the determination of packet loss by the first upstream

watching node who will bridge the network. The VEBEK framework is designed to
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avoid extra messages and not increase the packet size to determine packet loss in

the network. Thus, the next watching node tries to find the correct value of the

virtual perceived energy for the key within a window of virtual energies. For this,

a sensor is configured with a certain VirtualKeySearchThreshold value. That is, the

watching node decrements the predefined virtual energy value from the current per-

ceived energy at most virtualKeySearchThreshold times. When the node extracts the

key successfully, it records the newest perceived energy value and associates it with

the sender node (lines 7−18 in Algorithm 2). This approach may also be helpful in

severe packet loss cases (i.e., bursty errors) by just properly configuring the virtu-

alKeySearchThreshold value. However, if the watcher node exhausts all of the virtual

energies within the threshold, it then classifies the packet as malicious.

The combined use of virtual perceived and bridge energies assure the continued

synchronization of the network as whole. The forwarding node algorithm including

the handling of communication errors is shown in Algorithm 2.

3.5 Operational Modes of VEBEK

The VEBEK protocol provides three security services: Authentication, integrity, and

non-repudiation. The fundamental notion behind providing these services is the

watching mechanism described before. The watching mechanism requires nodes to

store one or more records (i.e., current virtual energy level, virtual bridge energy val-

ues, and Node-Id) to be able to compute the dynamic keys used by the source sensor

nodes, to decode packets, and to catch erroneous packets either due to communication

problems or potential attacks. However, there are costs (communication, computa-

tion, and storage) associated with providing these services. In reality, applications

may have different security requirements. For instance, the security need of a military

WSN application (e.g., surveiling a portion of a combat zone) may be higher than

that of a civilian application (e.g., collecting temperature data from a national park).
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Figure 9: Operational Modes.

The VEBEK framework also considers this need for flexibility and thus, supports

two operational modes: VEBEK-I and VEBEK-II. The operational mode of VEBEK

determines the number of nodes a particular sensor node must watch. Depending

on the vigilance required inside the network, either of the operational modes can be

configured for WSN applications. Different modes and the range of associated costs

of each mode are given in Figure 9. The details of both operational modes are given

below. The performance evaluation of both modes is given in Section 3.6.

3.5.1 VEBEK-I

In the VEBEK-I operational mode, all nodes watch their neighbors; whenever a

packet is received from a neighbor sensor node, it is decoded and its authenticity and

integrity are verified. Only legitimate packets are forwarded toward the sink. In this

mode, we assume there exists a short window of time at initial deployment that an

adversary is not able to compromise the network, because it takes time for an attacker

to capture a node or get keys. During this period, route initialization information

may be used by each node to decide which node to watch and a record r is stored

for each of its 1-hop neighbors in its watch-list. To obtain a neighbor’s initial energy

value, a network-wise master key can be used to transmit this value during this period

similar to the shared-key discovery phase of other dynamic key management schemes.

Alternatively, sensors can be pre-loaded with the initial energy value.
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When an event occurs and a report is generated, it is encoded as a function of a

dynamic key based on the virtual energy of the originating node, and transmitted.

When the packet arrives at the next-hop node, the forwarding node extracts the key

of the sending node (this could be the originating node or another forwarding node)

from its record (the virtual perceived energy value associated with the sending node

and decodes the packet). After the packet is decoded successfully, the plaintext ID is

compared with the decoded ID. In this process, if the forwarding node is not able to

extract the key successfully, it will decrement the predefined virtual energy value from

the current perceived energy (line 16 in Algorithm 2) and tries another key before

classifying the packet as malicious (because packet drops may have occurred due to

communication errors). This process is repeated several times; however, the total

number of trials that are needed to classify a packet as malicious is actually governed

by the value of virtualKeySearchThreshold. If the packet is authentic, and this hop

is not the final hop, the packet is re-encoded by the forwarding node with its own

key derived from its current virtual bridge energy level. If the packet is illegitimate,

the packet is discarded. This process continues until the packet reaches the sink.

Accordingly, illegitimate traffic is filtered before it enters the network.

Re-encoding at every hop refreshes the strength of the encoding. Recall that the

general packet structure is [ID, {ID, type, data}k]. To accommodate this scheme, the

ID will always be the ID of the current node and the key is derived from the current

node’s local virtual bridge energy value. If the location of the originating node that

generated the report is desired, the packet structure can be modified to retain the ID

of the originating node and the ID of the forwarding node.

VEBEK-I reduces the transmission overhead as it will be able to catch mali-

cious packets in the next hop, but increases processing overhead because of the de-

code/encode that occurs at each hop.
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3.5.2 VEBEK-II

In the VEBEK-II operational mode, nodes in the network are configured to only watch

some of the nodes in the network. Each node randomly picks r nodes to monitor and

stores the corresponding state before deployment. As a packet leaves the source

node (originating node or forwarding node) it passes through node(s) that watch it

probabilistically. Thus, VEBEK-II is a statistical filtering approach like SEF [2] and

DEF [1]. If the current node is not watching the node that generated the packet,

the packet is forwarded. If the node that generated the packet is being watched

by the current node, the packet is decoded and the plaintext ID is compared with

the decoded ID. Similar to VEBEK-I, if the watcher-forwarder node cannot find the

key successfully, it will try as many keys as the value of virtualKeySearchThreshold

before actually classifying the packet as malicious. If the packet is authentic, and

this hop is not the final destination, the original packet is forwarded unless the node

is currently bridging the network. In the bridging case, the original packet is re-

encoded with the virtual bridge energy and forwarded. Since this node is bridging

the network, both virtual and perceived energy values are decremented accordingly.

If the packet is illegitimate, which is classified as such after exhausting all the virtual

perceived energy values within the virtualKeySearchThreshold window, the packet is

discarded. This process continues until the packet reaches the sink.

This operational mode has more transmission overhead because packets from a

malicious node may or may not be caught by a watcher node and they may reach the

sink (where it is detected). However, in contrast to the VEBEK-I mode, it reduces

the processing overhead (because less re-encoding is performed and decoding is not

performed at every hop). The trade-off is that an illegitimate packet may traverse

several hops before being dropped. The effectiveness of this scheme depends primarily

on the value r, the number of nodes that each node watches. Note that in this scheme,

re-encoding is not done at forwarding nodes unless they are bridging the network.
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Figure 10: VEBEK simulation topology with GTSNetS.

3.6 Performance Analysis

In this section we evaluate the effectiveness of the VEBEK framework via both sim-

ulations and analysis.

3.6.1 Assumptions

Due to the broadcast nature of the wireless medium used in sensor networks, attackers

may try to eavesdrop, intercept, or inject false messages. In this work, we mainly

consider the false injection and eavesdropping of messages from an outside malicious

node; hence, similar to [2], insider attacks are outside the scope of this work. This

attacker is thought to have the correct frequency, protocol, and possibly a spoofed

valid node ID. Throughout this chapter, the following assumptions are also made:

• Directed Diffusion [41] routing protocol is used, but others such as [46] can also

be used. According to specifics of Directed Diffusion, after the sink asks for

data via interest messages, a routing path is established from the sources in the

event region to the sink. We assume that the path is fixed during the delivery

of the data and the route setup is secure.

• The routing algorithm is deployed on an unreliable MAC. The network may

experience ACK or data packet drops.
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• The sensor network is densely populated such that multiple sensors observe and

generate reports for the same event.

• Sensors are assumed to have the same communication ranges and may have

different initial battery supplies.

3.6.2 Simulation Parameters

We use the Georgia Tech Sensor Network Simulator (GTSNetS) [47], which is an

event-based object-oriented sensor network simulator with C++, as our simulation

platform to perform the analysis of the VEBEK communication framework. The

topology used for the simulation is shown in Figure 10, while the parameters used in

the simulation are summarized in Tables 3 and 4. Nodes were distributed randomly in

the deployment region and on average, the distance between the source nodes and the

sink was around 25−35 hops. The virtualKeySearchThreshold value was 15 [7]. The

energy costs for different operations in the table are computed based on the values

given in [16]. However, the costs for encoding and decoding operations are computed

based on the the reported values of the implementation of RC4 [48] on real sensor

devices.

Table 3: VEBEK General Simulation Parameters
# of Nodes 500 SensSize 32 bytes
Area 1000x1000 m RecvInterval 50s
# of Watched (0..60) SensRate 30s
Link Rate 250Kbps SimTime 3000s
Range 75 m #of Mal Node (0..10)

Table 4: VEBEK Energy Related Parameters
Erx 85.1µJ Edec 15.5µJ
Etx 78µJ Eenc 15.5µJ
Esens 36µJ Voltage 3V
Esa 18.6µJ
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Figure 11: Theoretical and simulation results with varying number of watched
nodes.

3.6.3 Attack Resilience

In this sub-section, the performance of VEBEK is analyzed when there are malicious

source nodes in the data collection field who insert bad packets into the network.

Specifically, the analytical basis of the VEBEK framework’s resilience against mali-

cious activities is formulated. Then, this theoretical basis is verified with the simula-

tion results. We compare VEBEK-I and VEBEK-II considering the drop probability

vs. number of hops. We also take a closer look at VEBEK-II and how it is affected

by the parameter, r (the number of nodes to watch).

In VEBEK-I and VEBEK-II, in order for an attacker to be able to successfully

inject a false packet, an attacker must forge the packet encoding (which is a result of

dynamically created permutation code via RC4). Given that the complexity of the

packet is 2l where l is the sum of the ID, TYPE, and DATA fields in the packet, the

probability of an attacker correctly forging the packet is:

Pforge =
1

2packetsize
=

1

2l
(8)

Accordingly, the probability of the hacker incorrectly forging the packet and therefore
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Figure 12: Comparison of filtering efficiency for VEBEK-I and VEBEK-II with
varying number of malicious nodes.

the packet being dropped (pdrop−I) is:

Pdrop−I = 1− Pforge (9)

Since VEBEK-I authenticates at every hop, forged packets will always be dropped at

the first hop with a probability of Pdrop−I .

On the other hand, VEBEK-II statistically drops packets along the route. Thus,

the drop probability for VEBEK-II (Pdrop−II) is a function of the effectiveness of the

watching nodes as well as the ability for a hacker to correctly guess the encoded packet

structure. Accordingly, the probability of detecting and dropping a false packet at

one hop when randomly choosing r records (nodes to watch) is:

Pdrop−II =
r

N
∗ (1− Pforge) (10)

Thus, the probability to detect and drop the packet when choosing r records after h

hops is:

P
r,h
drop−II = 1− (1− pdrop−II)

h (11)

Moreover, even if one false packet successfully makes it to the sink, we assume that

the sink has enough resources to determine which data to process and accept.
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Figure 13: Computation costs under AS-1.

Figure 11 shows both the theoretical and simulation results for VEBEK-II based

on the above equations for a varying number of watched nodes, r, in the WSN.

Note that VEBEK-I is not shown in this figure because it eliminates malicious data

immediately. The x-axis represents the number of hops a malicious packet travels

before it has been detected and taken out of the network. As can be seen from the

figure, VEBEK-II is able to eliminate malicious packets from the WSN within 15 hops

with 0.5 probability when nodes watch 25 randomly chosen nodes (r value). However,

if more storage is available on the sensors, then VEBEK-II can detect and remove

malicious packets within 15 hops with 0.90 probability when r is 60. A similar trend

is observed in the same figure with the simulation results.

On the other hand, Figure 12 presents the comparison of VEBEK-I (VI in the

figure) and VEBEK-II (VII in the figure) via simulation in terms of their filtering

efficiency. The x-axis represents the number of watched nodes (r) that each node

is configured to watch in VEBEK-II and the y-axis shows the percent of in-network

malicious packet dropped with varying number of malicious nodes in the simulation.

As expected, we see that VEBEK-I is always able to filter malicious packets from the

network with its 100% filtering efficiency. This is mainly due to the fact that malicious

packets are immediately taken out from the network at the next hop. However, the
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Figure 14: Transmissions costs under AS-1.

filtering efficiency of VEBEK-II is closely related to the number of nodes (r) that each

node watches. The more nodes watched by other nodes, the more efficient VEBEK-II

is with filtering malicious data. Additionally, as seen when r is equal to 40, it is

possible to achieve almost 90% filtering efficiency. This particular observation with

VEBEK-II is significant because for some WSN applications, energy can be saved by

properly configuring the r parameter. Finally, with respect to Figure 12, we observe

that the VEBEK framework is independent of the number of malicious nodes as the

framework still filters the malicious data from the network successfully.

3.6.4 Energy Consumption of VEBEK-I and VEBEK-II

In this sub-section we look at the associated costs to transmit valid data in VEBEK-I

and VEBEK-II. In both operational modes, there is a single cost (ESo) to stay-alive,

sense the event, encode the packet, and transmit the packet (Esa, Esens, Eenc, Etx) at

the source sensor. Thus,

ESo = Esens + Eenc + Etx + Esa (12)
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Figure 15: Total energy under AS-1.

Additionally, there is a recurring forwarding cost (EFW ) to marshal the packet through

the network depending on the number of hops. In VEBEK-I, this cost is

EFW = Erx + Edec + Eenc + Etx + Esa (13)

for all of the intermediate nodes since all of the nodes perform the same operations.

Hence, the average cost to transmit a packet in VEBEK-I using E[ηh] from (2) is:

EFWI
= ESo + (E[ηh] ∗ EFW ) (14)

On the other hand, in VEBEK-II the cost of EFWII
consists of EFWw

and EFWnw

for variable fractions of the forwarding nodes depending on the number of nodes each

node chose to watch, where EFWw
= EFW and EFWnw

= Erx +Etx +Esa. Hence, the

average cost to transmit a packet using VEBEK-II is:

EFWII
= ESo + (E[ηhw

] ∗ EFWw
) + (E[ηhnw

] ∗ EFWnw
) (15)

where E[ηhw
] and E[ηhnw

] represent the expected number of nodes along the path who

are watchers and non-watcher nodes, respectively. The values for these expectations

can be computed given the total expected number of hops with E[ηh] from (2) where

E[ηh] = E[ηhw
] + E[ηhnw

] for i = 1, 2, 3, .., ηh.
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Figure 16: Computation costs under AS-2.

Let Xi = 1 if the ith sensor is a watcher and let Xi = 0 otherwise for a given path

to the sink with probabilities P{p = 1} = r
N

, P{q = 0} = N−r
N

, and N sensors. Then,

Xi ∼ Bernoulli(p) i.i.d. random variables and ηhw
= X1 + ... +Xηh

.

E[ηhw
] = E[

ηh∑

i=1

Xi] = E[E[

ηh∑

i=1

Xi|ηh]] (16)

Hence, by the independence of Xi and ηh;

E[ηhw
] = E[ηh] ∗ E[Xi] =

r

N
∗ E[ηh] (17)

With a similar reasoning, an expression for the expected number of non-watchers,

E[ηhnw
], can be written as follows.

E[ηhnw
] = E[ηh] ∗ E[Xi] =

N − r

N
∗ E[ηh] (18)

Implementing these costs inside the GTSNetS simulator, we have evaluated the en-

ergy performance of the scheme both for VEBEK-I and VEBEK-II and plotted the

results. In all the figures, the x-axis represents the number of malicious nodes while

the y-axis is the energy consumption. Different values for the number of watched

nodes (r) were analyzed for VEBEK-II. Furthermore, two attack scenarios were con-

sidered: Attack-Scenario-1 and Attack-Scenario-2. VEBEK-I and VEBEK-II are

abbreviated as VI and VII in the figures.
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Figure 17: Transmissions costs under AS-2.

In Attack-Scenario-1 (AS-1), less powerful malicious nodes are assumed. The total

number of healthy source nodes that collect the event information and send it toward

the sink is assumed to be fixed, whereas the number of malicious nodes are increased

over time. Letting i be the number of healthy source nodes and j be the number of

malicious nodes, in Attack-Scenario-1, j ≤ i, where i = n and n > 0. Figures 13−15

show the results for Attack-Scenario-1 (AS-1). As seen from the computation costs

(i.e., Eenc, Edec) (Figure 13), VEBEK-II’s consumption is less than that of VEBEK-I.

The primary reason for this behavior stems from decoding and re-encoding of packets

at every hop in the network for VEBEK-I. Also, as the number of watched nodes (r)

increases, VEBEK-II’s computation cost increases because more packets are processed

for the filtering operation. On the other hand, the more malicious nodes in the

system, the more resources are consumed to filter the increased number of malicious

packets in the network. As for the transmission costs (i.e., Etx, Erx) in Figure 14,

VEBEK-I is better as the nodes are able to catch and drop malicious packets and

do not let malicious packets traverse the network. As r decreases, fewer nodes are

watched by the sensors. Thus, the transmission cost increases in the network because

more traffic traverses the network as a result of less filtering capability with smaller

r values. Furthermore, as the number of malicious nodes increases in the network,
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Figure 18: Total energy under AS-2.

the transmission cost increases due to more malicious traffic. Finally, analyzing the

results for the total energy consumption, we see that the total energy consumption

in the network exhibits a similar behavior as transmission costs because the overall

energy consumption is greatly dominated by the transmission costs. Moreover, we

observe that the total energy consumption for VEBEK-II is smaller than VEBEK-I up

to a certain number of malicious nodes (1 and 2) for certain values of r (all watching

values at 1 malicious node; and watching values of 30, 40, and 60 at 2 malicious

nodes). The implication of this result is interesting. If the deployment region is a

relatively safe environment (< 2 malicious nodes in our scenario), a similar filtering

efficiency of VEBEK-I can be achieved using VEBEK-II (100% for VEBEK-I vs.

99% for VEBEK-II with r = 60) (Figure 12) if more storage is available on the nodes.

This can be accomplished while consuming less energy than VEBEK-I (3400mJ for

VEBEK-I vs. 2800 mJ for VEBEK-II). In Attack-Scenario-2 (AS-2), more powerful

malicious nodes are assumed. For instance, they can jam the signal and not allow

healthy nodes to transmit. Over time, more powerful nodes are assumed to replace

the number of healthy source nodes. Hence, j = 0, 1, 2, .., n and i = n, n−1, n−2, .., 0

where again n > 0. Figures 16−18 present the results for Attack-Scenario-2. In all

the figures, it is possible to observe the same patterns as Attack-Scenario-1. The only
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Figure 19: DEF.

difference is the downward slope with some of the plots. This is attributed to the fact

that the ratio of the healthy traffic diminishes in this attack scenario as the number

of bad packets increases due to the number of malicious nodes in the network. So, if a

more secure application is desired or if the WSN application is deployed in an hostile

environment, then VEBEK-I is recommended because VEBEK-I provides security

services at every hop. VEBEK-I also watches fewer nodes in comparison to VEBEK-

II. Thus, the lower storage requirement (i.e., fewer watched nodes) and providing

security at every hop make VEBEK-I well suitable for military WSN applications

where immediate reaction to enemy units is necessary. However, the downside of

the VEBEK-I operational mode is its high processing costs. On the other hand, if

the deployment region is expected to be a relatively safe environment, which may

be true for some civilian WSN applications, then VEBEK-II can be utilized. But,

as discussed above, to provide a comparable level of vigilance to the network, this

operational mode uses much more storage than VEBEK-I.

3.6.5 Comparison of VEBEK-II with Other Statistical Schemes

In this sub-section, we evaluate the energy performance of VEBEK-II with other

”en-route dynamic filtering” works in the literature. We focus on statistical schemes
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Figure 20: SEF.

because they have received a lot of attention in recent years. Specifically, we compare

the expected energy costs of DEF [1], SEF [2], and STEF [3]4 with that of VEBEK-II

because VEBEK-II is the statistical mode of the VEBEK framework. First, we briefly

summarize each protocol and discuss their drawbacks. Then, the comparison results

are presented. Illustration of each protocol are given in Figures 19−21.

In the Dynamic En-route Filtering scheme (DEF) by Yu and Guan [1], a legitimate

report is endorsed by multiple sensing nodes using their own authentication keys.

Before deployment, each node is preloaded with a seed authentication key and l + 1

secret keys randomly chosen from a global key pool. Before sending reports, the

cluster head disseminates the authentication keys to forwarding nodes encrypted with

secret keys that will be used for endorsing. The forwarding nodes stores the keys if

they can decrypt them successfully. Later, cluster heads send authentication keys to

validate the reports. The DEF scheme involves the usage of authentication keys and

secret keys to disseminate the authentication keys; hence, it uses many keys and is

complicated for resource-limited sensors.

Ye et al. proposed statistical en-route filtering (SEF) [2]. In SEF, each sensing

4Although STEF is not a statistical approach, we included in our comparison because it is a
relevant en-route filtering study.
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Figure 21: STEF.

report is validated by multiple keyed message authentication codes (MACs). Specif-

ically, each node is equipped with some number of keys that are drawn randomly

from the global key pool. First, a center of stimulus is selected among the source

sensor nodes in the event region. Then, once a report is generated by a source node,

a MAC is appended to the report. Next, another upstream node that has the same

key as the source can verify the validity of the MAC and filters the packet if the

MAC is invalid. However, the downside of SEF is that the nodes must store keys and

packets are enlarged by MACs. Although the authors suggest the use of bloom-filters

to decrease the MAC overhead, SEF is a static key-based scheme and it inherits all

the downsides of static key management schemes.

The scheme, Secure Ticket-Based En-route Filtering (STEF) [3], by Krauss et al.

proposes using a ticket concept, where tickets are issued by the sink and packets are

only forwarded if they contain a valid ticket. If a packet does not contain a valid

ticket, it is immediately filtered out. STEF is similar in nature to SEF and DEF.

The packets contain a MAC and cluster heads share keys with their immediate source

sensor nodes in their vicinity and with the sink. The downside of STEF is its one

way communication in the downstream for the ticket traversal to the cluster head.

Since DEF and SEF are probabilistic schemes, a comparison of each scheme with
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Figure 22: Comparison of VEBEK [4], DEF[1], SEF[2], and STEF[3].

VEBEK-II in terms of their energy consumption is presented in Figure 22. The results

are generated for one round of communication from a source node to the sink, which

is assumed to be located n hops away from the source node. The x-axis represents the

hop count and is varied, while the y-axis is the energy. To simplify the comparisons,

we assumed that all the nodes in DEF, SEF and VEBEK-II would have the necessary

keying material with 0.7 probability to do the desired security features imposed by the

specific protocol in a benign environment (no malicious nodes). We also assumed that

the protocols that use hashing and encryption mechanisms would use MD5 and RC4,

respectively. The real sensor implementation values for these crypto mechanisms are

taken from [48] and [49]. Another necessary assumption was that all protocols would

work in perfect communication cases without packet loss because only the VEBEK

framework has been designed with handling communication error cases and it would

not be meaningful to compare VEBEK with others when others were not designed to

handle errors. As can be seen, VEBEK-II is better than all the schemes, exhibiting

a performance improvement of 60%−100% in energy consumption than the closest

scheme, SEF. We note that all other schemes provide a nice framework for filtering

malicious data en-route; however, the other schemes exchange many messages, involve

the use of many keys, and do not have any mechanism to cope with packet loss.
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Figure 23: Synchronization ratio of nodes along the path to the sink.

Moreover, we analyze how VEBEK improves the synchronization problems that

may occur due to communication errors in DEEF [13]. Since DEEF is based on

generating communication keys with real battery levels, packet drops may cause the

nodes to easily loose synchronization with other nodes along the path to the sink. To

analyze the synchronization problem, we define synchronization ratio as a metric to

measure the performance of the VEBEK framework during packet drops. Specifically,

we denote the synchronization ratio, ϕ, as follows:

ϕ =

ηhw∑

i=1

γi

γi + εi

(19)

where i is the node, γ is the number of forwarded-watched packets, ε is the number of

dropped-watched packets, and ηhw
is the number of watcher nodes between the source

and the sink. Figure 23 presents the simulation results of the synchronization ratio

with respect to DEEF and VEBEK. As can be seen, VEBEK outperforms DEEF and

it is able to keep its synchronization even in dire communication scenarios. The x-axis

is the the percent of the packets that are dropped due to communication errors.

3.7 Benefits and Limitations of VEBEK

This section briefly summarizes several benefits and limitations of the VEBEK secure

communication framework. The VEBEK framework has the following benefits:

• No control messages for rekeying: VEBEK does not exchange control messages
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for key renewals as opposed to other dynamic key management schemes. There-

fore, VEBEK is able to save more energy and is less chatty in nature.

• One-time key: In VEBEK, one key per message is employed. For the successive

packets of the stream, different keys are used while the previous schemes use

basically the same key for different packets. This dynamic nature also makes

the VEBEK framework more resilient to certain attacks (e.g., replay attacks,

brute-force attacks, masquarade attacks).

• Modular architecture: Since keys are generated in a separate module in VEBEK,

other key-based encryption or hashing schemes can also be adopted easily.

• Security in realistic communication cases: In VEBEK, we acknowledge the fact

that sensor networks would be deployed in hostile error-prone environments.

Nonetheless, current state-of-the-art en-route malicious data filtering schemes

do not consider communication errors in their architectures. This can also be

observed with many of the dynamic and static WSN keying schemes. In de-

signing VEBEK, we were motivated with this fact, and tried to provide security

with communication in mind.

The VEBEK framework has the following limitations:

• No insider threats: The insider attacks are outside the scope of this work similar

to [2]. Our future work will be based on addressing insider threats.

• No rekeying due to key revocation: The VEBEK architecture does not address

rekeying as a result of key revocation.

• Static sensors: The VEBEK communication framework is designed without

mobility in mind. The typical usage scenario for VEBEK is one where the

sensors are dropped from an airplane or unmanned aerial vehicle (UAV) and

would be fixed in the deployment region.
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• Fixed routing path during data delivery: In VEBEK, we assume that the path

is fixed during the delivery of the data. Although routing paths may change,

we expect this not to be a very common case for most of the statically deployed

sensors. We plan to address dynamic paths in our future work.
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CHAPTER IV

TIME-BASED DYNAMIC KEYING AND EN-ROUTE

FILTERING (TICK) FOR WIRELESS SENSOR

NETWORKS

The conribution of this chapter is the introduction of the TIme-Based DynamiC

Keying and En-Route Filtering (TICK) protocol for WSNs [7]. TICK is the second

protocol proposed in this thesis that is based on the idea of sharing a dynamic cryptic

credential. In TICK, nodes utilize the local time available onboard the sensors as the

shared dynamic cryptic credential when creating dynamic keys. TICK is also an

effective dynamic en-route filtering mechanism, where the malicious data is filtered

out from the network.

The remainder of this chapter is organized as follows. A motivation for the TICK

protocol is presented in Section 4.1. Related work is given in Section 4.2. An overview

of the TICK scheme is explained in Section 4.3. A performance evaluation with sim-

ulations, an analytical analysis, and a comparison with other schemes are presented

in Sections 4.4 and 4.5.

4.1 Motivation

One way to eliminate injected malicious data from WSNs is to utilize an en-route-

filtering scheme as in [1, 2, 3]. The en-route-filtering schemes generally utilize keys

generated by either static [10] and dynamic [11] key management schemes [6]. How-

ever, as discussed in Chapter 3 in greater detail, current dynamic key management

and en-route-filtering schemes have significant downsides in terms of their energy

efficiency.
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Hence, motivated by the downsides of current dynamic key management and en-

route-filtering schemes (see Chapter 3), and the fact that the communication cost

is the most dominant factor in a sensor’s energy consumption [14, 15], we tackle

the problem of providing security to sensor-based applications with a new approach.

Specifically, TICK uses the local time value of the node, where data is originated, as

the dynamic key to encrypt the messages. Then, the receiving nodes on the path to the

sink use their local time to successfully decode the timing key of the source node and

verify the security of the packet. As time progresses, the subsequent transmissions use

different time values to derive the key for the encryption mechanism, which increases

the resiliency of the network against adversaries. Thus, the protocol avoids extra

overhead of control messages. The nodes forwarding the data along the path to the

sink are able to filter out the malicious data verifying its authenticity and integrity

with the provision of non-repudiation. With TICK as in VEBEK, our main goal is to

send events to the sink as energy-efficient and surreptitious as possible to reduce the

likelihood of interception by an adversary. More importantly, we seek to minimize

the overhead associated with refreshing keys to avoid them becoming stale.

Our novel approach using local clocks is well suitable for both WSNs and sensor-

based CPS applications where utmost silence is necessary, like in military scenarios,

as TICK is not ”chatty” in nature. For instance, radio silence is very important

for military operations as any radio transmission may reveal troop positions; so,

restrictive EMCON1 orders may be in effect [51]. Both analytical and simulation

results verify the feasibility of the TICK framework. TICK is at least two times more

energy efficient than other related schemes [1, 2, 3] as examined later in this chapter.

1EMCON: ”The selective and controlled use of electromagnetic, acoustic, or other emitters to
optimize command and control capabilities while minimizing, for operations security: a. detection
by enemy sensors; b. mutual interference among friendly systems; and/or c. enemy interference
with the ability to execute a military deception plan” [50].
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4.2 Related Work

As also discussed in 3.2, en-route dynamic filtering of malicious packets has been

the focus of several studies, including Dynamic En-route Filtering (DEF) by Yu and

Guan [1], Statistical En-route Filtering (SEF), [2], and Secure Ticket-Based En-route

Filtering (STEF) [3]. The brief details of these works as well as their performance

are discussed in Section 4.5. However, the common downside of all these schemes

is that they are complicated for resource-constrained sensors and they either utilize

many keys or they transmit many keying messages in the network, which increases

the energy consumption of WSNs. Another significant observation with all of these

works is that a realistic energy analysis of the protocols was not presented. Moreover,

VEBEK [4] and DEEF [13] utilize virtual energies and real battery levels to create

dynamic keys, respectively. However, TICK is slightly different from these as the

shared dynamic cryptic credential is based on usage of local clocks.

Furthermore, two pertinent studies based on associating keys with time informa-

tion available in sensor nodes are presented in [52, 34]. In µTESLA [34], a broadcast

authentication scheme is introduced utilizing the notions of loose-time synchroniza-

tion and delayed key disclosure. However, sending keys as a separate message is not

cost effective and keys may be lost due to communication errors. In fact, another

worthwhile study [53] shows how µTESLA would be vulnerable to attacks due to

its delayed key disclosure and loose-time synchronization concepts. On the other

hand, in Time information-based Pre-deployed Secure Key Distribution (TPSKD)

[52], time is used to create session keys between the communicating nodes. Several

disadvantages exist in this study. First, the nodes still exchanges ∆i (drift) values

when establishing a pairwise session key with each other, the communication cost of

the nodes is increased. Second, the scheme loads the sensors with a randomly chosen

fixed ∆i value initially and assumes the sensors will always drift with this static value.

However, in reality, nodes may have different drift values due to the effects of different
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Figure 24: TICK Modules

environmental conditions around them.

In short, TICK is different from earlier studies in several ways: (1) TICK is a

dynamic en-route filtering scheme that does not exchange explicit control messages for

rekeying; (2) instead of using the same key multiple times, it provides one-time keys

for each packet transmitted and hence avoiding stale keys; (3) TICK has a modular

and flexible security architecture with a simple technique for providing authenticity,

integrity and non-repudiation of data.

4.3 Overview of TICK

There are three main components of the TICK protocol: Time-Based Key Managemet

(TKM), Crypto (CRYPT), and Filtering-Forwarding (FFWD) Modules. The TKM

module is responsible for creation of the keys that will be used by the crypto module.

The CRYPT module addresses the security part of the problem. Finally, the FFWD

module filters the incoming decoded packet out of the network if it is classified as a

bad packet or otherwise forwards it to the upstream nodes. The relevant modules are

explained in the order they function in the TICK protocol and are shown in Figure

24.

4.3.1 Threat Model and Assumptions

Source nodes are synchronized and loaded with a network-wise initialization vector

(IV ) pre-deployment. The IV and local time information will be used to generate

the initial and subsequent dynamic keys. Note that the sensor nodes do not have

perfect clocks and over time the sensors’ clocks gradually diverge from the real clock
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value due to changes in the environmental conditions such as temperature, humidity,

pressure, and vibration. In the worst case, they can accumulate up to several seconds

of error per day [54]. Thus, the dynamic keys generated in TICK will change as a

function of time and random drift. As such, the same event reported by different

sources located nearby or separate events reported by different sources located else-

where in the deployment region use different keys. In fact, this is an instrumental

and desired property, which we refer to as Spatio-Temporal Security Property for

WSN applications. Since the keys change dynamically due to time and drift, even if

attackers are distributed throughout the WSN and can capture a significant amount

of packets, they would not have enough packets encrypted with the same key to break

the encryption because of this spatial-temporal property. Hence, this situation will

increase the effort of brute-forcing by the adversary. Also, TICK does not incur a

cost to discover which keys are shared between any two neighboring node (shared-

key discovery phase [12]) because the nodes use the local time and tick information

to create the dynamic keys. Nonetheless, using real clocks requires designing both

a flexible and an error-cognizant scheme that would compensate for drifting clocks.

This issue is investigated more in Section 4.4.

Similar to [2], we mainly consider the false injection and eavesdropping of messages

from an outside malicious node; hence the insider attacks are outside the scope of

this work. Moreover, we assume that attacks on clocks (e.g., pulse-delay (replay) and

wormhole) are detected by the extra delay they will introduce into the network as in

[55, 56, 57].

The sink is the ultimate terminating point and decision maker. Nodes are stati-

cally deployed with the same communication ranges. Note that more than one sink

may exist in the network and more resources are available to the sink. Finally, the

report (packet) size exchanged between the nodes is assumed to be fixed.
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Figure 25: TICK packet structure.

4.3.2 Time-Based Key Management (TKM) Module

One of the primary contributions of TICK is the generation of keys dynamically

using local time. This is addressed in the Time-Based Key Management (TKM)

module. When a source node has data to send to the sink due to either an external

stimulation by the sink [41] or a self-initiated periodic report, it uses its local clock

value as the key. Specifically, the keys are a function of the current time value (tl)

and an initialization vector (IV ) (i.e., Kt
j ← F (tl, IV )). Dynamic local-time-based

key generation algorithm is given in Algorithm 3. For example, assume in Figure

Algorithm 3 Compute Dynamic Local-Time-Based Key

1: ComputeDynamicTimeKey(tl)
2: begin
3: j ← txcnt

4: Kt
j ← F (tl, IV )

5: return Kt
j

6: end

26 the source node is N1, and the forwarder nodes N2, and N3 are on the path to

the sink that the report by N2 will traverse. Note that N1 inserts a copy of its ID

and a local counter value inside the report (packet) sent to the sink. The counter

serves as a protection against replay attacks. It is increased each time a packet is

sent from the source. The packet structure is illustrated in Figure 25. The ID is

used to verify the integrity of the packet. As in Figure 26, N1 uses its local clock

value 18 as the key. This key is used by the CRYPT module to perform the desired

cryptic operations depending on the security service (e.g., encryption, authentication,

integrity) provided by the WSN application. When N2 receives the report from N1,
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Figure 26: An illustration of packet delivery path.

it tries to find the value of the time at N1. First N2 substracts the approximate

packet flight time (Θ = ρ + τ + ϕ + ε) between itself and N1 from its local time in

order to be closer to the local time at N1, where ρ is the propagation time, τ is the

packet transmission time, ϕ is the packet processing time, and ε is the approximation

of errors for variability in transmissions due to fading, obstructions, and software

errors, etc2. Furthermore, in order for a forwarder node to find the local clock value

at the source node easily, all nodes are associated with a window of values, which

we refer to as the tick window, (Tw) and a tick value (φ). Thus, N2 will try all

values inside its tick window beginning from its local clock value. Once N2 finds

the correct key value associated with the time at N1, using the found key, it will be

able to perform other security actions on the packet in the crypto module and will

also be able to compute the time offset from the sender. However, to combat against

counterfeit values and to ensure a forwarder node does not futily attempt to brute-

force all time-based keys, lower and upper bounds are associated with each node’s

tick window. Note that proper choice for the size of the tick window depends on,

among other parameters, the tick value and it is explained more in the next section.

The details of the key-derivation operation are given in Algorithm 4.

4.3.3 Crypto (CRYPT) Module

The CRYPT module obtains the dynamic key from the TKM module and performs

the necessary security service. This is also the module where the key from the TKM

is verified. If the key value received from the TKM module is not correct then

2A realistic analysis of the uncertainty associated with errors is presented in the next section.
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Algorithm 4 Key Derivation at Forworder Nodes

1: DeriveKey()
2: begin
3: keyFound← false; i← 0; trialT ime← 0
4: Θ← ρ+ τ + ϕ+ ε //packetFlightTime
5: startT ime← FetchLocalT ime()−Θ
6: trialFwd← TrialBack = startT ime

7: while ((keyFound = 0)and(i <= thresHold)) do
8: if ((i%2 = 1)and(i! = 0)) then
9: trialFwd← trialFwd+ φ

10: trialT ime← trialFwd

11: end if
12: if ((i%2 = 1)and(i! = 0)) then
13: trialBack ← trialBack − φ
14: trialT ime← trialBack

15: end if
16: if (i = 0) then
17: trialT ime← startT ime

18: end if
19: K = ComputeDynamicT imeKey(trialT ime)
20: timeDecoded← RC4(K)
21: if (IDdecoded = IDClr) then
22: keyFound← true

23: end if
24: i← i+ 1
25: end while
26: return keyFound

27: end

a new key is obtained from the the TKM module. This process continues until the

correct key is found or the packet is discarded in the next filtering-forwarding (FFWD)

module. The CRYPT module incorporates the RC4 algorithm into its body as the

encryption mechanism. The rationale for choosing RC4 is due to its proven lightweight

computational energy consumption on sensors [48, 49]. As each time a new dynamic

key is fed into the RC4 block, it eliminates the risk of the differential cryptanalysis of

the cipher [58]. Moreover, since the key is generated in another module, any desired

encryption (e.g., DES, 3DES), authentication, or integrity mechanism (e.g., HMAC,

CMAC) can be implemented together or separately depending on the security service
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desired from the WSN application. After the correct value of the key used by the

sender is determined by the current node, the offset value for the sender node is stored

by the current node.

Two operational modes in the crypto module to determine how to forward the

incoming packet can be conceived. In the first mode, No-reEncode mode, the original

incoming packet is forwarded to the upstream node without any re-encryption whereas

in the second mode, reEncode mode, the incoming packet is forwarded to the upstream

node after re-encryption with the key associated with the local time at this receiver

node. For reEncode mode, the forwarder node uses its current local clock value and

IV value to create a new key when re-encryption the incoming packet. The advantage

of the No-reEncode mode is one encryption computation, hence energy is saved by

forwarding the original packet. This is the recommended mode of operation for TICK.

However, if the current forwarding node is located too far away from the source node,

the forwarding node may classify a healthy incoming packet as malicious. Specifically,

this case occurs if the time difference between the local times of the source and the far-

away node is bigger than the total time covered with Tw ∗ φ. Nonetheless, this is not

an issue for reEncode mode because the forwarder nodes refresh the the key, used to

encrypt the forwarded packet. Eventually, in both modes when the sink receives the

report along the path, it also goes through the same intelligent key-finding procedure

as forwarder nodes.

4.3.4 Filtering-Forwarding (FFWD) Module

The filtering-forwarding (FFWD) module in TICK is the module that filters the

malicious data out of the network if the incoming packet is malicious or forwards

the data toward the sink otherwise. Specifically, it receives the decision about the

decrypted packet from the CRYPT module. If the packet is not malicious, then the

original incoming packet is forwarded to the next hop sensor intact toward the sink.
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Figure 27: TICK uncertainity parameters.

Note that the original packet is not enlarged in any way (e.g., with MACs) to keep

the energy costs at minimum as much as possible.

4.4 Time Uncertainty

Uncontrolled environmental conditions such as changes of temperature, humidity,

pressure, and sudden vibrations in the deployment area cause internal clocks to grad-

ually diverge from the real clock. Moreover, channel access time (at the medium

access control layer) and send-time (including the time for preparing the packet at

the application layer and passing it to the lower layers), can be considered as con-

tributing to the unpredictable [56] clocks. In TICK, the environmental factors are

captured with the parameter δ, which is the daily value of the drift per sensor given

a deployment area, while the software-based factors are captured with ε. We adopt

the values reported in [54, 55, 56, 57] for ε and δ. Deterministic factors, on the other

hand, depend on more predictable parameters. In TICK, as in [55, 56], these in-

clude the transmission time of one packet (τ), the propagation delay (ρ), the packet

processing time (ϕ) (e.g., due to cryptographic operations), and the average period

of data from sensors (λ). The TICK uncertainity parameters used in coping with

non-deterministic and deterministic factors are summarized in Figure 27.

The effect of all the factors are captured by the tick window, Tw, and it is the most

significant parameter in dealing with the uncertainty in TICK. It provides a window

of time values. However, even though the TICK protocol is designed with a flexible

Tw mechanism, a quantitative analysis is still needed. Therefore, in this section, first
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an analytical model is presented to investigate the relationship between the size of Tw

and the tick value (φ). Then, a realistic tick window (Tw) value is derived considering

the capabilities of today’s wireless sensor devices. With its current treatment of the

uncertainty, the TICK protocol is conceived as a software-based solution consorting

with other approaches and suggestions in the literature [59, 57, 55].

4.4.1 The Choice of Tick Window Tw

As briefly mentioned previously, the tick window Tw is available for the receiver node

to choose from to decode the received packets. The window has upper and lower

boundary values. The efficacy of the TICK protocol depends on the size of this

window because the larger the size of Tw, the more time it takes for a receiver to

find the key. In TICK, the Tw value is basically a function of the tick value (φ).

The smaller the value of the tick, the more keys could be tried by each sensor, hence

Tw is larger and the accuracy of the scheme is increased. Also, from the sender’s

perspective, as the system becomes more precise (i.e., the smaller the tick value),

the chance of using a different key per packet transmitted increases. As long as the

frequency of the events (packets) is larger than 1
φ
, the system will use a different key

per packet. Hence, assuming that the sensor application sends its data periodically

(or on the average) at certain time intervals to the sink [41, 60], Tw can be computed

as

Tw =
(λ+ ρ+ τ + ϕ+ ε) ∗ δ

3600 ∗ 24 ∗ φ
(20)

where τ is the transmission time of one packet, τ = l
R

with l and R being packet

length and rate of the WSN link, respectively; ρ is the propagation delay, ρ = χ

c
with

χ and c being distance between the sensors and the speed of light in the medium,

respectively; λ is the average period of data in between sensed reports sent from a

sensor; ϕ is the packet processing time, ε is the physical transmission error; δ is the

daily value of the drift per sensor given a deployment area; and φ is the desired tick
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Figure 28: CDF of finding a correct key.

value. Note that (20) governs all the uncertainty factors into its body. Also, χ is

taken based on the possible maximum distance to consider the worst case scenarios

although nodes may be located closer than the maximum distance.

Moreover, the probability that kth trial out of Tw keys is the first success is geo-

metrically distributed with parameter p, where p is 1
Tw

. Hence, the probability that

Tw keys are tried in a tick window is

P{K = Tw} = (1− p)Tw−1 ∗ p, Tw = 1, 2, 3, .. (21)

Analytical results governing equations (20) and (21) with l = 32 bytes, R = 250Kbps,

λ = 5s, χ = 100m, ϕ = 558µs [48], ε = 10µs [55, 57], and δ = 2s are shown in

Figure 28 for four different configurations of the tick window. For each Tw value, its

corresponding φ value is also shown in the plot. As shown in Figure 28, the probability

of success with a smaller value of Tw is greater, and therefore, less computational effort

is required to guess the correct key of compared to when Tw is larger.

Several observations are possible with a close examination of (20). When sensors

send less frequently to the sink, hence λ is larger, the value of the Tw becomes larger.

This obviously increases the computational effort of the sensor to find the correct key.

A similar remark can be made for ε as well. On the other hand, when λ is smaller
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(i.e., more frequent data), the Tw is smaller. Hence, the scheme does not spend too

much time trying to find the correct key; and the computational effort is smaller.

4.4.2 A Realistic Analysis of Tick Window (Tw) and Tick (φ) Value

A realistic value of the Tw considering the technical capabilities of today’s wireless

sensors is analyzed in this section. We see in equation (20) that more precision of φ

comes with the cost of an increased number of keys that a sensor would try. TICK

was designed to be energy efficient. If the computational effort of trying to find a

key on a sensor is more than the communication cost of sending a separate keying

message, then it may be better to send a separate keying message like other schemes

in the literature. This depends on whether the benefit of a silent protocol is still

desired at a cost of increased energy. Thus, in this part, we question what value of

Tw is a plausible choice. In other words, can we derive a feasible Tw value given the

capabilities of sensors today.

Assuming that in the worst case, a sensor will find the correct key at its last trial

in the Tw window, the following inequality governs this case,

Tw ∗ ζ > ψ (22)

where ζ is the computational effort of finding a correct key, and ψ is the transmission

cost of the separate keying message. Thus, if the left side of the inequality is bigger

than the right side, then the energy advantage of the TICK scheme (not other advan-

tages like using one key, not ”chatty”) would become obsolete and one can conclude

that sending a separate keying message would be better than using TICK. The trans-

mission cost of the keying message can be written as follows [16] (ignoring energy cost

of sensing the event and staying-alive for simplicity):

ψ = (Itx + Ion) ∗ τ ∗ V (23)

ζ = Ion ∗ µ ∗ V (24)
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Figure 29: Tw (Tick window) versus φ (tick).

where µ is the execution time required to process the desired encryption algorithm,

τ is the packet transmission time, Itx and Ion are the current consumptions in mA

for packet transmission and CPU processing, and V is the supply voltage of a given

sensor node. Hence, an upper bound for Tw can be found as follows:

Tw ≤
ψ

ζ
(25)

Figure 29 plots Tw (Synch window) versus φ (precision) for several values of λ (average

period of data) and δ (daily value of the drift per sensor given a deployment area).

Assuming a sensor node with a microcontroller unit (MCU) of MSP430F16x [61] and

a transceiver of CC2420 [62, 15, 16], and also assuming RC4 [48] as the encryption

scheme, with l = 32 bytes, R = 250Kbps, λ = 5s, δ = 2s, Tw can be found to be 16;

hence, the tick value, φ, of 7.24µs. Thus, given the technical capabilities of sensors

today, the value of Tw computed in this section is instrumental in making TICK a

realistic protocol as much as possible and will be used in the performance evaluation

section.
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4.5 Performance Evaluation

In this section we evaluate the effectiveness of the TICK protocol both via simu-

lations and analysis. First, a comparative study considering other similar works is

given. Next, simulations results are presented to examine the energy efficiency of

our scheme under normal operation and under attack. Note that an analysis for the

filtering efficiency is not needed as in [4, 13] because in TICK, malicious packets are

immediately taken out from the network at the next hop.

4.5.1 Comparison with Other En-route Filtering Schemes

In this sub-section, the energy performance of TICK is analytically compared with

other relevant en-route filtering studies in the literature. Specifically, we compare

the expected energy costs of Dynamic En-route Filtering (DEF) [1], Statistical En-

route Filtering (SEF) [2], Secure Ticket-Based En-route Filtering (STEF) [3], and

Time-based Predeployed Secure Key Distribution (TPSKD) [52] with that of TICK.

Note that more detailed discussion of DEF, SEF, and STEF schemes as well as their

downsides were given in Chapter 3. Although TPSKD [52] is essentially a time-based

secure key pre-distribution scheme and it is not a en-route protocol per se, its main

purpose is to create static pairwise keys between the nodes. Hence, it is included in

our comparative analysis here as it also uses time information to create keys. The

scheme initially loads the sensors with fake clock drift values (∆). These values are

then exchanged by the nodes to create pairwise link keys in the clear.

A comparison of each scheme in terms of their energy consumption is presented

in Figure 30. The results are generated for one round of communication from a

source node to the sink, which is assumed to be located n hops away from the source

node. The x-axis represents the hop count and is varied, while the y-axis is the

energy. To simplify the comparisons, we assumed that all the nodes would have the

keying material with probability of 1 to do the desired security features imposed by
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Figure 30: Comparison of TICK, VEBEK, DEF, SEF, STEF, and TPSKD.

the specific protocol in a benign environment (no malicious nodes). Without loss of

generality, we assumed that all the schemes would use the same type of cryptographic

mechanisms unless specified otherwise by the referenced work. Hence, we assumed

that the protocols that use hashing and encryption mechanisms would use MD5 and

RC4, respectively. The real sensor implementation values for these crypto mechanisms

are taken from [48] and [49]. As can be seen, TICK is very energy-efficient compared

to other schemes. The other schemes exchange keying messages and use many static

keys. TICK eliminates these from its design and is able to save energy and reduce

the opportunity for attackers to intercept packets. Another important observation

that should be noted here is that the energy consumption profile of TICK is slightly

higher than that of VEBEK because VEBEK does not try to find the key (time-

based) associated with every transmitted packet. However, in general they are both

energy-efficient schemes as they are protocols both built upon the concept of sharing

a dynamic cryptic credentials.

4.5.2 Security and Energy Consumption Analysis

In this sub-section we evaluate the performance of the TICK protocol via simulations.

We focus on the energy consumption of the TICK protocol while under attack.
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Table 5: TICK Simulation Parameters
# of Nodes 500 SensSize 32 bytes Eini 5000 mJ Edec 3.3µJ
Area 1000x1000 m RecvInterval 5s Erx 66.7µJ Eenc 3.3µJ
Link Rate 250Kbps SimTime 3000s Etx 59.6µJ Emac 8.6µJ
Range 75 m #of Mal Node (0..10) Esens 9µJ Esa 11.4µJ
# of Healthy Nodes 10 Tw 16 Time Offset U[−3,+3]µs Voltage 3V

Figure 31: TICK simulation topology with GTSNetS.

4.5.2.1 Simulation Parameters and Assumptions

We use the Georgia Tech Sensor Network Simulator (GTSNetS) [47], which is an

event-based sensor network simulator with C++, to perform the analysis of the TICK

protocol. The topology and the parameters used are given in Figure 31 and in Table

6. Nodes were located randomly in the deployment region and on average, source

nodes were 25−35 hops away from the sink. The energy costs for different operations

in the table are computed based on the values given in [61, 16]. However, the costs

for encryption and decryption operations are computed based on the the reported

values of the implementation of RC4 [48] on real sensor devices. Etx, Erx, and Esens

are the energy consumption of sending, receiving a packet and sensing an event,

while Eenc, Edec, and Emac are the costs of encryption, decryption, and the message

authentication code, respectively. We use 16 as the value of Tw as found in the

previous sub-section. Due to the broadcast nature of the wireless medium used in

WSNs, attackers may try to eavesdrop, intercept, or inject false messages. In this work

we mainly consider the false injection and eavesdropping of messages from an outside
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Figure 32: Computation, transmission, and total energy consumption under an
attack scenario.

malicious node; hence similar to [2], the insider attacks are outside the scope of this

work. In our attack scenario, the total number of healthy source nodes that collect

the event information and send it toward the sink is assumed to be fixed, whereas the

number of malicious nodes are increased over time. As in Figure 31, the malicious

sensors are randomly located inside the event collection region. Throughout this work,

the following additional assumptions are made: each node has its local clock and its

drift value from the real clock is generated using a uniform distribution between -3

and +3 µs similar to [57]. The Directed Diffusion routing protocol [41] is used, but

others such as [46] can also be used. According to specifics of Directed Diffusion, after

the sink asks for data via interest messages, a routing path is established from the

sources in the event region to the sink. Thus, we assume that the path is fixed during

the delivery of a particular sensed event report. Sensors are assumed to have the

same communication ranges and may have different initial battery supplies. Finally,

the simulation results presented in the figures are the average of 50 simulation runs

for a specific analyzed parameter.
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4.5.2.2 Simulation Results for Security and Energy Consumption

Figure 32 shows the results considering the aforementioned attack scenario. The x-

axis represents the number of malicious nodes inside the region and y-axis respresents

the energy consumption in mJ. We see that as the number of malicious nodes increases

inside the network, nodes spend more computation energy. This happens because the

number of nodes who use all their key-trial attempts and ultimately classifies a packet

as malicious, increases with the increased malicious traffic.

4.5.2.3 Simulation Results for Key-trials

As explained in Section II, when a sensor receives a packet from another sensor,

it tries to find the time-based key value associated with this packet used by the

sender when encrypting the packet before sending. However, the total trial attempts

is limited by the value of key window Tw, not to exhaust the resources onboard the

sensor and the nodes immediately eliminate the malicious data from the network once

they exhaust all their key-trial attempts. For this, we have used in our simulations

a feasible value for Tw (16) given for today’s sensor technology as we discussed in

the previous section. With this in mind, it is also interesting to look at how many

key-trial attempts on average that sensors uses in the simulations when attempting to
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decrypt the received packets. We generally observe in Figure 33 that the increase of

malicious activity in the network increases the efforts of the sensors. Since packets are

dropped immediately when nodes exhaust all of their key-trial attempts, the system

does not allow a malicious packet to get through the network. Also, one interesting

result is that nodes do not use all the attempts; the highest point for our attack

scenario was around 6.9.
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CHAPTER V

SECURE SOURCE-BASED LOOSE TIME

SYNCHRONIZATION (SOBAS) FOR WIRELESS

SENSOR NETWORKS

As an application of the technique proposed in the TICK protocol, in this chapter the

Secure SOurce-BAsed Time Synchronization (SOBAS) protocol for WSNs [8] is in-

troduced. Instead of synchronizing each sensor globally, SOBAS focuses on ensuring

that each source node is synchronized with the sink such that event reports generated

by the sink are ordered properly. Hence, the objective of the SOBAS protocol is to

provide a loose-time synchronization protocol for WSNs rather than a perfect syn-

chronization among the nodes. Similar to TICK, SOBAS utilizes local time values

to create one time dynamic keys. Therefore, SOBAS is largely built upon the com-

ponents of the TICK protocol. SOBAS provides an energy efficient and an effective

technique to securely synchronize the nodes on the data delivery path in the network,

without the transmission of explicit synchronization control messages.

This chapter proceeds as follows. A motivation for the SOBAS protocol is given in

Section 5.1. Related work is presented in Section 5.2 The architecture of the protocol

is discussed in Section 5.3. The performance evaluation of SOBAS and the simulation

results are presented in 5.4. Finally, a discussion of the benefits and the limitations

of SOBAS is given in 5.6.

5.1 Motivation

Many applications that will utilize WSNs will require that event reports extracted

from the network are received in the order that they were sensed. A common method
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of properly ordering the reports processed by WSN applications is to utilize times-

tamps in messages/reports generated by clocks available onboard the sensors. How-

ever, changes of temperature, humidity, pressure, and vibration due to uncontrolled

environmental conditions in the deployment area cause slight differences in clock

frequencies and internal clocks gradually diverge from the real clock [63]. Thus, sev-

eral useful studies [59, 64, 63] have tried to address the synchronization problem for

WSNs. Additionally, adversaries may target the proper functioning of WSNs and

disturb the critical decision-making processes by injecting false time information into

the network. Therefore, a similar research effort to address the problem of secure

synchronization for WSNs in the literature is also underway as in [56, 65, 57, 66].

One significant observation with all the synchronization solutions (regardless of

being secure or not), is that they basically try to provide perfect synchronization for

WSN applications. Furthermore, current schemes that provide secure perfect time

synchronization exchange a significant amount of control messages (albeit necessary

for their schemes) to synchronize the network securely, thereby increasing the com-

munication costs of the network. When static or even dynamic pairwise key-based

solutions [12] are used to secure the time information among nodes, nodes go through

the processes of key discovery and key renewal. The energy cost, especially the com-

munication cost, associated with these processes are often not discussed by researchers

when building secure synchronization protocols.

However, if the sole purpose of the WSN application is to collect data and send it

to the sink, and if critical decisions are based on the data collected from the network

(which is the case with most of the WSN applications [60, 67]), then what matters

is that the sink properly orders the events before sending them to the application or

external networks. This can be achieved by synchronizing the sink with each source,

and does not require that each sensor’s clock be globally perfectly synchronized. In

fact, global accurate knowledge of time [68] may generally suffice for many WSN
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applications, where a centralized decision authority (not sensors) acts on the infor-

mation collected from the network. Moreover, because the communication cost is the

most dominant factor in a sensor’s energy consumption [14, 15], if the synchroniza-

tion control messages in the network are eliminated as opposed to current ”chatty”

schemes, some of the energy savings from transmission cost can be utilized for the

computation of local security operations.

Therefore, motivated by the downsides of current schemes, considering the event-

based characteristics of WSN applications and the resource-limited nature of sensors,

and finally focusing on the energy consumption profile of sensors, we propose the

Secure SOurce-BAsed Loose Time Sychronization protocol. Essentially, SOBAS is

a derivative of the TICK protocol for WSN applications that do not need perfect

synchronization. SOBAS presents an effective technique to securely synchronize the

data path in the network, without the transmission of explicit synchronization control

messages. Instead of synchronizing each sensor globally as opposed to approaches

providing perfect synchronization, we focus on ensuring that each source node is

synchronized with the sink and nodes along the data delivery path such that event

reports generated by the sink are ordered properly.

As in TICK, it uses the local time value of the node, where data is originated, as

the dynamic key to encrypt the messages. Then, the receiving nodes on the path to

the sink use their local time to successfully decode the timing key of the source node

and verify the security of the packet. Thus, the protocol avoids extra overhead of

synchronization messages. Eventually, when the sink receives the packet, it will asso-

ciate each source with an offset value, ∆, and will be able to order the events reported

from the WSN. As time progresses, similar to TICK, the subsequent transmissions

use different time values as the key to the encryption mechanism, which increases the

resiliency of the network against adversaries. Our main goal is to synchronize events

at the sink as energy-efficient, precise, and surreptitious as possible to reduce the
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likelihood of interception by an adversary. Furthermore, our goal is not to provide

a pairwise perfect synchronization among the nodes as opposed to other secure time

synchronization schemes like [56, 65, 57].

With SOBAS, we are able to achieve our main goal of synchronizing events loosely

at the sink and at the data delivery path as quick, as accurate, and as surreptitious as

possible. SOBAS is perfectly suitable for WSN applications that do not need perfect

synchronization and it is able to provide 7.24µs clock precision on the data delivery

path given today’s sensor technology. Simulation results show that SOBAS is an

energy efficient scheme under normal operation and attack from malicious nodes.

Our novel approach to clock synchronization is well suitable for WSN applications

where utmost silence is necessary, like in military scenarios, as SOBAS is not ”chatty”

in nature. For instance, radio silence is very important for military operations as any

radio transmission may reveal troop positions; so, restrictive EMCON orders may be

in effect [50, 51, 69]. In this domain, further applications of interest include critical

infrastructure monitoring [70], video-surveillance [71], and patient-data collection [72].

5.2 Related Work

Several useful studies exist surveying different insecure and secure time synchroniza-

tion protocols [54, 73, 63]. In this section, we list several related works from the

literature. First, we focus on secure ones, then briefly on insecure ones. Note that the

energy performance and the drawbacks of some of the relevant protocols ([56, 52, 57])

were analyzed and discussed in Section 5.4.

Ganeriwal et al. proposed a suite of secure time synchronization protocols [56,

65], where pairwise single-hop, multi-hop, and group synchronization are addressed

with a protection against pulse-delay attacks. However, these protocols require the

nodes to go through the phase of key discovery with their pre-loaded static keys

among themselves. Moreover, the protocols exchange many messages to synchronize
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the network securely, both increasing the communication costs of the network and

making them not applicable for military-type scenarios where a more surreptitious

communication pattern may be preferred. Another work by Song et al. [66] focuses

on delay attacks. Specifically, in lieu of using any cryptographic primitives, they

address the problem based on the generalized extreme studentized deviate (GESD)

algorithm and time thresholds. However, the drawback of this work stems from its

statistical nature. In the work by Sun et al. [57], the authors propose a secure

time synchronization protocol utilizing GPS devices starting from source nodes. The

proposed work requires a shared static key between the communicating nodes and

assume that the source nodes will be equipped with GPS devices, which is costly due

to periodic communication to GPS satellites and increased radio activity increases

the opportunity for malicious exploitation. Also, GPS may not be operational for all

sensor applications (e.g., underwater medium) as explained in the previous section.

Additionally, similar to [56], the nodes exchange many messages. In [74], authors

provided a secure time synchronization protocol for heterogeneous sensor networks

based on pairing (PBC) and identity-based (IBC) cryptography over elliptic curve.

Although this is a novel adoption of IBC and PBC for time synchronization for

WSNs, the work did not present any performance evaluation to provide clock precision

values. In SecNav [75], a secure broadcast localization and time synchronization

work is proposed for wireless networks (i.e., IEEE 801.11b devices not for WSNs)

with Manchester coding, on-off keying, and public-private key systems using outside

references. Lastly, another significant observation with all of these works is that an

energy analysis of the protocols was not presented.

Two pertinent studies based on associating keys with time information available

in sensor nodes are presented in [34, 52]. In µTESLA [34], a broadcast authentication

scheme is introduced utilizing the notions of loose-time synchronization and delayed

key disclosure. However, sending keys as a separate message is not cost effective
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and keys may be lost due to communication errors. In fact, another worthwhile

study [53] shows how µTESLA would be vulnerable to attacks due to its delayed

key disclosure and loose-time synchronization concepts. On the other hand, in Time

information-based Pre-deployed Secure Key Distribution (TPSKD) [52], time is used

to create session keys between the communicating nodes. Several disadvantages exist

in this study as shown earlier. First, the nodes still exchanges ∆i (drift) values when

establishing a pairwise session key with each other, the communication cost of the

nodes is increased. Second, the scheme loads the sensors with a randomly chosen

fixed ∆i value initially and assumes the sensors will always drift with this static

value. However, in reality, nodes may have different drift values due to the effects of

different environmental conditions around them.

As for the insecure time synchronization WSN protocols, several works are of

interest [68, 76, 77, 78, 79]. Li and Rus propose a combination of methods for global

clock syhchronization [68]. All-node-based, cluster-based, fully-localized diffusion-

based, and fault-tolerant diffusion-based methods are provided in the study. However,

these methods either utilize two rounds of specific synchronization messages or depend

on exchanging of explicit synchronization messages among the neighbor sensors. Also,

no clock precision values are reported in the scheme to justify the claims in the work.

In Sommer and Wattenhofer’s work [77], gradient clock synchronization is proposed

with the purpose of synchronizing the neighbor sensor nodes depending on explicit

periodic neighbor broadcasts for synchronization from all the nodes. Tiny-Sync [78]

provides two protocols for WSN time synchronization: mini-sync for pairwise node

sychronization and tiny-sync for global time synchronization. These protocols assume

and require bi-directional data transmission. In the best case, these protocols are able

to achieve between 13µs and 18µs of clock precision. Ren and Lin propose a time

synchronization scheme (self-correcting time synchronization (SCTS)) using reference

broadcast messages. With SCTS, the authors show that they are able to achieve on
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Figure 34: SOBAS’s modular protocol architecture

the order of 1 or 2ms synchronization error within a single broadcast domain on real

sensors. In [79], vector Kalman filter is adopted to provide a time synchronization

protocol for WSNs combining the observations from multiple parents and achieves

on average around 1µs global clock error. Although these are useful studies in their

domains, none of these works analyze the energy performance of their respective

schemes; so it is hard to understand their relative performance for the resource-limited

sensor networks and they are not secure protocols by default.

5.3 Protocol Architecture

SOBAS is primarily derived based on the TICK protocol and it utilizes the similar

modular protocol architecture presented in Chapter 4. However, since SOBAS is more

tailored for synchronization operations, some additional features and functionalities

are implemented in SOBAS as necessary. In this section, these new features and

functions are described within the context of the modules. The relevant SOBAS

modules as well as their interaction with those of TICK are shown in Figure 34.

5.3.1 Threat Model and Assumptions

Although SOBAS is primarily based on the same assumptions made in Section 4.3.1,

several new assumptions are made in the SOBAS protocol as explained in this sub-

section.

The sink is perfectly synchronized with the outside world (e.g., via GPS). Regular

sensors do not utilize GPS. Although, for some applications it may be necessary to
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utilize a GPS receiver onboard the sensor device, our rationale for not utilizing it is

as follows. First, mounting a GPS receiver on a regular sensor requires the sensor to

operate in two different frequencies: one is in the ISM band (i.e., 2.4 GHz) for the

regular sensor communication, the other is in the L band (e.g, 1575.42 MHz (L1))

for the communication with MEO (Medium-Earth-Orbit) satellites [80]. Regular

periodic transmissions (i.e., every 30 seconds) to satellites will increase the cost of

communication and, hence, the energy consumption [76]. Second, one of our design

goals is to minimize the electronic emission footprint as much as possible to decrease

the likelihood by an adversary. Last, there may be environments (e.g., under water)

where traditional radio-based GPS receivers would not work [81, 82].

In SOBAS, our main goal is to synchronize and order events at the sink as energy-

efficient, precise, and surreptitious as possible to reduce the likelihood of interception

by an adversary. However, unlike [56, 65, 57], our goal is not to provide a pairwise

synchronization among the nodes.

5.3.2 Time-Based Key Management (TKM) Module

The TKM module is responsible for creation of the keys that will be used by the

CRYPT module. The keys are a function of the current time value (tl) and an

initialization vector (IV ).

In SOBAS, functionalities of TKM module in TICK has been improved to provide

stateful operations. Specifically, two operational modes regarding states for the TKM

module are conceived in SOBAS for the incoming packets. The first mode, which we

refer to as Stateless Mode, essentially governs the procedures explained in Section

4.3.2: Forwarder nodes along a path to the sink try to find keys ascociated with each

received packet regardless of whether the forwarder nodes have already seen a packet

from the same sender or not. Alternatively, the second mode, Stateful Mode, is a new

addition to TKM module and able to provide further savings from the computation
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with a small increased storage cost. Specifically, in the stateful mode, a receiver

sensor can have a table for each sender sensor, where individual offset values for each

sender is recorded. The next time the sensor receives a packet from the same sender,

it will have a tick window (Tw) centered around the associated offset value for this

sender. This makes the effort of the receiver easier when it tries to find the correct

key for the sender. In the stateful mode, a sensor also remembers a previously seen

malicious node.

5.3.3 Crypto (CRYPT) Module

The CRYPT module addresses the security part of the problem. Any desired en-

cryption mechanism (e.g., RC4, DES, 3DES), authentication, or integrity mechanism

(e.g., HMAC, CMAC) can be implemented together or separately depending on the

security service desired from the WSN application. Both in SOBAS and TICK, RC4

encryption mechanism is adopted (see Section 4.3.3).

Three operational modes exist in the CRYPT module to determine how to forward

the incoming packet. Two of these modes are inherited from TICK: No-reEncode mode

and Full-reEncode. In SOBAS Full-reEncode mode, a forwarder node synchronizes

itself loosely with the source as explained in the next module (FFS Module) and then

uses this new local clock value when re-encoding the incoming packet. However, the

third mode is specifically introduced in SOBAS to solve the problem of classifying a

healthy incoming packet as malicious (aka false-positive), which may occur in the No-

reEncode mode if the current forwarding node is located too far away from the source

node.1 The new mode is referred to as Selective-reEncode mode, where packets are

selectively re-encoded or re-encrypted over some nodes along the data delivery path

while these nodes are also loosely synchronized with the source as in Full-reEncode.

1Recall from Section 4.3.3 that this case occurs if the time difference between the local times of
the source and the far-away node is bigger than the total time covered with Tw ∗ φ.
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5.3.4 Filtering-Forwarding-Synch (FFS) Module

The FFS module filters the incoming decoded packet out of the network if it is

classified as a bad packet by the CRYPT module or otherwise forwards it to the

upstream nodes as explained in 4.3.4. In SOBAS, this module is also enhanced to

include the synchronization process of the forwarder node with the source node along

a data delivery path toward the sink.

More specifically, the FFS module in SOBAS is the module that synchronizes for-

warder nodes with the source node in the Full-reEncode or Selective-reEncode modes

of operation. At this module, the forwarder node gets the source’s local clock value

from the crypto module and updates its local clock value accordingly. For instance, in

Figure 35, all nodes along the path to the sink update their clock values as ti = ts +Θ

to synchronize themselves with the source (or sender), where Θ = ρ+ τ +ϕ+ ε is the

packet flight-time, comprising of ρ (the propagation time), τ (the packet transmission

time), ϕ (the packet processing time at a given sensor after the receipt of the packet),

and ε (the approximation of errors for variability in transmissions due to fading, ob-

structions, etc.)2. Therefore, a source-centric synchronization path is established up

to the sink. The next time a packet from the same source travels over the same path,

the nodes can put less effort in finding the proper time-based key. Note that in Full-

reEncode mode all the nodes along the path do aforementioned operations whereas in

Selective-reEncode mode only a certain fraction of the nodes (e.g., every third node)

along the path do the operations.

Furthermore, eventually, when the sink receives the report along the synchroniza-

tion path, it will be able to see how much a particular source has diverged from the

real clock value by extracting the key associated with the source. Note that for this,

the sink also goes through the same intelligent key-finding procedure as forwarder

2A realistic analysis of the uncertainty associated with errors was presented in Section 4.4.
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Figure 35: Synchronization of nodes on more than one synch path in SOBAS.

nodes. The sink calculates ∆1 = tr − (t1 +
∑

h Θ), with tr being the real clock and

h being the hop length. Thus, the sink can correct the timing of the reports coming

from a particular source.

The synchronization described above synchronizes only one path according to a

source (one synch path). However, in reality there are more synch paths because

there may be more than one source in the deployed region and more than one sensor

may be reporting the same event to increase the accuracy of the reports at the sink.

Moreover, any node can be a forwarder and a source at the same time. We also note

that there may be more than one sink collecting data from the sensors in the region.

SOBAS handles this presence of multiple synch paths natively. It simply adheres to

the logic of the synchronization of one path. In other words, when all the forwarder

nodes receive a report from a source, or from another forwarder node, they simply

forward the report directly or first synchronize themselves with the sender and then

forward the report, depending on if they do the re-encoding operation or not. The

advantage of this approach is that only one value is tracked. Since the sink(s) has

more resources available, it can have a database of clock values for each sensor and

their difference from the real clock. It can properly order any report from any source

in the network using the ∆ values associated with sources. The events received by

the sink are placed in their proper order before leaving the sink for other networks.

The case of multiple synch paths is illustrated in Figure 35.
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Figure 36: Summary of operational modes in SOBAS: Hi-Comp: High computation;
Lo-Comp: Low computation; E2E-Sync: End-to-end loose synchronization; P-Sync:
Loose Path synchronization.

5.3.5 Summary of Operational Modes

Six different operational modes exist in SOBAS depending on whether all or some of

the nodes along the data delivery path or only the end-to-end nodes (the source and

sink) are loosely-sychronized and whether the nodes have memories or not. These

modes are summarized briefly below and illustrated in the kiviat diagram in Figure

36.

• Stateless-No-reEncode: This is the default mode of operation in SOBAS

where source nodes are synchronized loosely with the sink (end-to-end synchro-

nization). A forwarder node was not designed to remember offset values (local

time differences) of other sender nodes that were already discovered by this

forwarder node. Also, a forwarder node would not remember a malicious node

earlier discovered. However, as discussed earlier in Section 4.3.3 if the current

forwarding node is located too far away from the source node, the forwarding

node may classify a healthy incoming packet as malicious.

• Stateless-Selective-reEncode: This is the mode of operation in SOBAS

where some of the nodes are synchronized loosely with the source node along

the data delivery path to the sink. This is introduced specifically to solve the
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Figure 37: Illustrations of SRCS and TPSKD

problem, which may occur in the No-reEncode mode. Again, forwarder nodes

do not have the capability (memory) to remember previously discovered offset

values nor malicious nodes.

• Stateless-Full-reEncode: This is the mode of operation in SOBAS where

all nodes are synchronized loosely with the source node along the data delivery

path to the sink. Forwarder nodes do not have the capability (memory) to

remember previously discovered offset values nor malicious nodes.

• Stateful-No-reEncode: In this mode, source nodes are synchronized loosely

with the sink (end-to-end synchronization). Forwarder nodes were designed

with the capability to remember offset values of other nodes that were already

discovered. Also, they also remember a previously identified malicious node.

False-classification of a healthy incoming packet as malicious may also occur in

this mode.

• Stateful-Selective-reEncode: In this mode, only some of the nodes are syn-

chronized loosely with the source node along the data delivery path to the sink.

Again, nodes have a capability to remember previously discovered offset values

and malicious nodes.
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Figure 38: Illustrations of SOBAS and STM

• Stateful-Full-reEncode: In this mode, all nodes are synchronized loosely

with the source node along the data delivery path to the sink. Nodes have a

capability to remember previously discovered offset values and malicious nodes.

5.4 Performance Evaluation

In this section we evaluate the effectiveness of the SOBAS protocol both via simu-

lations and analysis. First, a comparative study considering other similar works is

given. Second, using the realistic Tw value computed in the previous chapter (see

4.4) simulations results are presented to examine the energy efficiency of our scheme

under normal operation and under attack.

5.4.1 Comparison with Other Schemes

In this sub-section, the energy performance of SOBAS is analytically compared with

other relevant secure time synchronization studies in the literature. These works

include Secure Transitive Multi-hop (STM) [56], Secure and Resilient Clock Synchro-

nization (SRCS) [57], and Time-based Predeployed Secure Key Distribution (TPSKD)

[52]. It should be emphasized that we are cognizant of the fact that these works aim
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providing perfect synchronization in the network and that SOBAS provides loose-

time synchronization. Thus, our comparison here is more hypothetical in nature to

illustrate only the point that for some WSN applications employing a loose-time sy-

hchronization solution like SOBAS would be more energy efficient. In other words,

further energy can be saved if nodes do not need perfect synchronization.

Each scheme is briefly summarized and the illustrations for each scheme are shown

in Figures 37−38. Our comparison scenario is illustrated in these figures; it is assumed

that node 1 synchronizes itself with node n, where n represents the number of nodes

along a certain path. Each node goes through certain actions associated with the

synch process and these actions are explained briefly below for each scheme. Etx

and Erx are the energy consumption of sending and receiving a packet, while Eenc,

Edec, and EMAC are the costs of encryption, decryption, and the message authen-

tication code (MAC), respectively. Without loss of generality, we assumed that all

the schemes would use the same type of cryptographic mechanisms unless specified

otherwise by the referenced work. Since these works do not specify the type of cryp-

tographic primitive operations in their respective publications, we have chosen MD5

for MAC operations and RC4 for encryption for simplicity and fairness. The real

sensor implementation values for these crypto mechanisms are taken from [48, 49].

STM is one of the protocols proposed in [56]. It is used for the purpose of syn-

chronizing nodes securely in a multi-hop fashion. In STM [56], node 1 first sends

a notification for its desire to be synchronized with node n. This initial message is

sent in the clear to node n. These messages are shown in the upstream direction and

their associated costs are shown above the nodes. Then, after node n receives the

notification message, it uses its static pairwise key that it shares with its downstream

node n-1 to create a MAC. Next, node n initiates a reverse path back to node 1 in

the downstream direction to finalize the synch process with node 1. In addition to

communication costs, each node creates a separate MAC for its downstream node and
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verifies the MAC from the upstream node using static pairwise shared keys. These

are shown in the reverse path below each node in Figure 38. In general, STM requires

4N messages for secure synchronization and has N ∗ 10µs precision where N is the

number of nodes.

SRCS is proposed in [57]. In this scheme it is assumed that source nodes would be

equipped with global positioning system (GPS) devices, which may not be applicable

in all WSN usage scenarios because ”GPS is not suitable for sensor networks because

of complexity and energy issues, cost efficiency, limited size, and so on” [76]. Similar

to STM, the SRCS study also assumes unique static pairwise keys between the nodes.

Furthermore, the study suggests several other predistribution schemes to create the

static pairwise keys. However, as shown in Figure 38, creating the keys between the

nodes using some other predistribution scheme also creates a burden on the sensors.

In Figure 38, KeyMsg are the messages that are used for the key discovery process of

the specific predistribution scheme as suggested by the scheme. In addition to com-

munication costs, each KeyMsg has encryption and decryption costs on the sensors

as shown in the figure. After pairwise keys are established among nodes, a synch

message is sent from the source node 1 to other nodes in the upstream. This message

is protected with an authentication mechanism using the pairwise keys. Associated

communication costs and authentication costs are drawn on the nodes. Moreover, in

SRCS, there are two operational modes, called level-based and diffusion-based clock

synchronization. In general, to provide synchronization for 200 nodes, the SRCS

scheme exchanges around 400-500 messages for level-based mode with an average

of 2µs precision, whereas for diffusion-based mode, around 50000 messages are ex-

changed with an average of 6µs precision.

Finally, TPSKD [52] is essentially a time-based secure key pre-distribution scheme

and it is not a synchronization protocol per se. Its main purpose is to create static

pairwise keys between the nodes. It is included in our comparative analysis here as
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Figure 39: Comparison of SOBAS, STM, SRCS, and TPSKD.

it also uses time information to create keys. The scheme initially loads the sensors

with fake clock drift values (∆). These values are then exchanged by the nodes to

create pairwise link keys in the clear. For our scenario, first pairwise keys are created

by exchanging the ∆ values among the nodes as shown in Figures 37−38. Then, an

end-to-end path key is generated similar to creation of the link keys via KeyMsgs.

All the associated communications and required cryptographic operations are shown

on each sensor similar to the other schemes in this figure.

A comparison of each scheme in terms of their energy consumption is presented in

Figure 39. The results are generated for one cycle of synchronization given the sce-

nario from node 1 to node n while the hop count on the x-axis is varied as the value of

n. As can be seen, SOBAS is very energy-efficient compared to other schemes. Fur-

thermore, SOBAS uses time information to create a dynamic key as opposed to other

schemes. This makes SOBAS more resilient to attacks. Its precision with today’s sen-

sor technology, as presented earlier in 4.4, is 7.24µs, which is better than STM and

even better than SRCS. However, SRCS exchanges redundant messages and assumes a

source-based GPS device, which may not be always available. Furthermore, it should

be noted that in this comparative analysis, the energy cost of extra communications to

GPS satellites, staying alive, and that to power GPS is neglected. SOBAS exhibits at
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least twice better performance in energy consumption than the closest scheme, STM.

If SOBAS had the same energy consumption level as STM (albeit not realistic with

today’s sensor technology), then it would be able to provide a better precision level

of 3.62µs. In short, the other schemes exchange messages and use many static keys.

SOBAS eliminates these from its design and is able to save energy and reduce the

opportunity for attackers to intercept packets. However, again, SOBAS only provides

loose synchronization, not perfect nor global network-wide synchronization. SOBAS

is suitable for WSN applications where perfect synchronization is not needed.

5.4.2 Security and Energy Consumption Analysis

In this sub-section we evaluate the performance of the SOBAS protocol via simu-

lations. We focus on the energy consumption of the SOBAS protocol while under

attack.

5.4.2.1 Assumptions, Threat Model, and Simulation Parameters

We use the Georgia Tech Sensor Network Simulator (GTSNetS) [47], which is an

event-based sensor network simulator with C++, to perform the analysis of the

SOBAS protocol. The topology and the parameters used are given in Figure 40

and in Table 6.

Figure 40: SOBAS simulation topology with GTSNetS.
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Table 6: SOBAS Simulation Parameters
# of Nodes 500 SensSize 32 bytes Eini 5000 mJ Edec 3.3µJ
Area 1000x1000 m RecvInterval 5s Erx 66.7µJ Eenc 3.3µJ
Link Rate 250Kbps SimTime 3000s Etx 59.6µJ Emac 8.6µJ
Range 75 m #of Mal Node (0..10) Esens 9µJ Esa 11.4µJ
# of Healthy Nodes 10 Tw 16 Time Offset U[−3,+3]µs Voltage 3V

Nodes were located randomly in the deployment region and on average, source

nodes were 25−35 hops away from the sink. The energy costs for different operations

in the table are computed based on the values given in [61, 16]. However, the costs

for encryption and decryption operations are computed based on the the reported

values of the implementation of RC4 [48] on real sensor devices. Etx, Erx, and Esens

are the energy consumption of sending, receiving a packet and sensing an event,

while Eenc, Edec, and Emac are the costs of encryption, decryption, and the message

authentication code, respectively. We use 16 as the value of Sw as found in Section

4.4. Due to the broadcast nature of the wireless medium used in WSNs, attackers

may try to eavesdrop, intercept, or inject false messages. In this paper we mainly

consider the false injection and eavesdropping of messages from an outside malicious

node; hence similar to [56, 65], the insider attacks are outside the scope of this paper.

In our attack scenario, the total number of healthy source nodes that collect the

event information and send it toward the sink is assumed to be fixed, whereas the

number of malicious nodes are increased over time. Letting i be the number of healthy

source nodes and j be the number of malicious nodes, in our attack scenario, j ≤ i,

where i = n and n > 0. The malicious sensors are randomly located inside the

event collection region. We use in-line filtering to remove the malicious data as in

[1, 2, 3, 13]. Throughout this work, the following additional assumptions are made:

each node has its local clock and its drift value from the real clock is generated using

a uniform distribution between -3 and +3 µs similar to [57]. The Directed Diffusion

routing protocol [41] is used, but others such as [46] can also be used. According to

specifics of Directed Diffusion, after the sink asks for data via interest messages, a
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Figure 41: Computation cost under an attack scenario.

routing path is established from the sources in the event region to the sink. Thus, we

assume that the path is fixed during the delivery of a particular sensed event report.

Sensors are assumed to have the same communication ranges and may have different

initial battery supplies. Finally, the simulation results presented in the figures are

the average of 50 simulation runs for a specific analyzed parameter.

5.4.2.2 Simulation Results for Security and Energy Consumption

As mentioned in Section 5.3, there are three different modes for the CRYPT and two

operational modes for the TKM modules. Modes for the CRYPT module are No-

reEncode, Selective-reEncode, and Full-reEncode modes, whereas for the TKM module

they are Stateless and Stateful. Figures 41−43 show the results for the attack scenario

considering 4 different modes of operations except for the No-reEncode mode3. The x-

axis represents the number of malicious nodes inside the region and y-axis respresents

the energy consumption in mJ. As seen from the figures, the computation cost (i.e.,

Eenc, Edec) for SOBAS-Selective-reEncode is less than that of SOBAS-Full-reEncode

when Stateless mode is used. This is the direct result of the encrypting, decrypting,

3Note that this mode is specifically not included in the analysis because a healthy packet may be
classified as malicious depending on the time difference between the local times of the source and
the far-away node (see Section 4.3.3).
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Figure 42: Transmissions cost under an attack scenario.

and re-encrypting of packets at every hop in the network for SOBAS-Full-reEncode.

The cost of one encryption computation is saved by forwarding the original packet

in SOBAS-Selective-reEncode while selectively re-encoding packets over some nodes

along the data delivery path. The Selective-reEncode mode of operation in the crypto

module may be suitable for further limited networking deployments. Nonetheless,

SOBAS-Full-reEncode is more suited for networks with more networking resources

available. From the security stand-point, we see that as the number of malicious nodes

increases inside the network, nodes spend more computation energy in the Stateless

mode. This happens because the number of nodes who use all their key-trial attempts

and ultimately classifies a packet as malicious, increases with the increased malicious

traffic. Furthermore, as seen from Figure 41 it is possible to save a significant amount

of energy if statefull mode of operation is utilized. However, the stateful mode would

depend on the availability of more storage on sensors.

As for the transmission costs (i.e., Etx,Erx), all modes are about the same because

in all modes the same number of packets are transmitted or received. Moreover,

analyzing the results for the total energy consumption, we see that the total energy

consumption in the network exhibits a similar behavior as the computation costs. This

is because the overall energy consumption is greatly dominated by the computation
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Figure 43: Total energy consumption under an attack scenario.

costs.

5.4.2.3 Simulation Results for Key-trials

As explained earlier, when a sensor receives a packet from another sensor, it tries to

find the time-based key value associated with this packet used by the sender when

encrypting the packet before sending. However, the total trial attempts is limited by

the value of synch window Tw, not to exhaust the resources onboard the sensor. For

this, we have found and used in our simulations a feasible value for Tw (16) given

for today’s sensor technology (see 4.4). With this in mind, it is also interesting to

look at how many key-trial attempts on average that sensors uses in the simulations.

Thus, in this part of the simulation results, we discuss the average number of key-trial

attempts by a sensor when attempting to decrypt the packet when both stateful and

stateless operational modes are considered. We observe that nodes do not use all

the attempts with both modes; for the stateless mode of operation, the highest point

for our attack scenario was around 6.9 (Figure 44). In general, we see that nodes

with SOBAS-Selective-reEncode use more key-trials than SOBAS-Full-reEncode in

the stateless mode. This is mainly due to the fact that refreshing a packet with a

new key based on the current local time at a node decreases the effort of the next hop
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node. On the other hand, comparing the stateful and stateless operational modes,

one can easily observe that the number of key-trial attempts with stateful operation

is significantly smaller than that of stateless operation. This is the direct result

of sensor’s ability to remember individual offset values for each sender sensor and

malicious nodes. Keeping states makes the effort of the receiver sensor easier when it

tries to find the correct key for the sender.
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Figure 44: SOBAS Avg. key trials.

In fact, one implication of these results for both the operational modes is that since

nodes do not use all of their key trial attempts, the remaining effort can be utilized

to increase the clock precision value. For instance, if on average half of the Tw is used

with a certain φ, then 2 ∗φ clock precision can be achieved by increasing the effective

size of the Tw. Therefore, in our future work, we will study further opportunities for

increasing the clock precision by investigating unused key-trial attempts at a node.

For instance, a node can adaptively increase its Tw.

5.5 Impact of Selective Re-Encoding

In this section we analyze the impact of the selective-reEncoding operation in the

network by investigating the false-positive rate in the system.

The impact of selective-reEncoding was studied by considering reEncodig oper-

ation at different hops along the data delivery path to the sink. Specifically, three
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Figure 45: Stateless SOBAS FPR analysis under an attack scenario.

different cases were analyzed: reEncoding at every 3rd, 5th, and 7th nodes. More-

over, as discussed earlier (see Section 4.4), given the technical capabilities of sensors

today, the value of Tw is 16. However, with near-term improvements in technology,

further Tws that can provide better precision values are possible. Hence, we also in-

clude in our analysis different values for Tws as 16, 20, and 32. For all these different

cases, further simulations were carried out. In Figures 45 and 46, the x-axis repre-

sents the number of malicious nodes inside the event region and y-axis respresents

the false-positive-rate (FPR) in the system.

One general observation is that the more frequent the packets are re-encoded

the smaller the rate of the FPR is in the network. This occurs because frequent

refreshing a packet with a new key makes it easier to find the key at the next hop

node. This situation also explains the superior performance of Full-reEncoding over

other configurations. Also, with near-term improvements in technology, it is possible

to achieve small FPR values, which are even close to values in Full-reEncoding mode

of operation. Finally, overall, we observe similar behaviors for both stateless and

stateful operations.
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5.6 Benefits and Limitations

In this section, we list some of the appealing features of the SOBAS protocol and its

limitations.

• Dynamic: Although nodes are pre-loaded with initial IV values, SOBAS is

not a static key-based scheme because the keys change dynamically based on

local clock increments on nodes and nodes do not go through the phase of key

discovey like other static key-based schemes. Rather, it is a dynamic protocol

where keys are changed over time. This makes SOBAS more applicable for

many WSN applications that are hard to recover and replace after the initial

deployment.

• Resilient : The dynamic nature of SOBAS makes it resilient against attackers

because each message is encrypted with a different clock value as the key.

• No synch messages : The network is synchronized as events occur; separate

synch control messages are not sent in the network.

• No reference point : No reference point is used in SOBAS to synchronize the

nodes. This increases the overall security of the network while it eliminates the

problem of a single-point-of-failure.
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• No key exchange: In SOBAS, key values are not exchanged between the nodes.

Nodes can intelligently discover keys through the mechanics of the scheme.

• Simple and robust : SOBAS can easily operate on sensors as its operations are

not complicated.

• No extra hardware: SOBAS does not require extra hardware like GPS for syn-

chronization. It utilizes the default hardware of the sensors as GPS is not suit-

able for sensor networks because of complexity and energy issues, cost efficiency,

limited size, and so on [76].

• Flexible architecture: Since the key generation step in SOBAS is unbundled

from other security mechanisms, dynamically created keys can be fed into any

encryption mechanism (e.g., DES encryption). Thus, SOBAS provides a flexible

architecture depending on the desired security level in the network.

• Independent of underlying protocol : SOBAS can be implemented with any un-

derlying routing or MAC protocol.

Several limitations of the SOBAS scheme are as follows:

• SOBAS only aims providing loose time synchronization, not a perfect synchro-

nization among the nodes as opposed to other schemes like [65, 56, 57].

• SOBAS is able to achieve our main goals to synchronize events at the sink as

energy-efficient, precise, and surreptitious as possible. The protocol decreases

the number of possible opportunities for malicious entities by reducing the num-

ber of control messages exchanged (completely eliminating that for synchroniza-

tion). However, given the technical capabilities of sensor devices today, SOBAS

is able to provide 7.24µs clock precision. This will improve as sensor technology

improves.

• Similar to [56, 65], only outsider threats are addressed in this work. Our future

work will address insider attacks in an energy efficient manner.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this thesis, efficient and secure communication frameworks have been developed

for WSN applications. Motivated by the downsides of current dynamic key man-

agement and en-route-filtering schemes, the fact that the communication cost is the

most dominant factor in a sensor’s energy consumption [14, 15], and further building

upon the concept of sharing a dynamic cryptic credentials, security to sensor-based

applications was addressed using a new approach. As opposed to other ”chatty” dy-

namic key management and en-route filtering schemes, the focus was on eliminating

specific control messages for keying or rekeying in the network so that some of the

energy savings from transmission cost could be utilized for the computation of local

security operations. The following four areas are investigated under this thesis and

conclusions for each of them are described in the following subsections:

• Designing Secure Protocols for Wireless Sensor Networks

• Virtual Energy-Based Encryption and Keying (VEBEK) protocol for Wireless

Sensor Networks

• TIme-Based Dynamic Keying and En-Route Filtering (TICK) for Wireless Sen-

sor Networks

• Secure SOurce-BASed Loose Time Synchronization (SOBAS) for Wireless Sen-

sor Networks
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6.1 Research Contributions

6.1.1 Designing Secure Protocols for Wireless Sensor Networks

Both WSNs and the security for WSNs research fields have matured over the years.

Furthermore, optimization of the limited resources has motivated new research di-

rections in the field. In Chapter 2, considering the established concepts and new

directions, general principles of designing secure WSN protocols were presented for

researchers. Specifically, the desired security services, i.e., confidentiality, authenti-

cation, integrity, access control, availability, and nonrepudiation, and their necessity

from the WSN perspective was reviewed. Several valuable suggestions for protocols

builders were determined and listed.

6.1.2 Virtual Energy-Based Encryption and Keying (VEBEK) protocol
for Wireless Sensor Networks

As emphasized multiple times previously within the context of this thesis, commu-

nication is very costly for WSNs and for certain WSN applications. Independent

of the goal of saving energy, it may be very important to minimize the exchange of

messages (e.g., military scenarios). To address these concerns, in Chapter 3, a secure

communication framework for WSNs called V irtual Energy-Based Encryption and

K eying (VEBEK) was developed. It was the first protocol in this thesis that is based

on the idea of sharing a dynamic cryptic credential and the residual virtual energy of

the sensor was used intelligently as a dynamic cryptic credential.

In comparison with other key management schemes, VEBEK has the following

benefits: (1) it does not exchange control messages for key renewals and is therefore

able to save more energy and is less chatty; (2) it uses one key per message so suc-

cessive packets of the stream use different keys - making VEBEK more resilient to

certain attacks (e.g., replay attacks, brute-force attacks, masquerade attacks); and

(3) it unbundles key generation from security services, providing a flexible modu-

lar architecture that allows for an easy adoption of different key-based encryption
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or hashing schemes. Moreover, VEBEK is an effective dynamic key-based en-route

filtering scheme.

VEBEK’s feasibility and performance were evaluated through both theoretical

analysis and simulations. The results showed that different operational modes of VE-

BEK (I and II) could be configured to provide optimal performance in a variety of

network configurations depending largely on the application of the sensor network.

The energy performance of our framework with other en-route malicious data filter-

ing schemes was also presented in the chapter. Our results showed that VEBEK

performed better (in the worst case between 60%−100% improvement in energy sav-

ings) than others while providing support for communication error handling, which

was not the focus of earlier studies.

6.1.3 TIme-Based Dynamic Keying and En-Route Filtering (TICK) for
Wireless Sensor Networks

TICK is the second protocol developed based on the idea of sharing a dynamic cryptic

credential and presented in Chapter 4. In TICK, nodes use their local time values as

the dynamic cryptic credential. Again as in VEBEK, the focus was on eliminating

sending explicit keying or rekeying messages as opposed to current ”chatty” schemes.

More specifically, a one-time dynamic key based on local time is used to encrypt

each message. The receiving nodes use their local time to intelligently decode the

timing key of the source node. As time progresses, the subsequent transmissions use

different time values. TICK is also an effective dynamic en-route filtering mechanism,

where the malicious data is filtered from the network. Both analytical and simulation

results verified the feasibility of the TICK scheme and presented that TICK was more

energy-efficient than other comparable schemes.
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6.1.4 Secure SOurce-BASed Loose Time Synchronization (SOBAS) for
Wireless Sensor Networks

The SOBAS protocol was presented in Chapter 5 and was developed as a derivative

of the TICK protocol. In SOBAS, instead of synchronizing each sensor globally (as

done in approaches providing perfect synchronization), the primary objective was to

ensure that each source node was synchronized loosely with the sink and/or nodes

along the data delivery path such that event reports generated by the sink were

ordered properly. Further, as in TICK, the clock-based dynamically changing keys to

the encryption operation prevents malicious nodes from injecting false timing packets

into the network.

The feasibility of the SOBAS scheme was verified by both analytical and simula-

tion results. SOBAS achieves the main goal of synchronizing events loosely at the sink

and at the data delivery path as quick, as accurate, and as surreptitious as possible.

The SOBAS protocol is able to provide 7.24µs clock precision on the data delivery

path given today’s sensor technology. Although it is not plausable to compare per-

fect synchronization and with loose synchronization directly, it should be noted that

this value (7.24µs) is even better than other perfect synchronization schemes (not

including ones with GPS devices), and is at least twice better in energy efficiency

than other perfect synchronization schemes. Given the unique on demand or periodic

event-fetching nature of WSN applications, the approach of loose time synchroniza-

tion is well-suited for the characteristics of many WSN applications, where utmost

silence is necessary (like in military scenarios), as SOBAS is not ”chatty”.

6.2 Future Research Directions

Several areas of interest exist for future work. Each is described below.

• Unbundling of security services for other resource-limited devices :
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As stated in Chapter 2 and [6], one of the primary motivations for this the-

sis work was to present the security needs of resource-limited devices, and in

particular WSNs. It is not only important to know that all other resource-

limited devices (e.g., PDAs, smart phones, intelligent motes, actuators, etc.)

have unique energy consumption profiles, but also important to accept energy-

efficient and light-secure solutions as required fundamental building blocks of

the systems that are going to be designed. To achieve this, the concepts and

approaches presented in this thesis can easily be adapted for the needs of other

resource-limited devices. One promising direction is to consider unbundling of

security services and implement them in a layered-fashion. We believe further

improvements can be accomplished by unbundling some of the unnecassray se-

curity services, which may be contrary to most of the established principles.

• Addressing insider threats in an energy-efficient manner for resource-

limited devices : Insider threats is of great concern in all aspects of the secu-

rity research. However, this issue poses even more challenging cases for already

resource-limited devices. Hence, energy-efficient solutions for resource-limited

devices must be investigated.

• Extension of ideas into Cyber-Physical Systems-oriented applica-

tions : Cyber-Physical Systems (CPS) [5] are envisioned to be consisting of

large-scale interconnected systems of heterogeneous components (e.g., sensors)

interacting with their pyhsical environments. Specifically, CPS applications en-

tail how humans and/or smart networking devices interact with and control

the physical world around them. The protocols built for sensor-based CPS ap-

plications should be able to adapt to different environmental conditions, to be

compatable with other CPS applications, to be re-useable and sustainable in
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different CPS platforms/deployments, and most importantly to function prop-

erly even when surrounded by untrusted entities. Given the limited resources

onboard the sensor devices, these specific needs require a modular, flexible, and

energy-efficient sensor network communication architecture. Dynamic cryptic

credential-based solutions can be tailored for the needs of CPS applications.

117



APPENDIX A

RC4 STREAM CIPHER

In this chapter, RC4 [30, 58] encryption scheme is explained briefly to provide a

background for all the protocols introduced in this thesis. However, it should again

be noted that the use of RC4 is not stipulated in any of the protocols designed in

this thesis. The framework for the protocols is designed with modular architecture;

therefore, it provides flexibility to adopt other encryption mechanisms as well.

RC4 is a variable key-size stream cipher developed by Ronald Rivest for RSA

security. As of writing of this thesis, RC4 is one of most commonly used stream

ciphers in the literature. It is effectively used in SSL/TLS, standards for securing

communications between web browsers and servers, and in the IEEE 802.11 wireless

LAN standard.

There are three steps involved in RC4 operations: Initialization, initial-permutation,

and key-stream generation. In the initialization step, a variable key-length of 1 to 256

bytes is used to initialize a 256-byte state vector, S, or state-bytes. A key-array of

size 256, K, is also created in this step. In the initial-permutation step, state-byte

vector entries are permuted based on the values of K. In the final step, a byte k is

generated from S, by choosing one of 256 entries. With each value of k, the entries

in S are once again permuted. The algorithm for RC4 is given in Algorithm 5.

RC4 is a byte-oriented cipher and runs faster in software [30]. Hence, it would be

a good choice for WSN applications where a stream of data is transferred from the

sources to the sink. Furthermore, in the protocols in this thesis, in order to prevent

any differantial cryptanalysis on the cipher [58], different keys with sizes of at least

128 bits are assumed to be used for each packet transmitted in the network.
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Algorithm 5 RC4 Encryption − Src: [58]

1: l ← Key − length
2: // Initial-state step
3: for i = 0 to 255 do
4: S[i]← i

5: K[i]← Key[i mod l]
6: end for
7: j ← 0
8: // Initial-permutation step
9: for i = 0 to 255 do

10: j ← (j + S[i] +K[i]) mod 256
11: swap(S[i], S[j])
12: end for
13: i← 0; j ← 0
14: // Stream-key generation step
15: while more bytes to encrypt do
16: i← (i+ 1) mod 256
17: j ← (j + S[i]) mod 256
18: swap(S[i], S[j])
19: k ← S[(S[i] + S[j]) mod 256]//k = one-byte key
20: C ← P ⊕ k //C = Cipher; P = Plaintext
21: end while
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