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SUMMARY

Nominally, one can expect any user of modern technology to at least carry a

handheld device of the class of an iPAQ (perhaps in the form of a cellphone). The

availability of technology in the environment (home, office, public spaces) also contin-

ues to grow at an amazing pace. With advances in technology, it is feasible to remain

connected and enjoy services that we care about, be it entertainment, sports, or plain

work, anytime anywhere. We need a system that supports seamless migration of ser-

vices from handhelds to the environment (or vice versa) and between environments.

Virtualization technology is able to support such a migration by providing a common

virtualized interface at both source and destination.

In this dissertation, we focus on two levels of virtualization to address issues for

seamless mobility. We first identify three different kinds of spaces and three axes to

support mobility in these spaces. Then we present two systems that address these di-

mensions from different perspectives. For service level virtualization, we have built a

system called MobiGo that can capture the application states and restore the service

execution with saved states at the destination platform. It provides the architectural

elements for efficiently managing different states in the different spaces. Evaluation

suggests that the overhead of the system is relatively small and meets user’s ex-

pectation. Service level virtualization has certain limitations, specifically when the

application state and device state are not visible to the middleware. On the other

hand, for device level virtualization, Chameleon is a Xen-like system level virtualiza-

tion system to support device level migration and automatic capability adaptation at

the operating system level. Chameleon is able to capture and restore device states

xiii



and automatically accommodate the heterogeneity of devices to provide the migra-

tion of services. Device level virtualization can address some issues that cannot be

addressed in service level virtualization. It also has less requirements than service

level virtualization in order to be applied to existing systems. Through performance

measurements, we demonstrate that Chameleon introduces minimal overhead while

providing capability adaptation and device state migration for seamless mobility in

ubiquitous computing environments.
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CHAPTER I

INTRODUCTION

With the rapid advance in technology, it is becoming increasingly feasible for

people to take advantage of the devices and services in the environment to remain

“connected” and continuously enjoy the activity they are engaged in, be it sports, en-

tertainment, or work. Examples include stock tickers and sports highlights streamed

to cellphones, and electronic tour guides in museums and art galleries that provide

exhaustive information about artifacts [14]. We believe that in the near future there

will be many more devices and services available for use in office buildings, squares,

parks and other publicly accessible places.

The focus of our work is to provide seamless mobility in such a ubiquitous com-

puting environment. For example, a user who is listening to music in her iPod should

be able to continue listening to it in the sound system available in the environment

that she walked into if she so chooses. Similarly, the sports highlights streaming to

one’s cellphone should be displayed on a high quality display that became available

in the environment. There are three properties that a user would expect for such

migration of his/her activity to the environment that is being done with the intent of

increasing the user experience. First and foremost, the experience should be seamless,

i.e., there should be no discontinuity in the user experience. Second, the user should

have control over the mobility (if so desired). Third, the user should be able to trust

the environment.

These properties require the entire migration of user’s states and activities at all

levels across heterogeneous platforms in a controllable and secure way. Such migration

assumes heterogenous source and destination platforms can understand each other

1



and have common facilities available. Virtualization technology can easily support

interoperability by providing a common interface on top of heterogeneous platforms.

Such a common interface can be at different levels. Service level virtualization hides

the details of the service instantiation (launching a new application, fetching files,

redirecting I/O, etc.) from the user, and provides users with functionalities (such

as a video player) that become available in the environment utilizing the concrete

platform specific services (such as MediaPlayer on Windows, and mplayer on Linux).

Device level virtualization provides a common virtual machine under the operating

system and can host a variety of devices by providing automatic device capability

adaptation for each device category (input device, display device etc.). Again, the

goal of these virtualization approaches is to provide the continuity of services when

a mobile user moves from one environment to the other.

There is much work in supporting the aforementioned mobility in ubiquitous set-

ting including dynamic discovery of devices and services by protocol families such

as Bluetooth [16], operating system support for virtualization such as Xen [17], and

whole system virtualization such as Microsoft’s desktop on a memory stick [6]. Classic

work in process migration in distributed systems [18] is also related to the problem

being addressed in this dissertation. Device level migration and capability adapta-

tion has also been discussed in several projects such as device-capability-on-demand

(DCOD) framework [35] and DCC (Dynamic Composable Computing) [40]. However,

we are not aware of any work that provides comprehensive frameworks to address is-

sues of seamless mobility at different levels to meet users’ needs.

In this dissertation, we focus on two level of virtualization approaches to address

issues for seamless mobility: service level virtualization and device level virtualization.

We first identify three different kinds of spaces, self-owned, familiar, and totally-new,

and three axes to support mobility, namely, hard state, soft state, and I/O state in

2



these spaces. We consider these spaces and states as critical dimensions for the seam-

less mobility problem in ubiquitous computing environment. After presenting these

dimensions, we present two systems that address these dimensions at different levels.

For service level virtualization, we have built a system called MobiGo that can restore

the service execution with captured application states at the destination platform. It

provides the architectural elements for efficiently managing different types of states in

the different types of spaces. Through evaluation, we demonstrate that the overhead

of the system meets user’s expectation. However, service level virtualization has its

limitations, especially when the application state and device state are not visible to

the middleware. Therefore, we have another level of virtualization, the device level

virtualization to accommodate these limitations. For device level virtualization, we

have built Chameleon on top of Xen to support device level migration and automatic

capability adaptation at the operating system level. Chameleon is able to capture and

restore device states and automatically accommodate the heterogeneity of devices to

provide the migration of services. As a device level virtualization system, Chameleon

can address some issues that cannot be addressed in MobiGo such as device state mi-

gration and capability adaptation. It also has less requirements than MobiGo (such

as application hooks required in MobiGo to control applications) in order to be ap-

plied to existing systems. Through performance measurements, we demonstrate that

Chameleon introduces minimal overhead while providing capability adaptation and

device state migration for seamless mobility in ubiquitous computing environments.

In the rest of this dissertation, we first describe the problem of seamless mobility

and present different dimensions of the problem. Then we survey some related work

in this space. After that, we present the two systems we have built to address the is-

sues for seamless mobility at different levels: MobiGo at service level and Chameleon

at device level. We then describe each system in detail, including the system archi-

tecture, implementation, performance evaluations. Finally, we draw some conclusions

3



and present possible future work in the last chapter.
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CHAPTER II

PROBLEM STATEMENT

In this chapter, we will describe our target problem in detail. We first define the

ubiquitous service system in which seamless mobility becomes an important issue.

Then we present several dimensions of the seamless mobility problem that need to be

addressed. Finally, we describe the requirements for a successful seamless mobility

system that can fully address all issues in a ubiquitous service system.

2.1 Ubiquitous Service System

With the advances in computing technology, we can imagine in the near future,

people will rely on their mobile platforms for various daily activities, such as watching

movies, sending emails or editing presentations. They will also take advantage of the

surrounding resources (including hardware resources and software services) to help

enhance the experience. For example, Alice can switch from her iPod to her in-

car stereo system to continuously listen to her favorite music when she sits in the

car. A tourist can use the airport-provided language translation service to talk to

people for help. We call such a system a ubiquitous service system. As Figure 1

shows, a ubiquitous service system consists of two components: an environment and

a mobile platform. Users carry the mobile platform, such as a PDA or a cellphone, and

enter/leave environments on the go. Whereas the mobile platform may already have

some resources installed, the environment can always provide more resources that are

impossible to carry (such as a big screen), or not available on the devices (such as

language translation). The mobile platform could be an iPAQ, a cellphone, a laptop

computer or whatever device a user is comfortable carrying. A typical environment is

an office building, an airport lounge or a hotel room where additional resources and

5



services are available for use.

Figure 1: A Ubiquitous Service System

One critical problem in such a ubiquitous service system is how to provide the

continuity of services to users when they move around. To migrate a service from

one platform to another without discontinuity, the system has to find a common

way understandable by both the source and destination. Virtualization technology

provides such a common interface for the migration by establishing a homogeneous

virtualized platform on top of heterogeneous devices/services.

A service in such a system typically consists of three parts: (1) software applica-

tions, (2) input and output devices, and (3) user specific files stored on disks. Each of

these parts can be either on the mobile platform or in the environment as necessary

in order to enhance a user’s experience in the best possible way. They also should

be migrated on the “go” as users move around. For example, when Bob is watching

a movie at home, all three parts may be located in his home environment. However,

when he suddenly gets a call from the company and is asked to fly to another city to

see a customer, he can “move” his movie from his home environment to his mobile

6



platform and continuously watch the movie on his way to the airport. When he sits

in the airport lounge waiting for his flight, Bob can move the I/O to a nearby high

resolution display (the movie player and the movie file still remain on his mobile plat-

form) and enjoy the movie on the big screen (I/O is migrated). If the airport wireless

network happens to be too slow to stream the movie from the mobile platform to the

environment, the system (or Bob himself) may choose to use a wired network that

is available in the airport environment to stream the movie from a website where he

bought the movie. In this way, the remote website becomes part of the environment

currently servicing Bob’s request.

Software applications in ubiquitous services systems are heterogeneous in two

ways: (1) different applications may support different protocol families for commu-

nication, and (2) different applications may provide same functionality to users (e.g.

QuickTime player and Realplayer both provide movie playing service). A ubiquitous

service system should be able to switch from one application in an environment to

another similar application (i.e., with the same functionality but perhaps speaking

a different protocol) in another environment. In such a way, the system provides a

virtualized service to user across heterogeneous platforms. Such a virtualized service

provides a functionality to user by utilizing a local available service in user’s cur-

rent environment. Such service level virtualization is crucial to enhance the user’s

experience.

Similarly, input and output devices in a ubiquitous computing environment are

also heterogeneous. Different I/O devices may have same functionalities but different

capabilities. For example, the display on an iPAQ has the same functionality as

a large video wall, except for the difference in resolution and quality. Devices in

each category (such as display devices) should be interchangeable regardless of their

capability. A ubiquitous service migration system should be able to switch from one

device to the other and dynamically adapt to the capabilities of individual devices.

7



In summary, seamless mobility in ubiquitous computing environment means (1)

mobile users can take advantage of environmental resources to enhance their experi-

ences, and (2) mobile users can migrate their activities from one environment to the

other without any interruption of the services. Virtualization technology can achieve

these two goals by providing homogeneous interface on top of heterogeneous plat-

forms. We do need different levels of virtualization to address heterogeneity problems

from different perspectives.

2.2 Dimensions

In order to provide seamless mobility of user’s activities, the user states have to

be migrated across the above-mentioned heterogeneous platforms. By user states, we

mean the user specific information that is necessary for resuming the activities user

did previously. State migration is the key problem for seamless mobility and consists

of four dimensions: what to move, where to move, when to move and how to move.

We will explore these different dimensions in this section.

2.2.1 What to move

Seamless mobility boils down to migrating the dynamic state of a service from one

platform to another. We recognize three categories of state associated with a service:

hard state, soft state, and I/O state.

Hard state refers to data or preferences stored in persistent storage (such as files or

databases). It can be part of the mobile platform that a user is carrying with him (e.g.,

music stored in one’s iPod, or files in an Intel Personal Server [20]). However, such a

strategy may not work very well for more demanding services such as video wherein

a single movie may be several hundreds of megabytes. Therefore a comprehensive

solution for migrating hard state in a ubiquitous setting should allow for the content

being served from a repository on the Internet (such as a Web server or a file server).

Soft state refers to the volatile state of the service currently being accessed by
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the user. An example of soft state is the current scene of the movie being viewed, or

the pause point of a movie, when a user stops a movie at one location and wants to

resume it at another location.

I/O state, as the name suggests, refers to the current state of the input and output

devices the service uses. Clearly, from the user’s perspective, I/O state migration is

the most impactful since it directly affects the user experience. The overall user

experience depends on how well the three categories of state are managed by the

infrastructure that provides seamless mobility.

Figure 2 shows an example of these states in the context of a movie service. The

hard state in this case refers to the actual movie file (typically hundreds of megabytes

in size) stored on persistent storage such as disks or tapes. Soft state refers to the

movie player’s internal states while the movie is being played. Soft state includes

current position of the movie, user’s preference in brightness or contrast, and maybe

a play list that the user defined. These states can be recovered if lost. However,

migrating these states can improve user experience since user doesn’t need to recover

them manually at the destination. I/O state in this case refers to the raw video stream

that the movie player outputs to the actual display device for rendering. Some of I/O

states may reach the display device but have not been played due to the timing issues.

These states also need to be migrated as a user moves.

Figure 2: An example of hard, soft and I/O states
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2.2.2 Where to move

The motivation for seamless mobility arises from the fundamental premise that

the ambient environment may have more resources to enhance the user experience

than the mobile platform (such as a cellphone or handheld) carried by the user. Since

the environment plays a key role in seamless mobility, we need to understand the

characteristics of the environment in order to fully understand how to achieve seamless

mobility. We classify the ambient environment into three groups: self-owned space,

totally-new space and familiar space.

In a self-owned space, a user has full control over the environment. The hardware

and software configuration and settings can be changed at will. An example ubiqui-

tous service in such a space is video watching: the video will seamlessly move from

the TV screen in the living room to the one in the bedroom when the user moves from

one to the other. The service itself can be fully customized and the user can specify

the service policy such as whether the movement of the video should be implicit with

her movement or explicit.

In a totally-new space, a user has no control over the environment or the specific

services provided. In such a scenario, dynamically discovering new services and secu-

rity of the environment becomes important. Building on the video service example,

the environment (say a rest area along an Interstate highway) may offer a VCR ser-

vice on a large display. The user will be able to discover this service and avail it for

watching his favorite movie from the point where he left off prior to starting on the

trip.

The familiar space is in between the above two categories. An example would

be a preferred traveller’s lounge in an airport or a hotel where the user has stayed

previously. The user may be familiar with most of the services available in this

environment but does not have control over the environment as she does in her own

home. On the other hand, the environment may allow customization of the services
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that it offers knowing the preferences of the user who has just arrived.

Depending on the space into which migration is desired, the requirements on the

infrastructure for seamless mobility is likely different.

2.2.3 When to move

The third dimension to seamless mobility has to do with when to migrate the

service from one platform to another. The choice is either explicit under user control

or implicit on recognizing some user cues. The choice is quite intimately tied to the

“where” question addressed in the previous subsection. For example, in a self-owned

space, a user may desire the migration to be implicit (such as based on location

information of the user). On the other hand, irrespective of the space she is in, the

user may want explicit control on when to migrate. For example, a salesman may

want to show a short video that is on his office server at a customer site. In this

case, he may want to explicitly control the state of the video service available in the

environment according to his presentation style.

2.2.4 How to move

In order to launch a service in a specific platform, all the three states (hard, soft

and I/O) have to be present in the local environment and have to be connected to

perform the service. It comes to the question of how those states can be transferred

to the target environment. One straightforward way may be using the mobile device

to store all the state information. On the other hand, users may only carry minimum

information, such as a globally unique user ID, and expect the local environment

to retrieve the state from the previous environment based on this unique ID. Since

the goal of seamless mobility is to provide continuity of service for users in the best

possible manner, a good ubiquitous service system should dynamically decide which

is the best way, in term of user experience, to fetch the states necessary to launch the

service.
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2.3 Requirement for Seamless Mobility

Based on the above discussion on the dimensions of seamless mobility, we can

summarize some general requirements for a ubiquitous service system:

• We need rapid discovery of available services in the environment.

• We need an efficient management of the different states associated with a ser-

vice. It is important that the state management results in maximizing the user

experience.

• We should give the choice of explicit or implicit control of the mobility to the

user.

• We should build an intuitive model of trust that allows the user and the en-

vironment to respect the privacy of the user and ensure the integrity of the

environment in the presence of malicious or unintended attacks on the infras-

tructure.

Note that these requirements may or may not be critical in some spaces. Table 1

shows the importance of the various requirements in different spaces. For example,

in a self-owned space, the discovery is not quite important since everything is under

user’s control and the mobile platform knows exactly what are available in the envi-

ronment. However, in a totally-new space, discovery is crucial because a new entrant

can almost do nothing before he/she discovers what services are available. In familiar

space, discovery is important but not as critical as in totally-new space. Since user

always knows some services in familiar space, he/she can always utilize services that

he/she is aware of previously without discovery. However, when new services are

introduced or old services are removed, user may need discovery for these updates.

Similarly, in self-owned space, user always has a local copy of hard state, which

makes the hard state management less important than other spaces. However, soft
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Table 1: Requirements for Seamless Mobility

Discovery State Management State Migration Trust
Hard Soft I/O Explicit Implicit

Self-owned ❍ ❍ ● ● ❍ ● ❍

Familiar ◗ ● ● ● ● ◗ ◗

Totally-new ● ● ● ● ● ❍ ●
Legend: ❍: less important ◗: mid important ●: more important

state and I/O state management are still important in self-owned space since when

user is moving inside the self-owned space, soft state and I/O state still need to be

migrated. All the three state managements are necessary for the other two spaces,

since user may need to migrate all the three types of states in these spaces.

In self-owned space, since user knows everything in the space, he/she may always

want the migration to be implicit since it gives him/her the most convenience as

he/she does not need to issue commands for the migration and the system can au-

tomatically move the service with his/her movement. For example, consider a user

sitting in her living room watching a movie. When she goes to kitchen to grab a

drink, she wants her movie to be “automatically” migrated to her kitchen’s monitor

without her explicit command. However, in the other two spaces, an explicit com-

mand may be necessary since the user is unfamiliar with the environment. User may

not want, for example, his unfinished slides to be “automatically” migrated to the

big display equipped in a hallway when he walks from his office to his boss’s office.

Such migration needs to be explicitly done upon user’s request. Normally, implicit

migration is not desired in a totally-new space for privacy reasons since the user may

be uncertain about such a space.

As a user always trusts the self-owned space most, the need for trust management

in self-owned space is minimal. However, in familiar and totally-new space, such

a need is very critical since user wants to ensure his/her data is not compromised
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and the environment does the right thing. A well-established trust management sub-

system is crucial to a successful ubiquitous service system since security is one of the

main concerns of mobile users while trying to utilize environmental resources.

2.4 Approaches

In this dissertation work, we plan to use virtualization technology at both ser-

vice/middleware level and device/hardware level to address the problem for seamless

mobility. In short, we call them service level virtualization (SLV) and device level

virtualization (DLV), respectively. The ultimate goal of both approaches is to provide

the seamless migration of a user’s activities across heterogeneous software and devices

in ubiquitous environments.

Figure 3 shows the locations of the two virtualization layers in the traditional

software stack. In a typical ubiquitous computing environment, a variety of applica-

tions, operating system and devices are available. However, some applications and/or

devices provide similar functionalities to users. For example, Windows Media Player

and Real Player both provide movie playing services; Small displays and video walls

can both render video streams. In order to enable users to move across these similar

application services or devices, virtualization may be placed at two levels: a middle-

ware/service level virtualization can be placed between applications and operating

systems to allow different applications to be able to provide a virtualized service to

end users; a device/hardware virtualization can be placed between operating systems

and physical devices to provide virtualized devices on top of heterogeneous physical

devices to operating systems. In this section, we describe these two approaches in

detail and present the contribution of this thesis work.
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Figure 3: Virtualization at different layers

2.4.1 Service Level Virtualization

2.4.1.1 What is service level virtualization

A service level virtualization system migrates user activities at middleware/application

level. Such a system assumes both the source and destination systems have their own

system stack, including applications, operating systems and devices. However, these

components in the system stack may be totally different at the two ends of the migra-

tion. Service level virtualization system runs at both the source and the destination to

enable these heterogenous components to communicate with each other correspond-

ingly and ensures the proper delivery of the states. Using service level virtualization

system, users have a unique view of a category of service (e.g., movie playing service)

without worrying about the details of which application the system uses to provide

such a service. For example, at the source, the system may use a Windows Medi-

aplayer to play a movie for the user, while at the destination the system may use an

mplayer on Linux if it is the only movie player available there.

The key problem of service level virtualization is to define a common state struc-

ture that is understandable by a category of service, and then properly migrate such
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a state structure across heterogeneous platforms to ensure the continuity of services.

There are also several other issues, such as discovery and security, that need to be

addressed in order to build a complete system for the migration. We will also present

how we address these issues later.

2.4.1.2 Why service level virtualization

Service level virtualization is good because it is built on top of existing system

stack and doesn’t need to change legacy systems to enable the migration. What is

needed is the installation of the service virtualization system on both the source and

the destination and proper configuration of these systems. Therefore, service level

virtualization system can be deployed very easily and used in a variety of environ-

ments.

However, as we will see later in a later chapter, service level virtualization system

requires special interface that applications have to provide in order to control these

applications. Through the interface, service level virtualization system can issue

commands to the application to do certain operations programmatically (without

user’s involvement). Since applications are used off-the-shelf and not built on top of

the service level virtualization system, such an interface is crucial for the control of

the applications.

Fortunately, most applications in common use today provide such an interface.

Some applications have Software Development Kit (SDK) or Application Program

Interface (API) that can be used to reach into the internals of the application. Win-

dows Mediaplayer is an example of such an application. Other applications provide

control knobs for the internal state via external input (via a keyboard for example).

By using a simulated keyboard, we can easily use such an interface to make these

applications “controllable”.

In summary, service level virtualization system is easy to be deployed and used on
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top of existing system stack without any change to the application or the OS available

on the platforms. It requires special application interface but many applications have

such an interface available. In the next section, we will introduce our service level

virtualization system, called MobiGO, that targets the fundamental problems for

seamless mobility at middleware level.

2.4.2 Device Level Virtualization

2.4.2.1 What is device level virtualization

Device level virtualization can provide virtualized devices to operating systems to

support seamless mobility at a lower level than middleware level virtualization. This

level of virtualization presents a uniform view of a category of devices to operating

systems to work on. Internally, device level virtualization system maps virtualized

devices to physical devices to do actual device functionality. Device level virtual-

ization may also switch the mappings from one physical device to another physical

device to enable the device state migration. Operating systems are not aware of such

a mapping or switching.

Device level virtualization can be used in two types of seamless mobility scenarios.

First, when multiple input/output devices are available on the same machine and the

switch from one device to the other is needed, device level virtualization can achieve

this by changing the mappings internally without making the application aware of

such a lower level change. Such a device mapping and switching can be applied

to any type of devices such as display devices, audio devices and/or input devices.

Take a display device switching as an example: in a home environment where different

monitors/displays are equipped in different rooms but connected to a single computer,

when a user is moving from his bedroom to kitchen, his movie is also moved from the

bedroom display to the monitor in the kitchen to provide continuous movie service

to him. Figure 4 shows an example of this scenario, in which two display devices, a

LCD monitor and a video wall, are available in the same environment.
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Figure 4: Scenario 1: multiple devices connected to a single environment

A second scenario of device level virtualization is the migration of the entire

operating system image (including the operating system and the applications) from

one environment to another. In such a scenario, local devices available in the new

environment may be different from those in the old environment. In order to resume

the operating system image in the new environment without changing the OS image

itself, devices in both environments should be virtualized and should present a uniform

view to the operating system. However, when the OS image is moved, the internal

mappings of virtualized devices to physical devices are changed. The OS is not aware

of such a change and is still using the virtualized devices as in the old environment.

But the virtualized devices have already been mapped to the new devices so the

input/output are redirected to the local devices in the new environment. Figure 5

shows this scenario. Note that this scenario requires the operating system to be

small in order to be migrated in a small amount of time. Typical operating systems

on handheld devices meet this requirement. Large complex operating systems that

usually run on desktop machines may not be suitable for such a migration.
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Figure 5: Scenario 2: migration of entire operating system

2.4.2.2 Why device level virtualization

Similar to service level virtualization, device level virtualization provides continu-

ous service to mobile users as we stated at the beginning of this dissertation. However,

device level virtualization can solve some fundamental problems at device level, which

cannot be addressed at any upper layer (middleware layer or application layer). In

this section, we present the reasons why we need device level virtualization even

though middleware level virtualization has similar functionalities. We will see that

device level virtualization can be complementary to middleware level virtualization

to fully solve the seamless mobility problem.

Removal of the need for applications hooks. The first advantage of device

level virtualization over middleware level virtualization is that the former approach

does not require any application level hooks to provide seamless mobility. As we will
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see later in this dissertation, application wrappers in middleware level virtualization

require applications to provide some type of interface in order to allow the application

wrappers to be able to “control” them. For example, application wrappers should

be able to issue play or stop command to the movie players in order to control the

playback without a user’s involvement. Such interface (or application hooks) has to be

provided by applications so that they can be integrated into MobiGo, the middleware

level virtualization system. Otherwise, if application wrappers have no such interface

to communicate to applications internally, MobiGo will not be able to interact with

the applications and migrate their internal states.

In contrast to middleware level virtualization, device level virtualization does not

require such an interface (application hooks) to be available. Device level virtualiza-

tion considers applications and the operating system as a whole “upper layer image”.

This image uses virtualized devices as a black box provided by the device level vir-

tualization system. Internally, device level virtualization re-maps virtualized devices

to physical devices to enable the migration. Therefore, in device level virtualiza-

tion, application requirements are removed and seamless migration becomes possible

transparent to the “upper layer image”, namely the applications and the operating

system.

Device manipulation. The second reason why we need device level virtualization

is that lower level state can be migrated along with application state. Lower level

state refer to device specific state. Such state includes buffers in the device driver

of an I/O device, detailed configuration of devices and device specifications (e.g.,

resolution of the screen). Such state is device specific and not always available to

upper layer applications. Therefore, middleware level migration system may not have

access to migrate this state along with application state, causing this state to be lost

in the migration process.
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Device level virtualization, on the other hand, is able to manipulate devices when

mapping virtualized devices to physical devices. Hence it can dump low level device

state and configurations, and then migrate this device specific state in one of the two

ways corresponding to the two scenarios we mentioned earlier. For example, it can

migrate the state from one video device to the other on the same machine to “switch”

the display, or it can migrate device state with the operating system image to fully

migrate the entire system. In either way, device level virtualization can help the state

migration at a lower level, the device level, to fully address the migration issues for

seamless mobility.

Dealing with heterogeneity of devices. The third reason for using device level

virtualization is to deal with the heterogeneity of devices. In ubiquitous comput-

ing environments, devices can vary considerably from one environment to the other.

When a user is moving from one environment to the other, the devices he/she uses

are likely to be different in size, resolution (for output devices) or key mappings (for

input devices). However, we do not want such heterogeneity to be an inconvenience to

the user. Therefore, we need to consider the differences in the devices and bridge the

gap between them to provide the same service to a user despite such heterogeneity.

Service level virtualization relies on the applications themselves to deal with device

heterogeneity. This level of virtualization requires applications to be aware of physical

devices and adapt to the device changes during migration. However, such an approach

requires application programmers to have physical devices in mind when developing

applications, which adds burden to the programmers.

Device level virtualization can deal with heterogeneity of devices at a lower level

to remove the burden from application programmers. When switching the mapping

between virtualized devices to physical devices, device level virtualization automati-

cally receives the information of both source and destination devices, and therefore
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can do some adaptation/conversion when re-building the mapping. Applications need

not be aware of such adaptations and do not need to build any special support for

the adaptations. Hence device level virtualization can deal with device heterogeneity

more efficiently and transparently.

2.4.3 Comparisons of two approaches

Service level virtualization and device level virtualization address the problem of

seamless mobility from different prospectives. Service level virtualization provides

virtualized service to end users and enables minimal state migration for each service

category across heterogeneous platforms. It is a user-oriented approach at a level

above the operating system. On the other hand, device level virtualization assumes

the entire OS and application image to be available at the destination in order to do

capability adaptation for the target platform. It is a system level approach at a level

below the operating system.

These two approaches both have pros and cons. Service level virtualization does

not require the entire application and OS image available at the destination platform

and only needs minimal state for a virtualized service to be migrated. Therefore,

the state in service level virtualization is light-weight and easy to maintain. Another

advantage of service level virtualization is that it does not require a virtual machine

manager to be available at all environments. It can be built on top of existing

operating system stack as shown later in this dissertation. However, service level

virtualization cannot provide device state migration as it cannot reach into the device

state from middleware level. Also, service level virtualization is normally not aware of

the device capabilities and therefore cannot adapt different capabilities when a user

moves into an environment with a different set of devices with different capabilities.

Device level virtualization, on the other hand, can solve the aforementioned prob-

lems very easily. It can operate the device directly and migrate device specific states
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and do capability adaptation based on the source and destination device capabilities.

However, a drawback of device level virtualization is that it assumes the entire op-

erating system and application image to be available at destination. In some cases,

it might be difficult to migrate such an image due to its size (a typical Linux OS

and application might be a few gigabytes). Compared to minimal state migration

in service level, the entire OS and application image in device level virtualization is

heavy-weight and hard to maintain. Another drawback of device level virtualization

is that if the application state consists of some server state that is out of the control

of the OS image, device level virtualization cannot fully migrate the user activities.

These issues can be relatively easy to address at service level.

In summary, service level virtualization and device level virtualization address

different issues for seamless mobility. They both have pros and cons individually but

the combination of these two approaches can help us address more issues and meet

all the requirements we identified in the previous sections. We know that our solution

may not be able to solve all the problems in this space. We will discuss the limitations

and future extension of this work in Chapter 6.

2.5 Service categories

A number of service that people use on a daily basis demand seamless mobility.

Examples of such services include email, web browsing, video playing and music

listening. Different services have different characteristics. The mobility of some type

of services can be easily supported by service level virtualization and some others can

be supported by device level virtualization. In this section, we will discuss categories

of services in this space and the features of each category. We will show in this section

what type of service can be supported by our virtualization.

One category of service is stand-alone applications running on desktop machines.
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Such applications include text editors and single machine games. This type of ap-

plications have all their state saved on the local machine and always do not require

a network connection to operate. When a user moves from one environment to the

other, all the local state needs to be migrated from the source environment to the

destination environment. The size of the local state is application dependent.

A second category of service requires network connection but the state of the

service is local to the platform that hosts the service. Examples of such services

include online movie playing , music listening and static web browsing (i.e., there is

no interaction with any server that maintains state.). For example, in an online movie

playing service, the movie file streamed from a streaming server does not change from

time to time. Therefore, no matter where a user connects to the server, he can see

the same movie content. Similarly, a music file can be streamed from anywhere to

anywhere else on the Internet assuing the same playback. For such services, any

state received from the network is always static but may be huge in size (such as a

movie file). When a user moves from one environment to the other, she can make

a connection to the state provider without the need for any information about her

previous connection.

A third category of service requires dynamic state stored both in the network and

on the local machine hosting the service. Examples of such services include online

gaming and E-commerce. These services have both client state and server state that

need to be migrated when a user moves from one place to the other. The connection

to the server needs to be maintained at the destination of migration in order to fully

resume the service. In other words, such services require strong connection to the

server in order to retrieve server state with client state in order to be migrated from

one place to the other.

Service level virtualization can be applied to the first and the second category of

services but is especially good for the second category. Both of these two categories of

24



services have only local dynamic state that is under control of user’s mobile platform,

which makes it easy to retrieve in order to resume the service. The second category has

less local state than the first category, which can help reduce the amount of common

state for a certain service type (such as movie playing service) and therefore make it

easy to define the common state structure in service level virtualization. The third

category of service cannot use service level virtualization since there is network state

(or connection to the network state) that needs to be maintained during migration.

Such state (or the connection) is out of the control of user’s mobile platform and

therefore very difficult, if not impossible, to migrate when a user physically move.

Device level virtualization can also be applied to the first and second category

of service but is especially good for the first category. Similar to service level vir-

tualization, device level virtualization can access and migrate local state with user’s

movement. However, different from service level virtualization, device level virtualiza-

tion packs and migrates the entire OS and application image with device state instead

of a common state structure. Such a mechanism makes the migration of the first cat-

egory of service very easy because these services are mostly stand-alone applications

and easy to pack and resume. The second category of services may also be able to

use device level virtualization but a connection to a remote networked state provider

may be necessary although such a connection does not require the information of the

previous connection. Similar to service level virtualization, device level virtualization

cannot be applied to the third category of services for the same reason: the dynamic

network state is out of the control of user’s mobile platform and cannot be migrated

when user moves.

2.6 Goal and Contributions

In this dissertation, we plan to explore the virtualization technology at both ser-

vice/middleware level and device/hardware level to see how a service in a ubiquitous

25



computing environment can be migrated continuously. The contribution of this dis-

sertation is also split into two parts:

For service level virtualization,

• We identify different dimensions for seamless mobility (i.e. what, where, when

and how).

• We design MobiGo middleware to address the seamless mobility problem along

the above dimensions.

• We implement a prototype system for efficient management of different types

of states for different types of environments for a movie playing service.

For device level virtualization,

• We design a set of device independent abstractions for each device category.

• We develop the mechanism for packaging and migrating device states.

• We develop the device capability adaptation for each device category in order

to switch across similar devices.

In the next three chapters, after surveying the related work, we explore the design

space for each of these approaches and show the design decisions we made for building

two systems using the above approaches: MobiGo system using middleware level

virtualization and Chameleon using device level virtualization. We also present the

performance evaluation results of these systems to demonstrate our systems introduce

minimal overhead while addressing critical issues for seamless mobility.
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CHAPTER III

RELATED WORK

As we presented in the previous chapter, the main focus of this work is to solve

seamless mobility problems at different levels. There are a number of related projects

that target these problems from different perspectives. In this chapter, we present

the related work to the best of our knowledge covering two different perspectives:

state migration and capability adaptation. As will become evident in the following

discussion, most of the related projects have their own goals, which might be different

from ours. Therefore, these studies, while relevant to serve as building blocks for ideas,

may not be sufficient to meet the requirements for seamless mobility.

3.1 State Migration

Seamless mobility implies that the source and destination platforms should have

something in common. Virtualization technology can easily provide interoperability

among heterogeneous platforms. There are different levels of virtualization as shown

in Table 2. In this section we review prior research projects that target the mobility

with respect to the levels of virtualization and the dimensions described in the pre-

vious section. To the best of our knowledge, no other system focuses on service level

virtualization as well as device level virtualization to support seamless mobility.

Table 2: Virtualization levels

Levels of virtualization Example systems and related work

Service Level MobiGo
Middleware Level CORBA

Device Level VNC, Sun Ray, uMiddle
Operating System/VM Level Xen, IBM SoulPad, Microsoft Desktop on Keychain

Hardware Level Register renaming in processors
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While not representing a truly seamless mobility solution, systems such as Mi-

crosoft Remote desktop [27] allow a user to access their favorite applications and

data ubiquitously (so long as a connection to the “home” machine can be established

by the environment). Virtual Network Computing (VNC) [4] and Sun Ray [15] rep-

resent a thin-client approach to allow a user’s display to be dynamically moved to

suit the user’s convenience and preference.

Microsoft’s “Your Desktop on Your Keychain” project [6] brings to bear system

virtualization technology to remove the necessity of connecting to a “home” machine

for accessing the user’s application and data. The system state is saved with all

the open applications and their data “as is” (equivalent to closing the lid of the

laptop) to a USB drive (typically 1GB to 2 GB); the user can take the USB drive

and plug it into another machine and essentially recreate the original desktop on the

new host. Both the original and target machines run a Windows virtualization layer

to support this user mobility. The system assumes that a backup network file server

is available if in case the USB drive fills up completely, as well as for accessing data

and applications not saved on the drive. IBM’s SoulPad [13] takes a similar approach

to migrate the entire VM state as well as file system to the USB drive and boots

from this USB drive on the host machine. These approaches fall into the category

of operating system level virtualization and involve migration of soft state and hard

states to achieve the mobility.

HP’s Cooltown project [14] centers around giving ubiquitous access to information

for users. The basic philosophy is to give a “Web presence” to every artifact and thus

every artifact becomes self-describing. This is particularly effective for self-guided

tours of art galleries and the like. Clearly, the goals of the Cooltown project are quite

different from our goal of seamless mobility and it does not use any virtualization

technology. Nevertheless, it provides a rich user experience for the environment it

targets for.
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The Gaia project [19] from UIUC intelligently customizes services to meet different

user’s requirements. An example is the use of voice recognition techniques to identify

a user and pull out the working desktop for that particular user. It also uses vision

technologies to track the user in order to move the display from screen to screen as

the user moves. Their “smart space” solution, however, is designed to run in a fixed

environment (what we termed as self-owned space in the chapter 2) with a fixed set

of devices. It is not designed for seamless mobility in different spaces identified in the

previous section.

There are several other research projects trying to migrate the state to mobile users

for remote access. Networked File System (NFS) [2] is an effort to provide users with

access to files on a remote server by mounting the remote file system on the desktop of

the user. In a sense, the USB drive solution (both Microsoft’s and IBM’s alternatives

to remote desktops) has a similar but more sophisticated functionality. Ubidata [5]

is a project targeting ubiquitous access to data files, i.e., the hard state. The system

can provide a consistent view of locally stored files and remotely accessible files on the

user’s mobile device. Ubidata gives an illusion to a user as if she has a big file system

on her mobile platform and can potentially access any data she has wherever the files

are located. CoFi [23] is another system that enables authoring multimedia content

and collaborative work on mobile devices, which is another example of a mechanism

for hard state migration through low bandwidth wireless network. Xmove [11] is an

effort at trying to move the I/O state for mobile users. It enables users to map the

virtual X protocol server to different physical X servers so that the I/O state can be

moved from one I/O device to another (in a single environment). Once again these

solutions are appropriate for the goals they set out to accomplish but are at best

complementary to our goal of seamless mobility.

Cyber foraging [21][22], like traditional process migration [18], is a technique for

exploiting the resources available in the environment to increase the productivity of
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a mobile user. Xiaohui Gu and her colleagues designed and implemented a system

that can offload java objects to the environment to reduce the burden of computing

and storage on resource-constrained devices [39]. The work by Goyal and Carter

allows mobile devices to install their own applications in the environment by providing

a virtual operating system to each mobile client [8]. These approaches are both

operating system/virtual machine level virtualization and are good examples of how

a mobile device can take advantage of the computational facilities in the environment

to hide its resource limitations. The problem they address is orthogonal to what we

are targeting and can complement our solution in achieving continuity of services in

multiple environments.

uMiddle [12] is a middleware system that supports interoperability across multiple

protocol families at device level. It makes devices speaking different protocols (like

UPnP [28] and Bluetooth [16] for example) talk to each other seamlessly through

the middleware infrastructure. uMiddle is a device level virtualization technology

and lays down the foundations for potential migrations among devices (and device

specific services).

As should be evident from the above discussion, the related work surveyed in this

section have different goals from ours. Consequently, they do not address all the

requirements we identified in chapter 2. Nevertheless, they represent technologies

that are very relevant to the overall theme of supporting mobility in a ubiquitous

computing setting.

It is interesting to look at these projects with respect to the different spaces we

mentioned in chapter 2 and with respect to the state management needed for service

migration. This information is summarized in Table 3 for the relevant projects. The

slots where we do not have any identified projects suggest that there is an opportunity

for new work.

The granularity of migration is another interesting aspect to look at. A complete

30



Table 3: Summary of related works with respect to state migration

Hard Soft I/O
Own E USB Drive Key-chain xmove

SoulPad SoulPad
I NFS, Ubidata Cyber Foraging Gaia

Gaia Gaia
Familiar E USB Drive SoulPad VNC, Sun Ray

SoulPad Remote Desktop
I Ubidata Cyber Foraging –

Totally-new E USB Drive SoulPad VNC
SoulPad Remote Desktop

I Ubidata – –
Legend: E - Explicit control; I - Implicit control

migration of virtual machine (VM) states, like Microsoft’s keychain project [6], is a

coarse-grained approach where users need to carry all VM states in the USB drive and

resume the entire virtual machine on the target environment. At the other extreme,

a mobile disk drive carries only hard states and users rely on the software services

in the target environment to open the files and manually resume the soft state after

the software is running (e.g., drag the time bar to the appropriate position to resume

a movie). The former approach forces users to carry too much if they just want to

move some services but not the whole desktop/virtual machine. The latter migrates

only hard state and needs users’ inputs to resume soft state. Since a user may want

to dynamically decide on the need for a specific service in a ubiquitous service system

we need to find the right granularity to support seamless mobility for the user: we

should migrate all states that are required to provide continuity of a particular service

but no more (i.e., not entire VM). Furthermore, it also caters for the dynamic needs

of a user on the go.

3.2 Capability Adaptation

Capability adaptation for mobile devices is a relatively new field of research. But

there has been a variety of efforts at solving this issue in a number of ways. The
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mechanism for adaptation can be provided at various layers of software stack e.g. at

the application level, middleware level or at the operating system/hypervisor level.

In [30], Edmonds et al. discuss various models for the structuring of an adaptive

system. An application-transparent model performs all the adaptation at operating

system level. An application-specific adaptation model places all the responsibilities

with the application. The first approach has the advantage of centralized resource

control but treats the application as a black box. The second approach might lead to

contention for resources among applications due to lack of centralized coordination.

An integrated approach is also possible where the resource monitoring (and alloca-

tion) is done by operating system and adaptation is performed by the application.The

authors have developed a framework for development of application adhering to this

integrated approach. The work by Becker et al. [32] mentions the requirements for

adaptation at various levels. The devices available to an application and also the char-

acteristics of a device may vary over time and location. An application needs to adapt

to these changing scenarios. Device capabilities as well as characteristics of local and

remote services need to be uniformly accessible to the application. Typically middle-

ware is responsible for abstracting the communication with remote services while the

operating system is responsible for abstracting the access to device capabilities.

Proper representation of the hardware and software context in which an appli-

cation is operating is very essential for adaptation to take place. W3C’s Compos-

ite Capability/Preference Profiles (CC/PP) is predominantly used for this purpose.

Buchholz et al. [31] describe an alternate language named Comprehensive Structured

Context Profiles for context representation. The primary objective of this work is to

provide highly structured representation of context information for easing the task of

dynamic composition(/decomposition) of context profiles. In the device-capability-

on-demand (DCOD) framework [35], Fu et al. have described a model for enabling

an application to make use of various devices as and when they become available.
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The framework virtualizes the access to devices and has a matchmaking engine which

matches the application requirements with the capabilities of devices and selects a

device (or a group of devices) for the purpose.

Naughton et al. in their work [34] discuss a possible mechanism for providing

dynamic modification of the Xen hypervisor. Their approach is based on Linux’s

loadable module mechanism that allows dynamic insertion and removal of kernel

modules. In [38] Chen et al. have a slightly different objective: to make live updates

to Linux kernels running in virtual machines.

Dynamic Composable Computing [40] targets adaptation from a different perspec-

tive. Users of DCC can choose the environmental resources to connect to their mobile

devices and take advantages of these resources to enhance their experience. Users do

adaptation manually by choosing the appropriate resources to match the application

requirements. Different from DCC, the system we propose for device level virtualiza-

tion called Chameleon (Chapter 5) uses an automatic mechanism to choose capability

adaptation algorithms for users based on the application requirements and the en-

vironment resource information. While DCC focuses on the usage of surrounding

resources for mobile users, Chameleon targets the adaptation mechanisms for service

migration across heterogeneous platforms. The two projects are orthogonal and can

be complementary to each other.

3.3 Summary

As we can see from the above discussion, there are a number of projects that

try to solve the migration or adaptation from a particular perspective. However, we

need a comprehensive framework to meet all the requirements of seamless mobility we

stated in the previous chapter. Since each of these project is specific to its individual

goals, it may not be easy to combine them trivially to solve the issues involved with

creating such a framework. In the following two chapters, we present our approach
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to address these issues. We also describe in detail some of these previous projects

in context with our approach and why the solutions therein would not fit into our

comprehensive framework. We understand that our system may not be applicable to

all the potential application scenarios in this space. We will discuss the limitations

of our system in Chapter 6 later in this dissertation.
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CHAPTER IV

SERVICE LEVEL VIRTUALIZATION

As we mentioned in Chapter 2, service level virtualization targets the heterogeneity

at middleware level. The principles behind service level virtualization is established

in our system MobiGO, which can capture the application states at the middleware

level and restore them at the destination to resume the execution of user’s activity.

MobiGo is able to accommodate the heterogeneity of software by defining a com-

mon state structure for each service category (for example, a movie playing service)

and supplying the common states to various applications in different ubiquitous com-

puting environments. In addition, MobiGo also considers different strategies for the

migration of different types of states in different spaces. The state that needs to be

migrated at service level is always small in size and easy to carry since the system can

decide what states are necessary at the destination to restore the execution. How-

ever, it requires hooks into the application to capture and restore the states. If the

application does not provide such an interface for other programs to reach into its

running state, it becomes difficult, if not impossible, to virtualize the service at the

middleware level. In addition, there may be some device specific states that are not

visible to the application (for example, the movie streams that has been buffered in

the video card memory but has not been played). Service level virtualization may

not be able to capture those states for a complete migration of user’s activity.

In this chapter, we explore service level virtualization in detail. First, we describe

our design choices for service level virtualization. Then we present the system archi-

tecture of MobiGo. After describing some implementation details, we show through

performance evaluation that MobiGo has acceptable performance while providing
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continuous mobile service to end users.

4.1 Design choices

We considered several designs choices for middleware level virtualization. One of

the design decisions we made is about the amount of computation done on the mobile

platform and in the environment. We decide to make the mobile platform as light as

possible while putting most supports into the environment since the environment is

generally more powerful. The other choice can be the other way around: the mobile

platform holds a lot of functionalities while the environment is thin. We think that

the resource imbalance of the two sides is the key factor to consider in this design

choice. The limitation of the mobile platform constraint their capability to support

many features, and therefore it should be made as thin as possible. However, as the

mobile platform keeps developing, we may consider to put more modules in there.

The second design choice is how to construct the service in our system. We may

be able to write the service customized to our system from scratch. Another way to

construct services is to take advantages of existing application and write a very simple

wrapper to make them controllable. We choose the latter because of two reasons: (1)

We may not be able to construct every service from scratch. It is not easy and quite

time consuming. (2) The service construction is not the focus of system. We should

use the existing applications as much as possible.

The third design choice is whether or not we should use existing technologies (such

UPnP or Web Service) as the base system for the middleware level virtualization. We

decide not to use these technologies because of the following reasons: (1) Existing

solutions always provide some functionalities but don’t meet all requirements of our

system. Modification of existing solutions is possible. However, the complexity of

existing solutions makes it difficult, if not impossible, to integrate their missing func-

tionalities seamlessly in them. (2) Existing solutions may be heavy-weight since they
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have their own goals and need to consider issues other than the focus of our require-

ments. We would like to arrive at a minimal system design for seamless mobility

so that we can clearly understand the design and implementation issues for realizing

such a system. (3) We can always construct a wrapper service to bridge our system

to existing solutions and make them interoperate.

Based on these design choice, we have built a system, call MobiGO, that addresses

the critical issues of seamless mobility at middleware level. We will show our system

architecture and its details in the next section.

4.2 MobiGO: a middleware level virtualization system

MobiGo is the middleware system providing mechanisms for migrating I/O state,

soft state and hard state to achieve seamless mobility. We first describe the key

components in the system and then discuss how application states (I/O, soft and

hard) can be migrated seamlessly. We should emphasize that we are not trying to

build a “smart space” that expects people to come and use the services. Instead, we

are dealing with how people can move a service from one place to another seamlessly.

4.2.1 Architecture

As Figure 6 shows, the key components in MobiGo are Service Control, Appli-

cation Wrapper, Authentication and Service Repository, all of which are critical to

seamlessly move a service from one place to the other.

Service Control

Service Control is the core of the entire system. Its main functions are (1) collect-

ing necessary information (including soft state, hard state and user’s preference such

as selected I/O) to launch a service (2) pausing/resuming services according to user’s

need and (3) collecting necessary information from the service when user wants to

move to another environment and storing it in a proper way for later retrieval. Service

Control contains Soft State Management and Hard State Management to help with
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Figure 6: Architecture for MobiGo

state storage and retrieval.

Soft State Management decides how the soft state can be transferred to the Service

Control to launch services. It has a Soft State Provider module, which stores all the

necessary soft states for resuming a previously paused service, and Soft State Operator

module, which (1) retrieves the soft state from the service and feeds it into the Soft

State Provider for later use when a service is paused, and (2) fetches the state from

the Soft State Provider and passes it to Service Control to continue the service when

a service is being resumed.

Hard State Management deals with hard state in a different way. Our current hard

state management only considers read-only data (mainly for video service). Thus,

hard state does not need to be stored when user pauses the service. However, since

the hard state is typically large (especially for video files), it is necessary to select

where to retrieve the state if it is available in multiple places because bandwidth and
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latency of different links will significantly affect user experience. Therefore, we have

Hard State Provider and Location Selector in Hard State Management module. Upon

a start/resume request from the user, Service Control will notify the Location Selector

to find out the best place to fetch the state and then contact Hard State Provider

to retrieve the hard state (either copying the entire file if it is small or preparing to

stream if it is a large video file for example).

Application Wrapper

Application Wrapper is a small, per-application module that makes legacy ap-

plications “controllable” by MobiGo. It can either use available API of a particular

application or simulate the behavior of keyboard and mouse to send commands to

applications just as if a real person is manipulating the application.

Authentication

The authentication module has built-in mutual authentication mechanisms that

(1) verifies users’ identity and checks their privilege to use the services in the envi-

ronment and (2) helps users to ensure the environment is not compromised.

Service Repository

Service repository stores a list of available services in the current environment for

mobile users to dynamically discover and use. Environment administrators manage

the repository by adding or removing services. Service Repository module listens to a

designated multi-cast address and is the first place for the mobile platform to contact

when a new user enters the environment. After providing service list to the mobile

platform, it passes the control to Service Control module to start/resume a service

upon a request from the mobile platform.

4.2.2 Discovery and description of the services

We have our own discovery protocol between the mobile platform and environ-

ment, allowing the mobile platform to obtain service list from the service repository
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in the current local environment. Environment administrators add/remove services

from service repository to configure the environment. Each service description con-

tains three parts: service name, service type and I/O devices associated with the

service. Services with the same type are interoperable. Since I/O device is the most

impactful from the point of view of enhancing the user experience, the UI on the

mobile platform clusters the available services in the environment with respect to the

I/O devices. User first chooses the desired I/O device and then selects a service on

that device. She can also optionally select from a list of previous saved states to

resume a paused service. In case the paused service is not available in the current

environment, she can select from a list of alternative services that are interoperable

with the paused service.

We use a new discovery protocol instead of existing protocol families like Bluetooth

or UPnP because we target service level interoperability, i.e., user should be able to

move between two different services with the same type but perhaps speaking different

protocols. By using a new discovery protocol, user can potentially use any virtualized

service (e.g., a movie playing service) regardless of the protocols. MobiGo moves the

burden of dealing with interoperability, which may be computationally intensive for

the mobile platform, to the ambient powerful environments.

4.2.3 Choices of the user

In order to run a service in an environment, all three states (hard, soft and I/O)

have to be present in the environment for the application. Whereas I/O is always

local to the environment, users can choose to either explicitly or implicitly control

the storage of the hard and soft states for later retrieval. In an explicit control, a

user clearly expresses his intention to leave an environment and asks the environment

to save the states to his mobile platform for future use. For an implicit control, he

may simply leave the environment without prior notification. In the new environment
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where he wants to resume the service, the system needs to locate his states regardless

of whether he explicitly or implicitly leaves his previous environment.

We consider two strategies to retrieve those states: carrying and fetching. For

carrying strategy, the mobile platform carries all necessary states to run a service. For

fetching strategy, the mobile platform provides minimum information that identifies

the user (such as a unique user ID) to the environment, and the environment finds

the best way to fetch all the necessary states from somewhere else (most likely from

the user’s previous environment).

Fetching is desirable for best user experience as the user is not required to notify

the environment before leaving. But the environment in this strategy has to be

stateful, i.e., it has to know the user and be able to locate her previous state. When

she enters a new environment and presents a unique user ID, the new environment

looks for her previous environment and fetches the states from there. However, it may

be difficult, if not impossible, to use fetching strategy in some cases, especially in an

isolated environment with no connection to the outside world. In such a scenario,

carrying strategy is the best choice, which requires the mobile platform to be stateful

but the environment can be stateless. All states are stored on user’s mobile platform

and can be retrieved through local wireless connection by the environment. But

carrying strategy requires the user to explicitly inform the environment when she

leaves. It also takes some time to download the states to the mobile platform before

she can actually depart.

It is obvious that the environment and the mobile platform cannot be both state-

less, since user’s state has to be retrieved from somewhere in order to launch the

service. However, when both the environment and the mobile platform are stateful,

we have the choice of selecting either fetching or carrying strategy according to user’s

preference. MobiGo system is able to allow user to specify which strategy to use in

such a scenario. Table 4 summarizes the above discussion.
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Table 4: Fetching vs. carrying strategy in different scenarios

Stateful environment Stateless environment
Stateful mobile platform either carrying
Stateless mobile platform fetching none

Fetching strategy may be a little slower than carrying, especially when user’s pre-

vious environment is far away from the current one (e.g., the connection between

the two environments is through a high latency and low bandwidth network). But

it releases the burden of maintaining the state from the mobile platform to the en-

vironment so that the resources on devices (such as storage and computing power)

can be saved for other use. It is useful when the resources on the mobile platform are

highly constrained and users don’t always know when they will enter and leave the

environment ahead of time. Carrying strategy requires more resources on a mobile

device (to store the state information) and requires explicit notification of departure.

However, it can be used more generally in most scenarios, regardless of whether the

environment is standalone or connected.

4.2.4 State Management

I/O state migration is the simplest among all three state migration. I/O migration

means moving a service from one I/O device to the other in the same environment.

For example, when a user is watching a movie at home, he will probably want to

move it from the living room to the bedroom when he retires for the night. Since

hard state and soft state remains unchanged in I/O migration, application wrapper

plays a key role in the entire process. For example, it has to find a way to tell

the application to move from one display to the other without discontinuity. When

a mobile platform issues a Switch request (either explicitly issued by the user or

implicitly determined by the system), Service Control will extract the target I/O

device from the request message and send a command IOSwitch to the application
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wrapper. Different application wrappers may have different techniques to do the

actual switching (we show details on how we do the switching in the implementation

section below). There is no state storing/retrieving in the entire process. The entire

process is illustrated in Figure 7.

Figure 7: I/O Migration

Soft state migration, as aforementioned, has carrying strategy and fetching strat-

egy. Figure 8 shows the migration using carrying strategy: when a user is leaving

an environment, the mobile platform sends out a PAUSE request (similarly, either

explicitly issued by user or implicitly determined by the system), Service Control

first pauses the service, retrieves the soft state (e.g., pause point of a movie) and

transfers it to the mobile platform. Then, when the user leaves environment A and

enters environment B, the mobile device discovers available services in environment

B, contacts Service Control in environment B and feeds it with the soft state that

was stored from environment A and issues a RESUME request. Service Control in

environment B will then interpret the soft state and instruct application wrapper to

resume the execution of the service according to the state provided by the device.
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Figure 8: Soft State Migration

Hard state migration is more complex than soft state migration. Similar to soft

state migration, we can employ carrying strategy and fetching strategy in hard state

migration. However, for highly demanding service like a video service, the typical

wireless connection between the mobile platform and the environment is usually not

rich enough to retrieve/stream the contents in a timely manner. Thus, if a video file

is duplicated in multiple sources, it is necessary to find a best source (i.e., low latency

and high bandwidth connection between local environment and file source), to get the

movie, even if the movie is also carried in the mobile device itself. Therefore, the choice

of file source in one environment may be different in another environment depending

on the connectivity. Upon entering a new environment, the mobile platform informs

the environment of several possible locations for retrieving/streaming files. Then

the location selector evaluates different connections (including wireless connection

between device and environment if carrying strategy applies) and then decide on a

best choice to serve the hard state. It then tells the file source to transfer the file or

prepare to stream the file to the local environment. Figure 9 shows a scenario where
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Figure 9: Hard State Migration

a local file source is available in the new environment.

4.2.5 Trust

The authentication modules on both the environment and the mobile platform

ensure the security and trust of the entire system. The trust should be mutual: Only

users that are authenticated can use the environment services and users send out

private information only after checking the validity of the environment’s credentials.

To separate private data from different users, the system stores each user’s state in

an isolated space and retrieves the state for a remote environment (if necessary) only

if the user’s credential is verified. To avoid conflict among users in using local non-

sharable resources (such as display devices), we only allow one user to utilize one such

a resource at any given time. Resources in use are not discoverable by new entrants

of the environment (Service control periodically contacts the service repository to

temporarily block/unblock the advertisement of new resources). Users will get an

error message if they want to launch a service on a resource that is in their resource
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list but currently used by another user.

We leverage other people’s work [29] into MobiGo to manage user’s identity and

trust of the environment. We are also aware of the complexity of a real ubiquitous

computing environment and understand that more secure models may be necessary

in some scenarios (such as DoS attacks). Further improvement of the security and

trust model constitute the future work of this dissertation.

4.3 Supported Applications

Previous section draws the big picture of MobiGo system architecture. A number

of applications that people use on a daily basis can be supported by MobiGo, such as

email, browsing, video playing and music listening. As we discussed in Chapter 2, the

first and the second category of services are good candidates for MobiGo since it is a

service level virtualization system. To make the discussion concrete, we narrow down

our focus on a specific application that belongs to the second category: ubiquitous

video service. In this section, we explain why we choose this application and present

the features and challenges of supporting seamless mobility for this service.

4.3.1 Characteristics of video service

There are a number of characteristics of video service that makes it a compelling

and challenging candidate for seamless mobility:

• It demands continuity. For example, a user may want the movie she is

watching to be paused and restarted exactly where she left off (whether that is

an instantaneous transition from one display to another or a delayed transition

from home to a waiting lounge in an airport).

• It demands high quality. If the environment has a number of choices in

terms of display devices and stream sources for providing this service, making

the best choice is imperative to enhance user experience.
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• It demands efficient management of state. A full-length high quality

movie may be several hundreds of megabytes. Both the hard and soft states

associated with a video service have to be managed efficiently for enhancing

the user experience. For example, downloading the movie (hard state) from the

mobile platform to the environment may just not be a feasible solution from the

point of view of latency observed by the user. On the other hand, the movie

may be available for download from multiple locations and the environment

may be able to make an intelligent dynamic decision.

4.3.2 An application scenario

Here is an imaginary application scenario for this video service. Bob (a frequent

traveller on business trips) has a collection of movies that he has access to from a

server somewhere on the web. One day, he is at home in San Francisco, watching one

of his favorite movies, when he suddenly gets a phone call from his company, asking

him to travel to New York to meet a customer. He uses his PDA to “pause” the movie

and drives to the airport. Upon arrival at the airport, he finds out that his flight is

delayed by 2 hours due to “weather” in Chicago. In the Crown lounge while waiting

for his flight, he “resumes” the movie where he left off on a big screen (available in the

lounge). Upon boarding call, he leaves the Crown room still watching the remaining

minutes of the movie on his PDA at the gate area.

To enable the above scenario, the environment first suggests through its discovery

service the available video service and displays for migrating the I/O state; upon

explicit selection by the user, the environment implicitly migrates the soft state (pause

point) from the PDA, and the hard state (video file) which may be streamed either

from the web server or from the user’s home machine.
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4.4 MobiGo Implementation

In this section, we describe some implementation details of MobiGo system. Please

note that some of the implementation details presented in this section are not original

contribution of our work but are important for a complete prototype system (e.g.,

security). In this sense, we have adopted simple but workable solutions from the

literature to fill in the gaps to realize a complete system. More complex algorithms

and solutions may be easily integrated into our system architecture to replace the

current ones as we have carefully constructed the system architecture to be modular.

4.4.1 Soft State and Hard State Management

We use a pivotal data structure, called Ubiquitous Virtual State (shown in Ta-

ble 5), associated with each video that contains the meta information necessary to

facilitate migration of soft and hard states. The four fields are pivotal in supporting

seamless mobility of the service to/from the mobile platform from/to the environment.

There may be additional bookkeeping information in this data structure beyond these

four fields (such as a textual summary of the contents, owner, and creator). The LO-

CATION information is used for efficient management of the hard state and the

STATE information is used similarly for the efficient management of the soft state.

Table 5: Structure of Ubiquitous Virtual State

Field Name Description Example

FILENAME The name of the file Terminator-II.mpg
LOCATION An array that includes

all possible sources of
the file

user@video.foo.org:/share/Terminator-II.mpg

STATE Internal soft state of
the file (such as how
much of the file has been
played already)

10000 ms from start of file

MODIFIED Last modified times-
tamp

Oct 31. 2006, 11:09s
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UVS is created when user downloads or gets access to the video file and will

be updated when user is moving around. For example, when a user buys a movie

from a website, he may download a UVS along with the video file. If the website

has streaming service that allows users to stream the movie in addition to simply

downloading the video file, it will specify the streaming server addresses in the UVS.

Thus, upon entering a new environment, user has the choice to stream the movie from

his/her mobile platform where the movie file is stored or from the remote streaming

server, depending on which can provide best possible service (we will discuss how the

decision is made later in this section). When the user leaves an environment, the

STATE field is updated and transferred to the new environment later for resuming

the service.

4.4.2 Application Wrapper and Service Repository

In the current implementation, we have two application wrappers: (1) a native

mplayer wrapper that simulates the input commands from standard input (stdin)

to control mplayer to play/pause a movie and get the pause point and (2) a UPnP

windows media player wrapper receiving UPnP commands. Service Control uses dif-

ferent functional calls for different wrappers (for example, upnpPause() for UPnP

wrapper and nativePause() for native wrapper). Service Repository maintains a list

of services, which also includes the types of service wrappers. It helps Service Control

to choose which functions to call when it issues a command. Environment adminis-

trators maintain Service Repository and can add/remove services according to local

environment policies.

4.4.3 Location Selector

When the hard state of a service, especially large video files, are duplicated in

multiple locations, it is necessary to select one place to achieve the best quality of

service to users. In our current implementation, we use an intuitive algorithm: select
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the place that has the lowest latency connection to the local environment with suffi-

cient bandwidth for the specific service. Our algorithm first determines the required

bandwidth of streaming a video from a server based on its frame rate and resolu-

tion. For example, a 352× 240, 30fps MPEG-1 video requires 1.5Mbit/s bandwidth.

Then, the algorithm chooses the lowest latency connection from all the candidates

that can cater to this bandwidth requirement. We will show our evaluation of how

this algorithm performs in enhancing user experience.

We also notice that the measurement of latency and bandwidth of connections

may be time-consuming, especially for wireless link between device and environment.

Therefore, the environment profiles the wireless link connectivity of the mobile device

in the background as soon as the user enters the environment and is authenticated by

the environment, and even before she chooses any service provided by the environ-

ment. Since profiling the wireless link can be quite slow, performing this pre-pinging

helps in reducing the latency experienced by the user. The pre-ping statistic serves

as a baseline for evaluating other sources of hard state specified in the UVS.

4.4.4 Authentication and Discovery

As we mentioned earlier, our infrastructure provides service level discovery. We

have a simple home-grown protocol for authenticating users and discovering/transferring

available service list to the mobile device. A message from the mobile platform,

containing the user’s identity (a hash to username and password), the name of the

environment (N) and a timestamp (real time T) is sent periodically to a designated

multi-cast address. This message informs the environment that the mobile platform

has a service list at time T from the environment N. After checking the user’s identity,

the environment matches N to itself; upon a match, the environment will either send

out an updated service list (if the list has changed since time T) or an empty message

to signify no change. If N does not match this environment, then obviously the mobile

50



Figure 10: Hard State Migration

platform is new to the environment, and hence the environment will send its identity

along with the current service list. At the time of explicit departure from an envi-

ronment (i.e., user explicitly requests to leave an environment), the mobile platform

sends a LEAVE message and collects the necessary state to resume the service at a

later time. An explicit LEAVE has to be followed by an explicit DISCOVER request

to be issued by the user, allowing the system to know the user is willing to discover

surrounding services again.

4.4.5 Communication Message Structure

The structure of the messages for communication between the mobile platform

and the environment is shown in Figure 10:

The first byte of the message indicates the requested command. The command

can be any of the following:

• Discover (D): The mobile device looks for services in the current environment.

A list of available services/resources is expected to be returned.

• Launch (L): The mobile device wants to launch a service that is available in the

current environment.

• Pause (P): The mobile device requests to pause the service. The internal states

are expected to be returned.

• Redirect/Switch (R): The mobile device requests to switch to another display

at application/middleware level or to another similar service to continue the
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Table 6: MobiGo Command Parameters

Command Parameters

Discover NULL
Launch Service ID
Pause Service ID and Pause mode (with or without returned state)

Redirect Destination display ID
Quit Quit mode (with or without saving the states in local env)

activity. If it is a display switching, it requires the application to be able to

handle it internally.

• Quit/Disconnect (Q): The mobile device gracefully disconnects from the envi-

ronment. The current state of the service may be saved or discarded according

to the parameters of the command.

The second byte of the message indicates the length of the message in byte. Cur-

rently, we only have 1 byte for the length of the message, and therefore only support

messages less than 256 bytes long, because we expect the communication between mo-

bile device and environment is very light and the messages are normally very short.

However, this is a design parameter that can be easily changed to support larger

message formats, if necessary.

The rest of the message contains the parameters of the command. It is command

specific as shown in the Table 6. As we listed above, we have only five commands in

our system: Discover, Launch, Pause, Redirect and Quit.

The returned results have the similar structures as the command, except that

they don’t have the command byte. The results start with the length of the message

followed by the contents of the returned values. The structure is pre-defined so every

mobile platform and environment can understand.
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Figure 11: UI: Initial Screen

4.4.6 Sample User Interface

We have developed a user interface application on HP iPAQ using GTK libraries

[54] for mobile users to control their activities. Since the screen of iPAQ is limited in

size, the interface application needs to be as simple as possible. Figure 11 shows our

initial interface when the application is started on iPAQ.

There are two buttons and two drop-down boxes in the interface application.

Users can use two buttons to issue commands to the environment and use two drop

down boxes to select desired services and display resources for the services. Initially,

users can only click the top button “Discover” to look for available services in the

surrounding environment. The other button and the two drop-down boxes have no

use at the beginning.

If the mobile device discovers a new environment, the available services and I/O

resources are downloaded into the iPAQ and populated into the two drop-down boxes.

As shown in Figure 12, the top button is changed to “Quit” that allows a user to

gracefully exit the connected environment at any time. By selecting corresponding
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Figure 12: UI: Services are discovered

I/O device and service, users can click the bottom button “Launch” to start the

service.

After the service is launched, the bottom button is changed to “Pause” that allows

a user to pause the service and dump the state at any time they want (as shown in

Figure 13). The state may be saved to iPAQ as a .uvs file that can be resumed later

using the “Launch” button in another environment.

If users choose another service or I/O device while the current service is still

running, the bottom button is changed to “Redirect”, which allows users to switch

to the selected service or display resource if they want. The Redirect button only

appears when the running service/display resource is different from the selected ser-

vice/resource (as shown in Figure 14). By clicking the Redirect button, the system

can (1) migrate the I/O to the target device at application level or (2) migrate the

internal application state from one service to the other.

The purpose of this interface is to show an example application that can be de-

veloped on top of our platform to assist users to control the migration. This simple
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Figure 13: UI: Service launched

Figure 14: UI: Switching I/O or service
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design is enough to demonstrate the functionalities of our system.

4.4.7 UPnP Media Server and Render

uShare [55] is the Media Server we used for serving media contents to UPnP

renders. It hosts multimedia files for UPnP enabled device to consume the audio and

video media. Following UPnP protocol stack, uShare is built on top of http and uses

libupnp [56] to stream the files to clients.

We have used two types of media renders to render media streams on different

platforms: Intel UPnP media render built on top of Windows Media Player (WMP)

[59] and GMediaRender [60] built on top of GStreamer [61] in Linux. We do not

change these existing tools but we do send UPnP messages to control their behaviors

in order to meet our needs.

4.5 Performance of MobiGo

The “goodness” of the MobiGo architecture is in the user experience. However,

this is a qualitative measure of the performance of the system. To make it quan-

titative, we conduct a series of experiments to convince the reader that the system

results in enhancing user experience.

All experiments discussed in this section use the following set up: (1) a mobile

platform: an Arm-Linux iPAQ equipped with 802.11b wireless connectivity (2) two

environments: <A> a 4-way SMP (4 × 450MHz UltraSPARC-II processors, 4 GB

memory) running Solaris operating system, and <B> a 2-way SMP (2×3.2GHz Xeon,

4 GB memory) running Red Hat Enterprise Linux 4.0. These two machines have

Gigabit wired connectivity to each other and both of them have full-fledged MobiGo

environment software installed (including service repository, service control and hard

state provider). We use a video service for all tests below. In these experiments, we

assume that the video file is streamed to the player. Most players require 512KBytes

- 1024KBytes buffering of the video before starting.
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4.5.1 Latency for I/O, soft and hard state migration

The first experiment is to measure the switching cost of I/O, soft and hard state

migration when users move a service. I/O state migration cost is the latency observed

by Service Control when it informs application wrapper to switch from one display

to another in a single environment (as shown in Figure 7). The cost of soft state

migration, which implies a I/O migration, includes pausing the video, dumping the

soft state to the mobile device (from environment <A>), feeding the soft state to

the other environment (environment <B>) and resuming the video (as illustrated in

Figure 8). Hard state migration cost, while including all the soft state migration cost,

also involves the time to evaluate links from local environment to the mobile platform

and a media server (located in environment <B>) (as illustrated in Figure 9). We

use carrying strategy for the migration of soft state (1K bytes in size) and fetching

strategy for the migration of hard state. The buffer size (i.e., size of the hard state)

is 512KBytes in this experiment. Figure 15 shows our results for these three state

migration costs.

Figure 15: Switching latency for I/O, soft and hard state migration
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We can see from Figure 15 that the one-time switching cost of all three state

migrations are from 0.5s - 1.5s, which are acceptable from user experience perspective

1. Therefore, we conclude that while providing continuity of services to users, the

system overhead is in reasonable range.

4.5.2 Latency improvement from location selector for hard state migra-
tion

In this experiment, we measure how the location selector can help reduce the end-

to-end latency. We assume that the hard state is available on the mobile platform as

well as at a remote server (e.g., video server in environment <B>) that has a high-

bandwidth low-latency connection to the current environment (environment <A>).

Figure 16 shows the relative cost of downloading the data using the location selector

(the light bar) and not using the location selector (the dark bar). For the former

case, there is a hidden cost wherein the location selector first ascertains the relative

cost of downloading from the mobile platform versus the remote server. As can be

seen from the figure, for small file sizes (up to 100 Kbytes), there is no advantage to

downloading from the remote server. This result suggests that it is best to carry the

soft state (which is typically on the order of a few kilobytes) on the mobile platform

and not use the location selector for transferring the soft state to the environment.

On the other hand, there is upwards of 60% performance improvement for large file

sizes (1 Mbyte or more). Since the buffering needed by streaming video players is

in the range of 512 KBytes - 1024 KBytes, it is best to use the location selector for

determining the best source for downloading/streaming the hard state.

4.5.3 Simulating different network conditions

The above two experiments measured the performance of our current MobiGo im-

plementation in a laboratory setting. To further understand how MobiGo performs

1We assume a 2 second latency between initiating an action and observing its effect is tolerable
from a user experience standpoint [62].
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Figure 16: Latency improvement from location selector

under different conditions, we may need to answer questions such as “what if I de-

ployed MobiGo in my home where the highest bandwidth is only 1.5Mbit/sec?” or

“what if I change the strategy from carrying to fetching and how different is the perfor-

mance?”. Therefore, we first analyzed different components of the end-to-end latency

and then conducted controlled experiments to simulate different network bandwidth

conditions to show their influence on the end-to-end latency.

The end-to-end latency is the elapsed time between pressing the SWITCH button

and the resumption of the migrated service. We divide this latency into three parts:

(1) the overhead of MobiGo system to process messages and do bookkeeping, (2)

the latency for the movie player to play/pause/seek the movie and (3) the network

latency to transfer command messages and/or states.

The first two types of latency are relatively constant where the third one varies

in different network conditions. In our current implementation, MobiGo’s bookkeep-

ing and message processing takes about 100-150ms for each migration and the movie

player takes 60-80ms to complete single commands (e.g., play, pause or get paused position).
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Every migration contains 4-6 commands sent to the player, depending on the player’s

capability 2. These two types of overhead are fixed and remain unchanged from one

environment to another.

In order to evaluate the end-to-end latency under different network conditions, we

have modified the MobiGo implementation to add network delays commensurate with

the network bandwidths to be simulated. This gives us a methodology for answering

the “what if” questions we posed earlier in this subsection. Figure 17 shows the results

of these experiments. X-axis represents the bandwidth between the local environment

and the state provider and Y-axis is the end-to-end latency for seamless mobility 3.

Figure 17: Migration latency affected by network bandwidth (for different sizes)

Since the fixed latencies are incurred for all downloads (small or large), the influ-

ence of the network bandwidth is not significant for small downloads (e.g., soft state

migration). On the other hand, we can see that the larger the size of the state to

2Some players need a play and a pause before the seek command that sets the current position
of the movie.

3All the latencies more than 7 seconds are removed from the figure for better view.
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be migrated, the more the influence of the bandwidth on end-to-end latency. For a

1.5Mbit/sec (less than 200KByte/sec) connection, like a typical DSL Internet con-

nection for home, it may take up to 6-7 sec to buffer 1MByte of a movie file from a

remote site. This may be acceptable in some cases but it will be better if the system

can choose a closer state provider, perhaps a server in the home with a 100Mbit/sec

Ethernet connection, for better performance. Further, movie players tend to buffer

more than 1 MByte for high quality movies (image size 640 × 480). Therefore, the

importance of the location selector becomes more apparent under different network

conditions.

The above analysis investigates the possible factors that affect the latency prior

to starting the playing of the movie. An equally important consideration is the

user experience during the actual movie playing. This depends on the bit rate of

the movie and the available network bandwidth. The bit rate of a typical 352× 240

30fps MPEG-1 movie is approximately 1.5Mbit/s (200KByte/s). Thus, if the network

bandwidth is less than 1.5Mbit/sec, the movie playback will not be smooth (i.e., the

user will experience significant start/stop by the player and/or jitter depending on

the player specifics). The location selector can play an important role in selecting

a download/streaming site to ensure that the average network bandwidth is greater

than the bitrate needed for the movie playback. Further, the location selector can

also help instruct the player on the expected amount of buffering to be done to ensure

that there is no jitter and/or start/stop during playback and thus enhance the user

experience.

4.6 Summary

In this chapter, we have presented our middleware level virtualization work in

detail: the motivation, design choice, system architecture, implementation and per-

formance evaluation. We have demonstrated that our system can make similar service
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interoperable and enable users to migrate across these services running on heteroge-

neous platforms. However, as we discussed in Chapter 2, service level virtualization

has its limitations. There are situations in seamless mobility that are not handled at

all or not handled well by service level virtualization. Therefore, in the next chapter,

we present another approach, device level virtualization, to further address issues in

seamless mobility.
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CHAPTER V

DEVICE LEVEL VIRTUALIZATION

Device level virtualization (DLV) targets the heterogeneity at device/hardware

level. Devices in different environments, while providing similar services, are always

different in terms of type and quality. This heterogeneity of device capabilities makes

the service migration difficult since the source and destination platforms are not

always compatible. Device virtualization technology is one of the practical approaches

to address this problem. Device virtualization layer is placed between hardware and

operating systems. Such a layer shields the target device from unintended or malicious

behavior of an application from compromising the resources. DLV is able to capture

the running state of the OS, applications, as well as devices, and migrate the entire

state image from one environment to the other regardless of device capability. In

contrast to service level virtualization, DLV considers the applications and OS as

a package and therefore does not need to care about the application states that

is difficult to capture when application hooks are not available. Virtualization at

device level also makes it easier to capture the state of devices, which is difficult,

if not impossible, to do at middleware/service level. One drawback of the device

level virtualization approach is that the migration may be heavy since the entire

application plus OS, and not just the state of a single application, needs to be moved

from one device to the other. However, for typical handheld devices, the footprint

of the applications and OS is relatively small compared to desktop PCs. This makes

the device level virtualization practical, especially for these small handheld devices.

In this chapter, we describe device level virtualization in detail. We first describe

the requirements of device level virtualization and why we choose Xen as our base
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system to implement device level virtualization. After presenting some possible design

choices, we describe Chameleon system, a device level virtualization system that we

have implemented on top of Xen hypervisor. Finally, we present performance results

to show that the overhead of our modification to Xen is minimal compared to the

original Xen virtualization system.

5.1 Device level virtualization requirements

As we described in chapter 2, device level virtualization can be applied in two

types of scenarios: single-machine-multiple-I/O migration and entire OS migration.

However, the key problem in these two scenarios is the same: we want to switch the

mapping internally between virtualized devices and physical devices. Therefore, we

identify two requirements for device level virtualization to address this need: device

state migration and capability adaptation.

5.1.1 Device state migration

Device state migration is the first requirement for device level virtualization.

When switching from one device (source) to the other (destination), the internal

states of the source device has to be migrated to the destination device seamlessly to

ensure the continuity of input/output. For example, when a movie is being played,

there might be several frames stored in the display devices themselves, waiting to be

rendered on the display. These frames, representing a type of device state, are in

the physical devices and out of the control of operating system/applications. We do

not consider such a state for our work. In contrast to this type of state, there are

also some frames stored in the device drivers that have not been transferred to the

physical device. This type of state is out of the control of the application but still

part of the operating system. In other words, the applications “think” that these

frames have already been rendered but they are actually not. When we switch the

mapping from one physical device to the other physical device, these frames have to
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be migrated to the destination device. Similarly, on the input side, there might be a

few ASCII codes for the key strokes saved in the input buffer of a keyboard device

driver that have not been delivered to applications. When we switch from one input

device to another, these ASCII codes need to be migrated as part of the device state.

5.1.2 Capability adaptation

Another requirement of device level virtualization is capability adaptation. As can

be imagined, different devices may have different capabilities. For example, display

devices may have different sizes, resolutions or color settings (i.e., the same pixel may

appear differently on different display devices). Input devices may have different key

layout or key code mappings. When switching from one device to the other, we need

to consider such differences in device capabilities and conduct proper adaptation

to address the differences and help enhance the user experience. We call such an

adaptation mechanism capability adaptation.

There are a variety of capability adaptation algorithms for different types of adap-

tation. However, the development of such algorithms are out of the scope of this

dissertation. The focus of this work is to construct a comprehensive architecture to

enable the dynamic selection and utilization of capability adaptation algorithms at

run-time. The goal is to enable the integration of any adaptation algorithm into our

system easily and efficiently.

5.2 Design principles

There are a few important issues that we have to consider in order to design a

successful system to address the migration needs. In this section, we discuss these

issues and design principles underlying these issues.

Before discussing the design principles, we want to describe the migration system

briefly. As we stated in chapter 2, users may desire movement of their activities with

their physical movement. Therefore, in our migration system, there is always a mobile
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platform that is moved with the user and a stationary host system (environment) that

can provide resources locally to the user. The mobile platform can also be called a

“guest” system, which means it takes the resources offered by the local host and

serves the user directly. The guest may be migrated to a different host system if the

user moves.

The first design principle is that we want to keep the mobile platform unchanged

and make the environment adapt to the mobile platform. Since in a typical ubiq-

uitous environment there are a variety of resources and systems, adaptation has to

be done in order to enable the migration across heterogenous platforms. Therefore,

there is always a question of where the adaptation should happen. We think that

instead of making the mobile platform adapt to the target environment, it is better

for the environment to be able to adapt to the mobile platform, because the hosting

environment always knows the local resources better and therefore understands how

to best adapt a generic guest system to its local resources. Another (not desired)

way is to make the guest system adapt to environmental resources. This approach

may not work well because the guest has to know every environment and all types of

resources in order to be able to adapt to any new environment. Again, in a typical

ubiquitous computing environment, there are hundreds of different types of resources.

It makes the guest difficult (if not impossible) to learn all of them beforehand.

The second design principle is that we want to build a system that can support the

dynamic installation and uninstallation of different capability adaptors for adaptation.

The adaptation algorithms, however, are not the focus of this dissertation. While new

adaptation algorithm may be developed from time to time, the aim of our system is

to make the integration of such algorithms easy and efficient. Our focus is to add the

management of capability adaptation (dynamic installation and selection) and device

state migration to existing ubiquitous computing systems.

The third design principle is that we want to make the selection of adaptation
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algorithms automatic and dynamic at run-time. Our system architecture allows the

coexistence of a variety of adaptation algorithms and choosing one algorithm over the

other is always a challenge. We would like to facilitate the selection of an algorithm

based on requirements presented to the system at runtime.

The fourth design principle is that we want to make the migration as seamless as

possible. Therefore, we may need to migrate the device state (such as the frame buffer

for display device) in addition to capability adaptation. By dumping and resuming

the device states, we can ensure the seamless migration of the guest at device level.

5.3 Base System

In order to meet all the design principles described in the previous section, we

choose Xen as our base operating system to work on. In this section, we briefly

describe Xen and the reasons for our choice.

5.3.1 Xen and virtual device

Xen is an open-source virtualization system that can support multiple guest oper-

ating systems running on top of a hypervisor (also called a virtual machine manager),

sharing the same hardware resources. Xen always needs a host operating system (usu-

ally Xeno-Linux) running on top of the hypervisor to interact with the guest operating

system. By virtualizing the hardware resources, the hypervisor gives a guest operating

system the illusion of having total control of all resources while internally managing

resources across different guests. In addition, the hypervisor creates different domains

for these operating systems in separate address spaces, called virtual machines (VM),

and Xen provides facilities to suspend and resume these VMs.

Split device driver model is a key feature in Xen that facilitates capability adaption

without significant change to the system. Figure 18 shows the basic architecture of

Xen. On top of the virtual machine monitor, there is a host operating system that

hosts backend device drivers (BE) similar to physical device drivers in a traditional
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operating systems. These backend drivers are device specific and they take control

over physical devices directly. There might be one or more guest operating system(s)

with generic frontend device drivers (FE) that seek to access those devices controlled

by the backend. Frontend drivers connect to backend drivers when the guest OS

is loaded into the system. After a complex handshaking process and connection

establishment, FE can forward the application requests of accessing a device (such

as reading or writing) to BE. BE then processes those requests to fulfill FE’s needs,

just as a traditional device drivers would do.

Figure 18: Xen Architecture

Backend drivers and frontend drivers communicate through Xenbus [57], which is

a virtual bus located in the virtual machine manager (VMM). The frontend always

initiates the connection by writing a particular entry in Xenstore [42], a centralized

storage space that is also located in VMM and can be accessed by any domain. The

backend can see the change and trigger the connection establishment process (we will
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Figure 19: Communications in Xen Split Device Driver Model

present the details later in this section). Upon connection, Xenbus creates frontend

and backend instances inside it to represent the two communication entities. The

two Xenbus instances communicate to the actual frontend and backend respectively

inside their domain (frontend in guest domain and backend in host domain). Figure

19 shows this model. The left two boxes in Figure 19 are running in host domain

(backend part) whereas the right two boxes are running in guest domain (frontend

part). The middle two boxes are Xenbus components that live in the VMM of the

Xen architecture and connect frontend and backend together.

In such a split device driver model, the frontend driver can be seen as a virtual

device driver that is generic and takes no device specific information. The virtual

device driver becomes concrete when it connects to a backend that has information

about the physical device (e.g., resolution and color settings for a display device).

Applications running in the guest operating system only see virtual device drivers

and do not need to worry about device specific settings and configurations. This

gives application developers the freedom to focus on their application logic instead of

dealing with physical device related issues.

Therefore, we can see some key features in Xen that can help us develop an

interface virtualization system and capability adaptation:

• Xen has generic frontend device drivers, which gives us a very good starting

point to develop virtualized interface for output devices (see next section for

details).

• In the split device driver model, we can break the connection between frontend
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and backend drivers and then insert the capability adaptor to enable the ca-

pability adaptation, which only requires a small modification of the connection

part of original Xen’s driver code.

• Xen is an open source operating system that makes it possible to change the

operating system internals for the adaptation mechanism.

5.3.2 Framebuffer device and virtual framebuffer device

As a concrete example of how Xen virtualizes devices, let us consider framebuffer,

an important device for several reasons. First of all, to support seamless mobility in a

ubiquitous setting, the display device plays a crucial role in enhancing user experience.

Second, the display device has significant amount of complexity (aspect ratio, color,

intensity, etc.) that makes virtualization and capability adaptation of this device

challenging. Third, the framebuffer is an excellent vehicle from the point of view of

demonstrating the power of the capability adaptation framework of Chameleon.

Framebuffer device drivers in Linux provide common interface for applications to

draw pixels on physical devices without knowing the details of each device. Typically,

framebuffer of these devices, which contains the color values of every pixel on the

screen, is mapped into main memory and can be read and written through regular

memory operations. Internally, framebuffer device drivers use low level system calls

(such as inb and outb system calls [58], which access device directly) or assembly

language to operate the physical devices according to their detailed specifications.

In Xen virtualization system, the virtual framebuffer device drivers are provided

to guest operating systems in order to virtualize these drivers on top of physical

framebuffer devices. In Xen, virtual framebuffer device driver is also split into two

parts: frontend driver and backend driver. Frontend drivers are located in guest

domains and serve as traditional Linux framebuffer device drivers for any guest op-

erating system. Backend drivers are located in the host domain, which can connect
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to frontend drivers when guest domains start. Backend device drivers map the guest

domain’s framebuffer requests to physical device driver framebuffer to execute the

actual operations (such as reading or writing).

Virtual framebuffer device drivers provide a common interface for us to operate

output devices without worrying about their details. Such an interface helps us to

focus on the upper layer logic (such as state migration and capability adaptation)

rather than device control commands. We choose to use virtual framebuffer device

drivers as the base device drivers in Chameleon since that simplifies the design for

dealing with device specific operations.

5.4 Design choices

There are several design choices to build a system that can support capability

adaptation and device state migration. In this section, we discuss these design choices

and in next section we present the final design of our system, Chameleon, to meet

the requirements.

Since we need to add capability adaptation and device state migration on top of

existing Xen’s architecture, we do need to change Xen’s device driver code to some

extent. However, we wish to minimize the changes to the existing code. At the same

time, we also wish to minimize the overhead we introduce into the system. Therefore,

we consider three possible architectures for Chameleon.

Figure 20 shows our first design choice. In this design, we need to modify the

frontend and backend drivers and add capability adaptation module and the virtual

device interface module to each of them respectively. In this way, the two additional

module communicate through regular Xen’s mechanism and the requests from fron-

tend are redirected through these two additional module instead of directly reaching

the backend. Both the host and guest domains in this design have to be modified to

support capability adaptation. However, regular Xen’s split device driver mechanisms
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remain unchanged.

Figure 20: Design 1:changes in FE and BE, no change in VMM

Figure 21 shows the second possible design of the system. In this design, we insert

capability adaptors into VMM and keep both the frontend and backend unchanged.

However, we need to change the mechanisms in Xen to make the FE/BE connection.

The changes will apply to any host environment system but only inside VMM. We

do not need to change any host domain or guest domain in this design.

Figure 22 shows the thrid possible design for the system. In this design, we do not

change the guest domain as well as the VMM. All the modifications happen in the

host domain and the backend drivers to insert the capability adaptor in the existing

Xen’s split device driver model. This requires some modifications to the host domain
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Figure 21: Design 2:No BE and FE changes, CA in VMM

but not anywhere else.

Table 7 summarizes the above descriptions of the three designs in term of the

amount of modification they need and where the modification needs to be done. A

comment on the qualitative tagging of changes as “Small” and “Big” in this table.

Based on our experience with Xen, intercepting the connection between the frontend

and backend is relatively easy since it only requires splitting the connection code

from the driver code. Therefore the amount of code that needs to be modified is

minimal. However, changing the existing Xen’s split device driver mechanism requires

big effort in changing the core code of Xen and needs greatest effort in debugging and

testing since it touches the heart of Xen. Therefore, we tag the effort involved in the
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Figure 22: Design 3: No changes in FE and VMM, CA in host domain

envisioned changes to support the design choices as “Small” and “Big” in the table

accordingly.

According to our design principles, design 1 is not desirable since it requires the

change to the guest domain. We want to keep the guest domain unchanged so that

the host environment can always know the guest domain and how to adapt to it.

Compared to design 3, design 2 requires significant changes to Xen’s VMM and core

code, which enlarges the amount of modified code and requires clear understanding of

every core module in VMM. Design 3, on the other hand, only requires small amount

of code changes and further no changes to the guest domains, which is more desirable

than the other two designs. Therefore, if a new version of Xen is released, it can be
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Table 7: Comparison of different designs

Design 1 Design 2 Design 3
Guest domain modification Small None None
Host domain modification Small None Small

VMM modification None Big None

easily integrated into our system with minimal effort if we use design 3.

5.5 Chameleon Architecture

According to the discussion in the previous section, we design our system archi-

tecture as shown in Figure 23. This architecture follows the third design we discussed

previously with additional modules that are required to support our design principles.

As shown in the figure, we have a pool of backend device drivers that control phys-

ical devices. Different from original Xen backend drivers, these drivers in our system

do not connect to frontend drivers directly. Instead, the connection manager connects

them to appropriate capability adaptors (discussed later) and then to an instance of

the virtual device interface, which frontend drivers can discover and connect when

the guest OS comes online. After the connection is made, the data flows without the

involvement of the connection manager, as the arrows indicate in Figure 23.

We also have a registry that keeps the information about all the capability adap-

tors that are registered in the system. The match maker takes the information and

decides which algorithm to use at run-time based on the information provided by

the connection manager. For example, the connection manager can tell the match

maker that the virtual device interface expects an 800*600 screen but the only backed

driver available is for a 400*300 display. The match maker may take the “shrinking”

algorithm but not “expanding” algorithm in this case. The connection manager can

take the decision made by the match maker and connect the appropriate adaptor

with other system modules.

Capability adaptation is done by breaking the frontend/backend connection and
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Figure 23: Chameleon System Architecture

adding capability adaptors (CA) between them. In this case, FE issues requests to CA

instead of directly to backend drivers. CA can do adaptations on the requests based

on its information about the frontend and backend and then forward the requests

to backend to process. For example, if the guest OS was originally connected to an

800*600 display but is now migrated to a 400*300 display, the capability adaptor,

by knowing that information, can shrink the frame buffer accordingly when frontend

issues the updates on the 800*600 frame buffer (frontend still thinks it has an 800*600

screen in this case). Similarly, another capability adaptor can expand the screen if

the destination framebuffer is larger than the original.

More specifically, the guest domain in our system is running on mobile platform
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and is moved with users. The host domain runs the environment system that provides

resources to the guest domain for better user experience. When user leaves an envi-

ronment, the guest domain is paused and the state is dumped into the mobile device.

At the destination environment, the guest domain is resumed and user’s activities are

continued. Note that the guest domain that is migrated is always minimized to re-

duce the cost for migration. For a movie service, the actual movie file is not included

in the guest domain. The movie is normally streamed from another source on the

Internet.

Our system design meets all the design principles that we presented in section

5.2. All the modules in our system are in the host domain and we keep the guest

domain unchanged and generic for the migration. The registry in our system allows

the dynamic registration of capability adaptation algorithm, which can be used later

for selection. Removing an entry in the registry prevents the future selection of the

corresponding algorithm and therefore is an “uninstallation” of the adaptor. The

match maker in our system takes charge of the algorithm selection for particular

adaptation needs. The connection manager can dump the device state by calling

the virtual device interface and packing the state with the domain image for later

resumption of the domain on the destination platform.

5.5.1 Discovery

Device discovery in Xen means the actions taken by the frontend drivers to find

the corresponding backend driver when the guest domain comes online. In original

Xen system, Frontend drivers do it by writing to the appropriate device type’s entry

in Xenstore [42], a registry database in VMM that is accessible from any domain.

Backend driver will be notified if particular entry in Xenstore changes and then start

the connection initialization. After that, FE and BE communicate the basic connec-

tion information through Xenstore to set up event channels and shared pages to make

77



the connection.

In our system, we separate the discovery from the connection establishment. The

connection manager will set up notification of changes at specific entries in Xen-

store and wait for frontend drivers to discover. After a frontend driver initializes

the connection by changing entries in Xenstore, the connection manager initiates an

instance of virtual device interface and hands over to the virtual device interface for

the connection establishment with the frontend. The separation of discovery from

connection establishment moves the connection manager out of the common path for

data transfer while still setting up a central point of contact for discovery.

5.5.2 Connection establishment

The virtual device interface takes charge of the connection with the frontend driver

as described above. It sets up the event channels and shared pages with the frontend

for later data communication based on Xen’s mechanism. The virtual device interface

also takes suggestions from the connection manager as to which capability adaptors it

should connect to and which backend driver will handle the requests. In our current

implementation, we took the connection code from original Xen’s backend for the

connection to frontend drivers since we wish to simulate the exact behavior of Xen’s

backend to make our system transparent to the frontend driver. We use dynamic

linked library for the capability adaptors in order to be able to load them at run-

time. The CA library names are recorded in the registry and provided to the virtual

device interface upon request. These CA libraries are required to implement several

functions in order to make the connection happen successfully.

5.5.3 Virtual device to physical device mapping

Virtual device interface is mapped to physical device backend dynamically at

run-time. At startup of a guest domain, the connection manager chooses the best

resources for the guest domain and maps the virtual device interface to the best
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possible physical resource backend. If the guest domain is migrated from another

environment, the virtual device interface learns the source device specification from

the frontend drivers and passes it to the connection manager. The connection manager

then selects the physical resource backend that best matches that specification (e.g.,

screen size, resolution) for the guest domain. If a match is found, then the mapping

is made directly from the virtual device interface to the physical resource. However,

in most cases, the exact match may not be found. Therefore, we need capability

adaptation to solve the heterogeneity problem.

5.5.4 Capability adaptation

In case the virtual device is different from the physical device, capability adapta-

tion has to be done by capability adaptors in our system. Capability adaptors are

classified by categories based on their functionalities. For example, video adaptors

are able to adjust frames based on their original size and target size. Keyboard adap-

tor can change the key codes accordingly to make the source and destination input

device look like the same to users. Each adaptor has to implement a certain set of

functions that are required for its category. This set of unique functions implemented

by all adaptors in a category enables the dynamic change of adaptors in this cate-

gory at run-time. The implementation details of these functions are presented in the

implementation section later.

Note that the adaptation algorithms themselves are not the focus of our system

and therefore are not the main contribution of this work. Our goal is to enable the

dynamic installation and selection of capability adaptation algorithm at run-time to

ensure the seamless migration of user’s activities.

5.5.5 Data flow

Different types of devices have different data flow in Chameleon. Figure 24 shows

a typical data flow. Applications in guest domain issue requests for operations on a
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device. The requests are sent to the frontend virtual device in the guest domain, which

connects to the virtual device interface in the host domain. Typically, a capability

adaptor is needed and the access requests are forwarded to the capability adaptor

to do the required adaptation before they reach the physical backend device for the

actual operations.

Figure 24: Data flow in Chameleon

Note that the connection manager is not in this common path. Therefore, we do

not have additional management overhead in the entire process as every module is

critical to process the data. Compared to data flow in the original Xen split device

driver model, the only additional module that the requests need to go through is the

capability adaptor. However, this module is not even required if the virtual device

interface matches the physical device backend exactly.
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5.5.6 Device state migration

There are a variety of internal states of backend drivers that may be necessary to

be migrated in order to ensure seamless operation. Framebuffer in a display device

drivers is one such example of such states. These states are internal to physical device

drivers and out of the control of guest domains. Therefore, only migrating the guest

domain may cause these states to be lost. We need to capture and resume such states

with the migration of guest domain in order to provide the real unstopped service to

mobile users.

Device state is captured by the connection manager when the migration is trig-

gered. The connection manager collects all the internal states of the physical backend

driver and packs them up with the migration of the guest domain. At the destination,

the connection manager extracts the states and dumps them into the selected physical

backend accordingly. These states may also subject to be adapted if the source and

destination devices are heterogeneous.

5.6 Implementation

In this section, we present implementation details of Chameleon to achieve our goal

of device state migration and capability adaptation. To make the discussion concrete,

we present details of two categories of devices (display and keyboard). However, it

should be noted that our architecture is general and applies to any device that adheres

to the split device driver model of Xen. The performance evaluation results that we

present later are based on our current implementation of the system.

5.6.1 Data structure for virtual device, physical resource and their map-
ping

We use different data structures to represent virtual device, physical backend

device (resource) and the mapping between them. Given below are these data struc-

tures.
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(1) virtual device structure:

struct virtdevice

{

int devType;

char devName[64];

int devID;

int domID; //DomU id

struct xenfb* xenfb; //virtual framebuffer

void* extraInfo;

struct virtdevice * nextdev;

};

The virtual device structure records the information of the virtual device inter-

face. The virtual device is discoverable by the frontend drivers from its device type

(devType) and device name (devName). The xenfb field in the structure is used for

virtual framebuffer to identify the framebuffer it uses. The virtual device structure

is a linked list and the nextdev pointer points to the next node in the linked list.

(2) resource structure (physical devices):
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struct resource

{

const char* resName;

int resID;

int resType;

int resStatus;

void* extraInfo;

adapter t* padapter;

void (*useResource)(void*);

void (*reuseResource)(void*);

struct resource * next;

};

The physical driver (resource) structure is an internal structure of our system. We

use it to maintain the physical backend device driver’s information and whether it

has been used or not (resStatus). The two function pointers in the structure points

to two required functions of the physical backend device driver that can be used to

utilize the device and resume the device state. The extraInfo field stores device

specific information for each device category. The resource structure is also a linked

list and the next pointer points to the next node in the list.

(3) structure for virtual device to physical device mapping:
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struct mapping

{

int mapID;

int backendID;

int frontID;

state t MapState;

pthread t tid;

pthread mutex t mapMutex;

virtdevice t* pVirtdev;

resource t* pResource;

adapter t* pAdapter;

struct mapping * pnext;

};

The mapping structure stores the mapping information between physical backend

resources, capability adaptor and virtual devices. Since our system creates a sepa-

rated thread to handle the requests for a particular mapping in order to avoid the

interference between devices, this structure also records the thread information as

well as a mutex for the thread. The mapping structure is a linked list and the pnext

pointer points to the next node in the list.

5.6.2 Capability adaptor interface

In our system, we consider two types of capability adaptation: frame buffer adap-

tation for display device and key stroke adaptation for keyboard device. Both of

these adaptors have to implement certain functions that can link to the entire system

dynamically at run-time. Given below is the code for these functions and the frame

buffer update structure definition:

84



updateDisplay(void* src buf, void* dst buf,

struct fbu *src, struct fbu *dst);

updateKB(char *src code, char *dst code,

int src, int dst);

struct fbu //Frame buffer update info

{

// Update Area info

int x; // start point in x axis

int y; // start point in y axis

int w; // width of the update area

int h; // height of the update area

// Setting info

int size w; // width of the full screen

int size h; // height of the full screen

int r; // color setting for red

int g; // color setting for green

int b; // color setting for blue

};

These two update functions are self-descriptive: they take the source frame buffer

or key stroke and convert it into destination based on the source and destination

information (src and dst). The updateDisplay function also sets x, y, w and h

field in the dst as an output since these values will be used later to update the

actual device. (For example, if the source device is 800*600 and it updates the area

((100,200),(240,300)), then the destination device with a screen size of 400*300 should

update the area of ((50,100),(120,150)) accordingly.)
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The capability adaptor is represented by the following structure in our system:

struct adapter

{

int adapterID;

char adapterName[32];

int state;

void* (*adaptfunc)(void* src, int x, int y, int width, int height);

struct adapter *next;

};

This structure maintains the basic information about the capability adaptors such

as their IDs, names, state (used or unused) and adaptation function pointers. This

structure is a linked list and the next pointer points to the next element in the list.

5.6.3 Registry and match maker

We store the capability adaptor information into our registry for the match maker

to select at run-time. Each entry in the registry contains two parts: capability adaptor

library name and a flag field that shows the types of adaptation that can be done

for the corresponding algorithm. The flag has 5 binary bits that represent 5 types of

adaptations:

• Extend the screen horizontally

• Shrink the screen horizontally

• Extend the screen vertically

• Shrink the screen vertically

• Do color setting change
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For example, an adaptation algorithm that is very good at extending the screen

both horizontally and vertically but cannot do the color setting change will have a

flag of 10100 in the registry. Another algorithm that is particularly good in shrinking

the screen vertically and can do color setting change will have a flag of 00011.

At run-time, the match maker takes the source and destination device information

and selects the appropriate algorithm based on the flags in the registry. It passes the

library name to the connection manager for loading and connecting to other modules.

We also provide a small tool for adding/removing entries to/from our registry for

the capability adaptors. Basically, a developer of the adaptation algorithm compiles

the algorithm code to get a dynamically linkable library. Then they can use our

tools to specify the types of adaptation presented by the algorithm together with the

library name to add it into our system. Our tool also allows users to delete an entry

from the registry in case the adaptor library is removed or no long needed.

5.6.4 Framebuffer device - the backend

As we discussed before, we choose to use virtual framebuffer support of Xen in

Chameleon. However, virtual framebuffer device drivers are always mapped to real

framebuffer device in order to draw pixels on the screen. In the current implemen-

tation of Chameleon, we use two types of real framebuffer: a simulated framebuffer

device using a VNC server, and a physical framebuffer device using NVIDIA frame-

buffer device drivers. Both of these framebuffers use a modified xenfb structure

(used in legacy Xen system to represent framebuffer device) to store critical infor-

mation about the device, which can be retrieved by capability adaptor for proper

adaptation. The modified xenfb structure is defined as follows:
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struct xenfb

{

void *pixels;

int row stride;

int depth;

int width;

int height;

int abs pointer wanted;

void *user data;

void (*update)(struct xenfb *xenfb,int x,int y,int width,int height);

void* pResource;

};

5.6.4.1 VNC framebuffer

The simulated VNC-enabled framebuffer device driver starts a VNC server and

uses it as the target device for display. This framebuffer device can be initialized and

updated as regular physical framebuffer device. Different from physical framebuffer

device, this simulated device draws pixels in the VNC server framebuffer instead of

drawing to the physical framebuffer on the physical device. Any VNC client can

connect to the VNC server to see the screen that is supposed to be displayed on the

physical device. The advantages of using the simulated driver are the following:

• Original Xen’s virtual frame buffer driver is a similar VNC-enabled simulated

driver. We can take advantage of that code to implement the VNC server and

the updates.

• By using a simulated driver, all the codes are running at user level, which makes

the development and debugging much easier.
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• The simulated driver behaves exactly like the physical driver. The only differ-

ence is that instead of sending commands to physical device, it sends commands

to the VNC server.

The VNC framebuffer uses the VNC library, libvnc [41], to create a VNC server

screen and does updates on the screen pixel by pixel. VNC protocol allows the update

of certain part of the screen instead of the full screen as long as the correct coordinates

are clearly specified. We create a VNC framebuffer with the size of 800*600 and true

color setting (32 bits per pixel). Each pixel value is stored in a continuous 4-byte space

and can be updated individually in Red, Green, Blue and Transparency accordingly.

5.6.4.2 Physical framebuffer

In addition to simulated framebuffer, we also integrate NVIDIA framebuffer, a

physical device driver, into Chameleon to test the framebuffer in real scenarios. This

physical framebuffer, similar to the simulated framebuffer, can be initialized and

updated to reflect any changes on the screen. Internally, different from simulated

framebuffer, this NVIDIA framebuffer uses lower level system calls and assembly

instructions to operate the video card on the machine. The implementation gives us

hand-on experience on how the physical device drivers behave in real scenarios. We

will show our performance evaluation results in the next section and compare physical

drivers with simulated drivers.

This NVIDIA framebuffer has a screen size of 640*480 and 4-bit color setting.

Each pixel can have 16 different colors in this physical framebuffer. In addition,

different from VNC framebuffer, NVIDIA framebuffer is not organized pixel by pixel.

It uses 4 bytes to store the color value of continuous 8 pixels in a row. Each byte

represents blue, green, red and transparency respectively for all 8 pixels. Table 8

shows an example of how the first four bytes in the framebuffer store the color of the

first 8 pixels on the screen. As shown in the table, the first pixel has the color value
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Table 8: NVIDIA framebuffer format

Pixel (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)
Byte 0 (Blue) 0 1 1 1 0 0 0 1
Byte 1 (Green) 1 1 0 1 1 0 1 1
Byte 2 (Red) 0 1 1 0 1 1 0 1

Byte 3 (Transparency) 1 1 0 1 1 1 1 0

of (0,1,0,1) in the column (first bit of these four bytes). Similarly pixel (0,5) has the

color value of (0,0,1,1).

This is an example to show different framebuffer may have different resolutions,

color settings or even byte format. Therefore, we do need capability adaptation for

the framebuffer in order to bridge the gap between different framebuffers and allow

the seamless migration of the screen from one framebuffer to the other.

5.6.5 Capability adaptation algorithm

We have implemented two types of capability adaptation algorithms in our system.

One type of algorithm is the basic scaling algorithm to target the screen size difference

between the source and destination devices. This scaling algorithm scans the screen

line by line and computes the average value of each pixel according to the source and

destination device configurations. For example, if the source screen is 800*600 and

the destination screen is 400*300, this algorithm uses the average color value of 4

pixels on the source screen to compute the color value of one pixel on the destination

screen (i.e., D(x,y) = avg(S(2x,2y), S(2x+1,2y), S(2x,2y+1), S(2x+1,2y+1)) where

D(x,y) is the color value of the pixel (x,y) on the destination screen and S(x,y) is the

color value of the pixel (x,y) on the source screen.). Weights will be assigned to the

avg function for the pixels if the scaling is complex (i.e., not exactly 4 to 1 mapping).

Again, our system does not focus on specific adaptation algorithms themselves but

their dynamic linkage at real-time when the guest domain is migrated.
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5.6.6 Frontend and its communication to the backend

In this subsection, we describe the existing mechanism for device driver commu-

nications in Xen and Linux. This description is essential to understand how we have

integrated capability adaptation into the existing Xen code base.

In our system, frontend drivers follows the requirements of a regular device driver

that runs in legacy Linux system. Two critical functions need to be implemented

in the frontend drivers in order to make guest domain operating system aware of its

presence:

void module init(void *);

void module exit(void *);

The frontend device driver can be installed into the kernel by using the tool

“modprobe” and the guest operating system will call the above function module init

to start the initialization process. The modprobe tool can also be used to uninstall

the driver, at which point the above function module exit will be executed to clean

up the data structures of the driver and release resources.

Frontend starts to communicate with the backend through Xenstore [42] at the

beginning to do initialization. Xenstore is a centralized storage space that can be ac-

cessed by any domain. Similar to Windows registry [43], Xenstore normally contains

critical configuration information rather than large chunks of data that needs to be

transferred across domains. The following functions are important to access Xenstore

from frontend/backend drivers:

void *xs read(struct xs handle *h, xs transaction t t,

const char *path, unsigned int *len);

bool xs write(struct xs handle *h, xs transaction t t,

const char *path, const void *data, unsigned int len);
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The initialization includes the allocation of resources, the set up shared pages and

event channels, and the change of internal states. The frontend driver also needs to

register itself to Xen hypervisor in order to be recognized. The following hypercalls

are used for these purposes:

int xenbus register frontend(struct xenbus driver* driver);

int xc evtchn open();

evtchn port t xc evtchn bind interdomain(int xce handle,

int domid, evtchn port t remote port);

void *xc map foreign batch(int xc handle, uint32 t dom,

int prot, xen pfn t *arr, int num );

After initialization through Xenstore, the frontend and backend use the event

channel and shared pages for communication instead of Xenstore. When the frontend

needs to send some data to the backend, it first writes the data into shared pages

and then sends an event to the backend through the event channel. Backend can

recognize the event immediately and may process the data, write the results back to

shared pages and then send an event back to frontend through the event channel.

Frontend gets the event and retrieves the results from shared pages.

5.7 Performance

In order to justify how our system affects the operating system by providing device

migration and capability adaptation, we conduct some experiments to measure the

overhead of the system. We use two identical AMD Athlon(TM) 64X2 dual-core

machines with 1G memory and Ethernet connection to each other. Both machines

have Fedora Core 5 Linux with Xen 3.1 installed as the software platform.
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5.7.1 Performance of capability adaptation

The first experiment is to evaluate the overall performance of our capability adap-

tation system and how much additional overhead we introduce compared to original

Xen’s split device driver model, since we build our system based on Xen. This mea-

surement can indicate if our system is good enough in terms of performance when

adding capabilities adaptation to Xen.

We measure the following two types of costs in this experiment:

• Guest domain initialization cost: it measures the total latency to setup

a new guest domain for capability adaptation. This cost includes the latency

for backend device driver discovery, backend-frontend connection establishment

and the first frame buffer initialization.

• Incremental capability adaptation cost: it is the latency for processing

guest domain requests to access virtualized devices after initialization.

We compare both of these costs to original Xen’s costs to demonstrate that our

system does not introduce significant overhead when providing additional functional-

ities (i.e., capability adaptation) to Xen.

In our current implementation, we use framebuffer devices to demonstrate these

two costs because the update to a certain part of the screen may include a large

amount of memory copying, which is time-consuming compared to updates in other

types of devices (such as inputting ASCII codes corresponding to key strokes in

keyboard devices). Our experiment is intended to show the “worst case cost” for the

two figures of merit (guest system initialization and incremental adaptation) among

different categories of devices.

Figure 25 shows our results for framebuffer devices with different capability adap-

tors. Please note that the incremental capability adaptation cost is shown as “cursor
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blink” in the figure because the cursor that blinks on the screen necessitates the fre-

quent update of a small portion of the screen. Such costs match our description of

incremental adaptation cost so we use the latency of “cursor blink” as an example to

show the incremental cost of our system with regard to capability adaptation..

Figure 25: Performance of Chameleon and Original Xen

In the figure, we can see that for a cursor blink, our system with different capability
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adaptors has similar performance as original Xen’s virtual frame buffer device. We

only introduce 2% to 7% overhead compared to Xen. This additional overhead does

include the overhead of capability adaptation algorithm and therefore does depend

on the performance of these algorithms. However, we use very simple algorithm in

these experiments so it indeed shows the performance of the “overall” performance

with simple algorithm. However, we do not always have control over the performance

of the adaptation algorithm. If the algorithm is more complex, the latency might be

bigger. Since the capability adaptation algorithms are not focus of our system, we

want to exclude the influence of particular adaptation algorithm as much as possible.

This experiment is analogous to measuring the cost of a “null message” in a message

communication library. In other words, the experiment is designed to measure the

cost incurred by the code path corresponding to the dataflow for device updates shown

in Figure 24. From Figure 25, we can see that our system performs well compared to

Xen while providing capability adaptation in addition to Xen.

In contrast to cursor blink, the guest domain initialization of Chameleon intro-

duces noticeable costs compared to original Xen for the two adaptation algorithms.

However, for one adaptation algorithm (800*600->400*300), our system even out-

performs Xen. The reason for such a difference is mainly due to the memory copy

cost: the guest domain initialization requires a copy of entire screen to the physical

framebuffer once. With capability adaptation, we need to first “adapt” the screen

and then copy it into the physical framebuffer. This additional copy of entire screen

causes the difference in performance. In the 800*600->400*300 downscaling adapta-

tion algorithm, we need to adapt and copy only 400*300 screen instead of the entire

800*600 screen in Xen. Therefore, the performance of our system with this algorithm

even outperforms Xen. Figure 26 shows the details procedure of this memory copy

and Figure 27 shows the time for copying different sizes of the memory.

Again, this experiment shows the performance of our system is good compared to
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Figure 26: Additional memory copy for Chameleon

Xen. Similarly, we want to measure the performance of our system but not specific

adaptation algorithm. By using these simple adaptation algorithms, we are able

to demonstrate our system performs well with basic adaptation. We do know that

these performance results are algorithm dependant. However, since the design and

implementation of particular algorithms are out of our control, we only use simple

algorithms to show the performance of our system compared to Xen.

To generalize our result, we can expect similar or better results for devices other

than framebuffer. For example, input devices do not always have such a big mem-

ory cost shown earlier. Therefore, different capability adaptation algorithm will not
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Figure 27: Time for copying different sizes of framebuffers

make a difference on the performance numbers. The incremental adaptation cost for

input devices can be also similar to the results presented for framebuffer device since

the update request of input device, similar to the update of a cursor on a screen, is

typically small and match the results shown for framebuffer devices. Audio devices

may also have similar results for incremental adaptation cost but may have big dif-

ference for guest domain initialization, since the adaptation algorithm for audio may

be complex and costly.

5.7.2 Performance of the state migration

The second experiment is to measure the cost for migrating the device state from

one physical device to another physical device. Since the device state migration is one

key feature of Chameleon, we want to measure the cost for such a migration. Such

a migration is a user initiated operation so we will judge our result in term of user

experience. We expect a small amount of latency for such a migration from a user’s

perspective.

In this experiment, we start two framebuffer backend driver and make one of them

connect to the frontend driver and display the screen. Then, we issue a command
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to the running backend driver to make it migrate to the other framebuffer backend

driver at run-time. The results we present in Figure 28 shows the costs for such a

migration.

Figure 28: Device state migration costs

In the figure, we can see that the cost for such a migration is 1ms - 2.5ms in total.

With reference to Figure 27, we can see that most of the cost is due to the memory

copy of the frame buffer from one driver to the other. As we stated, this experiment

is to measure the migration cost and it is a user-centric measurement. An additional

1-2.5ms for the migration from one device to the other is not noticeable from a user’s

point of view. Therefore, such an overhead is acceptable in terms of user experience.

To generalize our evaluation, we can expect similar or better results for other types

of devices. State on other devices may be lighter than display devices. For example, a

keyboard device driver may only store a few ASCII codes in its buffer as device state.

Compared to a full screen of pixels, such ASCII codes are very light and therefore

do not take significant time to be migrated to another input device driver. Similarly,

audio device may have state such as a few millisecond of sound that will be played.

The amount of such state may vary depending on the format of the sound. However,

we expect the amount of state stored on most types of device drivers to be less or
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similar to framebuffer device drivers. Therefore, it is fair to say that the performance

results reflect a worst case cost for system initialization and adaptation incurred by

our modified Xen system that supports device level capability adaptation.

5.7.3 VNC framebuffer vs. physical framebuffer

In addition to the two experiments of Chameleon shown above, we present an ad-

ditional evaluation with regard to framebuffer device in Xen. In Xen, the framebuffer

device is implemented using VNC [4] enabled backend. Such a simulated VNC back-

end allows any VNC client to connect to see the actual screen. However, we would like

to see what is the difference if we use a physical framebuffer device rather than the

simulated VNC framebuffer provided by Xen. We can also understand if the results

we presented previously are particular to a certain implementation of framebuffer or

can be applied to any type of framebuffer devices.

In this experiment, we use a physical framebuffer device with the screen size of

640*480. We compare the overhead of VNC framebuffer with the same size and con-

ducted evaluation on both guest domain initialization cost and incremental capability

adaptation cost. Figure 29 shows our results.

In the figure, we can see that both costs of the physical framebuffer are less than

the VNC framebuffer. We think that difference is due to the relatively slow in-memory

processing of VNC framebuffer since it needs to “simulate” the behavior of physical

framebuffer. The physical framebuffer, in contrast, does not need such a simulation

and therefore performs faster than VNC framebuffer. However, with this additional

overhead, the simulated framebuffer can be easily managed for the development of a

system on top of it without worrying about details of framebuffer devices.

We also note that although there are differences between VNC framebuffer and

physical framebuffer, the overheads of both framebuffers are relatively small compared

to original Xen’s framebuffer without capability adaptation (it even performs better
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Figure 29: VNC framebuffer vs. Physical framebuffer

than original Xen for physical framebuffer since Xen originally uses VNC framebuffer).

Therefore, we conclude that the performance results we presented previously are not

tied to a particular implementation of framebuffer.

5.8 Summary

In this chapter, we have described our device level virtualization in detail. First,

we have presented our design choice and then the base system on top of which our

100



system has been built. After that, we have shown our system architecture and im-

plementation details, followed by performance evaluation results, which demonstrate

that our system has minimal overhead compared to the base system Xen.

Device level virtualization can solve some of the problems in seamless mobility that

cannot be addressed by service level virtualization, such as device state migration and

capability adaptation. However, it has it own limitations as we present in Chapter 2:

it requires the entire guest domain (operating system plus applications) to be available

at destination platform. In some cases, this might be difficult. We consider possible

interactions between the two levels that may help to reduce the size of the entire

guest domain image. We will discuss these future extensions in the next chapter.
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CHAPTER VI

DISCUSSION

In the earlier chapters, we have presented our approach to the problem of seamless

mobility at two different levels. However, there are many open problems in this space

that need to be further addressed. In this chapter, we discuss these problems and

possible solution approaches that may form the basis for future extensions of this

work.

6.1 Other category of services

As we mentioned in the Chapter 2, we identified three categories of services and

the approaches we use in this dissertation solve problems for the first two categories

but not the third one. The main reason for this is because the dynamic network state

(server side state) is not accessible to user’s mobile platform (client). For example, if

a user wishes to buy a computer from Dell, there are typically several pages of forms

for a particular order. If he cannot finish his purchase before he needs to move to a

new place, he has the server state (which is his submitted partial order) and the client

state (which is the current incomplete order page) for such an E-commerce service.

Seamless migration of such a service may not be possible since this user may have a

different IP address in the new environment and Dell has to re-authenticate the user

(which makes the migration not seamless). The client has no control over the server

state and therefore cannot migrate such a type of state. Even if the client has the

connection information, the seamless migration of the connection may not be possible

since a re-connection and re-authentication requires an interaction between the client

and the server.

A possible extension of our system is to take the server side state into consideration
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in addition to client side state. Although the server is out of the mobile user’s control,

we can still develop another supporting system on server side to enable servers to

support the resumption of their own state upon a re-connection of the client. By

combining both the client side and server side state, we can further extend our system

to support more services in addition to the first two categories.

6.2 Discovery and authentication

We present our work to address issues for seamless mobility in previous chapters.

However, we do know there are some other issues that are critical to a successful

seamless mobility system. These issues, such as security and discovery, are not central

to this dissertation. Therefore, we have used simple solutions to address them in the

overall system architecture. We discuss these issues in this section and present the

limitations of the current solutions used in the systems we have built, and suggest

possible extension to further address these issues.

The current discovery model allows a mobile platform to discover the environ-

mental services using a designated multicast address. This multi-cast address has

to be available in all environments that users want to move into in order to enable

the discovery. A possible extension of this model might be location-based discovery,

where the mobile platform can identify its location by a location service (GPS [63],

RFID based location sensing [64] etc.). The mobile platform may contact a central

server with its current location information to locate the discovery server IP address

in the current environment.

In addition, the current authentication model used in MobiGo assumes the en-

vironment knows the user (represented by a user ID provided by the mobile device)

ahead of time, even for the totally-new space. Clearly, this may not be a viable as-

sumption in a totally new space. There are several ways to remove this restriction

using more sophisticated solutions that are already available. For example, we could
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use a decentralized authentication model [65, 66]. Similarly, we could public key in-

frastructure [67, 68] to enable the two-way authentication without revealing sensitive

information from the mobile device to the environment. Further, there is opportu-

nity for new work in this space to address this problem taking into consideration the

specificity of the ubiquitous computing environment.

6.3 Guest domain migration for device level virtualization

In device level migration, we consider the device state migration and capability

adaptation. However, we always assume the guest domain is available at the destina-

tion before we can do device state migration and capability adaptation. The problem

of how to migrate the guest domain to the destination environment is not discussed

in previous chapter but that might be a problem in some cases.

We use Xen as our base system for device level virtualization. The virtual machine

migration is a built-in functionality of Xen and therefore we can simply use it for

the guest domain migration if we need to migrate the guest virtual machine (guest

domain) from one place to the other. Our system takes charge of the device state

migration and capability adaptation after the guest domain starts on the virtual

machine manager (VMM) and tries to find a backend driver to resume its activity.

We rely on existing Xen mechanisms to pack the entire application and operating

system (the entire virtual machine) and resume on a different VMM. Our system

mimics the behavior of the original Xen’s host domain and can give the guest domain

the illusion of connecting to a normal host domain. Therefore, we do not need to

change the mechanism of VM migration in Xen.

Another question is how we can migrate the entire VM to the destination. As we

know, a typical VM running a Linux operating system with basic desktop manager

and applications is usually several gigabyte in size. It might be difficult to copy the

entire VM image to mobile devices for the migration. However, a typical embedded
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operating system running on handheld device or a stripped down Linux may be only

tens to hundreds of megabyte, which may make it possible to copy of the entire

image. Another way to think about this problem is: the applications that mobile

users need to migrate may not be significantly big. Therefore, it might be possible

to “customize” a light-weight operating system + applications image for a particular

user for migration. The size of the VM image is a critical issue for its migration and

we do consider such customizable VM as possible future extension of this dissertation.

6.4 Security vs. mobility

In the device level virtualization work, our main idea is to keep the guest un-

changed and make changes to the host only. The purpose of this design choice is to

provide a generic guest to the host environment and the environment can adapt its

capability easily to the generic guest. This design choice maximizes the mobility but

may increase security risks. Since the host domain is more privileged than the guest

domains, any modification to the code base of the host domain increases the vulner-

ability of the whole system. The design principle that ensures that the modification

to the base system is kept small is precisely intended to address this concern. Never-

theless, it is still the case that the code base that has to be “trusted” is increased by

our design decision to keep the guest unchanged and modify only the host domain.

By choosing to make changes in the host domain, we do not mean that security is

less important than mobility. Since mobility but not security is the main contribution

of our work, we choose to maximize the mobility that we can provide to mobile users.

We use simple security models to ensure the integrity of the system and rely on the

work of other researchers for enhanced security. A composite security and mobility

model that simultaneously optimizes both is a potential direction for future research.
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6.5 Interaction between two levels

In this dissertation, we present two approaches to address different aspects of

seamless mobility problems at different levels. As a further extension of this disser-

tation, we do consider the possible interactions between these two approaches. Such

an interaction can be the communication of necessary information to better enhance

user experience. For example, by knowing the device capabilities provided by device

level virtualization, service level virtualization can inform the application with such

information to make the application do the application level adaptation accordingly.

In this way, we combine device level capability adaptation and application level adap-

tation together to make the migration more smooth. Similar optimization is possible

in the reverse direction as well. By knowing application specific information, device

level virtualization can decide if the entire virtual machine needs to be migrated or

only part of it is necessary. Such information flow between the levels would reduce the

size of migrated state if device level virtualization can know, at migration time, which

application(s) user is really interested in. A customized migration can be provided if

application specific information is available to device level virtualization.

Above are only two examples of possible interactions between the two levels of

virtualization. Other types of communications between them may also be helpful

to enhance user experience. As the two approaches presented in this dissertation

address different problems in seamless mobility, we believe their communication and

interaction can help to better combine these approaches rather than placing them

separately at two levels. In other words, the sum may be greater than the parts.

A very fruitful direction for future research is developing a composite system that

combines virtualization at various levels.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have investigated seamless mobility problem from different

perspectives. In order to provide uninterrupted service to mobile users, we need to

address issues for state migration across different environments. By identifying four

dimensions of state migration, we have clarified our goal and requirements to provide

continuous service to mobile users.

State migration requires commonality of the source and the destination platforms

for state saving, retrieving and resuming. However, common platforms are not always

available in ubiquitous computing setting due to the heterogeneity of such environ-

ments. Virtualization technology can provide such a common platform on top of

heterogeneous environments by virtualizing system resources in an abstract form.

The virtualized resources can be used interchangeably when the mapping between

virtualized resources and physical resources is changed.

We proposed two approaches to address issues with seamless mobility using vir-

tualization technology. Service level virtualization addresses the issue at middle-

ware/application level. It migrates application internal states across applications for

the migration of a service. A common state structure is defined for each category of

service and the virtualized services running in every environment understands such

a common structure. The state can be dumped from any virtualized service and

resumed on any other virtualized service. We have built a system, called MobiGo,

to demonstrate how service level virtualization may be accomplished. An example

service, movie playing is built on top of MobiGo to demonstrate the service level virtu-

alization: the service can be migrated across heterogeneous platforms using different
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applications (e.g., from Mediaplayer on Windows platform to mPlayer on Linux plat-

form). Through performance evaluation, we have shown that MobiGo has acceptable

performance while providing seamless service for mobile users.

Another approach, device level virtualization, addresses issues for seamless mobil-

ity at a lower level: device/hardware level. Device level virtualization removes some

application requirements for middleware level virtualization and can support the dy-

namic migration across different devices by re-mapping virtualized devices to physical

devices. Capability adaptation is an important feature for device level virtualiza-

tion, which provides seamless migration across heterogeneous I/O devices without

the involvement of the applications. We have built a system, called Chameleon, to

demonstrate how device level virtualization may be accomplished. Chameleon allows

the registration of capability adaptors in the system and the selection of an adaptor

at runtime given the source and destination device settings. Although our focus is

on the dynamic linkage of capability adaptors at runtime but not capability adap-

tation algorithms, we have implemented some basic algorithms to demonstrate our

architecture in real scenarios. Through performance evaluation, we demonstrate that

Chameleon, while providing device level state migration and capability adaptation,

has minimal overhead compared to the original Xen split device driver system, which

we use as a base system for Chameleon.

This dissertation may be extended in several different directions as discussed in

Chapter 6. First, we can consider the third category of services we presented in Chap-

ter 2: services with dynamic network state. For example, interactive gaming services

may need to address the consistency problem for shared contents. A connection man-

agement module may be necessary for an E-commerce service that maintains the

connection 1 between the user and the state provider in the network. These services

demand the consideration of many new issues in state management and migration.

1We mean software level connection, not physical network connection.
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Secondly, we can investigate the possible interaction between service level virtual-

ization and device level virtualization to better enhance user experience. For example,

a message from device level virtualization may inform the service level virtualization

the types of devices available in the environment. Knowing this information, service

level virtualization may select the best service that makes the best usage of the envi-

ronmental resources. It may also inform the application to do appropriate adaptation

(application level adaptation) when the physical device information is known. Simi-

larly, service level virtualization may help device level virtualization to customize the

operating system and application image that needs to be migrated by knowing the

applications of relevance to the user. A reduced OS and application image may be

sufficient for migration if service level information is available to device level virtual-

ization.

Finally, we can also investigate other issues that are critical in the ubiquitous

computing environment to ensure the proper state migration across heterogeneous

platforms. Security and privacy are two examples of these issues. For example, how

can we enable a user to authenticate the environment when he/she enters a totally-

new environment? How can we make sure user’s private data is not compromised

or released to other users when multiple users may share the same resources? There

may be potential tension between ease of use, efficient mobility support, and secu-

rity/privacy. For example, immediate removal of any residual state of the user may

aid security and privacy concerns, but it could come at the cost of poor user expe-

rience if he/she decides to re-enter the same environment in a short period of time.

How can we ensure security while still provide maximal level of user satisfaction?

Such issues pose interesting research challenges as follow-on work to this dissertation.
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