
SCALING-BASED METHODS IN OPTIMIZATION AND CUT
GENERATION

A Thesis
Presented to

The Academic Faculty

by

Jeffrey W. Pavelka

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology
May 2017

Copyright c© 2017 by Jeffrey W. Pavelka

SCALING-BASED METHODS IN OPTIMIZATION AND CUT
GENERATION

Approved by:

Professor Sebastian Pokutta, Advisor
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Institute of Technology

Professor Santanu Dey
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Institute of Technology

Professor Chelsea White, Co-Advisor
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Institute of Technology

Professor Marc E. Pfetsch
Department of Mathematics
Technische Universität Darmstadt

Professor Alejandro Toriello
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Institute of Technology

Date Approved: 16 February 2017

ACKNOWLEDGEMENTS

I’m lucky to have received so much love, support, guidance, and companionship

on my way to completing this thesis.

I owe a great deal to my parents, Richard and Suzanne, who’ve shown me noth-

ing but support, care, and affection for as long as I can remember. This debt also

extends to my brother, Tony, who has had a profound influence on me throughout

the years.

I’m grateful to have completed my doctoral studies under the advisement of

Sebastian Pokutta, whose insights and ideas always pushed my research forward.

It has been an honor to learn under such a well-respected researcher. I must also

thank Chip White, Alejandro Toriello, Santanu Dey, and March Pfetsch for gra-

ciously serving on my dissertation committee. Along the way, I’ve benefited from

the expertise of several collaborators; many thanks to Turgay Ayer, Murat Kurt,

Pierre Le Bodic, and Gabor Braun for their contributions to my research pursuits.

In my time at Tech, I’ve taken many classes that helped build my analytical

toolset and greatly influenced my thought processes and overall research direc-

tions. I would like to thank Ton Dieker, Craig Tovey, David Goldberg, George

Nemhauser, Anton Kleywegt, Robin Thomas, and Santosh Vempala for delivering

these stimulating courses. My academic journey did not begin at Georgia Tech,

however - I’d be remiss not to offer a huge thank you to Todd Easton, my advisor

while I secured a master’s degree at Kansas State, and the person who first intro-

duced me to optimization research.

During the last few years, I’ve had the pleasure of working with many wonder-

ful people at Macy’s Systems and Technology. Thanks to Ramesh Muthiah, Raghu

iii

Krishnamurthy, Tim Kennell, Sue Higgins, Nimish Sevak, Praveen Sameneni, and

many others who’ve made my collaboration with Macy’s a pleasant one.

To the my fellow ISyE Ph.D. students, thank you for making these past few years

so enjoyable. Along the way you’ve been classmates, friends, confidants, team-

mates, hosts, chauffeurs, and many other things. Thanks go out to James Bailey,

Brian Kues, Lars Kirkby, Daniel Silva, Alborz Parcham Kashani, Tonya Roberts,

Paul Vazquez, Rodrigue Ngueyep Tzoumpe, Camilo Ortiz, Erin Garcia, Ben John-

son, Anthony Bonifonte, Vinod Cheriyan, Daniel Zink, Jikai Zou, Jin Lee, Alvaro

Lorca, Andres Iroume, Tim Sprock, Josh Hale, Ben Peters, Tony Yaacoub, Mathias

Klapp, Matias Siebert, Aurko Roy, Amy Musselman, Seunghan Lee, Weijun Xie,

Jan Vlachy, Mallory Soldner, Simon Chow, and so many others that I’ve regretfully

omitted.

And Tonya, well... I think you’re special enough to deserve another mention.

Thank you for being part of my journey.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . x

I INTRODUCTION . 1

1.1 Solving integer programs . 1

1.2 Outline of topics . 6

1.2.1 Solving MIPs via Scaling-based Augmentation 6

1.2.2 CG and mod-k Cuts in the 0/1 Cube 7

1.2.3 Opportunistic Replenishments in Inventory Modeling 8

II SOLVING MIPS VIA SCALING-BASED AUGMENTATION 10

2.1 Introduction . 10

2.1.1 Related work . 11

2.1.2 Contributions . 12

2.1.3 Outline . 13

2.2 Augmentation bounds for scaling methods 13

2.2.1 Definitions and notation . 13

2.2.2 Bit scaling . 14

2.2.3 A worst-case example for bit scaling 17

2.2.4 Geometric scaling . 28

2.2.5 Comparing bit scaling and geometric scaling 34

2.2.6 Improved bounds for structured 0/1 polytopes 36

2.3 Implementation . 37

2.3.1 Algorithms . 37

2.3.2 Results . 39

2.4 Conclusions and future work . 43

v

III CG AND MOD-K CUTS IN THE 0/1 CUBE 46

3.1 Introduction . 46

3.1.1 Related work . 46

3.1.2 Outline . 48

3.2 New upper bounds for CG rank in 0/1 polytopes 48

3.2.1 Preliminaries . 48

3.2.2 New upper bounds for CG rank 51

3.2.3 Applying the new bound . 55

3.3 Separating over the mod-k closure . 63

3.3.1 Problem statement . 63

3.3.2 Generalizing from the mod-2 case 64

3.3.3 Linear codes modulo k . 66

3.3.4 The mod-3 case . 68

3.3.5 The general case . 71

3.3.6 Separation for the mod-k closure 72

3.4 Remarks and future work . 74

IV OPPORTUNISTIC REPLENISHMENTS IN INVENTORY MODELING 76

4.1 Introduction . 76

4.1.1 Outline . 77

4.2 Preliminaries . 78

4.3 A model for opportunistic replenishments 81

4.3.1 The base model . 81

4.3.2 Stochastic order rates . 83

4.4 A more flexible model . 86

4.4.1 Determining replenishment levels 88

4.4.2 Expressing expected profits 90

4.5 Multiple SKUs with shared resources 94

4.5.1 Binary integer programming formulation 96

vi

4.5.2 Computational results . 97

4.6 Simulation study . 98

4.6.1 Synthetic data . 101

4.6.2 Real-world data . 103

4.7 Conclusions . 110

REFERENCES . 111

VITA . 117

vii

LIST OF TABLES

1 Aggregated results of the different algorithms on test set MIPLIB 2010 40

2 Best primal values for different variants on the LB test set 42

3 Best primal values and primal integral for the QUBO test instances . 44

4 Solve times over 100 instances for model (17) 98

viii

LIST OF FIGURES

1 A polyhedron in R2 . 2

2 The integer feasible solutions in the polyhedron from Figure 1. 3

3 A polyhedron with integral extreme points 4

4 An example branching step . 5

5 Cutting planes for the polyhedron from Figure 1 6

6 A binary decomposition of c . 16

7 Vectors relevant to the bit scaling worst-case instance 19

8 Bit scaling worst-case instance: Costs of the y points over the first
three objective vectors. 19

9 Structure of yj and d`; note that d1,3 depends on k. 23

10 Points visited by the bit scaling algorithm in the worst case 27

11 The TSP polytope on 4 vertices is not symmetric with respect to co-
ordinate permutations . 56

12 An example illustrating the role variance plays in affecting cost of
imperfect information . 86

13 Cumulative profits under the synthetic data framework, as a per-
centage of maximum attainable profits 102

14 Cumulative profits under the orders-as-rates framework, as a per-
centage of maximum attainable profits 104

15 Cumulative profits under the noisy-orders-as-rates framework, as a
percentage of maximum attainable profits 106

16 Cumulative profits under the no foresight framework, as a percent-
age of maximum attainable profits . 108

17 90th percentile cumulative profits under the no foresight framework,
as a percentage of maximum attainable profits 109

18 10th percentile cumulative profits under the no foresight framework,
as a percentage of maximum attainable profits 109

ix

SUMMARY

The work in this thesis aims to extend the body of knowledge on the topic of

integer optimization, addressing both theoretical and practical concerns. In Chap-

ter 2, we explore solving integer programs by use of an augmentation oracle - an

oracle that, when given polytope P ⊆ Rn, cost vector c ∈ Rn, and feasible solution

x̂ ∈ P∩Zn, returns an improved solution x ∈ P∩Zn with cTx > cT x̂ (or asserts no

such x exists). By cleverly scaling the objective vector, one can make use of such an

oracle to efficiently recover the optimal solution to an integer program. We study

two known optimization techniques that use augmentation as a subroutine, called

bit scaling and geometric scaling, focusing on the number of augmentations neces-

sary to solve an integer program under these schemes. For geometric scaling we

improve the best-known upper bound, which matches the performance of bit scal-

ing for 0/1 polytopes. For bit scaling, we give a family of instances for which the

algorithm exhibits behavior matching the known upper bound. Furthermore, this

same example shows that bit scaling may require arbitrarily more augmentation

steps that geometric scaling on the same problem. Lastly, we study the effective-

ness of these augmentation approaches for solving integer programs in practice.

Our results reveal that scaling methods can successfully help close the integrality

gap on hard instances.

Chapter 3 addresses questions regarding Chvátal-Gomory (CG) cuts for 0/1

polytopes. A CG cut of a polyhedron P is any inequality of the form cTx ≤ bδc

with c ∈ Zn and cTx ≤ δ valid for all x ∈ P. The CG closure of P, denoted P′,

is the intersection of P with all of its CG cuts. The work follows two streams of

x

research. First, for any 0/1 polytope P and integral vector c, it is known that itera-

tively obtaining the CG closure of P will yield the integer hull of P after k rounds,

with k ∈ O(n2 log n). Meanwhile, the best known lower bound is currently Ω(n2).

The first motivating question is whether we can close this gap. In this document, we

present an improved upper bound which, while still O(n2 log n) in the general case,

represents an improvement for certain classes of polyhedra. The second stream of

work regards determining the complexity of the separation problem over mod-k

cuts, a class of cuts related to CG cuts. We are able to prove NP-completeness for

this problem, mirroring a similar recent result for CG cuts.

Lastly, in Chapter 4 we study an inventory problem inspired by a collabora-

tion with a large online retailer. In this problem, we control inventory in a scenario

where the replenishment schedule is unknown - instead, the times between replen-

ishments are governed by some random process. We develop a basic stochastic

model for this scenario, analyze optimal decisions under this model, and demon-

strate its effectiveness via a simulation study. Further, through data provided by

our collaborators, we are able to test the usefulness of the model in real-life sce-

narios. Of particular interest here is the use of data-driven prediction techniques

to tune model parameters. We demonstrate that predictions culled from sophis-

ticated machine learning techniques (e.g. neural network regression) can provide

a boost in performance as compared to simpler, classical techniques (e.g. moving

averages).

xi

CHAPTER I

INTRODUCTION

Broadly speaking, an optimization problem seeks to determine the most efficient

way to complete a task. One of the earliest successes in the field of optimization

was the development of linear programming (LP), in which we seek to maximize

a linear cost function subject to a set of linear constraints. (Mixed) integer pro-

gramming (MIP or IP) extends linear programming by stipulating that some or all

variables must take on integer values. This is a powerful extension, and a wide

array of real-life problems can be modeled under this framework. This modeling

power comes at a cost, however: while linear programming is famously solvable

in polynomial time, integer programs are NP-hard in general and hence efficient

algorithms cannot exist unless P=NP. Despite this negative theoretical result, MIP

is still a powerful tool helping users in many industries make better decisions.

Optimization problems are at the core of this thesis, including both practical

and theoretical concerns. The first two-thirds of this work are dedicated to the the-

ory of integer programming, rooted in two areas of active research: cutting planes

and primal methods for integer program. The remainder of the thesis covers novel

work within the field of inventory control, an area rich in applied optimization tech-

niques. Integer programming is still involved here, alongside topics in stochastic

processes and machine learning.

1.1 Solving integer programs

As so much of this thesis is rooted in integer programming, we open this introduc-

tory chapter with a brief review of the basics of MIP. In particular, to motivate the

research in the rest of the thesis, we will briefly overview how integer programs

1

x1

x2

0 1 2 3 4 5
0

1

2

3

4

5

Figure 1: A polyhedron in R2 with extreme points highlighted. The polyhedron is shaded in gray,
bounded by the constraints x1 ≥ 0, x2 ≥ 0, 2x1 + 5x2 ≤ 25, and 2x1 + x2 ≤ 9.

are solved in practice. To simplify the discussion, suppose the MIPs we work with

are pure integer programs, i.e. all variables are forced to take integer values.

A polyhedron (pluralized as polyhedra) is any set of the form {x ∈ Rn : Ax ≤ b}

with A ∈ Rm×n and b ∈ Rm. A bounded polyhedron is also known as a polytope.

The polyhedron is the basic geometric object of linear programming; an example

polyhedron inR2 is illustrated in Figure 1. Given a cost or objective vector c ∈ Rn, the

goal of linear programming is to identify x ∈ argmax{cTx : x ∈ P}. An important

result in linear programming is that if an optimal solutions exist, then there is some

optimal solution which is an extreme point (also called a vertex) of the polyhedron;

a point x ∈ P which cannot be written as a convex combination of other elements

of P.

Linear programming is known to be solvable in polynomial time, e.g. via the

ellipsoid method [45] or Karmarkar’s algorithm [43]. In practice, the most commonly-

used and best-performing LP algorithm is still the simplex method [21], which inter-

estingly has no known polynomial-time implementation. An important character-

istic of the simplex method is that if an optimal solution exists, the method always

return a solution which is an extreme point of the polyhedron.

2

x1

x2

0 1 2 3 4 5
0

1

2

3

4

5

Figure 2: The integer feasible solutions in the polyhedron from Figure 1.

In contrast to linear programming, the set of feasible solutions in an integer pro-

gram is of the form P∩Zn for some polyhedron P, as illustrated in Figure 2. Given

cost vector c ∈ Rn, the goal of integer programming is to identify x ∈ argmax{cTx :

x ∈ P∩Zn}. To find an optimal solution, IP solvers typically start with an inequal-

ity description Ax ≤ b of P, and proceed by first considering the problem’s linear

programming relaxation, i.e. the linear program that results from dropping all inte-

grality restrictions. Clearly, the set of feasible solutions to the IP is a subset of the

solutions to the LP relaxation. So if the solver finds an optimal LP solution x that

also happens to be integral, then x must also be optimal for the IP.

How lucky must we be for the LP solution to actually be integral? Can we im-

prove our luck? It should be clear from a glance at Figure 2 that there are many

other polyhedra whose feasible integer points coincide exactly with those in the

figure. Indeed, what if instead of using the polyhedron of Figure 2, we give the

solver the polyhedron in Figure 3? Every extreme point of this polyhedron is inte-

gral, so if we use the simplex method to solve the LP relaxation, we are guaranteed

to be given an integer solution.

In integer programming theory, the polyhedron in Figure 3 is known as the

3

x1

x2

0 1 2 3 4 5
0

1

2

3

4

5

Figure 3: A polyhedron with the same integer feasible solutions as in Figure 2, but with the property
that every extreme point is integral.

integer hull of the polyhedron in Figure 2. In general, for a polyhedron P, the integer

hull of P is the set PI := conv (P ∩Zn), which is itself a polyhedron. Unfortunately,

it is usually not straightforward to pass from an inequality description of P to a

description of its integer hull. Consequently, searching for a description of PI is not

the chosen solution method for successful IP solvers.

When a solver optimizes the LP relaxation with nonintegral solution x′, there

are two common paths forward; branching and cutting planes. A branching tech-

nique creates from P and x′ two or more sub-polyhedra P1, P2, . . . , Pk with the prop-

erties that x′ 6∈ ⋃k
i=1 Pi and P ∩ Zn =

⋃k
i=1(Pi ∩ Zn). Once the integer program

corresponding to each sub-polyhedron is solved, we may compare their solutions

to find the optimal solution for P. Of course, solving the IP over the sub-polyhedra

may involve recursively branching many more times, and in general exponentially

many sub-problems may be created.

Perhaps the most common branching strategy involves identifying a coordinate

i for which x′i 6∈ Z, then creating two sub-polyhedra P1 and P2. The inequalities

describing P1 are the original inequalities Ax ≤ b, plus the added inequality xi ≤⌊
x′i
⌋
. Similarly, the inequalities describing P2 are Ax ≤ b and xi ≥ dx′ie. See Figure 4

4

x1

x2

0 1 2 3 4 5
0

1

2

3

4

5

P

x1

x2

0 1 2 3 4 5
0

1

2

3

4

5

P1 P2

Figure 4: An example branching step. An IP solver trying to maximize x2 over the polyhedron P will
first solve the LP relaxation problem, finding solution (2.5, 4.25). This solution is not integral, so we
branch on one of the non-integral coordinates - suppose we choose x1. We create sub-polyhedron
P1 by adding the inequality x1 ≤ 2, and for sub-polyhedron P2 we add x1 ≥ 3. The hatched region
in the right-most image is not a part of P1 ∪ P2, which is fine as it contains no integral solutions.

for an illustration.

The goal of a cutting plane method is to create from P a new polyhedron Q that

more closely represents PI (i.e. PI ⊆ Q (P). An IP solver employing a cutting plane

technique takes the inequality description Ax ≤ b and non-integral LP relaxation

solution x′ to derive a0 ∈ Rn, b0 ∈ R satisfying that the inequality aT
0 x ≤ b0 is

valid for all x ∈ PI , but aT
0 x′ > b0. The inequality aT

0 x ≤ b0 is called a cutting

plane or simply a cut. The most desirable cuts are the facet-defining cuts, which are

in some sense the strongest cuts available. For a cut aT
0 x ≤ b0 to be facet defining,

the dimension of PI ∩ {x ∈ Rn : aT
0 x = b0} must be one less than the dimension

of PI . Importantly, PI is given exactly by the intersection of all of its facet-defining

inequalities. See Figure 5 for an illustration of cutting planes.

The method then proceeds with the polyhedron defined by Ax ≤ b and aT
0 x ≤

b0, repeating until the associated LP relaxation returns an integral solution. Though

it may not be immediately obvious, several cutting plane schemes (see e.g. [35]

or [4]) have been devised that are guaranteed to terminate at an optimal solution

5

x1

x2

0 1 2 3 4 5
0

1

2

3

4

5

x1

x2

0 1 2 3 4 5
0

1

2

3

4

5

Figure 5: Cutting planes for the polyhedron from Figure 1. The dashed line in the left image il-
lustrates a cutting plane 4x1 + 6x2 ≤ 33 that penetrates the polyhedron P, but leaves all integral
solutions on the feasible side. This cut is not as tight as the facet-defining cut x1 + x2 ≤ 6 on the
right. The line defining this inequality intersects the 2-dimensional figure PI on the 1-dimensional
line segment between the points (2, 4) and (3, 3).

(though perhaps after adding exponentially many cuts), and may indeed be able to

recover a description of PI itself.

Of course, an IP solver need not be either purely branching-based or purely cut-

based. Indeed, today’s most successful solvers employ a combination of both in a

technique called branch and cut, where either cuts or branches are added at various

times in the algorithm.

1.2 Outline of topics

We now present the topics covered in this thesis, with motivations for each section

along with a preview of the results found within.

1.2.1 Solving MIPs via Scaling-based Augmentation

Chapter 2 adds to the literature of so-called primal or augmenting methods for solv-

ing integer programs. These methods differ from traditional IP solving techniques

in a key aspect. While both branching and cutting plane methods first find infea-

sible solutions then iteratively refine the search space, augmenting methods only

6

consider moving from one feasible solution to another. Such a move is only taken

if the new solution is an improvement to the previous according to some objective.

To recover a good algorithm, we change this objective intelligently throughout the

method. Thus a key difference between primal and more traditional methods is

that primal methods alter the objective function as the method progresses, where

the traditional methods alter the feasible region.

The techniques we address here are known as the bit scaling and geometric scal-

ing methods. The “scaling” part of the names comes from the fact that the succes-

sively updated objective functions can be seen as progressively scaled versions of

the original cost function. Both of these methods are known to terminate after only

polynomially many augmentation steps, i.e. moving from one feasible solution to an

improved one. We make theoretical contributions to the analysis of each of these

algorithms. In the case of geometric scaling, we are able to give improvements in

the worst-case analysis of the algorithm. In the case of bit scaling, we outline a

family of examples whose worst-case behavior meet the known upper bounds (up

to constant factors) for the number of augmentations necessary in the algorithm.

Furthermore, the example shows that bit scaling can perform arbitrarily worse than

geometric scaling.

Also included are a set of computational results, where the algorithms are im-

plemented using standard IP solvers to carry out the augmentation steps. Here, we

find that the augmentation methods are successful in decreasing optimality gaps

for a class of difficult test problems.

1.2.2 CG and mod-k Cuts in the 0/1 Cube

In Chapter 3 we discuss various theoretical aspects of popular cutting plane tech-

niques when the polyhedron P is such that P ⊆ [0, 1]n. In particular, we study the

famous Chvátal-Gomory (CG) cuts, as well as a related class of cuts called mod-k cuts.

7

A CG cut of a polyhedron P is any inequality of the form cTx ≤ bδcwith c ∈ Zn

and cTx ≤ δ valid for all x ∈ P. The CG closure of P, denoted P′, is the inter-

section of P with all of its CG cuts. It is already known that iteratively obtaining

the CG closure of P ⊆ [0, 1]n will yield the integer hull of P after k rounds, with

k ∈ O(n2 log n). We are able to tighten this bound slightly, but importantly the new

proof allows for improved analyses for certain classes of polyhedra. The bounds

obtained for these classes were unachievable from previous results.

Also of interest to researchers is the hardness of separation for various classes of

cuts. Recently, it has been shown that the problem of finding a CG cut that separates

a given point x from a polytope P ∈ [0, 1]n is an NP-complete problem. In this

document, we are able to prove NP-completeness for separation over a related class

of cuts, called mod-k cuts, for any k ∈ Z+.

1.2.3 Opportunistic Replenishments in Inventory Modeling

In Chapter 4, we turn away from integer programming theory and study an ap-

plication of optimization to inventory control. We build a model for the scenario

where replenishment opportunities are not known in advance, and instead must

be acted upon opportunistically as they arise.

As a first step, we devise and analyze a simple stochastic model for use in this

scenario, and study the cost of uncertainty in its parameters. We then extend the

model, making it more applicable for use in real-world processes. We discuss how

to make replenishment decisions using the model, in both single-SKU and con-

strained multi-SKU settings.

Lastly, we test the applicability of the model via a simulation study. We simu-

late with synthetically generated data, as well as using real-world data provided

to us by a large retailer. After establishing the usefulness of the model in the case

8

that accurate order predictions are available, we turn to the question of determin-

ing order volumes from historical data. We find that using sophisticated machine

learning techniques to drive the model can be more successful than relying on clas-

sical forecasting techniques.

9

CHAPTER II

SOLVING MIPS VIA SCALING-BASED AUGMENTATION

2.1 Introduction

Mixed integer programs (MIPs) are most often solved via a combination of branch-

ing and cutting plane techniques. An alternative path to solving MIPs is via primal

augmentation approaches. The idea here is to start from a feasible solution, then

iteratively move to new solutions with improved objective values by means of nu-

merous augmentation steps.

The augmentation methods considered in this chapter are termed as scaling

methods. The name comes from the fact that the objective function we improve

against is progressively scaled throughout the algorithm. A key insight is that via

appropriate scaling, only a polynomial number of augmentation steps is needed

before the optimal solution is found. Hence, if these augmentation steps could be

performed efficiently, one obtains an efficient algorithm for solving MIPs. For ex-

ample, this augmentation can be performed very fast for network flows, which, in

fact, motivated several scaling approaches for MIPs in the first place (see e.g., [70],

[57]).

This work provides insights to the theory of scaling-based augmentation, as

well as an exploration into the computational feasibility and performance of such

methods.

10

2.1.1 Related work

Primal augmentation approaches in the context of MIPs have been well-studied,

both from an algebraic point of view using test sets, but also in the context of solv-

ing linear programs and mixed-integer (nonlinear) programs exactly and approx-

imately. Test sets (or Graver bases), i.e. the sets of feasible integer directions, are

studied in [37], which give rise to a natural converging augmentation algorithm;

see also [65]. Algebraic approaches (see e.g [24, 26] and the references contained

therein) are usually based on an algebraic characterization of test sets; then an im-

proving direction is used for augmentation.

Augmentation methods have recently become important in mixed-integer non-

linear problems (MINLPs), see, e.g., [40] and [56] for an overview. Here, test sets

are used to solve or approximate MINLPs; some selected references are [25, 41, 42,

49, 50].

In [10, 11], among other approaches, an exponential penalty function framework

is considered for (approximately) solving linear programs. Interestingly, this ap-

proach can be considered somewhat dual to the approximate LP solving framework

via multiplicative weight updates in [59] for fractional packing and covering prob-

lems (see also [2] and [33] for similar applications). In [51], the authors consider

an integrated augment-and-branch-and-cut framework for mixed 0/1 programs.

A proximity search heuristic is considered in [31], where the objective function is

replaced by a proximity function to explore the neighborhood around a feasible

solution.

The work of this chapter focuses on two classic scaling algorithms. First is the

bit scaling method, which is applicable to solving MIPs over polyhedra P with P ⊆

[0, 1]n. The method was introduced in [68] and based on [27]. Second is geometric

scaling, which is valid for any P. This method was introduced in [67], which in

turn is inspired by classical scaling algorithms for flow problems and certain linear

11

programs (see e.g., [70], [57], [53]).

On a high level, the augmentation methods considered here are similar to prox-

imal methods for nonlinear programs (see, e.g., [62]) in the sense that the deviation

from the current iterate is penalized in the objective function; this is also the view-

point of [31], mentioned above. On the other hand, local branching, see [30], would

be the analogue of trust region methods, see, e.g., [18].

2.1.2 Contributions

The contributions of this work fall into two categories, theoretical and computa-

tional. On the theoretical side, we provide new bounds on the number of aug-

mentation steps required for both bit scaling and geometric scaling. In the case

of geometric scaling, Theorem 2.2.10 gives a new upper bound on the number of

augmentations required, improving the best-known bound of [67] by a log n factor.

Crucially, this result brings the bound in line with the best-known upper bound for

bit scaling when P ⊆ [0, 1]n.

In the case of bit scaling, in Section 2.2.3 we provide a family of examples for

which the worst-case number of augmentations meets the known upper bound,

up to constant factors. Moreover, the same example shows that bit scaling can per-

form arbitrarily worse than geometric scaling on the same problem. Furthermore,

a simple improvement for both scaling methods is derived in the case that a certain

“width” of the polytope is small.

On the computational side, we discuss how to implement various MIP solving

techniques based on both bit scaling and geometric scaling. We also present re-

sults of computational tests using these implementations. While the augmentation

methods are not competitive with a commercial solver on easy instances, we do find

them useful in finding high-quality incumbent solution for very hard instances.

12

2.1.3 Outline

All theoretical contributions are found in Section 2.2. Section 2.2.2 introduces the

bit scaling algorithm, and present the classical analysis. In Section 2.2.3 we present

the worst-case example for bit scaling, showing that the classical upper bound on

augmentations is tight. In Section 2.2.4 we define the geometric scaling algorithm

and prove a new upper bound on necessary augmentations. This is followed by a

discussion in Section 2.2.5 on the relative merits of the two algorithms when P ⊆

[0, 1]n.

Discussions of the computational tests are found in Section 2.3. After highlight-

ing some particulars of the implementation in Section 2.3.1, we present and discuss

numerical results in Section 2.3.2.

2.2 Augmentation bounds for scaling methods

2.2.1 Definitions and notation

We now pause to set some definitions to be used throughout the chapter. Given

x, y ∈ Rn, we write simply xy to denote the inner product of x and y. We will

often work with directions x − y induced by two vectors x, y ∈ Rn. If P ⊆ Rn is a

polyhedron, we say that z ∈ Rn is a feasible direction for x ∈ P if x+ z ∈ P. Moreover,

z is an augmenting direction if cz > 0, and it is an integer feasible direction if z ∈ Zn.

In a primal algorithm, we call the step of passing from one feasible solution to

another an augmentation step. Throughout the course of a scaling algorithm, the

objective we improve against updates many times. The objective is controlled by a

scaling parameter µ. We call the time during which µ holds constant a (scaling) phase.

We denote by 1 the all-ones vector and by 0 the all-zeros vector; the dimensions

of these vectors will be apparent from context. We will also write [n] := {1, . . . , n}

for n ∈ Z+. For a vector x ∈ Rn, let supp(x) :=
{

j ∈ [n] : xj 6= 0
}

be the support

of x. For x ∈ Rn we use ‖x‖∞ = max[n]{|xi|} to denote the L∞ norm of x. All

13

logarithms in this chapter will be to the basis 2. All other notation is standard and

can be found in [66] and [55], for example.

2.2.2 Bit scaling

We first present the bit scaling technique for solving 0/1 integer programs (see [68];

also [27, 36]). Letting P be a polyhedron and c ∈ Zn, we want to solve max{cx : x ∈

P ∩ {0, 1}n}. For the sake of exposition, and without loss of generality, we confine

ourselves to c ≥ 0 by applying suitable coordinate flips xi 7→ 1− xi. The classical

bit scaling algorithm is given in Algorithm 1.

Algorithm 1 Bit scaling
Input: Polyhedron P ⊆ [0, 1]n, integral c ∈ Zn, feasible solution x0 ∈ P ∩Zn

Output: Optimal solution of max {cx : x ∈ P ∩Zn}
µ← 2dlog‖c‖∞e, x̃ ← x0, k← 1
repeat

ck ← bc/µc
compute x ∈ P integral with ck(x− x̃) > 0 . improve w.r.t. ck

if there is no feasible solution then
µ← µ/2, k← k + 1

else
x̃ ← x . update solution and repeat

end if
until µ < 1
return x̃ . return optimal solution

The algorithm assumes knowledge of an initial feasible point x0. In practice,

given only a description of P, it may not be straightforward to determine x0 ∈ P.

However, for many applications finding some feasible solution is not difficult. In

this algorithm, k is essentially just a counter for the scaling phases. Within each

phase k, we set an objective ck to augment over. In order to carry out an augment-

ing step, we need a method that can correctly determine if an improving solution

exists, and actually return such a solution if it does. For the sake of analyzing the

algorithm, we do not comment on any actual implementation of this augmenting

step. It is important to note that the analysis from [68] (which we reproduce in

14

Lemma 2.2.1) shows that the algorithm requires only polynomially (with respect

to n and the size of c) many augmentations before returning the optimal solution

to max {cx : x ∈ P ∩Zn}. Hence an efficient algorithm for the augmentation prob-

lem would also recover an efficient algorithm for the optimization problem, imply-

ing that augmentation is NP-hard.

2.2.2.1 An illustrative example

Before proceeding to analyze the algorithm, it will be instructive to give a small

example of bit scaling in action. This example will reveal the main mechanics of

the upper bound proof of Lemma 2.2.1, as well as motivating the form of the con-

struction in Section 2.2.3.

Suppose we have P ⊆ R4 (a description of P will not be important for this ex-

ample), and choose c = (7, 4, 5, 8). We have dlog ‖c‖∞e = 3, so we initialize µ← 8.

One easily verifies that the vectors ck for each scaling phase are c1 = (0, 0, 0, 1),

c2 = (1, 1, 1, 2), c3 = (3, 2, 2, 4), and c4 = (7, 4, 5, 8).

For analysis of the algorithm, it is perhaps more helpful to view the construc-

tion of the vectors ck as illustrated in Figure 6. Here, the dk vectors are a binary

decomposition of c, in that c = 23d1 + 22d2 + 21d3 + 20d4. Moreover, the vectors ck

can each be obtained by 2ck−1 + dk. Importantly, this is not a quirk of the particular

c selected for this example. The ck vectors can always be obtained in such a manner.

How many augmenting steps must the algorithm take in this example? For the

sake of exposition, let’s define c0 = d0 = (0, 0, 0, 0). Suppose we are in the kth

scaling phase, making augmentations with respect to objective ck. Let xk ∈ P ∩Zn

be an optimal solution with respect to ck, and xk−1 optimal with respect to ck−1.

The kth scaling phase begins with x̃ = xk−1. For this phase, the objective function

15

k dk ck

1 0 0 0 1 0 0 0 1
2 1 1 1 0 1 1 1 2
3 1 0 0 0 3 2 2 4
4 1 0 1 0 7 4 5 8

Figure 6: A binary decomposition of c. Note that for k > 1, the ck vector can be obtained by 2ck−1 +
dk

difference between xk−1 and xk is given by

ckxk − ckxk−1 = 2ck−1xk − 2ck−1xk−1︸ ︷︷ ︸
≤0 by optimality of xk−1

+dkxk − dkxk−1 ≤ 4.

So at most 4 = n augmenting steps are necessary in each phase.

2.2.2.2 Classic analysis

From the above example, the path to proving that Algorithm 1 requires O(n log ‖c‖∞)

augmentation steps is clear. We include such a proof here for completeness.

Lemma 2.2.1. Let P ⊆ [0, 1]n be a polytope, and let c ∈ Zn
+. Then Algorithm 1 solves

the optimization problem max {cx : x ∈ P ∩Zn} with at most n · (dlog ‖c‖∞e+ 1) aug-

menting steps.

Proof. For each scaling phase k, let Xk = argmax{ckx : x ∈ P∩Zn}, and for techni-

cal purposes set X0 = P∩Zn. The algorithm applies at most 1+ dlog ‖c‖∞e scaling

phases. We will show that at most n augmentations are necessary within a phase,

implying the desired n · (dlog ‖c‖∞e+ 1) bound.

Set some phase k. The phase begins with x̃ = xk−1 ∈ Xk−1, and will end x̃ =

xk ∈ Xk. Since ck is integral, each augmenting step improves on the objective by at

least one. Thus to bound the number of augmentations within a phase, it suffices

to bound ckxk − ckxk−1.

16

Comparing ck = bc/µc to ck−1 = bc/2µc, we see that we may write ck = 2ck−1 +

dk for some dk ∈ {0, 1}n. Using this decomposition, we write

ckxk − ckxk−1 = 2ck−1xk − 2ck−1xk−1 + dkxk − dkxk−1.

The optimality of xk−1 with respect to ck−1 implies that 2ck−1xk−1 ≥ 2ck−1xk, i.e.

2ck−1xk − 2ck−1xk−1 ≤ 0. Further, as dk, xk, xk−1 ∈ {0, 1}n we known dkxk ≤ n and

dkxk−1 ≥ 0. Hence we obtain

ckxk − ckxk−1 ≤ n

as an upper bound on the number of augmentations necessary within a scaling

phase.

2.2.3 A worst-case example for bit scaling

In this section, we present one of the main findings of the chapter. In particular, we

show that the upper bound in Lemma 2.2.1 is tight. For this we provide a family

of polytopes Pn ⊆ [0, 1]n and cost functions cp so that the bit scaling method needs

Ω(n log ‖cp‖∞) augmentation steps in the worst case. Each instance of this family is

parametrized by two numbers, namely k ∈ Z+, which dictates the dimension n :=

8k− 2 of the cube [0, 1]n, and p ∈ Z+, which controls how the objective function cp is

built, and, by construction, the number p of bit scaling phases that will be required

to solve the instance.

Furthermore, this example will highlight the potential performance differences

between bit scaling and geometric scaling. See Section 2.2.5 for details.

2.2.3.1 A concrete example

Before outlining how to construct these examples in general, we will start by con-

structing a single concrete instance. The aim is to clearly illustrate the components

of the construction which allow these examples meet the Ω(n log ‖cp‖∞) bound.

17

For this instance we will choose k = 3, thus the polytope P lies in 8 · 3− 2 = 22-

dimensional space. The P is constructed as the convex hull of 2 · k = 6 points, which

we name y1, ..., y6. We mentally break these six points into two distinct groups, with

y1, y2, and y3 making up group 1, and y4, y5, and y6 making group 2.

The construction of the y points and cost vector will be so that, in each scaling

phase k, the vector ck we optimize over will have

cky1 = cky2 + 1 = cky3 + 2 and cky4 = cky5 + 1 = cky6 + 2. (1)

Thus each scaling phase will end at either y1 or y4 as the best solution. Additionally,

scaling phases will alternate between having either all of group 1 with a higher

objectives value than all of group 2’s, or vice versa. Then the algorithm, which only

requires finding an improving solution at each iteration, may need to visit all points

within a particular group in each phase.

The particulars of the construction of the y points and possible cost vectors

cp, p ∈ Z+ are outlined in Figure 7. Each column represents one coordinate of the

22-dimensional space. Further, columns are visually broken into groups depen-

dent on their role in the construction, which will be explained shortly. Each row

is dedicated to a particular vector in Z22, with the value in each column denoting

that vector’s value in the corresponding coordinate.

Mirroring what we’ve seen in Section 2.2.2.1, the cost vectors cp are defined

recursively according to the following scheme: Set c1 = d1, then for p > 1, set

cp = 2cp−1 + deven if p is even, else cp = 2cp−1 + dodd if p is odd. Examining the

mechanics of Algorithm 1, one can verify that the bit scaling algorithm, when given

cost vector cp, spends the first scaling phase optimizing over c1, the second phase

optimizing over c2, and so on until optimizing over cp in the pth and final phase.

Now we examine the behavior of the bit scaling algorithm when given polytope

P = conv
(
y1, ..., y6) and cost vector cp for some p. Figure 8 illustrates the costs of

each point with respect to the first few cp vectors. For c1, we see that (1) is achieved

18

Role
Establish Maintain Group 1 Group 2
In-Group In-Group Overtakes Overtakes

Order Order Group 2 Group 1

Coordinate 1 2 1 2 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

y1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
y2 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
y3 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

y4 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
y5 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
y6 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

d1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
deven 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
dodd 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

c1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c2 2 2 1 1 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
c3 4 4 3 3 5 5 5 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 7: Vectors relevant to the bit scaling worst-case instance. Each row is dedicated to a particu-
lar vector in Z22, with the value in each column denoting that vector’s value in the corresponding
coordinate.

y1 y2 y3 y4 y5 y6

c1 5 4 3 2 1 0
c2 10 9 8 13 12 11
c3 29 28 27 26 25 24

Figure 8: Bit scaling worst-case instance: Costs of the y points over the first three objective vectors.

due to the coordinates in the first collection of columns in Figure 7. Moreover, the

first three coordinates in the third collection of columns ensure that all points in

group 1 have a higher objective value than any point in group 2. At the end of this

scaling phase, the algorithm will have current solution x̃ = y1.

Moving on to the next scaling phase, the algorithm now must optimize over

cost vector c2 = 2c1 + deven. The doubling of c1 for this phase breaks condition (1).

However, the second collection of columns in Figure 7 correct for this, maintaining

19

(1) for the second scaling phase. Additionally, the coordinates in the fourth collec-

tion of columns add just enough to the cost of group 2’s points to switch the order

of the groups - now any point in group 2 has a higher objective value than any point

in group 1. Thus the second scaling phase, which began at group 1 point y1, may

need to move through all of group 2’s point before reaching y4 and moving to the

next phase.

The same process repeats in subsequent scaling phases, with the algorithm be-

ginning each phase at either y1 or y4, then (in the worst case) spending one iteration

traveling to each point in the other group. Thus worst-case behavior necessitates

3p ≈ 3 log ‖cp‖∞ augmentations before termination. In the general case this will

translate to n
8 log ‖cp‖∞, giving the desired result.

2.2.3.2 General construction - polytope

We now proceed to give the full, general construction. The polytope Pn ⊆ [0, 1]n

will be of the form

Pn = conv
({

y1, . . . , y2k
})

,

where we break the vectors yj ∈ {0, 1}n into four distinct components, yj,1 ∈

{0, 1}k−1, yj,2 ∈ {0, 1}k−1, yj,3 ∈ {0, 1}3k, and yj,4 ∈ {0, 1}3k. These four compo-

nents correspond directly to the four collections of columns portrayed in Figure 7,

and play the same roles in the general construction. With these four families of

vectors defined, the full vector yj is given by

yj :=



yj,1

yj,2

yj,3

yj,4


or equivalently yj

i :=



yj,1
i for i ∈ {1, . . . , k− 1},

yj,2
i−k+1 for i ∈ {k, . . . , 2k− 2},

yj,3
i−2k+2 for i ∈ {2k− 1, . . . , 5k− 2},

yj,4
i−5k+2 for i ∈ {5k− 1, . . . , 8k− 2}.

20

The parts yj,1, yj,2 are defined in two batches. For the first batch with j ∈ {1, . . . , k},

we define

yj,1
i :=


1 if i ≥ j,

0 otherwise,
yj,2

i :=


1 if i < j,

0 otherwise
for i = 1, . . . , k− 1.

For the second batch with j ∈ {k + 1, . . . , 2k}, we define

yj,1
i :=


1 if i ≥ j− k,

0 otherwise,
yj,2

i :=


1 if i < j− k,

0 otherwise,
for i = 1, . . . , k− 1.

We define yj,3, yj,4 with j ∈ {1, . . . , 2k} as follows

yj,3
i :=


1 if j ≤ k,

0 otherwise,
yj,4

i :=


1 if j > k,

0 otherwise,
for i = 1, . . . , 3k.

See Figure 9 for an illustration.

2.2.3.3 General construction - cost vector

The cost vector is defined inductively, keeping the mechanics of the bit scaling

procedure in mind. We first define c0 := 0, and for ` = 1, . . . , p, we build c` =

2c`−1 + d`, for some vector d` ∈ {0, 1}n to be specified. We will find it convenient

to construct d` = (d`,1, d`,2, d`,3, d`,4) in terms of vectors d`,1, d`,2, d`,3, and d`,4 in the

same manner as we did for the points yj.

For d1 := c1, let

d1,1 := 1, d1,2 := 0, d1,3
i :=


1 if i ≤ k,

0 otherwise,
for i = 1, . . . , 3k, d1,4 := 0.

For ` ≥ 2, we set

d`,1 := 0, d`,2 := 1, d`,3 :=


1 if ` is odd,

0 otherwise,
d`,4 :=


1 if ` is even,

0 otherwise.

21

In particular, after the first scaling phase, the contribution of the first 2(k− 1) co-

ordinates is the same for all yj. In fact, we use the first 2(k− 1) coordinates for the

improvements steps within a scaling phase and the last 6k coordinates to switch be-

tween the phases; this will become clear soon. Note that for each ` > 1, log
∥∥c`
∥∥

∞ ∈

Θ(`).

2.2.3.4 General construction - proving the lower bound

We will now derive a lower bound on the worst-case number of augmentations

computed by the bit scaling algorithm when applied to a polytope Pn and cost vec-

tor cp as defined in Section 2.2.3.2 and Section 2.2.3.3, respectively. We depict the

overall structure of the construction in Figure 9, describing the points yj and the

“layers” d` of the cost function. Note how the columns in Figure 9 are divided into

four segments. These four segments correspond to the four families of vectors used

in defining yj and d`. For example, the first group of columns in the yj row depict

the vector yj,1, the second group of columns depict yj,2, and so on.

The essence of the proof is the following: within a scaling phase, the algorithm

may move to any solution with an improving cost with respect to vector bc/µc (re-

call that µ is the scaling factor), no matter the magnitude of the improvement. In

our construction, no matter the choice of k, p, the bit scaling algorithm begins by

optimizing over the cost vector c1. The construction is such that c1y1 > c1y2 >

· · · > c1y2k. Thus if the algorithm begins at initial solution y2k, it may visit all of

the 2k points in Pn, ending the initial phase at y1.

In the second scaling phase, the algorithm optimizes over c2. We will see that we

have c2y1 < c2y2k < c2y2k−1 < · · · < c2yk+1. Thus, in this phase, the algorithm may

take k augmentation steps before finishing at point yk+1. In the third augmentation

phase, while optimizing over c3, we similarly have c3yk+1 < c3yk < · · · < c3y1,

giving another possible k augmentations within the phase.

22

yj,1 yj,2 yj,3 yj,4

1 2 3 · · · k− 1 1 2 3 · · · k− 1 1 2 · · · 3k 1 2 · · · 3k

y1 1 1 1 · · · 1 0 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0
y2 0 1 1 · · · 1 1 0 0 · · · 0 1 1 · · · 1 0 0 · · · 0
y3 0 0 1 · · · 1 1 1 0 · · · 0 1 1 · · · 1 0 0 · · · 0
...

yk 0 0 0 · · · 0 1 1 1 · · · 1 1 1 · · · 1 0 0 · · · 0

yk+1 1 1 1 · · · 1 0 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1
yk+2 0 1 1 · · · 1 1 0 0 · · · 0 0 0 · · · 0 1 1 · · · 1
yk+3 0 0 1 · · · 1 1 1 0 · · · 0 0 0 · · · 0 1 1 · · · 1

...
y2k 0 0 0 · · · 0 1 1 1 · · · 1 0 0 · · · 0 1 1 · · · 1

d1 1 1 1 · · · 1 0 0 0 · · · 0 d1,3
1 d1,3

2 · · · d1,3
3k 0 0 · · · 0

d2 0 0 0 · · · 0 1 1 1 · · · 1 0 0 · · · 0 1 1 · · · 1
d3 0 0 0 · · · 0 1 1 1 · · · 1 1 1 · · · 1 0 0 · · · 0
d4 0 0 0 · · · 0 1 1 1 · · · 1 0 0 · · · 0 1 1 · · · 1
d5 0 0 0 · · · 0 1 1 1 · · · 1 1 1 · · · 1 0 0 · · · 0
...

Figure 9: Structure of yj and d`; note that d1,3 depends on k.

The process continues in each subsequent scaling phase, with the algorithm

having the opportunity to travel through each of the points y2k, y2k−1, . . . , yk+1 in

even phases, and yk, yk−1, . . . , y1 in odd phases, as depicted in Figure 10. Since

k ≈ n/8, this implies a worst case Ω(n) augmentations per scaling phase, meeting

the upper bound from Lemma 2.2.1.

We now begin the formal proof. We will first show that in each phase `, the

first k points y1, . . . , yk are ordered in a decreasing fashion by the objective function

c` and similar for the second k points yk+1, . . . , y2k. In a second step we will then

link the two groups.

Lemma 2.2.2 (Decreasing order within each group). Let c`, yj be constructed as above.

23

For any ` ≥ 1 and j ∈ {1, . . . , k− 1} ∪ {k + 1, . . . , 2k− 1}, we have

c`yj = c`yj+1 + 1.

Proof. The proof is by induction on `, with base case ` = 1. For j ∈ {1, . . . , 2k},

define α1,j := d1,3yj,3. For j ∈ {1, . . . , 2k}, we have

c1yj = d1yj = d1,1yj,1︸ ︷︷ ︸
=k−j

+ d1,2yj,2︸ ︷︷ ︸
=0

+ d1,3yj,3︸ ︷︷ ︸
=α1,j

+ d1,4yj,4︸ ︷︷ ︸
=0

= k− j + α1,j.

By construction, we have α1,1 = α1,2 = · · · = α1,k = 1 and α1,k+1 = α1,k+2 = · · · =

α1,2k = 0. Thus for j ∈ {1, . . . , k− 1} ∪ {k + 1, . . . , 2k− 1}, we can establish

c1yj − c1yj+1 = k− j + α1,j − (k− (j + 1) + α1,j+1) = 1,

as α1,j+1 = α1,j.

Now assume ` ≥ 2. For j ∈ {1, . . . , k} we can verify that

c`yj = 2c`−1yj + d`yj

= 2c`−1yj + d`,1yj,1︸ ︷︷ ︸
=0, as d`,1=0

+ d`,2yj,2︸ ︷︷ ︸
=j−1

+ d`,3yj,3︸ ︷︷ ︸
=:α`

+ d`,4yj,4︸ ︷︷ ︸
=0, as yj,4=0 for j≤k

= 2c`−1yj + (j− 1) + α`,

where α` = 3k if ` is odd, and otherwise α` = 0. Thus, for j ∈ {1, . . . , k− 1} we

have

c`yj − c`yj+1 = 2c`−1yj + j− 1 + α` − (2c`−1yj+1 + j + α`)

= 2(c`−1yj − c`−1yj+1︸ ︷︷ ︸
=1, by induction

)− 1 = 1.

We can do a similar analysis for ` ≥ 2 and j ∈ {k + 1, . . . , 2k}:

c`yj = 2c`−1yj + d`yj

= 2c`−1yj + d`,1yj,1︸ ︷︷ ︸
=0, as d`,1=0

+ d`,2yj,2︸ ︷︷ ︸
=j−1

+ d`,3yj,3︸ ︷︷ ︸
=0, as yj,3=0 for j≥k+1

+ d`,4yj,4︸ ︷︷ ︸
=:β`

= 2c`−1yj + (j− 1) + β`,

24

where β` = 3k if ` is even, and β` = 0 otherwise . As before we obtain that for

j = k + 1, . . . , 2k− 1, c`yj − c`yj+1 = 1 holds.

Note that in the above argument the values of d`,3, d`,4 are irrelevant as they

are eliminated in the difference of two consecutive points. However, they will be-

come important as they enable the switching between and linking of the two groups

{y1, . . . , yk} and {yk+1, . . . , y2k} as we will show now. To this end we prove the fol-

lowing lemma:

Lemma 2.2.3 (Decreasing intergroup ordering). For any ` ≥ 1, if ` is odd then c`yk =

c`yk+1 + 1, and if ` is even then c`y2k = c`y1 + 1.

Proof. The proof is by alternating induction on the odd and even case. First observe

that c1yk = c1yk+1 + 1, which will be the start of our induction for the odd case:

c1yk − c1yk+1 = d1,1(yk,1 − yk+1,1)︸ ︷︷ ︸
=−(k−1)

+ d1,2(yk,2 − yk+1,2)︸ ︷︷ ︸
=0

+ d1,3(yk,3 − yk+1,3)︸ ︷︷ ︸
=k

+ d1,4(yk,4 − yk+1,4)︸ ︷︷ ︸
=0

= 1.

First, let ` ≥ 1 be even and suppose c`−1yk = c`−1yk+1 + 1, which is satisfied

in the case ` = 2 by the above. Then, repeated application of Lemma 2.2.2 yields

c`−1y1 = c`−1y2k + 2k− 1. Moreover, we have

c`y1 = 2c`−1y1 + d`y1

= 2c`−1y1 + d`,1y1,1︸ ︷︷ ︸
=0, as ` > 1

+ d`,2y1,2︸ ︷︷ ︸
=0, as y1,2 = 0

+ d`,3y1,3︸ ︷︷ ︸
=0, as ` even

+ d`,4y1,4︸ ︷︷ ︸
=0, as y1,4 = 0

= 2c`−1y1,

25

and

c`y2k = 2c`−1y2k + d`y2k

= 2c`−1y2k + d`,1y2k,1︸ ︷︷ ︸
=0, as ` > 1

+ d`,2y2k,2︸ ︷︷ ︸
=k−1

+ d`,3y2k,3︸ ︷︷ ︸
=0, as ` even

+ d`,4y2k,4︸ ︷︷ ︸
=3k

= 2c`−1y2k + (k− 1) + 3k = 2c`−1y2k + 4k− 1.

Thus, we obtain for the difference

c`y2k − c`y1 = 2c`−1y2k + 4k− 1− 2c`−1y1

= 2(c`−1y2k − c`−1y1︸ ︷︷ ︸
=1−2k, from above

) + 4k− 1

= 2(1− 2k) + 4k− 1

= 1.

Now we consider the case where ` is odd, which is similar to the one above. As-

sume that c`−1y2k = c`−1y1 + 1, which we now know to hold for ` = 3 by means of

the argument for ` even case from above. Then, applying Lemma 2.2.2 in increas-

ing and decreasing direction, we obtain c`−1yk + 2k− 1 = c`−1yk+1. We will show

that c`yk = c`yk+1 + 1. We have

c`yk = 2c`−1yk + d`,1yk,1︸ ︷︷ ︸
=0

+ d`,2yk,2︸ ︷︷ ︸
=k−1

+ d`,3yk,3︸ ︷︷ ︸
=3k

+ d`,4yk,4︸ ︷︷ ︸
=0

= 2c`−1yk + 4k− 1

and

c`yk+1 = 2c`−1yk+1 + d`,1yk+1,1︸ ︷︷ ︸
=0

+ d`,2yk+1,2︸ ︷︷ ︸
=0

+ d`,3yk+1,3︸ ︷︷ ︸
=0

+ d`,4yk+1,4︸ ︷︷ ︸
=0

= 2c`−1yk+1,

so that

c`yk − c`yk+1 = 2(c`−1yk − c`−1yk+1︸ ︷︷ ︸
=1−2k

) + 4k− 1 = 1.

26

y1y2yk−1ykyk+1yk+2y2k−1y2k · · ·· · ·

y1y2yk−1ykyk+1yk+2y2k−1y2k · · ·· · ·

y1y2yk−1ykyk+1yk+2y2k−1y2k · · ·· · ·

Optimize over c1

Optimize over c2

Optimize over c3

...

Figure 10: Points visited by the bit scaling algorithm in the worst case. Black arcs follow via
Lemma 2.2.2, red arcs via Lemma 2.2.3.

With these last two lemmas in hand, we are ready to prove the worst-case lower

bound. The proof describes the possible behavior of the bit scaling algorithm when

given a polytope Pn and cost vector cp, as depicted in Figure 10. The Ω(n log ‖cp‖∞)

lower bound proven here meets the upper bound established in Lemma 2.2.1, im-

plying that the analysis is tight.

Theorem 2.2.4. Choose k ≥ 1 and set n := 8k− 2. Let Pn = conv
({

y1, . . . , y2k}) be

the polytope and cp for some p ≥ 1 the objective function as constructed above. Then the

bit scaling algorithm optimizing cp over Pn requires Ω(n log ‖cp‖∞) augmentation steps

in the worst case.

Proof. By construction of cp, the bit scaling algorithm optimizes over c1, c2, . . . , cp

in successive scaling phases. The algorithm begins by optimizing over c1. Using

the results of Lemma 2.2.2 and Lemma 2.2.3 we have

c1y2k < c1y2k−1 < · · · < c1y1.

Since an augmentation step moves to any point with improving cost, the algorithm

may be forced to visit all 2k points when optimizing over c1.

27

For ` ≥ 2 and ` even, y1 maximizes c`−1 over Pn and

c`y1 < c`y2k < c`y2k−1 < · · · < c`yk+1,

so the bit scaling algorithm may visit all k points in
{

yk+1, . . . , y2k} in the `th scaling

phase. Similarly, for ` ≥ 2 and ` odd, yk+1 maximizes c`−1 over Pn and

c`yk+1 < c`yk < c`yk−1 < · · · < c`y1,

so the algorithm may visit all k points in
{

y1, . . . , yk}. Thus, for ` ∈ {1, . . . , p}, at

least k augmentations may be necessary to optimize over c`. As p = dlog ‖cp‖∞e,

this gives a total number of (at least)

kdlog ‖cp‖∞e =
n + 2

8
dlog ‖cp‖∞e ∈ Ω(n log ‖cp‖∞)

augmentations necessary over the entire algorithm.

2.2.4 Geometric scaling

While the bit scaling algorithm is only valid for 0/1 polytopes, the geometric scaling

algorithm (first given in [67]) can be used for general integer programs so long as the

feasible region can be bounded. In particular, we aim to solve max {cx : x ∈ P ∩Zn}

for an objective function c ∈ Zn and a polytope P := {x ∈ Rn : Ax = b, l ≤ x ≤ u}

with A ∈ Zm×n, b ∈ Zm, and l, u ∈ Zn. For the sake of readability of the results in

this section, we define C := ‖c‖∞, U := maxi∈[n] ui, and L := mini∈[n] li.

We once again seek to solve this optimization problem by a number of aug-

mentation steps, starting with feasible solution x ∈ P ∩ Zn. For this algorithm,

the augmenting steps require to first find an augmenting direction z ∈ Zn with

x + z ∈ P and cz > 0. Such a direction should be feasible, i.e., it should satisfy

x + z ∈ P. A feasible direction z is exhaustive for x and P if x + 2z 6∈ P. Note that

an exhaustive direction is always nonzero, and by integrality, an integer feasible

direction is exhaustive for P if and only if it is exhaustive for the integral hull PI .

28

Algorithm 2 Geometric scaling
Input: Integer feasible solution x0

Output: Optimal solution for max {cx : x ∈ P ∩Zn}
µ← 2C(U − L), x̃ ← x0

repeat
compute z solution to AUG with inputs A, l, u, x̃, c− µρ+(x), −c− µρ−(x)
if there is no feasible solution then

µ← µ/2
else

pick α ∈ Z+ with α ≥ 1 so that αz is an exhaustive direction
x̃ ← x̃ + αz . update solution and repeat

end if
until µ < 1/n
return x̃ . return optimal solution

We are now ready to present the geometric scaling algorithm, first found in

[67] and presented here as Algorithm 2. On first glance, it appears very similar to

bit scaling it that it requires a known feasible solution, then passes through many

scaling phases marked by the changing values of µ (this time we have no explicit

phase counter k). A major difference exists in the augmentation step, however. To

understand what is happening here, we first must define the problem AUG, which

we do next.

Problem: Directed augmentation (AUG)

Input: Matrix A ∈ Zm×n, bounds l, u ∈ Zn, vectors x̃, w+, w− ∈ Qn

Output: Either output z = z+− z−with A(z+− z−) = 0, 0 ≤ z+ ≤ u− x,

0 ≤ z− ≤ x− l, and w+z+ + w−z− > 0, or assert none exists

The augmentation problem AUG requires us to find a direction z broken into

two components z+ and z−. It is convenient to think of these as the positive and

negative parts of z, such that z+j z−j = 0 for each coordinate j ∈ [n]. Our analyses

do not require this z+j z−j = 0 condition to hold, however, and we only require

z = z+ − z−. The vectors z+ and z− must satisfy a set of linear constraints (indeed,

if we hadn’t split z into z+ and z−, the requirements would be nonlinear). In the

29

context of Algorithm 2, the A(z+ − z−) = 0, 0 ≤ z+ ≤ u− x, and 0 ≤ z− ≤ x− l

constraints stipulate that z is a feasible direction for P at x̃.

The constraint involving w+ and w− requires some explanation. In the context

of the algorithm, the AUG problem is told to satisfy (for some as-yet undefined

functions ρ+, ρ− : Zn → Qn)

0 < (c− µρ+(x̃))z+ − (cµρ−(x̃))z−

= c(z+ − z−)− µ(ρ+(x̃)z+ + ρ−(x̃)z−)

We can define, for any z ∈ Zn with positive part z+ and negative part z−, the

function

ρ(x̃, z) := ρ+(x̃)z+ + ρ−(x̃)z−.

Using this definition and the discussion above, we can say the following about

the directions returned by the AUG procedure in Algorithm 2.

Lemma 2.2.5. Any direction z returned by the AUG procedure in the geometric scaling

algorithm satisfies

cz− µρ(x̃, z) > 0 or, equivalently cz
ρ(x̃, z)

> µ.

So we see that the call to AUG in the geometric scaling algorithm requires a

direction z that is feasible for P at x̃ while also guaranteeing a minimum improve-

ment in objective quality. This improvement is scaled by some potential function

ρ. At this point, the search for an augmenting direction may appear similar to

the improvement steps taken in the interior point methods from other realms of

optimization. Indeed the search for augmenting directions is very similar to the

Newton directions obtained from the derivatives of the classical barrier function

for linear programs (see, e.g., [5, Section 4]).

We would like these potential functions to satisfy certain criteria. In particular,

we want

30

1. ρ(x, z) ∈ O(poly(n)),

2. ρ(x, z) = Ω(1/ poly(n)) whenever z is exhaustive for x, and

3. ρ(x, α · z) = α · ρ(x, z) for all α ≥ 0.

The first two criteria are important for the following upper bound proofs, as such

conditions will guarantee a polynomial bound on the number of augmentations

necessary. The importance of the third criterion is due to the step in Algorithm 2

where we scale z to be exhaustive. This homogeneity conditions assures that αz

confers the same benefit to the objective function relative to p as z does, i.e.

c(αz)
ρ(x̃, αz)

=
cz

ρ(x̃, z)
> µ.

We will now give an example potential function ρ which we will show to fit

each of these criteria. In fact, this is the same potential function that is used in

[67]. We will continue to use this particular function in our proofs, while allowing

that similar results may be given by using different potential functions. For the

remainder of the section, we will define ρ(x, z) = ρ+(x)z+ + ρ−(x)z− with

ρ+(x)j =


1

uj−xj
, if xj < uj

∞, otherwise
and ρ−(x)j =


1

xj−lj
, if xj > lj

∞, otherwise

for each coordinate j ∈ [n].

Lemma 2.2.6. The function ρ as defined above satisfies the requirements of a potential

function. In particular,

1. ρ(x, z) ≤ n for all integer feasible points x and feasible directions z;

2. ρ(x, z) > 1
2 whenever z is exhaustive for x.

3. ρ(x, α · z) = α · ρ(x, z) for all α ≥ 0.

31

Proof. One easily verifies property 3 from the definition of ρ. Let z = z+− z− be an

integer feasible direction and let x be integer feasible for P. We will show that for

each j ∈ [n] we have p(x)j z+j + n(x)j z−j ≤ 1. Since (p(x)j z+j) · (n(x)j z−j) = 0 by

the definition of the positive and negative part, it suffices to prove that p(x)j z+j ≤

1 and n(x)j z−j ≤ 1. We consider the term n(x)j z−j ; the proof is analogous for

p(x)j z+j . Observe that whenever xj = lj then z−j = 0, and hence n(x)j z−j = 0 in

this case. Thus, suppose that xj > lj. Then

n(x)j z−j =
z−j

xj − lj
≤ 1,

because z is a (feasible) direction.

Now suppose that z is exhaustive for x, i.e., x + z ∈ P, but x + 2z /∈ P. By

definition, ρ(x, z) ≥ 0. Moreover, since z is exhaustive, there exists j ∈ [n] with

either xj + 2zj > uj, i.e., z+j > (uj − xj)/2 or xj + 2zj < lj, i.e., z−j > (xj − lj)/2.

Hence, p(x)j z+j > 1
2 in the former case or n(x)j z−j > 1

2 in the latter case.

It was shown in [67] that the geometric scaling algorithm requires O(n log(nC(U−

L))) augmentations before terminating. With slight modification to their proof, we

can reduce this bound to O(n log(C(U− L))). We present this result now. To keep

the presentation of the main proof clean, we next prove some sub-results in support

if the main theorem.

Lemma 2.2.7. Suppose the geometric scaling algorithm augments from solution x̃ to solu-

tion x = x̃ + αz. Then cx > cx̃.

Proof. The result follows simply from Lemma 2.2.5

c(x− x̃)− µρ(x̃, x− x̃)

and the fact that µ, ρ > 0.

32

Lemma 2.2.8. Let x̃ be the last solution in the scaling phase for µ in the geometric scaling

algorithm. Then

c(x− x̃) ≤ µ n

for any integer x ∈ P.

Proof. If x̃ is the final solution in the phase for µ, this means that no x ∈ P∩Zn exists

with c(x− x̃)− µ · ρ(x̃, x− x̃) > 0. Since ρ is bounded by n, the result follows.

Lemma 2.2.9. The geometric scaling algorithm completes at most 4n augmentation steps

between successive updates of µ.

Proof. Let y0, y1, . . . be the points in P visited by the algorithm during the scaling

phase for a given µ. In particular, y0 is the current solution after the last update of

µ. By Lemma 2.2.8, we have

c(x∗ − y0) ≤ 2µn,

where x∗ is an integral optimal solution for the original problem. Now, consider

any two consecutive iterates yi and yi+1. By definition of Algorithm 2, the relation

c(yi+1 − yi)− µ · ρ(yi, yi+1 − yi) > 0 holds. Moreover, as the direction yi+1 − yi is

exhaustive, using Lemma 2.2.6 we have

c(yi+1 − yi) > µ · ρ(yi, yi+1 − yi) ≥ µ

2
≥ 1

4n
c(x∗ − y0).

Hence after 4n augmentations from yi to yi+1, we come to a point with objective at

least as high as x∗. Thus by Lemma 2.2.7 no more augmentations are possible.

Already with the above results, one can show the O(n log(nC(U − L))) bound

of [67] by simply noting that the algorithm goes through log(nC(U − L)) scaling

phases. The improvement to O(n log(C(U − L))) comes by noticing that the abso-

lute gap between the current solution and the optimal solution after log(C(U− L))

phases is at most n, implying that only n augmentations are necessary from that

point forward.

33

Theorem 2.2.10. Suppose the geometric scaling algorithm is run with ρ the potential func-

tion from Lemma 2.2.6. Then the algorithm completes after O(n log(C(U − L))) augmen-

tation steps.

Proof. The algorithm initializes with µ = 2C(U− L). Hence after dlog(C(U − L))e+

1 updates of µ, we have µ ≤ 1, and by Lemma 2.2.9 have completed at most

4n(dlog(C(U − L))e + 1) augmentations in total. Let x̃ be the last solution com-

puted by the algorithm after these first dlog(C(U − L))e+ 1 scaling phases.

At this point we may stop counting augmentations per phase and simply count

the number of remaining improvements that are possible. As µ ≤ 1, Lemma 2.2.8

implies c(x∗ − x̃) ≤ n, where x∗ is an integral optimal solution with respect to

c. Since all data is integral and by Lemma 2.2.7, every augmentation improves the

objective function by at least 1. It follows that no more than n solutions may be gen-

erated before obtaining a solution with cost cx∗. Hence the algorithm terminates

after at most 4n(dlog(C(U − L))e+ 1) + n augmentations.

To close this section, we note that this result has further implications when com-

paring bit scaling to geometric scaling for P ⊆ [0, 1]n. We will see this in Sec-

tion 2.2.5.

2.2.5 Comparing bit scaling and geometric scaling

We’ve already seen that geometric scaling is more versatile than bit scaling in that

bit scaling is valid only over P ⊆ [0, 1]n. If we focus strictly on the domain where

they are both valid (again, P ⊆ [0, 1]n), is there reason to favor one over the other?

First, we note that if P ⊆ [0, 1]n, then we may set l = 0, u = 1 for the ge-

ometric scaling algorithm. Thus Theorem 2.2.10 tells us that O(n log ‖c‖∞) aug-

mentations are necessary, equivalent to the bound for bit scaling in Lemma 2.2.1

(note that using the results of [67], the bound for geometric scaling would only

34

be O(n log(n ‖c‖∞))). Hence, judging by the maximum number of augmentations

needed, no preference is found for one over the other.

A point against geometric scaling could be that the associated augmentation

problem is in dimension 2n, since the augmenting direction z must is split by means

of z = z+− z−. However, it is easy to show that the potential function given in Sec-

tion 2.2.4 reduces to ρ(x, z) = | supp z| when all feasible solutions are 0/1 vectors.

With x known, this can be converted into a linear function in n variables, eliminat-

ing this possible advantage for bit scaling.

However, the worst-case example for bit scaling from Section 2.2.3 highlights a

distinct advantage for geometric scaling over bit scaling. Recall that in this exam-

ple, the bit scaling algorithm may be forced to augment O(n log ‖c‖∞) times over

the course of the algorithm. However, the example polyhedron P contains only

Θ(n) integer points. Bit scaling achieves a high worst-case bound here because it

may be forced to revisit the same solution x ∈ P multiple times. However, from

Lemma 2.2.7 we know that the geometric scaling algorithm will never revisit a point.

Thus for the same example, geometric scaling will augment only O(n) times. Hence

we have the following result.

Corollary 2.2.11. For any p ≥ 1, there exists a polytope P ⊆ [0, 1]n with n = 8k + 2,

k ∈ Z>0 and an objective function c = cp, so that bit scaling computes Ω(n log ‖cp‖∞) =

Ω(np) augmenting directions in the worst case, while geometric scaling needs O(n) aug-

menting directions. In particular, the relative difference can be made arbitrarily large by

choosing p appropriately.

As a final note to the section, we mention that with some preprocessing, this

negative result for bit scaling can be mitigated. In particular, the rounding scheme

of [32] can be used to turn an arbitrary c ∈ Qn into a vector c̄ ∈ Zn with encoding

length O(n3) in time polynomial in n and log ‖c‖∞ such that optimizing both vec-

tors results in the same optimal solution. Thus, bit scaling requires at most O(n4)

35

augmentations in the worst-case with preprocessing of the objective function. We

obtain the same worst-case bound on the number of augmentations for geometric

scaling.

2.2.6 Improved bounds for structured 0/1 polytopes

When proving worst-case bounds for both bit scaling and geometric scaling, a cru-

cial element is the O(n) bound on the number of improvements made per scaling

phase. In the case of bit scaling, this bound is due to the number of positive entries

in the vector x − x̃ being at most n for any integral point x, x̃ ∈ P. For geometric

scaling, the bound arises from potential function values. In particular, the poten-

tial ρ(x, z) := | supp(z)| is bounded from above by n. If this bound can be reduced

for special polytopes, it would have direct consequences for worst-case bounds of

either algorithm.

One condition that guarantees such a reduction is the following: Let P ⊆ [0, 1]n

be a polytope, and suppose there exists some function f : Z+ → Z+ such that

every integral point x ∈ P has no more than f (n) nonzero entries. In particular we

are hoping for an o(n) function, such as
√

n or log n. We then obtain the following

improved worst-case bounds for both bit scaling and geometric scaling.

Theorem 2.2.12. Let c ∈ Rn be a cost vector and P ⊆ [0, 1]n a polytope. Suppose there ex-

ists a function f : Z+ → Z+ such that every integral point x ∈ P has at most f (n) nonzero

entries. Then, given an initial solution x0 ∈ P, both Algorithm 1 and Algorithm 2 solve the

optimization problem max {cx : x ∈ P ∩Zn} after O(f (n) log ‖c‖∞) augmentations.

Proof. For Algorithm 1 the proof follows as for Lemma 2.2.1, but replacing the

bound dk(xk − xk−1) ≤ n by dk(xk − xk−1) ≤ 2 f (n). In the case of Algorithm 2,

the proofs goes as the one for Theorem 2.2.10, but using that L = 0, U = 1, and

ρ ≤ 2 f (n).

Many well-studied polytopes satisfy that the integral points have a number of

36

vertices that is o(n), especially those arising from graph-theoretic problems. For

example, take the traveling salesman polytope P ⊆ [0, 1]|E| on the complete graph

with k nodes and |E| = (k
2) edges. Even though the polytope is contained in a space

of dimension (k
2), its integral points (corresponding to tours on the graph) contain

exactly k nonzero entries, spanning a low dimensional subspace. Hence optimizing

over P using either Algorithm 1 or Algorithm 2 can be done in O(k log ‖c‖∞) aug-

mentations, a factor-k improvement over the general O(k2 log ‖c‖∞) upper bound.

2.3 Implementation

After having examined theoretical questions involving the various scaling meth-

ods, it is natural to wonder whether these methods might be of practical use for

solving integer programs. To test this, we must address how to solve the associ-

ated augmentation problems, which we ignored during theoretical analysis. The

strategy employed here is to use a MIP solver to carry out the augmentation steps.

One may wonder how using a MIP solver as a subroutine could ever improve upon

using the same solver to solve the problem outright. The idea is that by guiding the

early stages of the algorithm with scaled objectives that are perhaps more “simple”

than the full objective, one can make primal gains more quickly and prune more of

the branch-and-bound tree earlier in the algorithm.

The augmenting MIP is generally solved by adding an objective cut c(x− x̃) ≥ δ

for an appropriately chosen 0 < δ < 1. We run this MIP until an improving solution

is found. In the case of geometric scaling, we then exhaust the direction obtained

via a line search.

2.3.1 Algorithms

We now briefly review the types of algorithms tested. For a fuller accounting of

each method, we direct the reader to [47], the preprint version of an article based

on this work. The following is a list of the algorithms tested.

37

• Augment: A basic augmenting algorithm that does not use scaling to guide

the search for new solutions. The associated MIP subproblems consist of the

problem’s original constraints plus an objective cut.

• Bit scaling: The classical bit scaling algorithm of Algorithm 1 is implemented,

along with a variant that maximizes ck at each augmenting step (hence there

is only one augmentation per scaling phase). A few variants on these basic

ideas are tested.

• Geometric scaling: Algorithm 2 is tested with pseudo-potential function ρ(x, z) =

‖z‖1. This function does not satisfy the linear homogeneity condition ρ(x, αz) =

α(x, z) (except for 0/1 programs, where scaling is unnecessary), but is used

anyway due to it’s simplicity. We also modify the algorithm slightly by choos-

ing a different factors by which µ is altered in each phase (by default it is

divided by 2, but we also try values ranging from 8 to 1024).

• Primal heuristic based on geometric scaling: Initial results from the geomet-

ric scaling algorithm motivated us to test a heuristic using the method. In par-

ticular, we use the MIP solver’s default settings unless no primal solution has

been found after a certain number of nodes are solved. The geometric scaling

algorithm is then run for a predetermined amount of time, and any solutions

recovered are returned back to the master problem. Regular branch-and-cut

resumes until the conditions for the heuristic are met again. We also test two

further variants of this scheme - one uses inference branching instead of de-

fault branching, and the other uses the factor 64 to update µ in each scaling

phase.

38

2.3.2 Results

We implemented the discussed algorithms in C using the framework SCIP, see [1,

69]. In particular, we use SCIP 3.2.0 with CPLEX 12.6.1 as the LP-solver. SCIP runs

with default settings, except that we turn off the “components” presolver, since

it would decompose the problem into several runs, making a comparison more

difficult. Tests were run on a Linux cluster with 3.2 GHz Intel i3 processors with 8

GB of main memory and 4 MB of cache, running a single process at a time.

We use the following test sets:

MIPLIB2010 The 87 benchmark instances from MIPLIB 20101, see [46].

LB We use the test set of 29 instances from the “local branching” paper2, see [30].

This test set has also been used in [38].

QUBO We use a test set of linearizations of 50 instances for quadratically uncon-

strained Boolean optimization (QUBO)3, see [22, 23].

We now briefly summarize the results of the tests, noting that further discus-

sions are found in [47], and full results are available in the online supplement ref-

erenced within.

2.3.2.1 MIPLIB 2010 test set

Table 1 shows a comparison of the different augmentation methods (along with

SCIP/CPLEX running on default parameters) on the test set MIPLIB2010. In the

table, “#nodes” and “time” give the shifted geometric means4 over all instances of

1available at http://miplib.zib.de/
2available at http://www.or.deis.unibo.it/research_pages/ORinstances/MIPs.

html
3available at http://researcher.watson.ibm.com/researcher/files/

us-sanjeebd/chimera-data.zip
4The shifted geometric mean of values t1, . . . , tn is defined as

(
∏(ti + s)

)1/n − s with shift s. We
use a shift s = 10 for time and s = 100 for nodes in order to decrease the strong influence of the
very easy instances in the mean values.

39

http://miplib.zib.de/
http://www.or.deis.unibo.it/research_pages/ORinstances/MIPs.html
http://www.or.deis.unibo.it/research_pages/ORinstances/MIPs.html
http://researcher.watson.ibm.com/researcher/files/us-sanjeebd/chimera-data.zip
http://researcher.watson.ibm.com/researcher/files/us-sanjeebd/chimera-data.zip

Table 1: Aggregated results of the different algorithms on test set MIPLIB 2010 (1 hour time limit,
87 instances)

name #nodes time #run #best #improv. #subprob. #phases #exhaust prim-
∫

augment 14793.5 924.71 83 63 12.9 12.9 12.9 0.0 54.5
bitscale 20116.2 934.93 59 67 3.7 8.4 4.8 0.0 57.4
bitscale-classic 25086.0 1120.62 59 62 4.1 11.0 6.9 0.0 60.4
bitscale-noimprove 20343.4 918.31 60 69 4.2 8.8 4.6 0.0 56.7
bitscale-complete 26902.6 1070.71 59 59 2.0 6.6 4.6 0.0 103.5
geometric 5628.8 1632.31 83 65 6.2 23.6 17.4 0.0 49.8
geom-8 8637.7 1313.55 83 69 5.7 12.8 7.1 0.0 40.7
geom-64 8680.9 1122.85 83 72 6.4 10.7 4.3 0.0 39.7
geom-256 8358.2 1128.40 83 69 7.1 10.9 3.7 0.0 39.7
geom-512 9895.4 1112.03 83 69 7.0 10.3 3.3 0.0 41.8
geom-1024 8392.5 1016.80 83 71 7.1 10.3 3.2 0.0 39.8

geom-heur 16858.8 741.52 68 71 1.3 33.6 32.4 0.0 30.4
geom-heur-infer 21343.6 732.30 68 72 1.0 41.7 40.7 0.0 30.1
geom-heur-64 16158.0 683.18 68 73 1.7 9.9 8.1 0.0 29.3

default 15495.9 557.12 0 74 0.0 0.0 0.0 0.0 26.3

the total number of nodes (including subproblems) and the time (in seconds), re-

spectively. Column “#run” presents the number of instances for which an augmen-

tation routine ran. Column “#best” refers to the number of times the best known

primal solution value has been found. With respect to the augmentation methods,

the columns “#improv.”, “#subprob.”, “#phases”, and “#exhaust” refer to the av-

erage number of times an improved primal solution has been found, the number

of subproblems (MIPs) solved, the number of phases, and the number of exhaust-

ing directions found, respectively. The number of phases refers to the number of

subproblems solved with the same value of µ for bit and geometric scaling (in this

case, #phases+ #improv = #subprob); note that we count a possible search for the

first primal solution as one phase. For augment, the number of phases equals the

number of improving solutions and the number of subproblems.

Finally, the last column gives the primal integral, see [8]. The primal integral is

the value we obtain by integrating the gap between the current primal and best pri-

mal bound over time5. Thus, a smaller primal integral indicates a higher solution

quality over time.

5We define the gap between primal bound p and best primal bound b as |p− b|/ max(|p|, |b|).

40

The overall picture here for the augmentation algorithms is bleak. The default

MIP solver clearly outperforms the primal methods on these instances. Among the

primal methods, the standard augmenting procedure performs surprisingly well.

The bit scaling methods appear to achieve slightly better times than the geometric

scaling variants, though there is not much difference overall, and geometric scaling

found the best solution more often. Amongst all non-default methods, the geo-

metric scaling-based heuristic performs best in terms of time, despite a fairly high

number of nodes being solved.

Although the results here are not encouraging, there are good reasons to suspect

this should be the case. First, the MIPLIB collections are well-known and broadly-

used test sets. As such, they are often used for benchmark analyses, and there is

reason to believe that many solvers are (not necessarily intentionally) overtuned to

perform well on them. Second, these are relatively easy problems already. One

could suspect that the true strength of primal methods is quickly finding good pri-

mal solutions, something that may be more apparent on problems that cannot be

solved quickly.

2.3.2.2 LB test set

For the next test set, we compare the basic augmenting procedure, the best of the

bit scaling and geometric scaling variants, and the three geometric scaling-based

heuristic methods. We display the best solution found by each method after an

hour time limit in Table 2.

Results show that several augmentation methods are competitive with the de-

fault settings when it comes to identifying good primal solutions. Indeed, the

vanilla geometric scaling-based heuristic was responsible for the most “best” val-

ues, finding solutions at least as good as all other methods in 18 for the 29 instances.

The generic augmenting procedure performs the worst, finding the best value only

41

Table 2: Best primal values for different variants on the LB test set (29 instances, 1 hour time limit). All problems are minimization instances. For
each instance, the best values obtained are marked in black, otherwise the values are marked gray.

problem default augment bitscale geom-64 geom-heur geom-heur-infer geom-heur-64

A1C1S1 11,643.33 11,989.36 11,977.50 11,638.86 11,557.22 11,566.59 11,590.45
A2C1S1 10,983.28 11,422.77 11,115.34 11,040.72 10,897.77 10,994.27 10,909.95
arki001 7,580,813.05 7,581,527.87 7,580,813.05 7,582,202.93 — 7,580,814.51 7,580,813.05
B1C1S1 24,798.51 25,456.98 27,309.51 25,458.30 25,630.75 25,123.51 25,042.56
B2C1S1 25,763.12 27,253.74 26,592.19 26,167.32 26,412.44 25,926.61 26,002.11
biella1 3,065,005.78 3,065,005.78 3,065,005.78 3,065,005.78 3,065,005.78 3,065,005.78 3,065,005.78
core2536-691 689.00 689.00 689.00 689.00 689.00 689.00 689.00
core2586-950 970.00 972.00 1213.00 971.00 955.00 960.00 966.00
core4284-1064 1091.00 1100.00 3279.00 1080.00 1072.00 1073.00 1079.00
core4872-1529 1580.00 1584.00 1769.00 1579.00 1546.00 1560.00 1575.00
danoint 65.67 65.67 65.67 65.67 65.67 65.67 65.67
glass4 1,600,013,500.00 1,500,014,200.00 2,200,016,050.00 1,620,014,440.00 1,500,012,650.00 1,550,012,462.72 1,566,683,416.66
markshare1 7.00 9.00 32.00 12.00 10.00 10.00 10.00
markshare2 12.00 13.00 128.00 17.00 14.00 14.00 10.00
mkc −559.11 −542.28 −557.56 −561.93 −562.93 −560.85 −561.33
net12 214.00 214.00 214.00 214.00 214.00 214.00 214.00
NSR8K 127,262,743.24 68,351,187.10 2,176,184,843.46 21,415,513.00 127,262,743.24 127,262,743.24 127,262,743.24
nsrand ipx 51,200.00 54,880.00 55,200.00 52,000.00 51,200.00 51,200.00 51,200.00
rail507 174.00 174.00 174.00 174.00 174.00 174.00 174.00
roll3000 12,890.00 12,899.00 13,380.00 12,904.00 12,890.00 12,890.00 12,890.00
seymour 425.00 425.00 425.00 424.00 424.00 425.00 424.00
sp97ar 663,515,230.72 726,599,877.76 674,470,726.72 662,299,239.68 674,213,859.52 664,157,022.72 673,642,038.40
sp97ic 435,258,209.12 450,307,285.28 430,937,067.04 439,446,697.12 434,570,609.44 432,663,431.84 439,022,248.00
sp98ar 530,322,047.84 551,452,928.96 532,671,408.48 530,242,941.12 530,437,736.32 530,489,389.92 530,251,516.00
sp98ic 451,409,231.04 465,544,414.56 455,081,136.48 450,843,038.08 450,519,098.72 449,226,843.52 453,626,659.52
swath 494.09 502.24 506.44 495.02 467.41 481.95 477.57
tr12-30 130,596.00 130,596.00 139,741.00 130,596.00 130,596.00 130,596.00 130,596.00
UMTS 30,094,335.00 30,091,967.00 30,091,457.00 30,092,333.00 30,093,479.00 30,092,081.00 30,091,738.00
van 5.09 5.59 5.35 6.12 5.09 5.09 5.09

#best: 13 6 8 10 18 10 11

42

for instances where (almost) all other instances found the same solution.

Overall, the scaling methods presented perform admirably as compared to the

default MIP solver. This is in contrast to what was found on the MIPLIB2010 test set,

perhaps giving evidence to our hypothesis that primal augmentation techniques

are more effective on more difficult problems.

2.3.2.3 QUBO test set

For the QUBO test set, we test the default MIP solver versus geometric scaling and

the heuristics based on it. Table 3 shows the best primal values and the primal inte-

gral achieved by each method on each instance. For these instances, the other stand-

alone augmentation methods do not perform well – we skip their results here.

These particular instances are much harder (in terms of necessary solve time

and known optimality gaps) than instances in the other test sets. Interestingly, on

these test instances the default settings are no longer competitive with the scaling-

based methods when it comes to finding good solutions. Indeed, in only one of 50

instances did the method find a solution stronger than any of the other methods.

Primal integral values are generally higher as well.

The winner here appears to be geometric scaling, which for the first time out-

performs the geometric scaling-based heuristics on a test set. Overall, the QUBO

instances show the best potential for scaling-based augmentation methods.

2.4 Conclusions and future work

This work gives tightened theoretical analyses for scaling-based augmentation meth-

ods. In particular, the upper bound for augmentations in the geometric scaling

method is improved, an example shows that bit scaling may require its worst-case

number of augmentations, and it is shown that bit scaling can perform arbitrarily

worse than geometric scaling on the same problem. It is still an open problem to

43

Table 3: Best primal values and primal integral of the default settings and variants of the heuristic
based on geometric scaling (50 instances, 1 hour time limit). For each instance, the best primal values
are marked in black, otherwise the values are marked gray; all problems are minimization instances.

Problem default geom-64 geom-heur geom-heur-infer geom-heur-64

Primal Prim-
∫

Primal Prim-
∫

Primal Prim-
∫

Primal Prim-
∫

Primal Prim-
∫

chim8-4.1 −796 153.8 −822 58.9 −830 109.9 −788 188.3 −798 144.9
chim8-4.2 −776 192.6 −766 193.5 −794 60.5 −800 33.4 −806 17.8
chim8-4.3 −784 281.5 −840 145.7 −790 218.7 −790 218.6 −800 181.7
chim8-4.4 −806 291.1 −876 24.7 −828 203.5 −840 160.0 −852 107.2
chim8-4.5 −850 208.1 −882 58.0 −840 175.1 −828 223.3 −852 128.5
chim8-4.6 −790 218.4 −798 189.7 −840 140.9 −830 158.5 −836 132.6
chim8-4.7 −756 301.5 −810 134.2 −802 102.7 −824 188.6 −806 85.3
chim8-4.8 −786 248.0 −822 26.2 −796 125.8 −824 4.8 −814 68.7
chim8-4.9 −850 154.6 −810 265.7 −872 159.9 −802 291.8 −828 186.1
chim8-4.10 −810 349.5 −896 17.7 −812 341.1 −830 269.3 −828 280.2
chim8-4.11 −764 154.6 −768 113.3 −748 200.7 −790 68.6 −730 280.8
chim8-4.12 −746 306.5 −774 161.7 −786 105.7 −780 130.9 −808 8.2
chim8-4.13 −818 158.7 −848 17.8 −798 218.4 −788 259.6 −800 210.5
chim8-4.14 −806 63.7 −770 218.3 −818 36.4 −800 140.5 −792 124.6
chim8-4.15 −836 243.4 −896 14.9 −868 115.9 −880 67.8 −868 118.3
chim8-4.16 −834 164.7 −852 70.1 −814 205.4 −862 42.0 −818 194.2
chim8-4.17 −802 102.7 −732 376.1 −810 81.2 −816 157.7 −796 114.7
chim8-4.18 −856 63.4 −808 268.0 −868 15.2 −870 5.6 −870 11.8
chim8-4.19 −870 200.2 −906 35.3 −886 84.4 −876 126.0 −866 164.5
chim8-4.20 −818 249.5 −874 31.1 −878 51.5 −812 274.6 −850 120.3
chim8-4.21 −818 98.7 −816 120.5 −836 22.3 −830 47.6 −840 5.6
chim8-4.22 −816 122.7 −834 53.3 −820 110.9 −844 58.7 −834 48.3
chim8-4.23 −780 196.4 −824 39.6 −788 168.6 −768 249.4 −798 120.2
chim8-4.24 −840 222.8 −834 199.5 −862 87.4 −862 91.6 −880 123.4
chim8-4.25 −880 91.2 −872 115.8 −872 80.5 −858 136.8 −890 68.0
chim8-4.26 −796 190.6 −838 66.1 −792 205.4 −826 174.8 −788 220.9
chim8-4.27 −834 54.5 −844 36.3 −846 16.0 −834 57.0 −834 57.2
chim8-4.28 −782 82.4 −746 249.8 −792 34.2 −790 44.2 −798 11.4
chim8-4.29 −790 193.3 −820 74.4 −792 186.2 −834 94.3 −810 113.8
chim8-4.30 −842 200.1 −808 341.0 −870 87.4 −864 111.5 −890 42.6
chim8-4.31 −870 137.1 −890 58.8 −900 63.3 −882 198.9 −860 243.8
chim8-4.32 −790 192.8 −830 11.1 −824 144.3 −818 131.9 −822 160.7
chim8-4.33 −884 98.4 −830 275.1 −878 83.5 −896 51.4 −870 110.0
chim8-4.34 −890 24.9 −882 53.5 −872 80.2 −876 68.7 −860 126.7
chim8-4.35 −782 98.6 −798 84.0 −788 51.3 −774 112.7 −794 25.1
chim8-4.36 −788 133.1 −816 13.4 −792 111.2 −776 180.2 −780 164.1
chim8-4.37 −790 64.7 −798 12.1 −760 176.5 −798 72.7 −798 33.7
chim8-4.38 −806 349.6 −796 266.9 −856 154.8 −792 277.7 −840 184.2
chim8-4.39 −856 79.6 −866 20.7 −850 70.5 −846 86.8 −846 87.6
chim8-4.40 −790 82.9 −760 303.5 −788 79.8 −802 71.6 −800 38.9
chim8-4.41 −880 209.0 −890 36.7 −846 185.6 −836 223.6 −864 114.4
chim8-4.42 −658 190.7 −694 210.2 −678 89.6 −678 89.9 −684 58.8
chim8-4.43 −734 108.1 −740 86.0 −756 4.6 −742 70.2 −752 23.9
chim8-4.44 −742 145.7 −704 328.5 −772 174.5 −756 81.3 −764 48.2
chim8-4.45 −818 251.7 −846 26.3 −842 29.5 −842 24.6 −834 81.0
chim8-4.46 −854 154.6 −854 128.0 −840 152.5 −874 68.8 −832 179.0
chim8-4.47 −848 136.6 −856 66.1 −868 96.4 −834 145.0 −850 88.2
chim8-4.48 −826 94.0 −834 12.2 −812 98.6 −812 98.5 −832 18.1
chim8-4.49 −800 159.8 −820 15.1 −760 268.9 −746 328.3 −786 154.9
chim8-4.50 −822 114.2 −802 189.1 −814 124.9 −842 72.1 −838 39.9

#best 1 19 11 13 9
AM prim-

∫
(#50) 167.7 118.3 119.8 130.6 109.5

GM prim-
∫

(#50) 148.0 73.5 94.6 100.0 79.4

44

give a family of instances where geometric scaling meets it’s theoretical worst-case

upper bound - in fact, the authors are unaware of any example that requires a num-

ber of augmentations super-linear in n. Indeed, it is possible that the new upper

bound is still too loose. A result in either direction would be of interest.

The computational results suggest that scaling methods can help close the op-

timality gap on hard MIP instances. Each of the methods employed here involve

several parameters, hence extensive parameter tuning could help to improve on

these results. However, a primal algorithm that is competitive overall with tradi-

tional MIP solving techniques remains elusive.

45

CHAPTER III

CG AND MOD-K CUTS IN THE 0/1 CUBE

3.1 Introduction

Cutting planes hold great importance in integer programming as a tool for tight-

ening linear programming relaxations. Perhaps the most important class of cutting

planes historically are Chvátal-Gomory cuts (see [17, 34, 35]), which are born of a

rather simple observation: If the inequality cTx ≤ δ is valid for a polyhedron P and

c ∈ Zn, then the inquality cTx ≤ bδc holds for all integral points in P.

Formally, let P be a rational polyhedron with integer hull PI = conv (P ∩Zn).

A Chvátal-Gomory cut (or CG cut) is any inequality of the form cTx ≤ bδc where

c ∈ Zn and cTx ≤ δ is valid for all x ∈ P. The Chvátal-Gomory closure (CG closure) of

P, denoted P′, is the intersection of P with its CG cuts. We will alternately denote

P(1) := P′ and recursively define P(k) = (P(k−1))′. It is well known that P′ is again

a rational polyhedron, and also there always exists finite t ∈ Z so that PI = P(t).

The smallest t for which this holds is known as the Chvátal-Gomory rank (CG rank)

of P, which we denote by rk(P).

3.1.1 Related work

While a polyhedron P ⊆ Rn always has a rank that is finite, it need not be small.

Indeed, simple examples show that the CG-rank may be arbitrarily large as com-

pared to the dimension n. However, if we restrict P ⊆ [0, 1]n, this is no longer true.

Bounds which are polynomial in n have long been known, with the current best

bound of rk(P) ∈ O(n2 log n) proved in [29]. No matching lower bound has been

shown, though in [64] polytopes with rank Ω(n2) are described.

While the previous bounds were stated in terms of the dimension n, other bounds

46

which are completely independent of n are also known. In [19] CG rank bounds

are derived based on the structure of the set S = P ∩Zn of integral extreme points

of P ⊆ [0, 1]n. In particular, from S construct a graph with a vertex correspond-

ing to each point in the set {0, 1}n \ S, and edges between all pairs of points which

differ in precisely one coordinate. If the treewidth of this graph is at most 2, then

rk(P) ≤ 4. These results are extended in [6] for any treewidth value (i.e. not only

equal to 2), and the same work derives bounds based on other properties of S.

In [13], CG and other popular cuts are generalized as so-called aggregation cuts.

This work derives novel lower bounds for CG rank in the case that the polyhedron

P is of packing or covering type.

Complexity questions regarding the CG closure have also generated interest in

the literature. Given a polyhedron P and rational x ∈ P, the CG separation problem

asks if there exists a CG cut for P that is violated by x. This problem was shown to

be NP-complete in the general case P ⊆ Rn by [28] and also recently for the case

P ⊆ [0, 1]n as reported in [48]. In [20], it is shown that deciding whether the CG

closure of a rational polyhedron is empty is also an NP-complete problem, even if

the polyhedron of interest contains no integer points.

Similar results can also be shown when CG cuts are replaced with different

classes of cuts. One popular class of cuts are the so-called mod-k cuts, which we

define now. Suppose that P = {x ∈ Rn : Ax ≤ b} with A ∈ Zm×n and b ∈ Zm. An

alternate definition of a CG cut is any inequality of the form λT Ax ≤
⌊
λTb

⌋
where

λT A ∈ Zn and λ ∈ [0, 1)m. A mod-k cut is a CG cut of the above form where we

restrict λ ∈ {0, 1/k, ..., (k − 1)/k}m. Such cuts were introduced in [16], in which

it was shown that separating over “maximally violated” mod-k cuts can be done

in polynomial time. The cuts from the special case of k = 2 have received more

attention in the literature, beginning with [15], under the name of {0, 1
2} cuts. It is

already known that the separation problem for mod-2 cuts is NP-complete, both in

47

the general case ([15]) and when we restrict P ⊆ [0, 1]n ([52]).

3.1.2 Outline

The log(n) gap between the upper and lower bounds for rk(P), P ⊆ [0, 1]n leaves

open work for determining tighter bounds. In Section 3.2 we prove a bound that

is strictly tighter than the best-known bounds from [29]. While the new bound is

still only O(n2 log n) in general, the nature of the proof allows us to give improved

bounds for certain classes of polyhedra. In particular, we prove new bounds for

symmetric polytopes, for polytopes with a limited number of integral points, and

for certain polyhedra that arise from combinatorial optimization problems.

In Section 3.3, we address the complexity of the general separation problem over

mod-k cuts. Mirroring the known results for both CG and {0, 1
2} cuts, we prove this

problem to be NP-hard, even in the case the P ⊆ [0, 1].

In what follows, we use the notation 0m×n to denote a matrix of size m× n con-

sisting of all zeros. Similarly, 1m×n denotes a matrix of all ones. We let In denote

an identity matrix of size n × n. We may suppress subscripts in cases where the

dimension is clear by context.

3.2 New upper bounds for CG rank in 0/1 polytopes

In this section, we give a new upper bound on the rank of polyhedra P with P ⊆

[0, 1]n. The ingredients of the proof are very similar to that of [29], but with more

care taken in the inductive steps to recover a tighter overall bound. After this bound

is proven, we show how to use it to give improved bounds for certain classes of

polyhedra.

3.2.1 Preliminaries

Let P = {x ∈ Rn : Ax ≤ b}, A ∈ Qm×n, b ∈ Qm be a rational polyhedron. An

inequality cTx ≤ δ is valid for P if it holds true for all x ∈ P. A face of P is any set of

48

the form P ∩ {x : cTx = δ} for some valid inequality cTx ≤ δ. A face F is called a

facet if its dimension is one less than the dimension of P, i.e. dim(F) = dim(P)− 1.

If c ∈ Rn, δ ∈ R are so that the face P∩ {x : cTx = δ} is a facet, then we call c a facet-

defining vector of P. Geometrically, c is normal to the facet, so we sometimes use the

term normal in place of vector for c. As we are working with rational polyhedra, we

may always choose facet defining vectors from Zn.

The integrality gap of c ∈ Rn with respect to polyhedron P is given by

max
x∈P

cTx−max
x∈PI

cTx.

In other words, it is the difference between the optimal values obtained when max-

imizing c over P as opposed to its integral hull PI . We say c is saturated with respect

to P if this integrality gap is 0. It is elementary to see that if all of PI’s facet-defining

vectors are saturated with respect to P, then P = PI . A common approach to prov-

ing rk(P) ≤ k is to show that any integral vector (and hence any facet-defining

vector for PI) is saturated with respect to P(k).

As a rhetorical convenience, we may refer to a round of the CG procedure when

describing the creation of P′ from P. In a natural extension of this convention, we

say that P(k) is the result of k applications of the CG procedure. Thus, saying that

“c is saturated (with respect to P) after k rounds of the CG procedure,” is taken to

mean that “c is saturated with respect to P(k).”

Our proofs make use of several previously known results. The following is a

classic result in the theory of CG cuts and can be found for example in [66, p. 340].

Lemma 3.2.1. Let F be a face of a rational polyhedron P. Then F′ = P′ ∩ F.

The next result, due to [12], bounds the rank of an integer-empty polytope P ⊆

[0, 1]n, and covers such cases in the main result of this section. We include a proof

due to this importance.

49

Lemma 3.2.2. Let P ⊆ [0, 1]n be a d-dimensional polytope, d ≥ 1, with PI = ∅. Then

rk(P) ≤ d.

Proof. The proof goes by induction on d and n. For the base case, let n ∈ Z+ and

suppose d = 1. Then P is the convex hull of two distinct points a, b ∈ [0, 1]n. Since

P contains no integer points, for some coordinate i ∈ [n] we must have 0 < ai < 1.

Suppose ai ≥ bi (the ai ≤ bi case may be handled similarly). Then the inequality

xi ≤ ai is valid for P. This means that xi ≤ 0 is valid for P′, so P′ ⊆ {x : xi = 0}.

Then P′ ⊆ {b}, as any point c ∈ P \ {a, b} can be written c = λa + (1− λ)b with

λ ∈ (0, 1), and since ai > 0 and bi ≥ 0, then ci 6= 0. But a symmetric argument also

proves that P′ ⊆ {a}. Then P′ ⊆ {a} ∩ {b} = ∅, and hence rk(P) = 1.

For the induction step, let d, n > 1. If P ⊆ {x : x1 = 0} or P ⊆ {x : x1 = 1}

we are done by induction on n. Otherwise, the dimension of both P0 := P ∩ {x :

x1 = 0} and P1 := P ∩ {x : x1 = 1} is strictly smaller than d. Then we have

∅ = P(d−1)
0 = P(d−1) ∩ {x : x1 = 0} by the induction hypothesis (for the first

equality) and Lemma 3.2.1 (the second), and similarly we have P(d−1)
1 = ∅. Thus

0 < min{x1 : x ∈ P(d−1)} ≤ max{x1 : x ∈ P(d−1)} < 1, implying that P(d) =

∅.

We note that the result does not hold for the pathological case d = 0; for this

case, it is not hard to show rk(P) ≤ 1.

The following result, a re-worded version of [29, Lemma 3.1], is a key technical

ingredient to both the bound of [29] and our new bound. It allows for a reduction

in integrality gap of c when the associated face of P does not span the entire width

of the cube [0, 1]n in some coordinate.

Lemma 3.2.3. Let cTx ≤ α be valid for PI and cTx ≤ α + k + 1 valid for P, with c ∈ Zn

and P ⊆ [0, 1]n a polyhedron. If for some index i ∈ {1, ..., n} it holds that F := P ∩ {x :

cTx = α + k + 1} has empty intersection with {x : xi = 0} and {x : xi = 1}, then

50

cTx ≤ α + k is valid for P(2).

Proof. As F ∩ {x : xi = 1} = ∅, it follows that there exists ε ∈ (0, 1) such that xi ≤

1− ε is valid for F, and so xi ≤ 0 is valid for F′. Similarly, as F ∩ {x : xi = 0} = ∅,

the inequality xi ≥ 1 is also valid for F′, implying F′ = ∅. Applying Lemma 3.2.1

we obtain

∅ = F′ = P′ ∩ F = P′ ∩ {x : cTx ≤ α + k + 1}.

Then there exists δ ∈ (0, 1) so that cTx ≤ α+ k + 1− δ is valid for P′, so cTx ≤ α+ k

is valid for P(2).

Lastly, we state a result from [29, Theorem 4.6], which suffices to prove the base

case of the induction in our main result.

Lemma 3.2.4. Let P ⊆ [0, 1]n be a nonempty polytope, and suppose c ∈ Zn is so that

cTx ≤ δ is valid for PI . Then cTx ≤ δ has depth at most n + ‖c‖1 with respect to P.

3.2.2 New upper bounds for CG rank

The upper bound in [29] is shown by first proving that any normal c is saturated

after n2 + 2n log ‖c‖∞ rounds of the CG procedure. Careful consideration allows

us to reduce this quantity to 2n + 2d log ‖c‖∞, where

d := max
a∈{0,1}n

[
max
x∈PI

aTx−min
x∈PI

aTx
]
≤ n.

We note that this “width” parameter d is defined with respect to the integer hull

PI and not P itself. Thus any results making use of this parameter hold for any

relaxation of PI in the [0, 1]n cube.

The parameter d has general upper bound n, and since P ⊆ [0, 1]n we can use the

standard bound ‖c‖∞ ∈ O(n log n) (a result that follows from Hadamard’s maxi-

mum determinant problem, see e.g. [58]). Thus in the worst case this new bound

still implies an upper bound of O(n2 log n) for rk(P). However, the reduction of

51

the leading term from n2 to 2n dispenses of the previously automatic n2 bound,

and allows for diminished bounds when a polytope’s facet-defining normals are

known to have small coefficients. Furthermore, for certain polyhedra this width

may be o(n), allowing for bounds lower than previously available. We make use of

both these facts to prove bounds for specific polyhedra in Section 3.2.3.

We now proceed to give the main result of the section. Throughout, we assume

that c ≥ 0, which is done without loss of generality by application of suitable coor-

dinate flips. First, we state the main technical component of the result.

Proposition 3.2.5. Let P ⊆ [0, 1]n be a polytope with

max
x∈PI

aTx−min
x∈PI

aTx ≤ d

for all a ∈ {0, 1}n and some d ∈ Z, and let c ∈ Zn
+ with c 6= 0. Then for any k ∈

{0, 1, ..., d} and t ≥ 2n + 2d(log ‖c‖∞ + 1)− 2k, the integrality gap of c with respect to

P(t) is at most k.

The proof goes by a somewhat non-standard induction involving all of n, k, and

‖c‖∞. We will first give a few supporting results, so that the main proof can better

highlight the mechanics of this induction. The first lemma requires that the result

of Proposition 3.2.5 holds for small ‖c‖∞ when k = 0, then proves that the result is

further valid for a larger value of ‖c‖∞, so long as k = d.

Lemma 3.2.6. Set c ∈ Zn
+, and let ‖c‖∞ = C. Suppose that for each C′ ∈ {0, ..., C− 1}

it holds that any normal c′ ∈ Zn
+ with ‖c′‖∞ = C′ is saturated with respect to P(t′) for

all t′ ≥ 2n + 2d(log ‖c′‖∞ + 1). Then the integrality gap of c with respect to P(t) for

t ≥ 2n + 2d(log ‖c‖∞ + 1)− 2d is at most d.

Proof. We can always write c = 2c1 + c0 with c1 = bc/2c and c0 ∈ {0, 1}n. Since

log ‖c1‖∞ ≤ log ‖c‖∞ − 1, by hypothesis we have that c1 is saturated after

2n + 2d(log ‖c1‖∞ + 1) ≤ 2n + 2d(log ‖c‖∞ + 1)− 2d

52

rounds of the CG procedure. Select any t ∈ Z at least this value.

Now we bound the integrality gap of c with respect to P(t). Let x̄ ∈ argmaxx∈PI
cT

1 x.

We start by writing

max
x∈P(t)

cTx−max
x∈PI

cTx = max
x∈P(t)

(2cT
1 x + cT

0 x)−max
x∈PI

(2cT
1 x + cT

0 x)

≤ max
x∈P(t)

2cT
1 x + max

x∈P(t)
cT

0 x− (2cT
1 x̄ + cT

0 x̄)
(2)

Since c1 is saturated with respect to P(t), we have that maxx∈P(t) cT
1 x = cT

1 x̄. Com-

bining this with (2), we get

max
x∈P(t)

cTx−max
x∈PI

cTx ≤ max
x∈P(t)

cT
0 x− cT

0 x̄

≤ max
x∈P(t)

cT
0 x−min

x∈PI
cT

0 x.
(3)

As ‖c0‖∞ ≤ 1, we can apply Lemma 3.2.4 to get that c0 is saturated after 2n ≤ t

rounds of the CG procedure. In particular, we have maxx∈P(t) cT
0 x = maxx∈PI cT

0 x.

Thus we can rewrite (3) as

max
x∈P(t)

cTx−max
x∈PI

cTx ≤ max
x∈PI

cT
0 x−min

x∈PI
cT

0 x ≤ d,

as desired.

The next lemma supposes the results of Lemma 3.2.6 are valid, and uses this to

prove that the result of Proposition 3.2.5 holds for any other value of k.

Lemma 3.2.7. Set c ∈ Zn
+, and suppose it holds for any t′ ≥ 2n+ 2d(log ‖c‖∞ + 1)− 2d

that the integrality gap of c with respect to P(t′) is at most d. Then if k ≤ d, for t ≥

2n + 2d(log ‖c‖∞ + 1)− 2k the integrality gap of c with respect to P(t) is at most k.

Proof. The proof goes by induction on n and k, where the induction on k goes down-

ward from d to 0. The base case for k is satisfied by assumption, and the base case

n = 1 holds trivially since a 1-dimensional polytope has rank most 1.

53

Now suppose n > 1 and k < d. By the induction hypothesis (on k), the gap of c

after t ≥ 2n + 2d(log ‖c‖∞ + 1)− 2(k + 1) rounds is at most k + 1. In fact, we can

re-write this quantity to say

t ≥ 2n + 2d(log ‖c‖∞ + 1)− 2(k + 1) = 2(n− 1) + 2d log3(2 ‖c‖∞ − 1)− 2k.

Consider the polytope P0 := P ∩ {x : x1 = 0}. As this polytope is (n − 1)-

dimensional, the induction hypothesis (on n) gives that the integrality gap of c with

respect to P(t)
0 is at most k. Then, letting α = maxx∈PI cTx, we have P(t)

0 ∩ {x : cTx =

α + k + 1} = ∅. The same can be said replacing P0 by P1 := P∩ {x : x1 = 1}. Then

the requisite conditions for Lemma 3.2.3 apply, implying that cTx ≤ α + k is valid

for P(t+2). Hence the integrality gap of c after any number of rounds exceeding

t + 2 = 2n + 2d log3(2 ‖c‖∞ − 1)− 2k is at most k, as required.

With these results in hand, we are ready to prove the main technical lemma.

Proof of Proposition 3.2.5. The case of PI = ∅ is covered by Lemma 3.2.2, so suppose

PI is nonempty. To begin the proof, note that if c ∈ Zn
+ has ‖c‖∞ = 1 the claim

holds since by Lemma 3.2.4, c is saturated with respect to P(2n).

Moving to the case ‖c‖∞ = 2, we see that the setup of Lemma 3.2.6 is satisfied.

Hence the desired result holds for this c and k = d. But this implies that the as-

sumptions of Lemma 3.2.7 are also satisfied. Hence the desired results holds for c

and any k ≤ d.

Thus for any c with ‖c‖∞ ≤ 2 and any k the result holds. Hence we can apply

the same logic to the case ‖c‖∞ = 3, or indeed for any value of ‖c‖∞. Thus the

result is given by induction.

Taking Proposition 3.2.5 and choosing an integrality gap of k = 0 immediately

gives our main result.

54

Theorem 3.2.8. Let P ⊆ [0, 1]n be a polytope and let Ax ≤ b, A ∈ Zm×n, b ∈ Zm be an

inequality description of PI . Then

rk(P) ∈ O(n + d log ‖A‖∞).

3.2.3 Applying the new bound

In this section, we use Theorem 3.2.8 to prove new bounds for certain classes of

polyhedra. In particular, new bounds are given for symmetric polytopes, poly-

topes with a limited number of integral points, and for certain polyhedra that arise

from combinatorial optimization problems. The application of Theorem 3.2.8 is key

in many cases: the same proof techniques using previously known results would

provide bounds asymptotically worse than those found here.

3.2.3.1 Symmetric polyhedra

We first address the case of polyhedra which are invariant under permutation of

coordinates. More formally, for n ∈ Z we let Sn be the symmetric group on the set

{1, . . . , n} (i.e. the set of all permutations of {1, . . . , n}). A set X ⊆ Rn is symmetric

if

{(xσ(1), xσ(2), . . . , xσ(n)) : x ∈ X} = X

for all σ ∈ Sn.

We stress that the definition of symmetry considered here is somewhat strict,

as any permutation of the variables in the problem must be allowed. Consider

for example the traveling salesman (TSP) polytope, whose extreme points encode

all possible tours of a complete graph. Though the underlying graph is invariant

under permutation of nodes, the TSP polytope is formulated in the space of edges.

Hence the TSP polytope is not symmetric in the sense defined above - see Figure 11

for an example. A polyhedron that does fit this symmetry definition is the stable

55

v1 v2

v3v4

e1

e2

e3

e4

e5 e6 e1 e2 e3 e4 e5 e6
1 1 1 1 0 0
1 0 1 0 1 1
0 1 0 1 1 1

Figure 11: The TSP polytope on 4 vertices is not symmetric with respect to coordinate permutations:
The complete graph on 4 nodes is displayed on the left, while the three vertices of the TSP polytope
(corresponding to the three possible tours in the graph) are on the right. The polytope is not sym-
metric since, for example, the permutation that swaps the first two coordinates maps the vertices to
(1, 1, 1, 1, 0, 0), (0, 1, 1, 0, 1, 1), (1, 0, 0, 1, 1, 1) - these last two points do not correspond to tours.

set polytope of a complete graph.1

We first prove a bound on rk(P) for all P whose integer hulls are both symmetric

and monotone. A set X ⊆ Rn is monotone if x ∈ X and 0 ≤ y ≤ x implies y ∈ X. In

contrast to other proofs in this section, this result does not depend on Theorem 3.2.8,

instead requiring only knowledge from previously known results.

Corollary 3.2.9. Let P ⊆ [0, 1]n be a polytope so that PI is symmetric and monotone. Then

rk(P) ≤ 2n.

Proof. Select x̄ ∈ argmax{1Tx : x ∈ PI ∩ {0, 1}n}. We show that PI is defined by

the inequality 1Tx ≤ 1T x̄, along with the variable bound inequalities. Specifically,

we show PI = Q := {x ∈ [0, 1]n : 1Tx ≤ 1T x̄}, from which we see that each

facet-defining vector c of PI has ‖c‖1 ≤ n. The result then follows by Lemma 3.2.4.

It is clear that PI ⊆ Q, as any vertex x ∈ {0, 1}n of PI must have 1Tx ≤ 1T x̄ by the

selection of x̄. Further, we also have that the vertices of Q are all in PI : all vertices of

Q are integral (by the theory of total unimodularity, see e.g. [55]). Any x ∈ {0, 1}n ∩

1Granted, the stable set problem is not very interesting when the graph is complete, but any
stable set polytope will display some local symmetry where cliques exist. Thus via Lemma 3.2.1 we
can still make statements about rk(P) using these symmetry results.

56

Q is also a member of PI since, by construction of Q, 1Tx ≤ 1T x̄. If 1Tx = 1T x̄, then

x ∈ PI by symmetry, and if 1Tx < 1T x̄, then x ∈ PI by monotonicity.

We now prove CG rank bounds for all symmetric P ⊆ [0, 1], monotone or not.

The proof is similar in spirit to Corollary 3.2.9: we first give a general represen-

tation of such polyhedra, then bound the size of facet-defining vectors using this

representation. We proceed by proving the general representation:

Proposition 3.2.10. Let P ⊆ [0, 1]n be a symmetric, integral polytope, and let T = {1Tx :

x a vertex of P}. Then P is defined by the system:

0 ≤ x ≤ 1 (4a)

min(T) ≤ 1Tx ≤ max(T) (4b)

(u−m)
m

∑
i=1

xσ(i) − (m− `)
n

∑
i=m+1

xσ(i) ≤ (u−m)`,

for all σ ∈ Sn, `, u such that [`, u] ∩ T = {`, u}, m ∈ Z∩ [`+ 1, u− 1]

(4c)

Proof. Let Q be the polytope defined by the system (4), so that our task is to show

P = Q. We show P ⊆ Q by proving that an integral point x ∈ {0, 1}n satisfies

system (4) if and only if 1Tx ∈ T; this implies that every vertex of P is a member of

Q, and hence P ⊆ Q.

We now prove the above claim. If T is such that there are no (4c) inequalities the

result is trivial. Thus we suppose this isn’t the case, i.e. there exist `, u ∈ T such that

[`, u] ∩ T = {`, u} and Z∩ [`+ 1, u− 1] 6= ∅. Select `, u to satisfy these conditions,

and choose x ∈ {0, 1}n. If 1Tx ≤ `, then for any m ∈ Z ∩ [`+ 1, u− 1] and σ ∈ Sn

we have

(u−m)
m

∑
i=1

xσ(i) − (m− `)
n

∑
i=m+1

xσ(i) ≤ (u−m)`− (m− `)0 ≤ (u−m)`,

so x satisfies the constraint. Similarly, if 1Tx ≥ u then

(u−m)
m

∑
i=1

xσ(i) − (m− `)
n

∑
i=m+1

xσ(i) ≤ (u−m)m− (m− `)(u−m) ≤ (u−m)`,

57

and the constraint is satisfied by x. However, if 1Tx ∈ [`+ 1, u− 1], set m = 1Tx.

There exists some σ ∈ Sn so that

(u−m)
m

∑
i=1

xσ(i) − (m− `)
n

∑
i=m+1

xσ(i) = (u−m)m− (m− `)0 > (u−m)`.

Hence the integral points x ∈ {0, 1}n that satisfy all constraints of form (4c) for the

chosen `, u are those with 1Tx ∈ {1, . . . , `, u, . . . , n}. Intersecting over all `, u pairs

(and adding the requirements of (4b)) implies that the set of integral x satisfying

(4) are precisely those with 1Tx ∈ T, and the claim is proven.

To get Q ⊆ P, we show that each facet-defining inequality cTx ≤ δ of P is

implied by the system (4). In fact, due to symmetry, it suffices to consider only

such inequalities with c1 ≥ c2 ≥ · · · ≥ cn. Select such an inequality, and let F =

P ∩ {x : cTx = δ} be the associated facet. Let k1 < · · · < kt be the sequence of

numbers k for which F contains an integral point x with 1Tx = k.

Clearly, one of the following cases must hold.

1. ck1 ≥ 0 or k1 = 0.

2. ckt ≤ 0 or kt = n.

We consider only the first case, as we have P ⊆ [0, 1]n so the second may be reduced

to it via coordinate flips xi 7→ 1− xi for each i ∈ {1, . . . , n}. Further, note that by

construction of c, the maximum value of cTx on integral points with 1Tx = k is

∑k
i=1 ci, hence we have

δ =
k1

∑
i=1

ci = · · · =
kt

∑
i=1

ci. (5)

This detail will be used multiple times below.

We show that cTx ≤ δ follows from (4) in three separate subcases:

1. ck1+1 ≤ 0 or k1 = n.

2. k1 = max(T).

58

3. ck1+1 > 0 and k1 has a successor in T.

Clearly, any c must fall into one of these categories. For the case ck1+1 ≤ 0 or k1 = n,

(5) and the non-positivity of all coordinates beyond k1 implies

cTx ≤
k1

∑
i=1

ci = δ

when combined with the variable bounds (4a). Hence the desired inequality is

implied by (4).

For the case k1 = max(T), we apply (4b) to get that 1Tx ≤ k1. Thus, combining

again with (5) we have

cTx =
n

∑
i=1

(ci − ck1)xi + ck1

n

∑
i=1

xi

≤
k1

∑
i=1

(ci − ck1) + ck1k1

=
k1

∑
i=1

ci

= δ.

So the facet-defining inequality is implied.

Lastly, suppose k1 has a successor k2 ∈ T and ck1+1 > 0. In order to keep

∑k2
i=1 ci ≤ δ, we must have ∑k2

i=k1+1 ci ≤ 0 and hence ck2 < 0. Denote by m ∈

{1, . . . , n} the largest coordinate such that cm ≥ 0. We claim that each vertex of F

satisfies

(k2 −m)
m

∑
i=1

xi − (m− k1)
n

∑
i=m+1

xi ≤ (k2 −m)k1. (6)

(i.e. the (4c) inequality with σ the identity permutation, ` = k1, u = k2, and m = m)

with equality. If this is true, then the valid inequality (6) touches enough vertices of

P to be a facet itself. Indeed, as these integral points are the facets of F, the facet

induced by (6) is F.

To prove the claim, we first note that since ci < 0 for i ≥ k2, we have δ =

∑k2
i=1 ci > ∑s

i=1 ci for any s ∈ {k2 + 1, . . . , n}. Thus every vertex x of F has 1Tx ∈

59

{k1, k2}. Now, select a vertex x of F. If 1Tx = k1, then to keep cTx = δ = ∑k1
i=1 ci,

any index i with xi = 1 must satisfy either i ≤ k1 or ci ≥ ck1 . Since xi < 0 for all

i > m, all k1 non-zero coordinates of x must come from the set {1, . . . , m}. So x

satisfies (6) with equality.

Lastly, if 1Tx = k2, the value cTx is maximized only if xi = 1 for i ∈ {1, . . . , m}

(since, by construction, cm > ci for i ∈ {m + 1, . . . , n}). Thus to keep cTx = δ =

∑k2
i=1 ci, we must have that xi = 1 for i ∈ {1, . . . , m}, as well as for k2 −m indices in

{m + 1, ..., n}. Then we have

(k2 −m)
m

∑
i=1

xi − (m− k1)
n

∑
i=m+1

xi = (k2 −m)m− (m− k1)(k2 −m) = k1(k2 −m),

hence x satisfies (6) with equality, as desired.

With this result proven, one easily shows the following:

Corollary 3.2.11. Let P ⊆ [0, 1]n be a polytope so that PI is symmetric. Then rk(P) ∈

O(n log n).

Proof. From Proposition 3.2.10, we see that each facet-defining vector c for PI has

‖c‖∞ ≤ n. Thus the result follows by application of Theorem 3.2.8.

Note that the new result of Theorem 3.2.8 is important here. If we instead use

the O(n2 + n log ‖c‖∞) bound of [29], we recover only a O(n2) bound for symmetric

polyhedra.

This result also provides insights on the difficulties faced by researchers trying

to develop lower bounds for rk(P), P ⊆ [0, 1]n. Until the breakthrough of [64]

proving a Ω(n2) bound, the best known examples were all drawn from symmetric

polyhedra (see [29], [60]). By Corollary 3.2.11, such examples could never hope to

show a bound better than Ω(n log n).

60

3.2.3.2 Polyhedra with a limited number of integral points

When an integral polytope contains only a small number of vertices, the facet-

defining vectors c are not too complex (i.e. ‖c‖∞ cannot be very large). More specif-

ically, we can show the following:

Proposition 3.2.12. Let P ⊆ [0, 1]n be an integral polytope with at most k vertices. Any

facet-defining vector c of P has ‖c‖∞ ≤ 22k−1.

Along with Theorem 3.2.8, the above bound also implies bounds for the CG

rank. In particular, if k ∈ Θ(log(n log n)) then log ‖c‖∞ ≈ n log n. Thus for k ∈

o(log(n log n)), we obtain a bound strictly better than the usual O(n2 log n). For

example, if k = log(log n) then CG rank is bounded by O(n log n).

The proof of Proposition 3.2.12 uses a fact concerning the growth of coefficients

when using the well-known Fourier-Motzkin elimination (FME) method (see e.g. [66,

Section 12.2] for an overview) for projecting a polyhedron to a lower-dimensional

space.

Lemma 3.2.13. Suppose FME is applied to the system Ax ≤ b, A ∈ Zm×n, b ∈ Zm,

recovering the system A′x ≤ b′, A ∈ Zt×n−1, b ∈ Zt. Then we may choose A′ such that

‖A′‖∞ ≤ 2 ‖A‖2
∞.

Proof. Suppose, without loss of generality, that we apply FME to A to project out

the variable xn. An inequality aTx ≤ β in A′x ≤ b′ comes from Ax ≤ b in one of

two forms. In the first case, Ai = (a1, . . . , an−1, 0) for some row Ai of A, and hence

‖a‖∞ ≤ ‖A‖∞.

In the second case, aTx ≤ β is built from two inequalities ai,1x1 + · · ·+ ai,nxn ≤

bi and aj,1x1 + · · ·+ aj,nxn ≥ bj from Ax ≤ b, with ai,n, aj,n > 0. The variable xn is

eliminated by isolating xn in each inequality, obtaining

xn ≤
bi

ai,n
− ai,1

ai,n
x1 − · · · −

ai,n−1

ai,n
xn−1

61

and

xn ≥
bj

aj,n
−

aj,1

aj,n
x1 − · · · −

aj,n−1

aj,n
xn−1,

then combining to obtain

bj

aj,n
−

aj,1

aj,n
x1 − · · · −

aj,n−1

aj,n
xn−1 ≤

bi

ai,n
− ai,1

ai,n
x1 − · · · −

ai,n−1

ai,n
xn−1,

or equivalently(
ai,1

a1,n
−

aj,1

aj,n

)
x1 + · · ·+

(
ai,n−1

a1,n
−

aj,n−1

aj,n

)
xn−1 ≤

bi

ai,n
−

bj

aj,n
.

To ensure integrality, we can multiply by ai,naj,n to recover

(ai,1aj,n − aj,1ai,n)x1 + · · ·+ (ai,n−1aj,n − aj,n−1ai,n)xn−1 ≤ biaj,n − bjai,n.

Clearly, each (ai,kaj,n − aj,kai,n) term has magnitude at most 2 ‖A‖2
∞.

With this result, we are ready to prove Proposition 3.2.12:

Proof of Proposition 3.2.12. Let v1, ..., vk ∈ P∩ [0, 1]n be the vertices of P. Then x ∈ P

if and only if there exists λ ∈ Rk such that (x, λ) ∈ Q, where the polyhedron Q is

defined by

0 ≤ λj ≤ 1 for all j ∈ {1, . . . , k}
k

∑
j=1

λj = 1

xi =
k

∑
j=1

vj
iλj for all i ∈ {1, . . . , n}.

So P is the projection of Q into the x coordinates. Thus P may be obtained from

Q by k successive applications of FME (with each application projecting out one

component of λ). Noting that the largest coefficient in the above system is 1, the

result follows by Lemma 3.2.13.

62

3.2.3.3 Polyhedra from combinatorial optimization

The inclusion of the parameter d in the bound of Theorem 3.2.8 allows for a reduced

bound when considering polytopes whose integral points x have small ‖x‖1. This

is particularly common for polyhedra related to combinatorial optimization prob-

lems.

As an example, consider the TSP polytope associated with the complete graph

on v nodes. The dimension of the TSP polytope is governed by the number of edges

in the graph, which is (v
2) ≈ v2. However, each integer solution vector contains

precisely v ones, implying that d ≤ v. Thus we have the following:

Corollary 3.2.14. Let P ⊆ R(v
2) be a relaxation of TSP polytope associated with the perfect

graph on v nodes. We have rk(P) ∈ O(v3 log v).

Note that the results of [29] would only provide a bound of O(v4 log v).

3.3 Separating over the mod-k closure

We now return to the question of determining the complexity of separating over

mod-k cuts. For the special case k = 2, it has been shown by [15] that the separa-

tion problem is NP-complete, and [52] extends this to the case P ⊆ [0, 1]n. Here,

we come to the same conclusion for general k. Indeed, the proofs of this section

may also be seen as generalizations of the proofs in [15] and [52], with a few extra

modifications necessary.

3.3.1 Problem statement

Given a polyhedron P = {x ∈ Rn : Ax ≤ b}, A ∈ Zm×n, b ∈ Zm and positive

integer k, a mod-k cut is an inequality of the form λT Ax ≤
⌊
λTb

⌋
where λT A ∈ Zn

and λ ∈ {0, 1/k, ..., (k − 1)/k}m. Denote by Pk(A, b) the mod-k closure of Ax ≤ b,

i.e. the intersection of P with all mod-k cuts derived from A and b. For an integer

k ≥ 2, a natural question is the following:

63

Problem: mod-k Closure Separation (kCSEP)

Input: Integral A ∈ Zm×n, b ∈ Zm, rational vector x′ ∈ Qn with Ax′ ≤ b.

Question: Is x′ 6∈ Pk(A, b)? i.e. does there exist mod-k cut λT Ax ≤
⌊
λTb

⌋
violated by x′?

3.3.2 Generalizing from the mod-2 case

In proving their mod-2 results, [15] and [52] make reductions from the following

NP-complete problems:

Problem: Decoding Linear Codes (DLC)

Input: Matrix Q ∈ {0, 1}r×t, vector d ∈ {0, 1}r, and positive integer K.

Question: Is there a vector z ∈ {0, 1}t with no more than K entries equal

to 1 such that Qz ≡ d (mod 2)?

Problem: Weighted Binary Clutter (WBC)

Input: Matrix Q ∈ {0, 1}r×t, vector d ∈ {0, 1}r, and nonnegative weight

vector w ∈ Qt
≥0

Question: Is there a vector z ∈ {0, 1}t such that Qz ≡ d (mod 2) and

wTz < 1?

In [15], the authors make a connection between WBC and mod-2 Closure Sep-

aration using the following simple observation: A vector x′ violates a mod-2 cut

if and only if there exists some µ ∈ {0, 1}m with µT A ≡ 0 (mod 2) and µTb ≡ 1

(mod 2) such that µT(b − Ax′) < 1 holds. It is easy to see a link between these

conditions and the description of WBC, which is exploited in the reduction.

3.3.2.1 From mod-2 to mod-k

A similar set of conditions exist characterizing the existence of a violated mod-k

cut for general k. These conditions are well known, and have been expressed e.g.

in [16]. The conditions are given below, along with a proof of their validity.

64

Lemma 3.3.1. Let A ∈ Zm×n, b ∈ Zm define polyhedron P = {x : Ax ≤ b}, and select

k ∈ Z+. For any x′ ∈ P, there exists a mod-k cut violated by x′ if and only if there exists

µ ∈ {0, 1, ..., k− 1}m and θ ∈ {1, ..., k− 1} such that

µT A ≡ 0 (mod k), µTb ≡ θ (mod k), and θ > µT(b− Ax′).

Proof. Select x′ ∈ P. Suppose λ ∈ {0, 1/k, ..., (k − 1)/k} defines a mod-k cut vi-

olated by x′, i.e. we have λT A ∈ Zn and λT Ax′ >
⌊
λTb

⌋
. Then let µ = kλ and

θ = k(λTb−
⌊
λTb

⌋
). We clearly have µT A ≡ 0 (mod k), as well as

µTb = θ + k
⌊

λTb
⌋
≡ θ (mod k)

and

µT(b− Ax′) = kλTb− kλT Ax′

= θ + k
⌊

λTb
⌋
− kλT Ax′

< θ + k
⌊

λTb
⌋
− k

⌊
λTb

⌋
= θ.

For the other direction, suppose there exists µ ∈ {0, 1, ..., k− 1}m and θ ∈ {1, ..., k−

1} such that µT A ≡ 0 (mod k), µTb ≡ θ (mod k), and θ > µT(b− Ax′). Then let

λ = µ/k, and we clearly have λT A ∈ Zn. Further, uTb ≡ θ (mod k) if and only if

µTb = αk + θ for some α ∈ Z. Thus we have

λTb−
⌊

λTb
⌋
= α +

θ

k
−
⌊

α +
θ

k

⌋
= α +

θ

k
−
(

α +

⌊
θ

k

⌋)
=

θ

k
,

and hence

λT Ax′ > λTb− θ/k = λTb−
(

λTb−
⌊

λTb
⌋)

=
⌊

λTb
⌋

,

finishing the proof.

65

Mirroring the work of [15], we will prove NP-completeness of kCSEP by con-

necting these conditions with a generalization of WBC. After some consideration,

we formulate the following problem as the correct generalization:

Problem: Weighted k-ary Clutter (WkC)

Input: Matrix Q ∈ {0, 1}r×t, vector d ∈ {0, 1}r, and nonnegative weight

vector w ∈ Qt
≥0.

Question: Is there a vector z ∈ {0, 1, ..., k− 1}t and integer α ∈ {1, ..., k−

1} such that Qz + αd ≡ 0 (mod k) and wTz < α?

Of course, we must first establish NP-completeness of WkC before using it in a

reduction for kCSEP. We will do so in a coming section.

3.3.3 Linear codes modulo k

Our ultimate aim is to show that kCSEP is NP-complete for any k, even if we restrict

{x : Ax ≤ b} ∈ [0, 1]n. This will be done via a series of reductions. First, we use

the classical NP-complete problem Three-Dimensional Matching to prove that the

following generalization of DLC is NP-complete.

Problem: Decoding Linear Codes Modulo k (DLCk)

Input: Q ∈ {0, 1}r×t, d ∈ {0, 1}r, K ∈ Z+.

Question: Is there z ∈ {0, 1, ..., k − 1}t and α ∈ {1, ..., k − 1} such that

zT1 ≤ αK and Qz + αd ≡ 0 (mod k)?

This represents most of the work, as the reduction from DLCk to WkC is quite

simple, and the reductions from WkC to kCSEP are merely straightforward modi-

fications of the proofs found in [15] and [52].

To show that DLCk is NP-complete, we follow the lead of [7], who were the first

to show that DLC is NP-complete. Their reduction goes from the Three-Dimensional

Matching problem, which we describe here.

66

Problem: Three-Dimensional Matching (3DM)

Input: Finite set T, set U ⊆ T3.

Question: Is there a set W ⊆ U such that |W| = |T| and no two elements

of W agree on any coordinate?

3DM is a well known problem, and in fact is one of Karp’s 21 NP-complete

problems ([44]). The following is an example of a 3DM instance (from [7]):

T = {1, 2, 3, 4}, U = {(1, 2, 1), (1, 3, 2), (2, 1, 4), (2, 2, 3), (3, 1, 1), (4, 4, 4)}.

In this case, the answer to the question is “yes” (take the second, fourth, fifth, and

sixth points in U).

3DM is equivalent to solving an integer linear system with certain requirements,

as we illustrate below. Consider the matrix A(T, U) ∈ {0, 1}3|T|×|U| constructed in

the following manner: Suppose u1, ..., un are the elements of U. For i ∈ {1, ..., |T|}

and k ∈ {1, 2, 3} set

A(T, U)(k−1)|T|+i,j =


1 if uj

k = i,

0 otherwise.

Each column corresponds to an element uj of U, and each group of |T| rows codes

67

the entries of uj. Below is the matrix arising from our previous example.

A(T, U) =



1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 1 0

1 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

1 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 1


By construction, a 3DM instance has a solution if and only if there is some y ∈

{0, 1}|U| with yT1 = |W| = |T| and A(T, U)y = 1 (the desired elements of U

correspond to the positive entries in y). Note that every column of A(T, U) has

exactly 3 entries equal to one, and in particular 1T A(T, U) = 3 · 1.

3.3.4 The mod-3 case

By adapting the proof of [7], we can use 3DM to show NP-completeness of DLCk

for any k. For illustrative purposes, we begin by proving this only in the case of

k = 3. For reference, this special case of DLCk is described here:

Problem: Decoding Linear Codes modulo 3 (DLC3)

Input: Q ∈ {0, 1}r×t, d ∈ {0, 1}r, K ∈ Z+.

Question: Is there z ∈ {0, 1, 2}t and α ∈ {1, 2} such that zT1 ≤ αK and

Qz + αd ≡ 0 (mod 3)?

68

The completeness proof follows by a reduction from 3DM. The particular re-

duction differs slightly depending on the parity of |T|. We handle the two cases

separately, using the two proofs to illustrate different ingredients of the general

proof in Section 3.3.5.

The next lemma covers the simplest case, and illustrates the main reduction

technique. Given a 3DM instance, we create a DLC3 instance with Q = A(T, U),

d = 1, and K ≈ |T|/2. Going from a 3DM solution to a DLC3 solution is simple, but

the other direction is less obvious. As we will see, for any solution z, α to the DLC3

instance, the value of α gives simultaneous upper and lower bounds on the value

‖A(T, U)z‖1. The bounds will be such that they can only be satisfied when α = 2

(or α = k− 1 in the general case), which means that Qz + αd ≡ 0 (mod 3) reduces

to A(T, U)z ≡ 1 (mod 3). This, combined with the upper bound on ‖A(T, U)z‖1,

will imply that in fact A(T, U)z = 1, and hence 3DM also has a solution. The formal

proof follows.

Lemma 3.3.2. Let T, U be an instance of 3DM with |T| even. Create an instance of DLC3

defined by Q = A(T, U), d = 1, and K = |T|/2. Then the 3DM instance has a solution

if and only if the DLC3 instance has a solution.

Proof. One direction is immediate: if 3DM has a solution, i.e. there exists y ∈

{0, 1}|U| with yT1 = |T| and A(T, U)y = 1, then setting z = y and α = 2 solves

the DLC3 instance. For the other direction, suppose the DLC3 instance has a so-

lution. We claim that the solution must have α = 2, for if α = 1 we have that

1Tz ≤ |T|/2 which implies 1T A(T, U)z = (3 · 1)z ≤ 3|T|/2. But α = 1 also im-

plies A(T, U)z ≡ 2 · 1 (mod 3), and so as A(T, U)z has dimension 3|T| this implies

1T A(T, U)z ≥ 6|T|, a contradiction.

So the DLC3 solution has α = 2, implying that 1Tz ≤ 2(|T|/2) = |T| and

A(T, U)z ≡ 1 (mod 3). The former implies 1T A(T, U)z = (3 · 1)z ≤ 3|T|, while

the latter implies 1T A(T, U)z ≥ 3|T|. Thus 1T A(T, U)z = 3|T| and 1Tz = |T|.

69

Further, the only way to satisfy A(T, U)Tz ≡ 1 (mod 3) and 1T A(T, U)z = 3|T| is

to have A(T, U)z = 1, which also implies z ∈ {0, 1}. Thus setting y = z solves the

3DM instance.

In the case that |T| is odd, we must modify the above slightly since |T|/2 is not

an integer. The fix is to set K = (|T|+ 1)/2 and add an extra row and column to

Q. We do this in such a way as to force any z solving DLC3 to have a 1 in the index

corresponding to the extra column (without affecting the rest of the matrix).

Lemma 3.3.3. Let T, U be an instance of 3DM with |T| ≥ 2. Create an instance of DLC3

defined by

Q =

 A(T, U) 0

0 1

 , d = 1, and K =
|T|+ 1

2

Then the 3DM instance has a solution if and only if the DLC3 instance has a solution.

Proof. If the 3DM instance has a solution, setting α = 2 and z = (yT, 1)T solves

the DLC3 instance. If the DLC3 instance has a solution, then we can show as in

Lemma 3.3.2 that we have α = 2 and further the final component of z (correspond-

ing to the extra column in Q) must be equal to 1. Let z′ ∈ {0, 1, 2}|U| be equal to

z on its first |U| components (i.e. ignoring the final component corresponding to

the extra column in Q). We have 1Tz ≤ |T|+ 1 and hence 1Tz′ ≤ |T|, plus Qz ≡ 1

(mod 3) and so A(T, U)z′ ≡ 1 (mod 3). Proceeding as in the proof of Lemma 3.3.2,

we see that setting y = z′ solves the 3DM instance.

The previous two lemmas combine to give the main result.

Theorem 3.3.4. DLC3 is NP-complete.

Proof. Let T, U be an instance of 3DM. The reduction to DLC3 depends on the parity

of |T|, which can be determined in polynomial time. If |T| is even, use the reduction

from Lemma 3.3.2. If |T| is odd, use the reduction from Lemma 3.3.3.

70

3.3.5 The general case

We are now ready to prove that DLCk is NP-complete for any k, which we will do

by generalizing Lemma 3.3.3’s proof.

Theorem 3.3.5. DLCk is NP-complete.

Proof. Let T, U describe an instance of 3DM. For the DLCk instance, let m = |T|

(mod k− 1) and set

Q =

 A(T, U) 0

0 Ik−1−m

 , d = 1, and K =
|T|+ k− 1−m

k− 1
.

If the 3DM instance has a solution y, then setting α = k− 1 and z = (yT, 1T)T solves

the DLCk instance. If the DLCk instance has a solution, we will show that we must

have α = k− 1. Let z′ ∈ {0, 1, ..., k− 1}|U| be equal to z on its first |U| coordinates

(ignoring the coordinates corresponding to the identity matrix in the bottom-right

of Q), and z′′ contain the remaining coordinates of z. For any value of α, we have

A(T, U)z′ ≡ (k− α)1 (mod k), implying that 1T A(T, U)z′ ≥ 3|T|(k− α). Further,

we have 1Tz ≤ α |T|+k−1−m
k−1 , and since every entry of z′′ must be positive, we get

1Tz′ ≤ α
|T|+ k− 1−m

k− 1
− 1Tz′′ ≤ α

|T|+ k− 1−m
k− 1

− (k− 1−m).

This implies that 1T A(T, U)z′ = (3 · 1)Tz′ ≤ 3α |T|+k−1−m
k−1 − (k − 1 − m). For

1T A(T, U)z′ to satisfy both bounds simultaneously, we need

α

(
|T|+ k− 1−m

k− 1

)
− k + 1 + m ≥ |T|(k− α)

⇔ α

(
|T|(k− 1) + |T|+ k− 1−m

k− 1

)
≥ (|T|+ 1)k− 1−m

⇔ α

(
(|T|+ 1)k− 1−m

k− 1

)
≥ (|T|+ 1)k− 1−m

⇔ α ≥ k− 1,

71

and hence α = k − 1. This implies that z′′ = 1, so then A(T, U)z′ ≡ 1 (mod k)

and 1Tz′ ≤ |T|. Hence (proceeding as in the proof of Lemma 3.3.2) we know that

setting y = z′ solves the 3DM instance.

3.3.6 Separation for the mod-k closure

We have now established that DLCk is NP-complete for any k. Given this, it is

straightforward to reduce to WkC, which is the problem we will use to show com-

pleteness of kCSEP. In fact, WkC stays NP-complete even when we restrict w ∈

[0, 1]t, as the reduction will show. This fact will be used later.

Lemma 3.3.6. WkC is NP-complete.

Proof. Let Q, d, and K be an instance of DLCk. For the WkC instance, use Q and d

unmodified, and set

w =
1

K + 1
k−1

· 1.

Suppose that z, α satisfy Qz + αd ≡ 0 (mod k). If zT1 ≤ αK then we have

α ≥ 1
K

zT1 >
1

K + 1
k−1

zT1 = wTz,

and if wTz < α then

zT1 <

(
K +

1
k− 1

)
α = Kα +

α

k− 1
≤ Kα + 1,

and hence zT1 ≤ Kα.

We now have all the ingredients necessary to show that kCSEP is NP-complete

for any k, both in the general case and when P ⊆ [0, 1]n. The first proof is essentially

a copy of [15], swapping ks for 2s.

Theorem 3.3.7. The mod-k Closure Separation problem is NP-complete.

72

Proof. The problem is clearly in NP. To show completeness, we reduce from WkC.

Let Q, d, and w give an instance of WkC. Define

A =

 QT

dT
kIt+1

 , b =

 k1t×1

1

 , x′ =


0r×1

1t×1 − 1
k w

1
k

 ,

and notice that b− Ax′ = (wT, 0)T, and in particular x′ ∈ P := {x : Ax ≤ b}.

Suppose that x′ violates some mod-k cut, and hence by Lemma 3.3.1 there exists

µ ∈ {0, 1, ..., k − 1}t+1 and θ ∈ {1, ..., k − 1} so that µT A ≡ 0 (mod k), µTb ≡ θ

(mod k) and θ > µT(b− Ax′). By construction of b, we must have µt+1 = θ. Thus,

by choosing z = (µ1, ..., µt) and α = θ = µt+1, we also have Qz + αd ≡ 0 (mod k)

and wTz = µT(b− Ax′) < θ = α. Then the WkC problem has a solution.

Conversely, suppose there exists z ∈ {0, 1, ..., k− 1}t and α ∈ {1, ..., k− 1} such

that Qz + αd ≡ 0 (mod k) and wTz < α. Then, setting µ = (zT, α)T and θ = α, we

have µT A ≡ 0 (mod k), µTb ≡ θ (mod k), and θ = α > wTz = µT(b− Ax′).

Thus the WkC instance has a solution if and only if the kCSEP instance has a

solution, completing the proof.

A similar variation to the proof of [52] shows that kCSEP remains NP-complete,

even if the polyhedron of interest is contained in the 0-1 hypercube. We present

this proof below.

Theorem 3.3.8. The mod-k Closure Separation problem is NP-complete, even if we restrict

P := {x : Ax ≤ b} ⊆ [0, 1]n.

Proof. We again reduce from WkC, this time taking care to assure that the polytope

we construct is contained in the cube. Further, we use the special case of WkC

where we restrict w ∈ [0, 1]t, which is still NP-complete as shown in the proof of

73

Lemma 3.3.6. Let Q, d, and w define an instance of WkC with w ∈ [0, 1]t, and define

A =



QT

dT
kIt+1

kIr 0r×t+1

−kIr 0r×t+1

0t+1×r −kIt+1


, b =



k1t×1

1

k1r×1

0r×1

0t+1×1


, x′ =


0r×1

1t×1 − 1
k w

1
k

 .

Here, we have that b − Ax′ = (wT, 0, k11×r, 01×r, k11×t − wT, 1)T ≥ 0, and hence

x′ ∈ P. Further, one can easily verify that P ⊆ [0, 1]r+t+1.

Suppose that x′ violates some mod-k cut, and so by Lemma 3.3.1 there exists

µ ∈ {0, 1, ..., k− 1}2(t+1)+2r and θ ∈ {1, ..., k− 1} so that µT A ≡ 0 (mod k), µTb ≡ θ

(mod k) and θ > µT(b− Ax′). By the construction of b it must be that θ = µt+1.

Thus, by choosing z = (µ1, ..., µt) and α = θ = µt+1, we clearly have Qz + αd ≡ 0

(mod k). Further, wTz is equal to the product µT(b− Ax′) restricted to the first t

indices, so by the nonnegativity of µ and (b− Ax′) we have wTz ≤ µT(b− Ax′) <

θ = α. So WkC has a solution.

Next, assume that there exists z ∈ {0, 1, ..., k − 1}t, α ∈ {1, ..., k − 1} so that

Qz + αd ≡ 0 (mod k) and wTz < α. By choosing (µ1, ..., µt) = z, µt+1 = α, and

θ = α we get µT A ≡ 0 (mod k) and µTb ≡ θ (mod k) irrespective of the selection

of the other indices of µ. Further, if we choose µi = 0 for i > t + 1, we get µT(b−

Ax′) = wTz < α = θ. Thus x′ violates some mod-k cut.

Then the WkC instance has a solution if and only if the kCSEP instance has a

solution, completing the proof.

3.4 Remarks and future work

Recently, [48] has indicated that the separation problem for CG cuts is NP-complete,

even in the case that P ⊆ [0, 1]n, using techniques different from those used here

for mod-k cuts. This essentially completes the picture of the work started by [52]

74

and continued here in Section 3.3.

The work in Section 3.2 leaves open the important question of closing the log(n)

gap between upper and lower bounds for CG rank when P ⊆ [0, 1]n. In the mean

time, there is room for more work along the lines of that found in Section 3.2.3: other

classes of polyhedra could obtain new CG rank bound by applying these methods.

It may be interesting to apply more attention to reducing bounds for polyhedra

with a limited number of integral points. Other methods for bounding ‖c‖∞ may

be more fruitful. Alternatively, strategies different from those used in Section 3.2.3

may also apply. One idea is to try to relate the number of integral points to the

“pitch” value defined in [6], then use their other results to provide a new bound.

75

CHAPTER IV

OPPORTUNISTIC REPLENISHMENTS IN INVENTORY

MODELING

4.1 Introduction

Inventory control is one of the classic applications of optimization theory, and pop-

ular models such as EOQ (see [39]) and the newsvendor model (see [3]) have been

in use for decades. Different models vary in assumptions and system dynamics,

but the motivation remains constant: how much of a good should a company keep

in stock in order to best meet the needs of the business?

In this chapter, we study management of an inventory system where replenish-

ments do not occur according to a known schedule. Instead, replenishment op-

portunities arise from time to time due to influences outside of our control. To

see where this may apply in the real world, consider the following: Imagine the

fulfillment center of an online retailer, which is in charge of picking and shipping

items ordered by the customers. Picking is a manual operation, i.e. human work-

ers must be hired for the task. Staffing decisions are made ahead of time based on

anticipated order volumes. Periodically, forecasts may overestimate the number of

workers necessary, such that a large portion of the workforce is left idle.

Most retailers carry a number of items that are consistently ordered in high vol-

umes. To give these idle workers a value-adding task, it is decided to allow them

to pick these high-volume items and prep them for shipment, in anticipation of

a likely future order. Maintaining this prepackaged inventory is analogous to the

situation outlined above, as these prepackaging opportunities only arise when an

76

order forecast significantly overestimates staffing needs. Indeed, this work was in-

spired by a large online retailer facing exactly this scenario. A main contribution

of this work is the development of a model to be deployed in such a situation.

Furthermore, most retailers store a vast amount of information on the items

they sell and the orders made for them. Given the recent explosion in interest in

machine learning and big data, it makes sense to ask how one can leverage this

information to help drive inventory decisions and ultimately increase profits. A

second focus of this work is exploring how data-augmented decisions can help an

inventory controller make better decisions and improve their bottom line.

4.1.1 Outline

This chapter is structured as follows: we begin in Section 4.2 by reviewing some

preliminaries on stochastic processes. In Section 4.3, we develop a basic model

for the inventory problem with opportunistic replenishments. The assumptions

underlying this model are too restrictive to apply in many cases, but its simplicity

allows for some interesting analyses. In particular, we are able to quantify the cost

of uncertainty in its parameters (Section 4.3.2).

Next, in Section 4.4, we present an extended model which is more fit for appli-

cation in real-life scenarios. The model is very similar in spirit to the first, but we

allow a broader set of assumptions. We derive an expression for expected costs un-

der this scenario, and discuss how to use the model to determine optimal inventory

levels.

Section 4.5 explores decision making in the case where multiple items require

replenishment while competing for shared resources. We show that the problem

may be modeled as a binary integer program. A computational study explores the

feasibility of using such models in practice.

77

Lastly, in Section 4.6 we use real data from an online retailer to test the useful-

ness of the model in practice. After establishing that the model can be used suc-

cessfully with access to good order predictions, we turn the the task of predicting

order rates from historical data. These data-driven predictions are then fed to the

optimization model. We find that certain machine learning algorithms outperform

classical forecasting techniques in terms of achieving higher revenue.

4.2 Preliminaries

Analyzing our new inventory models will require some background in stochastic

processes, which we cover here. The results we describe are standard, and can be

found for example in [63] or [61].

The exponential distribution is a well-studied continuous probability distribution,

characterized by the density function

f (x) =


λe−λx x ≥ 0

0 x < 0

for some λ > 0 (often referred to as the rate). The structure of the density function

makes the exponential distribution particularly easy to analyze. Due to this and

other factors, this distribution is a popular choice in stochastic modeling.

A few properties of the exponential distribution are relevant to us. First, if X is

an exponential random variable with rate λ, then it is easy to show that E [X] = 1
λ .

Second, and more interesting, is the so-called memorylessness property of the expo-

nential distribution, which states that P [X > s + t|X > s] = P [X > t]. In words,

this property implies that the occurrence of past events has no impact on the timing

of the next event. In particular, a long passage of time since the last event does not

imply that the next event is imminent.

The Poisson distribution is a discrete probability distribution over the nonnega-

tive integers. In modeling, this distribution is often used to count the number of

78

events that occur in a certain time period. The distribution is governed by a sin-

gle parameter µ > 0. If X is a random variable with a Poisson distribution, then

E [X] = µ. Further, its probability mass function is given by

P [X = k] =
µke−µ

k!
,

and the cumulative distribution function is

P [X ≤ k] =
Γ (bk + 1c , µ)

bkc! . (7)

Appearing in the distribution function is the well-studied gamma function Γ(·),

which is defined as

Γ(s) =
∫ ∞

0
ts−1e−t dt.

Specifically, the form found above is known as the upper incomplete gamma func-

tion Γ(·, ·), given by

Γ(s, x) =
∫ ∞

x
ts−1e−t dt. (8)

The (one-dimensional) Poisson process is a stochastic process that is often used

in probabilistic models to govern occurrences of a particular event over time. The

Poisson process is a special type of counting process, a stochastic process {N(t), t ≥

0} which satisfies

1. N(t) is a positive integer for all t ≥ 0.

2. If s < t, then N(s) ≤ N(t).

In modeling, the quantity N(t) usually represents the number of events that have

occurred since the start of the process at time 0. As a natural extension of this

notation, we let N(s, t) represent the number of events that have occurred on the

time interval (s, t].

In order to be a Poisson process, a counting process must also satisfy a few extra

conditions. Specifically, for some λ > 0, we have:

79

1. N(0)=0.

2. If (s1, t1] ∩ (s2, t2] = ∅, then N(s1, t1) and N(s2, t2) are independent random

variables (the independent increments property).

3. For all s, t ≥ 0, the quantity N(t + s) − N(s) follows a Poisson distribution

with parameter µ = λt.

We refer to λ as the rate or intensity of the process.

When examining a Poisson process, we are often interested in more than just

the number of events within an interval. Sometimes we are interested in the times

at which events occur. With this in mind, let X j be the time of the jth event. We

call each X j an arrival time. The arrival times are connected to the function N by the

following relation:

Lemma 4.2.1. Consider a Poisson process with {N(t), t ≥ 0} and {X j, j ∈ Z+} as

defined above. Then

P
[

X j > t
]
= P [N(t) < j− 1] =

j−1

∑
k=0

P [N(t) = k]

The relation holds because the events {X j > t} and {N(t) < j− 1} are equiv-

alent: at least j events have occurred by time t (i.e. N(t) ≥ j) if and only if the jth

event occurred before (or precisely at) time t (that is, X j ≤ t).

Define Y j := X j − X j−1 for j ≥ 1 (allow X0 = 0). Then Y j is the amount of time

between events j and j− 1. We call the times between successive events the inter-

arrival times of the process. It is well known that for Poisson process, interarrival

times are governed by an exponential distribution with the same rate λ. Hence,

we also have X j = Y1 + · · ·+ Y j, and so by the linearity of expectation we know

E
[
X j] = j

λ .

The interarrival exponential distribution is convenient for analyzing the Poisson

process, but it highlights one of its modeling weaknesses. It implies that, at any

80

point during the process, the expected waiting time until the next event is always

the same. This may not be desirable. For example, consider modeling arrivals of

customers to a restaurant throughout the day. One would expect that interarrival

times are shorter during the lunch and dinner rushes than at other times of the

day. Thus the standard Poisson process may not be a good choice for modeling this

scenario.

This difficulty is remedied by the nonhomogeneous Poisson process, which behaves

like the classic Poisson process but allow us to replace the rate λ > 0 by a positive-

valued rate function {λ(t), t ≥ 0}. This allows us to increase or decrease the likeli-

hood of events over the course of the process. An important function for analyzing

a nonhomogeneous Poisson processes is given by

m(t) =
∫ t

0
λ(s) ds. (9)

Indeed, one can show the following:

Lemma 4.2.2. Consider a nonhomogenous Poisson process with the functions N, m as

defined above. For any t, s ≥ 0, the random variable N(t + s)− N(s) is a Poisson random

variable with parameter m(t + s)−m(s).

In particular, N(t) is a Poisson random variable with parameter m(t).

4.3 A model for opportunistic replenishments

In this section, we outline the components of our inventory model, and discuss

optimal replenishment levels in various scenarios.

4.3.1 The base model

In the simplest case, we suppose that inventory is kept for only one type of item, and

we currently have none of this item in stock. At time 0, we make a replenishment

decision by choosing a number n ∈ Z+ of items we want to hold in inventory. We

81

assume the replenishment occurs instantaneously, and all n items are immediately

available to satisfy potential orders from our customers. Sales are lost if an order is

received but no inventory exists.

The model consists of three parameters:

1. Sales profit s > 0: The sale of an item ordered from inventory gains s units of

profit.

2. Holding cost h > 0: Each item accrues holding costs of h units per time period

while being held in stock.

3. Order rate λ > 0: Orders are received from our customers according to a Pois-

son process with constant rate parameter λ.

For now, we assume the replenishment at time 0 is the only replenishment op-

portunity we will ever have (or future replenishments occur so far in the future as

to be irrelevant). If we let X j denote the time until the jth customer order, then for

j ≤ n the profit generated from the jth item is s− hX j. Our goal is to find n ∈ Z

which maximizes the expected total profit

v(n) := E

[
n

∑
j=1

s− hX j

]

We saw in Section 4.2 that E
[
X j] = j

λ , allowing us to calculate

v(n) = E

[
n

∑
j=1

s− hX j

]
= ns− hn(n + 1)

2λ
= n

(
s− h

2λ

)
− n2 h

2λ
. (10)

From this, it is easy to show that the optimal replenishment level n∗ ∈ Z is given

by

n∗ =
⌊

sλ

h

⌋
. (11)

82

4.3.2 Stochastic order rates

As we can see, the model is easy to solve when all parameters are known. In many

cases, firms will be able determine reasonable values for s and h in their applica-

tions. However, predicting customer activity is a different matter altogether, mak-

ing it tricky to accurately estimate λ.

It may be more reasonable to relax the requirement of knowing λ beforehand.

To that end, we assume that the rate is determined by the realization of a positive-

valued random variable Λ, whose distribution is known to us. Once realized, the

rate value stays fixed and does not change over time.

We must make our replenishment decision before the true value of Λ is revealed.

We will denote the time until the jth order as X j(Λ) to emphasize its dependency

on the random arrival rate. Then our task becomes to find n ∈ Z that maximizes

E

[
n

∑
j=1

s− hX j(Λ)

]
=

n

∑
j=1

s− hE
[

X j(Λ)
]

.

This quantity is strictly decreasing in j, thus it suffices to find the largest j for which

the term inside the sum is positive. We have

s− hE
[

X j(Λ)
]
= s− hE

[
E
[

X j(Λ)|Λ
]]

= s− hE

[
j

Λ

]
= s− hjE

[
Λ−1

]
.

This quantity is positive whenever j < s
hE[Λ−1]

, so the best replenishment level n∗

is

n∗ =
⌊

s
hE [Λ−1]

⌋
.

Comparing this to our previous results, we see that the value 1
E[Λ−1]

appears to

be taking the place of λ in our value equations. As such, the optimal policy behaves

as though we ”guess” a true rate of 1
E[Λ−1]

, and then make our decisions according

83

to the analysis of Section 4.3.1 (we will continue to use this ”rate guessing” inter-

pretation in what follows). It is interesting that the ”correct” guess is 1
E[Λ−1]

instead

of E [Λ], as one might initially surmise. Indeed, as we will see, the difference be-

tween these two quantities captures how much is lost by not knowing the order

rates exactly.

4.3.2.1 Cost of imperfect information

One may assume that if Λ has a “tighter” distribution, our results should be better

than if the distribution of Λ is more uncertain. In this section, we formalize this

intuition by quantifying the cost of uncertainty in Λ. In particular, we calculate

how much we gain in expectation if we can make our replenishment decision after

the true value of Λ is revealed. In what follows, we drop the integrality restriction

on n for ease of analysis. To further highlight the distinction, we use x in place of n

to denote the decision variable.

Our goal here is to compare two values, which we will call the values of per-

fect and imperfect information, respectively. In practice, the difference between the

two gives a bound on the amount of money a firm may want to spend to pinpoint

the true value of Λ before making a decision. In our analysis, we adopt the ”rate

guessing” interpretation introduced in the last section. If we guess that Λ = λ, then

we would be wise to make the optimal decision assuming that rate, as described

in Section 4.3.1. As we have relaxed the integrality restriction, the proper value of

x is slightly different than the value n∗ from (11). Luckily, recovering the correct

value (which we denote by x(λ)) is a simple application of elementary calculus:

differentiate (10) set the result equal to zero, obtaining

x(λ) =
sλ

h
− 1

2
.

84

Then a prediction of Λ = λ corresponds to a value

v(x(λ)) =
(

sλ

h
− 1

2

)(
s−E

[
Λ−1

] h
2

)
−
(

sλ

h
− 1

2

)2

E
[
Λ−1

] h
2

=
s

2h

(
sλ(2− λE

[
Λ−1

]
)− h

)
+

E
[
Λ−1] h

8
.

In the imperfect information setting, we only know the distribution of Λ but not

its realization. In order to maximize expected returns, we guess the best prediction

λ∗ := 1
E[Λ−1]

for the rate and make decision x(λ∗), yielding the value of imperfect

information:

v(x(λ∗)) =
s

2h

(
s

E [Λ−1]
− h
)
+

E
[
Λ−1] h

8
.

In contrast, in the perfect information scenario, we are able to predict exactly the

true realization of Λ. The expected value of this unimplementable policy (with the

expectation taken before Λ is revealed) is what we call the value of perfect infor-

mation:

E [v(x(Λ))] := E [E [v(x(Λ))|Λ]]

= E

[(
sΛ
h
− 1

2

)(
s− h

2Λ

)
−
(

sΛ
h
− 1

2

)2 h
2Λ

]

=
s

2h
(sE [Λ]− h) +

E
[
Λ−1] h

8
.

Then the cost of imperfect information is merely the difference between these two

values:

E [v(x(Λ))]− v(x(λ∗)) =
s

2h
(sE [Λ]− h)− s

2h

(
s

E [Λ−1]
− h
)

=
s2

2h

(
E [Λ]− 1

E [Λ−1]

)
.

We see that making decisions under imperfect information has a cost that scales

with the difference between the distribution’s expectation E [Λ] and harmonic mean
1

E[Λ−1]
. This gives validation to our hypothesis that imperfect information is more

85

50 100 150 200 250 300 350 400

0

20

40

60

80

100

120

140

160

Cost of Imperfect Information

Variance

Co
st

Figure 12: An example illustrating the role variance plays in affecting cost of imperfect information.
We assume s = 5, h = 1, and Λ follows a symmetric triangular distribution with mode 50 (with
symmetric meaning the mode is equidistant from the maximum and minimum).

costly when variance is high: as Λ is a positive random variable, the quantity

E [Λ] − 1
E[Λ−1]

is always nonnegative, and strictly positive if and only if the dis-

tribution is nondegenerate. See Figure 12 for an illustration of how variance can

affect the cost of imperfect information.

4.4 A more flexible model

We now outline a more flexible model which builds off the base model in Sec-

tion 4.3.1. The analysis here is more complicated, but the reward is a more realistic

model which is better suited to application in real-life scenarios. In particular, we

will change two key assumptions of the base model, as explained below.

The first assumption we tackle regards order rates. Where in Section 4.3.1 we

assumed that the order rate was constant, we now allow the rate to change over

time. This is useful for applications where order levels are dependent on the day of

the week (more orders on the weekend than on a week day), or time of day (more

orders in the evening than early morning). In particular, we assume that the Poisson

process driving orders is nonhomogeneous with intensity function λ : R+ → R+.

86

Further, we assume that λ is piecewise constant, with a finite number of pieces.

That is, the intensity function is of the form

λ(t) =



λ1 if b0 ≤ t < b1

λ2 if b1 ≤ t < b2

...

λκ if bκ−1 ≤ t < bκ

(12)

where κ ∈ Z, λi > 0 and bi ≥ bi−1 for i ∈ {1, ..., κ}, b0 := 0 and bκ := ∞. It is easy

to see that for such λ, the function m(t) from (9) satisfies

m(b`) = m(b`−1) + (b` − b`−1)λ`.

More generally, letting `(t) be the largest ` such that b` ≤ t, we have

m(t) = m(b`(t)) + (t− b`(t))λ`(t)+1. (13)

The second assumption regards future replenishment opportunities. In Sec-

tion 4.3.1 we assumed no future replenishments would occur, and thus could afford

to make inventory decisions greedily. In this case, we assume that we will have an-

other replenishment opportunity at some unspecified time in the future, governed

by nonnegative random variable T. For simplicity, we assume that T is a discrete

random variable. This introduces a new dynamic to the model, in that it is possible

that we expect a profit from the jth item if we stock it now, but we may prefer to

wait instead until time T to lower holding costs.

In contrast to the base model, in order to calculate profits from a sale, we must

now keep track of when an item was placed in inventory. For this purpose, let

{I(t), t ≥ 0} denote the amount of inventory being held at time t, and let Sj denote

the time at which we stock our jth item. We will find it convenient to slightly alter

the dynamics of the inventory system in the case that a customer order arrives while

87

no items exist in inventory. Instead of assuming a lost sale, we assume that we

stock and immediately sell the item for a sales profit of 0. This modification has no

material effect on the workings of the system, and is done simply to keep notation

clean.

The manner in which the system evolves, then, is the following. At time 0 a

replenishment decision is made - say n1 items are added to inventory. Then Sj = 0

for j ∈ {1, ..., n1} and I(t) = n1 for t ∈ [0, X1). At times X j, j ≤ n1, I(t) is decreased

by 1. If for some j, it happens that I(X j − ε) = 0 for small ε, then our altered

dynamics demand that Sj = X j. Further, we must have I(X j) = 1 but I(t) returns

to 0 for t immediately following time X j. Under this setup, the amount of profit

generated from the jth order is

s · 1{X j 6=Sj} − h(X j − Sj) = (s− h(X j − Sj))1{X j>Sj}.

4.4.1 Determining replenishment levels

To make a replenishment decision at time 0, it is important to know how much

profit we stand to gain for replenishing now as opposed to waiting until time T.

To that end, let Zj(τ) be the profit gained on the jth order received, assuming that

Sj = τ. That is,

Zj(τ) = (s− h(X j − τ))1{X j>τ}. (14)

In this work, we replenish to level 0 if E
[
Z1(0) < 0

]
, and otherwise to the smallest

n ∈ {0, 1, . . . } with the property that for all items after the nth, it is more advanta-

geous to wait to stock, i.e. E
[
Zj(T)

]
> E

[
Zj(0)

]
for all j ∈ {n + 1, n + 2, . . . }. This

number is guaranteed to exist, due to the following two results.

Lemma 4.4.1. E
[

Zj
i (0)− Zj

i (T)
]

decreases in j.

88

Proof. We have

E
[

Zj(0)− Zj(T)
]
= s− hE

[
X j
]
−
(
(s + hT)P

[
X j > T

]
− hE

[
X j1{X j>T}

])
= s

(
1−P

[
X j > T

])
− h

(
E
[

X j + T1{X j>T} − X j1{X j>T}

])
= s

(
1−P

[
X j > T

])
− h

(
E
[
min(X j, T)

])
It is clear that this term decreases in increasing j, since we have that s, h > 0, that

P[X j > T] increases as j increases, and that min(X j, T) is non-decreasing in j on

any sample path.

Lemma 4.4.2. lim sup
j→∞

E
[

Zj(0)− Zj(T)
]
< 0.

Proof. Proceeding as in the proof of Lemma 4.4.1, we have

lim sup
j→∞

E
[

Zj(0)− Zj(T)
]
≤ lim sup

j→∞
s
(

1−P
[

X j > T
])
− lim sup

j→∞
h
(

E
[
min(X j, T)

])
= − lim sup

j→∞
h
(

E
[
min(X j, T)

])
< 0,

where the final line follows since h > 0 and both X j and T are positive-valued.

Computing the proper decision n is straightforward if the E
[
Zj(τ)

]
values are

available (see Section 4.4.2 for details on computing this expectation). Letting λmax =

maxi∈{1,...,κ} λi, the arguments of Section 4.3.1 imply that

n ≤ nmax :=
⌊

sλmax

h

⌋
.

Then the proper value of n may be determined by a simple bisection search over

{0, . . . , nmax}.

While an improvement over the first model, this approach is still somewhat my-

opic in that we are only considering two time points 0 and T, instead of the full

future of the system. However, the results of Section 4.6 suggest that the model can

be useful in real-life applications.

89

4.4.2 Expressing expected profits

Making any decisions based on this model relies on knowing the values E
[
Zj(τ)

]
for τ = 0 and any other τ ∈ R such that T has positive mass at τ. Hence an efficient

scheme for calculating this value is essential to the applicability of the model. Given

the assumption of a piecewise constant rate function, we will now show that we can

write E
[
Zj(τ)

]
in terms of algebraic operations on s, h, τ, the bis and λis, as well

as Poisson probabilities based on these numbers. Most importantly, the derived

expression is fairly efficient to calculate in practice, opening up the model for use

in real-world applications.

Before deriving our final expression for E
[
Zj(τ)

]
, we will find it convenient to

create some notation relating to the rate function λ over the domain [τ, ∞). Our

goal is to write this restricted function in a form mirroring (12). To that end, let

b0
τ = τ and let iτ = max{i : bi ≤ τ}. Then let

bi
τ = biτ+i

for i ≥ 1 and while iτ + i ≤ κ (recall, κ is the number of “levels” in the piecewise-

constant rate function (12)). Essentially, the values bi
τ are the breakpoints of the

function λ which are greater than τ, renumbered so that bi
τ is the ith such break-

point. Let κτ = max{i : iτ + i ≤ κ} be the number of these breakpoints. Lastly, let

λi
τ be the values of the rate function λ corresponding to the intervals [bi−1

τ , bi
τ) for

i ∈ {1, ..., κτ}. With this notation, we can write λ over the domain [τ, ∞) as

λ(t)
∣∣
t≥τ

=



λ1
τ if b0

τ ≤ t < b1
τ

λ2
τ if b1

τ ≤ t < b2
τ

...

λκ
τ if bκ−1

τ ≤ t < bκ
τ

We now proceed to deriving a more computationally-friendly expression for

90

E
[
Zj(τ)

]
, involving just s, h, τ, the bis and λis, and Poisson probabilities. To begin,

we easily find

E
[

Zj(τ)
]
= (s + hτ)P

[
X j > τ

]
− hE

[
X j1{X j>τ}

]
.

We can already write P
[
X j > τ

]
as a Poisson probability due to Lemma 4.2.1. Thus

we move our attention to the E
[

X j1{X j>τ}

]
term. As X j1{X j>τ} is a nonnegative

random variable, we may write

E
[

X j1{X j>τ}

]
=
∫ ∞

0
P
[

X j1{X j>τ} > t
]

dt

=
∫ ∞

0
P
[

X j > t, X j > τ
]

dt

=
∫ τ

0
P
[

X j > τ
]

dt +
∫ ∞

τ
P
[

X j > t
]

dt

= τP
[

X j > τ
]
+
∫ ∞

τ
P
[

X j > t
]

dt.

We’ve isolated another P
[
X j > τ

]
which, as before, we know how to convert to a

Poisson probability. The only problematic bit is the integral term, which we turn to

now. We can use Lemma 4.2.1 to derive

∫ ∞

τ
P
[

X j > t
]

dt =
∫ ∞

τ

j−1

∑
k=0

P [N(t) = k] dt

=
∫ ∞

τ
e−m(t)

j−1

∑
k=0

m(t)k

k!
dt.

91

Next, we use make use of (13) and (8), then rearrange to obtain.

∫ ∞

τ
e−m(t)

j−1

∑
k=0

m(t)k

k!
dt =

j−1

∑
k=0

1
k!

∫ ∞

τ
e−m(t)m(t)k dt

=
j−1

∑
k=0

1
k!

κτ

∑
`=1

∫ b`τ

b`−1
τ

e−m(t)m(t)k dt

=
j−1

∑
k=0

1
k!

κτ

∑
`=1

∫ b`τ

b`−1
τ

e−(m(b`−1
τ)+(t−b`−1

τ)λ`
τ)

· (m(b`−1
τ) + (t− b`−1

τ)λ`
τ)

k dt

=
j−1

∑
k=0

1
k!

κτ

∑
`=1

1
λ`

τ

[
Γ
(

k + 1, m(b`−1
τ)

)
−Γ
(

k + 1, (b`τ − b`−1
τ)λ`

τ + m(b`−1
τ)

)]
=

j−1

∑
k=0

1
k!

κτ

∑
`=1

1
λ`

τ

[
Γ
(

k + 1, m(b`−1
τ)

)
− Γ

(
k + 1, m(b`τ)

)]
=

j−1

∑
k=0

1
k!

(
1

λ1
τ

Γ(k + 1, m(τ))

+
κτ−1

∑
`=1

(
1

λ`+1
τ

− 1
λ`

τ

)
Γ
(

k + 1, m(b`τ)
))

=
j−1

∑
k=0

(
Γ(k + 1, m(τ))

λ1
τk!

+

κτ−1

∑
`=1

(
1

λ`+1
τ

− 1
λ`

τ

)
Γ
(
k + 1, m(b`τ)

)
k!

)
.

Our final step involves relating the gamma function to Poisson probabilities. In

fact, the cumulative distribution function of N(t) (see (7) and Lemma 4.2.2) is given

92

exactly by the final term of the product inside the sums. That is, we have
j−1

∑
k=0

Γ
(
k + 1, m(b`τ)

)
k!

=
j−1

∑
k=0

P
[

N(b`τ) ≤ k
]

=
j−1

∑
k=0

k

∑
r=0

P
[

N(b`τ) = r
]

=
j−1

∑
k=0

(j− k)P
[

N(b`τ) = k
]

= jP
[

N(b`τ) ≤ j− 1
]
−

j−1

∑
k=1

kP
[

N(b`τ) = k
]

= jP
[

N(b`τ) ≤ j− 1
]
−

j−1

∑
k=1

k
(m(b`τ))ke−m(b`τ)

k!

= jP
[

N(b`τ) ≤ j− 1
]
− jΓ(j, m(b`τ))− Γ(j + 1, m(b`τ))

(j− 1)!

−
m(b`τ)

(
e−m(b`τ)(m(b`τ))j + Γ(j + 1, m(b`τ))

)
j!

= (j−m(b`τ))P
[

N(b`τ) ≤ j
]
+ m(b`τ)P

[
N(b`τ) = j

]
= jP

[
N(b`τ) ≤ j

]
−m(b`τ)P

[
N(b`τ) ≤ j− 1

]
.

Bringing it all together, we get

E
[

X j1{X j>τ}

]
= τP

[
X j > τ

]
+

1
λ1

τ
(jP [N(τ) ≤ j]−m(τ)P [N(τ) ≤ j− 1])

+
κτ−1

∑
`=1

(
1

λ`+1
τ

− 1
λ`

τ

)(
jP
[

N(b`τ) ≤ j
]

−m(b`τ)P
[

N(b`τ) ≤ j− 1
])

,

and so

E
[

Zj(τ)
]
= sP

[
X j > τ

]
− h

1
λ1

τ
(jP [N(τ) ≤ j]−m(τ)P [N(τ) ≤ j− 1])

−
κτ−1

∑
`=1

h
(

1
λ`+1

τ

− 1
λ`

τ

)(
jP
[

N(b`τ) ≤ j
]

−m(b`τ)P
[

N(b`τ) ≤ j− 1
])

.

Thus, we get the main result of the section.

93

Theorem 4.4.3. Let Z, b, λ, s, h be as defined in this section. Let N be the counting function

for the associated Poisson process, and m the integral function of (9). Then for any j ∈ Z+

and τ > 0,

E
[

Zj(τ)
]
= sP [N(τ) ≤ j− 1]− h

1
λ1

τ
(jP [N(τ) ≤ j]−m(τ)P [N(τ) ≤ j− 1])

−
κτ−1

∑
`=1

h
(

1
λ`+1

τ

− 1
λ`

τ

)(
jP
[

N(b`τ) ≤ j
]

−m(b`τ)P
[

N(b`τ) ≤ j− 1
])

.

The above formula does not appear especially useful on first glance. How-

ever, the most computationally expensive operations involved are the evaluations

of Poisson probabilities, which can be reduced to gamma function computations

(see (7)). Given its wide application across many areas of mathematics, efficient

approximation of the gamma function is a well studied topic, and in practice such

evaluations are not computationally burdensome. Further, only 2κτ + 1 such com-

putations are necessary, hence if the number of ”pieces” in the rate function λ

is small (which is the case in our application in Section 4.6), the total number of

gamma function calculations necessary is also small. The number of terms in the

final sum is also bounded by κ, thus the entire computation is quick to complete in

many practical situations.

4.5 Multiple SKUs with shared resources

Up to now, we had assumed that only one type of item, or stock keeping unit (SKU),

was a candidate for replenishment. Now we consider the situation where there are

multiple SKUs which we would like to replenish, but the replenishment level of

one SKU has an effect on the replenishment of others. For example, a warehouse

stores its stock in a common area which is shared among all SKUs, so replenishing

one SKU means less space for replenishments of another.

94

More concretely, suppose K is the number of SKUs that we consider replenish-

ing. Each SKU i ∈ {1, 2, ..., K} has an associated sales profit si, holding cost hi, and

order rate (function) λi. The jth item ordered of SKU type i has gain function Zj
i ,

analogous to the functions Zj of (14). Similarly, we denote by X j
i the time until the

jth order of item i. We must choose the replenishment vector n ∈ ZK, whose com-

ponents ni are the individual replenishment levels for each SKU. We assume that

the shared resource constraints are linear, of the form An ≤ b for some A ∈ Qm×K,

b ∈ Qm.

Determining the “correct” problem to solve in such a scenario is somewhat sub-

jection. For our purposes, we propose solving the problem of maximizing expected

revenue subject to An ≤ b and replenishing only if the expected value of doing so

now is higher than the expected value if replenishing at time T. That is, we seek to

solve the problem

maximize
K

∑
i=1

ni

∑
j=1

E
[

Zj
i (0)

]
subject to An≤ b

E
[

Zj
i (0)

]
≥ E

[
Zj

i (T)
]

for i ∈ {1, ..., K}, j ∈ {1, ..., ni}

n∈ ZK.

(15)

To make the model more tractable, we would like re-write it so that all con-

straints are linear. As a first step, we note that Lemma 4.4.1 and Lemma 4.4.2 im-

ply that E
[

Zj
i (0)

]
≥ E

[
Zj

i (T)
]

constraints need only be applied to j = ni. This

changes the model to

maximize
K

∑
i=1

ni

∑
j=1

E
[

Zj
i (0)

]
subject to An≤ b

E
[
Zni

i (0)
]
≥ E

[
Zni

i (T)
]

for i ∈ {1, ..., K}

n∈ ZK.

95

Furthermore, determining the maximum value Mi so that E
[

ZMi
i (0)

]
≥ E

[
ZMi

i (T)
]

is precisely the focus of Section 4.4. Thus we can linearize these constrains to give

an equivalent model

maximize
K

∑
i=1

ni

∑
j=1

E
[

Zj
i (0)

]
subject to An≤ b

n≤ M

n∈ ZK,

(16)

where M ∈ ZK is such that Mi is the replenishment amount from the single-SKU

problem of Section 4.4, solved for SKU i. So with some precomputation, the original

model (15) is transformed into the linearly-constrained model (16).

4.5.1 Binary integer programming formulation

We now propose a binary integer programming model for solving (16). This for-

mulation will not be in the space of the original variables, but instead requires ad-

ditional decision variables to linearize the cost function. In particular, we require a

binary decision variable xj
i for each SKU i and each value j ∈ {0, . . . , Mi}. This is al-

ready bad news for the efficiency of creating the model, as Mi is dependent on si, hi,

and λi and hence may be arbitrarily large as compared to the size of the original

problem. Nevertheless we carry on, as computational experience (see Section 4.5.2)

tells us that the model can be practical for instances with reasonably-sized inputs.

Each variable xj
i holds the interpretation that if xj

i = 1 then we replenish SKU i

up to level at least j. For this to make sense, one also needs to enforce that xj
i ≥ xj+1

i

for j ∈ {1, ..., Mi − 1}. However, we will not need to do this explicitly in the model,

as the objective function will require that an optimal solution is of this form. The

96

full model is given below:

maximize
K

∑
i=1

Mi

∑
j=1

E
[

Zj
i (0)

]
xj

i

subject to An≤ b

ni =
Mi

∑
j=1

xj
i for i ∈ {1, ..., K}

xj
i ∈ {0, 1} for i ∈ {1, ..., K}, j ∈ {1, ..., Mi}.

(17)

Theorem 4.5.1. Problems (16) and (17) have the same optimal value.

Proof. It is not hard to see that any solution n to (16) gives rise to a solution x to (17)

with the same value: simply let xj
i = 1 if ni ≥ j. Furthermore, for any i ∈ {1, ..., K},

an optimal solution to (17) must satisfy that xj+1
i = 0 whenever xj

i = 0 (otherwise,

setting xj+1
i = 0 and xj

i = 1 gives a higher objective value). Hence setting

ni =


0 if x1

i = 0

max{j : xj
i = 1} otherwise

gives a solution to (16) with an equivalent value.

4.5.2 Computational results

Whether or not (17) can be used successfully in practice is a valid question. Given

the inputs of (15), writing (17) requires not only calculating M but also creating

M1 + · · ·+ MK variables and evaluating E
[

Zj
i (0)

]
for each of them.

With this in mind, we present a computational study for problems of various

sizes, the results of which are given in Table 4. For a problem with K skus and m

constraints, 100 random instances were generated. For each SKU i, we randomly

select si ∈ [2, 5] and hi ∈ [0.5, 1]. Each rate function λi is piecewise-linear with 5

pieces, and 5 ≤ λi(t) ≤ 15 for all t. Coefficients of the constraint matrix A were

taken from the range [1, 10]. Particular selections of K and m varied between 10 to

25000 and 1 to 1000 respectively: these values were selected as we felt they would

97

Table 4: Solve times over 100 instances for model (17), reported as mean (±std dev). Number of
replenishable SKUs is given by the rows, and number of constraints by the columns.

Constraints 1 10 50 100 500 1000
SKUs

10 0.5 (±0.3) 0.3 (±0.2) 0.4 (±0.3) 0.5 (±0.4) 0.9 (±0.9) 1.2 (±0.6)
50 0.9 (±0.1) 0.8 (±0.1) 0.9 (±0.1) 0.8 (±0.1) 1.4 (±0.2) 1.5 (±0.2)
100 1.4 (±0.1) 1.1 (±0.1) 1.1 (±0.1) 1.3 (±0.1) 1.7 (±0.2) 3.2 (±0.2)
500 4.3 (±0.1) 4.3 (±0.1) 4.5 (±0.1) 4.6 (±0.1) 8.6 (±0.6) 14 (±0.9)
1000 8.5 (±0.1) 8.3 (±0.1) 8.8 (±0.1) 9.3 (±0.3) 18 (±1.3) 27 (±3.1)
5000 45 (±0.8) 42 (±0.6) 47 (±1.5) 53 (±2.6) 120 (±13) 227 (±18)
10000 98 (±3.4) 88 (±1.9) 98 (±3.7) 111 (±6.1) 249 (±34) 351 (±131)
25000 350 (±30) 249 (±6.0) 281 (±14) 317 (±24) 450 (±130) 550 (±79)

be relevant to our industry collaborator. Results show that the model can be solved

under one minute for many problems sizes, while most instances solved in under

10 minutes.

4.6 Simulation study

We now return to the single-SKU extended model of Section 4.4. The aim of this

section is to test the effectiveness of the model under a range of potential situations.

For this purpose, we conduct a simulation study in which the model is deployed

in inventory scenarios of increasing complexity.

In these simulation, we measure time in days. We do not treat time continuously

but instead break the simulation into day-long chunks. Each day of the simulation,

we execute the process outlined in Algorithm 3. In particular, we assume that re-

plenishments occur at the beginning of the day, and that customer orders occur

(and are immediately fulfilled) at midday. Thus for every item sold, we achieve the

sales profit s but must also pay an extra half day of holding costs. Depending on

the simulation scenario, daily customer orders are either determined by a Poisson

random variable with appropriate rate, or pulled from historical data.

We test the model under four different scenarios of increasing complexity. The

particular scenarios are:

98

Algorithm 3 Simulation process
initialize inventory n← 0
initialize profits p← 0
repeat for each day

if replenishment occurs today then
choose desired inventory level n∗

else
set n∗ ← n

end if
set n← max{n, n∗} . update inventory
determine number of customer orders r
r ← min{r, n} . determine fulfillable orders
set p← p + r(s− h/2) . realize profit from orders
set n← n− r . remove ordered items from inventory
set p← p− nh . pay holding cost for remaining items

until end of simulation horizon

1. Synthetic data: We begin by testing the model under the assumptions it was

built for. Namely, customer orders are governed by a Poisson process with

nonhomogeneous rate function λ, and the timing of the next replenishment

opportunity is determined by discrete random variable T. As in all simula-

tions, we assume full knowledge of the distribution of T. Additionally, we

assume full knowledge of the rate function λ in this first step.

2. Real data: Our industry collaborator provided us with several years worth

of sales data. Using this data allows us to see how the model performs in a

situation where day-to-day order numbers are volatile and do not follow a

known distribution. We test multiple scenarios, varying in what order rates

are used by the model.

(a) Orders as rates: In this scenario, we assume knowledge of future order

numbers and use these numbers as the values in the model’s rate func-

tion. This is not implementable in practice, of course. The purpose of this

exercise is to determine if a good prediction of future order numbers can

be leveraged to create a model that yields high profits.

99

(b) Noisy orders as rates: This scenario is much like the last one, except that in-

stead of giving the model the exact future order numbers, we add some

“noise” to the numbers (as we describe later). The purpose of this exer-

cise is to determine the quality of predictions necessary for the model to

perform well.

(c) No foresight: In this scenario, we allow ourselves no access to future order

numbers. We must determine proper order rates for the model based on

historical data and other auxiliary data (time of year, items on sale, etc.).

For each scenario, we run the simulation over multiple replications (or using

historical data from multiple SKUs, in the case that order numbers are pulled from

real world data), and record the profit generated by using the model’s prescrip-

tions. These numbers do us no good in a vacuum, however; we need something to

benchmark against.

For this purpose, in every scenario we also run the simulations under a perfect

foresight assumption (note that numbers derived from this perfect foresight policy

are not related to the cost of perfect information from Section 4.3.2.1). In this model,

we assume exact knowledge of the future - that is, we know ahead of time daily

order volumes and the times of all future replenishment opportunities. With this

knowledge, one can deterministically calculate replenishment levels that yield the

highest profit. Profits generated in this setting yield an upper bound on the profits

achievable by any inventory policy. Thus performance similar to the perfect fore-

sight policy implies a model with good performance.

Of course, comparison to a flawless benchmark may not always be fair. Thus

also we benchmark against certain other, reasonable policies. The other benchmark

policies will vary from scenario to scenario: we describe them as their usages arise.

In each simulation, we (arbitrarily) set the sales profit s = 10 and daily holding

cost h = 1. The times between replenishment opportunities are governed by i.i.d.

100

draws from a discrete random variable T satisfying

P [T = τ] =


0.2 if τ ∈ {1, 2, 3}

0.1 if τ ∈ {4, 5, 6, 7}

0 otherwise.

Recall that we measure time in days. So the times between replenishment oppor-

tunities are most likely to be between one and three days.

4.6.1 Synthetic data

In the first simulation scenario, we synthetically generate daily orders in a way

that mimics the assumptions in Section 4.4. The simulation horizon lasts 365 days.

We assume customer order rates vary from day to day, but hold constant within

any particular day. For this scenario, each day’s order rate is pulled uniformly-at-

random from the set {15, . . . , 40}. Total order numbers for a day are then deter-

mined from the realization of a Poisson random variable with the associated rate.

For this scenario, we assume knowledge of the underlying rates, but no knowledge

of the actual (future) order numbers.

Simulations follow the framework of Algorithm 3, with desired inventory levels

determined by one of three different methods. First we run the perfect foresight

model, which upper-bounds the amount of profit attainable. Second, we use the

model of Section 4.4, where the rate function used in the model is taken directly

from the rate function that governs customer orders.

Lastly, we run what we call the expected best policy. For this policy, we assume

the same knowledge that is utilized by our model (i.e. known order rate function

λ), but use this information in a natural, but perhaps less sophisticated way. First,

we assume that the number of customer orders on future days will equal exactly

the rates of each day (this is not an outrageous assumption, since e.g. the rate is

the maximum likelihood estimate for a Poisson random variable). If we assume

101

50 100 150 200 250 300 3500

20

40

60

80

100

Cumulative Profits - Synthetic Data

Day Number

%
 o

f P
er

fe
ct

 P
ro
fit

s
Perfect
Model
Expected

Figure 13: Cumulative profits achieved by the perfect foresight model, the model of Section 4.4, and
the expected best model, under the synthetic data framework. Profits are displayed as a percentage
of the maximum attainable value.

we know future orders, then we can easily calculate the correct number of items

to prepackage if T = τ. Denoting this value c(τ), the prescribed inventory level

under the expected best policy is E [c(T)].

A total of 100 simulation scenarios were created, and the three models were run

on each scenario. The results of these tests are displayed in Figure 13. For each

model and a given day, we calculate the cumulative profits generated under the

model’s prescriptions since the start of the simulation. This value is divided by

the value achieved by the perfect foresight policy to determine the percentage of

attainable profits achieved by each model. Displayed in Figure 13 is the average

value of this percentage over all replications.

By the end of the simulation horizon, the model of Section 4.4 is steadily achiev-

ing 82% of the possible profit. This is an improvement by four percentage points

over the expected best policy, which by the end is averaging 78% of the possible

profit. Thus one can say subjectively that the model does a decent job of realizing

attainable profits in the face of uncertainty, while objectively stating that it performs

102

better than a less sophisticated technique on the same task.

4.6.2 Real-world data

While the model’s performance with synthetic data is encouraging, its true utility

can only be shown via its performance on real data sets. In this section, we test the

model using real order data from our industry collaborators.

Our dataset includes all orders fulfilled from a particular distribution center,

with a time frame from late 2013 through the end of 2015. As expected, daily order

volumes can vary greatly. Weekends typically bring more orders than weekdays.

Some items are seasonal and are ordered more frequently at particular times of the

year. Some items go on sale for a brief period and see increased sales volume due to

improved value to the customer. Order numbers are generally greater during the

holiday season from late November through December, and are particularly high

on the Friday and Monday following the American Thanksgiving holiday - days

known in the retail industry as ”Black Friday” and ”Cyber Monday.”

Every retailer will have a number of consistently high-performing SKUs; ones

that are reliably ordered in substantial quantity throughout the year. In our analy-

sis, we focus on 150 of our collaborator’s highest-selling SKUs. Further, the selected

SKUs are nonseasonal, i.e. have consistent order volumes throughout the year.

The remaining simulations proceed once again according to Algorithm 3, where

customer order numbers are determined from historical data. The simulation hori-

zon is the entire calendar year 2015; historical data from 2013 and 2014 is reserved

for training forecasting models.

The final determination is constructing the nonhomogeneous rate function λ to

be used by the model. We once again will hold λ constant throughout each day,

but allow it to vary over different days. In particular, we use predicted customer

orders as the daily rates, with prediction methods varying for different scenarios.

103

Jan 2015 Mar 2015 May 2015 Jul 2015 Sep 2015 Nov 20150

20

40

60

80

100

Cumulative Profits - Orders as Rates

Date

%
 o

f P
er

fe
ct

 P
ro
fit

s
Perfect
Model
Expected

Figure 14: Cumulative profits achieved by the perfect foresight model, the model of Section 4.4, and
the expected best model, under the orders-as-rates framework. Profits are displayed as a percentage
of the maximum attainable value.

4.6.2.1 Orders as rates

As a first step, we test the performance of the model in the case that good order

predictions are available. In this test, we assume knowledge of future orders and

construct the rate function using exactly these numbers. If the model is to be ap-

plicable in any sense, its performance here should be in line with what was found

in the synthetic data case.

The results of this study are displayed in Figure 14. We once again benchmark

the model against both the perfect foresight policy and the expected best policy. As

desired, we see performance very similar to what was found in the synthetic data

framework. The model averages around 81% of the maximum attainable profit by

the end of the simulation horizon. This is once again a noticeable improvement

over the expected best model, which only averages 76% of attainable profits.

104

4.6.2.2 Noisy orders as rates

The results of the orders-as-rates simulations show that the model can perform

well if we have access to good order predictions. In the next set of simulations, we

explore just how “good” these predictions need to be.

We still assume access to future order numbers, but instead of using these values

directly in the function λ, we first perturb them randomly. In particular, under

the noisy p% policy (p > 0), we add or subtract a value up to p% of the actual

order number. That is, for randomly determined X ∈ (0, 1) and Y ∈ {−1, 1}, the

rate used on a day with r orders is max
{

0, r + Y rpX
100

}
1. In these simulations, we

take X as the maximum of five uniform (0, 1) random variables and P [Y = 1] =

P [Y = −1] = 0.5.

The results of these tests are given in Figure 15. Interestingly, adding noise up to

10% has no noticeable affect on the average performance of the model. The model

achieves the same 81% average with under both the 10% noise and orders-as-rates

frameworks. At 50% noise, the performance mirrors the expected best policy in the

orders-as-rates framework, averaging 78% of perfect by the end of the simulation

horizon. Performance degrades as noise increases (as expected), with the noisy

200% policy only obtaining around 50% of achievable profits.

Looking at the results, at appears that the model does not require extraordinar-

ily accurate forecasts. Even at upwards of 50% noise, the model achieves over three

quarters of attainable profits as compared to the perfect foresight scenario2. This

encouraging result speaks well toward the potential applicability of the model.

1Actually, we don’t allow λ to vanish, as this would induce division-by-zero errors. We instead
use a small ε > 0.

2It is worth mentioning that the noisy rates are still unbiased estimates of the true order numbers.
Forecasts that stay within 50% of the true value but systematically over- or under-estimate would
not perform as well.

105

Jan 2015 Mar 2015 May 2015 Jul 2015 Sep 2015 Nov 20150

20

40

60

80

100

Cumulative Profits - Noisy Orders as Rates

Date

%
 o

f P
er

fe
ct

 P
ro
fit

s
Perfect
Noisy 10%
Noisy 50%
Noisy 100%
Noisy 150%
Noisy 200%
Noisy 300%

Figure 15: Cumulative profits achieved by noisy p% models, for p varying between 10 and 300.
Profits are displayed as a percentage of the maximum attainable value.

4.6.2.3 Data-driven rate predictions

In the ultimate test of model applicability, we now dispense completely with any

knowledge of future orders. In the next set of simulations, we must derive the

model’s rate function using only historical order numbers, and any (contempora-

neous) exogenous data available to us.

We continue to build the model using forecasts of future order numbers. We

use a wide range of forecasting techniques, from basic moving averages to more

sophisticated machine learning techniques. In particular, the following approaches

are applied:

• Sample average - The prediction is simply the average number of items sold

per day since the beginning of the simulation horizon.

• Moving average - Like the sample average, but only considers the past n ∈ Z

days of data.

• Exponential smoothing - A classic time-series analysis technique. Both single

106

and double exponential smoothing techniques are applied.

• Random forest regression - This well-known, ensemble-style classification

technique makes use of decision trees built over random splits of the data

(see [14]). Since we require numerical outputs, we use it here in its regression

form.

• Neural network regression - The development of neural networks has taken

a long, meandering path, perhaps starting [54]. The methods have been the

subject of great fanfare due to the recent successes of deep learning.

Various models of the above forms were trained and tested via simulation. The

results (once again benchmarked against the perfect foresight policy) are given in

Figure 16. The figure displays results of the best method tested of the five families

mentioned above.

A distinct advantage of the more sophisticated machine learning techniques

(random forests and neural networks) is that by design they can incorporate a large

body of information not available in simple order histories. In particular, the best

neural network tested included indicators for the day of the week (both for the

prediction day and historical data). The best random forest also included a “hol-

iday season” indicator, which turns on during the high shopping period between

Thanksgiving and Christmas (the same information was not as useful in the neural

network). Other exogenous information was also gathered and tested (e.g. Google

search volumes for key terms related to a product), but did not appear to improve

the outcomes for either model.

Nonetheless, these two machine learning methods achieved the best results of

all methods tested. The best neural network attains 61% of the possible profits on

average, while the random forest achieves 58% of the perfect foresight policy. The

random forest barely outperforms the best moving average method, however, with

107

Jan 2015 Mar 2015 May 2015 Jul 2015 Sep 2015 Nov 20150

20

40

60

80

100

Cumulative Profits - No Foresight

Date

%
 o

f P
er

fe
ct

 P
ro
fit

s
Perfect
Best NN
Best RF
Moving Avg 10
2 Exp Smooth
Sample Avg

Figure 16: Cumulative profits achieved by various models under the no foresight framework. Profits
are displayed as a percentage of the maximum attainable value.

only a single percentage point difference between them. The sample average and

exponential smoothing lag behind noticeably. These results indicate that sophisti-

cated regression techniques using auxiliary data can generate improved prescrip-

tions when paired with an optimization model.

Figure 17 and Figure 18 combine to give a sense of how the machine learning

models gain their advantage. Where Figure 16 plots the average percentage of pos-

sible profit attained by each algorithm, these new plots show the 90th and 10th

percentile over all runs, respectively. We see that at the 90th percentile, almost all

methods perform equally well. However, looking at the 10th percentiles, we see

that the machine learning methods are noticeably better in the worst case.

4.6.2.4 Measuring the impact of exogenous information

We’ve established that auxiliary data can be useful for attaining improved profits,

but suppose we want to quantify this impact. Recently, [9] proposed a natural way

to quantify the usefulness of extra information via what they call the coefficient of

108

Jan 2015 Mar 2015 May 2015 Jul 2015 Sep 2015 Nov 20150

20

40

60

80

100

90th Percentile Profits

Date

Pe
rc

en
t o

f P
er

fe
ct

Perfect
Best NN
Best RF
Moving Avg 10
2 Exp Smooth
Sample Avg

Figure 17: 90th percentile of cumulative profits achieved by various models under the no foresight
framework. Profits are displayed as a percentage of the maximum attainable value.

Jan 2015 Mar 2015 May 2015 Jul 2015 Sep 2015 Nov 20150

20

40

60

80

100

10th Percentile Profits

Date

Pe
rc

en
t o

f P
er

fe
ct

Perfect
Best NN
Best RF
Moving Avg 10
2 Exp Smooth
Sample Avg

Figure 18: 10th percentile of cumulative profits achieved by various models under the no foresight
framework. Profits are displayed as a percentage of the maximum attainable value.

109

prescriptiveness P. The first step to calculating this quantity is to determine the gap

in profit between a low-information method and the perfect foresight policy. Then

P can be described as the proportion of this gap that is recovered by the model

of interest, using the new information. That is, if vperfect is the maximum attain-

able profit, vLI is the profit of the low-information method, and vmodel is the profit

generated by the model of interest, we have

P = 1−
vmodel − vperfect

vSA − vperfect
.

Clearly, P ∈ [0, 1] with a higher value indicating a better model. For the purposes

of calculating P, the authors of [9] suggest using the sample average policy. Using

this standard, the prescriptiveness of the best neural network policy is P = 0.23.

4.7 Conclusions

In this chapter, we’ve presented an inventory model for situations in which the

times of future replenishment opportunities are not known exactly. We describe

how to use the model to decide proper inventory levels, including the case where

inventory must be managed for multiple SKUs which share resources. We test out

the model using real data from a large distribution center, and demonstrate that the

model, when provided with good order predictions, can be used to attain profits

above 80% of what would be achievable with perfect foresight, and better returns

than other policies using the same information. Hence we reduce the question of

making good inventory decisions to the question of making good order volume

predictions. We demonstrate that certain auxilliary data can be useful in driving

these inventory decisions, with the best model closing 23% of the gap between the

simplest prediction methods and the perfect foresight case. This leaves a significant

gap still to close, which could be an avenue of future research.

110

References

[1] Achterberg, T., “SCIP: Solving constraint integer programs,” Mathematical Pro-
gramming Computation, vol. 1, no. 1, pp. 1–41, 2009.

[2] Arora, S., Hazan, E., and Kale, S., “The multiplicative weights update
method: a meta-algorithm and applications.,” Theory of Computing, vol. 8,
no. 1, pp. 121–164, 2012.

[3] Arrow, K. J., Harris, T., and Marschak, J., “Optimal inventory policy,” Econo-
metrica, vol. 19, no. 3, pp. 250–272, 1951.

[4] Balas, E., “Intersection cuts - a new type of cutting planes for integer program-
ming,” Operations Research, vol. 19, no. 1, pp. 19–39, 1971.

[5] Ben-Tal, A. and Nemirovski, A., Lectures on modern convex optimization: analy-
sis, algorithms, and engineering applications. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2001.

[6] Benchetrit, Y., Fiorini, S., Huynh, T., and Weltge, S., “Characterizing poly-
topes contained in the 0/1-cube with bounded Chvátal-gomory rank,” 2016.

[7] Berlekamp, E. R., McEliece, R. J., and Van Tilborg, H. C., “On the inherent in-
tractability of certain coding problems,” IEEE Transactions on Information The-
ory, vol. 24, no. 3, pp. 384–386, 1978.

[8] Berthold, T., “Measuring the impact of primal heuristics,” Operations Research
Letters, vol. 41, no. 6, pp. 611–614, 2013.

[9] Bertsimas, D. and Kallus, N., “From predictive to prescriptive analytics,”
2014. arXiv:1402.5481.

[10] Bienstock, D., “Approximately solving large-scale linear programs. I.
Strengthening lower bounds and accelerating convergence,” CORC Report,
1999.

[11] Bienstock, D., Potential Function Methods for Approximately Solving Linear Pro-
gramming Problems: Theory and Practice, vol. 53 of International Series in Opera-
tions Research & Management Science. Springer, 2002.

[12] Bockmayr, A., Eisenbrand, F., Hartmann, M., and Schulz, A. S., “On the
Chv’atal rank of polytopes in the 0/1 cube,” Discrete Applied Mathematics,
vol. 98, no. 1 - 2, pp. 21 – 27, 1999.

[13] Bodur, M., Pia, A. D., Dey, S. S., Molinaro, M., and Pokutta, S., “Aggregation-
based cutting-planes for packing and covering integer programs,” 2016.
arXiv:1606.08951.

111

http://arxiv.org/abs/1402.5481
http://arxiv.org/abs/1606.08951

[14] Breiman, L., “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[15] Caprara, A. and Fischetti, M., “{0, 1/2}-chvátal-gomory cuts,” Mathematical
Programming, vol. 74, no. 3, pp. 221–235, 1996.

[16] Caprara, A., Fischetti, M., and Letchford, A. N., “On the separation of max-
imally violated mod-k cuts,” Mathematical Programming, vol. 87, no. 1, pp. 37–
56, 2000.

[17] Chvátal, V., “Edmonds polytopes and a hierarchy of combinatorial prob-
lems,” Discrete Mathematics, vol. 4, no. 4, pp. 305 – 337, 1973.

[18] Conn, A. R., Gould, N. I. M., and Toint, P. L., Trust Region Methods. SIAM,
2000.

[19] Cornuéjols, G. and Lee, D., “On some polytopes contained in the 0,1 hyper-
cube that have a small Chvátal rank,” in Proceedings of the 18th International
Conference on Integer Programming and Combinatorial Optimization - Volume 9682,
IPCO 2016, (New York, NY, USA), pp. 300–311, Springer-Verlag New York, Inc.,
2016.

[20] Cornuéjols, G. and Li, Y., “Deciding emptiness of the gomory-chvátal closure
is np-complete, even for a rational polyhedron containing no integer point,” in
Proceedings of the 18th International Conference on Integer Programming and Combi-
natorial Optimization - Volume 9682, IPCO 2016, (New York, NY, USA), pp. 387–
397, Springer-Verlag New York, Inc., 2016.

[21] Dantzig, G., “Maximization of a linear function of variables subject to linear
inequalities,” in Activity Analysis of Production and Allocation, Cowles Commis-
sion Monograph No. 13, pp. 339–347, New York, N. Y.: John Wiley & Sons Inc.,
1951.

[22] Dash, S., “A note on QUBO instances defined on Chimera graphs,” preprint
arXiv:1306.1202, 2013.

[23] Dash, S. and Puget, J.-F., “On quadratic unconstrained binary optimization
problems defined on Chimera graphs,” Optima, vol. 98, pp. 2–6, 2015.

[24] De Loera, J. A., Hemmecke, R., and Köppe, M., Algebraic and geometric ideas in
the theory of discrete optimization, vol. 14 of MOS-SIAM Series on Optimization.
SIAM, 2013.

[25] De Loera, J. A., Hemmecke, R., Köppe, M., and Weismantel, R., “FPTAS for
optimizing polynomials over the mixed-integer points of polytopes in fixed
dimension,” Math. Program., vol. 115, no. 2, pp. 273–290, 2008.

[26] De Loera, J. A., Hemmecke, R., and Lee, J., “Augmentation in linear and integer
linear programming,” Preprint arXiv:1408.3518, 2014.

112

[27] Edmonds, J. and Karp, R. M., “Theoretical improvements in algorithmic effi-
ciency for network flow problems,” Journal of the ACM, vol. 19, no. 2, pp. 248–
264, 1972.

[28] Eisenbrand, F., “Note–on the membership problem for the elementary closure
of a polyhedron,” Combinatorica, vol. 19, no. 2, pp. 297–300, 1999.

[29] Eisenbrand, F. and Schulz, A. S., “Bounds on the Chvátal rank of polytopes in
the 0/1-cube*,” Combinatorica, vol. 23, no. 2, pp. 245–261, 2003.

[30] Fischetti, M. and Lodi, A., “Local branching,” Mathematical Programming,
vol. 98, no. 1-3, pp. 23–47, 2003.

[31] Fischetti, M. and Monaci, M., “Proximity search for 0-1 mixed-integer convex
programming,” Journal of Heuristics, vol. 20, no. 6, pp. 709–731, 2014.

[32] Frank, A. and Tardos, É., “An application of simultaneous Diophantine
approximation in combinatorial optimization,” Combinatorica, vol. 7, no. 1,
pp. 49–65, 1987.

[33] Garg, N. and Koenemann, J., “Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems,” SIAM Journal on Com-
puting, vol. 37, no. 2, pp. 630–652, 2007.

[34] Gomory, R. E., “Outline of an algorithm for integer solutions to linear pro-
grams,” Bull. Amer. Math. Soc., vol. 64, pp. 275–278, 09 1958.

[35] Gomory, R. E., “Solving linear programming problems in integers,” in Pro-
ceedings of Symposia in Applied Mathematics X (Bellman, R. and Hall, M., eds.),
pp. 211–215, American Mathematical Society, 1960.

[36] Graham, R. L., Grötschel, M., and Lovász, L., Handbook of combinatorics, vol. 1.
Elsevier, 1995.

[37] Graver, J. E., “On the foundations of linear and integer linear programming
i,” Mathematical Programming, vol. 9, no. 1, pp. 207–226, 1975.

[38] Hansen, P., Mladenović, N., and Urošević, D., “Variable neighborhood search
and local branching,” Computers and Operations Research, vol. 33, pp. 3034–3045,
2006.

[39] Harris, F. W., “How many parts to make at once,” Factory, The Magazine of
Management, vol. 10, no. 2, pp. 135–136, 1913.

[40] Hemmecke, R., Köppe, M., Lee, J., and Weismantel, R., “Nonlinear integer pro-
gramming,” in 50 Years of Integer Programming 1958–2008 – From the Early Years
to the State-of-the-Art (Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L.,
Pulleyblank, W. R., Reinelt, G., Rinaldi, G., and Wolsey, L. A., eds.), pp. 561–
618, Springer, 2010.

113

[41] Hemmecke, R., Köppe, M., and Weismantel, R., “Graver basis and proximity
techniques for block-structured separable convex integer minimization prob-
lems,” Mathematical Programming, vol. 145, no. 1-2, pp. 1–18, 2014.

[42] Hemmecke, R., Onn, S., and Weismantel, R., “A polynomial oracle-time algo-
rithm for convex integer minimization,” Math. Program., vol. 126, no. 1, pp. 97–
117, 2011.

[43] Karmarkar, N., “A new polynomial-time algorithm for linear programming,”
in Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing,
STOC ’84, (New York, NY, USA), pp. 302–311, ACM, 1984.

[44] Karp, R., “Reducibility among combinatorial problems. complexity of com-
puter computations,(re miller and jm thatcher, eds.), 85–103,” 1972.

[45] Khachiyan, L. G., “A polynomial algorithm in linear programming,” Dokl.
Akad. Nauk SSSR, vol. 244, no. 5, pp. 1093–1096, 1979.

[46] Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R. E.,
Danna, E., Gamrath, G., Gleixner, A. M., Heinz, S., Lodi, A., Mittelmann, H.,
Ralphs, T., Salvagnin, D., Steffy, D. E., and Wolter, K., “MIPLIB 2010: mixed
integer programming library version 5,” Math. Program. Comput., vol. 3, no. 2,
pp. 103–163, 2011.

[47] Le Bodic, P., Pavelka, J. W., Pfetsch, M. E., and Pokutta, S., “Solving MIPs
via Scaling-based Augmentation, year = 2015, howpublished = http:
//www.optimization-online.org/db_html/2015/09/5097.html,
note = Accessed: 2015-10-17.”

[48] Lee, D., Cornuejols, G. P., and Li, Y., “On the computational complexity of op-
timizing over the Chvátal closure of a polytope,” in INFORMS Annual Meeting
2016, (Nashville, Tennessee, USA), 2016.

[49] Lee, J., Onn, S., Romanchuk, L., and Weismantel, R., “The quadratic
Graver cone, quadratic integer minimization, and extensions,” Math. Program.,
vol. 136, no. 2, pp. 301–323, 2012.

[50] Lee, J., Onn, S., and Weismantel, R., “On test sets for nonlinear integer maxi-
mization,” Oper. Res. Lett., vol. 36, no. 4, pp. 439–443, 2008.

[51] Letchford, A. N. and Lodi, A., “An augment-and-branch-and-cut frame-
work for mixed 0-1 programming,” in Combinatorial Optimization—Eureka, You
Shrink!, pp. 119–133, Springer, 2003.

[52] Letchford, A. N., Pokutta, S., and Schulz, A. S., “On the membership prob-
lem for the {0, 1/2}-closure,” Operations Research Letters, vol. 39, no. 5, pp. 301–
304, 2011.

114

http://www.optimization-online.org/db_html/2015/09/5097.html
http://www.optimization-online.org/db_html/2015/09/5097.html

[53] McCormick, S. T. and Shioura, A., “Minimum ratio canceling is oracle polyno-
mial for linear programming, but not strongly polynomial, even for networks,”
Operations Research Letters, vol. 27, no. 5, pp. 199–207, 2000.

[54] McCulloch, W. S. and Pitts, W., “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–
133, 1943.

[55] Nemhauser, G. and Wolsey, L., Integer and Combinatorial Optimization. Wiley,
1988.

[56] Onn, S., Nonlinear Discrete Optimization: An Algorithmic Theory. Zurich lectures
in advanced mathematics, European Mathematical Society Publishing House,
2010.

[57] Orlin, J. B. and Ahuja, R. K., “New scaling algorithms for the assignment and
minimum mean cycle problems,” Mathematical Programming, vol. 54, no. 1-3,
pp. 41–56, 1992.

[58] Padberg, M. W. and Grötschel, M., “Polyhedral computations,” in The Trav-
eling Salesman Problem: A Guided Tour of Combinatorial Optimization (Lawler,
E. L., Lenstra, J. K., and A. H. G. Rinnoy Kan) and D. B. Shmoys, Y. . ., eds.),
pp. 307–360, John Wiley.

[59] Plotkin, S. A., Shmoys, D. B., and Tardos, É., “Fast approximation algorithms
for fractional packing and covering problems,” Mathematics of Operations Re-
search, vol. 20, no. 2, pp. 257–301, 1995.

[60] Pokutta, S. and Stauffer, G., “Lower bounds for the chvátal–gomory rank in
the 0/1 cube,” Operations Research Letters, vol. 39, no. 3, pp. 200–203, 2011.

[61] Resnick, S., Adventures in Stochastic Processes. Birkhäuser Boston, 2013.

[62] Rockafellar, R. T., “Monotone operators and the proximal point algorithm,”
SIAM Journal on Control and Optimization, vol. 14, no. 5, pp. 877–898, 1976.

[63] Ross, S., Stochastic processes. Wiley series in probability and statistics: Proba-
bility and statistics, Wiley, 1996.

[64] Rothvoß, T. and Sanitá, L., “0/1 polytopes with quadratic Chvátal rank,” in
Integer Programming and Combinatorial Optimization (Goemans, M. and Correa,
J., eds.), vol. 7801 of Lecture Notes in Computer Science, pp. 349–361, Springer
Berlin Heidelberg, 2013.

[65] Scarf, H. E., “Test sets for integer programs,” Mathematical Programming,
vol. 79, no. 1-3, pp. 355–368, 1997.

[66] Schrijver, A., Theory of linear and integer programming. Wiley, 1986.

115

[67] Schulz, A. S. and Weismantel, R., “The complexity of generic primal algo-
rithms for solving general integer programs,” Mathematics of Operations Re-
search, vol. 27, no. 4, pp. 681–692, 2002.

[68] Schulz, A. S., Weismantel, R., and Ziegler, G. M., “0/1-integer programming:
Optimization and augmentation are equivalent,” in Algorithms – ESA ’95, Pro-
ceedings, pp. 473–483, 1995.

[69] “Solving Constraint Integer Programs, Version 3.2.0,” 2015. http://scip.
zib.de/.

[70] Wallacher, C. and Zimmermann, U., “A combinatorial interior point method
for network flow problems,” Mathematical programming, vol. 56, no. 1-3,
pp. 321–335, 1992.

116

http://scip.zib.de/
http://scip.zib.de/

VITA

Jeffrey William Pavelka was born in Manhattan, Kansas on March 2, 1988. He grad-

uated from Kansas State University in 2011 with dual BS/MS degrees in Industrial

and Manufacturing Systems Engineering. The following fall, he enrolled as a Ph.D.

student at the H. Milton Stewart School of Industrial and Systems Engineering at

the Georgia Institue of Technology, where his research has focused on integer pro-

gramming as well as applications of data science and machine learning in real-

world optimization problems.

117

	Titlepage
	Signatures
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	1.1 Solving integer programs
	1.2 Outline of topics
	1.2.1 Solving MIPs via Scaling-based Augmentation
	1.2.2 CG and mod-k Cuts in the 0/1 Cube
	1.2.3 Opportunistic Replenishments in Inventory Modeling

	Chapter 2 — Solving MIPs via Scaling-based Augmentation
	2.1 Introduction
	2.1.1 Related work
	2.1.2 Contributions
	2.1.3 Outline

	2.2 Augmentation bounds for scaling methods
	2.2.1 Definitions and notation
	2.2.2 Bit scaling
	2.2.2.1 An illustrative example
	2.2.2.2 Classic analysis

	2.2.3 A worst-case example for bit scaling
	2.2.3.1 A concrete example
	2.2.3.2 General construction - polytope
	2.2.3.3 General construction - cost vector
	2.2.3.4 General construction - proving the lower bound

	2.2.4 Geometric scaling
	2.2.5 Comparing bit scaling and geometric scaling
	2.2.6 Improved bounds for structured 0/1 polytopes

	2.3 Implementation
	2.3.1 Algorithms
	2.3.2 Results
	2.3.2.1 MIPLIB 2010 test set
	2.3.2.2 LB test set
	2.3.2.3 QUBO test set

	2.4 Conclusions and future work

	Chapter 3 — CG and mod-k Cuts in the 0/1 Cube
	3.1 Introduction
	3.1.1 Related work
	3.1.2 Outline

	3.2 New upper bounds for CG rank in 0/1 polytopes
	3.2.1 Preliminaries
	3.2.2 New upper bounds for CG rank
	3.2.3 Applying the new bound
	3.2.3.1 Symmetric polyhedra
	3.2.3.2 Polyhedra with a limited number of integral points
	3.2.3.3 Polyhedra from combinatorial optimization

	3.3 Separating over the mod-k closure
	3.3.1 Problem statement
	3.3.2 Generalizing from the mod-2 case
	3.3.2.1 From mod-2 to mod-k

	3.3.3 Linear codes modulo k
	3.3.4 The mod-3 case
	3.3.5 The general case
	3.3.6 Separation for the mod-k closure

	3.4 Remarks and future work

	Chapter 4 — Opportunistic Replenishments in Inventory Modeling
	4.1 Introduction
	4.1.1 Outline

	4.2 Preliminaries
	4.3 A model for opportunistic replenishments
	4.3.1 The base model
	4.3.2 Stochastic order rates
	4.3.2.1 Cost of imperfect information

	4.4 A more flexible model
	4.4.1 Determining replenishment levels
	4.4.2 Expressing expected profits

	4.5 Multiple SKUs with shared resources
	4.5.1 Binary integer programming formulation
	4.5.2 Computational results

	4.6 Simulation study
	4.6.1 Synthetic data
	4.6.2 Real-world data
	4.6.2.1 Orders as rates
	4.6.2.2 Noisy orders as rates
	4.6.2.3 Data-driven rate predictions
	4.6.2.4 Measuring the impact of exogenous information

	4.7 Conclusions

	References
	Vita

