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SUMMARY

Low rank approximation is the problem of finding two low rank factors W and

H such that the rank(WH) << rank(A) and A ≈ WH. These low rank factors

W and H can be constrained for meaningful physical interpretation and referred as

Constrained Low Rank Approximation (CLRA). Like most of the constrained op-

timization problem, performing CLRA can be computationally expensive than its

unconstrained counterpart. A widely used CLRA is the Non-negative Matrix Fac-

torization (NMF) which enforces non-negativity constraints in each of its low rank

factors W and H. In this thesis, we focus on scalable/distributed CLRA algorithms

for constraints such as boundedness and non-negativity for large real world matrices

that includes text, High Definition (HD) video, social networks and recommender

systems.

First, we begin with the Bounded Matrix Low Rank Approximation (BMA) which

imposes a lower and an upper bound on every element of the lower rank matrix. BMA

is more challenging than NMF as it imposes bounds on the product WH rather than

on each of the low rank factors W and H. For very large input matrices, we extend

our BMA algorithm to Block BMA that can scale to a large number of processors. In

applications, such as HD video, where the input matrix to be factored is extremely

large, distributed computation is inevitable and the network communication becomes

a major performance bottleneck. Towards this end, we propose a novel distributed

Communication Avoiding NMF (CANMF) algorithm that communicates only the

right low rank factor to its neighboring machine. Finally, a general distributed HPC-

NMF framework that uses HPC techniques in communication intensive NMF opera-

tions and suitable for broader class of NMF algorithms.

xii



CHAPTER I

INTRODUCTION

1.1 Motivation

Given a matrix A, low rank approximation is the problem of finding another matrix

Â such that the rank(Â) << rank(A) and A ≈ Â. Generally, Â is defined as a

product of two more low rank matrices called low rank factors. For example, the best

low rank k approximation for a given input matrix A is a truncated Singular Value

Decomposition (SVD) [19] which is defined as a product of three matrices U,Σ,V,

such that the rank(UΣVᵀ) = k. An image can be compressed by taking the low row

rank approximation of its matrix representation using SVD. Similarly, in text data –

latent semantic indexing, is a dimensionality reduction technique of a term-document

matrix using SVD [11]. The other applications include event detection in streaming

data, visualization of a document corpus and many more.

With the advent of the internet scale data, many online services such as recom-

mender systems and topic modelling started using low rank approximation techniques.

However, towards meaningful physical interpretation, there was a scope for improving

classical low rank approximation SVD by introducing additional constraints on low

rank factors called as Constrained Low Rank Approximations(CLRA). For different

constraints, we need different low rank approximation algorithm to handle the huge

volume of data. A widely used CLRA is Non-negative matrix factorization (NMF)

where the low rank factors are constrained to be non-negative. That is, given a ma-

trix A ∈ Rm×n and k << rank(A), NMF is the problem of finding two low rank

factors W ∈ Rm×k
+ and H ∈ Rk×n

+ such that A ≈ WH. In the Data Mining and

1



Machine Learning literature, because of its name, as opposed to low rank approxi-

mation, the community liberally calls Non-negative“Matrix Factorization” a matrix

factorization. Hence, there is an overlap between low rank approximations and matrix

factorizations. We interchangeably use low rank approximation and matrix factoriza-

tion that is appropriate to understand the application. Towards this end, we formally

define Constrained Low Rank Approximations problem without and with any missing

elements in the input matrix as below.

min
W,H

‖M · ∗(A−WH)‖2F ,

subject to

constraints on W

constraints on H

(1)

where, A ∈ Rm×n, W is a matrix of size m× k and H of size k × n and ·∗ is

hadamard product that is., element-wise matrix multiplication. The matrix M ∈

{0, 1}n×m is an indicator matrix with missing entries as zero. For example., in the

case of recommender systems, the matrix A represent the row user i’s rating for

column item j and not all users rate all the items. Hence the entry mij will be zero

if the rating is not observed. The above definition is a general framework that covers

the cases with and without any missing elements.

In this thesis, we focus on scalable and distributed CLRA algorithms for con-

straints such as boundedness and non-negativity for large real world matrices that

includes text, High Definition (HD) video, social networks and recommender systems.

1.1.1 Scalable BMA

Recommender system is the problem of estimating the rating of a user for an item,

given all the users ratings for a subset of their consumed items and A successful

application of low rank approximation for internet data is recommender system called

2



as matrix factorization. The matrix factorization for recommender system is solved

using Stochastic Gradient Descent (SGD) [16] and Alternating Least Squares with

Regularization (ALSWR) [59]. However, these approaches have not leveraged the fact

that the rating aij is always bounded within [rmin, rmax]. All the existing algorithms

just artificially truncate their final solution to fit within the bounds. We use this

signal to find low rank factors W and H, such that the elements in the product WH

are within a given range. This will guarantee that every estimated rating is within

the bounds [rmin, rmax]. We call this low rank approximation as Bounded Matrix Low

Rank Approximation (BMA). BMA is different from NMF that it enforces bounding

constraints on the product of the low rank factors WH. Whereas, NMF constrains

every low rank factors W and H to be non-negative. This makes the BMA problem

more challenging than NMF.

Formally, the BMA problem for an input matrix A is defined as1

min
W,H

‖M · ∗(A−WH)‖2F

subject to

rmin 6 WH 6 rmax.

(2)

Recently, there has been many innovations introduced to the naive low rank ap-

proximation technique such as considering only neighboring entries during the fac-

torization process, time of the ratings, and implicit ratings such as “user watched

but did not rate”. Hence, we extended our previous work by designing a bounding

framework [24] [23], that scientifically bounds the existing sophisticated recommender

systems algorithms. Independently, we investigated using NMF for detecting outliers

in text and network data and called it Outlier NMF. In both of these problems, the

major bottleneck for scaling to very large matrices was computation of NMF. It was

1In our notation, if the inequality is between a vector/matrix and a scalar, every element in the
vector/matrix should satisfy the inequality against the scalar.

3



very difficult to run NMF for very large sparse and dense matrices in shared memory

multi core systems with limited memory and compute capacity. Hence, we address

this problem by designing a distributed NMF.

1.1.2 Communication Avoiding NMF

The distributed NMF for defacto algorithms such as Multiplicative Update (MU)

[37, 39] have been designed by parallelizing every individual operations of the algo-

rithm. For eg., the building blocks of the MU algorithm are matrix multiplication,

element-wise multiplication/division and these operations had been optimized for

hadoop considering sparse matrix representations. However, distributed NMF al-

gorithm is expensive in communication and the state of the art algorithms do not

discuss about communication reduction prohibiting these algorithms to run for large

dense matrices such as video data. In this work, we proposed a distributed MPI-

based communication avoiding NMF (CANMF) algorithm inspired by parallel Jacobi

method and Block Principal Pivoting(BPP) that is well suited for both large sparse

and dense matrices. The proposed CANMF algorithm reduced the communication

cost from O((m + n)klogp) of the baseline algorithm to O(nk
p

) for p processes. We

compare the performance of our algorithm with commonly used NMF algorithms such

as multiplicative update, HALS on sparse/dense synthetic and real world datasets.

We also present the scalability results of our CANMF algorithm.

While conducting experiments for the above algorithm, we were exploring HPC

based techniques to improve the baseline communication cost. In the case of NMF

algorithm the communication intensive operation is matrix multiplication and dis-

tributing the matrix for performing NNLS computation. Also, we observed that

collective MPI calls were much more efficient during communication over point to

point MPI calls.

4



1.1.3 High Performance Computing Non-negative Matrix Factorization
(HPC-NMF )

NMF is a useful tool for many applications in different domains such as topic modeling

in text mining, background separation in video analysis, and community detection in

social networks. Despite its popularity in the data mining community, there is a lack

of efficient distributed algorithm to solve the problem for big datasets. The current

state-of-the-art approaches for NMF with large-scale data have primarily focused on

the Map-Reduce programming model with implementations in systems like Hadoop.

These implementations are much too slow because they perform more data movement

than necessary and because each step of computation involves reading and writing

data from disk. Furthermore, because the organization of computations is handled

by the run-time system, users cannot control data movement in order to guarantee

privacy.

Efficient NMF algorithms must prioritize both data distribution and data move-

ment (i.e., communication). The current trend for high-performance computing

(HPC) is that available parallelism (and therefore aggregate computational rate) is

increasing much more quickly than improvements in the speed at which data can be

transferred between processors and throughout the memory hierarchy. This trend

implies that the relative cost of communication (compared to computation) is in-

creasing.

Existing distributed-memory algorithms are limited in terms of performance and

applicability, as they are implemented using Hadoop and are designed only for sparse

matrices. We carefully designed this parallel algorithm which avoids communication

overheads and scales well to modest numbers of cores. CANMFwas particularly per-

forming well only with BPP algorithm and could not be extended to HALS and MU.

Using these observations, we propose a new NMF algorithm using HPC based tech-

niques called HPC-NMF that can be useful for distributed implementation of wider

5



class NMF algorithm such as HALS and MU. In the case that the input matrix A is

dense, HPC-NMF provably minimizes communication costs under mild assumptions.

The overall thesis has the following chapters. In Chapter 2, we discuss relevant

foundations that are required to understand this thesis. We start presenting my three

key research contributions (1) Bounded Matrix Low Rank Approximation (2) Com-

munication Avoiding NMF and (3) HPC-NMF as the next three chapters. Finally,

we conclude the thesis with detailed explanation about our proposed NMF software

and other future directions.
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CHAPTER II

FOUNDATIONS

In this chapter, we would like to present relevant optimization techniques that are

required to rest of the chapters. To begin with we would like to start with the

notations used in this Thesis.

A lowercase/uppercase letter such as x or X, is used to denote a scalar; a boldface

lowercase letter, such as x, is used to denote a vector; a boldface uppercase letter,

such as X, is used to denote a matrix. Indices typically start from 1. When a matrix

X is given, xi denotes its ith column, xᵀ
j denotes its jth row and xij or X(i, j) denote

its (i, j)th element. For a vector i, x(i) means that vector i indexes into the elements of

vector x. That is, for x = [1, 4, 7, 8, 10] and i = [1, 3, 5], x(i) = [1, 7, 10]. We have also

borrowed certain notations from matrix manipulation scripts such as Matlab/Octave.

For example, the max(x) is the maximal element x ∈ x and max(X) is a vector of

maximal elements from each column x ∈ X.

For the reader’s convenience, the notations used in this chapter are summarized

in Table 1.

2.1 NMF and Block Coordinate Descent(BCD)

Consider a constrained non-linear optimization problem as follows:

min f(x) subject to x ∈ X , (3)
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Table 1: Notations

A ∈ Rn×m Ratings matrix. The missing ratings are indicated by 0,
and the given ratings are bounded within [rmin, rmax].

M ∈ {0, 1}n×m Indicator matrix. The positions of the
missing ratings are indicated by 0,
and the positions of the given ratings are indicated by 1.

n Number of users
m Number of items
k Value of the reduced rank
W ∈ Rn×k User-feature matrix. Also called as a low rank factor.
H ∈ Rk×m Feature-item matrix. Also called as a low rank factor.
wx ∈ Rn×1 x-th column vector of W = [w1, · · · ,wk]
hᵀ
x ∈ R1×m x-th row vector of H = [h1, · · · ,hk]ᵀ
rmax > 1 Maximal rating or upper bound
rmin Minimal rating or lower bound
·∗ Hadamard product – Element wise matrix multiplication.
·/ Element wise matrix division
A(:, i) i− th column of the matrix A
A(i, :) i− th row of the matrix A
β Data structure in memory factor
memsize(v) The approximate memory of a variable v=the product of

(the number of elements in v, size of each element, and β)
µ Mean of all known ratings in A
p ∈ Rn Bias of all users u
q ∈ Rm Bias of all items i
Mi ith row block of matrix M
Mi ith column block of matrix M
Mij (i, j)th subblock of M
p Number of parallel processes
pr Number of rows in processor grid
pc Number of columns in processor grid

8



where X is a closed convex subset of Rn. An important assumption to be exploited

in the BCD method is that the set X is represented by a Cartesian product:

X = X1 × · · · × Xl, (4)

where Xj, j = 1, · · · , l, is a closed convex subset of RNj , satisfying n =
∑l

j=1Nj.

Accordingly, vector x is partitioned as x = (x1, · · · ,xl) so that xj ∈ Xj for j =

1, · · · , l. The BCD method solves for xj fixing all other subvectors of x in a cyclic

manner. That is, if x(i) = (x
(i)
1 , · · · ,x

(i)
l ) is given as the current iterate at the ith step,

the algorithm generates the next iterate x(i+1) = (x
(i+1)
1 , · · · ,x(i+1)

l ) block by block,

according to the solution of the following subproblem:

x
(i+1)
j ← argmin

ξ∈Xj
f(x

(i+1)
1 , · · · ,x(i+1)

j−1 , ξ,x
(i)
j+1, · · · ,x

(i)
l ). (5)

Also known as a non-linear Gauss-Seidel method [3], this algorithm updates one block

each time, always using the most recently updated values of other blocks xj̃, j̃ 6= j.

This is important since it ensures that after each update the objective function value

does not increase. For a sequence
{
x(i)
}

where each x(i) is generated by the BCD

method, the following property holds.

Theorem 1. Suppose f is continuously differentiable in X = X1 × · · · × Xl, where

Xj, j = 1, · · · , l, are closed convex sets. Furthermore, suppose that for all j and i,

the minimum of

min
ξ∈Xj

f(x
(i+1)
1 , · · · ,x(i+1)

j−1 , ξ,x
(i)
j+1, · · · ,x

(i)
l )

is uniquely attained. Let
{
x(i)
}

be the sequence generated by the block coordinate

descent method as in Eq. (5). Then, every limit point of
{
x(i)
}

is a stationary point.

The uniqueness of the minimum is not required when l = 2 [20].
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The proof of this theorem for an arbitrary number of blocks is shown in Bert-

sekas [3]. For a non-convex optimization problem, often we can expect the stationarity

of a limit point [38] from a good algorithm.

The two key questions of the BCD method are (a) Determining the the partition

of X such that its cartesian product constitutes X . Typically the partition that

is computationally efficient is preferred. For eg., the partition that can result in a

closed form solution for the subproblem. (b) Also, the BCD method requires the

most recent values be used for each problem in Eq. (5). Thus, the partition strategies

that are independent from each others are preferred so that we can parallelize the

computations. In case, there are dependency among the partitions, the update order

of the partition is preserved to guarantee the most recent values are always used.

2.1.1 BCD with Two Matrix Blocks - ANLS Method

For convenience, we first assume all the elements of the input matrix are known

and hence we ignore M from the discussion. The most natural partitioning of the

variables is to have two big blocks, W and H. In this case, following the BCD method

in Eq. (5), we take turns solving

W← argminW≥0f(W,H) and H← argminH≥0f(W,H). (6)

Since the subproblems are non-negativity constrained least squares (NLS) problems,

the two-block BCD method has been called the alternating non-negative least square

(ANLS) framework [38, 26, 29].

2.1.2 BCD with 2k Vector Blocks - HALS/RRI Method

Let us now partition the unknowns into 2k blocks in which each block is a column of

W or a row of H, as explained in Figure 1. In this case, it is easier to consider the

10
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Figure 1: BCD with 2k Vector Blocks

objective function in the following form:

f(w1, · · · ,wk,h
ᵀ
1, · · · ,h

ᵀ
k) = ‖A−

k∑
j=1

wjh
T
j ‖2F , (7)

where W = [w1, · · ·wk] ∈ Rn×k
+ and H = [h1, · · · ,hk]ᵀ ∈ Rk×m

+ . The form in Eq. (7)

represents that A is approximated by the sum of k rank-one matrices.

Following the BCD scheme, we can minimize f by iteratively solving

wi ← argminwi≥0f(w1, · · · ,wk,h
ᵀ
1, · · · ,h

ᵀ
k)

for i = 1, · · · , k, and

hᵀ
i ← argminhᵀ

i≥0
f(w1, · · · ,wk,h

ᵀ
1, · · · ,h

ᵀ
k)

for i = 1, · · · , k.

The 2k-block BCD algorithm has been studied as Hierarchical Alternating Least

11
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Figure 2: BCD with k(n + m) Scalar Blocks

Squares (HALS) proposed by Cichocki et al. [9, 8] and independently by Ho et al.

[22] as rank-one residue iteration (RRI).

2.1.3 BCD with k(n + m) Scalar Blocks

We can also partition the variables with the smallest k(n + m) element blocks of

scalars as in Figure 2, where every element of W and H is considered as a block in

the context of Theorem 1. To this end, it helps to write the objective function as a

quadratic function of scalar wij or hij assuming all other elements in W and H are

fixed:

f(wij) = ‖(aᵀ
i −

∑
k̃ 6=j

wik̃h
ᵀ
k̃
)− wijhᵀ

j‖22 + const, (8a)

f(hij) = ‖(aj −
∑
k̃ 6=i

wk̃hk̃j)−wihij‖22 + const, (8b)

where aᵀ
i and aj denote the ith row and the jth column of A, respectively.

Kim et al. [27] discuss about NMF using BCD method.

12



2.2 NMF Algorithms

We will see three reference algorithms for each of these different common matrix

partitions. To address the 2 Block BCD method, we begin an active set based method

called ANLS-BPP (Alternating Non-negative Least Square-Block Principal Pivoting)

proposed by Kim and Park in [26, 29].

2.2.1 Alternating Non-negative Least Squares-Block Principal Pivoting

According to the ANLS framework, we first partition the variables of the NMF prob-

lem into two blocks W and H. Then we solve the following equations iteratively until

a stopping criteria is satisfied.

W← argmin
W̃>0

∥∥∥A− W̃H
∥∥∥2
F
,

H← argmin
H̃>0

∥∥∥A−WH̃
∥∥∥2
F
.

(9)

The optimizations sub-problem for W and H are NLS problems which can be

solved by a number of methods from generic constrained convex optimization to

active-set methods. Typical approaches use form the normal equations of the least

squares problem (and then solve them enforcing the non-negativity constraint), which

involves matrix multiplications of the factor matrices with the data matrix. We focus

on and use the block principal pivoting [30] method to solve the non-negative least

squares problem, as it is the fastest algorithm (in terms of number of iterations).

BPP is the state-of-the-art method for solving the NLS subproblems in Eq. (40).

The main sub-routine of BPP is the single right-hand side NLS problem

min
x>0
‖Cx− b‖22. (10)
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The Karush-Kuhn-Tucker (KKT) optimality condition for Eq. (10) is as follows

y = CTCx−CTb (11a)

y > 0 (11b)

x > 0 (11c)

xTy = 0. (11d)

The KKT condition (11) states that at optimality, the support sets (i.e., the non-

zero elements) of x and y are complementary to each other. Therefore, Eq. (11) is

an instance of the Linear Complementarity Problem (LCP) which arises frequently in

quadratic programming. When k � min(m,n), active set and active-set like methods

are very suitable because most computations involve matrices of sizes m × k, n × k,

and k × k which are small and easy to handle.

If we knew which indices correspond to nonzero values in the optimal solution,

then computing it is an unconstrained least squares problem on these indices. In

the optimal solution, call the set of indices i such that xi = 0 the active set, and

let the remaining indices be the passive set. The BPP algorithm works to find this

active set and passive set. Since the above problem is convex, the correct partition of

the optimal solution will satisfy the KKT condition (Eq. (11)). The BPP algorithm

greedily swaps indices between the active and passive sets until finding a partition

that satisfies the KKT condition. In the partition of the optimal solution, the values

of the indices that belong to the active set will take zero. The values of the indices

that belong to the passive set are determined by solving the unconstrained least

squares problem restricted to the passive set. Kim, He and Park [30], discuss the

BPP algorithm in further detail.

Apart from BPP there are many other methods that can be used such as projected

gradient, conjugate gradient, interior point methods etc. Chen and Plemmons provide

14



a detailed survey of NLS methods in [7]. One computational advantage of BPP

method in [30], is its ability to solve multiple right hand sides. In the case of NMF

problem, the size of m and n will be in the order of millions. Hence, for such very

large scale ANLS problems with many right hand sides, it is preferable to choose an

NLS method similar to BPP that can solve multiple right hand sides.

2.2.2 Hierarchical Alternating Least Squares(HALS)

In the case of HALS algorithm, we find every row of W and column of H keeping the

other row/column blocks fixed by solving objective function (7). Consider E as the

difference of the input matrix A with sum of k− 1 rank-one matrices except x. That

is.,

E = A−
k∑

j=1,j 6=x

wjh
T
j

and solve for wx given hx and vice-versa. This can be formally represented as

wx = argmin
wx>0

‖E−wxh
T
x ‖2F . (12)

hx = argmin
hx>0

‖E−wxh
T
x ‖2F . (13)

Unlike the active set based NNLS solution explained in ANLS-BPP, The above

problem has a closed form equation.

Theorem 2. For each of the minimization problem in (12), the solutions are

wx =
[EhTx ]+
hxhTx

(14)

hx =
[ETwx]+
wTwx

(15)

The proof for this theorem is discussed in [27]. HALS algorithm computes the

k columns vectors of w ∈ Rm
+ and k row vectors hT ∈ Rn

+ using the closed form
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equation from the above Theorem 2.

It is imperative to differentiate the HALS and ANLS-BPP from the algorithmic

perspective. In the case of ANLS-BPP, the algorithm determines m or n independent

vectors of size Rk
+. Whereas, HALS finds k vectors of size Rm

+ or Rn
+ one-by-one as it

is dependent to use the most recent blocks. Remember k << min(m,n) and typically

in the order of 100’s for the input matrices of dimensions in order of millions. Hence,

from the implementation stand point, ANLS-BPP is embarrassingly parallelizable

over HALS.

2.2.3 Multiplicative Update(MU)

Multiplicative Update (MU) is the popular algorithm for NMF. The elements of the

wij and hij are updated only based on the multiplication of the matrices and hence

the name Multiplicative Update. It was first proposed by Lee and Seung [36] to learn

parts of objects that could not be addressed by LSI which produced the basis vectors

with mixed signs. The update equations for W and H are

wmk =
(AH)mk

(WHHT )mk
(16)

hkn =
(ATW)nk

(WTWH)nk
(17)

With this necessary introduction of three different NMF algorithms, we compare

and contrast the performance of these algorithms over number of iterations and by

sweeping the low rank k on different nature of datasets as described in 2. In all the

cases above, consistently ANLS-BPP outperforms the other popular NMF algorithms.

A detailed comparison with more algorithm is performed by Kim et.al in [29] and [27].

Also, The convergence properties of these different algorithms are discussed in detail

by Kim, He and Park [28]. The observation can be attributed to the reason that
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ANLS-BPP solves the subproblem to optimality as opposed to other algorithms.

Table 2: Realworld and Synthetic Datasets

Datasets Type Size NNZ
Synthetic Dense 100000x50000

Video Dense 1.3 millionx2400
Synthetic Sparse 200000x100000 2× 106

Wiki Sparse 387086x736048 55821923

At this juncture, we would like to establish the computational connection among

these three algorithms.

2.3 Alternating Updating NMF

We define Alternating-Updating NMF algorithms as those that alternate between

updating W for a given H and updating H for a given W. We restrict attention to

the class of NMF algorithms that use the Gram matrix – a matrix that is formed by

the inner products of the individual vectors; associated with a factor matrix and the

product of the input data matrix A with the corresponding factor matrix, as we show

in Algorithm 1.

input : A is an m× n matrix, k is rank of approximation
output: W ∈ Rm×k

+ ,H ∈ Rk×n
+

1 Initialize H with a non-negative matrix in Rn×k
+ ;

2 while stopping criteria not satisfied do
3 Update W using HHT and AHT ;
4 Update H using WTW and WTA ;

Algorithm 1: [W,H] = AU-NMF(A, k)
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The specifics of lines 3 and 4 depend on the NMF algorithm. In the block coor-

dinate descent framework where two blocks are the unknown factors W and H, we

solve the following subproblems, which have a unique solution for a full rank H and

W:

W← argmin
W̃>0

∥∥∥A− W̃H
∥∥∥
F
,

H← argmin
H̃>0

∥∥∥A−WH̃
∥∥∥
F
.

(18)

Since each subproblem involves nonnegative least squares, this two-block BCD method

is also called the Alternating Non-negative Least Squares (ANLS) method [28]. Block

Principal Pivoting (BPP), is an algorithm that solves these NLS subproblems. In the

context of the AU-NMF algorithm, this ANLS method maximally reduces the overall

NMF objective function value by finding the optimal solution for given H and W in

lines 3 and 4 respectively.

As explained above, The other popular NMF algorithms HALS and MU that

update the factor matrices alternatively but does not maximally reduce the objec-

tive function value each time, in the same sense as in ANLS. These updates do not

necessarily solve each of the subproblems (40) to optimality but simply improve the

overall objective function (29). To show how these methods can fit into the AU-NMF

framework, we discuss them in more detail.

Note that the columns of W and rows of H are updated in order, so that the most

up-to-date values are always used, and these 2k updates can be done in an arbitrary

order. However, if all the W updates are done before H (or vice-versa) according to

equations (42), the method falls into the AU-NMF framework. After computing the

matrices HHT , AHT , WTW, and WTA, the extra computation is 2(m+ n)k2 flops

for updating both W and H.

In the case of MU, individual entries of W and H are updated with all other
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entries fixed. Instead of performing these (m + n)k in an arbitrary order, if all of

W is updated before H (or vice-versa) according to equations (16), this method

also follows the AU-NMF framework. The extra cost of computing W(HHT ) and

(WTW)H is 2(m+ n)k2 flops to perform updates for all entries of W and H.

We emphasize here that both HALS/RRI and MU require computing Gram ma-

trices and matrix products of the input matrix and each factor matrix. Therefore,

if the update ordering follows the convention of updating all of W followed by all

of H, both methods fit into the AU-NMF framework. This framework that helps to

computationally position ANLS−BPP,MU and HALS through a single framework

is useful in many conversations in this thesis.

With these relevant foundations, we would like to present the core technical con-

tributions of this thesis – (a) Bounded Matrix Low Rank Approximation (b) Com-

munication Avoiding NMF and (c) HPC-NMF.
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CHAPTER III

BOUNDED MATRIX LOW RANK APPROXIMATION

In this chapter, we are considering low rank approximation for input matrices that is

bounded. For eg., in the case of recommender systems rating matrix,the input matrix

A is bounded in between [rmin, rmax] such as [1, 5]. We also propose a new improved

scalable low rank approximation algorithm for such bounded matrices called Bounded

Matrix Low Rank Approximation(BMA) that bounds every element of the approxima-

tion WH. We also present an alternate formulation to bound existing recommender

system algorithms called BALS and discuss its convergence. Our experiments on

real world datasets illustrate that the proposed method BMA outperforms the state

of the art algorithms for recommender system such as Stochastic Gradient Descent,

Alternating Least Squares with regularization, SVD++ and Bias-SVD on real world

data sets such as Jester, Movielens, Book crossing, Online dating and Netflix.

3.1 Motivation

Low rank approximations vary depending on the constraints imposed on the factors as

well as the measure for the difference between A and WH. Low rank approximations

have produced a huge amount of interest in the data mining and machine learning

communities due to its effectiveness for addressing many foundational challenges in

these application areas. A few prominent techniques of machine learning that use low

rank approximation are principal component analysis, factor analysis, latent semantic

analysis, and non-negative matrix factorization (NMF), to name a few.

Over the last decade, NMF has emerged as an important low rank approximation

technique, where the low-rank factor matrices are constrained to have only non-

negative elements. In this chapter, we propose a new type of low rank approximation
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where the elements of the approximation are bounded – that is, its elements are

within a given range. We call this new low rank approximation Bounded Matrix Low

Rank Approximation (BMA). BMA is different from NMF in that it imposes both

upper and lower bounds on its product WH rather than non-negativity in each of

the low rank factors W > 0 and H > 0. Thus, the goal is to obtain a lower rank

approximation WH of a given input matrix A, where the elements of WH and A

are bounded.

Let us consider a numerical example to appreciate the difference between NMF

and BMA. Consider the 4x6 matrix with all entries between 1 and 10. In the Figure

7, the output low rank approximation is shown between BMA and NMF by running

only one iteration for low rank 3. It is important to observe the following.

• All the entries in the BMA are bounded between 1 and 10, whereas, approxima-

tion generated out of NMF is not bounded in the same range of input matrix.

This difference can be hugely pronounced in the case of very large input matrix

and the current practice is when an entry in the low rank approximation is

beyond the bounds, it is artificially truncated.

• In the case of BMA, as opposed to NMF, every individual low rank factors are

unconstrained and takes even negative values.

In order to address the problem of an input matrix with missing elements, we

will formulate a BMA that imposes bounds on a low rank matrix that is the best

approximate for such matrices. The algorithm design considerations are – (1) Simple

implementation (2) Scalable to large data and (3) Easy parameter tuning with no

hyper parameters.

Formally, the BMA problem for an input matrix A is defined as
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A =


4 2 6 6 1 6
9 5 9 8 2 9
2 9 1 6 4 1
10 8 10 2 9 1


Input Bounded Matrix A ∈ [1, 10]

A′BMA =


4.832 2.233 5.118 5.824 1.000 5.878
8.719 4.839 9.092 8.104 2.490 9.012
1.983 9.017 1.661 5.957 3.861 1.000
10.000 7.896 10.000 2.106 4.871 5.599


BMA Output ABMA. The error ‖A−A′BMA‖2F is 40.621.

A′NMF =


4.939 3.378 5.312 5.021 3.131 4.736
8.066 5.794 8.696 8.495 4.649 8.036
5.850 4.600 6.241 4.548 4.036 4.343
9.693 7.549 10.225 5.165 8.303 4.958


NMF Output ANMF . The error ‖A−A′NMF‖2F is 121.59.

4.138 −0.002 7.064
7.037 −0.008 9.429
3.730 0.031 −4.844
6.776 −0.020 1.000


 1.214 1.384 1.202 0.753 0.734 0.768
−90.835 49.650 −92.455 170.147 −9.311 −0.525
−0.058 −0.478 −0.011 0.441 −0.292 0.382


BMA’s Left and Right Low Rank Factors WBMA and HBMA

4.021 2.806 0.153
8.349 4.179 0.000
7.249 1.216 0.000
10.015 0.725 0.467


 0.727 0.605 0.770 0.431 0.557 0.416

0.478 0.178 0.543 1.172 0.000 1.092
4.421 2.920 4.538 0.000 5.835 0.000


NMF’s Non-negative Left and Right Low Rank Factors WNMF and HNMF

Figure 7: Numerical Motivation for BMA
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min
W,H

‖M · ∗(A−WH)‖2F

subject to

rmin 6 WH 6 rmax,

(19)

where rmin and rmax are the bounds and ‖ · ‖F stands for the Frobenius norm. In the

case of an input matrix with missing elements, the low rank matrix is approximated

only against the known elements of the input matrix. Hence, during error compu-

tation the filter matrix M includes only the corresponding elements of the low rank

WH for which the values are known. Thus, M has ‘1’ everywhere for input matrix A

with all known elements. However, in the case of a recommender system, the matrix

M has zero for each of the missing elements of A. In fact, for recommender systems,

typically only 1 or 2% of all matrix elements are known.

It should be pointed out that an important application for the above formulation

is recommender systems, where the community refers to it as a matrix factoriza-

tion. The unconstrained version of the above formulation (19), was first solved using

Stochastic Gradient Descent (SGD) [16] and Alternating Least Squares with Regu-

larization (ALSWR) [59]. However, we have observed that previous research has not

leveraged the fact that all the ratings rij ∈ A are bounded within [rmin, rmax]. All

existing algorithms artificially truncate their final solution to fit within the bounds.

Recently, there has been many innovations introduced into the the naive low

rank approximation technique such as considering only neighboring entries during the

factorization process, time of the ratings, and implicit ratings such as “user watched

but did not rate”. Hence, it is important to design a bounding framework that

seamlessly integrates into the existing sophisticated recommender systems algorithms.

Let f(Θ,W,H) be an existing recommender system algorithm that can predict all

the (u, i) ratings, where Θ = {θ1, · · · ,θl} is the set of parameters apart from the low

rank factors W,H. For example, in the recommender system context, certain implicit
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signals are combined with the explicit ratings such as user watched a movie till the

end but didn’t rate it. We have to learn weights for such implicit signals to predict

a user’s rating. Such weights are represented as parameter Θ. For simplicity, we

are slightly abusing the notation here. The f(Θ,W,H) either represents estimating

a particular value of (u, i) pair or it represents the complete estimated low rank

k matrix Â ∈ Rn×m. The ratings from such recommender system algorithms can

be scientifically bounded by the following optimization problem based on low rank

approximation to determine the unknown ratings.

min
Θ,W,H

‖M · ∗(A− f(Θ,W,H))‖2F

subject to

rmin 6 f(Θ,W,H) 6 rmax.

(20)

Traditionally, regularization is used to control the low rank factors W and H from

taking larger values. However, this does not guarantee that the value of the product

WH is in the given range. We also experimentally show that introducing the bounds

on the product of WH outperforms the low rank approximation algorithms with

regularization.

In this chapter, we present a survey of current state-of-the-art and the solution the

Problems (19) and (20) will be presented. WE also describe the implementable algo-

rithms and scalable techniques for solving large scale problems in multi core system

with low memory. Finally, we present substantial experimental results illustrating

that the proposed methods outperform the state-of-the-art algorithms for recom-

mender systems such as Stochastic Gradient Descent, Alternating Least Squares with

regularization, SVD++, Bias-SVD on real world data sets such as Jester, Movielens,

Book crossing, Online dating and Netflix. This chapter is based primarily on our

earlier work [23, 24].
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3.2 Related Work

This section introduces the BMA and its application to recommender systems and

reviews some of the prior research in this area. Following this section is a brief

overview of our contributions.

The important milestones in matrix factorization for recommender systems have

been achieved due to the Netflix competition (http://www.netflixprize.com/) where

the winners were awarded 1 million US Dollars as grand prize.

Funk [16] first proposed matrix factorization for recommender system based on

SVD, commonly called the Stochastic Gradient Descent (SGD) algorithm. Paterek

[47] improved SGD by combining matrix factorization with baseline estimates. Ko-

ren, a member of the winning team of the Netflix prize, improved the results with

his remarkable contributions in this area. Koren [32] proposed a baseline estimate

based on mean rating, user–movie bias, combined with matrix factorization and called

it Bias-SVD. In SVD++ [32], he extended this Bias-SVD with implicit ratings and

considered only the relevant neighborhood items during matrix factorization. The

Netflix dataset also provided the time of rating. However most of the techniques

did not include time in their model. Koren [33] proposed time-svd++, where he

extended his previous SVD++ model to include the time information. So far, all

matrix factorization techniques discussed here are based on SVD and used gradient

descent to solve the problem. Alternatively, Zhou et al. [59] used alternating least

squares with regularization (ALSWR). Apart from these directions, there had been

other approaches such as Bayesian tensor factorization [55], Bayesian probabilistic

modelling [48], graphical modelling of the recommender system problem [43] and

weighted low-rank approximation with zero weights for the missing values [44]. One

of the recent works by Yu et al. [57] also uses coordinate descent to matrix factoriza-

tion for recommender system. However, they study the tuning of coordinate descent

optimization techniques for a parallel scalable implementation of matrix factorization
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for recommender system. A detailed survey and overview of matrix factorization for

recommender systems is given in [34].

3.2.1 Our Contributions

Given the above background, we highlight our contributions. We propose a novel

matrix factorization called Bounded Matrix Low Rank Approximation (BMA) which

imposes a lower and an upper bound for the estimated values of the missing elements

in the given matrix. We solve the BMA using block coordinate descent method.

From this perspective, this is the first work that uses the block coordinate descent

method and experiment BMA for recommender systems. We present the details of

the algorithm with supporting technical details and a scalable version of the naive

algorithm. It is also important to study imposing bounds for existing recommender

systems algorithms. We also propose a novel framework for Bounding existing ALS

algorithms (called BALS). Also, we test our BMA algorithm, BALS framework on

real world datasets and compare against state of the art algorithms SGD, SVD++,

ALSWR and Bias-SVD.

3.3 Foundations

In the case of low rank approximation using NMF, the low rank factor matrices are

constrained to have only non-negative elements. However, in the case of BMA, we

constrain the elements of their product with an upper and lower bound rather than

each of the two low rank factor matrices. In the section 2.1, we explained our BCD

framework for NMF. For the convenience of the readers, we begin explaining using

2k Block BCD for NMF and subsequently its extension to solve BMA.

Consider partitioning the unknowns W and H into 2k blocks in which each block

is a column of W or a row of H, as explained in Figure 1. In this case, it is easier to
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consider the objective function in the following form:

f(w1, · · · ,wk,h
ᵀ
1, · · · ,h

ᵀ
k) = ‖A−

k∑
j=1

wjh
T
j ‖2F , (21)

where W = [w1, · · ·wk] ∈ Rn×k
+ and H = [h1, · · · ,hk]ᵀ ∈ Rk×m

+ . The form in Eq. (21)

represents that A is approximated by the sum of k rank-one matrices.

Following the BCD scheme, we can minimize f by iteratively solving

wi ← argminwi≥0f(w1, · · · ,wk,h
ᵀ
1, · · · ,h

ᵀ
k)

for i = 1, · · · , k, and

hᵀ
i ← argminhᵀ

i≥0
f(w1, · · · ,wk,h

ᵀ
1, · · · ,h

ᵀ
k)

for i = 1, · · · , k.

The 2k-block BCD algorithm has been studied as Hierarchical Alternating Least

Squares (HALS) proposed by Cichocki et al. [9, 8] and independently by Ho et al.

[22] as rank-one residue iteration (RRI).

3.3.1 Bounded Matrix Low Rank Approximation

The building blocks of BMA are column vectors wx and row vectors hᵀ
x of the matrix

W and H respectively. In this section, we discuss the idea behind finding these

vectors wx and hᵀ
x such that all the elements in T+wxh

ᵀ
x ∈ [rmin, rmax] and the error

‖M · ∗(A−WH)‖2F is reduced. Here, T =
k∑

j=1,j 6=x
wjh

ᵀ
j .

Problem (19) can be equivalently represented with a set of rank-one matrices wxh
ᵀ
x
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as

min
wx,hx

‖M · ∗(A−T−wxh
ᵀ
x)‖2F

∀x = [1, k]

subject to

T + wxh
ᵀ
x 6 rmax

T + wxh
ᵀ
x > rmin

(22)

Thus, we take turns solving for wx and hᵀ
x. That is, assume we know wx and find

hᵀ
x and vice versa. In the entire section we assume fixing column wx and finding row

hᵀ
x. Without loss of generality, all the discussion pertaining to finding hᵀ

x with fixed

wx hold for the other scenario of finding wx with fixed hᵀ
x.

There are different orders of updates of vector blocks when solving Problem (22).

For example,

w1 → hᵀ
1 → · · · → wk → hᵀ

k (23)

and

w1 → · · · → wk → hᵀ
1 → · · · → hᵀ

k. (24)

Kim et al. [27] prove that Eq. (21) satisfies the formulation of BCD method. Eq.

(21) when extended with the matrix M becomes Eq. (22). Here, the matrix M is

like a filter matrix that defines the elements of (A−T−wxh
ᵀ
x) to be included for the

norm computation. Thus, Problem (22) is similar to Problem (21) and we can solve

by applying 2k block BCD to update wx and hᵀ
x iteratively, although equation (22)

appears not to satisfy the BCD requirements directly. We focus on the scalar block

case, as it is convenient to explain regarding imposing bounds on the product of the

low rank factors WH.

Also, according to BCD, the independent elements in a block can be computed

simultaneously. Here, the computations of the elements hxi, hxj ∈ hᵀ
x, i 6= j, are

independent of each other. Hence, the problem of finding row hᵀ
x fixing column wx is
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Figure 8: Bounded Matrix Low Rank Approximation Solution Overview

equivalent to solving the following problem

min
hxi
‖M(:, i) · ∗((A−T)(:, i)−wxhxi)‖2F

∀i = [1,m], ∀x = [1, k]

subject to

T(:, i) + wxhxi 6 rmax

T(:, i) + wxhxi > rmin

(25)

To construct the row vector hᵀ
x, we use k(n + m) scalar blocks based on problem

formulation (25). Theorem 4 identifies these best elements that construct hᵀ
x. As

shown in Figure 8, given the bold blocks, T, A and wx, we find the row vector

hᵀ
x = [hx1, hx2, · · · , hxm] for Problem (25). For this, let us understand the boundary

values of hxi by defining two vectors, l bounding hxi from below, and u bounding hxi

from above, i.e., max(l) 6 hxi 6 min(u).

Definition The lower bound vector l = [l1, . . . , ln] ∈ Rn and the upper bound vector
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u = [u1, . . . , un] ∈ Rn for a given wx and T that bound hxi are defined ∀j ∈ [1, n] as

lj =



rmin −T(j, i)

wjx
, wjx > 0

rmax −T(j, i)

wjx
, wjx < 0

−∞, otherwise

and

uj =



rmax −T(j, i)

wjx
, wjx > 0

rmin −T(j, i)

wjx
, wjx < 0

∞, otherwise.

It is important to observe that the defined l and u – referred as LowerBounds and

UpperBounds in Algorithm 2, are for a given wx and T to bound hxi. Alternatively, if

we are solving wx for a given T and hx, the above function correspondingly represents

the possible lower and upper bounds for wix, where l,u ∈ Rm.

Theorem 3. Given A, T, wx, the hxi is always bounded as max(l) 6 hxi 6 min(u).

Proof. It is easy to see that if hxi < max(l) or hxi > min(u), then T(:, i) + wxh
ᵀ
xi /∈

[rmin, rmax].

Here, it is imperative to note that if hxi, results in T(:, i) + wxh
ᵀ
xi /∈ [rmin, rmax],

this implies that hxi is either less than the max(l) or greater than the min(u). It

cannot be any other inequality.

Given the boundary values of hxi, Theorem 4 defines the solution to Problem (25).

Theorem 4. Given T, A,wx, l and u, let

ĥxi = ([M(:, i) · ∗(A−T)(:, i)]ᵀwx)/(‖M(:, i) · ∗wx‖22).
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The unique solution hxi – referred as FindElement in Algorithm 2 to least squares

problem (25) is given as

hxi =


max(l), if ĥxi < max(l)

min(u), if ĥxi > min(u)

ĥxi, otherwise.

Proof. Out of Boundary: hxi < max(l) or hxi > min(u). Under this circumstance,

the best value for hxi is either max(l) or min(u). We can prove this by contradiction.

Let us assume there exists a h̃xi = max(l) + δ; δ > 0 that is optimal to the Problem

(25) for hxi < max(l). However, for hxi = max(l) < h̃xi is still a feasible solution

for the Problem (25). Also, there does not exist a feasible solution that is less than

max(l), because the Problem (25) is quadratic in hxi. Hence for hxi < max(l), the

optimal value for the Problem (25) is max(l). In similar direction we can show that

the optimal value of hxi is min(u) for hxi > min(u).

Within Boundary: max(l) 6 hxi 6 min(u).

Let us consider the objective function of unconstrained optimization problem (25).

That is., f = min
hxi
‖M(:, i) · ∗((A−T)(:, i)−wxhxi)‖22. The minimum value is deter-

mined by taking the derivative of f with respect to hxi and equating it to zero.
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∂f
∂hxi

= ∂
∂hxi

 ∑
all known ratings

in column i

(Ei −wxhxi)
2

 (where E = R−T)

= ∂
∂hxi

 ∑
all known ratings

in column i

(Ei −wxhxi)
ᵀ(Ei −wxhxi)


= ∂

∂hxi

 ∑
all known ratings

in column i

(Eᵀ
i − hxiwᵀ

x)(Ei −wxhxi)


= ∂

∂hxi

 ∑
all known ratings

in column i

h2xiw
ᵀ
xwx − hxiEᵀ

iwx − hxiwᵀ
xEi + Eᵀ

iEi


= 2‖M(:, i). ∗wx‖22hxi − 2[M(:, i). ∗ (A−T)(:, i)]ᵀwx

(26)

Now, equating ∂f
∂hxi

to zero will yield the optimum solution for the unconstrained

optimization problem (25) as

hxi = ([M(:, i) · ∗(A−T)(:, i)]ᵀwx)/(‖M(:, i) · ∗wx‖22)

In the similar direction the proof for Theorem 5 can also be established.

3.3.2 Bounding Existing ALS Algorithms (BALS)

Over the last few years, the recommender system algorithms have improved by leaps

and bounds. The additional sophistication such as using only nearest neighbors dur-

ing factorization, implicit ratings, time, etc., gave only a diminishing advantage for

the Root Mean Square Error (RMSE) scores. That is, the improvement in RMSE

score over the naive low rank approximation with implicit ratings is more than the

improvement attained by utilizing both implicit ratings and time. Today, these al-

gorithms are artificially truncating the estimated unknown ratings. However, it is

important to investigate establishing bounds scientifically on these existing Alternat-

ing Least Squares (ALS) type algorithms.
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Using matrix block BCD, we introduce a temporary variable Z ∈ Rn×m with box

constraints to solve Problem (19),

min
Θ,Z,P,Q

‖M · ∗(A− Z)‖2F + α‖Z− f(Θ,W,H)‖2F

subject to

rmin 6 Z 6 rmax.

(27)

The key question is identifying optimal Z. We assume the iterative algorithm has a

specific update order, for example, θ1 → · · · → θl →W→ H. Before updating these

parameters, we should have an optimal Z, with the most recent values of Θ,W,H.

Theorem 5. The optimal Z, given A,W,H,M,Θ, is

M.∗(A+αf(Θ,W,H))
1+α

+ M′. ∗ f(Θ),W,H), where M′ is the complement of the indica-

tor boolean matrix M.

Proof. Given A,W,H,M,Θ, the optimal Z, is obtained by solving the following

optimization problem.

G = min
Z
‖M · ∗(A− Z)‖2F + α‖Z− f(Θ,W,H)‖2F

subject to

rmin 6 Z 6 rmax.

(28)

Taking the gradient ∂G
∂Z

of the above equation to find the optimal solution yields,

M.∗(A+αf(Θ,W,H))
1+α

+M′.∗f(Θ,W,H). The derivation is in the same lines as explained

in equations (26)

In the same direction of Theorem 4, we can show that if the values of Z are

outside [rmin, rmax], that is., Z > rmax and Z < rmin, the optimal value is Z = rmax

and Z = rmin respectively.

In the next Section, the implementation of the algorithm for BMA and its variants
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such as scalable and block implementations will be studied. Also, imposing bounds on

existing ALS algorithms using BALS will be investigated. As an example we will take

existing algorithms from Graphchi [35] implementations and study imposing bounds

using the BALS framework.

3.4 Implementations

3.4.1 Bounded Matrix Low Rank Approximation

Given the discussion in the previous sections, we now have the necessary tools to

construct the algorithm. In Algorithm 2, the l and u from Theorem 3 are referred

to as LowerBounds and UpperBounds, respectively. Also, hxi from Theorem 4 is

referred to as FindElement. The BMA algorithm has three major functions: (1)

Initialization, (2) Stopping Criteria and (3) Find the low rank factors W and H.

In later sections, the initialization and stopping criteria are explained in detail. For

now, we assume that two initial matrices W and H are required, such that WH ∈

[rmin, rmax], and that a stopping criterion will be used for terminating the algorithm,

when the constructed matrices W and H provide a good representation of the given

matrix A.

In the case of BMA algorithm, since multiple elements can be updated indepen-

dently, we reorganize the scalar block BCD into 2k vector blocks. The BMA algorithm

is presented as Algorithm 2.

Algorithm 2 works very well and yields low rank factors W and H for a given

matrix A such that WH ∈ [rmin, rmax]. However, when applied for very large scale

matrices, such as recommender systems, it can only be run on machines with a large

amount of memory. We address scaling the algorithm on multi core systems and

machines with low memory in the next section.
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input : Matrix A ∈ Rn×m, rmin, rmax > 1, reduced rank k
output: Matrix W ∈ Rn×k and H ∈ Rk×m

// Rand initialization of W, H.

1 Initialize W, H as non-negative random matrices ;
// modify random WH such that WH ∈ [rmin, rmax]
// maxelement of WH without first column of W and first row

of H
2 maxElement = max(W(:, 2 : end) ∗H(2 : end, :));

3 α←
√

rmax − 1

maxElement
;

4 W← α ·W;
5 H← α ·H;
6 W(:, 1)← 1;
7 H(1, :)← 1;
8 M← ComputeRatedBinaryMatrix(A);
9 while stopping criteria not met do

10 for x← 1 to k do

11 T←
k∑

j=1,j 6=x
wjh

ᵀ
j ;

12 for i← 1 to m do
// Find vectors l,u ∈ Rn as in Definition 3.3.1

13 l← LowerBounds(rmin, rmax,T, i,wx);
14 u← UpperBounds(rmin, rmax,T, i,wx);

// Find vector hᵀ
x fixing wx as in Theorem 4

15 hxi ← FindElement(px,M,A,T, i, x);
16 if hxi < max(l) then
17 hxi ← max(l);

18 else if hxi > min(u) then
19 hxi ← min(u);

20 for i← 1 to n do
// Find vectors l,u ∈ Rm as in Definition 3.3.1

21 l← LowerBounds(rmin, rmax,T, i,h
ᵀ
x);

22 u← UpperBounds(rmin, rmax,T, i,h
ᵀ
x);

// Find vector wx fixing hᵀ
x as in Theorem 4

23 wix ← FindElement(hᵀ
x,M

ᵀ,Rᵀ,Tᵀ, i, x);
24 if wix < max(l) then
25 wix ← max(l);

26 else if wix > min(u) then
27 wix ← min(u);

Algorithm 2: Bounded Matrix Low Rank Approximation (BMA)
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3.4.2 Scaling up Bounded Matrix Low Rank Approximation

In this section, we address the issue of scaling the algorithm for large matrices with

missing elements. Two important aspects of making the algorithm run for large

matrices are running time and memory. We discuss the parallel implementation of

the algorithm, which we refer to as Parallel Bounded Matrix Low Rank Approxima-

tion. Subsequently, we also discuss a method called Block Bounded Matrix Low Rank

Approximation, which will outline the details of executing the algorithm for large

matrices in low memory systems. Let us start this section by discussing Parallel

Bounded Matrix Low Rank Approximation.

3.4.2.1 Parallel Bounded Matrix Low Rank Approximation

In the case of the BCD method, the solutions of the sub-problems that depend on

each other have to be computed sequentially to make use of the most recent values.

However, if solutions for some blocks are independent of each other, it is possible

to compute them simultaneously. We can observe that, according to Theorem 4, all

elements hxi, hxj ∈ hᵀ
x, i 6= j are independent of each other. We are leveraging this

characteristic to parallelize the for loops in Algorithm 2. Nowadays, virtually all

commercial processors have multiple cores. Hence, we can parallelize finding the hxi’s

across multiple cores. Since it is trivial to change the for in step 12 and step 20 of

Algorithm 2 to parallel for the details will be omitted.

It is obvious to see that the T at step 11 in Algorithm 2 requires the largest amount

of memory. Also, the function FindElement in step 15 takes a sizable amount of

memory. Hence, it is not possible to run the algorithm for large matrices on machines

with low memory, e.g., with rows and columns on the scale of 100,000’s. Thus, we

propose the following algorithm to mitigate this limitation: Block BMA.
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3.4.2.2 Block Bounded Matrix Low Rank Approximation

To facilitate understanding of this section, let us define β – a data structure in memory

factor. That is, maintaining a floating scalar as a sparse matrix with one element or

full matrix with one element takes different amounts of memory. This is because of the

data structure that is used to represent the numbers in the memory. The amount of

memory is also dependent on using single or double precision floating point precision.

Typically, in Matlab, the data structure in memory factor β for full matrix is around

10. Similarly, in Java, the β factor for maintaining a number in an ArrayList is

around 8. Let, memsize(v) be the function that returns the approximate memory

size of a variable v. Generally, memsize(v) = number of elements in v * size of each

element * β. Consider an example of maintaining 1000 floating point numbers on an

ArrayList of a Java program. The approximate memory would be 1000*4*8 = 32000

bytes ≈ 32KB in contrast to the actual 4KB due to the factor β=8.

As discussed earlier, for most of the real world large datasets such as Netflix,

Yahoo music, online dating, book crossing, etc., it is impossible to keep the entire

matrix T in memory. Also, notice that, according to Theorem 4 and Definition 3.3.1,

we need only the i-th column of T to compute hxi. The block size of hxi to compute

in one core of the machine is dependent on the size of T and FindElements that fits

in memory.

On the one hand, partition hx to fit the maximum possible T and FindElements

in the entire memory of the system. If very small partitions are created such that, we

can give every core some amount of work so that the processing capacity of the system

is not underutilized. The disadvantage of the former, is that only one core is used.

However, in the latter case, there is a significant communication overhead. Figure 9

gives the pictorial view of the Block Bounded Matrix Low Rank Approximation.
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Figure 9: Block Bounded Matrix Low Rank Approximation

We determined the number of blocks = memsize(full(A)+other variables of Find-

Element)/(system memory * number of d cores). The full(A) is a non-sparse repre-

sentation and d 6 number of cores available in the system. Typically, for most of the

datasets, we achieved minimum running time when we used 4 cores and 16 blocks.

That is, we find 1/16-th of hᵀ
x concurrently on 4 cores.

For convenience, we have presented the Block BMA as Algorithm 3. We describe

only the algorithm to find the partial vector of hᵀ
x given wx. To find more than one el-

ement, Algorithm 2 is modified such that the vectors l,u,wx are matrices L,U,Wblk,

respectively, in Algorithm 3. Algorithm 3 replaces the steps 12 – 19 in Algorithm 2

for finding h and similarly for finding w from step 20 – 27. The initialization and the

stopping criteria for Algorithm 3 are similar to those of Algorithm 2. Also included

are the necessary steps to handle numerical errors as part of Algorithm 3 explained

in Section 3.5. Figure 10 in Section 3.5, presents the speed up of the algorithm.
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input : Matrix A ∈ Rn×m, set of indices i, current wx, x, current h′x,
rmin, rmax

output: Partial vector hx of requested indices i

// ratings of input indices i
1 Ablk ← A(:, i) ;
2 Mblk ← ComputeRatedBinaryMatrix(Ablk);
3 Wblk ← Replicate(wx, size(i));
// save hx(i)

4 h′blk ← hx(i) ;
// Tblk ∈ n× size(i) of input indices i

5 Tblk ←
k∑

j=1,j 6=x
wjh

ᵀ
blk;

// Find matrix L,U ∈ Rn×size(i) as in Definition 3.3.1

6 L← LowerBounds(rmin, rmax,T, i,wx);
7 U← UpperBounds(rmin, rmax,T, i,wx);
// Find vector hblk fixing wx as in Theorem 4

8 hblk = ([Mblk · ∗(Ablk −Tblk)]
ᵀWblk)/(‖Mblk · ∗Wblk‖2F ) ;

// Find indices of hblk that are not within bounds

9 idxlb← find(hblk < max(L)) ;
10 idxub← find(hblk > min(U)) ;

// case A & B numerical errors in Section 3.5

11 idxcase1← find([h′blk ≈ max(L)]or[h′blk ≈ min(U]) ;
12 idxcase2← find([max(L) ≈ min(U)]or[max(L) > min(U)]) ;
13 idxdontchange← idxcase1 ∪ idxcase2;

// set appropriate values of hblk /∈ [max(L),min(U)]
14 hblk(idxlb \ idxdontchange)← max(L)(idxlb \ idxdontchange) ;
15 hblk(idxub \ idxdontchange)← min(U)(idxub \ idxdontchange) ;
16 hblk(idxdontchange)← h′blk(idxdontchange) ;

Algorithm 3: Block BMA
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3.4.3 Bounding Existing ALS Algorithms(BALS)

In this section we examine the algorithm for solving the Equation (27) based on

Theorem 5 to find the low rank factors W, H and Θ. For the time being, assume

that we need an initial, Θ,W and H to start the algorithm. Also, we need update

functions for Θ,W,H and a stopping criteria for terminating the algorithm. The

stopping criteria determines whether the constructed matrices W and H and Θ

provide a good representation of the given matrix A.

input : Matrix A ∈ Rn×m, rmin, rmax > 1, reduced rank k
output: Parameters Θ, Matrix W ∈ Rn×k and H ∈ Rk×m

// Rand initialization of Θ, W, H.

1 Initialize Θ,W, H as a random matrix ;
2 M← ComputeRatedBinaryMatrix(A);
// Compute Z as in Theorem 5

3 Z← ComputeZ(A,W,H,Θ);
4 while stopping criteria not met do
5 θi ← argmin

θi

‖M · ∗(A− f(θi,W,H))‖2F ∀1 6 i 6 l ;

6 W← argmin
W
‖M · ∗(A− f(θi,W,H))‖2F ;

7 H← argmin
H
‖M · ∗(A− f(θi,W,H))‖2F ;

8 Z← ComputeZ(A,W,H,Θ);
9 if zij > rmax then

10 zij = rmax

11 if zij < rmin then
12 zij = rmin

Algorithm 4: Bounding Existing ALS Algorithm (BALS)

In the ComputeZ function, if the values of Z are outside [rmin, rmax], that is.,

Z > rmax and Z < rmin, set the corresponding values of Z = rmax and Z = rmin

respectively.

Most of the ALS based recommender system algorithms have clear defined blocks

on Θ,W,H as discussed in Section 2.1. That is, either they are partitioned as
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a matrix, vector or element blocks. Also, there is always an update order that is

adhered to. For example, θ1 → θ2 → · · ·θl → w1 → w2 → · · · → wk → h1 →

h2 → · · · → hk. If the algorithm meets these characteristics, we can prove that the

algorithm converges to a stationary point.

Corollary 6. If the recommender system algorithm f based on alternating least

squares, satisfies the following characteristics: (1) is an iterative coordinate descent

algorithm, (2) defines blocks over the optimization variables Θ,W,H, and (3) has

orderly optimal block updates of one block at a time and always uses the latest blocks,

f converges to a stationary point of (27).

Proof. This is based on Theorem 1. The BALS Algorithm 4 for the formulation (27)

satisfies the above characteristics and hence the algorithm converges to a stationary

point.

At this juncture, it is important to discuss the applicability of BMA for gradient

descent type of algorithms such as SVD++, Bias-SVD, time-SVD++, and others. For

brevity, we consider the SGD for the simple matrix factorization problem explained in

equation (19). For a gradient descent type of algorithm, we update the current value

of wuk ∈ W and hki ∈ H based on the gradient of the error eui = aui − f(W′,H′).

Assuming λw = λh = λ, the update equations are wuk = w′uk + (euih
′
ki − λw′uk) and

hki = h′ki + (eui ∗w′uk−λh′ki). In the case of BALS for unobserved pairs (u, i), we use

zui = f(W′,H′) instead of aui = 0. Thus, in the case of the BALS extended gradient

descent algorithms, the error eui = 0, for unobserved pairs (u, i). That is, the updates

of wuk and hki are dependent only on the observed entries and our estimations for

unrated pairs (u, i) do not have any impact.

It is also imperative to understand that we are considering only the existing rec-

ommender system algorithms that minimizes the RMSE error of the observed entries

against its estimation as specified in (20). We have not analyzed the problems that
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utilize different loss functions such as KL-Divergence.

In this section, we also present an example for bounding an existing algorithm,

Alternating Least Squares, with Regularization in Graphchi. GraphChi [35] is an open

source library that allows distributed processing of very large graph computations on

commodity hardware. It breaks large graphs into smaller chunks and uses a parallel

sliding windows method to execute large data mining and machine learning programs

in small computers. As part of the library samples, it provides implementations

of many recommender system algorithms. In this section we discuss extending the

existing ALSWR implementation in Graphchi to impose box constraints using our

framework.

Graphchi programs are written in the vertex-centric model and runs vertex-centric

programs asynchronously (i.e., changes written to edges are immediately visible to

subsequent computation), and in parallel. Any Graphchi program has three impor-

tant functions: (1) beforeIteration, (2) afterIteration, and (3) update function. The

function beforeIteration and

afterIteration are executed sequentially in a single core, whereas the update function

for all the vertices is executed in parallel across multiple cores of the machine. Such

parallel updates are useful for updating independent blocks. For example, in our case,

every vector wᵀ
i is independent of wᵀ

j , for i 6= j.

Graphchi models the collaborative filtering problem as a bipartite graph between

a user vertex and item vertex. The edges that flow between the user-item partition

are ratings. That is, a weighted edge, between a user u and an item i vertex represent

the user u’s rating for the item i. The user vertex has only outbound edges and an

item vertex has only inbound edges. The update function is called for all the user

and item vertices. The vertex update solves a regularized least-squares system, with

neighbors’ latent factors as input.

One of the major challenges for existing algorithms to enforce bounds using the
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BALS framework is memory. The matrix Z is dense and may not be accommodative

in memory. That is, consider the Z for the book crossing dataset1. The dataset

provides ratings of 278,858 users against 271,379 books. The size of Z for such a

dataset would be numberofusers∗numberofitems∗size(double) = 278858*271379*8

bytes ≈ 563GB. This data size is too large even for a server system. To overcome this

problem, we save the Θ,W,H of previous iterations as Θ′,W′,H′. Instead of having

the the entire Z matrix in memory, we compute the zui during the update function.

In the interest of space, we present the pseudo code for the update function

alone. In the beforeIteration, function, we backup the existing variables Θ,W,H

as Θ′,W′,H′. The afterIteration function computes the RMSE of the valida-

tion/training set and determines the stopping criteria.

input : Vertex v user/item, GraphContext ctx, H,W′,H′,Θ′

output: The uth row of W matrix wᵀ
u ∈ Rk or the ith column hi ∈ Rk

// uth row of matrix Z based on Theorem 5. Θ′,W′,H′ are the

Θ,W,H from previous iteration.

// Whether the vertex is a user/item vertex is determined by the

number of incoming/outgoing edges. For user vertex the number

of incoming edges = 0 and for item vertex the number of

outgoing edges = 0

1 if vertex v is user u vertex then
// update wᵀ

u

2 zᵀ
u ∈ Rm ← f(W′,H′);
// We are replacing the au in the original algorithm with zu

3 wᵀ
u ← (HHᵀ) \ (zᵀ

u ∗Hᵀ)ᵀ;

4 else
// update hi

5 zi ∈ Rn ← f(W′,H′);
// We are replacing the ai in the original algorithm with zi

6 hi ← (WᵀW) \ (Wᵀ ∗ zi);

Algorithm 5: update function

1The details about this dataset can be found in Table 3
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Considering Algorithm 5, it is important to observe that we use the previous it-

eration’s W′,H′,Θ′ only for the computation of Z. However, for W,H updates, the

current latest blocks are used. Also, we cannot store the matrix M in memory. We

know that Graphchi, as part of the V ertex information, passes the set of incoming

and outgoing edges to and from the vertex. The set of outgoing edges from the

user vertex u to the item vertex v, provides information regarding the items rated

by the user u. Thus, we use this information rather than maintaining M in mem-

ory. The performance comparison between ALSWR and ALSWR-Bounded on the

Netflix dataset 1 is presented in Table 6. Similarly, we also bounded Probabilistic

Matrix Factorization (PMF) in the Graphchi library and compared the performances

of bounded ALSWR and bounded PMF algorithms using the BALS framework with

its artificially truncated version on various real world datasets (see Table 7).

3.4.4 Parameter Tuning

In the case of recommender systems the missing ratings are provided as ground truth

in the form of test data. The dot product of W(u, :) and H(:, i) gives the missing

rating of a (u, i) pair. In such cases, the accuracy of the algorithm is determined by

the Root Mean Square Error (RMSE) of the predicted ratings against the ground

truth. It is unimportant how good the algorithm converges for a given rank k.

This section discusses ways to improve the RMSE of the predictions against the

missing ratings by tuning the parameters of the BMA algorithm and BALS frame-

work.

3.4.4.1 Initialization

The BMA algorithm can converge to different points depending on the initializa-

tion. In Algorithm 2, it was shown how to use random initialization so that WH ∈

[rmin, rmax]. In general, this method should provide good results.

However, in the case of recommender systems, this initialization can be tuned,
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which can give even better results. According to Koren [32], one good baseline esti-

mate for a missing rating (u, i) is µ + pu + qi, where µ is the average of the known

ratings, and pu and qi are the bias of user u and item i, respectively. We initialized

W and H in the following way

W =


µ

k − 2
· · · µ

k − 2
p1 1

...
...

...
...

µ

k − 2
· · · µ

k − 2
pn 1

 and H =



1 1 · · · 1

...
...

...

1 1 · · · 1

q1 q2 · · · qm


,

such that WH(u, i) = µ+pu + qi. That is, let the first k−2 columns of W be
µ

k − 2
,

W(:, k−1) = p and W(:, k) = 1. Let all the k−1 rows of H be 1’s and H(k, :) = qᵀ.

We call this a baseline initialization.

3.4.4.2 Reduced Rank k

In the case of regular low rank approximation with all known elements, the higher

the k, the closer the low rank approximation is to the input matrix [27]. However, in

the case of predicting with the low rank factors, a good k depends on the nature of

the dataset. Even though, for a higher k, the low rank approximation is closer to the

known rating of the input A, the RMSE on the test data may be poor. In Table 4,

we can observe the behavior of the RMSE on the test data against k. In most cases,

a good k is determined by trial and error for the prediction problem.

3.4.4.3 Stopping Criterion C

The stopping criterion defines the goodness of the low rank approximation for the

given matrix and the task for which the low rank factors are used. The two common

stopping criteria are – (1) For a given rank k, the product of the low rank factors

WH should be close to the known ratings of the matrix and (2) The low rank factors
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W,H should perform the prediction task on a smaller validation set which has the

same distribution as the test set. The former is common when all the elements of A

are known. We discuss only the latter, which is important for recommender systems.

The stopping criterion C for the recommender system is the increase of√
‖M · ∗(V −WH)‖2F
numRatings in V

, for some validation matrix V, which has the same distri-

bution as the test matrix between successive iterations. Here, M is for the validation

matrix V. This stopping criterion has diminishing effect as the number of iterations

increases. Hence, we also check whether

√
‖M · ∗(V −WH)‖2F
numRatings in V

did not change in

successive iterations at a given floating point precision, e.g., 1e-5.

It is trivial to show that, for the above stopping criterion C, Algorithm 2 terminates

for any input matrix A. At the end of an iteration, we terminate if the RMSE on the

validation set has either increased or marginally decreased.

3.5 Experimentation

Experimentation was conducted in various systems with memory as lows as 16GB.

One of the major challenges during experimentation is numerical errors. The numer-

ical errors could result in T + wxh
ᵀ
x /∈ [rmin, rmax]. The two fundamental questions

to solve the numerical errors are: (1) How to identify the occurrence of a numerical

error? and (2) What is the best possible value to choose in the case of a numerical

error?

We shall start by addressing the former question of potential numerical errors

that arise in the BMA Algorithm 2. It is important to understand that if we are well

within bounds, i.e., if max(l) < qxi < min(u), we are not essentially impacted by the

numerical errors. It is critical only when qxi is out of the bounds, that is, qxi < max(l)

or qxi > min(u) and approximately closer to the boundary discussed as in (Case A

and Case B). For discussion let us assume we are improving the old value of h′xi to

hxi such that we minimize the error ‖M · ∗(A−T−wxh
ᵀ
x)‖2F .
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Table 3: Datasets for experimentation

Dataset Rows Columns Ratings Density Ratings
(millions) Range

Jester 73421 100 4.1 0.5584 [-10,10]
Movielens 71567 10681 10 0.0131 [1,5]
Dating 135359 168791 17.3 0.0007 [1,10]
Book crossing 278858 271379 1.1 0.00001 [1,10]
Netflix 17770 480189 100.4 0.01 [1,5]

Case A: h′xi ≈ max(l) or h′xi ≈ min(u) :

This is equivalent to saying h′xi is already optimal for the given wx and T and there

is no further improvement possible. Under this scenario, if h′xi ≈ hxi it is better to

retain h′xi irrespective of the new hxi found.

Case B: max(l) ≈ min(u) or max(l) > min(u) :

According to Theorem 3, we know that max(l) < min(u). Hence, if max(l) >

min(u), it is only the result of numerical errors.

In all the above cases during numerical errors, we are better off retaining the

old value h′xi against the new value hxi. This covers Algorithm 3 – Block BMA for

consideration of numerical errors.

We experimented with this Algorithm 3 among varied bounds using very large

matrix sizes taken from the real world datasets. The datasets used for our experiments

included the Movielens 10 million [1], Jester [18], Book crossing [60] and Online dating

dataset [5]. The characteristics of the datasets are presented in Table 3.

We have chosen Root Mean Square Error (RMSE) – a defacto metric for recom-

mender systems. The RMSE is compared for BMA with baseline initialization (BMA

–Baseline) and BMA with random initialization (BMA –Random) against the other

algorithms on all the datasets. The algorithms used for comparison are ALSWR

(alternating least squares with regularization) [59], SGD [16], SVD++ [32] and Bias-

SVD [32] and its implementation in Graphlab (http://graphlab.org/) [40] software
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Table 4: RMSE Comparison of Algorithms on Real World Datasets

Dataset k BMA BMA ALSWR SVD++ SGD Bias-
Baseline Random SVD

Jester 10 4.3320 4.6289 5.6423 5.5371 5.7170 5.8261
Jester 20 4.3664 4.7339 5.6579 5.5466 5.6752 5.7862
Jester 50 4.5046 4.7180 5.6713 5.5437 5.6689 5.7956

Movielens10M 10 0.8531 0.8974 1.5166 1.4248 1.2386 1.2329
Movielens10M 20 0.8526 0.8931 1.5158 1.4196 1.2371 1.2317
Movielens10M 50 0.8553 0.8932 1.5162 1.4204 1.2381 1.2324

Dating 10 1.9309 2.1625 3.8581 4.1902 3.9082 3.9052
Dating 20 1.9337 2.1617 3.8643 4.1868 3.9144 3.9115
Dating 50 1.9434 2.1642 3.8606 4.1764 3.9123 3.9096

Book Crossing 10 1.9355 2.8137 4.7131 4.7315 5.1772 3.9466
Book Crossing 20 1.9315 2.4652 4.7212 4.6762 5.1719 3.9645
Book Crossing 50 1.9405 2.1269 4.7168 4.6918 5.1785 3.9492

package. We implemented our algorithm in Matlab and used the parallel computing

toolbox for parallelizing across multiple cores.

For parameter tuning, we varied the number of reduced rank k and tried different

initial matrices for our algorithm to compare against all other algorithms mentioned

above. For every k, every dataset was randomly partitioned into 85% training, 5%

validation and 10% test data. We ran all algorithms on these partitions and computed

their RMSE scores. We repeated each experiment 5 times and reported their RMSE

scores in Table 4, where each resulting value is the average of the RMSE scores on a

randomly chosen test set for 5 runs. Table 4 summarizes the RMSE comparison of

all the algorithms.

The Algorithm 2 consistently outperformed existing state-of-the-art algorithms.

One of the main reason for the consistent performance is the absence of hyper pa-

rameters. In the case of machine learning algorithms, there are many parameters

that need to be tuned for performance. Even though the algorithms perform the best

when provided with the right parameters, identifying these parameters is a formidable

challenge, usually by trial and error methods. For example, in Table 4, we can observe
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that the Bias-SVD, an algorithm without hyper parameters, performed better than

its extension SVD++ with default parameters in many cases. The BMA algorithm

without hyper parameters performed well on real world datasets, albeit a BMA with

hyper parameters and the right parametric values would have performed even better.

Recently, there has been a surge in interest to understand the temporal impact on

the ratings. Time-svd++ [33] is one such algorithm that leverages the time of rating

to improve prediction accuracy. Also, the most celebrated dataset in the recommender

system community is the Netflix dataset, since the prize money is attractive and it

represents the first massive dataset for recommender systems that was publicly made

available. The Netflix dataset consists of 17,770 users who rated 480,189 movies in

a scale of [1 ... 5]. There was a total of 100,480,507 ratings in the training set and

1,408,342 ratings in the validation set. All the algorithms listed above were invented

to address the Netflix challenge. Even though the book crossing dataset [60] is bigger

than the Netflix, we felt our study is not complete without experimenting on Netflix

and comparing against time-SVD++. However, the major challenge is that the Netflix

dataset has been withdrawn from the internet and its test data is no longer available.

Hence, we extracted a small sample of 5% from the training data as a validation

set and tested the algorithm against the validation set that was supplied as part of

the training package. We performed this experiment and the results are presented

in Table 5. For a better comparison, we also present the original Netflix test scores

for SVD++ and time-SVD++ algorithms from [33]. These are labeled SVD++-

Test and time-SVD++-Test, respectively. Our BMA algorithm outperformed all the

algorithms on the Netflix dataset when tested on the validation set supplied as part

of the Netflix training package.

Additionally, we conducted an experiment to study the speed-up of the algorithm

on the Netflix dataset. This is a simple speed-up experiment conducted with Matlab’s

Parallel Computing Toolbox on a dual socket Intel E7 system with 6 cores on each
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Table 5: RMSE Comparison of BMA with other algorithms on Netflix

Algorithm k = 10 k = 20 k = 50 k = 100
BMA Baseline 0.9521 0.9533 0.9405 0.9287
BMA Random 0.9883 0.9569 0.9405 0.8777
ALSWR 1.5663 1.5663 1.5664 1.5663
SVD++ 1.6319 1.5453 1.5235 1.5135
SGD 1.2997 1.2997 1.2997 1.2997
Bias-SVD 1.3920 1.3882 1.3662 1.3354
time-svd++ 1.1800 1.1829 1.1884 1.1868
SVD++-Test 0.9131 0.9032 0.8952 0.8924
time-SVD++-Test 0.8971 0.8891 0.8824 0.8805

socket. We collected the running time of the Algorithm 3 to compute the low rank

factors W and H with k = 50, using 1, 2, 4, 8, and 12 parallel processes. Matlab’s

Parallel Computing Toolbox permits starting at most 12 Matlab workers for a local

cluster. Hence, we conducted the experiment up to a pool size of 12. Figure 10 shows

the speed-up of Algorithm 3. We observe from the graph that, up to pool size 8,

the running time decreases with increasing pool size. However, the overhead costs

such as communication and startup costs for running 12 parallel tasks surpasses the

advantages of parallel execution. This simple speed-up experiment shows promising

reductions in running time of the algorithm. A sophisticated implementation of the

algorithm with low level parallel programming interfaces such as MPI, will result in

better speed-ups.

In this section, we also present the results of bounding existing ALS type algo-

rithms as explained in Section 3.3.2 and 3.4.3. The performance comparison between

ALSWR and ALSWR-Bounded on the Netflix dataset is presented in Table 6. Simi-

larly, we also bounded Probabilistic Matrix Factorization (PMF) in Graphchi library.

We then compared the performances of both ALSWR and PMF algorithms on various

real world datasets, which are presented in Table 7.

In this chapter, we presented a new matrix factorization for recommender systems

52



Figure 10: Speed up experimentation for Block BMA Algorithm 3

Table 6: RMSE Comparison of ALSWR on Netflix

Algorithm k = 10 k = 20 k = 50
ALSWR 0.8078 0.755 0.6322
ALSWR-Bounded 0.8035 0.7369 0.6156

Table 7: RMSE Comparison using BALS framework on Real World Datasets

Dataset k ALSWR PMF ALSWR PMF
Bounded Bounded

Jester 10 4.4406 4.2011 4.4875 4.2949
Jester 20 4.8856 4.3018 5.0288 4.4608
Jester 50 5.6177 4.6893 6.1906 4.7383

ML-10M 10 0.8869 0.8611 0.9048 0.8632
ML-10M 20 0.9324 0.8752 0.9759 0.8891
ML-10M 50 1.0049 0.8856 1.1216 0.9052

Dating 10 2.321 1.9503 2.3206 1.9556
Dating 20 2.3493 1.9652 2.4458 1.9788
Dating 50 2.7396 2.0647 2.7406 2.0752

Book Crossing 10 4.6937 5.4676 4.7805 5.4901
Book Crossing 20 4.7977 5.3977 4.8889 5.4862
Book Crossing 50 5.0102 5.2281 5.0018 5.4707
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called Bounded Matrix Low Rank Approximation (BMA), which imposes a lower and

an upper bound on every estimated missing element of the input matrix. Also, we

presented substantial experimental results on real world datasets illustrating that

our proposed method outperformed the state-of-the-art algorithms for recommender

system.

In future work we plan to extend BMA to tensors, i.e., multi-way arrays. Also,

similar to time-SVD++, we will use time, neighborhood information, and implicit

ratings during the factorization. A major challenge of BMA algorithm is that it loses

sparsity during the product of low rank factors WH. This limits the applicability of

BMA to other datasets such as text corpora and graphs where sparsity is important.

Thus, we plan to extend BMA for sparse bounded input matrices as well. During our

experimentation, we observed linear scale-up for Algorithm 3 in Matlab. However,

the other algorithms from Graphlab are implemented in C/C++ and take less clock

time. A C/C++ implementation of Algorithm 3 would an important step in order to

compare the running time performance against the other state-of-the-art algorithms.

Also, we will experiment with BMA on other types of datasets that go beyond those

designed for recommender systems.
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CHAPTER IV

COMMUNICATION AVOIDING NMF

Distributed NMF for very large matrices is an important problem in the commu-

nity. In this chapter, we propose a distributed MPI-based Communication Avoiding

NMF(CANMF) algorithm inspired by the parallel Jacobi method and Block Princi-

pal Pivoting (BPP). We are the first to propose Communication Avoiding NMF that

can handle both large sparse and dense matrices by avoiding the communication be-

tween machines. Considering the sensitivity of the data in distributed environment,

CANMF also ensures the input data from one machine will not be communicated to

other machines in the cluster. In CANMF, we carefully chose to communicate only

a portion of one of the low rank factors to the adjacent machine for every iteration.

This reduces the communication cost from O((m+ n)klogP ) to O(nk
P

) for P parallel

processes. We compare the performance of our algorithm with commonly used NMF

algorithms such as multiplicative update, HALS on sparse-dense synthetic and real

world datasets. We also present the scalability results of our CANMF algorithm.

4.1 Distributed Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is the problem of finding two low rank

factors W ∈ Rm×k
+ and H ∈ Rn×k

+ for a given input matrix A ∈ Rm×n, such that

A ≈ WHT , where k << min(m,n)–typically in the order of 50’s. Formally, NMF

problem [50] can be defined as

min
W>0,H>0

f(W,H) ≡ ‖A−WHT‖2F (29)

There is a vast literature on algorithms for NMF and their convergence properties
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[28]. The commonly adopted NMF algorithms are – (i) the easy to implement Mul-

tiplicative Update (MU) [50] (ii) Hierarchical Alternative Least Squares algorithm

(HALS)[10] (iii) Sophisticated fast converging block principal pivot (BPP) [30] (iv)

Stochastic Gradient Descent (SGD) Updates [17]. As described in Equation 40, most

of the algorithms in NMF literature are based on Alternating Non-negative Least

Squares (ANLS) scheme that iteratively optimizes each of the low rank factors W

and H while keeping the other fixed. It is important to note that in such iterative

alternating minimization technique, each subproblem is a constrained convex opti-

mization problem. Each of this sub problems is then solved using standard optimiza-

tion techniques such as projected gradient, interior point etc., and detailed survey for

solving this constrained convex optimization problem can be found in [52][28]. In this

chapter, for solving the sub problem, we use a fast active-set based method called

Block Principal Pivoting(BPP) [30].

Recently with the advent of large scale internet data and interest in Big Data,

researchers have started studying scalability of many foundational machine learn-

ing algorithms. In this direction, it is important to study low rank approximation

methods in a data-distributed environment and specifically in the current state of

high performance computing (HPC). For example, in many large scale scenarios, data

samples are collected and stored over many general purpose computers. Local com-

putation is preferred as local access of data is generally faster than remote access due

to network latency and network bandwidth. It may appear that it is being achieved

using Hadoop, where computations happen with the locally available data. However,

the NMF algorithm on Hadoop have the tendency to perform a very costly input data

shuffle between the machines by assigning the keys to the dataset. For example., the

key could be row number for each row of the input matrix. Sometimes, this is very

expensive for dense input matrices.

In another situation where privacy is an issue, organizations may be reluctant to
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share their own data while they still want to build good models using other organi-

zations’ data. For example, blood samples, images, finger prints, health diagnosis,

and DNA samples are considered sensitive and private. In such realistic scenarios,

communicating the original data with a central resource or between resources is dis-

couraged. This work aims to propose an NMF algorithm that could work with data

residing distributively over a connected network (e.g. a cluster). In the current state

of the art Hadoop based distributed NMF algorithm, the algorithm is insensitive to

the distribution of input matrix based on keys and there is a high chance that data

may be placed in an unintended machine. As the name suggests, the proposed Com-

munication Avoiding NMF(CANMF) algorithm does not communicate the original

data A, the left low rank factor W among machines in the network and communicates

only a portion of one of the right low rank factor H to the adjacent machine.

As datasets are getting bigger and bigger, data mining algorithms also need to

take into account the ability to handle large scale datasets, and the computations

are often carried out in a distributed manner. Most of the NMF algorithms involve

multiplication or decomposition of matrices which can be very expensive for large

and distributed matrices. This is especially true in HPC settings where one has to

not only compute but also communicate these matrices over the computing nodes.

The idea proposed in this work is that one could use independent blocks of the data

matrix A to update separated blocks of W and H in parallel using Block Principal

Pivot (BPP) method.

According to the ANLS Framework, first partition the variables of the NMF prob-

lem into two blocks W and H. Then solve the following equations iteratively until a

stopping criteria is satisfied.

W← argmin
W>0

∥∥A−WHT
∥∥2
F
,

H← argmin
H>0

∥∥A−WHT
∥∥2
F
.

(30)
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The optimization sub-problem for W and H are essentially non-negativity constrained

least squares (NLS) which could be solved by a number of methods from generic con-

strained convex optimization to active-set methods. For the proposed CANMF algo-

rithm in this chapter, we use the sophisticated block principal pivoting [30] method

to solve the non-negative least squares problem.

4.1.1 Naively Parallel BPP (NBPP):

The NLS problem with multiple right-hand sides could be parallelized on the observa-

tion that the problems for multiple right-hand sides are independent from each other.

That is, one could solve several instances of Eq. (10) independently for different b

where C is fixed. This observation suggests that one could optimize row blocks of

W and H in parallel. Let us divide W and H into row blocks W1, . . . ,WP and

H1, . . . ,HP , respectively. The data matrix A is then double-partitioned accordingly

into row blocks A1, . . . ,AP and column blocks A1, . . . ,AP (see Figure 11). With

these partitions of the data and the variables, one could implement the BPP algorithm

in parallel (see Figure 12). However, one clear disadvantage of the naively parallel

BPP algorithm is that the factor matrices need to be broadcasted to all machines to

update the next alternating factor (like MPI ALLGATHER1). This increases the

communication cost to O((m+n)klogP ) since all machines need the most up-to-date

value of the factor matrices. This communication cost with out loss of generality is

applicable to ANLS based iterative NMF algorithms such as multiplicative update,

hierarchical alternating least squares etc. Typically to avoid network congestion, we

assume, every process takes its turn to broadcast. In the next subsection, we will

discuss an idea that allows one to avoid this communication bottleneck.

1On completion of this MPI routine, all the nodes will have everyone’s data.
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Figure 11: Data & variables partition for parallel BPP.

Input: A ∈ Rm×n, k � min(m,n). A is double-partitioned into row blocks
A1, . . . ,AP and column blocks A1, . . . ,AP over P processors.
1. (parallel) Initialize Hi’s.
2. Loop t = 1, 2, . . .
2.1. (parallel) Update Wi ← argmin

Wi>0
fAi(Wi,H).

2.2. Concatenate Wi’s into W and broadcast.
2.3. (parallel) Update Hi ← argmin

H>0
fAi(W,Hi).

2.4. Concatenate Hi’s into H and broadcast.

Figure 12: Naively parallel BPP.

4.1.2 Communication Avoiding NMF (CANMF)

In high performance computing settings where the data are often split and reside in

different machines, only a block of A is available for each processor. Let us look at the

update of the factor matrices in each machine. Figure 13 shows that for a given data

block A∗J (assume column partition), the corresponding block HJ∗ can be updated
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via the optimization problem

HJ∗ ← argmin
HJ∗>0

∥∥A∗J −WHT
J∗
∥∥2
F
. (31a)

Similarly, the block WI∗ could be updated if the corresponding row block AI∗ is

available in the machine as

WI∗ ← argmin
WI∗>0

∥∥AI∗ −WI∗H
T
∥∥2
F
. (31b)

Both updates use the full data blocks A∗J and AI∗ available in the machine. As

a result, these updates require the full factor matrix W to be sent to all machines

that are going to update its H’s blocks. Similarly, in case the machines are going to

update W’s blocks, they will need the full matrix H.

The main bottle neck in implementing parallel alternating NMF algorithms is

thus the communication of the factor matrices. In [31], the authors proposed using

a subset of rows or columns of the original matrix to improve the performance of

BPP. In order to proceed, we also propose to use only a sub-block AI,J of A∗J or

AI∗ to optimize the corresponding sub-blocks WI∗ and HJ∗ (see Figure 13). The

optimization problems become

HJ∗ ← argmin
HJ∗>0

∥∥AI,J −WI∗H
T
J∗
∥∥2
F
, (32a)

WI∗ ← argmin
WI∗>0

∥∥AI,J −WI∗H
T
J∗
∥∥2
F
. (32b)

The advantages of this update scheme are two fold

• The sub-problems are smaller. Each machine uses a sub-block AI,J instead of

full column or full row blocks A∗J ,AI∗.
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Figure 13: Communication Avoiding NMF

• Each machine only needs a block of the factor matrices to optimize the other

factor matrix’s block. The communication cost among processors is expected

to be reduced significantly especially when the data is large.

4.1.2.1 Large sample justification for CANMF

Let us consider the update of a column h of HT
J∗ in Eq. (32a). We would like that

the solution from this update is close to the solution that uses the whole matrix W

and the corresponding column a of A∗J in Eq (31a).

Denote fW,a(h) = 1
2len(a)

‖Wh − a‖22, where len(a) is the length of a and denote

hI = arg minh>0 fWI∗,aI (h) the minimum for Eq. (32a) and h∗ = arg minh>0 fW,a(h)

the minimum for Eq. (31a).

Let P be the uniform distribution on the row indices {1, 2, . . . ,m}. We have that
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the set of indices I is drawn identically and independently from P and

fW,a(h) = Ei∼P [fWi∗,ai(h)]

If fWi∗,ai(h) is bounded (which is the case in the experiments performed in Section

5.5), for a given ε > 0, by Hoeffding inequality, with high probability 1 − δ(ε) =

1− 2 exp {−O(cardinality(I)2ε2)}, we have

|fWI∗,aI (h)− Ei∼P [fWi∗,ai(h)]| 6 ε,∀h.

From the optimality of hI and h∗, we have

fWI∗,aI (h
I) 6 fWI∗,aI (h

∗)

⇒ fW,a(h∗) 6 fW,a(hI) 6 fW,a(h∗) + 2ε

(33)

If W has full column rank then by strong convexity and optimality of h∗,

fW,a(hI) > fW,a(h∗) +
σmin(W)

2
‖hI − h∗‖22

⇒ ‖hI − h∗‖22 6
4ε

σmin(W)
,

(34)

where σmin(W) is the smallest positive singular value of W. Therefore, the sub-block

based update hI is close to the original update h∗ with high probability when the

smallest singular value of W is relatively large, i.e., when W is well conditioned.

4.2 Distributed Implementation

We now have the necessary tools to construct the new NMF algorithm, Communica-

tion Avoiding NMF. The sub-block update discussed in the previous section allows

us to exploit the structure of the matrix factorization problem to derive a Commu-

nication Avoiding NMF algorithm. The idea is to choose a set of independent blocks
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of the data matrix A so that each machine could use a block of data and update

the corresponding blocks of the factor matrices W,H independently in a distributed

manner. After all the machines have updated its blocks variables, they could commu-

nicate theirs blocks of variables to other machines. This effectively forces a different

set of independent blocks of the data matrix A to be used in the next iteration. In

this section, we will discuss the distributed implementation of CANMF algorithm

components: initialization, computation of W,H’s blocks, and communication.

Let us assume that each machine only keeps a row block of the data A, denote

Ai the block of the i-th machine, i = 1, . . . , P . We also split the variables in W

and H each into P blocks W1, . . . ,WP and H1, . . . ,HP (See Figure 14 for initial

configuration). The blocks Ai are also split accordingly into Ai1, . . . ,AiP . In the

first iteration, the i-th machine will manage Wi and Hi.

4.2.1 Initialization

One could initialize W and H distributively across all machines. In our implementa-

tion, we initialize W and H elements uniformly random in [0, 1]. As the blocks are

split among machines, we initialize the random seed taking into account the indices

of the machines to avoid using the same seed value in all machines. In particular, we

use the following C++ command

srand( time(NULL) ^ (rank+1} );

where rank is the 0-based index of the machine. It should be noted that we only

need to initialize either W or H depending on the update order of the alternating

algorithm. In particular, if H is updated before W then W should be initialized.

Otherwise, H should be initialized.

4.2.2 Computation of W and H blocks

During the execution of the algorithm, each machine is responsible for a block in W

and a block in H. Denote ri and ci the indices of W and H’s blocks that the i-th
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Figure 14: Initial configuration: (*) indicate the data blocks involved in the
initial iteration, colours distinguish the different machines’ data and vari-
ables.
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Figure 15: Next configuration: (*) indicate the used data blocks, colors
distinguish the machines’ data and variables. M1 manages W1 and H3,M2

manages W2 and H1, M3 manages W3 and H2.
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machine is currently managing. The computation carried out in the i-th machine is

the alternating update of Wri and Hci as follows

Hci ← argmin
Hci>0

∥∥Ari,ci −WriH
T
ci

∥∥2
F
, (35a)

Wri ← argmin
Wri>0

∥∥Ari,ci −WriH
T
ci

∥∥2
F
. (35b)

where Ari,ci is the corresponding data block (see Figure 14). At this point, it is

very tempting to apply BPP on the current data block Ari,ci to find Wri and Hci .

However, the optimality of BPP means that all previous computation efforts using

other data blocks are ignored. Therefore, we propose a dampening update as follows

Hci ← αH′ci + (1− α)Hci , (36a)

Wri ← αW′
ri

+ (1− α)Wri , (36b)

where W′
ci

and H′ci are the solutions returned by BPP. We choose step size α in

the form t−1/β with β > 2 and t is the current iteration number. This guarantees

a diminishing step size while the sum of all step sizes approaches infinity when the

iteration number is large.

In the first iteration, the algorithm would use only the diagonal blocks of the data

matrix A. As discussed below, in all iterations, although only P blocks of A are used,

all blocks of W and H are updated in parallel.

4.2.3 Communication

4.2.3.1 Cyclic updates

After each machine has updated its blocks Wri and Hci , there are two choices to

proceed

• Keeping alternating between Wri and Hci to further optimize these blocks.
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• Sending either Wri or Hci to other machines so that other machines could

update their block of variable with new information.

Obviously, the first choice will only utilize the same blocks of data matrix A over

and over again and no new block of data is introduced into the optimization process.

At a certain point, a machine has to communicate its block of variables to other

machines so that the data matrix A is gradually fully utilized. When every machine

communicates its block to another machine and uses the received block to update its

variables, one has used the Jacobi iterative method where each block is updated using

the currently available variables not the most up-to-date ones as in the Gauss-Seidel

method.

Inspired by the parallel Jacobi methods in [41, 42], we propose that each machine

would send the Hci blocks to the next machine in a cyclic manner as follows

Mi

Hci→ Mi+1,MP

HcP→ M1

whereMi is the i-th machine, i = 1, . . . , P − 1. In other words, if we use superscript

t to denote the iteration number then we have

c
(t+1)
i+1 = c

(t)
i , c

(t+1)
1 = c

(t)
P ,

r
(t+1)
i = r

(t)
i , i = 1, . . . , P.

(37)

The W’s blocks remain unmoved because each machine only has the corresponding

row block of A. In the next iteration, as each machine will manage its new blocks

and would use a different data block to carry out its computation (see Figure 15). As

seen in the figure, the next set of data blocks is a new set of independent blocks. This

allows all machines to update its blocks of variables independently of other machines

in a distributed manner.

66



Input: A ∈ Rm×n, k � min(m,n) and P machines Mi, i = 1, . . . , P . A is split into
row blocks A1, . . . ,AP .
1. (parallel) Initialize ri = ci = i, ∀i.
2. (parallel) Initialize Wi,Hi uniformly random from [0, 1] using different seed in
each machine.
3. Loop t = 1, 2, . . .
3.1. (parallel) Find Wri ,Hci with Eq. (35) as W′

ri
,H′ci .

3.2. (parallel) Update Wri ← αW′
ri

+ (1− α)Wri

3.3. (parallel) Update Hci ← αH′ci + (1− α)Hci

3.4. (parallel) if mod (t, P ) 6= 0, send Hci from Mi to Mi+1, i = 1, . . . , P − 1, send
HcP from MP to M1. Update ci with Eq. (37).
3.5. (parallel) if mod (t, P ) = 0, generate a random permutation π and send Hci

from Mi to Mπi , i = 1, . . . , P . Update ci accordingly.

Figure 16: Communication Avoiding NMF.

4.2.3.2 Communication overhead

The communication cost of each iteration of CANMF is only O(nk/P ) because each

machine sends and receives 1 block from the adjacent machine, all in parallel. This

is a clear improvement compared to the overhead of naive parallel implementation

that required an MPI ALLGATHER for the low rank factors. Furthermore, as

one is always able to make n < m (transpose A if necessary), we can make the

communication cost even smaller. The CANMF algorithm is summarized in Figure

16. Note that, when we send Hci from a machine to another, we update ci accordingly.

In Section 5.5, as part of the scalability experiments, we show the advantage of

CANMF’s communication cost.

One of the important challenge in the CANMF algorithm is determining the pa-

rameter α. Since each sub problem in Eq. (35), is constrained convex problem

determining α becomes simple. We define α as 1

t
1
α

. We ran the algorithm with an

initial α, say 1√
t

and determined the α that gave maximum error reduction between

two successive iterations.
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4.3 Experiments

In the data mining and machine learning community, there had been a large interest

in using Hadoop for large scale implementation. Hadoop does lots of disk I/O and

was designed for processing gigantic text files. Many of the real world data sets that

is available for research are large scale sparse internet text data such as bag of words,

recommender systems, social networks etc. Towards this end, there had been interest

towards Hadoop implementation of matrix factorization algorithm [17, 39, 37]. How-

ever, the use of NMF is beyond the sparse internet data and also applicable for dense

real world data such as video, image etc. Hence in order to keep our implementation

applicable to wider audience, we chose MPI for distributed implementation. Apart

from the application point of view, we decided MPI C++ implementation for other

technical advantages that is necessary for scientific application such as (1) it can lever-

age the recent hardware improvements (2) effective communication between nodes (3)

availability of numerically stable BLAS and LAPACK routines etc. We identified a

few synthetic and real world datasets to experiment with our MPI implementation

and a few baselines to compare our performance.

4.3.1 Datasets

We used sparse and dense matrices that are synthetically generated and from real

world. We will explain the datasets in this section.

• Dense Synthetic Matrix(DSYN): We generated two uniform matrices of size

100000x100 and 100x50000. We multiplied these two matrices that yielded a

dense matrix of size 100000x50000 and added standard gaussian noise.

• Sparse Synthetic Matrix (SSYN): We used Matlab’s sprandn generator to gener-

ate a sparse matrix of size

200000x100000 with density of 0.1. We shifted the matrix to construct a non-

negative matrix.
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• Dense Real World data(Video): Generally, NMF is performed in the video data

for back ground subtraction to detect the moving objects. The low rank matrix

Â ≈WHT represents background and the error matrix A− Â has the moving

objects. Detecting moving objects find many applications in real world such

as traffic estimation, security monitoring etc. In the case of detecting moving

objects, only the last minute or two video is taken from the live video camera.

The algorithm to incrementally adjust the NMF based on the new streaming

video is presented in [28]. To simulate this scenario, we collected a video in a

busy intersection of our campus at 20 frames per second for two minutes. We

then reshaped the matrix such that every RGB frame is a column of our matrix,

such matrix was dense of size 1.3 million x 2400.

• Sparse Real World data (Wiki): We collected 810678 documents written in

English from wikipedia excluding any meta pages like disambiguation pages.

There were totally 1395551 distinct terms across all these documents. From

this original unprocessed term-document matrix, we discarded words that ap-

peared less than 3 times and documents containing less than five words. After

this preprocessing, the matrix reduced to 387086x736048, where columns were

documents and rows were vocabulary. We computed the tf-idf of this matrix

and used it for experiments. In the entire experimentation section other than

scalability results, sparse real world data means this specific data set.

• Sparse Real World data Webbase : To understand the scalability of the CANMF

algorithm, we identified this dataset of a very large directed sparse graph with

near 118 million nodes (118,142,155) with nearly 1 billion edges (1,019,903,190).

The dataset was first reported by Boldi and Vigna [4]. We use the matrix market

sparse representation for this graph only for conducting the scalability experi-

ment on a cluster.
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We compare our proposed algorithm CANMF on the above explained datasets

using the following baselines.

4.3.2 Baselines

The objective of this experimentation is to empirically understand our Large Sample

Justification explained in Section 4.1.2.1. That is., understand how good are the low

rank factors W and H generated by our algorithm CANMF. Hence, we compare the

relative residual error
‖A−WHT‖F
‖A‖F

against the carefully chosen baselines.

For baselines we wanted to use the state of the art distributed NMF algorithms.

However all the distributed NMF algorithms were designed for sparse matrices. When

we converted our dense matrix of size 35GB to sparse matrix coordinate format, the

size of the matrix file was blown up to terabytes. We tested the Hadoop based MU

implementation on a small dense matrix of size 2000x2000. Every iteration of MU on

Hadoop involves 6 steps and each of these steps was writing almost the size of matrix

into the HDFS. Because of these huge I/O operation even a small matrix was taking

like 9 minutes to complete one iteration. This made running these experiments almost

impossible for large dense matrices. Hadoop implementations are suitable for very

large sparse matrices to run on sophisticated massive Hadoop cluster. Also, when

we carefully analyzed the algorithm, we could understand that the state of the art

distributed scalable NMF algorithms were classical algorithm with each individual

matrix operations tuned to run distributively in Hadoop. That is., we could very

well compare the quality of our algorithm against classical NMF algorithms instead

of using the Hadoop implementation. Also, using these implementation for sparse

matrices had different challenges. Some of these algorithms considered the zero values

as unobserved for supporting recommender systems rating matrix. Considering these

reasons, we choose the following baselines implemented in C++.
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4.3.2.1 Multiplicate Update(MU)

Until the stopping criteria is satisfied, update H and W using the most recent H and

W as follows:

wij ← wij
(AH)ij

(WHTH)ij

hij ← hij
(ATW)ij

(HWTW)ij

4.3.2.2 Hierarchical Alternating Least Squares(HALS)

The objective function for HALS can be explained as follows

f(w1, . . . ,wk,h1, . . . ,hk) =

∥∥∥∥∥A−
k∑
j=1

wjh
T
j

∥∥∥∥∥
2

F

, (38)

where W = [w1, . . . ,wk] ∈ Rm×k and H = [h1, . . . ,hk] ∈ Rn×k. Eq. (38) shows A

is approximated by sum of k rank-one matrices. Following the BCD framework, we

can minimize f by iteratively solving until stopping criteria

wi = argmin
wi>0

f(w1, . . . ,wk,h1, . . . ,hk),

hi = argmin
hi>0

f(w1, . . . ,wk,h1, . . . ,hk),

for i = 1, 2, . . . , k.

Additionally we chose the Naive Parallel BPP (NBPP) explained in Section 2.2.1.

The above C++ baselines are implemented to run on standalone shared memory

systems. Hence comparing the wall clock time of the baselines MU and HALS

with the distributed implementation of NBPP is unfair. However, we compare the

communication and compute time and the speed up of the two distributed algorithm

NBPP and CANMF run on same environment are presented in Table 8, Figure 21

and 20. We compared the CANMF relative residual error against MU, HALS and
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NBPP for sparse synthetic dataset, dense synthetic dataset, dense video data and

sparse text data for different low rank k.

4.3.2.3 Scalability Experiment

We wanted to study the scalability of our algorithm on all the datasets. We swept the

number of MPI processes from 1 to 30 in step size of 5. For this scalability study, we

considered the matrix is already available in the main memory and ignored the disk

access time. For example, in the case of C++ implementation, loading a 35GB dense

matrix file into the memory as float array approximately took 2800 seconds that was

nearly 4/5 of the total time.

4.3.3 Initialization

To ensure fair comparison among algorithms, the same random seed was used across

different methods appropriately. For example., the initial random matrix W and H

was generated with the same random seed when testing with different algorithms.

It is important to note that only one of the two matrices W and H, required to be

initialized. This ensures, all the algorithm are started with the same initializations.

Similarly, for generating the synthetic input matrix A, same random seed was used.

4.3.4 Experimental machines

We experimented the code in two different setup. A very large shared memory multi

core system and a cluster of distributed memory of small systems. In the case of former

shared memory system, it is a quad socket machine where each socket is mounted

with Intel(R) Xeon(R) CPU E7- 8870 processor. Each processor has 10 cores totally

making 40 cores available for the conducting the experiments and this machine had

256GB of memory. In the case of distributed memory, the cluster consists of 40

compute nodes, 32 of which are Intel architecture and 8 of which are AMD 64 bit

architecture. These nodes are networked together via gigabit ethernet with a frontend
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node for control. Each machine has 8 cores and 24GB of memory. We used this cluster

for running the sparse real world webbase dataset. The rest of the experiments were

conducted on shared memory multicore system.

4.3.5 Observation

The graphs of relative error over iterations and low rank k for dense synthetic, sparse

synthetic, dense real world and sparse real world are presented in Figure 17,18,19

and 6 respectively. It is very important to define the iteration for CANMF at this

juncture. For CANMF algorithm, one iteration defines solving H in parallel for one

configuration as explained in Figure 14. That means the reported error is obtained

by seeing only 1
P

portion of the data.

Also, to begin with, we evaluate the quality of our proposed algorithm CANMF

with a set of baselines explained above. Evaluating the goodness of a low rank ap-

proximation has a lower bound of at least O(mn). That is., we have to see all the

entries in the low rank matrix Â = WH. In our case., it is O(mnk), the time for

multiplying the two low rank matrix W and H. This is prohibitively expensive to

evaluate the goodness of the low rank approximation for very large matrix. Recall,

for all practical applications, even though the input matrix A is sparse, the low rank

factors W and H are generally dense and will result in a dense low rank approx-

imation which also takes up huge memory in space O(mn). It is also difficult to

obtain information such as qualitative labels for evaluating the goodness of low rank

approximation. Hence for evaluating the quality of our proposed CANMF algorithm,

we chose a large synthetic matrix of size 100,000 x 50,000, a large dense and sparse

real world data. In the case of very large real world datasets webbase, we present only

the scalability results. We will discuss each of this observation over different datasets

in detail.
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Figure 17: Relative Error Comparison of CANMF with Baselines – Dense Synthetic
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Figure 18: Relative Error Comparison of CANMF with Baselines –Sparse Synthetic
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Figure 19: Relative Error Comparison of CANMF with Baselines – Video Realworld
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4.3.6 Relative Error

In the case of dense synthetic dataset, we chose the low rank k = 50 and we used

40 MPI processes for NBPP and CANMF. The relative error of the four algorithms

MU, HALS, NBPP and CANMF are presented in Figure 17 by running for 50

iterations. From the experiments, we observe that the improvement in error over

iterations of MU was really slow. Even though HALS, started with higher error,

it’s relative error was much better than MU over iterations. HALS surpassed MU’s

relative error in as low as 10 iterations. NBPP was better than MU and HALS

in all the iterations. Even though CANMF started with a slightly higher rate, it

was fast to match with NBPP and produced a similar result over 50 iterations. As

explained before, this difference was mainly because of percentage of data coverage

for CANMF is different from NBPP. That is, CANMF sees all the data once only

after 40 iterations when we use 40 MPI processes. However NBPP sees all the data

for every iteration and would have seen the entire data for 40 times at the end of 40

iterations. For, CANMF, it took 50 iterations to achieve the error of 0.007 that was

achieved by NBPP in 15 iterations. At the end of the 50 iterations, the relative error

of MU, HALS, NBPP and CANMF, where 0.13034, 0.06279, 0.00712 and 0.00787

respective. Even though CANMF’s relative error was slightly more than NBPP,

this difference is observable only for higher low rank k. In low k’s such as 10 and

20, after 50 iterations CANMF was equally as good as NBPP. It is important to

understand that, in the case of matrices with completely known entries, higher the k,

better the relative error. Our proposed algorithm CANMF, reflected this fact and it

performed better over higher k’s over MU and HALS. For eg., in the case of low rank

10, the difference of relative error between CANMF - MU was 0.09. This margin

increased with higher k. That is., at low rank 50, this difference between CANMF

and MU improved to 0.12247. Over all the performance of CANMF was very much

similar with NBPP even though the speed up of CANMF was much superior over
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NBPP. That is., the quality of CANMF was not compromised for better speed up.

In the case of sparse matrices, one of the major challenge for the CANMF algo-

rithm is introduction of zero rows and columns in a particular block. For example,

the sub block of the sparse input matrix AI,J in Equation (32) can have zero rows

or columns even though there need not be one in AI,∗ or A∗,J . To over come this

problem, we chose to solve only the sub block with non-zero rows and columns. That

is.,

H′J∗ ← argmin
H′J∗>0

∥∥∥A′I,J −WI∗H
T ′

J∗

∥∥∥2
F
,

W′
I∗ ← argmin

W′
I∗>0

∥∥A′I,J −W′
I∗H

T
J∗
∥∥2
F
.

(39)

where, A′I,J is a sub block of AI,J , that is without zero columns for H′J∗ and zero

rows for W′
I∗ and use this to update the corresponding rows of HJ∗ and W∗I . With

this modification CANMF ran seamlessly for very large sparse matrices. As shown in

the Figure 18 and 6 for synthetic and real world data respectively, the performance of

HALS and NBPP with relative error over number of iterations was almost similar to

that of dense matrix. However CANMF’s, behavior was different from dense. In the

case of CANMF, this behavior is attributed to the zero rows and columns that gets

introduced in the sub block of A′I,J and for every iteration, the CANMF processes only

1
P

really sparse portion of the data when ran with P distributed processes. CANMF

surpasses HALS and matches with NBPP after two or more times of completely

visiting the data. After 50 iterations over 40 MPI processes the relative error of MU,

HALS, NBPP and CANMF on synthetic data were 0.30461, 0.20672, 0.00810 and

0.01967 respectively. With respect to low rank k, as opposed to dense, in the case of

sparse all the four algorithms had a similar behavior with respect to relative error.

This is because of the fact that with higher low rank k, we have more degrees of

freedom to closely approximate with the more zero entries and less non-zero entries.
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Table 8: Error Vs Time

NBPP CANMF
Dataset Rel.Err Compute Comm Rel.Err Compute Comm
DSYN 0.0292 239.10 99.75 0.0299 46.54 4.415
SSYN 0.5139 258.54 91.38 0.5188 225.10 16.07
Video 0.0972 366.97 449.77 0.1329 445.50 64.88
Wiki 0.5188 1774.23 489.55 1.2129 99.43 51.28

Finally, the behavior of the relative error over iterations and the low rank k on real

world video dataset as shown in Figure 19 was almost similar to the dense synthetic

dataset.

In all the datasets, that we experimented CANMF was more accurate than MU

and HALS and almost matched NBPP after few iterations over all low rank k.

Also the running time and scalability of CANMF was far superior over NBPP.

Even though in some cases of the presented results, NBPP is more accurate than

CANMF , in few of our experiments on dense dataset, we observed that CANMF

achieved the same error with little more iterations than NBPP, which took much

lesser clock time than NBPP over same number of parallel processes P .

4.3.7 Scalability

To appreciate the difference in scalability between sparse and dense matrix, it is

important to understand the computational complexity of BPP algorithm. The BPP

requires the computation of four matrix matrix products once and a bunch of least

squares for each iteration. The matrix matrix multiplication or level-3 BLAS cost is

O(mkn+ k2m) and the time spent to find the solution of length k and we are solving

for m NNLS vectors for W and n NNLS vectors for H. Each iteration of the active

set method requires at most a k×k Cholesky decomposition and two k×k triangular

solves.
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Figure 21: Average Communication Time Per Iteration

The difference between sparse and dense matrices lies in the matrix-matrix multi-

plication. To be more specific the the sparse input matrix A and one of the low rank

factors W or H which takes only O(m ·nnz(A)), that reduces to quadratic from cubic

for dense. All the rest of the computation, mainly the low rank factor’s inner prod-

ucts ( WTW and HTH) and the active set based NNLS remain the same between

sparse and dense input matrix. When the complexity of solving the active set NNLS

is more than the complexity of the sparse-dense matrix multiplication(SPMM), the

characteristics of speed up will be similar to dense with an over all reduced running

time.

We present the improvement in communication of our proposed CANMF over

the baseline NBPP in Figure 21. We averaged the communication time over 50

iterations for NBPP and CANMF by sweeping number of MPI processes from 5 to

30 in steps of 5. Since the size of the low rank factors are same in both the sparse

and dense matrix, we conducted this experiment only on dense synthetic dataset.

We can observe that, for NBPP, the communication time increases with increase in

number of processes P and in the case of CANMF decreased with increases in P .

Even though the matrix size gets smaller with increase in P , the communication gain
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in CANMF has a diminishing advantage. This is due to the latency in MPI Send

and Receive calls. Generally, in our experiments, we found the collective MPI calls

such as MPI BROADCAST and MPI ALLGATHER are more communication

effective over non blocking MPI SEND and MPI RECEIV E. Inspite of these

observations, the gains of CANMF is more pronounced over NBPP as P increases.

Similarly, we studied the cost benefits of the proposed CANMF against the base-

line NBPP on all the datasets. For this experiment, we ran both CANMF and NBPP

on all datasets over 20 MPI processes with the low rank k = 30 for 50 iterations. and

show the error, communication and compute time after 50 iterations in Table 8. In

the case of both large real world dense and sparse datasets, CANMF demonstrated

significant reduction in both compute and communication cost over baseline NBPP.

Finally, we would like to present the scalability result of very large sparse real

world matrix webbase on distributed cluster. We collected both the running time and

communication time by varying the number of distributed processes for a low rank

k = 50 over 5 iterations. The reason for choosing lower iterations is for determining

speedup of the CANMF algorithm on distributed cluster. We have to run with

only one process for the webbase dataset which took almost one complete day for

running 5 iterations. Also, we know that the running time of the algorithm is linear

over number of iterations and the behavior will not be much of a difference with

running over more iterations. Similarly, we also collected the communication cost

by varying the low rank k, with 200 distributed processes. The results of both of

these experiments are presented in Figure 20. In the case of very large sparse matrix,

we achieved a linear speedup and the advantage started diminishing by introducing

more and more processes. The communication cost of the CANMF algorithm is

O(nk/P ), that is for a given low rank k, as the number of processes increases, the

communication time of the algorithm must reduce. According to Figure 20, we could

validate that for the given low rank k = 50, the communication cost was linearly
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reducing over the number of processes. Similarly, for a given P = 200, as we increase

the low rank k, the both the communication and the total running time was increasing

almost linearly.

Experimentally, we could validate that CANMF is most sophisticated distributed

NMF algorithm considering the relative error and the overall running time of the

algorithm for both the sparse and dense datasets.

In this chapter, we presented a new distributed algorithm for Nonnegative Matrix

Factorization called CANMF. The algorithm partitions the data matrix and the fac-

tor matrices into blocks then optimizes parallely in different machines. The CANMF

algorithm utilizes a communication scheme that avoids the communication bottleneck

in naively parallel implementation of alternating NMF methods. The communication

cost of CANMF is O(nk/P ) an improvement over O((m+ n)klogP ) for naive imple-

mentation. The CANMF algorithm performs well qualitatively and computationally

for both sparse and dense matrices. Apart from these benefits, it also ensures pre-

serving privacy, where the input data from one machine will not be shared to either

a central server or other machines in the cluster.
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CHAPTER V

HIGH PERFORMANCE COMPUTING NON-NEGATIVE

MATRIX FACTORIZATION

In this chapter, we propose a high-performance distributed-memory parallel algo-

rithm that computes the factorization by iteratively solving alternating non-negative

least squares (NLS) subproblems for W and H. It maintains the data and factor

matrices in memory (distributed across processors), uses MPI for interprocessor com-

munication, and, in the dense case, provably minimizes communication costs (under

mild assumptions). As opposed to previous implementations, our algorithm is also

flexible: (1) it performs well for both dense and sparse matrices, and (2) it allows the

user to choose any one of the multiple algorithms for solving the updates to low rank

factors W and H within the alternating iterations. We demonstrate the scalability

of our algorithm and compare it with baseline implementations, showing significant

performance improvements.

Recently with the advent of large scale internet data and interest in Big Data,

researchers have started studying scalability of many foundational machine learning

algorithms. To illustrate the dimension of matrices commonly used in the machine

learning community, we present a few examples. Nowadays the adjacency matrix of

a billion-node social network is common. In the matrix representation of a video

data, every frame contains three matrices for each RGB color, which is reshaped into

a column. Thus in the case of a 4K video, every frame will take approximately 27

million rows (4096 row pixels x 2196 column pixels x 3 colors). Similarly, the popular

representation of documents in text mining is a bag-of-words matrix, where the rows

are the dictionary and the columns are the documents (e.g., webpages). Each entry
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Aij in the bag-of-words matrix is generally the frequency count of the word i in the

document j. Typically with the explosion of the new terms in social media, the

number of words spans to millions.

To handle such high dimensional matrices, it is important to study low rank

approximation methods in a data-distributed environment. For example, in many

large scale scenarios, data samples are collected and stored over many general purpose

computers, as the set of samples is too large to store on a single machine. In this

case, the computation must also be distributed across processors. Local computation

is preferred as local access of data is much faster than remote access due to the costs

of interprocessor communication. However, for low rank approximation algorithms,

like MU, HALS, and BPP, some communication is necessary.

The simplest way to organize these distributed computations on large data sets

is through a MapReduce framework like Hadoop, but this simplicity comes at the

expense of performance. In particular, most MapReduce frameworks require data to

be read from and written to disk at every iteration, and they involve communication-

intensive global, input-data shuffles across machines.

In this work, we present a much more efficient algorithm and implementation

using tools from the field of High-Performance Computing (HPC). We maintain data

in memory (distributed across processors), take advantage of optimized libraries for

local computational routines, and use the Message Passing Interface (MPI) standard

to organize interprocessor communication. The current trend for high-performance

computers is that available parallelism (and therefore aggregate computational rate) is

increasing much more quickly than improvements in network bandwidth and latency.

This trend implies that the relative cost of communication (compared to computation)

is increasing.

To address this challenge, we analyze algorithms in terms of both their computa-

tion and communication costs. The two major tasks of the NMF algorithm are (a)
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performing matrix multiplications and (b) solving many Non-negative Least Squares

(NLS) subproblems. In this chapter, we use a carefully chosen data distribution in

order to use a communication-optimal algorithm for each of the matrix multiplica-

tions, while at the same time exploiting the parallelism in the NLS problems. In

particular, our proposed algorithm ensures that after the input data is initially read

into memory, it is never communicated; we communicate only the factor matrices

and other smaller temporary matrices among the p processors that participate in

the distributed computation. Furthermore, we prove that in the case of dense in-

put and under the assumption that k 6
√
mn/p, our proposed algorithm minimizes

bandwidth cost (the amount of data communicated between processors) to within a

constant factor of the lower bound. We also reduce latency costs (the number of times

processors communicate with each other) by utilizing MPI collective communication

operations, along with temporary local memory space, performing O(log p) messages

per iteration, the minimum achievable for aggregating global data.

Fairbanks et al. [13] present a parallel NMF algorithm designed for multicore ma-

chines. To demonstrate the importance of minimizing communication, we consider

this approach to parallelizing an alternating NMF algorithm in distributed memory.

While this naive algorithm exploits the natural parallelism available within the al-

ternating iterations (the fact that rows of W and columns of H can be computed

independently), it performs more communication than necessary to set up the inde-

pendent problems. We compare the performance of this algorithm with our proposed

approach to demonstrate the importance of designing algorithms to minimize commu-

nication; that is, simply parallelizing the computation is not sufficient for satisfactory

performance and parallel scalability.

The main contribution of this work is a new, high-performance parallel algorithm

for non-negative matrix factorization. The algorithm is flexible, as it is designed for

both sparse and dense input matrices and can leverage many different algorithms
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for determining the non-negative low rank factors W and H. The algorithm is also

efficient, maintaining data in memory, using MPI collectives for interprocessor com-

munication, and using efficient libraries for local computation. Furthermore, we pro-

vide a theoretical communication cost analysis to show that our algorithm reduces

communication relative to the naive approach, and in the case of dense input, that it

provably minimizes communication. We show with performance experiments that the

algorithm outperforms the naive approach by significant factors, and that it scales

well for up to 100s of processors on both synthetic and real-world data.

5.1 Preliminaries

5.1.1 Communication model

To analyze our algorithms, we use the α-β-γ model of distributed-memory parallel

computation. In this model, interprocessor communication occurs in the form of

messages sent between two processors across a bidirectional link (we assume a fully

connected network). We model the cost of a message of size n words as α + nβ,

where α is the per-message latency cost and β is the per-word bandwidth cost. Each

processor can compute floating point operations (flops) on data that resides in its local

memory; γ is the per-flop computation cost. With this communication model, we can

predict the performance of an algorithm in terms of the number of flops it performs

as well as the number of words and messages it communicates. For simplicity, we

will ignore the possibilities of overlapping computation with communication in our

analysis. For more details on the α-β-γ model, see [51, 6].

5.1.2 MPI collectives

Point-to-point messages can be organized into collective communication operations

that involve more than two processors. MPI provides an interface to the most com-

monly used collectives like broadcast, reduce, and gather, as the algorithms for these
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collectives can be optimized for particular network topologies and processor charac-

teristics. The algorithms we consider use the all-gather, reduce-scatter, and all-reduce

collectives, so we review them here, along with their costs. Our analysis assumes op-

timal collective algorithms are used (see [51, 6]), though our implementation relies on

the underlying MPI implementation.

At the start of an all-gather collective, each of p processors owns data of size n/p.

After the all-gather, each processor owns a copy of the entire data of size n. The

cost of an all-gather is α · log p+ β · p−1
p
n. At the start of a reduce-scatter collective,

each processor owns data of size n. After the reduce-scatter, each processor owns a

subset of the sum over all data, which is of size n/p. (Note that the reduction can be

computed with other associative operators besides addition.) The cost of an reduce-

scatter is α·log p+(β+γ)· p−1
p
n. At the start of an all-reduce collective, each processor

owns data of size n. After the all-reduce, each processor owns a copy of the sum over

all data, which is also of size n. The cost of an all-reduce is 2α · log p+(2β+γ) · p−1
p
n.

Note that the costs of each of the collectives are zero when p = 1.

5.2 Related Work

In the data mining and machine learning literature there is an overlap between low

rank approximations and matrix factorizations due to the nature of applications. De-

spite its name, non-negative matrix “factorization” is really a low rank approximation.

The recent distributed NMF algorithms in the literature are [37, 14, 56, 17, 39].

Liu et al. propose running Multiplicative Update (MU) for KL divergence, squared

loss, and “exponential” loss functions [39]. Matrix multiplication, element-wise mul-

tiplication, and element-wise division are the building blocks of the MU algorithm.

The authors discuss performing these matrix operations effectively in Hadoop for

sparse matrices. Using similar approaches, Liao et al. implement an open source

Hadoop based MU algorithm and study its scalability on large-scale biological data
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sets [37]. Also, Yin, Gao, and Zhang present a scalable NMF that can perform fre-

quent updates, which aim to use the most recently updated data [56]. Gemmula et al.

propose a Generic algorithm that works on different loss functions, often involving the

distributed computation of the gradient [17]. According to the authors, the formula-

tion presented in the paper can also be extended to handle non-negative constraints.

Similarly Faloutsos et al. propose a distributed, scalable method for decomposing

matrices, tensors, and coupled data sets through stochastic gradient descent on a

variety of objective functions [14]. The authors also provide an implementation that

can enforce non-negative constraints on the factor matrices.

We note that Spark [58] is a popular big-data processing infrastructure that is

is generally more efficient for iterative algorithms such as NMF than Hadoop, as it

maintains data in memory and avoids file system I/O. Although Spark has collabo-

rative filtering libraries such as MLlib [46], which use matrix factorization and can

impose non-negativity constraints, none of them implement pure NMF, and so we do

not have a direct comparison against NMF running on Spark. The problem of col-

laborative filtering is different from NMF because non-nonzero entries are treated as

missing values rather than zeroes, and therefore different computations are performed

at each iteration.

Apart from distributed NMF algorithms using Hadoop, there are also implemen-

tations of the MU algorithm in a distributed memory setting using X10 [21] and on

a GPU [45].

5.3 Foundations

In this section, we will introduce the Alternating-Updating NMF (AU-NMF) frame-

work, multiple methods for solving NMF. We also present a straightforward approach

to parallelization of the framework.

87



5.3.1 Alternating-Updating NMF Algorithms

NMF algorithms take a non-negative input matrix A ∈ Rm×n
+ and a low rank k and

determine two non-negative low rank factors W ∈ Rm×k
+ and H ∈ Rk×n

+ such that

A ≈WH. We define Alternating-Updating NMF algorithms as those that alternate

between updating W for a given H and updating H for a given W. In the context

of our parallel framework, we restrict attention to the class of NMF algorithms that

use the Gram matrix associated with a factor matrix and the product of the input

data matrix A with the corresponding factor matrix, as we show in Algorithm 6.

input : A is an m× n matrix, k is rank of approximation
output: W ∈ Rm×k

+ ,H ∈ Rk×n
+

1 Initialize H with a non-negative matrix in Rn×k
+ ;

2 while stopping criteria not satisfied do
3 Update W using HHT and AHT ;
4 Update H using WTW and WTA ;

Algorithm 6: [W,H] = AU-NMF(A, k)

The specifics of lines 3 and 4 depend on the NMF algorithm. In the block coor-

dinate descent framework where two blocks are the unknown factors W and H, we

solve the following subproblems, which have a unique solution for a full rank H and

W:

W← argmin
W̃>0

∥∥∥A− W̃H
∥∥∥
F
,

H← argmin
H̃>0

∥∥∥A−WH̃
∥∥∥
F
.

(40)

Since each subproblem involves nonnegative least squares, this two-block BCD method

is also called the Alternating Non-negative Least Squares (ANLS) method [28]. Block

Principal Pivoting (BPP), discussed more in detail at Section 2.2.1, is an algorithm

that solves these NLS subproblems. In the context of the AU-NMF algorithm, this
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ANLS method maximally reduces the overall NMF objective function value by finding

the optimal solution for given H and W in lines 3 and 4 respectively.

There are other popular NMF algorithms that update the factor matrices alterna-

tively without maximally reducing the objective function value each time, in the same

sense as in ANLS. These updates do not necessarily solve each of the subproblems (40)

to optimality but simply improve the overall objective function (29). Such methods

include Multiplicative Update (MU) [50] and Hierarchical Alternating Least Squares

(HALS) [10], which was also independently proposed as Rank-one Residual Iteration

(RRI) [22]. To show how these methods can fit into the AU-NMF framework, we

discuss them in more detail.

In the case of HALS/RRI, individual columns of W and rows of H are updated

with all other entries in the factor matrices fixed. This approach is a block coordinate

descent method with 2k blocks, set to minimize the function

f(w1, · · · ,wk,h1, · · · ,hk) =

∥∥∥∥∥A−
k∑
i=1

wihi

∥∥∥∥∥
F

, (41)

where wi is the ith column of W and hi is the ith row of H. The update rules can

be written in closed form:

wi ←
[
wi +

(AHT )i −W(HHT )i

(HHT )ii

]
+

,

hi ←
[
hi +

(WTA)i − (WTW)iH

(WTW)ii

]
+

.

(42)

Note that the columns of W and rows of H are updated in order, so that the most up-

to-date values are always used, and these 2k updates can be done in an arbitrary order.

However, if all the W updates are done before H (or vice-versa), the method falls

into the AU-NMF framework. After computing the matrices HHT , AHT , WTW,

and WTA, the extra computation is 2(m+ n)k2 flops for updating both W and H.
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In the case of MU, individual entries of W and H are updated with all other

entries fixed. In this case, the update rules are

wij ← wij
(AHT )ij

(WHHT )ij
,

hij ← hij
(WTA)ij

(WTWH)ij
.

(43)

Instead of performing these (m + n)k in an arbitrary order, if all of W is updated

before H (or vice-versa), this method also follows the AU-NMF framework. The extra

cost of computing W(HHT ) and (WTW)H is 2(m + n)k2 flops to perform updates

for all entries of W and H.

The convergence properties of these different algorithms are discussed in detail by

Kim, He and Park [28]. We emphasize here that both HALS/RRI and MU require

computing Gram matrices and matrix products of the input matrix and each factor

matrix. Therefore, if the update ordering follows the convention of updating all of W

followed by all of H, both methods fit into the AU-NMF framework. Our proposed

parallel algorithm (presented in Section 5.4) can be extended to these methods (or

any other AU-NMF method) with only a change in local computation.

5.3.2 Naive Parallel NMF Algorithm

In this section we present a naive parallelization of NMF algorithms [13]. Each NLS

problem with multiple right-hand sides can be parallelized on the observation that

the problems for multiple right-hand sides are independent from each other. That is,

we can solve several instances of Eq. (10) independently for different b where C is

fixed, which implies that we can optimize row blocks of W and column blocks of H

in parallel.
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Table 9: Leading order algorithmic costs for Naive and HPC-NMF (per iteration).
Note that the computation and memory costs assume the data matrix A is dense,
but the communication costs (words and messages) apply to both dense and sparse
cases.

Algorithm Flops Words Memory

Naive 4 mnk
p

+ (m + n)k2 + CBPP

(
m+n

p
, k
)

O((m + n)k) O
(

mn
p

+ (m + n)k
)

HPC-NMF (m/p > n) 4 mnk
p

+
(m+n)k2

p
+ CBPP

(
m+n

p
, k
)

O(nk) O
(

mn
p

+ mk
p

+ nk
)

HPC-NMF (m/p < n) 4 mnk
p

+
(m+n)k2

p
+ CBPP

(
m+n

p
, k
)

O

(√
mnk2

p

)
O

(
mn
p

+

√
mnk2

p

)

Lower Bound − Ω

(
min

{√
mnk2

p
, nk

})
mn
p

+
(m+n)k

p

Require: A is an m× n matrix distributed both row-wise and

column-wise across p processors, k is rank of approximation

Require: Local matrices: Ai is m/p× n, Ai is m× n/p, Wi is m/p× k,

Hi is k × n/p
1: pi initializes Hi

2: while stopping criteria not satisfied do

/* Compute W given H */

3: collect H on each processor using all-gather

4: pi computes Wi ← SolveBPP(HHT ,AiH
T )

;

/* Compute H given W */

5: collect W on each processor using all-gather

6: pi computes (Hi)T ← SolveBPP(WTW, (WTAi)T )

7:

Ensure: W,H ≈ argmin
W̃>0,H̃>0

‖A− W̃H̃‖

Ensure: W is an m× k matrix distributed row-wise across processors, H

is a k × n matrix distributed column-wise across processors
Algorithm 7: [W,H] = Naive(A, k)

Algorithm 7 presents a straightforward approach to setting up the independent

subproblems. Let us divide W into row blocks W1, . . . ,Wp and H into column

blocks H1, . . . ,Hp. We then double-partition the data matrix A accordingly into row

blocks A1, . . . ,Ap and column blocks A1, . . . ,Ap so that processor i owns both Ai
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Figure 22: Distribution of matrices for Naive (Algorithm 7), for p = 3. Note that Ai

is m/p× n, Ai is m× n/p, Wi is m/pr × k, and Hi is k × n/p.

and Ai (see Figure 22). With these partitions of the data and the variables, one can

implement any ANLS algorithm in parallel, with only one communication step for

each solve.

The computation cost of Algorithm 7 depends on the local NLS algorithm. For

comparison with our proposed algorithm, we assume each processor uses BPP to solve

the local NLS problems. Thus, the computation at line 4 consists of computing AiHT ,

HHT , and solving NLS given the normal equations formulation of rank k for m/p

columns. Likewise, the computation at line 6 consists of computing WTAi, WTW,

and solving NLS for n/p columns. In the dense case, this amounts to 4mnk/p +
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(m + n)k2 + CBPP((m + n)/p, k) flops. In the sparse case, processor i performs

2(nnz(Ai) + nnz(Ai))k flops to compute AiHT and WTAi instead of 4mnk/p.

The communication cost of the all-gathers at lines 3 and 5, based on the expression

given in Section 5.1.2 is α · 2 log p + β · (m + n)k. The local memory requirement

includes storing each processor’s part of matrices A, W, and H. In the case of dense

A, this is 2mn/p+(m+n)k/p words, as A is stored twice; in the sparse case, processor

i requires nnz(Ai)+nnz(Ai) words for the input matrix and (m+n)k/p words for the

output factor matrices. Local memory is also required for storing temporary matrices

W and H of size (m+ n)k words.

We summarize the algorithmic costs of Algorithm 7 in Table 9. This naive algo-

rithm [13] has three main drawbacks: (1) it requires storing two copies of the data

matrix (one in row distribution and one in column distribution) and both full fac-

tor matrices locally, (2) it does not parallelize the computation of HHT and WTW

(each processor computes it redundantly), and (3) as we will see in Section 5.4, it

communicates more data than necessary.

5.4 High Performance Parallel NMF

We present our proposed algorithm, HPC-NMF , as Algorithm 8. The main ideas of

the algorithm are to (1) exploit the independence of NLS problems for rows of W and

columns of H and (2) use communication-optimal matrix multiplication algorithms

to set up the NLS problems. The naive approach (Algorithm 7) shares the first

property, by parallelizing over rows of W and columns of H, but it uses parallel

matrix multiplication algorithms that communicate more data than necessary. The

central intuition for communication-efficient parallel algorithms for computing HHT ,

AHT , WTW, and WTA comes from a classification proposed by Demmel et al. [12].

They consider three cases, depending on the relative sizes of the dimensions of the

matrices and the number of processors; the four multiplies for NMF fall into either
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the “one large dimension” or “two large dimensions” cases. HPC-NMF uses a careful

data distribution in order to use a communication-optimal algorithm for each of the

matrix multiplications, while at the same time exploiting the parallelism in the NLS

problems. For convenience, we use the notation

X← SolveBPP(CTC,CTB)

to define the (local) function for using BPP to solve Eq. (10) for every column of

X. We define CBPP(k, c) as the cost of SolveBPP, given the k × k matrix CTC and

k × c matrix CTB. SolveBPP mainly involves solving least squares problems over

the intermediate passive sets. Our implementation uses the normal equations to solve

the unconstrained least squares problems because the normal equations matrices have

been pre-computed in order to check the KKT condition. However, more numerically

stable methods such as QR decomposition can also be used.

The algorithm uses a 2D distribution of the data matrix A across a pr×pc grid of

processors (with p = prpc), as shown in Figure 23. Algorithm 8 performs an alternat-

ing method in parallel with a per-iteration bandwidth cost ofO
(

min
{√

mnk2/p, nk
})

words, latency cost of O(log p) messages, and load-balanced computation (up to the

sparsity pattern of A and convergence rates of local BPP computations).

To minimize the communication cost and local memory requirements, in the typ-

ical case pr and pc are chosen so that m/pr ≈ n/pc ≈
√
mn/p, in which case the

bandwidth cost is O
(√

mnk2/p
)

. If the matrix is very tall and skinny, i.e., m/p > n,

then we choose pr = p and pc = 1. In this case, the distribution of the data matrix is

1D, and the bandwidth cost is O(nk) words.

The matrix distributions for Algorithm 8 are given in Figure 23; we use a 2D

distribution of A and 1D distributions of W and H. Recall from Table 1 that Mi

and Mi denote row and column blocks of M, respectively. Thus, the notation (Wi)j
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denotes the jth row block within the ith row block of W. Lines 3–8 compute W for

a fixed H, and lines 9–14 compute H for a fixed W; note that the computations and

communication patterns for the two alternating iterations are analogous.

In the rest of this section, we derive the per-iteration computation and com-

munication costs, as well as the local memory requirements. We also argue the

communication-optimality of the algorithm in the dense case. Table 9 summarizes

the results of this section and compares them to Naive.
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Require: A is an m× n matrix distributed across a pr × pc grid of

processors, k is rank of approximation

Require: Local matrices: Aij is m/pr × n/pc, Wi is m/pr × k, (Wi)j is

m/p× k, Hj is k × n/pc, and (Hj)i is k × n/p
1: pij initializes (Hj)i

2: while stopping criteria not satisfied do

/* Compute W given H */

3: pij computes Uij = (Hj)i(Hj)i
T

4: compute HHT=
∑

i,j Uij using all-reduce across all procs

. HHT is k × k and symmetric

5: pij collects Hj using all-gather across proc columns

6: pij computes Vij = AijH
T
j

. Vij is m/pr × k
7: compute (AHT )i=

∑
j Vij using reduce-scatter across proc row to

achieve row-wise distribution of (AHT )i

. pij owns m/p× k submatrix ((AHT )i)j

8: pij computes (Wi)j ← SolveBPP(HHT , ((AHT )i)j)

/* Compute H given W */

9: pij computes Xij = (Wi)j
T (Wi)j

10: compute WTW=
∑

i,j Xij using all-reduce across all procs

. WTW is k × k and symmetric

11: pij collects Wi using all-gather across proc rows

12: pij computes Yij = Wi
TAij

. Yij is k × n/pc
13: compute (WTA)j =

∑
i Yij using reduce-scatter across proc columns to

achieve column-wise distribution of (WTA)j

. pij owns k × n/p submatrix ((WTA)j)i

14: pij computes ((Hj)i)T ← SolveBPP(WTW, (((WTA)j)i)T )

15:

Ensure: W,H ≈ argmin
W̃>0,H̃>0

‖A− W̃H̃‖

Ensure: W is an m× k matrix distributed row-wise across processors, H

is a k × n matrix distributed column-wise across processors
Algorithm 8: [W,H] = HPC-NMF (A, k)
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Figure 23: Distribution of matrices for HPC-NMF (Algorithm 8), for pr = 3 and
pc = 2. Note that Aij is m/pr × m/pc, Wi is m/pr × k, (Wi)j is m/p × k, Hj is
k × n/pc, and (Hj)i is k × n/p.

Computation Cost Local matrix computations occur at lines 3, 6, 9, and 12. In

the case that A is dense, each processor performs

n

p
k2 + 2

m

pr

n

pc
k +

m

p
k2 + 2

m

pr

n

pc
k = 4

mnk

p
+

(m+ n)k2

p

flops. In the case that A is sparse, processor (i, j) performs (m + n)k2/p flops in

computing Uij and Xij, and 4nnz(Aij)k flops in computing Vij and Yij. Local non-

negative least squares problems occur at lines 8 and 14. In each case, the symmetric

97



positive semi-definite matrix is k×k and the number of columns/rows of length k to be

computed are m/p and n/p, respectively. These costs together require CBPP(k, (m+

n)/p) flops. There are computation costs associated with the all-reduce and reduce-

scatter collectives, both those contribute only to lower order terms.

Communication Cost Communication occurs during six collective operations (lines

4, 5, 7, 10, 11, and 13). We use the cost expressions presented in Section 5.1.2

for these collectives. The communication cost of the all-reduces (lines 4 and 10) is

α · 4 log p + β · 2k2; the cost of the two all-gathers (lines 5 and 11) is α · log p + β ·

((pr−1)nk/p+ (pc−1)mk/p); and the cost of the two reduce-scatters (lines 7 and 13)

is α · log p+ β · ((pc−1)mk/p+ (pr−1)nk/p).

In the case that m/p < n, we choose pr =
√
np/m > 1 and pc =

√
mp/n > 1,

and these communication costs simplify to α ·O(log p) +β ·O(mk/pr +nk/pc +k2) =

α ·O(log p) +β ·O(
√
mnk2/p+ k2). In the case that m/p > n, we choose pc = 1, and

the costs simplify to α ·O(log p) + β ·O(nk).

Memory Requirements The local memory requirement includes storing each pro-

cessor’s part of matrices A, W, and H. In the case of dense A, this is mn/p+ (m+

n)k/p words; in the sparse case, processor (i, j) requires nnz(Aij) words for the input

matrix and (m+n)k/p words for the output factor matrices. Local memory is also re-

quired for storing temporary matrices Wj, Hi, Vij, and Yij, of size 2mk/pr+2nk/pc)

words.

In the dense case, assuming k < n/pc and k < m/pr, the local memory requirement

is no more than a constant times the size of the original data. For the optimal choices

of pr and pc, this assumption simplifies to k < max
{√

mn/p,m/p
}

.

We note that if the temporary memory requirements become prohibitive, the

computation of ((AHT )i)j and ((WTA)j)i via all-gathers and reduce-scatters can be

blocked, decreasing the local memory requirements at the expense of greater latency
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costs. While this case is plausible for sparse A, we did not encounter local memory

issues in our experiments.

Communication Optimality In the case that A is dense, Algorithm 8 provably

minimizes communication costs. Theorem 7 establishes the bandwidth cost lower

bound for any algorithm that computes WTA or AHT each iteration. A latency

lower bound of Ω(log p) exists in our communication model for any algorithm that

aggregates global information [6], and for NMF, this global aggregation is necessary

in each iteration. Based on the costs derived above, HPC-NMF is communication

optimal under the assumption k <
√
mn/p, matching these lower bounds to within

constant factors.

Theorem 7 ([12]). Let A ∈ Rm×n, W ∈ Rm×k, and H ∈ Rk×n be dense matrices,

with k < n 6 m. If k <
√
mn/p, then any distributed-memory parallel algorithm on

p processors that load balances the matrix distributions and computes WTA and/or

AHT must communicate at least Ω(min{
√
mnk2/p, nk}) words along its critical path.

Proof. The proof follows directly from [12, Section II.B]. Each matrix multiplication

WTA and AHT has dimensions k < n 6 m, so the assumption k <
√
mn/p ensures

that neither multiplication has “3 large dimensions.” Thus, the communication lower

bound is either Ω(
√
mnk2/p) in the case of p > m/n (or “2 large dimensions”),

or Ω(nk), in the case of p < m/n (or “1 large dimension”). If p < m/n, then

nk <
√
mnk2/p, so the lower bound can be written as Ω(min{

√
mnk2/p, nk}).

We note that the communication costs of Algorithm 8 are the same for dense

and sparse data matrices (the data matrix itself is never communicated). In the case

that A is sparse, this communication lower bound does not necessarily apply, as the

required data movement depends on the sparsity pattern of A. Thus, we cannot

make claims of optimality in the sparse case (for general A). The communication

99



lower bounds for WTA and/or AHT (where A is sparse) can be expressed in terms

of hypergraphs that encode the sparsity structure of A [2]. Indeed, hypergraph par-

titioners have been used to reduce communication and achieve load balance for a

similar problem: computing a low-rank representation of a sparse tensor (without

non-negativity constraints on the factors) [25].

5.5 Experiments

In this section, we describe our implementation of HPC-NMF and evaluate its per-

formance. We identify a few synthetic and real world data sets to experiment with

HPC-NMF as well as Naive, comparing performance and exploring scaling behavior.

In the data mining and machine learning community, there has been a large in-

terest in using Hadoop for large scale implementation. Hadoop requires disk I/O and

is designed for processing gigantic text files. Many of the real world data sets that

are available for research are large scale sparse internet text data, recommender sys-

tems, social networks, etc. Towards this end, there has been interest towards Hadoop

implementations of matrix factorization algorithms [17, 39, 37]. However, the use of

NMF extends beyond sparse internet data and is also applicable for dense real world

data such as video, images, etc. Hence in order to keep our implementation appli-

cable to wider audience, we choose to use MPI for our distributed implementation.

Apart from the application point of view, we use an MPI/C++ implementation for

other technical advantages that are necessary for scientific applications such as (1)

the ability to leverage recent hardware improvements, (2) effective communication

between nodes, and (3) the availability of numerically stable and efficient BLAS and

LAPACK routines.
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5.5.1 Experimental Setup

5.5.1.1 Data Sets

We used sparse and dense matrices that are either synthetically generated or from

real world applications. We will explain the data sets in this section.

• Dense Synthetic Matrix (DSyn): We generate a uniform random matrix of size

172,800 × 115,200 and add random Gaussian noise. The dimensions of this

matrix is chosen such that it is uniformly distributable across processes. Every

process will have its own prime seed that is different from other processes to

generate the input random matrix A.

• Sparse Synthetic Matrix (SSyn): We generate a random sparse Erdős-Rényi

matrix of the dimension 172,800 × 115,200 with density of 0.001. That is,

every entry is nonzero with probability 0.001.

• Dense Real World Matrix (Video): NMF can be performed in the video data

for background subtraction to detect moving objects. The low rank matrix

Â = WHT represents background and the error matrix A − Â represents

moving objects. Detecting moving objects has many real-world applications

such as traffic estimation [15], security monitoring, etc. In the case of detecting

moving objects, only the last minute or two of video is taken from the live video

camera. The algorithm to incrementally adjust the NMF based on the new

streaming video is presented in [28]. To simulate this scenario, we collected a

video in a busy intersection of the Georgia Tech campus at 20 frames per second

for two minutes. We then reshaped the matrix such that every RGB frame is a

column of our matrix, so that the matrix is dense with dimensions 1,013,400 ×

2400.

• Sparse Real World Matrix Webbase : This data set is a very large, directed

sparse graph with nearly 1 million nodes (1,000,005) and 3.1 million edges
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(3,105,536), which was first reported by Williams et al. [53]. The NMF output

of this directed graph helps us understand clusters in graphs.

The size of both real world data sets were adjusted to the nearest dimension for

uniformly distributing the matrix.

5.5.1.2 Machine

We conducted our experiments on “Edison” at the National Energy Research Scien-

tific Computing Center. Edison is a Cray XC30 supercomputer with a total of 5,576

compute nodes, where each node has dual-socket 12-core Intel Ivy Bridge processors.

Each of the 24 cores has a clock rate of 2.4 GHz (translating to a peak floating point

rate of 460.8 Gflops/node) and private 64KB L1 and 256KB L2 caches; each of the two

sockets has a (shared) 30MB L3 cache; each node has 64 GB of memory. Edison uses

a Cray “Aries” interconnect that has a dragonfly topology. Because our experiments

use a relatively small number of nodes, we consider the local connectivity: a “blade”

comprises 4 nodes and a router, and sets of 16 blades’ routers are fully connected via

a circuit board backplane (within a “chassis”). Our experiments do not exceed 64

nodes, so we can assume a very efficient, fully connected network.

5.5.1.3 Software

Our objective of the implementation is using open source software as much as possible

to promote reproducibility and reuse of our code. The entire C++ code was developed

using the matrix library Armadillo [49]. In Armadillo, the elements of the dense

matrix are stored in column major order and the sparse matrices in Compressed

Sparse Column (CSC) format. For dense BLAS and LAPACK operations, we linked

Armadillo with OpenBLAS [54]. We use Armadillo’s own implementation of sparse

matrix-dense matrix multiplication, the default GNU C++ Compiler and MPI library

on Edison.
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5.5.1.4 Initialization and Stopping Criteria

To ensure fair comparison among algorithms, the same random seed was used across

different methods appropriately. That is, the initial random matrix H was generated

with the same random seed when testing with different algorithms (note that W need

not be initialized). This ensures that all the algorithms perform the same computa-

tions (up to roundoff errors), though the only computation with a running time that

is sensitive to matrix values is the local NNLS solve via BPP.

In this chapter, we used number of iterations as the stopping criteria for all the

algorithms. For fair comparison, all the algorithms were executed for 10 iterations.

5.5.2 Algorithms

For each of our data sets, we benchmark and compare three algorithms: (1) Algorithm

7, (2) Algorithm 8 with pr = p and pc = 1 (1D processor grid), and (3) Algorithm 8

with pr ≈ pc ≈
√
p (2D processor grid). We choose these three algorithms to confirm

the following conclusions from the analysis of Section 5.4: the performance of a naive

parallelization of Naive (Algorithm 7) will be severely limited by communication

overheads, and the correct choice of processor grid within Algorithm 8 is necessary

to optimize performance. To demonstrate the latter conclusion, we choose the two

extreme choices of processor grids and test some data sets where a 1D processor grid

is optimal (e.g., the Video matrix) and some where a squarish 2D grid is optimal

(e.g., the Webbase matrix).

While we would like to compare against other high-performance NMF algorithms

in the literature, the only other distributed-memory implementations of which we’re

aware are implemented using Hadoop and are designed only for sparse matrices [37],

[39], [17], [56] and [14]. We stress that Hadoop is not designed for high performance

computing of iterative numerical algorithms, requiring disk I/O between steps, so
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a run time comparison between a Hadoop implementation and a C++/MPI imple-

mentation is not a fair comparison of parallel algorithms. A qualitative example of

differences in run time is that a Hadoop implementation of the MU algorithm on a

large sparse matrix of dimension 217× 216 with 2× 108 nonzeros (with k=8) takes on

the order of 50 minutes per iteration [39], while our implementation takes a second

per iteration for the synthetic data set (which is an order of magnitude larger in terms

of rows, columns, and nonzeros) running on only 24 nodes.

5.5.3 Time Breakdown

To differentiate the computation and communication costs among the algorithms, we

present the time breakdown among the various tasks within the algorithms for both

performance experiments. For Algorithm 8, there are three local computation tasks

and three communication tasks to compute each of the factor matrices:

• MM, computing a matrix multiplication with the local data matrix and one of

the factor matrices;

• NLS, solving the set of NLS problems using BPP;

• Gram, computing the local contribution to the Gram matrix;

• All-Gather, to compute the global matrix multiplication;

• Reduce-Scatter, to compute the global matrix multiplication;

• All-Reduce, to compute the global Gram matrix.

In our results, we do not distinguish the costs of these tasks for W and H separately;

we report their sum, though we note that we do not always expect balance between

the two contributions for each task. Algorithm 7 performs all of these tasks except

Reduce-Scatter and All-Reduce; all of its communication is in All-Gather.
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Figure 24: Comparison experiments on sparse and dense data sets for three algo-
rithms: Naive (N), HPC-NMF-1D (1D), HPC-NMF-2D (2D). We vary the low rank
k for fixed p = 600. The reported time is the average over 10 iterations.
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Figure 25: Strong-scaling experiments on sparse and dense data sets for three algo-
rithms: Naive (N), HPC-NMF-1D (1D), HPC-NMF-2D (2D). We vary the number
of processes (cores) p for fixed k = 50. The reported time is the average over 10
iterations.
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(a) Dense Synthetic (DSyn) Weak Scaling
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(a) Sparse Synthetic (SSyn) Weak Scaling

Figure 26: Weak-scaling experiments on dense (top) and sparse (bottom) synthetic
data sets for three algorithms: Naive (N), HPC-NMF-1D (1D), HPC-NMF-2D (2D).
The ratio mn/p is fixed across all data points (dense and sparse), with data matrix
dimensions ranging from 57600 × 38400 on 24 cores up to 288000 × 192000 on 600
cores. The reported time is the average over 10 iterations.
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5.5.4 Algorithmic Comparison

Our first set of experiments is designed primarily to compare the three parallel im-

plementations. For each data set, we fix the number of processors to be 600 and vary

the rank k of the desired factorization. Because most of the computation (except

for NLS) and bandwidth costs are linear in k (except for the All-Reduce), we expect

linear performance curves for each algorithm individually.

The left side of Figure 25 shows the results of this experiment for all four data

sets. The first conclusion we draw is that HPC-NMF with a 2D processor grid

performs significantly better than the Naive; the largest speedup is 4.4×, for the

sparse synthetic data and k = 10 (a particularly communication bound problem).

Also, as predicted, the 2D processor grid outperforms the 1D processor grid on the

squarish matrices. While we expect the 1D processor grid to outperform the 2D

grid for the tall-and-skinny Video matrix, their performances are comparable; this is

because both algorithms are computation bound, as we see from Figure 24d, so the

difference in communication is negligible.

The second conclusion we can draw is that the scaling with k tends to be close

to linear, with an exception in the case of the Webbase matrix. We see from Figure

24c that this problem spends much of its time in NLS, which does not scale linearly

with k. Note that for a fixed problem, the size of the local NLS problem remains the

same across algorithms. Thus, we expect similar timing results and observe that to

be true for most cases.

We can also compare HPC-NMF with a 1D processor grid with Naive for squarish

matrices (SSyn, DSyn, and Webbase). Our analysis does not predict a significant

difference in communication costs of these two approaches (when m ≈ n), and we see

from the data that Naive outperforms HPC-NMF for two of the three matrices (but

the opposite is true for DSyn). The main differences appear in the All-Gather versus

Reduce-Scatter communication costs and the local MM (all of which are involved in
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the WTA computation). In all three cases, our proposed 2D processor grid (with

optimal choice of m/pr ≈ n/pc) performs better than both alternatives.

Table 10: Average per-iteration running times (in seconds) of parallel NMF algorithms
for k = 50.

Algorithm Datasets Cores

24 96 216 384 600

Naive

DSyn 2.1819 1.2594 1.1745

SSyn 6.5632 1.5929 0.6027 0.6466 0.5592

Video 2.7899 2.2106 1.7583

Webbase 48.0256 18.5507 7.1274 5.1431 4.6825

HPC-NMF -1D

DSyn 2.1548 1.2559 0.9685

SSyn 5.0821 1.4836 0.9488 0.7695 0.6666

Video 4.7928 3.8295 0.5994

Webbase 52.8549 14.5873 9.2730 6.4740 6.2751

HPC-NMF -2D

DSyn 1.5283 0.8620 0.5519

SSyn 4.8427 1.1147 0.4816 0.2661 0.1683

Video 1.6106 0.8963 0.5699

Webbase 84.6286 16.6966 7.4799 4.0630 2.7376

5.5.5 Strong Scalability

The goal of our second set of experiments is to demonstrate the strong scalability

of each of the algorithms. For each data set, we fix the rank k to be 50 and vary

the number of processors (this is a strong-scaling experiment because the size of the

data set is fixed). We run our experiments on {24, 96, 216, 384, 600} processors/cores,

which translates to {1, 4, 9, 16, 25} nodes. The dense matrices are too large for 1 or 4

nodes, so we benchmark only on {216, 384, 600} cores in those cases.

The right side of Figure 25 shows the scaling results for all four data sets, and
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Table 10 gives the overall per-iteration time for each algorithm, number of processors,

and data set. We first consider the HPC-NMF algorithm with a 2D processor grid:

comparing the performance results on 25 nodes (600 cores) to the 1 node (24 cores), we

see nearly perfect parallel speedups. The parallel speedups are 23× for SSyn and 28×

for the Webbase matrix. We believe the superlinear speedup of the Webbase matrix is

a result of the running time being dominated by NLS; with more processors, the local

NLS problem is smaller and more likely to fit in smaller levels of cache, providing

better performance. For the dense matrices, the speedup of HPC-NMF on 25 nodes

over 9 nodes is 2.7× for DSyn and 2.8× for Video, which are also nearly linear.

In the case of the Naive algorithm, we do see parallel speedups, but they are not

linear. For the sparse data, we see parallel speedups of 10× and 11× with a 25×

increase in number of processors. For the dense data, we observe speedups of 1.6×

and 1.8× with a 2.8× increase in the number of processors. The main reason for not

achieving perfect scaling is the unnecessary communication overheads.

5.5.6 Weak Scalability

Our third set of experiments shows the weak scalability of each of the algorithms.

We consider only the synthetic data sets so that we can flexibly scale the dimen-

sions of the data matrix. Again, we run our experiments on {24, 96, 216, 384, 600}

processors/cores. We fix the input data size per processor in this scaling experiment:

mn/p is the same across all experiments (dense and sparse). The data matrix dimen-

sions range from 57600× 38400 on 24 cores up to 288000× 192000 on 600 cores; for

HPC-NMF with a 2D processor grid, the local matrix is always 9600 × 9600. The

dimensions are chosen so that this experiment matches the strong-scaling experiment

on 216 processors. Figure 26 shows our results.

We emphasize that while this experiment fixes the amount of input matrix data

per processor, it does not fix the amount of factor matrix data per processor (which
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decreases as we scale up). Likewise, it fixes the number of MM flops performed by

each processor but not the number of NLS flops; the latter also decreases as we scale

up. Thus, if communication were free, we would expect the overall time to decrease

as we scale to more processors, at a rate that depends on the relative time spent in

MM and NLS. This behavior generally holds true in Figure 26: in the dense case,

since most of the time is in MM, the time generally holds steady as the number of

processors increases, while in the sparse case, more time is spent in NLS and times

decrease from left to right.

We also point out that we used the same matrix dimensions in the dense and sparse

cases; because the communication does not depend on the input matrix sparsity,

we see that the communication costs are same (for each algorithm and number of

processors). The main difference in running time comes from MM, which is much

cheaper in the sparse case.

In the case of HPC-NMF -2D, the weak scaling is nearly perfect as the time spent

in communication is negligible. This is explained by the theory (see Table 9): if mn/p

is fixed, then the bandwidth cost O(
√
mnk2/p) is also fixed, so we expect HPC-NMF

-2D to scale well to much larger numbers of processors. In the case of Naive and HPC-

NMF -1D, we see that communication costs increase as we scale up. Again, Table

9 shows that the bandwidth costs of those algorithms increase as we scale up, so we

don’t expect those to scale as well in this case. We note that this is only one form of

weak scaling; for example, if we were to fix the quantity m/p, then we would expect

HPC-NMF -1D to scale well (though Naive would not). The best overall speedup we

observe from this experiment is in the sparse case on 600 processors: HPC-NMF -2D

is 2.7× faster than Naive.

In this chapter, we proposed a high-performance distributed-memory parallel al-

gorithm that computes an NMF by iteratively solving alternating non-negative least

squares (ANLS) subproblems. We carefully designed a parallel algorithm which avoids
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communication overheads and scales well to modest numbers of cores.

For the data sets on which we experimented, we showed that an efficient imple-

mentation of a naive parallel algorithm spends much of its time in interprocessor

communication. In the case of HPC-NMF , the problems remain computation bound

on up to 600 processors, typically spending most of the time in local matrix multipli-

cation or NLS solves.

We focus in this work on BPP, because it has been shown to reduce overall running

time in the sequential case by requiring fewer iterations [30]. Because much of the

time per iteration of HPC-NMF is spent on local NLS, we believe further empirical

exploration is necessary to understand the proposed HPC-NMF ’s advantages for

other AU-NMF algorithms such as MU and HALS. We note that if we use the MU or

HALS approach for determining low rank factors, the relative cost of interprocessor

communication will grow, making the communication efficiency of our algorithm more

important.

Finally, we have not yet reached the limits of the scalability of HPC-NMF ; we

would like to expand our benchmarks to larger numbers of nodes on the same size data

sets to study performance behavior when communication costs completely dominate

the running time.
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CHAPTER VI

CONCLUSION AND FUTURE WORKS

In this thesis, we looked at a novel constrained low rank approximation called Bounded

Matrix Low Rank Approximation (BMA) which imposes a lower and an upper bound

on every element of the lower rank matrix. For very large input matrices, we extended

our BMA algorithm to Block BMA that can scale to a large number of processors. In

applications, such as HD video, where the input matrix to be factored is extremely

large, distributed computation is inevitable and the network communication becomes

a major performance bottleneck. To overcome the communication overhead in non-

negative constrained low rank approximation, we proposed a novel distributed Com-

munication Avoiding NMF (CANMF) algorithm that communicates only the right

low rank factor to its neighboring machine. Finally, a general distributed HPC-NMF

framework that uses HPC techniques in communication intensive NMF operations

and suitable for broader class of NMF algorithms.

6.1 Future Works

To explain some of our future directions, we would like to summarize our AU-NMF

algorithm in this chapter again. The details of this can be found in Chapter 2. We

restrict attention to the class of NMF algorithms that use the Gram matrix – a matrix

that is formed by the inner products of the individual vectors; associated with a factor

matrix and the product of the input data matrix A with the corresponding factor

matrix, as we show in Algorithm 9.

In the above problem, computing the dense sparse multiplications AHT in line 3

and WTA in line 4 are computationally expensive steps. Towards this end we paid

our attention to accelerate this multiplication and try to experiment this for NMF.
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input : A is an m× n matrix, k is rank of approximation
output: W ∈ Rm×k

+ ,H ∈ Rk×n
+

1 Initialize H with a non-negative matrix in Rn×k
+ ;

2 while stopping criteria not satisfied do
3 Update W using HHT and AHT ;
4 Update H using WTW and WTA ;

Algorithm 9: [W,H] = AU-NMF(A, k)

We called such an NMF as Distributed Accelerated NMF.

In some cases, the sparse representation of the very large input matrix takes very

less memory compared to the low rank factors. Hence for sufficiently very large sparse

matrices, we can distribute the matrix between the accelerator and the cpu to peak

the computational resource. We designed a load balanced distributed accelerated

NMF that distributes the NMF computation between the accelerators such as Xeon

Phi or GPU and the CPU.

6.1.1 Future Work - Distributed Accelerated NMF

The shared memory systems such as a multi-core systems is improving its comput-

ing ability significantly year-on-year. A multi-core processor is a single computing

component with two or more independent high end central processing units (called

cores). Recently for scientific application, there is a commercial low-cost accelerator

available called Many Integrated Core (MIC)1.The energy efficient MIC, packs many

small end processors such as the atom processor in one CPU. It is a highly scalable

architecture that is easy to program as they use the similar instruction set of existing

computers. Hence many core are suitable for highly scalable parallel algorithms like

Block Principal Pivoting (BPP). This many core accelerator can also work in tandem

with the main multi core CPU as well. Currently, we are experimenting distributing

1The commercial name for this accelerator is called Xeon Phi

114



the BPP by performing the computationally expensive Sparse-Dense matrix multi-

plications (AH and AtW) in both CPU and many core accelerator simultaneously.

Alternatively, we can also use traditional accelerators such as GPU. We are using the

following strategies for distributing the sparse-dense multiplication.

• Static Partitioning - Statically Partition the sparse and dense matrix to accel-

erator and the CPU. The partitions can be row and column partitions.

• Dynamic Partitioning - In the case of static partitioning, discovering a partition,

balancing the load between CPU and accelerator that is suitable for all general

matrices can be difficult. To over come this issue, a synchronized computation

between accelerator and CPU can significantly boost the load balancing. That

is., before computing the multiplication of a partition, accelerator will wait for

a signal from CPU. CPU will decide whether a block of matrix multiplication

will be performed by the accelerator or CPU during runtime.

• Model driven - Dynamic partitioning requires communication for synchroniza-

tion between the CPU and accelerator. This can be avoided, by determining a

model driven partitioning between CPU and accelerator. The model can decide

on a partition based on various parameters such as the size, density, nnz etc.,

of the sparse matrix and the some properties of the dense matrix.

• Adaptive - It is an extension of model driven partitioning. In iterative algorithm,

we have the scope for improving the load balance over the progress of iteration.

For eg., if the previous iteration poorly load balanced, we can take corrective

action and determine a suitable partition in the next iteration.

We will investigate the different partition strategies for sparse dense matrix mul-

tiplication to understand the load distribution between CPU and accelerator to peak

the total compute capacity in a computer. We will compare the above partition

strategies between two different accelerator - Xeon Phi and GPU.
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6.1.2 Other Constraints

We are currently exploring enforcing integer constraints on individual low rank factors

W and H as well as on the product WH. Formally the former problem can be

explained as in Equation (44) and the latter through Equation (46).

argmin
W∈Z,H∈Z

‖M · ∗(A−WH)‖2F (44)

Similar to 2 Block BCD ANLS, we can solve the problem (44) as two different

subproblems of finding integer low rank factors W given H and vice-versa as explained

below.

W←argminW∈Z‖HᵀWᵀ −Aᵀ‖2F ,

H←argminH∈Z‖WH−A‖2F ,
(45)

In this case, every subproblem is an Integer Least Squares problem comprising of

two steps - Reduction and Search. We have completed reduction for multiple right

hand side but the computationally expensive search problem is still open. We are

leveraging the insight that in the case of iterative alternating integer least squares

formulation, the search process can bootstrap from the previous iteration. This will

reduce the search time significantly.

The latter problem of enforcing integer constraints on the product WH is rela-

tively computationally inexpensive. However, the major challenge is holding the big

matrix Z in memory and this restricts the practical applicability of solution for very

large input matrices. Alternatively, we can consider Z as a logical place holder that

can be computed whenever needed. But this will increase the computational cost

drastically slowing down the algorithm.

argmin
W∈Rm×k,H∈Rk×n,Z∈Zm×n

‖M. ∗ (A− Z)‖2F + ‖Z−WH‖2F (46)
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We are currently exploring the integer constraint in both the directions.

6.1.3 Open Source Software

The current state-of-the-art approaches for NMF with large-scale data have primar-

ily focused on the Map-Reduce programming model with implementations in sys-

tems like Hadoop and Spark. These implementations are much too slow because (a)

map-reduce are not ideal for all operations in the NMF algorithm involving com-

munication intensive global, input-data shuffles across machines (b) sometimes they

perform more data movement than necessary and because each step of computation

involves reading and writing data from disk and (c) to run for very large matrices

we need sophisticated clusters and sometime machine learning experts for parameter

tuning these algorithms. To address these problems, we focus our attention for high-

performance NMF algorithms explained in Chapter 5. We maintain data in memory

(distributed across processors), take advantage of optimized libraries for local compu-

tational routines, and use the Message Passing Interface (MPI) standard to organize

interprocessor communication. In particular, our proposed framework ensures that

after the input data is initially read into memory, it is never communicated to any

other machine in the network. We communicate only the factor matrices and other

smaller temporary matrices, which guarantees privacy of the original data and, in

some cases, communication optimality. We also reduce latency costs (the number of

times processors communicate with each other) by utilizing MPI collective commu-

nication operations, along with temporary local memory space, to perform very few

messages per iteration, the minimum achievable for aggregating global data.

As explained in Chapter 5, currently we have implemented the NMF algorithm

based on ANLS-BPP and have witnessed tremendous improvement for very large ma-

trices. For example, a state-of-the-art implementation of MU [39] using a Hadoop

system takes 50 minutes per iteration whereas our algorithm takes less than a second
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on a cluster with 24 machines. In addition to implementing and comparing the afore-

mentioned standard ANLS algorithms at large scale, we would also like to investigate

alternative NMF methods based on hierarchical factorizations, which may be more

appropriate for certain applications like topic modeling.

Also, our framework HPC-NMF based on AU-NMF, is suitable for implementing

the iterative NMF algorithms such as Hierarchical Alternating Least Squares (HALS),

Multiplicative Update (MU), Projected Gradient methods, and active set algorithms

such as Block Principal Pivoting (BPP). Thus, the framework allows the end users

to try many different NMF algorithms, all implemented efficiently, on very large real-

world data matrices such as those arising in recommender systems, social network

analyis, text mining, etc.

We are currently in the process of developing an open source NMF and NTF library

with objective of reusability, extensibility and off the shelf algorithms for conducting

large scale experiments. The entire software stack is shown in the Figure 27. The

major components in the library are the Matrix/Tensor library and BLAS/LAPACK

library. In this thesis, we used Armadillo [49] as matrix library and OpenBLAS [54] for

the BLAS and LAPACK operations. Armadillo is a C++ library having interfaces for

both sparse and dense matrices. It allows users to perform matrix operations similar

to Matlab. That is., W ∗H will multiply matrix H with W by calling the gemm in

BLAS. The one major short coming of OpenBLAS is unavailability of sparse-dense

BLAS operations. Under such cases, either we used baseline implementation from

Armadillo or used Intel MKL.

We would like to extend the algorithms for NMF to Non-negative Tensor Fac-

torization (NTF). Tensors are generalization of matrices, representing data sets with

more than two dimensions. The canonical decomposition (CANDECOMP) or the par-

allel factorization (PARAFAC), is one of the natural extensions of the singular value

decomposition to higher order tensors. The CP decomposition with nonnegativity
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constraints imposed on the factor matrices is denoted as nonnegative CP (NCP),

can be computed in a way that is similar to the NMF computation. In the case of

Non-negative Tucker Decomposition (NTD), also called as Tucker3 model, apart from

the factor matrices, we also determine a core tensor that defines the scaling factor

for the rank-k approximate tensor. Cichocki et.al., [10], discuss the formal definition

and the details of the various NTF algorithms. By respecting the multi-way relation-

ships among data points and treating the data as a tensor, we can often compute

much better approximations, but maintaining the efficiency of algorithms is more dif-

ficult. In particular, optimizing data distributions and data movement becomes more

complicated and more important for high performance than in the matrix case.

In the case of shared memory implementation, we were using OpenMP for scalable

implementations. For, distributed implementations, we are now surveying the right

libraries for intended algorithms. We will investigate and develop an open source

library for scalable and distributed constrained low rank approximation problems

with special focus on non-negativity constraint. Finally, we would like to package all

our MPI-based distributed HPC-NMF and HPC-NTF algorithms into an open-source

library, basing our implementations on other open-source libraries like BLAS and

LAPACK. We have to carefully choose the distributed matrix and tensor libraries that

are easy to extend by any developers and can run seamlessly on varied platforms. We

will implement our package so that it can run on systems ranging from supercomputers

to commodity clusters or workstations and always provide high efficiency.
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