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SUMMARY

This dissertation aims to develop efficient algorithms with improved scalability and

stability properties for large-scale optimization and optimization under uncertainty, and

to bridge some of the gaps between modern optimization theories and recent applica-

tions emerging in the Big Data environment. To this end, the dissertation is dedicated

to two important subjects – i) Large-scale Convex Composite Optimization and ii) Error-

in-Measurement Optimization. In spite of the different natures of these two topics, the

common denominator, to be presented, lies in their accommodation for systematic use of

saddle point techniques for mathematical modeling and numerical processing. The main

body can be split into three parts.

In the first part, we consider a broad class of variational inequalities with composite

structures, allowing to cover the saddle point/variational analogies of the classical con-

vex composite minimization (i.e. summation of a smooth convex function and a simple

nonsmooth convex function). We develop novel composite versions of the state-of-the-art

Mirror Descent and Mirror Prox algorithms aimed at solving such type of problems. We

demonstrate that the algorithms inherit the favorable efficiency estimate of their prototypes

when solving structured variational inequalities. Moreover, we develop several variants of

the composite Mirror Prox algorithm along with their corresponding complexity bounds,

allowing the algorithm to handle the case of imprecise prox mapping as well as the case

when the operator is represented by an unbiased stochastic oracle.

In the second part, we investigate four general types of large-scale convex composite

optimization problems, including (a) multi-term composite minimization, (b) linearly con-

strained composite minimization, (c) norm-regularized nonsmooth minimization, and (d)

maximum likelihood Poisson imaging. We demonstrate that the composite Mirror Prox,

when integrated with saddle point techniques and other algorithmic tools, can solve all

these optimization problems with the best known so far rates of convergences. Our main

x



related contributions are as follows. Firstly, regards to problems of type (a), we develop an

optimal algorithm by integrating the composite Mirror Prox with a saddle point reformula-

tion based on exact penalty. Secondly, regards to problems of type (b), we develop a novel

algorithm reducing the problem to solving a “small series” of saddle point subproblems and

achieving an optimal, up to log factors, complexity bound. Thirdly, regards to problems of

type (c), we develop a Semi-Proximal Mirror-Prox algorithm by leveraging the saddle point

representation and linear minimization over problems’ domain and attain optimality both

in the numbers of calls to the first order oracle representing the objective and calls to the

linear minimization oracle representing problem’s domain. Lastly, regards to problem (d),

we show that the composite Mirror Prox when applied to the saddle point reformulation

circumvents the difficulty with non-Lipschitz continuity of the objective and exhibits better

convergence rate than the typical rate for nonsmooth optimization. We conduct extensive

numerical experiments and illustrate the practical potential of our algorithms in a wide

spectrum of applications in machine learning and image processing.

In the third part, we examine error-in-measurement optimization, referring to decision-

making problems with data subject to measurement errors; such problems arise naturally

in a number of important applications, such as privacy learning, signal processing, and

portfolio selection. Due to the postulated observation scheme and specific structure of

the problem, straightforward application of standard stochastic optimization techniques

such as Stochastic Approximation (SA) and Sample Average Approximation (SAA) are

out of question. Our goal is to develop computationally efficient and, hopefully, not too

conservative data-driven techniques applicable to a broad scope of problems and allowing

for theoretical performance guarantees. We present two such approaches – one depending on

a fully algorithmic calculus of saddle point representations of convex-concave functions and

the other depending on a general approximation scheme of convex stochastic programming.

Both approaches allow us to convert the problem of interests to a form amenable for SA or

SAA. The latter developments are primarily focused on two important applications – affine

signal processing and indirect support vector machines.

xi



CHAPTER I

INTRODUCTION

1.1 Motivation and Goals

In the era of Big Data, due to the massive amount and diverse sources of data, decision-

making processes become very challenging and require good optimization models and

problem-solving methods, particularly those with scalability and stability. To tackle these

challenges, both in practice and in theory, there is a strong need for studies on designing

efficient algorithms for optimization problems in high-dimensional regimes and establishing

data-oriented approaches to optimization problems under uncertainty. This dissertation

aims to develop efficient algorithms with improved scalability and stability properties for

large-scale optimization and optimization under uncertainty, and to bridge some of gaps

between modern optimization theories and recent applications emerging in the Big Data

environment.

This dissertation is driven by and concentrates on two important subjects.

1.1.1 Large-scale Convex Composite Optimization

Last decade demonstrates significant and steadily growing interests in minimizing composite

functions of the form:

min
x∈X

f(x) + h(x)

where f is a convex, continuously differentiable function and h is a convex but perhaps

not differentiable function. Such problems arise ubiquitously in machine learning, signal

processing, bioinformatics, computer vision, and many other fields. In these applications,

f usually refers to loss function, or model fitting term, measuring how well a candidate

solution x “fits” the available information on the true solution, and h is a regularizer “pro-

moting” desired properties of the solution we seek for (sparsity, low rank, etc.). Popular

problems include the Lasso, ridge regression, trace-norm matrix completion, total variation

1



based image denoising, and so on. In general, nonsmoothness of the objective in a convex

optimization problem slows down the achievable convergence rate; the challenge in compos-

ite minimization is to avoid this slow-down by utilizing special structure of the nonsmooth

term h; such structure is indeed present in relevant applications.

Proximal algorithms are especially well-suited for composite minimization. It was shown

in Nesterov’s seminal work [63] and several subsequent papers (see, e.g., [6, 7, 22, 80, 76]

and references therein) that when function f is smooth, the proximal version of the fast

gradient method works as if there were no nonsmooth term h at all and exhibits the O(1/t2)

convergence rate, which is the optimal rate attainable by first order algorithms of large-

scale smooth convex optimization. These proximal algorithms (see [69] for a comprehensive

survey) require computation of a composite proximal operator at each iteration, i.e. solving

problems of the form

min
x∈X

{
1

2
‖x‖22 + 〈ξ, x〉+ αh(x)

}
given input vector ξ and positive scalar α. We call function h that admits easy-to-compute

composite proximal operators, proximal-friendly. Typical examples of proximal-friendly

functions considered in literatures include `p norm, trace/nuclear norm and block `1/`p

norm (group lasso). The situation when f is nonsmooth has also been widely studied in

the literature. Various algorithms have been developed and achieve the optimal O(1/t)

convergence rate, based on smoothing techniques [64] and primal-dual method [23, 25].

In another line of research, conditional gradient type algorithms have lately received

an emerging interest when dealing with large scale composite minimization. In several

important cases, especially in high dimensional regime, computing proximal operator can

be expensive or intractable. A classical example is the nuclear norm minimization arising in

low rank matrix recovery and semidefinite optimization. Here computing proximal operator

boils down to singular value thresholding and thus requires computationally expensive in

the large scale case full singular decomposition. In contrast to the proximal algorithms,

conditional gradient type methods operate with the linear minimization oracle (LMO) at

2



each iteration, i.e., solving auxiliary problems of the form

min
x∈X
{〈ξ, x〉+ αh(x)}

which can be much cheaper than computing composite proximal operators. For instance, in

the case of the nuclear-norm, the LMO only requires computing the leading pair of singular

vectors, which is by orders of magnitude faster than full singular value decomposition.

We call function h that admits easy-to-compute linear minimization oracle, LMO-friendly.

When function f is smooth, it was shown in [36] and later in[65] that the generic conditional

gradient method exhibits a O(1/t) rate of convergence, which is also the optimal rate

attainable by LMO-based algorithms.

Motivation. Despite of the much success in this classical settings of composite minimiza-

tion, it comes to our attention that most of these algorithms cannot be directly applied to

the following situations:

1. there are several proximal-friendly or LMO-friendly components in the objective;

2. the objective is separable with several proximal-friendly terms, but the corresponding

blocks of variables are subject to coupling linear constraints;

3. there is an additive mixture of proximal-friendly and LMO-friendly components;

4. f is nonsmooth, and h is LMO-friendly;

5. f is even not Lipschitz continuous.

Problems of the outlined types recently emerge in a wide spectrum of application, espe-

cially in statistics, machine learning and image processing, where regularization technique

plays an important role. In order to deal with massive and complex datasets, a variety

of structured regularizers (sometimes called penalties) and their hybrid mixtures are intro-

duced to promote several desired properties of the solution simultaneously, such as sparsity

and low rank. There is a huge body of literature on this subject, see, e.g. [81, 4, 17] and

references therein.

3



One motivating example is the matrix completion problem, arising in recommendation

systems, where the goal is to reconstruct the original matrix y ∈ Rn×n, assumed to be both

sparse and low-rank, given noisy observations of part of the entires. Specifically, let the

observation be b = PΩy + ξ, where Ω is a given set of cells in an n × n matrix, PΩy is the

restriction of y ∈ Rn×n onto Ω, and ξ is a random noise. A natural way to recover y from

b is to solve the optimization problem

min
y∈Rn×n

{
1

2
‖PΩy − b‖22 + λ‖y‖1 + µ‖y‖nuc

}
where µ, λ > 0 are regularization parameters. Here ‖y‖2 =

√
Tr(yT y) is the Frobenius

norm, ‖y‖1 =
∑n

i,j=1 |yij | is the `1-norm, and ‖y‖nuc =
∑n

i=1 σi(y) (σi(y) are the singular

values of y) is the nuclear norm of a matrix y ∈ Rn×n. The `1-norm regularization term

is used to promote sparsity and the nuclear norm term is used to promote low rank. One

can see that, when the size n of y is “large, but not too large” (say, n ≤ 2000), both terms

can be regarded as proximal-friendly. Once the dimension becomes “very large,”, one can

no longer treat both penalties as proximal friendly, but perhaps still can treat them as

LMO-friendly. In the gray zone in between we deal with a mixture of proximal-friendly

and LMO-friendly regularizers. None of these situations can be directly tackled with the

existing first-order algorithms, proximal type and conditional gradient type alike.

Goals. While problems of the outlined types occur in a wide spectrum of real-world ap-

plications among the aforementioned fields (more examples will be provided in subsequent

sections), the literature on design of scalable algorithms adjusted to the outlined problems’

structures turns out to be quite limited. Our ultimate goal on this subject is i) on the

theoretical side, to develop a “universal” algorithmic framework that covers a broad class of

optimization problems, including composite settings of almost all problems of convex struc-

tures (convex minimization, convex-concave saddle point problems, variational inequalities,

Nash equilibrium problems), and with “complications” 1– 5 listed above; ii) on the practical

side, to apply the resulting algorithmic tool to four generic convex optimization problems:

4



(a) Multi-Term Composite Minimization: convex optimization problem

min
y∈Y

K∑
k=1

[ψk(Aky + bk) + Ψk(Aky + bk)] (1.1.1)

where Y is closed convex set, for 1 ≤ k ≤ K, ψk(·) : Yk → R are convex Lipschitz-

continuous functions, and Ψk(·) : Yk → R are proximal-friendly convex functions;

(b) Linearly Constrained Composite Minimization: multi-term composite minimization

problems that are subject to linear equality constraints

min
[y1;...;yK ]∈Y1×···×YK

∑K
k=1

[
ψk(y

k) + Ψk(y
k)
]

s.t.
∑K

k=1Aky
k = b

(1.1.2)

where Yk are closed convex sets and ψk and Ψk are as in (a);

(c) Norm-Regularized Nonsmooth Minimization: composite minimization

min
y∈Y

f(y) + h(Ay) (1.1.3)

where f is a convex Lipschitz-continuous function given by saddle point representation,

and h is a LMO-friendly function;

(d) Composite Maximum Likelihood Poisson Imaging: a particular non-Lipschitz convex

minimization problem

min
x∈Rn

+

L(x) + h(x), with L(x) = sTx−
m∑
i=1

ci ln(aTi x) (1.1.4)

where s, c, ai, i = 1, . . .m are given nonnegative vectors and h is proximal-friendly. Spe-

cific feature of Poisson Imaging is that L(·) in general is not even Lipschitz continuous.

1.1.2 Error-in-Measurement Optimization

Besides the large scale, another ubiquitous fact in many real world problems is that prob-

lem’s data is not always known exactly. Due to intrinsic physical limitations, prohibitive

cost, or hard constraints, often data cannot be measured accurately or directly, and therefore

are subject to measurement errors. Measurement errors take place in a wide spectrum of
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applications, ranging from traditional medical tests, remote sensing, bioinformatics, chemi-

cal process engineering to more recent privacy learning, portfolio management, and electric

power systems operations. Data that suffer from such errors can be loosely categorized into

two classes: i) fixed parameters, such as characteristics of technological devices, inherent

constants of reaction kinetics, proportions of components in raw materials, statistical pa-

rameters of a stochastic process ii) random samples from a fixed distribution, such as highly

variable sensor network data, clinical trials, medical scans, etc.

Motivation. Many optimization problems dealing with data affected by measurement

errors can be generally posed as,

min
x∈X

Φ(x, π∗) (?)

where Φ(·, π∗) is convex in x ∈ X, and π∗ ∈ Π is unknown, but admits observations

(“measurements”) ωt, t = 1, 2, ..., sampled independently from a distribution Pπ∗ , where

{Pπ : π ∈ Π} is a given family of distributions with the domain Π known to contain π∗. We

call such problems, error-in-measurement optimization.

Related problems got some attention and have been studied in different contexts in the

literature including research on errors-in-variables models [20], missing-data-problems [52],

online learning models with noisy data [21], robust optimization [8], misspecified optimiza-

tion [2, 42]. We emphasize here that our interest is in closely related yet distinct settings,

and our theoretical developments to be presented, seem to be novel.

As of now, studies on the error-in-measurement optimization in the setting we have out-

lined seem to be rather limited. An intuitive but naive way to address the problem might

be to simply replace the unknown data by its sample estimate, This, however, could lead

to highly unreliable solutions unless the size of sample is large enough. A more reliable way

to solve these problems is to rely on data-driven robust optimization approaches by con-

structing uncertainty sets using historical observations of the random variable [11, 29, 12].

However, such approaches suffer from a) unclear guidelines on constructing uncertainty sets,

b) computational deficiency in the high-dimensional regime, and c) overly-conservative solu-

tions when amount of measurements is limited. A conceptually less conservative approach
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would be to adjust the decision variables as the sampling goes on, like what Stochastic

Approximation algorithm [74, 71, 72, 58] does. However, specific structures of problem (?)

and of the postulated observation scheme make straightforward application of the standard

Stochastic Optimization techniques (like Stochastic Approximation, or Sample Average Ap-

proximation) just impossible. Some techniques for converting (?) to a form amenable for

Stochastic Approximation are proposed in [21]; these techniques, however, impose severe

limitations on the objectives Φ(x, π) and measurement schemes which can be treated.

Goals. In connection with error-in-measurement optimization, our goal is to develop com-

putationally efficient and, hopefully, not too conservative data-driven techniques applicable

to a broad scope of problems (?) and allowing for theoretical performance guarantees. Our

primary focus is on the following three generic scenarios:

(i) System of convex constraints under direct noisy observations of the data: we are in-

terested in solving the system

Find x ∈ X: Fi(x, π
∗) ≤ 0, 1 ≤ i ≤ I,

where Fi(x, π) : X × Π is convex in u and concave in π; the true data π∗ = Eξ∼P {ξ}

is unknown but we can directly sample from P .

(ii) Convex minimization under indirect observations: we are interested in solving prob-

lems in the form (?) with the data π∗ being a finite dimensional vector, and the

observations ωt are given by ωt = Aπ∗ + ηt, t = 1, 2, . . . , where A is a given matrix,

and ηt are i.i.d. zero mean observations with known covariance matrix.

(iii) Stochastic programming under indirect observations: we are interested in solving prob-

lems in the form (?) with π∗ being a unknown distribution,

Φ(x, π∗) := Eξ∼π∗ [F (x, ξ)]

and the observations ωt given by ωt = ξt + ηt, t = 1, 2, . . . , where ξt are i.i.d. sampled

from π∗, and ηt are independent of ξt, i.i.d. zero mean observations with known

covariance matrix.
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1.2 Outline and Main Results

The Thesis is organized as follows.

In Chapter II, we first review the basic theory of accuracy certificates, which play a

central role in quantifying the accuracy of solutions to generic problems with convex struc-

ture, including convex minimization, convex-concave saddle point problem, convex Nash

equilibrium problem, and variational inequalities with monotone operators. We consider

a broad class of variational inequalities with composite structure, allowing to cover sad-

dle point/variational analogies of the classical convex composite minimization. We develop

novel composite versions of the state-of-the-art Mirror Descent and Mirror Prox algorithms

aimed at solving such type of problems. We demonstrate that the algorithms inherit the

favorable efficiency estimate of their prototypes when solving structured variational inequal-

ities, namely, a O(1/ε2) complexity bound when the monotone operator is bounded and a

O(1/ε) complexity bound when the monotone operator is Lipschitz continuous. Moreover,

we develop several variants of the composite Mirror Prox algorithm, allowing the algorithm

to handle the case of imprecise prox mapping as well as the case when the operator is rep-

resented by an unbiased stochastic oracle. Main results of Chapter II are summarized in

Theorem 2.4.1 - 2.4.2, Theorem 2.5.1 - 2.5.3, Corollary 2.5.1 - 2.5.4.

In Chapter III, we investigate four general types of convex composite optimization prob-

lems outlined at the end of Section 1.1.1. We show that the composite Mirror Prox algo-

rithm, when combined with saddle point representations and some other algorithmic tech-

niques, can solve all these optimization problems, exhibiting the best known so far rates of

convergence. To be more specific,

• Section 3.2 is devoted to multi-term composite minimization. We exploit the prob-

lem’s structure and develop a saddle point reformulation based on exact penalty that

allows to directly apply the composite Mirror Prox algorithm. The resulting algorithm

achieves the optimal, under the circumstances, O(1/t) rate of convergence. We also

present, highly encouraging in our opinion, results of numerical experiments for two

important applications – matrix completion and image decomposition. Main results
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of Section 3.2 are summarized in Proposition 3.2.1 and Corollary 3.2.1.

• Section 3.3 is devoted to linearly constrained composite minimization. We propose a

sequential composite Mirror Prox algorithm which solves a sequence of saddle point

subproblems. The algorithm achieves an overall O(1/ε) complexity bound up to some

log factors. We present promising experimental results showing the potential of this

algorithm for the basis pursuit application. Main results of Section 3.3 are summarized

in Propostion 3.3.1 and Theorem 3.3.1.

• Section 3.4 is devoted to norm-regularized nonsmooth minimization. We propose the

Semi-Proximal Mirror-Prox algorithm, which leverages the saddle point representation

of one component of the objective while handling the other component via linear

minimization over the problem’s domain. We establish the theoretical convergence

rate of Semi-Proximal Mirror-Prox, which exhibits the optimal complexity bounds in

three aspects: i) O(1/ε) for the number of calls to first-order oracles, ii) O(1/ε2) for the

number of calls to linear minimization oracle, and iii) O(1/ε2) for the number of calls to

the stochastic oracles if under stochastic setting. We present promising experimental

results illustrating the the potential of our approach as compared to several competing

methods for two machine learning applications – robust collaborative filtering for

movie recommendation and link prediction for social network analysis. Main results

of Section 3.4 are summarized in Propositions 3.4.1 - 3.4.3.

• Section 3.5 is devoted to Maximum Likelihood Poisson Imaging. We investigate prob-

lem of minimizing Poisson-type loss (problem (d) in the end of Section 1.1.1), which

has been a long-standing challenge in machine learning community due to lack of Lips-

chitz continuity when dealing with Poisson loss. We utilize saddle point reformulation

of the problem of interest and process the resulting problem with composite Mirror

Prox algorithm, thus avoiding the necessity to deal directly with a non-Lipschitz ob-

jective. We show that under favorable circumstances, the algorithm enjoys a O(1/t)
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convergence rate in contrast to the usual O(1/
√
t) rate for solving nonsmooth opti-

mization. We also demonstrate experimentally, the efficiency of the proposed algo-

rithm as applied to Poison Emission Tomography reconstruction. The main results of

Section 3.5 is summarized in Propositions 3.5.1 - 3.5.2.

Main results of Chapter II, III of the Thesis significantly improve upon our previous

work in [27, 28, 31, 67] and lead to our sucessive publications in [38, 39].

In Chapter IV, we investigate error-in-measurement optimization. In Section 4.2, we

focus on solving the system of convex constraints with direct noisy observations of the data

(problem (i) in Section 1.1.2). We first develop a fully algorithmic calculus of saddle point

representations for convex-concave functions, in analogy to the well-known Fenchel duality

of convex functions. We use this calculus to convert the system of convex constraints we

want to solve into convex-concave saddle point problem allowing for stochastic first-order

oracles and process the resulting problem by mirror descent stochastic approximation. We

provide rigorous accuracy analysis for the approximate solution yielded by the stochastic ap-

proximation procedure and propose several theoretically justified techniques for validating

the quality of this solution. Main results of this section are summarized in Propositions 4.2.1

- 4.2.6. In Section 4.3, we deal with the case of indirect noisy observations (problem (ii)

and (iii) in Section 1.1.2). We propose a general approximation scheme that reduces the

problems to convex stochastic programming with semiinfinite constraints. We develop tech-

niques for building safe tractable approximations of these semi-infinite problems and process

them with stochastic approximation (SA) or sample average approximation (SAA) . These

developments are primarily focused on two important applications – affine signal process-

ing and indirect support vector machines. We present encouraging, albeit at this point in

time very preliminary, numerical results illustrating the practical potential of our approach

as applied to the affine signal processing. Main results of this section are summarized in

Propositions 4.3.1 - 4.3.3.

In summary, we believe that our theoretical developments and numerical results on

composite saddle point Mirror Prox based algorithms presented in Chapters II, III and
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published in our papers [38, 39] clearly demonstrate high theoretical and practical signifi-

cance of the approaches to Large-scale Composite Convex Optimization we are developing.

As compared to this research, our studies on error-in-measurement optimization presented

in Chapter III are in a less developed stage, due to natural time limitations, and we intend

to carry out in-depth research along the directions outlined in Chapter IV in the future.

We believe, however, that already the preliminary in their nature results of Chapter IV

demonstrate novelty and broad scope of the proposed approaches and justify incorporating

this material into the Thesis.

To conclude Introduction, we remark that while at the first glance the two topics of our

Thesis – Large-scale Composite Convex Optimization and Error-in-Measurement Convex

Optimization have not that much in common, such an impression would be wrong: as we

see it, the “common denominator” of these two topics, reflected in the title of our Thesis,

is the systematic use of saddle point techniques for modeling problems of interest and for

their numerical processing.
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CHAPTER II

COMPOSITE MIRROR DESCENT/PROX FOR PROBLEMS WITH

CONVEX STRUCTURE

2.1 Overview

In this chapter, we first review the basic theory of accuracy certificates, which plays a

central role in quantifying the accuracy of solutions to generic problems with convex struc-

ture, including convex minimization, convex-concave saddle point problem, convex Nash

equilibrium problem, and variational inequalities with monotone operators. We then intro-

duce a broad class of variational inequalities with special structure, which represents saddle

point/variational analogies of what is usually called composite minimization (minimizing

a sum of an easy-to-handle nonsmooth and a general-type smooth convex functions as if

there were no nonsmooth component at all). We develop composite versions of the state-of-

ther-art Mirror Descent and Mirror Prox algorithms for solving such type of problems. We

demonstrate that the algorithms inherit the favorable efficiency estimate of their prototypes

when solving structured variational inequalities, namely, a O(1/ε2) complexity bound when

the monotone operator is bounded and a O(1/ε) complexity bound when the monotone

operator is Lipschitz continuous. To make it even more general and flexible, we establish

several variants of the composite Mirror Prox algorithm, allowing the algorithm to handle

inexactness of the prox mapping as well as the case when the operator is represented by an

unbiased stochastic oracle.

Organization of the chapter. This chapter is organized as follows. We start by dis-

cussing some required background on accuracy certificates for problems with convex struc-

tures (including convex minimization, convex-concave saddle point problems, and varia-

tional inequalities with monotone operators) in Section 2.2. In Section 2.3, we first define

the notion of structured variational inequalities we are mainly interested in; we then illus-

trate the notion with two general applications, one is a composite Nash equilibrium problem
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and the other is a composite saddle point problem. In Section 2.4, we present the com-

posite Mirror Descent algorithm along with the theoretical developments and results when

applying to the Nash equilibrium problem. In Section 2.5, we discuss theoretical aspects

of the composite Mirror Prox (CoMP) algorithm. More specifically, in Section 2.5.1, we

establish the theoretical convergence rate when applying CoMP to the composite saddle

point problem. In Section 2.5.2, we modify the algorithm allowing for general averaging

schemes. In Section 2.5.3, we discuss the inexact CoMP algorithm. In Section 2.5.4, we

discuss the stochasitc CoMP algorithm. Concluding remarks are made in Section 2.6.

2.2 Preliminaries: Accuracy Certificates for Problems with Convex
Structure

In this section, we review the basic theory of accuracy certificates, which is often used to

certify the accuracy of solutions to generic problems with convex structure (including convex

minimization, convex-concave saddle point problem, convex Nash equilibrium problem, and

variational inequalities with monotone operators). In the sequel, we discuss four types

of problems with convex structure along with their accuracy measures and show that the

accuracy certificates play a key role in those cases for generating an approximate solution

and quantifying its quality.

2.2.1 Accuracy Certificates

Execution protocols and accuracy certificates. Let X be a nonempty closed convex

set in a Euclidean space E and F (x) : X → E be a vector field.

Suppose that we process (X,F ) by an algorithm which generates a sequence of search

points xt ∈ X, t = 1, 2, ..., and computes the vectors F (xt), so that after t steps we have

at our disposal t-step execution protocol It = {xτ , F (xτ )}tτ=1. By definition, an accuracy

certificate for this protocol is simply a collection λt = {λtτ}tτ=1 of nonnegative reals summing

up to 1. We associate with the protocol It and accuracy certificate λt two quantities as

follows:

• Approximate solution xt(It, λt) :=
∑t

τ=1 λ
t
τxτ , which is a point of X;
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• Resolution Res(X ′
∣∣It, λt) on a subset X ′ 6= ∅ of X given by

Res(X ′
∣∣It, λt) = sup

x∈X′

t∑
τ=1

λtτ 〈F (xτ ), xτ − x〉. (2.2.1)

The role of those notions in the optimization context is explained next; our exposition

follows [59].

2.2.2 Convex Minimization

The problem. Let f be a Lipschitz continuous convex function on X. f gives rise to the

convex minimization problem

Opt = min
x∈X

f(x) (2.2.2)

and a vector field F (x) specified (in general, non-uniquely) by F (x) ∈ ∂f(x). It is well

know that F is monotone on its domain

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ X.

Note that by definition of subgradient, we have for any x, y, 〈F (x), x − y〉 ≥ f(x) − f(y)

and similarly,〈F (y), y − x〉 ≥ f(y) − f(x). Summing up the two inequalities renders the

monotonicity. In fact, x∗ ∈ X is an optimal solution to (2.2.2) if and only if

〈F (y), y − x∗〉 ≥ 0 ∀y ∈ X.

Accuracy measure. We quantify the (in)accuracy of a candidate solution x ∈ X for the

convex minimization problem (2.2.2) by the accuracy measure

εopt(x) := f(x)−Opt. (2.2.3)

The role of accuracy certificate in convex minimization becomes clear from the following

observation.

Proposition 2.2.1. Let f : X → R be a continuous convex function, and F be the as-

sociated monotone vector field on X. Let It = {xτ ∈ X,F (xτ )}tτ=1 be a t-step execution

protocol associated with (X,F ) and λt = {λtτ}tτ=1 be an associated accuracy certificate. Then

xt := xt(It, λt) ∈ X and one has

εopt(x
t) ≤ Res(X

∣∣It, λt). (2.2.4)
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Proof. Indeed, xt is a convex combination of the points xτ ∈ X with coefficients λtτ , whence

xt ∈ X. We have

∀y ∈ X : f(xt)− f(y) = f(
∑t

τ=1 λ
t
τxτ )− f(y) ≤

∑t
τ=1 λ

t
τ [f(xτ )− f(y)]

[by convexity and the fact that
∑t

τ=1 λ
t
τ = 1]

≤
∑t

τ=1 λ
t
τ 〈F (xτ ), xτ − y〉

≤ Res(X
∣∣It, λt).

Taking infinum over y ∈ X in the resulting inequality, we get (2.2.4).

2.2.3 Convex-Concave Saddle Point Problems

The problem. Now let X = X1 ×X2, where Xi is a closed convex subset in Euclidean

space Ei, i = 1, 2, and E = E1×E2, and let Φ(x1, x2) : X1×X2 → R be a locally Lipschitz

continuous function which is convex in x1 ∈ X1 and concave in x2 ∈ X2. X1, X2,Φ give rise

to the saddle point problem

SadVal = min
x1∈X1

max
x2∈X2

Φ(x1, x2), (2.2.5)

two induced convex optimization problems

Opt(P ) = minx1∈X1

[
Φ(x1) = supx2∈X2

Φ(x1, x2)
]

(P )

Opt(D) = maxx2∈X2

[
Φ(x2) = infx1∈X1

Φ(x1, x2)
]

(D)
(2.2.6)

and a vector field F (x = [x1, x2]) = [F1(x1, x2);F2(x1, x2)] specified (in general, non-

uniquely) by the relations

∀(x1, x2) ∈ X1 ×X2 : F1(x1, x2) ∈ ∂x1Φ(x1, x2), F2(x1, x2) ∈ ∂x2 [−Φ(x1, x2)].

It is well known that F is monotone on X, and that saddle points x∗ = (x1
∗, x

2
∗) of Φ on

X1 ×X2 are exactly points x∗ ∈ X satisfying the relation

〈F (y), y − x∗〉 ≥ 0 ∀y ∈ X.

Saddle points exist if and only if (P ) and (D) are solvable with equal optimal values, in

which case the saddle points are exactly the pairs (x1
∗, x

2
∗) comprised by optimal solutions

to (P ) and (D). In general, Opt(P ) ≥ Opt(D), with equality definitely taking place when
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at least one of the sets X1, X2 is bounded; if both are bounded, saddle points do exist.

To avoid unnecessary complications, from now on, when speaking about a convex-concave

saddle point problem, we assume that the problem is proper, meaning that Opt(P ) and

Opt(D) are reals; this definitely is the case when X is bounded.

Accuracy measure. A natural (in)accuracy measure for a candidate x = [x1;x2] ∈

X1 ×X2 to the role of a saddle point of Φ is the quantity

εSad(x
∣∣X1, X2,Φ) = Φ(x1)− Φ(x2)

= [Φ(x1)−Opt(P )] + [Opt(D)− Φ(x2)] + [Opt(P )−Opt(D)]︸ ︷︷ ︸
≥0

(2.2.7)

This inaccuracy is nonnegative and is the sum of the duality gap Opt(P )−Opt(D) (always

nonnegative and vanishing when one of the sets X1, X2 is bounded) and the inaccuracies,

in terms of respective objectives, of x1 as a candidate solution to (P ) and x2 as a candidate

solution to (D).

The role of accuracy certificates in convex-concave saddle point problems stems from

the following observation:

Proposition 2.2.2. Let X1, X2 be nonempty closed convex sets, Φ : X := X1×X2 → R be

a locally Lipschitz continuous convex-concave function, and F be the associated monotone

vector field on X. Let It = {xτ = [x1
τ ;x2

τ ] ∈ X,F (xτ )}tτ=1 be a t-step execution protocol

associated with (X,F ) and λt = {λtτ}tτ=1 be an associated accuracy certificate. Then xt :=

xt(It, λt) = [x1,t;x2,t] ∈ X.

Assume, further, that X ′1 ⊂ X1 and X ′2 ⊂ X2 are closed convex sets such that

xt ∈ X ′ := X ′1 ×X ′2. (2.2.8)

Then

εSad(xt
∣∣X ′1, X ′2,Φ) = sup

x2∈X′2
Φ(x1,t, x2)− inf

x1∈X′1
Φ(x1, x2,t) ≤ Res(X ′

∣∣It, λt). (2.2.9)

In addition, setting Φ̃(x1) = supx2∈X′2 Φ(x1, x2), for every x̄1 ∈ X ′1 we have

Φ̃(x1,t)− Φ̃(x̄1) ≤ Φ̃(x1,t)− Φ(x̄1, x2,t) ≤ Res({x̄1} ×X ′2
∣∣It, λt). (2.2.10)
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In particular, when the problem Opt = minx1∈X′1 Φ̃(x1) is solvable with an optimal solution

x1
∗, we have

Φ̃(x1,t)−Opt ≤ Res({x1
∗} ×X ′2

∣∣It, λt). (2.2.11)

Proof. The inclusion xt ∈ X is evident. For every set Y ⊂ X we have ∀[p; q] ∈ Y :

Res(Y
∣∣It, λt) ≥∑t

τ=1 λ
t
τ

[
〈F1(x1

τ ), x1
τ − p〉+ 〈F2(x2

τ ), x2
τ − q〉

]
≥
∑t

τ=1 λ
t
τ

[
[Φ(x1

τ , x
2
τ )− Φ(p, x2

τ )] + [Φ(x1
τ , q)− Φ(x1

τ , x
2
τ )]
]

[by the origin of F and since Φ is convex-concave]

=
∑t

τ=1 λ
t
τ

[
Φ(x1

τ , q)− Φ(p, x2
τ )
]
≥ Φ(x1,t, q)− Φ(p, x2,t)

[by origin of xt and since Φ is convex-concave]

Thus, for every Y ⊂ X we have

sup
[p;q]∈Y

[
Φ(x1,t, q)− Φ(p, x2,t)

]
≤ Res(Y

∣∣It, λt). (2.2.12)

Now assume that (2.2.8) takes place. Setting Y = X ′ := X ′1 ×X ′2 and recalling what εSad

is, (2.2.12) yields (2.2.9). With Y = {x̄1} × X ′2, (2.2.12) yields the second inequality in

(2.2.10); the first inequality in (2.2.10) is evident due to x2,t ∈ X ′2.

2.2.4 Convex Nash Equilibrium Problem

The problem. Now let X = X1 ×X2 × · · · ×XK , where Xk, 1 ≤ k ≤ K are closed and

bounded convex sets in the respective Euclidean spaces Ek, 1 ≤ k ≤ K. A convex Nash

equilibrium problem on X is specified by a collection of K Lipschitz continuous functions

fk(x) : X → R, k = 1, ...,K, such that for every k fk = fk(x[1], ..., x[K]) is convex in

x[k] ∈ Xk and concave in

[x]k = [x[1]; ...;x[k − 1];x[k + 1]; ...;x[K]] ∈ Xk = X1 × ...×Xk−1 ×Xk+1 × ...×XK ,

and besides this, the function f(x) :=
∑K

k=1 fk(x) is convex in x ∈ X. The Nash equilibrium

problem is to find a point x∗ ∈ X such that for every k the function fk(x∗[1], ..., x∗[k −

1], xk, x∗[k + 1], ..., x∗[K]) attains its minimum over xk ∈ Xk at xk = x∗[k]. A convex Nash

equilibrium problem gives rise to the Nash operator, i.e. a vector field F (x)

F (x) = [F1(x), F2(x), . . . , FK(x)]
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where Fk(x) ∈ ∂xkfk(x). It is well known (see, e.g., [59])that F is monotone on the domain

X and the Nash equilibria are exactly the points x∗ ∈ X satisfying

〈F (y), y − x∗〉 ≥ 0 ∀y ∈ X.

Accuracy measure. A natural way to quantify the inaccuracy of a point x ∈ X as an

approximate Nash equilibrium is given by the measure

εNash(x) :=
K∑
k=1

[
fk(x)− min

xk∈Xk
fk(xk, [x]k).

]
In fact, the convex minimization problem with convex objective f can be considered as

a special case of convex Nash equilibrium problem with K = 1 and f1(x) = f(x), which

results in εNash(x) = εopt(x). Similarly, the convex-concave saddle point problem given by

Φ(x1, x2) can be regarded as a special case when of convex Nash equilibrium problem where

x[i] = xi, i = 1, 2, and f1(x) = Φ(x), f2(x) = −Φ(x); moreover, in this case, we have

εNash(x) = εSad(x
∣∣X1, X2,Φ). The following result therefore is a natural generalization of

Propositions 2.2.1 and 2.2.2:

Proposition 2.2.3. Let a convex Nash equilibrium problem be as described above and F

be the associated Nash operator on X. Let It = {xτ ∈ X,F (xτ )}tτ=1 be a t-step execution

protocol associated with (X,F ) and λt = {λtτ}tτ=1 be an associated accuracy certificate. Then

xt := xt(It, λt) ∈ X and one has

εNash(xt) ≤ Res(X
∣∣It, λt). (2.2.13)

Proof. The inclusion xt ∈ X is evident. We have ∀y ∈ X,∑K
k=1

[
fk(x

t)− fk(yk, [xt]k)
]

=
∑K

k=1

[
fk(
∑t

τ=1 λ
t
τxτ )− fk(yk,

∑t
τ=1 λ

t
τ [xτ ]k)

]
≤
∑K

k=1

∑t
τ=1 λ

t
τ

[
fk(xτ )− fk(yk, [xτ ]k)

]
[by convexity of f and the concavity of fk(yk, ·)]

≤
∑K

k=1

∑t
τ=1 λ

t
τ 〈Fk(xτ ), xτ [k]− yk〉

[by convexity of fk(·, [xτ ]k) and origin of Fk]

≤
∑t

τ=1 λ
t
τ

[∑K
k=1〈Fk(xτ ), xτ [k]− yk〉

]
≤
∑t

τ=1 λ
t
τ 〈F (xτ ), xτ − y〉 [by the origin of F ]

≤ Res(X
∣∣It, λt).
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Hence, εNash(xt) ≤ Res(X
∣∣It, λt).

2.2.5 Variational Inequalities with Monotone Operators

The three types of optimization problems considered so far (convex minimization, convex-

concave saddle point, and convex Nash equilibrium) are special cases of variational inequal-

ities with monotone operators.

Variational inequality with monotone operator. Let X be a closed and convex set

and vector field F be monotone on X, i.e.,

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ X (2.2.14)

The variational inequality problem associated with (X,F ), denoted as VI(X,F ), is to find

x∗ ∈ X such that

〈F (y), y − x∗〉 ≥ 0 ∀y ∈ X; (2.2.15)

these x∗ are called weak solutions to the variational inequality. In contrast, a strong solution

is a point x∗ ∈ X such that 〈F (x∗), y−x∗〉 ≥ 0 ∀y ∈ X. Note that for variational inequality

with monotone operators, a strong solution is also a weak solution. The inverse is true

under mild regularity assumption, e.g. when F is continuous. Finally, when X is convex

and compact and F is monotone, weak solutions to VI(X,F ) always exist.

Accuracy measure. A natural (in)accuracy measure of a point x ∈ X to VI(X,F ) as a

candidate weak solution is the dual gap function

εVI(x
∣∣X,F ) = sup

y∈X
〈F (y), x− y〉 (2.2.16)

This inaccuracy is a convex nonnegative function which vanishes exactly at the set of weak

solutions to the VI(X,F ) .

Proposition 2.2.4. Let VI(X,F ) be the variational inequality with monotone operator F

and closed convex set X. For every t, every execution protocol It = {xτ ∈ X,F (xτ )}tτ=1

and every accuracy certificate λt one has xt := xt(It, λt) ∈ X. For every closed convex set
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X ′ ⊂ X such that xt ∈ X ′ one has

εVI(x
t
∣∣X ′, F ) ≤ Res(X ′

∣∣It, λt). (2.2.17)

Proof. Indeed, xt is a convex combination of the points xτ ∈ X with coefficients λtτ , whence

xt ∈ X. With X ′ as in the premise of Proposition, we have

∀y ∈ X ′ : 〈F (y), xt − y〉 =
t∑

τ=1

λtτ 〈F (y), xτ − y〉 ≤
t∑

τ=1

λtτ 〈F (xτ ), xτ − y〉 ≤ Res(X ′
∣∣It, λt),

where the first ≤ is due to monotonicity of F .

To summarize, throughout this section, we have associated the four types of problems

with convex structure – convex minimization, convex-concave saddle points, convex Nash

equilibrium problems, and variational inequalities with monotone operators, with respective

accuracy measures. We have also associated with every one of these problems a monotone

vector field F on problem’s domain X and have seen that exact solutions to the problems

are nothing but weak solutions of the resulting VI(X,F ). Moreover, we have shown that

for every execution protocol for (X,F ), an accuracy certificate for the protocol induces a

feasible solution to the problem of interest, and the resolution of this protocol upper-bounds

the respective inaccuracy of this solution.

2.3 Problems with Special Convex Structure

2.3.1 The Situation

The situation. Let U be a nonempty closed convex domain in a Euclidean space Eu, Ev

be a Euclidean space, and X be a nonempty closed convex domain in E = Eu × Ev. We

denote vectors from E by x = [u; v] with blocks u, v belonging to Eu and Ev, respectively.

We assume that

(A.1): Eu is equipped with a norm ‖·‖, the conjugate norm being ‖·‖∗, and U is equipped with

a distance-generating function (d.g.f.) ω(·) (that is, with a continuously differentiable

convex function ω(·) : U → R) which is compatible with ‖ · ‖, meaning that ω is

strongly convex, modulus 1, w.r.t. ‖ · ‖.
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Note that d.g.f. ω defines the Bregman distance

Vu(w) := ω(w)− ω(u)− 〈ω′(u), w − u〉 ≥ 1

2
‖w − u‖2, u, w ∈ U, (2.3.1)

where the concluding inequality follows from strong convexity, modulus 1, of the d.g.f.

w.r.t. ‖ · ‖.

In the sequel, we refer to the pair ‖ · ‖, ω(·) as to proximal setup for U .

(A.2): the image PX of X under the projection x = [u; v] 7→ Px := u is contained in U .

(A.3): we are given a vector field F (u, v) : X → E on X of the special structure as follows:

F (u, v) = [Fu(u);Fv],

with Fu(u) ∈ Eu and Fv ∈ Ev. Note that F is independent of v.

We assume also that

∀u, u′ ∈ U : ‖Fu(u)− Fu(u′)‖∗ ≤ L‖u− u′‖+M (2.3.2)

with some L <∞, M <∞.

(A.4): the linear form 〈Fv, v〉 of [u; v] ∈ E is bounded from below on X and is coercive on X

w.r.t. v: whenever [ut; vt] ∈ X, t = 1, 2, ... is a sequence such that {ut}∞t=1 is bounded

and ‖vt‖2 →∞ as t→∞, we have 〈Fv, vt〉 → ∞, t→∞.

Our goal in this chapter is to show that in the situation in question, proximal type

processing F (say, F is monotone on X, and we want to solve the variational inequality

given by F and X) can be implemented “as if” there were no v-components in the domain

and in F .

2.3.2 Example I: Composite Nash Equilibrium Problem

Consider the case when u is split intoK consecutive blocks: u = [u[1]; ...;u[K]], and similarly

for v: v = [v[1]; ...; v[K]]. For x = [u, v], let us set x[k] = [u[k]; v[k]].

Let

X = {x = [u; v] : x[k] := [u[k]; v[k]] ∈ Xk, 1 ≤ k ≤ K},
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where Xk, 1 ≤ k ≤ K, are closed convex sets in the respective orthogonal to each other

linear subspaces Ek of E = Rnu+nv . Consider a convex Nash equilibrium problem given

by K Lipschitz continuous functions fk(x) : X → R, k = 1, ...,K, such that for every k

fk = fk(x[1], ..., x[K]) is convex in x[k] ∈ Xk and concave in

[x]k = [x[1]; ...;x[k − 1];x[k + 1]; ...;x[K]] ∈ Xk = X1 × ...×Xk−1 ×Xk+1 × ...×XK ,

and besides this, the function f(x) :=
∑K

k=1 fk(x) is convex in x ∈ X. In the sequel we

will denote by [u]k, [v]k entities obtained from u, resp., v in exactly the same way as [x]k is

obtained from x.

Recall that the Nash equilibrium problem is to find x ∈ X such that for every k the

function fk(x[1], ..., x[k − 1], xk, x[k + 1], ..., x[K]) attains its minimum over xk ∈ Xk at

xk = x[k]. A natural way to quantify the inaccuracy of a point x ∈ X as an approximate

Nash equilibrium is given by the measure

εNash(x) :=

K∑
k=1

[
fk(x)− min

xk∈Xk
f(xk, [x]k).

]
Assume that the functions fk in the Nash equilibrium problem possess the following

specific structure:

fk(x = [u; v]) = φk(u) +

K∑
`=1

〈bk` , v[`]〉.

Here φk(u) are Lipschitz continuous functions on the set PX = (P1X1) × ... × (PKXK),

where Pk · [u[k]; v[k]] = u[k]. Similarly to the case of functions fk, we will use the

notation φk(u[k], [u]k) as an equivalent form of φk(u). Let φ′k(u) be a subgradient of

φk(u = [u[1]; ...;u[K]]) with respect to u[k], and let us set

Fk(x = [u; v]) = [φ′k(u); bkk], k = 1, ...,K.

We defined the Nash operator F (x = [u, v]) on X given the collection Fk(·), k = 1, ...,K,

by (F (x))[k] = Fk(x), 1 ≤ k ≤ K, and this field clearly is of the form

F (x) = [Fu(u);Fv].

Assuming that Fu(·) is bounded on PX: ‖Fu(u)‖∗ ≤M <∞,∀u ∈ PX and that the linear

function 〈Fv, v〉 of x = [u; v] is below bounded on X, then we are exactly in the situation
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described in Section 2.3.1 with assumption (A.3) satisfied by L = 0. In this case, our goal

hence, is to solve the above Nash equilibrium problem as if there were no linear terms in

the functions.

2.3.3 Example II: Composite Saddle Point Problem

Consider the “composite” saddle point problem

SadVal = min
u1∈U1

max
u2∈U2

[φ(u1, u2) + Ψ1(u1)−Ψ2(u2)] , (2.3.3)

where

• U1 ⊂ E1 and U2 ⊂ E2 are nonempty closed convex sets in Euclidean spaces E1, E2

• φ is a smooth (with Lipschitz continuous gradient) convex-concave function on U1×U2

• Ψ1 : U1 → R and Ψ2 : U2 → R are convex functions, perhaps nonsmooth, but

“fitting” the domains U1, U2 in the following sense: for i = 1, 2, we can equip Ei with

a norm ‖ · ‖(i), and Ui - with a compatible with this norm d.g.f. ωi(·) in such a way

that optimization problems of the form

min
ui∈Ui

[αωi(ui) + βΨi(ui) + 〈ξ, ui〉] [α > 0, β > 0] (2.3.4)

are easy to solve.

We act as follows:

• For i = 1, 2, we set Xi = {xi = [ui; vi] ∈ Ei ×R : ui ∈ Ui, vi ≥ Ψi(ui)} and set

U := U1 × U2 ⊂ Eu := E1 × E2, Ev = R2,

X = {x = [u = [u1;u2]; v = [v1; v2]] : ui ∈ Ui, vi ≥ Ψi(ui), i = 1, 2} ⊂ Eu × Ev,

thus ensuring that PX ⊂ U , where P [u; v] = u;

• We rewrite the problem of interest equivalently as

SadVal = min
x1=[u1;v1]∈X1

max
x2=[u2;v2]∈X2

[Φ(u1, v1;u2, v2) = φ(u1, u2) + v1 − v2] (2.3.5)
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Note that Φ is convex-concave and smooth. The associated monotone operator is

F (u = [u1;u2], v = [v1; v2]) = [Fu(u) = [∇u1φ(u1, u2);−∇u2φ(u1, u2)];Fv = [1; 1]]

and is of the structure required in (A.3). Note that F is Lipschitz continuous, so that

(2.3.2) is satisfied with properly selected L and with M = 0.

Hence, we are exactly in the situation described in Section 2.3.1 with assumption (A.3)

satisfied by M = 0. In this case, our goal, is to solve the above composite saddle point

problem as if there were no (perhaps) nonsmooth terms Ψi.

Remark. We intend to process the reformulated saddle point problem (2.3.5) with a

properly modified state-of-the-art Mirror Prox (MP) algorithm [56]. In its basic version

and as applied to a variational inequality with Lipschitz continuous monotone operator

(in particular, to a convex-concave saddle point problem with smooth cost function), this

algorithm exhibits O(1/t) rate of convergence, which is the best rate achievable with First

Order saddle point algorithms as applied to large-scale saddle point problems (even those

with bilinear cost function). However, the basic MP would require to equip the domain

X = X1 ×X2 of (2.3.5) with a d.g.f. ω(x1, x2) resulting in auxiliary problems of the form

min
x=[u1;u2;v1;v2]∈X

[ω(x) + 〈ξ, x〉] . (2.3.6)

This would require to account in ω, in a nonlinear fashion, for the v-variables (since ω

should be a strongly convex in both u- and v-variables). While it is easy to construct ω

from our postulated “building blocks” ω1, ω2 leading to easy-to-solve problems (2.3.4), this

construction results in auxiliary problems (2.3.6) somehow more complicated than problems

(2.3.4). To overcome this difficulty, below we develop a “composite” Mirror Prox algorithm

taking advantage of the special structure of F , as expressed in (A.3), and preserving the

favorable efficiency estimates of the prototype. The modified algorithm operates with the

auxiliary problems of the form

min
x=[u1;u2;v1;v2]∈X1×X2

2∑
i=1

[αiωi(ui) + βivi + 〈ξi, ui〉] , [αi > 0, βi > 0]
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that is, with pairs of uncoupled problems

min
[ui;vi]∈Xi

[αiωi(ui) + βivi + 〈ξi, ui〉] , i = 1, 2;

recalling that Xi = {[ui; vi] : ui ∈ Ui, vi ≥ Ψi(ui)}, these problems are nothing but the

easy-to-solve problems (2.3.4).

2.4 Composite Mirror Descent

In the rest of this chapter, unless otherwise is stated explicitly, we stay in the situation

described in Section 2.3.1, with Assumptions (A.1) – (A.4) in force.

In this section, we first focus on the case when L = 0 in Assumption (A.3), namely, the

vector field F is only assumed to be bounded. Our goal is to develop a composite version

of Mirror Descent algorithm, which works as if there were no v-component and still enjoys

the usual efficiency estimate.

Prox-mapping. Given the situation described in previous section, we define the associ-

ated prox-mapping: for ξ = [η; ζ] ∈ E and x = [u; v] ∈ X,

Px(ξ) ∈ Argmin
[s;w]∈X

{
〈η − ω′(u), s〉+ 〈ζ, w〉+ ω(s)

}
≡ Argmin

[s;w]∈X
{〈η, s〉+ 〈ζ, w〉+ Vu(s)} (2.4.1)

Observe that Px([η; γFv]) is well defined whenever γ > 0 – the required Argmin is nonempty

due to the strong convexity of ω on U and assumption (A.4). We verify this below.

Lemma 2.4.1. For any x = [u; v] ∈ X and ξ = [η; ζ] ∈ E, the prox-mapping Px([η; γFv])

is well-defined, provided γ > 0.

Proof. All we need is to show that whenever u ∈ U , η ∈ Eu, γ > 0 and [wt; st] ∈ X,

t = 1, 2, ..., are such that ‖wt‖2 + ‖st‖2 →∞ as t→∞, we have

rt := 〈η − ω′(u), wt〉+ ω(wt)︸ ︷︷ ︸
at

+ γ〈Fv, st〉︸ ︷︷ ︸
bt

→∞, t→∞.

Indeed, assuming the opposite and passing to a subsequence, we make the sequence rt

bounded. Since ω(·) is strongly convex, modulus 1, w.r.t. ‖ · ‖, and the linear function
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〈Fv, s〉 of [w; s] is below bounded on X by (A.4), boundedness of the sequence {rt} implies

boundedness of the sequence {wt}, and since ‖[wt; st]‖2 →∞ as t→∞, we get ‖st‖2 →∞

as t→∞. Since 〈Fv, s〉 is coercive in s on X by (A.4), and γ > 0, we conclude that bt →∞,

t → ∞, while the sequence {at} is bounded since the sequence {wt ∈ U} is so and ω is

continuously differentiable. Thus, {at} is bounded, bt →∞, t→∞, implying that rt →∞,

t→∞, which is the desired contradiction.

Composite Mirror Descent algorithm is as follows.

Algorithm 1 Composite Mirror Descent Algorithm for VI(X,F )

Input: stepsizes γτ > 0, inexactness ετ ≥ 0, τ = 1, 2, . . .

Initialize x1 = [u1; v1] ∈ X

for τ = 1, 2, . . . , t do

xτ+1 := [uτ+1; vτ+1] ∈ Pxτ (γτF (xτ )) = Pxτ (γτ [Fu(uτ );Fv]) (2.4.2)

end for

Output: xt+1 := [ut+1; vt+1] = (
∑t

τ=1 γτ )
−1∑t

τ=1 γτxτ+1

Note that since γτ > 0, the recurrence in (2.4.2) is well-defined by Lemma 2.4.1. Also,

by construction, xτ ∈ X for all t, whence, the output xt+1 ∈ X for all t as well. The

following lemma is a simple consequence of the optimality condition of the problem (2.4.1).

Lemma 2.4.2. For any x = [u; v] ∈ X and ξ = [η; ζ] ∈ E, let [u′; v′] = Px(ξ), we have for

all [s;w] ∈ X,

〈η, u′ − s〉+ 〈ζ, v′ − w〉 ≤ Vu(s)− Vu′(s)− Vu(u′). (2.4.3)

Proof. Recall the well-known identity [24]: for all u, u′, w ∈ U one has

〈V ′u(u′), w − u′〉 = Vu(w)− Vu′(w)− Vu(u′). (2.4.4)

Indeed, the right hand side is

[ω(w)− ω(u)− 〈ω′(u), w − u〉]− [ω(w)− ω(u′)− 〈ω′(u′), w − u′〉]− [ω(u′)− ω(u)− 〈ω′(u), u′ − u〉]

=〈ω′(u), u− w〉+ 〈ω′(u), u′ − u〉+ 〈ω′(u′), w − u′〉 = 〈ω′(u′)− ω′(u), w − u′〉 = 〈V ′u(u′), w − u′〉.
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For x = [u; v] ∈ X, ξ = [η; ζ], let Px(ξ) = [u′; v′] ∈ X. By the optimality condition for the

problem (2.4.1), for all [s;w] ∈ X,

〈η + V ′u(u′), u′ − s〉+ 〈ζ, v′ − w〉 ≤ 0,

which by (2.4.4) implies that

〈η, u′ − s〉+ 〈ζ, v′ − w〉 ≤ 〈V ′u(u′), s− u′〉 = Vu(s)− Vu′(s)− Vu(u′).

Theorem 2.4.1. Assue we are in the situation of Section 2.3.1 and under assumptions

(A.1) –(A.4) and L = 0 in (A.3), i.e. ‖Fu(u)‖∗ ≤ M < ∞,∀u ∈ PX. In the case when

Fu is monotone operator, we have

εVI(x
t+1
∣∣X,F ) ≤

[
t∑

τ=1

γτ

]−1 [
max
u∈PX

Vu1(u) + 2M2
t∑

τ=1

γ2
τ

]
. (2.4.5)

Proof. Assume that Fu(u) is monotone on PX, so that F is monotone on X. When applying

Lemma 2.4.2 with [u; v] = [uτ ; vτ ], [η; ζ] = [γτFu(uτ ); γτFv] and [u′; v′] = [uτ+1; vτ+1], we

obtain for any z = [s;w] ∈ X

γτ [〈Fu(uτ ), uτ+1 − s〉+ 〈Fv, vτ+1 − w〉] ≤ Vuτ (s)− Vuτ+1(s)− Vuτ (uτ+1) (2.4.6)

Taking into account strong convexity of ω(·) and monotonicity of F , we end up with

γτ [〈Fu(s), uτ − s〉+ 〈Fv, vτ+1 − w〉]

≤ Vuτ (s)− Vuτ+1(s)− 1
2‖uτ+1 − uτ‖2 + γτ 〈Fu(uτ ), uτ − uτ+1〉,

whence

γτ 〈F (z), xτ+1 − z〉 = γτ [〈Fu(s), uτ+1 − s〉+ 〈Fv, vτ+1 − w〉]

≤ Vuτ (s)− Vuτ+1(s)− 1
2‖uτ+1 − uτ‖2 + γτ 〈Fu(s)− Fu(uτ ), uτ+1 − uτ 〉

≤ Vuτ (s)− Vuτ+1(s)− 1
2‖uτ+1 − uτ‖2 + 2γτM‖uτ+1 − uτ‖

≤ Vuτ (s)− Vuτ+1(s) + 2γ2
τM

2,

whence

γτ 〈F (z), xτ+1 − z〉 ≤ Vuτ (s)− Vuτ+1(s) + 2γ2
τM

2. (2.4.7)
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Summing up inequalities (2.4.7) over t, we conclude that for every z = [s;w] ∈ X it holds

〈F (z), xt+1 − z〉 ≤

[
t∑

τ=1

γτ

]−1 [
max
u∈PX

Vu1(u) + 2M2
t∑

τ=1

γ2
τ

]
.

Taking maximum over z ∈ X, we end up with the desired bound.

Remark. The composite Mirror Descent algorithm inherits the efficiency estimate of

its prototype. In particular, when the stepsize is set to be γτ = Ω√
2M
√
t

where Ω2 =

max
u∈PX

Vu1(u), then εVI(x
t+1
∣∣X,F ) ≤

√
2ΩM√
t

. Similar results can be obtained for Nash equi-

librium problems.

Nash equilibrium problem Recall that the Nash equilibrium problem described in

Section 2.3.2 and the induced variational inequality. We can therefore apply to the problem

the above algorithm.

Theorem 2.4.2. Let the Nash equilibrium problem be as described in Section 2.3.2. Assume

that φk(u) is Mk-Lipschitz continuous on PX for k = 1, . . . ,K w.r.t. ‖ · ‖. Assume that

‖Fu(u)‖∗ ≤ M < ∞,∀u ∈ PX. The candidate solution xt+1 provided by the above Mirror

Descent algorithm satisfies the efficiency estimate

εNash(xt+1) ≤
max
u∈PX

Vu1(u) + 1
2M

2
∑t

τ=1 γ
2
τ∑t

τ=1 γτ
, (2.4.8)

where M = M +
∑K

k=1 2Mk <∞.

Proof. The relation (2.4.6) which now reads, for all x̄ := [ū; v̄] ∈ X

γτ
∑K

k=1

[
〈φ′k(uτ ), uτ+1[k]− ū[k]〉+ 〈bkk, vτ+1[k]− v̄[k]〉

]
≤ Vuτ (ū)− Vuτ+1(ū)− Vuτ (uτ+1)

⇒ γτ
∑K

k=1

[
〈φ′k(uτ ), uτ [k]− ū[k]〉+ 〈bkk, vτ+1[k]− v̄[k]〉

]
≤ Vuτ (ū)− Vuτ+1(ū)− 1

2‖uτ+1 − uτ‖2 + γτ 〈Fu(uτ ), uτ − uτ+1〉.
(2.4.9)

Note that the convexity-concavity properties of fk imply that the function φk(u) ≡

φk(u[k], [u]k), is convex in u[k] and concave in [u]k. By the former fact, we have

〈φ′k(uτ ), uτ [k]− ū[k]〉 ≥ φk(uτ )− φk(ū[k], [uτ ]k),
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and thus, due to Lipschitz continuity of φk on PX,

〈φ′k(uτ ), uτ [k]− ū[k]〉 ≥ φk(uτ+1)− φk(ū[k], [uτ+1]k)− 2Mk‖uτ − uτ+1‖

with properly defined Mk <∞. This combines with (2.4.9) to imply that

γτ
∑K

k=1

[
fk(xτ+1)− fk(x̄[k], [xτ+1]k)

]
= γτ

∑K
k=1

[
φk(uτ+1)− φk(ū[k], [uτ+1]k) + 〈bkk, vτ+1[k]− v̄[k]〉

]
≤ Vuτ (ū)− Vuτ+1(ū)− 1

2‖uτ+1 − uτ‖2 + γτ 〈Fu(uτ ), uτ − uτ+1〉+ γτ
∑K

k=1 2Mk‖uτ − uτ+1‖

≤ Vuτ (ū)− Vuτ+1(ū)− 1
2‖uτ+1 − uτ‖2 + γτ [M +

∑K
k=12Mk]‖uτ − uτ+1‖

≤ Vuτ (ū)− Vuτ+1(ū) + 1
2γ

2
τM2.

Summing up the resulting inequalities over τ , we get

t∑
τ=1

γτ

K∑
k=1

[
fk(xτ+1)− fk(x̄[k], [xτ+1]k)

]
≤ max

u∈PX
Vu1(u) +

1

2
M2

t∑
τ=1

γ2
τ .

Recalling that f(x) =
∑K

k=1 fk(x) is convex on X, while fk(x[k], [x]k) is concave in [x]k, we

have

t∑
τ=1

γτ

K∑
k=1

[
fk(xτ+1)− fk(x̄[k], [xτ+1]k)

]
≥

[
t∑

τ=1

γτ

]
K∑
k=1

[
fk(x

t+1)− fk(x̄[k], [xt+1]k)
]
,

hence we get

K∑
k=1

[
fk(x

t+1)− fk(x̄[k], [xt+1]k)
]
≤

max
u∈PX

Vu1(u) + 1
2M

2
∑t

τ=1 γ
2
τ∑t

τ=1 γτ
.

Taking maximum of the left hand side in x̄ ∈ X, we finally get (2.4.8).

Remark. When applied to the above convex Nash equilibrium problem, the composite

Mirror Descent algorithm inherits with properly selected stepsizes the O(1/ε2) efficiency

estimate of its prototype.

2.5 Composite Mirror Prox

2.5.1 Composite Mirror Prox: basic algorithm

In the following sections, we focus on the general case when L 6= 0 in assumption (A.3) and

develop a composite version of Mirror Prox algorithm. The algorithm is as follows:
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Algorithm 2 Composite Mirror Prox Algorithm (CoMP) for VI(X,F )

Input: stepsizes γτ > 0, τ = 1, 2, . . .

Initialize x1 = [u1; v1] ∈ X

for τ = 1, 2, . . . , t do

yτ := [u′τ ; v′τ ] = Pxτ (γτF (xτ )) = Pxτ (γτ [Fu(uτ );Fv])

xτ+1 := [uτ+1; vτ+1] = Pxτ (γτF (yτ )) = Pxτ (γτ [Fu(u′τ );Fv])
(2.5.1)

end for

Output: xt := [ut; vt] = (
∑t

τ=1 γτ )
−1∑t

τ=1 γτyτ

Observe that the process is well defined by Lemma 2.4.1. From now on, for a subset X ′

of X we set

Θ[X ′] = sup
[u;v]∈X′

Vu1(u). (2.5.2)

We arrive at the following results.

Theorem 2.5.1. In the setting of Section 2.3.1, assuming that (A.1)–(A.4) hold, consider

the recurrence (2.5.1) with stepsizes γτ > 0, τ = 1, 2, ... satisfying the relation:

δτ := γτ 〈Fu(u′τ )− Fu(uτ ), u′τ − uτ+1〉 − Vu′τ (uτ+1)− Vuτ (u′τ ) ≤ γ2
τM

2. (2.5.3)

Then the corresponding execution protocol It = {yτ , F (yτ )}tτ=1 admits accuracy certificate

λt = {λtτ = γτ/
∑t

i=1 γi} such that for every X ′ ⊂ X it holds

Res(X ′
∣∣It, λt) ≤ Θ[X ′] +M2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
. (2.5.4)

Relation (2.5.3) is definitely satisfied when 0 < γτ ≤ (
√

2L)−1, or, in the case of M = 0,

when γτ ≤ L−1.

Proof. When applying Lemma 2.4.2 with [u; v] = [uτ ; vτ ] = xτ , ξ = γτF (xτ ) =

[γτFu(uτ ); γτFv], [u′; v′] = [u′τ ; v′τ ] = yτ , and [s;w] = [uτ+1; vτ+1] = xτ+1 we obtain:

γτ [〈Fu(uτ ), u′τ − uτ+1〉+ 〈Fv, v′τ − vτ+1〉] ≤ Vuτ (uτ+1)− Vu′τ (uτ+1)− Vuτ (u′τ ) (2.5.5)

and applying Lemma 2.4.2 with [u; v] = xτ , ξ = γτF (yτ ), [u′; v′] = xτ+1, and [s;w] = z ∈ X

we get:

γτ [〈Fu(u′τ ), uτ+1 − s〉+ 〈Fv, vτ+1 − w〉] ≤ Vuτ (s)− Vuτ+1(s)− Vuτ (uτ+1). (2.5.6)
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Adding (2.5.6) to (2.5.5) we obtain for every z = [s;w] ∈ X

γτ 〈F (yτ ), yτ − z〉 = γτ [〈Fu(u′τ ), u′τ − s〉+ 〈Fv, v′τ − w〉]

≤ Vuτ (s)− Vuτ+1(s) + γτ 〈Fu(u′τ )− Fu(uτ ), u′τ − uτ+1〉 − Vu′τ (uτ+1)− Vuτ (u′τ )

= Vuτ (s)− Vuτ+1(s) + δτ . (2.5.7)

Due to the strong convexity, modulus 1, of Vu(·) w.r.t. ‖ · ‖, Vu(u′) ≥ 1
2‖u − u

′‖2 for all

u, u′. Therefore,

δτ ≤ γτ‖Fu(u′τ )− Fu(uτ )‖∗‖u′τ − uτ+1‖ − 1
2‖u
′
τ − uτ+1‖2 − 1

2‖uτ − u
′
τ‖2

≤ 1
2

[
γ2
τ‖Fu(u′τ )− Fu(uτ )‖2∗ − ‖uτ − u′τ‖2

]
≤ 1

2

[
γ2
τ [M + L‖u′τ − uτ‖]2 − ‖uτ − u′τ‖2

]
,

where the last inequality is due to (2.3.2). Note that γτL < 1 implies that

γ2
τ [M + L‖u′τ − uτ‖]2 − ‖u′τ − uτ‖2 ≤ max

r

[
γ2
τ [M + Lr]2 − r2

]
=

γ2
τM

2

1− γ2
τL

2
.

Let us assume that the stepsizes γτ > 0 ensure that (2.5.3) holds, meaning that δτ ≤ γ2
τM

2

(which, by the above analysis, is definitely the case when 0 < γτ ≤ 1√
2L

; when M = 0, we

can take also γτ ≤ 1
L). When summing up inequalities (2.5.7) over τ = 1, 2, ..., t and taking

into account that Vut+1(s) ≥ 0, we conclude that for all z = [s;w] ∈ X,

t∑
τ=1

λtτ 〈F (yτ ), yτ − z〉 ≤
Vu1(s) +

∑t
τ=1 δτ∑t

τ=1 γτ
≤
Vu1(s) +M2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
, λtτ = γτ/

t∑
i=1

γi.

Invoking Propositions 2.2.4, 2.2.2, we arrive at the following

Corollary 2.5.1. Under the premise of Theorem 2.5.1, for every t = 1, 2, ..., setting

xt = [ut; vt] =
1∑t

τ=1 γτ

t∑
τ=1

γτyτ .

we ensure that xt ∈ X and that

(i) In the case when F is monotone on X, we have

εVI(x
t
∣∣X,F ) ≤

[∑t

τ=1
γτ

]−1 [
Θ[X] +M2

∑t

τ=1
γ2
τ

]
. (2.5.8)
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(ii) Let X = X1×X2, and let F be the monotone vector field associated with the saddle point

problem (2.2.5) with convex-concave locally Lipschitz continuous cost function Φ. Then

εSad(xt
∣∣X1, X2,Φ) ≤

[∑t

τ=1
γτ

]−1 [
Θ[X] +M2

∑t

τ=1
γ2
τ

]
. (2.5.9)

In addition, assuming that problem (P ) in (2.2.6) is solvable with optimal solution x1
∗ and

denoting by x1,t the projection of xt ∈ X = X1 ×X2 onto X1, we have

Φ(x1,t)−Opt(P ) ≤
[∑t

τ=1
γτ

]−1 [
Θ[{x1

∗} ×X2] +M2
∑t

τ=1
γ2
τ

]
. (2.5.10)

(iii) Let X = X1 × · · · × XK , and let F be the Nash operator associated with the convex

Nash equilibrium problem described in Section 2.3.2. Then

εNash(xt) ≤
[∑t

τ=1
γτ

]−1 [
Θ[X] +M2

∑t

τ=1
γ2
τ

]
. (2.5.11)

Stepsize policy and covergence rate Assuming PX ′ is bounded, Θ[X ′] is finite. In

the case when F is bounded, (that is, (2.3.2) holds true with L = 0 and some M = 0), the

relation (2.5.3) holds true for any stepsizes γτ ≥ 0. A good stepsize policy in this case is to

set γτ ≡
√

Θ[X]

M
√
t
, τ = 1, . . . , t and the associated efficiency estimate in (2.5.4) becomes

Res(X ′
∣∣It, λt) ≤ 2

√
Θ[X ′]M√
t

. (2.5.12)

As a result, when U is bounded and F is uniformly bounded, the CoMP algorithm achieves

a O(1/
√
t) convergence rate when solving all the problems with convex structure, including

the variational inequality VI(X,F ), the saddle point problem and convex Nash equilibrium

problem.

In the case when F is Lipschitz continuous (that is, (2.3.2) holds true with some L > 0

and M = 0), the requirements on the stepsizes imposed in the premise of Theorem 2.5.1

reduce to δτ ≤ 0 for all τ and are definitely satisfied with the constant stepsizes γτ = 1/L.

Thus, in the case under consideration we can assume w.l.o.g. that γτ ≥ 1/L, thus efficiency

estimate in (2.5.4) becomes

Res(X ′
∣∣It, λt) ≤ Θ[X ′]L

t
.

and therefore (2.5.10) becomes

Φ(x1,t)−Opt(P ) ≤ Θ[{x1
∗} ×X2]L

t
. (2.5.13)
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As a result, when U is bounded and F is Lipschitz continuous, the CoMP algorithm achieves

a O(1/t) convergence rate when solving all the aforementioned problems with convex struc-

ture.

Composite saddle point problem. Recall the composite saddle point problem de-

scribed in Section 2.3.3,

SadVal = min
u1∈U1

max
u2∈U2

[φ(u1, u2) + Ψ1(u1)−Ψ2(u2)] ,

We can apply to the problem the above algorithm. Assume that we have at our disposal

nonnegative constants L11, L22, L12 such that

‖∇u1φ(u1, u2)−∇u1φ(u′1, u2)‖(1,∗) ≤ L11‖u1 − u′1‖(1),

‖∇u1φ(u1, u2)−∇u1φ(u1, u
′
2)‖(1,∗) ≤ L12‖u2 − u′2‖(2),

‖∇u2φ(u1, u2)−∇u2φ(u1, u
′
2)‖(2,∗) ≤ L22‖u2 − u′2‖(2).

(2.5.14)

For “symmetry”, we also have ‖∇u2φ(u1, u2)−∇u2φ(u′1, u2)‖(2,∗) ≤ L12‖u− 1−u′1‖(1). Let

Ωi = maxUi ωi(ui) − minUi ωi(ui), i = 1, 2 and let L = L11Ω1 + L22Ω2 + 2L12

√
Ω1Ω2. We

can equip U = U1 × U2 with the aggregated distance generating function

ω(u = [u1;u2]) = α1ω1(u1) + α2ω2(u2),

where

α1 =
L11Ω1 + L12

√
Ω1Ω2

LΩ1
, α2 =

L22Ω2 + L12

√
Ω1Ω2

LΩ2
.

Note that ω(u) is a distance generating function on U compatible with the following norm

‖u = [u1;u2]‖ =
√
α1‖u1‖2(1) + α2‖u2‖2(2),

and also in this case, Θ[X] ≤ maxU ω(u)−minU ω(u) ≤ 1.

Corollary 2.5.2. Let the composite saddle point problem be as described in Section 2.3.3

with Lipschitz parameters given as above. The candidate solution xt+1 provided by the

composite Mirror Prox algorithm using the above proximal setup along with stepsize γτ = 1
L ,

leads to the efficiency estimate

[
φ(ut1, u

t
2) + Ψ1(ut1)−Ψ2(ut2)

]
− SadVal ≤ L

t
=
L11Ω1 + L22Ω2 + 2L12

√
Ω1Ω2

t
. (2.5.15)
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Remark. The composite Mirror Prox algorithm when applied to the composite saddle

point problem, preserves the favorable O(1/ε) efficiency estimate of its prototype. Note that

this bound is unimprovable already in the large-scale bilinear saddle point case (see [61]).

It is worthwhile to mention again that the prox mapping (all the composite Mirror Prox

algorithm requires to compute) reduces to easy-to-solve and decoupled auxilliary problems

of form

min
ui∈Ui,vi≥Ψi(ui)

[αiωi(ui) + βivi + 〈ξi, ui〉] , i = 1, 2,

which is essentially the favorable situation in lots of applications to be discussed in subse-

quent chapters.

2.5.2 Composite Mirror Prox: general averaging schemes

In fact, the composite Mirror Prox algorithm admits some freedom in building approxi-

mate solutions, freedom which can be used to improve to some extent solutions’ quality.

Modifications to be presented originate from [60]. We assume that we are in the situation

described in Section 2.3.1, and assumptions (A.1) – (A.4) are in force. In addition, we

assume that

(A.5): The vector field F described in (A.3) is monotone, and the variational inequality given

by (X,F ) has a weak solution:

∃x∗ = [u∗; v∗] ∈ X : 〈F (y), y − x∗〉 ≥ 0 ∀y ∈ X (2.5.16)

Lemma 2.5.1. In the situation from Section 2.3.1 and under assumptions (A.1) – (A.5),

for any R ≥ 0, let us set

Θ̂(R) = max
u,u′∈U

{
Vu(u′) : ‖u− u1‖ ≤ R, ‖u′ − u1‖ ≤ R

}
(2.5.17)

(this quantity is finite since ω is continuously differentiable on U), and let

{xτ = [uτ ; vτ ] : τ ≤ N + 1, yτ : τ ≤ N}

be the trajectory of the N -step CoMP in Algorithm 2 with stepsizes γτ > 0 which ensure

(2.5.3) for τ ≤ N . Then for all u ∈ U and t ≤ N + 1,

0 ≤ Vut(u) ≤ Θ̂(max[RN , ‖u− u1‖]), RN := 2

(
2Vu1(u∗) +M2

N−1∑
τ=1

γ2
τ

)1/2

, (2.5.18)
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with u∗ defined in (2.5.16).

Proof. All we need to verify is the second inequality in (2.5.18). To this end note that when

t = 1, the inequality in (2.5.18) holds true by definition of Θ̂(·). Now let 1 < t ≤ N + 1.

Summing up the inequalities (2.5.7) over τ = 1, ..., t− 1, we get for every x = [u; v] ∈ X:

t−1∑
τ=1

γτ 〈F (yτ ), yτ − [u; v]〉 ≤ Vu1(u)− Vut(u) +
t−1∑
τ=1

δτ ≤ Vu1(u)− Vut(u) +M2
t−1∑
τ=1

γ2
τ

(we have used (2.5.3)). When [u; v] is x∗, the left hand side in the resulting inequality is

≥ 0, and we arrive at

Vut(u∗) ≤ Vu1(u∗) +M2
t−1∑
τ=1

γ2
τ ,

whence

1

2
‖ut − u∗‖2 ≤ Vu1(u∗) +M2

t−1∑
τ=1

γ2
τ

whence also

‖ut − u1‖2 ≤ 2‖ut − u∗‖2 + 2‖u∗ − u1‖2 ≤ 4[Vu1(u∗) +M2
t−1∑
τ=1

γ2
τ ] + 4Vu1(u∗)

and therefore

‖ut − u1‖ ≤ 2

√√√√2Vu1(u∗) +M2

t−1∑
τ=1

γ2
τ = RN , (2.5.19)

and (2.5.18) follows.

Proposition 2.5.1. In the situation of Section 2.3.1 and under assumptions (A.1) – (A.5),

let N be a positive integer, and let IN = {yτ , F (yτ )}Nτ=1 be the execution protocol gener-

ated by N -step CoMP with stepsizes γτ ensuring (2.5.3). Let also λN = {λ1, ..., λN} be a

collection of positive reals summing up to 1 and such that

λ1/γ1 ≤ λ2/γ2 ≤ ... ≤ λN/γN . (2.5.20)

Then for every R ≥ 0, with XR = {x = [u; v] ∈ X : ‖u− u1‖ ≤ R} one has

Res(XR|IN , λN ) ≤ λN
γN

Θ̂(max[RN , R]) +M2
N∑
τ=1

λτγτ , (2.5.21)

with Θ̂(·) and RN defined by (2.5.17) and (2.5.18).
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Proof. From (2.5.7) and (2.5.3) it follows that

∀(x = [u; v] ∈ X, τ ≤ N) : λτ 〈F (yτ ), yτ − x〉 ≤
λτ
γτ

[Vuτ (u)− Vuτ+1(u)] +M2λτγτ .

Summing up these inequalities over τ = 1, ..., N , we get ∀(x = [u; v] ∈ X):

N∑
τ=1

λτ 〈F (yτ ), yτ − x〉

≤ λ1
γ1

[Vu1(u)− Vu2(u)] + λ2
γ2

[Vu2(u)− Vu3(u)] + ...+ λN
γN

[VuN (u)− VuN+1(u)] +M2
N∑
τ=1

λτγτ

= λ1
γ1
Vu1(u) +

[
λ2
γ2
− λ1

γ1

]
Vu2(u) + ...+

[
λN
γN
− λN−1

γN−1

]
VuN (u)− λN

γN
VuN+1(u) +M2

N∑
τ=1

λτγτ

≤ λ1
γ1

Θ̂(max[RN , ‖u− u1‖]) +
[
λ2
γ2
− λ1

γ1

]
Θ̂(max[RN , ‖u− u1‖]) + ...

+
[
λN
γN
− λN−1

γN−1

]
Θ̂(max[RN , ‖u− u1‖]) +M2

N∑
τ=1

λτγτ ,

= λN
γN

Θ̂(max[RN , ‖u− u1‖]) +M2
N∑
τ=1

λτγτ ,

where the concluding inequality is due to (2.5.18), and (2.5.21) follows.

Invoking Proposition 2.2.4 and Proposition 2.2.2, we arrive at the following modification

of Corollary 2.5.1.

Corollary 2.5.3. Under the premise and in the notation of Proposition 2.5.1, setting

xN = [uN ; vN ] =
N∑
τ=1

λτyτ .

we ensure that xN ∈ X. Besides this,

(i) Let X ′ be a closed convex subset of X such that xN ∈ X ′ and the projection of X ′ on

the u-space is contained in ‖ · ‖-ball of radius R centered at u1. Then

εVI(x
N
∣∣X ′, F ) ≤ λN

γN
Θ̂(max[RN , R]) +M2

N∑
τ=1

λτγτ . (2.5.22)

(ii) Let X = X1×X2 and F be the monotone vector field associated with saddle point problem

(2.2.5) with convex-concave locally Lipschitz continuous cost function Φ. Let, further, X ′i be

closed convex subsets of Xi, i = 1, 2, such that xN ∈ X ′1×X ′2 and the projection of X ′1×X ′2

onto the u-space is contained in ‖ · ‖-ball of radius R centered at u1. Then

εSad(xN
∣∣X ′1, X ′2,Φ) ≤ λN

γN
Θ̂(max[RN , R]) +M2

∑N

τ=1
λτγτ . (2.5.23)
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Online stepsize policy and convergence rate. We explain below how this general

averaging scheme can help to build solutions with better quality. Consider the situation

when U = PX is bounded and L = 0. Let us set X ′ = X (or in the saddle point case,

X ′i = Xi, i = 1, 2) and R := maxu∈U ‖u− u1‖ and denote Θ̂ = maxu,u′∈U Vu(u′). Note that

R and Θ̂ = Θ̂(max[RN , R]) are finite. When the number of steps N is not fixed in advance,

it makes sense to consider varying stepsizes γτ which are not tuned to a given iteration

number, e.g.,

γτ =

√
Θ̂

M
√
τ
, τ = 1, 2, . . . , N.

Recall that for the usual averaging scheme, we simply adopt the weights λτ = γτ/
∑N

τ=1 γτ , τ =

1, . . . , N and by Corollary 2.5.1 we obtain

εVI(x
N
∣∣X,F ) ≤ MΘ̂(ln(N) + 2)

2(
√
N + 1− 1)

. (2.5.24)

This is derived by invoking the inequalities
∑N

τ=1
1
τ ≤ ln(N)+1 and

∑N
τ=1

1√
τ
≥ 2(
√
N + 1−

1). In contrast to constant stepsize policy, using the above varying step sizes incurs an

extra log-factor in the convergence rate. However, this log factor can be avoided by using

a “smarter” choice of averaging scheme. Let us consider instead the weights λτ = 1
N , τ =

1, . . . , N . Plugging γτ and λτ into equation (2.5.22) and using the relation
∑N

τ=1
1√
τ
≤

2
√
N − 1, we obtain

εVI(x
N
∣∣X,F ) ≤ 2MΘ̂√

N
. (2.5.25)

Essentially what it says here is that by allowing larger weights for the newer iterates, we

can potentially improve the quality of the average solution; which in some sense, is also

intuitively attractive.

2.5.3 Composite Mirror Prox: inexact prox-mappings

In this section, we extend the composite Mirror Prox algorithm to allow inexact computation

of the prox-mappings. The algorithm achieves similar convergence rate as in the error-free

case, provided that the errors in each iteration decrease at appropriate rates. We first

introduce the notation of inexact prox-mapping with accuracy ε > 0.
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ε-Prox-mapping Given ε ≥ 0 for any ξ = [η; ζ] ∈ Eu × Ev and x = [u; v] ∈ X, let us

define the subset P εx(ξ) of X as

P εx(ξ) = {x̂ = [û; v̂] ∈ X : 〈η + ω′(û)− ω′(u), û− s〉+ 〈ζ, v̂ − w〉 ≤ ε ∀[s;w] ∈ X}.

When ε = 0, this reduces to the exact prox-mapping, in the usual setting, i.e.,

Px(ξ) = Argmin
[s;w]∈X

{〈η, s〉+ 〈ζ, w〉+ Vu(s)} .

When ε > 0, this yields our definition of an inexact prox-mapping, with inexactness pa-

rameter ε. Note that for any ε ≥ 0, the set P εx(ξ = [η; γFv]) is well defined and nonempty

whenever γ > 0. The Composite Mirror-Prox with inexact prox-mappings is as follows:

Algorithm 3 Inexact CoMP Algorithm for VI(X,F )

Input: stepsizes γτ > 0, inexactness ετ ≥ 0, τ = 1, 2, . . .

Initialize x1 = [u1; v1] ∈ X

for τ = 1, 2, . . . , t do

yτ := [u′τ ; v′τ ] ∈ P ετxτ (γτF (xτ )) = P ετxτ (γτ [Fu(uτ );Fv])

xτ+1 := [uτ+1; vτ+1] ∈ P ετxτ (γτF (yτ )) = P ετxτ (γτ [Fu(u′τ );Fv])
(2.5.26)

end for

Output: xt := [ut; vt] = (
∑t

τ=1 γτ )
−1∑t

τ=1 γτyτ

We modify the analysis and establish the convergence results below. First of all, as a

consequence of the ε-optimality condition, Lemma 2.4.2 now becomes

Lemma 2.5.2. For any ε ≥ 0, x = [u; v] ∈ X and ξ = [η; ζ] ∈ E, let [u′; v′] = P εx(ξ), we

have for all [s;w] ∈ X,

〈η, u′ − s〉+ 〈ζ, v′ − w〉 ≤ Vu(s)− Vu′(s)− Vu(u′) + ε. (2.5.27)

Theorem 2.5.2. In the setting of Section 2.3.1, assuming that (A.1)–(A.4) hold, consider

the recurrence (2.5.26) with inexactness ετ > 0 and stepsizes γτ > 0 , τ = 1, 2, ... satisfying

the relation (2.5.3)(satisfied when γτ ≤ (
√

2L)−1 or in the case of M = 0, when γτ ≤ L−1).

Then the corresponding execution protocol It = {yτ , F (yτ )}tτ=1 admits accuracy certificate
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λt = {λtτ = γτ/
∑t

i=1 γi} such that for every X ′ ⊂ X it holds

Res(X ′
∣∣It, λt) ≤ Θ[X ′] +M2

∑t
τ=1 γ

2
τ + 2

∑t
τ=1ετ∑t

τ=1 γτ
. (2.5.28)

Theorem 2.5.2 generalizes the previous Theorem 2.5.1 established in Section 2.5.1 for

CoMP with exact prox-mappings. When inexact prox-mappings are used, the errors due

to the inexactness of the prox-mappings accumulates and is reflected in the bound (2.5.28).

For completeness, we provide the proof below despite of some redundancy.

Proof. When applying Lemma 2.5.2 with [u; v] = [uτ ; vτ ] = xτ , ξ = γτF (xτ ) =

[γτFu(uτ ); γτFv], [u′; v′] = [u′τ ; v′τ ] = yτ , and [s;w] = [uτ+1; vτ+1] = xτ+1 we obtain:

γτ [〈Fu(uτ ), u′τ − uτ+1〉+ 〈Fv, v′τ − vτ+1〉] ≤ Vuτ (uτ+1)− Vu′τ (uτ+1)− Vuτ (u′τ ) + ετ (2.5.29)

and applying Lemma 2.5.2 with [u; v] = xτ , ξ = γτF (yτ ), [u′; v′] = xτ+1, and [s;w] = z ∈ X

we get:

γτ [〈Fu(u′τ ), uτ+1 − s〉+ 〈Fv, vτ+1 − w〉] ≤ Vuτ (s)− Vuτ+1(s)− Vuτ (uτ+1) + ετ . (2.5.30)

Adding (2.5.30) to (2.5.29) we obtain for every z = [s;w] ∈ X

γτ 〈F (yτ ), yτ − z〉 = γτ [〈Fu(u′τ ), u′τ − s〉+ 〈Fv, v′τ − w〉]

≤ Vuτ (s)− Vuτ+1(s) + γτ 〈Fu(u′τ )− Fu(uτ ), u′τ − uτ+1〉 − Vu′τ (uτ+1)− Vuτ (u′τ )

= Vuτ (s)− Vuτ+1(s) + δτ + 2ετ . (2.5.31)

Since the stepsizes γτ > 0 ensure that (2.5.3) holds, meaning that δτ ≤ γ2
τM

2 (which, we

already know, is definitely the case when 0 < γτ ≤ 1√
2L

; when M = 0, we can take also

γτ ≤ 1
L). When summing up inequalities (2.5.31) over τ = 1, 2, ..., t and taking into account

that Vut+1(s) ≥ 0, we conclude that for all z = [s;w] ∈ X ′,
t∑

τ=1

λtτ 〈F (yτ ), yτ − z〉 ≤
Vu1(s) +

∑t
τ=1 δτ + 2

∑t
τ=1ετ∑t

τ=1 γτ
≤
Vu1(s) +M2

∑t
τ=1 γ

2
τ + 2

∑t
τ=1ετ∑t

τ=1 γτ
.

Equation (2.5.28) follows by invoking the definition of resolution.

Corollary 2.5.4. Under the premise of Theorem 2.5.1, for every t = 1, 2, ..., setting

xt = [ut; vt] =
1∑t

τ=1 γτ

t∑
τ=1

γτyτ .
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we ensure that xt ∈ X and that

(i) In the case when F is monotone on X, we have

εVI(x
t
∣∣X,F ) ≤

[∑t

τ=1
γτ

]−1 [
Θ[X] +M2

∑t

τ=1
γ2
τ + 2

∑t

τ=1
ετ

]
. (2.5.32)

(ii) Let X = X1×X2, and let F be the monotone vector field associated with the saddle point

problem (2.2.5) with convex-concave locally Lipschitz continuous cost function Φ. Then

εSad(xt
∣∣X1, X2,Φ) ≤

[∑t

τ=1
γτ

]−1 [
Θ[X] +M2

∑t

τ=1
γ2
τ + 2

∑t

τ=1
ετ

]
. (2.5.33)

In addition, assuming that problem (P ) in (2.2.6) is solvable with optimal solution x1
∗ and

denoting by x1,t the projection of xt ∈ X = X1 ×X2 onto X1, we have

Φ(x1,t)−Opt(P ) ≤
[∑t

τ=1
γτ

]−1 [
Θ[{x1

∗} ×X2] +M2
∑t

τ=1
γ2
τ + 2

∑t

τ=1
ετ

]
. (2.5.34)

(iii) Let X = X1 × · · · × XK , and let F be the Nash operator associated with the convex

Nash equilibrium problem described in Section 2.3.2. Then

εNash(xt) ≤
[∑t

τ=1
γτ

]−1 [
Θ[X] +M2

∑t

τ=1
γ2
τ + 2

∑t

τ=1
ετ

]
. (2.5.35)

Remark. The above algorithm is a non-trivial extension of the composite Mirror Prox

with exact prox-mappings, both from a theoretical and algorithmic point of views. Note that

as long as {ετ} is summable, we achieve essentially the same convergence rate as when there

is no error, namely a O(1/
√
t) rate for bounded operators and a O(1/t) rate for Lipschitz

continuous operators. If {ετ} decays with a rate of O(1/τ), then the overall convergence

is affected by a log factor. Similar modifications as discussed in Section 2.5.2 can also be

obtained when a general averaging scheme is applied.

2.5.4 Composite Mirror Prox: extension to stochastic setting

In this section, we further extend the previous framework to the situation where we only

have access to noisy information of the operator F . More specifically, we assume that Fv

is known exactly and u-component of the operator Fu(u) is represented by the following

stochastic oracle, such that for any u ∈ U , it returns a vector g(u, ξ) satisfying
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(C.1): Unbiasedness and bounded variance:

E[g(u, ξ)] = Fu(u), E[‖g(u, ξ)− Fu(u)‖2∗] ≤ σ2 (2.5.36)

where ‖ · ‖∗ is the dual norm same as in (A.3).

(C.2): Light tail assumption:

E
[
exp{‖g(u, ξ)− Fu(u)‖2∗/σ2}

]
≤ exp{1}. (2.5.37)

Note that by Jensen’s inequality, assumption (C.2) implies (C.1).

We assume that at i-th call to the oracle, the query point being ui, the oracle returns

g(ui, ξi) with i.i.d. ξ1, ξ2, ... such that (2.5.36) and (2.5.37) take place. The stochastic variant

of the CoMP algorithm is as follows.

Algorithm 4 Stochastic CoMP Algorithm for VI(X,F )

Input: stepsizes γτ > 0, inexactness ετ ≥ 0, τ = 1, 2, . . .

Initialize x1 = [u1; v1] ∈ X

for τ = 1, 2, . . . , t do

Compute gτ = 1
mτ

∑mτ
j=1 g(uτ , ξτ,j),

yτ := [u′τ ; v′τ ] ∈ P ετxτ (γτ [gτ ;Fv]) (2.5.38)

Compute ĝτ = 1
mτ

∑2mτ
j=mτ+1 g(û′τ , ξτ,j) and set

xτ+1 := [uτ+1; vτ+1] ∈ P ετxτ (γτ [ĝτ ;Fv]) (2.5.39)

end for

Output: xt := [ut; vt] = (
∑t

τ=1 γτ )
−1∑t

τ=1 γτyτ

We establish below the theoretical convergence guarantee for this stochastic algorithm.

Theorem 2.5.3. In the setting of Section 2.3.1, assuming that (A.1)–(A.4) hold, consider

the recurrence (2.5.38) and (2.5.39) with stepsizes γτ > 0 satisfying 0 < γτ ≤ (
√

3L)−1

(when M = 0, it is enough to set γτ ≤ (
√

2L)−1). Given a sequence of inexact prox-

mappings with inexactness ετ ≥ 0 and batch size mτ > 0. For the corresponding execution

protocol It = {yτ , F (yτ )}tτ=1 admits accuracy certificate λt = {λtτ = γτ/
∑t

i=1 γi} such that
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for every X ′ ⊂ X,

(i) it holds under Assumption (C.1) that

E[Res(X ′
∣∣It, λt)] ≤M0(t) :=

2Θ[X ′] + 7
2

∑t
τ=1γ

2
τ (M2 + 2σ2

mτ
) + 2

∑t
τ=1ετ∑t

τ=1 γτ
, (2.5.40)

(ii) it holds under Assumption (C.2) that for any Λ > 0,

Prob
{

Res(X ′
∣∣It, λt) ≥M0(t) + ΛM1(t)

}
≤ exp{−Λ2/3}+ exp{−Λ} (2.5.41)

where M1(t) := (
∑t

τ=1 γτ )−1

(
7
2

∑t
τ=1

γ2
τσ

2

mτ
+ 3Θ[X]

√∑t
τ=1

γ2
τσ

2

mτ

)
.

Remark. As a corollary, we immediately have

1. when F is the monotone vector field, the resulting efficiency estimates take place for

the dual gap of variational inequalities;

2. when F stems from a convex-concave saddle point problem, then the above efficiency

estimates is inherited both by the induced primal and dual suboptimality gap.

3. when F stems from Nash problem, the resulting efficiency estimates take place for

Nash inaccuracy.

Let us call a random feasible solution x̄ to the variational inequality VI(X,F ) a stochas-

tic ε-solution if E[εVI(x̄
∣∣X,F )] ≤ ε.

Stepsize policy and convergence rate. Assume U = PX is bounded. If we set ετ =

Θ[X]/t, τ = 1, . . . , t, the above bound reduces to

E[εVI(x
t
∣∣X,F )] ≤

4Θ[X] + 7
2

∑t
τ=1γ

2
τ (M2 + 2σ2

mτ
)∑t

τ=1 γτ
. (2.5.42)

In the case when F is a Lipschitz continuous monotone operator with some L > 0 and

M = 0, a good choice of stepsize is γτ = 1√
2L

. Setting mτ = O(1)γ2
τ t, τ = 1, . . . , t leads to

E[εVI(x
t
∣∣X,F )] ≤ O(1)

(Θ[X] + σ2)L

t
,

and the the total number of stochastic oracle calls required is of order O(t2). This implies

that in order to obtain an stochastic ε-solution, the stochastic CoMP needs at most O( 1
ε2

)

calls to the stochastic oracles.
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In the case when F a uniformly bounded monotone operator with some M > 0 and

L = 0, a good choice of stepsize is γτ =

√
Θ[X]

(M+σ)
√
t
. Setting mτ = O(1), τ = 1, . . . , t leads to

E[εVI(x
t
∣∣X,F )] ≤ O(1)

√
Θ[X](M + σ)√

t
,

and the the total number of stochastic oracle calls required is of order O(t).This implies that

in order to obtain an stochastic ε-solution, the stochastic CoMP needs at most O( 1
ε2

) calls

to the stochastic oracles. Observe that in both situations, while allowing for inexactness up

to order O(ε) at each iteration, we achieve the same complexity bound for the stochastic

oracles, which is indeed optimal (see e.g. [61]).

The proof of Theorem 2.5.3 builds upon the analysis in [45] and previous proof for

Theorem 2.5.1, which we provide below for completeness.

Proof of Theorem 2.5.3.

10. First of all, by simply replacing Fu(uτ ) by gτ and replacing Fu(u′τ ) by ĝτ , equation

(2.5.7) becomes, for any [s, w] ∈ X

γτ [〈ĝτ , u′τ − s〉+ 〈Fv, v′τ − w〉] ≤ Vuτ (s)− Vuτ+1(s) + στ + 2ετ , (2.5.43)

where στ := γτ 〈ĝτ − gτ , u′τ − uτ+1〉 − Vu′τ (uτ+1)− Vuτ (u′τ ). Let ∆τ = Fu(u′τ )− ĝτ , then for

any z = [s, w] ∈ X, we have

t∑
τ=1

γτ 〈F (yτ ), yτ − z〉 ≤ Θ[X] +
t∑

τ=1

στ +
t∑

τ=1

2ετ +
t∑

τ=1

γτ 〈∆τ , u
′
τ − s〉 (2.5.44)

Let eτ = ‖gτ − Fu(uτ )‖∗ and êτ = ‖ĝτ − Fu(u′τ )‖∗ = ‖∆τ‖∗, Then we have

‖ĝτ − gτ‖2∗ = ‖(ĝτ − Fu(u′τ ) + (Fu(u′τ )− Fu(uτ )) + (Fu(uτ )− gτ )‖2∗

≤ (êτ + L‖u′τ − uτ‖+M + eτ )2

≤ 3L2‖u′τ − uτ‖2 + 3M2 + 3(eτ + êτ )2

Hence,

στ ≤
γ2
τ

2
‖ĝτ − gτ‖2∗ +

1

2
‖u′τ − uτ+1‖2 − Vu′τ (uτ+1)− Vuτ (u′τ ) ≤ γ2

τ

2
‖ĝτ − gτ‖2∗ −

1

2
‖u′τ − uτ‖2.
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Since the stepsize γτ satisfy that 3γ2
τL ≤ 1, we further have

σt ≤
3γ2

τ

2
[M2 + (eτ + êτ )2]. (2.5.45)

Define a special sequence ũτ such that

ũ1 = u1; ũτ+1 = argmin
u∈PuX

{〈γτ∆τ , u〉+ Vũτ (u)}, ∀τ = 1, 2, . . . .

The sequence defined above satisfies the following relation (see Corollary 2 in [45] for details):

for any z = [s, w] ∈ X,

t∑
τ=1

γτ 〈∆τ , ũτ − s〉 ≤ Θ[X] +

t∑
τ=1

γ2
τ

2
‖∆τ‖2∗ = Θ[X] +

t∑
τ=1

γ2
τ

2
êτ (2.5.46)

Combining (2.5.44), (2.5.45), (2.5.46), we end up with

εVI(x
t|X,F ) ≤ (

t∑
τ=1

γτ )−1

(
2Θ[X] +

t∑
τ=1

7γ2
τ

2
[M2 + (e2

τ + ê2
τ )] +

t∑
τ=1

2ετ +
t∑

τ=1

γτ 〈∆τ , u
′
τ − ũτ 〉

)
(2.5.47)

20. Under Assumption (C.1), we have

E[∆τ |Fτ ] = 0, E[e2
τ |Gτ−1] ≤ σ2

mτ
, and E[ê2

τ |Fτ ] ≤ σ2

mτ
.

where Fτ = σ(ξ1
1 , . . . , ξ

1
2mτ , . . . , ξ

τ
1 , . . . , ξ

τ
mτ ) and Gτ = σ(ξ1

1 , . . . , ξ
1
2mτ , . . . , ξ

τ
1 , . . . , ξ

τ
2mτ ).

One can further show that E[〈∆τ , u
′
τ − ũτ 〉] = 0. It follows from (2.5.47) that

E[εVI(x
t|X,F )] ≤ (

t∑
τ=1

γτ )−1

(
2Θ[X] +

t∑
τ=1

7γ2
τ

2
[M2 +

2σ2

mτ
] +

t∑
τ=1

2ετ

)
(2.5.48)

which proves the first part of the theorem.

30. Under Assumption (C.2), we have

E[exp{e2
τ/(σ/

√
mτ )2}] ≤ exp{1} and E[exp{ê2

τ/(σ/
√
mτ )2}] ≤ exp{1}.

Let C1 =
∑t

τ=1
γ2
τσ

2

mτ
, it follows from convexity and the above equation that

E

[
exp

{
1

C1

t∑
τ=1

γ2
τ (e2

τ + ê2
τ )

}]
≤ E

[
1

C1

t∑
τ=1

γ2
τσ

2

mτ
exp

{
(e2
τ + ê2

τ )/(σ/mτ )2
}]
≤ exp{2}.
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Applying Markov’s inequality, we obtain:

∀Λ > 0 : Prob

(
t∑

τ=1

γ2
τ (e2

τ + ê2
τ ) ≥ (2 + Λ)C1

)
≤ exp{−Λ}. (2.5.49)

Let ζτ = 〈∆τ , u
′
τ − ũτ 〉. We showed earlier that E[ζτ ] = 0. since ‖u′τ − ũτ‖ ≤ 2

√
2Θ[X],

then we also have

E[exp{ζ2
τ /(2
√

2Θ[X]σ/
√
mτ )2}] ≤ exp{1}

Applying the relation exp{x} ≤ x+ exp{9x2/16}, one has for any s ≥ 0,

E

[
exp

{
s

t∑
τ=1

γτζτ

}]
≤ E

[
9s2

16
exp

{
t∑

τ=1

γ2
τ ζ

2
τ

}]
≤ exp

{
9s2

16

t∑
τ=1

8σ2Θ[X]2γ2
τ

mτ

}
By Markov’s inequality, one has

∀Λ > 0 : Prob

 t∑
τ=1

γτζτ ≥ 3ΛΘ[X]

√√√√ t∑
τ=1

σ2γ2
τ

mτ

 ≤ exp{−Λ2/2} (2.5.50)

Combing equation (2.5.47), (2.5.49), and (2.5.50), we arrive at

∀Λ > 0 Prob
(
εVI(x

t|X,F ) ≥M0(t) + ΛM1(t)
)
≤ exp{−Λ}+ exp{−Λ2/2}

where

M0(t) = (
∑t

τ=1 γτ )−1
(

2Θ[X] +
∑t

τ=1
7γ2
τ

2 [M2 + 2σ2

mτ
] +
∑t

τ=1 2ετ

)
,

M1(t) = (
∑t

τ=1 γτ )−1

(
7
2

∑t
τ=1

γ2
τσ

2

mτ
+ 3Θ[X]

√∑t
τ=1

γ2
τσ

2

mτ

)
.

Hence, we have proved the theorem.

2.6 Concluding Remarks

In this chapter, we introduce the composite versions of Mirror Descent algorithm and Mirror

Prox algorithm along with its several variants for solving convex-concave saddle point prob-

lems and monotone variational inequalities of special structures. We demonstrate that the

composite Mirror Descent inherits the O(1/ε2) efficiency estimate of its prototype when solv-

ing variational inequalities with bounded monotone operators. Also, the composite Mirror

Prox inherits the O(1/ε) efficiency estimate of its prototype when when solving variational

inequalities with Lipschitz continuous monotone operators. The composite Mirror Prox

algorithm is extensible to situations in presence of errors, either from inexact calculation of

prox mappings, or from noisy monotone operators.
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CHAPTER III

LARGE SCALE CONVEX COMPOSITE OPTIMIZATION

3.1 Overview

In this chapter, we will address the outlined four generic types of large-scale convex com-

posite optimization problems:

(a) Multi-Term Composite Minimization: convex optimization problem

min
y∈Y

K∑
k=1

[ψk(Aky + bk) + Ψk(Aky + bk)] (3.1.1)

where Y is closed convex set, for 1 ≤ k ≤ K, ψk(·) : Yk → R are convex Lipschitz-

continuous functions, and Ψk(·) : Yk → R are proximal-friendly convex functions;

(b) Linearly Constrained Composite Minimization: multi-term composite minimization

problems that are subject to linear equality constraints

min
[y1;...;yK ]∈Y1×···×YK

∑K
k=1

[
ψk(y

k) + Ψk(y
k)
]

s.t.
∑K

k=1Aky
k = b.

where Yk are closed convex sets andψk and Ψk are as in (a);

(c) Norm-Regularized Nonsmooth Minimization: composite minimization

min
y∈Y

f(y) + h(Ay)

where f is a convex Lipschitz-continuous function given by saddle point representation,

and h is a LMO-friendly function;

(d) Composite Maximum Likelihood Poisson Imaging: a particular non-Lipschitz convex

minimization

min
x∈Rn

+

L(x) + h(x), with L(x) = sTx−
m∑
i=1

ci ln(aTi x)

where s, c, ai, i = 1, . . .m are given nonnegative vectors and h is proximal-friendly. Spe-

cific feature of Poisson Imaging is that L(·) in general is not even Lipschitz continuous.
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Despite of their fundamental distinctions, we show that the composite Mirror Prox

algorithm, when combined with saddle point representations and some other algorithmic

techniques, can be applied to solve all these optimization problems with best rates of con-

vergence, under circumstances, up to our knowledge. In the rest of this chapter, we will

discuss each of these problems in details.

3.2 Application I: Multi-Term Composite Minimization

3.2.1 Problem of Interest

What follows is inspired by the recent trend of seeking efficient ways for solving problems

with hybrid regularizations or mixed penalty functions in fields such as machine learning,

image restoration, signal processing and many others. We are about to present two instruc-

tive examples first (for motivations, see, e.g., [14, 4, 17]).

Example 1. (Matrix completion) Our first motivating example is matrix completion

problem, where we want to reconstruct the original matrix y ∈ Rn×n, known to be both

sparse and low-rank, given noisy observations of part of the entries. Specifically, our ob-

servation is b = PΩy + ξ, where Ω is a given set of cells in an n × n matrix, PΩy is the

restriction of y ∈ Rn×n onto Ω, and ξ is a random noise. A natural way to recover y from

b is to solve the optimization problem

Opt = min
y∈Rn×n

{
1

2
‖PΩy − b‖22 + λ‖y‖1 + µ‖y‖nuc

}
(3.2.1)

where µ, λ > 0 are regularization parameters. Here ‖y‖2 =
√

Tr(yT y) is the Frobenius

norm, ‖y‖1 =
∑n

i,j=1 |yij | is the `1-norm, and ‖y‖nuc =
∑n

i=1 σi(y) (σi(y) are the singular

values of y) is the nuclear norm of a matrix y ∈ Rn×n.

Example 2. (Image recovery) Our second motivating example is image recovery prob-

lem, where we want to recover an image y ∈ Rn×n from its noisy observations b = Ay + ξ,

where Ay is a given affine mapping (e.g. the restriction operator PΩ defined as above, or

some blur operator), and ξ is a random noise. Assume that the image can be decomposed

as y = yL + yS + ysm where yL is of low rank, ysm is the matrix of contamination by a
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“smooth background signal”, and yS is a sparse matrix of “singular corruption.” Under this

assumption in order to recover y from b, it is natural to solve the optimization problem

Opt = min
yL,yS,ysm∈Rn×n

{‖A(yL + yS + ysm)− b‖2 + µ1‖yL‖nuc + µ2‖yS‖1 + µ3‖ysm‖TV}

(3.2.2)

where µ1, µ2, µ3 > 0 are regularization parameters. Here ‖y‖TV is the total variation of an

image y:

‖y‖TV = ‖∇iy‖1 + ‖∇jy‖1,

(∇iy)ij = yi+1,j − yi,j , [i; j] ∈ Z2 : 1 ≤ i < n− 1, 1 ≤ j < n,

(∇jy)ij = yi,j+1 − yi,j , [i; j] ∈ Z2 : 1 ≤ i < n, 1 ≤ j < n− 1.

These and other examples motivate us to address the following multi-term composite

minimization problem

min
y∈Y

{
K∑
k=1

[ψk(Aky + bk) + Ψk(Aky + bk)]

}
. (3.2.3)

Here for 1 ≤ k ≤ K, ψk(·) : Yk → R are convex Lipschitz-continuous functions, and

Ψk(·) : Yk → R are convex functions which are “simple and fit Yk”.1 For example, to pose

matrix completion problem in the form of (3.2.1), we set K = 2, Y1 = Y2 = Rn×n, A1 and

A2 identity mapping, b1 = b2 = 0, ψ1(y) = 1
2‖PΩy − b‖22 , ψ2 = 0, and Ψ1(y) = λ‖y‖1,

Ψ2(y) = µ‖y‖nuc.

Related work The problem of multi-term composite minimization (3.2.3) has been con-

sidered (in a somewhat different setting) in [66] for K = 2. When K = 1, problem (3.2.3)

becomes the usual composite minimization problem:

min
u∈U
{ψ(u) + Ψ(u)} (3.2.4)

which is well studied in the case where ψ(·) is a smooth convex function and Ψ(·) is a

simple non-smooth function. For instance, it was shown that the composite versions of

1The precise meaning of simplicity and fitting will be specified later. As of now, it suffices to give a
couple of examples. When Ψk is the `1 norm, Yk can be the entire space, or the centered at the origin
`p-ball, 1 ≤ p ≤ 2; when Ψk is the nuclear norm, Yk can be the entire space, or the centered at the origin
Frobenius/nuclear norm ball.
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Fast Gradient Method originating in Nesterov’s seminal work [63] and further developed

by many authors (see, e.g., [6, 7, 22, 80, 76] and references therein), as applied to (3.2.4),

work as if there were no nonsmooth term at all and exhibit the O(1/t2) convergence rate,

which is the optimal rate attainable by first order algorithms of large-scale smooth convex

optimization. Note that these algorithms cannot be directly applied to problems (3.2.3)

with K > 1.

Our goal and main contribution In this section, we investigate the broad family of

multi-term composite minimization problems. We consider a general situation where we

do not assume the smoothness of functions ψk in (3.2.3); instead, we assume that these

functions are given by smooth saddle point representations, see below. We introduce the

notion of exact penalty, which translates the original problem into an equivalent convex-

concave saddle point problem. We apply to the saddle point problem our newly developed

algorithmic tool, the composite Mirror Prox algorithm, which allows to achieve a O(1/t)

convergence rate. To our knowledge, this appears to be the best rate known, under circum-

stances, from the literature (and established there in essentially less general setting than

the one considered below). We present promising experimental results demonstrating the

potential of the approachand compare it to a number of competing methods on several

interesting applications.

Outline The rest of this section is organized as follows. In Section 3.2.2, we elaborate

the problem setting and reformulate the problem of interest as a saddle point problem

with special structure, which enables us to utilize the composite Mirror Prox algorithm and

provide complexity analysis of the proposed approach. In Section 3.2.4 and Section 3.2.5,

we illustrate the algorithm by applying it to the aforementioned matrix completion and

image decomposition problems.

3.2.2 Saddle Point reformulation and CoMP Algorithm

Problem setting. We consider the problem (3.2.3) in the situation as follows. For a

nonnegative integer K and 0 ≤ k ≤ K we are given
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1. Euclidean spaces Ek and Ek along with their nonempty closed convex subsets Yk and

Zk, respectively;

2. Proximal setups for (Ek, Yk) and (Ek, Zk), that is, norms pk(·) on Ek, norms qk(·)

on Ek, and d.g.f.’s ωk(·) : Yk → R, ωk(·) : Zk → R compatible with pk(·) and qk(·),

respectively;

3. Affine mappings y0 7→ Aky
0 + bk : E0 → Ek, where y0 7→ A0y

0 + b0 is the identity

mapping on E0;

4. Lipschitz continuous convex functions ψk(y
k) : Yk → R along with their saddle point

representations

ψk(y
k) = sup

zk∈Zk
[φk(y

k, zk)−Ψk(z
k)], 0 ≤ k ≤ K, (3.2.5)

where φk(y
k, zk) : Yk × Zk → R are smooth (with Lipschitz continuous gradients)

functions convex in yk ∈ Yk and concave in zk ∈ Zk, and Ψk(z
k) : Zk → R are

Lipschitz continuous convex functions such that the problems of the form

min
zk∈Zk

[
ωk(z

k) + 〈ξk, zk〉+ αΨk(z
k)
]

[α > 0] (3.2.6)

are easy to solve;

5. Lipschitz continuous convex functions Ψk(y
k) : Yk → R such that the problems of the

form

min
yk∈Yk

[
ωk(y

k) + 〈ξk, yk〉+ αΨk(y
k)
]

[α > 0] (3.2.7)

are easy to solve;

6. For 1 ≤ k ≤ K, the norms π∗k(·) on Ek are given, with conjugate norms πk(·), along

with d.g.f.’s ω̂k(·) : Wk := {wk ∈ Ek : πk(w
k) ≤ 1} → R which are strongly convex,

modulus 1, w.r.t. πk(·) such that the problems

min
wk∈Wk

[
ω̂k(w

k) + 〈ξk, wk〉
]

(3.2.8)

are easy to solve.
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The outlined data define the sets

Y +
k = {[yk; τk] : yk ∈ Yk, τk ≥ Ψk(y

k)} ⊂ E+
k := Ek ×R, 0 ≤ k ≤ K,

Z+
k = {[zk;σk] : zk ∈ Zk, σk ≥ Ψk(z

k)} ⊂ E+
k := Ek ×R, 0 ≤ k ≤ K.

The problem of interest (3.2.3) along with its saddle point reformulation in the just

defined situation read

Opt = min
y0∈Y0

{
f(y0) :=

K∑
k=0

[
ψk(Aky

0 + bk) + Ψk(Aky
0 + bk)

]}
(3.2.9a)

= min
y0∈Y0

{
f(y0) = max

{zk∈Zk}Kk=0

K∑
k=0

[
φk(Aky

0 + bk, z
k) + Ψk(Aky

0 + bk)−Ψk(z
k)
]}

(3.2.9b)

which we rewrite equivalently as

Opt = min
{[yk;τk]}K

k=0

∈Y+
0 ×···×Y

+
K

max
{[zk;σk]}K

k=0

∈Z+
0 ×···×Z

+
K

{
K∑
k=0

[
φk(y

k, zk) + τk − σk
]

: yk = Aky
0 + bk, 1 ≤ k ≤ K

}
.

(3.2.9c)

From now on we make the following assumptions

(B.1): We have AkY0 + bk ⊂ Yk, 1 ≤ k ≤ K;

(B.2): For 0 ≤ k ≤ K, the sets Zk are bounded. Further, the functions Ψk are

below bounded on Yk, and the functions fk = ψk + Ψk are coercive on Yk:

whenever ykt ∈ Yk, t = 1, 2, ..., are such that pk(y
k
t ) → ∞ as t → ∞, we have

fk(y
k
t )→∞.

Note that (B.1) and (B.2) imply that the saddle point problem (3.2.9c) is solvable; let

{[yk∗ ; τk∗ ]}0≤k≤K ; {[zk∗ ;σk∗ ]}0≤k≤K be the corresponding saddle point.
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Course of actions. Given ρk > 0, 1 ≤ k ≤ K, we approximate (3.2.9c) by the problem

Ôpt = min
{[yk;τk]}K

k=0

∈Y+
0 ×···×Y

+
K

max
{[zk;σk]}K

k=0

∈Z+
0 ×···×Z

+
K

{
K∑
k=0

[
φk(y

k, zk) + τk − σk
]

+
K∑
k=1

ρkπ
∗
k(y

k −Aky0)

}

(3.2.10a)

= min
x1∈X1

:=Y+
0 ×···×Y

+
K

max
x2∈X2

:=Z+
0 ×···×Z

+
K
×W1×···WK

Φ

(
{[yk; τk]}Kk=0︸ ︷︷ ︸

x1

,
[
{[zk;σk]}Kk=0; {wk}Kk=1

]
︸ ︷︷ ︸

x2

)

(3.2.10b)

where

Φ(x1, x2) =
K∑
k=0

[
φk(y

k, zk) + τk − σk
]

+
K∑
k=1

ρk〈wk, yk −Aky0 − bk〉.

Observe that the monotone operator F (x1, x2) = [F1(x1, x2);F2(x1, x2)] associated with the

saddle point problem in (3.2.10b) is given by

F1(x1, x2) =

[
∇y0φ0(y0, z0)−

K∑
k=1

ρkA
T
kw

k; 1;
{
∇ykφk(yk, zk) + ρkw

k; 1
}K
k=1

]
,

F2(x1, x2) =

[ {
−∇zkφk(yk, zk); 1

}K
k=0

;
{
−ρk[yk −Aky0 − bk]

}K
k=1

]
.

(3.2.11)

Now let us set

• U =

 u = [y0; ...; yK ; z0; ...; zK ;w1; ...;wK ] : yk ∈ Yk, zk ∈ Zk, 0 ≤ k ≤ K,

πk(w
k) ≤ 1, 1 ≤ k ≤ K

 ,

• X =

 x =
[
u = [y0; ...; yK ; z1; ...; zK ;w1; ...;wK ]; v = [τ0; ...; τK ;σ0; ...;σK ]

]
:

u ∈ U, τk ≥ Ψk(y
k), σk ≥ Ψk(z

k), 0 ≤ k ≤ K

,

so that PX ⊂ U , cf. assumption (A.2) in Section 2.3.1.

The variational inequality associated with the saddle point problem in (3.2.10b) can be

treated as the variational inequality on the domain X with the monotone operator

F (x = [u; v]) = [Fu(u);Fv],
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where

Fu([y0; ...; yK ; z0; ...; zK ; w1; ...;wK ]︸ ︷︷ ︸
u

) =



∇yφ0(y0, z0)−
K∑
k=1

ρkA
T
kw

k

{
∇yφk(yk, zk) + ρkw

k
}K
k=1{

−∇zφk(yk, zk
}K
k=0{

−ρk[yk −Aky0 − bk]
}K
k=1


Fv([τ

0; ...; τK ;σ0; ...;σK ]︸ ︷︷ ︸
v

) = [1; ...; 1].

(3.2.12)

This operator meets the structural assumptions (A.3) and (A.4) from Section 2.3.1 ((A.4)

is guaranteed by (B.2)). We can equip U and its embedding space Eu with the proximal

setup ‖ · ‖, ω(·) given by

‖u‖ =
√∑K

k=0[αkp
2
k(y

k) + βkq
2
k(z

k)] +
∑K

k=1 γkπ
2
k(w

k),

ω(u) =
∑K

k=0[αkωk(y
k) + βkωk(z

k)] +
∑K

k=1 γkω̂k(w
k),

(3.2.13)

where αk, βk, 0 ≤ k ≤ K, and γk, 1 ≤ k ≤ K, are positive aggregation parameters2.

Observe that carrying out a step of the CoMP algorithm presented in Section 2.5.1 requires

computing F at O(1) points of X and solving O(1) auxiliary problems of the form

min
[y0;...;yK ;z0;...;zK ],

[;w1;...;wK ;τ0;...;τK ;σ0;...;σK ]

{
K∑
k=0

[
akωk(y

k) + 〈ξk, yk〉+ bkτ
k
]

+
K∑
k=0

[
ckωk(z

k) + 〈ηk, zk〉+ dkσ
k
]

+
K∑
k=1

[
ekω̂k(w

k) + 〈ζk, wk〉
]}

:

yk ∈ Yk, τk ≥ Ψk(y
k), zk ∈ Zk, σk ≥ Ψk(y

k), 0 ≤ k ≤ K, πk(wk) ≤ 1, 1 ≤ k ≤ K,

with positive ak, ..., ek, and we have assumed that these problems are easy to solve.

3.2.3 Complexity Analysis

Exact penalty. Let us make one more assumption:

(C): For 1 ≤ k ≤ K,

• ψk are Lipschitz continuous on Yk with constants Gk w.r.t. π∗k(·),

2In principle, these parameters should be chosen to optimize the resulting efficiency estimates; this indeed
is doable, provided that we have at our disposal upper bounds on the Lipschitz constants of the components
of Fu and that U is bounded, see [56, Section 5] or [43, Section 6.3.3].
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• Ψk are Lipschitz continuous on Yk with constants Hk w.r.t. π∗k(·).

Given a feasible solution x = [x1;x2], x1 := {[yk; τk] ∈ Y +
k }

K
k=0 to the saddle point problem

(3.2.10b), let us set

ŷ0 = y0; ŷk = Aky
0 + bk, 1 ≤ k ≤ K; τ̂k = Ψk(ŷ

k), 0 ≤ k ≤ K,

thus getting another feasible (by assumption (B.1)) solution x̂ =
[
x̂1 = {[ŷk; τ̂k]}Kk=0; x2

]
to (3.2.10b). We call x̂1 correction of x1. For 1 ≤ k ≤ K we clearly have

ψk(ŷ
k) ≤ ψk(y

k) +Gkπ
∗
k(ŷ

k − yk) = ψk(y
k) +Gkπ

∗
k(y

k −Aky0 − bk),

τ̂k = Ψk(ŷ
k) ≤ Ψk(y

k) +Hkπ
∗
k(ŷ

k − yk) ≤ τk +Hkπ
∗
k(y

k −Aky0 − bk),

and τ̂0 = Ψ0(y0) ≤ τ0. Hence for Φ(x1) = max
x2∈X2

Φ(x1, x2) we have

Φ(x̂1) ≤ Φ(x1) +

K∑
k=1

[Hk +Gk]π
∗
k(y

k −Aky0 − bk)−
K∑
k=1

ρkπ
∗
k(y

k −Aky0 − bk).

We see that under the condition

ρk ≥ Gk +Hk, 1 ≤ k ≤ K, (3.2.14)

correction does not increase the value of the primal objective of (3.2.10b), whence the saddle

point value Ôpt of (3.2.10b) is ≥ the optimal value Opt in the problem of interest (3.2.9a).

Since the opposite inequality is evident, we arrive at the following

Proposition 3.2.1. In the situation of Section 3.2.1, let assumptions (B.1), (B.2), (C)

and (3.2.14) hold true. Then

(i) the optimal value Ôpt in (3.2.10a) coincides with the optimal value Opt in the problem

of interest (3.2.9a);

(ii) consequently, if x = [x1;x2] is a feasible solution of the saddle point problem in

(3.2.10b), then the correction x̂1 = {[ŷk; τ̂k]}Kk=0 of x1 is a feasible solution to the

problem of interest (3.2.9c), and

f(ŷ0)−Opt ≤ εSad(x
∣∣X1, X2,Φ), (3.2.15)

where ŷ0(= y0(x̂1)) is the “y0-component” of x̂1;
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Corollary 3.2.1. Under the premise of Proposition 3.2.1, when applying to the saddle point

problem (3.2.10b) the CoMP algorithm induced by the above setup and passing “at no cost”

from the approximate solutions xt = [x1,t;x2,t] generated by CoMP to the corrections x̂1,t of

x1,t’s, we get feasible solutions to the problem of interest (3.2.9a) satisfying the error bound

f(y0(x̂1,t))−Opt ≤ Θ[x1
∗ ×X2]L

t
, t = 1, 2, ... (3.2.16)

where L is the Lipschitz constant of Fu(·) induced by the norm ‖·‖ given by (3.2.13), and Θ[·]

is induced by the d.g.f. given by the same (3.2.13) and the u = [y0; ...; yK ; z0; ...; zK ;w1; ...;wK ]

-component of the starting point. Note that Wk and Zk are compact, whence Θ[x1
∗ ×X2] is

finite.

Remark. In principle, we can use the result of Proposition 3.2.1 “as is”, that is, to work

from the very beginning with values of ρk satisfying (3.2.14); this option is feasible, provided

that we know in advance the corresponding Lipschitz constants and they are not too large

(which indeed is the case in some applications). This being said, when our objective is

to ensure the validity of the bound (3.2.15), selecting ρk’s according to (3.2.14) could be

very conservative. From our experience, usually it is better to adjust the penalization

coefficients ρk on-line. Specifically, let Φ(x1) = supx2∈X2
Φ(x1, x2) (cf (2.2.6)). We always

have Ôpt ≤ Opt. It follows that independently of how ρk are selected, we have

f(ŷ0)−Opt ≤ [f(ŷ0)− Φ(x1)]︸ ︷︷ ︸
ε1

+
[
Φ(x1)− Ôpt

]
︸ ︷︷ ︸

ε2

(3.2.17)

for every feasible solution x1 = {[yk; τk]}Kk=0 to (3.2.10b) and the same inequality holds

for its correction x̂1 = {[ŷk; τ̂k]}Kk=0. When x1 is a component of a good (with small εSad)

approximate solution to the saddle point problem (3.2.10b), ε2 is small. If ε1 also is small,

we are done; otherwise we can either increase in a fixed ratio the current values of all ρk, or

only of those ρk for which passing from [yk; τk] to [ŷk; τ̂k] results in “significant” quantities

[ψk(ŷ
k) + τ̂k]− [ψk(y

k) + τk + ρkπ
∗
k(y

k −Aky0 − bk)]

and solve the updated saddle point problem (3.2.10b).

55



3.2.4 Numerical Illustration I: Matrix Completion

Matrix completion. In the experiments to be reported, we applied the just outlined

approach to the matrix completion problem, where we want to reconstruct the original

matrix y ∈ Rn×n, known to be both sparse and low-rank, given noisy observations of part

of the entries. Specifically, our observation is b = PΩy + ξ, where Ω is a given set of cells

in an n× n matrix, PΩy is the restriction of y ∈ Rn×n onto Ω, and ξ is a random noise. A

natural way to recover y from b is to solve the optimization problem

Opt = min
y0∈Rn×n

[
υ(y0) =

1

2
‖PΩy

0 − b‖22︸ ︷︷ ︸
ψ0(y0)

+λ‖y0‖1︸ ︷︷ ︸
Ψ0(y0)

+µ‖y0‖nuc︸ ︷︷ ︸
Ψ1(y0)

]
(3.2.18)

where Ω is a given set of cells in an n×n matrix, and PΩy is the restriction of y ∈ Rn×n onto

Ω; this restriction is treated as a vector from RM , M = Card(Ω). µ, λ > 0 are regularization

parameters. Here ‖y‖2 =
√

Tr(yT y) is the Frobenius norm, ‖y‖1 =
∑n

i,j=1 |yij | is the `1-

norm, and ‖y‖nuc =
∑n

i=1 σi(y) (σi(y) are the singular values of y) is the nuclear norm of a

matrix y ∈ Rn×n. Note that (3.2.18) is a special case of (3.2.9b) with K = 1, Y0 = Y1 =

E0 = E1 = Rn×n, the identity mapping y0 7→ A1y
0, and φ0(y0, z0) ≡ ψ0(y0), φ1 ≡ 0 (so

that Zk can be defined as singletons, and Ψk(·) set to 0, k = 0, 1).

Implementing the CoMP algorithm. When implementing the CoMP algorithm, we

used the Frobenius norm ‖·‖F on Rn×n in the role of p0(·), p1(·) and π1(·), and the function

1
2‖ · ‖

2
F in the role of d.g.f.’s ω0(·), ω1(·), ω̂1(·).

The aggregation weights in (3.2.13) were chosen as α0 = α1 = 1/D and γ1 = 1, where

D is a guess of the quantity D∗ := ‖y0
∗‖F , where y0

∗ is the optimal solution (3.2.18). With

D = D∗, our aggregation would roughly optimize the right hand side in (3.2.16), provided

the starting point is the origin.

The coefficient ρ1 in (3.2.10b) was adjusted dynamically as explained at the end of

section 3.2.3. Specifically, we start with a small (0.001) value of ρ1 and restart the solution

process, increasing by factor 3 the previous value of ρ1, each time when the x1-component

x of current approximate solution and its correction x̂ violate the inequality υ(y0(x̂)) ≤

(1 + κ)Φ(x) for some small tolerance κ (we used κ = 1.e-4), cf. (3.2.17).
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The stepsizes γt in the CoMP algorithm were adjusted dynamically, specifically, as

follows. At a step τ , given a current guess γ for the stepsize, we set γτ = γ, perform the

step and check whether δτ ≤ 0. If this is the case, we pass to step τ + 1, the new guess

for the stepsize being 1.2 times the old one. If δτ is positive, we decrease γτ in a fixed

proportion (in our implementation – by factor 0.8), repeat the step, and proceed in this

fashion until the resulting value of δτ becomes nonpositive. When it happens, we pass to

step τ + 1, and use the value of γτ we have ended up with as our new guess for the stepsize.

In all our experiments, the starting point was given by the matrix ȳ := P ∗Ωb (“obser-

vations of entries in cells from Ω and zeros in all other cells”) according to y0 = y1 = ȳ,

τ0 = λ‖ȳ‖1, τ1 = µ‖ȳ‖nuc, w
1 = 0.

Lower bounding the optimal value. When running the CoMP algorithm, we at every

step t have at our disposal an approximate solution y0,t to the problem of interest (3.2.21);

y0,t is nothing but the y0-component of the approximate solution xt generated by CoMP as

applied to the saddle point approximation of (3.2.21) corresponding to the current value of

ρ1, see (3.2.11). We have at our disposal also the value υ(y0,t) of the objective of (3.2.18) at

y0,t; this quantity is a byproduct of checking whether we should update the current value of

ρ1
3. As a result, we have at our disposal the best found so far value υt = min1≤τ≤t υ(y0,τ ),

along with the corresponding value y0,t
∗ of y0: υ(y0,t

∗ ) = υt. In order to understand how

good is the best generated so far approximate solution y0,t
∗ to the problem of interest, we

need to upper bound the quantity υt−Opt, or, which is the same, to lower bound Opt. This

is a nontrivial task, since the domain of the problem of interest is unbounded, while the

usual techniques for online bounding from below the optimal value in a convex minimization

problem require the domain to be bounded. We are about to describe a technique for lower

bounding Opt utilizing the structure of (3.2.18).

Let y0
∗ be an optimal solution to (3.2.18) (it clearly exists since ψ0 ≥ 0 and λ, µ > 0).

3With our implementation, we run this test for both search points and approximate solutions generated
by the algorithm
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Assume that at a step t we have at our disposal an upper bound R = Rt on ‖y0
∗‖1, and let

R+ = max[R, ‖y0,t‖1].

Let us look at the saddle point approximation of the problem of interest

Ôpt = min
x1=[y0;τ0;y1;τ1]∈X̂1

max
x2∈X2

[
Φ(x1, x2) := ψ0(y0) + τ0 + τ1 + ρ1〈y1 − y0, x2〉

]
,

X1 = {[y0; τ0; y1; τ1] : τ0 ≥ λ‖y0‖1, τ1 ≥ µ‖y1‖nuc}, X2 = {x2 : ‖x2‖F ≤ 1}.
(3.2.19)

associated with current value of ρ1, and let

X̄1 = {[y0; τ0; y1; τ1] ∈ X1 : τ0 ≤ λR+, τ1 ≤ µR+}.

Observe that the point x1,∗ = [y0
∗;λ‖y0

∗‖1; y0
∗;µ‖y0

∗‖nuc] belongs to X̄1 (recall that ‖ · ‖nuc ≤

‖ · ‖1) and that

Opt = υ(y0
∗) ≥ Φ(x1,∗), Φ(x1) = max

x2∈X2

Φ(x1, x2).

It follows that

Ôpt := min
x1∈X̄1

Φ(x1) ≤ Opt.

Further, by Proposition 2.2.2 as applied to X ′1 = X̄1 and X ′2 = X2 we have4

Φ(x1,t)− Ôpt ≤ Res(X̄1 ×X2

∣∣It, λt),
where It is the execution protocol generated by CoMP as applied to the saddle point problem

(3.2.19) (i.e., since the last restart preceding step t till this step), and λt is the associated

accuracy certificate. We conclude that

`t := Φ(x1,t)− Res(X̄1 ×X2

∣∣It, λt) ≤ Ôpt ≤ Opt,

and `t is easy to compute (since the resolution is just the maximum of a readily given by

It, λt affine function over X̄1 ×X2). Setting υt = maxτ≤t `τ , we get nondecreasing with t

lower bounds on Opt. Note that this component of our lower bounding is independent of

the particular structure of ψ0.

4note that the latter relation implies that what was denoted by Φ̃ in Proposition 2.2.2 is nothing but Φ.
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It remains to explain how to get an upper bound R on ‖y0
∗‖1, and this is where the

special structure of ψ0(y) = 1
2‖PΩy − b‖22 is used. Recalling that b ∈ RM , let us set

ϑ(r) = min
v∈RM

{
1

2
‖v − b‖22 : ‖v‖1 ≤ r

}
, r ≥ 0,

It is immediately seen that replacing the entries in b by their magnitudes, ϑ(·) remains

intact, and that for b ≥ 0 we have

ϑ(r) = min
v∈RM

{
1

2
‖v − b‖22 : v ≥ 0,

∑
i

vi ≤ r

}
,

so that ϑ(·) is an easy to compute nonnegative and nonincreasing convex function of r ≥ 0.

Now, by definition of PΩ, the function ϑ+(‖y0‖1) where

ϑ+(r) = λr + ϑ(r)

is a lower bound on υ(y0). As a result, given an upper bound υt on Opt = υ(y∗), the

easy-to-compute quantity

Rt := max{r : ϑ+(r) ≤ υt}

is an upper bound on ‖y0
∗‖1. Since υt is nonincreasing in t, Rt is nonincreasing in t as well.

Generating the data. In the experiments to be reported, the data of (3.2.18) were

generated as follows. Given n, we build “true” n×n matrix y# =
∑k

i=1 eif
T
i , with k = bn/4c

and vectors ei, fi ∈ Rn sampled, independently of each other, as follows: we draw a vector

from the standard Gaussian distribution N (0, In), and then zero out part of the entries,

with probability of replacing a particular entry with zero selected in such a way that the

sparsity of y# is about a desired level (in our experiments, we wanted y# to have about 10%

of nonzero entries). The set Ω of “observed cells” was built at random, with probability

0.25 for a particular cell to be in Ω. Finally, b was generated as PΩ(y# + σξ), where the

entries of ξ ∈ Rn×n were independently of each other drawn from the standard Gaussian

distribution, and

σ = 0.1

∑
i,j |[y#]ij |
n2

.
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We used λ = µ = 10σ.5 Finally, our guess for the Frobenius norm of the optimal solution to

(3.2.18) is defined as follows. Note that the quantity ‖b‖22−Mσ2 is an estimate of ‖PΩy#‖22.

We define the estimate D of D∗ := ‖y∗‖F “as if” the optimal solution were y#, and all

entries of y# were of the same order of magnitude

D =

√
n2

M
max[‖b‖22 −Mσ2, 1], M = Card(Ω).

Numerical results. The results of the first series of experiments are presented in Table

1. The comments are as follows.

In the “small” experiment (n = 128, the largest n where we were able to solve (3.2.18) in

a reasonable time by CVX [35] using the state-of-the-art mosek [3] Interior-Point solver and

thus knew the “exact” optimal value), CoMP exhibited fast convergence: relative accuracies

1.1e-3 and 6.2e-6 are achieved in 64 and 4096 steps (1.2 sec and 74.9 sec, respectively, as

compared to 4756.7 sec taken by CVX).

In larger experiments (n = 512 and n = 1024, meaning design dimensions 262,144 and

1,048,576, respectively), the running times look moderate, and the convergence pattern of

the CoMP still looks promising6. Note that our lower bounding, while somehow working, is

very conservative: it overestimates the “optimality gap” υt− υt by 2-3 orders of magnitude

for moderate and large values of t in the 128× 128 experiment. More accurate performance

evaluation would require a less conservative lower bounding of the optimal value (as of now,

we are not aware of any alternative).

In the second series of experiments, the data of (3.2.18) were generated in such a way

that the true optimal solution and optimal value to the problem were known from the very

beginning. To this end we take as Ω the collection of all cells of an n×n matrix, which, via

optimality conditions, allows to select b making our “true” matrix y# the optimal solution

to (3.2.18). The results are presented in Table 2.

In the third series of experiments, we compared our algorithm with the basic version of

5If the goal of solving (3.2.18) were to recover y#, our λ and µ would, perhaps, be too large. Our
goal, however, was solving (3.2.18) as an “optimization beast,” and we were interested in “meaningful”
contribution of Ψ0 and Ψ1 to the objective of the problem, and thus in not too small λ and µ.

6Recall that we do not expect linear convergence, just O(1/t) one.
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ADMM as presented in [13]; this version is capable to handle straightforwardly the matrix

completion with noisy observations of part of the entries7. The data in these experiments

were generated in the same way as in the aforementioned experiments with known optimal

solutions. The results are presented in Table 3. We see that ADMM is essentially faster

than our algorithm, suggesting that ADMM, when applicable in its basic form, typically

outperforms CoMP. However, this is not the case when ADMM is not directly applicable;

we consider one example of the sort in the next section.

It should be mentioned that in these experiments the value of ρ1 resulting in negligibly

small, as compared to ε2, values of ε1 in (3.2.17) was found in the first 10-30 steps of the

algorithm, with no restarts afterwards.

Remarks. For the sake of simplicity, so far we were considering problem (3.2.18), where

minimization is carried out over y0 running through the entire space Rn×n of n×n matrices.

What happens if we restrict y0 to reside in a given closed convex domain Y0?

It is immediately seen that the construction we have presented can be straightforwardly

modified for the cases when Y0 is a centered at the origin ball of the Frobenius or ‖ · ‖1

norm, or the intersection of such a set with the space of symmetric n × n matrices. We

could also handle the case when Y0 is the centered at the origin nuclear norm ball (or

intersection of this ball with the space of symmetric matrices, or with the cone of positive

semidefinite symmetric matrices), but to this end one needs to “swap the penalties” – to

write the representation (3.2.9c) of problem (3.2.18) as

min
{yk;τk]}1

k=0

∈Y+
0 ×Y

+
1

{
Υ(y0, y1, τ0, τ1) :=

1

2
‖PΩy

0 − b‖22︸ ︷︷ ︸
ψ0(y0)

+τ0 + τ1 : y0 = y1

}
,

Y +
0 = {[y0; τ0] : y0 ∈ Y0, τ

0 ≥ µ‖y0‖nuc}, Y +
1 = {[y1; τ1] : y1 ∈ Y1, τ

1 ≥ λ‖y1‖1},

where Y1 ⊃ Y0 “fits” ‖ · ‖1 (meaning that we can point out a d.g.f. ω1(·) for Y1 which, taken

along with Ψ1(y1) = λ‖y1‖1, results in easy-to-solve auxiliary problems (3.2.7)). We can

take, e.g. ω1(y1) = 1
2‖y

1‖2F and define Y1 as the entire space, or a centered at the origin

7Note that in a more complicated matrix recovery problem, where noisy linear combinations of the matrix
entries rather than just some of these entries are observed, applying ADMM becomes somehow problematic,
while the proposed algorithm still is applicable “as is.”
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Table 1: Composite Mirror Prox algorithm on problem (3.2.18) with n × n matrices. υt

are the best values of υ(·), and υt are lower bounds on the optimal value found in course of
t steps. Platform: MATLAB on 3.40 GHz Intel Core i7-3770 desktop with 16 GB RAM, 64
bit Windows 7.

t 8 16 32 64 128 256 512 1024 2048 4096

CPU, sec 0.1 0.3 0.6 1.2 2.3 4.7 9.4 18.7 37.5 74.9

υt −Opt 2.0e-2 1.8e-2 1.8e-2 1.4e-2 5.3e-3 5.0e-3 1.3e-3 7.8e-4 3.2e-4 8.3e-5
υt − υt 4.8e0 4.5e0 4.2e0 3.7e0 2.1e0 6.3e-1 2.1e-1 1.3e-1 6.0e-2 3.4e-2

υt−Opt
Opt

1.5e-3 1.3e-3 1.3e-3 1.1e-3 4.0e-4 3.7e-4 9.5e-5 5.8e-5 2.4e-5 6.2e-6

υt−υt
υ4096

3.6e-1 3.4e-1 3.2e-1 2.8e-1 1.5e-1 4.7e-2 1.6e-2 9.4e-3 4.5e-3 2.6e-3

υ1−Opt
υt−Opt

4.8e1 5.4e1 5.4e1 6.7e1 1.8e2 1.9e2 7.5e2 1.2e3 2.9e3 1.1e4

υ1−υ1
υt−υt

3.0e0 3.2e0 3.7e0 3.9e0 6.9e0 2.3e1 6.7e1 1.1e2 2.4e2 4.1e2

(a) n = 128, Opt = 13.28797 (CVX CPU 4756.7 sec)

t 8 16 32 64 128 256 512 1024 2048
CPU, sec 3.7 7.5 15.0 29.9 59.8 119.6 239.2 478.4 992.0
υt − υt 4.4e1 4.4e1 4.3e1 4.2e1 4.1e1 3.7e1 2.3e1 1.2e1 5.1e0
υt−υt
υ1024

2.4e-1 2.4e-1 2.4e-1 2.4e-1 2.2e-1 2.0e-1 1.3-1 6.4e-2 2.8e-2

υ1−υ1
υt−υt

4.4e0 4.4e0 4.5e0 4.6e0 4.8e0 5.5e0 8.5e0 1.7e1 3.8e1

(b) n = 512, υ2048 = 175.445 ≤ Opt ≤ υ2048 = 180.503 (CVX not tested)

t 8 16 32 64 128 256 512 1024
CPU, sec 23.5 46.9 93.8 187.6 375.3 750.6 1501.2 3002.3
υt − υt 1.5e2 1.5e2 1.3e2 1.2e2 1.1e2 8.0e1 1.6e1 5.4e0
υt−υt
υ1024

2.4e-1 2.2e-1 2.2e-1 1.9e-1 1.7e-01 1.2e-1 2.4e-2 8.1e-3

υ1−υ1
υt−υt

4.6e0 4.8e0 5.3e0 5.7e0 6.3e0 8.9e0 4.5e1 1.3e2

(c) n = 1024, υ1024 = 655.422 ≤ Opt ≤ υ1024 = 660.786 (CVX not tested)

Table 2: Composite Mirror Prox algorithm on problem (3.2.18) with n × n matrices and
known optimal value Opt. υt are the best values of υ(·), and υt are lower bounds on the
optimal value found in course of t steps. Platform: MATLAB on 3.40 GHz Intel Core i7-3770
desktop with 16 GB RAM, 64 bit Windows 7.

t 1 7 8 12 128 256 512 1024
CPU, sec 1.3 8.3 9.3 11.0 65.9 125.0 244.7 486.0
υt −Opt 92.9 1.58 0.30 0.110 0.095 0.076 0.069 0.069
υt − υt 700.9 92.4 69.5 54.6 52.8 44.2 21.2 3.07
υt−Opt

Opt
0.153 2.6e-3 5.0e-4 1.8e-4 1.6e-4 1.3e-4 1.1e-4 1.1e-4

υt−υt
Opt

1.153 0.152 0.114 0.090 0.087 0.073 0.035 0.005

(a) n = 512, Opt = 607.9854

t 1 7 8 128 256 512
CPU, sec 8.9 48.1 51.9 392.7 752.1 1464.9
υt −Opt 371.4 3.48 0.21 0.21 0.19 0.16
υt − υt 2772 241.7 201.2 147.3 146.5 122.9
υt−Opt

Opt
0.154 1.5e-3 9e-5 9e-5 8e-5 7e-5

υt−υt
Opt

1.155 0.101 0.084 0.061 0.061 0.051

(b) n = 1024, Opt = 2401.168
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Table 3: Number of steps and CPU time for Composite Mirror Prox algorithm and ADMM
algorithm to achieve relative error ε = 10−4 on problem (3.2.18). Platform: MATLAB on Intel
i5-2400S @2.5GHz CPU with 4GB RAM, 64-bit Windows 7.

n× n Composite Mirror Prox ADMM
step CPU,sec step CPU,sec

128× 128 34 0.77 11 0.13
256× 256 94 8.02 9 0.37
512× 512 38 15.06 9 1.42

1024× 1024 34 81.76 8 8.74

Frobenius/‖ · ‖1 norm ball large enough to contain Y0.

3.2.5 Numerical Illustration II: Image Decomposition

Image decomposition. Consider image recovery problem, where we want to recover an

image y ∈ Rn×n from its noisy observations b = Ay+ ξ, where Ay is a given affine mapping

(e.g. the restriction operator PΩ defined as above, or some blur operator), and ξ is a random

noise. Assume that the image can be decomposed as y = yL + yS + ysm where yL is of low

rank, ysm is the matrix of contamination by a “smooth background signal”, and yS is a

sparse matrix of “singular corruption.” Under this assumption in order to recover y from

b, it is natural to solve the optimization problem

Opt = min
yL,yS,ysm∈Rn×n

{‖A(yL + yS + ysm)− b‖2 + µ1‖yL‖nuc + µ2‖yS‖1 + µ3‖ysm‖TV}

(3.2.20)

where µ1, µ2, µ3 > 0 are regularization parameters. Here ‖y‖TV is the total variation of an

image y:

‖y‖TV = ‖∇iy‖1 + ‖∇jy‖1,

(∇iy)ij = yi+1,j − yi,j , [i; j] ∈ Z2 : 1 ≤ i < n− 1, 1 ≤ j < n,

(∇jy)ij = yi,j+1 − yi,j , [i; j] ∈ Z2 : 1 ≤ i < n, 1 ≤ j < n− 1.

Problem reformulation. We first rewrite (3.2.20) as a saddle point optimization prob-

lem

Opt = min
y1,y2,y3∈Rn×n

{
‖A(y1 + y2 + y3)− b‖2 + µ1‖y1‖nuc + µ2‖y2‖1 + µ3‖Ty3‖1

}
= min

y1,y2,y3
max
‖z‖2≤1

{
〈z,A(y1 + y2 + y3)− b〉+ µ1‖y1‖nuc + µ2‖y2‖1 + µ3‖Ty3‖1

}
, (3.2.21)

63



where T : Rn×n → R2n(n−1) is the mapping y 7→ Ty =

 {(∇iy)n(j−1)+i}i=1,...,n−1, j=1,...,n

{(∇jy)n(i−1)+j)}i=1,...,n, j=1,...,n−1

.

Next we rewrite (3.2.21) as a linearly constrained saddle-point problem with “simple”

penalties:

Opt = min
y3∈Y3

[yk;τk]∈Y+
k
, 0≤k≤2

max
z∈Z

{
〈z,A(y1 + y2 + y3)− b〉+ τ1 + τ2 + τ0, y

0 = Ty3
}
,

where

Y +
0 = {[y0; τ0] : y0 ∈ Y0 = R2n(n−1) : ‖y0‖1 ≤ τ0/µ3},

Y +
1 = {[y1; τ1] : y1 ∈ Y1 = Rn×n : ‖y1‖nuc ≤ τ1/µ1},

Y +
2 = {[y2; τ2] : y2 ∈ Y2 = Rn×n : ‖y2‖1 ≤ τ2/µ2}

Y3 = Rn×n, Z = {z ∈ RM : ‖z‖2 ≤ 1},

and further approximate the resulting problem with its penalized version:

Ôpt = min
y3∈Y3

[yk;τk]∈Y+
k
, 0≤k≤2

max
z∈Z
w∈W

 〈z,A(y1 + y2 + y3)− b〉

+τ1 + τ2 + τ0 + ρ〈w, y0 − Ty3〉

 , (3.2.22)

with

W = {w ∈ R2n(n−1), ‖w‖2 ≤ 1}.

Note that the function ψ(y1, y2, y3) := ‖A(y1 + y2 + y3)− b‖2 = max‖z‖2≤1〈z, A(y1 + y2 +

y3) − b〉 is Lipschitz continuous in y3 with respect to the Euclidean norm on Rn×n with

corresponding Lipschitz constant G = ‖A‖2,2, which is the spectral norm (the principal

singular value) of A. Further, Ψ(y0) = µ3‖y0‖1 is Lipschitz-continuous in y0 with respect

to the Euclidean norm on R2n(n−1) with the Lipschitz constant H ≤ µ3

√
2n(n− 1). With

the help of the result of Proposition 3.2.1 we conclude that to ensure the “exact penalty”

property it suffices to choose ρ ≥ ‖A‖2,2 + µ3

√
2n(n− 1). Let us denote

U =

 u = [y0; ...; y3; z;w] : yk ∈ Y k, 0 ≤ k ≤ 3,

z ∈ RM , ‖z‖2 ≤ 1, w ∈ R2n(n−1), ‖w‖2 ≤ 1

 .
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We equip the embedding space Eu of U with the norm

‖u‖ =

(
α0‖y0‖22 +

3∑
k=1

αk‖yk‖22 + β‖z‖22 + γ‖w‖22

)1/2

,

and U with the proximal setup (‖ · ‖, ω(·)) with

ω(u) =
α0

2
‖y0‖22 +

3∑
k=1

αk
2
‖yk‖22 +

β

2
‖z‖22 +

γ

2
‖w‖22.

Implementing the CoMP algorithm. When implementing the CoMP algorithm, we

use the above proximal setup with adaptive aggregation parameters α0 = · · · = α4 = 1/D2

where D is our guess for the upper bound of ||y∗||2, that is, whenever the norm of the

current solution exceeds 20% of the guess value, we increase D by factor 2 and update the

scales accordingly. The penalty ρ and stepsizes γt are adjusted dynamically in the same

way as explained in the Matrix Completion experiment.

Numerical results. In the first series of experiments, we build the n × n observation

matrix b by first generating a random matrix with rank r = b
√
nc and another random

matrix with sparsity p = 0.01, so that the observation matrix is a sum of these two matrices

and of random noise of level σ = 0.01; we take y 7→ Ay as the identity mapping. We use

µ1 = 10σ, µ2 = σ, µ3 = σ. The results of this series of experiments are presented in Table 4.

Note that unlike the matrix completion problem, discussed in Section 3.2.4, here we are not

able to generate the problem with known optimal solutions. Better performance evaluation

would require good lower bounding of the true optimal value, which is however problematic

due to unbounded problem domain.

In the second series of experiments, we implement the CoMP algorithm to decompose

real images and extract the underlying low rank/sparse singular distortion/smooth back-

ground components. The purpose of these experiments is to illustrate how the algorithm

performs with the choice of small regularization parameters which is meaningful from the

point of view of applications to image recovery. Image decomposition results for two im-

ages are provided on Figures 1 and 2. In Figure 1, we present the decomposition of the

observed image of size 256 × 256. We apply the model (3.2.21) with regularization pa-

rameters µ1 = 0.03, µ2 = 0.001, µ3 = 0.005. We run 2 000 iterations of CoMP (total
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Table 4: Composite Mirror Prox algorithm on problem (3.2.20) with n×n matrices. υt are
the best values of υ(·) in course of t steps. Platform: MATLAB on Intel i5-2400S @2.5GHz
CPU with 4GB RAM, 64-bit Windows 7.

t 8 16 32 64 128 256 512 1024 2048

CPU, sec 0.1 0.2 0.4 0.8 1.6 3.1 6.3 12.6 25.2

υt − υ2048 1.5e1 2.8e0 6.2e-1 2.3e-1 1.1e-1 4.2e-2 1.5e-2 4.4e-3 0.0e0
υt−υ2048
υ2048

9.5e-1 1.8e-1 4.0e-2 1.5e-2 7.0e-3 2.7e-3 9.9e-4 2.8e-4 0.0e0

υt −Opt 1.5e1 2.8e0 6.2e-1 2.3e-1 1.1e-1 4.5e-2 1.8e-2 6.6e-3 2.2e-3
υt−Opt

Opt
9.5e-1 1.8e-1 4.0e-2 1.5e-2 7.1e-3 2.9e-3 1.1e-3 4.2e-4 1.4e-4

(a) n = 64, Opt = 15.543 (CVX CPU 4525.5 sec)

t 8 16 32 64 128 256 512 1024 2048

CPU, sec 6.2 12.3 24.7 49.3 98.6 197.2 394.4 788.9 1577.8

υt − υ2048 1.1e2 5.8e1 2.7e1 1.3e1 6.2e0 2.9e0 1.2e0 3.9e-1 0.0e0
υt−υ2048
υ2048

9.0e-1 4.9e-1 2.3e-1 1.1e-1 5.2e-2 2.5e-2 1.0e-2 3.3e-3 0.0e0

(b) n = 512 (CVX not tested)

of 393.5 sec MATLAB, Intel i5-2400S@2.5GHz CPU). The first component y1 has approxi-

mate rank ≈ 1; the relative reconstruction error is ‖y1 + y2 + y3 − b‖2/‖b‖2 ≈ 2.8 × 10−4.

Figure 2 shows the decomposition of the observed image of size 480 × 640 after 1 000

iterations of CoMP (total of 873.6 sec). The regularization parameters of the problem

(3.2.20) were set to µ1 = 0.06, µ2 = 0.002, µ3 = 0.005. The relative reconstruction error is

‖y1 + y2 + y3 − b‖2/‖b‖2 ≈ 8.4× 10−3.

In the third series of experiments, we compare the CoMP algorithm with some other

first-order methods. To the best of our knowledge, a quite limited set of known methods

are readily applicable to problems of the form (3.2.20), where the “observation-fitting”

component in the objective is nonsmooth and the penalty terms involve different components

of the observed image. As a result, we compared CoMP to just two alternatives. The first,

below referred to as smoothing-APG, applies Nesterov’s smoothing techniques to both the

first ‖ · ‖2 term and the total variation term in the objective of (3.2.20) and then uses

the Accelerated Proximal Gradient method (see [62, 63] for details) to solve the resulting

problem which takes the form

min
y1,y2,y3∈Rm×n

{
fρ1(y1, y2, y3) + µ1‖y1‖nuc + µ2‖y2‖1 + fρ2(y3)

}
(3.2.23)
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(a) observation b (b) recovery y1 + y2 + y3

(c) low-rank component (d) sparse component (e) smooth component

Figure 1: Observed and reconstructed images (size 256× 256).

(a) observation b (b) low-rank component

(c) sparse component (d) smooth component

Figure 2: Observed and decomposed images (size 480× 640)
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with

fρ1(y1, y2, y3) = maxz:‖z‖2≤1

{
〈PΩ(y1 + y2 + y3)− b, z〉 − ρ1

2 ‖z‖
2
2

}
fρ2(y3) = maxw:‖w‖∞≤1

{
µ3〈Ty3, w〉 − ρ2

2 ‖w‖
2
2

}
where ρ1 > 0, ρ2 > 0. In the experiment, we specified the smoothing parameters as ρ1 =

ε, ρ2 = ε
2(n−1)n , ε = 10−3.

The second alternative, referred to as smoothing-ADMM, applies smoothing technique

to the first term in the objective of (3.2.20) and uses the ADMM algorithm to solve the

resulting problem

min
y1,y2,y3∈Rm×n

{
fρ1(y1, y2, y3) + µ1‖y1‖nuc + µ2‖y2‖1 + µ3‖z‖1

}
s.t. Ty3 − z = 0

(3.2.24)

the associated augmented Lagrangian being

Lν(x, z;w) = fρ1(y1, y2, y3) + µ1‖y1‖nuc + µ2‖y2‖1 + µ3‖z‖1 + 〈w, Ty3 − z〉+ ν
2‖Ty

3 − z‖22

where x = [y1, y2, y3], ν > 0 is a parameter. The basic version of ADMM would require

performing alternatively x = (y1, y2, y3)-updates and z-updates. Since minimizing Lν in

x in a closed analytic form is impossible, we are enforced to perform x-update iteratively

and hence inexactly. In our experiment, we used for this purpose the Accelerated Proximal

Gradient method, with three implementations differing by the allowed number of inner

iterations (5, 20, 50, respectively).
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Smoothing−ADMM (inner=50)

Figure 3: Comparing CoMP, smoothing-APG, and smoothing-ADMM on problem (3.2.20)

with 128 × 128 matrix. x-axis: CPU time; y-axis: relative inaccuracy. Platform: MATLAB

on Intel i5-2400S @2.5GHz CPU with 4GB RAM, 64-bit Windows 7.
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In the experiment, we generated synthetic data in the same fashion as in the first series

of experiments and compared the performances of the three algorithms (CoMP and two

just described alternatives) by computing accuracies in terms of the objective achieved

within a prescribed time budget. The results are presented in Figure 3. One can see

that the performance of ADMM heavily depends on the allowed number of inner iterations

and is not better than the performance of the Accelerated Proximal Gradient algorithm as

applied to smooth approximation of the problem of interest. Our algorithm, although not

consistently outperforming the Smoothing-APG approach, could still be very competitive,

especially when only low accuracy is required.

3.2.6 Concluding Remarks

In this section, we have investigated a particular family of problems, multi-term compos-

ite minimization, which has broad applications in many fields. We develop saddle point

reformulation based on exact penalty that takes advantages of the specific problem’s struc-

ture and allows us to directly apply the composite Mirror Prox algorithm. The resulting

algorithm achieves the optimal O(1/t) rate of convergence, which appears to be the best

rate known, under circumstances, from the literature (and established there in essentially

less general setting than ours). We also present, highly encouraging in our opinion, results

of numerical experiments in two important applications – low-rank matrix completion and

image decomposition.

3.3 Application II: Linearly Constrained Composite Minimization

3.3.1 Problem of Interest

Now we consider a more general (than in Section 3.2) class of convex composite minimiza-

tion problems that are subject to linear equality constraints:

min
[y1;...;yK ]∈Y1×···×YK

∑K
k=1

[
ψk(y

k) + Ψk(y
k)
]

s.t.
∑K

k=1Aky
k = b.

(3.3.1)

Here for 1 ≤ k ≤ K, ψk(·) : Yk → R are convex Lipschitz-continuous functions, and

Ψk(·) : Yk → R are convex functions which are simple and fit Yk. We call this type
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of problem, the semi-separable problem. One can immediately see that the above type

of problems is a generalization of the multi-term composite minimization with linearly

coupling constraints; now we allow for general-type linear constraints linking y1, ..., yK ,

while in Multi-Term Composite Minimization all yk are affinely parameterized by one of

these yk’s, see (3.2.9a).

A typical example that falls into this category is the basis pursuit problem, which is the

following nonsmooth problem

min
x∈X
{‖x‖1 : Ax = b} (3.3.2)

Note that this problem can be written in the semi-separable form

min
x∈X

{
K∑
k=1

‖xk‖1 :

K∑
k=1

Akxk = b

}

if the data is partitioned into K blocks: x = [x1;x2; . . . ;xK ] and A = [A1, A2, . . . , AK ].

There are also many other problems arising in signal processing, machine learning and

image processing which can be naturally posed in the form of (3.3.1).

Related work. Problems with semi-separable structure (3.3.1) for K = 2, have been

extensively studied using the augmented Lagrangian approach (see, e.g., [79, 13, 73, 83, 33,

34, 54, 68] and references therein). In particular, much work was carried out on the alter-

nating directions method of multipliers (ADMM, see [13] for an overview), which optimizes

the augmented Lagrangian in an alternating fashion and exhibits an overall O(1/t) conver-

gence rate. Note that the available accuracy bounds for those algorithms involve optimal

values of Lagrange multipliers of the equality constraints (cf. [68]). Several variants of this

method have been developed recently to adjust to the case of K > 2 (see, e.g.[30, 40]),

however, most of these algorithms require to solve iteratively time consuming composite

minimization subproblems especially when non-smooth terms in the objective are present.

A straightforward approach to solve (3.3.1) would be to rewrite it as a saddle point

problem

min
[y1;...;yK ]∈Y1×···×YK

max
w

{
K∑
k=1

[ψk(y
k) + Ψk(y

k)] + 〈
K∑
k=1

Akz
k − b, w〉

}
(3.3.3)
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and solve by the composite Mirror Prox algorithm from Section 2.5.1 adjusted to work

with an unbounded domain U , or, alternatively, we could replace maxw with maxw: π(w)≤R

with “large enough” R and use the above algorithm “as is”, where π(·) is some norm. The

potential problem with this approach is that if the w-component w∗ of the saddle point of

(3.3.3) is of large π-norm (or “large enough” R is indeed large), the (theoretical) efficiency

estimate would be bad since it is proportional to the magnitude of w∗ (resp., to R).

Our goal and main contribution. In this section, we would like to circumvent the

above difficulty of unfavorable dual domains by applying to (3.3.11) a more sophisticated

policy originating from [50]. We propose a sequential composite Mirror Prox algorithm,

which achieves an overall O(1/ε) complexity bound up to log factors. We present promising

experimental results showing the potential of our algorithm as compared to the simple

approach described above for the basis pursuit application.

Outline The rest of this section is organized as follows. In Section 3.2.2, we elaborate

the problem setting and reformulate the problem of interest as a saddle point problem with

special structures, which enables us to utilize the composite Mirror Prox algorithm. We

provide also the corresponding complexity analysis. In Section 3.2.4 and Section 3.2.5, we

illustrate the algorithm when applied to the aforementioned matrix completion problem

and image decomposition problem, respectively.

3.3.2 A Generic Algorithm for Convex Constrained Problems

Note that our problem of interest is of the generic form

Opt = min
y∈Y
{f(y) : g(y) ≤ 0} (3.3.4)

where Y is a convex compact set in a Euclidean space E, f and g : Y → R are convex and

Lipschitz continuous functions. For the time being, we focus on (3.3.4) and assume that

the problem is feasible and thus solvable.

We intend to solve (3.3.4) by the generic algorithm presented in [50]; for our now pur-

poses, the following description of the algorithm will do:
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1. The algorithm works in stages. Stage s = 1, 2, ... is associated with working parameter

αs ∈ (0, 1). We set α1 = 1
2 .

2. At stage s, we apply a first order method B to the problem

(Ps) Opts = min
y∈Y
{fs(y) = αsf(y) + (1− αs)g(y)} (3.3.5)

The only property of the algorithm B which matters here is its ability, when run on

(Ps), to produce in course of t = 1, 2, ... steps iterates ys,t, upper bounds f
t
s on Opts

and lower bounds f
s,t

on Opts in such a way that

(a) for every t = 1, 2, ..., the t-th iterate ys,t of B as applied to (Ps) belongs to Y ;

(b) the upper bounds f
t
s are nonincreasing in t (this is “for free”) and “are achiev-

able,” that is, they are of the form

f
t
s = fs(y

s,t),

where ys,t ∈ Y is a vector which we have at our disposal at step t of stage s;

(c) the lower bounds f
s,t

should be nondecreasing in t (this again is “for free”);

(d) for some nonincreasing sequence εt → +0, t→∞, we should have

f
t
s − fs,t ≤ εt

for all t and s.

Note that since (3.3.4) is solvable, we clearly have Opts ≤ αsOpt, implying that the

quantity f
s,t
/αs is a lower bound on Opt. Thus, at step t of stage s we have at our

disposal a number of valid lower bounds on Opt; we denote the best (the largest) of

these bounds Opt
s,t

, so that

Opt ≥ Opt
s,t
≥ f

s,t
/αs (3.3.6)

for all s, t, and Opt
s,t

is nondecreasing in time8.

8in what follows, we call a collection as,t of reals nonincreasing in time, if as′,t′ ≤ as,t whenever s′ ≥ s,
same as whenever s = s′ and t′ ≥ t. “Nondecreasing in time” is defined similarly.
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3. When the First Order oracle is invoked at step t of stage s, we get at our disposal

a triple (ys,t ∈ Y, f(ys,t), g(ys,t)). We assume that all these triples are somehow

memorized. Thus, after calling First Order oracle at step t of stage s, we have at

our disposal a finite set Qs,t on the 2D plane such that for every point (p, q) ∈ Qs,t we

have at our disposal a vector ypq ∈ Y such that f(ypq) ≤ p and g(ypq) ≤ q; the set Qs,t

(in today terminology, a filter) is comprised of all pairs (f(ys′,t′), g(ys′,t′)) generated

so far. We set

hs,t(α) = min(p,q)∈Qs,t

[
α(p−Opt

s,t
) + (1− α)q

]
: [0, 1]→ R,

Gap(s, t) = max
0≤α≤1

hs,t(α).
(3.3.7)

4. Let ∆s,t = {α ∈ [0, 1] : hs,t(α) ≥ 0}, so that ∆s,t is a segment in [0, 1]. Unless we have

arrived at Gap(s, t) = 0 (i.e., got an optimal solution to (3.3.4), see (3.3.8)), ∆s,t is

not a singleton (since otherwise Gap(s, t) were 0). Observe also that ∆s,t are nested:

∆s′,t′ ⊂ ∆s,t whenever s′ ≥ s, same as whenever s′ = s and t′ ≥ t.

We continue iterations of stage s while αs is “well-centered” in ∆s,t, e.g., belongs to

the mid-third of the segment. When this condition is violated, we start stage s + 1,

specifying αs+1 as the midpoint of ∆s,t.

The properties of the aforementioned routine are summarized in the following statement

(cf. [50]).

Proposition 3.3.1. (i) Gap(s, t) is nonincreasing in time. Furthermore, at step t of stage

s, we have at our disposal a solution ŷs,t ∈ Y to (3.3.4) such that

f(ŷs,t) ≤ Opt + Gap(s, t), and g(ŷs,t) ≤ Gap(s, t), (3.3.8)

so that ŷs,t belongs to the domain Y of problem (3.3.4) and is both Gap(s, t)-feasible and

Gap(s, t)-optimal.

(ii) For every ε > 0, the number s(ε) of stages until a pair (s, t) with Gap(s, t) ≤ ε is

found obeys the bound

s(ε) ≤
ln
(
3Lε−1

)
ln (4/3)

, (3.3.9)
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where L < ∞ is an a priori upper bound on maxy∈Y max[|f(y)|, |g(y)|]. Besides this, the

number of steps at each stage does not exceed

T (ε) = min{t ≥ 1 : εt ≤
ε

3
}+ 1. (3.3.10)

Proof.

1o. hs,t(α) are concave piecewise linear functions on [0, 1] which clearly are pointwise

nonincreasing in time. As a result, Gap(s, t) is nonincreasing in time. Further, we have

Gap(s, t) = max
α∈[0,1]

min
λ

∑
(p,q)∈Qs,t

λpq[α(p−Opt
s,t

) + (1− α)q] : λpq ≥ 0,
∑

(p,q)∈Qs,t

λpq = 1


= max

α∈[0,1]

∑
(p,q)∈Qs,t

λ∗pq[α(p−Opt
s,t

) + (1− α)q]

= max

 ∑
(p,q)∈Qs,t

λ∗pq(p−Opt
s,t

),
∑

(p,q)∈Qs,t

λ∗pqq

 ,
where λ∗pq ≥ 0 and sum up to 1. Recalling that for every (p, q) ∈ Qs,t we have at our

disposal ypq ∈ Y such that p ≥ f(ypq) and q ≥ g(ypq), setting ŷs,t =
∑

(p,q)∈Qs,t
λ∗pqypq and

invoking convexity of f, g, we get

f(ŷs,t) ≤
∑

(p,q)∈Qs,t

λ∗pqp ≤ Opt
s,t

+ Gap(s, t), g(ŷs,t) ≤
∑

(p,q)∈Qs,t

λ∗pqq ≤ Gap(s, t);

and (3.3.8) follows, due to Opt
s,t
≤ Opt.

2o. We have f
t
s = αsf(ys,t) + (1 − αs)g(ys,t) for some ys,t ∈ Y which we have at our

disposal at step t, implying that (p̄ = f(ys,t), q̄ = g(ys,t)) ∈ Qs,t. Hence by definition of

hs,t(·) it holds

hs,t(αs) ≤ αs(p̄−Opt
s,t

) + (1− αs)q̄ = f
t
s − αsOpt

s,t
≤ f ts − fs,t,

where the concluding inequality is given by (3.3.6). Thus, hs,t(αs) ≤ f
t
s − fs,t ≤ εt. On the

other hand, if stage s does not terminate in course of the first t steps, αs is well-centered

in the segment ∆s,t where the concave function hs,t(α) is nonnegative. We conclude that

0 ≤ Gap(s, t) = max0≤α≤1 hs,t(α) = maxα∈∆s,t hs,t(α) ≤ 3hs,t(αs). Thus, if a stage s does
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not terminate in course of the first t steps, we have Gap(s, t) ≤ 3εt, which implies (3.3.10).

Further, αs is the midpoint of the segment ∆s−1 = ∆s−1,ts−1 , where tr is the last step of

stage r (when s = 1, we should define ∆0 as [0, 1]), and αs is not well-centered in the segment

∆s = ∆s,ts ⊂ ∆s−1,ts−1 , which clearly implies that |∆s| ≤ 3
4 |∆

s−1|. Thus, |∆s| ≤
(

3
4

)s
for

all s. On the other hand, when |∆s,t| < 1, we have Gap(s, t) = maxα∈∆s,t hs,t(α) ≤ 3L|∆s,t|

(since hs,t(·) is Lipschitz continuous with constant 3L 9 and hs,t(·) vanishes at (at least) one

endpoint of ∆s,t). Thus, the number of stages before Gap(s, t) ≤ ε is reached indeed obeys

the bound (3.3.9).

3.3.3 Sequential Composite Mirror Prox Algorithm and Complexity

Back to our problem of interest, we want to address the following problem

Opt = min
[y1;...;yK ]∈Y1×···×YK

{
f([y1; . . . ; yK ]) :=

∑K
k=1[ψk(y

k) + Ψk(y
k)] :

∑K
k=1Aky

k = b
}

= min
[y1;...;yK ]∈Y1×···×YK

{
K∑
k=1

[
ψk(y

k) + Ψk(y
k)
]

: g([y1; ...; yK ]) ≤ 0

}
,

g([y1; ...; yK ]) = π∗
(

K∑
k=1

Aky
k − b

)
= max

π(w)≤1

K∑
k=1

〈Akyk − b, w〉,

(3.3.11)

where π(·) is some norm and π∗(·) is the conjugate norm.

Problem setting. We consider the setting as follows. For every k, 1 ≤ k ≤ K, we are

given

1. Euclidean spaces Ek and Ek along with their nonempty closed and bounded convex

subsets Yk and Zk, respectively;

2. proximal setups for (Ek, Yk) and (Ek, Zk), that is, norms pk(·) on Ek, norms qk on

Ek, and d.g.f.’s ωk(·) : Yk → R, ωk(·) : Zk → R, which are compatible with pk(·) and

qk(·), respectively;

3. linear mapping yk 7→ Aky
k : Ek → E, where E is a Euclidean space;

4. Lipschitz continuous convex functions ψk(y
k) : Yk → R along with their saddle point

9we assume w.l.o.g. that |Opt
s,t
| ≤ L
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representations

ψk(y
k) = sup

zk∈Zk
[φk(y

k, zk)−Ψk(z
k)], 1 ≤ k ≤ K, (3.3.12)

where φk(y
k, zk) : Yk × Zk → R are smooth (with Lipschitz continuous gradients)

functions convex in yk ∈ Yk and concave in zk ∈ Zk, and Ψk(z
k) : Zk → R are

Lipschitz continuous convex functions such that the problems of the form

min
zk∈Zk

[
ωk(z

k) + 〈ξk, zk〉+ αΨk(z
k)
]

[α > 0] (3.3.13)

are easy to solve;

5. Lipschitz continuous convex functions Ψk(y
k) : Yk → R such that the problems of the

form

min
yk∈Yk

[
ωk(y

k) + 〈ξk, yk〉+ αΨk(y
k)
]

[α > 0]

are easy to solve;

6. a norm π∗(·) on E, with conjugate norm π(·), along with a d.g.f. ω̂(·) : W := {w ∈

E : π(w) ≤ 1} → R compatible with π(·) and is such that problems of the form

min
w∈W

[ω̂(w) + 〈ξ, w〉]

are easy to solve.

The outlined data define the sets

Y +
k = {[yk; τk] : yk ∈ Yk, τk ≥ Ψk(y

k)} ⊂ E+
k := Ek ×R, 1 ≤ k ≤ K,

Z+
k = {[zk;σk] : zk ∈ Zk, σk ≥ Ψk(z

k)} ⊂ E+
k := Ek ×R, 1 ≤ k ≤ K.

The problem of interest here is problem (3.3.11), (3.3.12):

Opt = min
[y1;...;yK ]

max
[z1;...;zK ]

{ K∑
k=1

[φk(y
k, zk) + Ψk(y

k)−Ψk(z
k)] : π∗

(
K∑
k=1

Aky
k − b

)
≤ 0,

[y1; . . . ; yK ] ∈ Y1 × · · · × YK , [z1; . . . ; zk] ∈ Z1 × · · · × ZK
}

= min
{[yk;τk]}Kk=1

max
{[zk;σk]}Kk=1

{ K∑
k=1

[φk(y
k, zk) + τk − σk] : max

w∈W

K∑
k=1

〈Akyk − b, w〉 ≤ 0,

{[yk; τk] ∈ Y +
k }

K
k=1, {[zk;σk] ∈ Z

+
k }

K
k=1, w ∈W

}
.

(3.3.14)
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Sequential CoMP algorithm. Using the generic algorithm described in the previous

section amounts to resolving a sequence of problems (Ps) as in (3.3.5) where, with a slight

abuse of notation,

Y =
{
y = {[yk; τk]}Kk=1 : [yk; τk] ∈ Y +

k , τ
k ≤ Ck, 1 ≤ k ≤ K

}
;

f(y) = max
z={[zk;σk]}Kk=1

{
K∑
k=1

[φk(y
k, zk) + τk − σk] : z ∈ Z = {[zk;σk] ∈ Z+

k }
K
k=1

}
;

g(y) = max
w

{
K∑
k=1

〈Akyk − b, w〉 : w ∈W

}
.

Here Ck ≥ maxyk∈Yk Ψk(y
k) are finite constants introduced to make Y compact, as required

in the premise of Proposition 3.3.1; it is immediately seen that the magnitudes of these

constants (same as their very presence) does not affect the algorithm we are about to

describe.

Our sequential CoMP algorithm solves (Ps) by reducing the problem to the saddle point

problem

Opt = min
y

max
[z;w]

{
Φ(y, [z;w]) := α

K∑
k=1

[φk(y
k, zk) + τk − σk] + (1− α)

K∑
k=1

〈Akyk − b, w〉 :

y = {[yk; τk]}Kk=1 ∈ Y, [z = {[zk;σk]}Kk=1 ∈ Z; w ∈W ]
}
,

(3.3.15)

where α = αs. Setting

U = {u = [y1; ...; yK ; z1; ...; zK ;w] : yk ∈ Yk, zk ∈ Zk, 1 ≤ k ≤ K,w ∈W},

X = {[u; v = [τ1; ...; τK ;σ1; ...;σK ]] : u ∈ U, Ψk(y
k) ≤ τk ≤ Ck, Ψk(z

k) ≤ σk, 1 ≤ k ≤ K},

X can be thought of as the domain of the variational inequality associated with (3.3.15),

the monotone operator in question being

F (u, v) = [Fu(u);Fv],

Fu(u) =


{
α∇yφk(yk, zk) + (1− α)ATkw

}K
k=1{

−α∇zφk(yk, zk)
}K
k=1

(1− α)[b−
∑K

k=1Aky
k]

 ,
Fv = α[1; ...; 1].

(3.3.16)
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By exactly the same reasons as in Section 3.2.2, with properly assembled norm on the

embedding space of U and d.g.f., (3.3.15) can be solved by the CoMP algorithm from

section 2.5.1. Let us denote

ζs,t =
[
ŷs,t = {[ŷk; τ̂k]}Kk=1 ∈ Y ;

[
zs,t ∈ Z;ws,t ∈W

]]
the approximate solution obtained in course of t = 1, 2, ... steps of CoMP when solving (Ps),

and let

f̂ ts := max
z∈Z,w∈W

Φ(ŷs,t, [z;w]) = α
K∑
k=1

[ψk(ŷ
k) + τ̂k] + (1− α)π∗

(
K∑
k=1

Akŷ
k − b

)

be the corresponding value of the objective of (Ps). It holds

f̂ ts −Opt ≤ εSad(ζs,t
∣∣Y, Z ×W,Φ) ≤ εt := O(1)L/t, (3.3.17)

where L <∞ is explicitly given by the proximal setup we use and by the related Lipschitz

constant of Fu(·) (note that this constant can be chosen to be independent of α ∈ [0, 1]).

We assume that computing the corresponding objective value is a part of step t (these

computations increase the complexity of a step by factor at most O(1)), and thus that

f
t
s ≤ f̂ ts. By (3.3.17), the quantity f̂ ts − εt is a valid lower bound on the optimal value of

(Ps), and thus we can ensure that f
s,t
≥ f̂ ts − εt. The bottom line is that with the outlined

implementation, we have

f
t
s − fs,t ≤ εt

for all s, t, with εt given by (3.3.17). Consequently, by Proposition 3.3.1, we arrive at

Theorem 3.3.1. The total number of CoMP steps needed to find a belonging to the domain

of the problem of interest (3.3.11) ε-feasible and ε-optimal solution to this problem can be

upper-bounded by

O(1) ln

(
3L

ε

)(
L
ε

)
,

where L and L are readily given by the smoothness parameters of φk and by the proximal

setup we use.
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3.3.4 Numerical Illustrations: Basis Pursuit

Basis pursuit We come back to the simple example of `1 minimization problem

min
x∈X
{‖x‖1 : Ax = b} (3.3.18)

where x ∈ Rn, A ∈ Rm×n and m < n.

Our main purpose here is to test the above sequential CoMP and compare it to the

simple approach described in Section 3.3.1 where we directly apply CoMP to the saddle point

reformulation of the problem minx∈X{‖x‖1 +R‖Ax−b‖2} with large enough value of R. For

the sake of simplicity, we work with the case when K = 1 and X = {x ∈ Rn : ‖x‖2 ≤ 1}.

Generating the data. In the experiments to be reported, the data of (3.3.18) were

generated as follows. Given m,n, we first build a sparse solution x∗ by drawing random

vector from the standard Gaussian distribution N (0, In), zeroing out part of the entries and

scaling the resulting vector to enforce x∗ ∈ X. We also build a dual solution λ∗ by scaling a

random vector from distribution N (0, Im) to satisfy ‖λ∗‖2 = R∗ for a prescribed R∗. Next

we generate A and b such that x∗ and λ∗ are indeed the optimal primal and dual solutions

to the `1 minimization problem (3.3.18), i.e. ATλ∗ ∈ ∂
∣∣
x=x∗
‖x‖1 and Ax∗ = b. To achieve

this, we set

A =
1√
n
F̂n + pqT , b = Ax∗

where p = λ∗

‖λ∗‖22
, q ∈ ∂

∣∣
x=x∗
‖x‖1− 1√

n
F̂nλ

∗, and F̂n is a m×n submatrix randomly selected

from the DFT matrix Fn. We expect that the larger is the ‖ · ‖2-norm R∗ of the dual

solution, the harder is problem (3.3.18).

Implementing the sequential CoMP algorithm. When implementing the algorithm,

we apply at each stage s = 1, 2, ... CoMP to the saddle point problem

(Ps) : min
x,τ : ‖x‖2≤1,τ≥‖x‖1

max
w:‖w‖2≤1

{αsτ + (1− αs)〈Ax− b, w〉} .

The proximal setup for CoMP is given by equipping the embedding space of U = {u =

[x;w] : x ∈ X, ‖w‖2 ≤ 1} with the norm ‖u‖2 =
√

1
2‖x‖

2
2 + 1

2‖w‖
2
2 and equipping U with
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Table 5: Composite Mirror Prox algorithms on problem (3.3.18). Platform: ISyE Condor
Cluster

n m c sequential CoMP simple CoMP
(R∗ = c · n) steps CPU(sec) steps CPU(sec)

1024 512 1 7653 18.68 31645 67.78
5 43130 44.66 90736 90.67
10 48290 49.04 93989 93.28

4096 2048 1 28408 85.83 46258 141.10
5 45825 199.96 93483 387.88
10 52082 179.10 98222 328.31

16384 8192 1 43646 358.26 92441 815.97
5 48660 454.70 93035 784.05
10 55898 646.36 101881 1405.80

65536 32768 1 45153 3976.51 92036 4522.43
5 55684 4138.62 100341 8054.35
10 69745 6214.18 109551 9441.46

262144 131072 1 46418 6872.64 96044 14456.99
5 69638 10186.51 109735 16483.62
10 82365 12395.67 95756 13634.60

the d.g.f. ω(u) = 1
2‖x‖

2
2 + 1

2‖w‖
2
2. In the sequel we refer to the resulting algorithm as

sequential CoMP. For comparison, we solve the same problem by applying CoMP to the

saddle point problem

(PR) : min
x,τ : ‖x‖2≤1,τ≥‖x‖1

max
w:‖w‖2≤1

{τ +R〈Ax− b, w〉}

with R = R∗; the resulting algorithm is referred to as simple CoMP. Both sequential CoMP

and simple CoMP algorithms are terminated when the relative nonoptimality and constraint

violation are both less than ε = 10−5, namely,

ε(x) := max

{
‖x‖1 − ‖x∗‖1
‖x∗‖1

, ‖Ax− b‖2
}
≤ 10−5.

Numerical results are presented in Table 5. One can immediately see that to achieve

the desired accuracy, the simple CoMP with R set to R∗, i.e., to the exact magnitude of the

true Lagrangian multiplier, requires almost twice as many steps as the sequential CoMP.

In more realistic examples, the simple CoMP will additionally suffer from the fact that the

magnitude of the optimal Lagrange multiplier is not known in advance, and the penalty R

in (PR) should be somehow tuned “online.”
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3.3.5 Concluding Remarks

In this section, we investigate the family of semi-separable problems, which generalizes the

multi-term composite minimization problem discussed in the previous section. We propose

a sequential CoMP algorithm which solves a sequence of saddle point subproblems using

CoMP algorithm. The algorithm achieves an overall O(1/ε) complexity bound up to some

log factors, which to the best of our knowledge, is nearly optimal. The framework we

established here is rathere general and can be easily extended to nonlinear constraints as

well.

3.4 Application III: Norm-Regularized Nonsmooth Minimization

3.4.1 Problem of Interest

We consider the composite minimization problem

Opt = min
x∈X

F (x) := f(x) + ‖Bx‖ (3.4.1)

where X is a closed convex set in the Euclidean space Ex; x 7→ Bx is a linear mapping from

X to Y (⊃ BX), where Y is a closed convex set in the Euclidean space Ey. A wide range

of machine learning and signal processing problems can be formulated in the above form.

f is can be either smooth, or nonsmooth yet enjoys a particular structure. The term ‖Bx‖

defines a regularization penalty through a norm ‖ · ‖. We make two important assumptions

on the function f and the norm ‖ · ‖ defining the regularization penalty, explained below.

1. Saddle point representation: We assume that f(x) is a perhaps non-smooth convex

function given by 10

f(x) = max
z∈Z

Φ(x, z) (3.4.2)

where Φ(x, z) is a smooth convex-concave function and Z is a convex and compact

set in the Euclidean space Ez. saddle point representability can be interpreted as a

general form of the smoothing-favorable structure of non-smooth functions used in the

Nesterov smoothing technique [62]. Representations of this type are readily available

10Notice that this can be relaxed a more general representation, f(x) = maxz∈Z{Φ(x, z) − ψ(z)}, where
ψ(z) admits easy-to-compute proximal operators or linear minimization oracles (explained in the next).
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for a wide family of “well-structured” nonsmooth functions f (see several examples

provided below and also examples discussed in previous chapter), and actually for all

empirical risk functions with convex loss in machine learning, up to our knowledge.

2. Composite Linear Minimization Oracle (LMO): We assume that we have at our dis-

posal, the LMO routine which, given an input α > 0 and η ∈ Ey, returns a point

min
y∈Y
{〈η, y〉+ α‖y‖} . (3.4.3)

Proximal-gradient-type algorithms, including the composite Mirror Prox algorithm

developed in Chapter 2, require the computation of a proximal operator at each iter-

ation, i.e.

min
y∈Y
{ω(y) + 〈η, y〉+ α‖y‖} , (3.4.4)

where ω(·) is some distance generating function and in the usual Euclidean setup,

ω(·) = 1
2‖ · ‖

2
2. For several cases of interest, described below, the computation of the

proximal operator can be expensive or intractable. A classical example is the nuclear

norm, whose proximal operator boils down to singular value thresholding, therefore

requiring a full singular value decomposition. In contrast to the proximal operator,

the composite linear minimization oracle can be much cheaper. In the case of the

nuclear-norm, the LMO only requires the computation of the leading pair of singular

vectors, which is by order of magnitude faster than full singular value decomposition.

Remark. The first option to minimize F is to use the so-called Nesterov smoothing tech-

nique [62] with a conditional gradient or Frank-Wolfe algorithm to minimize the smooth

approximation of F , based on LMO routines, see e.g. [48, 70]. Another option is to pass to

the dual problem and solve by some first-order algorithm (e.g. [26]). However, both options

require either a more restricted saddle point representation, often with linear-in-x function

Φ or good geometries of the dual domain Z. Moreover, neither option takes advantage of

the composite structure of the objective (3.4.1) or handles the case when the linear mapping

B is nontrivial.

82



Contribution. In this section, we propose a new algorithm, called Semi-Proximal Mirror-

Prox , which is based on the inexact CoMP algorithm for solving the difficult non-smooth

composite optimization problem (3.4.1). The Semi-Proximal Mirror-Prox relies upon i)

saddle point representability of f ; ii) linear minimization oracle associated with ‖ · ‖ in

the domain X. While the saddle point representability of f allows to handle the non-

smoothness of f , the linear minimization over the domain X allows to tackle the non-smooth

regularization penalty ‖ · ‖. We establish the theoretical convergence rate of Semi-Proximal

Mirror-Prox, which exhibits the optimal complexity bounds, i.e. O(1/ε2), for the number

of calls to linear minimization oracle. Furthermore, Semi-Proximal Mirror-Prox and its

stochastic variant generalize previously proposed approaches and improve upon them in

special cases:

1. Case B ≡ 0: Semi-Proximal Mirror-Prox does not require assumptions on favorable

geometry of dual domains Z or simplicity of Φ(·) in (3.4.2).

2. Case B = I: Semi-Proximal Mirror-Prox is competitive with previously proposed

approaches [49, 70] based on smoothing techniques.

3. Case of non-trivial B: Semi-Proximal Mirror-Prox is the first conditional-gradient-

type optimization algorithm for (3.4.1).

Related work The Semi-Proximal Mirror-Prox algorithm belongs the family of condi-

tional gradient algorithms, whose most basic instance is the Frank-Wolfe algorithm for con-

strained smooth optimization using a linear minimization oracle; see [41, 5, 10]. Recently,

in [26, 44], the authors consider constrained non-smooth optimization when the domain

Z has a “favorable geometry”, i.e. the domain is amenable to proximal setups (favorable

geometry), and establish a complexity bound with O(1/ε2) calls to the linear minimization

oracle. Recently, in [49], a method called conditional gradient sliding is proposed to solve

similar problems, using a smoothing technique, with a complexity bound in O(1/ε2) for

the calls to the linear minimization oracle (LMO) and additionally a O(1/ε) bound for the

linear operator evaluations. Actually, this O(1/ε2) bound for the LMO complexity can be
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shown to be indeed optimal for conditional-gradient-type or LMO-based algorithms, when

solving general non-smooth convex problems [48].

Conditional-gradient-type algorithms were recently proposed for composite objec-

tives [32, 36, 85, 70, 55, 31], but cannot be applied for our problem. In [36], f is smooth

and B is identity matrix, whereas in [70], f is non-smooth and B is also the identity matrix.

The proposed Semi-Proximal Mirror-Prox can be seen as a blend of the successful com-

ponents resp. of the Composite Conditional Gradient algorithm [36] and the Composite

Mirror-Prox [39], that enjoys the optimal complexity bound O(1/ε2) on the total number

of LMO calls, yet solves a broader class of convex problems than previously considered.

Outline The rest of this section is organized as follows. In Section 3.4.2, we present a

composite conditional gradient method tailored for smooth semi-linear problems. In Sec-

tion 3.4.3, we present the conditional gradient type method based on an inexact Mirror-Prox

framework for structured variational inequalities. In Section 3.4.4, we present promising ex-

perimental results showing the interest of the approach in comparison to competing meth-

ods, resp. on a collaborative filtering for movie recommendation and link prediction for

social network analysis applications.

3.4.2 Composite Conditional Gradient

We first introduce a variant of the composite conditional gradient algorithm, denoted CCG,

tailored for a particular class of problems, which we call smooth semi-linear problems. The

composite conditional gradient algorithm was first introduced in [36] and also developed

in [65]. We present an extension here which turns to be especially well suited for sub-

problems that will be solved in Section 3.4.3.

Minimizing smooth semi-linear functions. We consider the smooth semi-linear prob-

lem

min
x=[u;v]∈X

{
φ+(u, v) = φ(u) + 〈θ, v〉

}
(3.4.5)

represented by the pair (X;φ+) such that the following assumptions are satisfied. We

assume that
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i) X ⊂ Eu × Ev is closed convex and its projection PX on Ex belongs to a convex and

compact set U ;

ii) φ(u) : U → R is a convex continuously differentiable function, and there exists 1 <

κ ≤ 2 and L0 <∞ such that

φ(u′) ≤ φ(u) + 〈∇φ(u), u′ − u〉+
L0

κ
‖u′ − u‖κ ∀u, u′ ∈ U ; (3.4.6)

iii) θ ∈ Ev is such that every linear function on Eu × Ev of the form

[u; v] 7→ 〈η, u〉+ 〈θ, v〉 (3.4.7)

with η ∈ Eu attains its minimum on X at some point x[η] = [u[η]; v[η]]; we have at

our disposal a Composite Linear Minimization Oracle (LMO) which, given on input

η ∈ Eu, returns x[η].

Algorithm 5 Composite Conditional Gradient Algorithm CCG(X,φ(·), θ; ε)
Input: accuracy ε > 0 and γt = 2/(t+ 1), t = 1, 2, . . .
Initialize x1 = [u1; v1] ∈ X and
for t = 1, 2, . . . do

Compute δt = 〈gt, ut − ut[gt]〉+ 〈θ, vt − vt[gt]〉, where gt = ∇φ(ut);
if δt ≤ ε then

Return xt = [ut; vt]
else

Find xt+1 = [ut+1; vt+1] ∈ X such that φ+(xt+1) ≤ φ+
(
xt + γt(x

t[gt]− xt)
)

end if
end for

Note that CCG works essentially as if there were no v-component at all. The CCG

algorithm enjoys convergence rate in O(t−(κ−1)) in the evaluations of the function φ+, and

the optimality gap (δt) goes to zero at the same rate O(t−(κ−1)) as well, when solving

problems of type (3.4.5).

Proposition 3.4.1. Denote D the ‖ · ‖-diameter of U . When solving problems of

type (3.4.5), the sequence of iterates (xt) of CCG satisfies

εt := φ+(xt)−min
x∈X

φ+(x) ≤ 2L0D
κ

κ(3− κ)

(
2

t+ 1

)κ−1

, t ≥ 2 (3.4.8)
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In addition, the optimality gap (δt) satisfy

min
1≤s≤t

δs ≤ O(1)L0D
κ

(
2

t+ 1

)κ−1

, t ≥ 2. (3.4.9)

Proof.

10. The projection of X onto Eu is contained in U , whence

‖u[∇φ(ut)]− ut‖ ≤ D,∀t = 1, 2, . . . .

This observation, due to the structure of φ+, implies that whenever x, x′ ∈ X and γ ∈ [0, 1],

we have

φ+(x+ γ(x+ − x)) ≤ φ+(x) + γ〈∇φ+(x), x′ − x〉+
L0D

κ

κ
γκ. (3.4.10)

Setting xt+ = xt + γt(x[∇φ(ut)]− xt) and γt = 2/(t+ 1), we have

εt+1 ≤ φ+(xt+)−min
x∈X

φ+(x) (3.4.11)

≤ εt + γs〈∇φ(xt), x[∇φ+(xt)]− x〉+
L0D

κ

κ
γκt (3.4.12)

= εt − γtδt +
L0D

κ

κ
γκt , (3.4.13)

whence, due to δt ≥ εt ≥ 0,

(i) εt+1 ≤ (1− γt)εt +
L0D

κ

κ
γκt , t = 1, 2, ...,

(ii) γsδs ≤ εs − εs+1 +
L0D

κ

κ
γκs , s = 1, 2, ... (3.4.14)

20. Let us prove (3.4.8) by induction on s ≥ 2. By (3.4.14.i) and due to γ1 = 1 we have

ε2 ≤
L0D

κ

κ
. (3.4.15)

Whence, due to γ2 = 2/3 and 1 < κ ≤ 2, we get

ε2 ≤
2L0D

κ

κ(3− κ)
γκ−1

2 . (3.4.16)

Now, assume that,for some t ≥ 2

εt ≤
2L0D

κ

κ(3− κ)
γκ−1
t . (3.4.17)
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Then, invoking (3.4.14.i),

εt+1 ≤
2L0D

κ

κ(3− κ)
γκ−1
t (1− γt) +

L0D
κ

κ
γκt

≤ 2L0D
κ

κ(3− κ)

[
γκ−1
t − κ− 1

2
γκt

]
≤ 2L0D

κ

κ(3− κ)
2κ−1

[
(t+ 1)1−κ + (1− κ)(t+ 1)−κ

]
Therefore, by convexity of (t+ 1)1−κ in t

εt+1 ≤
2L0D

κ

κ(3− κ)
2κ−1(t+ 2)1−κ =

2L0D
κ

κ(3− κ)
γκ−1
t+1

The induction is completed.

30. To prove (3.4.9), given s ≥ 2, let t− = Ceil(max[2, t/2]). Summing up inequalities

(3.4.14.ii) over t− ≤ s ≤ t, we get(
min

1≤s≤t
δs

) ∑t

s=t−
γs ≤

t∑
s=t−

γsδs ≤ εt− − εt+1 +
L0D

κ

2

∑t

s=t−
γκs ≤ O(1)L0D

κγκ−1
t

and
∑t

s=t−
γs ≥ O(1), and (3.4.9) follows.

3.4.3 Semi-Proximal Mirror Prox Algorithm and Complexity

Saddle Point Reformulation. The crux of our approach for solving (3.4.1) is a smooth

convex-concave saddle point reformulation. After massaging the saddle-point reformulation,

we consider the variational inequality associated with the obtained saddle-point problem.

We rewrite (3.4.1) in epigraph form

min
x∈X,y∈Y,τ≥‖y‖

max
z∈Z

{Φ(x, z) + τ : y = Bx} ,

which, with a properly selected ρ > 0, can be further approximated by

Ôpt = min
x∈X,y∈Y,τ≥‖y‖

max
z∈Z

{Φ(x, z) + τ + ρ‖y − Bx‖2} (3.4.18)

= min
x∈X,y∈Y,τ≥‖y‖

max
z∈Z,‖w‖2≤1

{Φ(x, z) + τ + ρ〈y − Bx,w〉} . (3.4.19)

As discussed in Section 3.2.3, when ρ is large enough, one can always guarantee Ôpt = Opt.

It is indeed sufficient to set ρ as the Lipschitz constant of ‖ · ‖ with respect to ‖ · ‖2.
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Introduce the variables u := [x, y; z, w] and v := τ . The variational inequality associated

with the above saddle point problem is fully described by the domain

X+ = {x+ = [u; v] : x ∈ X, y ∈ Y, z ∈ Z, ‖w‖2 ≤ 1, τ ≥ ‖y‖}

and the monotone vector field is of the form

F (x+ = [u; v]) = [Fu(u);Fv] ,

where

Fu


u =



x

y

z

w




=



∇xΦ(x, z)− ρBTw

ρw

−∇zΦ(x, z)

ρ(Bx− y)


, Fv(v = τ) = 1.

Notice that this essentially belongs to the family of structured variational inequalities

discussed in Section 2.3.1. This implies that when computing proximal operator of ‖ · ‖

is easy, the problem (3.4.1) can be efficiently solved by the CoMP algorithm developed in

Section 2.5.1. However, this is certainly not the case we are interested in here. In the next

section, we present an efficient algorithm to solve this type of variational inequalities, in

the sequel referred to as semi-structured ones. The family of semi-structured variational

inequalities covers both cases that we discussed so far in Section 2.3.1 and 3.4.2. But most

importantly, it also covers many other problems that do not fall into these two regimes and

in particular, including our problem of interest (3.4.1). We are about to explain what a

semi-structured variational inequality is.

Semi-structured Variational Inequalities. The class of semi-structured variational

inequalities allows to go beyond Assumptions (A.1) − (A.4), by assuming more structure.

This structure is consistent with what we call a semi-proximal setup, which encompasses

both the regular proximal setup and the regular linear minimization setup as special cases.

Specifically, we say that VI(X,F ) is a semi-structured variational inequality, if, in addition

to Assumptions (A.1)− (A.4), the following assumptions are satisfied:

88



(S.1) Proximal setup for X: we assume that Eu = Eu1 × Eu2 , Ev = Ev1 × Ev2 , and

U ⊂ U1 × U2, X = X1 ×X2 with Xi ∈ Eui × Evi and PiX = {ui : [ui; vi] ∈ Xi} ⊂ Ui

for i = 1, 2, where U1 is convex and closed, U2 is convex and compact. We also assume

that ω(u) = ω1(u1) + ω2(u2) and ‖u‖ = ‖u1‖Eu1
+ ‖u2‖Eu2

, with ω2(·) : U2 → R

continuously differentiable such that

ω2(u′2) ≤ ω2(u2) + 〈∇ω2(u2), u′2 − u2〉+
L0

κ
‖u′2 − u2‖κEu2

,∀u2, u
′
2 ∈ U2;

for a particular 1 < κ ≤ 2 and L0 < ∞. Furthermore, we assume that the ‖ · ‖Eu2
-

diameter of U2 is bounded by some D > 0.

(S.2) Partition of F : the operator F induced by the above partition of X1 and X2 can be

written as

F (x) = [Fu(u);Fv] with Fu(u) = [Fu1(u1, u2);Fu2(u1, u2)], Fv = [Fv1 ;Fv2 ].

(S.3) Proximal mapping on X1: we assume that for any η1 ∈ Eu1 and α > 0, we have at

our disposal easy-to-compute prox-mappings of the form,

Proxω1(η1, α) := argmin
x1=[u1;v1]∈X1

{ω1(u1) + 〈η1, u1〉+ α〈Fv1 , v1〉} .

(S.4) Linear minimization oracle for X2: we assume that we we have at our disposal

Composite Linear Minimization Oracle (LMO), which given any input η2 ∈ Eu2 and

α > 0, returns an optimal solution to the minimization problem with linear form,

that is,

LMO(η2, α) ∈ argmin
x2=[u2;v2]∈X2

{〈η2, u2〉+ α〈Fv2 , v2〉} .

Semi-proximal setup We denote the family of semi-structured variational inequality

problems as Semi-VI(X,F ). On the one hand, when U2 is a singleton, we get the full-

proximal setup. On the other hand, when U1 is a singleton, we get the full linear-

minimization-oracle setup (full LMO setup). In the gray zone in between, we get the

semi-proximal setup.
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The Semi-Proximal Mirror-Prox algorithm. We finally present here, the Semi-

Proximal Mirror-Prox algorithm, which solves the semi-structured variational inequality

under assumptions (A.1)− (A.4) and (S.1)− (S.4). The Semi-Proximal Mirror-Prox algo-

rithm blends both CoMP and CCG. Basically, for sub-domain X2 given by LMO, instead

of computing exactly the prox-mapping, we mimick inexactly the prox-mapping via a con-

ditional gradient algorithm in the inexact CoMP algorithm discussed in Section 2.5.3. For

the sub-domain X1, we compute the prox-mapping as it is.

Description of the Semi-Proximal Mirror-Prox algorithm Basically, at step t, we

first update yt1 = [ût1; v̂t1] by computing the exact prox-mapping and build yt2 = [ût2; v̂t2] by

running the composite conditional gradient algorithm to problem (3.4.5) specifically with

X = X2, φ(·) = ω2(·) + 〈γtFu2(ut1, u
t
2)− ω′2(ut2), ·〉, and θ = γtFv2 ,

until δ(yt2) = maxy2∈X2〈∇φ+(yt2), yt2 − y2〉 ≤ εt. We then build xt+1
1 = [ut+1

1 ; vt+1
1 ] and

xt+1
2 = [ut+1

2 ; vt+1
2 ] similarly except this time taking the value of the operator at point yt.

Combining the results in Theorem 2.5.2 and Proposition 3.4.1, we arrive at the following

complexity bound.

Algorithm 6 Semi-Proximal Mirror-Prox Algorithm for Semi-VI(X,F )

Input: stepsizes γt > 0, accuracies εt ≥ 0, t = 1, 2, . . .
[1] Initialize x1 = [x1

1;x1
2] ∈ X, where x1

1 = [u1
1; v1

1];x1
2 = [u1

2, ; v
1
2].

for t = 1, 2, . . . , T do
[2] Compute yt = [yt1; yt2] according to

yt1 := [ût1; v̂t1] = Proxω1(γtFu1(ut1, u
t
2)− ω′1(ut1), γt)

yt2 := [ût2; v̂t2] = CCG(X2, ω2(·) + 〈γtFu2(ut1, u
t
2)− ω′2(ut2), ·〉, γtFv2 ; εt)

[3] Compute xt+1 = [xt+1
1 ;xt+1

2 ] according to

xt+1
1 := [ut+1

1 ; vt+1
1 ] = Proxω1(γtFu1(ût1, û

t
2)− ω′1(ut1), γt)

xt+1
2 := [ut+1

2 ; vt+1
2 ] = CCG(X2, ω2(·) + 〈γtFu2(ût1, û

t
2)− ω′2(ut2), ·〉, γtFv2 ; εt)

end for
Output: xT := [ūT ; v̄T ] = (

∑T
t=1 γt)

−1∑T
t=1 γty

t

Proposition 3.4.2. Under the assumption (A.1) − (A.4) and (S.1) − (S.4) with M = 0,

and choice of stepsize being γt = L−1, t = 1, . . . , T , for the outlined algorithm to return an
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ε-solution to the Semi-VI(X,F ), the total number of Mirror Prox steps required does not

exceed

Total number of steps = O(1)
LΘ[X]

ε

and the total number of calls to the Linear Minimization Oracle does not exceed

N = O(1)

(
L0L

κDκ

εκ

) 1
κ−1

Θ[X].

In particular, if we use Euclidean proximal setup on U2 with ω2(·) = 1
2‖x2‖2, which

leads to κ = 2 and L0 = 1, then the number of LMO calls does not exceed N =

O(1)
(
L2D2(Θ[X1] +D2

)
)/ε2.

Proof. Let us fix T as the number of Mirror prox steps, and since M = 0, from Theorem

2.5.2, the efficiency estimate of the variational inequality implies that

εVI(x̄T |X,F ) ≤
L(Θ[X] + 2

∑T
t=1 εt)

T
.

Let us fix εt = Θ[X]
2T for each t = 1, . . . , T , then from Proposition 3.4.1, it takes at most

s = O(1)(L0DκT
Θ[X] )1/(κ−1) calls to the LMO oracles to generate a point such that ∆s ≤ εt.

Moreover, we have

εVI(x̄T |X,F ) ≤ 2
LΘ[X]

T
.

Therefore, to ensure εVI(x̄T |X,F ) ≤ ε for a given accuracy ε > 0, the number of Mirror

Prox steps T is at most O(LΘ[X]
ε ) and the number of LMO calls on X2 needed is at most

N = O(1)
(L0L

κDκ

εκ

)1/(κ−1)
Θ[X].

In particular, if κ = 2 and L0 = 1, this becomes N = O(1)L
2D2Θ[X]
ε2

.

Remark. The proposed Semi-Proximal Mirror-Prox algorithm enjoys the optimal com-

plexity bounds, i.e. O(1/ε2), in the number of calls to LMO; see [48] for the optimal complex-

ity bounds for general non-smooth optimization with LMO. Consequently, when applying

the algorithm to the variational reformulation of the problem of interest (3.4.1), we are able

to get an ε-optimal solution within at most O(1/ε2) LMO calls.
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Stochastic extension. The Semi-Proximal Mirror-Prox algorithm is readily extensible

to the situation when we only have access to stochastic oracles on the monotone operator,

as discussed in Section 2.5.4. Assume that we are under assumptions (C.1) and (C.2) from

Section 2.5.4. At each iteration t, the stochastic oracle returns a sequence of stochastic

estimates g(u, ξj), j = 1, . . . , 2mt with input being u ∈ U , where {ξj}2mtj=1 are i.i.d. random

variables. We provide below the stochastic variant of Semi-Proximal Mirror-Prox algorithm

for completeness.

Algorithm 7 Stochastic Semi-Proximal Mirror-Prox Algorithm for Semi-VI(X,F )

Input: stepsizes γt > 0, accuracies εt ≥ 0, t = 1, 2, . . .
[1] Initialize x1 = [x1

1;x1
2] ∈ X, where x1

1 = [u1
1; v1

1];x1
2 = [u1

2; v1
2].

for t = 1, 2, . . . , T do
[2] Set ut = [ut1;ut2] and compute yt = [yt1; yt2] that

yt1 := [ût1; v̂t1] = Proxω1(γtg
t
1 − ω′1(ut1), γt)

yt2 := [ût2; v̂t2] = CCG(X2, ω2(·) + 〈γtgt2 − ω′2(ut2), ·〉, γtFv2 ; εt)

where [gt1; gt2] = 1
mt

∑mt
j=1 g(ut, ξtj).

[3] Set ût = [ût1; ût2] and compute xt+1 = [xt+1
1 ;xt+1

2 ] that

xt+1
1 := [ut+1

1 ; vt+1
1 ] = Proxω1(γtĝ

t
1 − ω′1(ut1), γt)

xt+1
2 := [ut+1

2 ; vt+1
2 ] = CCG(X2, ω2(·) + 〈γtĝt2 − ω′2(ut2), ·〉, γtFv2 ; εt)

where [ĝt1; ĝt2] = 1
mt

∑2mt
j=mt+1 g(ût, ξtj).

end for
Output: xT := [ūT ; v̄T ] = (

∑T
t=1 γt)

−1∑T
t=1 γty

t

The previous remark immediately leads to the following results

Proposition 3.4.3. Suppose we are under assumptions (A.1) − (A.4), (S.1) − (S.4) with

M = 0 and with proximal setup on U2 being Euclidean setup. Set stepsizes γt = L−1, t =

1, . . . , T and batch size mt = O(γ2
t σ

2T/Θ[X]) for the outlined algorithm to return an

stochastic ε-solution to the VI(X,F ) represented by stochastic oracle satisfying the assump-

tions (C.1)− (C.2), the total number of stochastic oracle calls required does not exceed

NSO = O(1)
σ2Θ[X]

ε2

and the total number of calls to the Linear Minimization Oracle does not exceed

NLMO = O(1)
L2D2Θ[X]

ε2
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where σ2, D,Θ[X] are defined previously.

Proof. Let us fix T as the number of Mirror prox steps, and since M = 0, from Theorem

2.5.3, the efficiency estimate of the variational inequality implies that

E[εVI(x̄T |X,F )] ≤
2Θ[X] + 7

∑T
t=1γ

2
t
σ2

mt
+ 2
∑T

t=1εt∑T
t=1 γt

, .

Let us fix εt = Θ[X]
T for each t = 1, . . . , T , then from Proposition 3.4.1, it takes at most

s = O(1)(L0DκT
Θ[X] )1/(κ−1) calls to the LMO oracles to generate a point such that ∆s ≤ εt.

Moreover, we have

E[εVI(x̄T |X,F )] ≤ O(1)
LΘ[X]

T
.

Therefore, to ensure E[εVI(x̄T |X,F )] ≤ ε for a given accuracy ε > 0, the number of Mirror

Prox steps T is at most O(LΘ[X]
ε ). Therefore, the number of stochastic oracle calls used is

at most NSO =
∑T

t=1mt = O(γ2
t T

2σ2/Θ[X]) = O(1)σ
2Θ[X]
ε2

. Moreover, the number of linear

minimization oracle calls on X2 needed is at most NLMO = sT = O(1)
(
L0LκDκ

εκ

)1/(κ−1)
Θ[X].

In particular, if κ = 2 and L0 = 1, this becomes N = O(1)L
2D2Θ[X]
ε2

.

Discussion. When solving problem (3.4.1), the above stochastic variant of Semi-Proximal

Mirror-Prox algorithm enjoys the optimal complexity bounds, i.e. O(1/ε2), both in terms

of the number of calls to stochastic oracle (see [61]) and the number of calls to linear

minimization oracle (see [48]). In the situation when nonsmooth f in (3.4.1) does not

admit saddle point representation, the above algorithms enjoys still optimal complexity

bound O(1/ε2) in terms of the number of calls to stochastic oracles, but that of the linear

minimization oracle becomes O(1/ε4). To the best of our knowledge, both results are novel.

3.4.4 Numerical Illustrations: Collaborative Filtering and Beyond

We present here illustrations of the proposed approach. We report the experimental re-

sults obtained with the proposed Semi-Proximal Mirror-Prox , denoted Semi-MP here, and

compare them with the results obtained from state-of-the-art competing optimization al-

gorithms. We consider three different models, all with a non-smooth loss function and a

nuclear-norm regularization penalty: i) matrix completion with `2 data fidelity term; ii)
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robust collaborative filtering for movie recommendation; iii) link prediction for social net-

work analysis. For i) & ii), we compared our results to those obtained with two competing

approaches: a) Smoothing-CG; b) Semi-SPG, which will be discussed in details next. For

iii), we compared our results to those obtained by Semi-LPADMM, using [68] and solving

proximal mapping through conditional gradient routines.

Matrix completion on synthetic data We consider the matrix completion problem,

with a nuclear-norm regularization penalty and an `2 data-fidelity term. The model is given

by

min
x
‖PΩx− b‖2 + λ‖x‖nuc. (3.4.20)

where ‖ · ‖nuc stands for the nuclear norm and PΩx is the restriction of x onto the cells Ω.

We compare the following three candidate algorithms, i) Semi-Proximal Mirror-

Prox (Semi-MP) ; ii) conditional gradient with smoothing (Smooth-CG); iii) inexact

accelerate proximal gradient after smoothing (Semi-SPG). We provide below the key steps

of each algorithms.

1. Semi-MP: this is shorted for our Semi-Proximal Mirror-Prox algorithm, we solve the

saddle point reformulation given by

min
x,v:‖x‖nuc≤v

max
‖y‖2≤1

〈PΩx− b, y〉+ λv (3.4.21)

which is equivalent as to the semi-structured variational inequality VI(X,F ) with

X = {[u = (x; y); v] : ‖x‖nuc ≤ v, ‖y‖2 ≤ 1} and F = [Fu(u);Fv] = [P TΩ y; b− PΩx;λ].

The subdomain X1 = {y : ‖y‖2 ≤ 1} is given by full-prox setup and the subdomain

X2 = {(x; v) : ‖x‖nuc ≤ v} is given by LMO. By setting both the distance generating

functions ωx(x) and ωy(y) to be the squared Euclidean distances,computing the y-

component of an iterate reduces to a gradient step, and the update of x follows the

composite conditional gradient routine to a simple quadratic problem.

2. Smooth-CG: The algorithm ([70]) directly applies the generalized composite con-

ditional gradient to the following smooth problem obtained by using the Nesterov
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smoothing technique,

min
x,v:‖x‖nuc≤v

fγ(x) + λv, where fγ(x) = max
‖y‖2≤1

{〈PΩx− b, y〉 −
γ

2
‖y‖22}. (3.4.22)

In the full memory version, the update of x at step t requires solving re-optimization

problem

min
θ1,...,θt

fγ(

t∑
i=1

θiuiv
T
i ) + λ

t∑
i=1

θi (3.4.23)

where {ui, vi}ti=1 are the singular vectors collected from the linear minimization ora-

cles. Same as suggested in [70], we use the quasi-Newton solver L-BFGS-B [16] to solve

the above re-optimization subproblem. Notice that in this situation, solving (3.4.23)

can be relatively efficient even for large t since computing the gradient of the objective

in (3.4.23) does not necessarily require to compute the full matrix representation of

x =
∑t

i=1 θiuiv
T
i .

3. Semi-SPG: The approach is to apply the accelerated proximal gradient to the

smoothed composite model as in (3.4.22) and approximately compute the proximal

mappings via conditional gradient routines. In fact, Semi-SPG can be considered as

a direct extension of the conditional gradient sliding to the composite setting. Same

as in Semi-MP, the update of x is given by the composite conditional gradient routine

as applied to a simple quadratic problem and additional interpolation step.

For Semi-MP and Semi-SPG, we test two different strategies for the inexact prox-

mappings, a) fixed number of inner CG steps and b) decaying εt = c/t as the theory

suggested. For the sake of simplicity, we generate the synthetic data such that the magni-

tudes of the constant factors (i.e. Frobenius norm and nuclear norm of optimal solution) are

approximately of order 1, which means the accuracy is determined by the number of LMO

calls. In Fig. 4, we evaluate the optimality gap of these algorithms with different param-

eters (e.g. number of inner steps, scaling factor c, smoothness parameter γ) and compare

performances of the algorithms exhibited when the best-tuned parameters were used. As

the plot shows, the Semi-MP algorithm generates a solution with ε = 10−3 accuracy within

about 3000 LMO calls, which is not bad at all given the fact that the theoretical worst-

case complexity is O(1/ε2). Also, the plots indicate that using the strategy with O(1/t)
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decaying inexactness provides better and more reliable performance than when fixed num-

ber of inner steps is used. Similar phenomena are observed for the Semi-SPG. One can

see that these two algorithms based on inexact proximal mappings are notably faster than

applying conditional gradient on the smoothed problem. Moreover, since the Smooth-CG

requires additional computation and memory cost for the re-optimization procedure, the

actual difference in terms of CPU time could be more significant.
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Figure 4: Matrix completion on synthetic data(1024 × 1024): optimality gap vs the LMO
calls. From left to right: (a) Semi-MP; (b) Semi-SPG ; (c) Smooth-CG; (d) best of three.

Robust collaborative filtering We consider the collaborative filtering problem, with a

nuclear-norm regularization penalty and an `1-empirical risk function:

min
x

1

|E|
∑

(i,j)∈E

|xij − bij |+ λ‖x‖nuc. (3.4.24)

Competing algorithms. We compare the above three candidate algorithm. The

smoothed problem for Semi-SPG and Smooth-CG in this case becomes

min
x,v:‖x‖nuc≤v

fγ(x) + λv, where fγ(x) = max
‖y‖∞≤1

 1

|E|
∑

(i,j)∈E

(xij − bij)yij −
γ

2
‖y‖22

 .

(3.4.25)

Note that in this case, for Smooth-CG, solving the re-optimization problem in (3.4.23) at

each iteration requires computing the full matrix representation for the gradient. For large

t and large-scale problems, the computation cost for re-optimization is no longer negligible.

However, the Semi-MP and Semi-SPG do not suffer from this limitation since the conditional

gradient routines are run on simple quadratic subproblems. For this particular example, we

implement the Semi-MP slightly different from the above scheme. We solve the following
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saddle point reformulation with properly selected ρ,

min
x,y,v1,v2:

v1≥‖x‖nuc,v2≥‖y‖1

max
‖w‖2≤1

v2 + λv1 + ρ〈Ax− b− y, w〉 (3.4.26)

where we use A to denote the operator 1
|E|PE . The semi-structured variational in-

equality Semi-VI (X,F ) associated with the above saddle point problem is given by

X = {[u = (x, y, w); v = (v1.v2)] : ‖x‖nuc ≤ v1, ‖y‖1 ≤ v2, ‖w‖2 ≤ 1} and F = [Fu(u);Fv] =

[ρAw;−ρw; ρ(y − Ax + b);λ; 1]. The subdomain X1 = {(y, w, v2) : ‖y‖1 ≤ v2, ‖w‖2 ≤ 1}

is given by full-prox setup and the subdomain X2 = {(x; v1) : ‖x‖nuc ≤ v1} is given by

LMO. By setting both the distance generating functions to be the squared Euclidean dis-

tance,updating of the w-component of a iterate reduces to the gradient step, updating of the

y-component reduces to the soft-thresholding operator, and updating of the x-component is

given by the composite conditional gradient routine. Note that the Semi-Proximal Mirror-

Prox algorithm (Semi-MP) does not require tuning of any parameter.

We run the above three algorithms on the the small and medium MovieLens datasets.

The small-size dataset consists of 943 users and 1682 movies with about 100K ratings,while

the medium-size dataset consists of 3952 users and 6040 movies with about 1M ratings.

We follow [70] to set the regularization parameters. We randomly pick 80% of the entries

to build the training dataset, and compute the normalized mean absolute error (NMAE)

on the remaining test dataset. For Smooth-CG, we carry out the algorithm with different

smoothing parameters, ranging in {1e − 3, 1e − 2, 1e − 1, 1e0} and select the one with the

best performance. For the Semi-SPG algorithm, we adopt the best smoothing parameter

found when running Smooth-CG. We use two different strategies to control the number of

LMO calls at each iteration, i.e. the accuracy of the proximal mapping for both Semi-SPG

and Semi-MP, which are a) fixed number of inner CG steps and b) decaying εt = c/t as the

theory suggests. We display on Fig. 5 and Fig. 6 the performance of each algorithm under

different choice of parameters and the overall comparison of objective value and NMAE on

test data in Fig. 7.

In Fig. 5 and Fig. 6, we can see that using fixed inner CG steps sometimes achieves
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Figure 5: Robust collaborative filtering on MovieLens 100K: objective function vs elapsed
time. From left to right: (a) Semi-MP; (b) Semi-SPG ; (c) Smooth-CG; (d) best of three.
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Figure 6: Robust collaborative filtering on MovieLens 1M: objective function vs elasped
time. From left to right: (a) Semi-MP; (b) Semi-SPG ; (c) Smooth-CG; (d) best of three.
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Figure 7: Robust collaborative filtering on Movie Lens: objective function and test NMAE
against elapsed time. From left to right: (a) MovieLens 100K objective; (b) MovieLens
100K test NMAE; (c) MovieLens 1M objective; (d) MovieLens 1M test NMAE.

performance comparable to the one with decaying epsilon εt. In Fig. 7, we can see that Semi-

MP clearly outperforms Smooth-CG, and is competitive with Semi-SPG. In the large-scale

setting, Semi-MP achieves better objective values as well as better test NMAE compared

to Smooth-CG.

Link prediction We consider the following model for the link prediction problem,

min
x∈Rm×n

1

|E|
∑

(i,j)∈E

max (1− (bij − 0.5)xij , 0) + λ1‖x‖1 + λ2‖x‖nuc (3.4.27)

This example is more complicated than the previous two examples since it has not only

one nonsmooth loss function but also two regularization terms. Applying the smoothing-CG

or Semi-SPG would require to build two smooth approximations, one for hinge loss term and
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Figure 8: Link prediction on Wikivote: objective function value against the LMO calls.
From left to right: (a)Wikivote(1024) with fixed inner steps; (b) Wikivote(1024) with de-
caying error; (c) Wikivote(full)

one for `1 norm term. Therefore, we consider another alternative approach, Semi-LPADMM,

where we apply the linearized preconditioned ADMM algorithm while computing proximal

mapping through conditional gradient routines. Up to our knowledge, ADMM with early

stopping is not well-analyzed in literature, but intuitively as long as the accumulated error

is controlled sufficiently, the procedure converges.

We conduct experiments on a binary social graph data set called Wikivote, which con-

sists of 7118 nodes and 103,747 edges. Since the computation cost of these two algorithms

mainly come from the LMO calls, we describe in what follows the performance in terms

of number of LMO calls. For the first set of experiments, we select top 1024 highest de-

gree users from Wikivote and run the two algorithms on this small dataset with different

strategies for the inner LMO calls.

In Fig. 8, we observe that the Semi-MP as compared to ADMM is less sensitive to

the inaccuracies in computing prox-mappings. ADMM sometimes just stops to progress

unless the prox mapping at early iterations is computed with sufficient accuracy. Another

observation is that in this example,strategy with decaying εt, works better in the long run

than when using fixed number of inner LMOs calls. The results on the full dataset again

indicate that our algorithm performs better than the semi-proximal variant of the ADMM

algorithm.

99



3.4.5 Concluding Remarks

In this section, we propose a new conditional gradient type of algorithm to solve high-

dimensional non-smooth composite minimization problems. The proposed Semi-Proximal

Mirror-Prox, leverages the saddle point representation of one component of the objective

while handling the other component via linear minimization over the problem’s domain. The

algorithm differs essentially from the usual proximal gradient algorithms with smoothing,

which require computing precise proximal operators at each iteration and can therefore be

impractical for high-dimensional problems with difficult geometry. We establish the theoret-

ical convergence rate of Semi-Proximal Mirror-Prox, which exhibits the optimal complexity

bounds, i.e. O(1/ε2), for the number of calls to linear minimization oracle needed to get

an ε-solution. We present promising experimental results showing the the potential of our

approach as compared to competing methods.

3.5 Application IV: Maximum Likelihood Based Poisson Imaging

3.5.1 Problem of Interest

In a variety of applications, finding the maximum likelihood estimate in a statistical model

often leads to a convex optimization problem of the following form,

min
x∈Rn

L(x) + h(x) :=
1

m

m∑
i=1

`i(x) + h(x) (3.5.1)

where L(x) comes from the log-likelihood, h(x) is some regularization, m is the number

of observations. Problems of this type also arise ubiquitously in machine learning, known

as empirical risk minimization, where `i(·) corresponds to a data-driven loss function. The

most typical example is the least-squares regression, where `i refers to the square loss, i.e.

`i(x) = 1
2(aTi x − bi)2, given the observations (ai, bi), i = 1, 2, . . . ,m. This is widely used

when the linear measurements are contaminated with Gaussian noise. In contrast, in the

presence of Poisson noise, i.e.

bi ∼ Poisson(aTi x) (3.5.2)

the loss function that forms the empirical risk minimization becomes

`i(x) = aTi x− bilog(aTi x), (3.5.3)
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which will be referred to as Poisson loss. Such type of problems arise in many applications

involving Poisson process or more general point process.

The most typical and well studied example is the positron emission tomography (PET)

in nuclear medicine, where the event detected is triggered by the photon counts following a

Poisson distribution [9, 37, 77]. The Poisson noise setting has also been considered in many

other contexts, such as solar flare image reconstruction [18] and confocal microscopy image

deblurring [19]. Depending on the specific applications, various choices of regularization

terms can be utilized to enforce sparsity, low rank structures or smoothness. In literatures,

this type of problem is sometimes called Poison compressive sensing when the true parameter

is compressible.

Background. While there has been tremendous work on efficient first-order methods for

solving the penalized least squares problem under Gaussian noise, ranging from proximal

gradient methods to incremental algorithms, fewer results are known for the Poisson loss

minimization. The key challenge, from a pure algorithmic point of view, lies in the fact

that Poisson loss function is non-globally Lipschitz continuous/differentiable. It is well-

known that when solving convex optimization problems with L-Lipschitz smooth objective

functions, the best convergence rate of first-order method is O( L
t2

); this can be achieved by

algorithms such as Nesterov’s optimal gradient [64]. However, for Poisson loss minimization,

there is no global Lipschitz continuity for the objective function or the gradient. Existing

methods that rely on such conditions will no longer be applicable.

Related work. In [37], the authors biased the logarithmic term by replacing log(aTi x)

with log(aTi x + ε), where ε is a tolerance parameter of magnitude 10−10, which results

a smooth problem with L of order O(1/ε2). One can immediately see that, this huge

Lipschitz constant could significantly affect the efficiency estimate. On the contrary, in [9],

the authors treated this problem as a general nonsmooth optimization and applied Mirror

Descent algorithm, which avoids the dependence on Lipschitz continuity of the gradient,

but in the sacrifice of having a worse rate of convergence, i.e. O( 1√
t
). Another approach
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was explored in [78], where the authors consider a general setting, so-called composite self-

concordant minimization, allowing to cover the Poisson loss minimization problem. They

exploited the self-concordance nature of the logarithmic term and proposed a proximal

gradient method with sophisticated stepsize choices and correction procedures, providing a

locally linear rate of convergence as well as a O(1
t ) global rate which still depends on global

Lipschitz continuity constant.

Our goal and main contribution. Our goal in this section is to revisit the non-Lipschitz

Poisson loss minimization problem with our newly developed algorithmic tools, aiming to

build algorithms with reasonable computational behavior in the large-scale case. To this

end, we exploit a saddle point representation of the non-Lipschitz objective, which allows

us to apply the composite Mirror Prox algorithm for free. The algorithm proposed here,

is free of Lipschitz continuity conditions and serves as an novel approach to address this

type of non-Lipschitz optimization. As we demonstrate in the sequel, the algorithm enjoys

a O(1/t) convergence rate in theory and also exhibits promising performances in practice.

Outline The rest of this section is organized as follows. In Section 3.5.2, we reformulate

the problem of interest as a composite convex-concave saddle point problem, propose a

composite Mirror Prox algorithm tailored for this problem, and discuss the complexity

results. In Section 3.5.3, we provide numerical illustrations of the algorithm when applied

to the positron emission tomography (PET) recovery.

3.5.2 Saddle Point Reformulations and Complexity Analysis

Problem restatement We will consider the following problem with a more compact and

slightly more general form:

min
x∈Rn

+

L(x) + h(x), with L(x) = sTx−
m∑
i=1

ci ln(aTi x) (3.5.4)

where nonnegative coefficients s ∈ Rn
+, c ∈ Rm

+ and ai ∈ Rn
+, i = 1, . . .m are given. 11

Throughout this section, we will assume that the regularization term h(x) satisfies:

11 To match with the loss function in equation (3.5.3), one can simply set s = 1
m

∑m
i=1 ai and ci = bi/m.
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• (homogeneity) h(ax) = |a|h(x) for any a ∈ R;

• (proximal-friendliness) proximal mapping of the following form is easy to compute,

min
x∈Rn

+

{ω(x) + 〈ξ, x〉+ h(x)},

for some distance generating function ω(x) : Rn
+ → R that is Lipschitz continuous

and 1-strongly convex w.r.t. some norm ‖ · ‖ defined on Rn.

Note that the above assumptions hold true for many sparsity-promoting penalty functions,

e.g. h(x) = ‖x‖1.

Saddle point reformulation The crux of our method is to utilize the Fenchel represen-

tation of log function

log(u) = min
v>0
{uv − log(v)− 1}.

We can rewrite (3.5.4) as

min
x∈Rn

+

max
v∈Rm

++

sTx+
m∑
i=1

[ci ln(vi)− civiaTi x+ ci] + h(x).

Setting yi = civi, this can be further simplified to

min
x∈Rn

+

max
y∈Rm

++

Φ(x, y) := sTx− yTAx+
m∑
i=1

ci ln(yi) + h(x) + c0 (3.5.5)

where c0 =
∑m

i=1 ci −
∑m

i=1 ci ln(ci) and A = [aT1 ; aT2 ; . . . ; aTm] ∈ Rm×n
+ .

Composite Mirror Prox Observe that the above model can be regarded as a compos-

ite saddle point problem with two separable penalty functions: p(y) =
∑m

j=1 ci ln(yi) for

variable y and h(x) for variable x. Recall that in Section 2.5.1 from Chapter II, we have

developed a composite Mirror Prox algorithm which can solve such problems. To this end,

we act as follows. We first move the penalty functions in the domain and reformulate the

problem as a bilinear saddle point problem

min
x∈Rn

+

max
y∈Rm

++

{sTx− yTAx+ τ + σ + c0 : σ ≥ h(x), τ ≤
m∑
i=1

ci ln(yi)} (3.5.6)
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associated with monotone operator F = [Fu(u = [x; y]);Fv(v = [σ; τ ])],

Fu(u) = [s−AT y;Ax] and Fv = [1;−1],

and domain

W = {(u, v) : x ∈ Rn
+, σ ≥ h(x), y ∈ Rm

++, τ ≤
m∑
i=1

ci ln(yi)}.

We can equip the projection U = {u = [x, y] : x ∈ Rn
+, y ∈ Rm

++} with the mixed setup

ω(u) = αω(x) +
1

2
‖y‖22, ‖u‖ =

√
α‖x‖2x + ‖y‖22

for some positive number α > 0. The reason why we choose the Euclidean setup for variable

y stems from the following fact.

Lemma 3.5.1. For any η ∈ Rm and β > 0, let

y+ = argmin
y∈Rm

++

{
1

2
‖y||22 + 〈η, y〉 − β

m∑
i=1

ci ln(yi)

}
,

then y+ is explicitly given by

y+
i =

−ηi +
√
η2
i + 4βci

2
,∀i = 1, 2, . . . ,m.

Before presenting the algorithm, let us introduce the composite proximal operator in-

duced by a convex function g and proximal setup (ω(x), ‖ · ‖),

Proxωg,x0
(ξ) = argminx∈Rn

+
{ω(x) + 〈ξ − ω′(x0), x〉+ g(x)}

= argminx∈Rn
+
{V (x, x0) + 〈ξ, x〉+ g(x)}

where V (x, x0) := ω(x)−ω(x0)−∇ω(x0)T (x−x0), is usually known as the Bregman distance.

We present below in Algorithm 8 the composite Mirror Prox algorithm specifically tailored

to our problem of interest as described in (3.5.4), (3.5.5), and (3.5.6).

Given any subset X ⊂ Rn
+, let Y [X] := {y : yi = 1/(aTi x), i = 1, . . . ,m, x ∈ X}. Clearly,

Y [X] ∈ Rm
++. Invoking Theorem 2.5.1 and Corollary 2.5.1, we arrive at the following results:
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Algorithm 8 Composite Mirror Prox Algorithm for Poisson Loss Minimization

0. Initialize x1 ∈ Rn
+, y1 ∈ Rn

++, α > 0 and γt > 0,
for t = 1, 2, . . . , T do

1. Compute

x̂t = Proxαωγth,xt
(
γt(s−AT yt)

)
ŷti = 1

2

(
−γt(aTi xt − yti) +

√
γ2
t (aTi x

t − yti)2 + 4γtci

)
, i = 1, . . . ,m

2. Compute

xt+1 = Proxαωγth,xt
(
γt(s−AT ŷt)

)
yt+1
i = 1

2

(
−γt(aTi x̂t − yti) +

√
γ2
t (aTi x̂

t − yti)2 + 4γtci

)
, i = 1, . . . ,m

end for
Output xT = 1

T

∑T
t=1 λtx

t

Proposition 3.5.1. Assume we are given some information on the optimal solution to

problem in (3.5.4): a convex compact set X0 ⊂ Rn
+ containing x∗ and a convex compact set

Y0 ⊂ Rm
++ containing Y [X0]. Let

L = ‖A‖x→2 := max
x∈Rn

+:‖x‖≤1
{‖Ax‖2}

and let stepsizes in Algorithm 8 satisfy 0 < γt ≤
√
αL−1 for all t > 0. Then

L(xT ) + h(xT )− [L(x∗) + h(x∗)] ≤
[∑t

τ=1
γτ

]−1

(αΘ[X0] + Θ[Y0]), (3.5.7)

where Θ[X0] = maxx∈X0 V (x, x1) and Θ[Y0] = maxy∈Y0
1
2‖y−y

1‖22. In particular, by setting

γt =
√
αL−1 for all t, one has

L(xT ) + h(xT )− [L(x∗) + h(x∗)] ≤
(αΘ[X0] + Θ[Y0])‖A‖x→2√

αT
. (3.5.8)

Remark I. Note that the above algorithm works without requiring global Lipschitz con-

tinuity of the original objective function. The information set X0 and Y0 appear only in the

efficiency estimate, but not in the algorithm itself. Nevertheless, it is not hard to obtain

such information set.12 In principle, one have at least

X0 = {x ∈ Rn
+ : sTx+ h(x) ≤

m∑
i=1

ci}.

12Knowing the geometry of such set could also help us determine favorable proximal setups.
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Clearly, X0 is convex and compact. The reason why x∗ ∈ X0 is due to the following

observation.

Proposition 3.5.2. The optimal solution x∗ to the problem in (3.5.4) satisfies

sTx∗ + h(x∗) =
m∑
i=1

ci. (3.5.9)

Proof. This is because, for any t > 0, tx∗ is a feasible solution and the objective at this

point is

φ(t) := L(tx∗) + h(tx∗) = t(sTx∗ + h(x∗))−
m∑
i=1

ci ln(aTi x∗)− ln(t)
m∑
i=1

ci.

By optimality, φ′(1) = 0, i.e. sTx∗ + h(x∗)−
∑m

i=1 ci = 0.

Remark II. From the above proposition, one can see that the performance of the algo-

rithm is essentially determined by the distance between the initial solution (x1, y1) to the

optimal solution (x∗, y∗). In principle, if the initial solution is close enough to the optima,

then one can expect the algorithm to converge very fast. In practice, the optimal choice of

α =
‖y1−y∗‖22/2
V (x1,x∗)

is often unknown, one can perhaps select α experimentally in order to get

best performance.

3.5.3 Numerical Illustration: Poisson Emission Tomography

Physical background Positron-emission tomography (PET) is a nuclear medicine, func-

tional imaging technique that produces images, often in three dimensions, of chemical func-

tioning and metabolic activity of internal tissues in the human body. It is heavily used for

clinical diagnosis of cancer metastasis, brain and heart function. PET imaging works as

follows: i) inserting radiotracer (positron-emitting radionuclides) which is tagged to a nat-

ural chemical and is transported to the organ of interest on a biologically active molecule,

ii) detecting pairs of flying at opposite directions gamma quants which are emitted when a

positron emitted in an act of tracer’s disintegration annihilates with nearby electron, iii) re-

constructing the image of tracer concentration, i.e. spatial distribution of the radioactivity

within the organ, based on photon counts – numbers of pairs of gamma-quants registered
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during the study by different pairs of detectors. A natural assumption for such radioactive

phenomenon is that these gamma-ray photons can generated by some Poisson process.

Poisson Maximum Likelihood At an abstract level, let us denote by w1, . . . , wm as

the photon counts registered by i-th pair of detectors. The aim of the image reconstruction

in PET is to estimate the density of the tracer in the emitting object. To simplify the

model, we discretize the problem and split the object into n voxels (pixels in 2-D case).

Denoting by aij the probability that the pair of gamma-quants originating from voxel j will

be registered by pair of detectors i, we get an m×n matrix A = [aij ]. Denoting by x ∈ Rn

the vector comprised of the amounts xj of tracer in cells j = 1, ..., n, the measurements wi

are independent across i realizations of Poisson random variables wi with parameters [Ax]i:

wi ∼ Poisson([Ax]i), 1 ≤ i ≤ m,

Note that the column sums in A do not exceed 1; these sums are equal to 1 (i.e., A

is stochastic) when every pair of emitted γ-quants is registered; whether it is the case,

depends on scanner’s construction. For the sake of simplicity, in the sequel we assume that

A indeed is stochastic; extensions to the case when the column sums in A are less than one

are straightforward.

Maximizing the likelihood function reduces to solving the convex optimization problem

Opt = min
x∈Rn

+

m∑
i=1

[[Ax]i − wi ln([Ax]i)] . (3.5.10)

Apparently, this falls into the Poisson loss minimization described in (3.5.4). For simplicity,

we will not consider penalty or regularization terms in the following.

Saddle Point Reformulation Invoking the optimality conditions for the above problem,

we have

xj

m∑
i=1

[
aij − wi

aij
[Ax]i

]
= 0,∀j = 1, . . . , n,

whence, summing over j and taking into account that A is stochastic, we get13

n∑
j=1

xj =

m∑
i=1

wi =: θ.

13Note that this is essentially a special case revealed by Remark I in the previous section.
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We loose nothing by adding to problem (3.5.10) the equality constraints
∑n

j=1 xj = θ.

Invoking the saddle point reformulation in the previous section, solving the PET recovery

problem (3.5.10) is equivalent to solving the convex-concave saddle point problem:

min
x∈Rn

+∑n
j=1 xj=θ

max
y∈Rm

++

Φ(x, y) := −yTAx+

m∑
i=1

wi ln(yi) + θ̃ (3.5.11)

where θ̃ = 2θ −
∑m

i=1 ωi ln(ωi) is a constant.

Composite Mirror Prox algorithm for PET Noting that the domain over x is a

simplex, a good choice of ω(x) is the entropy, . We present in the following the composite

Mirror Prox algorithm specifically tailored to the saddle point reformulation of the PET

problem as described in (3.5.11).

Algorithm 9 Composite Mirror Prox Algorithm for PET Reconstruction

0. Initialize x1 ∈ Rn
+, y1 ∈ Rn

++, α > 0 and γt > 0,
for t = 1, 2, . . . , T do

1. Compute

x̂tj = xtj exp(−[AT y]j/α), j = 1, . . . , n, then normalized to sum up to θ

ŷti = 1
2

(
−γt(aTi xt − yti) +

√
γ2
t (aTi x

t − yti)2 + 4γtwi

)
, i = 1, . . . ,m

2. Compute

xt+1 = xtj exp(−[AT ŷ]j/α), j = 1, . . . , n, then normalized to sum up to θ

yt+1
i = 1

2

(
−γt(aTi x̂t − yti) +

√
γ2
t (aTi x̂

t − yti)2 + 4γtwi

)
, i = 1, . . . ,m

end for
Output xT = 1

T

∑T
t=1 λtx

t

Remark. Let x∗ be the true image. Note that when there is no Poisson noise, wi = [Ax∗]i

for all i. In this case, the optimal solution y∗ corresponding to the y-component of the

saddle point problem (3.5.11) is given by y∗,i = wi/[Ax∗]i = 1, ∀i. Thus, we may hope that

under the Poisson noise, the optimal y∗ is still close to 1. Assuming that this is the case,

the efficiency estimate for T -step composite Mirror Prox algorithm in Algorithm 9 after

invoking Proposition 3.5.1 and setting α = r2m for some r > 0, will be

O(1)

(
ln(n) +

1

2r2

)
rθ
√
m‖A‖1→2

T
.
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Since A is m× n stochastic matrix, we may hope that the Euclidean norms of columns in

A are of order O(m1/2), yielding the efficiency estimate

O(1)

(
ln(n) +

1

2r2

)
rθ

T
.

Let us look what happens in this model when x∗ is “uniform”, i.e. all entries in x∗ are

θ/n. In this case, the optimal value is θ− θ ln(θ) + θ ln(n), which is typically of order O(θ),

implying that relative to optimal value rate of convergence is about O(1/T ).

Numerical Results. We ran experiments on several phantom images of size 256 × 256.

We built the matrix A, which is of dimension 43530× 65536. We first consider the noiseless

situation, i.e. w = Ax∗, where x∗ refers to the true image; hence, the optimal solution and

objective value are known. To demonstrate the efficiency of our algorithm, we compare our

algorithm to the Mirror Descent algorithm in [9]. For both algorithms, we use the `1 setup

for the domain X = {x ∈ Rn
+ :

∑n
j=1 xj = θ} by setting the distance generating function

to ω(x) =
∑n

j=1 xj ln(xj).

Since the iteration cost of the two algorithms are about the same, we compare in Fig.9

their relative accuracy, i.e. (f(xt) − f∗)/f∗, within the same number of iterations when

applied to the Shepp-Logan phantom and the MRI brain phantom. We can see that the

accuracy of composite Mirror Prox exceeds that of Mirror Descent after certain number of

iterations. In Fig.10, we provide the mid-slices of our reconstructions for the MRI brain

image. The experiments clearly demonstrate that our composite Mirror Prox serves as a

viable alternative when solving the PET reconstruction problem and eventually produces

solutions with higher accuracy compared to Mirror Descent.

3.5.4 Concluding Remarks

In this section, we investigate the Poisson loss minimization problem, which has been a

long-standing challenge in machine learning community due to the non-Lipschitz continuity

of Poisson loss. We exploit the underlying saddle point representation of the problem,

allowing us to process the problem directly with the composite Mirror Prox algorithm,

which no longer relies on Lipschitz continuity of the loss function. The algorithm enjoys
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(a) Shepp-Logan image
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(b) MRI brain image

Figure 9: Convergence comparison between composite Mirror Prox and Mirror Descent.

true image iter.# 2 iter.# 3
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iter.# 32 iter.# 64 iter.# 100

Figure 10: Performance of composite Mirror Prox on the MRI brain image
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a O(1/t) convergence rate in contrast to the usual O(1/
√
t) rate when solving nonsmooth

minimization. We also demonstrate experimentally, albeit at this point in time just in a

couple of experiments, the efficiency of the proposed algorithm as applied to Poison Emission

Tomography reconstruction.
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CHAPTER IV

ERROR-IN-MEASUREMENT OPTIMIZATION

4.1 Overview

Our goal in this chapter is to examine the class of optimization problems with data subject

to measurement errors, specifically, problems of the form

min
x∈X

Φ(x, π∗) (?)

where Φ(x, π) is a given function of the decision vector x and vector of parameters π;

we assume that this function is convex in x. In our setting, the “true value” π∗ of the

parameter vector is unknown, but can be somehow “measured.” Specifically, we assume

that π∗ belongs to a given in advance set Π; on the top of this knowledge, we can learn

π∗, by observing samples ωt, t = 1, 2, ..., drawn independently of each other from some

distribution P . In the sequel, we consider two models of this type:

• Direct Noisy Observations: π∗ is the expectation of P . This case will be considered

in Section 4.2.

• Indirect Noisy Observations: we are given in advance a parametric family {Pπ : π ∈

Π, of distributions with the domain Π known to contain π∗, and the samples we

observe are drawn from the distribution P = Pπ∗ . This situation will be considered

in Section 4.3.

4.2 Convex Optimization with Direct Noisy Observations

4.2.1 Error-in-measurement Optimization

Our goal is to solve systems of constraints

Find u ∈ U : Fi(u, ξ∗) ≤ 0, 1 ≤ i ≤ I, (4.2.1)

where functions Fi(u, ξ) : U×Ξ→ R, with convex and compact U and convex Ξ, are convex

in u ∈ U and concave in ξ ∈ Ξ, and the true vector of parameters ξ∗ is the expectation of
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some distribution P ; this distribution is not known in advance, but we can observe samples

drawn, independently of each other, from this distribution.

The situation we are interested in throughout this section is when each Fi is given by a

saddle point representation. The latter notion is defined as follows. Let f(u, ξ) : U×Ξ→ R

be a convex-concave function. Let φ(u, v; y) : (U×V )×Y → R be a function that is convex

in y and concave in (u, v), where Y, V are convex sets, such that

f(u, ξ) = min
v∈V

max
y∈Y

[
aT ξ + uTAξ + vTBξ − φ(u, v; y)

]
. (4.2.2)

We refer the representation of the form (4.2.2) to a saddle-point representation of convex-

concave function f(u, ξ). It is easily seen that the right hand side in (4.2.2) indeed is

convex in u and concave in ξ. Indeed, note that the right hand side can be written as

f(u, ξ) = minv∈V
[
aT ξ + uTAξ + vTBξ + maxy∈Y [−φ(u, v; y)]

]
, that is, as the infimum in

v ∈ V of a convex in (u, v) function depending on ξ as on a parameter, so the right hand

side in (4.2.2) is indeed convex in u. From the same representation we see that the right

hand side in (4.2.2) as a function of ξ is the infimum of a family of affine functions of ξ, and

as such is concave in ξ.

At a first glance, convex-concave functions allowing for explicit saddle point represen-

tations seem to be a “rare commodity”; we shall see, however, that these representations

admit a kind of “fully algorithmic” calculus, and that as a result, availability of such a rep-

resentation is more of a rule than an exception. It should be stated that existence of saddle

point representations of convex-concave functions satisfying minor regularity assumptions

was established by Rockafellar in [75].

Example 4.2.1. Function

f(u; Σ) =
√
uTΣu : Rn × Sn+ → R+

where Sn+ is the cone of positive semidefinite symmetric n×n matrices, is a convex-concave

function, that is convex in u and concave in Σ, and admits a saddle-point representation:

f(u,Σ) = min
S∈Sn+

max
y∈Rn

[
yTx+ 〈Σ, S〉 − yTSy

]
,
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where the inner product 〈Σ, S〉 = Tr(ΣS).

Example 4.2.2. Function

f(u, ξ) = ln

(
n∑
i=1

ξie
ui

)
: Rn ×Rn

++ → R

is a convex-concave function, and admits a saddle-point representation

f(u, ξ) = min
v∈V

max
y∈Y

[
uT y + ξT v −

n∑
i=1

yi ln vi − 1

]
,

where V = {v ∈ Rn : v > 0} and Y = {y ∈ Rn : y > 0,
∑n

i=1 yi = 1}.

4.2.2 Saddle Point Representation of Convex-Concave Functions

In fact, in the developments (to be presented in next section), we need less than (4.2.2) and

operate with “good” saddle point representations defined as follows.

Definition 4.2.1 (Good saddle point representation). Let U be a closed and bounded

convex subset in a Euclidean space Eu, let Ξ ⊂ Rm be nonempty, and let F (u, ξ) : U×Ξ→ R

be a function which is convex in u ∈ U for every ξ ∈ Ξ. Assume also that we are given

closed and bounded convex sets X = U × V ⊂ Ex := Eu × Ev and Y ⊂ Ey, where Ev and

Ey are Euclidean spaces, and a function Gξ(u, v; y) : X × Y → R, depending on ξ ∈ Ξ as a

parameter, such that

1. Gξ(·; ·) is continuous on X × Y and is convex-concave: for every ξ ∈ Ξ, Gξ(u, v; y) is

convex in (u, v) ∈ X for every fixed y ∈ Y , and is concave in y ∈ Y for every fixed

(u, v) ∈ X;

2. Gξ(u, v; y) is affine in ξ: Gξ(u, v; y) = g(u, v; y) + 〈ξ, γ(u, v; y)〉;

3. For all u ∈ U , ξ ∈ Ξ one has

F (u, ξ) = min
v:(u,v)∈X

max
y∈Y

Gξ(u, v; y).

In this situation, we refer to (X,Y,Gξ(·; ·)) as a “good representation” of F (u, ξ).
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Definition 4.2.2 (Simple saddle point representation). Given a family of regular

(i.e., closed, convex, pointed and with a nonempty interior) cones K closed with respect to

taking direct products of its elements, we call a good saddle point representation of F (x, ξ)

K-simple, if

1. The convex compact set Y in Definition 4.2.1 is of the form Y = {y ∈ K : Ay ≤ a},

where K ∈ K;

2. Both g(u, v; y) and γ(u, v; y) = [γ1(u, v; y); . . . ; γm(u, v; y)] are bilinear in (u, v) and

y:

g(u, v; y) = 〈y,A0u+ B0v + C0〉+ 〈a0, u〉+ 〈b0, v〉+ c0,

γk(u, v; y) = 〈y,Aku+ Bkv + Ck〉+ 〈ak, u〉+ 〈bk, v〉+ ck, ∀k = 1, . . .m,

which is essentially the same as the bilinear form of Gξ(u, v; y):

Gξ(u, v; y) = 〈pξ, u〉+ 〈qξ, v〉+ 〈rξ, y〉+ 〈y, Pξu〉+ 〈y,Qξv〉

with pξ, qξ, rξ, Pξ, Qξ affine in ξ.

In the following, we demonstrate that the above saddle point representation admit fully

algorithmic calculus: saddle point representation of convex-concave function resulting from

standard convexity-preserving operations is readily given by the saddle point representations

of the operands. Such operations include taking summations with nonnegative coefficients,

or direct summations, or affine substitution of variables, or taking superpositions. We list

these important calculus rules below.

Summation with positive weights. Let αi > 0, 1 ≤ i ≤ I. Let Fi(u, ξ) : U × Ξ → R,

1 ≤ i ≤ I be given by good representations

Fi(u, ξ) = min
vi:(u,vi)∈Xi

max
yi∈Yi

Giξ(u, v
i; yi), i = 1, ..., I,

where Giξ(u, v
i; yi) = gi(u, vi; yi) + 〈ξ, γi(u, vi; yi)〉. Then the mapping

I∑
i=1

αiFi(u, ξ) : U × Ξ→ R
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can be written as

min
v=[v1;...;vI ]:(u,v)∈X

max
y=[y1;...;yI ]:y∈Y

I∑
i=1

αig
i(u, vi; yi) + 〈ξ,

I∑
i=1

αiγ
i(u, vi; yi)〉 := Gξ(u, v; y)

(4.2.3)

with X = U ×V, V = V1× . . .×VI , Y = Y1× . . .×YI . The summation with positive weights

does not affect convexity and concavity, thus X,Y,Gξ(u, v; y) is a good representation for

the mapping F (u, ξ).

In addition, if the representations of Fi, 1 ≤ i ≤ I, are K-simple, say the set Yi has the

form Yi = {yi ∈ Ki : Aiy
i ≤ ai}, ∀1 ≤ i ≤ I, then

Y = {y = [y1; . . . ; yI ] ∈ K := K1 × . . .×KI : Ay ≤ a},

with A = diag{A1, . . . , AI}, a = [a1; . . . ; aI ] and K ∈ K, provided Ki are so. Also,

if gi(u, vi; yi) and γi(u, vi; yi) are bilinear in (u, vi), yi, then their linear combination∑I
i=1 αig

i(u, vi; yi) and
∑I

i=1 αiγ
i(u, vi; yi) must also be bilinear in (u, v), y. Thus, the

representation (4.2.3) is also K-simple. Hence, we can conclude the following proposition.

Proposition 4.2.1. Good representations of Fi(u, ξ) : U × Ξ → R, 1 ≤ i ≤ I, induce

straightforwardly a good representation of the mapping

F (u, ξ) =

I∑
i=1

αiFi(u, ξ) : U × Ξ→ R

provided αi > 0. Moreover, if the representations of Fi(u, ξ) are K-simple, so is the resulting

representation of F (u, ξ).

Direct summation. Let Fi(u
i, ξi) : Ui × Ξi → R, 1 ≤ i ≤ I, be given by good represen-

tations

Fi(u
i, ξi) = min

vi:(ui,vi)∈Xi
max
yi∈Yi

Giξi(u
i, vi; yi), i = 1, ..., I,

where Gi
ξi

(ui, vi; yi) = gi(ui, vi; yi) + 〈ξi, γi(ui, vi; yi)〉. Then the mapping

F (u, ξ) :=

I∑
i=1

Fi(u
i, ξi) : U1 × ...× UI︸ ︷︷ ︸

U

×Ξ1 × ...× ΞI︸ ︷︷ ︸
Ξ

→ R,

with u = [u1; . . . ;uI ], ξ = [ξ1; . . . ; ξI ], can be written as

F (u, ξ) = min
v=[v1;...;vI ]:(u,v)∈U×V

max
y=[y1;...;yI ]:y∈Y

I∑
i=1

gi(ui, vi; yi) + 〈ξ, γ̂(u, v; y)〉 (4.2.4)
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where V = V1 × . . . × VI , Y = Y1 × . . . × YI , γ̂(u, v; y) = [γ1(u1, v1; y1); . . . ; γI(uI , vI ; yI)].

Note that the inner product is taken in the Euclidean space Rm1+...+mI , such that 〈ξ, γ̂〉 =

〈ξ1, γ1〉 + . . . + 〈ξI , γI〉. It is easy to see that inner function remains to be convex in u, v

and concave in y. Thus, the above provides a good representation for F (u, ξ).

If the representations of Fi, 1 ≤ i ≤ I, are K-simple, so is the representation (4.2.4).

Indeed, the set Y admits the simple form as previous given. Also, for each 1 ≤ i ≤ I, the

elements γik(u
i, vi; yi), 1 ≤ k ≤ mi are bilinear in (ui, vi), yi, hence bilinear in (u, v), y. Thus

the vector function γ̂(u, v; y) is bilinear in (u, v), y. Same argument goes for the summation

of gi(ui, vi; yi). Hence, we can conclude the following proposition.

Proposition 4.2.2. Good representations of Fi(u
i, ξi) : Ui × Ξi → R, 1 ≤ i ≤ I, induce

straightforwardly a good representation of the mapping

F (u, ξ) :=
I∑
i=1

Fi(u
i, ξi) : U1 × ...× UI︸ ︷︷ ︸

U

×Ξ1 × ...× ΞI︸ ︷︷ ︸
Ξ

→ R,

Moreover, if the representations of Fi(u
i, ξi) are K-simple, so is the resulting representation

of F (u, ξ).

Affine substitution of arguments. Let a mapping F (u, ξ) : U × Ξ→ R be given by a

good representation:

F (u, ξ) = min
v:(u,v)∈X

max
y∈Y

Gξ(u, v; y),

with Gξ(u, v; y) = g(u, v; y) + 〈ξ, γ(u, v; y)〉. Let w 7→ Dw + d, η 7→ Hη + h be affine

mappings taking values in the embedding spaces of U , Ξ, respectively. Then the mapping

F̂ (w, η) = F (Dw + d,Hη + h) : {w : Dw + d ∈ U}︸ ︷︷ ︸
Û

×{η : Hη + h ∈ Ξ}︸ ︷︷ ︸
Ξ̂

→ R.

can be written as

F̂ (w, η) = min
v:(w,v)∈Û×V

max
y∈Y

g̃(w, v; y) + 〈η, γ̃(w, v; y)〉, (4.2.5)

where g̃(w, v; y) = g(Dw+d, v; y)+〈h, γ(Dw+d, v; y)〉, and γ̃(w, v; y) = HTγ(Dw+d, v; y),

which indeed is a good representation.
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If the representation of F is K-simple, then g̃(w, v; y) and γ̃(w, v; y) remain bilinear in

(w, v), y, since the bi-linearity is not affected under affine substitution of arguments and

linear transformations. Thus, the above representation is also K-simple. Hence, we can

conclude the following proposition.

Proposition 4.2.3. A good representation of F (u, ξ) : U×Ξ→ R induces straightforwardly

a good representation of the mapping

F̂ (w, η) = F (Dw + d,Hη + h) : {w : Dw + d ∈ U}︸ ︷︷ ︸
Û

×{η : Hη + h ∈ Ξ}︸ ︷︷ ︸
Ξ̂

→ R.

Moreover, if the representations of F (u, ξ) is K-simple, so is the resulting representation of

F̂ (w, η).

Theorem on superposition. Let Fi(u, ξ) : U × Ξ → R, 1 ≤ i ≤ I, be given by good

representations

Fi(u, ξ) = min
vi:(u,vi)∈Xi

max
yi∈Yi

Giξ(u, v
i; yi)

and let

f(s) = max
λ∈Λ

[〈Rλ+ r, s〉+ φ(λ)] ,

where Λ ⊂ R` is a closed bounded and convex set and λ→ Rλ+r = [R1λ+r1; . . . ;RIλ+rI ]

is an affine mapping from Λ to RI
+, and φ(λ) : Λ → R is a continuous concave function.

Then the superposition

F (u, ξ) = f(F1(u, ξ), ..., FI(u, ξ)) : U × Ξ→ R

can be written as:

F (u, ξ) = min
v=[v1;...;vI ]
(u,v)∈U×V

max
z=[(w1,λ1);...;(wI ,λI)]

∈Z

I∑
i=1

(Riλ+ ri)G
i
ξ(u, v

i;
wi

Riλ+ ri
) + φ(λ), (4.2.6)

where V = V 1× . . .×V I , Z = {z = [(w1, λ1); . . . ; (wI , λI)] : wi

Riλ+ri
∈ Yi,∀1 ≤ i ≤ I, λ ∈ Λ}.

Let T = {t = Rλ + r : λ ∈ Λ}; by assumption, for t ∈ T , ti ≥ 0, ∀i. The function

tiGiξ(u, v
i; w

i

ti
) is continuous and concave in (wi, ti), thus it is also concave in (wi, λi). Hence,

we can see that the inner function of (4.2.6) is convex in (u, v) and concave in (w, λ).
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Assume that Yi can be written as Yi = {yi : ψi(y
i) ≤ 1} with convex function ψi, then

set Z is given by a linear transformation of the convex set Z̄ = {(w, t) : tiψi(w
i/ti) − ti ≤

0,∀i, t ∈ T}, which should be compact and convex. Thus, the representation (4.2.6) is a

good representation.

Assume that the set Λ has the simple form Λ = {λ ∈ K : Bλ ≤ b} with regular

K ∈ K. If Yi has the simple form Yi = {yi ∈ Ki : Aiy
i ≤ ai} with regular Ki ∈ K, then

Z = {z : wi ∈ Ki, λ ∈ K, Aiw
i − aiRiλi ≤ airi, ∀1 ≤ i ≤ I,Bλ ≤ b} admits the simple

form. The bi-linearity of function tigi(u, vi; w
i

ti
) and tiγi(u, vi; w

i

ti
) can be easily derived if

the functions gi(·; ·) and γi(·; ·) are bilinear. Hence, we can conclude the following theorem.

Proposition 4.2.4. Under the above assumptions, good representations of Fi(u, ξ) : U ×

Ξ→ R, 1 ≤ i ≤ I, induce a good representation of the superposition

F (u, ξ) = f(F1(u, ξ), ..., FI(u, ξ)) : U × Ξ→ R

Moreover, if the representations of Fi(u, ξ) are K-simple, so is the resulting representation

of F (u, ξ).

Corollary 4.2.1. If Fi(u, ξ) : U × Ξ → R, 1 ≤ i ≤ I, are given by good representations,

then their maximum

F (u, ξ) = max
i=1,...,I

Fi(u, ξ) : U × Ξ→ R

also admits a good representation; moreover, if the representations of Fi(u, ξ) are K-simple,

so is the resulting representation of F (u, ξ).

In fact, this is a special case of the above superposition, because

F (u, ξ) = max
i=1,...,I

Fi(u, ξ) = max
λ∈∆

I∑
i=1

λiFi(u, ξ) = f(F1(u, ξ), . . . , FI(u, ξ)),

where ∆ = {λ ≥ 0 :
∑I

i=1 λi = 1}, f(s) = maxλ∈∆[〈λ, s〉].

The just outlined calculus rules yield a powerful fully algorithmic calculus of saddle point

representations as well as some specially good representations, which essentially suggests

that the situation described in Section 4.2.1 is not all all restricted, but rather common.
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4.2.3 The Construction and Main Results

Recall that our goal is to solve the system of convex constraints

Find u ∈ U : Fi(u, ξ∗) ≤ 0, 1 ≤ i ≤ I, (4.2.7)

where true data ξ∗ = Eξ∼P {ξ} is not available, but we can sample from P , and all functions

Fi(u, ξ) : U ×Ξ→ R are convex in u on U and concave in ξ on Ξ. Assume that each of the

function Fi(u, ξ) admits a good representation. Let

f(u, ξ) = max
i=1,...,I

Fi(u, ξ).

Fom Corollary 4.2.1, F (u, x) also admits a good representation. We say that a candidate

solution u is ε-feasible to the system in (4.2.7) when f(u, ξ∗) ≤ ε.

Course of action. We propose to build ε-feasible solutions to (4.2.7) by solving the follow-

ing optimization problem, also referred to as error-in-measurement optimization problem,

min
u∈U

f(u, ξ∗), (P )

where true data ξ∗ = Eξ∼P {ξ} is not available, but we can sample from P . We assume

that U is a convex and compact set, and function f(u, ξ) admits a good representation

(X,Y,Φξ(u, v; y)), where X,Y are compact convex sets and Φξ(u, v; y) is convex in (u, v),

concave in y and affine in ξ. It follows that, (P ) can be reformulated as a saddle-point

problem:

min
x=(u,v)∈X

max
y∈Y

Φξ∗(u, v; y). (D)

Assuming that both problems are solvable, we get,

∀(u, v) ∈ X, y ∈ Y : f(u, ξ∗)−Opt(P ) ≤ εsad(u, v; y). (4.2.8)
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This is because

f(u, ξ∗)−Opt(P ) = min
v:(u,v)∈X

max
y∈Y

Φξ∗(u, v; y)− SadVal(D)

≤ max
y∈Y

Φξ∗(u, v; y)− SadVal(D)

≤ max
y∈Y

Φξ∗(u, v; y)− min
(u,v)∈X

Φξ∗(u, v; y)

= εsad(u, v; y)

That is to say, the x-component of any ε-solution to (D) is an ε-solution to (P ).

Let ξ ∼ P be a random variable. Note that Φξ∗(u, v; y) is affine in ξ∗. Hence, a random

vector from the set ∂Φξ(u, v; y) is an unbiased estimate for the corresponding sub-differential

in ∂Φξ∗(u, v; y), meaning that we have access to stochastic oracles when solving the saddle

point problem (D). That being said, the reformulated saddle point problem can now be

processed by a number of off-the-shelf methods, e.g. the Stochastic Approximation algo-

rithm originated in the pioneering paper by Robbins and Monro [74] and further developed

in many papers (see, e.g., [71, 72, 58, 47] and references therein). For our purposes, we

will adopt the Mirror Descent Stochastic Approximation algorithm proposed in [58]. We

provide below the detail of the this algorithm when applied to the problem of our interest

and the corresponding well-known results from [58] for completeness. 1

Mirror Descent Stochastic Approximation. We revisit here the algorithmic details

of the mirror descent SA algorithm tailored to address the convex-concave saddle point (D).

Denote x = (u, v) and z = (x; y). At each iteration, we can sample ξt ∼ P and therefore have

at our disposal, an unbiased stochastic sub-gradients Gξt(z) ∈ [∂xΦξt(x; y);−∂yΦξT (x; y)]

for any input (x; y) such that

E[Gξt(z)] ∈ [∂xΦξ∗(x; y);−∂yΦξ∗(x; y)].

Let us equip the set Z = X ×Y with some distance generating function ω(z) : Z → R that

is compatible (i.e. continuously differentiable and strongly convex with modulus 1) with

1Similar results can also be obtained using the Stochastic CoMP algorithm as discussed in Section 2.5.4.

121



respect to some norm ‖ · ‖. This can be obtained by aggregating the corresponding distance

generating functions for the respective domains X and Y . Let us define the prox-function,

a.k.a. the Bregman distance

V (ẑ, z) = ω(ẑ)− ω(z)−∇ω(z)T (ẑ − z)

and prox-mapping

Pz(ζ) = argmin
ẑ∈Z

{V (ẑ, z) + 〈ζ, ẑ〉}.

The mirror descent SA is given by the recurrence

zt+1 := [xt+1; yt+1] = Pzt(γtGξt(zt)), t = 1, . . . , T (4.2.9)

where the initial point z1 ∈ Z is chosen to be the minimizer of ω(z) on Z and the

step sizes γt ≥ 0, t = 1, . . . , T . Let us denote Θ[Z] = maxz∈Z V (z, z1) and Dω,Z =
√

2[supz,ẑ∈Z V (z, ẑ)]1/2, clearly, Θ[Z] ≤ 1
2Dω,Z .

Theorem 4.2.1 ([58]). Setting the candidate solution

z̄T =

∑T
t=1 γtzt∑T
t=1 γt

.

(i) under the assumption that

E[‖Gξ(z)‖2∗] ≤M2,

one has

E[εsad(z̄T )] ≤

[
T∑
t=1

γt

]−1 [
2Θ[Z] +

5

2
M2

T∑
t=1

γ2
t

]
, (4.2.10)

In particular, when setting γt =
2θDω,Z
M∗
√

5T
, t = 1, . . . , T , the efficiency becomes

E[εsad(z̄T )] ≤
2
√

5 max{θ, θ−1}MDω,Z√
T

.

(ii) under the assumption that

E[exp{‖Gξ(z)‖2∗/M2}] ≤ exp{1},

with the above choice of stepsize, one has, for any Λ > 0,

Prob

{
εsad(z̄T ) >

(8 + 2Λ) max{θ, θ−1}
√

5MDω,Z√
T

}
≤ 2 exp{−Λ}

122



Our construction contains two steps:

1. optimization step: Draw N1 i.i.d. training samples {ξtraini , i = 1, . . . , N1} and run

the mirror descent SA algorithm on problem (D) to obtain a candidate solution ẑ =

[û, v̂; ŷ] ∈ Z; the u-component of ẑ is a feasible solution to problem (P ) such that with

probability at least 1− δ1,

f(û, ξ∗)−Opt(P ) ≤ O(1)
MDω,Z log(1/δ1)√

N1
.

This above result follows direct Theorem 4.2.1 and the relation in (4.2.8).

2. validation step: Draw another N2 i.i.d. testing samples {ξtestj , j = 1, . . . , N2} to

compute a reliable upper bound f̂N2,δ2(û) of the true function value f(û, ξ∗), such

that with probability 1− δ2,

f(û, ξ∗) ≤ f̂N2,δ2 .

We will establish such upper bounds in the next section.

4.2.4 Upper Bound

The true objective value of the original problem (P ) at a candidate solution produced by

optimization step cannot be computed since ξ∗ is unknown. Our goal in this section is to

establish some reliable upper bounds, which serve as “reasonably good” estimates of the true

objective. First, we need to make some assumptions on the underlying probability density

function of ξ ∼ P . We consider a widely-used family of distributions–the subgaussian

distributions, in the sequel. Here is the definition.

Definition 4.2.3 (Sub-Gaussianity). A random vector η ∈ Rn is said to be subgaussian

with parameter Σ � 0 denoted as η ∼ SG(Σ) if E[eβ
T η] ≤ e

βTΣβ
2 ,∀β ∈ Rn.

Here are some useful properties of subgaussian random vectors (which can be found e.g.

in [15]). Assume ξ ∈ Rn , η ∈ Rn are independent subgaussian random vectors.

1. If ξ ∼ SG(Σ), then E[ξ] = 0.

2. If ξ ∼ SG(Σ), A ∈ Rm×n, then Aξ ∼ SG(AΣAT ).
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3. If ξ ∼ SG(Σ1) and η ∼ SG(Σ2), then ξ + η ∼ SG(Σ1 + Σ2).

4. If ξ ∼ SG(Σ), then for any t ≥ 0,

Prob(βT ξ ≥ t) ≤ exp

{
− t2

2βTΣβ

}
,∀β ∈ Rn. (4.2.11)

Now let us consider the following assumptions on ξ ∼ P .

Assumption 4.2.1. ξ ∼ P satisfies: ξ = Aη + ξ∗, where random variable η ∈ Rp and

η ∼ SG(Q) for some Q ∈ Sp+, and matrix A ∈ Rn×p is given.

Assumption 4.2.2. ξ ∼ P satisfies: ξ = Aη+ ξ∗, where random variable η ∼ SG(Q) with

diagonal p × p matrix Q has independent entries, and A = Diag[A(1), A(2), . . . , A(r)] with

unknown blocks A(j) ∈ Rnj×pj , j = 1, . . . , r,
∑
nj = n,

∑
pj = p.

Note that Assumption 4.2.1 allows ξ to have dependent entries and Assumption 4.2.2

allows ξ to be split into several independent blocks with unknown in advance dependency

structure within the entries of a single block. This is often the case for the portfolio selection

problem where we may treat A as the factor loading matrix with a low rank (i.e., p� n),

and η as the factor vector.

Upper Bound I. Let us denote the candidate solution of (D) yielded by the optimization

step as (û, v̂; ŷ). First of all, we compute the empirical mean ξ̄ of the training samples, the

function value f(û, ξ̄) and a subgradient g(û, ξ̄) ∈ ∂ξf(û, ξ̄) at this point. Invoking concavity

of f(û, ·), we have

f(û, ξ∗) ≤ f(û, ξ̄) + g(û, ξ̄)T (ξ∗ − ξ̄).

We see that in order to upper-bound f(û, ξ∗), it suffices to upper-bound the linear form of

ξ∗ in the right of the formula. To this end, we simply define

f̄N := f(û, ξ̄) +
1

N

N∑
j=1

g(û, ξ̄)T (ξj − ξ̄), (4.2.12)

where ξ1, . . . , ξN are testing samples, which are independent from ξ̄. We immediately arrive

at the following results.
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Proposition 4.2.5. Under Assumption 4.2.1, let Ω =
√
gT0 AQA

T g0, where g0 = g(û, ξ̄),

then

Prob

(
f(û, ξ∗) ≥ f̄N +

γΩ√
N

)
≤ exp

{
−γ

2

2

}
, ∀γ > 0. (4.2.13)

Proof. First of all, by concavity of f(u, ξ) in ξ we have

f(û, ξ∗)− f̄N ≤
1

N

N∑
j=1

gT0 (ξj − ξ∗). (4.2.14)

Note that by definition, for any j, ξj − ξ∗ ∼ SG(AQAT ). From the above properties of

subgaussian random vectors, we have 1
N

∑N
j=1(ξj − ξ∗) ∼ SG(AQAT /N). Invoking the

inequality (4.2.11) with β = g0, we get

Prob

 1

N

N∑
j=1

gT0 (ξj − ξ∗) ≥ t

 ≤ exp

{
− t

2N

2Ω2

}
.

Setting t = γΩ/
√
N and invoking (4.2.14), we get the desired result.

Proposition 4.2.6. Under Assumption 4.2.2, assume that A belongs to the uncertainty set

S = {A : ||Ai||2 ≤ ρ,∀i = 1, . . . , p}, where Ai stands for the i-th column of A. Then ∀γ > 0,

Prob

f(û, ξ∗) ≥ f̄N +
γρ
√∑r

j=1 ‖g
(j)
0 ‖22Tr(Q(j))
√
N

 ≤ exp

{
−γ

2

2

}
, (4.2.15)

where g0 = g(û, ξ̄), and g
(j)
0 are the consecutive blocks, of sizes p1, ..., pr, in g0, and Q(j) are

the consecutive pj × pj diagonal blocks in the diagonal matrix Q.

Proof. The proof follows directly from Proposition 4.2.5 and the observation that

max
A:‖Ai‖2≤ρ

gT0 AQAg0 ≤ max
A:‖Ai‖2≤ρ

r∑
j=1

Tr(A(j)Q(j)A(j)T )‖g(j)
0 ‖

2
2 ≤ ρ

r∑
j=1

Tr(Q(j))‖g(j)
0 ‖

2
2.

In the sequel, we provide another simple strategy to obtain upper bounds when function

f(u, ξ) possesses appropriate structure.
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Upper Bound II. We assume that f(u, ξ) admits a K-simple saddle point representation,

i.e.,

f(u, ξ) = min
v:(u,v)∈X

max
y∈Y

Φξ(u, v; y)

where Φξ(u, v; y) is bilinear

Φξ(u, v; y) = 〈y, Pξu+Qξv +Rξ〉+ 〈pξ, u〉+ 〈qξ, v〉+ cξ

with Pξ =
∑

i ξiPi +P0, Qξ =
∑

i ξiQi +Q0, Rξ =
∑

i riξi + r0, pξ = Pξ+ p0, qξ = Qξ+ q0,

cξ = cT ξ + c0 that are all affine in ξ with matrices Pi, Qi, ri, P,Q, c of proper dimensions.

Let us denote the candidate solution to (D) produced by the mirror descent SA algorithm

by (û, v̂; ŷ), and consider the following approximation of f(û, ξ∗):

F (û, v̂) := max
y∈Y
〈y, Pξ∗ û+Qξ∗ v̂ +Rξ∗)︸ ︷︷ ︸

β∗

〉+ 〈pξ∗ , û〉+ 〈qξ∗ , v̂〉+ cξ∗︸ ︷︷ ︸
α∗

.

Note that F (û, v̂) ≥ f(û, ξ∗).

Let (E∗, ‖ · ‖∗) be the dual space to (E, ‖ · ‖), where ‖ · ‖ is some norm. Assuming

Y ⊆ {y ∈ E∗y : ‖y‖∗ ≤ R} for some R > 0, we have F (û, v̂) ≤ R‖β∗‖ + α∗, where β∗ and

α∗ are defined above. Noting that both α∗ and β∗ are affine in ξ∗, we can construct their

unbiased estimates using the testing samples,

α̂N =
1

N

N∑
j=1

(
〈pξj , û〉+ 〈qξj , v̂〉+ cξj

)
β̂N =

1

N

N∑
j=1

(
Pξj û+Qξj v̂ + rξj

)
where ξ1, . . . , ξN are i.i.d. with E[ξj ] = ξ∗,∀j. Let us set

f̄N := α̂N +R‖β̂N‖. (4.2.16)

We clearly have

f(û, ξ∗) ≤ F (û, v̂) ≤ α∗ +R‖β∗‖ ≤ f̄N + |α∗ − α̂N |+R‖β∗ − β̂N‖. (4.2.17)

Essentially, we would like to bound from above the two terms |α∗− α̂N | and ‖β∗− β̂N‖.
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Denoting ζj = ξj − ξ∗,∀j, so that E[ζj ] = 0, we have

α̂N − α∗ =
1

N

N∑
j=1

〈ζj , P T û+QT v̂ + c〉 :=
1

N

N∑
j=1

〈ζj , b(û, v̂)〉,

β̂N − β∗ =
1

N

N∑
j=1

m∑
i=1

(ζj)i(Piû+Qiv̂ + ri) :=
1

N

N∑
j=1

B(û, v̂)ζj ,

where the i-th column of matrix B(û, v̂) is the vector Piû + Qiv̂ + ri. Let ξ ∼ P , note

that when (ξ − ξ∗) follows some subgaussian distribution as in Assumption 4.2.1 and 4.2.2,

the vector β̂N − β∗ is also subgaussian random vector. However, it is unclear how to get a

dimension-independent bound for the norm of a sum of independent subgaussian random

vectors.

In [46] and [57], the authors derive exponential bounds on the probability of large devia-

tions of random sums for some light tail distributions defined on finite-dimensional normed

spaces. We hereby revisit some of the important results established in these references.

Theorem 4.2.2 (see [46]). Let (E, ‖ · ‖) be κ-regular 2 , let {ζj}Nj=1 be a sequence of each

other zero mean random vectors from E such that

Ej−1

{
exp{‖ζj‖2σ−2

j }
}
≤ exp{1}, ∀j,

then

Prob

‖
N∑
j=1

ζj‖ ≥ [
√

2eκ+
√

2γ]

√√√√ N∑
j=1

σ2
j

 ≤ 2 exp{−γ2/64}.

For our purposes, we will focus on this set of “light-tail” distribution family for P .

Assumption 4.2.3. The space (E, ‖ · ‖) is a κ-regular, and ξ ∼ P satisfies:

E
{

exp{‖ξ − ξ∗‖2σ−2}
}
≤ exp{1}

for some σ > 0, where ξ∗ = E[ξ].

2An informal definition of this regularity is that the norm on the space can be approximated, within an
absolute constant factor, by a norm which is differentiable on the unit sphere with a Lipschitz continuous
gradient, formal definition can be found in [46]. For instance, when 2 ≤ q ≤ ∞, the space (Rd, ‖ · ‖q) is
κ-regular with κ ≤ min{q − 1, 2 ln(d)}.
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Let Ω1 = ‖b(û, v̂)‖∗, Ω2 = maxz:‖z‖=1 ‖B(û, v̂)z‖. Hence, we have

f(û, ξ∗) ≤ f̄N +
(Ω1 +RΩ2)

N
‖

N∑
j=1

ζj‖.

It immediately follows from the above large deviation results that

Corollary 4.2.2. Under Assumption 4.2.3, we have for all γ ≥ 0,

Prob

{
f̄N < f(û, ξ∗)−

σ(Ω1 +RΩ2)(
√

2eκ+
√

2γ)√
N

}
≤ 4 exp{−γ2/64}

When ‖ · ‖ is the Euclidean norm, we further have for all γ ≥ 1,

Prob

{
f̄N < f(û, ξ∗)−

σ(Ω1 +RΩ2)(
√

2κ+
√

2γ)√
N

}
≤ 2 exp{−γ2/3}.

Remark. So far, we have presented two constructive ways to build reliable upper bounds

on the function f(û, ξ∗), where û is the candidate solution yielded by the optimization

step of our procedure for the error-in-measurement optimization problem (P ), when the

underlying sampling distribution has light tail. It also makes sense to consider heavy tail

distributions (e.g. lognormal distribution), or even situations where we only have access to

the bounds of certain moments. In those situations, one might need to resort to some more

sophisticated resampling and estimation techniques such as jackknifing and bootstrapping,

but these extensions go beyond the scope of this Thesis.

4.2.5 Concluding Remarks.

In this section, we have introduced the notion of of an error-in-measurement optimization,

where we seek a feasible solution to a system of convex constraints fi(x,E[ξ]) ≤ 0, i ≤ I

with the data vector represented as the expected value E[ξ] of an unknown distribution from

which we can draw independent samples (“measurements”). A straightforward approach

to handling the situation would be to use a sample of measurements in order to build an

estimate ξ̂∗ of ξ∗ = E[ξ], plug this estimate into the constraints and to solve the resulting

“certain” – with known vector of parameters – system of constraints. A drawback of this

“plug in” approach is that it is not clear what should be the accuracy to which we need

to recover ξ∗ in order to get a good solution to the problem of interest. We propose
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an alternative approach, base on specific “saddle point” representations of the functions

fi(x, ξ), and develop a fully algorithmic calculus of these representations (which, in light of

this calculus, are a “common commodity”). With our approach, finding a feasible solution

to the feasibility problem of interest reduces to solving a convex-concave game for which

an unbiased stochastic first order oracle is available (it is readily given by measurements).

We suggest to find an approximate saddle point of the game by Mirror Descent Stochastic

Approximation, and develop a rigorously justified procedure allowing to validate the quality

of the resulting candidate solution to the problem of interest. Note that our validation

procedure is independent of how the candidate solution is obtained, and thus is applicable

when the “plug in” approach is used.

4.3 Convex Optimization with Indirect Noisy Observations

In the previous section , we have developed a saddle-point-based framework to solve convex

feasibility problems with uncertain data represented as the expectation of a distribution

from which we can draw samples, and thus – with the data allowing for direct unbiased

measurements. In this section we consider “indirect stochastic programming” – the situation

where direct measurement of unknown data is not allowed.

4.3.1 Indirect Stochastic Programming

The situation. Consider the situation as follows. We are given

• a signal space – a set Π,

• an observation space Ω, where Ω is a complete separable metric space, and a family

{Pπ(·)}π∈Π of Borel probability distributions on Ω parameterized by signals π ∈ Π,

• a control space – a convex set X ⊂ Rn, and a real-valued loss function Φ(x, π) :

X ×Π→ R which is convex in x ∈ X.

The problem we are interested in is as follows:

Given independent observations

ωt ∼ Pπ∗(·), t = 1, 2, ... (4.3.1)
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coming from an unknown π∗ known to belong to Π, we want to solve the opti-

mization problem

min
x∈X

Φ(x, π∗) (P[π∗])

This setting is essentially different from the one we have considered in Section 4.2.1. A

minor difference is that now we are speaking about solving a convex optimization problem

rather than a convex feasibility problem. More important differences are that now we do not

assume neither concavity in the unknown parameter, nor good saddle point representation,

nor the fact that we are allowed for direct, albeit noisy, observations of the parameter. Let

us illustrate our problem setting with two important examples first.

Example I (Affine Signal Processing) We want to recover the image B(π∗) of some

unknown signal π∗ ∈ Π ⊂ Rq under a given mapping π → B(π) : Π → Rk. Assume our

observations are ωt = Aπ∗ + ηt, where A is a given matrix, ηt are i.i.d. zero mean random

noise. We want to solve the quadratic optimization problem

min
x∈X

xTx− 2xTB(π∗)

where X is some convex set that contains B(Π).

Example II (Indirect Support Vector Machines) We want to learn a linear classifier

from observations corrupted by random noise. Specifically, we observe i.i.d. pairs ωt =

(st, ξt + ηt) ∈ Rp where (st, ξt) are sampled from unknown Borel probability distribution

π∗ on {1,−1} ×Rp−1, and ηt are random noises independent of (st, ξt) and sampled from

a partially known distribution. We wish to minimize the expected hinge loss with respect

to the uncorrupted data, namely to solve the stochastic optimization problem

min
x=[u;γ]∈X

E[s;ξ]∼π∗{max[1− s[uT ξ + γ], 0]}

where X ⊂ Rs ×R is a given convex set.

Note that both examples fall into the outlined Indirect Stochastic Programming setting.

In the second example, the unknown signal π∗ actually stands for a distribution. We

are going to refer this type of problems as indirect stochastic programming. Note that
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problem’s “parameter” π∗ (which, as the second example shows, could even be infinite

dimensional) is observed indirectly and in the presence of noise, which moves the problem

beyond the “immediate scope” of standard techniques of Stochastic Programming, like

Stochastic Approximation or Sample Average Approximation. Our goal is to develop an

approach which brings the problem into the scope of these techniques.

4.3.2 A General Approximation Framework

Let F be a finite dimensional linear subspace in the space of real-valued functions on Ω,

and let

X = {(f, x) ∈ F ×X :

∫
Ω
f(ω)Pπ(dω) ≥ Φ(x, π) ∀π ∈ Π}. (4.3.2)

We clearly have

Proposition 4.3.1. X is a convex set.

Proof. Suppose (f1, x1) ∈ X and (f2, x2) ∈ X , then for any λ ∈ [0, 1], we have ∀π ∈ Π,∫
Ω

[λf1 + (1− λ)f2](ω)Pπ(dω) = λ

∫
Ω
f1(ω)Pπ(dω) + (1− λ)

∫
Ω
f2(ω)Pπ(dω)

≥ λΦ(x1, π) + (1− λ)Φ(x2, π) [by definition of X ]

≥ Φ(λx1 + (1− λ)x2, π) [by convexity of Φ(x, π) in x]

which implies that X is convex.

As a result, the convex stochastic program

min
(f,x)∈X

F (f, x) := Eω∼pπ∗ [f(ω)] (S[π∗])

is a safe approximation of (P[π∗]): the x-component of a feasible solution (f, x) to the

approximation is feasible for the problem of interest (P[π∗]), and the value of the objective

of the approximating problem at (f, x) is an upper bound on the value of the “true” objective

at x. On the other hand, we can sample from the distribution Pπ∗(·), and thus in principle,

we can solve the approximating problem to a desired accuracy by Stochastic Approximation

[74, 72, 58] or by Sample Average Approximation (SAA), i.e. by minimizing the empirical

sample-based approximation of the true expectation.
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Trade-off between approximation, estimation, and optimization error With the

SAA approach, one solves the problem

min
(f,x)∈X

FN (f, x) :=
1

N

N∑
t=1

f(ωt) (SAA[π∗])

The excess error of this procedure can be decomposed into three terms:

E = Eapp + Eest + Eopt

an approximation error term that comes from the restriction of domain using F ; an estima-

tion error term that comes from Monte Carlo estimation; an optimization error term that

comes from the inaccuracy of solutions provided by optimization solvers given fixed time

budget. Observe that there is a delicate trade-off between these errors: when we enlarge

F , the approximation error decreases, while both the estimation and optimization errors

increase. In order to fully characterize the error of the outline approach, we have to address

the following questions

(i) (consistency): How to select F in order to recover an exact solution at least asymp-

totically, i.e., as N →∞ ?

(ii) (tractability): since the set X is represented by a semiinfinite system of linear con-

straints on f , a natural question is under what choices of F would this set be compu-

tationally tractable?

(iii) (efficiency): in order to ensure “good” consistency and tractability, we might need to

work with very large and complex domain X , which creates additional challenges for

SA and SAA. The question is to which extent we can circumvent these difficulties.

The above questions are highly challenging, and there seems to be no universal answers.

Our goal here is to investigate the outlined approach in a case-by-case manner, hoping to

shed some light on its potential in several specific applications.

4.3.3 Application I: Affine signal processing

Assume that Π is a compact set in some Rq, Ω = Rp, and our observations are

ωt = Aπ∗ + ηt, (4.3.3)
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where A is a given matrix, ηt are i.i.d. zero mean observation noises with known covariance

matrix H, and π∗ ∈ Π. Let our goal be to recover the image B(π∗) of π∗ under a given

mapping π 7→ B(π) : Π → Rk. In the sequel, we intend to use the parametric family of

quadratic in ω functions f , that is, we set

F =
{
f(ω) = ωTDω − 2ωTd+ δ : D ∈ Sp, d ∈ Rp, δ ∈ R

}
. (4.3.4)

4.3.3.1 Scalar case (k = 1)

We start with the case when B(·) is a real-valued function given by Fenchel-type represen-

tation

B(π) = min
x∈X

[
Φ(x, π) := πT [Rx+ r] + b(x)

]
(4.3.5)

where X is a convex set in some Rn and b(·) is convex on X. In this case computing

B(π∗) indeed reduces to solving the problem (P[π∗]), so that the optimal value in (S[π∗])

upper-bounds B(π∗). With F given by (4.3.4), the problem (S[π∗]) becomes:

ν(π∗) := min
(D,d,δ,x)∈Z

Eω∼pπ∗ [ω
TDω − 2ωTd+ δ] (4.3.6)

where

Z :=

(D, d, δ, x) :

x ∈ X,

πTATDAπ + Tr(DH)− 2πTATd+ δ

≥ πT [Rx+ r] + b(x) ∀π ∈ Π

 . (4.3.7)

Note that Z is nothing but the set X from (4.3.2) described in terms of x and the parameters

(D, d, δ) specifying our quadratic functions f rather than in terms of x and f , as in (4.3.2).

The parameterized by π constraints in (4.3.7) are nothing but the constraints in (4.3.2),

since with quadratic f(ω) = ωTDω − 2ωTd+ δ, one has

Eω∼pπ [f(ω)] =

∫
Ω
f(ω)Pπ(dω) = πTATDAπ + Tr(DH)− 2πTATd+ δ.

Given observations ω1, ω2, . . . , ωN , the sample average approximation (SAA) of problem

(4.3.6) becomes

νN (π∗) := min
(D,d,δ,x)∈Z

[Tr(DW )− 2w̄Td+ δ] (4.3.8)

where W = 1
N

∑N
i=1 ωtω

T
t , w̄ = 1

N

∑N
i=1 ωt.
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Exact Recovery and Consistency We first show that under mild assumptions, the

optimal objective value of (4.3.6) is not just an upper bound of B(π∗), but exactly equal to

B(π∗).

Proposition 4.3.2. When the observation scheme (4.3.3) is given by an invertible A, B(π∗)

can be exactly recovered by solving optimization problem (4.3.6), i.e. ν(π∗) = B(π∗).

Proof. Denote x∗ as the optimal solution to the problem (P[π∗]). Hence, x∗ ∈ X and

B(π∗) = (π∗)T (Rx∗ + r) + b(x∗).

Let D∗ = 0, d∗ = −1
2A
−1(Rx∗ + r), δ∗ = b(x∗). It is easily seen that (D∗, d∗, δ∗, x∗) ∈ Z is

a feasible solution to (4.3.6). Moreover,

Eω∼pπ∗ [ω
TD∗ω − 2ωTd∗ + δ∗] = (π∗)T (Rx∗ + r) + b(x∗) = B(π∗).

So ν(π∗) ≤ B(π∗). Recalling that by construction ν(π∗) always is an upper bound on B(π∗),

the conclusion of Proposition follows.

Remark. The above proposition holds true even if F is set to be the family of linear

functions of ω. The assumption that A is invertible can be somehow relaxed, but we prefer

to omit the related refinements.

Tractability The set Z clearly is convex, but not necessarily is computationally tractable.

However, in many cases, we have at our disposal a computationally tractable convex subset

Z+ of Z, and we can associate problem (4.3.6) with Z+ in the role of Z. Let us look at

some examples.

A. Π is given by a single strictly feasible quadratic inequality;

In this case, the set Z is computationally tractable.

B. Π is a computationally tractable convex set;

In this case, the set Z+ = {(D, d, δ, x) ∈ Z : D � 0} is computationally tractable.
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C. Π is given by a system of quadratic in π inequalities Sj(π) ≤ 0, 1 ≤ j ≤ J .

In this case, the set

Z+ =

(D, d, δ, x) : ∃t, {λi ≥ 0} :

x ∈ X, t ≥ b(x)

πTATDAπ − πT [2ATd+Rx+ r] +
∑

j λjSj(π)

+[Tr(DH) + δ − t] ≥ 0, ∀π ∈ Rq


(4.3.9)

clearly is contained in Z and is computationally tractable, since the semi-infinite con-

straint in the description of Z+ reduces to a Linear Matrix Inequality in variables

D, d, δ, x, t, {λi}. Assume that the quadratic inequalities specifying Π are :

Sj(π) := πTSπ + 2sTj π + σj ≤ 0, 1 ≤ j ≤ J. (4.3.10)

Then, the above set Z+ reads

Z+ =


(D, d, δ, x) :

∃t, {λi ≥ 0} such that x ∈ X, t ≥ b(x)
ATDA+

∑
j
λJj=1Sj −ATd+ Rx+r

2 +
J∑
j=1

λjsj

−dTA+ (Rx+r)T

2 +
J∑
j=1

λjs
T
j

J∑
j=1

λjσj + Tr(DH) + δ − t

 � 0


(4.3.11)

In particular, when X and epigraph of b(x) are semidefinite representable, the SAA

problem (4.3.8) with Z+ in the role of Z is a semidefinite program.

D. Well-structured case where Π, X, and epigraph of b(x) are conic representable

In this case, the set Z+ = {(D, d, δ, x) ∈ Z : D = 0} is given by a system of conic

constraints.

Assume that we are in the well-structured case, that is,

• Π is given by conic representation

Π = {π : ∃uπ : Pππ +Qπuπ − σπ ∈ Kπ} (4.3.12)

• Φ(x, π) = πT [Rx+ r] + b(x), where the epigraph of b(x) is given by conic represen-

tation

t ≥ b(x) ⇔ ∃uσ : tp+ Pbx+Qbub − σb ∈ Kb (4.3.13)
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• X is given by conic representation

X = {x : ∃ux : Pxx+Qxux − σx ∈ Kx}. (4.3.14)

where Kπ,Kb,Kx are regular cones. The set Z+ = {(D, d, δ, x) ∈ Z : D = 0} is given

by

Z+ =


(D, d, δ, x) : ∃λπ, ub, t, ux :

Pxx+Qxux − σx ∈ Kx

tp+ Pbx+Qbub − σb ∈ Kb

P Tπ λπ − (2ATd+Rx+ r) = 0

δ − λTπσπ − t ≥ 0

QTπλπ = 0, λπ ∈ K∗π


(4.3.15)

We see that in the well-structured case, the SAA problem (4.3.8) in this case becomes

a conic program.

4.3.3.2 Quadratic case (k > 1).

We consider the case when we want to recover the image B(π∗), where B(·) is a vector of

quadratic mappings. Let us set

Φ(x, π) = xTx− 2xTB(π),

and let X contain the image of Π under the mapping B(·). In this situation, (P[π∗]) is,

essentially, the problem of the best, in ‖ · ‖2, recovery of B(π∗) via observations ωt =

Aπ∗ + ηt. The only optimal solution to (P[π∗]) is exactly the quantity of interest B(π∗),

and minx∈X Φ(x, π∗) = 0. We also have

Φ(x, π∗)−min
x∈X

Φ(x, π∗) = ‖x−B(π∗)‖22.

The x-components of the solutions obtained by processing (S[π∗]) can be treated as es-

timates of B(π∗). Restricting ourselves, same as above, to the family F of all quadratic

functions on Ω = Rp we end up with problem (S[π∗]) and its SAA differing from (4.3.6),

resp., (4.3.8) only in problems’ domain Z. Specifically, now we have
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ν(π∗) := min
(D,d,δ,x)∈Z

Eω∼pπ∗ [ω
TDω − 2ωTd+ δ] (4.3.16)

where Z :=

(D, d, δ, x) :

x ∈ X,

πTATDAπ + Tr(DH)− 2πTATd+ δ

≥ xTx− 2xTB(π) ∀π ∈ Π

 (4.3.17)

Exact Recovery and Consistency In our present situation, we still can show that

under appropriate assumptions, solving (4.3.6) recovers the vector B(π∗) we are looking

for.

Proposition 4.3.3. When the observation scheme (4.3.3) is given by an invertible A and

B(·) is a quadratic vector-valued mapping, the x-component of any optimal solution to

(4.3.16) is equal to B(π∗).

Proof. Denote by x∗ an optimal solution to the problem (P[π∗]). We know that x∗ = B(π∗)

and Φ(x∗, π∗) = −‖B(π∗)‖22. W.l.o.g, let us assume B(·) = [B1(·), . . . , Bn(·)] where n =

dim(X), and

Bi(π) =
1

2
πTRiπ + bTi π + ci, 1 ≤ i ≤ n.

Set

D∗ = −A−T (
∑n

i=1 x
∗
iRi)A

−1,

d∗ = A−T
∑n

i=1 x
∗
i bi,

δ∗ = (x∗)Tx∗ − 2
∑n

i=1 x
∗
i ci − Tr(D∗H).

We can immediately see that (D∗, d∗, δ∗, x∗) ∈ Z is a feasible solution to (4.3.16). Moreover,

Eω∼pπ∗ [ω
TD∗ω−2ωTd∗+ δ∗] = (π∗)TATD∗Aπ∗+Tr(D∗H)−2(π∗)TATd∗+ δ∗ = Φ(x∗, π∗)

So ν(π∗) = Φ(x∗, π∗) and (D∗, d∗, δ∗, x∗) is indeed an optimal solution to (4.3.16). Moreover,

when (D̄, d̄, δ̄, x̄) is an optimal solution to (4.3.16), we have

Φ(x∗, π∗) = Eω∼pπ∗ [ω
T D̄ω − 2ωT d̄+ δ̄] ≥ x̄T x̄− 2x̄TB(π∗)

where the first equality is due to optimality and the second inequality is due to feasibility.

Hence, x̄ = B(π∗).
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Remark. When B(·) is affine, the above proposition still holds if F is set to be the family

of linear functions of ω.

Tractability The set Z clearly is convex, but not necessarily is computationally tractable.

However, taking into account that B(·) is quadratic, in many cases, we indeed have at our

disposal a computationally tractable convex subset Z+ of Z, and we can associate problem

(4.3.6) with Z+ in the role of Z. Here are examples:

A. Π is given by a single strictly feasible quadratic inequality;

In this case, the set Z is computationally tractable.

B. Π is a computationally tractable convex set and B(·) is affine

In this case, the set Z+ = {(D, d, δ, x) ∈ Z : D � 0} is computationally tractable.

C. Π is given by a system of quadratic in π inequalities Sj(π) ≤ 0, 1 ≤ j ≤ J .

In this case, the set

Z+ =

{
(D, d, δ, x) : ∃{λi ≥ 0} :

x ∈ X,

πTATDAπ − 2πTATd− 2xTB(π) +
∑

j λjSj(π)

+[Tr(DH) + δ]− xTx ≥ 0, ∀π ∈ Rq

}

(4.3.18)

is computationally tractable and the semi-infinite constraint in the description of Z+

reduces to a Linear Matrix Inequality in variables D, d, δ, x, {λi}.

D. Well-structured case where Π and X are conic representable and B(·) is affine

In this case, the set Z+ = {(D, d, δ, x) ∈ Z : D = 0} is given by a system of conic

constraints.

4.3.3.3 Special case

Consider the situation where we want to estimate the value Bπ∗ of an affine mapping B(·)

via a single observation ω = Aπ∗ + η where π∗ ∈ Π, and Π is a computationally tractable

convex set. To save notation, we take A = I (when KerA = {0}, the general case can be
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reduced to this special one by redefining Π and B); as explained above, we restrict ourselves

with quadratic functions

f(ω) = ωTDω − 2dTω + δ

Denoting by H the covariance matrix of η, the semi-infinite constraints in Z reduces to

πTDπ − 2dTπ + δ + Tr(DH) ≥ xTx− 2xTBπ ≥ 0 ∀π ∈ Π,

that is,

δ ≥ xTx− Tr(DH) + max
π∈Π

[
2[dTπ − xTBπ]− πTDπ

]
]. (4.3.19)

The single-observation Sample Average Approximation of (S[π∗]) reads

min
(D,d,δ,x)∈Z

{
ωTDω − 2dTω + δ

}
(4.3.20)

where Z is a convex subset of the domain specified by (4.3.19). Let us set Z = Zρ,r,Q with

Zρ,r,Q =

(D, d, δ, x) :
∃(e, ‖e‖2 ≤ ρ) : d = QT e, 0 � D, Tr(DH) ≤ r

δ ≥ xTx− Tr(DH) + max
π∈Π

[
2[dTπ − xTBπ]− πTDπ

]
 ,

where Q is some nonsingular matrix and ρ, r ≥ 0. In this case (4.3.20) reads

min
D,e,x

{
max
π∈Π

[
−2(QT e)Tω + xTx− Tr(DH) + 2(QT e)Tπ − 2xTBπ + ωTDω − πTDπ

]
:

‖e‖2 ≤ ρ, 0 � D,Tr(DH) ≤ r
}

= max
π∈Π

{
min
D,e,x

[
2eTQ[π − ω] + xTx− 2xTBπ + ωTDω − πTDπ − Tr(DH) :

‖e‖2 ≤ ρ, 0 � D,Tr(DH) ≤ r
]}

= max
π∈Π

{
− 2ρ‖Q(π − ω)‖2 − πTBTBπ

+ min
D

{
ωTDω − πTDπ − Tr(DH) : 0 � D,Tr(DH) ≤ r

}}
.

Passing in the inner minimization problem from variable D to the variable E = H1/2DH1/2,

this problem becomes

min
E

{
Tr
(
E [H−1/2ωωTH−1/2 −H−1/2ππTH−1/2 − I]︸ ︷︷ ︸

W (π)

)
: 0 � E,Tr(E) ≤ r

}
(4.3.21)

Assuming dimω > 2, the matrix W (π) has negative minimal eigenvalue, and therefore the

optimal value in (4.3.21) is rλmin(W (π)), where λmin(·) and λmax(·) are the minimal and
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the maximal eigenvalues of a symmetric matrix. From our computation it follows that with

Z = Zρ,r,Q, the x-component of the optimal solution to (4.3.20) (this is the only entity we

are actually interested in – this is the estimate of Bπ∗ yielded by our construction) can be

found as follows:

Given ω = π∗ + η, we find

π[ω] = argmin
π∈Π

{
πTBTBπ + 2ρ‖Q(π − ω)‖2 + r

[
λmax(H−1/2[ππT − ωωT ]H−1/2) + 1

]}
and take

x = x[ω] = Bπ[ω]

as our estimate of Bπ∗.

Note that with Q, r fixed and as ρ→∞, π[ω] converges to

π∞(ω) = argmin
π∈Π

‖Q(π − ω)‖2,

and the limiting, ρ→∞, estimate of Bπ∗ is as follows: we build the estimate

π̂(ω) = argmin
π∈Π

‖Q(ω − π)‖2

of π∗ and take Bπ̂(ω) as the estimate of Bπ∗. We see that at least the limiting, ρ → ∞,

case of our estimate is not completely senseless. In actual implementation, the parameters

ρ, r and Q of our construction can be selected experimentally.

Numerical illustration. We run a simple experiment to illustrate how the approach

works on the situation just described. In the experiment, we first generate a random signal

π∗ ∈ Π = {π ∈ Rd : πTπ ≤ 1}. We then generate N observations ωj = Aπ∗ + ηj , j =

1, . . . , N , where A = Diag(1−α, 2−α, . . . , d−α) with α = 5, and {ηj} are i.i.d. sampled

from normal distribution N (0, σ2I) with σ = 0.2. Our goal is to estimate Bπ∗, where

B = Diag(1−β, 2−β, . . . , d−β) with β = 1.

The first option to estimate Bπ∗ is to use the maximum likelihood estimator. Let ω̄

denote the sample mean 1
N

∑N
j=1 ωj , so that ω̄ ∼ N (Aπ∗, σ

2

N I). Finding the maximum
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Figure 11: Comparison between MLE and SAA methods

likelihood estimator π̂MLE of π∗ reduces to solving the optimization problem,

π̂MLE := argmin
π∈Rd:πT π≤1

‖Aπ − ω̄‖22. (4.3.22)

Therefore, we can estimate Bπ∗ by Bπ̂MLE.

Instead, our approach estimates Bπ∗ by solving Sample Average Approximation as

follows:

minx,t,D,d,δ,λ Tr(DW )− 2w̄Td+ δ

s.t.

 ATDA+ λI −ATd+BT y

−dTA+ yTB δ + σ2Tr(D)− t− λ

 � 0

t ≥ xTx

D � 0, λ ≥ 0

Tr(D) ≤M1

‖d‖2 ≤M2

(4.3.23)

where W := 1
N

∑N
j=1 ωjω

T
j , and the bounds M1,M2 are selected experimentally. The opti-

mal solution x serves as our estimate of Bπ∗.

In our experiments, we solve the two optimization problems (4.3.22) and (4.3.23) using

CVX toolbox [35] in Matlab. We repeat the experiments for 10 instances and report in

Figure 11a the averages of the relative estimation error, i.e. ‖x − Bπ∗‖2/‖Bπ∗‖2, along

with the variances when the number of observation increases from 24 to 215. One can see
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that the relative error of the estimator obtained by our SAA approach is much smaller than

that of the MLE estimator, and the discrepancy is more significant when the number of

observations is limited.

4.3.4 Application II: Indirect Support Vector Machines

Assume we observe i.i.d. pairs

ωt = (st, ξt + ηt) ∈ Rp,

where (st, ξt) are sampled from unknown Borel probability distribution π∗ on {1,−1}×Rp−1,

and ηt are independent of (st, ξt) and are sampled from a partially known distribution Q

known to have zero mean and given covariance matrix H. Our goal is to solve the SVM-type

Stochastic Programming problem

min
x=[u;γ]∈X

E[s;ξ]∼π∗{max[1− s[uT ξ + γ], 0]} (SVM)

where X ⊂ Rs ×R is a given convex set.

Assume that we know in advance that with [s; ξ] ∼ π∗, the marginal distribution of ξ is

supported on a given compact subset Ξ of Rp−1. Specifying Π as the set of all probability

distributions on {−1, 1} × Ξ and setting

Φ(x = [u; γ], π) = E[s;ξ]∼π{max[1− s[uT ξ + γ], 0]}

(SVM) takes the form of (P[π∗]); note that in the case in question Pπ is the distribution of

[s; ξ + η] induced by [s; ξ] ∼ π ∈ Π and η ∼ Q independent of (s, ξ).

By reasons to be explained below, we intend to use the setup

Y =

y =

 Ds ∈ Sp−1, ds ∈ Rp−1, δs ∈ R, {µsi ≥ 0}i∈I ,

αs ∈ Rp−1, βs ∈ Rp−1, as ∈ R, bs ∈ R


s=±1

 (a)

f(y, ω = [s; ζ]) = ζTDsζ − 2dTs ζ + δs +
∑

i µsi exp{χTi ζ}+ max[as + αTs ζ, bs + βTs ζ] (b)

(4.3.24)

where I is a given finite set and χi ∈ Rp−1, i ∈ I, are given vectors. Assume that we know

a function a(z) ≥ 1 such that

Eη∼Q{exp{zT η}} ≥ a(z) ∀z
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Then for f given by (4.3.24.b), the conditional, [s; ξ] given, expectation of f(y, [s; ξ + η])

satisfies

Eη∼Q{f(y, [s; ξ + η])}

≥ ξTDsξ + Tr(DsH)− 2dTs ξ + δs +
∑

i µsia(χi) exp{χTi ξ}+ max[as + αTs ξ, bs + βTs ξ]

(since Eη{max[as+α
T
s [ξ+η], bs+β

T
s [ξ+η]]} ≥ max[as+α

T
s ξ, bs+β

T
s ξ] by Jensen’s inequality

and due to the fact that η is with zero mean). It follows that in order to ensure (4.3.2), it

suffices to impose on the collection y described in (4.3.24.a) and x = [u; γ] the constraint

(x, y) ∈ Z̃, with Z̃ given by

Z̃ =

{
(x = [u; γ], y = {Ds, ds, δs, {µsi ≥ 0}i∈I , αs, βs, as, bs}s=±1) :

∀(ξ ∈ Ξ, s = ±1) :



ξTDsξ + Tr(DsH)− 2dTs ξ + δs +
∑

i µsia(χi) exp{χTi ξ}

+ max[as + αTs ξ, bs + βTs ξ] ≥ 1− s[uT ξ + γ]

ξTDsξ + Tr(DsH)− 2dTs ξ + δs

+
∑

i µsia(χi) exp{χTi ξ}+ max[as + αTs ξ, bs + βTs ξ] ≥ 0

}

(4.3.25)

Unfortunately, Z̃ hardly is convex (since its cross-section by a plane where all the variables

except for αs, as, βs, bs are fixed seems to be a nonconvex set in the space of (αs, βs, as, bs)).

We, however, can build an inner convex approximation Z of Z̃, specifically,

Z =

{
(x = [u; γ], y = {Ds, ds, δs, {µsi ≥ 0}i∈I , αs, βs, as, bs}s=±1) :

∀(ξ ∈ Ξ, s = ±1) :



ξTDsξ + Tr(DsH)− 2dTs ξ + δs +
∑

i µsia(χi) exp{χTi ξ}

+[as + αTs ξ] ≥ 1− s[uT ξ + γ]

ξTDsξ + Tr(DsH)− 2dTs ξ + δs +
∑

i µsia(χi) exp{χTi ξ}

+[bs + βTs ξ] ≥ 0

}

(4.3.26)

Observe that Z is convex. Besides this,

• The set Z+ of all collections (x, y) ∈ Z with D � 0 is computationally tractable,

provided Ξ is a computationally tractable convex compact set;

• When I = ∅, Z is computationally tractable, provided Ξ is given by a single strictly

feasible quadratic inequality, and
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• Z admits a computationally tractable convex inner approximation Z+, provided Ξ

is a computationally tractable convex set given by a system of quadratic inequalities

Sj(ξ) ≤ 0, 1 ≤ j ≤ J . The approximation is

Z+ =

{
(x = [u; γ], y = {Ds, ds, δs, {µsi ≥ 0}i∈I}s=±1, αs, βs, as, bs}s=±1) :

∃

 ps ∈ Rp−1, qs ∈ Rp−1, cs ∈ R, ds ∈ R,

{λsj ≥ 0, νsj ≥ 0}Jj=1


s=±1

:

∀(s = ±1, ξ ∈ Rp−1) :

ξTDsξ + Tr(DsH)− 2dTs ξ + δs + [as + αTs ξ] + s[uT ξ + γ]− 1

+
∑

j λsjSj(ξ) ≥ pTs ξ + cs,∑
i λsia(χi) exp{χTi ξ}+ pTs ξ + cs ≥ 0,

ξTDsξ + Tr(DsH)− 2dTs ξ + δs + [bs + βTs ξ]

+
∑

j νsjSj(ξ) ≥ qTs ξ + ds,∑
i λsia(χi) exp{χTi ξ}+ qTs ξ + ds ≥ 0.

}

(note that all semi-infinite constraints here are efficiently verifiable).

Comment. Note that for every convex function f([s; ζ]) we have

Eη{f([s; ξ + η])} ≥ f([s; ξ])

due to Jensen’s inequality and the fact that η is with zero mean. As a result, we have

E([s;ξ],η)∼P×Q{f([s; ξ + η])} ≥ E[s;ξ]∼P {f([s, ξ])},

so that the Stochastic Programming program

min
x=[u;γ]

E([s;ξ],η)∼P×Q
{

max[1− s[uT (ξ + η) + γ], 0]
}

which involves the expectation over our actual random observation is a safe approximation

to the problem of interest (SVM). It is immediately seen that the safe approximation we

have proposed in the main body of this section is less conservative than the one we have

just outlined. The “added flexibility” stems from incorporating into the family f(y, [s; ζ]),

s ∈ {−1, 1}, functions φs(ζ) for which we can say something “substantial” about the re-

lation between φs(ζ) and Eη∼Q{φs(ζ + η)}, specifically, something more substantial than
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what is said by Jensen’s inequality in the case of convex φs. The simplest examples here

are quadratic functions and exponents exp{χT ζ}, and this is what we use in (4.3.24) on

the top of convex piecewise linear functions (on a closest inspection, just two pieces turn

out to be enough). “Convexity considerations” do not forbid making the coefficients of the

quadratic component of f “variable,” that is, part of the variable y. Unfortunately, these

considerations prevent us from making the parameter(s) χ of the exponent(s) to be “vari-

able” as well. Instead, we fix a collection of χi’s and make variable the weights µsi’s of the

exponents exp{χTi ζ} in f . In actual implementation, the collection of χi’s could be built

incrementally: we start with the empty collection of exponents and solve the associated safe

approximation of (SVM), thus ending up with some x = [u; γ]. We then make ±u the first

pair of our χ’s, get a solution [u′; γ′] to the new safe approximation of (SVM) and add the

vectors ±u′ to our collection of χ’s, and so on.

4.3.5 Concluding Remarks.

In this section, we have introduced the notion of Indirect Stochastic Programming problem,

i.e. convex problem in the form, minx∈X Φ(x, π∗), where π∗ is unknown but admits indirect

noisy observations sampled from some distribution Pπ∗(·) parametrized by π∗. In contrast

to the previous section, we make no structural assumptions on the function Φ or the dis-

tribution Pπ∗(·). We propose a general approximation scheme amenable to algorithms such

as Stochastic Approximation. We demonstrate on several examples that we can build safe

and computationally tractable approximations of target problems and process them with

SA or SAA efficiently. We also demonstrate experimentally, albeit at this point in time

very preliminary, the practical potential of our approach as applied to the affine signal

processing.

4.4 Final Comments and Future Work

The outlined approaches and discussions make it clear that our effort towards error-in-

measurement optimization is just the beginning. Time limitations imposed on our research

for this part prevent us from extensive and in-depth investigation of the numerous challenges

arising here, we consider these challenges as a subject of future research where we intend
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to address the issues as follows.

Statistical behavior of estimators. Since our approximation scheme always renders a

convex stochastic programming problem, the optimization error is more or less well under-

stood. It remains interesting to analyze the statistical error of the estimator yielded by the

outlined approach. We have shown that consistency does take place in several cases in the

affine signal processing. However, in general setups, especially in high-dimensional regime,

it is well-known that consistent estimation when number of observations is far less than

the dimensional of unknown signal, is nearly impossible unless additional structure such as

sparsity of the signal is postulated. Hence, it remains interesting to incorporate sparsity

into our framework into our framework and develop consistency results for more general

setups, and/or to come up with reasonable non-asymptotic bounds on the statistical error.

In [53], the authors show that in the context of high-dimensional sparse linear regression

with corrupted data, the statistical error of the estimator obtained from some nonconvex

optimization enjoys the same scaling as the minimax rates for the classical cases of perfectly

observed and independently sampled observations. It would be interesting to understand

whether our approach, based on convex programming and thus “computationally friendly,”

approach, could achieve similar results.

Extension to variational inequalities and discrete time dynamic programming.

While the problems we focus on so far are in the form of convex minimization problems,

minx∈X Φ(x, π∗), it makes sense to extend this to other problems with convex structure,

e.g. variational inequalities,

Find x∗ ∈ X : 〈F (x, π∗), x− x∗〉 ≥ 0, ∀x ∈ X,

where π∗ is unknown but admits observations sampled from some distribution Pπ∗ . Model

uncertainty has been a major concern in many recent studies in stochastic modeling, e.g.

portfolio selection with discrete decision epochs, and inventory control problems. It would

be interesting to extend our framework further to cover dynamic settings as well. It would

also be interesting to see connections with and comparisons to (distributionally) robust
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optimization as discussed in a number of papers, e.g. [51, 29, 84].

Privacy learning, and other practical applications. The most natural application of

the indirect stochastic programming, is perhaps, privacy learning, which has received enor-

mous attention in the past decade (see, e.g., [1, 82] and references therein). Due to privacy

considerations, data are artificially corrupted before becoming available for processing. As

a result, inferences from the available data become in many cases an indirect stochastic pro-

gramming problem. In fact, in a wide spectrum of real-world applications, such as medical

tests, remote sensing, bioinformatics, chemical process engineering, data are usually sub-

ject to measurement errors due to intrinsic physical limitations, prohibitive costs or hard

constraints. In our future study, we would like to investigate such real application-driven

examples and investigate on these examples the applied potential of the approaches we have

proposed.
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