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SUMMARY 
 

Network emulation has been widely used to aid in the development and evaluation of 

real-time applications. Many of today’s applications and protocols need to be tested and 

evaluated in large scale network environments such as the Internet, which requires 

emulation tools that meet the requirements of scale, accuracy, timeliness. Due to 

physical resource constraints in network emulators, existing emulation tools fail to meet 

these requirements as they are either limited to small and static networks, use simplified 

network models, or fail to deliver timely emulation results. If more physical resources are 

devoted to network emulation by utilizing high performance computing facilities, the 

accuracy and scalability of network emulation can be greatly improved. However, for 

many users, high performance computing facilities may not be readily available in a local 

laboratory environment, and co-locating application code with a remote high 

performance computing facility may be cumbersome and inconvenient.  

 

This thesis proposes a network emulation approach called ROSENET (RemOte SErver-

based Network EmulaTion) that utilizes a distributed server-based architecture in which 

local low-fidelity emulators provide real-time QoS predictions to distributed applications, 

coupled with a remote large scale high-fidelity simulator that continuously updates and 

calibrates the local low-fidelity emulators. A library-based modeling approach based on 

online simulation data collection is proposed and a system identification modeling 

technique is presented. Experimental results examining emulation end-to-end delay and 

loss show that ROSENET provides a promising approach to network emulation 



 xiii 

supporting accuracy and scale while meeting real-time constraints. Challenges faced in 

applying ROSENET to real world applications are addressed through two case studies 

including applying synthetic workload on DARPA’s NMS network topology for large 

scale network simulation and a contemporary real-time distributed VoIP application 

Skype. 

 



 1 

1 INTRODUCTION 
 

1.1 Background 

 

Figure 1: Experiment Techniques 

Experimental techniques used in the design and validation of network applications 

include live network testing, simulation, and emulation, as shown in Figure 1. Live 

network testing allows researchers to experiment with new services directly in the real 

network. PlanetLab [1] is an example of such a network testbed operating over wide 

geographical distances. This approach tests the applications under realistic conditions, but 

has the problem that controlled experiments cannot be easily performed and the 

experiments are not repeatable. 

 

Simulation [2] is the process of exercising a model to characterize the behavior of the 
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modeled entity process or system over time. Computer simulation is a simulation that 

uses a computer program to model the behavior of a physical system over time. 

Simulations are widely used to analyze systems such as communication networks, 

transportation systems, electronic systems, and manufacturing system, to mention a few. 

A simulation of a system can be performed at different levels of fidelity using models 

that characterize the system using different abstractions. 

 

According to [3], Emulation is the process by which a device is built to work like 

another. In the most general sense, an emulator duplicates (provides an emulation of) the 

functions of one system with a different system, so that the second system appears to 

behave like the first system. Unlike a simulation, emulation does not attempt to precisely 

model the state of the device being emulated; it only attempts to reproduce its behavior.  

 

In the scope of this thesis, Emulation refers to the process that real or physical systems, 

which can be software, hardware, or applications, interact with virtual systems which are 

models that characterize the behavior of a modeled entity process or system. Under this 

context, the main difference between simulation and emulation is that emulation requires 

real-time interactions between different hardware and software modules while simulation 

may not support direct execution of real world applications. 

 

Network simulation and emulation are two of the most commonly used tools to test, 

design, and validate network protocols and applications. Network simulation uses 

software to simulate the behavior of the network. It allows users to select an appropriate 
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level of abstraction. Network simulators provide flexibility in that different types of 

networks can be modeled. On the other hand, network emulation provides a test 

environment that interacts with real world software or hardware systems. The network 

emulator routes live network traffic generated from real world systems and applies the 

modeled network’s QoS such as delay and loss on the traversing traffic flow. Using 

network emulation, real hosts can interact with a virtual network that is modeled. In that 

sense, network emulation can also be defined as a real time simulation since the 

simulation interacts with live traffic.   

 

Compared with experimentation over a real wide area network, emulation environments 

are easier to configure. Further, applications can be co-located in a single facility, 

eliminating the need to have physically distributed computing facilities and wide area 

networks, and simplifying debugging. Lastly, network emulators allow researchers to test 

their applications and protocols in network topologies and conditions that are sometimes 

hard to achieve in real network environments.  

 

In order to interact with real world hosts and applications, a network emulator must 

execute at least as fast as the actually system or at real-time, meaning the event occurring 

in the emulation is paced to occur in synchrony with the interactions with outside 

applications. Network simulation tools may be used for emulation provided the network 

simulator is able to compute the required network characteristics in real time. The real-

time constraints, also referred to as timeliness, require that network emulators process 

events and deliver the results to applications within certain deadlines. 
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In addition to timeliness, scale and accuracy are two other challenges in network 

emulation. Many of today’s research efforts require the test and evaluation of systems in 

large scale networks (such as across the Internet) with realistic network scenarios. 

However, existing emulation tools fail to meet the three requirements simultaneously as 

they are either limited in scale to small and static networks, use highly simplified network 

models, or fail to deliver timely emulation results.  

 

Figure 2: Tradeoffs for the Three Requirements in Network Emulation 

Due to constrained physical resources (memory, computation power, and physical 

bandwidth, etc.), network emulators are often designed to trade one requirement for 

another. As shown in Figure 2, if a 3-D space is constructed with each axis representing 

one of the three requirements, different emulation approaches can be mapped as points in 

this space. Degrees of trade-off among timeliness, accuracy, and scale can be mapped to 

this 3-D space. 

 

When a large scale network is to be modeled on machines with limited physical 

resources, the most commonly used approach is to trade accuracy for scale by using 

simplified models (abstractions) to model the network and traffic, thus increasing the 
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scale of the network that can be modeled with the same amount of physical resources. By 

devoting more physical resources to the emulation through the use of high performance 

computing facilities such as parallel computers or clustered machines, accuracy and scale 

of network emulators can be greatly improved. However, for many users, high 

performance computing facilities may not be readily available in a local laboratory 

environment, and co-locating application code with a remote high performance 

computing facility may be cumbersome and inconvenient.  

 

A naïve approach to solve the above problem is to perform network emulation remotely 

by utilizing a remote network emulator on a distant high performance computing facility. 

This approach achieves accuracy but sacrifices timeliness because each message 

generated by the application would result in a message being sent to the remote emulator 

to obtain the desired network characteristics. However, this requires a round trip delay 

through a wide area network, which may exceed the predicted delay, and it may introduce 

an unacceptably large amount of traffic over the often limited bandwidth between the 

application and the remote emulator.  
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Figure 3: Network Experimental Models 

This thesis proposes a novel network emulation approach called ROSENET (RemOte 

SErver-based Network EmulaTion) that balances the tradeoffs among scale, accuracy, 

and timeliness. In the ROSENET approach, local low-fidelity emulators quickly deliver 

results to distributed applications for timeliness, and remote parallel computing facilities 

perform large scale packet-level simulations and continuously update and calibrate the 

local low fidelity emulators for scale and accuracy. The tradeoffs among the three 

requirements can be dynamically adjusted through network models that are periodically 

exchanged between emulators and simulators. Figure 3 illustrates how the proposed 

ROSENET approach differs from existing experimental approaches including real 

network testing, the traditional emulation approach, and the network simulation 

approach. 
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1.2 Related Work 

1.2.1 Classifications of Emulators 

 

Figure 4: Taxonomy of Emulators 

Many network emulation tools have been developed to test network protocols and 

distributed applications.  Depending on whether the emulator is implemented using a 

hardware device or a software device, the emulator can be classified as a hardware 

emulator or a software emulator (or real time simulator) as shown in Figure 4. Hardware 

emulator tools can be implemented using a single node machine or a cluster of machines. 

Software emulators are simulation-based emulators in which a simulation executes on a 

single node, a cluster of workstations, or parallel machines to simulate a virtual network 

and interface with live traffic. 

 

The following sections provide a survey of network emulation tools. Section  1.2.2 

introduces hardware emulators where the emulators are implemented using hardware 

devices. Section  1.2.3 discusses software emulation tools that use real time simulators to 

model the network. Section  1.2.4 summarizes these two approaches. 
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1.2.2 Hardware Emulators 

 

 

Figure 5: Hardware Emulator by Topology Modeling 

Depending on how the network topology details are modeled, hardware emulators can be 

further categorized as end-to-end emulators (or topology-unaware emulators) or a 

topology-aware emulator as shown in Figure 5. An end-to-end emulator does not model 

the intermediate topology between end hosts and abstracts the network as a cloud or 

black-box in which only the end-to-end behavior of the network is modeled.  A topology-

aware emulator models the intermediate nodes by mapping physical nodes to virtual 

nodes. An end-to-end emulator is usually executed on a single machine while a topology-

aware emulator can run on one machine or a cluster of machines. In a topology-aware 

emulator, a virtual node in the emulated network can be mapped one-to-one to a physical 

node in the emulation cluster, or multiple virtual nodes can be multiplexed on one 

physical node.  
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Figure 6: Hardware Emulator by Emulation Layer Placement 

Hardware emulators model the virtual network through an emulation layer that intercepts 

packets and models network characteristics such as delay and packet loss. Depending on 

where this emulation layer is placed in the system, hardware emulators can also be 

classified as user-level emulators or kernel-level emulators as shown in Figure 6. The 

emulation layer can be inserted directly into the operating system kernel but it requires 

recompiling and rebooting the OS kernel to load the emulation layer. Some emulators are 

implemented in Linux as a kernel module which can be loaded and unloaded from the 

operating system kernel. User level emulators usually replace system calls that access 

TCP or UDP sockets with the emulation’s own function libraries to intercept packets. 

Kernel-level emulation is not easily portable as it requires changes to the operating 

system but no changes are necessary for the user level application. User level emulations 

can be easily ported to other operating system environments but it is limited to 

applications communicating through sockets. 

 

Hardware emulators run on either a single machine or a cluster of machines. On a single 

node the network can be modeled only in terms of end-to-end characteristics or a small 

scale network topology may be modeled. Clusters are used to expand the size of the 

network topology modeled and this method usually models the network by mapping the 
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virtual network to the physical machines in the cluster. Some cluster-based emulators 

simply apply single node emulators in the cluster to expand the size of the modeled 

network topology. The following two sections introduce the emulator tools in this 

context. 

1.2.2.1 Single-node Emulators 

 

A single node network emulator runs on a single general purpose computer and models 

either a single link or abstracts a target network to a gateway with a set of static network 

parameters. Examples of these network parameters include delay and loss which 

describes a LAN’s or WAN’s end-to-end characteristics. NIST Net [4] uses a single 

Linux machine set up as a router and a Linux kernel module to intercept packets and 

apply network traffic dynamics in order to emulate critical end-to-end performance 

characteristics. Similarly, Ohio Network Emulator ONE [5] emulates a network between 

a pair of interfaces on a single Solaris-based workstation. Dummynet [6] is the freeBSD 

version which characterizes each link as a pipe with a certain bandwidth, delay, queue 

size, and loss rate. Packets can be passed through multiple pipes with applied QoS 

properties in each pipe. Delayline [7] is a user-level emulation tool that changes the 

characteristics of the underlying network by providing alternative versions of a number of 

socket system call routines that are bound to the application program at compile time. 

 

Single node emulators are generally easy to set up because they only require a 

commodity computer. However, emulation by a single node is often limited in scalability 

and simulation accuracy because few details of the network can be modeled. For 
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example, Dummynet cannot capture the congestion of multiple flows on a single path 

since every flow’s behavior is modeled independently and there is no global coordination 

among the nodes. NIST Net treats the intermediate topology as a cloud in which end-to-

end behavior across a network is modeled using statistical methods. 

 

 

Figure 7: Trace-Based Emulators 

Trace-based emulators are developed to solve the problem of generating realistic traffic 

in network simulations and emulations. The difficulty with synthesizing such traffic lies 

in the fact that no widely accepted models of Internet traffic exist. Also network traffic 

shows invariant statistical characteristics that cannot be reproduced easily with simple 

mathematical models or small distribution tables. Trace-based emulators reproduce 

network dynamics collected from traces of measured real world traffic as shown in 

Figure 7. RplTrc [8] adds trace replaying functionality to the NIST Net kernel module so 

that packet delay traces can be replayed in real time. With the trace replaying 

functionality, the network environment characteristics can be recreated to enable 

performance evaluation on a commodity computer with enhanced accuracy. ENDE [9] 

integrates the functionality of network measurement and network emulation into one 

system. It generates accurate one-way delay traces using ICMP packets to measure the 

network status between the local host and a remote host on the Internet. Then it simulates 
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end-to-end delay between two virtual hosts on a local host using statistics obtained from 

ICMP measurements and without routing the real packet to the remote host. The problem 

with this approach is that it can only support certain types of Internet traffic that can be 

measured by ICMP packets. Also the network measurement results from ICMP packets 

are not accurate in many network scenarios.  

 

ROSENET, as proposed in this thesis, can be categorized as a trace-based emulator 

approach since it collects traces from a remote high fidelity simulation, characterizes the 

measurements as network models and applies them in the local network emulation. The 

difference between ROSENET and RplTrc is that, when applying traces, RplTrc uses 

traces of end-to-end delay packets taken directly from the emulated packets, while 

ROSENET characterizes traces for a time interval as network models and uses the 

network models to generate QoS predictions for each packet in the network emulation.  

 

Similar to ENDE, ROSENET periodically characterizes the data from traces as models 

and applies the models in the network emulation. It is different from ENDE in that 

ROSENET collects the traces from high fidelity simulation while ENDE collects data 

from real networks using ICMP probe packets. Also ROSENET uses a more complicated 

network modeling technique than ENDE so that a wide variety of network scenarios can 

be modeled. ENDE is limited to scenarios that can be measured through ICMP packets. 

1.2.2.2 Cluster-based Emulators 

 

Cluster-based network emulators are topology-aware emulators that map a target virtual 
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network to a cluster of machines in which one or multiple virtual nodes may be mapped 

to one physical node in the cluster. Compared with single-node emulators, cluster-based 

emulators can improve the scalability or accuracy of emulation as more resources are 

devoted to the emulation. However, due to the limited number of physical nodes that can 

be included in a cluster and the limited number of virtual nodes that can be mapped to a 

single physical node, topology aware network emulations have been typically limited to 

systems that are relatively small and static. Different methods must be used to improve 

the scalability and accuracy of emulation on clustered emulation systems as discussed 

below. 

 

Figure 8: ModelNet Architecture 

ModelNet [10] is a cluster-based network emulation system in which virtual nodes are 

multiplexed across a set of physical machines. As shown in Figure 8, user applications 

run on edge nodes which route packets through a number of ModelNet core nodes 

connected through gigabit links. The ModelNet core is based on Dummynet [6] and each 

link in the target network is represented as a pipe with a packet queue. Queuing and link 

delay/loss is calculated when a packet enters a pipe queue and the packet is forwarded to 
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the next pipe. Link contention among competing flows in the core is not emulated based 

on the assumption that bandwidth is constrained only near the edge of the network where 

edge nodes are connected to the core through 100Mb switches. For background traffic 

generation, users can dynamically modify pipe parameters (latency, bandwidth, queue 

size as in an analytical queue model for each impacted link) to represent cross traffic 

effects in the core nodes on the traversal flow. The pipe queue approach does not capture 

details of packet dynamics such as slow start and bursty traffic, and synthetic traffic does 

not respond to congestion. 

 

Figure 9: Emulab Architecture 

Emulab [11] integrates simulation, emulation, and live networks into a common 

framework. As shown in Figure 9, a cluster of local resources (shown as 168 PCs in the 

figure) can be temporarily dedicated to isolated distributed systems and networking 

experiments for emulation as edge node, traffic generator, or router. Emulab uses virtual 

machines (virtualization and abstraction) to integrate heterogeneous resources. 

Dummynet is used to emulate wide-area links within the local-area cluster. Simulation is 
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integrated into emulation through the NS-simulator-enabled emulator NSE [12]. The 

major limitations of Emulab are scalability and accessibility. For scalability, each node in 

the emulated network must be mapped to a machine in the testbed and extra nodes are 

needed to shape traffic between two connected nodes to provide background traffic. Due 

to the mapping requirements, the number of nodes that the system can emulate is 

restricted by the number of machines in the system. With regard to scalability, a local 

cluster with hundreds of machines is very expensive. Thus the emulation environment is 

usually not readily accessible to many network researchers. 

 

Figure 10: A Sample Layout of EMPOWER 

EMPOWER [13] is a clustered network emulation system in which each physical node is 

equipped with multiple network cards and configured to emulate multiple network nodes 

(Figure 10). On average each physical node can emulate 4 to 6 virtual nodes in the target 

network. In EMPOWER the network topology that can be emulated is limited by the 

number of machines in the cluster, the number of virtual nodes that can be supported on 

each machine, and the network link bandwidth between the physical machines in the 

cluster. To solve the network physical link bandwidth limit problem in EMPOWER, 

multiple network ports can be multiplexed to a physical port when the target network is 

small, or the bandwidth can be scaled down by sacrificing the accuracy of emulation. 
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Similarly, background traffic is generated using extra physical nodes.   

 

Figure 11: Orbit Architecture 

ORBIT [14] (Open Access Research Testbed for Next-Generation Wireless Networks) is 

a large-scale wireless network testbed which includes a laboratory emulator and a field 

trial network testbed. As shown in Figure 11, the laboratory-based wireless network 

emulator is a two-dimensional grid of static and mobile 802.11x radio nodes which can 

be dynamically interconnected into specified topologies. End-users can download radio 

links, MAC and network layer protocols to the radio devices to construct a specific 

networking configuration.  

 

The Network Emulation Testbed (NET) [15] [16] consists of a 64-node cluster system 

connected by gigabit network switches which establish a number of Virtual LANs for 

arbitrary network topologies, and also provide fast Ethernet switches which can be used 
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for administrative purposes. A central administrative node is used to set up and control 

network experiments. Using node virtualization technology (virtual switch and virtual 

routing), each physical node can support up to 30 virtual nodes.  

1.2.2.3 Limitations of Existing Approaches 

 

Single node hardware emulators abstract the network as a cloud and as such offer limited 

scalability and accuracy. Cluster based emulator systems improve the scalability of 

emulation by using a cluster of machines. Virtual network nodes are mapped to physical 

nodes in the cluster. However they incur a number of problems as discussed below: 

• Scalability. The scalability of a cluster-based emulator is still limited to the number of 

physical nodes in the cluster. Using multiplexing, virtualization, and abstraction, the 

number of virtual nodes emulated in a cluster can be further improved, but physical 

resources in the system (such as physical bandwidth and computational power) 

constrain the number of virtual nodes that can be multiplexed on a physical node. 

• Resource competition among multiplexed virtual nodes on one physical node. When 

multiple virtual nodes are multiplexed on a physical node to improve scalability in a 

network emulator, performance isolation among virtual nodes running on the same 

node is not guaranteed due to resource contention. Virtual machines may help solve 

this problem by isolating the performance of each virtual machine, but the cost of 

running each virtual node inside a virtual machine is greatly increased. When virtual 

nodes are not isolated from each other, emulation results may be biased by resource 

competition among virtual nodes. 

• Limited physical bandwidth inside the cluster. The limited physical bandwidth inside 



 18 

the cluster limits the number of virtual nodes and links that can be supported on a 

single physical node, which in turn limits the total number of nodes supported in the 

network topology. 

• Background traffic generation. In clustered systems, background traffic consumes 

system resources that could have been used by the emulation systems. To solve this 

problem, clustered systems either synthetically limit the bandwidth by using metrics 

to imitate the effects of cross traffic on the link (ModelNet), or use extra physical 

nodes to inject background traffic into the system even though synthetic traffic is not 

responsive to congestion (EMPOWER).  

• Mapping. Mapping the virtual network to the physical nodes requires network 

partitioning and load balancing among the nodes in the cluster, which is not an easy 

task. 

• Configuration. The target network topologies and parameters in an emulation cluster 

cannot be as easily configured as in a simulation environment. With more machines 

participating in the emulation, both the setup of machines and the coordination of 

emulation tools becomes a problem. 

• Accuracy. Network models in emulation clusters are often simplified to improve 

performance at the cost of emulation fidelity.  

1.2.3 Software Emulators 

Simulation tools are being used for emulation in order to improve the flexibility and 

scalability of the target network. Emulators that are implemented using simulators that 

interfere with live traffic are referred to as software emulators. Network simulation tools 

may be used for emulation provided the network simulator is able to compute the 
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required network characteristics faster than real time. This simulation-based emulation is 

also called real time network simulation because the simulator needs to execute in real 

time, and because it can be used to evaluate performance of real time network 

applications or used to study network protocols under real world traffic.  

1.2.3.1 Classification of Software Emulators 

 

 

Figure 12: Taxonomy of Software Emulator (Real Time Simulator) 

Depending on the platforms where the simulation for software emulators is executed, 

software emulators can be classified as single-node, parallel, or distributed, as shown in 

Figure 12. A single node software emulator executes a sequential simulation in real time 

on a single machine. A parallel software emulator executes the simulation in parallel on a 

high performance machine such as an SMP. Software emulators can also be distributed 

over a cluster of machines.  

 

As has been shown in Section  1.2.2, hardware emulators can also be classified as single 

node or clustered, but the implementations are very different. A single node emulator 

uses a single machine to emulate a link or an Internet cloud using mathematical tools 

while a software emulator executes a sequential simulation on a single node and 
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synchronizes the simulation time with wall clock time, or real time. Similarly, a clustered 

emulator uses physical resources such as physical bandwidth to emulate a network 

topology by mapping virtual nodes to the physical nodes in the cluster, while a clustered 

software emulator executes a parallel/distributed simulation on the cluster platform.  

 

NSE [12], the emulation capability of the Vint/NS simulator, routes live traffic between 

the simulator and the distributed application. NSE uses a real time scheduler which ties 

event execution within the simulator to real time.  Since ns-2 runs on a single node, the 

scale of the network topology and the amount of traffic that can be simulated in real time 

is very limited. To improve the scalability of single node simulator-based emulation, 

parallel and distributed simulation can be introduced to improve the scale of the network 

topology in the network emulation. The following section introduces the concept of 

parallel and discrete event simulation upon which software emulators can be 

implemented. 

1.2.3.2 Parallel Discrete Event Simulation 

 

A discrete event simulation (DES) models a system where changes in the state of the 

system occur at discrete points in simulation time. A discrete event simulation is typically 

used for packet level simulation of networks where events are scheduled for packet 

departure, arrival, and loss at discrete points in time. This thesis focuses on packet level 

simulation/emulation, so simulation is assumed to be a discrete event simulation unless 

specified otherwise. 
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Parallel Discrete Event Simulation (PDES)[17] [2] refers to the execution of a discrete 

event simulation program on a parallel computer. Parallel discrete event simulation offers 

the potential to simulate large scale network topologies at a detailed packet level on 

parallel and distributed machines, thereby increasing the size of the network and the 

amount of traffic that is modeled. Using PDES, networks can be partitioned and 

simulated concurrently on multiple machines.  

 

A number of tools have been developed utilizing parallel computing facilities to improve 

the scalability and performance of network simulation. These include PDNS [18], 

GTNetS [19], DaSSF [20]  [21], GloMoSim [22] and its commercial successor QualNet 

[23], and Genesis [24]. Parallel discrete event simulation can run most efficiently on 

shared memory multiprocessors. As large scale shared memory machines are expensive 

and the number of processors available on an SMP is still limited, distributed memory 

machines are often used. [25] studied large scale network simulation on a variety of 

platforms ranging from workstations to cluster computers to supercomputers and 

demonstrated the ability to simulate a million web traffic flows in near real time using 

GTNetS and PDNS.  

1.2.3.3 Simulation-Based Emulators 

 

Based on the above mentioned parallel and distributed simulators, a number of 

simulation-based emulators have been implemented. IP-TNE [26] is a network emulator 

using the parallel discrete event simulation IP-TN that runs on shared memory 

multiprocessors. Unlike NSE which ties the events with wall clock time, IP-TNE 
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synchronizes only the edge of the simulated network interacting with real traffic with 

wall clock time. [27] [28] report performance results of running real-time emulation on 

128 processors for a network model including 20,000 nodes of nearly 50 million packet 

transmissions per second.  

 

Maya [29] is a hybrid software emulator which combines analytical models, simulation, 

and interfaces to operational networks and enables emulation for real time applications. It 

uses QualNet [23], a fluid model for TCP, and a physical network interface implemented 

on the Linux operating system. The event scheduler in QualNet must synchronize with 

real time during its execution. The TCP fluid model is tied with the physical network 

interface and network statistics over a time interval that is calculated periodically.  

 

RINSE [30] is a real-time network simulator for large-scale human/machine-in-the-loop 

experimentation used for security and training exercises. It uses reader/writer threads to 

convert between simulation events and packets from real time applications. IN RINSE, it 

is observed that, the latency of the physical connection between the real world application 

and the simulated host in the virtual network can be hundreds of microseconds in a local 

area network. This can have a great impact on applications that are sensitive to such 

latencies and may increase the number of missed deadlines in the emulation. The solution 

in RINSE is to hide latency, caused by the physical connection between simulator and 

real time applications, inside the simulated network. This prioritizes emulation events 

over regular events in scheduling and sending the emulation packet ahead of its 

scheduled time from one router to another in the simulation, based on the assumption that 



 23 

without the physical connection latency the event would have entered the queue much 

earlier. This priority-based scheduling does not follow the FIFO rule any more for 

emulation events and the simulation accuracy is thus sacrificed for timeliness.  

 

MaSSF [31] is a network simulator/emulator based on grid computing principles. To 

solve the scalability issue with detailed packet level emulation, the network emulator is 

built over a distributed simulation engine DaSSF [32] to exploit the availability of 

scalable cluster systems. A real time scheduler is implemented and run on a cluster 

machine using MPI. The scheduler can also run in a scaled-down (slower than real time) 

mode when the simulation system is too large to be simulated in real time. A CPU 

controller virtualizes the CPU resources among multiple virtual hosts. This way it can 

simulate a large number of machines (100’s to thousands) on a small number of physical 

machines. It is more focused on studying performance questions in grid applications 

instead of implementing a real network emulator. 

 

Communication Effects Server (CES) [33] from Scalable Technology Inc. is a wireless 

network simulator based on QualNet [23]. In CES, a transaction is defined as the end-to-

end transmission of a message from its source to destination. Transactional real-time 

execution is defined as one where the wall-clock time to execute an average transaction is 

less than its simulation time. Transactional real-time is achieved for nearly all messages 

in a wireless network with thousands of virtual nodes on no more than 16 processors of a 

cluster, with simulated link bandwidth of 2Mbps under different traffic loads. 
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The GT backplane [34-36] integrates multiple heterogeneous network simulators in a 

single environment. The backplane also supports incorporation of actual network 

applications into the execution over the emulated network by integrating parallel network 

simulators with an emulation backplane. The end-node applications and the parallel 

network simulators use the runtime infrastructure [37] to pace their execution. Support 

for real-time execution is realized by synchronizing all the components in the emulation 

with real time. Applications interact with the simulation backplane through a library 

called Veil [36] which intercepts system calls and re-routes the application data to the 

simulated network. 

 

In [38] real time lookahead is exploited from the interactions between wireless 

applications and the simulated wireless network in the parallel simulator GloMoSim. In a 

hybrid component network, simulated components (GloMoSim) receive messages 

directly from physical components (real-time applications). The simulated components 

have lookahead of zero as they can not predict when they receive messages from the 

physical components. Since the maximum throughput of a traffic flow is limited by the 

link capacity, the data stream transmitted by the mobile node will not change the 

simulation immediately if the data buffer at the simulator is not empty at time T1 until a 

later time T2. This allows the simulator to advance its simulation time ahead of real time 

to time T2. 

 

In addition to the previously mentioned systems that apply parallel simulation techniques 

to network emulation, PRIME [39] is a system most similar to ROSENET. PRIME aims 
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to implement an open and scalable network emulation infrastructure to allow a large 

number of real time applications to dynamically interface with network simulators 

running on supercomputers. It uses a Virtual Private Network (VPN) to bridge traffic 

between physical entities and network simulators.  Real applications run as VPN clients 

which automatically forward network packets to VPN servers. VPN is used to circumvent 

the firewall of the supercomputing center and also serves as a network interface on the 

client machine. 

 

Sharing the common goal of providing an open network emulation infrastructure to test 

real time applications by utilizing network simulators running on supercomputers, 

ROSENET differs from PRIME with its support for remote access. ROSENET allows 

users to access the high fidelity simulation remotely and also meet real time requirements 

for QoS predictions. The experimental results in PRIME show that with a simple 

dumbbell topology, losses and delays experienced by the packets as they travel through 

the simulation gateway can have a profound impact on emulation accuracy. Good results 

are achieved when the simulation and applications are in a local area network but this 

approach has difficulty meeting real time deadlines when packets are sent over a wide 

area network to the simulator due to wide area network packet loss and end-to-end delay. 

In addition the simulation gateway’s bandwidth and latency could affect the quality of 

service of the applications. These two problems are identified in [40]. The results in 

PRIME further confirm that network emulation with remote accessibility is required. In 

this sense, ROSENET and PRIME are not directly comparable. ROSENET can 

complement PRIME by integrating PRIME into its client/server framework as the high 



 26 

fidelity simulation server and providing PRIME users with a remote access capability. 

 

ROSENET and PRIME also address the same problem of large scale network emulation 

using different approaches. In order to achieve results within the emulation’s real time 

constraints, PRIME integrates a fluid model with simulated packets to improve parallel 

simulation performance, while ROSENET uses network models and periodic model 

updates, instead of sending individual packets as in PRIME, to trade time for accuracy. 

Using fluid model in ROSENET is an area of future work. 

1.2.3.4 Limitations of Existing Approaches  

 

As seen from the discussion of existing software emulators, several approaches are used 

in order to achieve real time performance: 

• Scale 

The network topology of the parallel simulation based emulators mentioned above 

must be relatively small. In the performance evaluation of IP-TNE, the network is 

either composed of only two end nodes with one router, or sixteen nodes which 

results in 16% of the packets’ arrival after their scheduled delivery time on a 4-

processor system. 
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• Timeliness 

 

Figure 13: Definition of Real Time in Real Time Simulator 

Applying simulation in emulation requires that simulators execute faster than real 

time. Directly applying parallel simulators for emulation may not be effective because 

parallel simulators are primarily designed to improve scalability and accuracy rather 

than meeting specific deadlines. If real time performance is to be achieved for a 

detailed packet level model, the topology of the system must be kept small as in IP-

TNE. The CSE from Scalable Technology Inc. modifies the definition in simulation 

based emulation as transactional real time when the wall-clock time to execute an 

average transaction is less than its simulation time as a solution to the timeliness 

problem. Scaled real-time (slower than wall clock time) simulation (MaSSF) is 

defined as an alternate solution. The results from [25] report that near real time 

performance is achieved for detailed packet level million nodes simulation on a 

supercomputer. ROSENET uses a model-based real time trading accuracy for 

timeliness, meaning it can always meet the real time deadline but the accuracy may 

be traded for timeliness accordingly. Figure 13 summarizes the modified definition of 

real time in different network emulators. 

• Accuracy 

To improve performance and scalability of parallel simulation, a less detailed model 
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of the network is often used, resulting in some loss of simulation accuracy. 

Abstraction methods such as fluid models, integrated analytical model (MAYA), or 

simplified models of network nodes as queues (ModelNet) are sometimes used.  

• Accessibility 

All of the above approaches attempt to apply parallel simulation to network emulation 

and also try to meet the real time requirement. But they all fail to meet another 

requirement: accessibility. Parallel computing facilities required in these network 

emulators may not be locally available, and co-locating application code with a 

remote high performance computing facility may be cumbersome and inconvenient. 

If a user attempts to use high performance computing facilities remotely, the real time 

constraints for emulation may not be met since latency between the application and 

remote simulation servers may exceed predicted delay. Although many research 

efforts have been designed to realize an emulation framework that is remotely 

accessible, they require participants to upload models to the test-bed remotely and 

observe the system performance without interactions during the testing. 

 

In summary, large-scale simulation based emulation systems require simulation to be able 

to characterize the behavior of a network with a large number of nodes and with realistic 

traffic loads. Approaches have been developed but no single method exists that can 

simultaneously address the issues of scalability, timeliness and accuracy while being 

accessible to general users. 

1.2.4 Summary 

An ideal network experimentation tool for evaluating large-scale distributed services 
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should support direct execution of applications, a broad range of network topologies and 

dynamically changing network characteristics with a wide spectrum of network 

behaviors, and a sufficiently large number of nodes with realistic models of cross traffic. 

The scalability of network topology in hardware emulators are constrained by the 

physical resources available and it also may be difficult to set up and configure the 

system compared to simulation. Software emulators using parallel and distributed 

simulation techniques have greatly improved the scale of the simulated network but 

achieving real time performance at detailed packet level for large scale network is still 

difficult.  

1.3 The ROSENET Approach 

 

 

Figure 14: ROSENET Approach 

The ROSENET approach proposed in this thesis attempts to address the problems of 

scale, accuracy, and timeliness simultaneously. As shown in Figure 14, in ROSENET, a 

packet-level simulation is used to provide accuracy. Mapping this simulation to 

parallel/distributed computing facilities provides scale. The local emulator provides 

timeliness. While this approach focuses on addressing all three problems, tradeoffs 

among the three requirements can be dynamically adjusted using different network 
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models. Compared with traditional hardware and software emulation systems, the 

ROSENET approach has the following advantages: 

• Accessibility. In order to achieve scalability, clustered emulation systems are usually 

composed of tens or hundreds of machines which may not be likely available. This 

limits the opportunity to directly execute real world applications on the emulators. 

The remote server-based approach in ROSENET makes it complementary to existing 

emulation systems. For example, clustered hardware emulation systems will be more 

accessible to general users if these clusters are integrated into ROSENET to allow 

users to test their applications remotely. Another example is ORBIT, which is a 

wireless network testbed composed of a two-dimensional grid of 400 802.11 radio 

nodes. ORBIT has a similar problem that the access to geographically remote users is 

limited for emulation users. The ROSENET approach can similarly be utilized to 

address this problem.  

• Flexibility. The ROSENET approach provides the flexibility to allow users to test 

networks with a diverse set of network topologies and traffic loads. A cluster 

emulator designed for wired network emulation will not be applicable for a wireless 

network. The ROSENET architecture provides the ability to easily switch users to 

wireless emulation. 

• Security. Applications such as Internet simulations are motivating the use of high-

end computing for parallel discrete event simulation. Supercomputing facilities can 

provide tens to over 100 thousand processors [41]. Since these high end computing 

facilities are usually shared among users, up-loading  user applications to a remote 

high performance facilities may not be preferred for users who are concerned with 
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privacy. The ROSENET approach separates the emulation task into a local low 

fidelity emulator and remote high fidelity simulator, which allows users to protect the 

security of their applications without the need to directly execute them in remote 

facilities. 

• Address scale, accuracy and timeliness simultaneously. Highly accurate 

simulations at large scale are always desirable for network researchers but the limited 

availability of physical resources may force users to trade accuracy against time. A 

single node emulator using a single machine may not be able to simulate the network 

with much detail. Trace-based methods try to make up for this inaccuracy by using 

real world data but are still limited to the specific network scenarios corresponding to 

the traces. Clustered network emulators can improve the scale of network topology, 

but clustered machines may not be readily available. The ROSENET approach 

addresses the three requirements simultaneously and allows users to tradeoff these 

concerns according to their specific requirements. 

1.4 Research Challenges 

Remote network emulation must successfully address several research challenges for it to 

effectively meet our requirements of accuracy, scale, and timeliness: 

• Multi-resolution network modeling. Remote network emulation requires a suitable 

combination of a high fidelity model residing at the remote server, and a low fidelity 

model operating locally at the client. This raises several important research questions, 

especially with respect to the low fidelity model. Specifically, what model should be 

used at the client to ensure accurate QoS predictions are produced in a timely fashion 

that do not impose large computation and communication burdens on the system? 
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Can a single model be used for this purpose that can span the broad range of network 

configurations and traffic that one might expect? If one model is not sufficient, how 

can multiple models be integrated and utilized in a seamless fashion, and what 

strategies are needed to control and manage the use of these models? What is the 

relationship between the high and low-fidelity models?  

• Model update protocols. Remote network emulation requires that the low fidelity 

model at the client be periodically updated to so that QoS predictions reflect the 

current network status from the high fidelity simulation at the remote server. This 

raises important research questions with respect to low fidelity model update 

protocols. Specifically, what needs to be updated and what triggers model updates? 

What needs to be transmitted to update a network model to reduce communication 

cost while achieving optimal performance? What effects will the model update 

protocol have on the system performance, in particular emulation accuracy, and how 

should one measure these effects quantitatively? Using these measurement metrics, 

how should one design and choose among different model update protocols under 

operating conditions? 

• Performance evaluation. Remote network emulation differs from existing emulation 

approaches in that traditional emulation tools are composed of either a single node 

machine or a homogeneous cluster while the remote emulation approach integrates 

general distributed emulation and simulation tools into a heterogeneous environment 

over a wide area network. Measuring and evaluating the emulation performance with 

such a complex system raises several research questions. In particular, what metrics 

should be used in measuring the performance of a remote network emulation system 
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with regard to scale, accuracy and timeliness? What mathematical and statistical tools 

should be used to measured emulation accuracy? What system factors can affect 

emulation accuracy and to what extent do these factors affect accuracy? How should 

one measure timeliness and what are the factors that can prevent an emulated packet 

from being delivered on time? What is the relationship between scale, accuracy and 

timeliness and is there any way this relationship can be quantified so that users can 

easily define their requirements on these parameters and make tradeoffs among them? 

What applications are suitable to be evaluated in the remote network emulation 

platform and how should one integrate a real world application using the remote 

network emulation system? 

• System architecture design. Remote network emulation uses a remote high fidelity 

simulation server to achieve scale and accuracy and a local low fidelity emulation 

client to achieve timeliness. Designing a general system that can meet the 

requirements for scale, accuracy, timeliness and accessibility raises several research 

problems. Specifically, how should one integrate heterogeneous simulators and 

emulators so that it is flexible enough to support different types of simulators and 

emulators, under different experimental settings and applications? What 

functionalities are needed in the clients and server to meet the emulation 

requirements? If large scale parallel and distributed simulation is executed at the 

remote server, what specific functionalities are needed to seamlessly integrate the 

distributed client/server architecture over a wide area network with the distributed 

high fidelity simulation in a local network environment? How much overhead does 

each component introduce into the system and how can one fine-tune the system 



 34 

configuration to achieve optimal performance? 

1.5 Research Contributions 

This thesis addresses the challenges in remote network emulation and the contributions 

are summarized as follows: 

• Remote Network Emulation Architecture. A client-server architecture for remote 

network emulation is proposed, implemented and evaluated. Standard interfaces are 

defined for high fidelity simulation, low fidelity emulation, and network models. This 

allows users to integrate their specific applications, simulators, and emulators into the 

system while maintaining acceptable performance and accuracy. A time management 

and synchronization protocol for time advance in the emulation client and simulation 

server is proposed. An approach to address the challenges of parallel discrete event 

synchronization is described. Finally an analytical model is examined to estimate the 

amount of delay introduced by each component in the system and the remote 

emulation delay as a whole. 

• Network Modeling Techniques. In order to address the network modeling 

challenges in remote network emulation as discussed in previous section, the network 

constancy properties and the constancy scale are first studied to justify using network 

models, instead of individual packets, to describe network traffic within a time 

interval. Then different network modeling techniques are explored and a library-

based modeling technique is proposed for remote network emulation. A state divided 

system identification approach to model the end-to-end delay is proposed in 

ROSENET. Using a large scale worm propagation simulation, it is shown that the 

end-to-end delay in the server-based architecture can be accurately modeled using the 
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system identification approach. 

• Performance Evaluation and Case Studies. In order to verify that ROSENET can 

generate accurate emulation results while meeting real-time constraints for network 

emulation, a series of experiments are conducted to exam the accuracy of end-to-end 

delay and loss prediction. The results show that ROSENET can accurately predict 

QoS parameters while meeting real time constraints for network emulation, thus 

providing a promising approach to network emulation supporting accuracy and scale 

while meeting real-time constraints. Two case studies are performed to demonstrate 

the usage of ROSENET including testing a commercial VoIP application Skype on 

ROSENET and evaluating ROSENET’s performance with synthetic traffic workloads 

over DARPA’s NMS network topology for a large scale simulation. 

1.6 Thesis Organization 

The remainder of the thesis is organized as follows. Chapter  2 describes the design of the 

client-server architecture for remote network emulation. Chapter  3 discusses network 

modeling issues. Chapter  4 provides a performance evaluation of ROSENET and presents 

two case studies illustrating its use. Chapter  5 summarizes the thesis and suggests future 

research directions.  
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2 REMOTE NETWORK EMULATION ARCHITECTURE  
 
 
In the remote network emulation approach, low fidelity emulator and high fidelity 

simulator execute in a distributed manner over a wide area network to support different 

types of simulator, emulator, experimental settings and testing applications. Designing a 

general emulation system that is flexible enough to meet the requirements for scale, 

accuracy, timeliness and accessibility raises several research questions. This chapter 

addresses the research problems in remote emulation architecture design and the rest of 

this chapter is organized as follows. Section  2.1 describes the system architecture and 

discusses specific design issues. Section  2.2 explains research issues in extending the 

system to support parallel discrete event simulation. Section  2.3 introduces an analytical 

model to measure remote emulation delay, a metric which can be used by users to 

estimate the network emulation accuracy. 

2.1 System Architecture 

 

Figure 15: ROSENET System Architecture 
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The system architecture of ROSENET is shown in Figure 15. The client and server are 

the principle components of the system. The low fidelity emulator at the client routes 

traffic between distributed applications, provides rapid QoS estimation, and monitors 

application traffic. The remote server controls the high fidelity simulation by injecting 

traffic and extracting simulation results such as end-to-end delay from the simulation. 

Simulation time is partitioned into time intervals with the assumption that traffic 

characteristics change little within each time interval [42]. Clients and servers exchange 

their status through periodic updates of network models at the end of each interval. The 

update frequency can be dynamically adjusted according to the required accuracy and 

capacity of the simulation as well as the available bandwidth between the client and 

server.  

 

This client/server design allows ROSENET to achieve timeliness through the low fidelity 

network emulation and improves network modeling scale and accuracy through the high 

fidelity network simulation. Flexibility is obtained by integrating different simulators and 

emulators through the High Level Architecture (HLA) [43] as well as by defining 

standard interfaces to hide internal implementation details of simulation and emulation. 

Periodic network model exchanges between simulators and emulators can dynamically 

trade simulation accuracy for time, and can reduce large bandwidth consumption and 

avoid the wide area round-trip delay required if each packet is to be sent to the remote 

high fidelity simulation to simulate. 

2.1.1 Time Interval 

In ROSENET, a time interval can last seconds, minutes or even longer depending on 
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user’s emulation accuracy requirements. Two special scenarios illustrate some of the 

tradeoffs that are possible in ROSENET. In the first scenario every packet generated by 

the application is sent to the remote simulator in order to get the actual end-to-end delay 

and loss for that particular packet. In the other scenario all packets generated by the 

application during the entire execution are collected and sent to the simulator. Then the 

simulation results will be used by the emulator, either as static parameters, or as traces, to 

generate QoS predictions for emulated packets and deliver to the destination application. 

The accuracy in these two examples represents two extremes that a ROSENET user 

should expect. The time interval can be dynamically adjusted according to the required 

accuracy and capacity of the simulation as well as the available bandwidth between client 

and server. The client and server exchange their status through periodic updates of 

network models at the end of each interval. 

2.1.2 Application Traffic Monitoring 

In a typical network emulation, applications transmit traffic using standard 

communication primitives such as send() and recv(). The network emulator routes the 

packets from source application host to the destination host while introducing QoS 

properties (e.g., delay, loss) to the packet. The following techniques are usually used to 

intercept packets in network emulation: 

• Integrate interception function into kernel. Several network emulators implement 

a kernel model that intercepts IP packets and applies network dynamics to the 

packets. Since the packets are intercepted at the IP level, this kernel module can 

affect all networking applications regardless of their higher level network protocol 

type, and the implementation is transparent to applications or network protocols. 



 39 

The disadvantage of this technique is that kernel code has to be modified. 

• Use shared libraries that provide alternative versions of system call routines or 

compile time switches to force applications to use alternative header files. Using a 

shared library requires that the system supports shared or dynamic libraries. Using 

alternative header files redefines system call entry routines to emulation functions 

and it requires modifications of the application’s source code. The advantage of 

these two approaches is that they do not need to change kernel code, but they may 

only be able to support a specific type of packet such as TCP packet. 

 

 

Figure 16: Non-Intrusive Clients 

Sometimes application traffic monitoring through packet interception may not be allowed 

due to security concerns. Therefore, in addition to the normal “intrusive” emulation mode 

defined in Figure 15, a “non-intrusive” emulation mode is also introduced as shown in 

Figure 16. In a non-intrusive mode, the system only provides QoS estimations upon 

request from applications, and it is the application’s responsibility to route and deliver 

messages to the appropriate destination. The application also notifies the emulation client 
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of the generated traffic characteristics. The non-intrusive mode provides a means to 

easily “turn off” the emulator and avoids routing sensitive data through an un-trusted 

emulation device.  

2.1.3 High Fidelity Simulation 

 

Figure 17: High Fidelity Simulation Interface 

The high fidelity simulation interface defined in Figure 17 allows the ROSENET server 

to interact with the high fidelity simulation without the need to know the implementation 

details of the simulator. The server uses this interface to initialize the high fidelity 

simulation, map or un-map applications to virtual nodes in the simulation, execute the 

simulation until a specified simulation time, update traffic on a source virtual node during 

the simulation, and extract simulation results at the end of a simulation interval. It is 

assumed that the high fidelity simulation runs as a discrete event simulation and can 

pause at certain simulation times, update traffic models at a source virtual node, and 

collect end-to-end delay and loss statistics for a source-destination pair during the 

simulation execution. 
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Two types of traffic flows exist in the high fidelity simulation: background traffic and 

injected live traffic. The virtual nodes in the simulation, mapped for real time 

applications, can have traffic injected into the high fidelity simulation through periodic 

update of TrafficSummaryModel based on the current traffic generated by the source 

application being tested. 

2.1.4 Network Model Interface 

Since network simulators are able to simulate a wide spectrum of network dynamics, a 

few specific modeling techniques may not be able to adequately characterize network 

dynamics. Therefore in ROSENET a library of network modeling techniques is provided 

and specific network modeling techniques are explored which are sufficiently general to 

be used in different applications. In addition, users are allowed to integrate network 

modeling libraries specific to their real time applications into the ROSENET system. The 

network modeling details are discussed in Chapter  3 and here only the network model 

interfaces are presented. 

 

Figure 18: TrafficSummaryModel Object Hierarchy 
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Figure 19: LowFidelityModel Object Hierarchy 

To hide the implementation details of network models from the emulation client and 

simulation server, two network model interfaces are defined in ROSENET. 

TrafficSummaryModel, generated by the client and used by the server to update the traffic 

in the high fidelity simulation, characterizes the traffic generated by the application. 

LowFidelityModel, generated by the server and used by the client to generate QoS 

predictions quickly on demand, describes measurements from the high fidelity simulation 

such as end-to-end delay and loss. As shown in Figure 18, TrafficSummaryModel can be 

described using packet inter-departure time or the number of packets generated in a time 

interval. Figure 19 shows that a number of mathematical and statistical techniques have 

been used to model the end-to-end delay. In particular, a System Identification model is 

proposed in [40]. 
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Figure 20: TrafficSummaryModel Interface 

Users can implement a customized TrafficSummaryModel as long as it follows the 

standard interface as defined in Figure 20. The functions required in an extended 

TrafficSummaryModel include updating the current model parameters or expiration time, 

extending a model’s expiration time, comparing two models to see if they are the same so 

that unnecessary updates can be avoided, and converting the model parameters to strings 

when the models are transmitted to the server. The interface of LowFidelityModel is 

similarly defined and will not be listed here. 

2.1.5 HLA/RTI  

 

Figure 21: HLA System Architecture 
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The High Level Architecture (HLA) [43] has been used by the simulation community to 

integrate (federate) computer simulations in distributed computing environments. Since 

ROSENET integrates autonomous network simulations, HLA provides a suitable vehicle 

to hide the internal details of the underlying simulation models and facilitate future 

extension. Therefore HLA is used to define the interactions between the client and server. 

Each client, as well as the server, is defined as an HLA federate. LowFidelityModel and 

TrafficSummaryModel are implemented as Federation Object Model (FOM) object 

classes, and the entire system is executed as an HLA federation. Several HLA Interaction 

classes are defined to exchange information between the clients and server such as client 

join or leave. Figure 21 depicts the system architecture in the context of HLA. 

2.1.6 Time Management and Synchronization 

In a sequential simulation-based emulators such as nse [44] the processing of an event is 

delayed until wall-clock time reaches the timestamp of that event. If the simulator 

executes ahead of wall clock time, causality errors may occur if a packet is generated 

externally with a timestamp that is less than the current simulation time of the simulation. 

In IP-TNE [26], the parallel simulation supported emulation, the node that interacts with 

a real-time device timestamps an external packet and does not dispatch the packet until 

the wall-clock time reaches the event’s time stamp. In ROSENET, the emulator and 

application execute at real time (or wall clock time) while the simulator executes at 

simulation time. Because the emulation cannot be rolled back as in optimistic interactive 

simulations, the high fidelity simulation must lag behind the low fidelity emulation to 

avoid causality errors. An optimistic emulation approach, in which the emulation 

executes faster than real time, is impossible because events are generated at real time and 
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can not be emulated ahead of real time.  

 

Figure 22: Server Execution Loop 

Following this rule, a model-driven synchronization protocol is defined between the 

client and server. Time information is piggy-backed on network models exchanged 

between client and server. The client time-stamps the TrafficSummaryModel using the 

first packet’s arrival time and the monitoring interval, both in wall-clock time. Figure 22 

shows the server execution loop in the simulation process. The server first computes the 

minimum time from  all received TrafficSummaryModels’ timestamps to get the new 

simulation end time. It then applies these TrafficSummaryModels in the high fidelity 

simulation and runs the simulation until the simulation end time. After that a 

LowFidelityModel is generated based on the collected measurements from the high 

fidelity simulation. The LowFidelityModel is time-stamped with the first packet’s arrival 

time as well as the last packet’s arrival time, which roughly corresponds to the 

TrafficSummaryModel’s time interval. When the client receives a LowFidelityModel, it 

applies the model to the network emulation. As long as the server and client are in the 

same time interval, they are regarded as synchronized. If during the process the high 

fidelity simulation lags, it is safer for the emulator to use an old LowFidelityModel model 

than miss the deadline delivering the packet. In this case, however, users should be 
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informed of the estimation inaccuracy. 

2.2 Support for Parallel Discrete Event Simulation 

2.2.1 Challenges 

In extending ROSENET’s architecture in Figure 15 to support parallel discrete event 

simulation, an intuitive approach will be to allow the emulator to directly interact with 

each distributed simulator in the federation. However, this approach will cause several 

problems: 

• Time management. The emulator executes in real time while the distributed 

simulators execute in simulation time. In a parallel discrete event simulation, 

simulation time is maintained locally on each simulator and specific algorithms 

are used to manage time advances in each simulator. Thus it is rather difficult for 

the emulator to directly interact with distributed simulators carrying different 

simulation time clocks.  

• Communication latency. In ROSENET the simulators and emulators are 

distributed over a wide area network. If the emulator joins the federation of the 

simulators, the synchronization among these federates may not be very efficient 

since they have to wait for the slowest federate with very limited look-ahead to 

exploit before they can advance. 

• Security. Distributed simulators running on high performance computing 

platforms are usually protected by firewalls and provide only limited access to 

users. Allowing the remote emulator to frequently access each node in the parallel 

and distributed machines behind a firewall and over a wide area network may 
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cause difficulties in control and management if security of these machines is not 

to be compromised.  

• Locality. Since the target network is partitioned and modeled by different 

simulators, the source and destination applications to be tested by the network 

emulation may be mapped as virtual nodes modeled by different simulators. 

Information about the locality of these mapped nodes in the distributed machines 

should not have to be maintained by the emulator. A thin client is desirable in this 

case to reduce the computing resources needed at the client emulator. 

2.2.2 Two Federation Design 

 

Figure 23: Two Federation Design 

An extension of the ROSENET approach with support for parallel and distributed 

simulation has been developed as shown in Figure 23. It is composed of two federations: 

the emulation federation and the distributed simulation federation. The server is involved 
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in both federations and acts as a proxy to provide the following services: 

• Network model exchange. Two types of network models are exchanged in both 

federations: TrafficSummaryModel and LowFidelityModel. The distributed 

simulation event scheduler on each simulator receives the TrafficSummaryModel 

generated by the remote emulation client and forwarded by the ROSENET Server, 

updates the corresponding virtual node’s traffic patterns in the simulation, and 

executes the simulation until the end time of all the current 

TrafficSummaryModels in this simulation. Compared with the previous version of 

the ROSENET system, which had a sequential event simulation on each node, this 

parallel and distributed version allows source and destination applications to be 

modeled on different physical nodes that can execute at their own pace. This 

requires traffic models to be applied at the nodes at the same simulation time, 

which means they must execute the simulation in the same time interval in 

ROSENET. 

• Time translation. In ROSENET, the emulator and test applications execute at 

real time (or wall clock time) while the simulator executes at simulation time. 

Since the execution of the emulation cannot be reversed as in optimistic 

interactive simulations, the high fidelity simulation must follow the low fidelity 

emulation in order to avoid a causality error that may occur when traffic with 

time-stamps less than the current simulation time is injected into the simulation. 

This is achieved by piggybacking time information on network models exchanged 

between the simulators and emulator. When forwarding network models between 

the simulation federation and emulation federation, the proxy server also 
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translates the timestamp on network models from real time to simulation time. 

2.2.3 Time Management Protocols 

 

Figure 24: Time Management in ROSENET  

In a distributed version of ROSENET, the meaning of time management is two-fold: time 

management among the distributed simulators and time management between the 

emulator and simulators. In a distributed simulation, the simulator advances its 

simulation time through time management services defined in the HLA RTI. Each 

simulation federate processes events and makes time advance requests to the RTI which 

grants these requests to ensure no causality error occurs. In this sense, time advance 

within simulators is fine-grained as the time advance is event-driven, and can be on the 

order of milliseconds. On the other hand, time management between emulator and 

simulators is more coarse-grained, meaning that time advance for the emulator and 

simulators is by time intervals, usually on the order of seconds or minutes. The two-level 

time management in ROSENET is illustrated in Figure 24. 

2.3 Analytical Model for Remote Emulation Delay 

Although ROSENET can achieve timeliness by using low fidelity network models at the 

client, this does not guarantee that the results are accurate because network models 
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generated based on historical data may not accurately predict future QoS. If traffic 

patterns remain the same during this period, the emulation results should be accurate. 

Otherwise, the emulation results will be inaccurate until the network model is updated. 

Hence a new metric is introduced to measure network emulation performance. This 

metric is called remote emulation delay. This is the delay incurred when there is a 

change in the source application’s traffic until the time it is reflected in the QoS 

predictions of the low fidelity emulator. As has been discussed in [40], the overhead in 

each part of the ROSENET system might result in inaccuracies in the emulation results 

because the emulator produces end-to-end delay and loss estimates for a packet based on 

the source application’s traffic patterns existing at an earlier point in time. The 

correctness of the emulation results is directly related to remote emulation delay and an 

upper bound on remote emulation delay in ROSENET is of particular importance to 

ROSENET users.  

 

Figure 25: Overhead in ROSENET  
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Figure 25 shows the time overhead incurred by each component of the ROSENET 

system. Tcollection, the data collection interval or model update interval, is the time required 

to collect source traffic to generate TrafficSummaryModel and can be on the order of 

seconds or even minutes. Tsimulation is the wall clock time required to execute the 

simulation for one model update interval in simulation time and can be on the order of 

milliseconds, seconds or even minutes depending on the model update interval length and 

the speed of the simulator. Network transmission delays Ttransmission_1 and Ttransmission_2 

represent the end-to-end delay for network model transmission between the client and 

server over a local or a wide area network, and usually range between a few to several 

hundred milliseconds. The packet routing and emulation delay Temulation represents the 

time needed for a packet to travel from the source application host, through the emulator, 

to the destination application host. This is expected to happen according to the estimated 

end-to-end delay and can vary from a few to several hundred milliseconds.   

  

Using the time spent in each component of the system, the remote emulation delay and 

obsoleteness can be estimated using a simple analysis. Ideally the measurement would be 

the difference in time from when a packet pi is generated by the application to the time 

when the client’s LowFidelityModel is updated by the high fidelity simulator and based 

on simulation results which include packet pi in the simulation. Since network models, 

instead of individual packets, travel through the system, for ease of measurement, remote 

emulation delay is measured in the unit of network models instead of a single packet. 

Hence remote emulation delay is defined as Tremote_emulation_delay = Tcollection + Ttransmission_1 + 

Tsimulation + Ttransmission_2 and obsoleteness as Tobsoleteness = Tremote_emulation_delay – Temulation.  
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Remote emulation delay can be used to predict the performance or accuracy of the 

ROSENET system, since the accuracy of a packet’s QoS predictions can now be 

quantified using the remote emulation delay value of the LowFidelityModel generating 

the prediction. If Tremote_emulation_delay is smaller than or equal to Temulation, Tobsoleteness is zero 

and users get emulation results that are accurate. However, this requires that the 

LowFidelityModel, based on simulation results that include packet pi, be available for 

QoS predictions before packet pi is delivered to the destination application, This is only 

an ideal scenario since Tremote_emulation_delay is usually on the order of seconds while 

Temulation is on the order of milliseconds.  

  

The existence of remote emulation delay and obsoleteness in ROSENET means that 

ROSENET is only applicable to network testing scenarios where users can tolerate a 

certain range of remote emulation delay and obsoleteness in order to gain advantages  

such as scale, accuracy, timeliness, flexibility, and remote access. ROSENET is not 

applicable if users require zero obsoleteness in their emulation results. In fact, all testing 

using existing emulation tools require users to make tradeoffs, such as using abstract 

network models, testing with small scale network topology, static network status, or 

inability to remotely access experimental environments. The advantage of ROSENET is 

that the tradeoff in accuracy can be quantified using remote emulation delay which can be 

adjusted easily using a few system parameter settings. The experimental results from 

Section  4.2.4 shows that remote emulation delay is bounded and easily predictable so that 

users can choose experimental settings accordingly to meet their specific needs for 
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emulation accuracy. 

2.4 Conclusion 

The design goal was to allow users to “connect” their simulator, emulator, and 

applications to ROSENET in order to perform remote network emulation. In order to 

achieve this, a client-server architecture with support for standard interfaces, network 

models and HLA/RTI has been designed to support low fidelity emulation and high 

fidelity simulation. Issues extending this client-server model so that it can support 

parallel and distributed simulation are discussed. Finally an analytical model is 

introduced to estimate the remote emulation delay in ROSENET. 
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3 NETWORK MODELING ISSUES 
 

In the ROSENET framework, simplified light-weight models, instead of single packets, 

are exchanged between the high fidelity simulator and low fidelity emulator to keep them 

properly synchronized. The goal of using network models in remote network emulation is 

to reduce communication overhead without incurring too much cost in accuracy. Due to 

the Internet’s distributed topology and its support for dramatically heterogeneous 

mixtures of protocols, services and applications, it is very difficult to use a single static 

model to accurately represent a wide spectrum of network dynamics.   

 

This chapter focuses on the network modeling issues [40], meaning how to create 

communication and computation efficient network models to characterize the dynamics 

measured in the high fidelity simulator and regenerate these data in the low fidelity 

emulator. Section  3.1 discusses background information on network traffic constancy 

based on which the use of network models in remote network emulation is justified. Then 

related work on network traffic modeling techniques is explored. Section  3.2 illustrates 

the flow of data and network models in ROSENET. Section  3.3 describes a library-based 

modeling methodology for remote network emulation. Section  3.4 presents a network 

traffic modeling and update approach using system identification. Section  3 discusses 

experimental results from a network worm propagation simulation. Section  3.6 presents 

conclusion. 
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3.1 Background and Related Work 

3.1.1 Network Traffic Constancy 

The periodic network model update approach used in the remote network emulation is 

based on the assumption that network traffic remains relatively constant within the update 

interval and thus can be described by a network model. With this assumption 

communication overhead between the low fidelity emulation and the remote high fidelity 

simulation can be reduced without incurring too much cost in accuracy. The validity of 

this assumption is contingent on the question of the time scales on which network traffic 

is constant (defined below). 

 

According to [42], network measurement can be used to predict the future if the relevant 

network property remains stable, or exhibits constancy. Time scales of three notions of 

constancy (mathematical, operational, and predictive) are explored for three key network 

properties: loss, delay and throughput. Mathematical constancy measures whether the 

network property can be described with a single time-invariant mathematical model. The 

simplest form of mathematical constancy is the dataset can be described using a single 

independent and identically distributed (IID) random variable. In general, if the dataset 

can be describe by a mathematical model with a certain set of parameters, the dataset is 

consistent with that set of parameters for mathematical constancy. Change-points are 

identified and a time series of the measured data is partitioned into change-free regions 

(CFR) for mathematical constancy. Operational constancy evaluates whether the 

measurement remains within bounds considered operationally equivalent, meaning 

whether users care about these changes. Predictive constancy checks whether past 
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measurements allow one to reasonably predict future characteristics or track the changes. 

For instance, RTT (Round Trip Delay Time) is neither mathematically nor operationally 

steady but is highly predictable. 

 

The findings from [42] show that the three constancy notions sometimes differ so it is 

essential to determine which notion of constancy is relevant. Almost all predictors 

frequently used in networking produce very similar prediction error levels. The steadiness 

of the Internet depends on the constancy notion and the dataset. By statistically studying 

the constancy time scale for the three constancy notions, the authors conclude that for 

packet loss, delay and throughput, one can generally rely on constancy on at least the 

time scale of minutes. This constancy time scale justifies the assumption in the 

ROSENET design that network dynamics remain constant within a time interval and that 

network models, instead of individual packets, can be used to characteristic network 

dynamics within that interval without incurring too much loss in accuracy. 

 

3.1.2 Network Traffic Modeling Techniques 

Network traffic modeling uses parameters to capture and summarize important 

characteristics of network traffic. Network traffic modeling has been used in many 

different areas such as congestion control [45], network security [46], and network 

simulation [47]. The validity of underlying network models is of critical importance as 

the factors used to evaluate a system are taken directly from the underlying traffic model.  

 

Network traffic modeling can be classified as input traffic modeling and measurement or 
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output traffic modeling. Input traffic modeling describes traffic generation parameters 

such as packet size and inter-departure time. Measurement traffic modeling describes 

traffic properties measured from the network such as packet loss rate, delay and 

throughput. Network measurements are used to report the current status of the network 

and can be used to predict future behavior. For instance, the measurement of packet delay 

and loss has been used for data transmission rate control, and TCP uses end-to-end delay 

to time-out dropped packets. In this section the focus is on measurement traffic modeling 

including packet delay and loss. 

 

Poisson processes have been frequently used to model network traffic [48, 49]. The 

Poisson process fits most network traffic traces reasonably well for short periods. Poisson 

models are popular in queuing theory because they are memoryless, which means future 

behavior is not dependent on past behavior and aggregating multiple Poisson streams 

generates a new Poisson stream. However this model is not very satisfactory because real 

network traffic exhibits bursty behavior and long range dependences that cannot be 

modeled by Poisson process. Packet train models [50] and fluid models [51] attempt to 

add burstiness to Poisson distributions. As pointed out in [52], wide area network traffic 

is bursty and heavy tailed, which violates the Poisson assumption. The dynamic behavior 

of the Internet is one of the main reasons that queuing theory and associated statistical 

analysis approaches have achieved limited success.  

 

Some recent research [52-54] has shown that local and wide area network traffic exhibit 

variability at a wide range of time scales and that network packet traffic is self-similar. 
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Self-similarity refers to distributions that exhibit the same characteristics at all time scales 

and is also called long range dependence (LRD). Several models have been developed to 

generate self-similar traffic [55, 56] and systems have been created to compute realistic 

parameters for self-similar models [57]. Although self-similarity applies over large time 

scales, small-scale correlations may be very difficult. For extremely short samples even 

Poisson models are accurate. Swing [58] examines characteristics of a range of 

applications, and use a structural model  to reproduce burstiness across a wide range of 

time scales.  

 

If the details of the applications are known, such as in Swing, network models can use 

that information to build application-level network models. Application level modeling 

must consider application-dependent, protocol-dependent, and network-dependent 

characteristics. RAMP [59] is a tool that uses traces to estimate end-user behavior and 

network conditions to generate application-level simulation models. The trace file is 

processed off-line and the application of the model requires knowledge of the type of 

network applications and the physical structure of the network. The output is statistically 

represented as an empirical distribution with no correlation information included. 

 

3.1.3 End-to-End Delay Modeling Techniques 

Network traffic models have been developed to study how video codec cell arrivals affect 

network performance. Linear and nonlinear models have been used to predict network 

traffic to evaluate network QoS and intrusion detection systems. End-to-end delay 

prediction has been used in real time network applications, especially for multimedia 
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applications such as VoIP applications to ensure end-to-end QoS.  

 

Queuing theory [60] can be applied to model mean end-to-end delay if the distribution at 

each individual link is known. This assumption might hold in a small network with a few 

interconnected servers, but usually not for large networks. [61] uses statistical modeling 

for end-to-end delay in wide area network. It is found that the delay distribution does not 

follow normal nor lognormal distribution and a Pareto distribution is used to model the 

end-to-end delay. [62] uses a multiple model approach to model Internet end-to-end 

delay. This approach uses AR models and an off-line model set design procedure based 

on vector quantization and short-term time series analysis. [63] models end-to-end delay 

in a wide area network using time series. NIST Net [4] uses a multifractal wavelet model 

(MWM) [64] to model end-to-end network delay patterns. Wavelet models can provide 

multi-resolution analysis but are costly to use. 

 

[65] proposed a time varying exponential distribution to model end-to-end network delay 

based on the assumption that network delay can be divided into several states. Within 

each state, the probability density function of network delay follows an exponential 

distribution with a determined offset. [66] treated the network seen by specific source-

destination host pairs as a black-box, and modeled the end-to-end packet delay dynamics 

using a system identification technique that is widely used in control engineering.  
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3.2 Data Flow in ROSENET 

 

Figure 26: Data Flow in Remote Network Emulation  

Figure 26 illustrates the data and model flow in ROSENET using an example of a source 

host sending a communication event to a destination host. Each emulation client supports 

one or more applications that can be a message source or destination. The client is 

composed of several components: a low fidelity simulator, an input traffic collector and 

TrafficSummaryModel generator, an event routing table, a set of TrafficSummaryModels 

for local applications that are message sources, and a set of LowFidelityModels for local 

applications that are message destinations. With these components, the client intercepts 

communication events (such as IP packet or application level messages) from the 

application and routes them to the corresponding destination application, monitors the 

input traffic to build TrafficSummaryModel, passes the model to the simulation server, 

updates the LowFidelityModel as directed by the server, and delivers or drops 

communication events according to QoS predictions of LowFidelityModel for local 

applications.  
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As also shown in Figure 26, the remote simulation server executes a large-scale high 

fidelity simulation supporting the emulation of the clients. In addition to the high fidelity 

simulator, the server includes other components: a TrafficSummaryModel database, a 

LowFidelityModel database, a configuration management database managing all clients 

and mapped applications, a LowFidelityModel generator, and traffic injector and 

simulation data set collector attached to the high fidelity simulator. After the server 

collects all the data for one time interval on end-to-end network performance from the 

high fidelity simulation, it generates a new LowFidelityModel. The LowFidelityModel 

generated by the server during each interval needs to be sent to the corresponding client 

to update the client’s knowledge about the current network status in the simulation. To 

reduce the amount of network communication, the server does not send the new 

LowFidelityModel to the client unless it decides that this new model is statistically 

different from the previous one. Its comparison is based on a Kolmogorov-Smirnov 

statistical test, and could also be performed using other statistical test. The details of the 

network modeling technique and statistical test for network models are discussed in the 

following sections. 

3.3 Library-based Modeling Methodology 

Since network simulators model a wide spectrum of network dynamics, a single 

technique will not be able to adequately characterize network dynamics. Therefore it is 

necessary to provide a library of network modeling techniques in the remote network 

emulation system. LowFidelityModel and TrafficSummaryModel are the two required 

network models. TrafficSummaryModel is an input model that describes traffic 

generation patterns while LowFidelityModel is a measurement traffic model that 
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describes network dynamics such as end-to-end delay and loss. Section  2.1.4 describes 

the network model interfaces defined for these two models and list sample modeling 

techniques for each model.  

 

In this section a library-based modeling approach focusing on the LowFidelityModel is 

presented. The measurement metrics used are end-to-end delay and loss, which can be 

directly applied by the network emulator. Since the network simulator periodically 

updates the packet inter-arrival time and packet size using TrafficSummaryModel, models 

characterizing end-to-end delay are directly used by the network emulator for end-to-end 

delay prediction. 

 

The Internet transmits best effort data and provides no guarantee concerning the end-to-

end transmission delay. Two issues involved in end-to-end delay prediction are the 

modeling/prediction method and prediction interval. The prediction interval refers to how 

far in the future the network packet delay can be predicted with a certain confidence 

interval and error bound. According to [67], Internet delay variations occur primarily on 

time scales of 0.1 to 1 second, but extend out to quite larger times. [42] has found out that 

for Internet loss, delay, and throughput one can generally count on constancy (including 

mathematical, operational, and predictive constancy) on at least a time scale of minutes. 

The trade off between prediction accuracy and cost is made when choosing a prediction 

model. Since network emulation has to deal with real time applications, a prediction 

model with low computation and communication cost is preferred. 
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When modeling the end-to-end delay in remote network emulation, it is assumed that the 

high fidelity simulation provides valid representation of the network traffic and is used as 

a means of comparison with network models for end-to-end delay. When end-to-end 

delay is collected from the high fidelity simulation, clock synchronization is not required 

because simulation time is used in high fidelity simulation and the advance of time is 

managed by distributed simulation protocols. 

 

Findings from large scale studies of Internet packet dynamics [67, 68] indicate that a 

flexible model that can adapt to a wide range of network behaviors, instead of treating 

any aspect of packet dynamics as typical, is desirable in network traffic modeling where 

no assumptions are made about the properties of the network. Due to the Internet’s 

distributed structure and its support for dramatically heterogeneous mixtures of services 

and applications, it is difficult to describe the Internet properties using any single linear 

model. As discussed in Section  3.1.1, the Internet has constancy at certain time scales. 

Thus the network traffic within a time interval should be modeled using a network model 

selected from a network model library according to traffic patterns and application 

requirements. 

 

The main challenge in the library-based modeling approach is to design the set of models 

that are required to cover all traffic delay patterns at different time scales. Therefore this 

library includes different modeling techniques such as queuing models, statistical models, 

empirical models, time series models, wavelet models, and application-level models. 

Users can also introduce their own modeling techniques into the library as model 
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candidates.  The model is then selected according to criteria as follows: 

• Accuracy. The model accuracy is obtained by using training and test data to 

generate models and the prediction errors (such as minimum mean square error) 

are then compared among different models to choose the model with the least 

prediction error. Users can specify accuracy thresholds so that only models that 

meet the accuracy requirements can be used. 

• Measured data properties. By analyzing the input data, linear or non-linear 

models may be selected. Models that are suitable to describe short time scale 

constancy or long time scale constancy are selected accordingly depending on the 

constancy of the data set and user’s constancy requirements. 

• Computational or communication cost. If two models are similar in their 

prediction accuracy, the model that requires less computation to generate and to 

predict or takes less space to store and to transmitted is preferred.  

 

The model selection process works as follows. First the measured data is pre-processed 

and analyzed to find the types of models that best fit the data’s properties. Then different 

models and parameters are tested on the data using pre-defined accuracy measurement 

such as prediction error within certain range. The computational and communication cost 

may also be considered in choosing the model, in addition to the model accuracy criteria. 

 

After the model is selected, the model is then shipped to the remote emulation client to 

generate predictions. The life time of the model is first decided by the model’s constancy 

range as discussed earlier. When new measured data is collected, statistical tests such as 
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Kolmogorov-Smirnov Test, F-Test, or T-Test can be used to check if the last model is 

still valid in describing the new data, meaning whether the model’s parameters need to be 

updated, or new model type needs to be selected for changed traffic patterns.  

 

Figure 27: Library-based Modeling Approach  

 

To reduce computation costs, model selection is triggered only if a pre-set error threshold 

is reached. A model is first selected at the beginning with a full-scale search, meaning 
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every model in the library is examined to find the model achieving the best fit. When a 

first-choice model is selected, a sub-set of secondary choice model candidates are also 

marked with priority scores so that later if the model needs to be reselected, the 

secondary model subset may be searched first to see if they meet the accuracy 

requirements. Figure 27 illustrates the library-based modeling approach. Given the 

complicated and time-varying nature of network dynamics and the limits and strength of 

different modeling techniques, it may be reasonable to use a hybrid modeling approach 

where the Internet is modeled using a combination of several network models at different 

time scales as was done in [69].   

3.4 Traffic Modeling Using System Identification 

3.4.1 Black-box ARX Model 

 

Figure 28: End-to-End Delay Black Box Model 

As shown in Figure 28, in the server-based emulation system, each source-destination 

host pair views the rest of the network as a black box. The traffic through this black box 

is described by the LowFidelityModel, which is generated by the simulation server based 

on data measured in the high fidelity simulation.  A black-box model describes the end-
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to-end delay between a source-destination host pair in which the input (represented as 

u(t)) is the inter-arrival time measured from the source host, as inter-arrival time directly 

affects the end-to-end packet delay if the network bandwidth is not unlimited and shared 

by multiple source-destination pairs as in the system. The output of the system 

(represented as y(t)) is the difference in end-to-end packet delay between two consecutive 

delays. [42] has shown that at a packet-level time scale the aggregated network traffic is 

not stationary. Thus by using the difference of consecutive delays as output, instead of 

the delay itself, the non-stationary effects from the disturbance of the unpredictable 

background cross-traffic on the measured end-to-end packet delay are cancelled. 

 

This black-box model can be described using System Identification, which constructs 

mathematical models of a dynamic system from observed data. System identification is 

widely used in control engineering.  It applies to very general models, among which the 

most basic dynamic models are linear difference equation descriptions. Equation 1 is a 

linear ARX (Auto-Regression with eXternal signal) model, in which y(t) represents the 

output at time t, u(t) as the input at time t, and e(t) as the noise at time t.  

Equation 1 

y(t) + a1y(t-1) + …… + anay(t-na) = b1u(t-nk) + b2u(t-nk-1) + ……+bnbu(t-nk-nb+1) + 

e(t)            

 

Other no-input black box models are available such as the AR (Auto Regressive) model.  

However, here input is needed because the simulation results are affected not only by 

network traffic history, but also by end-user behaviors such as changes in packet inter-



 68 

arrival time which may be different at the time of network dynamics synthesis. For the 

same reason, curve-fitting cannot be used as it does not consider the effects of input. It 

can be predicted that the black-box model accuracy may not be as good as those models 

whose internal structures are known in advance as is the case in a queuing model. 

Compared with other approaches in network traffic modeling, the system identification 

approach is topology independent and thus is well suited for the client-server simulation 

architecture.  

 

The basic system identification procedure includes six steps: (1) collect input-output data, 

(2) examine the data to remove outliers, (3) select and define a model structure to use 

such as the linear model ARX and choose the model order range (parameters such as na 

and nb in equation 1), (4) compute the best model from the model structure using a 

criteria of fit, (5) validate the model, and (6) examine the properties of the model. In the 

current implementation, the model is built using the ARX model as the model structure. 

A model order range is selected within which a best fit is found. The first half of the 

collected data is used to generate the model, and the model is then validated using the 

second half. Here, the MATLAB system identification toolbox [70] is used to execute the 

system identification functions.  

 

3.4.2 Model Generation and Update Algorithm 

Using the difference equations in the system identification approach, the end-to-end delay 

of a packet can be predicted in the near future, but not in the far future because the end-

to-end delay may be disturbed by unpredictable cross-traffic. To capture the network 
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dynamics as closely as possible, the measured data is divided into “chunks” and within 

each chunk a black box model is generated to describe this chunk’s network dynamics 

such as end-to-end delay. At the end of each chunk an ARX model describing the end-to-

end delay difference and the first end-to-end delay are used together as the 

LowFidelityModel for the simulation client to synthesize end-to-end delay using the 

current packet inter-arrival time as input. To further reduce network traffic between 

clients and server, LowFidelityModel will be updated only if the server decides that the 

old model cannot represent the new measured data. The model generation and update 

algorithm is shown below: 

Simulation server: 

1. collect all the data in chunk 1, generate a LowFidelityModel, and pass it to the 

client 

2. collect all the data in chunk i (i>1), test to see if model i-1 is still valid for data in 

chunk i. If model i-1 is valid, repeat step 2 for chunk i+1. Otherwise, go to step 3 

3. generate a LowFidelityModel based on data chunk i, and pass it to client 

Simulation client: 

1. obtain a LowFidelityModel from server 

2. generate end-to-end delay with packet arrival event (inter-arrival time as input to 

LowFidelityModel) 

3. if new LowFidelityModel is received, the old one is replaced with the new one in 

step 2 
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3.5 Experiments and Performance 

This section presents the results of experiments evaluating the accuracy of the client-

server system using a worm propagation simulation. A packet-level simulator called 

GTNetS [19]  is used for the high fidelity model. The purpose of these experiments is to 

evaluate the accuracy of the client emulations. The end-to-end delay is the principal 

metric of interest. The end-to-end delay generated from the low fidelity emulation at the 

client is compared with that generated directly from the high fidelity simulation in the 

simulation server, in order to justify that by using the modeling methods, the simulation 

results from the local client is statistically as good as those from the server (high fidelity 

simulation). 

3.5.1 Experimental Setup 

The Georgia Tech Network Simulator (GTNetS) is a network simulation environment 

designed to study the behavior of moderate to large-scale networks. GTNetS uses a 

federated approach to create parallel simulations. Using GTNetS, a worm propagation 

simulation  was developed to demonstrate the effect on web traffic [71]. The worm 

propagates as a shooting agent in an infected node, makes a connection to a vulnerable 

server on a randomly selected host, and infects it. During the worm propagation, normal 

background traffic is injected into the network. The infected node follows the preceding 

steps to propagate to other hosts in the network. The worm connection is TCP-based. 

 

In these experiments, the network topology is a clique with 10,240 nodes (routers and end 

hosts) spread across 10 processors (1024 nodes on each processor). On each processor 
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there are two web servers and twenty web browsers (total of 20 web servers and 200 web 

browsers). In all the experiments, the worm, after being set loose, propagates at the rate 

of one iteration every second. Experimental measurements were performed on a cluster-

computing platform at Georgia Tech. This cluster is a Linux cluster consisting of 17 

machines. Each machine is a Symmetric Multi-Processor (SMP) machine with eight 

550MHz Pentium III XEON processors.   

3.5.2 Measured Data Analysis 

 

Figure 29: Measured inter-arrival time and end-to-end delay difference 

Figure 29 gives a snapshot of the measured data obtained from the TCP-version packet-

level (high fidelity) worm propagation simulation. Three thousand packets are collected 

at one of the hosts in the simulation. For clarity, only the first 200 packets are depicted 
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here. The inter-arrival time is obtained by taking the difference between consecutive 

packet send times, the end-to-end delay is calculated as each packet’s send time 

subtracted from its receive time, and the end-to-end delay difference is the difference in 

consecutive packets’ end-to-end delays. 

 

Figure 30: Autocorrelation Function of Measured Data 

The constancy of the data is checked before it can be modeled by a network model. 

Figure 30 shows the autocorrelation function of the data collected from the GTNetS 

simulation against corresponding lags. The autocorrelation function measures the 

dependence between observations as a function of their time differences or lag. A 

stationary series exhibits statistical properties that are unchanged as the period of 
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observation is moved forward or backward in time. Figure (a) shows that end-to-end 

delay has a significant correlation and is non-stationary. Figure (b) shows that after taking 

the difference of consecutive end-to-end delay, the time series becomes stationary. 

Figure(c) shows that the packet inter-departure time is stationary. 

3.5.3 Experimental Results 

The model generation and data prediction procedures are as follows. The data in Figure 

29 is divided into two chunks, each containing 100 packets. The first 100 packets (inter-

arrival time as input and end-to-end delay difference as output) are used in generating the 

ARX model. The parameters of na, nb, and nc in Equation 1 are set at 10, 20, 1. The 

coefficients in Equation 1 are estimated using the first 100 input/output points and the 

least square methods. Then the ARX model is used to predict the next 100 end-to-end 

delay differences, using the next 100 inter-arrival times as input. 

 

Figure 31: Measured Data from Simulation [101, 200] and Output from ARX Model 

Generated from Data [1, 100] 

Figure 31 shows the measured end-to-end delay difference of the next 100 packets for the 
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worm propagation simulation, and the predicted end-to-end delay difference using the 

ARX model generated from the first 100 input-output pairs. The comparison verifies that 

the accuracy of predicted end-to-end delay difference using ARX is close to that of the 

collected data from the high fidelity worm propagation simulation. This suggests that it is 

possible to use the system identification method to define LowFidelityModel for the 

network traffic within a certain time interval. The advantage of using system 

identification is the small amount of information needed to be transmitted in the network, 

which is composed of the parameters in Equation (1). This is much more efficient than a 

CDF table and more precise than pure mean and standard deviation methods. 

 

As stated earlier, in order to reduce the amount of traffic between emulation clients and 

the simulation server, the LowFidelityModel is not updated at the end of every time 

interval as long as the model can still be used to predict future end-to-end delay. Another 

experiment is performed to determine to what extent the ARX model can predict traffic in 

the worm propagation simulation. In the previous experiment shown in Figure 31, input-

output data indexed from 1 to 100 is used to generate an ARX model, predict results for 

data pair 101 to 200, and compare the predicted results with measured data from 101 to 

200. In this experiment, the ARX model is generated from data pair [1, 100] and then 

used to predict data pair [201, 300], [301, 400], and [401, 500]. The results show that the 

accuracy of the prediction using the ARX model decreases as the input-output data pair is 

farther away from the data pair that generates the model. This indicates that 

LowFidelityModel built using the system identification method can be reused when the 

network dynamics do not change too much, but need to be updated after a certain amount 
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of time since it is possible the network status changes with time. 

 

Figure 32: CDF Plot of measured data from GTNetS and prediction from ARX 

Figure 32 is the Cumulative Distribution Function (CDF) plot of all the measured data 

(2800 packets) from GTNetS simulation and predicted end-to-end delay difference using 

ARX model predictions. With these data, the Jarque-Bera test is used for goodness-of-fit 

to a normal distribution test with the hypothesis H0 that GTNetS/ARX has normal 

distribution at level α = 0.05. Both null hypothesis were rejected at the 5% level. This 

means tests based on normal assumptions such as t-test, f-test cannot be used to see 

whether the mean of the two groups of data are the same. Wilcoxcon rank sum test with 

the hypothesis H0 that µ_GTNetS = µ_ARX at level α = 0.05 is accepted, which means 

the two populations are identical with the same mean. The Kolmogorov-Smirnov test of 

these data at level α = 0.05 is accepted with the assumption that the measured and 

predicted data have the same distribution. All the CDF plots and statistical tests reveal 

that the generated data using ARX model are statistically similar to the original 

measurements from GTNetS simulation. 



 76 

 

Figure 33: Batch Mean of Delay Difference 

 

Figure 34: Batch Mean of Delay 
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Figure 35: Batch Variance of Delay Difference 

Since the data is modeled in batches, the measured data from GTNetS and predicted from 

ARX model are compared for each batch containing 100 data points, rather than the 

entire data series. Figure 33 shows the batch mean for delay difference. Figure 34 shows 

batch mean for delay, which is calculated from the delay difference and the delay of the 

first point in each batch. Figure 35 shows the batch variance of delay difference. In all the 

figures, the predictions from ARX model track the changes in the GTNetS simulation 

results very well. 

3.5.4 Discussion 

Although the results from the worm propagation simulation are good, system 

identification does not apply to all traffic scenarios. As seen from Equation 1, there is a 

limit on the number of previous inputs and outputs that can be used to predict the future 

output. When the variance is sharp and large, it cannot be captured through Equation 1. 

Another requirement is a not-too-weak correlation between input and output, since a 

model generated using the history data is used to predict future data, with only the input 
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to provide the information about the current status. As indicated in [70], exponential 

input is an ideal case for the system identification method to apply. 

 

The overhead introduced by the network metrics modeling using system identification is 

mainly due to the invocation of the MATLAB engine used to compute ARX model 

coefficients in Equation 1, and communication with the MATLAB engine to import 

collected data and export computed coefficients. The MATLAB engine invocation is a 

one-time cost paid when the first model is generated and will not occur for future model 

generations. Data imports and exports happen every time a new model is to be computed 

by the MATLAB engine. The imported data are a relatively large data array in the size of 

tens to hundreds of inter-departure times and end-to-end delay measurements. The export 

from the MATLAB engine is the coefficients in Equation (1) with varied size ranging 

from single to double digits. Given the fact that the MATLAB engine runs as a process 

local to the Simulation Server, the invocation and communication costs are on the order 

of microseconds.  

 

3.6 Conclusion 

In ROSENET, a remote high fidelity simulation continuous calibrates a local low fidelity 

emulator through network models generated from online simulation data collection. The 

validity of the design of using periodically updated network models, instead of individual 

packets, to keep the simulation and emulation consistent is justified, based on studies on 

network constancy time scale. Existing network modeling techniques are explored and a 

library-based modeling approach is proposed to model the wide spectrum of network 
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dynamics which is difficult to describe using a single static network model. The 

procedures of using a system identification tool and state-divided black-box model to 

model end-to-end delay in remote network emulation are illustrated. Using a worm 

propagation simulation, it is shown that the end-to-end delay in the server-based 

architecture can be accurately modeled using the system identification tool but note that it 

does have limitations in its application to network traffic modeling.  
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4 PERFORMANCE EVALUATION AND CASE STUDIES  
 

4.1 Baseline Emulation Performance Evaluation 

The performance of traditional network emulation systems are straightforward to evaluate 

because traditional emulation tools are composed of either a single node machine or a 

homogeneous cluster and support only a limited number of application types and network 

scenarios. By comparison, the performance of a ROSENET system is much more 

complicated to predict as it integrates general distributed emulation and simulation tools 

into a heterogeneous environment. Hence its performance depends on many factors such 

as the specific simulators and emulators, application and simulation settings, and the 

distributed heterogeneous computing environment.  

 

In order to verify that ROSENET can generate accurate emulation results while meeting 

real-time constraints for network emulation, a series of experiments [72, 73] were 

performed to examine ROSENET’s performance as a network emulator, through a 

specific implementation of ROSENET using the NIST Net [4] emulator and GTNetS [19] 

simulator. Experimental results [72] examining end-to-end delay and loss show that 

ROSENET can deliver timely results and accurately predict the QoS parameters of 

network traffic. 
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4.1.1 Experiment Setup  

 

 

Figure 36: Experiment Setup 

The overall experimental setup is shown in Figure 36. GTNetS [19] is used as the high 

fidelity simulator due to its large scale distributed simulation capability and its support 

for simulation in C++. In these experiments the GTNetS simulator runs on a single node 

machine since the performance of parallel and distributed version of GTNetS has been 

examined in [25] and will not be explored here. NIST Net [4] is used as the low fidelity 

emulator. NIST Net is a link-level emulator which can apply delay, jitter, and loss to all 

individual IP packets. The NIST Net kernel module is modified so that it can monitor 

specific source-destination traffic pairs and pass the statistics to the emulation client, 

which runs as a user-level process. The emulation client communicates with the remote 

server and dynamically updates the models NIST Net uses to generate emulation QoS 

predictions. 

 

The modified NIST Net emulator also serves as a router and forms a private network with 
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the two test machines. In Figure 36 the source test machine marked with IP address 

192.168.1.3 sends UDP packets to the destination test machine with IP address 

192.169.1.3. NTP protocols are used to synchronize the clocks and use ethereal [74] to 

collect the traces on both machines. The precision of the NTP protocol is half the round-

trip time between the two synchronized machines, which yields the clock precision to be 

within 1 millisecond. 

 

Figure 37: Simulation Network Topology Setup 

A simple dumbbell topology is used in the initial experiments as shown in Figure 37.  

The constant bit rate (CBR) application is mapped to test applications on the two test 

nodes. As background traffic, more node pairs with On/Off applications are introduced. 

The test application CBR traffic and background On/Off traffic share a bottleneck link. 

The On/Off applications have exponential distribution with the On/Off time duration set 

at a 2.5 seconds interval time. During the On period, the On/Off application sends a 

constant bit rate stream of 10Mb/s. The simulation results such as end-to-end delay and 

loss are collected on the run at the end of each simulation time interval and generalized as 

model updates to the NIST Net emulator. 

 

A major concern in validating ROSENET as a network emulator is to ensure that packets 

are subject to the right end-to-end delay and loss. For this purpose, the end-to-end delay 

from the GTNetS simulation is logged, together with the end-to-end delay collected from 
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the destination test machine with IP address 192.169.1.3. Since this emulation system is 

based on time-intervals, the end-to-end delay cannot be compared packet by packet 

between emulation and simulation to measure emulation inaccuracy. Therefore the focus 

is on how well the emulation responds to changes in simulation results. 

4.1.2 End-to-End Delay  

 

Figure 38:  End-to-End Delay 

Figure 38 shows the end-to-end delay for 10,000 UDP packets of size 64 bytes at a 

sending rate of 180 pkts/second. Models between client and server are updated at 20 

pkts/interval. The circle represents the results collected in the GTNetS simulation and the 

star represents the results from NIST Net emulation, collected at the destination host 

(192.169.1.3). 

 

Three major observations can be obtained from this figure. First, the emulation traces the 

changes in the simulation results closely with a small lag. This lag is caused by the fact 
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that the emulator is using LowFidelityModel from the previous interval to predict end-to-

end delay in the current interval. Therefore the changes in simulation will be reflected in 

emulation with at least one update interval delay. The second observation is that the delay 

of emulation is always slightly higher than that of simulation. The higher delay in 

emulation is caused by the fact that the estimated end-to-end delay from 

LowFidelityModel is applied to the NIST Net router without compensating for the 

overhead outside NIST Net such as the transmission delay from the source node to the 

destination node. This overhead is a small amount and is mostly constant. Therefore, this 

overhead should be compensated when NIST Net does the delay estimation for the test 

machines. For this reason, another set of experiments were conducted to measure the 

overhead in NIST Net emulator in the following section. 

  

The last observation is that when a sudden change in end-to-end delay takes place, the 

simulation results only have a small variance while the emulation results have a large 

variance. The sharp change in simulation happens when the background traffic of the 

On/Off application has an On period so that the end-to-end delay suddenly increases in 

the simulation due to queuing at the node near the bottleneck link. This traffic with sharp 

change is then modeled by the server using LowFidelityModel as a Normal distribution 

with a large variance. When NIST Net uses this LowFidelityModel with large variance to 

estimate delay, it does not know that this variance is actually caused by one large increase 

or one large decrease. Instead it will regenerate the delays with many positive and 

negative variations in that time interval. After that sharp change interval, the server will 

generate constant delay with almost zero variance and the emulator will accordingly 
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regenerate delay with little variance.  

 

Figure 39: End-to-End Delay with Truncated Normal Distribution 

This prediction inaccuracy caused by a sharp change in end-to-end delay suggests 

directions for improvement. For example, in this particular case, a LowFidelityModel can 

be created which regenerates only one large positive or negative change instead of many 

positive and negative changes in one time interval. However, this solution requires users 

to visually compare the original data from simulation with predictions from emulation to 

identify points that may not be meaningful in a particular network traffic scenario, and 

thus may not apply to other network traffic patterns. A more general solution is to use a 

LowFidelityModel with a truncated normal distribution, meaning to use the maximum 

and minimum values obtained from the original data from the simulation as parameters in 

the LowFidelityModel to limit the predicted data value range. Figure 39 illustrates the 

same end-to-end delay results from Figure 38 using a truncated normal distribution for 

the LowFidelityModel.  It can be found that these out of range predictions, although quite 

obvious in the figure, only accounts for a small percentage of the predictions (167 

packets out of 10,000 packets), which shows that the predictions of end-to-end delay is 
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quite accurate. 

 

Figure 40: CDF of End-to-End Delay 

In addition to the plot of end-to-end delay over time as in Figure 38, the end-to-end 

delay’s cumulative distribution functions for both simulation and emulation are compared 

as shown in Figure 40. The CDF plot of the end-to-end delay further confirms the 

analysis of the three observations from Figure 38. It can be seen that the CDF of the 

simulation’s end-to-end delay closely matches that of the emulation, the simulation’s 

end-to-end delay value is slightly smaller than that of emulation which is caused by the 

unconsidered overhead outside NIST Net’s emulation module, and the emulation has 

delay values larger than 0.1 or smaller than 0.06 because one sharp change of end-to-end 

delay in the simulation causes several positive and negative changes in the emulation 

results. 

4.1.3 Overhead 

As seen from Figure 38, the NIST Net emulation always has a slightly higher estimation 

of the end-to-end delay than the simulation. This is because the results from simulation 

are directly applied to NIST Net delay with no compensation for the transmission delay 
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between the test machines. Therefore another group of experiments are performed to see 

how much extra overhead the ROSENET system introduces into the emulation. In this set 

of experiments, the CBR UDP application was run on the two machines through NIST 

Net and ethereal collecting the end-to-end delay statistics. As comparison, ping is used to 

collect the RTT between the two machines under different conditions. We then compared 

the overhead in the following test cases: 

1. NIST Net is not running on the router 

2. NIST Net is running with no parameters such as delay or loss set 

3. NIST Net is running with the end-to-end delay set as zero and the kernel 

monitoring of packets for the client to generate LowFidelityModel turned on 

4. NIST Net is running with delay set as 60 milliseconds and the kernel monitoring 

of packets for the client to generate LowFidelityModel turned on 

 

Time (msec) Ping (RTT) Client/Server  

(end-to-end delay) 

1. No NIST Net 1.131 0.606 

2. NIST Net, no delay, etc. 1.181 0.669 

3. NIST Net, delay 0, monitoring 1.187 0.630 

4. NIST Net, delay 60, monitoring 61.347 60.7 

Figure 41: Emulation Overhead 

Figure 41 shows the round trip time (RTT) measured using ping and end-to-end delay 

measured from the UDP application traffic using ethereal. Since the NTP protocol is used 

to synchronize the clocks on the two test machines, the time precision of the clock is half 

the round-trip time. Therefore from the figure the precision for one-way delay is within 1 

millisecond in this case. These results show that very little overhead is introduced into the 

NIST Net emulation by ROSENET.  
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Another group of data might also be included, which is the overhead for NIST Net with 

delay 60 milliseconds with traffic monitoring and model updates from the server. 

However, the model update strategy is optimized so that if there is very little change in 

the model parameters, no model will be sent over the network for update. Therefore this 

case is not studied here. From this figure the compensation in NIST Net delay estimation 

is estimated to be around 0.7 milliseconds, which is the difference in end-to-end delay 

between simulation and emulation in Figure 38. 

4.1.4 Loss 

 

Figure 42: Packet Loss Plot 

To investigate how accurately the loss rate can be predicted in ROSENET, the same 

settings are used to collect the packet traces from both emulation and simulation as was 

done previously. Then the packets are grouped into batches according to their packet id 

and the number of packets lost in each batch is calculated and shown in Figure 42. The x 

axis is the batch index and y axis is the number of packets lost in that batch. In total 



 89 

10,000 packets are collected and divided into 100 batches with 100 packets in each batch.  

 

Similar to the results from end-to-end delay in Section  4.1.2, it can be seen that the 

change in loss rate in emulation lags slightly behind that in simulation, which is caused 

by the fact that the emulator uses the simulation results from the previous interval to 

predict packet loss. The emulation also seems to have a larger loss rate than the 

simulation. To make sure this loss rate inaccuracy is not caused by NIST Net itself, the 

same CBR application is run without the server as the loss rate of NIST Net is set at 5% 

and the end-to-end delay at 60 milliseconds. It is found out that NIST Net can correctly 

drop packets at the 5% loss rate. 

 

Figure 43: Packet Loss over Background Traffic 

In order to determine the real reason why the loss rate from simulation and the measured 

loss rate from emulation are different, another group of experiments are performed by 

increasing the number of background node pairs in the dumbbell topology from 1 to 8. 

Then the total number of lost packets are collected from simulation and emulation with 

different number of background traffic flows (background node pairs) when 10000 
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packets are sent from the source to destination. As shown in Figure 43, the emulation 

consistently loses more packets than the simulation. As more traffic flows are introduced 

into the simulation network topology, this difference in loss rate becomes larger. 

 

Figure 44: Update Interval Delay in the System 

In order to explain the reason emulation loses more packets than simulation and the 

increased difference with more background traffic in simulation, the update time interval 

lifecycle in ROSENET originally introduced in Section  2.3 needs to be used. As shown in 

Figure 44, after a number of packets are monitored by the client during time interval T1, 

a TrafficSummaryModel is sent to the server using time T2. It takes T3 for simulation 

time interval T1 to be simulated in the simulation, and T4 to send the generated 

LowFidelityModel back to the emulator. T1, T2 and T4 remain constant in all the 

experiments. But T3, the time to simulate for simulation time interval T1, varies since it 

takes more time to simulate the same simulation time interval when more background 

traffic flows are to be simulated.  
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When T3 becomes larger, the loss rate in a time interval with more background traffic 

flows will also be higher since the application shares the bottleneck link with other traffic 

flows. By the time this LowFidelityModel with higher loss rate is sent to the NIST Net 

emulator, the previous LowFidelityModel has been used for too long. Since the duration 

of the On/Off period for background traffic is 2.5 seconds and the time interval is much 

smaller than that, the time intervals with higher loss rate tend to come consecutively, 

which means the higher loss rate LowFidelityModel tends to be used by the NIST Net 

emulator for a longer time than the models with lower loss rate.  

 

When the number of background traffic flows is small, the effects of increased simulation 

time T3 do not significantly affect the results. However, with more flows as background 

such as in the 8 background node-pairs case, the effects of increased simulation time are 

not negligible. This suggests that traffic load in simulation may affect the accuracy of 

emulation. The solution to this problem will be to use a more powerful machine that can 

tolerate the background traffic load change, or to use fluid models to simulate 

background traffic to reduce the effects of increased background traffic on emulation 

accuracy. 
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4.1.5 Sending Rate 

 

Figure 45: CDF of End-to-End Delay for 20 pkts/s Sending Rate 

 

 

Figure 46: CDF of End-to-End Delay for 200 Pkts/s Sending Rate 

In order to explore the effects of application traffic on the accuracy of emulation, the 

same experimental settings are used but the number of packets sent per second by the 

source application are varied. Figure 45 and Figure 46 show the cumulative distribution 

function (CDF) of end-to-end delay with the sending rate at 20 packets per second and 

200 packets per second. In total 10,000 packets are sent in each experiment. It can be 

seen that with a higher sending rate, the prediction from NIST Net emulation is closer to 
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that of GTNetS simulation.  

 

To explain this prediction accuracy difference caused by sending rate, the end-to-end 

delay for the first 1000 packets with 20pkts/s and 200pkts/s sending rate is plotted. Figure 

47 shows that with 20 pkts/s sending rate, the end-to-end delay from simulation varies a 

lot from 0.06 second to 0.1 second, causing the delay estimation from emulation to vary 

dramatically, both positively and negatively as previously analyzed from Figure 38.  In 

contrast, as shown in Figure 48, if the sending rate is 200 pkts/s, the end-to-end delay 

does not change very much and the emulation results do not have as many variances. 

Hence the reason the cumulative distribution function of end-to-end delay from Figure 45 

and Figure 46 differs much more in the lower sending rate than in the higher sending rate. 

This indicates that prediction accuracy in ROSENET may be affected by traffic pattern in 

the application. 
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Figure 47: End-to-End Delay at 20 pkts/s Sending Rate 
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Figure 48: End-to-End Delay at 200 pkts/s Sending Rate 

4.1.6 Conclusion 

The experimental results examining the accuracy in regard to end-to-end delay, loss, and 

sending rate show that ROSENET can accurately predict QoS parameters while meeting 

real time constraints for network emulation, which confirms that ROSENET provides a 

promising approach to network emulation supporting accuracy and scale while meeting 

real-time constraints.  

4.2 Applying ROSENET to Defense Applications 

Many of today’s military services and applications run on geographically distributed 

sites. Before these services and applications can be deployed in an actual network, they 

need to be tested and evaluated under realistic scenarios with many unpredictable factors. 

This section discusses the challenges faced in applying ROSENET to defense 

applications. A case study applies synthetic traffic workloads over DARPA’s NMS 

network topology for a large scale simulation and a metric called remote emulation delay 
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is defined to evaluate and quantify ROSENET’s performance.  

4.2.1 Military Network Emulation 

Modern military operations are becoming increasingly more reliant on network 

communication and connectivity. Network centric warfare is expected to provide 

information superiority in modern warfare, which translates into war-fighting advantages 

over adversaries. However, information technology may fail to work as expected. In one 

Navy SEAL mission in 1983 [75], a soldier in Grenada had to call for air support using 

commercial landlines because of failures in military communication. More recently, in 

the Iraq War in April 2003 [76], ground forces suffered from lack of bandwidth and range 

as well as software lockup problems which rendered their computer system useless. 

Soldiers had to stop their vehicles to receive data, making them easy targets for enemy 

fire.  

 

Therefore, before new military services and applications are deployed in an actual 

network environment, it is extremely important to test and evaluate them under a wide 

variety of network scenarios to determine possible unexpected system behaviors. A 

typical military communication scenario involves heterogeneously interconnected 

networks in a possible hostile setting that supports a large number of users and 

multimedia traffic with severe, critical, real-time requirements. The network design, 

configuration, and deployment problems in such a domain are extremely challenging.  

  

ROSENET can be used to test and evaluate distributed services and applications, 

including modern military applications [77, 78], by integrating remote parallel simulation 
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servers with local network emulators. Sample military applications where ROSENET 

may be applied include: 

• Information Assurance in the Global Information Grid. The Global 

Information Grid aims to integrate DoD’s information systems, services, and 

applications into a seamless, secure, and reliable information environment  to 

achieve information superiority over adversaries and form the basis for the 

network centric warfare doctrine. Tools are needed to ensure reliable delivery of 

critical messages, e.g., Call-for-fire messages, or medical evacuation orders.  

• QoS in wireless networks in urban environments. Mobile applications 

operating in urban environments are becoming increasingly more important in 

military operations. People and vehicle movements, weather and terrain (e.g., 

high-rise buildings) are important and often unpredictable factors that have strong 

impacts on Quality of Service (QoS) for wireless communications. The ability to 

integrate different simulators into one framework and make them accessible to 

remote users are useful features, e.g., to provide real time analysis and control of 

networks. 

• Realistic communication in military training. The need for collective and joint 

training is increasing as a result of the transformation to network centric warfare 

[79]. A testing framework capable of providing realistic communication scenarios 

over a secure wide area network at geographically distributed training sites will 

provide greater realism for joint tactical training.  
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4.2.2 Experiment Setup 

 

Figure 49: Basic DARPA NMS Campus Network 
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Figure 50: Ring Network Topology with Chords of NMS Campus Networks 

In this case study synthetic traffic are applied over a network topology which is from 

DARPA’s NMS program’s baseline network model [28]. This network topology was 

originally designed to support large scale simulation, motivated by the Department of 

Defense’s (DoD) Global Information Grid (GIG) efforts [80]. GIG is designed to be built 

upon a ubiquitous network supporting a wide range of defense applications. Before these 

applications are deployed, it is necessary to study their behavior in operational conditions 
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in GIG. As shown in Figure 49, each NMS campus network consists of four subnets, 

several routers, and a number of servers and clients generating background traffic. In 

total 574 nodes including 504 leaf nodes are modeled in each NMS network. All the 

NMS networks connect as a ring with chords connecting every other, 4th and 10th nodes 

in the ring. Figure 50 gives an example with 12 NMS networks. 

 

The ROSENET system is implemented using distributed GTNetS simulator and NIST 

Net emulator. The hardware configuration to run the simulation experiment is a 40-node 

HP Integrity (2 x 900 MHz Itanium 2 IA-64) running Red Hat Enterprise Linux 4. Up to 

32 nodes of the cluster are used in the experiment and each processor in the cluster 

simulates one NMS network. The source and destination applications tested by the 

emulator are mapped as leaf nodes on two campus networks and each is modeled on a 

different processor sending and receiving constant bit rate UDP packets. As background 

traffic, each leaf node in the NMS Campus network generates On/Off application traffic 

with data rate of 100kb/s to a random server in the neighboring NMS network simulated 

on another processor. In order to reduce the simulation load to catch up with the 

execution of the network emulator at real time, after sending a certain number of packets 

the connection terminates. Each application starts sending data at a random point in time 

to spread the background traffic over the simulation period. The emulator and simulator 

are placed within the Georgia Tech campus and the end-to-end delay between them is 

measured as within 2 milliseconds. 
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4.2.3 Measurement Metrics 

 
Network simulators are usually designed to achieve accuracy and scale. Accuracy is of 

major concern since users would use an experimental tool to test their applications if that 

experimental tool can accurately model the real world network environment. The baseline 

performance of ROSENET measuring the emulation accuracy in regards to end-to-end 

delay and loss has been evaluated and validated in Section  4.1 through a sequential 

simulation version of ROSENET. In addition, larger scale network simulation is 

preferred since it better represents the real world network environment. Parallel discrete 

event simulation has been used to improve the scale of network simulation and 

techniques are being developed to scale network simulation to even larger scale. 

However, scalability of a network simulator is not the focus in this study since scalability 

is more relevant to a particular simulator integrated in ROSENET. For example, the 

scalability of GTNetS simulator using the NMS Campus network topology has been 

studied in [19, 25]. On the other hand, for traditional network emulation, scalability has 

another meaning, which measures the throughput of the network interface of a network 

emulator. Similarly, for ROSENET this is more of interests to a particular network 

emulator such as NIST Net and therefore will not be discussed here.  

  

Timeliness is required because network emulators must process events and deliver results 

to applications while meeting real time deadlines. Although efficient execution of 

simulation is required, no strict real-time constraints are imposed on the execution of 

network simulation. When network simulation is used for network emulation as in 
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ROSENET, timeliness becomes a major concern. Timeliness can be measured using a 

timeliness ratio or miss ratio, which is the percentage of packets that meet the real time 

deadlines, or in other words, their predicted end-to-end delay. In ROSENET, the network 

emulator client can use network models to quickly generate packet QoS predictions and 

is unlikely to miss the real time deadlines, given that only simple mathematical 

calculations are involved. 

 

Although ROSENET can meet the timeliness requirement by using network models, the 

validity of this remote emulation method depends on the validity of the network models. 

By validity it means that if the network model describes the current network traffic status, 

the system is valid. A ROSENET system based on network models far in the past may 

not generate meaningful results; in the worst case results will be comparable to a trace-

based emulation system or some existing emulation tools which use static network 

parameters for the entire emulation. The following experiments examine more realistic 

and dynamic network scenarios and also bound the tradeoff of accuracy in time in a 

controllable and predictable manner. 

  

Therefore the remote emulation delay metric introduced in Section  2.2.3 is used as the 

measurement metric. The analysis in Section  2.2.3 shows that remote emulation delay is 

composed of data collection (or update interval) Tcollection, transmission delay Ttransmission_1 

and Ttransmission_2, and simulation cost Tsimulation. The lower bound of remote emulation 

delay should be one data collection or model update interval Tcollection, which means the 

QoS predictions for a packet will come on time but will be based on network traffic status 
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at least that late in the past.  

 

In the following sections, the contributions to remote emulation delay by each component 

in the ROSENET system are analyzed and the upper bound of remote emulation delay in 

each scenario is identified. Section  4.2.4.1 studies how data collection affects remote 

emulation delay. Section  4.2.4.2 discusses the relationship between remote emulation 

delay and various model update interval values. Section  4.2.4.3 analyzes how 

transmission delay between emulation client and simulation server affects remote 

emulation delay. Section  4.2.4.4 evaluates the effects of the scale of distributed 

simulation on remote emulation delay. 

4.2.4 Experimental Results 

Three groups of experiments were performed measuring remote emulation delay under 

different scenarios. As shown in Figure 25, remote emulation delay is the sum of time 

spent for the emulation client to collect data from applications in one time interval to 

generate a TrafficSummaryModel, send it over a LAN or WAN to the simulator to 

simulate for one time interval in simulation time, and for the simulator to generate the 

LowFidelityModel to send it back to the emulation client to perform QoS predictions. 

Since this process is repeated continuously over the simulation period and is thus 

executed in parallel by the distributed simulators and emulator, the actual remote 

emulation delay value may be less than the sum of all the time consumed in this process, 

due to time overlap at different components of the system. 
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4.2.4.1 Baseline Remote Emulation Delay 
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Figure 51: Remote Emulation Delay in Normal Execution 

First the remote emulation delay distribution in one execution in the ROSENET system is 

examined. The GTNetS simulation executes on 8 processors, each of which simulates one 

NMS Campus network containing 574 nodes and each background traffic connection 

terminates after sending 50,000 bytes. Figure 51 shows the remote emulation delay value 

under normal execution conditions, which means all the steps in Figure 25 are performed 

with the data collected by the emulation client for 2 seconds, sent to the simulator to 

simulate, and the results sent back to the emulator. The figure illustrates how remote 

emulation delay changes as model updates (with 2 seconds update interval) over a period 

of 120 seconds. The average remote emulation delay per model update is 2.5745 seconds. 

As shown in this figure, when the execution starts, the remote emulation delay values are 

somewhat different from the values that come later, due to the simulation warm-up period 

which creates and initializes the large network topology totaling 4592 nodes. After the 

simulation becomes stable, the remote emulation delay value varies between 1.2 and 3.2 

seconds alternatively. This is because the network emulator intercepts packets and stores 
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the data in the operating system kernel. To avoid overhead in context switches and the 

cost in copying data from kernel to user space, kernel read is not performed very 

frequently. Therefore data may be accumulated if one kernel read fails to get any data and 

the next read may get more than one update interval data accumulated, thus the remote 

emulation delay value of 1.2 and 3.2 seconds, instead of an ideal condition of 2 seconds. 
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Figure 52: Remote emulation delay with Pre-Stored Data 

Since data collection takes at least 2 seconds to generate a model for 2 seconds’ traffic 

and is much larger than the cost in other stages of the model update process, another 

group of experiments are performed, skipping the data collection step by using previously 

collected and stored data for model generation to avoid the data collection cost with time 

Tcollection. The results using pre-stored data in Figure 52 show that after the initial warm up 

period, the remote emulation delay value remains almost constant at around 1.25 second, 

unlike the two sided values of 1.2 and 3.2 seconds in the normal condition. This is 

because when all the data has been previously collected and ready to be read from kernel, 

remote emulation delay is only composed of transmission delay Ttransmission_1 and 

Ttransmission_2, and simulation cost Tsimulation. The average remote emulation delay with pre-
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stored data from Figure 52 is 1.2014 second, which is larger than the 0.5745 seconds as 

one might expect by subtracting the 2 seconds data collection time from the 2.5745 

seconds average remote emulation delay measured in Figure 51. The reason for this is 

that the average remote emulation delay is obtained by averaging among all the remote 

emulation delay values including the simulation warm-up period. The fact that the 

smaller remote emulation delay in Figure 51 is around the same (around 1.2 second) as 

the stable remote emulation delay value in Figure 52 confirms the previous analysis that 

remote emulation delay is the sum of the cost in different components of the system and 

it demonstrates that data collection (2 seconds) is the main cost in remote emulation 

delay, taking off which will dramatically reduce the average remote emulation delay. 

  

From this group of experiments, it can be seen that data collection time Tcollection, which is 

usually on the order of one update interval time or seconds to minutes, is a major 

contributor to the remote emulation delay in ROSENET. Since data collection time is 

fixed and not avoidable in ROSENET, it is a predictable factor and actually dominates 

the remote emulation delay value as will be demonstrated in the following experiments. 

The experimental results also indicate that data collection could affect remote emulation 

delay and the following section studies how data collection or model update intervals 

affect remote emulation delay. 
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4.2.4.2 Remote Emulation Delay vs. Update Interval 
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Figure 53: Remote Emulation Delay vs. Update Interval 

Update interval (seconds) 1 2 4 8 10 

Remote emulation delay  
normal (seconds) 1.1321 2.5745 5.0932 10.0873 12.5258 

Remote emulation delay  
with pre collected data 
(seconds) 0.6526 1.2014 2.2863 5.4813 6.1936 

Figure 54:  Data for Remote Emulation Delay vs. Update Interval  

Figure 53 shows the average remote emulation delay with different model update 

intervals ranging from 1, 2, 4, 6, 8 and 10 seconds for both normal execution and with 

pre-stored data. In both cases remote emulation delay increases almost linearly as models 

are updated at longer intervals, or less frequently. The results are also listed in Figure 54 

as a table, from which it can be seen that remote emulation delay in normal condition 

with data collection stage is mainly determined by update interval, which agrees with the 

observation from Section  4.2.4.1.  
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On the other hand, based on the results in Section  4.2.4.1 it was expected that remote 

emulation delay with pre-stored data should remain almost constant with different update 

interval values since there is no data collection. This is against the observation made from 

Figure 53. This linear increase in remote emulation delay without data collection is 

caused by the increase in simulation cost Tsimulation in Figure 25. With longer update 

interval, simulation interval also becomes longer and more events need to be processed, 

thus larger Tsimulation. If the network topology is small, the traffic flow is small, or the 

processor is sufficiently fast, this cost may not increase significantly even with a larger 

simulation interval. However, in the case with 574 nodes on each processor for 8 

processors and each leaf node sending data to a remote node on another processor, the 

increase in simulation time caused by longer simulation time is not negligible.  

  

By comparing the two remote emulation delay curves in Figure 53, it can be seen that 

remote emulation delay is dominated by the update interval so that the impact of the 

increase in simulation time Tsimulation is not observable. In that sense, it can be concluded 

that ROSENET can tolerate some lag of the simulation due to the fact that the simulation 

and data collection occur simultaneously at different parts of ROSENET. This also means 

that the high fidelity simulation may not be required to execute as fast as real time and 

the real time requirement on the simulation can be relaxed according to different update 

interval values. This relaxed simulation speed requirement may be addressed in future 

work. 
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4.2.4.3 Remote Emulation Delay vs. Remote Access Delay 

 

In order to evaluate how well ROSENET can support remote network emulation, an 

artificial end-to-end delay is introduced between the emulation client and simulation 

server to mimic the scenario when a network emulation client or user access the 

simulation cluster over a local or wide area network. According to [81], most (85%) of 

the round-trip delay in the Internet varies from 15 to 500 milliseconds, which translates to 

an end-to-end delay ranging from 7.5 to 250 milliseconds assuming symmetrical delay 

each way. Even if the delay is not symmetrical, an end-to-end delay with 7.5 to 500 

milliseconds is a safe estimation. Therefore end-to-end delay in this range is introduced 

between emulation client and simulation server and collect the remote emulation delay 

value changes versus the end-to-end delays. This end-to-end delay value corresponds to 

the transmission delay of Ttransmission_1 and Ttransmission_2 in Figure 25. 
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Figure 55: Remote Emulation Delay with Varying End-to-End Delay between 

Emulation Client and Simulation Server (2machines, 1 second update interval) 

First the experiments are performed under challenging scenarios to measure remote 

emulation delay. The update interval is set as 1 second and it is expected that this is the 
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lower bound of update intervals in a remote access scenario. The simulation is performed 

on two machines with very limited background traffic to measure the baseline overhead. 

Figure 55 shows that the average remote emulation delay changes with the end-to-end 

delay between the simulation cluster and emulation client. In comparison, the remote 

emulation delay is collected with pre-stored data as in previous experiments, meaning 

data collection step is skipped by using previously collected and stored data for model 

generation. As the figure shows, remote emulation delay increases with end-to-end delay 

in both scenarios and the increase is linear with pre-stored data. 

 

The figure also shows that when the remote access end-to-end delay is small, the remote 

emulation delay value in normal conditions is larger than in a pre-stored scenario since 

the update interval is the major cause of remote emulation delay. Starting from 0.4 

seconds end-to-end delay, remote emulation delay becomes the same in both cases 

whether data collection is included or not. This is because when the end-to-end delay 

(Ttransmission_1 and Ttransmission_2) is 0.4 second, the round-trip delay (0.4 second *2) plus the 

simulation cost Tsimulation which is measured as 0.2 second, is approximately 1 second. 

The 1 second data collection time is thus overlapped by the model transmission time and 

simulation cost as illustrated in Figure 25.  

 

When the model transmission delay (or end-to-end delay) is larger than 0.4 second, the 

model transmission delay over the wide area network, not the update interval, becomes 

the major contributor in remote emulation delay in ROSENET. Since the update interval 

is likely to be much larger than 1 second and the end-to-end delay over Internet is usually 
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smaller than 0.4 second, this is the worst case scenario performance for remote emulation 

delay with varying end-to-end delays. 
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Figure 56: Remote Emulation Delay with Varying End-to-End Delay between 

Emulation Client and Simulation Server (8 machines, 2 second update interval) 

Having tested the extreme scenarios where end-to-end delay can dominate the remote 

emulation delay value, another group of experiments are performed to examine how 

remote emulation delay will change over end-to-end delay under not-so-extreme 

conditions. Figure 56 shows the remote emulation delay value changing with varying 

end-to-end delays between the simulation cluster and emulation client with 8 machines 

and 2 seconds update intervals. The background traffic has the rate 100kb/s and the 

connection terminates with a limit of 50,000 bytes stream starting at a random time 

during the simulation. As the figure shows, remote emulation delay increases with the 

end-to-end delay in both scenarios and the increase is linear. With larger end-to-end delay 

the difference in remote emulation delay between the normal scenario and pre-stored data 

becomes smaller since larger end-to-end delay has a greater impact on the remote 
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emulation delay with pre-stored data scenario. This agrees with the observations from 

Figure 55 but the remote emulation delay under normal and pre-stored scenarios in this 

case won’t be the same under this end-to-end delay range, due to larger overhead in the 

simulation cost Tsimulation. 

 

This group of remote emulation delay versus end-to-end delay experiments for remote 

access show that end-to-end delay could affect the remote emulation delay to a certain 

extend, but the impact is small and can be tolerated due to the fact that the upper bound 

for the wide area end-to-end delay is usually smaller than the lower bound of update 

interval in ROSENET. Even under challenging scenarios where end-to-end delay 

becomes the main contributor of remote emulation delay, the remote emulation delay is 

still bounded and within a reasonable range due to bounded end-to-end delay. If the wide 

area network latency falls out of the range of the 85% of the round-trip delay in the 

Internet (15 to 500 milliseconds), such as larger than 500 milliseconds, the network 

emulator will continue to use the previous network model until the new network model 

comes, which should be no later than the end-to-end delay of the Internet. Thus this 

experiment tells us that remote access only has very limited impact on remote emulation 

delay and the validity of the ROSENET approach supporting remote emulation is thus 

justified in this sense. 

4.2.4.4 Remote Emulation Delay vs. Distributed Simulation Scale 

 
Since ROSENET targets using high performance computing facilities to perform large 

scale network simulation to provide more realistic network scenarios for network 

emulation, a group of experiments were performed using larger scale network simulation 
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to find out what impact the simulation scale could have on remote emulation delay. When 

more federates or processors are involved in the distributed simulation, a larger network 

topology and more traffic flows can be simulated. At the same time the execution time 

will become larger as shown by the scalability test results in [19]. In this experiment, the 

update interval is 1 second and maximum data stream for each connection is 500,000 

bytes. Each leaf node sends On/Off application data at 100kb/s. 
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Figure 57 Remote Emulation Delay with Different Number of Processors 

Figure 57 measures the remote emulation delay value versus the number of processors in 

the high fidelity simulation. With each processor simulating a DARPA NMS campus 

network with 574 nodes, the system is tested on 2, 4, 8, 16, and 24 processors. When 

more processors are involved and larger network topologies are simulated, remote 

emulation delay becomes larger. This increased cost is incurred due to the fact that the 

cost to advance time with more federates becomes larger. It also can be seen that remote 

emulation delay for pre-stored data is smaller than remote emulation delay under normal 

conditions. The difference in the remote emulation delay values between pre-stored and 

normal condition is between 0.05 and 0.1 seconds, which is very small. Due to limited 
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resources the experiments could not be extended to larger scales. The experimental 

results show that simulation scale has a very small impact on remote emulation delay, 

due to the fact that other costs overshadow the effects of simulation scale. This 

demonstrates ROSENET’s capability to support large scale simulations, and future work 

could be performed measuring ROSENET’s tolerance limits for simulation scale and 

simulation load. 

4.3 Case Study Using Skype 

When QoS of real time applications are studied, they should be tested with 

communication network characteristics in which the type of network and background 

traffic can be controlled. The goal of this case study is to illustrate the use of ROSENET 

to examine the impact of changing network behaviors on real time applications. For this 

case study, the Skype VoIP application is chosen, which is commercial overlay peer-to-

peer network software whose implementation is proprietary. Experiments [82] have been 

performed on the Internet to determine how Skype works and only a few experiments 

have been completed to test Skype over controlled network environment. The ROSENET 

system provides a tool to test Skype under different network environments and scenarios.  
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4.3.1 Experimental Setup 

 

Figure 58: Skype Experiment setup 

Figure 58 shows the Skype experimental setup. The NIST Net router is equipped with a 

second network card to connect to the Internet so that Skype clients on test machines A 

and B can login to the Skype server initially. After the initial login traffic is routed 

directly between machine A and B through the NIST Net router without going through a 

relay node on the Internet. The emulation client runs on the same machine as the NIST 

Net router and is connected with the remote simulation server which simulates the 

network environment used by Skype. A fourth computer is used as a monitoring system 

that generates voice to feed into the Skype Client A and records received voice on Skype 

Client B. Ethereal [74] is used to log the UDP traffic during the conversation on the test 

machines.  

 

The remote simulation server simulates a dumbbell network topology in which the two 

Skype clients are modeled as a pair of source/destination nodes sharing a bottleneck link 
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with a number of background traffic nodes which generate On/Off application traffic. 

The On/Off applications have an exponential distribution with On/Off time duration at 

2.5 seconds average interval. During the On period, the On/Off application sends 

constant bit rate streams at10Mb/s. The simulation results such as end-to-end delay and 

loss are collected on the run at the end of each simulation time interval and generalized as 

model updates to the NIST Net emulator. 

4.3.2 Skype Traffic Modeling 

Because live Skype traffic will be fed into the simulation server periodically, it is 

necessary to figure out how to model Skype traffic in GTNetS simulation. [82] has found 

that Skype can automatically adjust its packet rate and packet size (QoS) to adapt to 

changing network bandwidth and loss probabilities by switching to a different codec. 

Skype uses UDP unless TCP is required. In this experiment both machines use UDP 

during the conversation session and a very small amount of TCP packets are sent out to 

communicate with Skype super nodes on the Internet as control messages. The size of 

Skype voice packet is decided by the codec used. The typical bandwidth with Skype is 3-

16 kbps.  

 

No silence suppression is used in Skype, which means when neither caller nor callee is 

speaking, voice packets still flow between them. Therefore at any time during the 

simulation two flows are going through the NIST Net emulator at the same time. Since 

the VoIP application provided by GTNetS supports silence suppression, CBR UDP 

applications are used instead to simulate Skype traffic since Skype changes packet rate 

and size not very frequently in the experiments. If Skype changes codec, the packet size 
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and rate will change, which will be modeled by the TrafficSummaryModel using different 

CBR rate and packet size. The corresponding end-to-end delay changes will be modeled 

by LowFidelityModel and applied to the NIST Net emulation.  

4.3.3 Multiple Flow Synchronization 

Since no silence suppression is supported in Skype, the high fidelity simulation and low 

fidelity emulation are required to support two flows at the same time. The existence of 

multiple flows in the system causes a problem that is not met before when there is only 

one flow as in the experiments in Section  4.1. If the two traffic flows are injected in the 

simulation and emulation at different time, the simulation and emulation results will be 

invalid since caller and caller should be talking to each other at the same time. Hence the 

traffic flows should happen at the same time in both simulation and emulation.  

  

For this reason, the two flows in both simulation and emulation are synchronized by 

applying the LowFidelityModel and TrafficSummaryModel describing traffic in the same 

time frame. Since the network models describe traffic for a time interval, the definition of 

synchronization is loosened to the same time interval instead of the same point in time. In 

high fidelity simulation, a minimum end time is calculated among all flows’ 

LowFidelityModel in order to guarantee that all traffic applies to the simulation in the 

same time frame. Accordingly the LowFidelityModel generated after that round describes 

QoS status of the network for all the flows at the same time frame and can be used by the 

NIST Net emulator as long as they are applied to the emulator at the same time. NIST 

Net can apply network properties such as end-to-end delay and loss on different flows at 

the same time, but it does not need to address the problem of synchronization of all flows 
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since the network parameters in NIST Net are static. 

  

On the other hand, when traffic is monitored and collected at the NIST Net router, each 

flow may have a different time frame for their model unless the traffic is collected at the 

interval defined in time instead of in the number of messages. It is also safe to assume 

that the length of time interval of TrafficSummaryModels from different flows is different 

in practice. When the high fidelity simulator uses traffic models in the simulation, it must 

make sure the models describing the same time frame are used. 

4.3.4 Experimental Results 

The results collected in the experiments are end-to-end delay and loss. The traces 

collected show that Skype sending rate remains approximately 4kbps and the packet size 

is around 49 bytes. Since the Skype traffic rate is very low, the loss rate is very small. On 

the other hand, the end-to-end delay is largely affected by the On/Off background traffic 

sharing the bottleneck link with the Skype traffic so the focus is on the end-to-end delay 

in this section. 
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Figure 59: Caller to Callee End-to-End Delay 
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Figure 60: Callee to Caller End-to-End Delay 

Figure 59 and Figure 60 show the end-to-end delay from caller to callee and from callee 

to caller. Initially the NIST Net end-to-end delay is set at 20 milliseconds when no 

LowFidelityModel is available to be used by the emulator. That is why the initial end-to-

end delay for emulation is approximately 20 milliseconds in both figures. As the high 
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fidelity simulation takes some time to initialize, a number of TrafficSummaryModel’s are 

also generated by the client at the same time. After the high fidelity simulator starts to 

simulate, it needs to consume the TrafficSummaryModel that has been accumulated 

during the time it initializes the simulation. This is the reason that a large lag is shown in 

both figures between emulation and simulation and the lag is much large than one time 

interval. 

 

In Figure 60 during the time period from 80 seconds to 100 seconds, a few very large 

values of end-to-end delay in emulation results are shown. These very large end-to-end 

delay values can be explained by the fact that with two flows going through the NIST Net 

kernel module, it requires more CPU power to monitor the traffic, generate the 

predictions, and copy the data from kernel to user space while the client in the user space 

communicates with the simulation server to update network models for both flows. 

Hence certain packets are delayed in their delivery due to competition for CPU. 

4.4 Conclusion 

This chapter evaluates ROSENET’s performance and addresses the challenges in 

applying a remote network emulation approach to today’s new services and applications 

through case studies of military application and commercial VoIP application Skype. 

Experiments examining the emulation accuracy in regard to end-to-end delay, loss, and 

sending rate show that ROSENET can accurately predict QoS parameters while meeting 

real time constraints for network emulation. The case study using a large scale simulation 

with DARPA’s NMS network topology in ROSENET illustrates the use of the remote 

emulation delay metric to predict the ROSENET system’s performance. Both the 
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analytical model and experimental results show that remote emulation delay has a 

predictable and also bounded value, which can be used to inform users of potential 

inaccuracy in the emulation while users take advantage of the benefits of remote network 

emulation. In the second case study Skype is used as a real world application to illustrate 

how ROSENET can be used to test real time applications. The experimental results show 

that this large scale network emulation framework capable of integrating a remote high 

fidelity simulation facility with local network emulation can meet requirements for scale, 

accuracy, timeliness and accessibility.. 
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5 CONCLUSIONS AND FUTURE WORK 
 

5.1 Conclusions 

Motivated by the requirements of testing new services and applications and the problems 

in existing emulation tools, the ROSENET approach utilizes a remote high fidelity 

simulation to update and calibrate a local low fidelity emulator, in order to achieve scale, 

accuracy, and timeliness in network testing. The ROSENET achieves timeliness through 

the low fidelity emulator which quickly provides QoS predictions to real time distributed 

applications, and scale and accuracy through remote high fidelity simulation running on 

remote high performance computing facilities.  

 

Although research has been done using high performance computing facilities for real 

time network simulation or emulation, no previous work has addressed the accessibility 

of remote network simulation to users for emulation purposes. To reduce the 

communication cost and potential latency over a wide area network, periodically updated 

network models are used in the remote network emulation framework to synchronize the 

distributed simulators and emulators. The validity of using network models to describe 

traffic over a time interval is based on the observations that network traffic is constant 

(mathematically, operationally, or predictively) within a time interval. Due to the 

Internet’s distributed topology and its support for dramatically heterogeneous mixtures of 

protocols, services and applications, it is very difficult to use a single static model to 

accurately represent a wide spectrum of network dynamics.  A library-based network 

modeling techniques use different modeling approaches to describe various traffic 
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patterns by selecting models according to certain criteria such as user requirements for 

accuracy, communication and computational cost and dynamically update the models or 

model parameters during the emulation process.  

 

Emulation results for end-to-end delay and loss from the ROSENET emulation system 

are compared with those from the high fidelity simulation, assuming that the results from 

high fidelity simulation represent the “true” QoS predictions. The two case studies using 

a large scale network topology with synthetic traffic workload and a real world VoIP 

application Skype test ROSENET in a real world environment. The results show that 

ROSENET is a promising approach that can provide scale, accuracy, and timeliness for 

testing new generations of services and applications. 

5.2 Future Work 

Future work is recommended in the following areas: 

• Remote Wireless Network Emulation. Large scale mobile testbeds are being 

developed such as ORBITS. The parallel discrete event simulator GTNetS also 

provides wireless simulation capabilities. Many new services and applications 

utilize wireless network environment and they require wireless network emulation 

tools for testing and evaluation. The ROSENET approach can be extended to 

wireless network by integrating the client/server architecture with wireless 

simulators or testbeds to provide remote network emulation capabilities. The 

remote accessibility of ROSENET emulation is especially important in this sense 

as users are not limited in a laboratory environment and a lot of research questions 

are open to be explored. 
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• Network Traffic Pattern Analysis. Although network traffic varies a much in 

the Internet environment, classify traffic into patterns and match modeling 

techniques to specific traffic patterns will help improve network modeling and 

update efficiency. 

• Large Scale Testing. An emerging trend in parallel and distributed simulation is 

to execute simulations over very large number of processors involving hundreds 

of thousands of processors by using super computers such as Blue Gene. 

Extending ROSENET’s support for simulation on these supercomputers and test 

with machines involving thousands of processors is of great importance under the 

context of new generations of services and applications such as network centric 

warfare and petascale simulation for science and engineering. 
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