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SUMMARY

With the rapid development of advanced sensing technology, rich and complex real-

time high-dimensional streaming data are available in many systems, such as manufac-

turing, wireless communication, biosurveillance, and social systems. As information is

accumulated over time at a fast rate by multiple sensors, it is highly desirable to develop

efficient methodologies that enable to (1) extract informatic features, (2) learn the process

status and detect possible changes or faults quickly, (3) implement and compute online

fast, (4) be robust to outliers or model misspecification. Therefore, efficient robust and

scalable schemes and algorithms, which enable real-time monitoring of high-dimensional

data streams, are highly demanded.

This thesis focuses on statistical modeling to extract informative and robust features,

to interpret the characteristic of the system, and to develop efficient and robust monitor-

ing schemes that can be implemented recursively and in parallel to reduce unnecessary

transition costs in the data fusion systems. The methodologies developed in the thesis are

generic and can be applied to a variety of fields ranging from manufacturing processes (e.g.

forging, stamping processes, semiconductor process), where functional profile data are ob-

served sequentially, to video monitoring (e.g. Solar flare detection), where image data are

collected for sequential decision making.

This thesis starts with theoretical research on change-point detection and robust M-

estimation. In Chapter 1, we propose a scalable robust monitoring scheme that can detect

the small but systematic change of the system efficiently and in real-time when there are

some random transient outliers. We construct a new robust local detection statistic called

Lα-CUSUM statistic that can reduce the effect of outliers by using the Box-Cox transfor-

mation of the likelihood function. Moreover, we propose a new concept called false-alarm

breakdown point to measure the robustness of online monitoring schemes and characterize

the breakdown point of our proposed schemes.

xiii



In Chapter 2, we develop some families of communication-efficient schemes for mon-

itoring large-scale data streams. We use some shrinkage transformations such as soft-

thresholding, hard-thresholding and order-thresholding on the local monitoring statistics

so that to filter out unaffected data streams and save communication costs in the data fusion

networks. Moreover, we conduct the detection delay analysis on our proposed schemes in

both classical low-dimensional regime and modern high-dimensional regime and show that

under certain conditions, our schemes are asymptotical optimal by only receiving a small

proportion of data, which can reduce the transition costs.

In Chapter 3, we investigate two important properties of M-estimator, namely, robust-

ness and tractability, in linear regression setting, when the observations are contaminated

by some arbitrary outliers. By learning the landscape of the empirical risk, we show that

under mild conditions when the percentage of outliers is small, many M-estimators enjoy

nice robustness, which means the estimator is close to the true underlying parameter, and

tractability properties, which means the estimator can be computed efficiently, even if the

loss function is non-convex.

Then, in Chapter 4, we work on the applied research on nonlinear profile monitoring

based on discrete Wavelet transform. We proposed the recursive CUSUM procedure that

can learn the out-of-control parameters adaptively and detect unknown change efficiently.

In Chapter 5, we develop a functional Poisson regression model for papers cumulative

citations data. Based on our model, we can fit and learn the individual papers citation char-

acteristic well. Our proposed model is also used for clustering different citation patterns,

which can provide implications for bibliometric studies and research evaluations. Finally,

we summarize our original contributions and future research plans in Chapter 6.

xiv



CHAPTER 1

ROBUST REAL-TIME MONITORING OF HIGH-DIMENSIONAL DATA

STREAMS

1.1 Introduction

Robust statistics have been extensively studied in the offline context when the full data

set is available for decision making and is contaminated with outliers, e.g., robust estima-

tion (Huber, 1964; Basu, Harris, Hjort, and Jones, 1998), robust hypothesis testing (Hu-

ber, 1965; Heritier and Ronchetti, 1994), and robust regression (Yohai, 1987; Cantoni and

Ronchetti, 2001). Also see the classical books, Huber and Ronchetti (2009) or Hampel,

Ronchetti, Rousseeuw, and Stahel (2011), for literature review. In this chapter, we propose

to develop robust methods in the context of online monitoring when one is interested in

detecting sparse persistent smaller changes in high-dimensional streaming data under the

contamination of transient larger outliers.

A concrete motivating example of our research is profile monitoring in a progressive

forming process, see Figure 1.1 for illustration. A progressive forming process has a set

of dies installed within one stamping press. The part is transferred from one die station

to the next die station sequentially and each die station has a formed part processed in

previous die station. During this process, the forming force measured by the tonnage sensor

installed in the linkage of press is the summation of all forming forces generated in each die.

The forming force is measured as a profile or functional data that consists of 211 = 2048

measurements points. As a work piece passes through the die stations, a fault in any die

station might change the forming force (e.g. tonnage profiles). Figure 1.2 plots some

typical patterns of the profile data under the normal condition as well as under two faulty

conditions: fault #1 (the smaller change) caused by the malfunction of a part transferred

1



Figure 1.1: Illustration of a progressive
forming process.
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Figure 1.2: Three samples from a forming
process.

in the forming station, and fault #2 (the larger change) due to missing operations in the

pre-forming station. In practice, it is difficult to detect the smaller fault #1 condition since

the difference between the fault #1 profile and the normal profile is sparse and small in

magnitude. However, if this fault is neglected and the faulty condition remains uncovered,

it will lead to persistent quality issues of formed parts, and further damage die. Meanwhile,

the larger fault #2 can be observed easily due to the large difference from the normal profile.

On one hand, line workers generally will be able to fix the corresponding root cause in the

pre-forming station. On the other hand, the workers are generally unable to check whether

it will affect the down-stream stations or not, and thus it may or may not lead the fault #1

condition. Hence, when monitoring high-dimensional data streams, it is highly desirable

to develop effective methodologies to detect those smaller but persistent changes in the

presence of infrequent larger changes which can be thought as outliers, and might or might

not related to the smaller persistent changes.

In general, the problem of robust monitoring high-dimensional data in the presence

of outliers occurs in many real-world applications such as industrial quality control, bio-

surveilance, key infrastructure or internet traffic monitoring, in which sensors are deployed

to constantly monitor the changing environment, see Shmueli and Burkom (2010), Tar-

takovsky, Polunchenko, and Sokolov (2013), and Yan, Paynabar, and Shi (2015). Unfortu-

nately, it is highly non-trivial to develop efficient robust monitoring schemes or algorithms

due to two challenges: (1) the sparsity, where only a few unknown local components or

2



features of data might be affected, but we do not know which local components or features

are affected; and (2) the robustness, where we are interested in detecting smaller persistent

changes, not the transient outliers.

In the sequential change-point literature for high-dimensional data, while the sparsity

issue has been investigated, no research has been done on the robustness issue. To be more

specific, the sparsity has been first addressed by Xie and Siegmund (2013) using a semi-

Bayesian approach, and later by Wang and Mei (2015) using shrinkage-estimation-based

schemes. Chan (2017) developed asymptotic optimality theory for large-scale independent

Gaussian data streams. Unfortunately all these methods are sensitive to outliers since they

are based on the likelihood function of specific parametric models (e.g.. Gaussian) of the

observations. Meanwhile, regarding the robustness issue, research is available for monitor-

ing one-dimensional streaming data: rank-based method in Gordon and Pollak (1994) and

Gordon and Pollak (1995), kernel-based method in Desobry, Davy, and Doncarli (2005),

or least-favorable-distribution method in Unnikrishnan, Veeravalli, and Meyn (2011). Un-

fortunately it is unclear how to extend these existing robust methods from one-dimension

to high-dimension when we also need to deal with the sparsity issue in which there is

uncertainty on the subset of affected local components or features.

In this chapter, we develop efficient robust real-time monitoring schemes that are able

to robustly detect smaller persistent changes in the presence of transient outliers when on-

line monitoring of high-dimensional steaming data. From the methodology viewpoint, our

proposed schemes are semi-parametric, and extend two contemporary concepts to the con-

text of online monitoring of high-dimensional data streams: (i) Lq-likelihood in Ferrari

and Yang (2010) and Qin and Priebe (2017) for robustness, and (ii) the sum-shrinkage

technique in Liu, Zhang, and Mei (2019) for sparsity. These allow us to develop statis-

tical efficient and computationally simple schemes that can be implemented recursively

over time for robust real-time monitoring of high-dimensional data streams. Moreover, we

also extend the concept of breakdown in the offline robust statistics (Hampel, 1968) to the

3



sequential change-point detection context, and conduct the false alarm breakdown point

analysis, which turns out to be useful for tuning parameters in our proposed schemes.

Our research makes four contributions in the statistics field by combining robust statis-

tics with sequential change-point detection for high-dimensional streaming data. First, our

proposed method is robust with respect to infrequent outliers as well as the uncertainty of

affected components of the data. Second, our proposed method can be implemented recur-

sively and distributed via parallel computing, and thus is suitable for real-time monitoring

over long time period for high-dimensional data. Third, inspired by the concept of break-

down point (Hampel, 1968) in the offline robust statistics, we propose a novel concept of

false alarm breakdown point to quantify the robustness of any online monitoring schemes,

and show that our proposed scheme is indeed has much larger false alarm breakdown point

than the classical CUSUM-based schemes. Finally, from the mathematical viewpoint, we

use Chebyshev’s inequality to derive non-asymptotic low bounds on the average run length

of false alarm for our proposed method. The non-asymptotic results hold regardless of di-

mensionality, and allow us to provide a deep insight on the effect of high-dimensionality

in the context of change-point detection under the modern asymptotic regime when the

dimension or the number of data streams goes to∞.

The remainder of this chapter is organized as follows. In Section 1.2, we start with the

modern assumptions and present our proposed scheme in three steps. Then we provide the

theoretical properties of our proposed scheme in Section 1.3. In Section 1.4, we introduce

the concept of false alarm breakdown point and propose the general method to choose the

robust tuning parameter α. Simulation and case study results are presented in Section 1.5

and Section 1.6 respectively. The proofs of our main theorems are postponed to Section

1.7.
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1.2 Our proposed scheme

Suppose we are monitoring a sequence of high-dimension streaming data, {Yn}, over time

step n = 1, 2, · · · , where the data might be corrupted with transient outliers. We want to

raise an alarm as quickly as possible if there is a persistent distribution change on the data,

but we prefer to take observations without any actions if there are no persistent distribution

changes or if there are only transient outliers.

In this section, we will present the description of our proposed scheme, and then de-

velop its asymptotic properties in next section, with the focus on the effect of the high-

dimensionality in the context of change-point detection. At the high-level, our proposed

scheme includes three components: (i) modeling extracted features, (ii) monitoring each

local feature individually in parallel, and then (iii) combines local detection statistics to-

gether to make an online global-level decision. For the purpose of easy understanding, we

split the presentation of our proposed scheme into three subsections, and each subsection

focuses on each component of the proposed scheme.

1.2.1 Data and model

In many real-world applications such as profile monitoring in Figure 1.2, each raw data is

independent over time, but local coordinates of each high-dimensional data can be de-

pendent. In such a case, a standard technique is to extract independent features from

the historical in-control data using principal component analysis (PCA), wavelets, tensor-

decomposition, etc., and then monitor the feature coefficients instead of raw data them-

selves, see Jin and Shi (1999), Chang and Yadama (2010), Yan, Paynabar, and Shi (2015),

Liu, Mei, and Shi (2015), and Paynabar, Zou, and Qiu (2016). In the context of off-line

estimation or prediction, one can focus on a few important features for the purpose of di-

mension reduction. However, a new challenge in the monitoring context is that we do not

know which features might be affected by the change, and thus one often needs to monitor
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a relatively large number of features, see Wang, Mei, and Paynabar (2018) and Zhang, Mei,

and Shi (2018).

For each high-dimensional raw data Yn, denote the corresponding K-dimensional fea-

ture coefficients as Xn = (X1,n, · · · , XK,n)T . We assume that the local features are inde-

pendent, and we have sufficient historical in-control data to model the pre-change cumu-

lative density function (cdf) Fk of the kth feature Xk,n’s. Without loss of generality, we

assume that the Xk,n’s have the identical distribution, say, with the same probability den-

sity function (pdf) fθ0 = pdf of N(0, 1), under the in-control state, as we can consider the

transformation Φ−1(Fk(·)), where Φ is the cdf of the standard normal distribution, to stan-

dardize or normalized the in-control data if needed, see Efron (2012). Furthermore, as in

our motivating example of profile monitoring in Figure 1.1, we further assume the Xk,n’s

will have pdf g when the raw data involves larger transient changes or outliers, and will

have pdf fθ when the raw data involves a smaller persistent change, where the unknown

post-change parameter θ ≥ θ1 for some known value θ1 > 0.

Mathematically, recall the Tukey-Huber’s gross error model of the two-component mix-

ture densities

hθ(x) = (1− ε)fθ(x) + εg(x), (1.1)

where ε ∈ [0, 1) is referred to as the contamination/outlier ratio and g is the (unknown) out-

lier distributions. Then we model the Xk,n’s as the following change-point Tukey-Huber’s

gross error model: for some unknown change time ν = 1, 2, · · · , allXk,n’s are independent

and identically distributed (i.i.d.) with hθ0(x) in (1.1) when n ≤ ν−1, butm out ofK local

streams Xk,n’s have another distribution hθ(x) in (1.1) when n ≥ ν, where the post-change

parameter θ ≥ θ1, and θ1 − θ0 is the smallest meaningful magnitude of the change, which

is pre-specified.

In the sequential change-point problem, at each and every time step, we need to test the
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null hypothesis

H0 : ν =∞ (i.e., no persistent change occurs)

against a composite alternative hypothesis

H1 : ν = 1, 2, · · · (i.e., a persistent change occurs at some finite time).

The statistical procedure in the sequential change-point problem is often defined as a stop-

ping time T that represents the time when we raise an alarm to declare that a change has

occurred. Here T is an integer-valued random variable, and the decision {T = t} is based

only on the observations in the first t time steps. Denote by P
(∞)
θ0

and E
(∞)
θ0

the probability

measure and expectation when the data Xk,n’s are i.i.d. with density hθ0 , and denote by

P
(ν)
θ and E

(ν)
θ the same when the change occurs at time ν and m out of K streams Xk,n’s

have the post-change distribution hθ. Under the standard minimax formulation for online

change-point detection (Lorden, 1971), the performance of a stopping time T is evaluated

by the average run length to false alarm (ARLFA), E
(∞)
θ0

(T ) and the worst-case detection

delay

Dε,θ(T ) = sup
ν≥1

ess sup E
(ν)
θ

(
(T − ν + 1)+

∣∣Fν−1

)
. (1.2)

HereFν−1 = (X1,[1,ν−1], . . . , XK,[1,ν−1]) denotes past global information at time ν,Xk,[1,ν−1] =

(Xk,1, . . . , Xk,ν−1) is past local information for the k-th feature.

An efficient detection procedure T should have small detection delay Dε,θ(T ) subject

to the false alarm constraint

E
(∞)
θ0

(T ) ≥ γ (1.3)

for some pre-specified large constant γ > 0.

We should acknowledge that this is the standard formulation for monitoring of one- or
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low- dimensional data, and many classical procedures have been developed such as Page’s

CUSUM procedure (Page, 1954), Shiryaev-Roberts procedure (Shiryaev, 1963; Roberts,

1966), window-limited procedures (Lai, 1995) and scan statistics (Glaz, Naus, Wallen-

stein, Wallenstein, and Naus, 2001). Also some fundamental optimality results for one-

dimensional data were established in Shiryaev (1963), Lorden (1971), Pollak (1985), Pollak

(1987), Moustakides (1986), Ritov (1990), and Lai (1995), etc. For a review, see the books

such as Basseville and Nikiforov (1993), Poor and Hadjiliadis (2009), and Tartakovsky,

Nikiforov, and Basseville (2014). Note that here we do not aim to develop optimality the-

orem for monitoring of high-dimensional data, which is still an open problem in a general

setting. Our main objective is to develop an efficient and robust scheme, and then to inves-

tigate its statistical properties, which shed the new light of the effect of the dimensionality

K on the high-dimensional change-point detection problem.

1.2.2 Robust local statistics

To develop real-time robust monitoring schemes, we propose to borrow the parallel com-

puting technique to monitor each local feature individually, and then use the sum-shrinkage

technique to combine the local monitoring statistics together to make a global decision. For

that purpose, it is crucial to have an efficient local monitoring statistic that is robust to out-

liers. To do so, for the kth local feature, we propose to define a new local Lα-CUSUM

statistic:

Wα,k,n = max
(
Wα,k,n−1 +

[fθ1(Xk,n)]α − [fθ0(Xk,n)]α

α
, 0
)
, (1.4)

for n ≥ 1, and Wα,k,0 = 0. Here α ≥ 0 is a tuning parameter that can control the tradeoff

between statistical efficiency and robustness under the gross error model in (1.1) and its

suitable choice will be discussed later.

The motivation of our Lα-CUSUM statistic in (1.4) is as follows. Recall that when
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locally monitoring the single kth data stream Xk,n with a possible local distribution change

from fθ0 to fθ1 , the generalized likelihood ratio test becomes the classical CUSUM statistic

W ∗
k,n, which has a recursive form:

W ∗
k,n = max

(
W ∗
k,n−1 + log

fθ1(Xk,n)

fθ0(Xk,n)
, 0
)
. (1.5)

The CUSUM statistic enjoys nice optimality properties when all models are fully cor-

rectly specified (Moustakides, 1986), but unfortunately it is very sensitive to the outliers

as in all other likelihood based methods in offline statistics. One recent idea in offline ro-

bust statistics is to replace the log-likelihood statistic log f(X) by Lα-likelihood function

([f(X)]α − 1)/α for some α > 0, see Ferrari and Yang (2010) and Qin and Priebe (2017).

At the high-level, Lα-likelihood function is bounded below by −1/α when f(X) → 0 for

outliers, and thus become more much robust to outliers as compared to the log-likelihood

statistics. Moreover, as α → 0, the Lα-likelihood function converges to the log-likelihood

statistic, and thus it keeps statistical efficiencies when α is small. Here we apply this idea to

develop Lα-CUSUM statistics that turns out to be robust to outliers. More rigorous robust

properties will be discussed later in Section 1.4.

1.2.3 Efficient global monitoring statistics

With local Lα-CUSUM statistics Wα,k,n in (1.4) for each local feature, it is important to

fuse these local statistics together smartly so as to address the sparsity issue. Here, we

propose to combine these local statistics together and raise a global-level alarm at time

Nα(b, d) = inf

{
n :

K∑
k=1

max{0,Wα,k,n − d} ≥ b

}
, (1.6)

for some pre-specified constants b, d > 0 whose appropriate choices will be discussed later.

Note that our proposed scheme Nα(b, d) in (1.6) uses the soft-thresholding transforma-

tion, h(W ) = max{0,W − d}, to filter out those non-changing local features, and keep
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only those local features that might provide information about the changing event. This

will allow us to improve the detection power in the sparisty scenario when only a few

local features are involved in the change, also see Liu, Zhang, and Mei (2019) for more

discussions.

It is useful to compare our proposed scheme Nα(b, d) in (1.6) with other existing meth-

ods from the spatial-temporal detection viewpoint. In the literature, many existing change-

point schemes are developed by looking at the time domain first, and then searching the

spatial domain over different features for possible feature changes, see Xie and Siegmund

(2013) and Wang and Mei (2015). Unfortunately, such approach is often computationally

expensive and cannot be implemented online for real-time monitoring due to lack of re-

cursive forms. Here our proposed method (1.6) switches the order of spatial and temporal

domains by parallel searching for local changes for each and every possible local changes,

yielding computationally simple schemes that can be implemented recursively for real-time

monitoring.

We should also mention that besides the soft-thresholding transformation, there are

other approaches to combine the local detection statistics together to make a global alarm.

Two popular approaches in the literature are the “MAX” and the “SUM” schemes, see

Tartakovsky and Veeravalli (2008) and Mei, 2010:

Nα,max(b) = inf

{
n ≥ 1 : max

1≤k≤K
Wα,k,n ≥ b

}
, (1.7)

Nα,sum(b) = inf

{
n ≥ 1 :

K∑
k=1

Wα,k,n ≥ b

}
. (1.8)

Unfortunately, the “MAX” and “SUM” approaches are generally statistically inefficient

unless in extreme cases of very few or many affected local data streams.

Note that there are three tuning parameters, α, d and b in our proposed scheme Nα(b, d)

in (1.6) and Lα-CUSUM statistic Wα,k,n in (1.4), and it is useful to discuss what are the

“optimal” choices of these turning parameters. The most challenging one is the optimal
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choice of α, which is related to the robustness from the gross error models in (1.1), and will

be discussed in Section 1.4 through developing a new concept of false alarm breakdown

point. Meanwhile, the “optimal” choice of the shrinkage parameter d mainly depends on

the spatial sparsity of the change on the K local features, or the number m of affected

local feature coefficents, which will be discussed in the next section when we derive the

asymptotic properties of our proposed scheme Nα(b, d) in (1.6). Finally, for given α and

d, the choice of the threshold b is straightforward, as it can be chosen to satisfy the false

alarm constraint in (1.3).

1.3 Theoretical properties

In this section, we investigate the statistical properties of our proposed scheme Nα(b, d)

in (1.6) in the modern asymptotic setting when the dimension K goes to ∞, which shed

light on the suitable choice of tuning parameters when monitoring high-dimensional data

streams. It is important to note that the definition of our proposed scheme Nα(b, d) in (1.6)

does not involve the contamination ratio ε or the probability density distribution of outlier

g, but its statistical properties will depend on ε or g in the gross error model in (1.1). Hence,

in this section and only in this section, we assume that ε and g are given, as our focus is to

investigate the statistical properties of our proposed schemes.

For that purpose, let us first introduce two technical assumptions on the Lα-likelihood

ratio statistic Y = ([fθ1(X)]α − [fθ0(X)]α)/α when X is distributed according to hθ0 or

hθ1 under the gross error model in (1.1). Note that when α = 0, the variable Y should be

treated as the log-likelihood ratio log(fθ1(X)/fθ0(X)).

The first assumption on Y is related to the detection delay properties of our proposed

schemes:
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Assumption 1.3.1. Given θ ≥ θ1, ε ≥ 0 and α ≥ 0, assume

Iθ(ε, α) = Ehθ

[ [fθ1(X)]α − [fθ0(X)]α

α

]
(1.9)

= (1− ε)Efθ

[ [fθ1(X)]α − [fθ0(X)]α

α

]
+ εEg

[ [fθ1(X)]α − [fθ0(X)]α

α

]

is positive, where Ehθ ,Efθ and Eg denote the expectations when the density function of X

is hθ, fθ and g, respectively.

We should mention that this assumption is very wild for small ε, α > 0. To see this,

when ε = α = 0 and θ = θ1, Iθ(ε, α) in the assumption becomes the well-known Kullback-

Leibler information number

Iθ=θ1(ε = 0, α = 0) = Efθ1
log(fθ1(X)/fθ0(X)) = I(fθ1 , fθ0), (1.10)

which is always positive unless fθ0 = fθ1 . Since all functions are continuous with respect

to α and ε, it is reasonable to assume that Iθ(ε, α) are also positive for small ε, α > 0.

Indeed, if fθ belongs to a one-parameter exponential family

fθ(x) = exp(θx− b(θ)), (1.11)

where b(θ) is strictly convex on R, then it is straightforward to show that Iθ(ε = 0, α = 0)

would be an increasing function of θ. This implies Iθ(ε = 0, α = 0) ≥ Iθ=θ1(ε = 0, α =

0) = I(fθ1 , fθ0) > 0 for all θ ≥ θ1. Thus, Iθ(ε, α) > 0 for small ε, α > 0, and Assumption

1.3.1 holds.

The second assumption on Y is related to the false alarm rate of our proposed schemes,

and involves some basic probability knowledge on the moment generating function (MGF).

For a random variable Y with pdf s(y), recall that the MGF is given by ϕ(λ) = E(eλY ) =∫
eλys(y)dy when well-defined. A nice property of MGF is that ϕ(λ) is a convex function

of λ with ϕ(0) = 1. An important corollary is that there often exists another non-zero
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constant λ∗ such that ϕ(λ∗) = 1, and λ∗ > 0 if and only if E(Y ) < 0, see Lemma 3.2.1

in the Appendix. Our second assumption essentially says that this is the case under the

pre-change hypothesis, and is rigorously stated as follows.

Assumption 1.3.2. Given ε ≥ 0 and α ≥ 0, assume there exists a number λ(ε, α) > 0 such

that

1 = Ehθ0
exp

{
λ(ε, α)

[fθ1(X)]α − [fθ0(X)]α

α

}
(1.12)

= (1− ε)Efθ0
exp

{
λ(ε, α)

[fθ1(X)]α − [fθ0(X)]α

α

}
+

εEg exp

{
λ(ε, α)

[fθ1(X)]α − [fθ0(X)]α

α

}
.

We should mention that Assumption 1.3.2 is reasonable at least when ε and α are small.

To see this, note that when α = 0 and ε = 0, for Y = log(fθ1(X)/fθ0(X)), we have

Efθ0
(eY ) = 1 and thus λ(ε = 0, α = 0) = 1 in Assumption 1.3.2. Therefore, λ(ε, α)

should be in the neighborhood of 1 and thus are positive when ε and α are small.

With Assumptions 1.3.1 and 1.3.2, we are able to present the properties of our proposed

scheme Nα(b, d) in (1.6) in the following subsections. Subsection 1.3.1 discusses the false

alarm properties, whereas subsection 1.3.2 investigates the detection delay properties in-

cluding the robustness regarding on the number of affected local data streams.

1.3.1 False alarm analysis

In this subsection, we analyze the global false alarm rate of our proposed scheme Nα(b, d)

in (1.6) for online monitoring K independent features under the gross error model in (1.1),

no matter how large K is. The classical techniques in sequential change-point detection for

one-dimensional data are based on the change of measure arguments and then use renewal

theory to conduct overshoot analysis under the asymptotic setting as the global threshold

b goes to∞. Unfortunately such renewal-theory-based analysis often yields poor approxi-

mations when the dimension K is moderately large, since the overshoot constant generally
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increases exponentially as a function of the dimension K. Moreover, they cannot be ex-

tended to the modern asymptotic regime when the number K of local data streams goes

to∞. In other words, these classical techniques are unable to provide deep insight on the

effects of the dimension K.

Here we present an alternative approach that is based on Chebyshev’s inequality and

can provide useful information bounds on the global false alarm rate regardless of how

large the number K of features is.

Theorem 1.3.1. Given that Assumption 1.3.2 holds for ε ≥ 0 and α ≥ 0, i.e., λ(ε, α) > 0. If

λ(ε, α)b > K exp{−λ(ε, α)d}, then the average run length to false alarm of our proposed

scheme Nα(b, d) in (1.6) satisfies

E(∞)
ε [Nα(b, d)] ≥ 1

4
exp

([√
λ(ε, α)b−

√
K exp{−λ(ε, α)d}

]2
)
. (1.13)

The detailed proof of Theorem 1.3.1 will be postponed in Section 1.7, and here let us

add some comments to better understand the theorem. First, our rigorous, non-asymptotic

result in (1.13 holds no matter how large the number K of features is. This allows us to

investigate the modern asymptotic regime when the dimension K goes to∞.

Second, the assumption of λ(ε, α)b > K exp{−λ(ε, α)d} essentially says that the

global threshold b of our proposed scheme Nα(b, d) in (1.6) should be large enough if one

wants to control the global false alarm rate when online monitoring large-scale streams.

In particular, in order to satisfy the false alarm constraint γ in (1.3), it is natural to set

the right-hand side of (1.13) to γ. This yields a conservative choice of b that satisfies√
λ(ε, α)b =

√
K exp{−λ(ε, α)d} +

√
log(4γ). Such a choice of b will automatically

satisfy the key assumption of λ(ε, α)b > K exp{−λ(ε, α)d} in the theorem.

Third, when ε = α = 0, we have λ(ε = 0, α = 0) = 1, and our lower bound (1.13)

is similar, though slightly looser, as compared to those results in equation (3.17) of Liu,

Zhang, and Mei (2019), whose arguments are heuristic under a more refined assumption
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on some tail distributions (see G(x) defined in (2.39) below). Here we provide a rigorous

mathematical statement in Theorem 1.3.1 with fewer assumptions, though the price we pay

is that the corresponding lower bound is a little loose.

Finally, it turns out that our lower bound (1.13) provides the correct first-order term

of the classical CUSUM procedure when online monitoring K = 1 data stream under the

idealized model. In that case, we have ε = α = d = 0, and the classical CUSUM procedure

is the special case of our procedure Nα=0(b, d = 0). Since λ(ε = 0, α = 0) = 1, our lower

bound (1.13) shows that for any b > 1,

lim inf
b→∞

log E
(∞)
ε=0 [Nα=0(b, d = 0)]

b
≥ 1. (1.14)

Meanwhile, as the classical CUSUM procedure, it is well-known from the classical renewal-

theory-based techniques that limb→∞
logE

(∞)
ε=0 [Nα=0(b,d=0)]

b
= 1, see Lorden (1971). Hence,

our lower bound (1.13) provides the correct first-order term for log E
(∞)
ε [Nα(b, d)] under

the one-dimensional case as b → ∞. As a result, we feel our lower bound in (1.13) is not

bad in the modern asymptotic regime when the dimension K goes to∞.

1.3.2 Detection delay analysis

In this subsection, we provide the detection delays of our proposed scheme Nα(b, d) in

(1.6) under the gross error model hθ in (1.1) when m out of K features are affected by

the occurring event for some given 1 ≤ m ≤ K. In particular, note our proposed scheme

Nα(b, d) in (1.6) only use the information of the pre-change parameter θ0, the minimal

magnitude of the change parameter θ1 and tuning parameters α, b, d, we will investigate its

detection delay properties when the true post-change parameter θ is not less than θ1. The

following theorem presents the detection delay properties, and the proof will be postponed

in Section 1.7.

Theorem 1.3.2. Suppose Assumption 1.3.1 of Iθ(ε, α) > 0 in (1.9) holds , and assume m
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out of K features are affected. If b/m + d goes to∞, then the detection delay of Nα(b, d)

satisfies

Dε,θ(Nα(b, d)) ≤ (1 + o(1))
1

Iθ(ε, α)

(
b

m
+ d

)
, (1.15)

where the o(1) term does not depend on the dimension K, and might depend on m and α

as well as the distributions hθ.

Theorem 1.3.2 characterizes the detection delay of our proposed scheme Nα(b, d) in

(1.6), which is constructed by using the density function of fθ0 and fθ1 , under the gross

error model when the true post-change parameter θ ≥ θ1.As we can see, the upper bound of

the detection delay depends on the value of Iθ(ε, α), which might have different properties

depending on whether α > 0 (Our proposed Lα-CUSUM) or α = 0 (Classical CUSUM).

As a concrete example, assume fθ is the pdf of the normal distribution N(θ, 1), θ0 =

0, θ1 = 1, we can get

Iθ(ε = 0, α) =


1

α
√

1+α
( 1√

2π
)α
(
e−

α(θ−1)2

2(1+α) − e−
αθ2

2(1+α)

)
, if α > 0

θ − 1/2, if α = 0.

In this case, when α = 0, Iθ(ε = 0, α = 0) is a monotonic increasing function of θ,

which implies the detection delay of the scheme Nα=0(b, d) for θ ≥ θ1 is maximized when

θ = θ1 (the designed minimal magnitude of the change). However, such property may

no longer hold when α > 0. Figure 1.3 plots the curve Iθ(0, α) as a function of θ for

two different choices of α = 0.21 and 0.51. Both functions Iθ(0, α) are highly nonlinear:

they first increase and then decrease. This implies for robust change-point detection in

the present of transient outliers, it will be difficult to detect both smaller changes and very

larger changes: the former is consistent with the classical result with α = 0, and the latter

is a new phenomena as the larger change might be regarded as outliers. This is the price

we paid for robust detection in the present of transient outliers. This phenomena is also
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Figure 1.3: The value of Iθ(0, α) with two
choices of α = 0.21 and α = 0.51.
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observed when monitor the dependent data streams under the hidden Markov models (Fuh

and Mei, 2015).

So far Theorems 1.3.1 and 1.3.2 investigate the statistical properties of our proposed

scheme Nα(b, d) in (1.6) without considering the false alarm constraint γ in (1.3). Let

us now investigate the detection delay properties of our proposed scheme Nα(b, d) in (1.6)

under the gross error model in (1.1), subject to the false alarm constraint γ in (1.3). The fol-

lowing corollary characterizes such detection delay properties under the asymptotic regime

when the false alarm constraint γ = γ(K) → ∞ as the dimension K → ∞ whereas the

number m of affected features m = m(K) may or may not go to∞. It also includes the

suitable choices of the soft-threshold parameter d and the global detection threshold b.

Corollary 1.3.1. Under the assumptions of Theorems 1.3.1 and 1.3.2, for a given α ≥ 0

and given d ≥ 0, a choice of global detection threshold

bγ =
1

λ(ε, α)

(√
log(4γ) +

√
K exp{−λ(ε, α)d}

)2

, (1.16)

will guarantee that our proposed scheme Nα(b, d) satisfies the global false alarm con-

straint γ in (1.3). Moreover, in the asymptotic regime when the false alarm constraint

γ = γ(K) → ∞ and m = m(K) << min(log γ,K) as the dimension K → ∞, with
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b = bγ in (1.16), a first-order optimal choice of the soft-thresholding parameter d that

minimizes the upper bound of detection delay in (1.15) is

dopt =
1

λ(ε, α)

{
log

K

m
+ log

log γ

m

}
, (1.17)

and the detection delay of the corresponding optimized scheme Nα(bγ, dopt) in (1.6) satis-

fies

Dε,θ(Nα(bγ, dopt)) ≤
1 + o(1)

λ(ε, α)Iθ(ε, α)

{
log γ

m
+ log

log γ

m
+ log

K

m

}
. (1.18)

Note that on the right-hand side of (1.18), the dominant order is max( log γ
m
, log K

m
),

and the second term of log log γ
m

might be negligible. However, we decide to keep it in

Corollary 1.3.1, since this term will help us to compare with some classical results. As

research is rather limited in the sequential change-point detection literature in the modern

asymptotic regime when the number K of data streams goes to ∞. If we compare the

optimal soft-thresholding parameter dopt in (1.17) with the minimum detection delay in

(1.18), the effects of the dimension K are the same, but the effects of the false alarm

constraint γ are different. Thus, different asymptotic scenarios may arise depending on the

asymptotic orders of log K
m
, log log γ

m
and log γ

m
, and below we consider several extreme cases.

First, let us consider the extreme case when log K
m
<< log log γ

m
, i.e., K << log γ.

This is consistent with the classical asymptotic regime when K is fixed and the false alarm

constraint γ goes to∞. In this case, for our proposed scheme, the minimum detection delay

in (1.18) is of order log γ
m
. To be more concrete for the idealized model with ε = 0, α = 0,

λ(ε = 0, α = 0) = 1, if the true post-change parameter θ = θ1, then Iθ=θ1(ε = 0, α = 0) =

I(fθ1 , fθ0), which is the Kullback-Leibler divergence. Hence based on the Corollary 1.3.1,

the delay of Nα=0(bγ, dopt) would be bounded above by 1+o(1)
I(fθ1 ,fθ0 )

log γ
m
. Meanwhile, under

the idealized model, for any scheme T satisfying the false alarm constraint γ in (1.3), it is

well-known that Dε=0(T ) ≥ 1+o(1)
I(fθ1 ,fθ0 )

log γ
m

as γ goes to∞, see Mei (2010). This suggests
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that our proposed scheme with α = 0 attains the classical asymptotic lower bound under

the idealized model with ε = 0 and the true post-change parameter θ = θ1, in the classic

asymptotic regime of K << log γ.

Second, let us consider another extreme case when log K
m
>> log γ

m
, or equivalently,

when log γ << m log K
m
. This may occur when the number m of affected data streams is

fixed and log γ = o(logK), i.e., the false alarm constraint γ is relatively small as com-

pared to K. In this case, both the optimal soft-thresholding parameter dopt in (1.17) and the

minimum detection delay in (1.18) are of order log K
m
, and the impact of the false alarm con-

straint γ is negligible. In other words, our proposed scheme need to take at most O(logK)

observations to detect the sparse post-change scenario when only m out of K data streams

are affected. This is consistent with the modern asymptotic regime results in the off-line

high-dimensional sparse estimation that O(logK) observations can fully recover the K-

dimensional sparse signal, see Candes and Tao (2007).

Third, the other extreme case is when both log K
m

and log log γ
m

have the same order.

This can occur if m = K1−β and log γ = Kζ for some 0 < β, ζ < 1, which was first

investigated in Chan (2017) under the idealized model for Gaussian data. It is interesting

to compare our results with those in Chan (2017). Under the idealized model with ε = 0,

the optimal choice of α = 0, and thus our results in Corollary 1.3.1 showed that the the

detection delay of our proposed scheme is of order Kζ+β−1 + (ξ + 2β − 1) logK, which

is actually of order logK if 1−ζ
2

< β < 1 − ζ but of order Kζ+β−1 if ζ + β > 1. These

two cases are exactly the assumptions in Theorems 1 and 4 of Chan (2017). While the

assumption of m << min(log γ,K) in Corollary 1.3.1 corresponds to ζ + β > 1, in

which our detection delay bound is identical to the optimal detection bound in Chan (2017),

it is not difficult to see that the proof of Corollary 3.4.1 can be extended to the case of

1−ζ
2
< β < 1 − ζ, in which our results are only slightly weaker than that of Chan (2017)

in the sense that the order is the same but our constant coefficient is larger. The latter is

understandable because Chan (2017) used the Guassian assumptions extensively to conduct
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a more careful detection delay analysis than our results in (1.15), and his results are refiner

for Gaussian data under the idealized model. Meanwhile, our results are more general as

they are applicable to any distributions and the gross error models. More importantly, our

results give an simpler and more intuitive explanation on those assumptions in the theorems

of Chan (2017), and provide a deeper insight of online monitoring large-scale data streams

under general settings.

Fourth, from the detection delay point of view, Corollary 1.3.1 seems to suggest that

an ideal choice of α is to maximize λ(ε, α)Iθ(ε, α) for each and every θ ≥ θ1, which is

impossible. Here we follow the standard change-point or statistical process control (SPC)

literature to tune the α value on the boundary θ = θ1 as it is often easier to detect smaller

changes than larger changes. In this case, we can define an optimal choice of α as the

one that maximizes λ(ε, α)Iθ1(ε, α). For the purpose of better illustration, we treat α = 0

as the baseline since it corresponds to the classical CUSUM scheme that is optimal under

the idealized model. Then relation (1.18) inspires us to define the asymptotic efficiency

improvement of the proposed scheme Nα(b, d) with α ≥ 0 as compared to the baseline

scheme Nα=0(b, d) as

e(ε, α) =
λ(ε, α)Iθ1(ε, α)

λ(ε, α = 0)Iθ1(ε, α = 0)
− 1 (1.19)

Hence, the oracle optimal choice of α can be defined by maximizing the efficiency im-

provement e(ε, α). That is

αoracle(ε) = arg max
α≥0

[λ(ε, α)Iθ1(ε, α)] = arg max
α≥0

[e(ε, α)] (1.20)

It is non-trivial to derive the theoretical properties of αoracle as a function of ε, as it

will depend on the relationships between fθ0 , fθ1 and the contamination density g. But the

good news is that the numerical values of αoracle can be found fairly easy. The main tool

is the Monte Carlo integration and grid search, and our key idea to simplify computational
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Figure 1.5: Efficiency improvement when
α = 0.21
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Figure 1.6: Search for the optimal α by max-
imizing false alarm breakdown point

complexity is to run Monte Carlo simulation once to compute λ(ε, α) in (1.9) and Iθ1(ε, α)

in (1.12) simultaneously for many possible combinations of (ε, α).

As an illustration, we consider a concrete example when fθ0 is the pdf of N(0, 1), fθ1

is the pdf of N(1, 1), g is the pdf of N(0, 32). Figure 1.4 plots e(ε, α) as a function of

the tuning parameter α for several fixed ε. From Figure 1.4, it is clear that when ε = 0,

the e(ε = 0, α) curve (red curve) is linearly decreasing as a function of α ≥ 0, and thus

the optimal choice of α is 0 for ε = 0. This is consistent with the optimality properties

of the CUSUM statistic under the idealized model without outliers. Meanwhile, for any

other contamination rate ε > 0, the e(ε, α) curve is first increasing and then decreasing

as α increases. Thus the optimal choice of αoracle is often positive when ε > 0. For in-

stance, when ε = 0.1, Figure 1.4 (blue curve) shows that αoracle(ε = 0.1) ≈ 0.21, and

e(ε = 0.1, α = 0.21) ≈ 0.63. This suggests that our proposed Lα-CUSUM based scheme

with α = 0.21 will be 63% more efficient than the baseline CUSUM based scheme un-

der the gross error model when there are 10% outliers. Figure 1.5 shows the efficiency

improvement of our proposed Lα-CUSUM based scheme with α = 0.21 under different

contamination ratio ε from 0 to 0.15. From the plot, we can see that as compared to the

classical CUSUM based method, our proposed Lα-CUSUM based scheme with α = 0.21
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will gain 40% ∼ 70% more efficiency when the contamination ratio ε ∈ [2%, 15%], and

the price we pay is to lose 5% efficiency under the idealized model with ε = 0.

Note the oracle optimal choice of αoracle(ε) in (1.20) requires the full information of the

outliers ε and g, which may be unknown in practice. In the next section, we will investigate

the robustness property of our proposed scheme and provide a practical way to choose α,

which does not rely on any information of outliers.

1.4 Breakdown point analysis

In the classical offline robust statistics, the breakdown point is one of the most popular

measures of robustness of statistical procedures. At a high-level, in the context of finite

samples, the breakdown point is the smallest percentage of contaminations that may cause

an estimator or statistical test to be really poor. For instance, when estimating parameters

of a distribution, the breakdown point of the sample mean is 0 since a single outlier can

completely change the value of the sample mean, whereas the breakdown point of the

sample median is 1/2. This suggests that the sample median is more robust than the sample

mean.

Since the pioneering work of Hampel (1968) for the asymptotic definition of breakdown

point, much research has been done to investigate the breakdown point for different robust

estimators or hypothesis testings in the offline statistics, see Krasker and Welsch (1982)

and Rousseeuw (1984). To the best of our knowledge, no research has been done on the

breakdown point analysis under the online monitoring or change-point context.

Given the importance of the system-wise false alarm rate for online monitoring large-

scale data streams in real-world applications, here we focus on the breakdown point anal-

ysis for false alarms. Intuitively, for a family of procedures T (b) that is robust, if it is

designed to satisfy the false alarm constraint γ in (1.3) under the idealized model with

ε = 0, then its false alarm rate should not be too bad under the gross error model with some

small amount of outliers. There are two specific technical issues that require further clar-
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ification. First, how bad is a “bad” false alarm rate? We propose to follow the sequential

change-point detection literature to assess the false alarm rate by log E
(∞)
θ0

(T (b)) and deem

the false alarm rate unacceptable if log E
(∞)
θ0

(T (b)) is much smaller than the designed level

of log γ, i.e., if log E
(∞)
θ0

(T (b)) = o(log γ). Second, what kind of the contamination func-

tion g in (1.22) should we consider in the gross error model? In the previous subsection

we investigate the asymptotic properties of our proposed schemes when the contamination

distribution g is given. However, this is unsuitable for breakdown point analysis. Here

we propose to follow the offline robust statistics literature to consider the ε-contaminated

distribution class in Huber (1964) that includes any arbitrary contamination functions g’s.

To be more rigorous, in and only in this section, we define E
(∞)
f as the expectation

when the observations are i.i.d with pdf f, we propose to define the false alarm breakdown

point of a family of schemes T (b) as follows.

Definition 1.4.1. Given a family of schemes T (b) with b = bγ satisfying the false alarm

constraint γ under the idealized model with ε = 0, i.e., E
(∞)
fθ0

(T (b)) = (1 + o(1))γ, as

γ →∞. The false alarm breakdown point ε∗(T ) of T (b)’s is defined as

ε∗(T ) = inf{ε ≥ 0 : inf
h′0∈~0,ε

log(E
(∞)

h′0
T (b)) = o(log γ)}, (1.21)

where the set ~0,ε is the ε-contaminated distribution density class of the idealized model

fθ0(x) for given ε ∈ [0, 1), and is defined as

~0,ε = {h|h = (1− ε)fθ0 + εg, g ∈ G}, (1.22)

and G denotes the class of all probability densities on the data Xk,n’s.

Now we are ready to conduct the false alarm breakdown point analysis for our proposed

scheme Nα(b, d) in (1.6) with a given tuning parameter α ≥ 0. To do so, for the densities
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fθ0(x) and fθ1(x), and for any given α ≥ 0, we define an intrinsic bound

M(α) = ess sup
x

[fθ1(x)]α − [fθ0(x)]α

α
, (1.23)

and the density power divergence between fθ0 and fθ1:

dα(θ0, θ1) =

∫ {
[fθ1(x)]1+α − (1 +

1

α
)fθ0(x)[fθ1(x)]α +

1

α
[fθ0(x)]1+α

}
dx. (1.24)

Note that dα(fθ0 , fθ1) was proposed in Basu, Harris, Hjort, and Jones (1998), which showed

that it is always positive when fθ1 and fθ0 are different. Moreover, when α = 0, dα=0(θ0, θ1)

becomes Kullback-Leibler information number I(fθ0 , fθ1) =
∫
fθ0(x) log

fθ0 (x)

fθ1 (x)
dx.

With these two new notations, the following theorem derives the false alarm breakdown

point of our proposed schemes Nα(b, d) as a function of the tuning parameter α for a fixed

soft-thresholding parameter d when online monitoring a given K number of data streams.

Theorem 1.4.1. Suppose that fθ(x) = f(x − θ) is a location family of density function

with continuous probability density function f(x), and assume fθ0(x) − fθ1(x) takes both

positive and negative values for x ∈ (−∞,+∞). For α ≥ 0, and any fixed d and K, the

false alarm breakdown point of our proposed scheme Nα(b, d) is given by

ε∗(Nα) =
dα(θ0, θ1)

dα(θ0, θ1) + (1 + α)M(α)
, (1.25)

where M(α) and dα(θ0, θ1) are defined in (1.23) and (1.24). In particular, ε∗(Nα) = 0 if

M(α) =∞ and dα(θ0, θ1) is finite.

The proof of Theorem 1.4.1 will be presented in Section 1.7. Here let us apply the

results for widely used normal distributions, i.e., when fθ is the pdf of N(θ, σ2). In this

case, when α = 0, the density power divergence dα=0(θ0, θ1) = 1
2σ2 (θ1 − θ0)2 is finite, but

the bound M(α = 0) in (1.23) becomes +∞ since it is the supremum of the log-likelihood
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ratio log fθ1(x)− log fθ0(x) = (θ1 − θ0)x− (θ2
1 − θ2

0)/2 over x ∈ (−∞,∞). Hence,

ε∗(Nα=0) = 0. (1.26)

That is, the false alarm breakdown point of the baseline CUSUM-based scheme Nα=0 is

0, i.e., any amount of outliers will deteriorate the false alarm rate of the classical CUSUM

statistics-based schemes. This is consistent with the offline robust statistics literature that

the likelihood-function based methods are very sensitive to model assumptions and are

generally not robust.

Meanwhile, for any α > 0, note that

∫ ∞
−∞

fθ0(x)[fθ1(x)]αdx =
1

(
√

2πσ)1+α

∫ ∞
−∞

exp

(
−(x− θ0)2 + α(x− θ1)2

2σ2

)
dx

=
1

(
√

2πσ)α
√

1 + α
exp

(
−α(θ1 − θ0)2

2(1 + α)σ2

)
,

and thus it is not difficult from (1.24) to show that,

dα(θ0, θ1) =

√
1 + α

α(
√

2πσ)α

(
1− exp(−α(θ1 − θ0)2

2(1 + α)σ2
)

)
. (1.27)

Moreover, if we let M(= 1/
√

2πσ2), then |fθ(x)| ≤ M for all x. By the definition in

(1.23), we have |M(α)| ≤ 2Mα/α, which is finite for any α > 0. This implies that for

normal distributions, ε∗(Nα) > 0 for any α > 0. Thus our proposed Lα-CUSUM based

scheme with α > 0 is much more robust than the classical CUSUM scheme.

Note the false alarm breakdown point of our proposed scheme does not require any

information about the contamination ratio ε and contamination distribution g. Therefore,

we proposed to choose the optimal robustness parameter α which maximizes the false

alarm breakdown point in (1.25). That is

αopt = arg max
α≥0

dα(θ0, θ1)

dα(θ0, θ1) + (1 + α)M(α)
(1.28)
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To be more specific, let us use the same example when fθ0 ∼ N(0, 1) and fθ1 ∼

N(1, 1). By (1.27), we can compute the value dα(0, 1) for any α ≥ 0. While we do not

have analytic formula for the upper bound M(α) in (1.23), its numerical value can be

easily found by brute-force exhaustive search over the real line x ∈ (−∞,∞). Figure 1.6

shows the false alarm breakdown point of our proposed scheme Nα(b, d) when α varies

from 0 to 2. We can see clearly the breakdown point will first increase and then decrease,

which yields the optimal choice of αopt as 0.51, with corresponding breakdown point as

0.233. That means our proposed scheme with the choice of α = 0.51 could tolerate 23.3%

arbitrarily bad observations in terms of keeping the designed false alarm constraint stable.

It is interesting to compare the performance of the two choices of αoracle in (1.20) and

αopt in (1.28). By the previous subsection, when ε = 0.1 and contamination distribution

is N(0, 32), we get αoracle = 0.21 with the efficiency improvement as 63%. If we use

αopt = 0.51, we will get the corresponding efficiency improvement as 55%, which makes

sense because αopt uses the full information of the outliers. However, from Theorem 1.4.1

and Figure 1.6, we can get the false alarm breakdown point of our proposed scheme with the

choice of αoracle = 0.21 is 0.217, which implies αoracle can tolerate less arbitrarily contam-

inations than the choice of αopt. In the next section, we will also compare the performance

of the two choices of α by conducting simulation studies.

1.5 Numerical simulations

In this section we conduct extensive numerical simulation studies to illustrate the robust-

ness and efficiency of our proposed scheme Nα(b, d) in (1.6).

In our simulation studies, we assume that there are K = 100 independent features,

and at some unknown time, m = 10 features are affected by the occurring event. Also the

change is instantaneous if a feature is affected, and we do not know which subset of features

will be affected. In our simulations below, we set fθ = pdf of N(θ, 1). Then pre-change

parameter θ0 = 0, the minimal magnitude of the change θ1 = 1, and the contamination
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density g = pdf of N(0, 32). Our proposed scheme Nα(b, d) in (1.6) is constructed by

using the density function fθ0 and fθ1

We conduct four different simulation studies based on the gross error model in (1.1)

with different values of the contamination rate ε. In the first one, we consider the case

when the true post-change parameter θ = θ1 = 1, ε = 0.1, and the objective is to illustrate

that with optimized tuning parameters, our proposed robust scheme Nα(b, d) in (1.6) will

have better detection performance than the other comparison methods in the presence of

outliers. In the second one, we consider the case when θ = θ1 = 1, ε = 0 to demonstrate

that our proposed robust scheme in the first experiment does not lose much efficiency under

the idealized model. In the third simulation study, we illustrates that the false alarm rate

of our proposed robust scheme indeed is more stable as compared to those CUSUM- or

likelihood-ratio- based methods as the contamination rate ε in (1.1) varies. In the last

simulation study, we investigate the sensitivity of our proposed scheme Nα(b, d) when the

true post-change parameter θ is greater than θ1. The detailed simulation results under these

three simulation studies are presented below.

In our first simulation study, we consider the case when ε = 0.1, e.g., 10% of data are

from the outlier distributionN(0, 32). In this case, for our proposed robust schemeNα(b, d)

in (1.6), as shown in previous sections, the two optimal choices of α are αoracle(ε = 0.1) =

0.21 and αopt = 0.51.By (1.17), if log(γ) << K, then the corresponding optimal shrinkage

parameters d ≈ 1
λ(ε=0.1,α=0.21)

log K
m

= 1.6831, d ≈ 1
λ(ε=0.1,α=0.51)

log K
m

= 0.9684 for

K = 100 and m = 10, since λ(ε = 0.1, α = 0.21) = 1.3681 and λ(ε = 0.1, α = 0.51) =

2.3777. For the baseline CUSUM-based scheme, i.e., Nα=0(b, d) with α = 0, we consider

two different choices of the shrinkage parameter d: one designed for ε = 0.1 and the other

designed for ε = 0. Since λ(ε = 0.1, α = 0) = 0.4572 and λ(ε = 0, α = 0) = 1, by (1.17),

we derive two optimal d values for the baseline scheme: d ≈ 1
λ(ε=0.1,α=0)

log K
m

= 5.0363.

and d ≈ 1
λ(ε=0,α=0)

log K
m

= 2.3026.

In summary, we will compare the following eight different schemes.
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• Our proposed schemeNα(b, d) in (1.6) with αoracle = 0.21 and d = 1.6831 optimized

for m = 10 and ε = 0.1;

• Our proposed scheme Nα(b, d) in (1.6) with αopt = 0.51 and d = 0.9684 optimized

for m = 10 and ε = 0.1;

• The baseline CUSUM-based scheme Nα=0(b, d) with d = 2.306 optimized for m =

10 and ε = 0;

• The baseline CUSUM-based scheme Nα=0(b, d) with d = 5.0363 optimized for m =

10 and ε = 0.1;

• The MAX scheme Nα=0.21,max(b) in (1.7);

• The SUM scheme Nα=0.21,sum(b) in (1.8);

• The method NXS(b, p0 = 0.1) in Xie and Siegmund (2013) based on generalized

likelihood ratio:

NXS(b, p0) = inf

{
n ≥ 1 : max

0≤i<n

K∑
k=1

log
(

1− p0 + p0 exp
[(
U+
k,n,i

)2
/2
])
≥ b

}
,

where for all 1 ≤ k ≤ K, 0 ≤ i < n,

U+
k,n,i = max

(
0,

1√
n− i

n∑
j=i+1

Xk,j

)
.

• The methodNChan,1(b) in Chan (2017) under the idealized model that is an extension

of the SUM scheme in Mei (2010):

NChan,1(b) = inf

{
n ≥ 1 :

K∑
k=1

log
(
1− p0 + 0.64 ∗ p0 exp(W ∗

k,n/2)
)
≥ b

}
,

where W ∗
k,n is the CUSUM statistics in (1.5).
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Table 1.1: A comparison of the detection delays of 9 schemes with γ = 5000 under the
gross error model. The smallest and largest standard errors of these 9 schemes are also
reported under each post-change hypothesis based on 1000 repetitions in Monte Carlo sim-
ulations.

Gross error model with ε = 0.1
# affected local data streams

1 3 5 8 10 15 20 30 50 100

Smallest standard error 0.43 0.16 0.10 0.07 0.06 0.03 0.03 0.02 0.01 0.00
Largest standard error 1.35 0.35 0.27 0.22 0.22 0.17 0.14 0.12 0.12 0.10

Our proposed robust scheme
Nα=0.21(b = 16.40, d = 1.6831) 46.2 21.1 15.1 11.4 10.1 8.2 7.2 6.0 4.9 4.0
Nα=0.51(b = 9.26, d = 0.9684) 49.3 22.6 16.2 12.2 10.9 8.9 7.8 6.5 5.3 4.2

Other methods for comparison
Nα=0(b = 84.74, d = 2.3026) 94.5 41.0 27.6 19.7 17.0 12.9 10.9 8.6 6.5 4.7
Nα=0(b = 41.51, d = 5.0363) 74.7 35.1 25.1 19.1 16.9 13.7 12.0 10.1 8.3 6.6
Nα=0.21,max(b = 8.16) 31.5 21.8 19.4 17.5 16.8 15.8 15.1 14.3 13.4 12.4
Nα=0.21,sum(b = 70.25) 70.9 29.7 19.8 13.8 11.6 8.7 7.0 5.3 3.7 2.2
NChan,1(b = 22.55, p0 = 0.1) 74.7 35.7 25.3 19.1 16.9 13.4 11.5 9.3 7.2 5.1
NChan,2(b = 48.7, p0 = 0.1) 407.3 86.4 55.5 38.4 32.9 24.2 19.8 14.9 10.3 6.2
(Standard error) (12.1) (0.76) (0.53) (0.3) (0.25) (0.19) (0.15) (0.1) (0.07) (0.04)
NXS(b = 130, p0 = 0.1) 290.6 97.5 58.3 38.4 32 22.7 17.6 12.7 8.1 4.7
(Standard error) (5.85) (2.21) (1.12) (0.68) (0.64) (0.41) (0.31) (0.22) (0.15) (0.08)

• The method NChan,2(b, p0 = 0.1) in Chan (2017) which is similar as NXS(b, p0) :

NChan,2(b, p0) = inf

{
n : max

0≤i<n

K∑
k=1

log

(
1− p0 + 2(

√
2− 1)p0 exp

[(
U+
k,n,i

)2

2

])
≥ b

}
.

For each of these 9 schemes T (b), we first find the appropriate values of the threshold

b to satisfy the false alarm constraint γ ≈ 5000 under the gross error model in (1.1) with

ε = 0.1 (within the range of sampling error). Next, using the obtained global threshold

value b, we simulate the detection delay when the change-point occurs at time ν = 1

under several different post-change scenarios, i.e., different number of affected sensors.

All Monte Carlo simulations are based on 1000 repetitions.

Table 1.1 summarizes simulated detection delays of these nine schemes under 10 differ-

ent post-change hypothesis, depending on different numbers of affected local data streams.

Since our proposed scheme Nα=0.21(b, d = 1.6831) is optimized for the case when m = 10

out of data streams are affected under the gross error models, it is not surprising that it in-

deed has the smallest detection delays among all comparison methods when 10 data streams
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are affected. In particular, our proposed schemes Nα(b, d) have much smaller detection de-

lay than the three CUSUM-based schemes Nα=0(b, d = 5.0363), Nα=0(b, d = 2.3026) and

NChan,1(b, p0 = 0.1). This illustrates that the improvement of Lα-CUSUM statistics with

α = 0.21 is significant as compared to the baseline CUSUM statistics in the presence of

outliers.

Moreover, compared with the choice of αoracle = 0.21, our proposed scheme with

αopt = 0.51 yields overall larger detection delays under those 10 different post-change hy-

pothesis. This is consistent to the previous discussion that αoracle would be better than αopt

when the contamination ratio ε and contamination distribution g are known. Note αopt =

0.51 does not use any information about ε and g but still led smaller detection delays than

the two baseline CUSUM-based schemes Nα=0(b, d = 5.0363) and Nα=0(b, d = 2.3026),

which suggests the usefulness of αopt, especially when the contaminations are unknown.

In addition, the detection delays of the two likelihood-ratio-based methods NXS(b, p0)

and NChan,2(b, p0) are extremely large, especially when the number of affected data stream

is small. The reason is that they do not suppose that fθ1 = N(1, 1) is known and are

designed to be efficient against fθ = N(θ, 1) for all θ > 0. Hence they want to detect

say fθ = N(3, 1) quickly as well. Due to the presence of outliers, a significant propor-

tion of the observations have values close to 3 and these two methods, NXS(b, p0) and

NChan,2(b, p0), will take this into the consideration and detect a possible change of distri-

bution to fθ = N(3, 1) having occurred. Since the detection delays of NXS(b, p0 = 0.1)

and NChan,2(b, p0 = 0.1) are very large, we use separate rows in Table 1.1 to show the

standard deviation of their detection delays.

It is also interesting to note that the MAX-scheme Nα=0.21,max(b) and the SUM-scheme

Nα=0.21,sum(b) are designed for the case when m = 1 or m = K features are affected, and

Table 1.1 confirmed that their detection delays are indeed the smallest in their respective

designed scenarios. However, when the number of affected features m is moderate, our

proposed scheme Nα=0.21(b, d) will have smaller detection delay, which implies our pro-
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posed scheme with soft-thresholding transformation could be more robust to the number of

affected features.

Next, for our proposed robust scheme Nα(b, d) with two choices of αoracle, αopt, we

want to investigate how much efficiency it will lose as compared to the other seven schemes

under the idealized model with ε = 0. We re-calculate the threshold b for each of these

schemes T (b), so as to satisfy the false alarm constraint γ ≈ 5000 under the idealized

model with ε = 0.

Table 1.2 summarizes the results of our second simulation study on the detection de-

lays of these 9 schemes under 10 different post-change hypothesis. Among all schemes,

NXS(b, p0) andNChan,2(b, p0) generally yield the competing smallest detection delay. How-

ever, we want to emphasize that both schemes are computationally expensive. Specifically,

even if we use a time window of size k as in Chan (2017) to speed up the implementation

of NXS(b, p0) and NChan,2(b, p0), at each time n, O(Kk2) computations are needed to get

the global monitoring statistics, whereas our proposed scheme only require O(K) compu-

tations to get the global monitoring statistics. For instance, for a given global threshold b

around 4.25 , it took about 130 minutes on average to finish 1000 Monte Carlo simulation

runs in our laptop. If we did not know b ≈ 4.25 and wanted to search for 10 different values

of b’s by bisection method based on 1000 Monte Carlo runs for each b, it would have taken

about 10 ∗ 130 = 1300 computer minutes for the case of γ = 5000. Meanwhile, due to

the nice recursive formula, our proposed schemes can be implemented in real-time. For

instance, it took about 15 minutes to find such threshold b from a range of values for our

proposed schemes based on 1000 Monte Carlo runs (the time is shorter if our initial guess

range of b is closer) and all of these simulations are conducted on a Windows 10 Laptop

with Intel i5-6200U CPU 2.30 GHz.

In addition, under the idealized model with ε = 0, the corresponding αoracle = 0,

which suggest that the baseline CUSUM scheme Nα=0(b, d = 2.3026) should have good

performance when m = 10 data streams are affected. Moreover, in corollary 3.4.1, we
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Table 1.2: A comparison of the detection delays of 9 schemes with γ = 5000 under the ide-
alized model. The smallest and largest standard errors of these 9 schemes are also reported
under each post-change hypothesis based on 1000 repetitions in Monte Carlo simulations.

Gross error model with ε = 0
# affected local data streams

1 3 5 8 10 15 20 30 50 100

Smallest standard error 0.29 0.12 0.08 0.05 0.04 0.03 0.03 0.02 0.01 0.00
Largest standard error 0.58 0.20 0.12 0.07 0.06 0.05 0.03 0.03 0.02 0.01

Our proposed robust scheme
Nα=0.21(b = 11.69, d = 1.6831) 33.5 15.6 11.5 8.9 8.0 6.7 5.9 5.0 4.2 3.4

Nα=0.51(b = 7.63, d = 0.9684) 39.4 18.1 13.3 10.2 9.2 7.6 6.6 5.7 4.7 4.0

Comparison of other methods
Nα=0(b = 21.52, d = 2.3026) 33.6 15.2 11.0 8.4 7.5 6.1 5.3 4.5 3.7 3.0
Nα=0(b = 7.35, d = 5.0363) 22.4 13.8 11.1 9.3 8.6 7.6 7.0 6.3 5.5 4.8
Nα=0.21,max(b = 7.14) 24.4 17.1 15.4 14.1 13.6 12.8 12.2 11.6 10.9 10.2
Nα=0.21,sum(b = 58.81) 56.0 23.2 15.5 10.8 9.1 6.8 5.6 4.2 3.0 2.0
Nchan,1(b = 3.44, p0 = 0.1) 26.7 14.2 10.9 8.6 7.8 6.3 5.5 4.5 3.4 2.3
Nchan,2(b = 4.25, p0 = 0.1) 26.3 13.1 9.7 7.2 6.3 4.8 3.9 2.9 2.0 1.1
NXS(b = 19.5, p0 = 0.1) 30.9 13.2 9.2 7.2 5.7 4.7 3.5 2.5 1.8 1.0

show the detection delay of our proposed scheme nearly achieves the optimal detection

lower bound in Chan (2017), which can be validated from the numerical results in Table

1.2 since it compares well with the best possible method.

Another interesting observation from Table 1.2 is that the detection delay of our pro-

posed robust scheme Nα=0.21(b, d = 1.6831) is comparable with that of Nα=0(b, d =

2.3026), and it just takes 6.3% more time steps to raise a correct global alarm under

the idealized model when m = 10 data streams are affected. Recall that in Table 1.1,

Nα=0(b, d = 2.3026) takes 68.3% more time steps than Nα=0.21(b, d = 1.6831) to raise a

global alarm under the gross error model with ε = 0.1. In other words, our proposed robust

scheme Nα=0.21(b, d = 1.6831) sacrifices about 6.3% efficiency under the idealized model

with ε = 0, but can gain 68.3% efficiency under the gross error model with proportion of

outliers ε = 0.1.

In the third experiment, we want to investigate the impact of contamination rate ε

on the false alarms, and illustrate the robustness of our proposed Lα-CUSUM statistics

with respect to ε. Since the MAX-scheme Nα=0.21,max(b = 7.14) and the SUM-scheme
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Nα=0.21,sum(b = 58.81) are based on local Lα-CUSUM statistics, their robustness proper-

ties to the outliers are similar to our proposed scheme Nα=0.21(b = 11.69, d = 1.6831)

and Nα=0.51(b = 7.63, d = 0.9684). To highlight the robustness of our proposed Lα-

CUSUM statistics, we compare our proposed schemesNα=0.21(b = 11.69, d = 1.6831) and

Nα=0.51(b = 7.63, d = 0.9684) with other four schemes: two baseline CUSUM schemes

and Chan’s two methods.

Figure 1.7 reports the curve of log E
(∞)
θ0

(T ) as the contamination ratio ε varies from

0.02 to 0.2 with stepsize 0.02. It is clear from the figure that all curves decrease with the in-

creasing of contaminations, meaning that all schemes will raise false alarm more frequently

when there are more outliers. However, the curves for the CUSUM or likelihood-ratio

based methods decreased very quickly, whereas our proposed Lα-CUSUM statistics-based

method with αoracle = 0.21 and αopt = 0.51 decrease rather slowly. This suggests that our

proposed scheme is more robust in the sense of keeping log E
(∞)
θ0

(T ) more stable with a

small departure from the assumed model. Moreover, note the curve for αopt = 0.51 de-

creases slower than the curve for αoracle = 0.21, which implies the performance of αopt is

better than αoracle in term of keeping the false alarm constraint stable to the contaminations.
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Table 1.3: A comparison of the detection delays of 6 schemes with γ = 5000, m = 10.
Gross error model with ε = 0.1.

True post-change θ value θ = 1 θ = 1.5 θ = 2 θ = 2.5 θ = 3
Our proposed robust scheme

Nα=0.21(b = 16.40, d = 1.6831) 10.1± 0.06 6.5± 0.03 5.2± 0.02 4.6± 0.02 4.5± 0.01
Nα=0.51(b = 9.26, d = 0.9684) 10.9± 0.06 7.4± 0.03 6.4± 0.02 6.5± 0.02 7.4± 0.02

CUSUM-based scheme
Nα=0(b = 84.74, d = 2.3026) 17.0± 0.08 10.0± 0.05 7.2± 0.03 5.7± 0.02 4.8± 0.02
NChan,1(b = 22.55, p0 = 0.1) 16.8± 0.10 9.9± 0.04 7.1± 0.03 5.6± 0.02 4.7± 0.02
NChan,2(b = 48.7, p0 = 0.1) 32.8± 0.18 14.9± 0.08 8.5± 0.05 5.6± 0.03 3.9± 0.02
NXS(b = 130, p0 = 0.1) 32.3± 0.61 14.7± 0.26 8.4± 0.15 5.6± 0.08 3.9± 0.07

In the last experiment, we focus on the sensitivity of our proposed scheme Nα(b, d)

with the misspecified post-change parameter θ. Specifically, we fix the number of affected

features m = 10 and set the true post-change parameter θ to be 1, 1.5, 2, 2.5, and 3. Then,

we simulate the detection delay of our proposed schemes Nα=0.21(b = 11.69, d = 1.6831),

Nα=0.51(b = 7.63, d = 0.9684), the CUSUM-based scheme Nα=0(b = 84.74, d = 2.3026),

NChan,1(b = 22.55, p0 = 0.1), NChan,2(b = 48.7, p0 = 0.1) and NXS(b = 130, p0 = 0.1).

The results are summarized in Table 1.3. First, we can see although αoracle = 0.21 is

designed to be optimal when the true post-change parameter θ = θ1 = 1 with ε = 0.1 and

g = N(0, 32), it still has the smallest detection delay among those three schemes with the

true change parameter is larger than 1. Second, although the overall performance of our

proposed scheme with the choice of α to be αopt = 0.51 is not as good as the the choice

of α to be αoracle = 0.21, it still has a smaller detection delay than the CUSUM-based

method when the true post-change post-change parameter is smaller than 2. Moreover, it

does not use any knowledge of outliers ε and g. Those results demonstrate that generally our

proposed schemeNα(b, d) are not sensitive to the small misspecified post-change parameter

θ.
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1.6 Case study

In this section, we conduct a case study based on a real dataset of tonnage signal collected

from a progressive forming manufacturing process. The dataset includes 307 normal sam-

ples and 2 different groups of fault samples . Each group contains 69 samples which are

collected under the faults due to missing part occurring in the forming station (hereafter

called Fault #1) and the pre-forming station (hereafter called Fault #2). Additionally, there

are p = 211 = 2048 measurement points in each tonnage signal. We want to build efficient

monitoring scheme to detect the faults due to missing part occurring in the forming station

while avoid making false alarm on the random fault #2 samples.

In literature, wavelet-based approaches have been widely used for analyzing and mon-

itoring nonlinear profile data (Fan, 1996; Zhou, Sun, and Shi, 2006; Lee, Hur, Kim, and

Wilson, 2012). In this chapter, Haar transform is chosen as an illustration of our pro-

posed scheme because Haar coefficients have an explicit interpretation of the changes in

the profile observations, see Zhou, Sun, and Shi (2006) as an example about applying Haar

transform and the physical interpretation of the Haar coefficients. Specifically, discrete

Haar transform is applied on each tonnage signal data and we just keep the first p = 512

Haar coefficients.

We use ck,n denotes the kth Haar coefficient of the nth tonnage signal data. Then we

consider the normalized standardized Haar coefficients by

Xk,n =
ck,n − µ̂k

σ̂k
, (1.29)

where µ̂k and σ̂2
k are the sample mean and variance of all in-control normal tonnage signal

data on the kth Haar coefficient. Figure 1.8 shows the projection of all normal and faulty

samples on two selected standardized Haar coefficients. Clearly, we may not detect the

fault 1 samples if we just using the first Haar coefficient. This illustrates the necessary

to monitor a large number of coefficients to effectively detect some small but persistent
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changes.

After standardizing those Haar coefficients, we assume those Xk,n’s are i.i.d with stan-

dard normal distribution N(0, 1) for the in-control tonnage samples and have some mean

shifts for those faulty tonnage samples. To apply our proposed scheme, we set θ1 = 1, i.e.,

the minimal magnitude of shift is 1 and the number of affected coefficientsm = 50.We will

use our proposed scheme with the choice of α = 0.51, which maximizes the false alarm

breakdown point, and the choice of α = 0.21,which minimizes efficiency improvement for

ε = 0.1 and g = N(0, 32). We compare the performance of those two choices of α with the

baseline CUSUM-based scheme Nα=0(b, d), Xie and Siegmund method NXS(b, p0 = 0.1)

and Chan’s two methods NChan,1(b, p0 = 0.1) and NChan,2(b, p0 = 0.1). All of those

schemes are conducted by using the normalized Haar coefficients data Xk,n in (1.29).

To evaluate the detection efficiency of those methods, we first find the appropriate val-

ues of the global threshold b such that the average run length of each scheme is 300 when

the samples are collected by sampling from the 307 in-control tonnage samples with prob-

ability 90% and from the 69 Fault #1 tonnage samples with probability 10%. Then, using

the obtained global threshold value b, we simulate the detection delay when the samples

are sequentially collected by sampling from the 69 Fault #1 tonnage samples with proba-

bility 90% and from the Fault 2 tonnage samples with probability 10%. All Monte Carlo

simulations are based on 100 repetitions. The results of detection delay and standard error

are summarized in Table 1.4.

From Table 1.4, we can see our proposed schemes yield very small detection delay for

detecting the smaller persistent change caused by Fault #1 compared with other methods.

Thus, they are robust to the larger but transient change caused by Fault #2.

1.7 Proofs

In this section, we provide the detailed proofs for Theorem 1.3.1, Theorem 1.3.2, Theorem

1.4.1 and Corollary 1.3.1.
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Table 1.4: A comparison of the detection delays of 6 methods with in-control average
run length equal to 300 based on 100 repetitions in Monte Carlo simulations. The standard
errors of the detection delays are reported in the bracket.

Method Detection delay (Standard deviation)
Nα=0.21(b = 133, d = 1.5056) 5.96(0.08)
Nα=0.51(b = 80, d = 0.7235) 6.45(0.09)
Nα=0(b = 4400, d = 3.9357) 43.44(0.46)
NChan,1(b = 2120, p0 = 0.1) 43.2(0.42)
NChan,2(b = 1950, p0 = 0.1) 26.43(0.48)
NXS(b = 4050, p0 = 0.1) 23.13(0.67)

1.7.1 Proof of Theorem 1.3.1

For any x ≥ 0, by Chebyshev’s inequality,

E(∞)
ε [Nα(b, d)] ≥ xP(∞)

ε (Nα(b, d) ≥ x)

= x
[
1−P(∞)

ε (Nα(b, d) < x)
]

= x

[
1−P(∞)

ε (
K∑
k=1

max{0,Wα,k,n − d} ≥ b) for some 1 ≤ n ≤ x

]

≥ x

[
1− xP(∞)

ε (
K∑
k=1

max{0,W ∗
α,k − d} ≥ b)

]
, (1.30)

where W ∗
α,k = lim supn→∞Wα,k,n. We will show that W ∗

α,k exists later, and when it does

exist, it is clear that W ∗
α,k are i.i.d. across different k under the pre-change measure P

(∞)
ε .

Now if we define the log-moment generating function of the W ∗
α,k’s

ψα(θ) = log E(∞)
ε exp{θmax(0,W ∗

α,k − d)} (1.31)

for some θ ≥ 0, then another round application of Chebyshev’s inequality yields

exp(Kψα(θ)) = E(∞)
ε exp{θ

K∑
k=1

max(0,W ∗
α,k − d)}

≥ eθbP(∞)
ε (

K∑
k=1

max{0,W ∗
α,k − d} ≥ b) (1.32)
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for θ > 0. Combining (1.30) and (1.32) yields that

E(∞)
ε [Nα(b, d)] ≥ x [1− x exp(−θb+Kψα(θ))] (1.33)

for all x ≥ 0. Since x(1 − xu) is maximized at x = 1/(2u) with the maximum value

1/(4u). We conclude from (1.33) that

E(∞)
ε [Nα(b, d)] ≥ 1

4
exp (θb−Kψα(θ)) . (1.34)

for any θ > 0 as long as ψα(θ) in (1.31) is well-defined.

The remaining proof is to utilize the assumption of λ(ε, α) > 0 in (1.12) in Assumption

(1.3.2) to show that the upper limiting W ∗
α,k of the proposed Lα-CUSUM statistics is well-

defined and derive a careful analysis of ψα(θ) in (1.31). When α = 0, the Lα-CUSUM

statistics become the classical CUSUM statistics, and the corresponding analysis is well-

known, see Liu, Zhang, and Mei (2019). Here our main insight is that our proposed Lα-

CUSUM statisticsWα,k,n for detecting a change from h0(x) to h1(x) in (1.1) can be thought

of as the classical CUSUM statistic for detecting a local change from h0(x) to another

new density function h2(x). Hence, under the pre-change hypothesis of h0(·), the false

alarm properties of our proposed Lα-CUSUM statistics can be derived through those of the

classical CUSUM statistics.

By the assumption of λ(ε, α) > 0 in (1.12) in Assumption 1.3.2, if we define a new

function

h2(x) := exp

{
λ(ε, α)(

(f1(x))α − (f0(x))α

α
)

}
h0(x), (1.35)

then h2(x) is a well-defined probability density function. Then in the problem of detection

a local change from h0(x) to h2(x), the local CUSUM statistics for the kth local data stream
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is defined recursively by

W ′
k,n = max{0,W ′

k,n−1 + log
h2(Xk,n)

h0(Xk,n)
}

= max{0,W ′
n−1 + λ(ε, α)

[f1(Xk,n)]α − [f0(Xk,n)]α

α
}.

Compared with our proposedLα-CUSUM statisticsWα,k,n, it is clear thatW ′
k,n = λ(ε, α)Wα,k,n,

and thus our proposedLα-CUSUM statisticsWα,k,n’s are equivalent to the standard CUSUM

statistics W ′
k,n up to a positive constant λ(ε, α). By the classical results on the CUSUM,

see Appendix 2 on Page 245 of Siegmund (1985), as n → ∞, W ′
k,n converges to a limit

and thus Wα,k,n also converges to a limit, denoted by W ∗
α,k. Moreover, the tail probability

of W ∗
α,k satisfies

G(x) = P(∞)
ε (W ∗

α,k ≥ x) = P(∞)
ε (lim sup

n→∞
W ′
k,n ≥ λ(ε, α)x) ≤ e−λ(ε,α)x. (1.36)

Now we shall use (1.36) to derive information bound of ψα(θ) in (1.31). In order to

simplify our arguments, we abuse the notation and simply denote λ(ε, α) by λ in the re-

maining proof of the theorem. By the definition of ψα,k(θ) in (1.31) and the tail probability

G(x) in (1.36), for θ > 0,

ψα(θ) = log[P(∞)(W ∗
α,k ≤ d)−

∫ ∞
d

eθ(x−d)dG(x)] (1.37)

= log[1 + θ

∫ ∞
d

eθ(x−d)G(x)dx]

≤ log[1 + θ

∫ ∞
d

eθ(x−d)e−λxdx]

= log

(
1 +

θ

λ− θ
e−dλ

)
≤ θ

λ− θ
e−dλ,

where the second equation is based on the integration by parts. Clearly, relation (1.37)

holds for any 0 < θ < λ = λ(ε, α).
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By (1.34) and (1.37), we have

E∞ε Nα(b, d) ≥ 1

4
exp

(
θb− Kθ

λ− θ
e−dλ

)
(1.38)

for all 0 < θ < λ = λ(ε, α). When λb > K exp{−λd}, relation (1.13) follows at once

from (1.38) by letting θ =
√
λ/b

(√
λb−

√
K exp{−dλ}

)
∈ (0, λ). This completes the

proof of Theorem 1.3.1.

1.7.2 Proof of Theorem 1.3.2

To prove the detection delay bound (1.15) in Theorem 1.3.2, without loss of generality,

assume the first m data streams are affected. Consider a new stopping time

T ′(b, d) = inf{n ≥ 1 :
m∑
k=1

(Wα,k,n − d) ≥ b} = inf{n ≥ 1 :
m∑
k=1

Wα,k,n ≥ b+md}.

Clearly Nα(b, d) ≤ T ′(b, d), and thus

Dε(Nα(b, d)) ≤ Dε(T
′(b, d)).

Next, by the recursive definition of Wα,k,n in (1.4), using the same approach in Theorem 2

of Lorden (1971) that connects the recursive CUSUM-type scheme to the random walks,

we have

Dε(T
′(b, d))) ≤ E1T

′′(b, d),

where E1 denotes the expectation when the change happen at time ν = 1, and T ′′(b, d)

is the first passage time when the random walk with i.i.d. increment of mean mIθ(ε, α)
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exceeds the bound b+md, and is defined as

T ′′(b, d) = inf{n ≥ 1 :
n∑
i=1

m∑
k=1

[f1(Xk,i)]
α − [f0(Xk,i)]

α

α
≥ b+md}.

By standard renewal theory, as ( b
m

+ d)→∞, we have

E1T
′′(b, d) ≤ 1 + o(1)

mIθ(ε, α)
(b+md) .

Relation (1.15) then follows at once from the above relations, which completes the proof

of Theorem 1.3.2.

1.7.3 Proof of Corollary 1.3.1

The choice of b = bγ in (1.16) follows directly from Theorem 1.3.1. To prove (1.17), we

abuse the notation and use λ to denote λ(ε, α) for simplification. By Theorem 1.3.2, the

optimal d is the non-negative value that minimize the function

`(d) :=
bγ
m

+ d =
1

λm
(
√

log(4γ) +
√
Ke−λd)2 + d. (1.39)

This is an elementary optimization problem, and the optimal d can be found by taking

derivative of `(d) with respect to d, since `(d) is a convex function of d. To see this,

`′(d) = − 1

m
(
√
Ke−λd +

√
log(4γ)

2
)2 + 1 +

log(4γ)

4m

`′′(d) =
λ

m
(
√
Ke−λd +

√
log(4γ)

2
)
√
Ke−λd > 0.

Thus `(d) is a convex function on [0,+∞), and the optimal dopt value can be found by

setting `′(d) = 0 :

√
Ke−λd =

√
m+

log(4γ)

4
− 1

2

√
log(4γ).
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This gives an unique optimal value

dopt =
1

λ
log

K

(
√
m+ 1

4
log(4γ)− 1

2

√
log(4γ))2

(1.40)

=
1

λ

log

[√
m+ 1

4
log(4γ) + 1

2

√
log(4γ)

]2

m
+ log

K

m

 ,

which is equivalent to those in (1.17) under the assumption thatm = m(K) << min(log γ,K).

Plugging d = dopt in (1.40) back to (1.16) yields (1.18), and thus the corollary is proved.

1.7.4 Proof of Theorem 1.4.1

Before providing the detailed proof of Theorem 1.4.1, let us prove the following probability

result that is interesting on its own.

Lemma 1.7.1. Suppose that Y is a continuous random variable that takes both positive and

negative values, and assume that its moment generating function ϕ(λ) = E[eλY ] is well

defined over −∞ < λ <∞. Then there exists a constant λ∗ > 0 satisfying E[eλ
∗Y ] = 1 if

and only if E(Y ) < 0.

Proof: Let us first present several facts of the moment generating function ϕ(λ) =

E[eλY ]. First, ϕ(λ) is a strict convex function of λ since ϕ′′(λ) = E[Y 2eλY ] > 0, as Y is

not identical 0. Second, under our assumption, ϕ(λ)→ +∞ as λ→ ±∞. To see this, note

that there exists a constant y0 > 0, such that P(Y ≥ y0) > 0. By Chebyshev’s inequality,

as λ > 0, ϕ(λ) = E[eλY ] ≥ eλy0P(Y ≥ y0), which goes to∞ as λ → ∞. Similarly, we

can show that limλ→−∞ ϕ(λ) = +∞.

To show the “if” direction, assume E(Y ) < 0. Since ϕ(0) = 1 and ϕ′(0) = E(Y ),

there must exist a positive λ0 > 0 such that ϕ(λ0) < 1. However, ϕ(λ) → ∞ as λ → ∞.

Hence, there exists a λ∗ ∈ (λ0,∞) such that ϕ(λ∗) = 1.
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For the “only if” direction, since ϕ(0) = ϕ(λ∗) = 1, there exists a positive value

λ1 ∈ (0, λ∗) such that ϕ′(λ1) = 0. Since ϕ(λ) is convex, ϕ′(λ) must be decreasing. Thus

E(Y ) = ϕ′(0) < ϕ′(λ1) = 0. This completes the proof of the lemma.

Now we are ready to prove Theorem 1.4.1. Let us begin with a high-level sketch of the

proof. To find the breakdown point of our proposed scheme Tα(b, d),we need to investigate

the asymptotic properties of E
(∞)
h [Nα(b, d)] for any h = (1 − ε)f0 + εg as b → ∞, where

E
(∞)
h denotes the expectation of run length when there is no change and all data come

from the density function h here and the remaining of the proof. Since we assume f0(x)−

f1(x) take both positive and negative values, Y = [f1(X)]α−[f0(X)]α

α
is a continuous random

variable that takes both positive and negative values. By Lemma 1.7.1, it turns out the

asymptotic properties depend on whether the following expectation is positive or negative:

µε,h = Eh
[f1(X)]α − [f0(X)]α

α
(1.41)

= (1− ε)Ef0

[f1(X)]α − [f0(X)]α

α
+ εEg

[f1(X)]α − [f0(X)]α

α

As we will show below, log E
(∞)
h [Nα(b, d)] is of order b if µε,h < 0 but becomes of order

log(b) if µε,h > 0. Next, in order for Tα(b, d) to satisfy the false alarm constraint γ under

the idealized model with ε = 0, we must have b ∼ log γ as it can be shown that µε=0,h < 0

for any α ≥ 0 when f0 and f1 are from the same location family. Hence, the false alarm

breakdown point can be found by finding the smallest ε value such that µε,h > 0.

Next, let us show that µε,h < 0 is a sufficient condition that log E
(∞)
h [Nα(b, d)] is of

order b. By Lemma 1.7.1, if µε,h < 0, then there exists a positive real value λ > 0 such that

Eh exp

{
λ(

[f1(X)]α − [f0(X)]α

α
)

}
= 1.

This is exactly Assumption 1.3.2 with h0 = h, and thus the conclusions of Theorem 1.3.1
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holds when h0 is replaced by h. In particular, for fixed d and K, as b goes to∞, we have

log E∞h Nα(b, d) ≥ (1 + o(1))λb. (1.42)

Meanwhile, if µε,h > 0, we will show that log E
(∞)
h [Nα(b, d)] is of order log(b). To see

this, E
(∞)
h Nα(b, d) is the expected sample size of Nα(b, d) when the data are i.i.d. from h,

which can also be regarded as the detection delay with the post-change distribution h1 = h

when the change occurs at time ν = 1. Indeed, µε,h > 0 is actually Assumption 1.3.1 with

h1 = h, and thus the arguments on the detection delay analysis in Theorem 1.3.2 applies.

Hence,

log E
(∞)
h Nα(b, d) ≤ (1 + o(1)) log b. (1.43)

Therefore, combining the above results with the definition of breakdown point in Defi-

nition 1.4.1, the breakdown point of our proposed scheme Nα(b, d) is

ε∗(Nα) = inf{ε ≥ 0 : sup
h∈~0,ε

µε,h > 0}, (1.44)

where µε,h is defined in (1.41).

The remaining proof is based on a careful analysis of µε,h in (1.41) for any arbitrary

outlier density function g. For any h(x) = (1− ε)f0(x) + εg(x) ∈ ~0,ε, by (1.41), we have

µε,h = − 1− ε
1 + α

dα(f0, f1) + ε

∫
(
[f1(x)]α − [f0(x)]α

α
)g(x)dx, (1.45)

where dα(f0, f1) is defined in (1.24) and is the density power divergence between f0

and f1 proposed by Basu, Harris, Hjort, and Jones (1998). Here we use the fact that∫
[f1(x)]1+αdx =

∫
[f0(x)]1+αdx when f0(x) and f1(x) come from the same location fam-

ily.
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By the definition of M(α) in (1.23), it is clear from (1.45) that

sup
h∈~0,ε

µε,h = − 1− ε
1 + α

dα(f0, f1) + εM(α). (1.46)

Therefore, by (1.44), if both dα(f0, f1) and M(α) are finite, the false alarm breakdown

point of Nα should be

ε∗(Nα) =
dα(f0, f1)

dα(f0, f1) + (1 + α)M(α)
. (1.47)

If dα(f0, f1) is finite but M(α) = +∞, by (1.44) and (1.46), ε∗(Nα) = 0. If dα(f0, f1) =

+∞ butM(α) is finite, ε∗(Nα) = 1. If both dα(f0, f1) andM(α) are +∞ and dα(f0,f1)
M(α)

= ρ,

by (1.44) and (1.46), we have ε∗(Nα) = ρ
ρ+(1+α)

no matter ρ is finite or not. Therefore, for

all cases, the false alarm breakdown point of Nα have the same expression in (1.47), which

completes the proof of Theorem 1.4.1.
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CHAPTER 2

COMMUNICATION-EFFICIENT QUICKEST DETECTION IN SENSOR

NETWORKS

2.1 Introduction

Sensor networks have broad applications including health and environmental monitoring,

biomedical signal processing, wireless communication, intrusion detection in computer

networks, and surveillance for national security. There are many important dynamic de-

cision problems in sensor networks, as information is accumulated (or updated) over time

in the network systems. One of them is the quickest detection of a “trigger” event when

sensor networks are deployed to monitor the changing environments over time and space,

see Veeravalli (2001).

In this chapter, we consider a general scenario of quickest detection problems when

some unknown, but not necessarily all, sensors might be affected by the “trigger event.”

A naive approach is to monitor each local sensor individually and to raise a global alarm

as soon as any local sensor raises a local alarm. Unfortunately, this specific parallel local

monitoring approach does not take advantage of global information and may lead to large

detection delays if several sensors can provide information about the occurring event. In-

deed, one allegation often made to the parallel local monitoring approach is that one loses

much information at the global level by combining local detection procedures, not raw

observations themselves, to make a global decision.

The main purpose of this chapter is to demonstrate that the problem is not on the par-

allel local monitoring approach itself, but on how to combine the local detection statistics

suitably when the number of affected data streams is moderate. Our proposed methodolo-

1The materials in this chapter were published in Sequential Analysis, 2018.
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gies are motivated by the communication efficiency in censoring sensor network, which

was introduced by Rago, Willett, and Bar-Shalom (1996) and later by Appadwedula, Veer-

avalli, and Jones (2005) and by Tay, Tsitsiklis, and Win (2007). Figure 2.1 illustrates the

general setting of a widely used configuration of censoring sensor networks, in which the

data streams Xk,n’s are observed at the remote sensors (typically low-cost battery-powered

devices), but the final decision is made at a central location, called the fusion center. The

key feature of such a network is that while sensing (i.e., taking observations at the local

sensors) is generally cheap and affordable, communication between remote sensors and

fusion center is expensive in terms of both energy and limited bandwidth. Thus, to prolong

the reliability and lifetime of the network system, practitioners often allow the local sensors

to send summary messages Uk,n’s to the fusion center only when necessary. The question

then becomes when and how to send summary messages so that the fusion center can still

monitor the network system effectively.

This consideration motivates us to propose communication-efficient schemes that raise

a global alarm based on the sum of those local detection statistics (e.g., local CUSUM

statistics) that are “large” under either hard-, soft- or order- thresholding. We will then in-

vestigate the statistical properties of our proposed communication-efficient schemes under

two asymptotic regimes: one is the classical asymptotic regime for fixed dimension K, and

the other is the modern asymptotic regime when the dimension K goes to∞. Our theoreti-

cal results illustrate the deep connections between communication efficiency and statistical

efficiency.

It is worth pointing out that a well-known view in the standard off-line statistical in-

ference literature is the necessity of shrinkage or thresholding for high-dimensional data

in order to improve statistical power or efficiency (see Neyman (1937), Donoho and John-

stone (1994), Fan and Lin (1998), and Candes (2006)). In the sequential change-point

detection or quickest detection literature, shrinkage or thresholding has been applied in

two different directions for sparse post-change scenarios: one direction is the application
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Figure 2.1: A widely used configuration of censoring sensor networks.

on the shrinkage estimation of sparse post-change parameters of local data streams, see Xie

and Siegmund (2013), Wang and Mei (2015), and Chan (2017), and the other is an indi-

rect approach of filtering out non-changing local data streams through the local summary

statistics, which was first proposed in a conference paper by the author in Mei (2011) and

were shown to be effective in real-world applications of profile or image monitoring (Liu,

Mei, and Shi, 2015; Zhang, Mei, and Shi, 2018). This chapter investigates the asymptotic

statistical properties of the indirect approach, and hopefully it will provide a deeper insight

and popularize its use in practice to balance the tradeoff between communication efficiency

and statistical efficiency.

The remainder of this chapter is organized as follows. In Section 2.2 we present a rigor-

ous mathematical formulation of sequential change-point detection problems in the context

of globally monitoring multiple data streams and also discuss existing methodologies. In

Section 2.3, we develop our proposed methodologies from the communication-efficient

viewpoint and provide guidelines how to choose tuning parameters. Asymptotic statistical

properties of our proposed communication-efficient schemes are presented in Section 2.4

and numerical Monte Carlo simulation results are provided in Section 2.5. The detailed

technical proofs are postponed in the Section 2.6.
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2.2 Problem formulation and backgrounds

Suppose that in a network system as in Figure 2.1, there are K sensors, and each local

sensor Sk observes a local data stream over time, say, {Xk,n}∞n=1 for k = 1, . . . , K. Initially,

the system is “in control” and the distribution of the Xk,n’s is fk at the k-th sensor. At some

unknown time ν, a “trigger” event occurs to the network system, and the density function

of the sensor observations Xk,n’s changes from one density fk to another density gk at time

νk = ν + δk. Here the term δk ∈ [0,∞] denotes the (unknown) delay of the occurring

event’s impact at the k-th sensor, and δk = ∞ implies that the k-th sensor is not affected.

The problem is to find an efficient global monitoring scheme, so that the system can detect

the occurring event as quickly as possible.

To be more rigorous, we assume that the fk’s and gk’s are completely specified densities

with respect to a suitable measure µk, see, for example, Tartakovsky and Veeravalli (2004).

For each 1 ≤ k ≤ K, we assume that the Kullback-Leibler (KL) information number

I(gk, fk) =

∫
log

gk(x)

fk(x)
gk(x)dµk(x) (2.1)

is finite and positive, and

∫ (
log

gk(x)

fk(x)

)2

gk(x)dµk(x) <∞. (2.2)

Denoted by P
(ν)
δ1,δ2,...,δK

and E
(ν)
δ1,δ2,...,δK

the probability measure and expectation of the sensor

observations when the event occurs at time ν, and denoted by P(∞) and E(∞) the same

when there are no changes. Note that P
(ν)
∞,∞,...,∞ is the same as P(∞). A global monitoring

scheme can be defined as a stopping time T with respect to the sequence of K-dimensional

random vectors {(X1,n, · · · , XK,n)}n≥1, and the interpretation of T is that, when T = n,

we stop at time n and declare that a change has occurred somewhere at or before time n.

As in the classical quickest change detection problems in Lorden (1971), our problem can
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then be formulated as to find a stopping time T such that the “worse-case” detection delay

Eδ1,δ2,...,δK (T ) = sup
ν≥1

ess sup E
(ν)
δ1,δ2,...,δK

(
(T − ν + 1)+

∣∣∣Fν−1

)
(2.3)

is as small as possible for those reasonable combinations of nonnegative δk’s subject to the

global false alarm constraint

E(∞)(T ) ≥ γ, (2.4)

where γ > 0 is a pre-specified constant.

When K = 1 or when monitoring a single local data stream, say, the k-th data stream,

such a problem has been well studied in the sequential change-point detection literature, see

Page (1954), Shiryaev (1963), Roberts (1966), Lorden (1971), Pollak (1985), Moustakides

(1986), Pollak (1987), Basseville and Nikiforov (1993), Lai (2001), and Kulldorff (2001).

For a review, see the books such as Basseville and Nikiforov (1993), Poor and Hadjiliadis

(2009), and Tartakovsky, Nikiforov, and Basseville (2014). One efficient local detection

procedure is Page’s CUSUM procedure: it raises a local alarm at the first time n when

the local CUSUM statistic Wk,n exceeds some pre-specified threshold, where Wk,n can be

computed conveniently online via a recursive formula

Wk,n = max
{

0, max
1≤ν≤n

n∑
i=ν

log
gk(Xk,i)

fk(Xk,i)

}
= max

(
Wk,n−1 + log

gk(Xk,n)

fk(Xk,n)
, 0
)
. (2.5)

Below we will develop global monitoring schemes based on the local CUSUM statistics

Wk,n in (2.5), although the ideas can be easily extended to other local detection statistics (in

the logarithm scale of the likelihood) such as Shiryeav-Roberts statistics or scan statistics

(Glaz, Naus, Wallenstein, Wallenstein, and Naus, 2001).

Now let us go back to our global monitoring problem when K is moderately large, and
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it is known that the generalized likelihood ratio based methods do not have recursive forms

and are computationally expensive, see Mei (2010) and Fuh and Mei (2015). In order to de-

velop efficient scalable global monitoring schemes, it is natural to combine the local detec-

tion procedures together to make a global decision, and there are two intuitive approaches.

The first one is the “MAX” scheme that raises an alarm at the global level if the maximum

of the local CUSUM statistics is too large, i.e., if one of the local CUSUM procedures

raises a local alarm, see Tartakovsky, Rozovskii, Blažek, and Kim (2006). Mathematically,

the “MAX” scheme raises a global alarm at time

Tmax(c) = inf{n ≥ 1 : max
1≤k≤K

Wk,n ≥ c}, (2.6)

(= ∞ if such n does not exist) where c > 0 is a pre-specified constant chosen to satisfy

the false alarm constraint (2.4). The second approach is the “SUM” scheme, proposed in

Mei (2010), in which one raises an alarm if the sum of local CUSUM statistics is too large.

Specifically, at time n, each data stream calculates its local CUSUM statistic Wk,n’s as in

(2.5), and then one will raise an alarm at the global level at time

Tsum(d) = inf{n ≥ 1 :
K∑
k=1

Wk,n ≥ d}, (2.7)

where the constant d > 0 is some suitably chosen constant. Intuitively, the “MAX” scheme

Tmax(c) in (2.6) works better when one or very few data streams are affected, whereas the

“SUM” scheme Tsum(d) in (2.7) works better when many data streams are affected, and

numerical simulations in Mei (2010) indeed verified this intuition.

2.3 Communication-efficient methodology

In this section, we propose our global monitoring schemes from the communication effi-

ciency viewpoint in the censoring sensor networks in Figure 2.1. To have a better illustra-

tion, we divide this section to two subsections. In the first subsection, we will present our
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proposed schemes and provides the motivation of our proposed schemes in the censoring

sensor networks. In the second subsection, we will discuss the relation between the tuning

parameters in our proposed schemes and the communication costs in the censoring sensor

networks and provide guidelines about how to choose the tuning parameters.

2.3.1 Our proposed schemes

From the communication efficiency viewpoint, in the censoring sensor networks in Figure

2.1, the local sensors need to summarize the information and only send “significant” in-

formation to the fusion center to prolong the reliability and lifetime of the network. This

inspires us to propose to transmit only those local CUSUM statistics Wk,n’s that are larger

than their respective local thresholds.

Specifically, at time n, each local sensor calculates its local CUSUM statistic Wk,n

recursively as in (2.5), and then sends the following sensor message Uk,n to the fusion

center:

Uk,n =

 Wk,n, if Wk,n ≥ bk

NULL, if Wk,n < bk

, (2.8)

where bk ≥ 0 is the local censoring (hard threshold) parameter at the k-th sensor. Here the

message “NULL” is a special sensor symbol to indicate the local CUSUM statistic is not

large. In practice, “NULL” could be represented by the situation when the sensor does not

send any messages to the fusion center, e.g., the sensor is silent.

After receiving the local sensor messages Uk,n’s in (2.8), the fusion center then com-

bines them together suitably to make a global decision. There are several reasonable ap-

proaches to do so, and the first two schemes are based on the summation of all sensor

messages Uk,n’s, depending on how to interpret the “NULL” values. The first approach is

to treat the “NULL” values as lower limit 0, and to raise a global alarm at the fusion center
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at time

Nhard(a) = inf
{
n ≥ 1 :

K∑
k=1

Uk,n ≥ a
}

= inf
{
n ≥ 1 :

K∑
k=1

Wk,n1{Wk,n ≥ bk} ≥ a
}
. (2.9)

Below this scheme will be referred as the hard-thresholding scheme, since it involve the

hard-thresholding transformation h(w) = w1{w ≥ b} of the local CUSUM statisticsWk,n.

The second approach is to treat the “NULL” values as the upper limit bk’s, in which the

fusion center will compute the global monitoring statistic

Gn =
K∑
k=1

Uk,n =
K∑
k=1

max{Wk,n, bk} =
K∑
k=1

max{Wk,n − bk, 0}+
K∑
k=1

bk.

This is closely related to the soft-thresholding transformation h(w) = max(w− b, 0) of the

local CUSUM statistic Wk,n, and we can define the soft-thresholding scheme that raises an

alarm at time

Nsoft(a) = inf
{
n ≥ 1 :

K∑
k=1

max{Wk,n − bk, 0} ≥ a
}
. (2.10)

Here we keep the threshold ofNsoft(a) as a instead of a−
∑K

k=1 bk, so that bothNhard(a) in

(2.9) andNsoft(a) in (2.10) can be written in a common SUM-shrinkage family of schemes

NG(a) = inf{n ≥ 1 :
K∑
k=1

hk(Wk,n) ≥ a}, (2.11)

also see Liu, Zhang, and Mei (2019).

The third approach occurs when the fusion center has a prior knowledge that (at most)

r out of K data streams will be affected by the occurring event. Such a prior knowledge

may be defined by the network fault-tolerant design to avoid risking failure. In this case,

it is reasonable for the fusion center to order all sensor messages Uk,n’s as U(1),n ≥ . . . ≥
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U(K),n, and raise an alarm if the sum of the r largest Uk,n’s is too large. This yields a global

monitoring scheme that is based on the order-thresholding transformation of Uk,n’s:

Ncomb,r(a) = inf
{
n ≥ 1 :

r∑
k=1

U(k),n ≥ a
}
, (2.12)

where one might treats the “NULL” values as lower limit 0, upper limit bk or any other

reasonable values. In this chapter, Uk,n in the combined scheme Ncomb,r(a) is chosen as the

hard-shrinkage of the local CUSUM statistics, i.e., Wk,n1{Wk,n ≥ bk}.

From the statistical viewpoint, a special case of Ncomb,r(a) in (2.12) is when the order-

thresholding transformation is applied directly to the local detection statistics Wk,n’s in

(2.5) themselves. Specifically, we order the K local CUSUM statistics W1,n, . . . ,WK,n

from largest to smallest: W(1),n ≥ W(2),n ≥ . . . ≥ W(K),n. Then the order-thresholding

scheme can be defined by the stopping time

Norder,r(a) = inf
{
n ≥ 1 :

r∑
k=1

W(k),n ≥ a
}
. (2.13)

Clearly, Norder,r(a) is a special case of Ncomb,r(a) if the local censoring parameter bk ≡ 0,

since the local CUSUM statistics Wk,n’s are non-negative.

Note that each family of schemes, Nhard(a) in (2.9), Nsoft(a) in (2.10), Norder,r(a) in

(2.13), and Ncomb,r(a) in (2.12), can be thought of as a large family that includes both

“MAX” and “SUM” schemes. For instance, the “SUM” scheme Tsum(d) in (2.7) corre-

spond to the hard thresholding scheme Nhard(a) with bk ≡ a and a = d, or the order-

thresholding scheme Norder,r(a) in (2.13) with r = 1. Similarly, if all threshold parameter

bk = 0, then the hard thresholding scheme Nhard(a) in (2.9), the soft-thresholding schemes

Nsoft(a), and Ncomb,r(a) in (2.12) with r = K will become the “SUM” scheme Tsum(d) in

(2.7).

It is useful to mention that our proposed schemes, Nhard(a) in (2.9), Nsoft(a) in (2.10),

Norder,r(a) in (2.13), and Ncomb,r(a) in (2.12), take advantage of the same high-level in-
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sights: little information seems to be lost at the fusion center if we do not observe those lo-

cal data streams with small values of Wk,n’s since they make limited contributions to detect

the true changes. These ideas and similar techniques have been applied in other contexts.

Banerjee and Veeravalli (2015) essentially use the hard-thresholding transformation in (2.9)

tackle the quickest detection problem when one purposely miss the observations to reduce

costs. Wang, Mei, and Paynabar (2018) borrowed the soft-threshold schemes in (2.10) for

profile monitoring when a change only affects some but not all principle components in

the principal component analysis. Liu, Mei, and Shi (2015) applied the order-thresholding

transformation in (2.13) for efficient adaptive sampling policy when one only has ability

to observe r out of K data streams at each time step. This may occur in manufacturing

process control when there are K possible stages in the process but there are only r ex-

pensive sensors available to monitor the process. In such a problem, the order-thresholding

scheme allows us to adaptively observe those r data streams with the largest Wk,n’s values

at each time step. Zhang, Mei, and Shi (2018) also used the order-thresholding transforma-

tion in (2.13) for monitoring nonlinear profiles when small shifts may occurred on some

unknown regions of the profile data. In addition, along the idea of order statistics, Banerjee

and Fellouris (2016) proposed the stopping time N̂r(a) = inf{n : W(r),n ≥ a}. This is

asymptotically equivalent to our proposed order-thresholding scheme Norder,r(a) in (2.13)

when the prior knowledge of exactly r affected data streams is true. However, our proposed

order-thresholding scheme Norder,r(a) in (2.13) is more robust when the prior knowledge

is inaccurate and the true affected number of data streams rtrue < r.

2.3.2 Choice of thresholding parameters

So far we simply follow our intuition without discussing how to choose the local thresh-

old parameters bk’s. Intuitively we should choose identical local threshold parameters bk’s

when the local sensors are homogeneous, but choose sensor-specified local threshold pa-

rameters bk’s when the sensors are nonhomogeneous. The homogeneous case was dis-

55



cussed in our previous research in Liu, Zhang, and Mei (2019), and here we focus on the

possible nonhomogeneous case.

Under the assumption of the finiteness of local KL information numbers I(gk, fk) in

(2.1), we propose to choose the local threshold parameter bk’s as

bk = ρkb (2.14)

for k = 1, . . . , K, where

ρk =
I(gk, fk)∑K
k=1 I(gk, fk)

(2.15)

and b ≥ 0 is the common global-level thresholding parameter that will be discussed in

a little bit. The rigorous statistical justification of (2.14)-(2.15) will be postponed to the

next section, and it is useful to think at the high-level that ρk can be thought of as the

weight of the k-th data stream in the overall final decision, and those local sensors with

larger KL information numbers or larger signal-to-noise ratios will play more important

roles in the final decision. Meanwhile, note that when the sensors are the homogeneous,

we have ρk ≡ 1/K and thus local threshold parameters bk ≡ b/K are the same. Hence,

our proposed choices of thresholding parameters in (2.14)-(2.15) match our intuition in the

homogeneous case.

The choice of global-level thresholding parameter b is nontrivial, and may need to con-

sider some non-statistical constraints. As an illustration, in certain applications of censor-

ing sensor networks, the censoring parameter b may be chosen to satisfy the constraints

on the average fraction of transmitting sensors when no events occur. For our proposed

scheme Nhard(a, b), when no event occurs, the average fraction of transmitting sensors at
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any time step n is

1

K

K∑
k=1

P(∞)(Uk,n 6= NULL) =
1

K

K∑
k=1

P(∞)(Wk,n ≥ ρkb)

≤ 1

K

K∑
k=1

exp(−ρkb),

where the last inequality follows from the well-known properties of the local CUSUM

statistics, see, Appendix 2 on Page 245 of Siegmund (1985). In particular, if all K sensors

are homogeneous in the sense that the I(gk, fk)’s are the same for all k, then ρk = 1/K,

and the average fraction of transmitting sensors at any time step is exp(−b/K) when no

event occurs. Hence for our proposed scheme Nhard(a, b), a choice of

b = K log η−1,

or equivalently, the local hard threshold bk = ρkb = b/K = log η−1, will guarantee that on

average, at most 100η% of K homogeneous sensors will transmit messages at any given

time when no event occurs. It is interesting to note that the local threshold bk = log η−1 at

each local sensor is a constant that does not depend on K.

The choice of b becomes more complicated for the combined thresholding schemes

Ncomb,r(a, b) if the thresholding parameter r has been given beforehand. We do not have

an explicit answer, and a general rule of thumb is that the censoring parameter b in (2.12)

shall not be too large, as one generally should keep at least r non-zero Uk,n’s when r data

streams are affected by the event.

The choice of thresholding parameter r is straightforward and depends on whether one

has any prior knowledge about the maximum number of affected data streams. If such

a knowledge exists and it is believed that at most r0 data streams will be affected by the

occuring event, then one should use this r0 as the value of thresholding parameter r. Other-

wise one may want to be conservative to choose r = K, e.g., consider the “SUM” scheme
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or the hard-thresholding scheme Nhard(a, b) in (2.9).

2.4 Statistical efficiency

In this section, we investigate the statistical efficiency of our proposed communication-

efficient schemes,Nhard(a) in (2.9),Nsoft(a) in (2.10),Norder,r(a) in (2.13), andNcomb,r(a)

in (2.12). Here we assume that the local thresholds ρk are given in (2.14)-(2.15), and

rewrite our proposed schemes as Nhard(a, b), Nsoft(a, b), Norder,r(a, b), Ncomb,r(a, b) so

as to emphasize the role of the common threshold b in (2.14). Our statistical efficiency

analysis allows us to provide a rationale justification of the choice of ρk in (2.15), or bk

in (2.14)-(2.15), although we should emphasize that these choices are a sufficient but not

necessarily necessary condition in order for our proposed schemes in (2.9)-(2.13) to enjoy

good properties.

For easy understanding our theoretical results, we divide this section into three subsec-

tions. In the first subsection, we provide the asymptotic upper bound of detection delay

of our proposed schemes under the settings when the number of affected data streams

are fixed. In the second subsection, we derive the upper bound of detection delay of our

proposed scheme when the false alarm constraint (2.4) γ goes to ∞ under the classical

asymptotic regime when the number of data streams K is fixed. The delay analysis on the

high-dimension regime when K goes to∞ will be presented in the last subsection.

2.4.1 Detection delay analysis

In this subsection, we consider a general setting when the change is not necessarily instan-

taneous. We assume that when the occurring event occurs at time ν, the k-th data stream

is affected at time νk = ν + δk, where the term δk ∈ [0,∞] denotes the delay of the oc-

curring event’s impact on the k-th data stream. In particular, δk = ∞ implies that the k-th

data stream is not affected. In other words, the density function of the sensor observations

Xk,n’s of the k-th data stream changes from fk to gk at time νk = ν + δk. Most research in
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the literature assumes that the delay effect δk only takes two possible values, 0 or∞. Here

we relax such an assumption a little bit, and assume that the delay effects δk’s satisfy the

following post-change hypothesis set ∆ :

∆ =
{

(δ1, . . . , δK) : the δk’s either =∞ or satisfy 0 ≤ δk << log γ

and min
1≤k≤K

δk = 0
}
. (2.16)

where γ is the false alarm constraint in (2.4), and x(t) << y(t) implies that x(t)/y(t)→ 0

as t → ∞. Note that the assumption of min1≤k≤K δk = 0 is trivial, since otherwise the

system is actually affected by the occurring event at the “new” change-point ν ′ = ν +

min1≤k≤K δk. The assumption of δk << log γ is a technical assumption to ensure that one

is able to utilize all affected data streams to raise a global alarm subject to the false alarm

constraint γ in (2.4). In other words, we only consider the scenario when the differences

on the finite delay effects δk’s are not too large as compared to the typical order (log γ) of

detection delays. A sufficient condition to satisfy this assumption is when all finite δk’s are

uniformly bounded by some constants that do not depend on the false alarm constraint γ in

(2.4).

In the detection delay analysis, the following constant plays a crucial role:

J(δ1, . . . , δK) =
K∑
k=1

I(gk, fk)I{δk <∞}, (2.17)

and I(gk, fk) is the KL information number defined in (2.1), and I{A} is the indicator

function of set A. Essentially, the constant J(δ1, . . . , δK) in (2.17) states that only those

affected data streams can make contributions in quickest detection.

The following theorem establishes the detection delay properties of our proposed schemes,

Nhard(a, b) in (2.9),Nsoft(a, b) in (2.10),Norder,r(a, b) in (2.13), andNcomb,r(a, b) in (2.12),

as the global threshold a goes to∞. The proof of this theorem is presented in detail in the

appendix.
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Theorem 2.4.1. Suppose a→∞.

(i) For any combination (δ1, . . . , δK) ∈ ∆ defined in (2.16), as b→∞

Eδ1,...,δK (Nhard(a, b)) ≤ max

{
a

J(δ1, . . . , δK)
,

b∑K
k=1 I(gk, fk)

}
(2.18)

+O(
√
b) +O

(
max

δk:δk<∞
(δk)

)
,

where J(δ1, . . . , δK) is defined in (2.17).

(ii) For all b ≥ 0, the soft-thresholding scheme Nsoft(a, b) in (2.10) satisfies

Eδ1,...,δK (Nsoft(a, b)) ≤
a

J(δ1, . . . , δK)
+

b∑K
k=1 I(gk, fk)

(2.19)

+O(
√
b) +O

(
max

δk:δk<∞
(δk)

)
,

(iii) For any integer 1 ≤ r ≤ K, the order-r thresholding scheme Norder,r(a) in (2.13) and

the combined thresholding scheme Ncomb,r(a, b) in (2.12) satisfy (2.18) whenever∑K
k=1 I{δk <∞} ≤ r, i.e., when the occurring event affects at most r sensors.

2.4.2 Classical asymptotic regime with fixed dimension K

In this subsection, we present the asymptotic optimality properties of our proposed schemes,

Nhard(a, b), Nsoft(a, b), Norder,r(a), andNcomb,r(a, b), under the classical asymptotic regime

in which the number of data streams K is fix and the false alarm constraint γ goes to∞.

The following lemma derives the information bound on the detection delays of any

globally monitoring schemes when ∆ is defined in (2.16), as the false alarm constraint γ in

(2.4) goes to∞.

Lemma 2.4.1. Assume a scheme T (γ) satisfies the false alarm constraint (2.4). Then for

60



any given post-change hypothesis (δ1, . . . , δK) ∈ ∆, as γ goes to∞,

Eδ1,...,δK (T (γ)) ≥ (1 + o(1))
log γ

J(δ1, . . . , δK)
, (2.20)

where J(δ1, . . . , δK) is defined in (2.17).

When the local censoring parameters bk’s are defined in (2.14)-(2.15) with the com-

mon parameter b, the asymptotic optimality properties of our proposed schemes under the

classical asymptotic regime can be summarized as follow.

Theorem 2.4.2. For a given K and for any b ≥ 0, with the choice of

a = aγ = log γ + (K − 1 + o(1)) log log γ, (2.21)

the hard-thresholding scheme Nhard(aγ, b) satisfies the false alarm constraint (2.4). More-

over, if a− b goes to∞ as γ goes to∞, then for all b ≥ 0,

Eδ1,...,δK (Nhard(a, b)) ≤
log γ + (K − 1 + o(1)) log log γ

J(δ1, . . . , δK)
+O(

√
b) +O(1) (2.22)

for all possible post-change hypothesis (δ1, . . . , δK) ∈ ∆ in (2.16). Therefore, for any given

b = o((log log γ)2), the hard-thresholding schemesNhard(a, b) in (2.9) asymptotically min-

imize Eδ1,...,δK (Nhard(a, b)) (up to the second-order) for each and every post-change hy-

pothesis (δ1, . . . , δK) ∈ ∆ subject to the false alarm constraint (2.4), as γ in (2.4) goes to

∞. The conclusion also holds if Nhard(a, b) is replaced by the soft-thresholding scheme

Nsoft(a, b) in (2.10), the order-thresholding scheme Norder,r in (2.13) or the combined

thresholding scheme Ncomb,r(a, b) in (2.12) when the occurring event affects at most r data

streams, i.e., when (δ1, . . . , δK) ∈ ∆ satisfies
∑K

k=1 I{δk <∞} ≤ r.

Theorem 2.4.2 validated our choices of the local censoring parameters bk’s in (2.14) and

the weights ρk’s in (2.15) in the general nonhomogeneous scenario, as the corresponding
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schemes are asymptotically optimal when the KL information numbers I(gk, fk) in (2.1)

might be different for different k. Moreover, by Theorem 2.4.2, when b = o((log log γ)2),

the upper bound of the detection delay in the right hand side of (2.22) is asymptotically

first-order equivalent to those with b = 0. This indicates that we can choose the local

threshold b = o((log log γ)2) to achieve both communication efficiency and statistical effi-

ciency simultaneously.

2.4.3 Modern asymptotic regime when the dimension K →∞

In this subsection, we present the asymptotic properties of our proposed schemes,Nhard(a, b),

Nsoft(a, b), Norder,r(a), and Ncomb,r(a, b), under the modern asymptotic regime in which

both the dimension K and the false alarm constraint γ in (2.4) go to∞ in a suitable rate.

In order to be tractable, we consider the homogenous case when (fk, gk) = (f, g) for all

k, and the local censoring parameters bk’s defined in (2.14)-(2.15) will become bk = b/K

with the common parameter b. In this subsection, denote by I = I(g, f) the KL information

number defined in (2.1).

Here we consider the sparse post-change scenario when the number of affected data

streams m is fixed, and focus on the impact of the dimension K on the performance of our

proposed schemes. Two different scenarios will be investigated: K = o(log γ) and K >>

log γ. When K and log γ have the same order, research becomes more challenging and is

out of the scope of this chapter. Note that Chan (2017) considers the not-so-sparse and

not-so-dense post-change scenario when the number of affected data streams m goes to∞

by assuming that log(m), log(K), and log log γ have the same order. Here our asymptotic

setting is different, and we consider the case of fixed m when K and log γ go to∞.

First, when both the dimension K and the false alarm constraint γ in (2.4) go to∞, the

choice of a in (2.21) for fixed K might no longer work, and thus it is crucial to find the

threshold a to satisfy the false alarm constraint γ in (2.4) in the modern asymptotic setting

when K → ∞. The following theorem characterizes a general non-asymptotic result on
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the conservative choice of the threshold a.

Theorem 2.4.3. For any given b and K, a choice of

a = (
√

log(4γ) +K −Ke−b/K +
√
K)2 (2.23)

will guarantee the hard-shrinkage schemeNhard(a, b), the soft-thresholding schemeNsoft(a, b),

the order-thresholding schemeNorder,r(a, b) or the combined thresholding schemeNcomb,r(a, b)

satisfy the false alarm constraint (2.4).

It is clear from Theorem 2.4.3 that the asymptotic property of the conservative thresh-

old a in (2.23) depends on the relation between K and log γ. The following corollary sum-

marizes the asymptotic detection delays of our proposed schemes, and it shows that the

classical asymptotic detection delay bounds for fixed K still hold when K = o(log γ), but

we will have new asymptotic delay bounds when K >> log γ.

Corollary 2.4.1. Assume the number m of affected data streams is fixed, and assume K

and log γ go to∞,

(i) if K = o(log γ), for any b ≥ 0, with the choice of

a = aγ = log(4γ) + o(log γ) (2.24)

the hard-thresholding scheme Nhard(a, b) in (2.9) satisfies the false alarm constraint

in (2.4) and has the detection delay

Eδ1,...,δK (Nhard(a, b)) ≤ (1 + o(1))
log γ

mI
+O(1), (2.25)

for all possible post-change hypothesis (δ1, . . . , δK) ∈ ∆ in (2.16).
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(ii) If K >> log γ and b ≥ 0, with the choice of

a = (1 + o(1))K (2.26)

the hard-thresholding scheme Nhard(a, b) in (2.9) satisfies the false alarm constraint

in (2.4). Moreover, if the local censoring parameters bk’s are not too large, i.e.,

bk = o(K), or equivalently, the global censoring parameter b = o(K2), we have

Eδ1,...,δK (Nhard(a, b)) ≤ (1 + o(1))
K

mI
+O(1), (2.27)

for all possible post-change hypothesis (δ1, . . . , δK) ∈ ∆ in (2.16).

(iii) The conclusions of (i) and (ii) also hold ifNhard(a, b) is replaced by the soft-thresholding

scheme Nsoft(a, b) in (2.10), the order-thresholding scheme Norder,r in (2.13) or the

combined thresholding scheme Ncomb,r(a, b) in (2.12) when the occurring event af-

fects at most r data streams, i.e., when (δ1, . . . , δK) ∈ ∆ satisfies
∑K

k=1 I{δk <

∞} ≤ r.

2.5 Numerical simulations

In this subsection we report our numerical simulation results to illustrate the usefulness of

the proposed schemes in (2.9)-(2.13). Suppose that there are K = 100 independent and

identical sensors in a system, and the observations at each sensor are iid with mean 0 and

variance 1 before the change and with mean 1 and variance 1 after the change if affected.

In our simulation study, we simply assume that the change is instantaneous if a sensor is

affected, but we do not know which subset of sensors will be affected.

For the purpose of comparison, we conduct numerical simulations for six families of

global monitoring schemes:

• the “MAX” scheme Tmax(a) in (2.6),
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• the “SUM” scheme Tsum(a) in (2.7),

• the order thresholding scheme Norder,r(a) in (2.13) with r = 10,

• the hard thresholding scheme Nhard(a) in (2.9),

• the soft thresholding scheme Nsoft(a) in (2.10),

• the combined thresholding schemes Ncomb,r(a) in (2.12) with r = 10.

The first three schemes require all local sensors to send all local CUSUM statistics

Wk,n’s values to the fusion center at each and every time step, and corresponds to the case

when the local censoring parameter bk ≡ 0 for all k = 1, · · · , K. For order-thresholding

in the families of Norder,r(a) and Ncomb,r(a), we choose r = 10 to better understand the

scenario when 10 out of 100 sensors are affected by the occurring event. For each of the last

three schemes in the list, i.e., our three proposed schemes (2.9)-(2.12), we further consider

three different values of the local censoring parameters bk’s:

(i) bk ≡ 1/2 ≈ − log(0.607) for all k,

(ii) bk ≡ − log(0.1) = 2.3026 for all k,

(iii) bk ≡ − log(0.01) = 4.6052 for all k.

The choices of these values will guarantee that when no event occurs, on average at most

η = 60.7%, 10%, and 1% of K = 100 homogeneous sensors will transmit messages at any

given time, respectively. Therefore, there are a total of 3 + 3 ∗ 3 = 12 specific schemes in

our numerical simulation study.

For each of these 12 specific schemes T (a), we first find the appropriate values of the

global threshold a to satisfy the false alarm constraint E(∞)(T (a)) ≈ γ = 5000 (within the

range of sampling error). Next, using the obtained global threshold value a,we simulate the

detection delay when the change-point occurs at time ν = 1 under several different post-

change scenarios, i.e., different number of affected sensors. All Monte Carlo simulations

are based on m = 2500 repetitions.
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Table 2.1: A comparison of the detection delays of six families of schemes with γ = 5000.
The smallest and largest standard errors of these 12 schemes are also reported under each
post-change hypothesis based on 2500 repetitions in Monte Carlo simulations.

# sensors affected
1 3 5 8 10 20 30 50 100

Smallest standard error 0.18 0.07 0.05 0.03 0.03 0.02 0.01 0.01 0.00
Largest standard error 0.35 0.12 0.07 0.06 0.05 0.04 0.03 0.03 0.03

Schemes with bk ≡ 0
Tmax(a = 11.27) 23.3 16.3 14.4 13.0 12.4 10.9 10.2 9.5 8.7
Tsum(a = 88.66) 52.1 21.8 14.7 10.3 8.7 5.2 3.9 2.9 2.0
Norder,r=10(a = 44.11) 34.1 15.5 11.2 8.5 7.5 5.5 4.8 4.1 3.4

Schemes Nhard(a) in (2.9) with different positive bk’s
Nhard(a = 85.60, bk = 0.50) 52.9 21.9 14.9 10.3 8.7 5.2 4.0 2.9 2.0
Nhard(a = 52.21, bk = 2.3026) 50.6 20.7 13.8 9.6 8.2 5.2 4.2 3.2 2.4
Nhard(a = 26.31, bk = 4.6052) 39.8 16.0 11.5 8.8 7.9 5.9 5.2 4.4 3.8

Schemes Nsoft(a) in (2.10) with different positive bk’s
Nsoft(a = 63.92, bk = 0.50) 48.2 20.2 13.7 9.7 8.2 5.1 4.0 3.0 2.0
Nsoft(a = 21.56, bk = 2.3026) 33.9 15.4 11.2 8.5 7.5 5.3 4.5 3.7 3.0
Nsoft(a = 8.29, bk = 4.6052) 25.2 13.8 11.1 9.2 8.4 6.7 5.9 5.2 4.4

Schemes Ncomb,r(a) in (2.12) with r = 10 and different positive bk’s
Ncomb,r(a = 44.11, bk = 0.50) 34.1 15.5 11.2 8.5 7.5 5.5 4.8 4.1 3.4
Ncomb,r(a = 43.88, bk = 2.3026) 38.5 16.8 11.7 8.6 7.5 5.5 4.7 4.0 3.3
Ncomb,r(a = 26.31, bk = 4.6052) 39.8 16.0 11.5 8.8 7.9 5.9 5.2 4.4 3.8

Table 2.1 summarizes our simulated detection delays of these 12 schemes under 8 dif-

ferent post-change hypothesis, depending on the number of affected sensors. From Table

2.1, among these 12 specific schemes, when a small number (1 ∼ 3) of 100 homogeneous

sensors are affected by the event, the “MAX” scheme Tmax(a) is the best (in the sense of

smallest detection delay), the “SUM” scheme Tsum(a) is the worst, and all other schemes

are in-between. Similarly, when a large number (20 or more) of 100 homogeneous sen-

sors are affected, the order is reserved: Tsum(a) is the best, Tmax(a) is the worst, and all

other schemes are in-between. However, when 5 ∼ 10 sensors are affected, the schemes

with order-thresholding r = 10 yield the smallest detection delays, since they are designed

to detect the scenario when 10 sensors are affected by the event. In addition, it is clear

from Table 2.1 that for each given scheme, the fewer affected sensors we have, the larger

detection delay it will have. All these results are consistent with our intuition.
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It is worth emphasizing that for the families of the hard- and soft- thresholding schemes,

Nhard(a) in (2.9) and Nsoft(a) in (2.10), a larger censoring value of bk actually leads to a

smaller detection delay when only a few sensors are affected. This suggests that a larger

censoring value bk may actually be necessary for efficient detection when the affected sen-

sors are sparse.

A surprising and possibly counter-intuitive result in Table 2.1 is the effect of not so large

values of censoring parameters bk’s in finite sample simulations. For instance, the perfor-

mances of the “SUM” scheme Tsum(a) and the hard thresholding scheme Nhard(a, bk =

0.50) are similar in view of sampling errors. Likewise, the top-r thresholding scheme

Norder,r=10(a) and the combined thresholding scheme Ncomb,r=10(a, bk = 0.50) also have

identical performances. The interpretation in the censoring sensor networks context is as

follows: using our proposed communication policy in (2.8), we only need exp(−bk) =

exp(−0.5) = 60.7% of 100 sensors to transmit information to the fusion center at any

given time when no event occurs, but we can still be as effective as the full transmission

scenario when all sensors transmit information at all time steps. In other words, much com-

munication costs can be saved by our proposed schemes Nhard(a) or Ncomb,r(a) with not

so large values of bk’s.

It is also interesting to see the effect of the order-thresholding parameter r in finite

sample simulations when the hard-thresholding parameters bk’s are large. From Table 2.1,

when the false alarm constraint γ in (2.4) is only moderately large, e.g., γ = 5000, the

performances of Nhard(a, bk) and Ncomb,r=10(a, bk) are identical when bk = 4.6052 —

they not only have the same global threshold a, but also have the same detection delays.

Intuitively, the stopping time Ncomb,r(a, bk) is decreasing as a function of r, and thus we

have Nhard(a, bk) = Ncomb,r=K(a, bk) ≤ Ncomb,r=10(a, bk) when bk = 4.6052. So one may

wonder why our numerical simulations lead to identical results? One explanation is that

with such a choice of bk = 4.6052, when no event occurs, on average there is at most 1

non-zero sensor message received in the fusion center at any given time, and thus there is
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little difference whether one uses the sum of the largest r = 10 sensor messages or uses

the sum of all K = 100 sensor messages. Hence similar performances are observed in

finite-sample simulations.

2.6 Proofs

Proof of Theorem 2.4.1. Let us first focus part (i) on the properties of the hard-thresholding

schemeNhard(a, b) in (2.9) with b ≥ 0 being the common constant for bk’s in (2.14)-(2.15).

To prove relation (2.18), it is clear that the worst-case detection delay of Nhard(a, b)

occurs at the change-point ν = 1, and thus it suffices to show that E
(ν=1)
δ1,...,δK

(Nhard(a, b))

satisfies (2.18). Without loss of generality, we assume that only the first m data steams

are affected and no other data streams are affected. To simplify our notation below, denote

δmax = max1≤i≤m δi. It suffices to show that

E
(ν=1)
δ1,...,δK

(Nhard(a, b)) ≤ max

{
a∑m

k=1 I(gk, fk)
,

b∑K
k=1 I(gk, fk)

}
+

O(
√
b) +O(1) + δmax, (2.28)

for any b ≥ 0.

The essential idea in the proof of (2.28) is to compare Nhard(a, b) with new stopping

times that are only based on those affected m data streams. Define a stopping time that is

in the form of the one-sided sequential probability ratio test (SPRT):

τ(a, b) = first n such that
n∑
i=1

m∑
k=1

log
gk(Xk,i)

fk(Xk,i)
≥ a and

n∑
i=1

log
gk(Xk,i)

fk(Xk,i)
≥ ρkb for all 1 ≤ k ≤ m, (2.29)

where the weights ρk’s are defined in (2.15), and let τ̂δ(a, b) be the new stopping time that

applies τ(a, b) to the new observations after time δmax.

Now whenever τ̂δ(a, b) stops at time n0+δmax,we know that τ(a, b) stops after applying
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it to n0 observations (Xk,δmax+1, · · · , Xk,δmax+n0) for each k. By the definition of the local

CUSUM statistics in (2.5), we have

Wk,n0+δmax ≥
δmax+n0∑
i=δmax+1

log
gk(Xk,i)

fk(Xk,i)
≥ ρkb

for all 1 ≤ k ≤ m. Hence,

K∑
k=1

Wk,n0+δmax1{Wk,n0+δmax ≥ ρkb} ≥
m∑
k=1

δmax+n0∑
i=δmax+1

log
gk(Xk,i)

fk(Xk,i)
≥ a,

where the last relation is from the definition of τ(a, b). This implies that the scheme

Nhard(a, b) must stop at time n0 + δmax, and possibly earlier. Thus

E
(ν=1)
δ1,...,δK

(Nhard(a, b)) ≤ E
(ν=1)
δ1,...,δK

(τ̂δ(a, b)) = δmax + E
(ν=1)
δ∗1 ,...,δ

∗
K

(τ(a, b)),

where δ∗k is the binary version of δk’s defined in (2.37). To simplify the notation, denote by

E(1) the expectation when the change occurs at time ν = 1 and the event affects the first m

data streams immediately but does not affect the other remaining K −m data streams. So

it suffices to show that the stopping time τ(a, b) in (2.29) satisfies

E(1)(τ(a, b)) ≤ max

{
a∑m

k=1 I(gk, fk)
,

b∑K
k=1 I(gk, fk)

}
+O(

√
b) +O(1). (2.30)

69



To prove (2.30), for 1 ≤ k ≤ m, let

Mk = inf
{
n ≥ 1 :

n∑
i=1

log
gk(Xk,i)

fk(Xk,i)
≥ ρkb

}
,

τk(Mk) = sup
{
n ≥ 1 :

Mk+n∑
i=Mk+1

log
gk(Xk,i)

fk(Xk,i)
≤ 0
}

M̂ = max
1≤k≤m

(
Mk + τk(Mk) + 1

)
t(M̂) = inf

{
n ≥ 1 :

M̂+n∑
i=M̂+1

( m∑
k=1

log
gk(Xk,i)

fk(Xk,i)

)
≥ max{a− (

m∑
k=1

ρk)b, 0}
}
.

Combining these definitions with those of τ(a, b) in (2.29) yields that

τ(a, b) ≤ M̂ + t(M̂) = max
1≤k≤m

(
Mk + τk(Mk) + 1

)
+ t(M̂)

≤
m∑
k=1

τk(Mk) + 1 + t(M̂) + max
1≤k≤m

Mk.

Hence, relation (2.30) holds if we can establish the following three relations:

E(1)
(
τk(Mk)

)
= O(1) for all 1 ≤ k ≤ m; (2.31)

E(1)
(
t(M̂)

)
≤ max

{
a∑m

k=1 I(gk, fk)
− b∑K

k=1 I(gk, fk)
, 0

}
+O(1);(2.32)

E(1)
(

max
1≤k≤m

Mk

)
≤ b∑K

k=1 I(gk, fk)
+O(

√
b) +O(1). (2.33)

Relation (2.31) is well-known in renewal theory, e.g., Theorem D in Kiefer and Sacks,

1963, since log
(
gk(X)/fk(X)

)
has positive mean and finite variance under E(1) by our

assumptions in (2.1) and (2.2).

For relation (2.32), by the definition of t(M̂), when a ≤ (
∑m

k=1 ρk)b, the threshold

becomes 0 and thus t(M̂) = 0. When a ≥ (
∑m

k=1 ρk)b, the stopping time t(M̂) is defined

when a random walk exceeds the bound a−(
∑m

k=1 ρk)b, the application of standard renewal
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theory yields that

E(1)(t(M̂)) =
a− (

∑m
k=1 ρk)b∑m

k=1 I(gk, fk)
+O(1)

=
a∑m

k=1 I(gk, fk)
− b∑K

k=1 I(gk, fk)
+O(1),

see, for example, Siegmund (1985). Here the second equation follows from the definition

of ρk in (2.15) that ∑m
k=1 ρk∑m

k=1 I(gk, fk)
=

1∑K
k=1 I(gk, fk)

.

Thus relation (2.32) holds.

The proof of relation (2.33) is a little more complicated, but it can be done along the

same line as that in Mei (2005). The key fact is that the choice of bk = ρkb’s in (2.14)-

(2.15) makes sure that the stopping times Mk’s have roughly the same mean under P(1).

Specifically, by renewal theory and the assumptions of (fk, gk) in (2.1) and (2.2), under

P(1),

E(1)(Mk) =
ρkb

I(gk, fk)
+O(1) =

b∑K
k=1 I(gk, fk)

+O(1)

and Var(1)(Mk) = O(b), as b→∞, see Siegmund Siegmund (1985). Thus as b→∞,

(
E(1)

∣∣Mk −
b∑K

k=1 I(gk, fk)

∣∣)2

≤ E(1)
(
Mk −

b∑K
k=1 I(gk, fk)

)2

= Var(1)(Mk) +
(
E(1)Mk −

b∑K
k=1 I(gk, fk)

)2

≤ C1kb,

where C1k > 0 is a constant. Taking square root both sides, and noticing that Mk = Mk(b)

is an increasing function of b ≥ 0, it is not difficult to show that for each k = 1, · · · , K,

there exists a constant C2k > 0 so that

E(1)
∣∣Mk −

b∑K
k=1 I(gk, fk)

∣∣ ≤ max(C2k,
√
C1k

√
b),
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for all b > 0.

Therefore,

E(1)
(

max
1≤k≤m

Mk

)
=

b∑K
k=1 I(gk, fk)

+ E(1) max
1≤k≤m

(
Mk −

b∑K
k=1 I(gk, fk)

)
≤ b∑K

k=1 I(gk, fk)
+

m∑
k=1

E(1)
∣∣∣Mk −

b∑K
k=1 I(gk, fk)

∣∣∣
≤ b∑K

k=1 I(gk, fk)
+

m∑
k=1

max(C2k,
√
C1k

√
b)

≤ b∑K
k=1 I(gk, fk)

+ C(
√
b+ 1),

where the constant C =
∑K

k=1 max(C2k,
√
C1k) does not depend on b. This proves relation

(2.33). Therefore, relations (2.31)-(2.33) hold, and thus relation (2.18) holds for the hard-

thresholding scheme Nhard(a, b) in (2.9).

The proof for the soft-thresholding schemeNsoft(a, b) in (2.10) is similar, except defin-

ing the stoping time τ(a, b) by

τ(a, b) = first n such that
n∑
i=1

m∑
k=1

log
gk(Xk,i)

fk(Xk,i)
≥ a+ b

m∑
k=1

ρk and (2.34)

n∑
i=1

log
gk(Xk,i)

fk(Xk,i)
≥ ρkb for all 1 ≤ k ≤ m, (2.35)

instead of (2.29) and prove

E(1)(τ(a, b)) ≤ a∑m
k=1 I(gk, fk)

+
b∑K

k=1 I(gk, fk)
+O(

√
b) +O(1). (2.36)

by replacing the threshold max{a−(
∑m

k=1 ρk)b, 0} in the stopping time t(M̂) by the thresh-

old a. The remaining arguments are identical and thus omitted.

Now let us provide a sketch of the proof for part (iii) of Theorem 2.4.1 on the order-

thresholding schemeNorder,r(a) in (2.13) and the combined thresholding schemeNcomb,r(a, b)

in (2.12). Since Norder,r(a) is a special case of Ncomb,r(a, b) with b = 0, it suffices to prove
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the theorem for Ncomb,r(a, b) in (2.12) with b ≥ 0. Clearly relation (2.38) also holds for

Ncomb,r(a, b) for any b ≥ 0, because the “SUM” scheme Tsum(a) again provides the lower

bound for Ncomb,r(a, b).

It remains to show that relation (2.18) holds for Ncomb,r(a, b) with b ≥ 0 in the scenario

when the occurring event affects at most r data streams, i.e., when
∑K

k=1 I{δk <∞} ≤ r.

Without loss of generality, assume that the affected data streams are just the first m data

streams with m ≤ r. Recall that Uk,n = Wk,nI{Wk,n ≥ ρkb}, and we order the Uk,n’s as

U(1),n ≥ . . . ≥ U(K),n, and Ncomb,r(a, b) stops if
∑r

k=1 U(k),n ≥ a. Note that if m ≤ r,

r∑
k=1

U(k),n ≥
r∑

k=1

Uk,n ≥
m∑
k=1

Uk,n,

since Uk,n ≥ 0. Thus, if at some time n0 we have Wk,n0 ≥ ρkb and
∑m

k=1Wk,n0 ≥ a

for 1 ≤ k ≤ m (i.e., for the first m data streams), then Ncomb,r(a, b) will also stop at

time n0 and possibly earlier. Hence, whenever m ≤ r, the stopping time τ(a, b) in (2.29)

also provides an upper bound on the detection delay of Ncomb,r(a, b). Thus the proposed

combined thresholding scheme Ncomb,r(a, b) in (2.12) satisfies relation (2.18) whenever the

occurring event affects at most r data streams. This completes the proof of the theorem.

Proof of Lemma 2.4.1. Intuitively, only those affected sensors provide information to

detect the occurring events, and the quickest possible way to detect the occurring event is

when the event affects the sensors instantaneously. More rigorously, if we define

δ∗k =

 0, if δk is finite

∞, if δk =∞
, (2.37)

then for any given scheme T (γ),

Eδ1,...,δK (T (γ)) ≥ inf
τ

Eδ∗1 ,...,δ
∗
K

(τ),
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where the infimum is taken over all possible schemes τ satisfying the false alarm constraint

γ in (2.4). An alternative and possible better viewpoint is based on a time-shifting argument

in which one imagines that at time n one observes the observations Xk,n+δk (instead of

Xk,n) when δk is finite, and then applies T (γ) to the new aligned observations.

Without loss of generality, assume that the first m data streams are affected abruptly

and simultaneously by the event at unknown time ν, and other data streams are unaffected.

That is, m out of K data streams are affected by the event, and δ∗i = 0 for 1 ≤ i ≤ m, and

=∞ for m+ 1 ≤ i ≤ K. By (2.17), we have

J(δ1, . . . , δK) = J(δ∗1, . . . , δ
∗
K) =

m∑
i=1

I(gi, fi).

In this case, we face the sequential change detection problem when the distribution of

(X1,n, · · · , XK,n) changes from (f1, · · · , fm, fm+1, · · · , fK) to (g1, · · · , gm, fm+1, · · · , fK).

It is well-known (Lorden, 1971) that

inf
τ

Eδ∗1 ,...,δ
∗
K

(τ) ≥ (1 + o(1))
log γ∑m

i=1 I(gi, fi)
.

subject to the false alarm constraint γ in (2.4) as γ → ∞. Combining the above results

yields relation (2.20), completing the proof of Lemma 3.2.1.

Proof of Theorem 2.4.2: First, we will prove for any a, b ≥ 0,

E(∞)(Nhard(a, b)) ≥ (1 + o(1))
ea

1 + a+ a2

2!
+ · · ·+ aK−1

(K−1)!

. (2.38)

To prove (2.38), note that Nhard(a, b) in (2.9) is increasing as a function of b ≥ 0, and

when b = 0, Nhard(a, b = 0) reduces to the “SUM” scheme Tsum(a) in (2.7). Hence, for

any b ≥ 0, Nhard(a, b) ≥ Tsum(a) and of course, E(∞)(Nhard(a, b)) ≥ E(∞)(Tsum(a)). By

Theorem 1 of Mei (2010), the “SUM” scheme Tsum(a) satisfies relation (2.38), and so are

the hard-thresholding schemes Nhard(a, b) for all b ≥ 0.
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Theorem 2.4.2 follows at once from Theorem 2.4.1 and (2.38). In particular, the choice

of aγ in (2.21) follows from (2.38) and the fact that 1 + a + a2

2!
+ · · · + aK−1

(K−1)!
∼ aK−1

(K−1)!
if

K is fixed and a goes to∞.

Proof of Theorem 2.4.3: Clearly, we can see for any fixed combination of (a, b),

E(∞)Nhard(a, b) is smaller than E(∞)Nsoft(a, b) or E(∞)Ncomb,r(a, b). Therefore, it is suf-

ficient to prove the choice of a in (2.23) could guarantee the hard-thresholding scheme

Nhard(a, b) satisfies false alarm constraint (2.4).

First, define W ∗
k = limn→∞Wk,n as the limit of the CUSUM statistics, which has the

following non-asymptotic result: for any x > 0, the tail probability

G(x) = P(∞)(W ∗
k > x) ≤ e−x, (2.39)

see Appendix 2 on Page 245 of Siegmund (1985). It is clear that W ∗
k are i.i.d. across

different k. Now we define the log-moment generating function of the W ∗
k ’s

ψ(θ) = log E(∞) exp{θW ∗
k1{W ∗

k ≥ b/K}} (2.40)

For any x ≥ 0, by Chebyshev’s inequality,

E(∞)[Nhard(a, b)] ≥ xP(∞)(Nhard(a, b) ≥ x)

= x
[
1−P(∞)(Nhard(a, b) < x)

]
= x

[
1−P(∞)(

K∑
k=1

Wk,n1{Wk,n ≥ bk} ≥ a) for some 1 ≤ n ≤ x

]

≥ x

[
1− xP(∞)(

K∑
k=1

W ∗
k1{W ∗

k ≥ bk} ≥ a)

]
,

≥ x

[
1− xe−θaE(∞) exp(θ

K∑
k=1

W ∗
k1{W ∗

k ≥ b/K})

]
= x [1− x exp (−θa+Kψ(θ))] . (2.41)

Note that for any u > 0, the function x(1 − xu) is maximized at x = 1/(2u) with the
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maximum value 1/(4u). Therefore, we can get for any 0 < θ < 1,

E(∞)[Nhard(a, b)] ≥
1

4
exp (θa−Kψ(θ)) . (2.42)

By the definition of ψ(θ) in (2.40) and the tail probability W ∗
k in (2.39), for all 0 < θ < 1,

ψ(θ) = log[P(∞)(W ∗
k ≤ b/K)−

∫ ∞
b/K

eθxdG(x)]

= log[1 + (eθb/K − 1)G(b) + θ

∫ ∞
b/K

eθxG(x)dx)]

≤ log[1 + (eθb/K − 1)e−b/K + θ

∫ ∞
b/K

eθxG(x)dx]

≤ log[1 + (eθb/K − 1)e−b/K + θ

∫ ∞
b/K

eθxe−xdx]

= log

(
1 +

1

1− θ
e−b(1−θ)/K − e−b/K

)
≤ 1

1− θ
e−b(1−θ)/K − e−b/K

≤ 1

1− θ
− e−b/K (2.43)

where the second equation is based on the integration by parts. By (2.42) and (2.43), we

have

E(∞)Nhard(a, b) ≥
1

4
exp

(
θa− K

1− θ
+Ke−b/K

)
(2.44)

for all 0 < θ < 1. If K < a, by letting θ = 1−
√
K/a yield

E(∞)Nhard(a, b) ≥
1

4
exp

(
(
√
a−
√
K)2 +Ke−b/K −K

)
(2.45)

Therefore a choice of

a = (
√

log(4γ) +K −Ke−b/K +
√
K)2 (2.46)
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will guarantee the hard-shrinkage scheme Nhard(a, b) satisfies the false alarm constraint

(2.4).

Note using the continuity of the soft-thresholding transformation function, a tighter

bound for Nsoft(a, b) was derived for the soft-thresholding scheme in Liu, Zhang, and

Mei (2019), although they are asymptotically equivalent to those in Theorem 2.4.3 and

Corollary 2.4.1 Nhard(a, b) as the dimension K goes to∞.

Proof of Corollary 2.4.1:

IfK = o(log γ), the corresponding a = aγ = log(4γ)+o(log γ) will guarantee the false

alarm constraint. Moreover, if m is fixed and b = o(log γ), the upper bound of detection

delay in Theorem 2.4.1 could be applied and yields

Eδ1,...,δK (Nhard(a, b)) ≤ (1 + o(1))

(
log γ

mI

)
+O(1), (2.47)

which implies the first order detection efficiency will be kept as long as b = o(log γ).

If K >> log γ, the corresponding a = (1 + o(1))K will guarantee the false alarm

constraint. Moreover, since m is fixed and b = o(K2), the upper bound of detection delay

in Theorem 2.4.1 could be applied and yields

Eδ1,...,δK (Nhard(a, b)) ≤ (1 + o(1))

(
K

mI

)
+O(1), (2.48)

which completes the proof of corollary.
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CHAPTER 3

ROBUSTNESS AND TRACTABILITY FOR NON-CONVEX M-ESTIMATORS

3.1 Introduction

M-estimation plays an important role in linear regression due to its robustness and flex-

ibility. From the statistical viewpoint, it has been shown that many M-estimators enjoy

desirable robustness properties in the presence of outliers, as well as asymptotic normality

when the data are normally distributed without outliers. Some general theoretical proper-

ties and review of robust M-estimators can be found in Bai, Rao, and Wu (1992), Huber

and Ronchetti (2009), Hampel, Ronchetti, Rousseeuw, and Stahel (2011), and El Karoui,

Bean, Bickel, Lim, and Yu (2013). In the high-dimensional setting, where the dimension-

ality is greater than the number of samples, penalized M-estimators have been widely used

to tackle the challenges of outliers and have been used for sparse recovery and variable

selection, see Lambert-Lacroix and Zwald (2011), Li, Peng, and Zhu (2011), Wang, Jiang,

Huang, and Zhang (2013), and Loh (2017). However, from the computational tractability

perspective, it is often not easy to compute the M-estimators, since optimization problems

over non-convex loss functions are usually involved. Moreover, the tractability issue be-

comes more challenging when the data are contaminated by some arbitrary outliers, which

is essentially the situation where robust M-estimator is designed to tackle.

This chapter aims to investigate two important properties of M-estimators, robustness

and tractability, simultaneously under the gross error model. Specifically, we assume the

data generation model is yi = 〈θ0, xi〉+ εi, where yi ∈ R, xi ∈ Rp, , for i = 1, · · · , n, and

the noise term εi’s are from Huber’s gross error model (Huber, 1964): εi ∼ (1− δ)f0 + δg,

for i = 1, · · · , n. Here, f0 denotes the probability density function (pdf) of the noise

of the normal samples, which has the desirable properties, such as zero mean and finite
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variance; g denotes the pdf of the outliers (contaminations), which may also depend on the

explanatory variable xi, for i = 1, · · · , n. One thing to notice is that we do not require the

mean of g to be 0. The parameter δ ∈ [0, 1], denotes the percentage of the contaminations,

which is also known as the contamination ratio in robust statistics literature. The gross

error model indicates that for the ith sample, the residual term εi is generated from the pdf

f0 with probability 1− δ, and from the pdf g with probability δ. It is important to point out

that the residual εi is independent of xi and other xj’s when it is from the pdf f0, but can

be dependent with the variable xi when it is from the pdf g.

In the first part of this chapter, we start with the low-dimensional case when the dimen-

sion p is fixed. We consider the robust M-estimation with a constraint on the norm of θ.

Mathematically, we study the following optimization problem:

Minimize:
θ

R̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉), (3.1)

subject to: ‖θ‖2 ≤ r.

Here, ρ : R → R is the loss function, and is often non-convex. We consider the problem

with the `2 constraint due to three reasons: first, it is well know the constraint optimization

problem in (3.1) is equivalent to the unconstraint optimization problem with a `2 regular-

izer. Therefore, it is related to the Ridge regression, which can alleviate multicollinearity

amongst regression predictors. Second, by considering the problem of (3.1) in a compact

ball with radius r, it guarantees the existence of the global optimal, which is necessary

for establishing the tractability properties of the M-estimator. Finally, by working on the

constrained optimization problem, we can avoid technical complications and establish the

uniform convergence theorems of the empirical risk and population risk. Besides, the con-

strained M-estimators are widely used and studied in the literature, see Mei, Bai, and Mon-

tanari (2018) and Loh (2017) for more details. To be consistent with the assumptions used

in the literature, in the current work, we assume r is a constant and the true parameter θ0 is
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inside of the ball.

In the second part, we extend our research to the high-dimensional case, where p � n

and the true parameter θ0 is sparse. In order to achieve the sparsity in the resulting estimator,

we consider the penalized M-estimator with `1 regularizer:

Minimize:
θ

L̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉) + λn||θ||1, (3.2)

subject to: ‖θ‖2 ≤ r.

Note the corresponding penalized M-estimator with a L2 constraint is related to the Elastic

net, which overcomes the limitations of the LASSO type regularization (Zou and Hastie,

2005).

In both parts, we will show that (in the finite sample setting,) the M-estimator obtained

from (3.1) or (3.2) is robust in the sense that all stationary points of empirical risk function

R̂n(θ) or L̂n(θ) are bounded in the neighborhood of the true parameter θ0 when the pro-

portion of outliers is small. In addition, we will show that with a high probability, there

is a unique stationary point of the empirical risk function, which is the global minimizer

of (3.1) or (3.2) for some general (possibly nonconvex) loss functions ρ. This implies that

the M-estimator can be computed efficiently. To illustrate our general theoretical results,

we study some specific M-estimators with Huber’s loss (Huber, 1964) and Welsch’s expo-

nential squared loss (Dennis Jr and Welsch, 1978), and explicitly discuss how the tuning

parameter and percentage of outliers affect the robustness and tractability of the corre-

sponding M-estimators.

Our research makes several fundamental contributions on the field of robust statistics

and non-convex optimization. First, we demonstrate the uniform convergence results for

the gradient and Hessian of the empirical risk to the population risk under the gross error

model. Second, we provide nonasymptotic upper bound of the estimation error for the

general M-estimators, which nearly achieve the minimax error bound in Chen, Gao, and
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Ren (2016). Third, we investigate the computational tractability of the general nonconvex

M-estimators under the gross error model and show when the contamination ratio δ is

small, there is only one unique stationary point of the empirical risk function. Therefore,

efficient algorithms such as gradient descent or proximal gradient decent can be guaranteed

to converge to a unique global minimum irrespective of the initialization. Our general

results also imply the following interesting and to some extent surprising statement: the

percentage of outliers has an impact on the tractability of non-convex M-estimators. In a

nutshell, the estimation and the corresponding optimization problem become more difficult

both in terms of solution quality and computational efficiency when more outliers appear.

While the former is well expected, we find the latter – that more outliers make M-estimators

more difficult to numerically compute – an interesting and somewhat surprising discovery.

Our simulation results and case study also verify this phenomenon.

Related work

Since Huber’s pioneer work on robust M-estimators (Huber, 1964), many M-estimators

with different choices of loss functions have been proposed, e.g., Huber’s loss (Huber,

1964), Andrews sine loss (Andrews, Bickel, Hampel, Huber, Rogers, and W.Tukey, 1972),

Tukey’s Bisquare loss (Beaton and Tukey, 1974), Welsch’s exponential squared loss (Den-

nis Jr and Welsch, 1978), to name a few. From the statistical perspective, much research

has been done to investigate the robustness of M-estimators such as large breakdown point

(Donoho and Huber, 1983; Mizera and Müller, 1999; Alfons, Croux, and Gelper, 2013),

finite influent function (Hampel, Ronchetti, Rousseeuw, and Stahel, 2011) and asymp-

totic normality (Maronna and Yohai, 1981; Lehmann and Casella, 2006; El Karoui, Bean,

Bickel, Lim, and Yu, 2013). Recently, in the high-dimensional context, regularized M-

estimators have received a lot of attentions. Lambert-Lacroix and Zwald (2011) proposed

a robust variable selection method by combing Huber’s loss and adaptive lasso penalty. Li,

Peng, and Zhu (2011) show the nonconcave penalized M-estimation method can perform
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parameter estimation and variable selection simultaneously. Welsch’s exponential squared

loss combined with adaptive lasso penalty is used by Wang, Jiang, Huang, and Zhang

(2013) to construct a robust estimator for sparse estimation and variable selection. Chang,

Roberts, and Welsh (2018) proposed a robust estimator by combining the Tukey’s biweight

loss with adaptive lasso penalty. However, those statistical works did not discuss the com-

putational tractability of the M-estimators even though many of these loss functions are

non-convex.

During the last several years, non-convex optimization has attracted fast growing inter-

ests due to its ubiquitous applications in machine learning and in particular deep learning,

such as dictionary learning (Mairal, Bach, Ponce, and Sapiro, 2009), phase retrieval (Can-

des, Li, and Soltanolkotabi, 2015), orthogonal tensor decomposition (Anandkumar, Ge,

Hsu, Kakade, and Telgarsky, 2014) and training deep neural networks (Bengio, 2009). It is

well known that there is no efficient algorithm that can guarantee to find the global optimal

solution for general non-convex optimization.

Fortunately, in the context of estimating non-convex M-estimators for high-dimensional

linear regression (without outliers), under some mild statistical assumptions, Loh (2017)

establishes the uniqueness of the stationary point of the non-convex M-estimator when us-

ing some non-convex bounded regularizers instead of `1 regularizer. By investigating the

uniform convergence of gradient and Hessian of the empirical risk, Mei, Bai, and Mon-

tanari (2018) prove that with a high probability, there exists one unique stationary point

of the regularized empirical risk function with `1 regularizer. Thus regardless of the ini-

tial points, many computational efficient algorithm such as gradient descent or proximal

gradient descent algorithm could be applied and are guaranteed to converge to the global

optimizer, which implies the high tractability of the M-estimator. However, their analysis

is restricted to the standard linear regression setting without outliers. In particular, they

assume the distribution of the noise terms in the linear regression model should have some

desirable properties such as zero mean, sub-gaussian and independent of feature vector x,
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which might not hold when the data are contaminated with outliers. To the best of our

knowledge, no research has been done on analyzing the computational tractability prop-

erties of the non-convex M-estimators when data are contaminated by arbitrary outliers,

although the very reason why M-estimators are proposed is to handle outliers in linear re-

gression in the robust statistics literature. Our research is the first to fill the significant gap

on the tractability of non-convex M-estimators. We prove that under mild assumptions,

many M-estimators can tolerate a small amount of arbitrary outliers in the sense of keeping

the tractability, even if the loss functions are non-convex.

Notations. Given µ, ν ∈ Rp, their standard inner product is defined by 〈µ, ν〉 =∑p
i=1 µiνi. The `p norm of a vector x is denoted by ||x||p. The p by p identity matrix is

denoted by Ip×p. Given a matrix M ∈ Rm×m, let λmax(M), λmin(M) denote the largest

and the smallest eigenvalue of M , respectively. The operator norm of M is denoted by

||M ||op, which is equal to max(λmax(M),−λmin(M)) when M ∈ Rm×m. Let Bp
q (a, r) =

{x ∈ Rp : ||x− a||q ≤ r}, be the `q ball in the Rp space with center a and radius r. Given

a random variable X with probability density function f, we denote the corresponding ex-

pectation by Ef . We will often omit the density function subscript f when it is clear from

the context, the expectation is taken for all variables.

Organization. The rest of this chapter is organized as follows. In Section 3.2, we

present the theorems about the robustness and tractability of general M-estimators under the

low-dimensional setup when dimension p is fixed and less than n. Then in Section 3.3, we

consider the penalized M-estimator with `1 regularizer in the high-dimensional regression

when p� n. The `2 error bounds of the estimation and the scenario when the M-estimator

has nice tractability are provided. In Section 3.4, we discuss two special families of robust

estimator constructed by Huber’s and Welsch’s exponential loss as examples to illustrate

our general theorems of robustness and tractability of M-estimators. Simulation results are

presented in Section 3.5 and a case study is shown in Section 3.6 to illustrate the robustness

and tractability properties. We relegate all proofs to the Section 3.7 due to space limits.
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3.2 M-estimators in the low-dimensional regime

In this section, we investigate two key properties of M-estimators, namely robustness and

tractability, in the setting of linear regression with arbitrary outliers in the low-dimensional

regime where the dimension p is fixed and smaller than the number of samples n. In terms

of robustness, we show that under some mild conditions, any stationary point of the ob-

jective function in (3.1) will be well bounded in a neighborhood of the true parameter θ0.

Moreover, the neighborhood shrinks when the proportion of outliers decreases. In terms

of tractability, we show that when the proportion of outliers is small and the sample size

is large, with a high probability, there is a unique stationary point of the empirical risk

function, which is the global optimum (and hence the corresponding M-estimator). Con-

sequently, many first order methods are guaranteed to converge to the global optimum,

irrespective of initialization.

Before presenting our main theorems, we make the following mild assumptions on the

loss function ρ, the explanatory or feature vectors xi, and the idealized noise distribution

f0. We define the score function ψ(z) := ρ′(z).

Assumption 3.2.1. (a) The score function ψ(z) is twice differentiable and odd in z with

ψ(z) ≥ 0 for all z ≥ 0.Moreover, we assume max{||ψ(z)||∞, ||ψ′(z)||∞, ||ψ′′(z)||∞} ≤

Lψ.

(b) The feature vector xi are i.i.d with zero mean and τ 2-sub-Gaussain, that is E[e〈λ,xi〉] ≤

exp(1
2
τ 2||λ||22), for all λ ∈ Rp.

(c) The feature vector xi spans all possible directions in Rp, that is E[xix
T
i ] � γτ 2Ip×p,

for some 0 < γ < 1.

(d) The idealized noise distribution f0(ε) is symmetric. Define h(z) :=
∫∞
−∞ f0(ε)ψ(z +

ε)dε and h(z) satisfies h(z) > 0, for all z > 0 and h′(0) > 0.

Assumption (a) requires the smoothness of the loss function in the objective function,
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which is crucial to study the tractability of the estimation problem; Assumption (b) as-

sumes the sub-Gaussian design of the observed feature matrix; Assumption (c) assumes

that the covariance matrix of the feature vector is positive semidefinite. We remark that the

condition on h(z) is mild. It is not difficult to show that it is satisfied if the idealized noise

distribution f0(ε) is strictly positive for all ε and decreasing for ε > 0, e.g., if f0 = pdf of

N(0, σ2).

Before presenting our main results in this section, we first define the population risk as

follows:

R(θ) = ER̂n(θ) = E[ρ(Y − 〈θ,X〉)]. (3.3)

The high level idea is to analyze the population risk first, and then we build a link

between the population risk and the empirical risk, which solves the original estimation

problem. Theorem 3.2.1 below summarizes the results for the population risk function

R(θ) in (3.3).

Theorem 3.2.1. Assume that Assumption 3.2.1 holds and the true parameter θ0 satisfies

||θ0||2 ≤ r/3.

(a) There exists a constant η0 = δ
1−δC1 such that any stationary point θ∗ of R(θ) satisfies

||θ∗ − θ0||2 ≤ η0, where δ is the contamination ratio, and C1 is a positive constant

that only depends on γ, r, τ, ψ(z) and the pdf f0, but does not depend on the outlier

pdf g.

(b) When δ is small, there exist a constant η1 = C2 − C3δ > 0, where C2, C3 are two

positive constants that only depend on γ, r, τ, ψ(z) and the pdf f0 but not depend on

the outlier pdf g, such that

λmin(∇2R(θ)) > 0 (3.4)
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for every θ with ||θ0 − θ||2 < η1.

(c) There is a unique stationary point of R(θ) in the ball Bp
2(0, r) as long as η0 < η1 for a

given contamination ratio δ.

It is useful to add some remarks for better understanding Theorem 3.2.1. First, recall

that the noise term εi follows the gross error model: εi ∼ (1−δ)f0+δg,where the outlier pdf

g may also depend on xi. While the true parameter θ0 may no longer be the stationary point

of the population risk function R(θ), Theorem 3.2.1 implies that the stationary points of

R(θ) will always bounded in a neighborhood of the true parameter θ0 when the percentage

of contamination δ is small. This indicates the robustness of M-estimators in the population

case.

Second, Theorem 3.2.1 asserts that when there are no outliers, i.e., δ = 0, the stationary

point is indeed the true parameter θ0. In addition, since the constant η0 in (a) is an increasing

function of δ whereas the constant η1 in (b) is a decreasing function of δ, stationary points

of R(θ) may disperse from the true parameter θ0 and the strongly convex region around θ0

will be decreasing, as the contamination ratio δ is increasing. This indicates the difficulty

of optimization for large contamination ratio cases.

Third, part (c) is a direct result from part (a) and (b). Note that η0(δ = 0) = 0 <

η1(δ = 0) = C2, thus there exists a positive δ∗, such that η0 < η1 for any δ < δ∗. A

simple lower bound on δ∗ is C3/(C1 +C2 +C3), since C1δ < (1− δ)(C2−C3δ) whenever

0 ≤ δ ≤ C3/(C1 + C2 + C3).

Our next step is to link the empirical risk function (and the corresponding M-estimator)

with the population version. To this end, we need the following lemma, which shows the

global uniform convergence theorem of the sample gradient and Hessian.

Lemma 3.2.1. Under Assumption 3.2.1, for any π > 0, there exists a constant Cπ depend-

ing on π, γ, r, τ, ψ(z), h(z) but independent of p, n, δ and g, such that for any δ ≥ 0, the

following hold:
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(a) The sample gradient converges uniformly to the population gradient in Euclidean

norm, i.e., if n ≥ Cπp log n, we have

P

(
sup

θ∈Bp2 (0,r)

||∇R̂n(θ)−∇R(θ)||2 ≤ τ

√
Cπp log n

n

)
≥ 1− π. (3.5)

(b) The sample Hessian converges uniformly to the population Hessian in operator norm,

i.e., if n ≥ Cπp log n, we have

P

(
sup

θ∈Bp2 (0,r)

||∇2R̂n(θ)−∇2R(θ)||op ≤ τ 2

√
Cπp log n

n

)
≥ 1− π. (3.6)

We are now ready to present our main result about M-estimators by investigating the

empirical risk function R̂n(θ).

Theorem 3.2.2. Assume Assumption 3.2.1 holds and ||θ0||2 ≤ r/3. Let us use the same

notation η0 and η1 as in Theorem 3.2.1. Then for any π > 0, there exist constant Cπ

depends on π, γ, r, τ, ψ, f0 but independent of n, p, δ and g , such that as n ≥ Cπp log n,

the following statements hold with probability at least 1− π :

(a) for all ||θ − θ0||2 > 2η0,

〈θ − θ0,∇R̂n(θ)〉 > 0. (3.7)

(b) for all ||θ − θ0||2 ≤ η1,

λmin(∇2R̂n(θ)) > 0. (3.8)

Thus, as long as 2η0 < η1, R̂n(θ) has a unique stationary point, which lies in the ball

Bp(0, r). This is the unique global optimal solution of (3.1), and denote this unique sta-

tionary point by θ̂n.
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(c) There exists a positive constant κ that depends on π, γ, r, ψ, δ, f0 but independent of

n, p and g, such that

||θ̂n − θ0||2 ≤ η0 +
4τ

κ

√
Cπp log n

n
. (3.9)

A few remarks are in order. First, since η0 is independent of n, p and g, Theorem

3.2.2(a) asserts that the M-estimator which minimizes R̂n(θ) is always bounded in the ball

Bp
2(θ0, 2η0), regardless of g (and hence the outliers observed). This indicates the robustness

of the M-estimator, i.e., the estimates are not severely skewed by a small amount of “bad”

outliers. Next, when the contamination ratio δ is small such that 2η0 < η1, there is a unique

stationary point of R̂n(θ). Therefore, although the original optimization problem (3.1) is

non-convex and the sample contains some arbitrary outliers, the optimal solution of R̂n(θ)

can be computed efficiently via most off-the-shelf first-order algorithms such as gradient

descent or stochastic gradient descent. This indicates the tractability of the M-estimator.

Interestingly, as in the population risk case, the tractability is closely related to the amount

of outliers – the problem is easier to optimize when the data contains fewer outliers. Finally,

when the number of samples n � p log n, the estimation error bound η0 is in the order of

O(δ +
√

p logn
n

), which nearly achieves the minimax lower bound of O(δ +
√

p
n
) in Chen,

Gao, and Ren (2016).

3.3 Penalized M-estimator in the high-dimensional regime

In this section, we investigate the tractability and the robustness of the penalized M-estimator

in the high-dimension region where the dimension of parameter p is much greater than

the number of samples n. Specifically, we consider the same data generation model yi =

〈θ0, xi〉 + εi, where yi ∈ R, xi ∈ Rp, and the noise term εi are from Huber’s gross error

model (Huber, 1964): εi ∼ (1 − δ)f0 + δg. Moreover, we assume p � n and the true

parameter θ0 is sparse.
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We consider the `1-regularized M-estimation under a `2-constraint on θ:

Minimize:
θ

L̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉) + λn||θ||1, (3.10)

subject to: ‖θ‖2 ≤ r.

Before presenting our main theorem, we need additional assumptions on the feature

vector x.

Assumption 3.3.1. The feature vector x has a probability density function in Rp. In addi-

tion, there exists constantM > 1 that is independent of dimension p such that ||x||∞ ≤Mτ

almost sure.

The following lemma shows the uniform convergence of gradient and Hessian under

the Huber’s contamination model in the high-dimensional setting where p >> n.

Lemma 3.3.1. Under assumption 3.2.1 and 3.3.1, there exist constants C1, C2 that depend

on r, τ, π, δ, Lψ, such that the following hold:

a The sample directional gradient converges uniformly to the population directional gra-

dient, along the direction (θ − θ0).

P

(
sup

θ∈Bp2 (r)\{0}

|〈∇Rn(θ)−∇R(θ), θ − θ0〉|
||θ − θ0||1

≤ (T0 + L0τ)

√
C1 log(np)

n

)
≥ 1− π. (3.11)

b As n ≥ C2s0 log(np), we have

P

(
sup

θ∈Bp2 (r)∩Bp2 (s0),ν∈Bp2 (1)∩Bp0 (s0)

|〈ν,
(
∇2Rn(θ)−∇2R(θ)

)
ν〉| ≤ τ 2

√
C2s0 log(np)

n

)
≥ 1− π.

Now we are ready for our main theorem.
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Theorem 3.3.1. Assume that Assumption 3.2.1 and Assumption 3.3.1 hold and the true pa-

rameter θ0 satisfies ||θ0||2 ≤ r/3 and ||θ0||0 ≤ s0. Then there exist constants C,C0, C1, C2

that are dependent on (ρ, Lψ, τ
2, r, γ, π) but independent on (δ, s0, n, p,M) such that as

n ≥ Cs0 log p and λn = C0M
√

log p
n

+ C1√
s0
δ, the following hold with probability as least

1− π :

(a) All stationary points of problem (3.10) are in Bp
2(θ0, η0 +

√
s0

1−δλnC2)

(b) As long as n is large enough such that n ≥ Cs0 log2 p and the contamination ratio δ

is small such that (η0 + 1
1−δ
√
s0λnC2) ≤ η1, the problem (3.10) has a unique local

stationary point which is also the global minimizer.

The proof of Theorem 3.3.1 is based on several lemmas, which are postponed to the

appendix. We believe that some of our lemmas are of interest in their own right. Theorem

3.3.1 implies the estimation error of the penalized M-estimator is bounded as the order

of O(δ +
√

s0 log p
n

), which achieves the minimax estimation rate (Chen, Gao, and Ren,

2016). Moreover, it implies that the penalized M-estimator has good tractability when the

percentage of outliers δ is small.

3.4 Example

In this section, we use some examples to illustrate our general theoretical results about the

robustness and tractability of M-estimators. In the first subsection, we consider the low-

dimensional regime and study a family of M-estimators with a specific loss function known

as Huber’s loss (Huber, 1964). In the second subsection, we consider the high-dimensional

regime and study the penalized M-estimator with Welsch’s exponential squared loss (Den-

nis Jr and Welsch, 1978; Rey, 2012; Wang, Jiang, Huang, and Zhang, 2013). In both

subsections, we will derive the explicit expression of the two critical radius η0, η1 and

discuss the robustness and tractability of the corresponding M-estimators.

90



3.4.1 M-estimator via Huber’s loss

In this subsection, we illustrate the general results presented in Section 3.2 by studying the

Huber’s loss function (Huber, 1964)

ρα(t) =


1
2
t2, if |t| ≤ α

α(|t| − α/2), if |t| > α.
(3.12)

where α > 0 is a tuning parameter. The corresponding M-estimator is obtained by solving

the optimization problem

min
θ

R̂n(θ) :=
1

n

n∑
i=1

ρα(yi − 〈θ, xi〉), (3.13)

subject to ||θ||2 ≤ r.

First, note the loss function ρα(t) in (3.12) is convex. Thus, the corresponding M-estimator

should be tractable even though there are some outliers. Second, when α goes to 0, ρα(t)

will converges to t2/2. Thus, the least square estimator is a special case of the M-estimator

obtained from (3.13), which is not robust to outliers. Third, for fixed α > 0, ρ′α(t), ρ′′α(t)

are all bounded. Intuitively, this implies that the impact of outlier observations of yi will be

controlled and thus the corresponding statistical procedure will be robust.

We now study the robustness and tractability of the M-estimator of (3.13) based on our

framework in Theorem 3.2.2. In order to emphasize on the effects of the tuning parameter

α and the contamination ratio δ on the robustness property and tractability property, we

consider a simplified assumption on the feature vector xi and the pdf of idealized residual

f0.

Assumption 3.4.1. (a) The feature vector xi are i.i.d multivariate Gaussian distribution

N(0, τ 2Ip×p).

(b) The idealized noise pdf f0(ε) has Gaussian distribution N(0, σ2).
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(c) The true parameter ||θ0||2 ≤ r/3.

Corollary 3.4.1. Under Assumption 3.4.1, for any δ, α ≥ 0, there exist two constants

η0(δ, α), η1(δ, α) :

η0(δ, α) =
δ

1− δ
4
√

2πσ3

(α2 + 3σ2)τ
e
α2+22τ2r2

2σ2 (3.14)

η1(δ, α) = +∞, (3.15)

such that when the number of data points n is large, with high probability, any stationary

points of the empirical risk function R̂n(θ) in (3.13) belongs in the ball Bp
2(θ0, 2η0(δ, α)).

Moreover, the empirical risk function R̂n(θ) in (3.13) is strongly convex in the ballBp
2(θ0, η1(δ, α)).

Thus, there exists a unique stationary point of R̂n(θ), which is the corresponding M-

estimator.

Note η1(δ, α) =∞,which means the corresponding Huber’s estimator will be tractable,

no matter there are outliers or not. This is consistent with the fact that the Huber’s loss

function is convex. Moreover, it is interesting to see the special case of Corollary 3.4.1

with α = +∞, which reduces to the least square estimator. As we can see, with δ > 0,

we have η0(δ, α = +∞) = +∞, which implies the solution of the optimization problem

in (3.13) can be arbitrarily in the ball Bp
2(0, r = 10), even when the proportion of outliers

is small. Thus it is not robust to the outliers. This recovers the well-known fact: the least

square estimator is easy to compute, but is very sensitive to outliers.

Additionally, for another special case with δ = 0 and α > 0, we have η0(δ = 0, α) = 0,

which means the true parameter θ0 is the unique stationary point of the risk function. This

implies the Huber’s estimator is consistent when there are no outliers.

3.4.2 Penalized M-estimator via Welsch’s exponential squared loss

In this subsection, we illustrate the general results presented in Section 3.3 by considering

a family of M-estimators with a specific nonconvex loss function known as Welsch’s ex-
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ponential squared loss (Dennis Jr and Welsch, 1978; Rey, 2012; Wang, Jiang, Huang, and

Zhang, 2013),

ρα(t) =
1− exp(−αt2/2)

α
, (3.16)

where α ≥ 0 is a tuning parameter. The corresponding penalized M-estimator is obtained

by solving the optimization problem

min
θ

L̂n(θ) :=
1

n

n∑
i=1

ρα(yi − 〈θ, xi〉) + λn||θ||1, (3.17)

subject to ||θ||2 ≤ r.

The non-convex loss function ρα(t) in (3.16) has been used in other contexts such as robust

estimation and robust hypothesis testing, see Ferrari and Yang (2010) and Qin and Priebe

(2017), as it has many nice properties. First, it is a smooth function of both α and t, and the

gradient and Hessian are well-defined. Second, when α goes to 0, ρα(t) will converges to

t2/2. Thus, the LASSO estimator is a special case of the M-estimator obtained from (3.17).

Third, for fixed α > 0, ρα(t), ρ′α(t), ρ′′α(t) are all bounded. Intuitively, this implies that the

impact of outlier observations of yi will be controlled and thus the corresponding statistical

procedure will be robust.

We now study the robustness and tractability of the penalized M-estimator of (3.17)

based on our framework in Theorem 3.3.1. When α goes to 0, the M-estimator reduces to

the LASSO estimator, which can be computed easily. However, it is also known to be very

sensitive to the outliers. On the other hand, when α increases, the estimator becomes more

robust, but may lose tractability due to the highly non-convexity of the function ρα(t) as

well as the presence of the outliers.

In order to emphasize on the relation between the tuning parameter α and the contami-

nation ratio δ, we consider a simplified assumption on the feature vector xi and the pdf of

idealized residual f0.
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Assumption 3.4.2. (a) The feature vector xi are i.i.d uniform distribution [−τ, τ ]p.

(b) The idealized noise pdf f0(ε) has Gaussian distribution N(0, σ2).

(c) The true parameter ||θ0||2 ≤ 10/3.

With Assumption 3.4.2 and Theorem 3.3.1, we can get the following corollary, which

characterizes the robustness and tractability of the penalized M-estimator with Welsch’s

exponential squared loss in (3.17):

Corollary 3.4.2. Assume that Assumption 3.4.2 holds and the true parameter θ0 satisfies

||θ0||2 ≤ r/3, for any π ∈ (0, 1), there exist a constant Cπ such that if choose λn =

2Cπτ
√

log p
n

+ ατ
2

δ√
s0
, as n >> s0 log p, the following hold with probability as least 1−π :

(a) All stationary points of problem (3.17) are in Bp
2(θ0, (1 + 2τ)η0)

(b) The empirical risk function L̂n(θ) are strong convex in the ball Bp
2(θ0, η1)

(c) As long as n is large enough and the contamination ratio δ is small such that (1 + 2τ) η0 ≤

η1, the problem (3.17) has a unique local stationary point which is also the global

minimizer.

Here

η0(δ, α) =
δ

1− δ

√
e

α

4(1 + ασ2)3/2

τ
e

32αr2τ2

3(1+ασ2) (3.18)

η1(δ, α) =
1

3
√

3α(1 + ασ2)3/2τ

[
τ 2 − δ(τ 2 + (1 + ασ2)3/2)

]
, (3.19)

It is interesting to see the special case of Corollary 3.4.2 with α = 0, which reduces

to the LASSO estimator. On the one hand, with α = 0, we have η1(δ, α = 0) = +∞

for any δ > 0. This means that the corresponding risk function is strongly convex in the

entire region of Bp
2(0, r = 10), and hence it is always tractable. On the other hand, since

η0(δ, α = 0) = +∞, the solution of the optimization problem in (3.17) can be arbitrarily

94



in the ball Bp
2(0, r = 10), even when the proportion of outliers is small. Thus it is not

robust to the outliers. This recovers the well-known fact: the LASSO estimator is easy to

compute, but is very sensitive to outliers.

Additionally, for another special case with δ = 0 and α > 0, we have η0(δ = 0, α) = 0,

which means the true parameter θ0 is the unique stationary point of the risk function. This

implies the Welsch’s estimator has nice tractability when there is no outliers. However,

when the percentage of outlier δ is increasing, η1(δ, α) will decrease, which implies more

outliers will reduce the tractability of the M-estimator.

3.5 Simulation results

In this section, we report the simulation results by using Welsch’s exponential loss (Dennis

Jr and Welsch, 1978) when the data are contaminated, using synthetic data setting. We first

generate covariates xi ∼ N(0, Ip×p) and responses yi = 〈θ0, xi〉+ εi, where ||θ0||2 = 1. We

consider the case when the residual term εi have gross error model with contamination ratio

δ, i.e., εi ∼ (1− δ)N(0, 1) + δN(µi, 3
2) where µi = ||xi||22 + 1. The outlier distribution is

chosen to highlight the effects of outliers when they are dependent on xi and has non-zero

mean.

In the first part, we consider the low-dimensional case when the dimension p = 10.

Specifically, we generate n = 200 pairs of data (yi, xi)i=1,..,n with dimension p = 10 and

with different choices of contamination ratios δ. We use projected gradient descent to solve

the optimization problem in (3.13) with r = 10. In order to make the iteration points be

inside the ball, we will project the points back into Bp
2(0, r = 10) if they fall out of the ball.

The step size is fixed as 1. In order to test the tractability of the M-estimator, we run gradient

descent algorithm with 20 random initial values in the ball Bp
2(0, r = 10) to see whether

the gradient descent algorithm can converge to the same stationary point or not. Denote

θ̂(k) as the kth iteration points, Figure 3.1 shows the convergence of the gradient descent

algorithm for the exponential loss with the choice of α = 0.1 under the gross error model
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with different δ. From Figure 3.1 we observe when the proportion of outliers is small (i.e.,

δ ≤ 0.1,) gradient descent could converge to the same stationary point fast. However, when

the contamination ratio δ becomes larger, gradient descent may not converge to the same

point for different initial points, indicating the loss of tractability for the same objective

function with increasing proportion of outliers. Those observations are consistent to our

Theorem 3.2.2, which asserts the M-estimator is tractable when the contamination ratio δ

is small.

To illustrate the robustness of the M-estimator, we generate 100 realizations of (Y,X)

and run gradient descent algorithm with different initial values. The average estimation

errors between the M-estimator and the true parameter θ0 are presented in Figure 3.2. As we

can see, when δ = 0, all estimators have small estimation errors, which are well expected

as those M-estimators are consistent without outliers (Huber, 1964; Huber and Ronchetti,

2009). However, for the M-estimator with α = 0, i.e., the least square estimator, the

estimation error will increase dramatically as the proportion of outliers increases. This

confirms that the least square estimator is not robust to the outliers.

Meanwhile, when α = 0.1, the overall estimation error does not increase much even

with 40% outliers, which clearly demonstrate the robustness of the M-estimator. Note that

when α is further increased from 0.1 to 0.3, although the estimator error is still very small

for δ ≤ 0.2, it will increase dramatically when δ is greater than 0.2. We believe that two

reasons contribute to this phenomenon: robustness starts to decrease when α becomes too

large; and more importantly, the algorithm fails to find the global optimum due to multiple

stationary points when α is large. Thus for each α, there exists a critical bound of δ, such

that the estimator will be robust and tractable efficiently when the proportion of outliers is

smaller than that bound.

In the second part, we present our results in the high-dimensional region when p = 400.

Data (yi, xi) are generated from the same gross error model in the previous simulation

study, with the true parameter θ0 a sparse vector with 10 nonzero entries. All nonzero
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entries are set to be 1/
√

10. We use proximal gradient descent algorithm to solve problem

(3.10). Similarly, we will project the points back into Bp
2(0, r = 10) if they fall out of

the ball. Figure 3.3 shows the convergence of the proximal gradient descent algorithm

for the nonconvex exponential loss with the choice of α = 0.1 and L1 regularizer with

the parameter λ = 0.1 under the gross error model with different δ. From Figure 3.3 we

observe when the percentage of outliers is small, the algorithm will converge to the same

stationary point fast, which implies there is only one unique stationary point. When δ is

larger, the converge rate become slower, which implies there may exist another stationary

points. Those simulation results reflect our theoretical result for the tractability of the

penalized M-estimator in high-dimensional regression.
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Figure 3.1: The convergence of gradient de-
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3.6 Case study

In this section, we present a case study of the robust regression problem for the Airfoil

Self-Noise dataset (Brooks, Pope, and Marcolini, 2014). The dataset was processed by

NASA and is commonly used for regression study to learn the relation between the airfoil

self-noise and five explanatory variables. Specifically, the dataset contain the following 5

explanatory variables: Frequency (in Hertzs), Angle of attack (in degrees), Chord length,(in

meters), Free-stream velocity (in meters per second), and Suction side displacement thick-

ness (in meters). There are 1503 observations in the dataset. The response variable is

Scaled sound pressure level (in decibels). In this section, the five explanatory variables are

scaled to have zero mean and unit variance. Then, we corrupt the response by adding noise

ε from the same gross error model as the previous section: εi ∼ (1−δ)N(0, 1)+δN(µi, 3
2)

with µi = ||xi||22 + 1.

We consider the M-estimator using Welsch’s exponential loss (Dennis Jr and Welsch,

1978) on the dataset to validate the tractability and the robustness of the corresponding

M-estimator. First, we run 100 Monte Carlo simulations. At each time, we split the dataset

which consists of 1503 pairs of data into a training dataset of size 1000 and a testing dataset

of size 503. Then for the training dataset, we use gradient descent method with 20 different

initial values to update the iteration points.

Figure 3.4 shows the average distance between each iteration point and the optimal

point with the choice of α = 0.7 and step size 0.5. Clearly, when δ is smaller than 0.3,

gradient descent will converge to the same local minimizer, which implies the uniqueness of

the stationary point. This result demonstrates the nice tractability of the M-estimator under

the gross error model when the proportion of outliers is small. Then, using the optimal

point as the M-estimator, we calculate the prediction error, which is the mean square error

on the testing data. Figure 3.5 shows the average prediction error on the testing data. As

we can see, the prediction error with the choice of α = 0 will increase dramatically when
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the percentage of outliers increases. In contrast, the prediction errors of M-estimators with

α = 0.4 is stable even with a large percentage of outliers. This illustrates the robustness of

M-estimators for some positive α.
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3.7 Proof

Proof of Lemma 3.2.1: In order to prove the uniform convergency theorem, it is suf-

fice to verify assumption 1, 2 and 3 in Mei, Bai, and Montanari (2018). Specifically,

first, we will verify that the directional gradient of the population risk is sub-Gaussian

(Assumption 1 in Mei, Bai, and Montanari (2018)). Note the directional gradient of the

population risk is given by 〈∇ρ(Y − 〈X, θ〉), ν〉 = ψ(Y − 〈X, θ〉)〈X, ν〉. Since |ψ(Y −

〈X, θ〉)| ≤ Lψ, and 〈X, ν〉 is mean zero and τ 2-sub-Gaussian by our assumption 1, due

to Lemma 1 in Mei, Bai, and Montanari (2018), there exists a universal constant C1, such

that 〈∇ρ(Y − 〈X, θ〉), ν〉 is C1Lψτ
2−sub-Gaussian. Second, we will verify that the di-

rectional Hessian of the loss is sub-exponential (Assumption 2 in Mei, Bai, and Monta-

nari (2018)). The directional Hessian of the loss gives 〈∇2ρ(Y − 〈X, θ〉)ν, ν〉 = ψ′(Y −

〈X, θ〉)〈X, ν〉2. Since |ψ′(Y − 〈X, θ〉)| ≤ Lψ, by Lemma 1 in Mei, Bai, and Montanari

(2018), 〈∇2ρ(Y − 〈X, θ〉)ν, ν〉 is C2τ
2-sub-exponential. Third, let H = ||∇2R(θ0)||op and

J∗ = E

[
sup
θ1 6=θ2

||(ψ′(θ1)−ψ′(θ2))xxT ||op
||θ1−θ2||2

]
. Then, we can show H ≤ Lψτ

2 and J∗ ≤ Lψ(pτ 2)3/2.

Therefore, there exists a constant ch such that H ≤ τ 2pch and J∗ ≤ τ 3pch , which verifies

the assumption 3 in Mei, Bai, and Montanari (2018). Therefore, the uniform convergency

of gradient and Hessian in theorem 1 in Mei, Bai, and Montanari (2018) holds for our gross

error model.

Proof of Theorem 3.2.1: Part (a): It is suffice to show that 〈θ− θ0,∇R(θ)〉 > 0 for all

||θ − θ0||2 > η0. Note by Assumption 3.2.1(d), we have h(z) =
∫ +∞
−∞ ψ(z + ε)f0(ε)dε > 0

as z > 0 and h′(0) > 0. Define H(s) := inf
0≤z≤s

h(z)
z
, it is easy to see that H(s) > 0 for all
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s > 0. Then, we have

〈θ − θ0,∇R(θ)〉 = E [E[ψ(z + ε)z|z = 〈θ0 − θ,X〉]]

= (1− δ)E[h(〈θ − θ0, X〉)〈θ − θ0, X〉] + δE [Eg(ψ(z + ε)z|z = 〈θ0 − θ,X〉)]

≥ (1− δ)H(s)E[〈θ − θ0, X〉2I(|〈θ−θ0,X〉|≤s)]− δLψE|〈θ0 − θ,X〉|

= (1− δ)H(s)E[〈θ − θ0, X〉2 − 〈θ − θ0, X〉2I(|〈θ−θ0,X〉|>s)]− δLψE|〈θ − θ0, X〉|

≥ (1− δ)H(s)
[
E[〈θ − θ0, X〉2]−

(
E[〈θ − θ0, X〉4] ·P(|〈θ − θ0, X〉| > s)

)1/2
]

−δLψ(E|〈θ − θ0, X〉|2)1/2

(i)

≥ (1− δ)H(s)||θ − θ0||22τ 2
(
γ −

√
c2P(|〈θ − θ0, X〉| > s)

)
− δLψ||θ − θ0||2τ

(ii)

≥ (1− δ)H(s)||θ − θ0||22τ 2

(
γ −

√
c2E(|〈θ − θ0, X〉|4)

s4

)
− δLψ||θ − θ0||2τ

≥ (1− δ)H(s)||θ − θ0||22τ 2

(
γ −

√
c2 · c2τ 4||θ − θ0||42

s4

)
− δLψ||θ − θ0||2τ

≥ (1− δ)H(s)||θ − θ0||22τ 2

(
γ − c2τ

2||θ − θ0||22
s2

)
− δLψ||θ − θ0||2τ

≥ (1− δ)H(s)||θ − θ0||22τ 2

(
γ − 16c2τ

2r2

9s2

)
− δLψ||θ − θ0||2τ.

Here (i) holds from the fact that if X has mean zero and is τ 2-sub-Gaussian, then for all

u ∈ Rp,

E|〈u,X〉|2 ≤ ||u||22τ 2,

E|〈u,X〉|4 ≤ c2||u||42τ 4,

where c2 is a constant (Boucheron, Lugosi, and Massart, 2013). (ii) holds from Cheby-

shev’s inequality. Thus, a choice of s̃ = 8τr
3

√
c2
γ

will ensure that

〈θ − θ0,∇R(θ)〉 ≥ (1− δ)3

4
H(

8τr

3

√
c2

γ
)||θ − θ0||22τ 2γ − δLψ||θ − θ0||2τ, (3.20)
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which is greater than 0 when

||θ − θ0||2 >
δLψ

(1− δ)3
4
H(8τr

3

√
c2
γ

)τγ
:= η0. (3.21)

Therefore, there are no stationary point outside of the ball Bp
2(θ0, η0).

Part(b): We first look at the minimum eigenvalue of the Hessian∇2R(θ) at θ = θ0. For

any u ∈ Rp, ||u||2 = 1,

〈u,∇2R(θ0)u〉 = (1− δ)Ef0 [ψ
′(ε)〈X, u〉2] + δEg[ψ

′(ε)〈X, u〉2]

= (1− δ)Ef0 [ψ
′(ε)]E[〈X, u〉2] + δEg[ψ

′(ε)〈X, u〉2]

≥ (1− δ)h′(0)γτ 2 − δLψτ 2.

Therefore, we have the minimum eigenvalue of ∇2R(θ0) is greater than 0 as long as δ <

h′(0)γ
h′(0)γ+Lψ

.

Then we look at the operator norm of∇2R(θ)−∇2R(θ0). For any u ∈ Rp, ||u||2 = 1,

|〈u, (∇2R(θ)−∇2R(θ0))u〉| = |E[(ψ′(〈X, θ0 − θ〉+ ε)− ψ′(ε))〈X, u〉2]|

= |E[ψ′′(ξ)〈X, θ0 − θ〉〈X, u〉2]|

≤ E|ψ′′(ξ)|E|〈X, θ0 − θ〉〈X, u〉2|

≤ Lψ{E[〈X, θ0 − θ〉2]E[〈X, u〉4]}1/2

≤ Lψ(||θ0 − θ||22τ 2c2τ
4)1/2

= Lψ
√
c2||θ0 − θ||2τ 3.

Hence, taking

||θ − θ0||2 ≤ η1 :=
(1− δ)h′(0)γ − δLψ

2
√
c2τLψ

(3.22)
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guarantees that (∇2R(θ)−∇2R(θ0))op ≤ (1−δ)h′(0)γτ2−δLψτ2
2

. Therefore, for all θ ∈ Bp
2(θ0, η1),

we have

λmin(∇2R(θ)) ≥ κ :=
(1− δ)h′(0)γ − δLψ

2
τ 2, (3.23)

which yields there is at most one minimizer of R(θ) in the ball Bp
2(θ0, η1), as long as

δ < h′(0)γ
h′(0)γ+Lψ

.

Part (c): Note R(θ) is a continuous function on Bp
2(r). Thus there exists a global min-

imizer, denoted by θ∗. Since we have shown that there is no stationary points outside the

ball Bp
2(θ0, η0), θ∗ should be in the ball Bp

2(θ0, η0). Therefore, as long as η1 > η0, i.e.,

(1− δ)h′(0)γ − δLψ
2
√
c2τLψ

>
δLψ

(1− δ)3
4
H(8τr

3

√
c2
γ

)τγ
, (3.24)

there exists and only exists a unique stationary point of R(θ), which is also the global

optimum θ∗.

Proof of Theorem 3.2.2 Based on Lemma 3.2.1, there exists a constant C such that

when n ≥ Cp log p,

P

(
sup

θ∈Bp(0,r)

||∇R̂n(θ)−∇R(θ)||2 ≤ τδLψ

)
≥ 1− π (3.25)

P

(
sup

θ∈Bp(0,r)

||∇2R̂n(θ)−∇2R(θ)||op ≤ κ/2

)
≥ 1− π. (3.26)

Part (a): Note

〈θ − θ0,∇R̂n(θ)〉 ≥ 〈θ − θ0,∇R(θ)〉 − ||∇R̂n(θ)−∇R(θ)||2||θ − θ0||2 (3.27)

≥ (1− δ)3

4
H(

8τr

3

√
c2

γ
)||θ − θ0||22τ 2γ − 2τδLψ||θ − θ0||2
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which is greater than 0 when

||θ − θ0||2 >
2δLψ

(1− δ)3
4
L(8τr

3

√
c2
γ

)τγ
= 2η0. (3.28)

Therefore, there are no stationary points outside of the ball Bp
2(θ0, 2η0).

Part (b): For the least eigenvalue of the empirical Hessian in Bp
2(θ0, η1), we have

inf
||θ−θ0||2≤η1

λmin(∇2R̂n(θ)) ≥ inf
||θ−θ0||2≤η1

λmin(∇2R(θ))− sup
θ∈Bp(0,η1)

||∇2R̂n(θ)−∇2R(θ)||op

≥ κ− κ/2 = κ/2 > 0. (3.29)

This lead to the conclusion that, R̂n(θ) is strong convex inside the ball Bp
2(θ0, η1).

Part(c): When 2η0 < η1, by strong convexity of R̂n(θ) in Bp
2(θ0, η1), there exists a

unique local minimizer, which is in Bp
2(θ0, 2η0). We denote the unique local minimizer as

θ̂n.

By Theorem 3.2.1, there is a unique stationary point of the population risk function

R(θ) in the ball Bp
2(θ0, η0). Suppose θ∗ is the unique stationary point of R(θ). By Taylor

expansion of R̂n(θ) at the point θ∗, there exists a θ̃ in Bp(θ0, 2η0), such that

R̂n(θ̂n) = R̂n(θ∗) + 〈θ̂n − θ∗,∇R̂n(θ∗)〉+
1

2
(θ̂n − θ∗)′∇2R̂n(θ̃)(θ̂n − θ∗) ≤ R̂n(θ∗).(3.30)

Since by equation (3.29), the least eigenvalue of ∇2R̂n(θ̃) is greater than κ/2, which lead

to

κ

4
||θ̂n − θ∗||22 ≤ 〈θ∗ − θ̂n,∇R̂n(θ∗)〉 ≤ ||θ∗ − θ̂n||2||∇R̂n(θ∗)||2, (3.31)
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which yield

||θ̂n − θ∗||2 ≤
4

κ
||∇R̂n(θ∗)||2. (3.32)

By Theorem 3.2.1, ||θ0 − θ∗||2 < η0, combined with equation (3.32) and the uniform

convergency theorem in Lemma 3.2.1 yield

||θ̂n − θ0||2 ≤ η0 +
4τ

κ

√
C ∗ p log n

n
. (3.33)

Proof of lemma 3.3.1: From the Theorem 3 in Mei, Bai, and Montanari, 2018, the

uniform convergency theorem of our Lemma 3.3.1 holds if Assumption 4, 5 in Mei, Bai,

and Montanari, 2018 hold under the contaminated model with outliers. Here we will show

under our assumption 3.2.1 and 3.3.1, there exist constants T0 and L0 such that

a For all θ ∈ Bp
2(r), Y ∈ R, X ∈ Rp, ||∇θρ(Y − 〈X, θ〉)||∞ ≤ T0M

b There exist functions h1 : R× Rp+1 → R, and h2 : Rp+1 → Rp, such that

〈∇θρ(Y − 〈X, θ〉), θ − θ0〉 = h1(〈θ − θ0, h2(Y,X)〉), Y,X). (3.34)

In addition, h1(t, Y,X) is L0M - Lipschitz to its first argument t, h1(0, Y,X) = 0,

and h2(Y,X) is mean-zero and τ 2-sub-Gaussian.

Part (a). The gradient of the loss is

∇θρ(Y − 〈X, θ〉) = −ψ(Y − 〈X, θ〉)X. (3.35)

By assumption 3.2.1, we have | − ψ(Y − 〈X, θ〉)| ≤ Lψ. By assumption 3.3.1, we have

||X||∞ ≤Mτ. Therefore, (a) is satisfied with parameter T0 = Lψτ.
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Part (b). Note

〈∇θρ(Y − 〈X, θ〉), θ − θ0〉 = −ψ(Y − 〈X, θ〉)〈X, θ − θ0〉. (3.36)

We take h2(Y,X) = X, t = 〈X, θ− θ0〉 and h1(t, Y,X) = −ψ(Y − t−〈X, θ0〉)t. Clearly,

we have h1(0, Y,X) = 0 and h2(Y,X) is mean 0 and τ 2-sub-Gaussian. Furthermore, note

|t| ≤ 2rMτ, we have

| ∂
∂t
h1(t, Y,X)| = |ψ′(Y − t− 〈X, θ0〉)t− ψ(Y − t− 〈X, θ0〉)| (3.37)

≤ 2MLψrτ + Lψ (3.38)

≤ (2Lψrτ + Lψ)M. (3.39)

Therefore, h1(t,X, Y ) is at most (2Lψrτ +Lψ)M -Lipschitz in its first argument t. By part

(a) and part (b), we can see assumption 4, 5 are satisfied under the gross error model, which

prove the uniform convergency theorem in our Lemma 3.3.1.

Proof of theorem 3.3.1: We decompose the proof into four technical lemmas. First, in

Lemma 3.7.1, we prove there cannot be any stationary points of the regularized empirical

risk L̂n in (3.10) outside the region A, which is a cone with A = {θ0 + ∆ : ||∆Sc0
||1 ≤

3||∆S0||1}. Then in Lemma 3.7.2, we show there cannot be any stationary points outside

the region Bp
2(θ0, rs) where rs is the statistical radius which is not less than η0 in Theorem

3.2.1. In Lemma 3.7.3, we argue that all stationary points should have support size less or

equal to cs0 log p. Finally, in Lemma 3.7.4, we show there cannot be two stationary points

in Bp
2(θ0, η1)∩A. Note L̂n(θ) is a continuous function, which indicates the existence of the

global minimizer. Therefore, we can conclude there is and only is one unique stationary

point of the regularized empirical risk L̂n as long as rs < η1.

To start with those lemmas, we define the subgradient of L̂n at θ as:

∂L̂n(θ) = {∇Rn(θ) + λnν : ν ∈ ∂||θ||1} . (3.40)
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Therefore, the optimality condition implies that θ is a stationary point of L̂n if and only if

0 ∈ ∂L̂n(θ). To simplify notations, all constants in the following lemmas are dependent on

(ρ, Lψ, τ
2, r, γ, π) but independent on δ, s0, n, p,M.

Lemma 3.7.1. Let S0 = supp(θ0) and s0 = |S0|. Define a cone A = {θ0 + ∆ : ||∆Sc0
||1 ≤

3||∆S0||1} ⊆ Rp. For any π > 0, there exist constants C0, C1 such that letting λn ≥

C0M
√

log p
n

+ δ C1√
s0
, with probability at least 1 − π, L̂n(θ) has no stationary points in

Bp
2(0, r) ∩ Ac :

〈z(θ), θ − θ0〉 > 0, ∀θ ∈ Bp
2(0, r) ∩ Ac, z(θ) ∈ ∂L̂n(θ) (3.41)

Proof. For any z(θ) ∈ ∂L̂n(θ), it can be written as z(θ) = ∇R̂n(θ) + λnν(θ), where

ν(θ) ∈ ∂||θ||1. Therefore, we have

〈z(θ), θ − θ0〉 = 〈∇R(θ), θ − θ0〉+ 〈∇R̂n(θ)−∇R(θ), θ − θ0〉+ λn〈ν(θ), θ − θ0〉(3.42)

Note by (3.20) we have

〈θ − θ0,∇R(θ)〉 ≥ (1− δ)3

4
H(

8τr

3

√
c2

γ
)||θ − θ0||22τ 2γ − δLψ||θ − θ0||2τ. (3.43)

By lemma 3.3.1, for any π > 0, there exists a constant Cπ such that

P( sup
0<||θ||2<r

|〈∇R̂n(θ)−∇R(θ), θ − θ0〉|
||θ − θ0||1

≤ CπM

√
log p

n
) > 1− π. (3.44)

Letting ∆ = θ − θ0, we have

〈ν(θ), θ − θ0〉 = 〈ν(θ)Sc0 ,∆Sc0
〉+ 〈ν(θ)S0 ,∆S0〉 ≥ ||∆Sc0

||1 − ||∆S0||1 (3.45)
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Plugging (3.43),(3.44),(3.45) into (4.5) yields

〈z(θ), θ − θ0〉 ≥ (1− δ)3

4
H(

8τr

3

√
c2

γ
)||θ − θ0||22τ 2γ − δLψ||θ − θ0||2τ (3.46)

− CπM

√
log p

n
(||∆Sc0

||1 + ||∆S0||1) + λn(||∆Sc0
||1 − ||∆S0||1).(3.47)

Let λn ≥ 2CπM
√

log p
n

+ C2, we have

〈z(θ), θ − θ0〉 ≥ (1− δ)3

4
H(

8τr

3

√
c2

γ
)||θ − θ0||22τ 2γ − δLψ||θ − θ0||2τ

+ CπM

√
log p

n
(||∆Sc0

||1 − 3||∆S0||1) + C2(||∆Sc0
||1 − ||∆S0||1).(3.48)

Next, we will find the lower bound of ||∆Sc0
||1− ||∆S0||1 under the constraint of ||∆Sc0

||1−

3||∆S0||1 ≥ 0. Note by Cauchy inequality, we have

||∆||22 ≥
||∆Sc0

||21
p− s0

+
||∆S0||21
s0

(3.49)

Therefore, under the constraint of ||∆Sc0
||1−3||∆S0||1 ≥ 0, the minimal value of ||∆Sc0

||1−

||∆S0||1 is obtained when ||∆Sc0
||1 − 3||∆S0||1 = 0 and ||∆||22 =

||∆Sc0
||21

p−s0 +
||∆S0

||21
s0

. By

solving the two equations yield

||∆Sc0
||1 = 3

√
(p− s0)s0

8s0 + p
||∆||2 (3.50)

||∆S0||1 =

√
(p− s0)s0

8s0 + p
||∆||2 (3.51)

and ||∆Sc0
||1 − ||∆S0||1 ≥ 2

√
(p−s0)s0

8s0+p
||∆||2. Combined with (3.48), setting C1 =

Lψτ

2
and

C2 = C1
δ√
s0

yield 2
√

(p−s0)s0
8s0+p

C2 ≥ δLψτ, which implies 〈z(θ), θ − θ0〉 > 0, as long as

θ ∈ Ac, i.e., ||∆Sc0
||1 − 3||∆S0||1 > 0.

Lemma 3.7.2. For any π > 0, θ ∈ A, z(θ) ∈ ∂L̂n(θ), there exist constants C0, C1 such
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that with probability at least 1− π,

〈z(θ), θ − θ0〉 > 0 (3.52)

as long as ||θ − θ0||2 > rs, where

rs =
δ

1− δ
C0 +

4
√
s0

1− δ
(M

√
log p

n
+ λn)C1. (3.53)

Proof. Since for any θ ∈ A, we have ||θ − θ0||1 ≤ 4
√
s0||θ − θ0||2. Combining with (4.5)

yields

〈z(θ), θ − θ0〉 ≥ 〈∇R(θ), θ − θ0〉 − CπM
√

log p

n
||θ − θ0||1 − λn||θ − θ1||1

≥ (1− δ)3

4
H(

8τr

3

√
c2

γ
)||θ − θ0||22τ 2γ − δLψ||θ − θ0||2τ

−(CπM

√
log p

n
+ λn)4

√
s0||θ − θ0||2, (3.54)

which is greater than 0 as long as

||θ − θ0||2 ≥
δLψ + (CπM

√
log p
n

+ λn)4
√
s0

(1− δ)3
4
H(8τr

3

√
c2
γ

)τγ
:= rs. (3.55)

Taking C0 =
Lψ

3
4
H( 8τr

3

√
c2
γ

)τγ
and C1 = max(1,Cπ)

3
4
H( 8τr

3

√
c2
γ

)τγ
give the result of rs in equation (3.53).

Lemma 3.7.3. If δ ≤ 1/2, for any π, there exist constants C0, C1, C such that letting

λn ≥ C0M
√

(log p)/n+ δC1/
√
s0, with probability at least (1−π), any stationary points

of L̂n(θ) in Bp
2(θ0, rs) ∩ A has support size |S(θ̂)| ≤ Cs0 log p.

Proof. Let θ̂ ∈ Bp
2(θ0, rs) ∩ A be a stationary point of L̂n(θ) in (3.10). Then we have

∇Rn(θ̂) + λnν(θ̂) = 0, (3.56)
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where ν(θ̂) ∈ ||θ̂||1. Thus, we have

(
∇Rn(θ̂)

)
j

= ±λn, ∀j ∈ S(θ̂) (3.57)

Note |ψ(yi − 〈xi, θ0〉)| ≤ Lψ and 〈xi, ej〉 is τ 2-subgaussian with mean 0. Then there exists

an absolute constant c0 such that ψ(yi−〈xi, θ0〉)〈xi, ej〉 is c0L
2
ψτ

2-subgaussian, see Lemma

1(d) in Mei, Bai, and Montanari, 2018. Thus we have 1
n

∑n
i=1 ψ(yi − 〈xi, θ0〉)〈xi, ej〉 is

c0L
2
ψτ

2/n-subgaussian with mean 〈∇R(θ0), ej〉.Moreover, note |〈∇R(θ0), ej〉| = |δEgψ(yi−

〈xi, θ0〉)〈xi, ej〉| ≤ δLψE|〈xi, ej〉| ≤ δLψτ, we have for any t > 0,

P(| 1
n

n∑
i=1

ψ(yi − 〈xi, θ0〉)〈xi, ej〉| ≥ t+ δLψτ)

≤ P(| 1
n

n∑
i=1

ψ(yi − 〈xi, θ0〉)〈xi, ej〉 − 〈∇R(θ0), ej〉| ≥ t)

≤ 2 exp(− t2n

2c0L2
ψτ

2
). (3.58)

Thus, we can get

P (||∇Rn(θ0)||∞ > t+ δLψτ) ≤ p max
1≤j≤p

P

(
| 1
n

n∑
i=1

ψ(yi − 〈xi, θ0〉)〈xi, ej〉| > t+ δLψτ

)

≤ 2p exp(− t2n

2c0L2
ψτ

2
). (3.59)

Thus, a choice of t = Lψτ
√

2c0(log p+log 6/π)
n

and C =
√
c0 log 6/π will guarantee that

P

(
||∇R̂n(θ0)||∞ > Lψτ(C

√
log p

n
+ δ)

)
≤ π/3 (3.60)

Let λn ≥ 2Lψτ(C
√

log p
n

+ δ), we have the event (||∇Rn(θ0)||∞ < λn/2) happens with the
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probability at least 1− π/3. Under this event, combing with (3.57) yields

λn/2 ≤
∣∣∣∣(∇Rn(θ0)−∇Rn(θ̂)

)
j

∣∣∣∣ , ∀j ∈ S(θ̂). (3.61)

Squaring and summing over j ∈ S(θ̂), we have

λ2
n|S(θ̂)| ≤ 4

∥∥∥∥(∇R̂n(θ0)−∇R̂n(θ̂)
)
S(θ̂)

∥∥∥∥2

2

(3.62)

= 4

∥∥∥∥∥∥
(

1

n

n∑
i=1

(
ψ(yi − 〈θ0, xi〉)− ψ(yi − 〈θ̂, xi〉)

)
xi

)
S(θ̂)

∥∥∥∥∥∥
2

2

(3.63)

= 4

∥∥∥∥∥∥
(

1

n

n∑
i=1

(ψ′(yi − 〈βi, xi〉)) 〈θ0 − θ̂, xi〉xi

)
S(θ̂)

∥∥∥∥∥∥
2

2

(3.64)

≤ 4L2
ψ

∥∥∥∥∥∥
(

1

n

n∑
i=1

〈θ0 − θ̂, xi〉xi

)
S(θ̂)

∥∥∥∥∥∥
2

2

(3.65)

where βi are located on the line between θ0 and θ̂ obtained by intermediate value theorem.

Moreover, by Minkowski inequality and Cauchy-Schwarz inequality yield

∥∥∥∥∥∥
(

1

n

n∑
i=1

〈θ0 − θ̂, xi〉xi

)
S(θ̂)

∥∥∥∥∥∥
2

≤ 1

n

n∑
i=1

|〈θ0 − θ̂, xi〉|
∥∥∥(xi)S(θ̂)

∥∥∥
2

(3.66)

≤ 1

n

(
(
n∑
i=1

|〈θ0 − θ̂, xi〉|2)(
n∑
i=1

‖ (xi)S(θ̂) ‖
2
2)

)1/2

Due to the restricted smoothness property of the sub-Gaussian random variables Mei,

Bai, and Montanari, 2018, there exists a constant c1 depending on π such that with proba-

bility at least 1− π/3, as n ≥ c1s0 log p, we have

sup
θ∈A

1
n
(
∑n

i=1 |〈θ0 − θ, xi〉|2)

||θ − θ0||22
≤ 3τ 2. (3.67)
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Therefore, with probability at least 1− π/3, we have

sup
θ∈A∩Bp(θ0,rs)

1

n
(
n∑
i=1

|〈θ0 − θ̂, xi〉|2) ≤ 3τ 2 sup
θ∈A∩Bp(θ0,rs)

||θ − θ0||22 ≤ 3τ 2r2
s . (3.68)

Moreover, by Lemma 13 in Mei, Bai, and Montanari, 2018, for any π, there exists constant

c2 depending on π such that

P(
1

n

n∑
i=1

‖ (xi)S(θ̂) ‖
2
2 > c2τ

2 log p) ≤ π/3. (3.69)

By (3.60,3.68,3.69), as well as (3.66), at least 1− π,

λ2
n|S(θ̂)| ≤ 4L2

ψ3τ 2r2
sc2τ

2 log p (3.70)

= Cr2
s log p (3.71)

By equation (3.53) we have

r2
s ≤ C0(

δ

1− δ
)2 +

s0

(1− δ)2
(M2 log p

n
+ λ2

n)C1 (3.72)

Taking λn ≥ C2M
√

(log p)/n+ C3δ/
√
s0 gives us

|S(θ̂)| ≤ (C4
s0

(1− δ)2
+ s0C5) log p (3.73)

= Cs0 log p (3.74)

Lemma 3.7.4. For any positive constants C0 and π, letting r0 = C0s0 log p, there exist

constant C1 such that when n ≥ C1s0 log2 p,

P( sup
θ∈Bp2 (θ0,r)∩Bp0 (0,r0)

sup
ν∈Bp2 (0,1)∩Bp0 (0,r0)

〈ν, (∇2R̂n(θ)−∇2R(θ))ν〉 ≤ κ/2) ≥ 1− π. (3.75)
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Moreover, the regularized empirical risk L̂n(θ) in (3.10) cannot have two stationary points

in the region Bp
2(θ0, η1) ∩Bp

0(0, r0/2).

Proof. According to (3.23), we have

inf
θ∈Bp2 (θ0,η1)

λmin(∇2R(θ)) ≥ κ. (3.76)

By lemma 3.3.1, there exists constant C such that when n ≥ Cs0 log2 p,

P

(
inf

θ∈Bp2 (θ0,η1)∩Bp0 (0,r0)
inf

ν∈Bp2 (0,1)∩Bp0 (0,r0)
〈ν, (∇2R̂n(θ))ν〉 ≥ κ/2

)
≤ π. (3.77)

Suppose θ1, θ2 are two distinct stationary points of L̂n(θ) inBp
2(θ0, η1)∩Bp

0(0, r0/2).Define

u = θ2−θ1
||θ1−θ2||2 . Since θ1 and θ2 are r0/2-sparse, u is r0 sparse, as well as θ1 + tu for any

t ∈ R. Therefore,

〈∇R̂n(θ2), u〉 = 〈∇R̂n(θ1), u〉+

∫ ||θ1−θ2||2
0

〈u,∇2R̂n(θ1 + tu)u〉dt

≥ 〈∇R̂n(θ1), u〉+
κ

2
||θ2 − θ1||2. (3.78)

Note the regularization term λn||θ||1 is convex, we have for any subgradients ν(θ1) ∈

∂||θ1||1, ν(θ2) ∈ ∂||θ2||1,

λn〈ν(θ2), u〉 ≥ λn〈ν(θ1), u〉. (3.79)

Adding (3.78) with (3.79) gives

〈∇R̂n(θ2) + λnν(θ2), u〉 ≥ 〈∇R̂n(θ1) + λnν(θ1), u〉+
κ

2
||θ2 − θ1||2, (3.80)

which is contradict with the assumption that θ1 and θ2 are two distinct stationary points of

L̂n(θ).
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Proof of Theorem 3.3.1. Now we are ready to prove Theorem 3.3.1. By Lemma

3.7.1 and Lemma 3.7.2, as n ≥ Cs0 log p, letting λn ≥ C0M
√

log p
n

+ δ C1√
s0
, all stationary

points of Ln(θ) are in Bp
2(θ0, rs) ∩ A ∩ Bp

0(C1s0 log p), where rs is defined in (3.53), A

is the cone defined in Lemma 3.7.1. This proves Theorem 3.3.1(a). Moreover, by Lemma

3.7.3, Lemma 3.7.4, as n ≥ C2s0 log2 p, L̂n(θ) cannot have two distinct stationary points

in Bp
2(θ0, η1) ∩ A ∩Bp

0(C1s0 log p). Thus, as long as η1 ≥ rs, there is only one unique sta-

tionary point of the regularized empirical risk function L̂n(θ), which is the corresponding

regularized M-estimator of (3.10). This proves Theorem 3.3.1 (b).

Proof of Corollary 3.4.1: Huber’s loss function is defined by

ρα(t) =


1
2
t2, if |t| ≤ α

α(|t| − α/2), if |t| > α.
(3.81)

the corresponding score function would be

ψα(t) = ρ′α(t) =

 t, if |t| ≤ α

sign(t)α, if |t| > α.
(3.82)

Note for any α > 0, all of ψ(t), ψ′(t) and ψ′′(t) are bounded. Specifically, we have

|ψα(t)| ≤ α, |ψ′(t)| = |ψ′′(t)| = 0. Therefore, the assumptions in Theorem 3.2.1 and The-

orem 3.2.2 are satisfied. It is suffice to find the explicit expression of η0 and η1 in equation

(3.21) and (3.22). Since |ψ′(t)| = |ψ′′(t)| = 0, it is easy to see η1 = +∞, which implies

the Huber’s estimator has nice computational tractability, regardless the choice of tuning

parameter α and the percentage of outliers δ. Moreover, to find the explicit expression of

η0, according to Assumption 3.4.1, we have c2 = 3, γ = 1. Thus, we can calculate
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h(z) =

∫ +∞

−∞
ψα(z + ε)f0(ε)dε =

∫ ∞
−∞

ψα(t)f0(t− z)dt

=

∫ α

0

t [f0(t− z)− f0(t+ z)] dt+ α

∫ +∞

α

[f0(t− z)− f0(t+ z)] dt

≥
∫ α

0

t
1√
2πσ

e−
t2+z2

2σ2

(
tz

σ2

)
dt+ α

∫ +∞

α

1√
2πσ

e−
t2+z2

2σ2

(
tz

σ2

)
dt

≥ 1√
2πσ

e−
α2+z2

2σ2

∫ α

0

t

(
tz

σ2

)
dt+

zα

σ2
e−

z2

2σ2

∫ +∞

α

t
1√
2πσ

e−
t2

2σ2 dt

=
zα3

3
√

2πσ3
e−

z2+α2

2σ2 +
zα√
2πσ

e−
z2+α2

2σ2

Therefore we have H(s) = ( α3

3
√

2πσ3 + α√
2πσ

)e−
s2+α2

2σ2 . By equation (3.21) in the proof of

Theorem 3.2.1 yields

η0(δ, α) =
δLψ

(1− δ)3
4
H(8τr

3

√
c2
γ

)τγ
(3.83)

=
δ

1− δ
4
√

2πσ3

(α2 + 3σ2)τ
e
α2+22τ2r2

2σ2 , (3.84)

which complete the proof.

Proof of Corollary 3.4.2: When the loss function is defined by ρα(t) = 1−e−αt2/2
α

, the

corresponding score function would be ψα(t) = ρ′α(t) = te−αt
2/2. Moreover, we can get

ψ′α(t) = e−αt
2/2(1−αt2) and ψ′′α(t) = e−αt

2/2α(αt2−3). Note for any α > 0, all of ψα(t),

ψ′α(t) and ψ′′α(t) are bounded.

|ψα(t)| ≤
√
e

α

|ψ′α(t)| ≤ max{1, 2e−1.5} = 1

|ψ′′α(t)| ≤ max{e−(3+
√

6)/2

√
(18 + 6

√
6)α, e−(3−

√
6)/2

√
(18− 6

√
6)α} ≤ 1.5

√
α.

Therefore, the Assumption 3.2.1 is satisfied. It is suffice to find the explicit expression
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of η0 and η1 in equation (3.21) and (3.22). In order to have an accurate expression, we

will use the individual bound of ψα(t), ψ′α(t), ψ′′α(t) instead of the universal bound Lψ.

Specifically, according to Assumption 3.4.2, xi is τ 2-sub-Gaussian, c2 = 3, γ = 1/3.

Thus, we can calculate h(z) =
∫ +∞
−∞ ψα(z + ε)f0(ε)dε = z

(1+ασ2)3/2
e
− αz2

2(1+ασ2) and H(s) =

1
(1+ασ2)3/2

e
− αs2

2(1+ασ2) . By equation (3.21) in the proof of Theorem 3.2.1 yields

η0(δ, α) =
δLψ

(1− δ)3
4
H(8τr

3

√
c2
γ

)τγ
(3.85)

=
δ

1− δ

√
e

α

4(1 + ασ2)3/2

τ
e

32αr2τ2

3(1+ασ2) (3.86)

Similarly, we can calculate h′(0) = Ef0ψ
′
α(ε) = 1

(1+ασ2)3/2
. Note |ψ′α(t)| ≤ 1, |ψ′′α(t)| ≤

1.5
√
α, by equation (3.22) in the proof of Theorem 3.2.1 yields

η1(δ, α) =
(1− δ)h′(0)τ 2 − δ

2
√

3× 1.5
√
ατ

(3.87)

=
1

3
√

3α(1 + ασ2)3/2τ

[
τ 2 − δ(τ 2 + (1 + ασ2)3/2)

]
. (3.88)

According to equation (3.55) in the proof of Theorem 3.3.1, we have with high probabil-

ity, all stationary points of the empirical risk function L̂n(θ) in (3.17) are inside the ball

Bp
2(θ0, rs), where

rs = η0 +
12Cπτ

√
(s0 log p)/n+ 2τδLψ

(1− δ)3
4
H(8τr

3

√
c2
γ

)τγ
(3.89)

= (1 + 2τ)η0 +
16Cπτ

√
(s0 log p)/n

(1− δ)H(8τr
3

√
c2
γ

)τγ
. (3.90)

Therefore, as n >> s0 log p, we have rs ≈ (1 + 2τ)η0, which completes the proof.
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CHAPTER 4

APPLIED RESEARCH IN NONLINEAR PROFILE MONITORING

4.1 Introduction

With the rapid development of advanced sensing technologies, rich and complex real-time

profile or curve data are available in many processes in biomedical sciences, manufacturing

and engineering. For instance, physiologic monitoring systems generated real-time profile

conditions of a patient in intensive care units. In modern manufacturing, profile data are

generated to provide valuable information about the quality or reliability performance of the

process or product. In these applications, it is often desirable to utilize the observed profile

data to develop efficient methodologies for process monitoring and fault diagnosing.

A concrete motivating example of profile data in this chapter is from a progressive form-

ing process with five die stations including preforming, blanking, initial forming, forming,

and trimming, see Figure 4.1 for illustration. Ideally, when the process is in control, a work

piece should pass through these five stations. However, a missing part problem, which

means that the work piece is not settled in the right die station but is conveyed to the down-

stream stations, may occur in this process (Lei, Zhang, and Jin, 2010; Zhou, Liu, Zhang,

Zhang, and Shi, 2016). Such a fault often leads to unfinished or nonconforming products

and/or severe die damage. The tonnage signal measured by the press tonnage sensor, which

is the summation of all stamping forces, contains rich process information of forming op-

erations and widely used for monitoring the forming process. Figure 4.2 shows the tonnage

profiles collected under normal condition and five faulty conditions corresponding to miss-

ing operations occurring in each of the five die stations. It is clear from the figure that

each profile is highly nonlinear, since the observed forces at different segments correspond

1The materials in this chapter were published in New Frontiers in Biostatistics and Bioinformatics, 2018.
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Figure 4.1: Illustration of a progressive
forming process.
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Figure 4.2: Six profile samples from a form-
ing process: one is in-control, normal sam-
ple and the other five are out-of-control, fault
samples.

to different stages of the operation within one production cycle. In addition, the difference

between normal profiles and fault profiles are also nonlinear. For some particular faults, i.e.,

Fault 4, profiles are quite overlapping with the normal profiles. Under a high-production

rate environment, it is highly desirable but challenging to effectively online monitor these

profiles and detect those different types of unknown but subtle changes quickly.

In the profile monitoring literature, much research has been done for monitoring linear

profiles, see, for example, Kang and Albin (2000), Chang and Gan (2006), Zou, Zhou,

Wang, and Tsung (2007), Zou, Tsung, and Wang (2007), and Kazemzadeh, Noorossana,

and Amiri (2008). However, in many real-world applications including those profiles in

Figure 4.2, the form of the profile data are too complicated to be expressed as a linear or

parametric function. Several nonlinear profile monitoring procedures have been developed

in the literature based on nonparametric regression techniques such as smoothing splines

(Gardner, Lu, Gyurcsik, Wortman, Hornung, Heinisch, Rying, Rao, Davis, and Mozumder,

1997; Chang and Yadama, 2010), Fourier analysis (Chen and Nembhard, 2011), local ker-

nel regression (Qiu, Zou, and Wang, 2010; Zou, Qiu, and Hawkins, 2009) and functional

principal components analysis (FPCA) (Hall, Poskitt, and Presnell, 2001; Paynabar, Zou,
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Figure 4.3: A simulated data set in the 2-dimensional wavelet domain, where blue circles
indicate IC observations and red stars indicate OC observations. The mean shift is along
the second wavelet coefficient, and the change is undetectable if using the first wavelet
coefficient

and Qiu, 2016). However all these approaches tend to monitor a smooth, in-control profile,

and thus may loss information about local structures such as jumps or cusps. Moreover,

all these approaches are based on monitoring the changes of selected model coefficients,

while it will be difficult to interpret their meanings back to the original profiles.

In this chapter, we propose to monitor nonlinear profiles based on the discrete wavelet

transform (DWT). Besides a useful dimensional reduction tool, wavelet-based approaches

have other advantages: the multi-resolution decomposition of the wavelets could be use-

ful to locate the anomaly of the profile, and fast computational algorithms of the DWT

are available (Mallat, 1989). Indeed, DWT has been applied to detect and diagnose process

faults in the offline context, see Fan (1996) and Jin and Shi (1999). In the online monitoring

context, many existing methods follow the suggestions of Donoho and Johnstone (1994)

to first conduct wavelet shrinkage for dimension reduction under the in-control state, and

then monitor the changes on the selected wavelet coefficients for the out-of-control state,

see Hotelling T 2 control chart (Jeong, Lu, and Wang, 2006; Zhou, Sun, and Shi, 2006), and

the CUSUM-type control chart (Lee, Hur, Kim, and Wilson, 2012). However, one will lose

detection power if the change of the out-of-control state is on the wavelet coefficients that

are not selected under the in-control state. To illustrate the importance of the out-of-control
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state on the wavelet coefficients selection, we provide a simple two-dimensional example

in Figure 4.3. As can be seen in this figure, the magnitude of wavelet coefficient 2 is very

small compared with wavelet coefficient 1. However, if we just select wavelet coefficient

1 based on the in-control estimation, it would be difficult to detect the out-of-control sam-

ples since the changes occurred on the wavelet coefficient 2. To address this issue, it was

proposed in Chicken, Pignatiello Jr, and Simpson (2009) to use all wavelet coefficients to

conduct a likelihood ratio test. However, as we will show later in the simulation and case

study, their methods are based on some asymptotic approximated likelihood ratio statistics,

therefore may lose some detection power especially when the changed wavelet coefficients

are sparse. Moreover, their method is not scalable and requires a lot of memory to store

past observations.

In this chapter, we propose to first construct the local adaptive CUSUM statistics as in

Lorden and Pollak (2008) and Liu, Zhang, and Mei (2019) for monitoring all wavelet co-

efficients by the hard-shrinkage estimation of the mean of in-control coefficients. Then we

use the order-shrinkage to select those wavelet coefficients that are involved in the change

significantly. Thus, from the methodology point of view, our proposed methodologies are

analogous to those off-line statistical methods such as (adaptive) truncation, soft-, hard-

and order-thresholding, see Neyman (1937), Donoho and Johnstone (1994), Fan and Lin

(1998), and Kim and Akritas (2010). However, our motivation here is different and our

application to profile monitoring is new.

The remainder of this chapter is as follows. In Section 4.2, we present problem for-

mulation and background information of wavelet transform. In Section 4.3, we develop

our proposed schemes for online nonlinear profile monitoring. In Section 4.4, a case study

about monitoring tonnage signature is presented. In Section 4.5, a simulation study about

monitoring the Mallet’s piecewise smooth function is conducted.
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4.2 Problem formulation and wavelet background

In this section, we will first present the mathematical formulation of the profile monitoring

problem based on an additive change point model. Then we give a brief review of wavelet

transformation that will be used for our proposed profile monitoring procedure.

Assume we obverse p-dimensional profile data, y1, y2, · · · , sequentially from a process.

Each profile yk consists of p coordinates yk(xi), for i = 1, 2, ..., p, with xi equispaced over

the interval [0, 1], and can be thought of as the realization of a profile function yk(x). In

the profile monitoring problem, we assume that the profile functions yk(x)’s are from the

additive change-point model:

yk(x) =

 f0(x) + εk(x), for k = 1, 2, .., ν

f1(x) + εk(x), for k = ν + 1, ...
(4.1)

where f0(·) and f1(·) are the mean functions that need be estimated from the data, and

εk(x)’s are the random noise which are assumed to be normally distributed with mean 0

that are independent across different time k. The problem is to utilize the observed profile

data yk(xi)’s to detect the unknown change-time ν as quickly as possible when it occurs.

Since our proposed methods are based on monitoring the coefficients of the wavelet

transformations of yk(x)’s, let us provide a brief review of wavelet transformation of profile

data. For any square-integrable function f(x) on R, it can be written as an (infinite) linear

combinations of wavelet basis functions:

f(x) =
∑
k∈Z

ckj0φj0k(x) +
∞∑
j=j0

∑
k∈Z

dkjψjk(x). (4.2)

Here the sets of two bases, φjk(x)’s and ψjk(x)’s, are known as scaling and wavelet ba-

sis functions respectively, and are generated from two parent wavelets: one is the father

wavelet φ(x) that characterizes basic wavelet scale, and the other is the mother wavelet
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ψ(x) that characterizes basic wavelet shape. Mathematically, φjk(x) = 2j/2φ(2jx− k) and

ψjk(x) = 2j/2ψ(2jx−k), and the decomposed coefficients ckj0 and dkj are called the scaling

and detail coefficients, which represent the low-frequency and high-frequency components

of original function f(x).

When the observed data are discrete and dyadic, i.e., y = (y(x1), y(x2), ..., y(xp))
T

with p a dyadic integer, p = 2J , discrete wavelet transform (DWT) can be used to determine

the wavelet coefficients c fast and efficiently. The matrix form of DWT is represented as

c = Wy, where W is orthonormal wavelet transformation matrix (Mallat, 1999), which

depends on the selected orthogonal wavelet basis. A large families of choices for wavelet

basis functions are available for use, see for example Daubechies (1992). Also see Mallat

(1999) for an efficient algorithm to implement DWT. In this chapter, the Haar transform is

chosen as one way of DWT because Haar coefficients have an explicit interpretation of the

changes in the profile observations. Also see Jin and Shi (2001) and Zhou, Sun, and Shi

(2006) as examples of applying Haar transform to monitor profile samples.

For the observed p-dimension profile, y = (y(x1), ..., y(xp)), we consider the Haar

transformation with wavelet basis functions:

φ00(x) = 1, x ∈ [0, 1] (4.3)

ψkm(x) =


2
k−1
2 , m−1

2k−1 < x < m−1/2
2k−1

−2
k−1
2 , m−1/2

2k−1 < x < m
2k−1

0, elsewhere

(4.4)

where k represents the scale of Haar transform and m = 1, 2, ..., 2k−1.

For simplicity, we assume p = 2J (otherwise we can add new extra zero coordinations

to the original profile if needed). When Haar transform is chosen, the wavelet coefficients

c = (c(1), c(2), ..., c(p))T are often written as (c0
0, c

1
1, c

1
2, c

2
2, ..., c

1
J , ..., c

2J−1

J )T , which rep-

resent the Haar coefficients for different levels from 0 to J .

For any new observed p-dimension profile, y = (y(x1), ..., y(xp)), the explicit expres-
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sion of these Haar coefficients are given by

c0
0 = 2−

J
2

2J∑
`=1

y(x`),

cmk = 2
J−k−1

2 {s[(m− 1)2J−k+1 + 1, (m− 1

2
)2J−k+1]− s[(m− 1

2
)2J−k+1 + 1,m2J−k+1]},

= 2−
J−k+1

2 {
(m− 1

2
)2J−k+1∑

`=(m−1)2J−k+1+1

y(x`)−
m2J−k+1∑

`=(m− 1
2

)2J−k+1+1

y(x`)} (4.5)

for k = 1, ..., J ; m = 1, 2, ..., 2k−1 and s[i, j] is defined by s[i, j] = 1
j−i+1

∑j
`=i y(x`). In

other words, the Haar coefficient c0
0 is proportional to the mean of all data and the other

coefficients cmk are proportional to the mean difference of two adjacent intervals of length

2J−k.

4.3 Our proposed method

At the high-level, our proposed profile monitoring method is based on monitoring the mean

shifts on wavelet coefficients of nonlinear profiles yk(x)’s. First, we use the in-control pro-

files from the historical training data to estimate the pre-change distributions of the wavelet

coefficients. Second, we construct local monitoring statistics for each wavelet coefficient

by recursively estimating the post-change mean of the wavelet coefficients. Third, we

construct global monitoring procedure based on the information of the first several largest

monitoring statistics.

It is necessary to emphasize that in the literature, wavelets are usually used for di-

mension reduction to select significant features and filter out noise Donoho and Johnstone

(1994). Here our proposed method is constructing efficient monitoring statistic for each

wavelet coefficients and then perform dimension reduction on the monitoring statistics.

There are two technical challenges that need special attention. The first one is that we

do not know which wavelet coefficients will be affected under the out-of-control state,

and the second one is that we do not know what are the changed magnitudes or the post-
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change distributions for those affected wavelet coefficients. To address these two chal-

lenges, we propose a computationally efficient algorithm that can monitor a large number

of wavelet coefficients simultaneously in parallel based on local recursive CUSUM pro-

cedures, and then combine these local procedures together to raise a global alarm using

the order-thresholding transformation in Liu, Zhang, and Mei (2019) to filter out those un-

affected Haar coefficients. The recursive CUSUM procedure is to adaptively update the

estimates of the post-change means, and it was first proposed in Lorden and Pollak (2008)

for detecting a normal mean shift from 0 to some unknown, positive values. Here we ex-

tend it to the wavelet context when one wants to detect both positive and negative mean

shifts of the wavelet coefficients.

For the purpose of demonstration, in the remaining of the chapter, we consider Haar

coefficients as an example since they can easily be calculated and interpreted. Furthermore,

they can capture the local changes on the profile efficiently.

For better presentation of our proposed nonlinear profile monitoring methods, we split

this section into four subsections. Subsection 4.3.1 focuses on estimating the in-control

means of Haar coefficients, and subsection 4.3.2 discusses how to recursively estimate pos-

sible mean shifts of Haar coefficients and constructs local monitoring statistics for each

wavelet coefficient. Subsection 4.3.3 derives our proposed monitoring method and subsec-

tion 4.3.4 discusses how to choose tuning parameters.

4.3.1 In-control estimation

In our case study and in many real-world applications, it is reasonable to assume that some

in-control profiles are available for learning the process variables. Without loss of gen-

erality, assume that there are m in-control profiles before online monitoring, and denote

c` as the vector of Haar coefficients of the `th profile y`(x) under the in-control status for

` = −m + 1, · · · ,−1, 0. If we denote c(ic) as the mean vector of Haar coefficients under
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the in-control state, then Haar coefficients under the in-control state are assumed as

c` = c(ic) + e`, where e` ∼ N(0,Σp). (4.6)

for ` = −m + 1, · · · ,−1, 0. In other words, when there are no changes, the Haar coeffi-

cients c` are i.i.d. multivariate normally distributed with in-control mean c(ic) and diagonal

covariance matrix Σp = diag(σ2
1, ..., σ

2
p).

It is well-known that the sample mean based on the in-control Haar coefficients c` is

not always a good estimator for c(ic) when the dimension p is large (James and Stein,

1961). In the offline wavelet context, it is often assumed that the in-control p-dimensional

mean vector of the Haar coefficients, c(ic) = (c
(ic)
1 , · · · , c(ic)

p ), has a sparsity structure and

applying shrinkage techniques to filter out noise and obtain an accurate estimation (Donoho

and Johnstone, 1994; Donoho and Johnstone, 1995). In this chapter, we follow the literature

and apply hard shrinkage on the sample mean of in-control Haar coefficients. Specifically,

let c̄ be the sample mean of m in-control Haar coefficient vectors, i.e.,

c̄ =
1

m

0∑
`=−m+1

c`.

Then the estimator of c(ic) = (c
(ic)
1 , · · · , c(ic)

p ) is

ĉ
(ic)
i =

 c̄
(ic)
i , if |c̄(ic)

i | > ρ1σ̂i

0, if |c̄(ic)
i | ≤ ρ1σ̂i

(4.7)

where σ̂i is the sample standard deviation of the i-th Haar coefficient, and ρ1 is a crucial

tuning parameter to control the sparsity of the mean vector c(ic). The choice of ρ1 will be

discussed in details later.
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4.3.2 Out-of-control estimation and local statistics

In the profile monitoring context, the p-dimensional mean vector of the Haar coefficients is

assumed to shift from the in-control value c(ic) to an out-of-control value c(oc) = (c
(oc)
1 , · · · , c(oc)

p ).

The difficulty is that one generally has limited knowledge about the out-of-control or fault

samples in online profile monitoring, and thus one may not be able to accurately estimate

the out-of-control mean c(oc) even if we also put the sparsity constraints on c(oc). For that

reason, it makes more sense in online profile monitoring to assume that the difference vec-

tor c(oc) − c(ic), instead of c(oc) itself, is sparse. To be more concrete, below we assume

that only a few components of c(oc) − c(ic) are non-zero, and |c(oc)
i − c(ic)

i |/σi > ρ2 if the

i-th component is affected, for some constant ρ2 > 0, where σi is the standard deviation in

(4.6).

Note that the change may affect those components with in-control value c(ic)
i = 0,

and thus one cannot simply monitor those non-zero components under the in-control state.

Also, since we do not know which Haar coefficients will have mean shifts and do not know

what the magnitudes of mean shift are, one intuitive idea is to adaptively and accurately

estimate the post-change mean c(oc) as we collect data for online monitoring under the

sparsity assumption of c(oc)− c(ic). Unfortunately, such an approach is generally computa-

tionally expensive and infeasible for online monitoring. Here we observe that the focus of

profile monitoring is not necessarily on the accurate estimation of c(oc), but on accurately

raising a global alarm when there is a change. Hence, we propose a different approach that

first locally monitors each component for a possible significant local mean shift, and then

apply the order-thresholding technique to raise a global alarm under the sparse assumption

that only a few local components are affected by the change.

When monitoring online profiles yk’s, at each time k,we first use (4.5) to derive the cor-

responding p-dimension Haar coefficients ck, and then standardize each of p components
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by

Xi,k =
ck(i)− ĉ(ic)

i

σ̂i
, (4.8)

for i = 1, · · · , p, where {ĉ(ic)
i , σ̂i}i=1,··· ,p are estimators of the in-control mean c(ic) and

standard deviation σ in (4.7) based on in-control samples.

By (4.7), rigorously speaking, the normalized coefficientsXi,k might not be i.i.d. N(0, 1)

unless the tuning parameter ρ1 = 0. In the context of online profile monitoring, the tuning

parameter ρ1 will often be small, and thus it is not bad to assume that the Xi,k’s satisfy the

normality assumption from the practical viewpoint. Hence, the profile monitoring prob-

lem is reduced to the problem of monitoring the possible mean shifts of p-dimensional

multivariate normal random vectors Xk = (X1,k, · · · , Xp,k), where the means of some

components may shift from 0 to some positive or negative value with magnitude of at least

ρ2 > 0.

If we know the exact post-change mean µi for the i-th component that is affected by

the change, it is straightforward to develop an efficient local detection scheme, since one

essentially faces the problem of testing the hypotheses in the change-point model where

Xi,1, · · · , Xi,ν−1 are i.i.d. f0(x) = pdf of N(0, 1) and Xi,ν , · · · , Xi,n are i.i.d. f1(x) = pdf

ofN(µi, 1).At each time k,we repeatedly test the null hypothesisH0 : ν =∞ (no change)

against the alternative hypothesis H1 : ν = 1, 2, · · · (a change occurs at some finite time),

see Lorden, 1971. Thus the log generalized likelihood ratio statistic at time k becomes

W ∗
i,k = max

1≤ν≤k

∏ν
`=1 f0(Xi,`)

∏k
`=ν+1 f1(Xi,`)∏k

`=1 f0(Xi,`)
, (4.9)

which can be recursively computed for normal distributions as

W ∗
i,k = max

(
W ∗
i,k−1 + µiXi,k −

1

2
(µi)

2, 0

)
, (4.10)
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for k = 1, · · · , with the initial value W ∗
i,k=0 = 0. In the literature, the statistic W ∗

i,k in

(4.10) was first defined by Page (1954), and is called cumulative sum (CUSUM) statistics

and enjoys theoretical optimality (Lorden, 1971; Moustakides, 1986).

In our context of profile monitoring, we do not know the value of the post-change

mean µi except that |µi| ≥ ρ2, thus we cannot use the CUSUM W ∗
i,n in (4.10) directly.

One natural idea is to estimate µi from observed data, and then plug-in the estimated µ̂i

into the CUSUM statistics in (4.10). For that purpose, at time k, denote by ν̂k the largest

` ≤ k − 1 such that W ∗
i,` = 0. Then the generalized likelihood ratio properties suggest

that ν̂k is actually the maximum likelihood estimate of the change-point ν at time k, and

thus one would expect that the data between time [ν̂k, k] would likely come from the post-

change distributions, which allows us to provide a reasonable estimate of the post-change

mean µ̂i at time k. This idea was first rigorously investigated in Lorden and Pollak, 2008

for detecting positive mean shifts of normal distributions, and here we aim to detect either

positive or negative mean shifts. Specifically, at time k, for the i-th standardized Haar

coefficients Xi,k’s, we define µ̂(1)
i,k and µ̂(2)

i,k as the estimates of the post-change mean of Xi,k

when restricted to the positive and negative values, respectively, under the assumption that

|µi| ≥ ρ2, with the explicit expressions as:

µ̂
(1)
i,k = max

(
ρ2,

s+ S
(1)
i,k

t+ T
(1)
i,k

)
> 0, µ̂

(2)
i,k = min

(
− ρ2,

−s+ S
(2)
i,k

t+ T
(2)
i,k

)
< 0, (4.11)

and for j = 1, 2 and for any k, the sequences (S
(j)
i,k , T

(j)
i,k ) are defined recursively

 S
(j)
i,k

T
(j)
i,k

 =



 S
(j)
i,k−1 +Xi,k−1

T
(j)
i,k−1 + 1

 if W (j)
i,k−1 > 0

 0

0

 if W (j)
i,k−1 = 0

. (4.12)

Roughly speaking, for each estimate µ̂(j)
i,k , if ν̂(j)

k is the candidate change-point, then T (j)
i,k
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denotes the time steps between ν̂(j)
k and k, whereas S(j)

i,k is the summation of all observa-

tions in the interval [ν̂
(j)
k , k]. The constants s and t in (4.11) are pre-specified, non-negative

constants, and s/t can be thought of as a prior estimate of the post-change mean.

By plugging the adaptive estimations µ̂(j)
i,k of the post-change mean µi in the CUSUM

statistics in (4.10), we can derive the local monitoring adaptive CUSUM statistics by

Wi,k = max (W
(1)
i,k ,W

(2)
i,k ), (4.13)

where W (1)
i,k and W (2)

i,k are the local detection statistics for detecting positive and negative

mean shifts:

W
(1)
i,k = max

(
W

(1)
i,k−1 + µ̂

(1)
i,kXi,k −

1

2
(µ̂

(1)
i,k )2, 0

)
,

W
(2)
i,k = max

(
W

(2)
i,k−1 + µ̂

(2)
i,kXi,k −

1

2
(µ̂

(2)
i,k )2, 0

)
. (4.14)

4.3.3 Global online monitoring procedure

At time k, we have p local detection statistics Wi,k’s for i = 1, · · · , p, one for monitoring

each specific Haar coefficient locally. In general, the larger values of the Wi,k’s, the more

likely the Haar coefficient is affected. Since we don’t know which Haar coefficients are

affected by the change, we follow Liu, Zhang, and Mei (2019) to raise a global alarm based

on the largest r values of the Wi,k’s. This allows us to filter out those non-affected Haar

coefficients, and provides the list of candidate affected Haar coefficients.

Specifically, at each time k,we order p local detection statisticsWi,k’s for pHaar coeffi-

cients, say, W(1),k ≥ W(2),k ≥ ... ≥ W(p),k are order statistics of Wi,k’s. Then our proposed

profile monitoring scheme N(b, r) is to raise an alarm at first time when the summation of

the top r statistics W(1),k, ...,W(r),k exceed some pre-defined threshold b, i.e.,

N(b, r) = inf{k :
r∑
i=1

W(i),k ≥ b}, (4.15)
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where r is the tuning parameter that is determined by the sparsity of the post-change, b is

the pre-specified constant to control false alarm.

In summary, our proposed profile monitoring scheme N(b, r) in (4.15) is based on

monitoring Haar coefficients. We use recursive CUSUM procedures, which can adaptively

estimate unknown changes, to monitor each Haar coefficient individually, and use order-

thresholding to address the sparse post-change scenario when only a few Haar coefficients

are affected by the change.

It is important to emphasize that our proposed procedure N(b, r) is robust in the sense

that it can detect a wide range of possible changes on the profiles without requiring any

knowledge on the potential failure pattern. Additionally, by the recursive formulas in (4.12)

and (4.14), for a new coming profile, our proposed procedure only involves a computa-

tional complexity of order O(p) to update local detection statistics for p Haar coefficients,

as well as additional order of O(p log(p)) to sort these p local detection statistics. Thus at

each fixed time step, the overall computational complexity of our proposed methodology

is of order O(p log(p)). Meanwhile, for the GLR procedure in Chicken, Pignatiello Jr, and

Simpson (2009), the computational complexity is of order O(t2p2) at time step t, which

can be reduced to the order of O(K2p2) if one only uses a fixed window size of K latest

observations to make decisions instead of all t observations, where K often needs to be at

least of order O(log(p)) to be statistically efficient. Hence, as compared to the GLR pro-

cedure, our proposed procedure can be easily implemented recursively and thus is scalable

when online monitoring high-dimension profile data over a long time period.
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Algorithm 1 Implementation of our proposed procedure N(b, r) in (4.15)
Initial parameters: ρ1, ρ2, s, t, and r.
In-control estimation: Using a set of m in-control p-dimensional profile samples
y1, ..,ym, perform the following steps.
Step 1: get the Haar coefficients c1, .., cm by equation (4.5).
Step 2: get the estimation of standard deviation of the ith Haar coefficient σ̂i.
Step 3: get ĉ(ic) by equation (4.7) with the threshold ρ1.
Online monitoring:
initialize k = 0, and set all initial observations Xi = 0 and all S(j)

i = T
(j)
i = W

(j)
i = 0,

for i = 1, . . . , p and j = 1, 2.
While the scheme N(b, r) has not raised an alarm
do 1. Update (S

(j)
i , T

(j)
i ) via (4.12).

2. Compute the intermediate variables µ̂(j)
i from (4.11) which are the estimates

of
the post-change means.

3. Input new p-dimensional profile y, using the estimated in-control mean ĉ(ic)

and standard deviation σ̂ to get the updated standardized p components
{X1, ..., Xp} by (4.8).

4. For i = 1, . . . , p, recompute the local monitoring statistics W (j)
i in (4.14) and

Wi in (4.13).
5. Get the order statistics of {W1, ...,W (p)} denoted by W(1) ≥ W(2) ≥ ... ≥

W(p)

6. Compute the global monitoring statistics

G =
r∑
i=1

W(i)

if G ≥ b terminate: Raising an alarm at time k and declaring that a change has
occurred;

end the while loop

4.3.4 Parameter settings

For our proposed monitoring procedure N(b, r), there are two global parameters, r and b,

and four local parameters, ρ1, ρ2, s, t. Optimal choices of these parameters will depend on

the specific applications and contexts, and below we will discuss how to set the reasonable

values of those parameters based on our extensive numerical experiences.

Let us first discuss the choices of two global parameters, r and b. The optimal choice

of r that maximizes the detection power of the proposed procedure N(b, r) is the number
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of truly changed Haar coefficients, which is often unknown. Based on our extensive simu-

lations Liu, Zhang, and Mei (2019), when monitoring hundreds or thousands of Gaussian

data streams simultaneously with a unknown number of affected local streams, the value

r ∈ [5, 10] often can reach a good balance on the detection power and the robustness to

detect a wide range of possible shifts. Hence, in the case study and simulation study, we

choose r = 8. As for the global parameter b, it controls when to stop the monitoring pro-

cedure and is often chosen to satisfy the pre-specified false alarm constraints. A standard

approach in the literature is to choose b by repeatedly sampling in-control measurements

either from in-control training data or from Monte Carlo in-control models, so that the

monitoring procedure N(b, r) will satisfy false alarm constraint.

Next, the local parameter ρ1 in (4.7) essentially conducts a dimension reduction for

in-control profiles. A good choice of the ρ1 will depend on the characteristics of in-control

profile data in specific applications, and in general the cutoff threshold ρ1 should be cho-

sen balance the bias-variance tradeoff of estimation of the in-control mean profile. Much

theoretical research has been done on how to choose ρ1 for the single profile (Donoho and

Johnstone, 1994; Donoho and Johnstone, 1998). These existing approaches focus more on

the wavelet coefficient or mean profile estimation in the context of de-noising while the

main objective in our context is to detect the changes of wavelet coefficients. Since we

will conduct another dimension reduction at the layer of local detection statistics, it is often

better to be conservative to choose a small constant ρ1 > 0 value so as to keep more Haar

coefficients from the in-control profiles. Also automatic or tuning-free approaches have

been developed to choose the cutoff threshold such as ρ1 adaptively in other contexts, see

Zou and Qiu (2009) and Zou, Wang, Zi, and Jiang (2015). However, such approaches are

often computationally expensive, and it is unclear how to extend them to multiple profiles

monitoring while keeping the proposed procedure to be scalable. In our simulation and

case study, we found out that a simple choice of ρ1 = 0.15 will yield significantly better

results as compared with the existing methods in the literature. It remains an open problem
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to derive the optimal choice of ρ1 under the general setting so that our propose procedures

are efficient in both computational and statistical viewpoints.

Finally, the local parameter ρ2 represents the interested-smallest magnitude of mean

shift of wavelet coefficients to be detected. In practice, it can be set based on the engi-

neering domain knowledge to ensure production yield. In this chapter, we set ρ2 = 0.25.

In addition, the local parameters, s and t in (4.11), are related to the prior distribution of

the unknown post-change mean µi, so that the corresponding estimators of µi is a Bayes

estimator and will be more robust than using the sample mean directly. In this chapter, we

follow Lorden and Pollak (2008) to choose s = 1 and t = 4.

4.4 Case study

In this section, we apply our proposed wavelet-based methodology to a real progressive

forming manufacturing process dataset in Lei, Zhang, and Jin (2010) that includes 307

normal profiles and 5 different groups of fault profiles. Each group contains 69 samples

which are collected under the faults due to missing part occurring in one of these five

operations respectively. Additionally, there are p = 211 = 2048 measurement points in

each profile.

The original research on Lei, Zhang, and Jin (2010) focuses on the offline classification

of normal and fault profile samples, while our research mainly emphasizes on the fast

online detection. We will compare the performance of our proposed monitoring procedure

with the other two common used procedures to illustrate the efficiency of our scheme. First

one is the Hotelling’s T 2 control chart based on selected wavelet coefficients (Zhou, Sun,

and Shi, 2006). The second one is based on the asymptotic maximum-likelihood test in

Chicken, Pignatiello Jr, and Simpson (2009). Specifically, we consider the following three

procedures:

• Our proposed method N(b, r) in (4.15);
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• Hotellings T 2 control chart based on the first r out of p wavelet coefficients:

T (b, r) = inf {j ≥ 1 : wj ≥ b} .

where

wj =
r∑
i=1

(
cj(i)− ĉ(ic)

i

σ̂i
2 )2

• The method in Chicken, Pignatiello Jr, and Simpson (2009), where the generalized

likelihood ratio test was used on all p wavelet coefficients:

M∗(b) = inf

{
n ≥ 1 : max

1≤i<n

{
[

∑n
j=i+1 w̃j

n− i
−
∑i

j=1 w̃j

i
] ∗

n∑
j=i+1

(
wj
p
− 1)

}
≥ b

}
.

where

w̃j =
1

σ̂2

p∑
i=1

{max(0, |cj(i)− ĉ(ic)
i | − λ)}2

λ =

√
2

log p

p
σ̂.

In order to have a fair comparison, r is chosen as 8 for our proposed method N(b, r) in

(4.15) and the Hotellings T 2 control chart T (b, r) in (4.16).

To evaluate the detection efficiency of those methods, we first find the appropriate val-

ues of the global threshold b such that the average run length of each scheme is 200 when the

samples are collected by sampling from the 307 normal profiles with replacement. Then,

using the obtained global threshold value b, we simulate the detection delay when the sam-

ples are sequentially collected by sampling from the 69 fault profiles. All Monte Carlo

simulations are based on 500 repetitions. The results of detection delay and standard error

are summarized in Table 4.1.

From Table 4.1, we can see all of these three methods can detect the change of Fault 1,

2, 3 and 5 very fast (on average, just need one sample to detect such change). It is necessary
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Table 4.1: A comparison of the detection delays of 3 methods with in-control average
run length equal to 200 based on 500 repetitions in Monte Carlo simulations. The standard
errors of the detection delays are reported in the bracket.

Method Fault 1 Fault 2 Fault 3 Fault 4 Fault 5
N(b=73,r=8) 1(0) 1(0) 1(0) 1.51(0.03) 1.01(0.01)

T(b=23.33,r=8) 1(0) 1(0) 1(0) 17.71(0.78) 1(0)
M∗(b = 600) 1(0) 1(0) 1(0) 4.47(0.13) 1.22(0.02)

to emphasize that although as shown in Figure 4.2, the difference between normal profile

and the Fault 4 profile is very subtle, our proposed method can detect the Fault 4 change

much faster than the other two methods.

4.5 Simulation study

In this section, we present the simulation study results to illustrate the efficiency of our

proposed procedure. We follow the nonlinear profile monitoring literature to consider the

in-control mean profile as the Mallet’s piecewise smooth function in Mallat (1999) , see

Figure 4.4. This testbed curve is a complicated function with several non-differentiable

points and difficult patterns, including several transient jumps, therefore cannot easily be

modeled by parametric models or other non-parametric models and has been popularly used

in much research to evaluate the performance of nonlinear profile monitoring procedures,

see Jeong, Lu, and Wang (2006), Chicken, Pignatiello Jr, and Simpson (2009), and Lee,

Hur, Kim, and Wilson (2012).

The out-of-control mean profile follows the same setup in the previous literature (Lee,

Hur, Kim, and Wilson, 2012) and assumes a local mean shift on some intervals. Specifi-

cally, the out-of-control mean profiles are designed as f1(x) = f0(x) + µIδ(x) where the

shift magnitude µ ∈ {0.25, 0.5, 1} and three different changed intervals: (1) δ = [0, 1],

which is referred as Global shift; (2) δ = [ 73
512
, 76

512
] ∪ [288

512
, 296

512
], which is referred as Local

shift I and (3) δ = [ 3
512
, 15

512
] ∪ [344

512
, 347

512
], which is referred as Local shift II.

Based on the mean profiles, we generate in-control and out-of-control sample profiles,
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Figure 4.4: Mallat’s piecewise smooth function.

which consist of a realization of p = 512 pairs (xi, y(xi)) with x1, ..., xp equal spaced on

[0, 1] and y(xi) = f0(xi) + ε(xi) as in-control sample profile and y(xi) = f1(xi) + ε(xi) as

out-of-control sample profile, where ε(xi) is i.i.d standard normally distributed N(0, 1).

We will compare the performance of our proposed method N(b, r = 8) in (4.15) with

the same two methods in the previous section: the method M∗(b) in (4.16) and the method

T (b, r = 8) in (4.16). In this simulation study, we still set ρ1 = 0.15, ρ2 = 0.25, s = 1, t =

4 for our proposed scheme.

Specifically, based on 1000 Monte Carlo simulations, we keep the in-control average

run length of those schemes as 200 and compare the detection delay under the Global shift,

Local shift I and Local shift II with different magnitudes of mean shift. The results are

summarized in Table 4.2.

From Table 4.2 we can see that (1) our proposed method N(b, r) yields the smallest

detection delay for detecting local shifts compared with the other two methods M∗(b) and

T (b, r); (2) a competitive results for detecting the global shifts under different magnitudes

of shifts. This implies our proposed wavelet-based monitoring procedure is more robust to

the unknown changes.
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Table 4.2: A comparison of the detection delays of 3 methods with in-control average run
length equal to 200 based on 1000 repetitions in Monte Carlo simulations. The standard
errors of the detection delays are reported in the bracket

Method µ Global shift Local shift I Local shift II
0.25 2.59(0.01) 92.38(0.52) 67.41(0.42)

N(b = 51, r = 8) 0.5 1(0.01) 31.63(0.18) 22.17(0.14)
1 1(0.00) 9.46(0.05) 6.53(0.04)

T(b=21.7,r=8) 0.25 1.03(0.01) 151.82(4.68) 253.57(7.15)
0.5 1.00(0) 144.38(4.39) 100.59(2.99)
1 1.00(0) 79.08(2.58) 24.81(0.74)

M∗(b = 10.1) 0.25 8.26(0.18) 157.40(4.81) 151.55(4.73)
0.5 1.29(0.02) 125.24(4.09) 106.31(3.58)
1 1.00(0) 35.97(0.87) 24.55(0.55)

4.6 Conclusions

In this chapter, we develop a new scalable scheme for monitoring nonlinear profiles with

unknown post-change distribution. This chapter makes three methodological contributions.

First, we propose to use all wavelet coefficients to monitor the process, while the prior lit-

erature of nonlinear profile monitoring is dominated by analyzing and using just significant

coefficients. Second, we propose to use two shrinkage techniques to filter out the noise

introduced by using all wavelet coefficients. One is using hard shrinkage to estimate the in-

control mean coefficients. The other one is to build monitoring procedure only focusing on

the information of a few coefficients, which have higher likelihood to be changed. Third,

we propose to utilize a recent developed adaptive-CUSUM procedure in Liu, Zhang, and

Mei (2019) to efficiently monitor the standardized wavelet coefficients without knowing

the information about the post-change.

There is plenty of room for improving our proposed scheme for monitoring nonlinear

profiles, calling for further research. First, this chapter mainly focuses on the detection

of mean shift of the normal distributed profile. Although there are many applications of

our proposed scheme, it is also necessary to work on the detection procedures for more

generally distributed profiles. Second, this chapter makes an independence assumption on
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the noise distribution in (4.1). It will be useful to develop a more robust method that can

handle different correlation structure of the profile data.
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CHAPTER 5

APPLIED RESEARCH IN MODELING OF PAPERS’ CITATION

TRAJECTORIES

5.1 Introduction

Science is a skewed world where a small number of publications receive a disproportionate

amount of citations. What do citation trajectories of the most cited papers look like? Do

they follow the typical citation trajectory documented in the literature, specifically, the

annual citation counts of a paper rise to a peak in the first few years after publication and

then slowly fade away over time? Figure 5.1 plots annual citations of the top 10 most

cited papers published in the American Physical Society (APS) journals, and their annual

citations are counted in the Web of Science (WoS) from the year of publication to 2016.

Among them the youngest was published in 1999, and the oldest 1964. Correspondingly,

the length of their observed citation trajectories range from 18 to 53 years. In addition

to their exceptionally large number of citations, a remarkable observation is that most of

them (at least seven out of ten) do not even show any sign that their annual citations are

about to peak and will start to decline in the near future. We refer to this phenomenon

of continual rise in annual citations without decline as evergreens, which clearly violates

the typical pattern of citation trajectory. Although we cannot predict whether these papers

will remain highly cited in the future, the fact that they have not yet become obsolete after

up to 53 years calls for attention, especially considering that the majority of papers reach

their citation peak around the 3rd or 5th year after publication and that most bibliometric

analyses examine citations in a relatively short time window.

The objective of this chapter is to better understand evergreens in particular and pat-

1The materials in this chapter were published in Journal of Informetrics, 2017.
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Figure 5.1: three selected papers.

terns of citation trajectory in general. Moreover, do evergreens constitute a general type of

citation trajectory, or are they so rare that they cannot be captured in any statistical cluster

analysis? To this end, we develop a functional data analysis (FDA) method to analyze the

30-year citation trajectories of a sample of publications published in 1980 in APS journals.

Our FDA method integrates functional principal components analysis, Poisson regression,

and K-means clustering. More specifically, we model the citation trajectories of individual

publications by a small number of common basis functions and paper-specific coefficients

on these basis functions. For each paper, its 30-dimensional vector of citations can be char-

acterized by its coefficients on the common basis functions, which subsequently serve as

inputs for the K-means clustering, to uncover general types of citation trajectories. Results

of our cluster analysis provide strong evidence that evergreens exit as a general class of

citation trajectory. In addition, we cannot predict whether a paper will become an ever-

green by some ex ante paper features such as the number of authors and references. The

remainder of this paper is organized as follows. We begin with a brief review of previ-

ous cluster analyses of citation trajectories and the functional data analysis, followed by

a description of our dataset. Next, our proposed model and method is presented, with the

emphasis on how to combine functional principal component analysis, Poisson regression,
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and K-means clustering algorithm for modeling and clustering citation trajectories. Then

we report the empirical results of our proposed model and method to the real citation data

set. Implications of our findings are also discussed.

5.2 Prior literature

5.2.1 Clustering citation trajectories

Citation ageing is a long-standing research topic, and different patterns of citation trajecto-

ries have been documented in the bibliometrics literature (Aversa, 1985; Avramescu, 1979;

Baumgartner and Leydesdorff, 2014; Garfield, 1980; Glänzel and Schoepflin, 1995; Line,

1993; Redner, 2005; Wang, 2014). Aversa (1985) conducted probably the first rigorous

statistical analysis of citation trajectories, investigating 9-year citation trajectories of 400

highly cited papers published in 1972 and applying the K-means clustering algorithm to

the normalized annual citation counts (i.e., annual citations divided by total citations in

the whole studied time period). Aversa (1985) identified two clusters: delayed rise - slow

decline and early rise - rapid decline. Costas, Leeuwen, and Raan (2010) analyzed about

30 million documents in WoS published between 1980 and 2008. Following Prices obser-

vation, documented in his personal communication to Aversa (1985) , Costas, Leeuwen,

and Raan (2010) classified papers into three categories: 50% papers as normal documents,

25% as delayed documents, and 25% as flashes-in-the-pan. However, these three clus-

ters are defined based on a single real-valued summary statistics of individual papers, Year

50%, defined as the year when a paper has cumulated half of its total citations up to year

2008. Moreover, there are no statistical justification on the proportion of these three clus-

ters. More recently, Colavizza and Franceschet (2016) examined about half million papers

published in APS journals and applied the spectral clustering method on the normalized

annual citations received by these papers within the APS database. The three identified

general types of citation trajectories are middle-of-the-roads, sprinters, and marathoners.

Middle-of-the-roads papers display an average citation ageing pattern, and can be viewed
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as corresponding to normal documents. Sprinters has an early and high peak and a fast

decline, which can be viewed as flashes-in-the-pan. Marathoners represent fast or slow-

rise, moderately peaked histories, followed by a slow decline, or absence of decline, or

even a constant rise in received citations over time and therefore can correspond to de-

layed documents or evergreens. The phenomenon of evergreens, which were emphasized

by Avramescu (1979) and Price (see Aversa (1985)), were not identified by clustering anal-

yses in Aversa (1985) and Costas, Leeuwen, and Raan (2010), while marathoners in some

specifications in Colavizza and Franceschet (2016) also display a continually increasing

annual citation curve. One possible explanation is that these later cluster analyses focus

on general types, while evergreens are rather outliers and therefore cannot be identified in

statistical cluster analysis.

5.2.2 Functional data analysis

Functional data analysis (FDA) is a recent new development in the field of statistics and has

a tremendous growth over the past decades (Besse and Ramsay, 1986; Rice and Silverman,

1991; Hoover, Rice, Wu, and Yang, 1998; Ramsay and Silverman, 1997; Yao, Müller,

and Wang, 2005; Hall, Müller, and Wang, 2006; Leng and Müller, 2006; Hadjipantelis,

Aston, and Evans, 2012). FDA might be particularly useful for bibliometric analysis for

two reasons: First, FDA is a non-parametric method and therefore is useful for analyzing

bibliometric data for which the underlying distribution is often unclear. Second, FDA ana-

lyzes high-dimensional data, such as curves and shapes, which are of particular interest to

bibliometric studies. Using regression analysis as an analogy, while traditional regression

analysis only allows one real-valued dependent variable, FDA allows both dependent and

independent variables to be multidimensional. Most FDA methods deal with continuous

data, but paper citations to be analyzed in this study are discrete count data. There are

only a few FDA studies dealing with count variables (Linde, 2009; Serban, Staicu, and

Carroll, 2013; Wu, Müller, and Zhang, 2013), and our proposed method is different from
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these limited existing FDA methods for Poisson data. Specifically, we propose to adapt

the methods in Rice and Silverman (1991) from Gaussian distributed data to Poisson count

data by exploring the close relationship between Poisson and Gaussian distributions.

5.3 Data

The data used for this study are research papers published in 1980 in the American Phys-

ical Society (APS) journals, specifically six journals which were active in 1980: Physical

Review A, B, C, D, Physical Review Letter, and Reviews of Modern Physics. APS jour-

nal paper citations trajectories have been extensively studied in prior literature (Colavizza

and Franceschet, 2016,Redner, 2005,Wang, Song, and Barabási, 2013). We only include

original research papers labeled as article and exclude other document types such as review

or note. There are a total of 4023 research papers, and their cumulative citations in the

first 30 years after publication, i.e., between 1980 and 2009, are retrieved from the Web of

Science (WoS). Since a sufficient amount of citations are required for reliable modeling of

the citation trajectories (Aversa, 1985,Colavizza and Franceschet, 2016,Wang, Song, and

Barabási, 2013), we decide to focus on papers with at least 30 citations in the first 30 years

after publication. The resulting dataset consists of 1699 papers. For a robustness test, we

also analyzed the top 400 cited papers and obtained similar clustering results.

There is considerable variation in individual papers citation trajectories in our dataset.

Figure 5.2 plots the citation trajectories of four selected papers . Three of them loosely

resemble the three general types labeled by Costas, Leeuwen, and Raan (2010) as flash-in-

the-pan (red curve), normal document (blue curve), and delayed document (purple curve).

The normal document (blue) follows the typical citation aging pattern, where the citations

gradually increase and then decrease over time. The flash-in-the-pan (red) has relatively

faster citation rising and declining processes, while the delayed document (purple) has rel-

atively slower citation rising and declining process. All these three types follow the typical

pattern of citation trajectory, although they vary in the general speed of citation ageing.
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However, the green curve has a continually rising annual citation curve without a declining

stage during the first 30 years after being published. In particular, the green curve in Figure

5.1 illustrates the annual and cumulative citations of the paper in Physical Review Letters

entitled Ground State of the Electron Gas by a Stochastic Method coauthored by Ceperley

and Alderby, which was the most cited paper up to year 2009 among all papers published

in 1980 in APS journals. In addition, Figure 5.2 suggests the uncertainty in paper citations

and the difficulty of using short-term citations to predict long-term citations. Specifically,

while evergreen papers would eventually become extremely highly cited, their citations

in the first few years are not necessarily very large. Moreover, the citation distribution

is highly skewed. In terms total number of citations in the period of 30 years, 10 papers

(0.6%) in our sample have citations greater than 1000, 50 papers (2.9%) greater than 400,

and 1244 papers (73.2%) fewer than 100. This implies that the distribution of papers across

different types of citation trajectories might also be uneven.

5.4 Methodology

The objective of this paper is to empirically uncover general types of citation trajectories

based on the observed paper citation time series and examine whether evergreens constitute
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a general type of citation trajectory. The main idea is to use functional principal component

analysis and Poisson regression to model citation trajectories, which allows us to conduct

dimension reduction, that is, to characterize the vector of 30-years citation counts of a

paper by a much smaller number of parameters derived from our model. Subsequently

these parameters can be used as the inputs for the K-means cluster analysis for uncovering

general types of citation trajectories.

5.4.1 Functional Poisson regression model

We develop a nonparametric model for the cumulative citations based on functional Poisson

regression. The nonparametric approach does not impose any theoretical assumptions on

the mechanisms underlying the citation process but lets the data speak for themselves. We

adopt this explorative approach in order to better understand divergent citation patterns in

real life.

For each paper i = 1, · · · , N, denote by Xi(j) the cumulative number of citations for

the i-th paper in year j after being published, where j = 1, · · · , T. We choose to use the

cumulative annual citation counts instead of the annual citation counts because the former

is smoother and thus easier to model. For notational convenience, we denote Xi(0) = 0,

and assume that the observed cumulative citation Xi(j)’s are the realization of a counting

process Xi(t) for 0 ≤ t ≤ T.

For each paper i = 1, · · · , N, xi(j) denotes the observed cumulative number of cita-

tions for the i-th paper in year j after being published, where j is a discrete time variable

(i.e., year) and j = 1, · · · , T. For notational convenience, we denote xi(0) = 0. Our pro-

posed functional Poisson regression model assumes that the observed cumulative citation

xi(j)s are the realization of a counting process Xi(t) for the continuous time variable t and

0tT.

Xi(t) ∼ Poisson(µi(t)), (5.1)
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for t ≥ 0, where the mean function µi(t) satisfies

√
µi(t) = η(t) +

∑̀
ν=1

ξi,νφν(t) (5.2)

and the (offset) functions η(t) and the basis functions φν(t)’s are smooth functions of t that

are the same to all papers. Their estimations will be further discussed later.

In Equation (2) we adopt a square-root transformation for the mean function µi(t).Note

that for Poisson regression, or more generally Generalized Linear Models, there are two

popular transformation for the mean µi(t) of the count data: one is the log-transformation

log (µi(t)), and the other is the square-root transformation
√
µi(t) (Nelder and Wedder-

burn, 1972). For any given basis functions φν(t)s, both transformation strategies have been

widely used in the statistics literature, and which transformation is better depends on the

specific application and dataset. In the context of this study, the square root transformation

is preferable. In the functional principal component analysis for deriving basis functions

(as will be explained later), we will approximate the Poisson distribution of citation counts

by a Gaussian distribution via a square-root transformation, which allows us to take advan-

tage of the rich literature of FDA for Gaussian distributed data (Rice and Silverman, 1991;

Ramsay and Silverman, 2005). Therefore, taking the square-root transformation strategy

here for the Poisson regression matches the square-root transformation in functional prin-

cipal component analysis and accordingly yields a better fit to the data. In addition, in

standard principal component analysis, the number l of basis functions is assumed to be

relatively small, while the retained basis functions should be able to explain most informa-

tion of the original data. Under our model in Equation (1) and (2), the goal is essentially

to find an estimate µ̂i(t) that is a smooth version of Xi(t)s with certain correlation struc-

ture. In addition, it is also useful to think our proposed model as a dimension reduction,

representing the T-dimensional cumulative citations of a paper as a `-dimensional vector

of coefficients ξi,νs. Subsequently, the problem of identifying general citation patterns can
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then be reduced to the cluster analysis of the `-dimensional vector of coefficients ξi,νs.

5.4.2 Model parameter estimation

When fitting the functional Poisson regression model in Equation (1) and (2) to the ob-

served cumulative citations xi(j)s of the N papers, we need to estimate two kinds of un-

known quantities: the common basis functions η(t) and ψν(t)s which are the same for all

papers, and the paper-specific coefficients ξi,νs which are tailored for each paper individu-

ally. Clearly they are closely related, and there are no unique estimation methods. Here we

propose to estimate them by using the functional principal component analysis method and

Poisson regression, respectively. Regarding the estimation of the common basis functions

η(t) and ψν(t)s in Equation (2), intuitively one should use information across all the ob-

served N papers. From the functional decomposition viewpoint, these basis functions can

be any set of orthogonal bases, although some bases are more efficient than others. In the

functional data analysis literature, the estimation of these basis functions has been well-

studied for Gaussian distributed data, e.g., Rice and Silverman (1991) and Ramsay and

Silverman (2005). Here we propose to adapt these prior methods to Poisson count data by

exploring the close relationship between Poisson and Gaussian distributions. For a Poisson

random variable X with a large mean µ > 0, a well-known fact is
√
X ∼ N(

√
µ, 0.52)

(Thacker and Bromiley, 2001). Note that the variance of
√
X is approximately constant,

and thus the square-root transformation of Poisson data is often referred to as the variance-

stabilizing transformation in the statistical literature (Anscombe, 1948). Brown, Carter,

Low, and Zhang (2004) also used the square-root transformation to establish the global

asymptotic equivalence between Poisson process and Gaussian process. In this paper we

consider the square-root transformation of the count variable,
√

(Xi(t)), so that the bases

η(t) and ψν(t)s in Equation (2) can be estimated by applying the rich functional data anal-

ysis literature to “approximate Gaussian” data
√

(Xi(t)), e.g., Rice and Silverman (1991)

and Ramsay and Silverman (2005). Specifically, the square-root transformation of the ob-
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served citation counts for each paper can be modeled as being independent realizations

of a stochastic process Y (t) =
√
X(t) , with mean E(Y (t)) = η(t) and covariance

functionγ(s, t) = cov(X(s), X(t)). We assume that there is an orthogonal expansion (in

the L2 sense) of γ(s, t) in terms of eigenfunctions

γ(s, t) =
∞∑
ν=1

λνψν(s)ψν(t). (5.3)

According to the Karhunen-Love expansion theorem, a random citation curve Yi(t) =√
(Xi(t)) may then be expressed as

√
(Xi(t)) = η(t) +

∞∑
ν=1

ξi,νψν(t), (5.4)

where the ξi,νs are uncorrelated random variables with mean 0 and variance V ar(ξi,ν) = λν

( Rice and Silverman, 1991;Hall, Müller, and Wang, 2006). Therefore, functions η(t) and

ψν(t)s in Equation (4) are close related to the mean function and correlation function of

the stochastic process Y (t) =
√

(X(t)), and we will use them as the basis functions in

Equation (2). The basis functions η(t) and ψν(t)s in Equation (4) for Gaussian data can

be estimated by spline smoothing and functional principal component analysis methods

in Rice and Silverman (1991) and Ramsay and Silverman (2005). After estimating the

common basis functions η(t) and ψν(t)s, the next step is to estimate the coefficients ξi,νs

in the standard Poisson regression model from observed raw citations xi(j)s. This can be

done by maximum likelihood estimation for Poisson regression, which is implemented in

many statistical packages. In our analysis, the estimation of the coefficients ξi,νs is done on

a Windows 8 Laptop with Intel i7-4510U CPU 2.0GHz by using the glm() function in the

free statistical software R (version 3.1.1).
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5.4.3 Cluster analysis

Given that the N papers and their corresponding cumulative citation curves xi(j)s can be

represented as N points in the `-dimensional space of coefficients (ξi,1, ..., ξi,`), we propose

to conduct cluster analysis by applying the K-means clustering algorithm to the induced

`-dimensional coefficient space. In addition, in this `-dimensional coefficient space, the

coefficients ξi,νs in Equation (2) correspond to different basis functions ψν(t) and vary

considerably in scale. Therefore, we first standardize coefficients ξi,νs by

ξ̃i,ν) = (ξi,ν − µν)/sν (5.5)

where µν and sν are respectively the mean and standard derivation of the fittedN coefficient

values (ξ1,ν , ..., ξN,ν), for each principal component ν = 1, ..., `. Subsequently, we define

the distance between papers in term of citation trajectories as the Euclid distance of the

standardized coefficients (ξ̃i,1, ·, ξ̃i,`)) in the `-dimensional space, based on which we use

the K-means clustering algorithm to cluster papers into K different groups. Given the

explorative nature of this study, we experiment and compare clustering results for K =

2, 3, 4, 5, and 6 clusters.

5.4.4 Summary of methodology

Our proposed functional Poisson regression model for clustering paper citation trajectories

can be summarized as follows.

• Given T -years cumulative citation trajectories of N papers xi(j) for i = 1, 2, , N,

and j = 1, 2, , T, first derive the square-root transformed data, yi(j) =
√

(xi(j)).

• Estimate the mean functions η(t) and eigenfunctions ψν(t)s of the transformed data

yi(j), using functional principal component analysis.

• Determine `, the number of eigenfunctions ψν(t)s to retain.
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• For each individual paper i, use the mean functions η(t) and ` eigenfunctions ψν(t)s

as basis functions and fit a Poisson regression model to its observed cumulative ci-

tation trajectory (xi(1), xi(2), , xi(T )). This yields, for each individual paper, the

estimated coefficients (ξi,1, ξi,2, , ξi,`). Accordingly, the T -dimension vector of cu-

mulative citations for paper i, (xi(1), xi(2), , xi(T )), can be represented by its `-

dimensional vector of coefficients, (ξi,1, ξi,2, , ξi,`).

• Standardize each coefficient ξi,ν by ξ̃i,ν = (ξi,ν − µν)/sν , where µν and sν are the

mean and standard derivation of the N fitted coefficient values (ξ1,ν , ξ2,ν , , ξN,ν), for

each principal component ν = 1, · · · , `.

• Apply the K-means clustering algorithm to the standardized coefficients ξ̃i,ν to group

N papers into K clusters.

5.5 Results

This section reports the numerical results of applying our proposed model and method to

our sampled 1699 APS papers.

5.5.1 Estimating basis functions

The basis functions η(t) and ψν(t)s play an important role in our proposed model and

method, and they are estimated in R (version 3.1.1) using the codes of Ramsay, Hooker,

and Graves (2009).

Figure 5.3 plots the estimated mean curve η(t) and its first derivative η′(t). Here η(t)

and η′(t) are closely related to the average cumulative citations and average annual citations

over time, respectively. The estimated first derivative η′(t) is positive but decreases over

time. This is consistent with the “typical citation pattern that the annual citations generally

are the largest in early years and subsequently decline slowly.

Figure 5.4 plots the estimated smoothing versions of the first four eigenfunctionsψν(t)s.

150



0 5 10 15 20 25 30

0.
05

0.
10

0.
15

0.
20

0.
25

93.8% of variability

year

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

1
0.

2
0.

3

5.1% of variability

year

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

1
0.

2
0.

3

0.7% of variability

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4

0.2% of variability

Figure 5.3: four eigenfunctions.

They correspond to the four largest eigenvalues of 299.86, 16.39, 2.17 and 0.65, and these

four eigenfunctions account for 93.8%, 5.1%, 0.7% and 0.2% of the total variability, re-

spectively. The shape of these eigenfunctions indicates how a papers cumulative citation

trajectory might deviate from the mean curve η(t). Specifically, the first smoothed eigen-

function ψ̂1(t) is positive and monotonically increasing. Therefore, if a paper has a pos-

itive coefficient on ψ̂1(t), then this paper will have more citations than an average paper

(i.e., the mean curve) across all years, and more importantly its advantage over an average

paper magnifies over time. This observation is consistent with the well-known cumula-

tive advantage or preferential attachment phenomenon in citations. The second smoothed
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Figure 5.4: fitted results for three papers.

eigenfunction ψ̂2(t) is positive in early years but negative in late years. If a paper has a

positive coefficient on ψ̂2(t), then this paper would have relatively more citations in early

years than an average paper but fewer citations in later years, displaying a relatively fast

citation ageing process. The third and fourth smoothed eigenfunctions, ψ̂3(t) and ψ̂4(t),

capture more fine-grained fluctuation in citation trajectories over time. Furthermore, they

both exhibit a periodic pattern, suggesting that the highly or less cited feature can be cyclic.

5.5.2 Determining the number of eigenfunctions

A critical step of our analysis is to decide how many eigenfunctions to retain, for which

there is still no standard procedure in the FDA literature (Wang, Chiou, and Mueller, 2015).

The rule of thumb is to choose a reasonably small number ` of eigenfunctions that not only

explain high percentage (e.g., 95% or 99%) of total variation but also have a good fit to the

observed data. Therefore, we take into account both the total explained variability and the

goodness of fit. In terms of explained variability, the first one, two and three eigenfunctions

together account for 93.8%, 98.9% and 99.6% of the total variability, respectively. Accord-

ing to the rule of thumb, that is, 95% or 99% of total variation to retain, we can choose

` = 2 or 3.

We then examine the goodness of fit. Figure 5.5 evaluates the goodness of fit for the first

` = 2, 3, 4, 5 basis functions using the mean square error (MSE) criterion. More precisely,

results in Figure 5.5 are based on 10-fold cross validation: We randomly partition the 1699
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papers into 10 subgroups, where 9 subgroups have 170 papers and the 10th subgroup has

169 papers. For papers in each subgroup, we fit the functional Poisson regression model

using the ` = 2, 3, 4, 5 basis functions estimated from all papers in the other subgroups.

Then we calculate the error of the fit, that is, the difference between fitted and observed

values. The average mean standard squares error (MSE) for the 1699 papers by using

different number of basis functions are plotted in Figure 5.5. Based on this graph, we can

adopt a strategy similar to the Cattells scree test, that is, search for the elbow point. It

seems that the goodness of fit improves considerably when increasing ` from 2 to 3, while

further increase in ` only improve the goodness of fit marginally. Therefore, we choose

` = 3, partly because increasing ` from 2 to 3 brings the largest improvement in fitting

performance and partly because the first three eigenfunctions contain 99.6% variability,

which is sufficiently high.

5.5.3 Fitting individual paper models

Based on the estimated basis functions, we fit our proposed functional Poisson regression

model to each individual paper in the dataset, following the procedure as described in Sec-
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tion 5.4.2. For evaluating the fitness of our model, we compare our model with a recently

developed parametric model for individual papers citations, in Wang, Song, and Barabási

(2013) (hereafter the WSB model). Wang, Song, and Barabási (2013) model paper cita-

tions by a Poisson process, specifically, the expected cumulative number of citations of the

i-th paper in year t(t ≥ 0) is

Λi(t) = m

(
exp

{
λiΦ
( log(t)− µi

σi

)}
− 1

)
, (5.6)

(6) where Φ(t) is the cumulative density function of the standard normal N(0, 1) random

variable, λi, µi, and σi are three paper-specific parameters that describe the citation trajec-

tory of the i-th paper, and parameter m is a global constant for the average citations of all

papers and is set at 30 in Wang, Song, and Barabási (2013). For fitting individual paper

models, the natural choice is to use the estimated basis functions η(t) and ψν(t)s in Section

5.5.1 directly to derive the estimated coefficients ξi,νs in Equation (5.2) for each individual

paper (as will be implemented in the next subsection for clustering analysis). However,

using this approach for comparing model fitting performance is to some extent unfair to the

WSB model, because our functional Poisson regression model would have used the same

dataset twice: One at the population level for estimating basis functions and the other at

the individual paper level for estimating paper-specific coefficients on the basis functions.

However, the WSB model uses the data only once. Therefore, for a relatively fair compar-

ison of model fitting, we use to the same 10-fold cross-validation as discussed in Section

5.5.2. More precisely, we randomly partition the 1699 papers into 10 subgroups, where

9 subgroups have 170 papers and the 10th subgroup has 169 papers. For papers in each

subgroup, we fit the functional Poisson regression model using the ` = 3 basis functions

estimated from all papers in the other subgroups and the WSB model separately. Then we

calculate the mean squares error (MSE) of the fit by our model and WSB model.

To assess the goodness of fit, we compare the distribution of residuals. In addition,

154



−2 0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

D
en

si
ty

WSB
Our model

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●●

●
●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●●
●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●●●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●
●

●
●

●

● ●● ●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

● ●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

● ●●

●
●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●

●

● ●

●●
●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●●

●●
●

●

●

●

● ●

●
●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
● ●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

● ● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

0 2 4 6 8 10

−
2

0
2

4
6

8

WSB

O
ur

 m
od

el

Figure 5.6: Kernel and scatter plots to compare fitting results with wsb model.

we plot log MSEs instead of MSEs at the original scale, considering that the distribution

of MSEs is highly skew. Figure 5.6 left panel plots the kernel densities of log MSEs.

Our functional Poison regression model clearly has smaller MSEs, and the Wilcoxon sum

rank test further suggests that the MSEs of our proposed functional Poisson regression

model are stochastically smaller than those of the WSB model. In addition, Figure 5.6

right panel reports a scatter plot of log MSEs, which suggests that our proposed model

fits most papers (i.e., points below the diagonal line) better than the WSB model. It is

important to note that this comparison is still to some extent unfair to the WSB model.

We used a separate training set for estimating our basis functions, although this training

set does not overlap with the testing set, it still shares some similarity with the testing

set, for example, both sets are physics papers published in 1980. In addition, the WSB

model is developed for predicting long-term citations, while the goal of our model is to

have a parsimonious characterization of citation trajectories with satisfactory goodness of

fit. Therefore, WSB would avoid overfitting, while our model would intentionally over-fit

the data to certain degree. For the same reason, we opted for the original WSB model

documented in Wang, Song, and Barabási (2013) for this comparison, instead of the WSB-

with-prior model documented in Shen, Wang, Song, and Barabási (2014). The WSB-with-
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prior model incorporates a conjugate prior and thereby reduces the number of estimated

parameters, for avoiding overfitting. Compared with the original WSB model, the WSB-

with-prior model has a lower fitting power but a higher prediction power. In summary,

based on the comparison results, we do not claim that our model is superior to the WSB

model, but only conclude that our model does fit the data well.

5.5.4 Clustering paper trajectories

Using the estimated basis functions η(t) and the first three ψν(t)s from the whole sample

of 1699 papers as reported in Section 5.5.1, we estimate coefficients ξi,νs in Equation (5.2)

for each of the 1699 papers. These estimated coefficients ξi,νs are in turn used as inputs for

the K-means clustering analysis. Given the explorative nature of this clustering analysis,

we experiment with different number of clusters, ranging from two to six.

We first report results for four clusters. To illustrate characteristics of the identified four

clusters, or general types of citation trajectories, we find the centers of each cluster in the

3-dimensional standard coefficients spaces and then convert them back into the original pa-

per citations space to derive four central curves in terms of cumulative and annual citations

(Figure 5.7). The number of observations in each cluster is as follows: red (972 papers,

that is, 57.2% of the whole sample of 1699 papers), blue (454 papers, 26.7%), purple (228

papers, 13.4%), and green (45 papers, 2.7%). Both the red and blue curves in Figure 5.7

are consistent with previous clustering studies (Aversa, 1985; Costas, Leeuwen, and Raan,

2010; Colavizza and Franceschet, 2016)), in the sense that the speed of citation aging is

slow for some papers while relatively fast for others. However, the year of citation peak

seems to be the same for both the red and blue curves, while the only difference is about the

scale of the peak. Therefore, both red and blue curves might belong to the category of nor-

mal documents as labeled by Costas, Leeuwen, and Raan (2010). We name the red curve as

normal I and the blue curve as normal II. The purple curve, compared with both the red and

blue ones, display a slower rising process, as well as a slower declining process after the
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Figure 5.7: clustering based on our method with K=3 and 4.

citation peak. The timing of its citation peak is later than the red and blue ones. The scale

of its citation peak is lower than the blue one but higher than the red one. In addition, its

total number of 30-year citations is larger than the red and blue ones. The purple curve cor-

responds to the delayed documents, as labeled by Costas, Leeuwen, and Raan (2010). The

most interesting curve in Figure 5.7 is the green one, which clearly demonstrates a contin-

ual rise in annual citations without declining within the 30-years period after publication.

We refer to this type of papers as evergreens, which were emphasized by Price (see Aversa

(1985)) and Avramescu (1979) but were not identified by later cluster analyses (Aversa,

1985; Costas, Leeuwen, and Raan, 2010). Marathoners in some specifications in Colav-
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izza and Franceschet (2016) also display a continually increasing annual citation curve.

These evergreens appear to have fewer citations than the normal II and delayed documents

in the first few years after publications but clearly much more citations in the long run.

Furthermore, all other types (i.e., normal I, normal II, and delayed documents) still follow

a “typical citation trajectory, where a papers annual citations rise to its peak shortly after

publication and then slowly decline, although some types reach the citation peak higher or

faster than others. However, evergreens clearly violate this “typical pattern, at least within

the 30-year time window, which is much longer than the citation time window adopted in

most bibliometric analyses.

Results for other choices of K are reported in Figure 5.8. On the one hand, decreasing K

would miss some types of citation trajectories. For example, the three-cluster result (Figure

5.8A3) misses delayed documents, and the two-cluster result (Figure 5.8A2) additionally

misses evergreens. On the other hand, increasing K from 4 to 5 or 6 does not uncover new

types which are sufficiently distinct from the identified four types, and additional clusters

in Figure 5.8A5-6 locate in a continuous space from fast to slow ageing, following the

“typical pattern. In order to better evaluate the performance of our proposed clustering

approach, we compare our proposed clustering method, which clusters citation trajectories

based on the `-dimensional vector of standardized paper-specific coefficients ξ̃∗νs, with two

alternative approaches, specifically, clustering based on (a) the T-dimensional vector of the

raw annual citations (raw annual method) and (b) the T-dimensional vector of the propor-

tion of annual citations (proportion method, i.e., normalized annual citations, the number

of annual citations in each year divided by the number of total citations over the T years).

For the comparison of clustering results we focus on two aspects: the shape of the central

curves and the distribution of papers across clusters. Clustering results using the proportion

method for K = 2, · · · , 6 are reported in Figure 5.8B2-6. Compared with our proposed

method, the proportion method clusters papers more evenly across different clusters. In

terms of the shape of the central curves, using K = 4 (Figure 5.8B4) as an example, all
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four curves seem to reach their peak around the same time (while the purple line is a bit

later than the others, and the green curve has an initial local peak at around the same time,

followed by a decline and then start rise again), although they display very different speed

of citation declining. In addition, the speed of citation declining seems to be positively

associated with the scale of the peak. For example, the blue curve has the highest peak and

also the fastest citation decline after the peak. It is difficult to interpret the clusters. Maybe

the red, purple, and blue curves can be labeled as delayed document, normal document,

and flash-in-the-pan respectively, according to their speed of rising and declining, but the

red one does not seem to have a later peak than the others. In addition, it is unclear how

to interpret the green curve, they seem to have a continual rise in annual citations (if we

ignore the decline following the first local peak), similar to our identified evergreens. How-

ever, different from evergreens, the number of annual citations of the green type in Figure

5.8B4 is a small constant. Furthermore, most papers in the green cluster have very limited

number of total citations. One possible explanation is that this alternative approach uses the

proportion of annual citations, which is very sensitive when a paper has a relatively small

number of total citations. Central curves of annual citations resulting from the clustering

method based on raw annual citations are plotted in Figure 5.8C2-6. The clustering result is

dominated by the scale of citations, but does not reveal distinct features between different

clusters in terms of the shape of citation curves. Take 4-cluster results (Figure 5.8C4) as

an example, 94.2% papers (red) have a moderate number of citations, 5.1% papers (purple)

have even fewer citations, 0.6% papers (blue) have considerably more citations, and 0.1%

papers (green) are extremely highly cited. Except the green curve, all others show a sim-

ilar shape in the citation curve, and the difference between them is the scale of citations.

Although this alternative approach also successfully identify a small number of evergreen

papers (i.e., the green curve), it misses a number of true evergreen papers, specifically, pa-

pers that are classified as evergreens by our proposed method but not by this alternative

approach actually also exhibit a pattern of continual rise in annual citations. Thus, we con-
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clude that clustering using raw annual citations is over-dominated by the scale of citations

and is inadequate for capturing nuanced difference in the shape of citation trajectories.

5.6 Discussion

This paper proposes a nonparametric functional Poisson regression model to describe cita-

tion trajectories of individual papers and combines our model with the K-means clustering

algorithm for cluster analysis, using the coefficients of the eigenfunctions in our model.

Results suggest the existence of evergreens as a general type of citation trajectories. This

paper makes two methodological contributions. First, we develop a functional data analy-

sis method for discrete count data, by combining principal component analysis and Poisson

regression, while the prior literature of functional data analysis is dominated by analyzing

continuous data. Second, this paper also demonstrates the usefulness of the functional data

analysis for bibliometric studies. Because it is a nonparametric approach and is designed

for analyzing high-dimensional data, the functional data analysis can be a powerful tool for

bibliometric analysis.

5.6.1 Limitations and future research

This study has several limitations. First, constrained by data availability, we cannot claim

whether our observed evergreen papers will remain being (highly) cited in the future or will

eventually become obsolete. Although the latter is very plausible, the former is not entirely

impossible. Larivière, Archambault, and Gingras (2008) show that researchers have been

relying on an increasingly old body of literature since mid-1960s, so it is still possible that

some classic pieces will never experience obsolesce or obliteration by incorporation, that

is, becoming commonly known and integrated into the daily work in the field that it is no

longer explicitly cited (Merton, 1973). Although we cannot draw a conclusive inference on

the fate of our identified evergreen papers, the finding that a considerable number of papers

assemble characteristics of evergreens in a 30-year time period is still very relevant for sci-
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ence and bibliometric studies, since most studies and evaluations use a shorter time window

and assume a the typical citation trajectory. Second, this study uses a sample of journal ar-

ticles in one field (i.e., physics) and one year (i.e., 1980), and accordingly has a limitation

in terms of generalizability. Third, although our method can single out evergreens, it does

not identify sleeping beauties in science (Ke, Ferrara, Radicchi, and Flammini, 2015; Raan,

2004). This is probably because sleeping beauties are very rare and therefore are difficult

to identify in large scale statistical analyses (Colavizza and Franceschet, 2016). There is

plenty of room for improving our functional data analysis method for citation data, call-

ing for further research. From the functional smoothing viewpoint, the cumulative citation

curve must be non-decreasing. While our proposed fitting method yields non-decreasing

fitted curves numerically for the cumulative citations of all 1699 papers in our dataset,

it is important to develop a better estimation method that guarantees the non-decreasing

property theoretically, e.g., using the monotone smoothing method developed in Ramsay

(1998). From the cluster analysis viewpoint, we conduct unsupervised learning in our

dataset and rely on prior literature and our domain knowledge on paper citation behavior,

for assessing the classification results of different approaches. It will be useful to develop

a more objective criterion for evaluating results of cluster analysis. In addition, we have

some interesting observations that evergreens is negatively correlated with the number of

pages and authors, more research is required for better understanding what determines the

citation trajectory of a paper. The regression model using readily available paper feature for

predicting evergreens has very poor performance, we would need to investigate what kind

of intrinsic paper quality might predict whether a paper becomes an evergreen in science.

5.6.2 Implications

Results of this chapter have three important implications for bibliometric studies and re-

search evaluations. First, our findings demonstrate that papers with similar citations in

the short run may have completely different citation patterns in the long run. Compared
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with normal documents, delayed documents and evergreens receive fewer citations in the

short run but more citations in the long run. This serves as a warning about the bias in the

use of short-time-window citation counts in research evaluations. Second, the observation

of evergreens calls for more research on the “endurance” of citation impact, in addition

to the aspect of “delay” emphasized in prior literature. Phenomena of scientific prema-

turity (Stent, 1972), delayed recognition (Garfield, 1980), and sleeping beauties (Raan,

2004) have been extensively studied in previous literature, which focus on the long time

lag before a scientific contribution makes notifiable impact. On the other hand, Evergreens,

similar as the term of marathoners in Colavizza and Franceschet (2016), reminds the other

important but understudied aspect of citation trajectoryendurance. Third, evergreens also

have implications for parametric models of citation trajectories. There is a strong interest

in modelling citation trajectories, partly because it is a challenging scientific problem and

partly because of the policy interest in predicting long-term citations. In a recent report

published in Science, Wang, Song, and Barabási (2013) proposed a parametric nonhomo-

geneous Poisson process to model the citation trajectory of individual papers. Although

this model is elegant from the pure mathematical viewpoint, its predictive power is unsatis-

factory, especially for those highly cited ones (Wang, Mei, and Hicks, 2014). One possible

explanation is that it assumes a “typical” citation trajectory, while evergreens, which are

highly cited, do not follow this pattern. Our nonparametric analysis and identified general

types of citation trajectory questions this assumption and shed light on future parametric

modeling of citation trajectories.
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Figure 5.8: Clustering based on raw annual method and proportion method with K=3 and
4.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Summary of original contributions

This thesis contributes to the area of sequential change-point detection, robust sparse learn-

ing and monitoring of high-dimensional streaming data, and functional data analysis from

both theoretical point of view and applied point of view. The original contributions of this

thesis include the following aspects:

• Robust change-point detection. In the first chapter, we develop a new Lα-CUSUM

local detection statistic, which is more robust than the classical CUSUM statistics.

Moreover, on the global level, we combine those local Lα-CUSUM statistic to-

gether by soft-shrinkage transformation. We show he resulting global monitoring

scheme enjoy nice theoretical statistical efficiency and robustness for monitoring

high-dimensional data streams. Moreover, we propose a new concept called false

alarm breakdown point, which can measure the robustness of any online monitoring

procedure and show our proposed robust schemes indeed have positive breakdown

point.

• Detection delay analysis. In the second chapter, we conduct detection delay anal-

ysis on some families of communication-efficient monitoring schemes under both

classical low-dimensional regime where the number of data streams K is fixed and

modern high-dimensional regime where the number of data streams K goes to ∞.

Our theoretical results provide statistical foundation that using appropriate shrinkage

can help increase communication efficiency in the large-scale sensor network while

still keeping good detection efficiency.

• Tractability of robust M-estimator. In the third chapter, we investigate the robust-
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ness properties and computational tractability of general (non-convex) M-estimator

in both classical low-dimensional regime and modern high-dimensional regime. Our

results reveal the M-estimator in general can achieve the minimax estimation error

rate and has only one unique stationary point when the proportion of outliers is small.

Therefore, we explain the reason why the M-estimator can be computed efficiently

and can be widely used.

• Nonlinear profile monitoring In the fourth chapter, we proposed a novel profile

monitoring procedure by combining the Wavelet technique, two-side adaptive CUSUM

statistics, and order-shrinkage technique. We show our proposed method has good

detection performance compared with other methods in literature by simulations and

real data case study.

• Modeling of papers’ citation trajectories In the fifth chapter, we propose a new

functional Poisson regression model to fit and learn individual paper’s citation trajec-

tory. We show our model can not only fit papers’ citation data well, but also be used

for clustering papers into different citation patterns. We conduct careful interpreta-

tion on our classification results and demonstrate they can provide useful implication

for bibliometric studies and research evaluations

6.2 Future research

My future research plan involves the development of modeling and monitoring method-

ologies for complex systems. My research agenda is not limited to develop data-driven

statistical models but also to build up theoretical foundations of the developed methodolo-

gies. A more detailed discussion on my future research topics are provided below:

• Robust feature extraction for image or matrix type data. With the rapid devel-

opment of advanced sensing techniques, high-quality image or video types data are

much cheaper to get while reflecting more information of the complex systems. One
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may lose a lot of spatial information if we simply treat the image or matrix type data

as a vector. Therefore, we propose to decompose it by the 2-dimensional tensor basis

and work on penalized M-estimator in tensor regression to extract important features.

Moreover, we would like to investigate whether the good computation properties can

be guaranteed or not in terms of tensor regression. After extracting those important

features, we can apply our robust monitoring schemes in Chapter 1 directly to do

change-point or anomaly detection for the streaming image data.

• Robust sequential online decision: adaptive sampling and sequential estimation.

Another extension to my current research is to develop a robust sequential decision-

making framework for high-dimensional data streams in term of adaptive sampling,

in which we need to dynamically change the location of sensors to capture more

useful information. Furthermore, I would like to investigate more robust adaptive

estimation methodologies with desirable theoretical properties that can recursively

update model parameters based on new observed data.
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