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SUMMARY

This thesis addresses complex distributed systems such as distributed information

flow systems that continuously acquire, manipulate and disseminate information across an

enterprise’s distributed sites and machines, and distributed server applications co-deployed

in one or multiple shared data centers, each with different and dynamic performance/availability

requirements. A basic requirement imposed on such systems is the need to provide timely

and sustained/reliable delivery and processing of service requests. This remains a difficult

task despite more than 30 years of progress in distributed computer connectivity, avail-

ability and reliability [8], for multiple reasons. These include the increasing complexity

of enterprise scale computing infrastructure; the distributed nature of these systems which

make them prone to failures, e.g., because of inevitable Heisenbugs in these complex dis-

tributed systems; the need to consider diverse and complex business objectives and policies,

including risk preferences and attitudes in enterprise computing; the issues of performance

and availability conflicts; the varying importance of sub-systems that compete for resources

in an enterprise’s IT infrastructure; and the best effort nature of resources like networks,

which implies that resource availability itself can be an issue.

This thesis proposes a novel approach to business policy-driven, risk-based, automated

availability management, which uses an automated decision engine to make availability

decisions and meet business policies while optimizing overall system utility, uses utility

theory to capture users’ risk attitudes, and addresses the potentially conflicting business

goals and resource demands in enterprise scale distributed systems. For critical and com-

plex enterprise applications, since a key contributor to application utility is the time taken

to recover from failures, we develop a novel proactive fault tolerance approach, which uses

online methods for failure prediction to dynamically determine the acceptable amounts of

xi



additional processing and communication resources to be used (i.e., costs) to attain certain

levels of utility and acceptable delays in failure recovery. Since resource availability itself

is often not guaranteed in typical shared enterprise IT environments, this thesis provides

IQ-Paths with probabilistic service guarantee, to address the dynamic network behavior in

realistic enterprise computing environment. The risk-based formulation is used as an effec-

tive way to link the operational guarantees expressed by utility and enforced by the PGOS

algorithm with the higher level business objectives sought by end users.

In its totality, this thesis develops a novel availability management framework and meth-

ods for large-scale enterprise applications and systems, with the goal to provide different

levels of performance/availability guarantees for multiple applications and sub-systems in

a complex shared distributed computing infrastructure. More specifically, this thesis ad-

dresses the following problems. For data center environments, (1) how to provide avail-

ability management for applications and systems that vary in both resource requirements

and in their importance to the enterprise, based both on operational level quantities and on

business level objectives; (2) how to deal with managerial policies such as risk attitude; and

(3) how to deal with the tradeoff between performance and availability, given limited re-

sources in a typical data center. Since realistic business settings extend beyond single data

centers, a second set of problems addressed in this thesis concerns predictable and reliable

operation in wide area settings. For such systems, we explore (4) how to provide high avail-

ability in widely distributed operational systems with low cost fault tolerance mechanisms,

and (5) how to provide probabilistic service guarantees given best effort network resources.

xii



CHAPTER I

INTRODUCTION

1.1 Motivation

Modern enterprises rely critically on the timely and sustained/reliable delivery and process-

ing of information, using distributed computing systems [35, 36, 53] resident in large data

centers and/or spanning many such sites or endpoints connected via wide area networks. An

important class of applications in this context is that of distributed information flows sys-

tems [35,53], which continuously acquire, manipulate, and disseminate information across

an enterprise’s distributed sites and machines. Another important class of applications is

distributed server applications which are co-located in one or multiple shared data centers,

with each of them having different performance/availability requirement which could also

vary over time and competing with each other for the shared resources. For applications

like these, two key goals are the dependable and timely delivery of information, despite

potential hardware/software failures and/or fluctuations in underlying platform resources.

Beyond the need to reliably deliver information, also important, of course are applications’

abilities to carry out the computations necessary for services, commonly done in data center

environments.

System failures can have dire consequences for the enterprise, including loss of pro-

ductivity, unhappy customers, or serious financial implications. In fact, as reported, the

average cost of downtime for financial companies is up to 6.5 million dollars per hour

and the average cost of downtime for retail companies is hundreds of thousands of dol-

lars (Table 1) [40]. This has resulted in a strong demand for enterprise distributed systems

that are available almost continuously. At the same time, however, high availability often
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contradicts the performance quest, partially because of the relatively high costs of fault tol-

erance services, particularly when they must support the sustained delivery of information

24 hours a day, 7 days a week.

Providing high availability in enterprise-scale distributed systems is complex for multi-

ple reasons. First, the sizes and the distributed nature of these systems make them prone to

failures. In a data center with hundreds to thousands of servers running thousands to tens of

thousands of processes [27, 36], both software and hardware failures are frequent [66, 79].

Second, for large IT systems, improvements in availability must consider diverse and com-

plex business objective and policies, with issues including tradeoffs in performance vs.

availability, choices concerning different fault tolerance mechanism, and runtime changes

in business priorities. Third, for applications with high data rates coupled with high pro-

cessing demands, replication of all runtime data may not be a cost-effective option for at-

taining high availability. Fourth is the need for small or negligible recovery times, to limit

losses to the enterprise. Fifth, based on our experience working with industry partners

like Delta Air Lines and Worldspan, systems must be able to cope with both transient and

non-transient failures (e.g., failures that will recur unless some root cause is addressed).

Finally, different sub-systems in an enterprise’s distributed infrastructure typically are of

varying importance to the enterprise, but they also compete for the resources needed to

provide required levels of performance and availability. In fact, with increased acceptance

of service-oriented middleware, there is an increased need for being able to make global

choices and tradeoffs between performance and availability, across different applications,

subsystems, and software and system components.

The continued growth in scale and complexity of these applications and their IT infras-

tructures makes it difficult, if not impossible for human end users to continuously maintain

and improve their availability. Figure 1 demonstrates a subset of a shared data center run-

ning multiple multi-tier applications in one company with which we have interacted. When

the number of hosts are on the order of tens to hundreds, it may still be feasible to manually

2



fine tune applications running on these hosts and determine suitable policies and parame-

ters for availability managements. However, this data center has over 10,000 hosts and over

20,000 applications that run on those hosts, which make it very inefficient, if not impossi-

ble, for administrators to correctly and efficiently manage the infrastructure. Furthermore,

availability issues experienced or caused by a certain machine will have likely effects be-

yond the violation of a single application’s service level agreements, potentially causing

large losses in utility for other applications and for the data center’s operator. Other factors

contributing to management complexity include the diverse and complex business objec-

tives and policies sought by different applications, and changing run-time environments as

well as changing demand behavior. An important goal, therefore, is to automate availability

management in large enterprise systems, both to provide higher levels of availability and

performance and to reduce management cost [90].

Availability management must consider risk and risk attitudes [44]. An intuitive ex-

ample of risk attitude policies given in ‘A Research Agenda for Business-Driven Infor-

mation Technology’ [44] is the following: “given a choice between good performance and

mediocre downtime, or mediocre performance and good downtime, I’d pick the second one

(or some other customers will pick the first one).” Consider the Operational Information

System (OIS) run by one of our industrial partners, Delta, a major U.S. airline. The OIS

is responsible for tasks that range from facilitating passenger check-in, to baggage han-

dling, to flight updates, and even supporting the website that allows online check-in and

ticket sales. From an operational point of view, different components of the OIS exhibit

different levels of risk. A flight positioning subsystem, using FAA inputs, for example, can

tolerate some loss of state since the FAA feed periodically updates each flight’s positions

[35]. Conversely, the subsystem performing passenger check-in must be highly reliable.

Another attributes of the system is that risk is not a static quantity. An OIS sub-component

providing services to a flight ready to depart in 5 minutes is more critical, i.e., it is less

risk-tolerant, than the sub-component serving a flight that is preparing for departure in 50

3



minutes, for instance. Quantifying such runtime changes in risk (criticality) would allow

an enterprise to allocate more resources to a sub-component that is currently at a higher

level of risk.

Table 1: Financial Impact of IT system failures [40]

Industry Business Operation Average Cost per Hour of Downtime
Financial Brokerage operations $6.5 million
Financial Credit card/sales authorization $2.6 million
Media Pay-per-view television $1.1 million
Retail Home shopping (TV) $113.0 thousand
Retail Home catalog sales $900 thousand
Transportation Airline reservations $89.5 thousand

1.2 Problem Statement

The main problem addressed by this thesis is availability management for large-scale enter-

prise applications and systems, so as to provide different levels of performance/availability

guarantees for multiple applications and sub-systems in a shared distributed computing

infrastructure. More specifically, this thesis addresses the following problems. For data

center environments, (1) how to provide availability management for applications and sys-

tems that vary in both resource requirements and in their importance to the enterprise, based

both on operational level quantities and on business level objectives; (2) how to deal with

managerial policies such as risk attitude; and (3) how to deal with the tradeoff between

performance and availability, given limited resource in a typical data center. Since realistic

business settings extend beyond single data centers, a second set of problems addressed

in this thesis concerns predictable and reliable operation in wide area settings. For such

systems, we explore (4) how to provide high availability in widely distributed operational

systems with low cost fault tolerance mechanisms, and (5) how to provide probabilistic

service guarantees given best effort network resources.

The following section provides additional background and overview of current solution
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approaches. This is followed by a description of the solution approaches pursued in this

thesis.

1.3 Solution Approach – Self-Managing Systems
1.3.1 Autonomic Computing and Self-Healing

Autonomic computing or self-managing systems are motivated by the ever growing com-

plexity of enterprise computing systems. Specific issues include the difficulty of managing

these large-scale systems, the need to integrate heterogeneous environments into corporate-

wide computing infrastructures, and current and future efforts to extend these infrastruc-

tures beyond company boundaries into the Internet. The idea of autonomic computing

is to have systems manage themselves in accordance with high-level objectives stated by

administrators [45], thereby extending the number of operations these administrators can

perform, i.e., to use self-management to free administrators from routine system operation

and maintenance tasks. The hope is to reduce management costs, improve management

efficiency, and offer improved scalability. The four basic aspects of self-management are:

• Self-configuration of components that include servers, routers, databases, and other

technologies, across different platforms potentially provided by different vendors;

• Self-Optimization to tune hundreds of nonlinear tuning parameters, in order to im-

prove performance and efficiency.

• Self-Healing, which automatically detects software and hardware failures in complex

systems, diagnoses causes, isolate failures, and recovers from them.

• Self-Protection defends against malicious attacks.

This thesis focuses on self-healing, with self-optimization addressed implicitly, in that

performance optimization is closely related with availability management. More specif-

ically, we propose a risk-based analysis and policy decision framework to automatically

manage availability according to business level objectives and risk policies. The framework
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is implemented with a set of proactive fault-tolerance mechanisms, with novel methods

to recover from both transient and non-transient failures, and with ways to optimize per-

formance given specific availability requirements and policies to be maintained in shared

computing infrastructures.

1.3.2 Performability, the Relationship of Performance and Availability

Performance and reliability are interrelated, particularly in modern enterprise systems. This

is because these systems are typically degradable, meaning that they are able to continue

to operate in the presence of faults or errors, at reduced levels of performance or quality of

service, hence the term ‘performability’ [89]. The methods used for these purposes include

active/passive standbys, check-pointing, logging, synchronization, and others [8].

Concerning performability, different users/customers will have different preferences

about the tradeoff between performance and reliability. Consider again the example given

by Kephart and White [44]: given a choice between good performance and mediocre down-

time, or mediocre performance and good downtime, some customers will pick the latter,

and others will pick the former. For example, in Figure 1, webserver App1 is used for

brokerage operations services and requires very high availability (e.g., ‘five nines’), but

larger service times are acceptable. The internal enterprise search service App3 requires
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lower response times, but ‘five nines availability’ is not necessary if that requires too many

standbys given limited resources. Managerial attitudes like these can be related to dif-

ferent levels of risk attitudes or risk tolerances. Given the tradeoff between performance

and downtime, low risk tolerance might choose lower downtime values, whereas high risk

tolerance might choose higher performance. Rick tolerance changes over time too. For

example, policy may directly prohibit patching App3 under conditions of high load, i.e.,

low risk tolerance. More generally, in the operational information systems like the one run

by one of our industry partners [35], risk tolerance is an approximation of a combination

of factors, including peak vs. non-peak operational time, proximity to delivery time for

certain subsystem output, and others. Risk tolerance, therefore, is an aggregate measure of

managerial policy.

The novel approach advocated in this thesis is to use risk tolerance to adjust system

performance/reliability characteristics in response to different requirements and system

changes. One specific case study considers patch application or service replacement for

multi-tier web services. Another study considers the aforementioned aggregate measure

of risk. For both cases, we demonstrate that entirely different tradeoffs are made for risk-

averse vs. risk-tolerant scenarios, as explained in more detail next.

1.4 Solution Approach: Risk-Based Proactive Availability Management

This thesis enriches enterprise middleware with a new availability management framework

and with new availability methods for applications operating on shared distributed com-

puting and communication infrastructures. Specifically, we propose to develop risk-based

‘proactive availability management’ techniques that (1) consider performance and high-

availability requirements in a uniform policy-driven automated management framework, to

address potential conflicts in the realization of both, with consideration of users’ risk atti-

tudes and preference structures, (2) reduce the cost of high-availability with new low cost

fault-tolerance services, and (3) implement proactive self-management methods so that
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information flows can continuously and dynamically adjust their run-time fault-tolerance

services to meet both their performance and availability requirements, according to current

system stability level and resource constraints. (4) Another contribution of this work is the

ability of middleware to distinguish the different information flows used in highly available

information flow systems. A concrete example of the latter is to distinguish original from

replicated information flow elements. By then differentially providing services to original

vs. replicated flows, e.g., assigning different levels of importance and time constraints to

each, middleware can extend performability guarantees to applications beyond those avail-

able in current systems.

The uniform framework for jointly considering performance and high-availability re-

quirements used in this thesis employs a policy-based approach for managing both, the

intent being to reduce or minimize the human engagement necessary while still comply-

ing with business level performance and availability objectives/policies. Business policies

for availability management are formalized and operational policies are derived automati-

cally based on utility objectives. Specifically, using utility functions, we capture tradeoffs

between performance and availability, and tradeoffs between the use of different fault toler-

ance mechanism are captured with queuing system modeling and Markov chain availabil-

ity analysis. Risk is formalized with von Neumann-Morgenstern utility theory, capturing

users’ risk attitude, resulting in risk attitude policies and risk-sensitive decision making

(e.g., risk averse, risk neutral and risk seeking) that can be automated. The outcome is an

automated decision engine for risk-based availability management.

This thesis also proposes and evaluates novel methods for reducing the costs of achiev-

ing the levels of availability desired by different users. Toward that end, we extend the

known active-passive approach to reliable operation for distributed applications with new

methods that can dynamically tune the tradeoff experienced across normal operations cost

vs. recovery time. In particular, in this approach, the passive replica will be periodically

refreshed with checkpoints. These checkpoints transfer the current state from the active
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node to the passive node (passive standby). If the passive replica has been recently brought

up to date by a soft-checkpoint, then recovery will be relatively fast. The resulting tradeoff

between the cost of checkpointing and recovery delay is tuned by changing the frequency

at which soft-checkpoints are transmitted during normal operation. Such tuning is based on

user-provided expressions of information utility, and it takes advantage of runtime methods

for failure prediction and dynamic availability self-management, hence the term ‘proactive

availability management’. With proactivity, therefore, it becomes possible to manage a sys-

tem that experiences different levels of stability during its execution (e.g., a heavy memory

load could mean an imminent failure). The prerequisite for such proactive management

is that the ‘current stability’ of the system can be quantified, in order to then increase or

decrease the resources expended to ensure desired levels of availability.

As stated earlier, a specific class of enterprise applications addressed by our work is

Operational Information Systems. For the data transfers, i.e., the information flow ser-

vices, required by such wide area applications, this thesis presents and experiments with

middleware-based management methods. These methods permit us to differentiate how

certain information flow services are realized, via the ‘IQ-Paths’ overlay network manage-

ment and flow mapping and scheduling techniques. IQ-Paths implements self-regulating

overlay streams, by assessing, predicting, judiciously using available network paths, and

dynamically choosing alternate or exploiting concurrent paths. Self-regulation is based on

(1) the dynamic and continuous assessment of the quality of each overlay path, (2) the use

of online network monitoring and statistical analyses that provide probabilistic guarantees

about available path bandwidth, loss rate, and RTT, and (3) self-management, via an ef-

ficient packet routing and scheduling algorithm that dynamically schedules data packets

to different overlay paths in accordance with their available bandwidths. IQ-Paths offers

probabilistic guarantees for application-level specifications of stream utility, based on sta-

tistical predictions of available network bandwidth. This affords applications with the abil-

ity to distinguish reliability-preserving from original data flows, and/or to send critical data
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across overlay paths that offer strong guarantees for future bandwidth vs. less important

data across less guaranteed paths. Further, demonstrating the generality of the IQ-Paths

methods, they are also used to (1) help a data-driven interactive high performance code

meet its user-defined utility requirements and (2) implement a more efficient version of the

popular Grid-FTP application.

1.5 Thesis Statement

Enterprise applications exhibit wide variations in their performance and availability re-

quirements, expressed implicitly by variations in workload and use and/or explicitly by

differences in their service level agreements. The resulting challenges in managing these

applications are compounded by their use of shared computational and network resources.

Our thesis is twofold: (1) the effective online management of distributed enterprise applica-

tions running on shared IT infrastructures requires the combined use of multiple models of

application and infrastructure behavior, including performance, availability, and resource

usage models, and (2) a risk-based method based on utility theory constitutes an effec-

tive approach to combining these multiple models and to linking higher level (business)

objectives to operational requirements and policies.

1.6 Thesis Contributions

The first set of thesis contributions concerns effective online management in shared data

center settings.

Business Policy-Driven Automated Availability Management: Leveraging systems’ per-

formance / availability (i.e., performability) tradeoffs, we develop a novel policy-

driven approach to address the potentially conflicting resource demands of these re-

quirements. The approach uses utility theory to capture users’ risk attitudes and then

develops an automated decision engine that makes performability tradeoffs to meet

those attitudes while optimizing overall system utility. In this fashion, IT users can
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adjust system performance and availability to the risks tolerable by current business

objectives. The approach is demonstrated with representative business applications

on shared datacenter IT resources.

Utility-Driven Proactive Availability Management: For the critical enterprise applica-

tions considered in this thesis, a key contributor to application utility is the time

taken to recover from failures, measured as Mean Time to Recovery (MTTR) or ex-

pressed by a Recovery Time Objective (RTO). Recovery techniques like disk-based

logging [37] exhibit low runtime overheads but have large recovery times. Active

replicas exhibit low recovery times but have high runtime costs [68]. Active-passive

pairs can reduce runtime costs and offer suitable recovery times, but do not link these

to current business objectives and/or incidence of failure. To address these issues,

we develop a hybrid approach, termed proactive fault tolerance, which uses online

methods for failure prediction to dynamically determine the acceptable amounts of

additional processing and communication resources to be used (i.e., costs) to attain

certain levels of utility and acceptable delays in failure recovery.

The second set of thesis contributions extends management techniques beyond single

data centers into the distributed computing and communication infrastructures commonly

used by modern service-oriented systems.

Probabilistic Guarantees for Network Services: A specific issue faced by distributed en-

terprise applications is how to provide service guarantees across potentially unre-

liable best effort network infrastructures. Here, the presence of dynamic network

behavior and of multiple available network paths make it imperative for enterprise

middleware to assist end user applications in best utilizing the available network re-

source. More specifically, middleware can help by providing to applications different

levels of guarantees for data movement. A specific instance in which such guarantees

are useful is when moving an application’s original data vs. replicated data, the latter
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done to meet certain reliability goals. The IQ-Paths approach to self-regulating data

streaming across shared network infrastructures offers such guarantees. IQ-Paths

dynamically measures and then, also statistically predicts the available bandwidth

profiles on network links. Using these methods, IQ-Paths then automates the move-

ment of data traffic across different overlay paths. This includes splitting a single

data stream across multiple paths to improve performance through parallelism, and

to improve desired end-to-end behavior by dynamically differentiating the amounts

and kinds of data traffic imposed onto different paths. Self-regulating data movement

and differentiation use a dynamic packet scheduling algorithm named PGOS that au-

tomatically maps packets to paths to match application-level utility specifications.

Risk-based Management: A risk-based formulation is again shown to be an effective way

to link the operational guarantees expressed by utility and enforced by the PGOS

algorithm with the higher level business objectives sought by end users.

1.7 Thesis Organization

The remainder of the thesis is organized as follows. We discuss the risk-based availabil-

ity management framework and its methods for self-optimization of both performance and

availability in Chapter 2. For critical and complex enterprise applications, since a key con-

tributor to application utility is the time taken to recover from failures, efficient proactive

fault tolerance mechanisms able to reduce run-time cost and improve recovery time are dis-

cussed in Chapter 3. Chapter 4 proposes the IQ-Paths approach with probabilistic service

guarantee, to address the dynamic network behavior in realistic enterprise computing envi-

ronment, and provide better network resource availability and network service guarantee.

The risk-based formulation is used as an effective way to link the operational guarantees

expressed by utility and enforced by the PGOS algorithm, with the higher level business

objectives sought by end users. Related work in availability management is described in

Chapter 5, followed by Conclusions and Future Work.
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CHAPTER II

RISK-BASED AUTOMATED AVAILABILITY MANAGEMENT

DRIVEN BY BUSINESS POLICIES

2.1 Introduction

As businesses are increasingly dependent on their IT environments for critical business

function, IT service management solution driven by business policies (including objectives

policies) is taking on a crucial role. In IT service management driven by business policies,

the underlying IT systems are designed to maximize the business values of the services

offered by IT and to continuously change as business needs change. Policy-driven service

management helps reduce IT management cost and keeps the service management aligned

with business objectives. A key goal of IT service management driven by business policies

is to use business policy to guide resource management, and allocations in the IT infras-

tructures are used to carry out business tasks. In the datacenter environment, for instance,

business policy has been shown important for guiding provisioning for the different appli-

cations that share the center’s computing resources [71]. In the high performance domain,

batch schedulers routinely use high level policies to determine the allocation of parallel

machines to applications [31]. In operational information systems, tradeoffs exist with

respect to the performance vs. reliability of business applications, recovery time (MTTR)

being a key metric.

While most of the previous research focuses on performance/resource management,

little work has addressed the area of availability management driven by business policies.

This is a critically important task in enterprise IT, because (1) a single failure in enterprise

IT could cause large business loss and policy violations [40], (2) the interrelation between

performance and availability implies that policies for both must be considered jointly [89],
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and (3) decision making is often risk-sensitive [44, 97]. It is still unclear how we can

automate availability management in a highly dynamic and complex system according to

business level objectives for performance and risk attitude/preference. As a consequence,

users cannot manage the availability/performance ratio to match their risk tolerance.

In this chapter, we propose a policy-driven approach to automating run-time availabil-

ity management in IT systems, according to high level availability and performance objec-

tives [14]. We further apply von Neumann-Morgenstern utility theory to deal with users’

risk attitude and preference. Based on the proposed approach, we implement an automated

decision engine for availability management. The initial evaluation of the solution illus-

trates the significance of the policy-driven approach and it demonstrates its applicability

for availability management in complex IT environments. In this fashion, IT users can

customize their availability to the risks tolerable by business objectives.

The research presented in this work makes several contributions to the domain of IT

management driven by business policies:

• rigorous methods and an associated management framework relate business objec-

tives to the IT services that implement certain business tasks and to the performance

implications of provisioning changes for IT services - performance model and avail-

ability model;

• an automated decision engine continuously optimizes IT availability management

and controls service provisioning based on expected utility value in order to maxi-

mize high level business objectives;

• a new risk-based formulation of business policy combines the Service Level Agree-

ments (SLAs) used in prior work with notions of risk tolerance to better capture

current operational needs and requirements; and

• novel management methods based on risk tolerance and SLAs are shown useful for

runtime guidance and control of performance/reliability tradeoffs in two different
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business environments: (1) multi-tier business applications and (2) operational infor-

mation systems.

Our focus on reliability is driven by multiple facts. First, failures are a key threat to

enterprise systems, since they can result in unacceptable levels of service unavailability

and lead to substantial revenue loss [91].

Second, handling failures manually is both a difficult and error-prone task, constituting

a strong motivation for automating system management. This complexity is evident both

for the datacenter environment [36] evaluated in this work and the complex, distributed

service-based systems now being developed and deployed in industry [47]. Complexity

derives from several factors. First, modern enterprise services typically comprise multiple

systems and sub services, and often interact with other services. In addition, the growing

scale of modern enterprise services (e.g., tens of thousands of services instances running in

HP’s consolidated data center) make manual availability management almost impossible.

At the same time, the business objectives or policies are diverse and complicated, typically

involving a combination of performance, availability, security, and other aspects. While the

operational policies are the actual policies used in practice to manage IT services, instead

of business policy, it is hard to assess the business value of service management using oper-

ational policies, and align them to high level business objectives and policies. Finally, fault

tolerance mechanisms (e.g., active standby and passive standby) themselves are complex

and different mechanisms are applicable under different situations since they may offer dif-

ferent levels of reliability, recovery times, as well incur different overhead or performance

penalty.

Third, there are some well-known causes of failures, one being increased failure rates

under high loads, another being failures caused by external interventions such as the appli-

cation of system patches or change of configurations [65]. Since they occur frequently in

large-scale enterprise data centers, automated management is strongly indicated to improve

service availability in these situations.
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Fourth, it is possible to directly relate managerial attitudes concerning failures to dif-

ferent levels of risk tolerance. Given the tradeoff between performance and downtime,

low risk tolerance might choose lower downtime values, whereas high risk tolerance might

choose higher performance. For example, policy may directly prohibit patching under con-

ditions of high load - i.e., low risk tolerance. More generally, in the operational informa-

tion systems run by one of our industry partners [35], risk tolerance is an approximation

of a combination of factors, including peak vs. non-peak operational time, proximity to

delivery time for certain subsystem output, and others. Risk tolerance, therefore, is an ag-

gregate measure of managerial policy. Specific research results presented in this work use

risk tolerance to adjust system performance/reliability characteristics in response to system

changes. One case considers patch application or service replacement for multi-tier web

services. Another case considers the aforementioned aggregate measure of risk. Results

demonstrate entirely different tradeoffs made for risk-averse vs. risk-tolerant scenarios.

They also show the effects of different risk vs. utility curves.

The remainder of this chapter is organized as follows. Section 2.2 motivates this re-

search, emphasizing importance of availability management in enterprise computing. In

Section 2.3, we present our approach, including the framework, models and automated

decision engine. Section 2.4 discusses how to apply utility theory to deal with users’

risk attitude. Experimental evaluations and conclusion with lessons learned, are given in

Section 2.5 and 2.6.

2.2 Motivating Example

Failures in enterprise systems [35, 36] can result in substantial revenue loss. For exam-

ple, it is reported that the average cost per hour of downtime for financial organizations

can be up to 6.5 million US dollars, and for retail systems such as the home shopping in-

dustry, the cost can be up to 113 thousand US dollars per hour of downtime [91]. The

continued growth in scale and complexity of these applications and their IT infrastructures,
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however, make it difficult, if not impossible for human end users to continuously maintain

and improve their availability. Factors contributing to this difficulty include the diverse

and complex business objectives and policies, and changing run-time environments as well

as changing demand behaviors. An important goal, therefore, is to automate availability

management in large enterprise systems, both to provide higher levels of availability and

performance and to reduce management cost [90].

Availability management must consider risk and risk attitude policies [44]. One in-

tuitive example of risk attitude policies given in [44] is, “given a choice between good

performance and mediocre downtime, or mediocre performance and good downtime, I’d

pick the second one (or some other customers will pick the first one).” Consider the Opera-

tional Information System (OIS) run by one of our industrial partners, a major U.S. airline.

OIS is responsible for a wide array of tasks that range from facilitating passengers check-in,

to baggage handling, to flight updates, and even supporting the website that allows online

check-in, and ticket sales. From an operational point of view, different components of

the OIS exhibit different levels of risk. A flight positioning subsystem, using FAA inputs,

for example, can tolerate some loss of state since the FAA feed periodically updates each

flight’s positions [35]. Conversely, the subsystem performing passenger check-in must be

highly reliable. At the same time, risk is not a static quantity. An OIS sub-component

providing services to a flight ready to depart in 5 minutes is more critical, i.e., it is less

risk-tolerant, than the sub-component serving a flight that is preparing for departure in 50

minutes, for instance. Quantifying such runtime changes in risk (criticality) would allow

an enterprise to allocate more resources to a sub-component that is currently at a higher

level of risk.

Knowledge about risk can guide management of subsystems as well as that of individual

components. An OIS example is perceived risk for the web server used to book flights, per-

form check-ins, etc. The two important attributes for this server are its response-time and

availability. Unfortunately, when resources are constrained, improved availability through
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Figure 2: Availability Management Framework

methods such as active/passive standbys typically implies increased response-times. The

resulting tradeoff in availability vs. response-time must be guided by its effect on the users

(potential customers) accessing the web-site. Risk tolerance, i.e., the willingness to tolerate

risk, is high, for instance, when loads are high. In this case, as in other enterprise systems,

fault-tolerance modulated based on currently perceived risk, can exploit the fact that risk

may be quantified as potential loss of revenue. A high risk state is one in which a failure

in that state would cause a high loss of revenue or the amount of potential revenue loss is

high. As a result, enterprise policy might dictate a preference for higher availability in such

conditions.

2.3 Availability Management Driven by Business Policies
2.3.1 Framework

Our availability management leverages a policy-driven approach to automate the run-time

availability management in IT systems, according to high level availability and perfor-

mance objectives. The framework is shown in Figure 2. Business objective is the business

level metrics including utility being maximized. The business policies specify a set of
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business level regulations. Examples of such policies are:

1. Customer with revenue greater than $100K/Year should be classified as gold cus-

tomers (Class 1 customers).

2. Services for gold customers should have at least four-nines availability.

3. Services for bronze customers should not consume more than 20% of the utility data

center (UDC) resources.

While business policies are the high level policies to which automated service manage-

ment should adhere, the operational policies are the actual refined policies used to manage

service availability at run time. One typical example of an operational policies in the avail-

ability management domain is to allocate a passive standby to every second instance of the

second tier, and to checkpoint every 10 minutes.

To ‘map’ the business policies to operational policies, a set of service models is used

to specify the application topology, dependency between different sub systems or tiers, and

setup information of services and their components. The service model is used for avail-

ability modeling, performance modeling, operational policies generation, and cascading

failures.

A set of utility policies, which can also be viewed as part of the business policies (some-

times they are considered as business objectives, as they dictate customer satisfactions), ex-

press preferences for a variety of performance metrics, as well as metrics describing avail-

ability, security, and any other service attributes of interest. Often, utility function maps

the performance metrics (e.g., response time) to monetary measurement (e.g., revenue). A

widely used exponential utility functions is in the form of:

U(d) =
Ke−d+M

1 + e−d+M
,

where d is the response time of the service requests and K and M is are constants which

are specific to different services offered in the data center. The good property of this utility
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function family is that it reasonably well models the common business requirement for

service response time, i.e., when the response time is less than a threshold M , the utility is

almost constant (although it still decreases very slowly when the response time increases),

and when the response time is higher than the acceptable threshold, when it is considered

the response time is unacceptable, the utility will drop very quickly to almost 0. Other

utility functions can also be used, including discrete utility functions. Note that different

services for different customers will have different constant and the utility function could

change over time. One concrete example in Delta Airline’s IT infrastructure is that one

sub-system requires high performance (low response time) during a certain period of the

day (from Midnight to early in the morning), and it has much lower requirement on the

performance during other times. Our methodology can accommodate this kind of utility

policies which change over time.

The performance profile is used to estimate the relationship between performance and

resource allocation, under current and predicted work load. Service model is used to esti-

mate the availability of various services using different fault-tolerance methods, including

active standby, passive standby, and proactive standby [13].

Based on business policies, objectives, service model, and performance profiles, the

policy decision engine (see Figure 3) first obtains the performance model and availabil-

ity model, then forms a Mixed-Integer Programming (MIP) problem automatically which

optimizes the service availability management according to high level business and util-

ity policies, by finding the suitable availability operational policies. Many efficient MIP

solvers can be used to solve this MIP problem, and we use GAMS with CPLEX [34]. How

the decision engine obtains the performance/availability models and optimizes availability

management is discussed in the next two subsections.
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response time is less than a threshold M, the utility is almost 
constant (although it still decreases very slowly when the 
response time increases), and when the response time is higher 
than the acceptable threshold, when it is considered the 
response time is unacceptable, the utility will drop very 
quickly to almost 0.  Note that different services for different 
customers will have different constant and the utility function 
could change over time. One concrete example in Delta 
Airline’s IT infrastructure is that one sub-system requires high 
performance (low response time) during a certain period of the 
day (from Midnight to early in the morning), and it has much 
lower requirement on the performance during other times.  
Our methodology can accommodate this kind of utility 
policies which change over time.  

The performance profile is used to estimate the 
relationship between performance and resource allocation, 
under current and predicted work load. Service model is used 
to estimate the availability of various services using different 
fault-tolerance methods, including active standby, passive 
standby, and proactive standby [9].   

 

     
Based on business policies, objectives, service model, and 
performance profiles, the policy decision engine (see Figure 2) 
first obtains the performance model and availability model, 
then forms a Mixed-Integer Programming (MIP) problem 
automatically which optimizes the service availability 
management according to high level business and utility 
policies, by finding the suitable availability operational 
policies. How the decision engine obtains the 
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performance/availability models and optimizes availability 
management is discussed in the next two subsections.  

B. Performance Model 
Although session arrival process is normally modeled as 

Poisson process, the request arrival rate for each component of 
a multi-tier application is not well-modeled as Poisson, as it 
largely depends on the load balancing/scheduling algorithms 
being used [10]. We therefore, use a G/G/1 queuing system 
(see Figure 3) for modeling the performance of this class of 
applications[11]. Let sλ  be the session arrival rate of 

application s,  sτ  be the average session length, and sz be the 
average session think-time. Then, by applying Little’s Law, the 
arrival rate of each component can be calculated as: 

, , , , /s t i s t i s s szλ β λ τ= , 

where , ,s t iβ  is the component-specific constant for the ith 
component in tier t of application s. This constant depends on 
the load balancing and scheduling algorithm used in each tier 
and can be measured at run time.  

Assume the response time of customers’ request sd is 
broken down into per-tier response times, then 

, , , , , ,/s s t i s t i s t i
i i

d dβ β=∑ ∑ , where 
, ,s t id  is the average response 

time of each component, under its current workload  and with 
its currently allocated resources.  

 To estimate , ,s t id , we use a tight bound for G/G/1 waiting 
time:  

, ,
, , , , , ,

, ,

1
2

s t iu u
s t i s t i s t i

s t i

w w w
ρ
λ
+

− ≤ ≤ ,  

where , , , , , ,s t i s t i s t iSρ λ= , and , ,
u
s t iw  is the upper bound of 

, ,s t iw : 

2 2
, , , , , , , , , ,( ' ) /(2 2 )u

s t i s t i s t i s t i s t iw λ σ σ ρ= + − . 

To see the tightness of the above bounds, we can convert 
this waiting time bounds to the bounds for the mean number of 
requests waiting in queue, and the difference between the latter 
lower and upper bounds is , ,1

2
s t iρ+ , which is between 0.5 and 1 

(events in the queue), because , ,0 1s t iρ< <  always holds.  

Now the response time of each component can be estimated 

by: 
, ,

, , , , , , , ,
, ,

1
( ) / 2

2
s t iu u

s t i s t i s t i s t i
s t i

d w w S
ρ
λ
+

= + − +  

Several parameters are needed in the above formulations. 
The average service time under some workload , ,s t iλ with 
allocated resource , ,s t iR , , , , , , ,( )s t i s t i s t iS S R= , is determined using 
off-line profiling (performance model profiling). The variation 

of service time  2
, ,'s t iσ  is determined with a similar method.  

The variation of request inter-arrival time can be measured on-
line.  Currently we use a simple moving average predictor to 
predict the inter-arrival time variation in the next time slot, but 
more sophisticated predictors can be used.  

C. Availability Model 
There are several availability evaluation engines, such as 

Sharpe and Avanto [12]. We use a traditional Markov Chain 
Model. Figure 4 represents the Markov Chain Model of a two-
tier application with only two components. For simplicity, we 
only consider software failures, as software failures are usually 
the dominant failures in commercial utility data center [13], 
although the Markov Chain Model can be extended easily to 
consider the hardware failures. For limited space, we omit the 
formulations of Markov Chain analysis, referring interested 
readers to [14] for additional details.  

The allocated standbys help to increase the repair rate of the 
system under consideration.  For example, active standby can 
decrease the repair time to almost zero, while passive standby 
reduces the repair time significantly by using checkpointing 
and recovery based on most recent checkpointed session state.  
At the same time, active and passive standbys require 
additional resource, thus causing performance penalty before 
failures. A specific resource considered in this paper is the 
CPU, which is normally the primary bottleneck for multi-tier 
applications in utility data center [15]. We also assume that 
virtualization methods and Work Load Manager (WLM) (e.g., 
such as those used in HP’s utility data center ([4]) make it easy 
to adjust primary and standby allocations.  

A specific cause of failures considered in our work are 
configuration changes and updates such as software patching. 
In web server applications, these are known to cause up to 
40% of all failures [13]. For availability management, then, we 
model the change process as four phases: standby initialization, 
patching/change, failure detection, and recovery.. During the 
second phase, the primary component is typically un-available 
if it is patched, but it may still provide service if its 
configuration is being changed. If failure occurs in the failure 
detection phase, recovery phase is initiated immediately. The 
resources required by the standbys in each phase are profiled 
off-line, to determine the resource available in the 
performance model [9], and the performance model 
determines the utility obtained in each phase.  
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2.3.2 Performance Model

Although a session arrival process is often modeled as a Poisson process, this is not suit-

able for the request arrival rate for each component of a multi-tier application, as it largely

depends on the load balancing/scheduling algorithms being used [80]. We therefore, use a

G/G/1 queuing system (see Figure 4) for modeling the performance of this class of appli-

cations [95]. Let λs be the session arrival rate of application s, τs be the average session

length, and zsbe the average session think-time. Then, by applying Little’s Law, the arrival

rate of each component can be calculated as:

λs,t,i = βs,t,iλsτs/zs,

where βs,t,i is the component-specific constant for the ith component in tier t of application

s. This constant depends on the load balancing and scheduling algorithm used in each tier

and can be measured at run time.

Assume the response time of customers’ request dsis broken down into per-tier response

times, then we have:

ds =
∑

t

(
∑

i

βs,t,ids,t,i/
∑

i

βs,t,i),

where ds,t,i is the average response time of each component, under its current workload and

with its currently allocated resources.

To estimate ds,t,i, we use a tight bound for G/G/1 waiting time:

wu
s,t,i −

1 + ρs,t,i

2λs,t,i

≤ ws,t,i ≤ wu
s,t,i,

where ρs,t,i = λs,t,iSs,t,i, and wu
s,t,i is the upper bound of ws,t,i:

wu
s,t,i = λs,t,i(σ

2
s,t,i + σ′

2
s,t,i)/(2− 2ρs,t,i).

To see the tightness of the above bounds, we can convert this waiting time bounds to the

bounds for the mean number of requests waiting in queue, and the difference between the

latter lower and upper bounds is1+ρs,t,i

2
, which is between 0.5 and 1 (events in the queue),

because 0 < ρs,t,i < 1 always holds.
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expected loss from the insurance cause (i.e., risk-averse), and 
also why people buy lottery even though the money spent on 
lottery is usually much larger than the expected lottery prize 
(i.e., risk-seeking). 

Exponential utility functions are one of the most used type 
of risk-sensitive utility functions. In this paper, we consider a 
very popular exponential utility function in economics: 
Constant Relative Risk Aversion (CRRA) von Neumann-
Morgenstern (vNM) utility function.  
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Figure 4.  Markov Chain for a Simple Two-Component 
Application 

 

B. Risk-attitude Sensitive Availability Manamgent 
Next we use an example to discuss how to apply the utility 

theory described above to deal with uncertainty and user’s 
preference in availability management. Our approach uses 
risk-sensitive utility function such as CRRA to capture users’ 
preference, and then optimize availability management by 
maximizing the expected utility. 
 

Table 1. Lottery Outcomes 
Options Performance Availability 

L1: (pP,hA) 55% of Max 99.999% 
L2: (hP,pA) 99.5% 97.25% 
L3: (gP,gA) 92% 99.95% 

 
Table 2. Preferences of Outcomes 

Customer Preference 
C1: (`like high availability’) L1>L3>L2 

C2: (`like high performance’) L2>L3>L1 
C3: (`mediocre perf. and avail.’) L3> L1>L2  
  

To manage the availability according to users’ preference 
structure, we first need to find the user’s risk attitude under 
uncertainty. In our example, we use three typical possible 
outcomes (‘lottery outcomes’ in game theory) to elicit user’s 
risk attitudes (Table 1). Intuitively, L1 represents an outcome 
with very high availability (five nines) with poor performance, 
L2 represents an outcome with very high performance with 
poor availability, and L3 represents an outcome with mediocre 
performance and mediocre availability. Different customers 
have different risk attitudes, for example, customer C1 (Table 
2) prefers L1 to L3, and prefers L3 to L2, since he likes really 
high availability (very risk-averse), while customer C2 prefers 
L2 to L3, and prefers L3 to L1. Their different risk attitudes are 
captured by the CRRA vNM utility function, which has the 
form of:  

( )i
PUvNMU L

α

α
= , 

where U is the performance outcome (e.g., 55%), and P is the 
probability that the performance outcome could happen (e.g., 
99.999%). It’s straightforward to show  (1) 0<α <1 risk 
averse and the smaller a is, the more risk averse the person is; 
(2) α =1  risk neutral; and  (3) α >1  risk seeking, the 
bigger α  is, the more risk-seeking the person is. To estimate 
the value of α  for C1, we use the outcome preference of this 
user, i.e., L1>L3> L2, to find the estimated range of α . Given 
more preferences of the customer, we can further narrow down 
the range, and when the range is narrow enough, the average 
of the upper and lower bounds is sufficiently good to represent 
the user’s risk attitude [16].  There exist other techniques to fix 
the value ofα , if that is preferred. One technique is to find the 
equivalent outcomes, which states two outcomes make no 
difference to the customer. It results in an equation with α  as 
the single variable to be determined.  Another technique is to 
find the limit of the user’s risk attitude. For example, for 
customer C1, if he states further that L1’s five-nines 
availability is good enough for him, and other outcomes with 
even lower performance and higher availability are not as 
attractive to him as outcome L1, then the lower bound of α  
we found previously (which is 0.001) is the value that 
represents this customer’s risk attitude.  Similarly, we found 
thatα  for customer C2 is 0.37. The α  for customer C3 is 
estimated at 0.03, by averaging the lower and upper bounds 
derived by the preferences stated in Table 2 (we can refine the 
α  for customer C3 by asking more preference questions, but 
the lower and upper bounds turn out to be sufficient to 
differentiate the outcomes in the experiments).  To manage the 
availability according to customer’s risk attitude under 
uncertainty, we simply replace the objective function of the 
previous MIP with the new objective function: 

( ) ( )s s

s S

PUMax vNMU Max
α

α∈

= ∑ . 

V. EXPERIMENTS  
We evaluate our approach in a utility data center scenario, 

as shown in Figure 5, with three multi-tier applications. The 
first one is a 4-tier J2EE web server application with a load 
balancer tier, Apache HTTP server tier, Tomcat Servlet server 
tier and MySQL database server tier. The second application is 
a 2-tier web server with one load balancer tier and one Apache 

4-tier J2EE 
web server

2-tier 
webserver

Airline 
Revenue 
System

Active 
Standby

Passive 
Standby

 
Figure 5 Example Services in Utility Data Center 

Figure 5: Markov Chain for a Simple Two-Component Application

Now the response time of each component can be estimated by:

ds,t,i = (wu
s,t,i + wu

s,t,i −
1 + ρs,t,i

2λs,t,i

)/2 + Ss,t,i

Several parameters are needed in the above formulations. The average service time

under some workload λs,t,i with allocated resource Rs,t,i, Ss,t,i = Ss,t,i(Rs,t,i), is deter-

mined using off-line profiling (performance model profiling). The variation of service time

σ′2s,t,i is determined with a similar method. The variation of request inter-arrival time can

be measured on-line. Currently we use a simple moving average predictor to predict the

inter-arrival time variation in the next time slot, but more sophisticated predictors can be

used.

2.3.3 Availability Model

The availability model is used to derive the probability Ps of the system when it is in state

s, if Ps is not directly available. Each state s, s = 1, 2, ...S is the state that one or several

components of the system are down and the remaining components are functioning prop-

erly. There are several availability evaluation engines, such as Sharpe and Avanto [43] to

derive Ps, either use traditional Markov Chain Model or simulation. We use the traditional

Markov Chain Model. Figure 5 represents the Markov Chain Model of a two-tier appli-

cation with only two components. For simplicity, we only consider software failures, as
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software failures are usually the dominant failures in commercial utility data center [65],

although the Markov Chain Model can be extended easily to consider the hardware failures.

For limited space, we omit the formulations of Markov Chain analysis, referring interested

readers to [32] for additional details.

The allocated standbys help increase the repair rate of the system under consideration.

For example, active standbys can decrease the repair time to almost zero, while passive

standbys reduce the repair time significantly by using checkpointing and recovery based

on most recent checkpointed session states. At the same time, active and passive standbys

require additional resources, thus causing performance penalties before failures. A specific

resource considered in this work is the CPU, which is normally the primary bottleneck for

multi-tier applications in utility data center [3]. We also assume that virtualization methods

and Work Load Manager (WLM) (e.g., such as those used in HP’s utility data center [36])

make it easy to adjust primary and standby resource allocations.

Specific causes of failures considered in our work are configuration changes and up-

dates such as software patching. In web server applications, these are known to cause up

to 40% of all failures [65]. For availability management, then, we model the change pro-

cess as four phases: standby initialization, patching/change, failure detection, and recovery.

During the second phase, the primary component is typically un-available if it is patched,

but it may still provide service if its configuration is being changed. If failure occurs in

the failure detection phase, recovery phase is initiated immediately. The resources required

by the standbys in each phase are profiled off-line, to determine the resource available in

the performance model [13], and the performance model determines the utility obtained in

each phase.

2.3.4 Resource Allocation

Given a set of components, let As,t,i be the 0-1 variable that equals to 1 if an active standby

is to be allocated for component Cs,t,i or 0 if no active standby is to be allocated for this
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component. Ps,t,i is 0-1 variable that equals to 1 if a passive standby is to be allocated for

Cs,t,i. Finally, Ns,t,i is 0-1 variable that equals to 1 if no standby is to be allocated for Cs,t,i.

Then, we have the following constraints that state only one standby can be allocated for

one component:

if As,t,i = 1

then
∑
k

As,t,i,k = 1

if Ps,t,i = 1

then
∑
k

Ps,t,i,k = 1

and

As,t,i + Ps,t,i + Ns,t,i = 1, for alls, t, i.

The following constraints guarantee that one standby is allocated to only one host:

As,t,i(
H∑

k=1

As,t,i,h) = 1, and

Ps,t,i(
H∑

k=1

Ps,t,i,h) = 1,

where As,t,i,h and Ps,t,i,h are 0-1 variable, and they are equal to 1 if active standby As,t,i

(or passive standby Ps,t,i ) is allocated at host h. Sometimes data center administrators or

customers have specific restrictions on where the standbys should be placed, for which the

following additional constraints can be applied:

if As,t,i = 1

then As,t,i,1 + As,t,i,5 + ... = 1

The primaries and standbys allocated on one particular host can use up to 100% of the CPU

resource. Therefore, resource allocation constraints can be formulated as:

if As,t,i,h = 0

then CPUh,s,t,i,a = 0∑
s,t,i,b

CPUh,s,t,i,b = 1, for all hosts h
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The objective function of this MIP problem is then:

Max(U) = Max(
∑
s∈S

PsUs),

where Us is the average utility in each possible state in the Markov Chain, and Ps is the

limiting probability of the corresponding state s. This MIP formulation maximizes the

expected utility of the data center. In the next section, we will consider the risk attitude

policies under uncertainty, which result in a different objective function. All of the con-

straints of the new MIP problem are the same as the constraints in this MIP problem.

2.4 Risk-attitude Sensitive Availability Management
2.4.1 von Neumann-Morgenstern Utility Theory

Availability management usually involves uncertainty, and decision making in such circum-

stances should take into account a user’s preference structure, that is, how a user compares

different outcomes of his or her decisions. In terms of availability management, how dif-

ferently the outcome with failure and the outcome with no failure are valued implies the

decision maker’s preference structure or risk attitude, e.g., good performance and mediocre

reliability versus mediocre performance and good reliability. Different preference structure

or risk attitudes will result in different decisions. Utility theory developed by von Neumann

and Morgenstern can be used to deal with such decisions under uncertainly. We will in-

formally describe this theory below. A comprehensive introduction of this theory can be

found in [97].

Let W be a set of possible outcomes of lotteries and wi is one outcome in terms of

money. A lottery L is defined as {(w1,P1), (w2,P2), . . . .(wn,Pn)}. Where Pi is the proba-

bility that outcome wi would happen. The von Neumann and Morgenstern theory suggests

that if the preference structure satisfies certain primitive axioms, then L1 is preferred over

L2 if and only if vNMU(L1) > vNMU(L2), where vNUM(L) =
n∑

i=1

Pi · vNMU(wi) is the

expected von Neumann-Morgenstern utility of L.
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In other words, a lottery is preferred over another one if and only if the preferred lottery

has a lager expected utility. Based on this theory, a decision making becomes a procedure to

find an alternative with maximal expected utility. The utility function vNMU is the value of

a monotonically increasing function of the wealth level w. The function intuitively reflects

how happy the decision maker is with its current wealth level. Consider a utility function,

U defined over wealth w. Let MU(w) = dU(w)/dw. For everyone, regardless of their

attitude, it is natural to assume that MU(w) > 0 since a person’s utility always increases

in the amount of wealth that he has. We can then determine a person’s risk attitude through

their marginal utility function MU(w) as follows.

1)dMU(w)/dw > 0 ⇒ risk − seaking. In other words, the additional utility he

gets from one more dollar is larger when he already has a larger amount of initial wealth.

Loosely speaking, a risk-seeking person cares more about the upside potential than the

downside risk.

2)dMU(w)/dw < 0 ⇒ risk − averse. In other words, the additional utility he gets

from one dollar becomes less with the increase of his wealth. Loosely speaking, a risk-

averse person cares more about the downside risk than upside potential.

3)dMU(w)/dw = 0 ⇒ risk − neutral. In other works, the additional utility is in-

dependent of the wealth level. Loosely, a risk-averse person cares equally about downside

risk and upside potential.

Risk attitudes explain why people buy insurance even though the insurance premium is

usually much larger than the expected loss from the insurance cause (i.e., risk-averse), and

also why people buy lottery even though the money spent on lottery is usually much larger

than the expected lottery prize (i.e., risk-seeking).

Exponential utility functions are one of the most commonly used type of risk-sensitive

utility functions. In this work, we consider a very popular exponential utility function in

economics: Constant Relative Risk Aversion (CRRA) von Neumann-Morgenstern (vNM)

utility function.
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2.4.2 Using Risk Formulations in Availability Management

Next, we use an example to discuss how to apply the utility theory described above to

deal with uncertainty and user’s preferences in availability management. Our approach

uses risk-sensitive utility function such as CRRA to capture users’ preferences and then

optimize availability management by maximizing the expected utility.

Table 2: Lottery Outcomes
Options Performance Availability
L1: (pP,hA) 55% of Max 99.999%
L2: (hP,pA) 99.5% 97.25%
L3: (gP,gA) 92% 99.95%

Table 3: Preferences of Outcomes
Customer Preference
C1: (‘like high availability’) L1>L3>L2
C2: (‘like high performance’) L2>L3>L1
C3: (‘mediocre perf. and avail.’) L3> L1>L2

To manage availability according to a user’s preference structure, we first need to find

the user’s risk attitude under uncertainty. In our example, we use three typical possible

outcomes (‘lottery outcomes’ in game theory) to elicit a user’s risk attitudes (Table 1). In-

tuitively, L1 represents an outcome with very high availability (five nines) and with poor

performance, L2 represents an outcome with very high performance with poor availability,

and L3 represents an outcome with mediocre performance and mediocre availability. Dif-

ferent customers have different risk attitudes, for example, customer C1 (Table 2) prefers

L1 toL3, and prefers L3 to L2, since he likes really high availability (very risk-averse),

while customer C2 prefers L2 to L3, and prefers L3 to L1. Their different risk attitudes

are captured by the CRRA vNM utility function, which has the form of:

vNMU(Li) =
PUα

α
,
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where U is the performance outcome (e.g., 55%), and P is the probability that the per-

formance outcome could happen (e.g., 99.999%). It’s straightforward to show (1) 0 <

α < 1 ⇒ risk − averse and the smaller α is, the more risk averse the person is; (2)

α = 1 ⇒ risk − neutral; and (3) α > 1 ⇒ risk − seeking, the bigger α is, the more

risk-seeking the person is. To estimate the value of α for C1, we use the outcome pref-

erence of this user, i.e., L1>L3> L2, to find the estimated range of α. Given additional

preferences of the customer, we can further narrow down the range, and when the range

is narrow enough, the average of the upper and lower bounds is sufficiently good to rep-

resent the user’s risk attitude [97]. There exist other techniques to fix the value ofα, if

that is preferred. One technique is to find the equivalent outcomes, which states that two

outcomes make no difference to the customer. It results in an equation with α as the single

variable to be determined. Another technique is to find the limit of the user’s risk attitude.

For example, for customer C1, if he states further that L1’s five-nines availability is good

enough for him, and other outcomes with even lower performance and higher availability

are not as attractive to him as outcome L1, then the lower bound of α we found previ-

ously (which is 0.001) is the value that represents this customer’s risk attitude. Similarly,

we found thatα for customer C2 is 0.37. The α for customer C3 is estimated at 0.03, by

averaging the lower and upper bounds derived by the preferences stated in Table 2 (we can

refine the α for customer C3 by asking more preference questions, but the lower and upper

bounds turn out to be sufficient to differentiate the outcomes in the experiments). To man-

age availability according to customer’s risk attitude under uncertainty, we simply replace

the objective function of the previous MIP problem with the new objective function, with

all the constraints presented in Section 2.3:

Max(vNMU) = Max(
∑
s∈S

PsU
α
s

α
).

Note that the risk-formulation discussed in this section is more general than the multi-tier

applications in shared data centers example used in this Chapter. In fact, this risk-based

approach can be used in many other situations, when risk or uncertainty is unavoidable.
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expected loss from the insurance cause (i.e., risk-averse), and 
also why people buy lottery even though the money spent on 
lottery is usually much larger than the expected lottery prize 
(i.e., risk-seeking). 

Exponential utility functions are one of the most used type 
of risk-sensitive utility functions. In this paper, we consider a 
very popular exponential utility function in economics: 
Constant Relative Risk Aversion (CRRA) von Neumann-
Morgenstern (vNM) utility function.  
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B. Risk-attitude Sensitive Availability Manamgent 
Next we use an example to discuss how to apply the utility 

theory described above to deal with uncertainty and user’s 
preference in availability management. Our approach uses 
risk-sensitive utility function such as CRRA to capture users’ 
preference, and then optimize availability management by 
maximizing the expected utility. 
 

Table 1. Lottery Outcomes 
Options Performance Availability 

L1: (pP,hA) 55% of Max 99.999% 
L2: (hP,pA) 99.5% 97.25% 
L3: (gP,gA) 92% 99.95% 

 
Table 2. Preferences of Outcomes 

Customer Preference 
C1: (`like high availability’) L1>L3>L2 

C2: (`like high performance’) L2>L3>L1 
C3: (`mediocre perf. and avail.’) L3> L1>L2  
  

To manage the availability according to users’ preference 
structure, we first need to find the user’s risk attitude under 
uncertainty. In our example, we use three typical possible 
outcomes (‘lottery outcomes’ in game theory) to elicit user’s 
risk attitudes (Table 1). Intuitively, L1 represents an outcome 
with very high availability (five nines) with poor performance, 
L2 represents an outcome with very high performance with 
poor availability, and L3 represents an outcome with mediocre 
performance and mediocre availability. Different customers 
have different risk attitudes, for example, customer C1 (Table 
2) prefers L1 to L3, and prefers L3 to L2, since he likes really 
high availability (very risk-averse), while customer C2 prefers 
L2 to L3, and prefers L3 to L1. Their different risk attitudes are 
captured by the CRRA vNM utility function, which has the 
form of:  

( )i
PUvNMU L

α

α
= , 

where U is the performance outcome (e.g., 55%), and P is the 
probability that the performance outcome could happen (e.g., 
99.999%). It’s straightforward to show  (1) 0<α <1 risk 
averse and the smaller a is, the more risk averse the person is; 
(2) α =1  risk neutral; and  (3) α >1  risk seeking, the 
bigger α  is, the more risk-seeking the person is. To estimate 
the value of α  for C1, we use the outcome preference of this 
user, i.e., L1>L3> L2, to find the estimated range of α . Given 
more preferences of the customer, we can further narrow down 
the range, and when the range is narrow enough, the average 
of the upper and lower bounds is sufficiently good to represent 
the user’s risk attitude [16].  There exist other techniques to fix 
the value ofα , if that is preferred. One technique is to find the 
equivalent outcomes, which states two outcomes make no 
difference to the customer. It results in an equation with α  as 
the single variable to be determined.  Another technique is to 
find the limit of the user’s risk attitude. For example, for 
customer C1, if he states further that L1’s five-nines 
availability is good enough for him, and other outcomes with 
even lower performance and higher availability are not as 
attractive to him as outcome L1, then the lower bound of α  
we found previously (which is 0.001) is the value that 
represents this customer’s risk attitude.  Similarly, we found 
thatα  for customer C2 is 0.37. The α  for customer C3 is 
estimated at 0.03, by averaging the lower and upper bounds 
derived by the preferences stated in Table 2 (we can refine the 
α  for customer C3 by asking more preference questions, but 
the lower and upper bounds turn out to be sufficient to 
differentiate the outcomes in the experiments).  To manage the 
availability according to customer’s risk attitude under 
uncertainty, we simply replace the objective function of the 
previous MIP with the new objective function: 

( ) ( )s s

s S

PUMax vNMU Max
α

α∈

= ∑ . 

V. EXPERIMENTS  
We evaluate our approach in a utility data center scenario, 

as shown in Figure 5, with three multi-tier applications. The 
first one is a 4-tier J2EE web server application with a load 
balancer tier, Apache HTTP server tier, Tomcat Servlet server 
tier and MySQL database server tier. The second application is 
a 2-tier web server with one load balancer tier and one Apache 

4-tier J2EE 
web server

2-tier 
webserver

Airline 
Revenue 
System

Active 
Standby

Passive 
Standby

 
Figure 5 Example Services in Utility Data Center 
Figure 6: Example Services in a Utility Data Center

For such situation, the methods to find the probability Ps a system is in state s) and the

utility of this state Us could be different. In Chapter 4, we present more details on how to

use the risk-based approach for the network resource availability issues.

2.5 Experiments

We evaluate our approach in a utility data center scenario, as shown in Figure 6, with three

multi-tier applications. The first one is a 4-tier J2EE web server application with a load

balancer tier, Apache HTTP server tier, Tomcat Servlet server tier, and MySQL database

server tier. The second application is a 2-tier web server with one load balancer tier and one

Apache HTTP server tier. The third application is a two-tier airline revenue sub-system.

Experiments are conducted to validate our approach in two aspects. The first exper-

iment concerns availability management during change [65]. The second experiment is

availability management according to customers’ risk attitudes. To simulate failures, we

use a trace-based queuing system simulator, which has as inputs the user request arrival

time traces for each server and the service time traces for each component as input. The

simulation engine is similar to the simulation engine used by Janakiraman et al. [43]. In

our work, each component processes the request according to the time logged in the service

time traces, while the simulation engine used in their work is based on estimated service
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HTTP server tier. The third application is a two-tier airline 
revenue sub-system.  

The experiments are to validate our approach in two aspects. 
The first experiment is availability management during changes 
[13]. The second experiment is availability management 
according to customers’ risk attitudes. To simulate the failures, 
we use a trace-based queuing system simulator, which has as 
inputs the user request arrival time traces for each server, and 
the service time traces for each component as input. Additional 
experiments conducted on the real test-bed with injected 
failures are currently underway. The simulation engine is 
similar to the simulation engine used by  Janakiraman et al. 
[12]. In our work, each component processes the request 
according to the time logged in the service time traces, while 
the simulation engine used in their work is based on estimated 
service time distribution. The load balancing algorithm for each 
tier is the widely used round-robin algorithm (e.g., used in 
Linux Virtual Servers (LVS) [17]).  

A. Availability Management During Changes 
   To illustrate the importance of automated availability 
management for IT infrastructure, and to show how to optimize 
availability configuration to maximize expected utility, we 
introduce three different change scenarios in the first 
experiment: 1) patching component 1,1,1C  (Server 1, Tier1, 
Component 1, and the probability that the component will fail 
after patch is 0.1, 2) patching component 1,2,2C and the 
probability that the component will fail after patch is 0.1, and 3) 
changing the configuration of component 1,1,1C , and because 
the risk of this change, the probability of failure is 0.7.  The 
results are illustrated in Figure 6 to Figure 8.  Figure 6 depicts 
the utility achieved by the J2EE web server under two different 

situations:  patch applied and the new component failed vs. 
patch applied without resultant failure.  The expected utility, 
which we want to maximize is calculated by f f nf nfP U P U+ , 

where fP is the probability the new component will fail, and 

fU is the average utility from the time patch is applied till the 

time the recovery is completed (20Mins). nfP  and nfU are the 
probability the new component will not fail and the average 
utility in the same time period. Expected utilities under three 
possible configurations (active standby, passive standby, no 
standby) are shown in Figure 6(c). In this experiment, our 
availability management automatically determines the active 
standby is the optimal configuration in this situation.   

While optimal in this scenario, active standbys are not 
desirable for all scenarios. For example, in Figure 7, the active 
standby provides higher levels of availability than needed and 
therefore, it has the worst expected utility as compared with 
other two possible configurations. The intuitive reason here is 
that the tier two has two replicated components and the failure 
probability that the patch will fail is low. In this case, it is better 
not to allocate standbys, in order to maximize the expected 
utility during change.  

Again, while the no-standby configuration is the best 
configuration in this scenario, it is not the best configuration for 
the third scenario (actually it is the worst one among three 
configurations). Instead the passive standby becomes the best 
configuration (Figure 8). The insight gained from these 
experiments is that although current availability management 
either doesn’t take any preventive procedures before changes, 
or use static/same configuration for different situation, one 
particular availability configuration can result in totally 
different behaviors in different situations, depending on many 
factors including the failure probability, current workload, 
available resource, patch time, and recovery time, etc. One 
optimal (or close to optimal) configuration for one particular 
scenario could easily become the worst configuration in other 
scenario, and it is important to automate the availability 
management so the appropriate configuration (operational 
policies) can be determined and executed automatically.   

B. Risk-attitude Sensive Availability Managment 
The second experiment deals with risk attitude policies, to 

validate that it is possible to optimize the availability 
management according to customers’ preference structure/risk 
attitudes. Here we consider availability management for the 
two-tier airline revenue application, with each tier of the 
application having one component (see the third application in 
Figure 5), for three different customers (Table 1 and Table 2). 
To illustrate the results, the configurations for each component 
are limited to 1) No standby, 2) Active, 3) Passive 3Min, 4) 
Passive 5Min, 5) Passive 15Min, and 6) Passive 30Min, 
resulting in a total of 36 possible configurations for the two-tier 
application.  As discussed in the Section IV, the three 
customers C1, C2, and C3 have different risk attitudes which 
are characterized by the CRRA vNM utility functions. 
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Figure 6. Utility during  Patching Component 1,1,1C . 
Patch/change starts at t=5min, and ends at 15min. Graph (a) is the 
utility when failure occurs, (b) is the utility when failure doesn’t 
occur, and (c) is the expected utility using active standby (denoted 
by A), passive standby (P), no standby (N), and automated standby 
configuration.  

 

Time(Min) 

Utility 

Expected Utility 

Time(Min) 

Utility 

Automated 

(a) Utility with Failure (b)  Utility without Failure 

(c) Expected  Utility 

Figure 7: Utility during Patching Component C1,1,1. Patch/change starts at t=5min, and
ends at 15min. Graph (a) is the utility when failure occurs, (b) is the utility when failure
doesn’t occur, and (c) is the expected utility using active standby (denoted by A), passive
standby (P), no standby (N), and automated standby configuration.

time distribution. The load balancing algorithm for each tier is the widely used round-robin

algorithm (e.g., used in Linux Virtual Servers (LVS) [108]).

2.5.1 Availability Management During Change

To illustrate the importance of automated availability management for IT infrastructures,

and to show how to optimize availability configurations to maximize expected utility, we

introduce three different change scenarios in the first experiment: (1) patching component

C1,1,1 (Server 1, Tier1, Component 1, and the probability that the component will fail after

patch is 0.1, (2) patching component C1,2,2 and the probability that the component will

fail after patch is 0.1, and (3) changing the configuration of component C1,1,1, and because

of the risk of this change, the probability of failure is 0.7. The results are illustrated in
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 Results obtained by using different CRRA vNM utility 
functions for these three customers, and additional results using 
risk-neutral and risk-seeking vNM utility functions are given in 
Table 3. In this table, the first row is the value α . The first 
column is the utilities under five representative configurations. 
“A-A” means to allocate active standby for both components, 
and “P-P 3” means to allocate passive standby for both 
components, with checkpointing interval chosen to be 3Mins.   

The configuration with higher vNM utility better matches 
customer’s risk attitude. This means that the only thing that 
matters is the ordering vNM utility. For ease of comprehension, 
we convert the results from Table 3 to normalized vNM utility 

(orders of vNM utility) as shown in Figure 9. Experiment 
results show that the availability management is optimized 
according to the user’s risk attitudes (preference structures). 
For example, for Customer 1, we use CRRA utility function 
with α =0.001, and active standbys are chosen for the two 
components in the server. Intuitively this is true, as customer 
C1 is very risk averse and availability configuration A-A is the 
most conservative one. More accurately, the actual 
performance and availability of the application using this 
configuration is (54.9%, 99.995%), which is very close to the 
top choice of customer C1 (L1 in Table 1). Similarly, the 
performance and availability achieved for customer C2 and C3 
are (92.5%, 99.7%) and (97.5%, 98.3%), which are also very 
close to their top preference, L2 and L3 respectively.   

Another important observation is that different risk attitudes 
(different values of alpha for CRRA vNM utility function) 
result in entirely different configurations. Therefore, it is 
important to consider the users’ risk attitude when managing 
availability. Existing policy-based methods only optimize 
expected utility, which is actually one special case in our 
framework. By optimizing the expected utility, we are actually 
treating all users as risk-neutral (α =1). The reality is however, 
most users are risk-averse (including customer C2 in our 
example who only requires one nine to two nines availability 
and ‘seems’ risk-seeking). If we simply optimize the expected 
utility, the resulted configuration could be significantly 
different from what the user actually expected. 

VI. RELATED WORK 
IT service management driven by business policies is a 

relatively new area. Buco et al. present SLA management 
system that is based on business-objectives [18]. Salle et al. 
propose a solution to minimize the exposed business impact of 
service level violation [19]. They further present the 
Management by Business Objective (MBO) technology for IT 
management that can take into account strategic business 
objectives [20] and they specifically apply this approach to 
incident management domain [21].  In the context of design, 
Sahai et al. propose a policy-based model for automated 
configuration management [22]. It automatically creates a 
suitable configuration and a workflow to deploy the 
configuration based on user requirements, operator constraints, 
and technical constraints of the system. Their business-
objectives-driven performance management uses utility 
function to optimize resource allocation and maximize the 
total utility. Compared to these efforts, our work focuses on 
the optimization of availability management to meet business 
objectives. Our solution involves the aspect of utility function, 
performance modeling, and availability modeling. In addition, 
availability management always involves uncertainty. In this 

paper, we provide a method to deal with users’ risk attitudes 
and handle different tradeoff between performance and 
reliability.  

To improve availability, fault tolerance techniques are 
widely used in systems such as Fault-Tolerant CORBA [23, 
24], and Arjuna [25]. These systems replicate selected 
application/service objects and provide specifications to 
allocate standbys for fast recovery. Multiple replicas allow an 
object to continue to provide service even when one of its 
replicas fails. Passive replication is used to record both the 
state of the currently executing member (primary member) and 
the entire sequence of method invocations. Recent systems 
including Borealis [26] and SMILE [27] focus on fault-
tolerance for applications that process data streams, instead of 
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Figure 7. Utility during Patching Component 1,2,2C  0 10 20
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Figure 8. Utility during Reconfiguration of 
Component 1,1,1C  

Utility Utility 

Utility Utility 

Time(Mins)      Time(Mins)       

 Expected Utility 

Automated

(a) Utility with Failure (b) Utility without Failure 

(c) Expected Utility 

Time(Mins)      Time(Mins)       

(a) Utility with Failure (b) Utility without Failure 

(c) Expected Utility 
Automated 

Expected Utility 

Figure 8: Utility during Patching Component C1,2,2 .

Figure 7 to Figure 9. Figure 7 depicts the utility achieved by the J2EE web server under two

different situations: patch applied and the new component failed vs. patch applied without

resultant failure. The expected utility, which we want to maximize, is calculated by PfUf +

PnfUnf , where Pf is the probability the new component will fail, and Uf is the average

utility from the time patch is applied till the time the recovery is completed (20Mins). Pnf

and Unf are the probability the new component will not fail and the average utility in the

same time period. Expected utilities under three possible configurations (active standby,

passive standby, no standby) are shown in Figure 7(c). In this experiment, our availability

management automatically determines the active standby is the optimal configuration in

this situation.

While optimal in this scenario, active standbys are not always desirable. For example,

in Figure 8, the active standby provides higher levels of availability than needed and there-

fore, it has the worst expected utility as compared with other two possible configurations.

32



    8 

 Results obtained by using different CRRA vNM utility 
functions for these three customers, and additional results using 
risk-neutral and risk-seeking vNM utility functions are given in 
Table 3. In this table, the first row is the value α . The first 
column is the utilities under five representative configurations. 
“A-A” means to allocate active standby for both components, 
and “P-P 3” means to allocate passive standby for both 
components, with checkpointing interval chosen to be 3Mins.   

The configuration with higher vNM utility better matches 
customer’s risk attitude. This means that the only thing that 
matters is the ordering vNM utility. For ease of comprehension, 
we convert the results from Table 3 to normalized vNM utility 

(orders of vNM utility) as shown in Figure 9. Experiment 
results show that the availability management is optimized 
according to the user’s risk attitudes (preference structures). 
For example, for Customer 1, we use CRRA utility function 
with α =0.001, and active standbys are chosen for the two 
components in the server. Intuitively this is true, as customer 
C1 is very risk averse and availability configuration A-A is the 
most conservative one. More accurately, the actual 
performance and availability of the application using this 
configuration is (54.9%, 99.995%), which is very close to the 
top choice of customer C1 (L1 in Table 1). Similarly, the 
performance and availability achieved for customer C2 and C3 
are (92.5%, 99.7%) and (97.5%, 98.3%), which are also very 
close to their top preference, L2 and L3 respectively.   

Another important observation is that different risk attitudes 
(different values of alpha for CRRA vNM utility function) 
result in entirely different configurations. Therefore, it is 
important to consider the users’ risk attitude when managing 
availability. Existing policy-based methods only optimize 
expected utility, which is actually one special case in our 
framework. By optimizing the expected utility, we are actually 
treating all users as risk-neutral (α =1). The reality is however, 
most users are risk-averse (including customer C2 in our 
example who only requires one nine to two nines availability 
and ‘seems’ risk-seeking). If we simply optimize the expected 
utility, the resulted configuration could be significantly 
different from what the user actually expected. 

VI. RELATED WORK 
IT service management driven by business policies is a 

relatively new area. Buco et al. present SLA management 
system that is based on business-objectives [18]. Salle et al. 
propose a solution to minimize the exposed business impact of 
service level violation [19]. They further present the 
Management by Business Objective (MBO) technology for IT 
management that can take into account strategic business 
objectives [20] and they specifically apply this approach to 
incident management domain [21].  In the context of design, 
Sahai et al. propose a policy-based model for automated 
configuration management [22]. It automatically creates a 
suitable configuration and a workflow to deploy the 
configuration based on user requirements, operator constraints, 
and technical constraints of the system. Their business-
objectives-driven performance management uses utility 
function to optimize resource allocation and maximize the 
total utility. Compared to these efforts, our work focuses on 
the optimization of availability management to meet business 
objectives. Our solution involves the aspect of utility function, 
performance modeling, and availability modeling. In addition, 
availability management always involves uncertainty. In this 

paper, we provide a method to deal with users’ risk attitudes 
and handle different tradeoff between performance and 
reliability.  

To improve availability, fault tolerance techniques are 
widely used in systems such as Fault-Tolerant CORBA [23, 
24], and Arjuna [25]. These systems replicate selected 
application/service objects and provide specifications to 
allocate standbys for fast recovery. Multiple replicas allow an 
object to continue to provide service even when one of its 
replicas fails. Passive replication is used to record both the 
state of the currently executing member (primary member) and 
the entire sequence of method invocations. Recent systems 
including Borealis [26] and SMILE [27] focus on fault-
tolerance for applications that process data streams, instead of 
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Figure 7. Utility during Patching Component 1,2,2C  0 10 20
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Figure 8. Utility during Reconfiguration of 
Component 1,1,1C  
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Figure 9: Utility during Reconfiguration of Component C1,1,1 .

The intuitive reason here is that Tier two has two replicated components and the failure

probability that the patch will fail is low. In this case, it is better not to allocate standbys,

in order to maximize the expected utility during change.

Again, while the no-standby configuration is the best configuration in this scenario, it

is not the best configuration for the third scenario (actually it is the worst one among three

configurations). Instead, the passive standby becomes the best configuration (see Figure 9).

The insight gained from these experiments is that although current availability management

either doesn’t take any preventive procedures before change, or uses static/same configu-

ration for different situations, one particular availability configuration can result in totally

different behaviors in different situations, depending on many factors, including the failure

probability, current workload, available resource, patch time, and recovery time, etc. Since

one optimal (or close to optimal) configuration for one particular scenario could easily

become the worst configuration in other scenario, it is important to automate availability
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management so the appropriate configuration (operational policies) can be determined and

executed automatically.

2.5.2 Risk-attitude Sensitive Availability Management

The second experiment deals with risk attitude policies, to validate that it is possible to op-

timize availability management according to customers’ preference structure/risk attitudes.

Here we consider availability management for the two-tier airline revenue application, with

each tier of the application having one component (see the third application in Figure 6),

for three different customers (Table 1 and Table 2). To illustrate the results, the configura-

tions for each component are limited to (1) No standby, (2) Active, (3) Passive 3Min, (4)

Passive 5Min, (5) Passive 15Min, and (6) Passive 30Min, resulting in a total of 36 possible

configurations for the two-tier application. As discussed in the Section 2.4, the three cus-

tomers C1, C2, and C3 have different risk attitudes which are characterized by the CRRA

vNM utility functions.

Results obtained by using different CRRA vNM utility functions for these three cus-

tomers, and additional results using risk-neutral and risk-seeking vNM utility functions are

given in Table 3. In this table, the first row is the value α. The first column is the utilities

under five representative configurations. “A-A” means to allocate active standby for both

components, and “P-P 3” means to allocate passive standby for both components, with

checkpointing interval chosen to be 3Mins.

The configuration with higher vNM utility better matches customer’s risk attitude. This

means that the only thing that matters is the ordering vNM utility. For ease of compre-

hension, we convert the results from Table 3 to normalized vNM utility (orders of vNM

utility) as shown in Figure 10. Experiment results show that the availability management

is optimized according to the user’s risk attitudes (preference structures). For example,

for Customer 1, we use CRRA utility function with α=0.001, and active standbys are cho-

sen for the two components in the server. Intuitively this is true, as customer C1 is very
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risk averse and availability configuration A-A is the most conservative one. More accu-

rately, the actual performance and availability of the application using this configuration is

(54.9%, 99.995%), which is very close to the top choice of customer C1 (L1 in Table 1).

Similarly, the performance and availability achieved for customer C2 and C3 are (92.5%,

99.7%) and (97.5%, 98.3%), which are also very close to their top preference, L2 and L3

respectively.

Another important observation is that different risk attitudes (different values of alpha

for CRRA vNM utility function) result in entirely different configurations. Therefore, it is

important to consider the users’ risk attitude when managing availability. Existing policy-

based methods only optimize expected utility, which is actually one special case in our

framework. By optimizing the expected utility, we are actually treating all users as risk-

neutral (α=1). The reality is however, most users are risk-averse (including customer C2 in

our example who only requires one nine to two nines availability and ‘seems’ risk-seeking).

If we simply optimize the expected utility, the resulted configuration could be significantly

different from what the user actually expected.

Table 4: vNM Utility of Five Representative Configurations
0.001 0.03 0.5 1 3 10

A-A 1000.1 33.4 2.09 1.10 0.44 0.25
P-P 3 997.2 33.8 2.71 1.85 2.09 46.58
P-P 15 983.6 33.4 2.74 1.92 2.42 77.74
N-P 15 933.3 32.1 2.66 1.88 2.47 91.45
N-N 902.8 30.7 2.55 1.80 2.39 91.89

2.6 Conclusion and Lesson Learnt

This chapter presents an approach to automating availability of management in IT systems

driven by business policy. We implement a policy engine that dynamically optimizes ex-

pected utility according to high level availability and performance objectives. We further

study how to apply utility theory such as von Neumann-Morgenstern utility function to
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server/client model. The former uses replication-based failure 
recovery, and the authors propose to trade consistency for 
recovery time. The latter proposes the soft-checkpointing 
mechanism that can be used to implement a low-overhead 
passive replication scheme for fault tolerance.   

 

 

 
Figure 9. Normalized vNM utility of Five Representative 

Configurations 

Performability is another important research area dealing 
with the tradeoffs of performance and availability. Plank et al. 
study the performability problem in the scientific domain [28], 
and Tai et al. study performability in database systems [29]. 
However, it is not yet clear how to manage availability of a 
complicated enterprise IT system, such as the utility data 
center [4], or the IT backbones such as Delta airline 
Operational Information Systems (OIS) [6], where multiple 
services in the shared environment have different business 
objectives and policies, which even change over time, in 
addition to the changing run-time availability of resources and 
resource demands. Work by Janakiraman et al.  [12] and by 
Cai et al. [9] are most closely related to our work. Janakiraman 
et al. investigate automated availability design [12]. In 
comparison, our work focuses on run-time management of 
system availability. Per-component performability 
management for operational information systems is proposed 
by Cai et al.  [9], which use failure prediction for proactive 
availability management. This paper focuses on the 
performability of the entire enterprise system, and it explores 
more complex performability policies, including policies that 
capture risk attitudes. Such policies specify the risk attitude of 
the service or customer, under uncertainty [8]. We provide a 
von Neumann-Morgenstern utility theory-based approach 
deployed in a policy-based availability management 
framework. 

Two different methodologies for performance analysis of 
Internet applications have been proposed [30]. The model-

based approach uses analytical models such as queuing-
theoretic network models to estimate how performance is 
affected by different workloads, resource allocations, and 
system configurations. Many such models concern single-tier 
Internet applications, e.g., single-tier web servers [31, 32, 33, 
34, 35]. A few recent efforts have extended single-tier models 
to multi-tier applications [36, 37, 38]. An alternative, model-
free approach uses reinforcement learning to directly learn the 
relationship between performance and system configuration 
[11, 39].  Our work is complementary to these efforts. That is, 
any mechanisms that can help determine the performance (e.g., 
response time) of applications can be incorporated into our 
availability management solution. The specific performance 
model used in this paper is based on the model presented by 
Urgaonkar et al. [36]. The result is that performance modeling 
is secondary to our work, our primary focus being availability 
management. Other research has made performance its 
primary objective, addressing topics that include capacity 
provisioning, application configuration, bottleneck 
identification, and admission control [11, 36, 37, 38]. 

VII. LESSONS LEARNED  
1)  Current policy specification standards, such as WS-
Agreement, are relatively simple and SLAs are not sufficiently 
rich to capture the different functional and expression-based 
formulations needed in modern service-based applications and 
systems. For example, WS-Agreement can be used to express 
different valuations for configurations, however, only with 
discrete attributes. It lacks formal semantics to express 
preferences for a variety of performance metrics, availability, 
security, and any other service attributes of interest in terms of 
utility functions. Risk attitudes have not been studied in current 
SLA policy specification.  

2) The business objectives or policies may involve performance, 
availability, security and other aspects defined as traditional 
SLA or complex utility functions. Systems and IT services 
themselves are complicated, too. Automated IT management 
solution should support multiple classes of enterprise 
applications, and different utility formulations used in such 
applications. The key to success are accurate system models 
and optimization algorithms. 

3) Availability management involves uncertainty and the 
decision making under uncertainty often involves decision 
maker’s risk attitude. Utility theory is a useful tool to deal with 
risk-sensitive policies in IT management, but its applicability in 
real systems still needs further study. For example, it is still not 
clear how to derive users’ risk attitude from high level policies. 

VIII. CONCLUSIONS AND FUTURE WORK 
This paper presents an approach to automate availability of 

management in IT systems driven by business policy. We 
implement a policy engine that dynamically optimizes 
expected utility according to high level availability and 
performance objectives. We further study how to apply utility 
theory such as von Neumann-Morgenstern utility function to 
deal with users' risk attitude and preference and enable users to 
customize their availability to the risks tolerable by business 
objectives. The initial evaluation of the proposed solution 

Table 3 vNM utility of five representative configurations
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A-A 1000.1 33.4 2.09 1.10 0.44 0.25

P-P 3 997.2 33.8 2.71 1.85 2.09 46.58

P-P 15 983.6 33.4 2.74 1.92 2.42 77.74

N-P 15 933.3 32.1 2.66 1.88 2.47 91.45

N-N 902.8 30.7 2.55 1.80 2.39 91.89 

0 
1 
2 
3 
4 
5 
6 

0.001 0.03 0.37 1 3 10 alpha 

Order of vNM Utility 
A-A

P-P 3

P-P 15

N-P 15

N-N

Config. 
α  

Figure 10: Normalized vNM Utility of Five Representative Configurations

deal with users’ risk attitude and preference and enable users to customize their availabil-

ity to the risks tolerable by business objectives. The evaluation of the proposed solution

demonstrates that our approach is applicable for availability management of complex IT

environments and the significant difference to use our approach to consider risk attitudes

in both decisions made and the actual results.

Some of the lessons we learnt through this work are:

(1) Current policy specification standards, such as WS-Agreement, are relatively simple

and SLAs are not sufficiently rich to capture the different functional and expression-based

formulations needed in modern service-based applications and systems. For example, WS-

Agreement can be used to express different valuations for configurations, however, only

with discrete attributes. It lacks formal semantics to express preferences for a variety of

performance metrics, availability, security, and any other service attributes of interest in

terms of utility functions. Risk attitudes have not been studied in current SLA policy spec-

ification.

(2) Business objectives or policies may involve performance, availability, security and

other aspects defined as traditional SLA or complex utility functions. Systems and IT

services themselves are complicated, as well. Automated IT management solution should
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support multiple classes of enterprise applications, and different utility formulations used

in such applications. The key to success are accurate system models and optimization

algorithms.

(3) Availability management involves uncertainty and the decision making under un-

certainty often involves decision maker’s risk attitude. Utility theory is a useful tool to deal

with risk-sensitive policies in IT management.
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CHAPTER III

UTILITY-DRIVEN PROACTIVE MANAGEMENT OF

AVAILABILITY IN ENTERPRISE-SCALE INFORMATION

FLOWS

3.1 Introduction

Modern enterprises rely critically on timely and sustained delivery of information. An

important class of applications in this context is a company’s distributed operational infor-

mation system, which continuously acquires, manipulates, and disseminates information

across the enterprise’s distributed sites and machines. For applications like these, a key

attribute is their availability, or in other words, the ability to reduce failures and ability to

recover from failure fast, which are key contributors to application utility. As discussed be-

fore, system failures can have dire consequences, including loss of productivity, unhappy

customers, or serious financial implications. The average cost of downtime for financial

companies, as reported in [40], is up to 6.5 million dollars per hour and hundreds of thou-

sands of dollars per hour for retail companies. This has resulted in a strong demand that

these critical distributed systems should be available almost continuously.

Providing high availability in widely distributed operational information systems or

distributed systems in large data center is complex for multiple reasons. First, because

information flows, hosts, applications, and components are distributed, they are difficult

to manage, and failures at any of a number of distributed components or sites can reduce

availability. Second, multiple data flows may use the same distributed resources, thereby

increasing the complexity of the system and the difficulty of managing and preventing

failures. Third, such systems often have high data rates and/or intensive processing re-

quirements, and there are frequently insufficient system resources to replicate all this data
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and processing to achieve high reliability. Fourth, information flows must have negligible

recovery times to limit losses to the enterprise. Finally, based on our experience work-

ing with industry partners like Delta Air Lines and Worldspan, systems must recover not

only from transient failures but also from non-transient ones (e.g., failures that will re-

cur unless some root cause is addressed) [35]. While Chapter 2 proposed the risk-based

availability management framework and its methods for self-optimization of both perfor-

mance and availability, how can we provide high availability for critical distributed systems

and critical subsystems of enterprise IT services, given all of these requirements? Tradi-

tional techniques such as recovery from disk-based logs [37] may have recovery times that

are unacceptable for the domain in question. Using active replicas [68] imposes high ad-

ditional communication and processing overheads (since all data flow and processing is

replicated) and therefore, may not be an economically viable option. Another option is

to use an active-passive pair [68], where a passive replica of a component can be brought

up to date by retransmitting messages that had gone to the failed, active one. This option

reduces communication costs, since messages are only sent to the passive component at

failure time. Unfortunately, this may result in long recovery times. A better solution would

be a hybrid of the above approaches, accepting dynamically determined levels of additional

processing and communication during normal operation in order to reduce recovery times

when failures occur.

In this chapter, we extend the active-passive approach to dynamically and proactively

tune the tradeoff between normal operation cost and recovery time [13, 16]. In particu-

lar, the passive replica will be periodically refreshed with ‘soft-checkpoints’: these check-

points transfer the current state from the active node to the passive node (passive standby),

but are not required for correctness (hence, ‘soft-checkpoints’). If the passive replica has

been recently brought up to date by a soft-checkpoint, then recovery will be relatively

fast. The tradeoff between cost and recovery is tuned by changing the frequency at which
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soft-checkpoints are transmitted during normal operation. Such tuning is based on user-

provided expressions of information utility, and it takes advantage of the following methods

for failure prediction and dynamic availability self-management:

• Availability-Aware Self-Configuration – a user-supplied per information flow ‘benefit-

function’ drives the level of additional resources used to guarantee availability. This

ensures preferential treatment of flows that offer more benefit to the enterprise, with the

aim of maximizing benefit across the system.

• Proactive Availability Management – during its execution, a system may be at different

levels of stability (e.g., a heavy memory load could mean an imminent failure). In

many cases, the ‘current stability’ of the system can be quantified in order increase or

decrease the resources expended to ensure desired levels of availability.

• Handling Non-Transient Failures – some failures will recur if the same sequence of

messages that caused the failure is resent during recovery. In this case, we must use

application-level knowledge to avoid fault recurrence. We present several techniques,

based on real-world case studies, to deal with such faults.

• Differentiate service guarantee for original vs. replicated flows – the data transport

middleware distinguishes the different information flows used in highly available infor-

mation flow systems, e.g., the original information flows vs. replicated flow elements

used for attaining high availability. By differentially providing services to original vs.

replicated flows, assigning different levels of importance and time constraints to each,

middleware can extend performance guarantees to applications beyond those available

in current high-availability frameworks.

Proactive availability management techniques have been integrated into IFLOW, a high

performance information flow middleware described in [49]. The outcome is a flexible,

distributed middleware for running large-scale information flows and for managing their

availability. In fact, experimentation shows that proactive availability management not only
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Figure 11: Information Flow-Graph and Operator State

imposes low additional communication and processing overheads on distributed informa-

tion flows, but also, that proactive fault tolerance is an effective technique for recovering

from failures, with a low recovery time of 2.5 seconds for an enterprise-scale information

flow running on a representative distributed computing platform. Experiments further show

that utility-based availability management offers 1.5 times the net-utility of the basic active

replica approach.

3.1.1 Example: Operational Information System

An operational information system (OIS) [35] is a large-scale, distributed system that pro-

vides continuous support for a company or organization’s daily operations. One example of

such a system we have been studying is the OIS run by Delta Air Lines, which provides the

company with up-to-date information about all of their flight operations, including crews,

passengers and baggage. Delta’s OIS combines three different sets of functionality:

• Continuous data capture – for information like crew dispositions, passengers, airplanes

and their current locations determined from FAA radar data.

• Continuous status updates – for low-end devices like airport flight displays, for the PCs

used by gate agents, and even for large databases in which operational state changes are

recorded for logging purposes.
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• Responses to client requests – an OIS must also respond to explicit client requests,

such as pulling up information regarding a particular passenger, and it may generate

additional updates for events like changes in flights, crews or passengers.

In this thesis, we model the information acquisition, manipulation, and dissemination

done by such an OIS as an information flow graph (a sample flow-graph is shown in Fig-

ure 11). We then present techniques, based on this flow-graph formalization, to proactively

manage OIS availability such that the net-utility achieved by the system is maximized.

This is done by assigning per information flow availability guarantees which are aligned

with the benefit that is derived from the information flow, and by proactively responding

to perceived changes in system stability. We also present additional techniques, based

on real-world case studies, which can help a system recover from non-transient failures.

Differentiate information flow service guarantee is realized through the IQ-Paths overlay

network management and flow mapping and scheduling techniques, which is addressed in

more details in Chapter 4

3.2 System Overview

This section describes a model of the information flows under consideration, and it elabo-

rates the fault model used for the proactive availability management techniques explained

later.

3.2.1 Information Flow Model

An information flow is represented as a directed acyclic graph G(Vg, Eg, Unet) with each

vertex in Vg representing an information-source, an information-sink or a flow-operator that

processes the information i.e. Vg = Vsources ∪ Vsinks ∪ Voperators. Edges Eg in the graph

represent the flow of information, and may span multiple intermediate edges and nodes in

the underlying network. The utility-function Unet is defined as:

Unet = Benefit− Cost (1)
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Both benefit and cost are expressed in terms of some unit of value delivered per unit time

(e.g., dollars/second). Benefit is a user-supplied function that maps the delay, availability,

etc. of the information flow to its corresponding value to the enterprise. Cost is also a

user-supplied function; it maps resources such as CPU usage and bandwidth consumed to

the expense incurred by the enterprise. We will expand the terms of this seemingly simple

equation in upcoming sections.

3.2.2 Fault Model

We are concerned with failures that occur after the information flow has been deployed.

In particular, we consider fail-stop failures of operators that process events. Such failures

could result from problems in the operator code or in the underlying physical node. Other

factors might also cause failures, but are not considered here, including problems with

sources, problems with the sink, or link failures between nodes. While such issues can

cause user-perceived failures, they must be addressed with other techniques. For example,

link failures could be managed by retransmission or re-routing at the network level.

For the purpose of failure recovery, we assume that each flow-operator consists of a

static-state Sstatic that contains the information about the edges connected to the operator

and the enterprise logic embedded in the operator; in contrast, the dynamic-state Sdynamic

is the information that is a result of all the updates that have been processed by this op-

erator (shown in Figure 11). Recovery therefore, is dependent upon the correct retrieval

of the states Sstatic and Sdynamic, which jointly contain the information necessary for re-

instantiation of flow-operator and information flow edges. However, as described next,

simply recovering these states may not prevent the recurrence of a failure.

3.2.2.1 Transient Faults.

A fault can be caused by a condition that is transient in nature (e.g., a memory overload

due to a mis-behaving process). Such faults will not typically recur after system recovery.

In our formulation, a transient fault would cause the failure of an operator, and correct

43



retrieval of the two states associated with the operator would ensure permanent recovery

from this fault. The techniques proposed in this work are capable of effectively handling

faults of this nature.

3.2.2.2 Non-Transient Faults.

Non-transient faults may be caused by some bugs in the code or some unhandled condi-

tions. For information flows, this may mean recurrence of the fault even after recovery,

particularly when recovery entails repeating the same sequence of messages that caused

the fault. To deal with faults of this nature, we note that the output produced by a flow-

operator in response to an input event E depends on the existing dynamic-state Sdynamic,

the operator logic encoded as Sstatic, and the event E itself. Therefore, the failure of an op-

erator on arrival of an event E is a result of the 3-tuple < Sdynamic, Sstatic, E >. Thus, any

technique that aims to deal with non-transient failures must have application-level methods

for retrieving and appropriately modifying this 3-tuple. Our prior work presents examples

of such methods [35], and we generalize such techniques here.

3.3 Utility-Driven Proactive Availability Management

Traditional techniques for availability management typically rely on undo-redo logs, active-

replicas, or active-passive pairs. A new set of problems is presented by information flows

that form the backbone of an enterprise. For instance, using traditional on-disk undo-redo

logs for information flows would lead to unacceptable recovery times for the enterprise

domain in face of machine or disk failures. The other end of the availability management

spectrum, which uses active replicas, would impose large additional communication and

processing overheads due to the high arrival rate of updates, typically making it economi-

cally infeasible for the enterprise to use this option. In response, we take the active-passive

pair algorithm [68], and customize it for enterprise-scale information flows. To do this, we

will incorporate our previous work on soft-checkpoints [86], and add the ability to dynam-

ically choose checkpointing intervals to reduce communication and processing overheads.
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For completeness, we first describe the existing active-passive pair and soft-checkpoint

techniques, and then describe our enhancements.

3.3.1 Basic Active-Passive Pair Algorithm

To ensure high-availability for the flow-operator, in its simplest form, the active-passive

pair replication requires:

• A passive node containing the static-state Sstatic of the flow-operator hosted on the

active node.

• An event log at the flow-graph vertices directly upstream to the flow-operator in ques-

tion.

• A mechanism to detect duplicates at the flow-graph vertices directly downstream to the

flow-operator.

• A failure detection mechanism for the active node hosting the primary flow-operator.

In case of a failure, recovery proceeds as follows: the failure detection mechanism

detects the failure and reports it to the passive node. On receipt of the failure message,

the passive node instantiates the flow-operator, making use of the static-state, Sstatic, al-

ready available at the node. The instantiated operator then contacts the upstream vertices

for retransmission of the events in their event log. The newly instantiated operator node

processes these re-transmitted events in a normal fashion, generating output events, and

leaving it to the downstream nodes to detect the resulting duplicates. Once the retrans-

mission of the event log has been completed, the resulting dynamic-state, Sdynamic, will

be recovered to the state of the failed operator, and normal operations can resume. Un-

fortunately, this simple algorithm can lead to long recovery times, large event logs at the

upstream nodes, and large associated retransmission costs. The remedy to these problems

is the ‘soft-checkpoint’ technique, described next.
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The event logs at the upstream nodes and their retransmission to the recovered operator

are required for reconstructing the dynamic-state Sdynamic, of the failed operator. How-

ever, in practice, it is advantageous to retain additional stable state at the passive node in

order to avoid the need to re-transmit the entire event log. Such state saving is called soft-

checkpointing, because it is not needed for correctness. Soft checkpoints can be updated on

an intermittent basis in the background. Once taken, the component receiving the check-

point no longer requires the events on which the state depends for reconstructing Sdynamic.

This in turn permits upstream nodes to discard the event logs for which the soft-checkpoint

has been taken. Soft-checkpointing, therefore, is an optimization that reduces worst-case

recovery time and permits the reclamation of logs.

The introduction of soft-checkpoints requires small modifications to the recovery mech-

anism described earlier in this section. The flow-operator at the active node in the duration

prior to failure would intermittently send messages to the passive node that contain in-

formation about the incremental change to its dynamic-state since the last message. The

passive node, after the receipt of complete state update message from the active node, ap-

plies the incremental modifications to the state it holds and then sends a message to the

flow-operator’s upstream neighbors about the most recent event contained in the message

from the active node. The upstream nodes can use such information to purge their event

logs. In case of a failure, the algorithm proceeds exactly as described earlier, but only a

small fraction of the events needs to be re-transmitted and processed.

3.3.2 Availability-Utility Formulation

In this section, we use a basic availability formulation to better describe the effects and

trade-offs in soft-checkpoint-based active-passive replication. Availability AI is described

in terms of Mean-Time Between Failure, MTBF and Mean-Time To Repair, MTTR.

AI =
MTBF

MTBF + MTTR
(2)
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As stated earlier, our approach contributes to a reduction in recovery time and also reduces

the processing and communication overhead imposed as a result of ensuring a certain level

of availability. The reduction in recovery time results in lower MTTR and a reduction in

associated overheads diminishes cost. Jointly, both result in higher net-utility Unet, which

is the actual utility provided by the system.

With our approach, MTTR depends on two factors: (1) the time to detect a failure, and

(2) the time to reconstruct the dynamic-state of the operator. Failure detection mechanisms

generally rely on time-outs to detect failures and therefore, depend on the coarseness of the

timer used for this purpose. Some research in the domain of fault-tolerance has focused

on multi-resolution timeouts [85], but to simplify analysis, henceforth, we assume that the

time to detect a failure is a constant. The second factor contributing to MTTR depends on

the soft-checkpoint algorithm. Specifically, a higher frequency fcp, expressed in per unit

time, of such checkpoints would lead to a smaller number of events required to reconstruct

Sdynamic in case of a failure. Therefore:

MTTR ∝ 1

fcp

(3)

For simplicity, we next derive the availability-utility formulation for a single information

flow (self-configuration across multiple information flows is addressed in Section 3.3.3),

and we assume that the Benefit and Cost depend only on availability. In this case, in

general, the benefit derived from a system is directly proportional to its availability. Thus:

Benefit ∝ MTBF

MTBF + k1/fcp

(4)

The above formulation may lead one to believe that a higher fcp is good for the system.

Unfortunately, a higher fcp also means more cost to propagate checkpoints from the active

node to the passive node. Therefore:

Cost ∝ fcp (5)

Note that a higher fcp also results in fewer events retransmitted per soft-checkpoint; how-

ever, for large values of MTBF this effect is minor compared to the effects described above
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(increase in benefit due to better availability, and compared to the increase in cost due to a

higher frequency of checkpoints). Experiments reported in Section 3.5.2.4 study the effects

of soft-checkpoint frequency on the cost and availability of information flows.

Combining equations 1, 4, 5, and replacing proportionality using constants, we arrive

at:

Unet =
k2 ×MTBF

MTBF + k1/fcp

− k3 × fcp, (6)

which represents the business-utility calculation model and the constants are determined

by business level objectives [49, 99], or using more detailed formulation described later.

This equation expresses the key insight that net-utility depends not only on MTBF, but also

on the soft-checkpoint frequency used in a system, the latter both positively contributing

to net-utility (by reducing the denominator) and directly reducing net-utility (by increasing

the term being subtracted). Intuitively, this means that frequent checkpointing can improve

utility by reducing MTBF, but that it can also reduce utility by using resources that would

otherwise directly benefit the information flow.

3.3.3 Availability-Aware Self-Configuration

Ideally, we would like to maximize the availability of an information flow, but given that

there is an associated cost, our actual goal is to choose a value of availability that maximizes

its net-utility. In our algorithm and its mathematical formulation, fcp is the factor that

governs availability. By setting the derivative of equation 6 equal to zero, we find that the

value of fcp that maximizes net-utility is:

fcp =

√
k1 × k2

k3 ×MTBF
− k1

MTBF
(7)

In the presence of multiple information flows, each with a different benefit-function,

the resource assignment for availability is driven by the need to maximize net-utility across

all deployed information flows. Total net-utility of the entire system, then, is the sum

of individual net-utilities of information flows. For a system with n information flows,
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we will need to calculate {f 1
cp, f

2
cp, ..., f

n
cp}, which will automatically determine resource

assignments. The value of fcp for each information flow can be calculated using partial

differentials, and the involved calculations are omitted due to space constraints.

3.3.4 Proactive Availability Management

We have established that net-utility depends on checkpoint frequency and MTBF. However,

the MTBF in a real system is not a constant. Instead, the rate of failures fluctuates, with

more failures occurring when the system is in an unstable state. For example, during peri-

ods of extreme overload, the system is likely to experience many component failures. If we

can better approximate the current MTBF, and in particular predict when there will be many

failures, we can make better decisions about checkpointing, increasing the checkpoint rate

when the current MTBF is low (and failures are imminent.)

3.3.4.1 Failure Prediction.

An effective way to estimate the current MTBF is to use failure prediction techniques to

generate ’early alarms’ when a failure seems to be imminent. By using failure prediction,

our approach can be ‘better prepared’ for an imminent failure, by taking more frequent soft-

checkpoints. Analysis logs provided to us by one of our industry partners strengthens our

belief in the usefulness of dynamic failure prediction. These logs contain error messages

and warnings that were recorded at a middleware broker over a period of 7 days, along
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with their time-stamps. Figure 12 shows the distribution and severity of errors recorded at

the broker node. One interesting observation of these logs is that errors recur at almost the

same time (around 9:00am as read from the log time-stamp) beginning from the 2nd day.

Another interesting observation about the same set of logs is that 128 errors of severity

level 1 occurred from 7:30pm in the first day before a series of level 4 errors occurred from

8pm. Based on such logs, it would be reasonable, therefore, to assume lower MTBF (i.e.,

predict imminent failures) for the 9am time period and the period when a large number of

less severe errors occur, than for other time periods in which this application executes. We

note that similar time- or load-dependent behaviors have been observed for other distributed

applications [25].

We implemented the Sequential Probability Ratio Test(SPRT) used in MSET [38, 106]

failure prediction method, to predict failures injected by the FIMD [10] failure injection

tool, including timing delay, omission, message corruption datatype, message corruption

length, message corruption destination, message corruption tag, message corruption data,

memory leak, and invalid memory access. The SPRT method is a run-time statistical hy-

pothesis test that can detect statistical changes in noisy process signals at the earliest possi-

ble time, e.g., before the process crashes or when severe service degradation occurs. SPRT

has been applied successfully to monitor nuclear power plants, and it has recently been

used for software aging problems, e.g., for the database latch contention problem, memory

leaks, unreleased file locks, data corruption, etc. For example, an early warning may be

raised about 30 seconds (the ’early warning capability’) before a memory leak fault causes

the service to degrade dramatically or the process crashes. For database shared-memory-

pool latch contention failures, early warning capabilities of 5 minutes to 2 hours have been

observed. For additional information about SPRT and associated MSET method, please

refer to [38] and to an extended version of this text in a technical report [16].
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3.3.4.2 Modulating Checkpoint Frequency.

The idea behind proactive availability management is to use failure prediction to modulate

fcp. We first provide the important yet simple guideline regarding checkpoint frequency

modulation, we then develop a detailed formulation for enterprise-scale information flows,

and finally, present a formulation and method to meet some specific availability require-

ment while also maximizing net-utility.

General guidelines. Intuitively, if a failure prediction turns out to be correct, the system

‘benefits’ because of reduced MTTR; if a prediction turns out to be a false-positive, the

system still operates correctly, but it pays the extra ‘cost’ due to increased fcp. Stated more

formally, let:

α = prediction false–positive rate

β = prediction false–negative rate

f ′cp = modulated checkpoint frequency after a failure is predicted

Tproactive = duration of increased checkpoint frequency

k = timeout after which an operator is concluded to have failed

Earlier, Cost was shown to be proportional to soft-checkpoint frequency. The new cost,

Cost′, due to modulated f ′cp, is:

Cost′ = Cost× f ′cp/fcp (8)

This increased cost is incurred for a duration equal to Tproactive, and it is incurred each time

a prediction is made. Therefore, the additional cost incurred per prediction is:

δCost = (f ′cp/fcp − 1)× Cost× Tproactive (9)

The increase in fcp also affects the availability of the system and therefore, the benefit,

Benefit′, derived from the system. Using equation 4, we have:

Benefit′ =
MTBF + k1/f

′
cp

MTBF + k1/fcp

×Benefit (10)
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Therefore, the increase in benefit due to a correct prediction that affects a period equal to

MTBF is:

δBenefit = (Benefit′ −Benefit)×MTBF (11)

Since λ is the fraction of false-positives and because there is no increase in benefit due to

a false positive, the following condition expresses when proactive availability management

based on failure prediction is beneficial for an entire system:

δCost < (1− α)× δBenefit (12)

Proactive availability management. Different systems could have different types and

formulations of benefit and cost, and the above analysis provides the general guideline

regarding proactive availability management. For the enterprise information flow system

targeted by this thesis, the proactive availability management problem can be formulated in

more details as follows. Proactive availability management regulates checkpoint frequency

based on stability predictions to maximize net business utility. By considering ‘total cost’,

including the cost of checkpointing and the utility loss because of a failure (i.e. the extra

utility the system could offer if there had been no failure), the problem of maximizing net-

utility can be converted to the problem of minimizing total cost. This total cost consists of

the cost of normal checkpointing (at frequency fcp), Costcp, the cost due to false-positive

failure prediction (i.e., the failure predictor raises a false alarm), Costfp, the cost due to

false-negative failure prediction (i.e., a failure is not predicted successfully), Costfn, and

finally, the cost associated with failure recovery when a failure is successfully predicted,

Costps.

These four types of cost are summarized in Table 5. For the cost of normal checkpoints,

Costcp, C1 is the cost for each checkpoint update (e.g., the communication cost), and P is

the possibility an operator could fail from any time t to t+1 (seconds). Here, P (1−β+α) is

the fraction of time when the checkpoint frequency is f
′
cp, due to correct failure predictions

and false alarms. For the cost of false-positive failure prediction, to is the average time
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Table 5: Four Types of Cost

Costcp = [1− P (1− β + α)]f cpC1,

Costfp = αPf ′cptoC1,

Costfn = βPC2/(2fcp)+βP (k+1/(2fcp))C3,
Costps = (1− β)P [C2/(2f

′
cp)+(k+1/(2f ′cp))C3+f ′cpt0C1].

a predictor raises an early alarm for a severe failure. In the equation for the cost due to

false-negative prediction, Costfn, the first term is the total state recovery cost, i.e., the cost

for the passive node to recover from the latest checkpointed state to the state when the

failure occurred, including retransmission cost and re-computation cost. C2 is the average

recovery cost per unit time($/sec). The second term is the total utility loss from the time

when failure occurs to the time when the system recovers to normal operational status. In

other words, this term represents the utility the system could provide if there had been no

such failure. C3 is the utility the system provides per second($/sec) if there is no failure.

The cost associated with failure recovery when a failure is successfully predicted, Costps,

is determined in a similar manner as Costfn.

To regulate checkpoint frequency, proactive fault tolerance finds the best checkpoint

frequency, fcp, when there is no failure predicted, and the best checkpoint frequency, f ′cp,

after the time a failure is predicted. This is done by minimizing the total cost.

Meet specific availability requirement. Often, enterprises have specific requirements for

system availability. For example, a 365 x 24 system with maximum allowed average down-

time of 8.76 hours (i.e., 525 minutes) per year requires 99.9 percent availability, while a

system with only 3 minutes of service outage must have at least a 99.999 percent availabil-

ity. To achieve such availability is difficult due to the high cost of fault tolerance services

and equipments. Proactive availability management is able to strike a balance between

these two factors by jointly considering availability and utility when regulating checkpoint

frequency. Notice that MTTR can be expressed as:
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MTTR = (1/2fcp + k) β +
(
1/2f ′cp + k

)
(1− β), (13)

where k is the timeout after which we conclude that a module actually failed, the availabil-

ity is given by:

AI =
MTBF

MTBF + MTTR
=

1− P ·MTTR

1

= 1− p[(1/2fcp + k) β +
(
1/2f ′cp + k

)
(1− β)] (14)

Proactive fault tolerance meets the minimum availability requirement and also maximizes

net utility by solving the following equation:

Minimize{Cost = Costcp + Costfp + Costfn + Costps}, subject to:

1− p[(1/2fcp + k) β +
(
1/2f ′cp + k

)
(1− β)] ≥ Arequired

I (15)

This optimization problem is of small size with two variables and one constraint, and is

solved using standard Quasi-Newton method with inverse barriers.

3.3.5 Handling Non-Transient Faults

Non-transient failures are a result of bugs or unhandled conditions in operator code. Tradi-

tional techniques for ensuring high-availability that use undo/redo logs [37, 86] are useful

for transient failures, but for non-transient failures, they may result in recurrence of faults

during recovery. The same applies to replication-based approaches [5], for which all repli-

cas would fail simultaneously for non-transient faults.

As described in Section 3.2.2.2, a non-transient failure of the information flow in our

model is a result of the 3-tuple < Sstatic, Sdynamic, E >. The active-passive pair approach

for ensuring high-availability has sufficient information during recovery to change this 3-

tuple. The passive-node during recovery has access to Sstatic, a stale state S ′dynamic, and
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a set of updates T from the upstream nodes that when applied to S ′dynamic, would lead

to Sdynamic. The rationale behind our approach to avoid non-transient failures is simple:

avoid the 3-tuple that caused the failure. This can be done in a number of ways, and the

retransmitted updates T along with application-level knowledge holds the key:

• Dropping Updates: the simplest solution to avoid recurrence of a fault is to avoid pro-

cessing the update that caused the failure. Our earlier work on ‘poison messages’ used

this technique [35].

• Update Reordering: changing the order in which updates are applied to S ′dynamic during

recovery can avoid Sdynamic. This makes use of application-level knowledge to ensure

correctness.

• Update Fusion: combining updates to avoid an intermediate state could be an option.

A simple example of this approach could be the use of this technique to avoid ‘division

by zero’ error.

• Update Decomposition: decomposing an update into a number of equivalent updates

can be an option with several applications, and this can potentially avoid the fault.

While seemingly simple, the techniques described above are often successful in realistic

settings. For example, one of our collaborators, reported an occasional surge in the usage of

resources connected to their Operational Information System (OIS) [55] that traced back to

a particular uncommon message type. The resulting performance hit caused other subsys-

tem’s requests to build up, including those from the front ends used by clients, ultimately

threatening operational failure (e.g., inappropriately long response times) or revenue loss

(e.g., clients going to alternate sites). Such uncommon request/message, termed ‘Poison

Messages’, were later found to be identifiable by certain characteristics. The solution then

adopted was to either drop or re-route the poison message in order to maintain operational

integrity.

55



3.4 Middleware Implementation

IFLOW is an information flow middleware developed at Georgia Tech. IFLOW implements

the information flow abstraction of Section 2.1 and provides methods to deploy and then

optimize (by migrating operators) the information flow. For more details please refer to

[48, 49, 81].

We now briefly describe the features that enable proactive availability management in

the IFLOW middleware. These features are implemented both at the control plane and the

data plane of this middleware infrastructure.

3.4.1 Control Plane

The control plane in IFLOW is the basis for managing information flows. Self-management

methods involve running a self-configuration and a self-optimization algorithm, carried out

by exchanging control messages between physical nodes that are external to the data fast

paths used to transport IFLOW data. Control actions involve operations like flow-control,

operator re-instantiation, etc. The main new features of the IFLOW control plane that are

used for proactive fault tolerance are described below:

• Availability-aware self-configuration module: the benefit-formulation in IFLOW al-

lows for availability goals to be specified, and determines the best value of fcp by using

the formulation described in Section 3.3.2.

• Failure detection & prediction: IFLOW attempts to use the regular traffic from a node

to determine its liveness, but it switches to specific detection messages if there is no

regular traffic from the node to the monitoring node. We also have a provision for

multi-resolution timeouts to reduce the load imposed by the failure detection algorithm.

Finally, state can be maintained to use failure history for predicting failures, but we have

not yet implemented any specific technique into IFLOW.

• Control messages: SOAP calls are used to notify active-node failure, to communicate

log purge points to upstream vertices, etc.
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• Update re-direction in case of failure: a simple control mechanism exists at the up-

stream vertices to re-direct updates to the passive node in case of failure. The con-

nection between upstream vertices and the passive node is created at the time of flow

deployment.

3.4.2 Data Plane

A fast data-path is one of the key design philosophies of the IFLOW middleware. We have

taken care that the features required for proactive availability management have minimal

impact on the data-path. In order to ensure proactive availability management, the state

of an operator on the data plane needs to be soft-checkpointed and the changes need to

be periodically communicated to the passive-node. The fact that a soft-checkpoint is not

necessary for correctness of proactive availability management ensures minimal impact on

the data-path. Specifically, the active-node can transfer the soft-checkpoint to the passive

node asynchronously (e.g., when load is low), and this will not compromise the correctness

of our algorithm. The specific features required for proactive availability management are

described below:

• Logging at upstream vertices: any update that is sent out from the source vertex is

logged to enable retransmission in case of failure. Additional logs can be established at

intermediate nodes (an operator vertex is a source for downstream vertices) to enable

faster recovery. The log module also implements a mechanism to purge the log when a

message is received from the downstream node after a soft-checkpoint is completed.

• Soft-checkpoint module at operator vertices: the soft-checkpoint module tracks the

changes in Sdynamic since the last soft-checkpoint. It is also responsible for sending

soft-checkpoints to the passive node.

• Duplicate detection at the downstream node: the duplicate detection mechanism is

based on the monotonic update system proposed in our earlier work [86]. When the

updates cannot be ordered using the contained attributes, a monotonically increasing
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Figure 13: Sample Testbed. The Testbed Topology is Generated using GT-ITM and is
Configured at Emulab Facility.

attribute (e.g., the real-time clock) is appended to the out-going update that uniquely

identifies this update.

• Additional edge between active-passive pair: a supplementary data-flow between the

active-passive pair delivers the soft-checkpoints to the passive vertex.

• Maintaining checkpoints at passive-node: the passive vertex contains the logic that

applies an incoming soft-checkpoint to the recorded active node state.

3.5 Experiments

Experiments are designed to evaluate the performance our proactive availability manage-

ment techniques. First, simulations are used to better understand the behavior of the

self-configuration module that determines the availability requirement based on the user-

supplied benefit function. Next, an end-to-end setup is created on Emulab [93], represent-

ing an enterprise-scale information flow to compare our approach against the traditional

approaches and to study the effect of different soft-checkpoint intervals and proactivity on
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aspects like MTTR, recovery cost, and net-utility. Results show that proactive availabil-

ity management is effective at providing low-cost failure resilience for information flow

applications, while also maximizing the application’s net-utility.

3.5.1 Simulation Study

A simulation study is used to compare utility-based availability management to simple ap-

proaches that are not availability-aware. The study uses a 128 node topology generated with

the GT-ITM internetwork topology generator [107]. The formulation of net-utility Unet de-

termines benefit as: benefit = k1× (k2−delay)2×availability×availableBandwidth/

requiredBandwidth, and cost is calculated as: cost = dataRate×bandwidthCostPerByte.

Random costs are assigned to the network links, expressed in dollars per byte. We substi-

tute (k1 = 1.0, k2 = 150.0) in the benefit formulation for this specific simulation [49].

The MTBF is assumed to be 86400sec. and the MTTR is assumed to be 864sec. for a fcp

value of 0.01Hz. (Many values are possible for these variables. However, we must choose

some values when conducting our simulations, and the ones we chose are reasonable for the

enterprise environment.) We first deploy the flow-graph using the net-utility specification

from equation 1 as the optimization criteria, and the results are shown in Table 6 under the

column labeled ‘Utility’. The results show a high achieved net-utility with acceptable val-

ues for delay, fcp and availability. The second deployment (under ‘Cost’) focuses instead

on minimizing the cost, and it uses 1/cost as the optimization criteria. The effect of choos-

ing different criteria is evident in the reduced cost, achieved by allowing a higher delay and

a lower availability (resulting from lower fcp). The final experiment uses 1/delay to drive

the deployment. This results in a reduction of delay achieved for the flow-graph, but at the

expense of net-utility and availability.

3.5.2 Testbed Experiments using IFLOW

This set of experiments is conducted on Emulab [93], and the network topology is again

generated using the GT-ITM internetwork topology generator. In many cases, enterprises
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Table 6: Self-Determining Availability Based on Benefit
Optimization Criterion Utility Cost Delay
Net-Utility (dollars/sec) 431991 52670 2160
Cost (dollars/sec) 79875 14771 80315
Delay (msec) 222 444 191
fcp (sec−1) 0.050 0.018 0.020
Availability (percent) 99.88 99.66 99.70
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Figure 14: Net Utility Rate Variations using Active, Passive or Proactive Fault Tolerance
Approaches. A failure is injected into one operator node at the time t = 40s.

would hand tune their topology for availability and performance, instead of using an ar-

bitrary topology. For example, an enterprise may explicitly designate a primary and sec-

ondary data center. An arbitrary topology is used in our experiments in order to understand

how our techniques perform without the benefit of additional hand tuning. Figure 13 shows

the testbed used for experimental evaluations. Background traffic is generated using cmu-

scen-gen [96], injected into the testbed using rate-controlled udp connections. For the

testbed depicted in Figure 13, background traffic is composed of 900 CBR connections.

We use the utility formulation in Equation 15 to better study the net-utility and the costs

associated with checkpointing and failures. Required availability is 99.9% if not stated

otherwise.
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3.5.2.1 Variation of Net-Utility for Different Approaches.

The first experiment studies the variation of net-utility with different availability manage-

ment approaches in the presence of failures. For simplicity, only one failure is injected

into the system. We conduct experiments with the active replication approach, the passive

replication approach with varying soft-checkpoint intervals, and our proactive replication

approach. Figure 14 clearly demonstrates that the active replication approach provides

lowest net-utility. This is because of the high amount of replicated communication traf-

fic when using this approach. After a failure, net-utility of the active approach increases

slightly; there is less replication traffic, because the failed node no longer sends replicated

output updates. The experiment also corroborates the analysis in Section 3.3.2: a lower

soft-checkpoint interval for the passive approach imposes higher communication cost on

the system and therefore, results in lower net-utility. Note that if availability were a pre-

dominant factor in the net-utility formulation, then a lower soft-checkpoint interval could

have resulted in higher net-utility. The cost of soft-checkpoints is almost negligible when

the interval is greater than 5 seconds, but its effect is evident for an interval of 2 seconds.

Our proactive approach provides the highest net-utility overall, as it modulates the soft-

checkpoint interval and takes into account the perceived system to offer preventive fault

tolerance. For instance, it switches to a smaller soft-checkpoint interval just before the

failure and is therefore able to recover as fast as the passive approach with a 2 seconds

update interval, while performing as well as the passive approach with a 30 seconds update

interval at other times. We note that evaluation of failure prediction techniques is not the

focus of this thesis (such kind of evaluations appear in [16]). To investigate how predic-

tion accuracy affects the system, these experiments simulate a predictor for the proactive

approach, with failure prediction statistically generated at various levels of accuracy. In

particular, we notify the soft-checkpoint mechanism that a failure is imminent, no matter

whether the prediction is correct or a false positive.
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3.5.2.2 Variation of MTTR for Different Approaches.

The variation of MTTR and its standard deviation with different approaches are shown in

Figure 15. For each approach, nine experiments are used to obtain the mean and standard

deviation. The active replication approach (not shown in the graph) has no explicit recovery

time. This is because the node downstream of the replicated operator continues to receive

processed updates even after the failure of one active replica. On the other hand, the pas-

sive replication approach which attempts to avoid the high cost of active replication incurs

recovery times that increase with the soft-checkpoint interval. The reason for this increase

is the time taken for reconstructing the operator state: the higher the soft-checkpoint inter-

val, the larger the number of updates required to rebuild the state. Recovery time for the

passive replication approach depends on the soft-checkpoint interval. It ranges from 3.7

seconds (for a 2 second interval) to 14.8 seconds (for a 30 second interval). Our proactive

approach, as expected, performs well as compared to other passive replication approaches,

since it is able to change over to a very small soft-checkpoint interval just before the fail-

ure, and hence, has low MTTR. The experiment demonstrates the importance of choosing

the right soft-checkpoint interval automatically to maximize availability at low cost and

thereby maximize the net-utility of information flows.
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3.5.2.3 Cost & Net-Utility During Recovery.

Our proactive availability management approach increases soft-checkpoint activity when

a failure is predicted in the near future, but it maintains a low soft-checkpoint activity at

other times. The analyses of net-utility value before failure, during failure recovery, and the

total cost to recover from failure are summarized in Figure 16. Net-utility using proactive

availability management is higher than any other approach, because it contains a very recent

soft-checkpoint for the operator state and therefore, incurs the least cost during recovery.

Note that passive replication with an interval of 2 seconds also incurs a low cost during

recovery, but this is achieved by losing non-negligible net-utility at normal operation time.

3.5.2.4 Effects of Checkpoint Frequency and Prediction Accuracy on Cost and Avail-
ability.

The next experiment closely examines the effect of checkpoint frequency on the system,

both in terms of system availability and the cost imposed to gain a unit amount of utility.

As mentioned in Section 3.3.2, a higher fcp leads to a higher number of soft-checkpoint

messages from the active to the passive node, but it also leads to a smaller number of

updates being required to reconstruct the operator state during recovery. The conflicting

behavior of incurred cost due to fcp is represented in Figure 17 by the two parabolic curves.

Ideally, we would like to spend the minimum cost to achieve a unit amount of utility and

would therefore, like to choose a value of fcp that is located at the dip of the parabolic

curve. Note that the cost/utility ratio is consistently higher for the passive vs. the proactive

approach. We also show the effect of fcp on the availability of the system: the change is

in line with the formulation described in Equation 4. However, the interesting insight from

this experiment is the direct correspondence between the lowest achievable cost/utility and

the flattening of the availability curve.

Our final experiment studies the effect of prediction accuracy λ, on the achieved cost/utility
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ratio. It is intuitive that better prediction accuracy would lead to lower cost/utility for proac-

tive availability management, and this is clearly depicted in Figure 18. It is interesting to

note the behavior of proactive availability management with a lower fcp value. When pre-

diction accuracy is low, a small fcp leads to very high recovery times with low net-utility

during that period. However, if fcp is modulated properly to handle failures, recovery time

decreases and a far lower cost/utility is achieved. Meanwhile, the effect of prediction ac-

curacy is less prominent when a higher value of fcp is used, as the recovery times don’t

improve much, even with a correct prediction.
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CHAPTER IV

PREDICTABLY HIGH PERFORMANCE DATA STREAMS

ACROSS DYNAMIC NETWORK OVERLAYS

4.1 Introduction

Data-driven high performance applications are important to many constituencies, includ-

ing corporations in applications like real-time data mining or data integration [11], common

end users in telepresence [54], and scientists or engineers in applications like remote data

visualization [88] or instrument access [60]. A common characteristic of such applications

is their need to meet quality of service (QoS) guarantees and/or offer utility-based ser-

vices to end users (i.e., meet certain service-level objectives (SLOs)). However, excepting

datacenter-based solutions [11] and the few dedicated, high end links with guaranteed net-

work resources existing between select centers of excellence (e.g., via DOE’s UltraScience

Net [28] or the National Lambda Rail [62]), such guarantees must be provided across

shared best-effort network infrastructures, where dynamic network behavior and best-effort

nature make it imperative for middleware to assist end user applications in providing bet-

ter network resource availability and best utilizing the available network resource. More

specifically, when transporting and manipulating their data, applications should receive

specific network resource guarantees from the overlay networks used by middleware, ac-

commodating dynamic variations in network behavior: (1) high performance applications

require consistent levels of end-to-end performance, such as limited delays for transporting

online collaboration data [102] or small jitter for multimedia [29], (2) enterprise applica-

tions couple data transport and manipulation with application-level expressions of utility or

cost [50], and (3) many application classes can utilize guarantees that differentiate across

different traffic types, such as offering stronger guarantees for control vs. data traffic in
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remote instrument access for high performance codes [70].

Previous work on middleware for data-intensive distributed applications has addressed

limitations and runtime variations in network bandwidth with adaptive approaches to match-

ing desired to available network resources. Examples include dynamically adjusting data

transfer rates [15], varying compression levels in response to monitored changes in net-

work bandwidth [101], or changing the nature of the data being sent [15, 46, 102]. Other

research has sought to use alternative network connections or new network infrastructures

to compensate for problematic connection behaviors [70].

Here we present the IQ-Paths [17, 19] approach to self-regulating high performance

data streaming with defined quality requirements across wide area networks. IQ-Paths of-

fers novel functionality that enhances and complements existing adaptive data streaming

techniques. First, IQ-Paths dynamically measures [56] and then, also predicts the avail-

able bandwidth profiles on network links. Second, it extends such online monitoring and

prediction to the multi-link paths in the overlay networks used by modern applications

and middleware. Third, it offers automated methods for moving data traffic across over-

lay paths. These include splitting a single data stream across multiple paths to improve

performance through parallelism and to improve desired end-to-end behavior by dynam-

ically differentiating the amounts and kinds of data traffic imposed onto different paths.

Such self-regulating data movement and differentiation utilizes a dynamic packet schedul-

ing algorithm that automatically maps packets to paths to match application-level utility

specifications. Finally, an important attribute of IQ-Paths is that unlike other methods

for bandwidth prediction based on measurements of average bandwidth, it uses statistical

techniques to capture the dynamic or noisy nature of available network bandwidth across

overlay paths. This enables it to better map data with different desired utility – service

guarantees – to the underlying best effort network infrastructure.

Our research uses IQ-Paths for both scientific and high end media applications. In

the scientific domain, real-time remote data visualization for a molecular dynamics (MD)
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Figure 19: IQ-Paths Overlay Network: servers, routers, and clients continually assess the
qualities of their logical links, admit and map data streams with different desired utility
using a self-regulating packet routing and scheduling algorithm.

code benefits from IQ-Paths’ ability to better meet its dynamic end user requirements. A

specific example is to differentiate the transport of certain elements of the application’s

data streams, as with the atoms vs. bond forces visually depicted for each timestep of the

MD application. Another example is to use network paths with more stable bandwidths

for the critical ‘control’ traffic in the remote visualization software and also for the most

time-sensitive data sets in large volume parallel data transfers. Stability is dynamically

diagnosed and predicted via the aforementioned statistical techniques. In the multimedia

domain, IQ-Paths is shown to deliver improved performance for different encoding levels

of MPEG-4 video streams [18].

Results in Section 4.5 also demonstrate the advantages derived from IQ-Paths’ sta-

tistical guarantees. Specifically, there are distinct improvements over earlier work on

adaptive methods that provide QoS over wide-area networks by predicting future aver-

age network behavior from past history [52]. With such methods, quantities like RTT

can be predicted well, but average available bandwidth or packet loss rate are not eas-

ily captured (e.g., using predictors like MA, AR, or more elaborate methods like ARMA

and ARIMA) [109]). This is because noise is a large portion of the signal in the time
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series of available bandwidth or packet loss rate. As a result, the values for predicted

average bandwidths will have large prediction errors. For example, the results reported

in [109], based on measurements at over 49 well-connected academic and research insti-

tutions, have prediction errors larger than 20% for more than 40% of the predicted values

(i.e., |predictedvalue/actualvalue| > 1.2), and for 10% of the values, prediction error

is larger than 50%. In comparison, IQ-Paths can provide an application with strong guar-

antees, stating that it will receive its required bandwidth 99% of the time or experience a

deadline miss rate (i.e., jitter) of less than 0.1%, for example. Finally, other methods apply

low frequency filters [23] to measured values, to reduce prediction error, but unfortunately,

this means that they essentially eliminate the noisy nature of (i.e., dynamic variations ex-

perienced over) certain network paths. The outcome is that applications cannot adjust to or

deal with such variations, by mapping less important or less delay-sensitive data to noisier

connections, for example.

When large data streams are transferred over a shared network, it is often impossible

to meet some required service level agreement at all times, i.e., risk is unavoidable in such

environments. At the same time, when multiple paths are available, e.g., to make service

more reliable, many enterprise IT infrastructures utilize multiple commercial networks,

to provide higher availability in case of network downtime. Besides network bandwidth,

the cost and benefit tradeoffs between multiple networks are other important factors to

consider. The risk based management introduced in Chapter 2 provides a way to manage

such risk, costs, and benefits in a unified framework, offering a method to scheduling and

routing streams across alternative network paths to meet high level reliability and utility

requirements when using IQ-Paths. In this chapter, we also illustrate how to apply risk

based management to IQ-Paths.

Figure 19 illustrates an example of an IQ-Paths overlay, which utilizes automatic net-

work resource profiling, admission control, and self-regulating data routing and scheduling

to guarantee different streams’ desired utility requirements. The overlay implemented by
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IQ-Paths has multiple layers of abstraction. First, its middleware underlay – a middleware

extension of the network underlay proposed in [59]) – implements the execution layer for

overlay services. The underlay is comprised of processes running on the machines available

to IQ-paths, connected by logical links and/or via intermediate processes acting as router

nodes. Second, underlay nodes continually assess the qualities of their logical links as well

as the available resources of the machines on which they reside. The service guarantees

provided to applications are based on such dynamic resource measurements, on runtime

admission control, resource mapping, and on a self-regulating packet routing and schedul-

ing algorithm. This algorithm, termed PGOS (Predictive Guarantee Overlay Scheduling),

provides probabilistic guarantees for the available bandwidth, packet loss rate, and RTT

attainable across the best-effort network links in the underlay.

Key technical advantages of IQ-Paths and its PGOS algorithm include the following:

• Probabilistic and ‘violation bound’ guarantees: since the PGOS algorithm uses

bandwidth distribution analysis and prediction to capture network dynamics, it can

make service guarantees and provide prediction accuracies superior to those provided

by prediction methods based on average network behavior: (1) it can ensure that ap-

plications receive the bandwidths they require with high levels of assurance (e.g., it

can guarantee that an application receives its required bandwidth 99% of the time or

that its deadline miss rate is less than 0.1%)); (2) in addition, PGOS can also provide

deadline violation guarantees that bound the average number of packets that miss

their guaranteed QoS (e.g., their deadlines).

• Reduced jitter: by reducing jitter in applications like remote data acquisition or dis-

play, buffering needs are reduced. This is particularly important for high volume data

transfers in time- or delay-sensitive applications.

• Differentiated streaming services: different streams can receive different levels of

guarantees. As a result, when applications use close to the total available bandwidths
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Figure 20: Middleware Architecture.

of all overlay paths, PGOS can ensure that high utility streams receive stronger ser-

vice guarantees that others.

• Full bandwidth utilization: providing guarantees does not imply sacrificing the band-

widths available to applications (e.g., by purposely under-utilizing some link). In-

stead, PGOS has sufficiently low runtime overheads to satisfy the needs of even high

bandwidth wide area network links.

The remainder of this chapter is organized as follows. of the IQ-Paths approach. We

outline the software architecture of IQ-Paths in the next section, followed by descriptions of

its bandwidth prediction methods and of the PGOS algorithm using these methods. Experi-

mental evaluations on an emulated network testbed appear before the chapter’s conclusions.

4.2 Software Architecture of the IQ-Paths Middleware

The software architecture of the IQ-Paths middleware is depicted in Figure 20. It is derived

from our substantial experiences with the IQ-ECho [15] high performance publish/subscribe

infrastructure implementing channel-based information subscriptions. IQ-Paths leverages

IQ-ECho’s support for multiple transport protocols (e.g., TCP, RUDP, SCTP) and its mon-

itoring modules for measuring desired network metrics from middleware and in coop-

eration with certain transport modules (e.g., RUDP). PGOS routing/scheduling module

aggregates such runtime measurements in order to schedule application packets across
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multiple overlay paths. Unlike ECho, however, IQ-Paths is realized at a layer ‘below’

the publish/subscribe model of communication. Namely, IQ-Paths manipulates arbitrary

application-level messages flowing from data sources to data sinks. Whether such messages

are described as pub/sub events or in other forms is immaterial to the research described

here. Similarly, IQ-Paths is not concerned with how source-to-sink links are established.

It supports both direct source-to-sink links and more complex linkages that utilize over-

lay networks to route messages and process them ‘in-flight’ on their paths from sources to

sinks. One way for end users to establish such linkages is via IQ-ECho’s ‘derived chan-

nel’ abstraction. Another way is to use the deployment features implemented as part of the

‘in-transit’ information flow infrastructure described in [50]. A third way is to directly use

IQ-Paths as the transport layer for applications, as with the IQPG-GridFTP implementation

used in the evaluation section of this chapter.

The goal of IQ-Paths is to provide a general framework for routing, scheduling, and

processing streams of application-level messages. Generality is established by layering IQ-

Paths ‘beneath’ the different messaging models used by end users, including the IQ-ECho

and in-transit models developed in our own research. A specific example is the IQPG-

GridFTP described in this thesis, which (1) replaces its transport level with IQ-Paths and

(2) interposes the IQ-Paths message routing and scheduling algorithm between GridFTP’s

parallel link layer and lower level message transports. As a result, IQ-GridFTP (1) retains

its ability to exploit parallelism in data transport by simultaneously using multiple network

links, while more importantly, (2) gaining the ability to adjust the volumes of data being

transferred to the current behavior of each single network link between source and sink,

and (3) using overlay paths and path bandwidth-sensitive message routing and scheduling

to better control how data is streamed across multiple links from source to sink.

Important components of the IQ-Paths middleware described in this thesis are its Sta-

tistical Monitoring techniques and its Routing/Scheduling algorithms. Figure 21 illustrates

the structure of each IQ-Paths overlay node and the dynamic interactions of these software
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components. Specifically, the Statistical Monitoring component monitors the bandwidth

characteristics (i.e., bandwidth distribution) of each overlay path and shares this informa-

tion with the Routing/Scheduling component. The latter routes applications’ data streams

and sub-streams to the appropriate overlay paths and in addition, for each path, it schedules

the data packets mapped to it. The goal, of course, is to route and schedule application-

level messages to continuously match the network loads imposed by the middleware to the

available network bandwidths present in overlay paths, such that application-level metrics

of stream utility are met (e.g., probabilistic guarantees on the timeliness of data delivery).

The remainder of this chapter ignores other components of the IQ-Paths middleware,

referring the reader to a more complete description of the system in [15]. We next describe

the manner in which bandwidth guarantees are attained.

4.3 Statistical Bandwidth Prediction and Guarantees

The PGOS algorithm presented in Section 4.4 provides to an end users predictive guar-

antees that with some large probability, application-level messages will experience certain

levels of bandwidth across certain overlay paths. Toward this end, for each overlay path,
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IQ-Paths network monitoring (1) tracks the past distribution of path bandwidth in the form

of cumulative distribution function(CDF), and (2) uses the percentile points in that distribu-

tion as the bandwidth predictor, instead of using average bandwidth. The PGOS algorithm

then uses these predictions to judiciously route and schedule streams across overlay paths

by finding the path(or set of paths), which, for some large value of P0, can ensure that the

bandwidth allocated to the stream has the property of P (bw ≥ bw0) ≥ P0, where bw0 is

the required bandwidth.

For each specific overlay path, frequent bandwidth variation makes it difficult to predict

the exact values of average available bandwidth in the near future, both for very short

timescales like milliseconds and for the second timescales at which IQ-Paths operates.

Statistical prediction is to leverage rather than suppress such variations, in order to provide

to applications higher bandwidth guarantees. In other words, while predicting the exact

value of future bandwidth is hard, statistical prediction relaxes the prediction requirement

by asking if we can obtain certain amount of bandwidth with high probability. Because

of the IID nature of available bandwidth, statistical prediction has much smaller prediction

error than average bandwidth prediction. Furthermore, statistical prediction also retains

more information including the variation and distribution of the signal, which is directly

related with the service-level objectives of many applications.

Figure 22 illustrates the results of predicting average bandwidths vs. the statistical pre-

dictions used in our approach. Here, we analyze more than 8GB of IP header trace files

from the National Laboratory for Applied Network Research, collected at a number of lo-

cations of the Abilene (Internet2) and the Auckland networks. The mean prediction error

is the average relative error (|(predicted value− actual value)/actual value|) of several

widely used average bandwidth predictors (i.e., MA, EWMA and SMA). ¿From Figure 22,

the common average bandwidth predictors have a roughly 20% of prediction error. Similar

error ranges are also reported in [109]. In contrast, our statistical prediction method (per-

centile prediction) achieves less than a 4% prediction failure rate. The percentile prediction
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failure rate is the number of prediction failures divided by the total number of predictions.

For these experiments, we first calculate the distribution of N (e.g., 500 and 1000) sam-

ples, where each sample is the bandwidth measured in 0.1 to 1 second. Then, since we are

particularly interested in whether a path can guarantee certain throughput for 90% of the

time (or for 80%, 70%, etc), we find distribution D’s 10th percentile as X(Mbps), and test

whether the next n (n=5 to 10) samples are larger than X. If they are, a successful prediction

occurs, and if not, a prediction failure occurs.

From these experiments and for representative distributed applications, we determine

two facts. First, in practice, an application is typically more interested in whether it can

receive its required bandwidth consistently, than in the exact value of the bandwidth the

network provides. This is precisely the question answered by our statistical bandwidth

prediction methods. Second, such statistical guarantees are easier to make than guarantees

about available average bandwidth, because the majority of available bandwidth or max-

imum throughput on Internet paths is IID [109]. As a result, the exact value of average

bandwidth in the near future is hard to predict, but the statistical structure of bandwidth

can be predicted well. Simply speaking, if in the last 5 mins., the 10th percentile of band-

width is 10Mbps, then with a large probability, the bandwidth in the next 1 second will be

higher than 10Mbps. The measured low prediction failure rate directly justifies our usage

of percentile prediction. For high-performance computing, typically large amounts of data

are transferred in some small time interval (e.g. 12.5 MB of data in 0.1 second on a 1Gbps

link, or 125MB on a 10Gbps link). Mean prediction time series have a large number of out-

liers because of the aforementioned IID nature, if the measurement interval is small(e.g.,

0.1 second). To avoid these outliers, one has to average the bandwidth over larger interval

(e.g., 1 second), which loses the variation (or stability) nature of a particular network and

could easily cause inappropriate data movement as illustrated in the next experiment. Sta-

tistical prediction arguably avoids this pitfall by profiling the bandwidth distribution and

74



0.00

0.05

0.10

0.15

0.20

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BW Measurement Window

M
ea

n 
Pr

ed
ic

t E
rr

or
 a

nd
 P

er
ce

nt
ile

 
Pr

ed
ic

t E
rr

or

Mean Prediction Error
Percentile Prediction Error

Figure 22: Bandwidth Prediction.

providing accurate predication without using lossy averaging. The outcome is a solid foun-

dation for controlling how large amounts of data are moved around in every small time

interval with high confidence levels.

4.4 The PGOS Overlay Path Guarantee and Scheduling/Routing Algo-
rithm

This section describes the Predictive Guarantee Overlay Scheduling (PGOS) algorithm,

first discussing the general algorithm framework, then clarifying the concept of predictive

guarantees and describing the algorithm itself. Formal analysis of buffer size under PGOS

is given in [18], which shows PGOS also reduces the server/client buffer size requirement

and make data transfer less bursty, by using statistical prediction, as compared with using

average bandwidth prediction.

4.4.1 General Framework

An overlay network like the one in Figure 19 may be represented as a graph G = (V, E)

with n overlay nodes and m edges. An overlay node may be a server (i.e., data source)

running on some host, a client (i.e., data sink), or a daemon for data routing. There may

exist multiple distinct paths P j, j = 1, 2, ..., L, between each server and client, where
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Figure 23: Overlay Routing and Scheduling Algorithm Framework.

P j = (V j, Ej), V j = {v0, v1, ...vk, vp 6= vq if p 6= q} and Ej = {v0v1, ..., vk−1vk,

where vpvp+1 ∈ E, for all 0 ≤ p ≤ k − 1}. As in [87], we make no assumptions about

the placement of overlay nodes in the network. Rather, we assume that the middleware has

determined some suitable placement.

For each overlay link, since network bandwidth varies over time, the service time of

each application-level message is not known a priori and varies over time. The specific

problem addressed by the PGOS algorithm is further illustrated in Figure 23, where multi-

ple streams Sj, j = 1, 2, ...N must be transmitted from Server s to Client c with ‘best’ pre-

dictive performance guarantees. Figure 24 illustrates a server that deliver multiple streams

(in Queue 1, 2, ...) to a client via overlay paths 1, 2, etc. In this model, there is one scheduler

and L path services (each service corresponds to one overlay path used to deliver packets,

with service rate rj(t)).

Applications specify stream utility in terms of the minimum bandwidths they require,

or using Window-Constraints [100] requirement. A Window-Constraint is specified by

the values xi, and yi, where yi is the number of consecutive packet arrivals from stream

Si for every fixed window, and xi is the minimum number of packets in the same stream

that must be serviced in the window. The dynamics of the underlying network make it

difficult to satisfy the minimum bandwidth guarantees required by the utility specifications

described above, including for the guarantees associated with each scheduling window
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tw. We address this issue by asking applications to specify additional requirements of the

following nature: ensure that the minimum bandwidth is met with some large probability

P (e.g. 95%, 99%). This also means that 95% of the time, the window constraint will be

satisfied. Given these specifications, assuming a packet size of s, and denoting the available

bandwidth over a given path by bj(t), or simply b, (1) the available bandwidth distribution

is described as the cumulative distribution function F j(b) = P{avail bw ∈ (0, b)}, and (2)

the service rate of the path service j is described as rj = rj(t), where rj varies over time.

4.4.2 Predictive Guarantee Overlay Scheduling/Routing Algorithm

The Predictive Guarantee Overlay Scheduling/Routing Algorithm (PGOS) supports two

types of guarantees for stream utility specifications: probabilistic and ‘violation bounded’.

The former states that with some large probability P , stream Si will receive the required

bandwidth on the selected path. It also means that the stream Si will receive the required

bandwidth for at least 100P% of the time. The latter states that the average number of

packets that miss their constraint during each scheduling window can be bounded. Here,

we first define a single path selection algorithm for predictive guarantees and then extend

it to a scheduling algorithm that operates across multiple overlay paths.
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4.4.2.1 Single Path Guarantee

The idea of single path selection is to choose the best path among all candidate paths for

stream Si, with some desired guarantee. Single path selection is important because there

exist streams that are not easily mapped across multiple paths, an example being a stream

with tight deadline/bandwidth requirements which would have to cope with synchroniza-

tion issues and out of order arrivals when mapped across multiple paths.

Probabilistic guarantee The following is the probabilistic guarantee provided by the

PGOS algorithm. Due to limit of space, proofs of Lemmas and Theorem appear in [18]:

Lemma 1 Suppose during time (t, t+tw), where tw is the length of the scheduling window,

the available bandwidth distribution of server j is F j(bj). Then, with probability P =

1−F j(xis/tw), it is guaranteed that xi packets will be served during the scheduling window

tw.

Note that this guarantee essentially bounds the probability of insufficient throughput by

F j(xis/tw)

‘Violation bound’ guarantees Another useful application-level utility specification is

to bound some violation, such as the deadline miss rate. The following is the deadline

‘violation bound’ guarantee provided by PGOS, where Z is the number of packets that

miss their deadlines during one scheduling window, given the rate distribution Gj(rj) in

this scheduling window:

Lemma 2 Given available bandwidth distribution F j(b), E[Z] is bounded by xi ·F j(b0)−
tw
s
·M [b0], where b0 is the required bandwidth of Stream Si, b0 = xis/tw, and M [b0] is the

mean of b for all b ≤ b0. Both F j(b0) and M [b0] can be easily computed from the available

bandwidth distribution.
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Table 7: Precedence among Packets in Different Streams.

Packet Ordering
1. pkts scheduled on current path.
2. pkts scheduled on other path:
2.1 Earliest deadline first.
2.2 Equal deadlines, highest window constraint first.
3. pkts not scheduled:
3.1 Earliest deadline first.
3.2 Equal deadlines, highest window constraint first.

4.4.2.2 Guarantees for Multiple Overlay Paths

By combining the properties of multiple paths, PGOS can provide better guarantees to ap-

plications than those achievable on single paths. This is particularly relevant to large data

transfers, where the parallelism achievable across multiple paths can be used to speed up

data transfers as well as desired ‘in flight’ processing. Based on the two types of guaran-

tees developed for each a single path, we now describe an overlay routing and scheduling

algorithm that maps multiple streams across multiple paths ( Figure 23). The algorithm

schedules all packets of streams Si, i = 1, 2, ..., N such that the best guarantee is provided

for the timely delivery of high utility streams, while other streams are delivered with less

stringent guarantees. The PGOS algorithm, therefore, consists of two parts: (1) utility-

based resource mapping and (2) path routing and packet scheduling.

Utility-Based Resource Mapping The resource mapping part of the PGOS scheduling

algorithm (see Figure 25) finds the best proportion of stream Si to be delivered via path

P j(resource mapping). The result is the generation of a scheduling vector, which is then

used for routing and scheduling stream packets across multiple paths. The resource map-

ping step is executed when a new stream joins (or an existing stream terminates) or when

the CDF of some path changes dramatically. A single resource mapping typically persists

across many scheduling windows.
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1 updateCDF(); /*update CDF using bandwidth/lossrate
measurement in last scheduling window*/

2 if(previous scheduling vectors doesn’t satisfy currentCDF){
/*when new stream joins or CDF changes dramatically*/

3 Find best scheduling share Tpj
i ; /*Tpj

i is the number of
packets of stream i scheduled to be sent on path j*/
/*now rebuild scheduling vectors:*/

4 for( i = 1; i ≤ N ; i + +){
5 for( j = 1; j ≤ L; j + +){
6 Tpj+ = Tpj

i ; /*for path lookup vector*/
/*Insert deadlines corresponding to Tpi(j) into V Dj*/

7 UpdatePathDeadlineVector(V Dj , Tpj
i ).

8 }
9 }

/*build path lookup vector*/
10 V P=PathSchedVector(Tpj);

/*convert deadlines to stream scheduling vector*/
11 V S []=StreamSchedVector(V D []);

}/*end of scheduling vectors update(when necessary)*/

12 while(in current scheduling window){
13 /*get next path according to Vˆp*/

path=GetNextFreePath(Vˆp);
/* get next packet to send based on V s[p]:*/

14 if(getNextScheduledpkt(V s[p]))
15 sendpkt(path, pkt);
16. else if(pkt=getNextUnscheduledPkt(V s)){

/*other unscheduled pkt. Precedence rule 2 and 3.*/
17 sendpkt(path, pkt);

}
}

Figure 25: Scheduling Algorithm.
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During each scheduling window, PGOS schedules packets based on the current schedul-

ing vector and the stream precedence listed in Table 7. This table maintains the statisti-

cally optimal stream division scheme, while also utilizing additional available bandwidth

whenever possible. For example, given two overlay paths’ available bandwidth distribution

Gj(j = 1, 2), and two streams Si(i = 1, 2), the table is set up to divide each stream Si into

two sub-streams S1
i + S2

i , where S1
i will be sent via path 1 and S2

i will be sent via path

2, such that their required performance guarantees are met. Note that Sj
i could be a null

sub-stream, if necessary. We will send S1
1 and S1

2 via path 1, and send S2
1 and S2

2 through

path 2.

Stream precedence is determined by the probabilities with which different streams’

bandwidth requirements must be met. If streams Si desire to receive their required band-

widths 100Pi% of the time, then PGOS first finds the path that can satisfy the requirement

of the most important stream (with highest Pi), then finds the path for the second most

important stream, and so on. If there does not exist a single path that can satisfy stream Si’s

requirement, then the stream Si is divided into multiple parts Sj
i if this can satisfy stream

Si’s requirement. If this still fails due to limited bandwidth, an upcall is made to inform

the application that it is not possible to schedule this particular stream. The application can

reduce its bandwidth requirement (e.g., from 95% to 90%) or try to adjust its behavior to

the limited available bandwidth [15].

When a deadline violation bound guarantee is desired, PGOS works in a fashion similar

to the probabilistic guarantees described above. When one or multiple streams join, PGOS

begins with new stream with the highest deadline guarantee (i.e., with Minimum
i

[E[Zi]]),

and attempts to find a path to meet its guarantee. If such a path does not exist, PGOS divides

stream Si(with xi packets) into multiple parts Sj
i (with xj

i packets) such that
∑P

j=1 E[Zj
i ]

xj
i

xj ≤

E[Zi], where xi =
∑P

j=1 xj
i and xj =

∑N
i=1 xj

i . An alternative approach is to find a feasible

division scheme without considering the ordering of E[Zi] and solve a mixed integer lin-

ear programming problem(MILP). However, this is not desirable since it may divide some
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important stream (e.g., a control stream) into multiple sub-streams, thereby causing syn-

chronization and delays due to potential packet re-ordering across multiple overlay paths.

It is also an N-P hard problem. A detailed analysis of alternative approaches and their

comparison are beyond the scope of this thesis.

Path Routing and Packet Scheduling While it may be computationally complex to find

the best possible resource mapping, a more important issue is the affect of complex map-

pings on PGOS fast path performance. Here, during each scheduling window, PGOS needs

to schedule packets according to the resource mappings encoded in scheduling vectors and

according to the precedence table (see Table 7). The efficient data structures used by PGOS

are depicted in Figure 25: the scheduler has a path routing vector V P , and each path service

has one stream scheduling vector V S. The scheduling vector V encodes the currently best

resource mapping scheme derived by the resource mapping step. The lookup vector V P

is the vector the scheduler uses to switch between the different overlay paths. As derived

in the resource mapping step, path j is assigned xj packets, so path j is assigned xj virtual

deadlines Dp[k] = tw/xj · (k − 1). Virtual deadlines are used to maintain the desired re-

source mapping proportion. That is, V P contains the ordering to be used for visiting each

path, based on virtual deadlines.

To illustrate, consider a concrete example with two streams and two overlay paths.

Stream S1 has 5 packets in one scheduling window that are mapped to path 1. Stream

S2 has 10 packets in one schedule window, where 4 of them are mapped to path 1, while

another 6 packets are mapped to path 2. In this example, path 1 has 9 packets to deliver,

and path 2 has 6 packets to deliver. Thus, VP=[1,2,1,2,1,1,2,1,2,1,1,2,1,2,1]. When the

scheduler switches between the overlay paths, the path lookup vector ensures that three

fifths of the time, it will visit path 1, and two fifths of the time, it will visit path 2. Stated

more generally, when the scheduler visits path j, it uses the stream scheduling lookup

vectors V Sj to select the streams to which to send packets.(V S is essentially a lookup
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table where each row corresponds to one path). The lookup vectors V Sj are based on the

deadlines of all of the packets (from multiple streams) to be sent on path j. In the example,

path 1 has nine packets, and the deadlines of these 9 packets are for S1, S2, S1, S2, S1, S2,

S1, S2, and S1 respectively. Thus, V S1 = [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1].

While using V S for path mapping, PGOS schedules packets based on both V P and

V S. That is, once it has selected path j, PGOS sends packets over it according to V S.

Specifically, it selects a packet to send based on the stream scheduling lookup vector V Sj

and the precedence table (Table 7). First, it sends the packet scheduled on the current path

jsome other path that has the earliest deadline. Equal deadlines are broken by the win-

dow constraint x/y (highest window constraint first) and further ties are broken arbitrarily.

When all scheduled packets have been sent out and there are still free paths to utilize, PGOS

sends out other unscheduled packets according to their deadlines and window constraints.

Whenever a path is blocked, the scheduler switches to the next path immediately, in order

to best utilize other available resources. Because of the high cost of blocking, timeouts and

exponential backoff are used to avoid sending multiple packets to a blocked path.

The following theorem states more precisely the guarantees provided by PGOS:

Theorem 1 If there is a feasible schedule for PGOS to deliver streams Si, i = 1, 2, ..., N

over paths P j, j = 1, 2, ...L during scheduling window (t, t + tw) with bandwidth guaran-

tees, then stream Si’s window constraint will be met with probability Pi.

4.4.3 Risk Based Resource Mapping

The PGOS algorithm involves two steps: resource mapping step which finds the best pro-

portion of streams Si to be delivered via path P j , and the packet routing and scheduling

step which does the fast routing and scheduling according to the scheduling vector and

stream precedence. In the previous sections, we consider how to maximize the utility in the

resource mapping step. In real world, maximizing utility is often not what is really desired

when risk is another factor to consider. As demonstrated in Chapter 2, risk attitude affect
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people’s decision whether a high utility solution coupled with high risk is really better than

a mediocre utility solution coupled with low risk. We extend the methodology proposed in

previous sections with the risk-attitude sensitive availability management in this section to

demonstrate how to consider risk attitude when dealing with network risks.

Consider multiple distinct network paths from the source to the destination P j, j =

1, 2, ..., L, and we need to find out the right proportions Sj of stream S which is to be

delivered by path P j . The vector Sj is used in the path routing and packet scheduling

step. Because of the fluctuation of the network resource, we don’t know if the actual

network resource will be enough to deliver the required bandwidth, however, we do know

from statistical bandwidth prediction that with probability of PSj = 1 − F j(Sj), path P j

will provide at least Sj Mbps, which is the outcome of the lottery and 1 − F j(Sj) is the

probability that this outcome will happen.

Table 8: Lottery Outcomes
Options Performance Guarantee
L1: (pP,hG) 60% of Sj 99%
L2: (hP,pG) 99% 97%
L3: (gP,gG) 80% 98%

Table 9: Preferences of Outcomes
Customer Preference
C1: (‘like high guarantee’) L1>L3>L2
C2: (‘like high performance’) L2>L3>L1
C3: (‘mediocre perf. and guarantee’) L3> L1>L2

To map the resource based on risk preference/attitude, we first elicit the customer’s

risk attitudes using typical possible outcomes (see Table 8) and the customer’s preferences

for these outcomes (see Table 9). Here, L1 represents an outcome with low bandwidth

but very high bandwidth guarantee, L2 represents an outcome with high bandwidth with

poor bandwidth guarantee, and L3 represents an outcome with mediocre bandwidth with
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mediocre guarantee. Again, different customers have different risk attitudes, for example,

customer C1 prefer L1 to L3 and prefers L3 to L2, since he is more risk averse person.

Let U(Sj) be the utility generated if path P j can provide Sj Mbps bandwidth in the

next second and define von Neumann-Morgenstern utility as vnmU(Sj) = PSjU(Sj)α/α

using CRRA vNM utility function. According to the user’s preference, we use the same

method proposed in Chapter 2 to find the value of α. The optimal resource mapping for

a customer with risk preference determined by α, should be Sj, j = 1, 2, 3, ..., L which

maximizes von Neumann-Morgenstern utility:

vnmU = Max{
∑

j=1,2,...,L

vnmU(Sj)} = Max{
∑

j=1,2,...,L

PSjU(Sj)α/α}

4.5 Experimental Evaluation

In this section, we first demonstrate the importance of choosing the right path based on

statistical predictions. Then, we evaluates and analyzes IQ-Paths with three types of ap-

plications: (1) the SmartPointer system [102] for distributed collaboration and interactive

program steering, (2) the GridFTP [2], a high-performance and reliable data transfer proto-

col widely used in the Grid community, for reliable parallel data transmission in wide area

networks, and (3) MPEG-4 Fine-Grained Scalable video streaming.

Our testbed emulates a realistic wide area setting, using the EmuLab facility [93].

NLANR traces are used to inject representative cross-traffic [61]. If not stated otherwise,

the overlay server N-1 has two overlay paths to reach the client N-6(Figure 26), and the

background traffic and data traffic share the common link between N-3 and N-5, and the

link between N-2 and N-4. All link capacities are 100Mbps, which is the current up-limit

of Emulab.
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Figure 26: IQ-Paths Testbed. The link connecting each pair of nodes is fast Ethernet. Cross
traffic is injected by Node N-9 to N-14. Overlay routers are placed at Node N-4 and N-5,
so that overlay paths and cross traffic paths share the same bottleneck (N-3 to N-5 and N-2
to N-4).

Table 10: Importance of Choosing the Right Path. ‘X%’ means the Xth percentile point.

Throughput(Mbps) Jitter(ms)
95% 99% mean std

Atom-pathb 2.47 1.93 1.70 6.1
Atom-patha 3.23 3.23 0.82 1.3
Bond1-pathb 17.23 13.02 1.70 6.1
Bond1-patha 22.04 22.03 0.83 1.3

4.5.1 PGOS Evaluations with SmartPointer

4.5.1.1 Importance of Choosing the Right Path

We first evaluate the importance of choosing the ‘right’ path for an application’s data

streams. In this evaluation, cross traffic based on trace files obtained from NLANR is in-

jected into two overlay paths. The average available bandwidth on Path B is higher than that

on Path A, but it has larger variation compared to Path A. Two streams of the SmartPointer

(streams ‘Atom’ and ‘Bond1’) are transferred from Node1 to Node6 over either of these

two overlay paths. In Table 10, the Atom-patha row and Bond1-patha row are the through-

puts and jitters of streams Atom and Bond achieved if we utilize Path A, and Atom-pathb

and Bond1-pathb are throughputs and jitters achieved if we use Path B. Although Path B
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Figure 27: Throughput on Each Path. Although path A has less mean available bandwidth
than path B, it is preferable for streams ‘atom’ and ‘bond1’
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Figure 28: Throughput CDF on Each Path. Bandwidth on path B is more dynamic than
bandwidth on path A.

has higher average bandwidth, its higher variation causes unstable bandwidth (e.g., for 95%

of time, stream Atom can only obtain 2.47Mbps from Path B, while it can obtain 3.23Mbps

from Path A.) Unstable bandwidth also results in bursty transmission behavior, large queue

lengths on the server side, and higher jitter, none of which are desirable for this remote

collaboration application. Note that low jitter is particularly important for real-time appli-

cations like remote scientific visualization, as it provides smoother data streaming and also

reduces total buffering. As shown in Table 10, the two streams can achieve much lower av-

erage jitter and lower standard deviation in jitter if PathA is chosen instead of PathB (0.82

vs. 1.7 for average jitter and 1.3 vs. 6.1 for standard deviation.)

This experiment demonstrates the importance of assessing the distribution of available

bandwidth to meet application-level service requirement vs. assessing average bandwidth
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values. When we transfer large data volumes, average bandwidth is one important factor,

but it is not a sufficient one. Specifically, by using the distribution of available bandwidth,

PGOS can find the path to transfer application data that has the best predictive guarantee.

We next discuss further improvements in attainable end-to-end bandwidth, by using PGOS

to schedule traffic across concurrent network paths.
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(b) Multi-Server Fair Queuing
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(c) PGOS Algorithm
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(d) OptSched Algorithm

Figure 29: Throughput Time Series Comparison of Three Algorithms.

This set of experiments evaluates PGOS’ multi-path message routing and scheduling

performance using the SmartPointer distributed collaboration application. The purpose is to

see how the algorithm can guarantee some critical stream’s required throughput while also

providing high throughput to non-critical streams. Consider the SmartPointer server issuing

three streams (Atom, Bond1, and Bond2) to remote clients. Streams Atom and Bond1 are
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(d) OptSched Algorithm

Figure 30: Throughput CDF Comparison of Three Algorithms.

data about all atoms and those bonds that are in the observer’s immediate graphical view

volume, whereas stream Bond2 contains the bonds outside the observer’s current view.

Therefore, Streams Atom and Bond1 are important and must be delivered in real-time (25

frame/sec) for effective collaboration, but stream Bond2 is less critical (e.g., it may be

important when the observer rapidly changes his/her viewing angle.)

Three on-line message transfer algorithms are evaluated and compared to meet this ap-

plication’s needs: (1) transfer all messages over one single path based on normal Fair Queu-

ing (WFQ), (2) transfer messages over two paths with multi-server Fair Queuing(MSFQ) [9],

and (3) transfer messages over two paths using the proposed PGOS routing and scheduling

algorithm. The input (utility requirements) to PGOS are 3.249Mbps with 95% predictive
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Figure 11: Throughput Achieved by Three Algorithms: Target, Mean, 95% of the
time, 99% of the time, and Standard Deviation(represented by the verti-
cal bars).
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(b) IQPG-GridFTP Throughput. Line DT3-All is the
throughput achieved by stream DT3(sum of throughput
on two paths: DT3-P1 and DT3-P2).

Figure 12: Throughput Achieved by GridFTP and IQPG-
GridFTP

and Blocked data layout options to distribute file contents
across the connections in addition to the PGOS layout. A
partitioned data layout is one where contiguous chunks of
file are distributed evenly across all the connections for trans-
fer, while a blocked data layout is one where data blocks
(each of size block-size) are distributed in a round-robin
fashion.

We use a climate database in our experiment as simula-
tion of the Earth System Grid II [12]. Each record in this
database has three data components: (1) the numeric data
(approximately 172.8KB, denoted by ‘DT1’), and (2) and
(3) are low resolution images (128KB, denoted by ‘DT2’)
and high resolution images (384KB, denoted by ‘DT3’), re-
spectively. GridFTP and IQPG-GridFTP are configured to
concurrently transfer file records over two overlay paths. For
such transfers, we want to ensure that the numeric data and
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Figure 13: GridFTP and IQPG-GridFTP Throughput CDF
Comparison

low resolution images receive their required bandwidths of
at least 25 records/second for real-time data streaming. In
addition, we also want to fully utilize bandwidth to transfer
high-resolution data.

Experimental results are depicted in Figures 12 and 13.
From these measurements, it is apparent that IQPG-GridFTP
can ensure that the streams DT1 and DT2 receive their re-
quired bandwidths consistently, while stream DT3 is trans-
ferred as fast as possible. In comparison, standard GridFTP
splits the dataset into blocks allocated to the multiple con-
nections for transfer, but when the available bandwidth of
any path is low, all types of data have to compete with each
other. This causes the important data streams to not receive
their required bandwidths during these periods. Quantita-
tively, stream DT1 achieves 33.94Mbps average through-
put using GridFTP with a large standard deviation (1.4297),
while using IQPG-GridFTP, it achieves 34.55Mbps average
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Figure 31: Throughput Achieved by Three Algorithms: Target, Mean, 95% of the time,
99% of the time, and Standard deviation (represented by the vertical bars).

guarantee for stream Atom and 22.148Mbps with 95% predictive guarantee for stream

Bond1. We also compare these results with a near-optimal off-line algorithm, termed

OptSched [18], which assumes that we know available bandwidth a priori. Although this

off-line algorithm cannot be used in practice, it can be used to gauge the absolute perfor-

mance of PGOS.

The results of using these four algorithms appear in Figure 29. Figure 29a depicts

the throughput of 3 streams attained by the WFQ algorithm on Path A, which has higher

available bandwidth than Path B with larger variance. Multi-Server Fair Queuing (MSFQ)

can maintain the proportion of throughput shared by the three streams quite well (see Fig-

ure 29b), but because of its inaccurate average bandwidth prediction, it fails to provide the

required throughput to the two critical streams Atom and Bond1. Both streams exhibit sub-

stantial throughput fluctuation. In comparison, the PGOS algorithm successfully provides

very stable throughput to these two critical streams. Furthermore, note that in Figure 29c,

the throughput of stream Bond2 is not compromised. This stream is divided by PGOS into

two substreams (Bond2-PathA and Bond2-PathB), and the average throughput of stream

Bond2 is almost the same as that achieved by MSFQ.

The cumulative distributions of throughput of the three streams under the three algo-

rithms are given in Figure 30. PGOS provides the two critical streams at least 99.5% of

their required bandwidth for 95% of the time. MSFQ can only provide about 87% of their
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required bandwidth for 95% of the time. For example, stream Bond1 requires 22.148Mbps,

and the actual 95th percentile of the achieved bandwidth is 22.068Mbps under PGOS, but

it is only 19.248Mbps under MSFQ. The standard deviations of bandwidth experienced by

the two critical streams appear in Figure 31. Although stream Bond2 has slightly larger

standard deviation with PGOS, the two critical streams Atom and Bond1 experience much

lower standard deviations.

Both Fair Queuing and Multi-Server Fair Queuing try to allocate bandwidth in a pro-

portional based manner according to predicted bandwidth, but they require exact values of

end-to-end bandwidth, which are hard to attain. As a result, although both of these two

algorithms can successfully maintain the proportion of the bandwidth allocated to multi-

ple streams, they cannot provide specific bandwidth to a particular stream. In comparison,

PGOS relaxes the prediction assumption, only asking if we can obtain certain bandwidth

with some high probability. This is not only easier to predict, but also directly provides the

functionality needed by applications.

All three algorithms experience certain overheads when routing single streams over

multiple paths, because of packet reordering and delays of head-of-line packets. PGOS

reduces this overhead by using a single path for one stream whenever possible, especially

for streams with higher priorities. Simply speaking, unlike MSFQ which provides the two

critical streams less than required bandwidths when the network is congested and more than

required bandwidths when the network is free of congestion, PGOS routes and schedules

packets such that the two important streams obtain stable required bandwidths no matter

whether or not one path is congested. As a result, the application frame jitter is also reduced

from 2.0ms (with MSFQ) to 1.4ms (with PGOS).

In summary, these experiments show that with PGOS routing/scheduling, critical streams’

required throughput can be guaranteed most of the time. This is done without compromis-

ing the average throughput experienced by non-critical streams. A case in point in our

experiments is non-critical stream Bond2, which still receives almost the same average
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Table 11: Comparing Three Routing/Scheduling Algorithms.

Throughput(Mbps)
95 Perct. 99 Perct. Mean Std. Target

Atom 0.846 0.672 1.5524 0.3863 3.249
AtomF 2.789 2.744 3.2111 0.3273 3.249
AtomP 3.236 3.216 3.2487 0.0150 3.249
AtomO 3.240 3.239 3.2489 0.0058 3.249

Bond1 5.768 4.569 10.5843 2.6348 22.148
Bond1F 19.248 18.946 22.1300 2.2321 22.148
Bond1P 22.068 21.959 22.1476 0.0790 22.148
Bond1O 22.138 22.139 22.1477 0.0273 22.148

Bond2 18.297 14.486 33.7021 8.3949 70.340
Bond2F 52.446 51.76 59.0786 8.0397 70.340
Bond2P 45.782 45.038 59.0588 9.5765 70.340
Bond2O 45.757 45.019 59.0583 9.5587 70.340

throughput under PGOS as under MSFQ.

4.5.2 GridFTP Experiments

GridFTP [2] is widely accepted as one of the common data transfer services available

for high performance applications, with extension to the FTP protocol including parallel

data-transfer, SPAS(Striped Passive), and SPOR(Striped Data Port). In this subsection, we

present our experiences with IQPG-GridFTP, which strengthens our previous work [15]

by including support for PGOS-enabled parallel file transfers. IQPG-GridFTP generalizes

the publicly available wu-ftpd [104] server to support the GridFTP protocol extensions

for parallel transfers and implements the Partitioned and Blocked data layout options to

distribute file contents across the connections in addition to the PGOS layout. A partitioned

data layout is one where contiguous chunks of file are distributed evenly across all the

connections for transfer, while a blocked data layout is one where data blocks (each of size

block-size) are distributed in a round-robin fashion.

We use a climate database in our experiment as simulation of the Earth System Grid

II [7]. Each record in this database has three data components: (1) the numeric data
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(b) IQPG-GridFTP Throughput. Line DT3-All is the
throughput achieved by stream DT3(sum of throughput on
two paths: DT3-P1 and DT3-P2).

Figure 32: Throughput Achieved by GridFTP and IQPG-GridFTP

(approximately 172.8KB, denoted by ‘DT1’), and (2) and (3) are low resolution images

(128KB, denoted by ‘DT2’) and high resolution images (384KB, denoted by ‘DT3’), re-

spectively. GridFTP and IQPG-GridFTP are configured to concurrently transfer file records

over two overlay paths. For such transfers, we want to ensure that the numeric data and

low resolution images receive their required bandwidths of at least 25 records/second for

real-time data streaming. In addition, we also want to fully utilize bandwidth to transfer

high-resolution data.

Experimental results are depicted in Figures 32 and 33. From these measurements,

it is apparent that IQPG-GridFTP can ensure that the streams DT1 and DT2 receive their

required bandwidths consistently, while stream DT3 is transferred as fast as possible. In

comparison, standard GridFTP splits the dataset into blocks allocated to the multiple con-

nections for transfer, but when the available bandwidth of any path is low, all types of

data have to compete with each other. This causes the important data streams to not re-

ceive their required bandwidths during these periods. Quantitatively, stream DT1 achieves
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(b) IQPG-GridFTP Throughput CDF.

Figure 33: GridFTP and IQPG-GridFTP Throughput CDF Comparison

33.94Mbps average throughput using GridFTP with a large standard deviation (1.4297),

while using IQPG-GridFTP, it achieves 34.55Mbps average throughput with a small stan-

dard deviation (0.4040). Similar results are observed for stream DT2. Note that here the

network can provide almost the total throughput required by the application. If the net-

work cannot provide such throughput, then the two streams DT1 and DT2 obtain even less

bandwidth using GridFTP, as they have to compete with stream DT3 for the same limited

bandwidth. In summary, with PGOS, IQPG-GridFTP can protect more important streams

from competing with other less important streams, while also scheduling less important

streams to be delivered when there exists sufficient bandwidth. Applications have full con-

trol over deciding how much bandwidth will be allocated for a particular stream and what

kind of guarantee is for each stream.

4.5.3 Multimedia Streaming Experiments

Video and audio streaming over the Internet are known to be important applications. Be-

cause the dynamic behavior of the Internet makes it difficult to provide consistently good
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Table 12: Comparing GridFTP and IQPG-GridFTP: Target, 95 Percentile, Mean and Stan-
dard Deviation .

Stream Throughput(Mbps)
Name Target 95 Perct. Mean Std.

DT1O 34.56 31.431 33.9411 1.4297
DT1P 34.56 33.869 34.5505 0.4040

DT2O 25.60 23.282 25.1415 1.0590
DT2P 25.60 25.094 25.5990 0.2993

DT3O 76.80 69.393 75.4246 3.1770
DT3P 76.80 65.287 74.3577 4.7668

quality of streaming video/audio, layered coding and multiple description (MD) provide

layers of encoded video. Both layered and MD coding can leverage the QoS enhancements

offered by PGOS, and in this section, we evaluate the performance of PGOS used with

MPEG-4 Fine-Grained Scalable (MPEG-4 FGS) layered video coding [42].

The MPEG-4 FGS framework consists of a base layer and one or two enhancement

layer. The base layer is generated by motion estimation/motion compensation and entropy

coding with fixed quantization step size. The SNR FGS enhancement layer adds DCT co-

efficients with reduced quantization step size and leads to more accurate DCT coefficients

and higher video quality. The Temporal FGS enhancement layer improves temporal res-

olution by providing a higher frame rate and smooth motion. The base layer is the most

important set of data, and its bandwidth requirement should be consistently provided for

smooth playback. Receivers can subscribe to as many enhancement layers as possible to

maximum video quality, but these layers are less important and may be dropped at when

there in insufficient available bandwidth.

The base layer and the enhancement layer require 1.4820Mbps and 11.2901Mbps aver-

age bandwidths, respectively. Since encoded video exhibits variable throughput, the input

parameter for PGOS is a 95% prediction guarantee of 1.22Mbps for the base layer, which

corresponds roughly the 95 percentile of the actual bit rate of the base layer. There is no
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requirement for the enhancement layer, i.e., we would like to transmit the enhancement

layer using the remaining available bandwidth.
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Figure 34: Throughput Time Series of MSFQ and PGOS Algorithms.

Experimental results appear in Figures 34 and Figures 35. In Figure 34, the thick red

line is the bandwidth of the encoded base layer, and the solid black line is the delivered

bandwidth of the base layer. Comparing these two graphs, PGOS can deliver about the

bandwidth required by the base layer. In comparison, since mean bandwidth cannot be

predicted well, with MSFQ, for some time, the achieved bandwidth of the base layer is

significantly less than the required video bit rate. More precisely, PGOS provides 1.20Mbps

for 95 percent of the time while MSFQ provides only 0.81Mbps for 95 percent of the

time.Further, PGOS provides at least 1.22Mbps for 93 percent of time which is very close

to our bandwidth guarantee requirement (i.e., at least 1.22Mbps for 95 percent of the time).

In comparison, MSFQ provides at least the required bandwidth for only 78 percent of the

time.
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Figure 35: Throughput CDF Comparison of Three Algorithms.

Table 13: Comparing Throughput of MSFQ and PGOS Algorithms: 95 Percentile and
Mean

Throughput(Mbps)
95 Perct. Mean

Base LayerF 0.81722 1.3693
Base LayerP 1.2026 1.4761
Enh. LayerF 6.5250 10.7690
Enh. LayerP 6.2931 10.3910

4.5.4 Risk-Based Resource Mapping

In this section, we use simulation based results to illustrate how risk attitudes affect re-

source mapping. Consider an enterprise able to use two alternative paths between two data

centers. Normally, the cost and reliability of these multiple paths are different and at the

same time, multiple streams have different probabilities for service guarantees, for exam-

ple, one high end optical link which has reserved (guaranteed) bandwidth and one common

Internet connection with best effort service guarantees. The cost of these links are different,
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Figure 36: Optimal Bandwidth Allocation under Different Values of α and Cost1. x is the
bandwidth allocated to the high end link.

and we use the data from [41] as a guideline for cost estimation: $120.000 per Month for

a OC12(622Mbps) link and $4.000 per Month for a T3(43.232Mbps) link (a range of costs

is considered in the experiments). Utility is defined as U(Sj) = benefit − cost, where

benefit = 0.1 ∗ Sj . The bandwidth required by stream S is 40Mbps. Figure 36 shows

the optimal bandwidth allocation under different Cost1, the cost of the high end link and

different values of alpha, which defines whether a customer is risk averse, risk neutral or

risk seaking. The z-axis is the bandwidth we need to allocate to the high end link (so,

40Mbps−x is the bandwidth we need to allocate to the common Internet connection). The

cost of the common Internet connection, Cost2, is fixed: Cost2 = $0.015Mbps. Clearly,

when the value of α decreases (in the range of 0.15 to 4.15), the decision will be more

risk averse and more bandwidth will be allocated to the high end link, despite its high cost.

When the cost of the high end link Cost1 increases, less bandwidth will be allocated to this

link, given same value of α. Interestingly, when α is extremely small or high (means very

risk averse or very risk seaking), the cost of the high end link does not affect the bandwidth

allocation decision: when α is small, all bandwidth will be allocated to the high end link;

and when α is high, zero bandwidth is allocated to the high end link.
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Figure 37: vNM Utility under Different x Value, When alpha = 0.15. Each combination
of different Cost1 value and Cost2 value has one curve.

Figures 37 to 41 depict how the von Norman-Morgenstern utility changes when x

changes. Each combination of different Cost1 value and Cost2 value has one curve in

each figure. The highest point of each curve, where we obtain highest vNM utility, repre-

sents the optimal bandwidth allocation at certain values of Cost1, Cost2, and α. This series

of graphs shows the clear trend that when α increases, the highest points of the curves shift

to the left, meaning less bandwidth should be allocated to the high end link, and vice versa.

These graphs also show that different allocations of bandwidth affect vNM utility dramati-

cally, which could range from 10 to 900 (e.g., see Figure 40). This implies that if we do not

consider the risk attitude when optimizing bandwidth allocation (the bandwidth mapping

step), the outcome could much diverge from the actual customer risk preference. As also

illustrated in Chapter 2, it is important to consider risk attitude when risk is unavoidable,

when considering failures and fluctuations of either computational or network resources.
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Figure 38: vNM Utility under Different x value, When alpha = 1.65. Each combination
of different Cost1 value and Cost2 value has one curve.
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Figure 39: vNM Utility under Different x Value, When alpha = 2.15. Each combination
of different Cost1 value and Cost2 value has one curve.
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Figure 40: vNM Utility under Different x Value, When alpha = 3.15. Each combination
of different Cost1 value and Cost2 value has one curve.
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Figure 41: vNM Utility under Different x Value, When alpha = 6.15. Each combination
of different Cost1 value and Cost2 value has one curve.
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CHAPTER V

RELATED WORK

5.1 Availability and Reliability

Traditional Fault-Tolerance. Redundancy is probably the earliest form of fault-tolerance;

the approach popularly known as the active replication approach is well-studied, and a

thorough description appears in [68]. Log-based recovery is well-known in the database

domain. Here, a failure is handled with an undo-redo log [37]. Fault-tolerance has also

been studied in the context of transactions [103] and distributed systems [82]. Dynamically

trading consistency for availability is proposed in [105] using a continuous consistency

model. A number of factors distinguish our approach from these traditional mechanisms,

the first and the foremost being its utility-awareness. Another distinction is our ability to

use failure prediction to reduce the overhead of ensuring high-availability.

Failure Detection & Prediction. [85] focuses on the implementation of fault detection,

and proposed a scalable fault detection/collection framework. More recently, researchers

in the autonomic domain have used statistical monitoring techniques to detect failures in

component-based Internet services [30, 106]. MSET or multi-variate state estimation tech-

niques [106] constitute an early warning system that enables failure prediction with low

false alarm probability and has been successfully applied to the thermal control domain,

and more recently, to software aging problems, including predicting memory leaks, data

corruption, shared memory pool latching, etc. In [25], instrumentation data is corre-

lated to system states using statistical induction techniques to identify system-level met-

rics that correlate with high-level performance states. In addition, these techniques are

used to forecast service level objective violations, with prediction accuracy reported to be

around 90%. Our system provides a framework in which several such failure detection
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and prediction techniques can be implemented to provide high-availability while imposing

a low-overhead. Often, failures occur at client sites are hard to be reproduced offsite for

diagnosis. Triage [94] provides a light-weighted method which automatically detects and

diagnoses software failure diagnosis at the very moment of failure, at client sites. Such

methods would be potentially useful to shed light on failure prediction and avoidance.

Fault-Tolerant Distributed Information Systems. Stars [82] presents a fault-tolerance

manager for distributed application, using a distributed file manager which performs ac-

tions like message backups and checkpoints storage for user files. Its reliance on causal

and atomic group multi-cast, however, demands additional solutions in the context of to-

day’s widely geographically distributed enterprise systems [21].

MTTR may be improved with solutions like Microreboot [20], which proposes a fast

recovery technique for large systems. It is based on the observation that a significant frac-

tion of software failures in large-scale Internet systems can be cured by rebooting. While

rebooting can be expensive and cause nontrivial service disruption, microrebooting is a

fine-grain technique for surgically recovering faulty application components, without dis-

turbing the rest of the components of the application. Our work could benefit from such

techniques.

GSpace [74] and replica management in Grids [78] studied dynamic data replication

policy and modeling in distributed component-based systems when multiple replicas of

data are desired, e.g., for global configuration data, or in a highly dynamic environment,

to improve availability. For this kind of data replication management, efficient read-one

write-all protocol [67] can be used when updates of the replicated data occur frequently.

IFLOW’s techniques may be directly compared to the fault-tolerance offered in systems

like Fault-Tolerant CORBA [58, 63], Arjuna [64] and REL [33], which replicate selected

application/service objects. Multiple replicas allow an object to continue to provide service

even when one of its replicas fails. Passive replication is also provided. Here, the system

records both the state of the currently executing member (primary member) and the entire
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sequence of method invocations. While CORBA focuses on the client-server model of

communication, recent systems like Borealis [5] and SMILE [86] have focused on fault-

tolerance for applications that process data streams. The former uses replication-based

fault-recovery, and the authors propose to trade consistency for recovery time. The latter

proposes the soft-checkpointing mechanism that can be used to implement a low-overhead

passive replication scheme for fault tolerance. We differ from such earlier work because of

our explicit consideration of system utility for managing system availability, and because

our system also provides a framework for incorporating failure prediction techniques.

Utility-Functions. The specific notions of utility used in this thesis mirror the work

presented in [99], which uses utility functions for autonomic data-centers. Autonomic self-

optimization according to business objectives is studied in [1], and self-management of

information flow applications in accordance with utility functions is studied in [49]. A

preliminary discussion about availability-aware self-configuration in autonomic systems

appears in [22]. Our middleware carefully integrates the ideas from the above systems and

other domains to build a comprehensive framework for fault-tolerant information flows.

5.2 Service Management and Risk Management

IT service management driven by business policies is a relatively new area. Buco et al.

present SLA management system that is based on business-objectives [12]. Salle et al.

propose a solution to minimize the exposed business impact of service level violation [76].

They further present the Management by Business Objective (MBO) technology for IT

management that can take into account strategic business objectives [77] and they specifi-

cally apply this approach to incident management domain [6]. Yuan et al. use performance

modeling with performance profiling to translate Service Level Objectives to lower-level

resource requirements. To manage complex enterprise systems, state-space approach can

be used to divide a large system state-space into partitions that are more manageable [51].
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In the context of design, Sahai et al. propose a policy-based model for automated configu-

ration management [75]. It automatically creates a suitable configuration and a workflow

to deploy the configuration based on user requirements, operator constraints, and techni-

cal constraints of the system. Their business-objectives-driven performance management

uses utility function to optimize resource allocation and maximize the total utility. Com-

pared to these efforts, our work focuses on the optimization of availability management to

meet business objectives. Our solution involves the aspect of utility function, performance

modeling, and availability modeling. In addition, availability management always involves

uncertainty. In this work, we provide a method to deal with users’ risk attitudes and handle

different tradeoff between performance and reliability.

To improve availability, fault tolerance techniques are widely used in systems such as

Fault-Tolerant CORBA [58, 63], and Arjuna [64]. These systems replicate selected ap-

plication/service objects and provide specifications to allocate standbys for fast recovery.

Multiple replicas allow an object to continue to provide service even when one of its repli-

cas fails. Based on these widely used techniques, automated system design for availability

is proposed in [43]. For availability management during changes, rolling upgrades are

often used to minimize the down time during upgrades. A more systematic approach is

proposed in Mirage [26]. Here, staged deployment (after clustering based upgrade be-

haviors), user-machine testing, and problem reporting cooperate in a structured manner to

reduce overall failures.

5.3 Routing and Scheduling in Overlay Network

While the PGOS packet scheduling algorithm is inspired by the DWCS packet scheduling

algorithm [100], its use for efficient multimedia data streaming across the Internet lever-

ages substantial prior work on improving the quality of network video streaming [46, 72].

Here, early work established the utility of adding and dropping different encoding layers of

video streams for longer term coarse-grain stream adaptation [98]. Improvements like those
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in [72] use TCP-friendly control mechanisms to react to congestion on shorter timescales,

with mismatches between the two timescales absorbed by buffering at the receiver. The

control mechanisms used for multimedia data streaming are based on an adaptive layered

video streaming algorithm for MPEG-4 with limited buffer size described in [46], where

priorities are used in the VOP (video object plane) to select or discard each VOP element

based on average bandwidth prediction, to control the fashion in which fine-grain scalable

coding allocates bandwidth to different encoding layers. The contributions of IQ-Paths

in this context are its use of statistical bandwidth measurement and prediction to capture

network link qualities, and its PGOS self-regulating data routing and scheduling algorithm

can utilize both multiple or alternate overlay paths to satisfy different video layers’ util-

ity requirements. The outcome is improved smoothness of video playback, despite the

variable-bit-rate nature of layered video. The additional techniques described in [29] can

be used to further smooth such variable-bit-rates, thereby attaining a constant transfer rate

for each time interval in the transmission process.

OverQoS [87] describes the general idea of using overlays and admission control to

deliver video across the Internet. In OverQoS, performance gains are achieved by FEC

(Forward Error Correction) and conditional packet retransmission in the form of ARQs

(Automatic Repeat reQuests). Bandwidth less than the total available bandwidth can be

achieved for a subset of the OverQoS flows, with high probability, but potentially at the

expense of other flows. In contrast, the PGOS algorithm controls path usage with a more

general abstraction that is able to provide statistical guarantees for both single and multiple

streams across both single and multiple paths across the overlay.

Both IQ-Paths and OverQoS assume that overlay routing nodes can be placed such that

the paths between different pairs of routing nodes do not share common bottlenecks. In

practice, such placements require knowledge of the network, by using methods of detect-

ing shared congestion across flows [73], or by using more direct ways of detecting network

topologies [83]. A general way to implement information exchanges between middleware
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and networks is described in [59], with a design of a network underlay that extracts and

aggregates topology information from the underlying Internet. Overlay networks query

the underlay when making application-specific routing decisions. Further, the implemen-

tation of IQ-Paths could take advantage of underlays [59], which is a general framework

that extracts and aggregates topology and other network information from the underlying

Internet, and the results of recent work on a ‘map of the Internet’ described in [84], which

annotates it with properties that include connectivity, geography, routing policy, patterns of

loss, congestion, failure and growth, etc.

Our general approach of using overlay networks to adapt to network dynamics is shown

feasible in [23], which compares the performance of an End System Multicast architecture

to that of IP Multicast. We also note that noisy link measurements coupled with aggressive

adaptation can cause overlay instability, while conservative adaptations may experience low

performance. The proposed solution is to use exponential smoothing to capture the long

term performance of a link, thereby distinguishing persistent from temporary changes. Our

approach differs in that it exploits knowledge about noise rather than suppressing it, for

example, by mapping critical data flows to less noisy links.

While our work complements research on process/job scheduling for Grid services [92]),

Data Grid or similarly data-intensive applications in particular must harness both computa-

tional and network resources for their distributed operation [69]. Algorithms like PGOS can

provide valuable assistance in these contexts, by integrating it, for instance, into the Dataset

Scheduler framework described in [69]. To demonstrate the importance our methods, we

have extended the popular GridFTP package [2] with the PGOS routing and scheduling al-

gorithm, to better control how parallel data streams with different service-level objectives

are scheduled across multiple network links.

The ability of overlay networks to provide differentiated data delivery services requires

certain levels of independence in underlying network links’ packet losses, changes in band-

width, etc. For the Internet, [4] shows that there is a reasonable degree of loss and failure
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independence across different links. Measurements on Planetlab [24] show that there are

reasonable degrees of bandwidth independence for different Internet links. A basic contri-

bution of the PGOS algorithm is its ability to predict future network behavior. [109] points

out the difficulty of predicting bandwidth in wide area networks, studying the likelihood

of observed bandwidth remaining in a region for which the ratio between the maximum

and minimum observed values is less than a factor of ρ. We adopt a similar approach,

assuming that it is difficult to predict the exact value of throughput in the next time in-

terval (e.g., in the next second) and instead, providing statistical guarantees for predicting

the distribution of throughput in the near future. Interestingly, as shown in [70], it is eas-

ier to make guarantees about RTT. Finally, we also leverage the substantial research on

measuring available bandwidth described in [39, 56]. Of specific relevance to this work is

recent research presenting more accurate metrics and algorithms to measure the variation

of end-to-end available bandwidth [57].
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we first proposed a risk-based availability management approach to automat-

ing the availability of management in IT systems driven by business policy. We implement

a policy engine that dynamically optimizes expected utility according to high level avail-

ability and performance objectives. We further study how to apply utility theory, such as

von Neumann-Morgenstern utility functions, to deal with users’ risk attitudes and prefer-

ences and thereby, enable users to customize their availability to the risks tolerable by busi-

ness objectives. The evaluation of the proposed solution demonstrates that our approach is

applicable for availability management of complex IT environments.

Future work includes the evaluation of our approach on large number of applications

and how to deal with heterogeneous risk attitude. Many emerging applications have dif-

ferent performance/availability requirement and are typically co-located in one or multi-

ple shared data centers. For example, web 2.0 provides an architecture of participation

where users can contribute website content creates network effects, which often requires

quick response time and high availability of the content. At the same time, many video

sharing website have different sub-systems with some of them require good performance

and high availability (e.g., streaming cluster must scale well and has high availability as

a whole), some of them require mediocre performance and availability (e.g., video con-

version servers) and some of them require high availability (e.g., content server). It’s

interesting to invest how the risk-based availability management approach would benefit

data centers hosting these applications. The experiments done in this work don’t consider

changing risk policies, e.g., as dynamic functions of time t. It’s expected that the same

techniques can be applied to this type of risk policies with some enhancement, and we
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hope to see what kind of benefits our approach can bring to this more complicated yet more

interesting situation. How to elicit risk attitudes easily, especially for large number of risk

policies would also be an interesting and useful research.

For the critical and complex enterprise applications, since a key contributor to applica-

tion utility is the time taken to recover from failures, we develop a novel proactive fault tol-

erance approach. Techniques are presented to manage the tradeoff between availability and

cost in information flow middleware. First, a net-utility-based formulation of the benefits

an enterprise derives from its information flows combines both performance and reliability

attributes of such flows. The goal is not simply to attain high utility, but to reliably provide

high utility to large-scale information flow applications. Second, since reliability tech-

niques incur costs, thereby reducing utility, proactive methods for availability-management

regulate resources used to guarantee availability and take into account the fact that system

and application behaviors change over time. A specific example is a higher likelihood of

failure in high load vs. low load conditions. Reliability costs, therefore, are reduced by

exploiting knowledge about the current ‘perceived’ system stability. Additional cost sav-

ings result from the use of failure prediction methods. Third, the implementation presented

in this thesis can deal with both transient and non-transient failures, the latter relying on

application-specific techniques for fault avoidance. Finally, utility-driven proactive avail-

ability management techniques have been integrated into our infrastructure for large-scale

information flows, where it is shown to impose low additional communication and pro-

cessing overheads on information flows. Experimental results with IFLOW attained on

Emulab [93] demonstrate the effectiveness of proactive fault tolerance in recovering from

failures.

Future work will experiment with richer failure prediction techniques and investigate

specific enterprise environments. For instance, it’s interesting to model the redundant data-

centers mandated by government rules, and to consider the attainment of high availability

and net-utility in information flows that cross multiple organizational boundaries.
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IQ-Paths is a data streaming middleware that uses overlay networks to better serve the

needs of distributed applications running on wide area networks. IQ-Paths employs statis-

tical methods to provide to applications predictive guarantees for the bandwidths available

to them from the underlying network, for all paths in the overlay connecting data sources

to sinks. In addition, its PGOS scheduling algorithm both suitably routes packets across

overlay paths and schedules them across single and multiple (concurrent) paths, coupling

parallelism in data transfer with statistical bandwidth guarantees.

The statistical prediction technique used in IQ-Paths not only measures average avail-

able bandwidth, but also captures the dynamic or noisy nature of the bandwidth available

on overlay paths. As a result, IQ-Paths can provide to applications both probabilistic and

‘bounded violation’ delivery guarantees. The former state that with some large probability

P , stream Si will receive the required bandwidth on the selected path. The latter state that

the average number of messages that violate some constraint (e.g., miss their deadlines)

during each scheduling window is bounded.

We have used IQ-Paths to meet the needs of several representative distributed appli-

cations including the SmartPointer real-time collaboration system, and GridFTP. The inte-

gration of IQ-Paths into these applications is facilitated by its design as a ‘model-neutral’

data streaming layer underlying the application-specific communication models offered by

higher middleware layers, including the publish/subscribe model used by SmartPointer, the

simple data transfer model used by GridFTP, and the data streaming model used by the

multimedia application.

Risk-based traffic delivery guarantees across overlay network is utilized to link the

operational guarantees expressed by utility and enforced by the PGOS algorithm with the

higher level business objectives sought by end users.

Several extensions of the proposed IQ-Paths work are of future interest. The path char-

acteristics collected by IQ-Paths can benefit a wide range of high performance, multimedia,

and enterprise applications. For enterprise applications, our research is further enhancing
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this work by developing runtime methods for fault tolerance. Here, we want to differenti-

ate data traffic required for replication from other traffic, by dynamically varying reliabil-

ity/performance tradeoffs with selective replication techniques. Another interesting topic

is to use IQ-Paths to isolate the effects of fault tolerance or recovery traffic from regular

data traffic, perhaps to avoid the additional disturbances arising during recovery. This is

explored in the risk-based traffic delivery guarantees, however, it is interesting to see how

this will affect service availability and performance in a real cross-country enterprise com-

puting infrastructure. Also, the statistical bandwidth prediction could be further enhanced

using typical seasonal behaviors of available bandwidth.
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CHAPTER VII

APPENDIX

7.0.1 Proof of Lemma 1

Proof Let the service rate over path j at time t be rj(t). Then the service rate cumulative

distribution Gj(rj) is:

Gj(rj) = P{r ≤ rj)} = P{rs ≤ rjs}

= P{b ≤ rjs} = F j(rjs). (16)

The probability that xi packets will be served during the scheduling window tw is

P = P{xi ≤ rtw} = P{xi/tw ≤ r}

= 1− P{r ≤ xi/tw}

= 1−Gj(xi/tw) = 1− F j(xis/tw).

Note that this is essentially bounding the probability of throughput violations.

7.0.2 Proof of Lemma 2

Proof

Z =

 xi − rjtw if xi > rjtw

0 if xi ≤ rjtw

(17)

Let fB be the pdf of available bandwidth b, then we have

E[Z] =

∫ +∞

−∞
Z · fB(b)d(b)
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=

∫ xis/tw

0

(xi − btw/s) · fB(b)d(b)

= xi ·
∫ b0

−∞
fB(b)d(b)− tw

s
·
∫ b0

−∞
bfB(b)d(b)

= xi · F j(b0)−
tw
s
·M [b0] (18)

7.0.3 Proof of Theorem 1

Proof Let the service rate stream Si receives on path j be rj
i , and stream Si will obtain

service rate rj
i with probability P j

i ,
L∑

j=1

P j
i = Pi. Xi is the actual number of packets

delivered for stream Si during the scheduling window tw, and among these packets, Xj
i

packets are delivered through path j.

The probability that xi packets will be served during the scheduling window for stream

Si is:

P = P{xi ≤ Xi} = P{x1
i ≤ X1

i , ..., xL
i ≤ XL

i }

=
L∑

j=1

P{xj
i/tw ≤ Xj

i /tw}

=
L∑

j=1

P{xj
i/tw ≤ rj

i } =
L∑

j=1

P j
i = Pi· (19)
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