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SUMMARY 

 

This study analyzes consumers’ behavioral responsiveness to changes in price and 

policy regarding residential electricity consumption, using a hybrid method of 

econometric analyses and energy market simulations with the National Energy Modeling 

System (NEMS). First, this study estimates price elasticities of residential electricity 

demand with the most recent Residential Energy Consumption Survey (RECS) data, 

collected in 2005, employing a conventional econometric model and a 

discrete/continuous choice model. Prior to the NEMS experiments with price shocks and 

consumers’ behavioral features, this study uses NEMS to examine how energy policies 

would affect changes in retail electricity price in the future.  

When climate policies are implemented nationally, electricity prices are estimated 

to increase by 17% in 2030 with a carbon cap and trade initiatives and by 4% with 

Renewable Electricity Standards (RES). The short-run elasticity of demand estimated 

from the 2005 RECS is found to be in a range of –0.81 ~ –0.66, which is more elastic 

than the current NEMS assumption of –0.15. The 2005 RECS dataset details information 

about American households’ energy consumption. This rich source of micro-level data 

complements the existing econometric analysis based on time series data.  

Electricity price (either census-division average price or household average price), 

annual income and number of rooms are found to be three major determinants of the level 

of electricity consumption. The difference in short-run price elasticity leads to a 

difference in social welfare estimates of energy policies and energy market forecasts. 

This study suggests that the estimate of social welfare loss caused by electricity price 

increase is overestimated if the elasticity is assumed to be smaller than the actual 

responsiveness. Supposing that 1) the short-run elasticity of –0.66 reflects the actual 

consumers’ responsiveness to price changes in the present and future and 2) retail 



 xi 

electricity prices permanently increase by 10%, the welfare loss caused by the price 

increases would be estimated 0.9 billion dollars less than the current estimates with the 

elasticity of –0.15. This result suggests that if people are assumed to be more elastic to 

price signals, the time it takes for a policy to accomplish its goal could be shorter.  

In addition to assessing potential savings expected from consumers’ behavioral 

changes with the concept of price elasticity of demand in neoclassical economic theory, 

this study reviews economic and non-economic theories about behavioral features of 

energy consumers and discusses how existing information programs could be improved. 
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CHAPTER 1 

INTRODUCTION 

 

 Traditional energy policies have focused on price changes such as tax credits and 

subsidies for energy-efficient goods and on information disclosure such as energy-use 

labels on appliances (Allcott and Mullainathan, 2010). How the demand for a fuel is 

affected by its price changes determines the effectiveness of the price, subsidy, and tax 

policies. For that reason, energy policy makers have sought to understand behavioral 

patterns of consumers so as to design effective energy pricing policies. Previous studies 

have argued that a better comprehension of how consumers respond to price increases is 

important to build a safeguard against sudden supply shock that might occur in the future 

(Rajeev, 1994). Even though it is well known that the typical household adjusts its energy 

consumption in response to price changes even over short durations, policy makers do not 

seriously recognize this fact because clear and unambiguous evidence of such behavior 

has been lacking (Reiss and White, 2005). One of the reasons that these debates are 

persistent is that few prior studies document how quickly households respond to energy 

price shocks (IEA, 2005a, 2005b; Reiss and White, 2005). 

On the other hand, many countries have devoted substantial public resources to 

research and development (R&D) for energy-efficient technologies and to information 

disclosure programs for the public since energy efficiency depends on these technological 

developments and the choices of users. In general, the level of energy efficiency in a 

society is lower than the socially optimal level because there exists a gap between the 

socially optimal level of energy efficiency and the actual observed energy efficiency. 

This ―efficiency gap‖ can be explained with some market failure and behavioral failures 

in the energy market (Hirst and Brown, 1990). Implicit discount rates to consumers may 

be higher than the market discount rate. Consumers may weigh present and visible cash 
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flows against uncertain future flows. The gap could occur with some hidden costs, such 

as search costs (Jaffe et al., 2004), or with the irreversibility of energy efficiency 

investment (Hassett and Metcalf, 1995 &1993; van Soest and Bulte, 2000). Some 

informational barriers may occur when consumers do not have enough usable 

information to make investments that are in their own best interests. Even when a bounty 

of information is available to consumers, the information is often presented in terms that 

are not specific enough to be useful or to drive change. For these reasons, a 

comprehensive understanding about consumers’ behavioral characteristics is a 

prerequisite for effective policy design. 

Along the guidelines of the literature, this study probes how energy consumers in 

the residential buildings sector respond to changes in electricity price in the short run, and 

analyzes how energy policies and short-run behavioral attributes affect changes in 

demand and social welfare in the long run. This study discusses these issues around 

residential electricity demand, price, and policy, answering the four questions listed 

below: 

 

Q1. How do households respond to changes in electricity price in the residential 

buildings sector in the short-run? 

Q2. Do existing and future energy policies affect residential electricity prices? 

 

Q3. How does the short-run responsiveness (elasticity) influence the long-run 

demand forecast? 

Q4. How do assumptions of consumer behavior affect the ex ante evaluation of 

policy options? 

 

Q1 is answered in Chapters 2, 3, and 4 by a literature review and estimations of short-run 

price elasticities. Q2 is discussed in Chapter 5. A set of simple and preliminary NEMS 
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simulations is run to answer this question in Chapter 6. NEMS experiments with various 

scenarios about price changes and short-run price elasticities are conducted. The first 

section of policy implications in Chapter 7 discusses how the assumptions about 

consumer behavior influence the ex ante evaluation of policy options with an example of 

carbon tax. The concept of consumer surplus is borrowed from economics to explain this 

relationship. 

To answer the questions listed above, this study employs a sequential hybrid 

approach in addressing this topic. First, this study discusses various econometric analyses 

using cross-sectional data, and empirically estimates a short-run price elasticity of 

electricity demand based on the Residential Energy Consumption Survey (RECS) data 

collected in 2005. Second, this research reviews economic and non-economic theories to 

understand behavioral features of energy consumers. Third, it probes energy policies that 

could have a potentially large impact on electricity price and consumption in the future. 

For this analysis, national climate policies, residential energy efficiency policies, and 

electricity pricing policies are reviewed. This study then uses the National Energy 

Modeling System (NEMS) to forecast how national electricity consumption of the 

residential sector would change in the long run as consumer behavioral patterns and 

energy policies change. Based on the consumption and price projections, long-run 

elasticities are calculated and changes in social welfare are estimated in the last chapter.  

A better comprehension of the relationships among the short-run and long-run elasticities 

and the involvement of technology shifts could contribute to improving demand-control 

programs in the residential sector.  

As shown in Figure 1.1, variables and concepts discussed in separate chapters are 

interconnected with causality. Chapter 2 reviews economic models that analyze 

residential energy demand with cross-sectional data, and Chapter 3 estimates price 

elasticity of residential electricity demand with a traditional econometric model and a 

dicrete/continuous choice model. Chapter 4 discusses consumer behavior through various 
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economic and non-economic theoretical lenses. In Chapter 5, this study turns to 

discussions about energy policies that could have potentially large impacts on residential 

energy consumption and price.  Chapter 6 presents research designs and findings from the 

NEMS experiments and shows how long-run electricity demand changes in response to 

price shocks and consumers’ short-run behavioral features. The dissertation ends with 

policy implications and conclusions. 

 

 

Figure 1.1 Conceptual Framework 
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CHAPTER 2 

A REVIEW OF PRICE ELASTICITY ESTIMATION 

 

2.1 Responses to Price Changes 

This study reviews existing literature on price elasticity of energy demand. This 

review focuses on electricity demand, the residential sector, and cross-sectional data 

analysis, which are my research interests. 

 

Price Elasticity of Demand 

 The price elasticity of demand for energy commodities has important policy 

implications for environmental, energy, and taxation policies since it is a comprehensive 

indicator of consumer behavior (Rajeev and Morey, 1993; Rajeev, 1994; Hughes et al., 

2008). Price elasticity of demand is defined as the percentage change in quantity 

consumed divided by the percentage change in price. It is generally measured using the 

logarithmic percentage change formula given by Equation 2.1: 
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               [Equation 2.1]      

where Q1 and X1 are base quantity and price, respectively, and Q2 and X2 are an 

alternative combination of quantity and price. Price elasticity is seriously considered 

when policy makers determine tax and subsidy rates and estimate the marginal social cost 

of a price change in each energy commodity (Rajeev, 1994).  

Since the Organization of Petroleum Exporting Countries (OPEC) imposed an 

embargo on petroleum exports in 1973, the U.S. federal government has tried not to 

depend on foreign energy supplies and finally passed the Energy Independence and 
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Security Act (EISA) in December 2007. Academia also realized the importance of energy 

market forecasting and analyzed the responsiveness of energy demand to market changes 

(Rajeev and Morey, 1993; Rajeev, 1994). Previous studies have argued that a better 

comprehension of how consumers react to price increases is important for building a 

safeguard against sudden supply shocks that might occur in the future (Rajeev, 1994).  

 

Responsiveness to Average and Marginal Prices 

 Standard economic theories on demand forecast posit that a household’s 

electricity demand is responsive to marginal price. Carter and Milon (2005) say, ―A key 

assumption in the price specification debate is that households are well-informed or 

behave as-if they are.‖ If consumers are given prices regardless of quantity consumed, the 

marginal price is constant and equal to the average price of the market. However, this 

situation seldom occurs. Block pricing schemes, which depend on the quantity consumed, 

are common these days. Regarding block pricing, the previous literature has discussed 

which of marginal or average price should be entered into the econometric model of 

demand (Carter and Milon, 2005; Espey and Espey, 2004). Taylor (1975) included 

marginal price in his model and introduced a variable that accounts for the lump-sum 

transfers implied by block rates and proposed ways to test the marginal price vs. average 

price models. 

 Because of the theoretical background based on neoclassical economics, a 

majority of studies argue that marginal block price and consumption are simultaneously 

determined (Halvorsen, 1975; Burtless and Hausman, 1978; Espey and Espey, 2004). 

McFadden et al. (1978) presented an alternative instrumental variable (IV) approach, 

whereby observed electricity usage was regressed on dwelling and household 

characteristics and the typical bills. The predicted quantities and the rate schedule are 

used to form the predicted price variable, which serves as an IV for marginal prices.  
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 However, the use of marginal price is appropriate only when consumers are fully 

aware of, and therefore respond to, the marginal price of the nonlinear price schedules 

that utility companies use (Reiss and White, 2005). For that reason, energy demand is 

sometimes assumed to depend on average price (Metcalf and Hassett, 1999; Alberini et 

al., 2010; Fell et al., 2010). Foster and Beattie (1981) argued that households are more 

likely to respond to the average price, because this requires knowledge of only the total 

bill and the total consumption. Many studies show that a majority of consumers do not 

know the marginal energy rates. Brown, Hoffman and Baxter (1975) found that only 4.4% 

of households knew their marginal prices of electricity. Similarly, Carter and Milon 

(2005) found that only 6% of households knew their marginal prices of water. In some 

cases, many individuals showed some cognitive difficulty in understanding nonlinear 

price structures, and many of them used their average prices rather than actual marginal 

prices to make their decisions (Brown, Hoffman, and Baxter, 1975; Carter and Milon, 

2005). More recently, Borenstein also (2008) found that consumers respond to average 

price rather than marginal price or expected marginal price.  Shin (1985) tested an 

alternative hypothesis of the average price perception against marginal price. The 

empirical results support the hypothesis that consumers respond to average price rather 

than actual block marginal price. 

 Moreover, almost all of the energy data sources, such as the EIA and the U.S. 

Bureau of Labor Statistics, provide only the average prices by state, census division, or 

the nation. Zarnikau (2003) used the average prices of electricity and natural gas of 

residential energy consumers in each state in 1994 provided by EIA’s State Energy Price 

and Expenditure Report database. The respondents were assumed to face the statewide 

average prices of electricity and natural gas. Hughes et al. (2008) estimated the short-run 

price elasticity of gasoline demand and used U.S. city average prices for unleaded regular 

fuel in 2006 from the U.S. Bureau of Labor Statistics. Puller and Greening (1999) used 
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the same data as Hughes et al. (2008) to analyze how households adjust to gasoline price 

changes with nine years of U.S. survey data. 

 

Distinction between Short-run and Long-run Elasticities 

 Based on a broad international survey, Bohi (1981) summarized that short-run 

energy demand is typically found to be less elastic to own-price changes than long-run 

demand. The short run is defined as a period of time in which the quantity of at least one 

input is fixed and the quantities of the other inputs can be varied. The long run is a period 

of time in which the quantities of all inputs can be varied. By responding to a price 

movement, the short-run elasticity measures immediate responses, such as changing 

energy consuming habits, and the long-run elasticity measures total responses, including 

technology shifts (appliance changes). The short-run and long-run distinctions vary from 

one appliance to another. In other words, short-run changes may depend principally on 

changes in consumption of energy services, whereas long-run changes include greater 

alterations of the energy efficiency of the equipment stock (Gillingham, Newell, and 

Palmer, 2009). The energy demand of a home is generally determined by equipment 

efficiency, fuel prices, income, appliance prices, climate, and household and housing 

characteristics. In the short run, households generally control their energy consumption 

by changing their energy-use habits. Thus, in the short-run model, fuel switching or 

technology upgrades are rare and insignificant, in that fuel or technology conversion 

accompanies a necessary capital stock replacement that is generally observed in the long-

run model (EIA, 2003; Wade, 2003).  In the long run, however, consumers adjust to price 

increases by improving equipment efficiency or by changing technology or even fuel 

type. On balance, in the long-run model, responses to energy price variations in 

residential building equipment stocks and fuels are considered to occur endogenously. 

Thus, long-run price elasticities are larger than short-run elasticities because energy 

efficiency improvements can be considered capital turnover in the long run. Long-run 
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responses are determined by equipment costs, equipment efficiencies, energy prices, 

discount rates, maintenance costs, and annual equipment-utilization rates (Wade, 2003). 

In residential energy demand, the input variables of appliance types and building shell 

types are the most resistant variables.  

 

Price Elasticity of Demand in the Residential Buildings Sector 

 Whereas many studies analyze price elasticities of transportation fuels such as 

gasoline, relatively few studies have conducted price elasticity analyses of residential 

energy use. Most of the econometric studies of residential electricity demand that do exist 

were conducted primarily during the 1970s and early 1980s, when energy prices were 

increasing rapidly and concerns about energy conservation were first being raised. The 

spectrum of price elasticity estimates is broad, and there is no consensus regarding the 

magnitude of price elasticities of demand for electricity (Espey and Espey, 2004; 

Athukorala and Wilson, 2010). To quantitatively summarize the studies of residential 

energy demand, Dahl conducted a meta-analysis in 1993. The EIA supported the research 

and has utilized the findings to set the assumptions for identifying household demand 

functions in the NEMS. The meta-analysis conducted by Dahl (1993), ―A survey of 

energy demand elasticities in support of the development of the NEMS,‖ aggregates and 

summarizes the range of residential elasticities based on four previous studies (listed in 

Appendix A of this research) and analyzes mainly price elasticities of electricity and 

natural gas demands. The meta-analysis classifies the previous studies into static, 

dynamic, and structural models. Based on the meta-analysis, the short-run price elasticity 

of demand is set at either 0 or –0.15 by end-use service in the Residential Demand 

Module (RDM) in NEMS: space heating (–0.15), water heating (–0.15), and cooling (–

0.15).  

 A small number of studies on price elasticity of residential energy demand were 

conducted after the 1990s. Reiss and White (2005) conducted a study of California 
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household price response between 1993 and 1997 and found that 44% of households 

exhibited no short-run price response. This means that the households did not respond to 

electricity price changes by changing their energy consumption habits. The heterogeneity 

of price elasticities across households is primarily attributed to differences in appliance 

holdings. While the own-price elasticity for households without an electric space heater 

or a central or room AC is –0.08, households that have central AC are eight times (–0.64) 

more elastic, and those that have electric space heaters exhibit even higher elasticities (–

1.02) than those that do not have them (Reiss and White, 2005). 

 The broad spectrum of estimates can create confusion without more detail about 

the differences in the data and analytical techniques utilized. Responding to the research 

demand, Espey and Espey (2004) conducted a meta-analysis with short-run price 

elasticity estimates ranging from –2.01 to –0.004 with a mean of –0.35 and long-run price 

elasticity estimates ranging from –2.25 to –0.04 with a mean of –0.85. The base model 

used for comparison in the meta-analysis is generally used for price elasticity estimation 

and is a double-log, static, reduced-form OLS model using annual cross-sectional time-

series data for the aggregate United States and a marginal price for electricity.  

 One of the most hotly debated issues in the literature of price elasticity is price 

specification, as discussed in the previous section. Economic theories suggest that the use 

of marginal price is ideal. However, average price is often the only price data available. 

These meta-analyses can be used to guide such analysis of energy demand and to provide 

confidence bounds or adjustment to estimates derived with less than ideal data, for 

instance, aggregated data or average prices. Table 2.1 presents the ranges of own-price 

elasticity estimates analyzed in the two representative meta-analyses of residential 

electricity demand: Dahl’s (1993) and Espey and Espey’s (2004). 
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Table 2.1 Ranges of Estimates of Electricity Own-price Elasticities 

Short Run Long Run 

Range Reference Range Reference 

0.14~0.44 Dahl (1993)** 0.32~1.89 Bernstein and Griffin 

(2006),  

Hsing (1994) 

0.004~2.01  

(mean of 0.35) 

Espey and Espey 

(2004)*** 

0.04~2.25  

(mean of 0.85) 

Espey and Espey 

(2004) 
*Absolute values shown; all values are negative  

** Dahl’s (1993) meta-analysis incorporates research results from previous studies conducted from the late 

1970s to early 1990s. The previous works applied a variety of methods to estimate the elasticity values. 

*** Espey and Espey’s (2004) analysis includes a wider range of studies conducted from 1971 to 2000.  

  

2.2 Estimation and Interpretation of Models of Energy Demand 

 

Conventional Econometric Models with Cross-sectional Data 

Standard economic theory posits that the demand for energy at the residential level 

depends on energy prices, the prices of other goods, income, and other characteristics of a 

household (Deaton and Muellbauer, 1980). Variables commonly included in electricity 

demand are appliance stock, the prices of substitute fuels, and some measure of 

temperature, usually heating and cooling degree-days. In addition to these three variables, 

housing characteristics (e.g., square footage, number of stories, number of rooms) and 

household characteristics (income, education level, age of household members) are 

included in the model (Bohi, 1981). 

Electricity demand has been estimated most commonly using a reduced-form, 

double-log, static model (Espey and Espey, 2004). The simplified demand equation used 

in conventional econometric models for price elasticity analysis appears in Equation 2.2: 

 

ititit uXbaQ  lnln
       (i=1,…, N,   t=1,…, T)                             [Equation 2.2] 
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where Qit  is annual consumption of energy consumer of i in time t; Xit is the vector of 

explanatory variables; and uit is the random error term. The variable Xit generally includes 

1) prices of energy fuels, 2) income, and 3) other exogenous variables. The log linear 

nature of Equation 2.2 implies that the vector of estimated parameters b represents 

elasticities (Houthakker, Verleger, et al., 1974; Halvorsen, 1975; Houthakker, 1980; 

McClung, 1988).  

Halvorsen (1975) estimated both a demand equation and a price equation together. 

Since the price equation was included, he employed a two-stage least-squares procedure 

used in typical supply and demand analysis. His explanatory variables included in the Xit 

vector in Equation 2.2 are marginal prices of electricity and natural gas, prices of 

electrical equipment, income, and a variety of weather and housing measures. The 

estimated own-price elasticity of demand was found to be highly significant at –1.1. He 

also estimated a significant income elasticity of 0.51 (Halvorsen 1975). 

According to Espey and Espey (2004), about one-third of the sample of their 

meta-analysis used aggregate data encompassing the entire contiguous 48 states. Several 

studies in the sample analyzed specific census divisions or census regions, whereas others 

analyzed demand in a particular city, such as Los Angeles, or used data obtained from 

specific utility companies or service areas, such as the Tennessee Valley Authority. 

Several of the studies included in their analysis modeled the demand for electricity in 

other countries, including Mexico, Costa Rica, Canada, and Israel. The global energy 

market changed dramatically before and after around 1973, when the OPEC asserted its 

strength, and 2007, when the economic recession started. The authors included 

publication years to determine whether there were systematic changes in elasticity 

estimates over time. 

While many econometric analyses of residential energy demand are based on 

aggregated time-series data, the literature of electricity demand estimation for the 

residential sector that makes use of micro data has been scanty. This is because cross-
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sectional data do not allow for analyzing the dynamics between prices and demand 

changes of a consumer (Filippini and Pachauri, 2004). The time-series analyses postulate 

some lag structure in the estimation to reflect the fact that some adjustments in usage take 

time, such as the acquisition of new appliances. The most common lag structure is the use 

of a lagged dependent variable. The lagged dependent variable to capture long-run 

adjustments imposes a fixed relationship between short-run and long-run elasticities, 

whereas other lag specifications do not necessarily do so. However, time-series analyses 

with aggregate data at the macro (national) level prevalent in price elasticity estimation 

do not consider differences of housing and household characteristics across homes 

(Vaage, 2000; Metcalf and Hassett, 1999; Westoby and Pearce, 1984). Fell et al. (2010) 

argued that the estimates of price elasticity could be affected by aggregation bias and 

recommended using household-level data (cross-sectional micro data). A high degree of 

heterogeneity within the households in a nation justifies the use of detailed micro data in 

the modeling of the energy demand. An increasing number of studies have been 

conducted using micro datasets in the OECD countries, such as Sweden (Leth-Petersen, 

2001; Jung 1993).  

Price specification and rate structure are important issues in the model 

specification, as discussed earlier. Most of the previous studies use the marginal price of 

electricity, but still many use the average price. Other price specifications, such as the 

price perception model (Shin, 1985), also appear in the literature. Flat rates, decreasing 

block rates, and increasing block rates are other alternative price specifications. Haas and 

Schipper (1998) pointed out that elasticities when prices are falling are different from 

those when prices are rising.  

Based on the literature review, a conventional model of residential energy demand 

with cross-sectional data is summarized and ultimately selected for estimating short-run 

price elasticities of residential electricity demand similar to Equation 2.3 (Variables are 

defined in Table 2.2). This model is employed for Model I and Model II (short-run 
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models), analyzed in Section 4.2 in the following chapter. The detailed model 

specifications of the two models are discussed in Chapter 4. 

 

lnQD  =  α +β1 lnFPRICE + β2 lnINCOME + β3 lnCHARACTER + β4 

lnCLIMATE+ β5 EQUIPMENT +u        [Equation 2.3]                         

                  

Table 2.2 List of Variables of Typical Models 

 

Variable Name Description 

QD 

FPRICE 

INCOME 

CHARACTER 

CLIMATE  

EQUIPMENT 

Electricity consumption in each household (Btu) 

Fuel prices  

Annual income 

Housing and household characteristics 

Climate 

Equipment Portfolio 

 

  

Discrete/Continuous Choice Model 

Previous micro-level studies in the 1970s and 1980s limited their analyses to 

short-run models to avoid more complex settings utilizing a discrete choice model of 

appliance number and type (Puller and Greening, 1999). The conventional models for 

estimating energy (electricity) demand have been estimated most commonly using a 

reduced-form, double-log, static model (Espey and Espey, 2004). Although reduced 

models are less cumbersome and easier to estimate, structural models are more likely to 

be considered more accurate, as they separate the dynamic features of demand and allow 

for the identification of the sources of consumption behavior (Bohi, 1981).
1
 Therefore, 

several studies published after the 1980s considering the choice of appliance number and 

                                                 

 

 
1
 Many studies estimated a structural model of electricity demand using simultaneous equations to jointly 

estimate appliance stock demand and electricity use. In such cases, the estimated price elasticity is the long-

run price elasticity. 
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type as a continuous variable or a function rather than a dummy variable have been 

published (Vaage, 2000; Greene and Hu, 1986; Puller and Greening, 1999). McClung 

(1988), for instance, employed the discrete choice model for appliance portfolio 

selection. He categorized the alternatives into 1) gas space-and-water heating with no 

central air conditioning, 2) gas space-and-water heating with central air, 3) electric space-

and-water heating with central air, and 4) oil space-and-water heating without central air, 

and the estimated expected probability for each option is selected. The estimated 

probability replaces the appliance holding dummy variable. 

The conventional models with the dummy variables may have some endogeneity 

issues. In an econometric model, a parameter or variable is said to be endogenous when 

there is a correlation between the parameter and the error term. However, the endogeneity 

may arise because of a measurement error. Conventional econometric models for 

estimating energy demand with cross-sectional data employ a set of dummy variables 

indicating appliance choice of each observation. Within this model specification, it is 

important to test the statistical exogeneity of appliance dummy variables, because 

demand for electricity is derived through the use of energy-consuming durables (Dubin 

and McFadden, 1984). Dubin and McFadden (1984) attempted to test this bias using a 

subsample of the 1975 survey of 3249 households carried out by the Washington Center 

for Metropolitan Studies (WCMS) for the Federal Energy Administration.  

Employing a structural model of electricity demand using simultaneous equations 

to jointly estimate appliance stock demand and electricity use, McFadden first introduced 

a Random Utility Maximization Model (RUM) in 1981. He merged a discrete choice 

model for appliance choice and a continuous decision model for electricity demand. 

Many electricity demand problems involve a discrete choice of appliance as well as a 

continuous consumption of electricity. For instance, if a consumer selects electricity as 

the fuel for all of his appliances, he will surely have a greater demand for electricity than 

another consumer who selects all natural gas appliances. McFadden (1981) argued that 
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because electricity consumption of a household is highly correlated with the consumer’s 

appliance choices, the electricity consumption and the choice of appliance should be 

considered together. He stated that the discrete/continuous choice model is able to 

capture these sorts of effects parametrically and hence should more accurately describe 

consumer behavior. The discrete decision impacts the consumer’s consumption of 

continuously defined goods. The choice of appliances portfolio requires a discrete 

orientation, while the amount of electricity consumed forms a continuous question. 

Likewise, the decision to select natural gas appliances suggests a lower than average 

demand for electricity.  Later, in 1984, Dubin and McFadden published a complete 

articulation of the discrete/continuous choice model. The model jointly determines the 

demand for appliance and the demand for electricity by appliance. Dubin and McFadden 

(1984) also argued that some other model specifications that ignore the  fact that 

appliance choice and energy use are interconnected will lead to biased and inconsistent 

estimates of price elasticities, since the demand for durables and their uses are related to 

decisions made by the consumers. They assumed consumers face a finite, mutually 

exclusive set of alternatives that comprise their space heating choice, and the alternatives 

vary with respect to cost, efficacy, and the preference of the consumer. The mathematical 

model of Dubin and McFadden (1984) is presented in Appendix G. 

The discrete/continuous model introduced by Dubin and Mcfadden (1984) has been 

used by many studies that use cross-sectional survey data and assume the optimizations 

of appliance purchase and appliance use jointly and simultaneously occur. Thus, their 

model implies that price elasticity is interpreted as the long-run response (Dubin and 

McFadden, 1984; McClung, 1988; Vaage, 2000). Vaage (2000) used this 

discrete/continuous model in research conducted in Norway since an overwhelming share 

of Norwegian households installed mixed heating systems and a relatively strong price 

response is to be anticipated. The majority of U.S. households, however, have single-

fuel-based heating systems. Thus, it is almost impossible for them to switch fuel types in 
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a short period of time. Even though he used the discrete/continuous model for his study, 

Vaage (2000) pointed out that an obvious limitation of the model is a lack of data on 

capital costs. For empirical implementation of the discrete choice part of the Dubin-

McFadden model with RECS data, McClung (1988) involved three very strong 

assumptions. The first and the most important assumption is that real capital costs evolve 

slowly enough that contemporary real prices reflect costs at the date of acquisition. 

Proponents of time-series analysis may argue that the assumption is too strong to accept 

in that it is clear that the choice of appliances and the uses of them happen with a 

significant time lag. Second, he assumes that the supply of houses containing various 

equipment portfolios is perfectly elastic to its price differentials, which reflect the 

different capital costs of the various portfolios. Third, he assumes that consumers have 

correctly anticipated future energy prices from the date of acquisition. These three 

assumptions allow the author to treat portfolio selection (discrete choice) as a 

contemporaneous decision with the quantity of fuel (continuous choice) to be purchased. 

This chapter discusses the previous literature’s estimates on price elasticity of 

demand with cross-sectional data. Based on knowledge from this chapter, the empirical 

estimation of price elasticity of residential electricity demand in this study is conducted 

with the 2005 Residential Energy Consumption Survey data. The estimation details are 

presented in Chapter 4. 

 

A review of post-2000 studies 

Recently, deregulation, record cold winter temperatures, unstable oil prices, and 

continuing global warming concerns have rekindled interest in understanding the demand 

for electricity, particularly in predicting the impact of price changes on consumption 

(Espey and Espey, 2004). Espey and Espey conducted a meta analysis with 36 previous 

studies on price elasticity estimation of residential electricity demand. Except for Garcia-

Cerrutti (2000), all of the articles in their sample are studies conducted from the 1970s to 
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the 1990s. To figure out the recent research trend in price elasticity estimation, this 

chapter reviews studies conducted after 2000. Appendix H summaries 12 studies 

published after 2000 in peer review journals. The majority of the studies used 

longitudinal data to estimate price elasticity of residential electricity demand. Both real 

energy prices and average energy prices are employed for these analyses. Double-log 

function with natural logarithm is still widely used both in time-series and cross-sectional 

data analyses. Almost all of the studies used lagged dependent and independent variables 

to analyzed dynamic relationships between electricity consumption, its price, and other 

variables. Among the 12 studies that this chapter reviewed, only Vaage (2000), Filippini 

and Pachauri (2004), and Yoo et al. (2007) used cross-sectional data, but none of them 

analyzed the U.S. context. The median value of the price elasticities estimated with U.S. 

data is –0.17; that with non-U.S. longitudinal data is –0.33; that with non-U.S. cross-

sectional data is –0.51. Table 2.3 summarizes the empirical results and methods of the 12 

studies reviewed in this chapter.



 19 

 Table 2.3 Empirical results of the residential demand for electricity 
Sources Location Study 

Period 

Price Elasticity Approach/ model Data  

characteristics 

Functional 

form 

Price 

Measure 

Estimation 

technique 

Dergiades and 

Tsoulfidis (2008) 

U.S. 1965-2006 –1.07 ARDL approach 

(cointegration) 

Time series Dynamic/  

Natural log 

Average 

price 

OLS 

Neeland (2009) 

 

U.S. 1970-2007 –1.6 to 0.6 ADF unit root test, 

Johansen cointegration 

test 

Time series Dynamic/  

Natural log 

Real Price Rolling 

regression 

Horowitz (2007) U.S. 1977-1991/ 

1992-2003 

–0.28 to –0.16 DID estimator Cross-section 

time-series 

Reduced 

form 

Average 

price 

 

Nakajima and Hamori 

(2010) 

U.S. 1993-2008 –0.33 to –0.14 Panel cointegration test Panel Dynamic/  

Natural log 

Real overall 

unit price 

OLS 

U.S. with longitudinal data –0.17 (Median)  

Atakhanova and 

Howie (2007) 

Kazakhstan 1994-1997 –0.24 to –0.13 Arellano-Bond (system) 

GMM 

Anderson-Hsiao 

instrumental variable fixed 

effects 

Panel Dynamic/  

Natural log 

 

 

Real retail 

price 

 

Regression 

aHoltedahl and Joutz 

(2004) 

Taiwan 1957-1995 –0.15 ADF unit root test 

VAR system 

Conditional ECM model 

Time series Dynamic Real price  

Hondroyiannis (2004) Greece 1986-1999 –0.41 ADF unit root test 

Johansen cointegration 

test 

Vector error-correction 

model (VECM) 

Time series Linear 

double-

logarithmic 

form 

Real price Johansen-

Juselius 

estimation 

method with 

Gaussian 

errors/ MLE 

Narayan and Smyth 

(2005) 

Australia 1969-2000 –0.54 to –4.47 Bounds testing procedure 

Conditional error-

correction model 

Time series Dynamic/ 

Natural log 

Real price  

Athukorala and 

Wilson (2010) 

Sri Lanka 1960-2007 –0.62 (long run) 

to –0.16 (short 

run) 

ADF test 

Phillips-Perron unit root 

test 

VAR system 

V ECM 

Time series 

 

Dynamic Average real 

price 

Regression 

Non-U.S. countries with longitudinal data –0.33 (Median)  

Vaage (2000) Norway 1980 –1.29 and –1.24 Discrete/continuous 

choice model 

Cross section Natural log  MLE(Probit)/ 

OLS 

Filippini and Pachauri 

(2004) 

India 1993-1994 –0.51 to –0.29 Single equation approach Cross section Natural log Average 

price 

 

Yoo et al. (2007) South Korea 2005 –0.25 Bivariate specification of 

Heckman (1979)’s sample 

selection model 

Cross section Natural log Average 

price 

 

Non-U.S. countries with cross-sectional data  –0.51 (Median)  
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Among the 12 studies, Neeland (2009), Horowitz (2007), Nakajima and Hamori 

(2010), and Dergiades and Tsoulfidis (2008) are more thoroughly reviewed in that they 

have the same geographical and sectoral scope as that of this dissertation. Neeland (2009) 

analyzed historical data of residential electricity demand in the United States for the 

period 1970-2007 through the Augmented Dickey-Fuller (ADF) unit root test which is 

the most common unit root test in time series analysis. Their results indicated that the 

primary driver of adjustments in electricity consumption is the own price elasticity of 

demand and growth in real income per capita. Methodological feature of his study is the 

use transcendental logarithm functions. The chief advantage of the translog functions is 

their ability to estimate substitution elasticities between energy and non-energy inputs or 

between different energy commodities. The method, however, has several limitations 

including concavity violations and a latent lack of degrees of freedom. Horowitz (2007) 

analyzed how electricity demand had changed over the past three decades particularly in 

light of government involvement in electricity demand. His study found that moderate to 

strong commitment to energy efficiency programs reduced electricity intensity by 4.4 

percent in the residential sector. He also indicated that the U.S. economy had transformed 

electricity demand with respect to three key economic variables of electricity price, 

income as measured by per capita income or gross state product, and technological 

change. Nakajima and Hamori (2010) estimated changes in the residential electricity 

market to examine the household sensitivity as a result of retail electricity market 

deregulation policies to residential electricity rates. A panel data analysis was used to 

determine if the variables were stationary and to estimate price elasticity. They found that 

deregulation of the retail electricity market had not changed consumers more sensitive to 

electricity rates and that retail deregulation policies were not the cause of the difference 

in price elasticity between deregulated and non-deregulated states. By adopting these 

explanatory variables concerning temperature, their study was able to capture the 

seasonality of electric power consumption. Dergiades and Tsoulfidis (2008) also 
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examined the residential demand for electricity in the U.S. economy. They defined the 

demand as a function of per capita income, price of electricity, price of oil for heating 

purposes, weather conditions, and stock of occupied housing over the period 1965-2006. 

They employed the occupied stock of houses as a proxy for the stock of electrical 

appliances and identified and ascertained a possible equilibrium relationship among the 

variables through the recently advanced Autoregressive Distributed Lag (ARDL) 

approach to cointegration. Their empirical findings supported to a stable long-run 

relationship among the variables and implied that the sign and magnitude of short-run 

and long-run elasticities were comparable to other similar studies. On balance, the review 

of theses 4 U.S. studies and other 8 non-U.S. studies indicate that the U.S. residential 

electricity demand is relatively stable and inelastic, and the responsiveness is symmetric 

before and after various changes in market regulations and environments. 

 

Comparison of cross-sectional and time-series analyses 

In order to discuss methodological differences between longitudinal and cross-

sectional data analyses, a understanding of the two research methods is required. Because 

conventional and advanced research methods for the cross-sectional data analysis are 

discussed in the earlier sections, this section discusses the major concepts in the time-

series data analysis such as stationarity, unit root test, error correction model, and 

cointegration. Time-series data typically contains a trend and the trend must be removed 

prior to commencing any estimation. Detrending procedures separate the trend from the 

cyclical component of the series. Considerable number of early studies had investigated 

price elasticity of electric power demand, and more recent works have been quite active 

in empirically analyzing nonstationarity of variables (Narayan and Smyth, 2005; Neeland, 

2009). 

The stationarity means a feature of data that the stochastic properties of a variable 

are invariant with respect to time. Suppose Y is the variable to be modeled. The mean of 
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Yt, its variance, and its covariance with other Y values, say Yt-k, do not depend on t. 

Economic time-series data often look non-stationary just because of underlying trend, 

which could be explained by exogenous factors such as population growth. Thus, if the 

trend were removed, the data would be stationary. For that reason, it is important to test 

for nonstationarity before proceeding with estimation. Running regressions on 

nonstationary data can give rise to misleading or spurious values such as R
2
 and t 

statistics, resulting in erroneous conclusions that a meaningful relationship exists among 

the regression variables. Addressing this issue, Box-Jenkins (1970) developed time-series 

analysis which begins by transforming the variable to ensure that it is stationary. 

Although many scientific time series data are stationary, most economic time series data 

are trending and thus clearly cannot be stationary. Thus, Box and Jenkins claimed that 

most economic time-series data could be made stationary by differencing before 

estimating. A variable is said to be integrated of order d, written I(d), if it must be 

differenced d times to be made stationary. Thus, stationary variable is integrated of order 

zero, written I(0). Usually after taking logs to remove heteroskedasticity. This creates a 

new data series, Y*, which becomes inputs that actually used for the Box-Jenkins 

analysis (Kennedy, 2008). 

A traditional econometric equation for estimating demand is specified with a 

generous lag structure on the explanatory variables and/ or the dependent variable. This 

equation has been manipulated to reformulate it in terms that are more easily interpreted, 

producing a term representing the extent to which the long-run equilibrium is not met. 

This term is called an error correction term in that it reflects the current error in achieving 

long-run equilibrium. A distinctive feature of this error correction model is that the long-

run equilibrium position appears explicitly rather than being implicit in the structure of 

the system showing itself in the error correction term. This type of model has been known 

as an error correction model (ECM). Since the 1970s, the Box-Jenkins time-series 

analysis has been actively used. The success of their model and some modified models is 
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because traditional econometric structural models were too static. Their model was 

flexible enough to analyze an economy in which the observed is more frequently out of 

equilibrium (Kennedy, 2008). 

A linear stochastic process has a unit root if there is a root of the characteristic 

equation of the process which is non-stationary. If the other roots of the characteristic 

equation lie inside the unit circle, in other words, have a modulus less than one, then the 

first difference of the process will be stationary. The most common unit root test is the 

Augmented Dickey-Fuller (ADF) test. If one can reject the null hypothesis that a series 

possesses a unit root, then the series is trend stationary, or integrated of order zero (I(0)). 

If one cannot reject the null of a unit root, then the series is difference stationary. A unit 

root is a feature of processes that evolve through time that can cause problems in 

statistical inference if it is not adequately treated.  

After the stationarity of each variable has been determined an analysis of their 

interaction can be performed with the assistance of cointegration tests. This involves 

normalizing coefficients and testing for co-movement among variables (Kennedy, 2008). 

A long-run equilibrium relationship could be extracted through the application of 

cointegration technique in that it reveals the dynamic interactions among the variables 

under consideration. Suppose that C is electricity consumption, Y is income, and P is its 

price. If the hypotheses of no cointegration relationships among lnC, lnY, and lnP are 

rejected, then the effects of lnY and lnP on lnC must be estimated. Cointegration test 

offers a possible solution to the familiar problem that data non-stationarity may lead to 

spurious regression results (Neeland, 2009). Cointegration can be thought of in a 

transitory or long-run sense. Neeland (2009) points out that increasing number of 

observations through the use of monthly data does not add to the robustness of the 

cointegration results because it is the length of the period that matters, not the number of 

observations. The identification of a possible equilibrium relationship among the 

http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Characteristic_equation
http://en.wikipedia.org/wiki/Characteristic_equation
http://en.wikipedia.org/wiki/Stationary_process
http://en.wikipedia.org/wiki/First_difference
http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Statistical_inference
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variables is ascertained through the recently advanced ARDL (Autoregressive Distributed 

Lag) approach to cointegration (Dergiades and Tsoulfidis, 2008).  

The post-2000 studies reviewed in this chapter use a time-series or a panel data 

analysis with a dynamic model. However, time series studies lack information concerning 

appliance stock, building characteristics, differences in climates, and demographic 

characteristics and are usually aggregates over the entire nation’s or region’s data. The 

use of this cross-sectional data, on the other hand, allows researchers to consider the 

interventions across the households; thus, the cross-sectional data was used for this 

dissertation, especially Chapter 3 is intended to estimate how differences in housing and 

household characteristics affect consumers’ short-run responsiveness to price changes. In 

addition, since the underlying theory of consumer demand is based on the behavior of 

individual agents, the use of micro data, which reflects individual and household behavior, 

more closely, is able to reflect the nature of consumer responses (Yoo et al., 2007). 

According to the literature review of price elasticity estimation studies, as most studies 

made use of aggregated time series data, they failed to offer the information about 

influence of household’s characteristics on the residential electricity demand. Therefore, 

this dissertation estimates the residential electricity demand using the cross-sectional data 

for analyzing the influence of household and housing characteristics. Based on the 

discussions about the cross-sectional data analysis in the earlier section and the time-

series data analysis in this section, the strengths and weaknesses of the two methods are 

summarized in Table 2.4. 
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Table 2.4 Pros and Cons of Longitudinal and Cross-sectional Data analyses 

 Longitudinal/Macro Data Analysis Cross-sectional/Micro  Data Analysis 

Pros  Trace actual changes for a 

unit of analysis to respond to 

price changes (Show a 

dynamic model for a market 

to reach a new equilibrium). 

 Be able to consider market 

integrations and stability. 

 Consider individual households’ 

responses. 

 Be able to consider differences 

in housing and household 

characteristics. 

 Reflect individual and household 

behavior more closely, hence 

enable to have a better 

understanding of the nature of 

consumer responses. 

 Degree of freedom is high (The 

number of observations 

compared to that of variables is 

relatively high). 

Cons  Latent lack of degree of 

freedom (The number of 

observations compared to that 

of variables is relatively low.) 

 Potential non-stationarity 

could hinder the analysis. 

 Not be able to reflect 

variations in individual 

consumers’ characteristics 

 Non-response rates of certain 

groups could result in sample 

selection biases. 

 Not be able to capture the actual 

responsiveness of a consumer to 

changes in price over time.  

  

 

As summarized in Table 2.4, microeconomic approaches with micro/cross-sectional 

data to the residential electricity demand modeling also enable different heterogeneous 

household groups to be analyzed. Thus, these approaches allow for a wide variety of 

household characteristics within the estimated equations to be considered. In order words, 

the use of cross-sectional data allows the variation in electricity consumption across 

demographic and geographic subgroups to be examined more extensively (Filippini and 

Pachauri, 2004; Yoo et al., 2007). However, price elasticity estimates are affected by 

non-response rates of certain groups. Yoo et al. indicated that 75 households (19.7%) of 

380 sampled households gave non-response about the residential electricity demand in 

the survey.  When a sample that does not take into account the non-respondents, the 

statistical analysis using the sample cannot be seen to represent the entire population, and 
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finally results in loss of information or statistical efficiency (Yoo et al., 2007). In the 

econometric analysis presented in Chapter 3, Model III indicates that the model lost 

almost 1,000 observations, because the 1,000 respondents did not (were not able to) 

provide information about the type of heating equipment or that of cooling equipment. In 

order to solve this problem caused by missing observations, Baht (1994) employs the 

bivariate model, which is apt to treat such missing data. This bivariate model is 

methodologically similar to the sample selection model. Non-response can cause sample 

selection bias which results in inconsistent parameter estimates. In order to deal with the 

issue of sample selection bias, a sample selection model proposed by Heckman (1979) 

has been commonly used to solve the problems caused by the bias. However, empirical 

applications of the model in the residential electricity demand function estimation remain 

lacking (Yoo et al., 2007). The main contribution of the study conducted by Yoo et al. 

(2007) is that they explore the bivariate model that produces consistent parameter 

estimates and unbiased mean electricity demand estimates when estimating the residential 

electricity demand function. Moreover, their paper compares the results with those from a 

model that assumes no sample selection bias and tested for sample selection bias by using 

two test procedures.  
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CHAPTER 3 

PRICE ELASTICITY ESTIMATION  

 

 The price elasticity of demand is an important concept in energy demand 

forecasting, particularly for the analysis of energy-efficiency programs. However, the 

spectrum of price elasticity estimates is broad, and there is no consensus regarding the 

magnitude of price elasticities of demand for electricity (Espey and Espey, 2004; 

Athukorala and Wilson, 2010). This study uses three different econometric models to 

estimate the elasticities. The first two models use a conventional log linear function with 

a set of dummy variables representing equipment choice. One difference between the two 

models is whether to use census division-level average prices or observation-specific 

average prices. One uses average electricity and natural gas prices by census division, 

and the other employs average prices that each household actually faces. The 

observation-specific prices of electricity are derived by a calculation of annual electricity 

bill divided by annual electricity consumption. Those of natural gas are derived from the 

same formula. The third model employs a continuous/discrete choice model, discussed in 

depth in Chapter 2.  

 As mentioned in Chapter 1, the main purpose of estimating short-run price 

elasticity is to see how sensitively the long-run demand projections computed by NEMS 

respond to the updated short-run price elasticity estimated from the latest survey data. In 

other words, this study estimates the short-run price elasticity of residential electricity 

demand using cross-sectional data to extract only the intrinsic energy-consumption habits 

(characteristics) in the short term. Short-run price elasticities estimated in Section 3.2 of 

this chapter are planned to be plugged into a NEMS model because it contains a 

parametercontrolling short-run demand adjustments. For that reason, I run the 

conventional econometric model with two variations in price (census division level vs. 

household level) and diagnosed with various test statistics. Section 3.3 presents results 
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from the discrete/continuous choice model. All of the three models use the latest 

Residential Energy Consumption Survey (RECS) data collected by EIA in 2005.  

 

3.1 Data  

 The RECS provides information on the use of energy in residential buildings in 

the United States. This information includes the physical characteristics of the housing 

units, the appliances, the demographic characteristics of the household, the types of fuels 

used, and other information that relates to energy use. It also provides energy 

consumption and expenditures data for natural gas, electricity, fuel oil, liquefied 

petroleum gas (LPG), and kerosene. The data are organized by twelve different topics: 1) 

housing unit characteristics; 2) kitchen appliances; 3) other appliances; 4) space heating; 

5) water heating, air conditioning (AC), and miscellaneous; 6) fuels used and fuel 

payment; 7) fuel bills and non-residential uses; 8) household characteristics; 9) energy 

assistance and housing unit square footage; 10) characteristics of energy supplier data; 

11) energy consumption; and 12) energy expenditure.  

 This study uses these RECS data for the econometric model to estimate the short-

run price elasticity of electricity demand. The first RECS was conducted in 1978, and the 

latest (twelfth) survey was conducted in 2005. The 2005 RECS collected data from 4,382 

households in housing units statistically selected to represent the 111.1 million housing 

units in the United States. The RECS data are classified by multiple geographical 

classifications: four census regions, nine census divisions, and the four most populous 

states (California, Florida, New York, and Texas). The RECS consists of two major parts: 

the household survey and the energy supplier survey. The household survey gathers 

information about the dwelling and many socioeconomic characteristics of each 

household. To obtain accurate and detailed measures of energy consumption, 

expenditures, and price data, EIA takes these data directly from the utilities serving the 



 29 

individual households. The data are collected by questionnaires mailed to all the suppliers 

of the households in the household survey. Its variables comprise building type, fuel, end-

use, and technology categories. The end-use equipment combinations are used as control 

variables for the econometric analysis. For the long-run model, it is necessary to factor in 

technology choices for new and retiring equipment depending on capital costs, operating 

costs, and maintenance costs of competing end-use technologies.  

 The RECS is a national area-probability sample survey that collects energy-

related data for occupied primary housing units. The universe for the sample design of 

the RECS includes all housing units occupied as primary residences in the 50 states and 

the District of Columbia. The definition of ―household‖ is the same as that used by the 

U.S. Census Bureau. By definition, the RECS does not include vacant housing units, 

seasonal units, or second homes. The basic sample is designed to represent the total 

population of households for each of the nine census divisions in the United States. The 

sample design for the RECS is based on multistage area probability design. The universe 

is broken up into successively smaller and statistically selected areas. The process begins 

with the selection of Primary Sampling Units (PSUs) and ends with the selection of 

individual households. The total land area of the 50 states and the D.C. was divided into 

1,786 PSUs, based on county and independent city boundaries and on Metropolitan 

Statistical Areas (MSAs) defined in 1990. The primary mode of stratification of PSUs is 

by the nine census divisions. The strata are independently defined within census divisions 

for the four most populous states and for two states with unique weather conditions 

(Alaska and Hawaii). The stratification is also based on MSA or non-MSA status of 

PSUs and on dominant residential space-heating fuel and weather conditions.  The PSUs 

are grouped into 116 strata, with one PSU selected from each stratum. The Secondary 

Sampling Units (SSUs) consist of one or more census blocks, selected directly from 

census statistics. Blocks were combined as necessary to create SSUs that contained at 

least 50 housing units. The SSUs that contained very large numbers of housing units were 
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divided into smaller listing segments, and one listing segment is selected for detailed 

address listing. Specific addresses chosen from each of the field listings comprised the 

ultimate cluster of the RECS sample. An ultimate cluster of housing units to be contacted 

for interview was randomly selected from the penultimate cluster. These housing units 

constitute the assignments given to interviewers. 

 

3.2 Conventional Econometric Models (Models I and II) 

 To estimate how individual households respond to short-run price changes at the 

micro level, this study chooses to use log linear demand functions employed by 

Halvorsen (1975), Houthakker (1980), McClung (1988), and Dahl (1979). The literature 

revealed that demands on energy are normally influenced by fuel prices, household 

income and choice of equipment, and housing and demographic characteristics.  

This econometric analysis uses the EIA’s RECS data and employs the ordinary least 

squares (OLS) estimation technique. As discussed previously in the methodology section, 

the log linear nature of the demand equation implies that the vector of estimated 

parameters represents the elasticities. Finally, the study defines the residential energy 

demand equation of a consumer as a function of fuel prices (own price and competing 

good’s price), income level, climate (heating degree-days [HDD] and cooling degree-

days [CDD]), and equipment type (see Equation 3.1 and Table 3.1):  

 

ln(QD) = α + β1 ln(PELEC) + β2 ln(PGAS) + β3 ln(income) + β4 ln(# of rooms)  

+ β5 ln(HDD) + β6 ln(CDD) + β7 (appliance holding dummies) + u     

[Equation 3.1] 

 

The short-run changes depend only on changes in consumption of energy services, 

whereas the long-run changes include greater alterations in the equipment’s energy 
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efficiency. Because the model controls for the equipment type with a set of dummy 

variables, the elasticity estimated by this equation is a short-run elasticity. Correlations 

among variables are presented in Appendix D.  

 

Table 3.1 List of Variables of Models I and II 
Variable 

Name 
Description Mean S.D. Min. Max. 

QD Electricity consumption in each 

household  
(Btu/ year) 
 

38,646 25,666 164 246,261 

PELEC1 Average electricity price by 

census division  
($/million Btu) 
 

30.5 5.8 23.1 41.9 

PELEC2 

 
Average electricity price by 

household 
($/million Btu) 

 

31.2 13.9 9.1 127 

PGAS1 Average natural gas price by 

census division  
($/million Btu) 
 

13.5 1.7 11.2 16.1 

PGAS2 Average natural gas price by 

household 
($/million Btu) 
 

11.0 5.1 2.4 75 

INCOME Annual income 47,602 34,679 1,250* 120,000* 
      
NROOM Number of rooms 

 
2.8 1.1 0 8 

CDD Cooling degree-days 
 

1486.2 966.5 0 5518 

HDD Heating degree-days 
 

4311.2 2180.8 0 11,465 

EQUIPMENT A set of dummy variables 

classifying equipment type 
Table 3.2 provides descriptions of the dummy 

variables 
Number of observations = 4,382 

*The maximum and minimum levels of income could not be found, because the lowest category is ―below 

1,250‖ and the highest category is ―above 120,000.‖  

 

 McClung (1988) categorizes appliance holding alternatives into 1) gas space-and-

water heating with no central AC, 2) gas space-and-water heating with central air, 3) 
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electric space-and-water heating with central air, and 4) oil space-and-water heating 

without central air. Following McClung’s classification of alternatives, the appliance 

holding types of this study are classified according to two criteria: the type of fuel used 

for heating and the type of AC equipment. The heating fuel types are categorized into 

natural gas, electricity, and other fuels, and the AC systems are classified into central, 

individual, and combination central and individual systems. Table 3.2 shows that the 

combination of electric heating and central AC is adopted by 19% of the sample 

households and that the combination of natural- gas-based heating equipment and central 

AC is used by 28% of them. The group of households that have electric heating and 

central AC is chosen as a reference group, because it is anticipated to spend the most 

electricity. The choice of the reference group facilitates the interpretation of regression 

results. 

 

Table 3.2 List of Equipment Dummy Variables by Heating Fuel and AC Type 

 Variable Name   Heating Fuel/AC Type Frequency % 

 NGCEN   Natural gas/central AC 1,228 28.02 

 ELECCEN 

(Reference group) 
   

Electricity/central AC 852 19.44 

 NGIND   Natural gas/individual AC 575 13.12 

 NG9   Natural gas/don’t know AC type 465 10.61 

 OTHERIND   Other fuel type/individual AC 358 8.17 

 ELECIND   Electricity/individual AC 241 5.5 

 OTHERCEN   Other fuel type/central AC 231 5.27 

 OTHER9   Other fuel type/don’t know AC type 190 4.34 

 ELEC9   Electricity/don’t know AC type 127 2.9 

 NGBOTH   Natural gas/both central and individual AC 31 0.71 

 ELECBOTH   Electricity/both central and individual AC 19 0.43 

 DONTKNOWIND   Don’t know heating fuel/individual AC 18 0.41 

 DONTKNOWCEN   Don’t know heating fuel/central AC 6 0.14 

 OTHERBOTH   Other fuel type/both central and individual 

AC 6 0.14 

 NOANSWER   No answer 35 0.8 

    Total    4,382 100 
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Model I: Elasticity Estimation with Census Division-level Average Energy Prices 

 As discussed in Chapter 3, Halvorsen (1975) simultaneously estimated price and 

demand with a two-stage model with the speculation that price and consumption interplay 

in the electricity market. In this study, model I includes only the demand function, 

because it uses the average price not the marginal price. This model assumes that price 

affects consumption, but not vice versa, because change in consumption of each 

household in a census division is very minimal so that it barely affects the change in the 

average division price. In other words, consumers in this model are price-takers. The 

average prices of electricity and natural gas to the residential consumers in each census 

division in 2005 were obtained from the EIA’s NEMS dataset and matched to the RECS 

dataset according to where each house is located. Particularly for larger divisions, there is 

some unavoidable imprecision in the data. The RECS dataset, open to the public, 

provides a variable to indicate the respondent’s census division of residence but no 

information about where the respondent lives within the census division. Consequently, 

the respondent is assumed to face the division-wide average prices of electricity and 

natural gas. 

 Table 3.3 shows that the own-price elasticity of residential electricity demand is 

found to be highly significant at –0.66 in the short run. It is in the range of the short-run 

price elasticities of residential electricity demand (from –0.97 to +0.57) collected by Dahl 

in 1993. This suggests that a 1% rise in price causes a reduction in demand by 0.66%. 

This interpretation of the estimated variable requires an assumption that the behavioral 

attributes of all of the households in the population are homogeneous. Reiss and White 

(2008) argued that short-run price elasticities of households in California are 

heterogeneous and that the differences are caused by the variety in appliance holdings. 

Since model I and Model II in this study controls the equipment variation by adding the 

appliance holding dummy variables, the homogeneity assumption is justified.  
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 On the other hand, the cross-price (natural gas) elasticity is found to be 0.45. This 

means that when a 1% increase in the electricity price results in the increase in 

consumption of a competing good, natural gas use increases by 0.45%. This result 

suggests that a substitution relationship exists between electricity and natural gas in the 

residential sector. When electricity prices go up continuously or stay at a high level for a 

long time, consumers may consider replacing their electricity-based heating equipment 

with natural-gas-based equipment.  

 The income elasticity is estimated to be 0.12, which indicates that a 1% increase 

in income is associated with a 0.12% rise in consumption. When the total income of a 

household increases, the income elasticity should be distinguished from the concept of 

price elasticity at different income levels. While the former indicates how consumers 

change their consumption levels as their incomes increase, the latter shows how 

sensitively consumers at different income levels respond to price changes. The sensitivity 

of consumers at different income levels is analyzed with separate models. 

 Table 3.3 also shows that when HDD increase by 1%, electricity consumption 

goes up by 0.03%. With a 1% increase in the number of CDD, consumption rises by 

0.08%. Compared to households that have electric heating and a central AC system (the 

reference group), households that have natural-gas-based heating systems use less 

electricity, as would be expected. 
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Table 3.3 Electricity Demand Parameter Estimates of Model I 

Dependent Variable 

 

ln(electricity use) 

 

Coef. 

 
Std. 

Err. 

t 

 

P>|t| 

 

     

 

Price variables 
 

 

ln(electricity price) –0.663* 0.051 –13.010 0.000 

ln(natural gas price) 0.445* 0.076 5.870 0.000 

    
 

Control variables 

(Household and 

housing 

characteristics) 
 

 

ln(income) 0.119* 0.010 11.880 0.000 

ln(# of rooms) 0.627* 0.022 28.610 0.000 

ln(HDD) 0.032* 0.012 2.610 0.009 

ln(CDD) 0.077* 0.013 6.000 0.000 

     

 

Control variables 

(Appliance holding 

dummies) 
 

 

 

 

 

 

 

 

NGCEN –0.415* 0.025 –16.710 0.000 

NGIND –0.605* 0.031 –19.820 0.000 
NGBOTH –0.393* 0.095 –4.120 0.000 

NG9 –0.768* 0.035 –21.950 0.000 

ELECIND –0.046 0.040 –1.150 0.249 

ELECBOTH 0.167 0.121 1.380 0.167 

ELEC9 –0.156* 0.035 –4.470 0.000 

OTHERCEN –0.155* 0.039 –3.960 0.000 

OTHERIND –0.444* 0.036 –12.500 0.000 

OTHERBOTH 0.198 0.213 0.930 0.352 
OTHER9 –0.502* 0.045 –11.220 0.000 

     
 

 
Constant 9.161* 0.292 31.370 0.000 

R-squared = 0.4326 

Adjusted R-squared = 0.4304 

Number of observations = 4271 

*Significant at the 99% confidence level 

 
 

 In order to check if there are any model specification errors, this study performed 

the Ramsey regression specification error test (RESET) for omitted variables. 

 

Ramsey RESET using powers of the fitted values of ln (electricity use) 

Ho:  model has no omitted variables 

  F(3, 4250) =      1.64  

Prob > F =      0.1790 
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The p-value for the Ramsey RESET is greater than 0.05. This indicates that the Ramsey 

RESET failed to reject the null hypothesis that the model has no omitted variable. 

According to the test result, this study can conclude that the model is specified correctly. 

 In addition to the RESET, this study checked multicollinearity among variables 

with the variance inflation factor (VIF). As a rule of thumb, a variable whose VIF value 

is greater than 10 may merit further investigation.  Table 3.4 indicates that there is no 

variable suspected to cause a multicollinearity problem. 

 

Table 3.4 Variance Inflation Factor of Model I 

Variable VIF 1/VIF 

NGCEN 2 0.499175 

LNCD65 1.88 0.530669 

NG9 1.76 0.569607 

NGIND 1.69 0.591614 

LNHD65 1.64 0.608153 

OTHERIND 1.51 0.66304 

LNELECPRICE 1.37 0.727977 

LNNGPRICE 1.34 0.745137 

OTHER9 1.33 0.753607 

ELECIND 1.28 0.78342 

LNHHINCOME 1.25 0.802227 

OTHERCEN 1.25 0.802533 

LNBEDROOMS 1.23 0.815073 

ELEC9 1.23 0.81538 

NGBOTH 1.04 0.96114 

ELECBOTH 1.02 0.97969 

OTHERBOTH 1.01 0.987143 

Mean VIF 1.4 
  

One of the main assumptions for the OLS regression is the homogeneity of variance of 

the residuals. According to the Breusch-Pagan/Cook-Weisberg test for heteroscedasticity, 

the null hypothesis that the variance of the residuals is homogeneous is rejected.  
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Breusch-Pagan/Cook-Weisberg test for heteroscedasticity 

Ho: constant variance 

Variables: fitted values of ln (electricity use) 

Chi
2
(1) = 70.06 

Prob>Chi
2
 = 0.0000 

 

 However, homoscedasticity tests are very sensitive to model assumptions such as 

the assumption of normality. Therefore, it is common practice to combine the tests with 

diagnostic plots to make a judgment on the severity of the heteroskedasticity and to 

decide if any correction is need for heteroscedasticity. If the model is well-fitted, there 

should be no pattern to the residuals plotted against the fitted values. This study then 

graphically checked the homoscedasticity of residuals. The plot in Figure 3.1 does not 

show any specific pattern. This means that there is no evidence to conclude that the 

residual variance is heteroscedastic. In other words, because no pattern is detected in the 

plot, this study concludes that the model satisfies the homoscedasticity assumption. 

 

 

Figure 3.1 Checking Homoscedasticity of Residuals for Model I 
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 Diverse income groups can have different behavioral responses to changes in fuel 

prices. Variations in price elasticity have been analyzed specially with gasoline demand 

for the transportation sector, whereas there have been few studies to analyze such 

research questions for the residential buildings sector. Two opposite groups of arguments 

about the diversity of price responsiveness across different income quintiles coexist. One 

argument states that lower-income households may be more sensitive to price changes 

and have a tendency to switch modes easily, resulting in a higher than average price 

elasticity (West and Williams, 2004). On the other hand, another argument states that 

lower-income households may already minimize their energy use because of their budget 

constraints, and for that reason, they may be unable to reduce their energy use further, 

resulting in a lower price elasticity than average (Kayser, 2000). Higher-income 

households may be less sensitive to price changes because the share of the electricity bill 

to their total expenditures would be relatively small, so they would care about electricity 

price increases less than low-income households (Robinson, 1969). However, higher-

income households may have more options to reduce energy use because some portions 

of their consumption may be discretionary rather than necessary (Kayer, 2000). All of 

these various arguments suggest that substantial potential heterogeneity among income 

groups exists (Wadud et al., 2010).  

 This study includes an interaction term between price and income, ln(electricity 

price) * ln(income) to examine the heterogeneity in price elasticity among different 

income levels: 

 

ln(electricity use) = α + β1 ln(electricity price) + β2 ln(natural gas price) +  

β3 ln(income) + β4  ln(electricity price) * ln(income) + β5 ln(# of rooms) + β6 

ln(HDD) + β7 ln(CDD) + β8 (appliance holding dummies) + u                                       

[Equation 3.2] 
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Table 3.5 shows that heterogeneity in price elasticity across different income levels is not 

supported by the regression result (the p-value of the interaction term is 0.202). 

 

Table 3.5 Heterogeneity in Price Elasticity of Electricity Demand  

Dependent 

Variable ln(electricity use) Coef. Std. Err. t P>|t| 

Interaction term ln(elec. price)*ln(income) 0.063 0.050 1.280 0.202 

      
Price variables 

ln(electricity price) –1.321* 0.518 –2.550 0.011 

ln(natural gas price) 0.443** 0.076 5.840 0.000 
 

     Control variables 

(Household and 

housing 

characteristics) 
 

ln(income) –0.10 0.169 –0.570 0.568 

ln(# of rooms) 0.63** 0.022 28.560 0.000 

ln(HDD) 0.03** 0.012 2.660 0.008 
ln(CDD) 0.08** 0.013 6.030 0.000 

     Control variables 

(Appliance 

holding dummies) 
 

NGCEN –0.36** 0.023 –15.57 0.000 

NGIND –0.51** 0.028 –17.82 0.000 

NGBOTH –0.32** 0.089 –3.57 0.000 

NG9 –0.67** 0.032 –20.91 0.000 

ELECIND –0.07 0.037 –1.870 0.062 

ELECBOTH 0.12 0.118 1.01 0.314 

ELEC9 –0.16** 0.032 –4.84 0.000 

OTHERCEN –0.08* 0.037 –2.32 0.020 

OTHERIND –0.30** 0.033 –8.97 0.000 

OTHERBOTH 0.24 0.196 1.18 0.236 

OTHER9 –0.35** 0.042 –8.35 0.000 
 

      _Constant 5.12** 0.257 19.92 0.000 
R-squared = 0.5051 

Adjusted R-squared = 0.5031 

Number of observations = 4240 

*Significant at the 95% confidence level 

** Significant at the 99% confidence level 

 

 However, there is a great difference in price elasticity between extremely low and 

extremely high income groups. To show how differently low- and high-income 

households react to price increases, this study estimated the price elasticity of the two 
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income groups separately.  Households that earn less than $10,000 a year are included in 

the low-income group, and those that earn greater than $100,000 per year are defined as 

the high-income group. Table 3.6 shows that the price elasticity of the low-income 

households (–0.67) is about three times greater than that of the high-income households 

(–0.21). This result supports Robinson’s (1969) argument that wealthier households are 

less sensitive to price changes than low-income households. 

 

Table 3.6 Elasticity Variations for Different Income Groups 

Income Level Annual Income Range Price 

Elasticity 
Number of Observations 

Low income Less than $10,000 –0.67 439 (bottom 10%) 
High income Greater than $100,000 –0.21 537 (top 12%) 

 

In addition, this study conducted the same exercise with RECS 1997 data and found that 

the price elasticity was –0.96. Differences in economic situations would affect the 

difference between the elasticities of 1997 and 2005. Detailed results are provided in 

Appendix E. 

 

Model II: Elasticity Estimation with Derived Observation-specific Average Prices 

 The price elasticity of demand was estimated with the derived observation-

specific average electricity price by household. As mentioned previously, one concern of 

model I is that when estimating the elasticity with census division-level average prices, 

their variation is not sufficient to analyze the responsiveness of demand with respect to 

the prices. In order to solve this problem, model II uses household-level energy prices 

derived from annual energy expenditure in dollar (DOLLAREL
2
 and DOLLARNG

3
) and 

                                                 

 

 
2
  Annual electricity expenditure in dollar  

3
  Annual natural gas expenditure in dollar  
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annual energy consumption in Btu (BTUEL
4
 and BTUNG

5
). The observation-specific 

price of electricity is derived by a calculation of the annual electricity bill divided by the 

annual electricity consumption. That of natural gas is derived from the same formula. 

Table 3.7 shows that using model II, the short-run price elasticity of residential electricity 

demand is found to be –0.81 at the 99% confidence level. 

 

Table 3.7 Electricity Demand Parameter Estimates of Model II 

Dependent Variable ln(electricity use) Coef. 
Std. 

Err. t P>|t| 

     

 

Price variables 
 

 

ln(electricity price) –0.811* 0.028 –28.890 0.000 

ln(natural gas price) –0.022 0.032 –0.690 0.492 

    

 
Control variables 

(Household and 

housing 

characteristics) 
 

 

ln(income) 0.136* 0.009 14.460 0.000 

ln(# of rooms) 0.566* 0.021 27.520 0.000 

ln(heating degree days) –0.013 0.012 –1.140 0.255 

ln(cooling degree days) 0.104* 0.012 8.810 0.000 

     

 

Control variables 

(Appliance holding 

dummies) 
 

 

 

 

 

 

 

 

NGCEN –0.356* 0.023 –15.570 0.000 

NGIND –0.506* 0.028 –17.820 0.000 
NGBOTH –0.317* 0.089 –3.570 0.000 

NG9 –0.675* 0.032 –20.910 0.000 

ELECIND –0.069 0.037 –1.870 0.062 

ELECBOTH 0.119 0.118 1.010 0.314 

ELEC9 –0.156* 0.032 –4.840 0.000 

OTHERCEN –0.086 0.037 –2.320 0.020 

OTHERIND –0.297* 0.033 –8.970 0.000 

OTHERBOTH 0.235 0.199 1.180 0.236 
OTHER9 –0.351* 0.042 –8.350 0.000 

     

 

 

Constant 5.119* 0.257 19.920 0.000 
R-squared = 0.5051 

Adjusted R-squared = 0.5031 

Number of observations = 4240 

*Significant at the 99% confidence level 

                                                 

 

 
4
  Annual electricity consumption in Btu 

5
  Annual natural gas consumption in Btu 



 42 

 As was done, this model was diagnosed in various ways. The RESET was 

performed for checking omitted variables and the Breusch-Pagan/Cook-Weisberg test for 

heteroscedasticity. The heteroscedasticity is checked in a graphical way too. In addition, 

multicollinearity was checked with the VIF factor. The p-value for Ramsey’s RESET is 

less than 0.05. This indicates that the Ramsey RESET rejects the null hypothesis that the 

model has no omitted variables. This means the model could be misspecified. The use of 

micro-level prices rather than macro-level prices in model specification basically means 

that the price affects each household’s demand and that at the same time, a change in the 

demand has an impact determining the price that the consumer is given under the today’s 

block pricing system. Halvorsen (1975) employed a simultaneous equation model to 

include the demand and price equations at the same time. He used marginal electricity 

prices in the demand equation and the prices influenced by the electricity generation and 

other market conditions of the area where each household is located. For that reason, he 

added the percentage of generation produced by publicly owned utilities, the cost of fuel 

per kilowatt-hour of generation, the percentage of population living in rural areas, the 

ratio of total industrial sales to total residential sales, and the cost of labor in the price 

equation. The RESET tests for Model I and Model II indicate that the use of division 

level average prices in the previous model fits the RECS data and the equation specified 

(Equation 3.1) better than the household level average prices. 

 In addition to the RESET, this study checked multicollinearity among variables 

with the VIF. The mean value of VIF was 1.36, which indicates that there is no variable 

suspected to cause a multicollinearity problem. As mentioned previously, the null 

hypothesis of the Breusch-Pagan/Cook-Weisberg test for heteroscedasticity is that the 

variance of the residuals is homogeneous. This is rejected at the 99% confidence level 

(Prob>Chi
2 

= 0.0000). However, homoscedasticity tests are very sensitive to model 

assumptions such as the assumption of normality. Therefore, this study combined the test 

with diagnostic plots to make a judgment on the severity of the heteroscedasticity and to 
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decide whether any correction is need for heteroscedasticity. This study graphically 

checked the homoscedasticity of residuals. The plot in Figure 3.2 shows no pattern of the 

data points. This indicates that there is no evidence to conclude that the residual variance 

is heteroscedastic. In other words, because no pattern is detected in the plot, this study 

concludes that the model satisfies the homoscedasticity assumption. 

 

 

Figure 3.2 Checking Homoscedasticity of Residuals for Model II 

 

3.3 Discrete/Continuous Choice Model (Model III) 

 This section specifies a unified model of the demand for electricity consistent 

with discrete choice of appliances in particular its ability to account for the 

interdependency between the appliance choice and the demand for residential electricity 

(Dubin & McFadden, 1984; Vaage, 2000). Many micro-simulation studies have 

attempted to model jointly the demand for appliances and the demand for electricity by 

the appliances (Dubin & McFadden, 1984).  
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 Since the 1908s, there have been some arguments that it is important to clarify the 

exogeneity of appliance dummy variables used in the conventional models. Because the 

demand for durables (appliances) and their uses are related decisions by the consumer, 

specifications that ignore this fact will lead to biased and inconsistent estimates of price 

elasticities (Dubin & McFadden, 1984). In the case of the purchase and the use of an air 

conditioner, an unobserved effect that is captured in the error term in the electricity 

demand equation (e.g., poor natural ventilation in a housing unit) may increase the 

electricity consumption. At the same time, the unobserved effect is likely to increase the 

probability of selection of the central AC system. In this case, OLS estimation of the 

electricity demand equation includes a classical bias due to correlation of an explanatory 

variable and the equation error. In order to solve this problem, this model uses a set of 

instrumental variables (IV)
6
 that replace dummy variables that may not be exogenous and 

correlated with the error term in Equation 3.1. In this model, the probabilities for 

appliance portfolios to be selected by households are used instead of the appliance 

holding dummies. In other words, the expected probability for each alternative chosen by 

the household from the discrete choice model is used as an instrument for the appliance 

holding dummies used in the previous models. Appliance holding decisions are analyzed 

as if they are contemporaneous with usage decisions and do not involve inter-temporal 

considerations. 

 

 

 

 

 

                                                 

 

 
6
 An instrument is a variable that does not itself belong in the explanatory equation and is correlated with 

the endogenous explanatory variables, conditional on the other covariates. 
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Stage I: Heating and Cooling Equipment Choice (Discrete Choice) Model  

 In the discrete choice model, I specify that each household faces five different 

heating-cooling systems: ELECCEN, NGCEN, ELECIND, NGIND, and OTHERS.
7
 The 

percentage shares for the different alternatives are 19%, 28%, 6%, 13%, and 34%, 

respectively. The heating-cooling system variable (nominal variable) is used as the 

dependent variable. Independent variables included in this discrete choice model are 

annual operating cost for heating and cooling, capital cost for heating and cooling 

equipment, average prices of electricity and natural gas by census division, and annual 

income. Table 3.8 gives the variables used in the choice model and their sample mean by 

alternative. 

 

Table 3.8 Variables in the Heating-Cooling Choice Model 

Description Variable Mean by Alternative 

ELECCEN 

(Reference 

Group) 

NGCEN ELECIND NGIND OTHERS 

Annual operating cost 

for heating ($) 

HOPCOST* 564 855 437 989 678 

Annual operating cost 

for cooling ($) 

COPCOST 384 280 117 129 88 

Capital cost for 

heating ($) 

HKCOST 3,435 3,500 3,342 3,637 3,465 

Capital cost for 

cooling ($) 

CKCOST 2,574 2,574 511 511 1,454 

Average price of 

electricity  

($/million Btu) 

AELECP 28 29 30 33 33 

Average price of 

natural gas  

($/million Btu) 

ANGP 14 13 13 14 13 

Annual income ($) INCOME 47,565 59,474 29,979 35,478 45,345 

* HOPCOST includes space heating and water heating together.  

 

 

                                                 

 

 
7
 ELECCEN = electric heating and central AC, NGCEN = natural-gas-based heating and central AC, 

ELECIND = electric heating and individual AC, NGIND = natural gas heating and individual AC, and  

Others = other heating-cooling systems. 
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 As Vaage (2000) pointed out, an obvious limitation of the discrete/continuous 

model with cross-sectional data is lack of data on capital costs. The RECS data do not 

include the information about the initial capital costs spent to install heating and cooling 

systems in the houses when they are built, because the RECS questions were asked to the 

current residents in those houses, not to the builders who actually know installation cost 

information. The only information allowing inference of the capital costs of the heating 

and cooling equipment are the COOLTYPE and EQUIPM variables in the RECS. 

COOLTYPE explains what kind of air-conditioning equipment the home has: central AC, 

individual AC, or both. EQUIPM means the type of heating equipment that provides 

most of the heat for the home. EQUIPM is categorized into heat pump, central warm-air 

furnace, steam/hot water system with radiators, built-in electric units, built-in pipeless 

furnace, built-in heater burning wood/coal/coke, portable electric heaters, portable 

kerosene heaters, fireplace, cook stove, some other equipment, and no heating equipment. 

 To solve this data problem, this study assumed that real capital costs evolve 

slowly enough that contemporary real prices reflect costs at the date of acquisition, 

following McClung’s (1988) assumptions. Average energy fuel prices by census division 

were used rather than marginal prices in the first stage of the discrete choice model, since 

it was assumed that when they purchase appliances, consumers consider today’s energy 

price levels broadly rather than considering marginal price changes in the future 

thoroughly. A multinomial logit model with maximum likelihood estimation (MLE) was 

run to estimate the expected probability for each option chosen by the household. To 

identify the choice specific parameters, one of the alternatives was used as the base 

category; this study used ELECCEN because the electricity-based heating and the central 

AC system are the most electricity-intensive systems for heating and cooling.  

 Results from the estimation of the model are reported in Table 3.9. The 

coefficients show the change in the log-odds of being in each category of the dependent 

variable relative to the base category from a one-unit increase in each independent 
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variable, holding the other variables constant. According to the straightforward 

interpretation of the coefficients, the estimated coefficients of the COPCOST for the 

ELECIND category, –0.00286, for instance, is interpreted as follows. When the operating 

cost for cooling increases by $1, the log-odds of the ELECIND category relative to 

ELECCEN decrease by 0.00286. When the operating cost for heating (HOPCOST) 

increases, the natural-gas-based heating systems (NGCEN and NGIND) are less likely to 

be chosen than the reference group (ELECCEN). When the operating cost for cooling 

(COPCOST) increases, ELECCEN becomes the most popular option among the five for 

heating and cooling. This is because every coefficient by alternative is negative for this 

variable. In other words, when the operating cost for cooling increases, it is more 

probable for a household to choose a central AC system over an individual AC system. 

As for the estimate average natural gas coefficient (ANGP), high natural gas prices 

appear to increase the probability of choosing ELECCEN as the heating and cooling 

equipment. AELECP for NGCEN, 0.05061, means that when the electricity price goes up, 

households are more likely to select natural-gas-based heating over the electric heating 

system. The INCOME coefficient for the NGCEN category shows that the natural-gas-

based heating and the central AC system are popular among higher-income households. 

This fact is supported by Table 3.8 as well. The descriptive statistics in the table show 

that the annual income of the NGCEN category is highest among the five categories.   

 

 

 

  



 48 

Table 3.9 Estimated Coefficients, the Discrete Appliance Choice of Model II 
(Alternatives: ELECCEN (reference group), NGCEN, ELECIND, NGIND, and OTHERS) 

Variable Choice Coefficient Std. Err. p-value 
HOPCOST NGCEN –9.5E-05* 1.52E-05 0.000 
 ELECIND 2.76E-06 3.33E-06 0.407 
 NGIND –8.5E-05* 1.29E-05 0.000 
 OTHERS –1.69E-07 1.75E-06 0.923 
     
COPCOST NGCEN –0.00149* 0.000238 0.000 
 ELECIND –0.00286* 0.000969 0.003 
 NGIND –0.0033* 0.000888 0.000 
 OTHERS –0.00166* 0.000312 0.000 
     
HKCOST NGCEN 0.005932* 0.001278 0.000 
 ELECIND –0.0004 0.000306 0.187 
 NGIND –0.00025 0.000561 0.658 
 OTHERS –0.00046 0.000235 0.050 
     
CKCOST NGCEN 0.000916 0.000379 0.016 
 ELECIND –0.01424* 0.003015 0.000 
 NGIND –0.01502* 0.004376 0.001 
 OTHERS –0.0023* 0.000233 0.000 
     
INCOME NGCEN 5.79E-06* 2.18E-06 0.008 
 ELECIND –3.35E-06 4.33E-06 0.439 
 NGIND 1.07E-05 4.65E-06 0.021 
 OTHERS 4.54E-06 2.13E-06 0.033 
     
AELECP NGCEN 0.050601* 0.017423 0.004 
 ELECIND 0.00133 0.022634 0.953 
 NGIND –0.01314 0.030029 0.662 
 OTHERS 0.096108* 0.014758 0.000 
     
ANGP NGCEN –0.17084* 0.048314 0.000 
 ELECIND –0.45572* 0.081959 0.000 
 NGIND –0.21107 0.116534 0.070 
 OTHERS –0.19063* 0.043995 0.000 
Number of observations   =       3386 

LR Chi
2
(28)     =    6415.26 

Prob > Chi
2
     =     0.0000 

Pseudo R
2
       =     0.6404 

a. The choice-specific coefficients are relative to the base category, 

ELECCEN. 

b. Likelihood Ratio (LR) test of Ho: all coefficients but the constant 

terms equal to zero. 
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Stage II: Electricity Consumption (Continuous Choice) Model 

 As model I and model II specified, observation-specific energy prices, income, 

number of rooms, HDD, and CDD are included in the continuous choice model. The 

main difference of this model from the previous two models is including the expected 

probability of each alternative (PRNGCEN
8
, PRELECIND

9
, PRNGIND

10
, and 

PROTHERS
11

) rather than the set of dummy variables showing the current equipment 

holdings. The variables except the choice probability terms are transformed to logs. This 

model found that the price elasticity of residential electricity demand is –0.78. This value 

is between the estimates from the two previous OLS models (–0.66 and –0.81). 

Compared to the second OLS model using observation-specific energy prices ( = –0.81), 

this continuous/discrete choice model shows less elastic demand.  Because the income 

variable is used both in the discrete choice model and in this continuous choice model, it 

is allowed to influence the energy demand directly; this is measured by their respective 

parameter estimates and indirectly through their effects on the selection terms. Finally the 

potential (direct) impact from income is tested in this model. Table 3.10 reports the 

estimated coefficients from this continuous choice model.  

 The reported elasticity is not the universally correct number, but it is noteworthy 

that it does not reject the hypothesis of long-term optimization. This model includes 

probability terms to take into account the possible impacts from the appliance choice on 

electricity demand. Because the assumption of joint optimization is proved to be correct 

by this model, the omission of this variable in the standard OLS models may imply a 

misspecification bias. 

 

                                                 

 

 
8
  The expected probability for the natural-gas heating and central AC to be selected for each household 

9
  The expected probability for the electric heating and individual AC to be selected for each household 

10
 The expected probability for the natural-gas heating and individual AC to be selected for each household 

11
 The expected probability for other heating-cooling systems to be selected for each household 
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Table 3.10 Estimated Coefficients, the Conditional Energy Demand of Model III 

ln(electricity use) 
                

Coefficient 
     Std. 

Err.   t 
    p-

value 

ln(electricity price) –0.777* 0.032 –24.630 0.000 

ln(natural gas price) 0.086 0.034 2.500 0.012 

ln(income) 0.150* 0.010 14.330 0.000 

ln(# of rooms) 0.530* 0.022 23.590 0.000 

ln(HDD) 0.000 0.016 0.020 0.981 

ln(CDD) 0.172* 0.019 8.850 0.000 

PRNGCEN –0.593* 0.034 –17.530 0.000 

PRELECIND –0.145 0.063 –2.300 0.022 

PRNGIND –0.733* 0.038 –19.340 0.000 

PROTHERS –0.517* 0.067 –7.690 0.000 

Constant 5.186* 0.328 15.820 0.000 

Number of observations =  3315 

Prob > F   =  0.0000 

R
2
   =  0.5148 

Adjusted R
2
 =  0.5133 

Root MSE   =  0.45845 

 

3.4 Comparisons among the Three Models 

 As mentioned previously in this chapter, the main purpose of estimating price 

elasticity in this study is to examine how the short-run demand responsiveness to changes 

in price influences the long-run demand projections. The short-run price elasticity 

basically reflects how consumers adjust to changes in price without any consideration of 

equipment shift. Because model I and model II controlled for the technology shift with 

the use of appliance holding dummies, they are interpreted as short-run price elasticities. 

Then, is the elasticity in the discrete/continuous choice model most naturally interpreted 

as a short- or long-term estimate? As discussed in Chapter 2, when the demand is limited 

(fixed) by the available stock of installation, the response to a price change is a short-run 

response. On the other hand, when the appliance has been optimally adapted to new 

conditions and the response to the price change is affected by the optimized new 

conditions, it is a long-term response (Vaage, 2000). The continuous/discrete choice 
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model explicitly modeled the joint optimization of appliance and appliance use. Thus, the 

derived estimate must be interpreted as a long-term effect. Thus, either Model I or Model 

II should be used to estimate the short-run price elasticity for NEMS experiments in 

Chapter 6. 

 First of all, in terms of R
2
, the continuous/discrete choice model (model III) 

shows the best fit to the data (Table 3.11). It was found that the electricity price (either 

census-division price or household-level price) the annual income and the number of 

rooms affect the determination of the level of electricity consumption significantly. The 

2005 RECS data detailed information about American households’ energy consumption. 

This rich source of micro-level data complements the existing econometric analysis based 

on time series data. Time series studies lack information concerning appliance stock, 

building characteristics, differences in climates, and demographic characteristics and are 

usually aggregates over the entire nation’s or region’s data. The use of this cross-

sectional data, however, allows researchers to consider the interventions across the 

households; thus, the cross-sectional data was used for this analysis.  

 Last, model II and model III use observation specific energy prices, and they 

show relatively more elastic demand than the first model with average prices. This means 

that consumers are more responsive to prices they face on their bills rather than to 

regional average prices. However, it was found that there may be a misspecification 

problem in the use of observation-specific prices, as discussed in Section 3.2. To solve 

the misspecification problem, the involvement of the supply function or the price 

function including some information about the supply is required. 

 Model III includes probability terms to take into account the possible impacts 

from the appliance choice on electricity demand. Because the probability terms are 

statistically significant, this model shows that the assumption of joint optimization of 

appliance choice and appliance use is a legitimate assumption. However, the estimates 

from the conventional models are appropriate for the NEMS experiments in Chapter 6, 
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because NEMS uses only short-term price elasticities to adjust its long-term forecasts. 

Puller and Greening (1999) also argue that they believe that their single continuous 

analysis is not without good foundation because many of the short-run adjustments are 

continuous choice only, although a more complete model would incorporate discrete 

choices. The first two OLS models do not allow changes in appliance choice of the 

households, so that they can be interpreted as short-run price elasticities needed for the 

next phase of this study. Considering the issue of possible misspecification error in model 

II, the short-run price elasticity estimated by model I is ultimately selected for the NEMS 

experiments.  
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Table 3.11 Summary of Estimated Electricity Demand Models 

Dependent Variable 
ln(electricity use) 

Coefficients by Model 

Model I: 

OLS with 

Average 

Prices 

Model II: 
OLS with 

Observation-

specific 

Prices 

Model III: 
Continuous/ 

Discrete 

Choice 

Model with 

Observation-

specific 

Prices 

Independent Variables 

   ln(electricity price) –0.663* –0.811* –0.777* 

ln(natural gas price) 0.445* –0.022 0.086 

    ln(income) 0.119* 0.136* 0.150* 

ln(# of rooms) 0.627* 0.566* 0.530* 

ln(HDD) 0.032* –0.013 0.000 

ln(CDD) 0.077* 0.104* 0.172* 

    NGCEN –0.415* –0.356* 
 NGIND –0.605* –0.506* 
 NGBOTH –0.393* –0.317* 
 NG9 –0.768* –0.675* 
 ELECIND –0.046 –0.069 
 ELECBOTH 0.167 0.119 
 ELEC9 –0.156* –0.156* 
 OTHERCEN –0.155* –0.086 
 OTHERIND –0.444* –0.297* 
 OTHERBOTH 0.198 0.235 
 OTHER9 –0.502* –0.351* 
 

    PRNGCEN 
  

–0.593* 

PRELECIND  

 
–0.145 

PRNGIND 
  

–0.733* 

PROTHERS  

 
–0.517* 

    Constant 9.161* 5.119* 5.186* 

R
2 0.433 0.505 0.515 

                            *Significant at the 99% confidence level 
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CHAPTER 4  

ENERGY CONSUMER BEHAVIOR 

 

 Economics as well as other behavioral sciences such as psychology and sociology 

have suggested various and interesting views of energy consumer behavior. A broader 

approach to energy efficiency and conservation policy could motivate consumers to save 

residential energy. Some behavioral scientists argue that small changes in the context, so 

called ―nudges,‖ could affect as much as large price changes. This suggests a potential 

role for non-price intervention. Insights from economic and non economic behavioral 

sciences may contribute to developing informational programs for energy conservation. 

Recently, utility companies and public agencies have utilized the behavioral science 

research for shifting electricity loads, conserving energy, and enhancing technological 

innovation.  

The behavioral scientists have been interested in not only the rational but also the 

irrational side of human behaviors. They point out that people sometimes procrastinate 

and that their attention and interests wander (Allcott and Mullainathan, 2010). These 

peripheral factors subconsciously influence consumers’ perceptions and decisions, which 

influence real-world outcomes. Many previous studies suggest that people fail to adopt 

advanced technologies that would save them money by using less energy, such as better 

insulation, fuel-efficient vehicles, and efficient appliances and lighting. It is because 

people often resist actions that have clear long-term benefits if they perceive them 

unpleasantly in the short run. Allcott and Mullainathan (2010) explains this phenomenon 

with an interesting example like follows. People do not exercise regularly because of the 

short-term inconvenience or discomfort even though they know the regular work-out 

would turn out a healthy and well-shaped body in the end. A recent New York Times 

article shows an interesting behavior of consumers (in terms of energy savings) in the 

home electronics market:  
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Each year millions of Americans with old, inefficient refrigerators in their 

kitchens buy new, energy-saving ones. That may sound like an efficiency boon, 

but what’s vexing efficiency advocates is that an increasing number of consumers 

don’t actually get rid of the old fridge. A large number of older refrigerators still 

remain on the grid, even when swapped for more energy-efficient models. 

Unplugging the 29.6 million secondary units nationwide that are candidates for 

retirement would save 25 million megawatt hours of electricity, or about $2.8 

billion, the energy department study reported (Vestel, 2010). 

  

The Scenarios for a Clean Energy Future study (Brown et al., 2001) show that the 

U.S. economy could reduce residential energy consumption by up to 20 percent in 2020 

solely by adopting energy-efficient and clean technologies. Similarly, a McKinsey report 

released in 2009 points out that many households and businesses in the U.S. are not 

energy efficient, even though they could reduce energy consumption by 23% from the 

baseline by making them so. The amount of saved energy is equivalent to $1.2 trillion at 

an upfront cost of $520 billion (Granade et al., 2009). Of course, various factors affect 

this phenomenon, and more evidence is needed, but some barriers may come from 

insufficient information about energy efficiency and the imperfect rationality of 

consumers. Nolan and his colleagues (2008) argue that households could reduce their 

electricity consumption by 3% on average and lower carbon dioxide emissions from 

electric power by 0.5% only if they were provided with home energy-use reports to 

inform them of tips for saving energy.  

 This chapter discusses economic, psychological, and sociological concepts 

underlying consumer behavior in energy efficiency and conservation. Market and 

behavioral failures, psychological nudges, information problems relevant to energy 

efficiency are the main themes of the discussion. 
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4.1 Energy Market Failure  

Energy market failure can be explained with the ―energy efficiency gap‖ between 

the observed level of energy efficiency and some notion of optimal energy use (Hirst and 

Brown, 1990; Jaffe et al., 2004; Gillingham et al., 2009). Maximizing economic 

efficiency, which is generally considered as maximizing the net benefits to society, does 

not imply maximizing physical energy efficiency (Gillingham et al., 2009). One of the 

reasons the socially optimal level of efficiency will not be achieved is that implicit 

discount rates for consumers are higher than actual discount rates in the market. Thus, 

consumers weigh present and visible cash flows against uncertain future flows. The gap 

between economic energy efficiency and technical (physical) energy efficiency could 

occur as a result of hidden costs, such as search costs (Jaffe et al., 2004), or with the 

irreversibility of energy efficiency investments (Hassett and Metcalf, 1993, 1995; van 

Soest and Bulte, 2000). 

Energy market failure can be explained from other concepts of environmental 

externalities and imperfect information that lead to deviations from benefit maximization 

(or cost minimization). The main theme in energy market failures is that energy prices 

could not convey the true marginal social cost of energy consumption correctly because 

of environmental externalities and average-cost pricing (Gillingham et al., 2009). When a 

scarce environmental good, such as cleanliness of air, is considered as a public good and 

not a common good which is traded in the market, an externality occurs. The externality 

leads to an underinvestment in energy efficiency and hence results in an overuse of 

energy. To the extent that electricity prices do not internalize the externalities related to 

greenhouse gas emissions and water pollution from the electric power sector, the rate of 

energy efficiency adoption would be lower than the socially optimal level. In addition to 

unpriced environmental externalities, imperfect or missing information of products’ 

energy intensity would tend to lower the relative price of energy (fuels) to technology 
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adoption in energy production in a household
12

, leading finally to choices of low energy 

efficiency.  

On the other hand, there exist positive externalities associated with learning by 

using, and the experience and knowledge absorbed by consumers motivates them to 

adopt additional efficient equipment or for non-participants to join energy-efficiency 

programs and purchase energy-efficient appliances (Gillingham et al., 2009). Program 

spillovers occur when participating households install additional energy-efficient 

products voluntarily, and without any additional rebates, as a result of the knowledge and 

experience they have absorbed through participating in the program. An early adopter of 

a new energy-efficient product builds knowledge about the product through its use, and 

others benefit from the information about the existence, attributes, and performance of 

the products. Customer reviews available online are a good example of these positive 

externalities. Some studies have named learning-by-doing spillovers as ―free drivers‖ in 

the context of demand-side management programs (Blumstein and Harris, 1993; Eto et al., 

1996). Free drivers are nonparticipants who purchase and install energy-efficient 

products as a result of hearing about them from program participants. 

 

4.2 Behavioral Failure 

 The psychology, sociology, and even economics literatures have drawn attention 

to several systematic biases in consumer decision making in energy use and investment in 

energy efficiency. Arguments about behavioral failure depart from the neoclassical 

economic assumption about consumers: perfect rationality. Thus, the crucial and main 

question is whether the deviations from the perfect rationality lead to significant 

                                                 

 

 
12

 The conception of relative price of energy (fuels) to technology adoption  is explained in Figure 2.1 in 

Chapter 2.  
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systematic biases in energy efficiency decision making and, if so, whether these biases 

lead to under- or overinvestment in energy efficiency (Gillingham et al., 2009).  

Bounded rationality suggests that consumers are rational but face cognitive 

constraints in processing information, which leads to deviations from rationality in 

certain circumstances (Simon 1959, 1986). Empirically testing the bounded rationality of 

energy consumers is difficult in that there are limited models of bounded rationality 

applicable to energy decision making (Sanstad and Howarth, 1994; Gillingham et al., 

2009). Kempton and Montgomery (1982) argue that consumers tend to use a simple 

payback measure derived from a simple calculation: the total investment cost divided by 

the future savings, calculated using the energy price at the moment of the calculation 

rather than the price at the time of the actual savings. According to this argument, 

consumers ignore future changes in real fuel prices for convenience in calculation. 

Kempton et al. (1992) empirically find that consumers systematically miscalculate 

payback for air conditioner investments, and the miscalculation results in 

overconsumption of electricity. Yates and Aronson (1985) point out that there is a 

salience effect in decision making. The salience effect means that consumers attach 

disproportionate weight to the most psychologically vivid and currently observable 

factors among various determinants. The salience effect may explain bounded rational 

behaviors in energy efficiency decisions, such as an overemphasis on the initial cost of an 

energy-efficient purchase, which leads to an underinvestment in energy-efficient 

equipment (Wilson and Dowlatabadi, 2007). 

Heuristic decision-making theory basically assumes bounded rationality and 

explains a variety of decision-making strategies different from critical ways used in 

conventional utility maximization. According to this theory, consumers use simple 

heuristic techniques to determine their energy consumption levels in order to reduce the 

cognitive burden, and this behavioral feature systematically leads to an underinvestment 

in energy efficiency. Tversky (1972) argues that consumers use a sequential decision-
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making process by which they first narrow their full choices down to a smaller set by 

eliminating products that cost above a certain level.  

Furthermore, there have been some controversies around the effectiveness of the 

energy efficiency policies. Some people argue that the policies for reducing carbon 

emissions and for saving energy might actually increase overall energy consumption—a 

side effect called the ―rebound‖ or ―takeback‖ effect, which might be caused either by 

unintended wastes or by energy consumers’ behavioral changes (Dinan, 1989; Laitner, 

2000). The demand for energy services may increase in response to the declined marginal 

cost for operating the efficient equipment. As the efficiency of heating equipment and 

housing structures improves, homeowners may choose to maintain higher indoor 

temperature levels because the price of heating becomes relatively less due to the 

improved efficiency.  

 

4.3 Information Problems 

There has been a skeptical view of informational and educational programs in that 

there have been very few studies empirically measuring the exact magnitude of their 

effectiveness. Moreover, the evidence of their effectiveness is mixed because the 

programs vary in implementation and evaluation. Weil and McMahon (2003) argue that 

product labeling requirements are successful in increasing energy-efficient investments 

and offered anecdotal evidence. Newell and his colleagues (1999) empirically find that 

the responsiveness of energy efficiency innovation to energy prices had grown 

substantially since product labeling was required, whereas Levine and his colleagues 

(1995) argue that the Energy Guide product labeling requirements were fairly ineffective.  

Whether they support the effectiveness of the informational programs or not, 

experts and scholars have agreed on that information problems are the primary 

explanations for the energy-efficiency gap (Sanstad et al., 2006). Gillingham and his 
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colleagues (2009) point out that consumers’ lack of information about the availability of 

and savings from energy-efficient products and principal-agent (split-incentive) problems 

are often given as reasons why consumers systematically under-invest in energy 

efficiency. The main idea is that consumers often do not have sufficient information 

about new and efficient equipment or about the differences in future operating costs 

between existing and newly introduced products in the market, even though such 

information is necessary to make proper investment decisions (Howarth and Sanstad, 

1995). These information problems can be lightened by labeling and other information 

programs. Ek and Soderholm (2010) find that costs, environmental attitudes, and social 

interactions are important determinants of electricity saving activities within Swedish 

households. They test a hypothesis that information about available savings measures that 

is presented in a more concrete and specific way is more likely to affect behavior than is 

more general information. 

Economic theories about principal-agent problems are often involved to explain that 

the split incentive causes underinvestment in energy efficiency. The agent, such as a 

builder or landlord, decides the level of energy efficiency in a building, while the 

principal, such as the purchaser or tenant, pays the energy bills. Because the person who 

installs energy efficient technologies could not be the same person who uses them, it is 

possible that information asymmetry about the energy efficiency of the building exists. 

Thus, the agent may not be able to get back the costs of energy efficiency. Similarly, 

many builders hesitate to adopt green building practices because they know that higher 

up-front expenditures would raise the sales values. Builders under-emphasize operating 

and maintenance costs and under-invest in energy efficiency relative to the social 

optimum because they know that some homeowners are not able to see beyond the 

relatively high initial costs of energy-efficient appliances and building construction 

practices (Jaffe and Stavins, 1994). Even though builders or landlords have enough 

knowledge and information about energy-efficient insulation or the necessary home 
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electronics, they may not adopt new and advanced technologies because the installation 

costs reflect in the price or the rent of the house and they know that tenants and home 

buyers are more interested in lower prices and rents than in the bill savings they might 

expect in the future.   

Time-dependent pricing systems also can solve the imperfect information problem 

by correcting price signals estimated based on information about the current marginal 

cost of electricity generation and transmission updated hourly or even more frequently. 

Since most of the electricity companies commonly use average-cost pricing systems 

under utility regulations, consumers are given retail prices that may not reflect marginal 

social costs. The average-cost prices normally depend on the average cost of the mix of 

generators used to produce electricity over a year or a season. When the average costs are 

below marginal cost, consumers face a price below the economically optimal price and 

are motivated to use electricity more than the optimal level. This market failure can be 

solved by market-based pricing systems that provide daily or hourly information. Pilot 

programs of alternative pricing schemes, such as time-of-use (TOU) pricing, peak and 

off-peak pricing (PTR), and critical-peak pricing (CPP), have proven that these time-

variant pricing systems have significant impacts on reduction in energy consumption and 

load shifting (Faruqui and Sergici, 2009).  

 

4.4 Policy Discussions from the Energy Consumer Sciences 

The various arguments from economics and other behavioral sciences can shed a 

light on policy designs for energy efficiency improvement and energy conservation. First, 

governments can educate consumers and encourage them to make their energy-use habits 

more efficient and can also adjust their sensitivity to changes in price and policy by 

providing various tips for saving energy. In addition, various incentive systems using 

price differentials might motivate households to respond more sensitively to price 
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changes. Rigorous consumption-recording and -monitoring systems, such as smart meters 

could promote the effectiveness of the incentive systems. Consumers could recognize 

how much energy they spend, and when they spend the most, based on the monitored 

energy-consumption record, and the information might help them to plan rationally for 

their own energy consumption. The number of installed smart meters has gradually 

grown, and 6.7 million smart meters were installed in 2008. However, 95 percent of 

residential buildings still remain unequipped (FERC, 2008). Ongoing R&D is expected to 

bring the cost down further, and a broad public advertisement would familiarize 

consumers with the monitoring system. When combined with enabling technology, 

energy conservation can be expedited (Brown et al., 2009).  

Second, governments can establish potentially high-impact behavioral research 

programs as part of their broader energy innovation programs. The behavioral programs 

support research on consumers’ rational or irrational behavioral attributes, such as their 

conceived discount rate for energy efficiency. The research could contribute to 

developing reasonable and effective incentive systems. Criteria for funding such 

behavioral research should be similar to those used for allocating resources to 

engineering and basic science research (Allcott and Mullaninathan, 2010). As they 

support technological R&D projects to develop theories and their applications, 

governments can provide funding for social sciences to scientifically measure and 

analyze consumers’ psychology and behavior in energy consumption and efficiency 

adoption through both theory-driven and empirical study. For instance, even though the 

results of recent real-time pricing (RTP) and critical-peak pricing (CPP) pilots 

demonstrate that consumers can and will adjust electricity usage in response to price 

changes, policy makers and pricing plan designers are still skeptical of the impact of 

large-scale implementation because there is no consensus on the degree to which 

consumers will respond to price changes. As a result, there is no concurrence on which 

pricing plan or plans should be adopted (Neenan and Eom, 2008). Rigorous theory-driven 
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social science research to measure the degree of the policy impact and to probe the 

mechanism of consumers’ behavior by income level or other demographic differences 

will be required in order to design a more effective pricing system. A bill under 

consideration in the U.S. House of Representatives, HR 3247, would establish a 

behavioral research program at the DOE to understand behavioral factors that affect 

energy conservation and accelerate the adoption of promising initiatives.  

Third, expanded informational programs can support consumers to save their 

energy. The educational programs can be utilized more successfully in the following 

ways. First of all, they can provide detailed and customized energy-saving tips to 

households and promote changes in energy-consuming habits more effectively. For 

example, the programs can give information on the differences between off-peak and 

high-peak prices and on how much money can be saved simply by rearranging the times 

that electricity is used. This could improve the short-run price elasticity of electricity 

demand. The improved responsiveness could contribute to conserving energy and 

redistributing the load so as not to overload the grid, generator, and transmission. In 

addition, the programs can ―nudge‖ consumers to make better choices in adopting 

energy-efficient products. Only through providing and educating about the kind of 

financial supports the government offers, such as tax credits, the U.S. could expect 

significant energy savings. These informational programs should be effectively designed 

with careful consideration given to behavioral factors in the disclosures they control 

because the effect of information on choices depends critically on how the information is 

conveyed (Allocott and Mullaninathan, 2010).  

Of course, the success of disclosure depends on the quality and consistency of 

information provided and the extent of public understanding. Information barriers occur 

when decision-makers do not have enough practical information to make investments in 

their own best interests. Consumers have been found not to be clearly aware of the 

relationships between their lifestyles, energy consumption, and the environment (Garrett 
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and Koontz, 2008). Numerous facts and data are available to consumers, but they are 

regarded as useless information when information barriers are compounded by a lack of 

trusted and actionable guidelines. Information is often presented in terms that are not 

specific enough to drive consumer change (Gillingham, 2009). For that reason, more 

detailed and customized information is required to influence consumers efficiently. Even 

a simple feedback system accompanied by public information or education campaigns 

could have a great impact. For smart meters, there could be an online component to 

provide a customized electricity usage plan for each household based on their energy 

consumption and performance information. Consumers could be provided the specific 

rating scheme along with estimated benefits and costs of greater-efficiency units and 

retrofits. In addition, collecting feedback from various households could help to analyze 

more detailed behavioral characteristics of each household. A California case study 

demonstrated that, in most cases, consumer understanding of the meaning and usefulness 

of home energy performance data was a necessary prerequisite for interest in home 

energy performance (TecMarket Works, 2004).  

This chapter casts a light on that the wide understanding the energy consumer 

behavior and the empirical evidences provided by the various energy consumer sciences 

can assist policy makers to design and implement effective energy policies. 
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CHAPTER 5 

ENERGY POLICY AND RESIDENTIAL ELECTRICITY MARKET  

  

 Whether an energy policy is aimed to directly affect electricity price or not, it 

influences the market, utilities, and consumers and ultimately results in changes in price. 

This chapter reviews three major energy policies—energy efficiency, climate, and 

electricity pricing—that would have a potentially large impact on price changes. First, 

this chapter discusses carbon cap and trade and renewable electricity standard, and 

predicts how residential electricity price and consumption would under the scenario of a 

national carbon tax system and national renewable electricity standards. The price and 

consumption projections in this chapter are rough and preliminary estimations, but 

provide initial ideas for simulation experiments conducted in Chapter 6. Secondly, the 

effectiveness of two representative energy efficiency programs, ENERGY STAR and 

PATH, and their loopholes are discussed.  In the last section, time-dependent electricity 

pricing systems with economic theories of consumer behavior are discussed. 

 

5.1 Climate Policies  

National and international climate policies are anticipated to affect electricity 

consumption and prices in the future. This section reviews two major climate policies, the 

national carbon tax and the national Renewable Electricity Standard (RES), and predicts 

changes in future electricity consumption and prices. To assess the potential impacts of 

the two energy and climate policies currently being debated in the U.S. Congress, this 

study modifies the third version of AEO2009-NEMS with the Economic Stimulus 

Package. This study names it GT-NEMS in order to emphasize that energy projections 

from the GT-NEMS could be different from projections from the original NEMS. 
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National Carbon Cap and Trade System  

 Putting a price on greenhouse gas (GHG) emissions and creating a market for 

trading the carbon credits can be accomplished with various policies, including energy 

and carbon taxes and cap-and-trade systems. Ten northeastern states—Connecticut, 

Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, 

Rhode Island, and Vermont—are participating in the Regional Greenhouse Gas Initiative 

(RGGI), which is the first mandatory, market-based CO2 emissions reduction program in 

the United States (see the states marked in black in Figure 5.1). The signatory states to 

the RGGI agreement have capped CO2 emissions from the power sector and will require 

a 10-percent reduction in these emissions by 2018. Twelve western states have formed 

the Western Climate Initiative (WCI) to implement a joint strategy to reduce GHG 

emissions. The WCI cap and trade program aims to reduce GHG emissions by 15 percent 

below the 2005 level by 2020. The nine states in the Midwest signed their own GHG 

reduction accord. The Midwestern GHG Reduction Accord advisory group has finalized 

their recommendation. The governors are now reviewing the recommendations to offer 

their input on next steps to be taken in the region and at the federal level. The 

recommendations have not been endorsed or approved by individual governors. In the 

South, there is no regional program yet. This variety of divergent policies is particularly 

challenging to stakeholders who are striving to develop national markets. In recent years, 

the U.S. Congress has proposed hundreds of climate-related initiatives (Congressional 

Budget Office, 2009), and the pace of climate policy activity appears to be accelerating. 

Keeping step with the trend, an increasing number of U.S. companies has been 

participating in voluntary GHG emissions reduction programs and registries partly to 

prepare for eventual federal regulations (Southworth, 2009). Given the importance of 

placing a cost on carbon and the problems associated with the diversity of regional 

approaches that exists today, there is great momentum to establish a national policy of 

carbon constraints (Brown and Baek, 2011). The National Commission on Energy Policy 
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(NCEP, 2004) provides key design features of a cap-and-trade program pertaining to 

emission targets, point of regulation, price ceiling and floor, offsets, banking and 

borrowing, and allocation of allowances. It has been pointed out that having an 

effectively designed instrument is more important than the choice of policy (Aldy et al., 

2009; Goulder, 2009), since there have been some concerns about how the costs of the 

national policy would be distributed fairly across regions and income groups.  

 

Figure 5.1 Regional Carbon Cap-and-Trade Initiatives  

(Data Source: Database of State Incentives for Renewable Energy, http://www.dsireusa.org/) 

 

Energy policy makers are aware of the importance of the policy and claim to be 

taxing polluters, not electricity consumers. Once the government creates a scarce new 

commodity, the costs would inevitably be passed on to the electricity prices. Peter 

Orszag, President Obama’s budget director, told Congress last year that ―Those price 

increases are essential to the success of a cap-and-trade program.‖ The Congressional 

http://www.dsireusa.org/
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Budget Office (2007) estimates that the price hikes to reduce emissions by 15% would 

cost the average household in the bottom-income quintile about 3.3% of its after-tax 

income every year—the equivalent of $680, not including the costs of reduced 

employment and output. The three middle quintiles would see their paychecks cut 

between $880 and $1,500, or about 2.7 percent of their income. The rich would pay 1.7% 

(CBO, 2007). 

This study analyzes the potential impact of a national policy of carbon constraints 

on residential electricity and consumption by changing several parameters in GT-NEMS. 

First, based on examinations of the allowance price projections estimated by the Energy 

Information Administration (EIA), Congressional Budget Office (CBO), Environmental 

Protection Agency (EPA), and Natural Resources Defense Council (NRDC), the annual 

schedule of carbon tax prices was estimated. This study models a carbon tax policy 

starting at $15 per ton of carbon dioxide (in 2005 dollars) in 2012, growing at 7% 

annually and reaching $51 per ton in 2030. In addition, an allowance redistribution 

system is implemented in GT-NEMS. It gives 90% of allowances to electricity-load-

serving entities and 10% to generators. The allowances given to the load-serving entities 

are assumed to be passed along to consumers and subdue the increase in retail electricity 

prices. 

A national carbon tax would raise the residential electricity price by 2% in 2020 and 

17% in 2030. The price inflation is forecast to be considerably higher than the price 

increase under a national electricity standard (see Figures 5.2). With the short-run 

elasticity of -0.15 in the model, there would be no significant change in consumption 

(Figure 5.3). With a higher short-run elasticity, a reduction in future demand is expected. 
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Figure 5.2 Residential Electricity Price Projections with a National Carbon Tax 

 

 

Figure 5.3 Residential Electricity Demand Projections with a National Carbon Tax  

 

Renewable Electricity Standard (RES) 

A renewable electricity standard (RES) is a legislative mandate requiring electricity 

suppliers in a given geographical area to employ renewable resources to generate a 

certain amount or percentage of renewable power by a target year (e.g., California will 

generate 20 percent of its electricity from renewables by 2010). Typically, electricity 
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suppliers can either produce their own renewable energy or buy renewable energy credits. 

Therefore, this policy blends the benefits of a ―command and control‖ regulatory 

paradigm with a free market approach to environmental protection. Renewable portfolio 

standards are currently mandated on a state-by-state basis. Currently, 36 states (including 

the District of Columbia) have some kind of RPS system in place, six of which set 

voluntary goals as opposed to strict requirements (Beck, 2009). Contrary to enabling a 

well-arranged national renewable energy market, however, inconsistencies between states 

over what counts as renewable energy, when it has to come online, how large it has to be, 

where it must be delivered, and how it may be traded clog the renewable energy market 

(Figure 5.4).  

 

 

Figure 5.4 State renewable electricity standards  

(Source: Database of State Incentives for Renewable Energy, http://www.dsireusa.org/) 

 

http://www.dsireusa.org/
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To reduce state-by-state inconsistencies and further accelerate the growth of 

renewable power production, the U.S. Congress is considering implementation of a 

national standard. Recent Congressional proposals tend to be consistent with President 

Obama’s campaign platform in 2008, which included a commitment to 25% renewable 

electricity production by 2025. Responding to requests from Chairman Edward Markey 

for an analysis of a 25% Federal RES, the EIA released the report ―Impacts of a 25-

Percent Renewable Electricity Standard as Proposed in the American Clean Energy and 

Security Act Discussion Draft‖ in 2009.  

This study examines the nominal target share for renewables requiring not only 

major utility companies but also small retailers to meet the aggressive national RES 

target in order to estimate the maximum impact of the aggressive national RES on 

industrial electricity and biomass markets. This study modeled an RES goal equivalent to 

the one pledged by President Obama in 2008. Specifically, the RES specifies that at least 

10 percent of U.S. electricity would come from renewable sources by 2012, and 25 

percent by 2025. It took into account the possible technological advancement in 

renewable energy technologies and updated the supply curves of the renewable energy 

sources.  

Figure 5.5 shows that a national RES would raise the prices by 2% in 2020 and 4% 

in 2030. This finding is replicated by other studies. The National Renewable Energy 

Laboratory (NREL, 2009) analyzed the potential impact of proposed national RES 

legislation by using the Regional Energy Development System (ReEDS) model and 

found that all of the RES bills, including Waxman-Markey, would have a modest impact 

on consumer electricity prices at the national level. Differences between average national 

electricity prices in the RES cases and the base case are less than 5%. 

 Like a national carbon tax, there was no significant change in consumption with the 

short-run elasticity of -0.15 in the GT-NEMS model (Figure 5.6). With a higher short-run 

elasticity, a reduction in consumption is expected.  
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Figure 5.5 Residential Electricity Price Projections with a National RES 

 

 

Figure 5.6 Residential Electricity Demand Projections with a National RES 
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5.2 Energy Efficiency Programs for Residential Buildings 

 Financial incentives for purchasing energy-efficient appliances and equipment 

have been regarded as one of the most effective policies for expediting advanced 

technologies’ penetration of the market. Among these, tax credits could provide 

significant savings to households and builders, in that, while a tax deduction reduces just 

the amount of income subject to tax, a tax credit directly reduces the total amount of tax 

paid. Most of the residential tax credits, except for those applied to solar water heaters 

and panels, were expired as of December 31, 2007, but in the following year, the House 

passed 18.1 billion dollars in renewable energy tax incentives (HR 5351), including an 

extension of the tax credit for energy-efficient home improvements (Energy Star, 2008). 

In addition, the Department of Energy still calls for additional provisions of financial 

incentives to retailers selling large quantities of ―best-in-class‖ appliances per the 

American Clean Energy and Security Act of 2009. 

Two representative efficiency programs in the residential buildings sector are 

Energy Star and the Partnership for Advancing Technology in Housing (PATH). Energy 

Star is a joint program of the U.S. Environmental Protection Agency (EPA) and the U.S. 

Department of Energy (DOE) to help people save money and protect the environment 

through promoting energy-efficient products and practices. Consumers are estimated to 

have saved 16 billion dollars on their utility bills through the purchase of Energy Star 

equipment in 2007. Converted to carbon emissions, the savings are equivalent to those 

from 27 million cars (Energy Star, 2008). In particular, Energy Star labels appear to have 

achieved significant savings by inducing consumers to adopt greater energy efficiency 

(Webber et al., 2000). The voluntary Green Lights program and Energy Star office 

products program have been effective in increasing energy-efficiency investments by 

increasing access to information (Howarth et al., 2000). 
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On the other hand, PATH was initiated to speed up the development and use of 

building technologies that improve the quality, durability, energy efficiency, 

environmental performance, and affordability of America’s housing. It is a voluntary 

partnership among leaders of homebuilding, material manufacturing, insurance and 

financial industries, and federal agencies related to housing. The PATH program 

incentivizes homebuilders with a 2,000-dollar tax credit for each energy-efficient house 

built.  

However, not all Energy Star qualified homes and products are eligible for a tax 

credit. These tax credits are available only for limited products at the highest efficiency 

levels, which cost more than standard products. In addition, builders must build houses 

whose heating and cooling load efficiency exceeds the level indicated by the Internal 

Energy Conservation Code (IECC) by 50 percent in order to qualify for the PATH tax 

credit. Foss (2007) points out that meeting the requirement is not an easy task: 

Code minimum requirements include a 13-seer air conditioner and 13-seer, 

7.7-HSPF heat pump. But the tax credit does not allow [homebuilders] to 

achieve the 50 percent heating and cooling reduction target through HVAC 

upgrade alone. [They] must improve the energy efficiency of the building 

envelope enough to reduce heating and cooling loads by at least 10 percent 

compared to 2004 IECC. In particular, builders should focus on air-sealing, 

window performance and insulation levels.  

Energy efficiency retrofits of older homes and improved home construction 

practices are considered the most cost-effective strategies for cutting energy costs and 

curbing carbon emissions (Granade et al., 2009). However, various market failures and 

barriers impede investments in these opportunities. The first of these is the diverse and 

fragmented nature of the buildings industry. Multiple participants influence the decision-

making process of a single house according to distinct interests, affecting the process at 

different points during design, construction, and use, and they often act as ―decision-
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making intermediaries‖ who do not represent the long-term interests of the building 

owners or occupants who pay the energy bills (Brown et al., 2009; Jaffe and Stavins, 

1994). The involvement of intermediaries in the purchase of energy technologies leads to 

an under-investment in energy efficiency. Even if there is no deviation in the process, 

homeowners themselves could weigh present and visible cash flows over uncertain flows 

in the future. Empirical evidence has been found in previous studies; the implicit discount 

rates range from 25% to over 100% (Sanstad et al., 2006; Train, 1985). 

Furthermore, outdated building codes and appliance standards could be barriers to 

energy-efficient buildings, in spite of their numerous positive influences. Since codes and 

standards take a long time to be implemented and updated, the best performing materials 

and technologies in the market are not readily deployed, thereby inhibiting innovation 

and encouraging obsolete technology (Brown et al., 2009). Even when states improve 

older building codes, the code compliance is often limited because many of them lack 

consistent code enforcement and support programs to improve the compliance rate (Yang, 

2005).  

In addition, there have been some controversies around the effectiveness of certain 

energy-efficiency policies. Some people argue that the policies for reducing carbon 

emissions and for saving energy might actually increase overall energy consumption—a 

side effect called the ―rebound‖ or ―takeback‖ effect, which might be caused either by 

unintended wastes or by energy consumers’ behavioral changes (Dinan 1989; Laitner 

2000). As the efficiency of heating equipment and housing structures improve, 

homeowners may choose to maintain higher indoor temperature levels because the price 

of heating becomes relatively less due to the improved efficiency. Through an empirical 

study on a retrofit homes program in Hood River, Oregon, Dinan (1989) found that 

retrofitted homes maintained an average 0.5 degree Fahrenheit increase in residential 

temperature level. She also found that the gap between the actual and expected levels of 

temperature by the retrofit program is wider among lower-income households (Dinan 
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1989). In addition, Laitner (2000) found that the rebound effect might reduce overall 

energy savings by about 2 to 3 percent, depending on the assumptions for income, price 

elasticities, and supply-demand interactions. 

Governments can improve the existing building codes and appliance standards so as 

to motivate electricity consumers to adopt energy-efficient technologies in the long run. 

Outdated building codes and appliance standards could be regulatory barriers to energy-

efficient residential buildings. Since codes and standards take a long time to be 

implemented and updated, the best performing materials and technologies in the market 

are not readily deployed, thereby inhibiting innovation and encouraging obsolete 

technology (Brown et al., 2009). Even when states improve older building codes, the 

code compliance is often limited because many of them lack consistent code enforcement 

and support programs to improve the compliance rate (Yang, 2005). In addition, 

principal-agent problems between builders and building owners could impede the 

adoption of active energy-efficiency measures. In order to overcome the latent problems 

in the existing policies, a consistent financial support for code enforcement and 

maintenance would be required. 

 

5.3 Time-dependent Electricity Rates and Smart Meters 

 Most households are given electricity prices that may not reflect marginal social 

costs since average-cost pricings under utility regulation are common. The retail prices 

typically reflect the average of these marginal costs over a period of months. The 

average-cost prices normally depend on the average cost of the mix of generators used to 

produce electricity. When the average costs are below the marginal cost, consumers face 

a price lower than the economically optimal price and are encouraged to use more 

electricity than the optimal level. On the other hand, market-based pricing provides daily 

or even hourly wholesale prices that reflect changes in market demand and operating 
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costs. For that reason, time-variant pricing systems, such as time-of-use (TOU) prices and 

real-time pricing (RTP), can shift demand from peak time to off-peak so as to stabilize 

the market. The TOU prices vary by time of day or season, whereas the RTP directly 

reflects information about the current marginal cost of generation and transmission and is 

updated hourly or even more frequently. RTP and, to a lesser degree, TOU pricing have 

the potential to alleviate the market failure caused by average-cost pricing (Gillingham et 

al., 2009). 

To make electricity demand responsive to price changes, rigorous recording and 

monitoring systems should precede incentive systems through price differentials. The 

term ―smart meter‖ refers to meters that record the consumption of electricity as well as 

natural gas and water hourly or more frequently and output the information through an in-

home device or on-line tool. The number of installed smart meters gradually grows and 

6.7 million smart meters were installed in 2008. However, 95 percent of residential 

buildings still remain unequipped (FERC, 2008). Ongoing R&D is expected to bring the 

cost down further and a broad public advertisement would make consumers familiar with 

the monitoring system. When combined with enabling technology such as smart meters, 

energy conservation can be accelerated (Brown et al., 2009).  

The potential for energy savings from time-dependent pricing is significant. 

Pfannenstiel and Faruqui (2008) found that the technical potential of the pricing system is 

25 percent, the economic potential 12 percent, and the market achievable potential 5 

percent during peak hours. Energy savings from smart meter technologies alone or in 

combination with alternative pricing have occurred both as load shifting and energy 

savings. Darby (2006) summarized that the energy savings caused by the direct feedback 

from meters in home displays ranged from 5 to 15 percent over several studies. Faruqui 

and Sergici (2009) argued that reducing the peak demand by five percent could lead to 

nationwide savings of $66 billion. The range of savings depends on uncertainties 

associated with combinations of different TOU rates and smart meters. Thus, research for 
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optimizing the design of smart meter and TOU pricing policies, including evaluation of 

pilot programs, is required. Faruqui and Sergici (2009) summarized the potential savings 

from the pilot programs (Table 5.1). 

Table 5.1 Summary of savings from pilot time-dependent-pricing programs 

% of Savings Minimum Average Maximum 

Time of Use (TOU) Rate 2 4 6 

TOU with Technology 21 26 31 

Peak Time Rebates (PTR) 9 13 18 

Critical Peak Pricing (CPP) 12 18 24 

CPP with Technology 17 36 51 

*Source: Faruqui and Sergici (2009) 

 

5.4 Ex Ante Evaluation of Policy Options 

Each of the policies discussed in this chapter have multiple policy options 

implementation. The impact of the policies discussed in this section could be evaluated 

differently depending on which criteria and assumptions are applied to the evaluation. 

Brown and her colleagues (2009) suggest eight criteria for evaluating energy policy 

options: 1) federal role, 2) applicability, 3) potential benefits, 4) non-R&D, 5) cost-

effectiveness, 6) administrative practicability, 7) additionality, and 8) time to savings. 

Table 5.2 shows the description of each standard. This study develops discussions of 

social welfare estimation according to the two of the potential benefits and the time to 

savings out of the eight criteria. 

 

Table 5.2 Criteria for Evaluating Policy Options (Brown et al., 2009) 

Criteria Description 

Federal Role Many of the more effective policies and measures in this area 

require state or local action. Must be clear regarding the 

appropriateness of the Federal role. 

Applicability Since the number of policies and measures to be analyzed is 

small, those selected for analysis should have broad applicability 

across the national scene. 

Potential benefits Policies and measures with significant and early quantitative 

benefits are to be favored over those with later and less. 
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Criteria Description 

Non-R&D The policies and measures selected should address barriers 

and/or risks of mainly an institutional, policy, or non-technical 

nature. 

Cost-effectiveness Consideration should be limited to those that would be expected 

to have both reasonable costs, and a strong social benefit to cost 

ratio. 

Administrative 

Practicability 

Policies need to be capable of being fairly easily established and, 

if necessary, managed and/or enforced. 

Additionality The collection of selected policy options should be diverse, such 

that each option represents a somewhat different approach to a 

barrier or to different barriers. 

Time to Savings The shorter the time horizon required to achieve significant 

energy savings, the better. 

 

This study discuss ex ante evaluation of a carbon tax as an example in the 

following section. How differently the short-run consumer’s responsiveness affects the 

evaluation of the policy impacts of the tax is discussed in Chapter 7.  
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CHAPTER 6 

LONG-RUN DEMAND MODEL: 

NEMS EXPERIMENTS 

 

6.1 National Energy Modeling System 

 Using the value of the short-run price elasticity estimated in Chapter 3, this 

chapter examines the sensitivity of the long-run U.S. residential electricity demand to 

various short-run elasticity settings. To forecast consumers’ responsiveness in the long-

run, this study uses the National Energy Modeling System (NEMS), a computer-based, 

energy-economy modeling system of U.S. energy markets developed by the Energy 

Information Administration (EIA). It predicts the supplies, demands, and prices of 

various energy resources subject to macroeconomic factors, world energy market 

indicators, resource availability, technological advancement, and regional characteristics. 

It is typically used by the EIA as well as other parties in order to forecast the energy, 

economic, environmental, and security impacts on U.S. alternative energy policies and to 

conduct sensitivity analyses. The modeling system includes regional details based on the 

nine U.S. census divisions and is able to project regional variations in energy costs, 

policies, and resource availabilities. NEMS consists of four supply modules, four demand 

modules, two conversion modules, two exogenous modules, and one integrating module 

(see Figure 6.1). Each module of NEMS assumes various cases of economic growth in 

the U.S. and in the world energy market, particularly world oil prices. To embody the 

assumptions, it represents a scenario for each of the following cases: a reference case, 

high and low economic growth cases, and high and low world oil price cases. The 

reference case is set by assuming a business-as-usual-scenario (EIA 2003). 
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Figure 6.1 National Energy Modeling System (NEMS) 

(Source: National Energy Modeling System: An Overview of 2003, EIA 2003) 

 

Among the 13 different modules, this study focuses especially on the Residential 

Demand Module (RDM). The RDM is built based on the EIA’s Residential Energy 

Consumption Survey (RECS) collected in 2005. The RDM projects annual residential-

sector energy demand, appliance stocks, and market shares of the entire U.S. by nine 

census divisions, fuel type, and service based on accounting principles and residential 

consumer behaviors (EIA, 2007). In other words, the RDM provides national residential 

energy demands at the macro level. For that reason, it is regarded as the housing and 

equipment stock model. The residential energy demand of the entire U.S. is influenced by 

residential housing stock and energy consuming equipment, especially by building shell 

efficiency (EIA 2003): ―… in the residential building model, price-induced increase in 

building shell efficiency such as insulation, caulking, and thermally-efficient windows 

persist longer than other equipment purchase decisions because adjustments to the shell 

are assumed to retire only when the housing unit decays from the stock‖ (Wade, 2003). 
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 The RDM generates projections of residential energy demand through six 

sequential steps; these steps produce information on housing stocks, technology choices, 

appliance stocks, building shell integrity, distributed power generation, and energy 

consumption. First, the RDM generates a projection of housing stock, accounting for the 

retirement of existing housing stock and the addition of new construction. Second, the 

module estimates vintage equipment stock based on the number of housing demolitions 

and additions. Third, the market shares of equipment by service are estimated. Fourth, the 

weighted average efficiencies are calculated based on market shares. Finally, the RDM 

calculates energy consumption by fuel using the unit energy consumption data and the 

weighted efficiencies (EIA, 2007).  

 

Figure 6.2 Structure of the Residential Demand Module (RDM) 

(Source: Model Documentation Report: RDM of the NEMS, EIA 2007) 

 

The RDM applies various research findings from academic, industrial, and 

government studies to the model, beginning with implementing the short-run price 

Forecast Housing Stock 

Forecast Appliance Stock 

Choose Technology 

Choose Building Shell 

Choose Distributed Generation Equipment 

Compute Consumption 
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elasticity of demand by end-use service. EIA has applied the rebound effect
13

 to the 

RDM, because many empirical studies have revealed the effect of efficiency policies on 

energy consumption. The module assumes a 0.15 percent increase in consumption for a 1 

percent increase in efficiency. Furthermore, a discrete building shell module has been 

added in order to characterize several efficiency programs sponsored by the DOE and 

EPA, such as Energy Star and PATH. The choice of Energy Star and PATH homes is 

modeled on the basis of tradeoffs between increased construction costs and reduced 

energy costs. (EIA, 2003; Wade, 2003; EIA, 2007). 

With the growing appreciation of how energy consumption impacts environmental 

quality and national security, future consumer behavior could further enlarge the savings 

estimate as the demand for energy-efficient technologies grows. The inclusion of 

additional behavioral effects would provide a more precise estimate of efficiency 

potential.  

 

6.2 Distributed Short-run Elasticity Calculation Function  

 The source codes of the RDM are thoroughly reviewed to figure out how the 

short-run price elasticity parameter (alpha) is utilized in NEMS long-run demand 

forecast. The actual Fotran codes are shown in Appendix F. First of all the RDM define 

three distributional shares for the short-run elasticity effects of EF1, EF2, and EF3. They 

are used as lag weights that redistribute the impact of alpha into three consecutive years. 

Therefore, the sum of the three should be equal to 1. Then, the RDM defines a distributed 

short-run elasticity function, RSELAST as a function of EF1, EF2, and EF3, and alpha.  

 

                                                 

 

 
13

 The rebound effect in energy consumption is discussed in the section of behavioral failure in Chapter 4 

and in the section of the effectiveness of energy efficiency programs for residential buildings in Chapter 5. 
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 To link EF1, EF2, and EF3 to RSELAST, the RDM defines three intermediate 

parameters of FAC1, FAC2, and FAC3 which are computed like as follows: 

 

If current year  RECS year+1, 

      
                         

                      
 
           

 

If current year  RECS year+2, 

      
                           

                      
 
           

 

If current year  RECS year+3, 

      
                           

                      
 
           

 

[Equation 6.1] 

Then, RSELAST is ultimately defined as:  

 

RSELAST =  FAC1*FAC2*FAC3       

                                             [Equation 6.2] 

 

The RSELAST is used to adjust the computed annual energy consumption by fuel and 

end use from the sequential calculations listed in Figure 6.2. 

 On balance, the internal source codes indicate that the NEMS applies a lagged 

structure of demand and distribute of the impact of short-run consumer’s responsiveness 

into multiple years. This means that when price shocks occurs, consumer gradually adjust 

to the price changes for three years rather than responding to them immediately in 

NEMS. 
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6.3 Technology Choice 

 The production function theory in economics can explains how market forces and 

technological innovation affect consumers’ choice of energy efficiency. This framework 

views capital and energy as two inputs for producing energy services. Along an isoquant 

curve depicting a given level of indifferent energy services, the cost-minimizing level of 

energy efficiency (capital) and energy use are found at the point of tangency where the 

marginal increase in capital cost with respect to energy reduction is equal to their relative 

price (in present-value terms) (Figure 6.3). The relative price depends on the capital cost 

of efficiency improvements, the discount rate, expected energy prices, equipment 

utilization, and decision-time horizon. This framework is applicable not only to the 

household but also to the broad sectoral or national level where energy and capital are 

used to produce energy services. 

 Figure 6.3 and Figure 6.4 show two different ways for market forces to drive 

greater energy efficiency within this production function framework. First, households 

could move along the energy services isoquant by substituting capital for energy input in 

response to a change in relative price. Figure 6.3 describes a situation when the relative 

price between capital and energy changes from P0 to P1. Second, technological change 

(innovation) that shifts the isoquant in a way favoring greater energy efficiency could 

change the production possibilities available to households. Figure 6.4 describes a 

situation that technological innovation shifts the isoquant curve itself and make it 

possible for consumers to produce the same level of energy services with a smaller level 

of energy input. In contrast, energy conservation not driven by energy efficiency 

improvement would be associated with a lower level of energy-service production. 
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Figure 6.3 Substitution between Energy Use and Capital Investment  

(Source: Gillingham et al., 2009)  

 

Figure 6.4 Technological innovation  

(Source: Gillingham, 2009)  

 

Gillingham et al. (2009) argue that market failures can be explained within this 

framework as a divergence of the relative prices used for private decisions from the 

economically efficient prices. Both unpriced environmental externalities and missing 

information about the energy intensity of product use result in a lower relative price of 
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energy. The underestimated price of energy leads to choices of inefficiently low energy 

efficiency (e.g. P0 compared with P1 in figure 6.4). 

 In the RDM in NEMS, consumers are allowed to choose their technology level 

among the various levels of cost and efficiency for a given class of equipment. Electric 

heat pump is an example of an equipment class for heating. Equipment type refers to 

different efficiency ratings in a class of equipment (e.g., high- vs. low-efficiency electric 

heat pumps). The RDM employs a time-dependent function for computing the installed 

capital cost of equipment in new construction and the retail replacement cost of 

equipment in existing housing. Energy efficiency (technology) choices fundamentally 

involve investment decisions with consideration of trade-offs between higher initial 

capital costs in the present and uncertain lower operating costs in the future. The decision 

of whether to invest in energy-efficient equipment requires comparing the initial capital 

cost to the expected cumulative future savings. From an economic perspective, rational 

consumers assess the future savings considering future energy prices, operating costs 

expected from the efficient equipment, intensity of the use of the product, and equipment 

lifetime. They compare these expected future cash flows against the initial cost, 

discounting the future cash flows to present values. A privately optimal decision entails 

choosing the level of energy efficiency to minimize the present value of private costs, 

whereas economic efficiency at a societal level would require minimizing social costs 

(Gillingham et al., 2009).   

 Energy market prices influence consumer decisions regarding how much energy 

to consume and whether to invest in energy-efficient equipment.  A persistent energy 

price increase affects energy efficiency adoption. Many previous studies analyzed which 

factors influence technology adoption and found that higher energy prices are associated 

with significantly greater adoption of energy-efficient equipment (Anderson and Newell, 

2004; Hassett and Metcalf, 1995; Jaffe et al., 1995). The concept of ―price induced 

technology change‖ is included in the formulation of capital costs of the RDM in NEMS 
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to reflect this effect. This concept allows future technologies to be diffused into the 

marketplace faster if fuel prices increase markedly and remain high over a multiple-year 

period. The Technology Choice Submodule (TCS) uses a log-linear function to adjust 

technology market shares. The module adjusts the current market shares based on 

consumer behavior as a function of capital costs, operating costs, and efficiency.  

 First, the TCS compares the average fuel price for a given fuel (electricity, in this 

study) over a three-year period to the price observed in the base year: 

 

              
                                     

            
       [Equation 6.3] 

Where,   

              

                                                                          

(y = current year, f = fuel type) 

 

Shifts from 0 to 10 years are allowed in the current model formulations. Technological 

shifts in a relatively short term are limited by the algorithm in order to ensure that over-

shifting does not occur. In other words, future technologies cannot become available 

before a persistent price change is projected to occur for at least three years. The 

formulation allows technologies potentially to shift toward earlier availability, and once 

shifted, they never shift back. This shift is represented as: 

            
                   

    
            [Equation 6.4] 

 

subject to the constraints listed in Appendix C. Operational and capital costs of 

technology data presented in equations [Equation C.1] and  [Equation C.2] in the 

appendix are adjusted according to the results obtained in equation [Equation 6.3].  
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For instance, when y = 2007and f = electricity, 

If  PRICEDELTA2007,electricity = 1, there is no technological shift 

If  PRICEDELTA2007,electricity = 2, the most advanced technologies in 10 

years from 2007 come forward to the current year. 

 

The TCS assumes that if a ―persistent‖ doubling of electricity prices exists, the most 

advanced equipment available in 10 years from today will be selected.  

The TCS module also includes the option to use life-cycle costing to adjust market shares. 

The life cycle cost calculation is: 

                                           
                   

     
    [Equation 

6.5] 

 

where, 

 

               is the life cycle cost of an equipment type by forecast year, housing type, 

and Census Division, and vintage;           is the installed capital cost of an 

equipment type based on EQCOST with RTEQCOST1es;         is the number of 

years into the future used to compute the present value of future operating cost 

expenditures, presently set to seven years; and DISRT is the discount rate applied to 

compute the present value of future operating costs, presently at 20 percent. 

 

6.4 Long-run Demand Forecast 

 The original NEMS employs price elasticities of demand that result in limited 

demand sensitivity for some technologies. It employs a price elasticity of 0 for clothes 

washers, dishwashers, stoves, refrigerators, and freezers. The price elasticities of the 
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remaining residential technologies, such as TVs and computers, are set at -0.15. This set 

of modeling assumptions may accurately reflect past consumer behavior from the 1970s 

to 1990s, but it might not accurately reflect consumer behavior in the present or future 

when electricity prices should continue to rise in real terms (Brown et al., 2010). To 

figure out today’s consumer behavior, this study estimated the short-run price elasticity 

of residential electricity demand with the EIA’s RECS survey data collected in 2005. The 

econometric analysis found that the short-run price elasticity of residential electricity 

demand is -0.66.  

Of course, it would be somewhat hasty to argue and conclude that today’s 

consumers are almost 5 times more responsive to price changes than past consumers. 

Since the variables for short-run price elasticities of the original NEMS are set based on 

the meta-analysis conducted by Dahl in the 1990s, differences in methodology and data 

could explain part of the gap. The meta-analysis incorporates research results from 

previous studies conducted from the late 1970s to early 1990s, which applied a variety of 

methods to estimate elasticity values. On the other hand, the estimated short-run elasticity 

in this study is derived from the 2005 Residential Energy Consumption Survey and 

employs a specific log linear function and the OLS estimation technique. However, even 

if some portion of the difference in the short-run elasticity values is attributed to 

differences in method and data, it seems that today’s consumers react to changes in price 

and policy more sensitively than those in the past. Public appeals and education through 

mass media might have led consumers to change their behaviors in energy consumption. 

This section analyzes how changes in short-run behavioral characteristics affect 

changes in long-run electricity demand.  

 

Experiments with GT-NEMS and long-run price elasticity calculation 

 The distinction between the short-run and long-run elasticities is critical in 

understanding energy markets. Responsiveness of energy demand to price change could 
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vary depending on the time span of the analysis. In economics theory, the short run is 

defined as a period of time in which the quantity of at least one input is fixed and the 

quantities of the other inputs can be varied. The long run is a period of time in which the 

quantities of all inputs can be varied. Thus, there is no fixed period of time to separate the 

short run from the long run. By responding to a price movement, the short-run elasticity 

measures immediate consumer response, such as changing energy-consuming habits, and 

the long-run elasticity measures total response, including technology shifts such as 

appliance changes.  

To assess the potential impacts of future electricity price increases on demand, this 

study employs the National Energy Modeling System (NEMS). The study named the 

modified model GT-NEMS in order to emphasize that energy projections from this model 

could be different from projections derived from the original NEMS. 

EIA and other research parties have conducted various experiments with the 

original NEMS simulation. Hadley and his colleagues analyzed the contribution of five 

potential building technologies (solid-state lighting, advanced geothermal, integrated 

energy equipment, efficient operations technologies, and smart roofs) to estimate energy 

savings and building efficiency improvement (Hadley, MacDonald, et al. 2004). Wade 

(2003) conducted several experiments on price responsiveness with the residential and 

commercial buildings sector models in the AEO2003-NEMS. He derived own-price and 

cross-price elasticities with both short-run and long-run models. He doubled the current 

price level and entered the artificially created price as a price shock in the simulation 

model and then observed how the electricity and natural gas demand finally reached a 

new point of equilibrium. He manipulated two different situations: temporary and 

permanent shock situations. He also created a sudden shock lasting one year and a 

permanent price inflation lasting multiple years and then examined the differences in 

their price adjustment behaviors. With the initial demand level and the new equilibrium 
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level, he calculated the price elasticities of electricity and natural gas demand, 

respectively. 

Following the methodology used by Wade (2003), this study conducts a quasi-

experimental analysis to estimate the long-run price elasticity of energy demand in the 

residential sector with the NEMS developed for publishing the Annual Energy Outlook 

2009 (AEO2009). The default values of the short-run price elasticities of heating and 

cooling (alpha = -0.15) are replaced with the new elasticity value (-0.66) estimated by 

this study. The elasticity values derived from the econometric analysis with the 2005 

RECS survey are plugged into the NEMS model, and then the difference in output 

between the two is observed. The advantage of using the elasticity value derived directly 

from the RECS survey is that the Residential Demand Module (RDM) of the NEMS is 

modeled using the same survey data to estimate technology choices and annual appliance 

stocks. To estimate responses to energy price changes, a series of alternative simulations 

is made based on adjustments to the energy price paths from the AEO 2009. The 

adjustments model permanent price inflations by 10%, 30%, and 50% beginning in 2010 

and continuing through the end of the model run, 2030 (Figure 6.5).  

 

Figure 6.5 Permanent Price Inflations by 10%, 30%, and 50% 
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Figure 6.6 shows that the initial reduction in consumption rapidly widens the gap 

between a reference and modified scenarios by 2013. It is because the internal source 

codes of NEMS applies a lagged structure of demand and distribute of the impact of 

short-run consumer’s responsiveness, but it just considers only the three years from the 

year when the shock occurs. Then, the consumption projections are stabilized until 2030. 

As predicted, scenarios having the more elastic short-run demand function (alpha = -0.66) 

respond to price inflations more sensitively than those with default elasticity values 

(alpha = -0.15) of the original NEMS. According to the consumption projections under 

the various price inflation and price elasticity scenarios, the scenario with a 30% price 

increase and alpha = -0.66 shows a greater consumption reduction than that with a 50% 

price increase and alpha = -0.15. This consequence means that pricing programs designed 

to achieve a specific level of consumption reduction during specified periods could be 

achieved at around half of the price increase under the scenario of more elastic demand. 

Also, the result suggests that benefits from price policies could be calculated differently 

under different elasticity assumptions. When consumers become more elastic to price 

changes, price policies can be more effectively implemented, giving consumers more 

benefits. The potential reductions are forecasted based on the assumption that all 

consumers are rational decision makers.  
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Figure 6.6 Electricity Consumption Projections in the Residential Sector 

 

In addition, the long-run price elasticities of the original NEMS and modified 

NEMS (GT-NEMS) are calculated based on the outputs of the NEMS experiments. As 

McClung (1988) points out that elasticity values from micro data are estimated to be 

smaller than those derived from macro data, this study similarly finds that long-run 

demand functions are more elastic than short-run demand functions. The long-run 

elasticity of electricity demand in the residential sector is found to be -2.44 ~ -2.99 under 

the scenario with alpha = -0.66 (Table 6.1). Because electricity competes with natural gas 

as fuel for heating, when electricity price goes up, the natural gas demand increases 

accordingly (Figure 6.7). With the increase in electricity price and the change in natural 
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gas, this study estimated cross-price elasticities: 0.15 ~ 0.28 (with alpha = - 0.15) and 

0.15 ~ 0.34 (with alpha = -0.66). 

 

Table 6.1 Long-run Price Elasticities* 

 

 Original NEMS  

(with SR-elasticity of -0.15) 

GT-NEMS 

(with more elastic SR-

elasticity of -0.66) 

Own-Price Elasticities -1.67 ~ -0.81 -2.44 ~ -2.99 

Cross-Price 

Elasticities** 0.15 ~ 0.28 0.15 ~ 0.34 
* Elasticities are measured using the logarithmic percentage change formula give by: elasticity = 

ln(q1/q0)/ln(p1/p0), where p0 and q0 are base prices and quantities and p1 and q1 represent an alternate price-

quantity combination. 

**Cross-price elasticities show changes in demand of competing goods (in this case, natural gas 

consumption) when the electricity prices change. 

   

 

Figure 6.7 Natural Gas Consumption Projections in the Residential Sector 
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Comparison with Other Studies 

 The absolute values of long-run price elasticities derived from the GT-NEMS are 

greater than those of the previous studies summarized in Table 6.2. Wade (2003) 

estimated the long-run price elasticities with the AEO2003 and AEO99 and found that 

the own-price elasticity was -0.49 with the AEO2003 and -0.31 with the AEO99. The 

cross-price elasticity estimated from AEO2003 was 0.13, and that from AEO99 was 0.08. 

Both of AEO2003 and AEO2009 assumed short-run elasticities at -0.15 for their energy 

consumption projections. This analysis finds that households respond to price changes 

more sensitively compared to those in the 1970s and the 1980s. 

 

Table 6.2 Elasticities from other studies 

Author Data Type Model Type Long Run Elasticity 

Price Income 

Halvorsen (1975) State level 

Aggregate Data 

Static -1.15 0.51 

Houthakker et al. 

(1980) 
-1.18 1.39 

Houthakker (1980) Dynamic -1.42 1.78 

McClung (1988) Micro Data 

(RECS) 

Static -0.42 0.15 

 

 

Impacts of SR-elasticity assumption on Electricity Market Forecast 

 This section provides an empirical analysis showing how price and consumption 

would change under different assumptions of price elasticity of demand. A set of NEMS 

experiments are conducted to show how the difference in short-run price elasticity 

influences the electricity prices and consumption levels in the future. A Carbon Cap and 

Trade system is commonly expected to increase electricity prices. The electricity price 

increase is observed in a preliminary NEMS forecast shown in Chapter 5. Figure 6.8 

indicates that the magnitude of the price escalation would be estimated larger with an 

assumption of less elastic short-run demand (alpha = -0.15), at the same time, the 
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magnitude of reduction in electricity use would be smaller. While a model with alpha = -

0.15 forecasted that the policy would increase the residential electricity price by 17% in 

2030, another model with alpha = -0.66 predicts that the price would go up by only 12% 

in the same year. The consumption is anticipated to shrink by 4% with alpha = -0.15, 

whereas the consumption is forecasted to decrease by 9% with alpha = -0.66. If 

consumers are assumed to be more sensitive to price changes, the change in consumption 

caused by a policy would be estimated relatively larger. Thus, the price escalation would 

be estimated relatively smaller. The initial market equilibrium points are altered as a 

result of the higher elasticity of demand.  

 

  

Figure 6.8 Price and Consumption Projections under the Carbon Tax Scenario 

(Residential Electricity) 

  

 The impact of the RPS policy on price and consumption is anticipated be smaller 

than that of the CCT, but the directional change was the same (Figure 6.9).  
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Figure 6.9 Price and Consumption Projections under the RES  

(Residential Electricity) 

 

 

0

5

10

15

20

25

30

35

40

1
9

9
5

1
9

9
9

2
0

0
3

2
0

0
7

2
0

1
1

2
0

1
5

2
0

1
9

2
0

2
3

2
0

2
7

R
e

al
 $

/M
ill

io
n

 B
tu

BAU

RPS (alpha = -0.15)

RPS (alpha = -0.66)

0

1

2

3

4

5

6

1
9

9
5

1
9

9
9

2
0

0
3

2
0

0
7

2
0

1
1

2
0

1
5

2
0

1
9

2
0

2
3

2
0

2
7

Q
u

ad
ri

lli
o

n
 B

tu

BAU

RPS (alpha = -0.15)

RPS (alpha = -0.66)



 99 

CHAPTER 7 

POLICY IMPLICATIONS AND CONCLUSIONS 

 

7.1 Policy Implications 

Impacts of SR-elasticity assumption on Electricity Market Forecast 

 Based on the price and demand changes, it estimates how much social welfare 

gain the U.S. might expect if households are more responsive to changes in price and 

policy. Consumer surplus is defined as the amount by which consumers’ willingness to 

pay for a commodity exceeds the sum they actually have to pay. Changes in social 

welfare expected from more elastic demand could be estimated with the concept of 

consumer surplus. Shown in Figure 7.1, consumer surplus is measured by the area under 

the demand curve and above a horizontal line at the market price. Thus, when price is P0, 

consumer surplus is triangle abc (Figure 7.1). When the price of electricity increases to 

P1 because of an energy policy such as carbon tax, consumer surplus is the area under the 

demand curve and above a horizontal price line at the increasing price, but because the 

price is now P1, the relevant area is triangle ade. Consumer surplus has decreased by the 

difference between areas ecg and ebd (i.e., area dbce). Policy-makers can estimate the 

shape of the demand curve, and the policy’s benefits can be measured.  
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Figure 7.1 Measuring the Change in Consumer Surplus 

 

The welfare gain or loss from price changes varies with the absolute value of the 

slope of the demand curve. In the case of a price increase, the less steep the demand 

curve (i.e., the more price-responsive the demand), the less steep the demand curve (i.e., 

the more price-responsive the demand), the less is the welfare loss. When the price of a 

commodity increases due to a tax policy, consumers who are more sensitive to price 

changes will substitute the good with another or will reduce the consumption level so as 

to escape the tax burden. If consumers are assumed to be more elastic to the price 

changes than the BAU case, the magnitude of social welfare changes will be estimated 

greater.  

Economists argue that a flexible demand will help balance fluctuations in supply, 

improve market efficiency, reduce price volatility, and create a welfare gain. Suppose 

that the original demand curve is      (Figure 7.2). With a price increase from P0 to P1, 

the amount of loss in consumer surplus is area fghi. On the other hand, with a more 

elastic demand curve,       , the social welfare loss is area fkhi. The gap between the two 

areas (= area kgh) is the welfare gain we can expect from the more elastic demand curve. 
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Figure 7.2 Social Welfare Change among Different Elasticities 

 

Suppose that the residential electricity price increases by 10% (compared to a BAU 

scenario) in 2030 because of an energy policy, such as a new carbon tax. The market 

equilibrium (price, quantity) under the BAU scenario of AEO 2009 with no carbon tax 

policy is $34.5 per million Btu and 5.7 quadrillion Btu. When the price increases by 10% 

from $34.5 to $38.0 per million Btu, the optimal quantity will decrease from 5.7 to 4.8 

quadrillion Btu. The social welfare loss caused by the price increase will be $18.4 billion 

(equivalent to area fghi). 

If the demand is more elastic (alpha = -0.66) than the reference case (alpha = -0.15), 

the social welfare loss will be smaller than the reference case. The loss would be $ 17.5 

billion (equivalent to area fkhi). Thus, the difference in welfare estimate is $900 million 

(=$18.4 billion - $17.5 billion) a year (Figure 7.3). 
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Figure 7.3 Social Welfare Calculations with Actual Numbers from AEO2009 

 

This study calculated changes in quantity of residential electricity demand, welfare 

losses due to electricity price increases. Table 7.1 shows that the assumption of more 

elastic demand (alpha= -0.66) leads to a greater reduction in electricity consumption and 

a smaller welfare loss than that of less elastic demand (alpha=-0.15). The greater the price 

inflation, the larger the difference in social welfare estimate. When the retail electricity 

price increases by 10% the difference in social welfare estimation is $ 0.9 billion. With a 

50% increase in price, the gap reaches $9.6 billion. In addition to the impact on consumer 

surplus, the difference in elasticity affects the impact on the change in quantity. 
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Table 7.1 Social Welfare Calculations in 2030 
Price in 

2030 

($/million 

Btu) 

% 

increase 

in price 

Reduction 

in quantity 

(alpha = -

0.15) 

Reduction 

in quantity 

(alpha = -

0.66) 

Difference 

in quantity 

reduction 

Welfare 

loss due to 

price 

increase 

under the 

less elastic 

demand 

(alpha = -

0.15) 

Welfare 

loss due to 

price 

increase 

under the 

more 

elastic 

demand 

(alpha = -

0.66) 

Difference 

in social 

welfare 

estimation 

34.5 

(BAU) 

0% 0% 0% 0% $0 $0 $0 

38.0 10% 16% 25% 9% $18.4 

billion 

$ 17.5 

billion 

$0.9 billion 

44.9 30% 36% 48% 12% $48.4 

billion 

$42.6 

billion 

$5.8 billion 

51.8 50% 52% 62% 10% $72.7 

billion 

$63.1 

billion 

$9.6 billion 

 

Overall Policy Implications  

Policy is basically designed and intended to motivate members of a society to change 

their behavior and achieve a goal collectively. Thus, setting assumptions about human 

behavior need to be treated most carefully in policy modeling. This study probed the 

responsiveness of residential electricity demand to price changes from various angles. 

Behavioral characteristics responding to the electricity market are affected by various 

factors such as income, housing, climate, appliance holdings, and even psychological 

factors. A series of the analyses presented in this study suggests important policy 

implications to energy policy makers.  

First, federal and state governments need to periodically understand how consumers 

respond to price signals when they determine their electricity consumption levels. 

Governments might benefit from supporting academic studies on price elasticities. The 

comprehensive understanding of the price elasticities can assist policy analysts and 

makers to forecast future electricity demand, which can be used to set policy goals for 

energy conservation programs and demand control programs. Employing a conventional 

econometric approach, this study estimated the price elasticity of residential electricity 
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demand with 2005 RECS data, which is collected by the DOE and is open to the public. 

Employing a conventional econometric model and a discrete/continuous choice model, 

this exercise revealed that the price elasticity derived from the current cross-sectional 

gives a range of the price elasticity of demand of - 0.81 ~ - 0.66, which indicates pretty 

elastic demand
14

. The model used in this study also showed that income, climate, number 

of rooms, price of competing goods, and appliance holdings significantly affect the price 

elasticity of demand. The estimate could vary depending on the estimation methods and 

techniques. Periodical meta-analyses supported by government agencies would provide 

very useful information for those creating government policies and for those conducting 

academic studies as well. This study introduced two representative meta-analyses 

conducted in the 1990s and 2000s. The meta analyses of the elasticity estimates provide 

guidelines for determining what the important variables are for estimating elasticity and 

how the estimates might be adjusted when they are derived with unfavorable data. For 

scientific policy analyses, the application of the elasticity to policy evaluation is as 

important as the accurate estimation of elasticity. 

Second, the price elasticity should be seriously considered in the ex ante evaluation 

of electricity demand control programs and other energy policies. In particular, the price 

elasticity of demand is considered as an important factor in the ex ante evaluation of 

alternatives of the time of use rate and smart meters. Demand forecasting is crucial to the 

ex ante evaluation of energy conservation programs. The ex ante evaluation of a policy is 

generally a necessary process in policy design prior to its implementation. In this process, 

policy analysts review all the alternatives that stakeholders and policy makers reasonably 

care about. Projecting the outcome of each alternative often requires forecasting not only 

the directional change but also the magnitude. Predicting a directional change for a policy 

                                                 

 

 
14

 This statement is justified by the current meta-analysis of price elasticities of residential electricity 

demand conducted by Espey and Espey (2004). 
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is relatively simple. However, forecasting the magnitude is regarded as the most difficult 

step in policy analysis (Bardach, 2000). The Energy Information Administration (EIA) of 

the DOE releases the Annual Energy Outlook (AEO) to provide energy market forecasts 

under the energy policies effective every year. The National Energy Modeling System 

(NEMS) has been developed by the EIA to make it possible to estimate the impact of a 

policy on energy supply, demand, and price. Many policy studies have been conducted 

with NEMS, and their quantitatively presented outcomes actually have been used in 

Congress. The forecasts depend on thousands of input variables used in the modeling 

system, such as technological characteristics and macroeconomic indicators. The 

previous section showed how different settings on the short-run elasticity affect not only 

the demand forecasts but also social welfare estimates. Under a Carbon Tax scenario that 

raises the electricity price by 10%, the social welfare loss is estimated at $17.5 billion 

under an elastic demand function (alpha = -0.66) and at $18.4 billion under a reference 

(alpha = -0.15). In addition, a further 9% reduction in consumption could be expected 

under the elastic demand. The goals of the energy efficiency policy and climate change 

policy are to conserve energy and reduce greenhouse gas emissions. The goal of a carbon 

tax or cap and trade is generally set as a percentage below 1990 levels in certain years. 

Brown and her colleagues (2009) suggested eight criteria for evaluating energy policy 

options such as 1) potential benefits, 2) cost-effectiveness, 3) time to savings, 4) 

applicability, 5) additionality, 6) administrative practicability, 7) non-R&D, and 8) 

federal role. The common measures for judgment of the effectiveness of a policy are 

benefit-to-cost ratios, social welfare estimates, and the absolute amount of reduction of 

target pollutants and energy savings. The previous section showed how the policy 

outcomes could be predicted differently depending on the assumption of human behavior. 

If people are assumed to be more elastic to price signals, the time it takes for a policy to 

accomplish its goal could be shorter. 
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The variation among elasticity estimates is not a problem when policy makers and 

researchers apply them to policy designs and analyses, if they correctly understand what 

causes the variation and how the variation affects price and demand forecasts as well. 

This study discussed how the different assumptions of price elasticity influence the 

projections of price and consumption and the estimates of social welfare change. When 

policy makers and governors design energy efficiency policies aimed at saving energy, 

they can use relatively high elasticity values for their ex ante evaluation if they assume 

that more informational programs would be implemented to educate consumers to be 

sensitive to price signals and tips for improving energy efficiency levels.  

Given the variety of energy sources used to generate electricity, the continuous 

expansion of urban areas in the United States, and the uncertainty of national and 

international energy markets, understanding consumers’ responsiveness to electricity 

price changes is necessary for municipalities, utility companies, and policy makers to 

predict future energy needs and design pricing and taxation policies (Espey and Espey, 

2004). In addition to designing monetary incentives relevant to electricity prices, 

decisions about new sources of electric power, the construction of new power plants, or 

the creation of new interstate transmission lines also requires an accurate understanding 

of the price elasticity of demand. Even though the importance of understanding price 

elasticities in policy design and analysis is widely recognized among policy analysts, it is 

still true that there are confusions and often contradictory results of residential elasticity 

estimates. At present, utilities and utility commissions tend to use an approximate value 

of short-run elasticity in the range of -0.4 to -0.2; the EIA uses -0.15 for analyzing the 

residential electricity market; this study estimated it at -0.66; the median value of Espey 

and Espey (2004)’s study is -0.35. 

On balance, this study shows that how the residential electricity market would be 

affected by policies depends highly on the price elasticity of demand. The relationships 

among price, consumption, and policy are interconnected, and the price elasticity of 
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demand is an important factor characterizing the relationship. As noted in the previous 

section about social welfare impact, the duration of a policy can be adjusted depending 

on the price elasticity assumption. 

 

7.2 Conclusions 

 In order to understand consumers’ behavioral responsiveness to changes in price 

and policy at both the micro and macro levels over the short and long runs, this study 

employed a hybrid method of conventional econometric analyses and energy market 

simulations with the National Energy Modeling system (NEMS). The econometric 

analysis with individual household survey data contributed to setting new assumptions on 

short-run demand functions of residential households in the NEMS. Prior to the NEMS 

experiments with the adjustments of short-run price elasticities and the price shocks, this 

study examined how energy policies would have a potentially large impact on electricity 

prices in the future. When climate policies are implemented nationally, electricity prices 

are estimated to increase in 2030 by 17% with a carbon cap and trade initiatives and 4% 

with Renewable Electricity Standards. Once the federal government creates a scarce new 

commodity such as cleanliness of air, some portion of the costs for generating clean 

electricity would unavoidably be passed on to retail electricity prices. The increased 

prices could be considered as positive signals for conserving energy and reducing 

greenhouse gas emissions. Those price increases may be essential to the success of a cap-

and-trade program. However, the price signals could be used effectively only when the 

public responds to the signals sensitively. If electricity demand is inelastic to changes in 

price and policy, it would be inevitable that some portion of the tax burden be passed on 

to consumers. 

 Employing the conventional econometric model and the discrete/continuous 

choice model, this study estimated the price elasticity of residential electricity demand 
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with the most recent Residential Energy Consumption Survey data collected in 2005. The 

short-run elasticity of demand was found to be in the range of - 0.81 ~ - 0.66, which is 

greater than the current NEMS assumption of -0.15 in absolute value. The 2005 RECS 

data detailed information about American households’ energy consumption. This rich 

source of micro-level data complements the existing econometric analysis based on time 

series data. Time series studies lack information concerning appliance stock, building 

characteristics, differences in climates, and demographic characteristics and are usually 

aggregates over the entire nation’s or region’s data. The use of this cross-sectional data, 

however, allows researchers to consider the interventions across the households; thus, the 

cross-sectional data was used for this analysis. The value of - 0.81 was estimated by the 

discrete/continuous choice model and interpreted as a long-run price elasticity of demand. 

The difference in short-run price elasticity would lead to a difference in social welfare 

estimates of energy policies and energy market forecasts. This study found that the 

estimate of social welfare loss caused by electricity price increases would be 

overestimated if an energy market model assumes elasticity less than the actual 

responsiveness. The original NEMS employs a short-run price elasticity of -0.15 for 

heating and cooling equipment, dryers, standard lighting, PCs, and TVs. The price 

elasticities of the remaining residential technologies are set at zero. These modeling 

assumptions may accurately reflect past consumers’ behavioral characteristics in periods 

of energy price volatility, but they might not accurately reflect those in the present or 

future when prices continue to rise in real terms (Brown et al., 2010).  On the other hand, 

in the long run, higher energy prices are associated with significantly greater adoption of 

energy-efficient equipment (Anderson and Newell, 2004; Hassett and Metcalf, 1995; 

Jaffe et al., 1995). The increased adoption of energy-efficient technologies would result 

in a more elastic demand in the long run, as this study showed in Chapter 6. On balance, 

Supposing that 1) the short-run elasticity of -0.66 reflects the actual consumers’ 

responsiveness to price changes in the present and future and 2) retail electricity prices 
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permanently increase by 10%, the welfare loss caused by the price increases would be 

estimated 0.9 billion dollars less than the current estimates with the elasticity of -0.15.  

 In addition to assessing potential savings expected from consumers’ behavioral 

changes with the concept of price elasticity of demand in neoclassical economic theory, 

this study conducted a broader review of theories about behavioral features of energy 

consumers, and discussed how existing information programs could be improved. To 

motivate households to change their energy-use habits in the short run, well-designed 

information and training programs reflecting their needs and feedback are required. The 

effect of information on consumers’ choices depends on how the information is 

transferred. Thus, government agencies should carefully consider behavioral factors in 

the disclosures they control (Allcott Mullainathan, 2010). Developing psychological 

nudges to make consumers move toward an energy-efficient lifestyle also could make 

people more sensitive to price changes and eventually conserve more energy in the short 

run. Some psychological cues typically cost very little as compared with other financial 

incentives. When combined with consumption-monitoring systems such as smart meters, 

these changes could be expedited. 

  To enhance the long-run responses, on the other hand, governments can increase 

the energy efficiency basically through some monetary incentives for installing new 

technologies, such as tax credits and subsidies. In addition, disclosing useful information 

about the performance of new equipment could help consumers to adopt new 

technologies so that they actively respond to price changes. The informational programs 

for energy-efficient technologies could lower the gap between the socially optimal level 

of efficiency and actual observed efficiency. Governments can also utilize positive 

externalities associated with learning by using for accelerating the adoption of new and 

efficient technologies. The experience and knowledge absorbed to consumers motivate 

only themselves to buy additional energy-efficient equipment, but also non-participants 
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to join the energy efficiency program. The more the equipment resale market is activated, 

the more consumers would be willing to change their stock of appliances.  

On balance, this study suggests that rigorous empirical studies on consumers’ 

behavioral attributes are prerequisite for the effective program design. Governments can 

establish potentially high-impact behavioral research programs as part of their broader 

energy innovation programs to analyze consumers’ behavior scientifically and 

continuously. The research programs should include careful testing protocols of their 

impacts. Additionally, behavioral interventions should have clearly measurable outcomes 

in order to be evaluated as effective policy options. 
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APPENDIX A 

SUMMARY OF RANGES OF RESIDENTIAL ELASTICITIES FROM 

DAHL (1993) 

 

Survey 

Source 

Fuel 

 

Data 

Type 

 

Model 

Class 

Short Run 

 

Intermediate 

Run 

Long Run 

 

Taylor (1977) 
Electricity Grouped Grouped -0.07 to -0.61 -0.34 to -1.00 -0.81 to -1.66 

Natural Gas Aggregate  0.00 to -0.16  0.00 to -3.00 

Bohi (1981) 

 

 

Electricity Aggregate Static -0.08 to -0.45  -0.48 to -1.53 

Electricity Aggregate Dynamic -0.03 to -0.49  -0.44 to -1.89 

Electricity Aggregate Structural -0.16  0.00 to -1.28 

Electricity Aggregate Other -0.18 to -0.54  -0.72 to -2.10 

Electricity Household Dynamic -0.16  -0.45 

Electricity Household Static -0.14  -0.7 

Electricity Household Structural -0.25  -0.66 

Natural Gas Aggregate Static   -1.54 to -2.42 

Natural Gas Aggregate Dynamic -0.15 to -0.50  -0.48 to -1.02 

Natural Gas Aggregate Structural -0.3  -2 

Natural Gas Household Dynamic -0.28  -0.37 

Natural Gas Household Static   -0.17 to -0.45 

Bohi  

& 

Zimmerman 

(1984) 

 

 

 

 

Electricity Aggregate Static  0.00 to -1.57 -0.18 to -0.52 

Electricity Aggregate Dynamic 0.00 to -0.35  -0.26 to -2.50 

Electricity Household Structural -0.20 to -0.76   

Electricity Household Static  -0.55 to -0.71 -0.05 to -0.71 

Electricity Household Structural +0.04 to -0.67  -1.40 to -1.51 

Natural Gas Aggregate Dynamic -0.23 to -0.35  -2.79 to -3.44 

Natural Gas Aggregate Dynamic -0.03 to -0.05  -0.26 to -0.33 

Natural Gas Household Static   -0.22 to -0.60 

Dahl (1993) 

Prior Surveys 
Fuel Oil Grouped Grouped 0.00 to -0.70  0.00 to -1.50 

Dahl (1993) 

New Studies 

 

 

 

 

Electricity Aggregate Grouped +0.57 to -0.80 -0.11 to -1.11 +0.77 to -2.20 

Electricity Household Grouped -0.02 to -0.97 -0.05 to -0.97 -0.38 to -1.40 

Natural Gas Aggregate Grouped +0.02 to -0.35 1.86 to -2.41 1.56 to -3.44 

Natural Gas Household Grouped -0.63 to -0.88 -0.08 to -1.80 -1.09 to -1.49 

Fuel Oil Aggregate Grouped -0.10 to -0.59 -0.77 to -1.22  

Fuel Oil Household Grouped -0.18 to -0.19 -1.09 to -1.56 -0.62 to -0.67 

Source: C. Dahl, A Survey of Energy Demand Elasticities in Support of the Development of the 

NEMS, Contract No. DE-AP01-93EI23499 (Washington, DC, October 1933) 
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APPENDIX B 

DESCRIPTIVE STATISTICS OF THE SAMPLE OF ESPEY AND 

ESPEY (2004)* 

Variable Short-run Price Long-run Price Short-run Income Long-run Income 

Elasticity -0.35 -0.85 0.28 0.97 

Demand Specification     

  Reduced form 0.77 0.85 0.74 0.86 

  Structural 0.23 0.16 0.26 0.14 

  Static 0.60 0.56 0.55 0.56 

  Dynamic 0.40 - 0.45 0.44 

  Lag dependent variable - 0.34 - - 

  Other lag - 0.10 - - 

  Stock included 0.61 0.13 0.55 0.12 

  Substitute included 0.54 0.46 0.68 0.44 

  Temperature included - - 0.76 - 

  Household Size - - - 0.17 

  Double log model 0.53 0.92 0.58 0.92 

  Non-double log model 0.47 0.08 0.42 0.08 

Data characteristics     

  Household level 0.49 - - - 

  Time series 0.11 0.56 0.14 0.56 

  Cross sectional 0.30 0.11 0.21 0.14 

  Cross sectional time 

series 

0.59 0.33 0.65 0.30 

  Monthly 0.41 0.08 0.44 0.06 

  Annual 0.59 0.92 0.56 0.94 

  Average (price) 0.36 0.70 0.39 0.71 

  Marginal (price) 0.64 0.27 0.61 0.29 

  Increasing block (price) 0.07 - - - 

  Decreasing block (price) 0.39 0.60 0.42 0.58 

Time and location     

  Aggregate 0.36 0.26 0.50 0.25 

  Regional 0.64 0.74 0.50 0.75 

  United States 0.95 0.92 0.92 0.94 

  Non-United States 0.05 0.08 0.08 0.06 

  Pre-1972 0.34 0.82 0.40 0.81 

  1972-1981 0.85 0.82 0.81 0.79 

  Post-1981 0.11 0.11 0.11 0.15 

Estimation Technique     

  Ordinary least squares 0.37 0.08 0.32 0.09 

  Non-ordinary least 

squares 

0.63 0.92 0.68 0.91 

* Espey and Espey (2004) Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities 
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APPENDIX C 

TECHNOLOGY CHOICE COMPONENT OF RDM IN NEMS 

(Source: EIA, Model Documentation Report: Residential Sector Demand Module of the 

National Energy Modeling System , April 2007) 

 

The Technology Choice Component uses a log-linear function to estimate technology 

market shares. The module is able to calculate market shares based on consumer behavior 

as a function of bias, capital costs, and operating costs or as a function of life-cycle costs. 

New equipment operating costs are computed by the expression, 

 

                                                                               

 

where, 

OPCOSTy,es,b,r,v is the operating cost for the specific equipment type by year, housing 

type, and Census Division, and vintage;  

PRICESf,r,y is the fuel price for the equipment by fuel, by region and forecast year; 

EQCUECr,eg,b is the unit energy consumption by Census Division, equipment class and 

housing type;  

HDDFACTr,y is a factor, the ratio between heating degree days in the current year and in 

the base year, for adjusting for abnormal weather in either the base year or in the current 

year;  

RTEFFACeg,v is the efficiency adjustment for the general equipment class and vintage; 

and HSHELLy-1,r,v is the shell efficiency adjustment to account for building shell 

improvements over time (which reduce heating loads).  

 

For newly constructed homes, operating cost is a function of both the heating and cooling 

operating costs, with the shell efficiency also accounted for as shown: 
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[Equation C.1] 

where,  

 

HTSHELLeg,r,b is the heating shell efficiency factor for the HVAC system; CDDFACTr,y 

is the cooling degree-day adjustment; and CLSHELLeg,r,b is the cooling shell efficiency 

factor for the HVAC system. 

 

The consumer is allowed to choose among the various levels of cost and efficiency for a 

given class of equipment. Electric heat pumps are an example of an equipment class 

(denoted by eg). Equipment type (denoted by es) refers to the same class of equipment 

with different efficiency ratings (e.g., high vs low efficiency electric heat pumps). 

 

EQCOST is a time-dependant function for computing the installed capital cost of 

equipment in new construction and the retail replacement cost of equipment in existing 

housing. It is called if the cost trend switch COSTTRSW = 1 in COMMON RTEK 

(which is the default). Its mathematical description is as follows: 
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[Equation C.2] 

where, 

 

EQCOSTes,y,ctype is time-dependant installed capital cost of equipment in new construction 

or the retail replacement cost of equipment in existing housing;  

ctype tells function type of equipment cost to return;  

CAP = Return installed capital cost in new construction;  

RET = Return retail replacement cost in existing housing;  

RTMATUREes Technology maturity description;  

MATURE = No further equipment cost reductions expected;  

ADOLESCENT = Major cost reductions occurred before base year;  

INFANT = All cost reductions expected after first year available;  

RTEQCOSTes Installed wholesale capital cost in $2004 per unit for new homes, remains 

constant for MATURE technologies only (used when ctype = CAP);  

RTRECOSTes Retail capital cost in $2004 per unit for replacements, remains constant for 

MATURE technologies only (used when ctype = RET);  

y0 is the year of inflection of cost trend; RTINITYRes if ADOLESCENT; RTCOSTP1es 

if INFANT;  

y1 is the year cost decline began; RTCOSTP1es if ADOLESCENT; RTINITYRes if 

INFANT;  

d is the total possible proportional decline in equipment cost, RTCOSTP3es, from y0 

onward if ADOLESCENT, from y1 onward if INFANT;  

r is the logistic curve shape parameter, RTCOSTP2es. 

 

For newly constructed homes, the costs shown above also include the cooling system and 

shell efficiency measures. 
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 APPENDIX D 

CORRELATION TABLE 

  



 117 

APPENDIX E 

PRICE ELASTICITY OF DEMAND ESTIMATED FROM RECS1997 

lnelecuse Coefficient Std. Err. t P>|t| 

lnelecprice -0.955 0.052 -18.310 0.000 

lnngprice 0.279 0.056 4.950 0.000 

lnhhincome 0.102 0.009 11.750 0.000 

lnrooms 0.683 0.017 40.360 0.000 

lnhdd65 0.070 0.012 5.890 0.000 

lncdd65 -0.001 0.013 -0.050 0.958 

ngcen -0.576 0.023 -25.110 0.000 

ngind -0.737 0.026 -28.860 0.000 

ngboth -0.541 0.124 -4.370 0.000 

ng9 -0.936 0.026 -36.220 0.000 

elecind 0.008 0.034 0.250 0.806 

elecboth -0.355 0.117 -3.030 0.002 

elec9 -0.099 0.035 -2.830 0.005 

othercen -0.392 0.038 -10.450 0.000 

otherind -0.595 0.030 -19.530 0.000 

Otherboth -0.501 0.180 -2.790 0.005 

other9 -0.726 0.031 -23.510 0.000 

_cons 11.203 0.239 46.870 0.000 
 
R-squared = 0.5024 

Adj R-squared = 0.5009 

Number of obs =    5801 
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APPENDIX F 

SOURCE CODES FOR DISTRIBUTED SHORT-RUN ELASTICITY 

CALCULATION FUNCTION  

 
!=================================================================== 
!     DISTRIBUTED SR ELASTICITY CALCULATION FUNCTION 
!=================================================================== 
      REAL FUNCTION RSELAST (F,R,ALPHA,EF1,EF2,EF3,RECSYEAR) 
      IMPLICIT NONE 
      REAL*4 EF1,EF2,EF3 
      REAL*4 ALPHA 
      INTEGER F,R,RECSYEAR 
      REAL*4 FAC1,FAC2,FAC3 
 
  !    NOTE EF1+EF2+EF3 SHOULD SUM TO 1.0 -- THEY ARE DISTRIBUTIONAL 

SHARES FOR THE SHORT RUN ELASTICITY EFFECTS 
 
 FAC1=1.  ;  FAC2=1.  ;  FAC3=1.   !INITIALIZE  
 
      IF 

(CURCALYR>=RECSYEAR+1)FAC1=(PRICES(F,R,CURCALYR  )/PRICES(F,R,RECSYEA

R))**(ALPHA*EF1) 
      IF (CURCALYR>=RECSYEAR+2)FAC2=(PRICES(F,R,CURCALYR-

1)/PRICES(F,R,RECSYEAR))**(ALPHA*EF2) 
      IF (CURCALYR>=RECSYEAR+3)FAC3=(PRICES(F,R,CURCALYR-

2)/PRICES(F,R,RECSYEAR))**(ALPHA*EF3) 
 
      RSELAST=FAC1*FAC2*FAC3 
 !      write(DGDAT,*) 

"rselast=",rselast,CURCALYR,PRICES(F,R,CURCALYR),RECSYEAR,prices(f,r,recsyear)!pro

duces copious output in rdgenout 
      RETURN  
      END FUNCTION RSELAST 
 
    END SUBROUTINE RESD   ! CLOSES THE CONTAINS STRUCTURE  



 119 

APPENDIX G 

MATHEMATICAL MODEL OF DUBIN AND MCFADDEN (1984)  

Several econometric models consistent with utility maximization which could be 

used to describe appliance choice and electricity consumption are outlined first. In the 

present analysis, block rate structure is ignored, and electricity treated as a commodity 

available in any quantity at a fixed marginal (=average) price. Also, appliance holding 

decisions is analyzed as if they are contemporaneous with usage decisions, and do not 

involve intertemporal considerations. The approach combines the method of development 

of discrete choice models from conditional indirect utility functions employed in 

McFadden (1981) and the method developed by Hausman (1979) for recovery of indirect 

utility functions from econometric partial demand systems. 

The consumer face a choice of m mutually exclusive, exhaustive appliance 

portfolios, which can be indexed i = 1, …, m. Portfolio i has a rental price (annualized 

cost) ri. Given portfolio i, the consumer has a conditional indirect utility function.  

 

                           (1)  

 

where P1 is price of electricity, P2 is price of alternative energy sources, y is income, Si is 

observed attributes of portfolio i,   i is unobserved attributes of portfolio i, ri is price of 

portfolio i,   is unobserved characteristics of the consumer, and all prices and income are 

deflated by an  index of nonenergy commodity prices. Electricity and alternative 

consumption levels, given portfolio i, are (by Roy’s identity) 
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  (2) 

    
                              

                            
 (3) 

The probability that portfolio i is chosen is 

 

                                                                           

   (4) 

 

Any function V with the necessary and sufficient properties of an indirect utility function 

can be used to construct econometric forms for joint discrete/continuous choice. 

 A second method of obtaining a discrete/continuous demand system is to start 

from a parametric specification of the unit electricity consumption (UEC) equation, treat 

Roy’s identity as a partial differential equation whose solution defines a conditional 

indirect utility function, and then define the discrete choice probabilities from the indirect 

utility function. This procedure can be carried through for functions in which UEC levels 

exhibit some income elasticity. First consider systems in which the UEC equation is 

linear in income, 

 

                           (5) 

with m
i
 linear in parameters and the distribution of     depending in general on discrete 

choice i. A general solution for an indirect utility function yielding this demand equation 

is 
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                 (6) 

where 

                    
         

  
   (7) 

And   is a function which is increasing in its first argument. The demand for substitute 

energy satisfies 

 

      
               

  
  

  (8) 

where   
     

   
  and 

  
  

   
  

   
    

  
   

   is evaluated at the arguments 

in (6). Consider a special case of (6) in which         is the same for all i. The discrete 

choice probabilities satisfy 

 

                        
   

  
         

                
   

  
                (9). 

A special case of this system which yields simple functional form is 

 

        
  

  
 

 
   

      
                 

              (10) 

 

with       common across alternatives, and 
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 (12) 

 

Alternatively, consider the special case of (6) in which       and 

                  
 

  
            (13) 

Analogously to (10) define 

      
  

  
 

 
   

      
                                (14). 

The UEC equation is then 

     
    

      
                 (15) 

And the choice probability satisfy 

                               (16) 

With 

      
        

  
  
 

 
   

      
         

     (17) 

Econometric studies of UEC have in most cases assumed, implicitly or explicitly, 

statistical independence of appliance portfolio choice and the additive error in the UEC 

equation and have proceeded to estimate the UEC equation by OLS.  
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