
Resource Management for Wireless Networks of

Bearings-Only Sensors

A Thesis
Presented to

The Academic Faculty

by

Qiang Le

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2006

Copyright c© 2006 by Qiang Le



Resource Management for Wireless Networks of

Bearings-Only Sensors

Approved by:

Dr. James H. McClellan, Advisor
School of Electrical and Computer En-
gineering
Georgia Institute of Technology

Dr. Lance M. Kaplan
School of Electrical and Computer En-
gineering
Georgia Institute of Technology

Dr. Chin-Hui Lee
School of Electrical and Computer En-
gineering
Georgia Institute of Technology

Dr. Hayriye Ayhan
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Jennifer E. Michaels
School of Electrical and Computer En-
gineering
Georgia Institute of Technology

Date Approved: March 24, 2006



To my parents,

to my husband,

to those,

who are always there to support me

iii



ACKNOWLEDGEMENTS

Many People have touched my life not only from an academic point of view, but both

friendship and spiritual support have been a source of encouragement and strength

to complete my thesis work.

I would like to express my sincere gratitude and appreciation to Dr. James H.

McClellan, my teacher and dissertation advisor, for your encouragement and support

throughout the research period. Your patience and kindness with your profound

knowledge about this research topic has guided me along the way. I still remember

the day when I made my first presentation in our group meeting. Although I was shy

and shaky, seeing your encouragement in the face made my fear go away. Occasionally

when I was asked who my advisor was in GaTech, I always spoke loudly and proudly

announced that how lucky I am for being one of your students. I would also like

to thank Dr. Lance M. Kaplan, my co-advisor, for your invaluable guidance and

insightful comments on this research work. Your generous and consistent support

not just in finance but also in spirit, encouragement, patience, and helpful suggestion

through all these years have left a deep impression on my life. Although our weekly

talk did push me to work like bees, I love listening to your advice and enjoyed every

talk we had. I am really honored and grateful to have had the opportunity to work

for you. I am so lucky to have you as my mentors.

I would also like to thank other committee members: Dr. Chin-Hui Lee, whom I

always remember as a knowledgable and diligent professor, Dr. Jennifer E Michaels

for your advice in my proposal and Dr. Hayriye Ayhan, whom I first met in ISYE

department building and who generously considered a possibility of being one of

committee members. Thank you all.

iv



I am grateful to all CSIP faculty and staff: Christy Ellis, Keith May, Sam Smith,

etc., all CTSPS faculty and staff from Clark Atlanta University: Katrina Barnum,

and Dr. Carlos Handy for giving me advice on communication skills, etc., and Dr.

Marvin N. Cohen from GTRI. Thank you for your administrative work.

Without other colleagues’ help, I could not go this far in my thesis work. Volkan

Cevher. I could always count on you for giving me advice on my research. Mubashir

Alam and Rajbabu Velmurugan. I used to waste your guys time in chatting with you

about our daily life, career, and future. Sam Lee, Ali Cafer Gurbuz, Milind Borkar,

Sevgi Zbeyde ERTAN , Ryan Hersey, Yeongseon Lee and Faisal Shah. Thank you for

your friendship and good luck on your research.

Finally, I would like to take a chance to thank my parents. Being the only child

in my family, I wish I did not disappoint you when I was not there for you. Yi Liu,

my husband and my best friend. Thank you for always being there for me.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Objective and contributions of this work . . . . . . . . . . . . . . . . 1

1.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 9

II BASIC BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Bearing measurement model . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Initial estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Fusion of multiple nodes . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Unscented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Multiple-mode (MM) and interacting MM . . . . . . . . . . . . . . . 16

III GEOMETRY-BASED NODE SELECTION ALGORITHMS . . 24

3.1 GB metric and critical range (CR) . . . . . . . . . . . . . . . . . . . 25

3.2 Transmission range control: knowledge pool (KP) . . . . . . . . . . 27

3.3 GB-GNS-KP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 GB partial node selection with CR (GB-PNS-CR) . . . . . . . . . . 30

3.5 GB-PNS-KP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

IV NODE SELECTION FOR UNATTENDED GROUND SENSOR
NETWORKS WHILE INTERROGATING MULTIPLE TARGETS 43

4.1 Measurement and dynamic Model . . . . . . . . . . . . . . . . . . . 43

4.2 The Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



4.2.2 Probabilistic Data Association (PDA) and Joint PDA (JPDA) 46

4.2.3 Multiple-mode(MM) tracking . . . . . . . . . . . . . . . . . . 49

4.2.4 Node selection . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Track metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 RMS error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Track purity . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Real data test . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Simulated data test . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Targets within close proximity . . . . . . . . . . . . . . . . . 62

V MULTIOBJECTIVE ENERGY-AWARE NODE SELECTION . 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Background and Metrics . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Energy-based (EB) metric . . . . . . . . . . . . . . . . . . . 71

5.2.2 Transmission range control: knowledge pool (KP) . . . . . . 72

5.3 Global Network Knowledge . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Single Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Joint Metric GB-EB . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Joint Metric EB-GB . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Partial Network Knowledge . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Lifetime for multitarget case . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

VI CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Energy-based metric . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2 Transmission range control . . . . . . . . . . . . . . . . . . . 102

vii



6.2.3 Presence of multiple targets . . . . . . . . . . . . . . . . . . . 103

APPENDIX A — RELEVANT PUBLICATION . . . . . . . . . . . 104

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

viii



LIST OF TABLES

1 RMS position errors at appropriate process noise levels for MMs or
IMMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Track purity and corresponding average RMS positions errors with
Na = 2 when initializing the filters using true target positions. . . . . 59

3 Track purity and corresponding average RMS positions errors with
Na = 2 when initializing the filters via (27). . . . . . . . . . . . . . . 59

4 Conservation of node usage . . . . . . . . . . . . . . . . . . . . . . . 65

5 Illustration of GB and EB values for some snapshots where Nmr is the
maximum reachable node set of previously active nodes Na(k− 1) and
Na(k) ⊆ Nmr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Comparisons among different search algorithms using global GB-EB
when ρ0 = 60m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Comparisons among different search algorithms using global EB-GB
when τ0 = 20s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Tracking lifetime using different metrics and PDA. . . . . . . . . . . . 97

ix



LIST OF FIGURES

1 (a) UGS node and (b) triangulation using multiple bearing measure-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Bearing measurements processed from real data at a UGS node. . . . 10

3 RMS position errors versus σ through simulations when the target
velocity=10m/s. Error bars are shown at σ = 5, 7, 9, 11, 13, 15 degrees. 17

4 Node locations and estimated tracks with the correct process noise
when all 6 nodes are active. The solid line is the true track. The
square represents the initial target location. The target travels counter
clockwise. The circles denote the six node positions. The dotted and
dashed lines denote the 3-mode IMM with T1 and the 3-mode MM,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 One cycle of the GB-GNS-CR by Kaplan. Step 2 can be eliminated
when energy usage is not measured. . . . . . . . . . . . . . . . . . . . 27

6 One cycle of the GB-ANS-CR by Kaplan. . . . . . . . . . . . . . . . 28

7 Illustration of the information handoff using GB-GNS-CR and GB-
GNS-KP. In (a)-(c): GB-GNS-KP, (a) Na(k) (b) Na(k) adjusts the
broadcast range to transmit the information to the next active nodes
and (c) Na(k + 1) becomes active. In (d,e): GB-GNS-CR, (d) Na(k)
and (e) Na(k + 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Comparison between the GB-GNS-CR and the GB-GNS-KP by RMS
position error. Error bars computed from 50 runs are shown at each
data point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Comparison between the GB-GNS-CR and the GB-GNS-KP by energy
usage. Error bars computed from 50 runs are shown at each data point. 32

10 One cycle of the GB-PNS-CR method. . . . . . . . . . . . . . . . . . 35

11 Flowchart of the functions for active/inactive nodes combining GB-
PNS-CR with tracking filters. . . . . . . . . . . . . . . . . . . . . . . 36

12 One cycle of the GB-PNS-KP method. . . . . . . . . . . . . . . . . . 38

13 Flowchart of the functions for active/inactive nodes combining GB-
PNS-KP with tracking filters where Di is the broadcast range for infor-
mation handoff and Ri is the broadcast range for information exchange
(see Section 3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



14 Illustration of GB-PNS-KP when Nd = 2 and rnei = 1000m: (a) Na(k),
(b) a minimum core of Na(k) adjusts the broadcast range to transmit
the information to the potentially active nodes, and (c) Na(k + 1)
becomes active. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

15 Comparison between GB-PNS-CR and GB-PNS-KP by RMS position
error. Error bars computed from 10 node configurations each with 50
runs are shown for GB-PNS-CR and GB-PNS-KP when rnei=300 and
600m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

16 Comparison between GB-PNS-CR and GB-PNS-KP by energy usage;
and std. error for GB-PNS-CR: 3.1J (rnei=300m) and 1.8J (rnei=600m);
GB-PNS-KP: 0.0003J (rnei=300m) and 0.0051J (rnei=600m). . . . . . 41

17 Comparison between GB-PNS-CR and GB-PNS-KP by node usage. . 42

18 Comparison between GB-PNS-CR and GB-PNS-KP in the RMS vs.
lifetime plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

19 Structure of node selection with MM-PDA or MM-JPDA. . . . . . . . 45

20 Node locations and tracks: (a) Scenario 1 with two vehicles on sepa-
rate paths, and (b) Scenario 2 with four vehicles traveling around the
oval track. The circles represent the node locations, the plus symbols
represent the initial target positions, the square symbols represent the
estimated target positions, and the lines represent the target trajectories. 53

21 Bearing measurement output of MVDR for the top right node in Sce-
nario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

22 Bearing measurement output of MVDR for the middle left node in
Scenario 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

23 Estimated tracks: (a) Scenario 1, (b) Scenario 2 for the two end targets,
and (c) Scenario 2 for the two middle targets. In each case, the dotted
and dashed lines represent MM-JPDA and MM-PDA tracks, respectively. 56

24 Average RMS errors via (36) for Scenario 1 by initializing the track
filters using (a) the true target positions, or (b) estimated target posi-
tions via (27). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

25 Average RMS errors via (36) for Scenario 2 to track first and bot-
tom targets by initializing the track filters using (a) the true target
positions, or (b) estimated target positions via (27). . . . . . . . . . . 57

26 Average RMS errors via (36) for Scenario 2 to track the middle two
targets by initializing the track filters using (a) the true target posi-
tions, or (b) estimated target positions via (27). Note the vertical scale
change with respect to Figs. 25 and 26. . . . . . . . . . . . . . . . . . 58

xi



27 Average RMS errors via (37) for Scenario 2 to track the middle two
targets by initializing the track filters using estimated target positions
via (27). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

28 Fourteen-node configuration where the circles represent the node lo-
cations, the plus symbols represent the initial positions of the four
targets, and the lines represent the target trajectories. . . . . . . . . . 62

29 Simulated bearing measurements at the top right node in Fig. 28. . . 63

30 Average RMS errors via (36) with simulated measurements to track
the middle two targets by initializing the track filters using the true
target positions using (a) six nodes in Fig. 20 , or (b) fourteen node in
Fig. 28. Note the different vertical scales. . . . . . . . . . . . . . . . . 64

31 Average RMS errors via (37) with simulated measurements to track
middle two targets by initializing the track filters using the true target
positions using (a) six nodes in Fig. 20 , or (b) fourteen node in Fig. 28.
Note the different vertical scales. . . . . . . . . . . . . . . . . . . . . 64

32 Node configuration with 20 randomly place nodes and two constant-
velocity tracks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

33 Global EB/GB node selection using KP where a node’s maximum reach
or battery level is considered in the search space. . . . . . . . . . . . 74

34 Illustration of the information handoff using KP where the chosen
nodes are the origins of the broadcast ranges denoted by the black
circles: (a) Na(k) (b) Na(k) adjusts the broadcast range to transmit
the information to the next active nodes where Nmr is denoted by
symbol ′∇′ and (c) Na(k + 1) becomes active. . . . . . . . . . . . . . 75

35 Sequential search for the joint GB-EB optimization. . . . . . . . . . . 77

36 Greedy search for the joint GB-EB optimization. . . . . . . . . . . . . 78

37 Sequential search for the joint EB-GB optimization. . . . . . . . . . . 81

38 Greedy search for the joint EB-GB optimization. . . . . . . . . . . . . 82

39 One cycle of the GB-EB-PNS method. . . . . . . . . . . . . . . . . . 83

40 One node configuration with twenty nodes where ◦ denotes the node
and the solid line denotes the true target track along which a target
goes back and forth for an infinite time. . . . . . . . . . . . . . . . . . 84

41 Performance of the global EB and the GB (a) average lifetime (b) scat-
tered points of different trials where the symbol ◦ denotes the lifetime
of EB and the symbol + denotes the lifetime of GB. . . . . . . . . . . 85

xii



42 RMS error versus time using the joint metric where the solid line de-
notes the RMS error over Type 2 and the dotted line denotes the RMS
error over Type 1 when ρ0=60m. . . . . . . . . . . . . . . . . . . . . 87

43 Illustration of global GB-EB where the chosen nodes are the origins
of the broadcast ranges denoted by the black circles and Nmr is de-
noted by the symbol ′∇′: (a) information sharing at snapshot 55 (b)
information handoff at snapshot 55 (c) information sharing at snapshot
56 (d) information handoff at snapshot 56 (e) information sharing at
snapshot 57 (f) information handoff at snapshot 57. . . . . . . . . . . 88

44 Performance of GB-EB-GNS using different search algorithms when a
node configuration consists of (a) ten nodes, (b) twenty nodes. . . . . 90

45 Error bars and error ellipse from 100 runs of GB-EB-GNS using Greedy
Search for Type 2 lifetime. . . . . . . . . . . . . . . . . . . . . . . . . 91

46 Performance of the global EB-GB (a) lifetime (b) error bars from 100
runs for Type 2 where the symbol ◦ denotes Greedy Search and the
symbol ? denotes Sequential Search. . . . . . . . . . . . . . . . . . . . 93

47 Performance of GB-EB-PNS (a) RMS error versus lifetime (b) error
bars from 1000 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

48 Node configuration and two target tracks. . . . . . . . . . . . . . . . 98

xiii



SUMMARY

The thesis focuses on resource management or sensor allocation when we use

bearings-only measurements to track targets in an unattended ground sensor (UGS)

network. Intelligent resource management is necessary because each UGS sensor node

has limited power and it is desirable that estimation performance not degrade very

much when only a few nodes are active to maximize the effective tracking lifetime.

For scheduling to prolong the tracking lifetime, a new energy-based (EB) metric

is proposed to model the number of snapshots remaining for a hypothesized node

set, i.e., the remaining battery energy divided by the energy to sense and share

information amongst the node set. Unlike other methods that use the total energy

consumed for the given snapshot as the energy-based metric, the new EB metric can

achieve load balancing of the nodes without resorting to computationally demanding

non-myopic optimization. The metrics to choose nodes at a given snapshot could be

geometry-based (GB) to minimize the estimation error, EB, or multiobjective. In

determining the active set, each node only knows the existence of itself, the active

set of nodes from the previous snapshot and the node’s neighbors, i.e., the set of

nodes within a distance of rnei. When measuring the tracking lifetime of the system,

we propose an adaptive transmission range control, known as the knowledge pool

(KP) where the transmission range is determined by the knowledge of the network

and the currently remaining battery level. The KP saves more energy usage than

another adaptive transmission range control bounded with the GB metric when the

global location information is available. We also provide practical search algorithms

to optimize a constraint metric (multiobjective function) using one metric as the

xiv



optimization metric under the constraint of the other. We also demonstrate the

resource management schemes for multitarget tracking with the field data.
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CHAPTER I

INTRODUCTION

1.1 Objective and contributions of this work

Unattended ground sensor (UGS) networks that consist of a dense set of sensor nodes

randomly distributed in the battlefield have drawn interest from the military. Such

networks promise to provide a low power and high performance solution for surveil-

lance. A UGS node consists of one or more sensors, e.g., microphones, to collect

measurements, a battery to supply power, a computer to process the sensor data,

and a radio to share information with other nodes (see Fig. 1.1). In theory, the best

localization performance is achieved when all nodes share their raw sensor data. In

practice, each node is constrained to operate using the finite amount of energy sup-

plied by its battery since recharging the battery in hostile places is impractical. To

maximize the effective lifetime of the network, it is desirable for only a small subset

of nodes to actively track and classify targets. This will limit the energy burned by

the nodes for sharing and processing. Thus, intelligent node resource management is

necessary so that target localization performance does not degrade very much when

only a few nodes are active.

The node selection algorithm embedded in the resource manager to determine

which set of nodes should be active can be either distributed and performed at each

node, or global and performed only at a central unit in a centralized system. In a

distributed architecture, each node is also capable of implementing a tracking filter to

extract useful information out of the locally obtained measurements, broadcasting the

state, and at the same time integrating its results into a global state. A distributed

system differs from a centralized system in that a node has some degree of freedom to
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process its measurements and make an active/inactive decision [69]. In a centralized

system, decisions are made at a central unit that is assumed to be the most powerful,

i.e., power is not an issue for a central unit. Subordinate nodes constrained by limited

power follow the central unit’s commands and take actions. In the distributed UGS

system, each node is equally and relatively powerful. Thus it is impractical to elect

one node as a central node in the UGS network. Another major reason for using the

distributed architecture in the UGS network is that it is more robust and survivable

when one node is vulnerable.

Resource management could be viewed as a scheduling problem whose solution

can be provided by dynamic programming [39, 36, 35, 37, 3, 4, 8, 65, 66]. Kreucher,

Kastella and Hero’s work focuses on an application of sensor management to elec-

tronic scanned arrays (ESA) [39, 36, 35, 37]. Their work is to task a sensor action

(e.g., sensor pointing or sensor mode) to obtain the maximum amount of informa-

tion gain. Recursively solving Bellman’s equation or approximating a value-to-go

function to account for the long-time effect of current actions only works for the sim-

plest problems. When sensor management is used for multiple sensors and we have

a multiobjective function to optimize, non-myopic scheduling seems impractical or

computationally prohibitive.

Generally, the goal of the resource manager is to choose suitable subset of nodes

to be active for a given snapshot under some cost function. The chosen nodes could

minimize the estimation error, maximize the probability of target detection, or max-

imize the lifetime of tracking. For the purpose of minimizing the estimation error, a

geometry-based (GB) objective function was proposed to select nodes [34, 28]. Ka-

plan used the Kalman-based root mean squared (RMS) position error with/without

prior covariance information as the objective function where it is assumed that both

the dynamical and the measurement models are Gaussian [34, 28]. If the system

is non-Gaussian, node selection algorithms can be implemented using information

2



theory [69, 71, 47, 17, 38, 50]. From the information-theoretic point of view, nodes

are selected to increase the information or reduce the uncertainty about the current

environment. The differential information or the information gain between before

and after applying the node combination can be computed based upon Shannon’s

entropy or Kullback-Leibler’s cross entropy. Such entropy-based objective functions

as functions of the node combination are prohibitive to evaluate. At this time, no

comparisons between Kalman-based and entropy-based approaches are available.

Another important goal of the resource manager for the UGS network is to maxi-

mize the lifetime of tracking. The lifetime must be considered as the operational time

because the tracking system could be non-operational long before the last node dies.

Therefore, the lifetime of tracking should be defined as the time when α percent of

data packages are lost in transmission, or when the first failed transmission occurs

[5, 24]. Purely maximizing the lifetime unaware of the estimation performance in-

volves the definition of an energy consumption model. Most communication papers

that address the energy consumption involve finding an optimal route from a sender

(a currently active node) to a receiver (a next active node) to minimize the total

energy consumption on the path [60, 62]. Using the lifetime as the metric is more

desirable in routing than using the total energy usage. The reason is that some nodes

will be overused and run out of energy very quickly because the total energy usage

metric does not consider the currently remaining battery level of all the nodes. In

addition, multiple hops may exist on the route. A large number of hops along the

route makes the delay longer and the tracking less real-time. Hence for real-time

tracking, as well as for simplicity it is the desirable that no relay nodes lie between

the sender and the receiver, and that the next active nodes receive the information

via the direct broadcast of currently active nodes. Routing is not an issue for our

node selection procedure. And we prefer an energy-based metric accounting for the

battery level to maximize the tracking lifetime.
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Reaching a certain level of estimation performance at a cost of a small amount

of energy consumption has also drawn great interest from researchers[21, 73, 72, 16,

13, 14, 15]. Their work did not consider how much energy remains in the battery

of the sensor node during tracking, but did assume that the global topology of the

network is available for evaluating the objective functions. Instead of optimizing a

multiobjective function, some work considered a hierarchical network structure to

reduce the energy consumption where some nodes are elected as cluster heads to

perform tracking and decision making algorithms, and subordinate nodes only report

whether there is a target [21, 73, 72]. Chhetri introduced a composite optimization

where a sensor action minimizes the total energy from the current time step k up to a

future time step k + M while maintaining the tracking error below a predefined limit

in the future M time steps [15]. Chhetri’s work also required a hierarchical network

structure. Williams also used secondary objectives as constraints to address the trade-

off between estimation performance and communication cost, and a planning over the

future M time steps with the first step in this planning executed, is obtained based

on adaptive Lagrangian relaxation in approximating dynamic programming [66, 65].

The fact that Williams’ longer planning horizon saves accrued communication cost

is given under a careful setting of the bounds for the dual variable in Lagrangian

relaxation. The bounds are set experimentally to avoid undesirable behaviors that

may result since utilizing all sensors may not meet the constraints. In addition,

Williams’ scheduling or planning also assumed knowledge of the global topology.

In this thesis, we propose a new energy-based metric which represents the number

of snapshots remaining for a node set. Unlike other methods that use the total

energy consumed for the given snapshot as the metric, the new metric can achieve

load balancing of the nodes without resorting to computationally demanding non-

myopic optimization. The non-myopic optimal lifetime metric must consider the

utility K time steps in the future and is hard to optimize when the lifetime is defined
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as the earliest time point when transmission fails. The proposed EB metric models

how long a hypothesized node set could run without further information handoff to

another different node set. Optimization of the EB metric could be implemented via

Greedy Search in practice.

We also investigate the effects of different metrics: GB minimizing the RMS po-

sition error, EB, or constrained metrics using one metric as the optimization metric

under the constraint of the other, on the estimation performance and the tracking

lifetime. We propose practical search algorithms to optimize the constrained metrics.

Simulations results show the tradeoff between the estimation performance and the

lifetime using different metrics.

These metrics to select nodes at a given snapshot could be embedded into a

distributed system where sensor nodes are equally powerful and make independent

active/inactive decisions by fusing available data. The distributed system, whose esti-

mation performance or lifetime could be measured, must be responsible for answering

the following questions:

1. what are the responsibilities of the active nodes,

2. what do inactive nodes do when they are within the broadcast range of active

nodes,

3. how does the information get across in the network or how is the broadcast

range of an active node determined,

4. if a node has partial knowledge of the network (a node only knows the physical

location of its neighbors), how does the search space for evaluating the metric

change?

To this end, we propose an adaptive transmission range control, called the knowl-

edge pool (KP), in a distributed system where the transmission range depends on the
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knowledge of the network and the remaining battery level. Each active node transmits

just far enough to reach all the active nodes. In other words, the energy consumption

in one hop is proportional to the physical distance between the active set of nodes

and is divided into two stages, one for active nodes to share the currently obtained

information (the local target state estimates and error covariances only based upon

the locally obtained measurements), the other for the currently active nodes to hand

off the useful information (the predicted global target state estimates and error co-

variances after fusing the local information into the global) to the next active set.

The proposed transmission range control is different from deterministic (common or

fixed) broadcast range control [70, 12, 68, 22]. The common broadcast range is the

reason for the existence of multiple hops or routing problems because the broadcast

range could be so small that the packets must be multihopped to their destinations

through intermediate or relay nodes. The advantage of the common broadcast range

is that knowing the network topology becomes insignificant. Since the routing is not

our focus and available neighbor information could be helpful for determining the

broadcast range, the variable-range transmission range control becomes reasonable

and practical. The proposed transmission range control is also different from another

variable-range range control, known as the critical range (CR), which was originally

introduced to measure the energy usage in a situation where there is no available

neighbor information [31, 29]. Simulations show that more energy is saved using KP

as opposed to using CR when enough neighbor information is available.

The goal of this thesis is to investigate node selection algorithms for different

objectives, and to embed them into existing tracking filters. The tracking filters

must address a complex environment where a target may be maneuvering, missed

detections may happen, and false measurements may exist. Here the tracking filters

performed at each acoustic node extract target location information out of bearings-

only measurements.
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Figure 1: (a) UGS node and (b) triangulation using multiple bearing measurements.

Bearings-only measurement tracking is a classic tracking topic with techniques

that locate targets via bearing measurements found in the bearings-only target motion

analysis (TMA) literature [20, 44, 53, 55]. In the bearings-only TMA problem, a single

sensor located on a moving platform collects bearing measurements over a number of

snapshots. Different from a single sensor tracking using batch processing, we intend

to use data from all the active nodes to better track a target. At a given snapshot, an

acoustic node is capable of measuring target bearing angles. Target position estimates

can be obtained using triangulation of multiple bearing lines at any given snapshot

as shown in Fig. 1.1(b). Target velocity estimates are observable using two-point

differences over multiple snapshots [1].

By incorporating a Markov model and a history of measurements, the Kalman

filtering (KF) was developed for tracking and is used in many applications today. The

Kalman-Bucy filter gives an unbiased estimate and is optimal in a mean-squared-

error sense when observation and dynamic equations are linear [26, 27, 56]. For

bearings-only tracking, the measurements are a nonlinear function of the target states.

Hence, the extended Kalman filter (EKF) with linearization of measurements was

7



developed to deal with the nonlinearity of the system [1]. The unscented Kalman

Filter (UKF) provides a novel way to implement the Kalman filter [25]. It avoids the

linearization of nonlinear dynamic and measurement equations by propagating sigma

points representing the distribution of the target state through the nonlinearities. The

UKF is expected to outperform the EKF due to the fact that the UKF approximates

the relationship between the bearing measurements and the target state over a number

of sigma points instead of linearizing the relationship about the predicted target state.

In fact, Julier et. al shows that the UKF at least reaches second-order accuracy, and

outperforms the EKF [25].

For better tracking of a maneuvering target, the KF requires exact a priori knowl-

edge of the process and measurement noise statistics. For example in a constant

velocity dynamic model, the target acceleration is modeled as process noise. In real-

ity, such parameters are inexactly known. Wrong use of the process noise can lead to

large estimation errors, or even to divergence. To solve this problem, one way is to

modify or adjust mode parameters such as process noise or measurement noise by es-

timating them through filter gain or target turn rates [18, 19, 51, 52]. Another way is

to introduce multiple dynamic models to describe possible target motions, known as a

multiple-mode (MM) method. The MM uses a bank of filters running in parallel, each

based upon a set of assumed mode parameters, to obtain mode-conditioned estimates.

Then the global state estimate is nothing but a weighted sum [49, 1, 2, 7, 45, 46, 64].

In the presence of multiple targets, a node may receive multiple measurements

from existing targets, new targets, or noise, but the node has no idea about which

measurement comes from which target. In addition, the node may miss the target

detection in noisy environments. Figure 2 shows typical bearing measurements col-

lected by a node at different time intervals. Clearly two measurement tracks are

obvious from Time 40 to Time 130. However, a large number of false measurements

are also obtained. On the other hand, three measurement tracks exist from Time 130
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to Time 200. The Probabilistic Data Association (PDA) filter was first proposed to

handle this sort of data association problem [2, 7]. The PDA assumes one of the mea-

surements originated from an existing target and the rest are from random clutter,

but does not take into account that one of the remaining measurements may come

from another target. The Joint Probabilistic Data Association (JPDA) filter only

differs from the PDA in the calculation of the measurement-to-target association.

The JPDA filter accounts for the existence of multiple targets. The measurement-to-

target association in JDPA is assumed to be marginal so that all possible joint events

involving that measurement-to-target pair are enumerated, where the joint event is

defined as a set of measurement-to-target assignments. Both the PDA and the JPDA

are target-oriented association filters where each measurement makes more or less of a

contribution to each previously established target. On the contrary, the original mul-

tiple hypotheses tracking (MHT) is a measurement-oriented association filter where

the origins of the measurements are taken into account [6, 59]. Recently, sequential

Monte Carlo methods, also known as particle filters, have been used to track multi-

ple targets where a particle represents a possible target state and its weight [54, 9].

Because the number of particles determines the tracking accuracy and the tracking

speed, we use classic PDA or JPDA as multitarget trackers.

1.2 Organization of the thesis

The thesis is organized as follows. In Chapter 2, we introduce basic tracking filters

such as EKF, UKF, MM or interacting MM (IMM) filters. EKF and UKF deal with

the cases when the dynamical equations or observation equations are nonlinear. MM

or IMM addresses the maneuvering target problem.

In Chapter 3, we introduce the existing geometry-based (GB) node selection algo-

rithms in detail, and a variable-range transmission control that is called the critical

range (CR) and bounded with the GB metric. We apply GB to a more realistic
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Figure 2: Bearing measurements processed from real data at a UGS node.

environment where a node only knows the existence of itself, the active set of nodes

from the previous snapshot and the node’s neighbors, i.e., the set of nodes within

a distance of rnei. The partial node selection (PNS) algorithm, where rnei affects

the search space, is believed to be a bridge between a localized node selection (LNS)

algorithm where a node has a minimum knowledge of the network (i.e., itself and

active nodes) and a global node selection (GNS) algorithm. Simulation results show

that the RMS errors using PNS or GNS are comparable while GNS is more energy-

efficient when the energy is measured using CR, which is consistent with Kaplan’s

results about LNS and GNS in [31]. Since CR is bounded with GB and was originally

proposed in a scenario where a node has a minimum knowledge, we consider another

variable-range transmission control called the knowledge pool (KP) which could be

applied to other metrics. Simulation results show that using KP saves more energy

than using CR when global location information is available.

In Chapter 4, we investigate the performance of a multiple target tracker that

exploits bearings-only measurements from an acoustic UGS network using real data
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collected by the U.S Army Research Laboratory (ARL) [43]. To conserve energy

while interrogating multiple maneuvering targets, the tracker integrates node resource

management with the multiple-mode probabilistic data association (PDA) or the joint

probabilistic data association (JPDA) filter. Experiments show that for sufficiently

separated targets, the GB metric leads to better geolocation performance than the

’closest’ selection approach when the number of active nodes is set to two per snapshot

and global network knowledge is available.

In Chapter 5, a new energy-based (EB) metric is first proposed which represents

the number of snapshots remaining for a hypothesized set, i.e., the remaining bat-

tery energy divided by the energy to sense and share information amongst the node

set. Simulation results show EB provides longer lifetime than GB. Then we develop

a more complicated resource management strategy that determines which nodes ac-

tively sense and communicate for each snapshot in order to achieve a tolerable level of

some measure (e.g., geolocalization accuracy) while attempting to optimize the other

(e.g., the effective lifetime of the network). Fast search algorithms are provided to

optimize the constraint metric. Transmission range is determined by the knowledge

of the network and the current battery level. Simulation results show the tradeoff be-

tween tracking lifetime and RMS errors for the system which employs the constraint

metrics. The effective lifetime of the sensor network is measured by two definitions:

the earliest time when one or more active nodes has too little energy to reach the

other active nodes, and Type 2) the earliest time when the use of some nodes is unable

to meet the constraint. We also investigate the effect of rnei on the decision maker

which utilizes the constraint metric to make the activation decision.

Finally, Chapter 6 concludes this thesis with the contributions and the possible

future work.
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CHAPTER II

BASIC BACKGROUND

2.1 Bearing measurement model

The bearing measurement obtained at the i-th node for a given snapshot is the true

retarded bearing angle embedded in additive white Gaussian noise [32].,

θ̂i = θi + ηi, (1)

where θi is the true bearing angle [32] given by

θi = θi,0 + arcsin
(v

c
sin(θi,0 − φ)

)
, (2)

where θi,0 =
Py,0−Sy,i

Px,0−Sx,i
and the second term accounts for the propagation delay. The

target position and velocity are labeled as P0 = [Px,0, Py,0]
T and V = [Vx, Vy]

T ,

respectively. The target state [P T
0 , V T ] consists of the target position and velocity.

The target speed v = |V |, the heading is φ = arctan(Vy/Vx), and c is the speed of the

sound, 347m/s. The i-th sensor node location is Si = [Sx,i, Sy,i]
T . The measurement

error ηi is zero-mean white Gaussian noise with a bearing measurement variance

denoted as σ2
i , i.e., ηi ∼ N(0, σ2

i ), and R = diag(σ2
1, σ

2
2, · · · , σ2

Ns
). In this thesis,

we assume the standard deviation σi = 5◦ for i = 1, 2, . . . , Ns, where Ns is the

number of nodes. The retarded bearing angle model given by (2) is used to generate

measurements in the simulations.

2.2 Initial estimates

The maximum likelihood (ML) localization methods under different assumptions

about the bearing measurements were developed for the single snapshot case in [33].
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The ML methods, true target states or estimates via two-point differencing could be

used for the tracking initialization [1].

2.3 Extended Kalman filter

The original Kalman filter is optimal in a mean-squared-error sense if the dynamic

and measurement equations are linear, and the process and measurement noise are

Gaussian. The extended Kalman filter (EKF) was developed for the case where the

equations are nonlinear [40, 32].

The target can be assumed to follow a constant velocity dynamical evolution given

by

x(k + 1) = Fx(k) + Av(k + 1), (3)

where

F =




1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1




, and A =




0.5T 2 0

0 0.5T 2

T 0

0 T




.

The vector v(k + 1) represents unknown accelerations as zero mean Gaussian noise

with covariance Qv = σ2
vI, and x(k) is the target state S for the k-th snapshot.

Finally, T is the time interval between successive snapshots, which means that every

T seconds we use the Kalman filter to update the state estimates. And the Kalman

filter assumes that the mean measurement is the non-retarded bearing θi,0.

The predicted target state is computed from the previous Kalman filtered state

x(k|k) by

x(k + 1|k) = Fx(k|k), (4)

and the covariance of the predicted state is computed from the previous filtered

covariance P (k|k) by

P (k + 1|k) = FP (k|k)F T + AQvA
T . (5)
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The updated state and covariance expressions are written as

x(k + 1|k + 1) = x(k + 1|k) + W (z(k + 1)− h(x(k + 1|k))) ,

P (k + 1|k + 1) = P (k + 1|k)−W (HP (k + 1|k)HT + R)W T , (6)

where the Kalman gain matrix is

W = P (k + 1|k)HT (HP (k + 1|k)HT + R)−1, (7)

and H is the Jacobian of the nonlinear observation function given by

H = [∇θ1(x)|x(k+1|k), · · · ,∇θNs(x)|x(k+1|k)]
T , (8)

where ∇θj = [ ∂
∂P0,x

, ∂
∂P0,y

, ∂
∂Vx

, ∂
∂Vy

]T θj, and h(x) = [h1(x), . . . , hNs(x)]. Using (6)-(7)

and the matrix inversion lemma, the updated covariance can be rewritten as:

P−1(k + 1|k + 1) = P−1(k + 1|k) + HT R−1H. (9)

2.4 Fusion of multiple nodes

When the Kalman filter is implemented in a centralized way, a powerful central unit

is required to collect all the bearing measurements from multiple nodes, and update

the target state. The subordinate nodes do nothing but send their locally obtained

measurements to the central unit. In a distributed system, every node acts as a

central unit and maintains a global state about the current environment. Although

redundant computation is done at each node, the system is no longer vulnerable when

one node is destroyed. In other words, a node is capable of not only extracting useful

information based solely on the locally obtained measurement, but also integrating it

into a global state [58]. Let xj(k|k) and Pj(k|k) be the filtered state and covariance

output at the j-th node computed only on the local measurement using (6). A global

state is assimilated as:

x(k + 1|k + 1) = P (k + 1|k + 1)P−1(k + 1|k)x(k + 1|k) + P (k + 1|k + 1)
Ns∑
j=1

ij,
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P−1(k + 1|k + 1) = P−1(k + 1|k) +
Ns∑
j=1

{P−1
j (k + 1|k + 1)− P−1(k + 1|k)}, (10)

where ij = P−1
j (k + 1|k + 1)xj(k + 1|k + 1)− P−1(k + 1|k)x(k + 1|k).

2.5 Unscented Kalman filter

The UKF provides a novel way to implement the Kalman filter. It avoids the lin-

earization of nonlinear dynamical and measurement equations by propagating 2n + 1

sigma points representing the distribution of the target state through the nonlineari-

ties where the dimension of the target state n is 4. Specifically, it samples the points

on the axes of the error hyperellipse defined by the n-dimensional vector x(k|k) and

matrix P (k|k) as given by

β0(k) = x(k|k), βi(k) = x(k|k) +
√

n + 1Ui,

βi+n(k) = x(k|k)−√n + 1Ui, for i = 1, 2, · · · , n,

where P (k|k) = UUT and Ui is the i-th row or column of the matrix U . These points

are weighted by

w0 =
1

n + 1
, wi = wi+n =

1

2(n + 1)
for i = 1, 2, · · · , n,

in order to capture the mean and covariance of x(k). In other words,

x(k|k) =
2n∑
i=0

wiβi(k),

P (k|k) =
2n∑
i=0

wiβi(k)βT
i (k)− x(k|k)xT (k|k).

In our application, the predicted state and covariance happen to form equivalent

expressions as in the EKF because of the linearity of the dynamical equation (see (3)).

The filtered equations are still given by (6) except that the 2n + 1 points determine

the Kalman Gain matrix by

W = PxzP
−1
zz ,
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where

Pxz =
2n∑
i=0

wi(xi − x(k + 1|k))(zi − z̃)T ,

Pzz =
2n∑
i=0

wi(zi − z̃)(zi − z̃)T ,

z̃ =
2n∑
i=0

wizi, xi = Fβi(k),

and

zi = h(Fβi(k)).

In our simulation to compare EKF and UKF, we considered a target moving at a

constant velocity 10m/s through a 2000m×1000m field with ten nodes. The process

noise to model target acceleration σv is assumed to be zero since the target is moving

at a constant velocity. For each value of σ, we ran 100 Monte Carlo simulations.

Figure 3 shows the performances of the EKF and the UKF when two bad runs are

eliminated out of 100 runs. Julier shows that the UKF is better than the EKF because

the predicted state and measurement is more precisely computed in the UKF [25]. We

note that our dynamic equation is linear. Therefore, the UKF is better than the EKF

only because the predicted measurement is more precise. When the bearing error

is lower than five degrees, there is no obvious advantage to more precise predicted

measurement in the UKF. The UKF outperforms the EKF only when the bearing

error is larger than eight degrees.

2.6 Multiple-mode (MM) and interacting MM

The MM tracker employs multiple mode-matched filters. The mode-matched filter

could be the standard EKF, Probabilistic Data Association filter (PDA) or JPDA

[42]. The initial state and covariance for each mode-matched filter is the same and

given by the previous global state and covariance. The global state update is the
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weighted sum of the state outputs of each mode-matched filter expressed by

x(k|k) =
N∑

i=1

xi(k|k)µi(k), (11)

where µi(k) is the mode probability, xi(k|k) is the state output of the ith mode-

matched filter and N is the number of the mode-matched filters. The weights are

derived from the likelihood of each mode representing the true dynamics of the target.

We consider modes that represent different parameterizations of the coordinated turn

(CT) dynamic model given by

x(k + 1) = F (ω)x(k) + Av(k + 1), (12)

where

F (ω) =




1 0 sin ωT
ω

cos ωT−1
ω

0 1 1−cos ωT
ω

sin ωT
ω

0 0 cos ωT − sin ωT

0 0 sin ωT cos ωT




, and A =




0.5T 2 0

0 0.5T 2

T 0

0 T




.

The vector v(k + 1) represents unknown accelerations as zero mean Gaussian noise

with covariance Qν = σ2
νI. T is the time interval between successive snapshots. This

model is parameterized by the target turn rate ω in units of rad/s. The mode i

filter has its own mode parameter, turn rate, ωi. Chen in [11] claimed that although

multiplicative fusion is Bayesian, when it comes to sensor reliability and weighting

a sensor with higher reliability more, spatial additive fusion may outperform multi-

plicative fusion. Therefore, we use the spatial additive fusion strategy to compute

the likelihood of the current measurement set for the i-th mode, i.e.,

∧i(k) =
Ns∑
j=1

mj∑

l=1

∧l
ij, (13)

where the likelihood of the lth measurement zl
j(k) at node j is assumed to be a

Gaussian centered at zi,j(k|k − 1) with covariance σ̃2
j :

∧l
ij = N (zl

j(k); zi,j(k|k − 1), σ̃2
j ). (14)
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The number of measurements at node j is mj. The predicted measurement related

to mode i at node j is zi,j(k|k−1) = hj(xi(k|k−1)). Let σ̃2
j = HjPi(k|k−1)HT

j +σ2
j .

The xi(k|k − 1) and Pi(k|k − 1) are mode-related predictions, and Hj is the jth row

in (8). The mode likelihood (14) measures the difference between the assumed model

denoted by the given mode parameter and the true target dynamic model. In other

words, if the model difference is larger, the likelihood that the current measurement

follows the assumed model gets smaller. Then the mode probability is normalized by:

µi(k) =
∧i(k)µi(k − 1)∑N

j=1 ∧j(k)µj(k − 1)
.

The global covariance update is written by

P (k|k) =
N∑

i=1

{(x(k|k)− xi(k|k))(x(k|k)− xi(k|k))T + Pi(k|k)}µi(k). (15)

where Pi(k|k) is the covariance output of the ith mode-matched filter and x(k|k) is

computed by (11).

The IMM tracker considers two consecutive snapshots and introduces a Markov

model for the mode transition. Each element of the mode transition matrix T is

defined as: Tji = Pr(the current mode is i|the previous mode is j). Usually, the

transition matrix might represent the following three types of modes:

• Mode 1: coordinated turn mode with negative fixed turn rate and fixed process

noise.

• Mode 2: constant velocity mode with fixed process noise, i.e. σν .

• Mode 3: coordinated turn mode with positive fixed turn rate and fixed process

noise.

The mode probability in IMM as computed after the measurement data is received

is based on not only the likelihood of the current measurement (13), but also on the
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mode probability at the previous snapshot and transition matrix T , i.e.,

µi(k) =
∧i(k)Ci(k − 1)∑N

j=1 ∧j(k)Cj(k − 1)
,

where the predicted mode probability

Ci(k − 1) =
N∑

j=1

µj(k − 1)Tji. (16)

The interacting/mixing step in IMM is to provide the initial guess for each mode-

matched filter. The initial state for the ith mode-matched filter, i = 1, 2, . . . , N, is

computed by:

xo
i (k − 1|k − 1) =

N∑
j=1

µji(k − 1)xj(k − 1|k − 1),

where µji(k − 1) is the probability that the target made the mode transition from j

to i given that the target is currently in state i at time k. Thus,

µji(k − 1) =
µj(k − 1)Tji

Ci(k − 1)
.

The initial covariance is written as

P o
i (k − 1|k − 1) =

N∑
j=1

{x̃j(k − 1)x̃j(k − 1)T + Pj(k − 1|k − 1)}µji(k − 1), (17)

where x̃j(k − 1) = xj(k − 1|k − 1)− xo
i (k − 1|k − 1), i = 1, 2, . . . , N. The global state

and covariance updates follow (11) and (15).

We evaluate the utility of MM-EKF using real acoustic measurements collected

by the U.S. Army Research Laboratory (ARL). Six nodes consisting of arrays of

microphones sampled the acoustic energy as different ground vehicles traveled around

an oval track whose length and width are about 660 and 125 meters, respectively.

Figure 4 illustrates the node/track geometry. ARL processed the raw data using an

incoherent wideband minimum variance distortionless response (MVDR) beamformer

[67] to obtain bearing measurements. We received the time stamped MVDR output

and ground truth data collected from a GPS on the vehicles.
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Using the real data, we evaluate the performance of different parameterizations of

single mode standard EKF (SM-EKF) and MM-EKF trackers. For the SM-EKF, we

used a constant velocity target model, i.e., ω = 0. We also evaluated a clairvoyant

SM tracker that uses the ground truth data to determine the true turn rate parameter

for each snapshot. In MM-EKF or IMM-EKF, we used N CT models where the turn

rates are uniformly sampled over [-30◦ 30◦], i.e. ωi = −30+ i−1
N−1

60, for i = 1, 2, . . . , N .

The initial mode probability µi(0) is set uniformly so that µi(0) = 1/N .

For the 3-mode IMM with turn rates -30◦, 0 and 30◦, we could assume the target

stays at the same mode with large probability 0.6 and makes the mode transition

with probability 0.2 in one unit of time so that the mode transition matrix is

T1 =




0.6 0.2 0.2

0.2 0.6 0.2

0.2 0.2 0.6




.

If some prior information tells us that the target stays at constant velocity mode

for the longest time and at mode with right turn for the shortest time, the mode

transition matrix could be predefined as:

T2 =




0.4 0.3 0.3

0.1 0.6 0.3

0.1 0.3 0.6




.

Figure 4 and Table 1 investigate the estimation performances for MMs and IMMs

at appropriate process noise levels. The appropriate process noise searched over

a limited process noise range minimizes the RMS position error. As expected, the

realizable SM has the largest critical process noise and the largest corresponding RMS

error. The MM with larger number of modes has smaller critical process noise than

the MM with smaller number of modes. From the point of view of the RMS error, it is

better to use 3-mode MM among the MMs when the process noise is set appropriately.

The MM is quicker to adapt to a maneuvering target than the realizable SM tracker.
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Figure 4: Node locations and estimated tracks with the correct process noise when
all 6 nodes are active. The solid line is the true track. The square represents the
initial target location. The target travels counter clockwise. The circles denote the
six node positions. The dotted and dashed lines denote the 3-mode IMM with T1
and the 3-mode MM, respectively.

The IMM outperforms the MM when the transition probability is set reasonably.

When the process noise is chosen correctly, it is better to use an IMM tracker with

N = 3 modes.
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Table 1: RMS position errors at appropriate process noise levels for MMs or IMMs.

Appropriate process noise RMS position error
σν(m/s2) (meters)

Realizable SM 30 23.66
Clairvoyant SM 1.5 20.66

3-mode MM 7 22.25
5-mode MM 1.4 22.37
7-mode MM 1.3 22.52
13-mode MM 1.3 22.73
21-mode MM 1.3 22.83

3-mode IMM with T1 0 14.94
3-mode IMM with T2 0 14.44
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CHAPTER III

GEOMETRY-BASED NODE SELECTION

ALGORITHMS

The node selection algorithm embedded in the resource manager to determine the

set of active nodes can be performed at each node in a distributed system. Each

node must also be capable of implementing one of the tracking filters (EKF, UKF,

PDA, etc.) to extract useful information out of the locally obtained measurements,

broadcast the information and at the same time integrate it into a global state.

The chosen nodes could either minimize the estimation error, maximize the lifetime

of tracking, or optimize a multiobjective function. In this Chapter, we focus on

minimizing the estimation error to choose the desired number of active nodes per

snapshot. We do not consider how much energy is left in the battery (the capacity of

the battery is not an issue), only how much energy is consumed.

For the purpose of minimizing the estimation error, a geometry-based (GB) objec-

tive function was proposed to select nodes [34, 28, 29]. Kaplan used the Kalman-based

root mean squared (RMS) position error with/without prior covariance information

as the objective function. He proposed a global node selection algorithm (GNS) in

[28] and an autonomous node selection algorithm (ANS) in [34, 31]. We add the prefix

GB in front of GNS/ANS in order to discriminate them from energy-based methods.

The GB-GNS is a node selection algorithm to minimize the RMS position error when

the location information of all the nodes in the network is available at each node. In

the GB-GNS method, an inactive node could become active if it is within the next

set of active nodes computed based upon the global location information. In the

24



GB-ANS method, an inactive node within the broadcast range of all the active nodes

could become active if its contribution for a given active node set exceeds a threshold.

The GB-ANS method is a local node selection algorithm (LNS) where a node only

knows the physical location of itself and the active nodes.

3.1 GB metric and critical range (CR)

Since we assume the measurement is only dependent on the target positions, the

updated covariance derived from the Kalman filter, using the information form, is

explicitly expressed as:

Jf (Na) = Jp +




Jm(Na) 02

02 02


 ,

where

Jm(Na) =
∑
i∈Na

1

σ2
i

1

r2
i




sin2 φi − sin φi cos φi

− sin φi cos φi cos2 φi


 ,

and where ri and φi are the 2D polar coordinates of the i-th node to the predicted

target location. The information matrices are Jf = P−1(k|k) and Jp = P−1(k + 1|k).

Then a utility function can be defined as:

µ(Na) =
1

ρ2(Na)
, (18)

where ρ(Na) could be either the posterior RMS position error defined by

ρ(Na) =
√

trace([J−1
f ]1:2,1:2), (19)

or the current measurement-related RMS position error defined by

ρ(Na) =
√

trace {J−1
m } (20)

without incorporating the prior information. [A]i:j,k:l represents the (j− i + 1)× (l−
k + 1) subblock of A. Obviously ρ(Na) is a function of the node set Na and the
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predicted target state. Let Ng denote the set of all nodes in the network, and Nd the

desired number of active nodes per snapshot. For a subset of Na nodes that comprise

the active set Na, we define the differential utility for the i-th node as:

dµ(i|Na) =





µ(Na)− µ(Na \ {i}) if i ∈ Na

maxa∈Na µ((Na \ {a}) ∪ {i})− µ(Na \ {a}) otherwise

(21)

Given a node whose virtual range [28] to the target is riσi, its differential utility

using any active set is bounded by:

0 ≤ dµ(i|Na) <
(1 + γ)2

4σ2
i r

2
i

, (22)

where Kaplan proved that 0 ≤ γ ≤ 1 and gave the calculation of γ in [30, 31]. Let a

threshold τ = mini∈Na dµ(i|Na) be the minimum contribution that one node in the set

Na could make. Any potentially active node that is currently not in Na is expected to

make a greater contribution than τ , i.e., dµ(j|Na) > τ for j 3 Na. Inspired by (22), a

node far away from the predicted target or one having a large bearing measurement

error has limited differential utility. In other words, for j 3 Na,

rj <
1

σj

√
dµ(j|Na)

<
1

σj

√
τ
. (23)

Inequality (23) shows that a potentially active node that is currently inactive and

could make a greater contribution or break the threshold must be within a critical

range rc ≡ 1
σ
√

τ
, assuming σi = σ for each node. The critical range rc is a function

of the chosen node set Na and the predicted target state. A currently active node’s

broadcast range must be

bi = ri + rc (24)

to cover Na and also the potentially active nodes that may exceed the threshold.

When we measure the energy usage for GB-GNS or GB-ANS, we could use the

critical range to determine the broadcast range (24). So we add the suffix CR to
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the node selection algorithm type to explicitly indicate that such a node selection

algorithm is evaluated using the critical range. Note that neither the GB-GNS-CR

nor the GB-ANS-CR has considered the capacity of the battery at this point.

Let

Nr =
⋂

j∈Na

{i|di,j < bj} (25)

be the reachable set of the active set Na, where di,j is the distance between the i-th

node and the j-th node, and bj is the broadcast range for the j-th active node. The

steps of the GB-GNS-CR and GB-ANS-CR to determine the next active node set are

listed in Figs. 5 and 6, respectively. Let Na be the currently active node set. When

measuring the energy usage, the information handoff is determined based upon the

critical range within which nodes providing good geometric view must lie.

1. Determine the next set of active nodes by computing

N ∗
a = arg min

N⊆Nr

ρ(N ),

where |N | = Nd and Nr is the reachable set of the active nodes (25).

2. Determine the broadcast range of the active nodes by (24).

Figure 5: One cycle of the GB-GNS-CR by Kaplan. Step 2 can be eliminated when
energy usage is not measured.

3.2 Transmission range control: knowledge pool

(KP)

In this section, we introduce another adaptive range control to determine the broad-

cast range using available location knowledge of the network and call it the knowledge

pool (KP). Let Na(k) be the active set at time k. The energy consumed for transmit-

ting d meters is εd4 in a multipath environment where ε = lεamp, l is the package size

in bits, and εamp is a constant to run the power amplifiers in the transmitters. Such

a consumption model is based upon the fact that the energy usage in computation
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For any node i ∈ Na,

1. Determine whether to remain active by computing

N ∗
a = arg min

N⊆Na

ρ(N ),

where |N | = Nd. If i ∈ N ∗
a , i remains active; otherwise not.

2. If active, set a threshold τ to be the kd-th largest differential utility by
(21) where kd is the user-defined parameter; determine its broadcast
range by (24).

Na = N ∗
a .

For any node i ∈ Nr \ Na where Nr is computed by (25),

1. Determine whether to be active: compute dµ(i|Na) by (21). If
dµ(i|Na) > τ , i becomes active. Otherwise not.

2. If active, determine its broadcast range by (24).

Figure 6: One cycle of the GB-ANS-CR by Kaplan.

is modest compared to that needed for radio transmissions [57]. The model derived

from [23] only accounts for the radio transmission.

In GB-GNS-CR, the active nodes communicate their data and target state infor-

mation in one shot. The broadcast range of a currently active node must be large

enough to cover not only every other currently active node, but also the potentially

active nodes for the next snapshot. Therefore, the i-th node in Na(k) consumes εb4
i

for the information exchange and handoff, where bi = rc + ri and rc is the critical

range within which the potentially active nodes providing a better geometric view

must lie. The problem with GB-GNS-CR is that the broadcast range is usually larger

than necessary.

In GB-GNS-CR illustrated in Fig. 5, we note that the currently active nodes, or

the inactive nodes within the broadcast range of all active nodes after the currently

active nodes share the locally obtained information, will have an idea of where the

next active nodes are, or which nodes will be active, because the location information

is global. On the other hand, the transmission range control using the critical range is
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bounded for the GB metric, which means that the critical range is to determine where

the better nodes in terms of the GB metric will lie. If the evaluation metric is not

GB, such transmission control may be loose. Hence, for a more general consideration,

we propose a transmission range control using available network information, i.e., a

knowledge pool. The activation decision is performed in a decentralized manner over

the active set of nodes after the currently obtained information is shared among the

active set of nodes. To this end, each active node determines the next active set

by evaluating a metric, and decides whether it remains active or whether it should

wake up and hand off information to nonactive nodes that are members of the next

active set. Therefore, the broadcast range could be just long enough to reach all the

active nodes for information sharing or the next active set for information handoff.

The energy is consumed by information sharing over the currently active set and

information handoff to the next active set. We add the suffix KP to the node selection

algorithm type to explicitly indicate that such an algorithm uses the knowledge pool

to determine the broadcast range.

3.3 GB-GNS-KP

In GB-GNS-KP, the available global location information is used to determine the

broadcast range of the active nodes. The energy consumption is divided into two

classes: one for the active nodes to exchange the current information, i.e., the locally

updated target state and covariance, the other for information handoff from the cur-

rently active nodes to the next set of active nodes. After the currently active nodes

share and process the current information, they know which set of nodes will be active

for the next snapshot. Thus, they could adjust their broadcast ranges so that the po-

tentially active nodes that are currently inactive will get the state information about

the target. The information handoff is dependent on the global location knowledge

instead of the critical range in the GB-GNS-CR. The problem with the knowledge
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pool is that the currently active nodes must ping an inactive node to wake up. As a

result, the i-th node in Na(k) consumes not only εd4
i,Na(k) for the information shar-

ing, but also εd4
i,Na(k+1) for the information handoff to the next set of active nodes,

Na(k + 1), where di,N = maxj∈N di,j.

Figure 7 shows one cycle of GB-GNS-CR and GB-GNS-KP where the chosen nodes

are the origins of the broadcast ranges denoted by the black circles. For GB-GNS-CR

in Fig. 7(d-e), the broadcast range determined by the critical range could be loose.

For GB-GNS-KP in Fig. 7(b), the Na(k) pings the inactive nodes to wake them up

by adjusting the broadcast range, so the energy is burned for the pinging operation.

In the simulations, we ran ten different node configurations, each with twenty ran-

domly placed nodes. A target is moving at a constant velocity of 10 m/s. The number

of active nodes, Nd, is user-defined and varies from two to eight. The power scaling

parameter is ε = lεamp, where l = 384 bits and εamp = 0.00013 pJ. For each value

of Nd, we ran fifty Monte Carlo simulations. Figures 8 and 9 show the comparison

between GB-GNS-CR, where we use the posterior RMS error as the evaluation metric

and a tight bound to compute rc (22), and GB-GNS-KP, where we use measurement

RMS error without incorporating the prior information as the evaluation metric. It

is clear that GB-GNS-KP achieves similar estimation performance at a cost of a little

bit more than two thirds of the energy usage in GB-GNS-CR.

3.4 GB partial node selection with CR (GB-PNS-

CR)

GB-GNS assumes that each node in the network knows where every other node is

located. As a result, every node subset with Nd nodes can be evaluated to minimize

the RMS error. However, when there is a power constraint, each node may know

only where its neighbors are located at the initial setup stage. Let Nnei(i) = {j|di,j ≤
rnei, i 6= j} be the neighbor node set of the i-th node where rnei is the range that

30



(a)

METERS

M
E

T
E

R
S

−1000 −500 0 500 1000

−500

−250

0

250

500

(b)

METERS

M
E

T
E

R
S

−1000 −500 0 500 1000

−500

−250

0

250

500

(c)

METERS

M
E

T
E

R
S

−1000 −500 0 500 1000

−500

−250

0

250

500

(d)

METERS

M
E

T
E

R
S

−1000 −500 0 500 1000

−500

−250

0

250

500

(e)

METERS

M
E

T
E

R
S

−1000 −500 0 500 1000

−500

−250

0

250

500

Figure 7: Illustration of the information handoff using GB-GNS-CR and GB-GNS-
KP. In (a)-(c): GB-GNS-KP, (a) Na(k) (b) Na(k) adjusts the broadcast range to
transmit the information to the next active nodes and (c) Na(k + 1) becomes active.
In (d,e): GB-GNS-CR, (d) Na(k) and (e) Na(k + 1).
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Figure 8: Comparison between the GB-GNS-CR and the GB-GNS-KP by RMS
position error. Error bars computed from 50 runs are shown at each data point.
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usage. Error bars computed from 50 runs are shown at each data point.
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defines neighbors by virtue of a broadcast power constraint. Any node within a circle

of rnei meters is known at the i-th node.

The range rnei affects the size of the combinatorial search space in evaluating the

GB metric. The combinatorial search space varies at different nodes, having different

numbers of neighbors.

Inspired by Kaplan’s GB-GNS-CR, the decision making steps in GB-PNS-CR

investigating neighbor information are shown in Fig. 10. The meaning of the critical

range to determine an active node’s broadcast range is kept. The critical range is a

function of a set of active nodes and the predicted target state. Step 1 is to maintain

a minimum core with Nd active nodes so that Na = |Na| ≥ Nd. Otherwise, if a

minimum core is not maintained, Na < Nd and, what is worse, the node selection

algorithms will suffer from the case where only one node is active especially when

rnei = 0. Note that the neighbor information does not affect an active node’s decision

making because an active node’s neighbors are not considered during the evaluation

of Step 1. As a result a common critical range is determined at each active node (Step

2). Since the critical range is one of the parameters transmitted, a node within the

broadcast range of multiple active nodes may receive different critical ranges if critical

ranges are not the same at the active nodes. As a consequence, an inactive node may

not know which critical range should be chosen to determine its broadcast range if

it decides to be active. The GB-PNS-CR method with rnei = ∞ differs slightly from

GB-GNS-CR (Fig. 5). The GB-GNS-CR method ensures that Na = Nd while in GB-

PNS-CR, even with rnei = ∞, it is possible that Na > Nd, because a minimum core

with length Nd is kept (Step 1 of Fig. 10). In addition, GB-PNS-CR with rnei = 0

is also different from GB-ANS-CR in that the inactive nodes make active/inactive

decisions. The differential utility criteria in GB-ANS-CR allow all nodes that meet

the criteria of GB-PNS-CR with rnei = 0m to the join the active set, but it does allow

for other nodes to join the set as well.
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In Fig. 10, the currently active nodes Na(k) are responsible for determining a

minimum core with a desired number of active nodes and a common critical range,

and then broadcasting the useful information including the predicted target position

x(k + 1|k), the predicted error covariance P (k + 1|k), their own locations, and the

updated critical range. In other words, the active nodes must implement Step 1

and Step 2 in Fig. 10. The inactive nodes within earshot of the active nodes are

responsible for making their own active/inactive decisions by implementing Step 4

based on the received information. The inactive nodes beyond earshot of the active

nodes remain inactive because they receive no new information. Each updated active

node i ∈ Na(k + 1) obtains a local bearing measurement zi(k + 1), computes a local

target state update xi(k + 1|k + 1) and a covariance update Pi(k + 1|k + 1) by using

the EKF, PDA, JPDA, etc. As a result, each node consumes an amount of energy

for transmitting xi(k + 1|k + 1) and Pi(k + 1|k + 1) to other active nodes, but finally

it builds up a global state x(k + 1|k + 1) and covariance P (k + 1|k + 1) (see Section

2.4). The flowchart of the functions combining GB-PNS-CR with Kalman filtering in

a distributed way is shown in Fig. 11 where the dotted box contains the functions for

active nodes and the dashed box the functions for inactive nodes at time k.

3.5 GB-PNS-KP

Inspired by GB-GNS-KP, the steps of decision making in GB-PNS-KP are shown in

Fig. 12. We let the available location information guide the broadcast range of an

active node instead of using the critical range. Step 1 is to determine the next set of

the active nodes, N ∗
a , derived from the currently active nodes Na. The set N ∗

a,i is the

locally determined set of the active nodes based on node i’s neighbors (see Steps 2

and 4). In other words, the i-th node thinks that N ∗
a,i should be active for the next

snapshot. Therefore, the broadcast range for the information exchange at the next

snapshot is large enough to cover the sets N ∗
a and N ∗

a,i, i.e., Ri = max{di,N ∗
a,i

, di,N ∗
a
}.
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1. Determine the next set of the active nodes with length Nd, derived from
the currently active nodes Na

N ∗
a = arg min

N⊆Na

ρ(N ),

where |N | = Nd.

2. For any node i ∈ N ∗
a ,

• set a threshold τ = mini∈N ∗
a

dµ(i|N ∗
a ).

• set a common critical range rc = 1
σ
√

τ
.

• determine its broadcast range bi = ri + rc.

3. Let Nia = Nr \N ∗
a where Nr is a set of nodes that can hear every node

in N ∗
a , that is, Nr =

⋂
j∈N ∗

a
{i|di,j < bj}.

4. For any node i ∈ Nia,

• Define a known node set for node i:

Nknown(i) = N ∗
a ∪ {i} ∪ {Nnei(i) ∩Nr}.

• Compute
N ∗

a,i = arg min
N⊆Nknown(i)

ρ(N ),

where |N | = Nd.

• If i ∈ N ∗
a,i, i becomes active; N ∗

a = [N ∗
a i]; determine its broadcast

range bi by (24).

5. For i ∈ N ∗
a , εb4

i is consumed.

Figure 10: One cycle of the GB-PNS-CR method.
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Figure 11: Flowchart of the functions for active/inactive nodes combining GB-PNS-
CR with tracking filters.

On the other hand, since the potentially active nodes that are currently inactive

may not be within the current broadcast range of the active nodes, the node in N ∗
a

needs to ping those potentially active nodes by adjusting its broadcast range for the

information handoff. As a result, a node in N ∗
a also consumes εD4

i for the information

handoff where Di = max{di,N ∗
a,i

, di,N ∗
a
}.

Clearly, the broadcast range of an active node for the information handoff is not

dependent on a common critical range, but on the knowledge of the active nodes’

neighbors (see Step 2 in Fig. 12). The responsibilities of the active nodes are not

only to maintain a minimum active node set, but also to insightfully determine their

broadcast ranges to the potentially active nodes based upon the knowledge of their

neighbors. The inactive nodes also investigate their neighbor information to make

their own active/inactive decisions (see Step 4 in Fig. 12). A tracking filter such as

EKF, PDA and JDPA is implemented using the new bearing measurement after a

node becomes active. The flowchart of the functions combining GB-PNS-KP with

the tracking filters in a distributed way is shown in Fig. 13, where the dotted box
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contains the functions for active nodes and the dashed box contains the functions for

inactive nodes at time k. In Fig. 13, the information is exchanged and shared over

the broadcast range that is probed by the active nodes based on the known location

information and the rnei affects the decision making of a currently active node on

whether or not it should remain active. On the contrary, in Fig. 11 the information is

shared over the broadcast range determined by the critical range and rnei only affects

the decision making of a currently inactive node on whether or not to become active.

Figure 14 shows one cycle of GB-PNS-KP with rnei = 1000 m where the chosen

nodes indicated by shaded circles are the origins of the broadcast ranges denoted

by the black circles. The GB-PNS-KP requires the extra pinging operation to cover

the promising active nodes, see Fig. 14(b). In the simulations, we ran ten node

configurations in a field of size 2000m×1000m, each with twenty nodes randomly

generated. For each value of rnei and a given configuration, fifty Monte Carlo trials

with σ = 5◦ are run. The desired number of active nodes is Nd = 3. A target is

moving along a straight line as shown in Fig. 14.

Figures 15-18 show comparisons between GB-PNS-CR and GB-PNS-KP with pos-

terior RMS errors as the GB metric. For GB-PNS-KP, which has more knowledge of

its neighbors, there is smaller RMS error at a cost of more energy usage and node

usage. The reason is that when rnei is larger, an active node would know the exis-

tence of a nearby node that brings a better geometric view and then it would ping

this potentially active node to wake up at a cost of more energy usage. As shown

in Figs. 15-16, the advantage of using a knowledge pool over the critical range to

determine the broadcast range is obvious when rnei is greater than 700m. When rnei

is smaller than 700m, using the critical range could cover nodes that possibly provide

better geometric views at a cost of more energy usage because of longer reach. For

smaller rnei, using knowledge pool may not help cover better nodes although energy

would be saved.
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1. Determine the next set of the active nodes with length Nd, derived from
the currently active nodes Na

N ∗
a = arg min

N⊆Na

ρ(N ),

where |N | = Nd.

2. For any node i ∈ N ∗
a ,

• define a known node set for node i: Nknown(i) = Na

⋃Nnei(i).

• determine the broadcast range for the information exchange at the
next snapshot by computing

N ∗
a,i = arg min

N⊆Nknown(i)
ρ(N ),

where |N | = Nd; Ri = max{di,N ∗
a,i

, di,N ∗
a
}.

• adjust its broadcast range for the information handoff to Di where
Di = Ri; consume εD4

i for the information handoff.

3. Let Nia = Nr \N ∗
a where Nr is a set of nodes that can hear every node

in N ∗
a , that is, Nr =

⋂
j∈N ∗

a
{i|di,j ≤ Dj}.

4. For any node i ∈ Nia,

• define a known node set for node i :

Nknown(i) = N ∗
a ∪ {i} ∪ {Nnei(i) ∩Nr}.

• compute
N ∗

a,i = arg min
N⊆Nknown(i)

ρ(N ),

where |N | = Nd.

• if i ∈ N ∗
a,i, i becomes active; N ∗

a = [N ∗
a i]; determine the broadcast

range for the information exchange at the next snapshot: Ri =
max{di,N ∗

a,i
, di,N ∗

a
}.

5. For i ∈ N ∗
a , εR4

i is consumed for the information exchange at the next
snapshot.

Figure 12: One cycle of the GB-PNS-KP method.
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Figure 13: Flowchart of the functions for active/inactive nodes combining GB-PNS-
KP with tracking filters where Di is the broadcast range for information handoff and
Ri is the broadcast range for information exchange (see Section 3.5).

For GB-PNS-CR in Fig. 15, the variable rnei does not significantly affect the RMS

error. The reason is that rnei only affects the decision making of inactive nodes.

The localization performance of GB-PNS-CR is consistent with that of GB-GNS-CR

knowing the global information in [31]. Kaplan demonstrated that GB-GNS-CR and

GB-ANS-CR are comparable while GB-GNS-CR is more energy efficient [31]. In

addition, GB-PNS-CR is more energy efficient as rnei becomes larger (see GB-PNS-

CR in Fig. 16). The reason is that a larger rnei slightly reduces node usage (see

GB-PNS-CR in Fig. 17) because when rnei is small, a node may decide to become

active because it does not know about the existence of another nearby node that

provides a better geometry. As rnei becomes larger, the node would know of the

existence of its neighbor and remain quiet. On the other hand, GB-PNS-CR/GB-

PNS-KP with rnei = 1000m does not exactly match the corresponding GNS because

the PNS maintains a minimum core using the previous active nodes (see Step 2 in

Figs. 10 and 12).
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Figure 14: Illustration of GB-PNS-KP when Nd = 2 and rnei = 1000m: (a) Na(k),
(b) a minimum core of Na(k) adjusts the broadcast range to transmit the information
to the potentially active nodes, and (c) Na(k + 1) becomes active.
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Figure 15: Comparison between GB-PNS-CR and GB-PNS-KP by RMS position
error. Error bars computed from 10 node configurations each with 50 runs are shown
for GB-PNS-CR and GB-PNS-KP when rnei=300 and 600m.
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Figure 16: Comparison between GB-PNS-CR and GB-PNS-KP by energy usage; and
std. error for GB-PNS-CR: 3.1J (rnei=300m) and 1.8J (rnei=600m); GB-PNS-KP:
0.0003J (rnei=300m) and 0.0051J (rnei=600m).
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Figure 17: Comparison between GB-PNS-CR and GB-PNS-KP by node usage.
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CHAPTER IV

NODE SELECTION FOR UNATTENDED

GROUND SENSOR NETWORKS WHILE

INTERROGATING MULTIPLE TARGETS

This chapter investigates the performance of a multiple target tracker that exploits

bearings-only measurements from a network of unattended ground sensors (UGS) us-

ing real data collected by the U.S Army Research Laboratory (ARL) [43]. To conserve

energy while interrogating multiple maneuvering target, the tracker integrates node

resource management with either the multiple-mode probabilistic data association

(PDA) or the joint probabilistic data association(JPDA) filter. Experiments show

that for sufficiently separated targets, global node selection leads to better geoloca-

tion performance than the “closest” selection approach when the number of active

nodes is set to two per snapshot. A track purity metric is also introduced to quantify

the quality of the measurement-to-track association performance of the tracking filter.

4.1 Measurement and dynamic Model

In this section, the position and velocity for the t-th target are labeled as P t =

[P t
x, P

t
y ]

T and V t = [V t
x , V t

y ]T , respectively. The state for the t-th target xt(k) at

time k is concatenated by the target position and velocity, i.e. xt(k) = [P tT , V tT ]T .

The bearing angles are used as the measurements. The UGS network consists of Ns

nodes where the j-th node reports mj measurements at a given snapshot. The l-th

measurement reported by the j-th node at snapshot time k is related to the target

43



state via the nonlinear equation

zl
j(k) = Hj(x

f(l)(k)) + ηl
j(k)

where

Hj(x
t) = arctan

(
P t

y − Sj,y

P t
x − Sj,x

)
(26)

is the bearing angle and Sj = [Sj,xSj,y] is the position of the j-th node. The state index

f(l) represents the measurement-to-track association. The measurement error ηl
j(k)

is modeled as zero mean Gaussian noise with variance σ2. This error is uncorrelated

between the different measurements and nodes, i.e., E{ηp
i (k)ηl

j(k)} = σ2δi,jδl,p.

The target motion can be represented by the coordinated turn (CT) dynamic

model where the mode parameter is denoted by the turn rate ω:

x(k + 1) = F (ω)x(k) + Av(k + 1),

where

F (ω) =




1 0 sin ωT
ω

cos ωT−1
ω

0 1 1−cos ωT
ω

sin ωT
ω

0 0 cos ωT − sin ωT

0 0 sin ωT cos ωT




, and A =




0.5T 2 0

0 0.5T 2

T 0

0 T




.

The vector v(k + 1) is the process noise assumed to be Gaussian with covariance

σ2
µI . We also need a stationary dynamical model to follow a stationary or low-velocity

target, so we use the following state transition matrix

F =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




.
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Figure 19: Structure of node selection with MM-PDA or MM-JPDA.

4.2 The Tracker

The measurement equation and the set of dynamical models leads to a bank of ex-

tended Kalman filters (EKF). This section discusses how the tracker integrates the

Kalman filtering and node selection. Based upon empirical evidence, we assume that

the bearing error σ = 5◦ for this work. The subsequent sections provide experimen-

tal results for the process noise parameter σ2
µ that leads to the smallest root mean

squared (RMS) position error.

The integration of the node selection and filtering in the tracker is illustrated in

Fig. 19. The initialization methods are described in the following subsection. The

subsequent subsections describe the modules in Fig. 19. At this point, the track

manager simply maintains the current tracks over the entire data collection interval.
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4.2.1 Initialization

Multiple tracks are initialized (see [33]) by minimizing

C(P ) =
Ns∑
j=1

min
l
|zl

j(k)− ∠(P − Sj)|2. (27)

The number of bearing measurements mj varies at different nodes because of false

alarms and missed detections. Some of the local minima should correspond to true

targets. However, other local minima could appear due to ghosting and noise. For this

work, the location of the local minima closest to the ground truth target positions

are used to initialize the Kalman filters even though these are, strictly speaking,

unknown. Furthermore, the initial velocity is set to zero. We also considered another

initialization using the true target positions.

4.2.2 Probabilistic Data Association (PDA) and Joint PDA (JPDA)

In PDA/JPDA, the number of estimated tracks is assumed or maintained by the

track manager. In the filtering stage, each track is updated using a weighted sum of

measurement residuals via

x(k|k) = x(k|k − 1) +
Ns∑
j=1

Wj

m̃j∑

l=1

βl
j(z

l
j(k)− zj(k|k − 1)), (28)

P−1(k|k) = P−1(k|k − 1) + PdPg

Ns∑
j=1

1

σ2
j

HjH
T
j , (29)

where Pd represents the probability of detecting a measurement and Pg the probabil-

ity the measurement passes the gating threshold. The integer mj is the number of

measurements and m̃j is the validated measurements defined by Pg. Furthermore, Wj

is the Kalman gain (7) and Hj is the Jacobian of the nonlinear measurement equation

given by (8), i.e., explicitly,

Hj =
1

rj

[
sin φj − cos φj 0 0

]T

,
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where rj and φj are the 2-D polar coordinates for the position of the i-th node relative

to the target when no propagation delay is assumed in the measurement equation.

Finally, βl
j is the association probability, i.e., the likelihood that the l-th measurement

should be associated to a given track.

Both PDA and JPDA use a gate to eliminate measurement-to-track associations

that are clearly poor. Simply given an existing target track t, ε =
(zj(k)−zt

j(k|k−1))2

σ̃2
j,t

fol-

lows a chi-squared distribution with 1-degree of freedom. Note that σ̃2
j,t = HjP (k|k−

1)Hj
T + σ2

j , where zt
j(k|k− 1) = hj(x(k|k− 1)) is the predicted measurement related

to target t. The gate probability Pg =Prob(ε < g2) is a user defined parameter. Once

it is set, g can be computed. Given mj measurements at the j-th node, the validated

measurements for track t are {zl
j(k)| |z

l
j(k)−zt

j(k|k−1)|
σ̃j,t

< g, l = 1, 2, . . . , mj}. Clearly, the

size of the validated measurement set is m̃j for a given track.

In PDA, one of the validated measurements is assumed to originate from an ex-

isting target, and the remainder are from random clutter, so PDA does not take into

account that one of the remaining measurements might come from another target.

We assume the detection probability is the same for each node and each target. As-

suming uniform clutter distribution, the probability that none of the measurements

originate from a target is

β0
j =

b

b +
∑l=m̃j

l=1 ∧l
j

,

while the probability that measurement l originates from a target is

βl
j =

∧l
j

b +
∑l=m̃j

l=1 ∧l
j

,

where ∧l
j is the likelihood that zl

j(k), the l-th validated measurement from node j, is

associated to the track t so that

∧l
j = N (zl

j(k); zt
j(k|k − 1), σ̃2

j,t). (30)

In other words, if the measurement is actually associated to the track, then the mea-

surement residual is zero mean Gaussian with variance σ̃2
j,t. Also, b =

m̃j

V
(1−PdPg)/Pd
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where V is the volume of the gate. Explicitly, V = 2g|σ̃j,t|0.5. The JPDA tracker is

similar to the PDA tracker with the exception of the calculation of the measurement-

to-track association probability [2, 61]. Since JPDA takes into account the existence

of multiple targets, the measurement-to-track association probability must be mar-

ginal, i.e., the probability of track t being associated with measurement l for node j

is computed by enumerating all possible joint events that contain association (t, l).

Therefore, βl
j =

∑
P{θ}/c where θ is a joint event that contains an association

(t, l) and c is a normalization constant. A joint event or a hypothesis is a set of

measurement-to-track associations which have measurements assigned to either clut-

ter or tracks and each track assigned to only one measurement or declared missed.

The probability of any joint event or hypothesis in a non-parameter version is com-

puted by

P{θ} =
φ!

V φ

mj∏

l=1

{N (zl
j; z

t
j(k|k − 1), σ̃2

j,t)}τl ×
Nt∏
t=1

(Pd)
δt(1− Pd)

1−δt , (31)

where φ is the number of clutter hits, τl is a binary number indicating whether

measurement l is assigned to track t, δt is a binary number indicating whether or not

track t is assigned to a measurement, and Nt is the number of tracks. Given a case

with a total of four measurements, where Measurements 1 and 4 both fall inside the

gates of the two established tracks, but Measurement 2 can only be associated with

Track 1 and Measurement 3 can only be associated with Track 2, then there are a

total of fourteen hypotheses and four of them contain the association of Track 1 with

Measurement 2 (1,2):

• θ1 = (1, 2), (2, 1), (clutter, 3&4),

• θ2 = (1, 2), (2, 3), (clutter, 1&4),

• θ3 = (1, 2), (2, 4), (clutter, 1&3),

• θ4 = (1, 2), (2, missed),(clutter,1&3&4).
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The JPDA method is better than the PDA because of the more precise calculation

of the association probabilities.

4.2.3 Multiple-mode(MM) tracking

The MM tracker [2] employs a bank of mode-matched filters that can include a stan-

dard EKF, a PDA filter or a JPDA filter (see Figure 19). The initial state and

covariance for each mode-matched filter is identical and given by the previous global

state and covariance in the MM tracker. The global state update is the weighted sum

of the state outputs of each mode-matched filter

x(k|k) =
N∑

i=1

xi(k|k)µi(k), (32)

where µi(k) is the mode probability, xi(k|k) is the state output of the ith mode-

matched filter and N is the number of mode-matched filters. Likewise, the covariance

update is given by

P (k|k) =
N∑

i=1

{(x(k|k)− xi(k|k))(x(k|k)− xi(k|k))T + Pi(k|k)}µi(k), (33)

where Pi(k|k) is the covariance output of the i-th mode-matched filter.

The weights µi(k) are derived from the likelihood of each mode representing the

true dynamics of the target. The measurement-to-track likelihood is computed via

(30) for each mode i and is explicitly labeled as ∧l
ij. Using the additive fusion strategy

suggested in [11], the likelihood that the target dynamics follow mode i given the

current measurement set is

∧i(k) =
Ns∑
j=1

m̃j∑

l=1

∧l
ij. (34)

The mode likelihood measures the difference between the assumed model expressed by

the predicted measurement and the true model denoted by the received measurement.

When this difference gets larger, the likelihood that the current measurement follows

the assumed model gets smaller. Finally, the mode probability µi(k) is updated via

49



a Bayesian rule where µi(k − 1) is the prior probability, i.e.,

µi(k) =
∧i(k)µi(k − 1)∑N

j=1 ∧j(k)µj(k − 1)
. (35)

4.2.4 Node selection

A node selection algorithm which is embedded in a resource manager determines

which subset of nodes will be active for a given snapshot of data collection. In this

chapter, we use the global node selection (GNS) approach [28]. The selection is global

in the sense that each node knows the exact locations of all other nodes in the network.

In this chapter, GNS is a nearly optimal approach to determine which active set

of nodes Na provides the best geometry to localize a target, i.e., GNS is the same as

GB-GNS in Chapter 3. Since the GB metric is the one without accounting for the

prior measurements (20), at this moment we are not worrying about the transmission

range control for multiple targets (a subject of future work). The GNS is a Greedy

simplex approach to find the best Na nodes. It starts by determining the best two

nodes via exhaustive search. Then, it adds one node at a time to the active set.

Finally, single node replacements that reduce (20) are performed until that strategy is

exhausted. The GNS approach reduces the computational complexity from O(NNa)

with exhaustive search to O(N2). Effectively, the GNS method selects nodes that

surround the target and are within close proximity of the target. As a baseline to

compare with the GNS method, we also consider the ’closest’ node selection approach

that selects the Na nodes which lie closest to the predicted target location.

Figure 19 shows how node selection is integrated into the tracking filter. Prediction

is critical in the combined node selection and MM-PDA/MM-JPDA tracker for the

following reasons: 1) Node selection algorithms use the prediction to determine which

subset of nodes will be active, and 2) when none of the current measurements lie in

the gate for a given mode i, the mode likelihood is zero, i.e., ∧i(k) = 0. When

∑N
i=1 ∧i(k)µi(k − 1) = 0, we can infer that none of the assumed modes is correct. In
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this case, it is better to use the predicted target state and covariance instead of using

the filtered ones. The predicted state and covariance in the MM-PDA/MM-JPDA

with the node selection are given by (see [7]):

x(k|k − 1) =
N∑

i=1

xi(k|k − 1)ui(k − 1),

P (k|k − 1) =
N∑

i=1

Pi(k|k − 1)ui(k − 1),

where xi(k|k − 1) and Pi(k|k − 1) are the predictions for i-th mode.

4.3 Track metrics

To compare trackers, we score the resulting tracks via RMS position error and track

purity. These metrics are clearly defined in the following subsections.

4.3.1 RMS error

The RMS position error is simply the sum of the position errors between the tracks

and the corresponding target. In other words, at snapshot k, the error is

RMS(k) =
1

Nt

Nt∑
t=1

(
2∑

s=1

([xt(k|k)]s − [P t(k)]s)
2

) 1
2

, (36)

or

RMS(k) =
1

Nt

Nt∑
t=1

min
1≤f≤Mt

(
2∑

s=1

([xt(k|k)]s − [P f (k)]s)
2

) 1
2

, (37)

where [x]s extracts the s-th element of vector x, Nt is the assumed number of targets

usually computed in the track formation stage, and Mt is the exact number of targets.

The RMS error computed by (37) must give smaller values than the RMS error in

(36). In either case, the average RMS error over all snapshots is

e =
1

Nk

Nk∑

k=1

RMS(k).
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4.3.2 Track purity

In the experiments in Section 4.4, we report a simple purity metric that could indicate

a track switch or merge. The intent of the metric is to quantify the accuracy of a

measurement-to-track association algorithm in a multi-node multi-mode multi-target

tracker. The correct measurement-to-track association is derived using the ground

truth provided by the GPS units located in the targets. Let Ct,j be the correct

association for track t at node j. If some measurements from node j pass the gate

for track t, then

Ct,j = arg minl∈{l:|zl
j−θt|<τ}|zl

j − θt|. (38)

Otherwise, Ct,j = 0, which indicates that target t is not detected. For mode i and a

chosen node j ∈ Na, the association of the target t with the measurement l is βl
t,i,j

and
∑mj

l=1 βl
t,i,j ≤ 1. The purity of the measurement-to-track association is defined as:

Qt,i,j =





β
Ct,j

t,i,j if Ct,j 6= 0

1−∑mj

l=1 βl
t,i,j otherwise

(39)

Considering all active nodes, the average purity is

Qt,i =
1

Na

∑
j∈Na

Qt,i,j.

Considering all dynamic modes, the average purity of the measurement-to-track as-

sociation is

Qt =
N∑

i=1

µi(k)Qt,i.

Finally, the purity of the measurement-to-target associations Qm is the average value

of Qt over the number of the targets.
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Figure 20: Node locations and tracks: (a) Scenario 1 with two vehicles on separate
paths, and (b) Scenario 2 with four vehicles traveling around the oval track. The
circles represent the node locations, the plus symbols represent the initial target
positions, the square symbols represent the estimated target positions, and the lines
represent the target trajectories.

4.4 Experiments

4.4.1 Real data test

The real data, collected by the U.S. Army Research Laboratory (ARL) at Aberdeen

Proving Grounds, contains multiple targets traveling along an oval track or an ad-

jacent road. Six acoustic nodes were situated in the middle of the oval track. The

targets were fitted with GPS to obtain ground truth information. Figure 20 shows

the tracks of targets for two different test scenarios and the initial position estimates

as computed by the method in Section 4.2.1.

ARL processed the raw data using an incoherent wideband minimum variance

distortionless response (MVDR) beamformer [67] to obtain bearing measurements.

Figures 21 and 22 show the bearing measurements obtained by two different nodes

for the two different test scenarios. In Scenario 1, one target is traveling along the

oval track, while the other target is traveling down the road parallel to the oval

track. In Scenario 2, a convoy of four vehicles is traveling around the track. The
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Figure 21: Bearing measurement output of MVDR for the top right node in Sce-
nario 1.

measurements are assumed to have 5◦ errors for each snapshot. In addition, at each

node, the bearing measurements might be missing or false measurements could be

detected. In Fig. 22, two measurement tracks are obvious for k between 40 to 130.

However, a large number of false measurement are also obtained. On the other hand,

three measurement tracks exist for k between 130 to 200, but in these snapshots, the

targets are not always detected.

For both scenarios, we initialize two tracks. In Scenario 1 the number of targets

is correctly modeled, but for Scenario 2, it is underestimated. The purpose for un-

derestimating the number of targets in Scenario 2 is to avoid the occurrence of track

swaps or merges, which leads to poor geolocation performance. For Scenario 2, we

either track the front and back targets, or the two middle targets. The middle targets

pose a greater challenge to the measurement-to-track association portion of the track

filter.

In these experiments, Pd and Pg are both fixed to be 0.9999 for Scenario 1, and

0.98 for Scenario 2. Here, we do not consider adaptively changing Pd or Pg. A bank

of four mode-matched filters are used where three modes represent the CT model for
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Figure 22: Bearing measurement output of MVDR for the middle left node in Sce-
nario 2.

ω ∈ {−20◦, 0◦, 20◦}, and the fourth mode represents a stationary dynamical model.

The initial mode probability µi(0) is set uniformly so that µi(0) = 1/4, i = 1, 2, 3, 4.

Figure 23 shows the estimated tracks using MM-PDA or MM-JPDA when all

nodes are active and the process noise parameter σν is set to a value that minimizes

the RMS position error. We considered eleven different values from σν between 1 m2/s

to 21 m2/s in steps of 2 m2/s. The target states were initialized via (27). The figure

shows that the MM-PDA method has the most severe adaptation delay around the

turns while the MM-JPDA has very little adaptation delay except when tracking the

middle targets in Scenario 2.

Next, we evaluated the multiple target trackers using the GNS method for different

values of Na. We also considered a simplified node selection method that selects the

closest Na nodes to the predicted target positions. Figs. 24-26 show the average RMS

position errors via (36) for the different approaches using either (27) or the true target

positions for initialization. Again, the best process noise is used. For Scenario 1, it is

clear in Fig. 24 that the MM-JPDA is more effective than the MM-PDA and that GNS

outperforms the “closest” selection approach when Na = 2 for different initializations
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Figure 23: Estimated tracks: (a) Scenario 1, (b) Scenario 2 for the two end targets,
and (c) Scenario 2 for the two middle targets. In each case, the dotted and dashed
lines represent MM-JPDA and MM-PDA tracks, respectively.

of the filters.

For Scenario 2, we intend to track the first and last targets of the convoy, or the

middle two targets along the oval tracks. Figure 25 shows that when tracking the

end targets, GNS is able to maintain localization performance as Na goes to two.

MM-JPDA with GNS is robust even when the initial guesses are noisy. However,

other combinations of track filters and node selection are poor at some values of Na.

Figure 26 shows that when tracking the middle two targets in Scenario 2, the average

RMS errors via (36) are almost always more than 70 meters. Note that the average

distances between two adjacent targets from first to last are 107, 77 and 201 meters.

Inspection of the tracks actually indicate that track mergence and swaps occur during

the lifetime of the tracks while attempting to follow the middle targets. Comparing

Fig. 26 and Fig. 27, we could infer that track merges and swaps occur.

Tables 2 and 3 quantify the RMS error via (36) or (37), and track purity per-

formance of MM-PDA or MM-JPDA with different nodes selection methods when
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Figure 24: Average RMS errors via (36) for Scenario 1 by initializing the track filters
using (a) the true target positions, or (b) estimated target positions via (27).
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Figure 25: Average RMS errors via (36) for Scenario 2 to track first and bottom
targets by initializing the track filters using (a) the true target positions, or (b)
estimated target positions via (27).

57



(a)

2 3 4 5 6
0

50

100

150

200

R
M

S
 P

O
S

IT
IO

N
 E

R
R

O
R

 (
M

E
T

E
R

S
)

NUM OF ACTIVE NODES

MMPDA − GNS
MMJPDA − GNS
MMPDA − Closest
MMJPDA − Closest

(b)

2 3 4 5 6
0

50

100

150

200

R
M

S
 P

O
S

IT
IO

N
 E

R
R

O
R

 (
M

E
T

E
R

S
)

NUM OF ACTIVE NODES

MMPDA − GNS
MMJPDA − GNS
MMPDA − Closest
MMJPDA − Closest

Figure 26: Average RMS errors via (36) for Scenario 2 to track the middle two targets
by initializing the track filters using (a) the true target positions, or (b) estimated
target positions via (27). Note the vertical scale change with respect to Figs. 25
and 26.

Na = 2. Usually, a higher purity score translates to a lower RMS position error.

It is noted that a high purity score with large RMS errors is possible because the

collection geometry is not well spread out. For example, in Scenario 1 the MM-PDA

using the “closest” method leads to the worst estimation performance, but its purity

Qm is above 0.9. The MM-JPDA using GNS has the smallest RMS errors and highest

Qm no matter how the filters are initialized. In Scenario 2, when tracking the first

and bottom targets, the purity Qm is at least 0.8. When tracking the middle two

targets, the purity, Qm is poor and below 0.5. The poor purity explains the poor RMS

error values via (36), while smaller RMS error via (37) explains the appearance of the

track merges and swaps. The MMPDA or MMJPDA with the GNS node selection

to choose even a small number of active nodes would not have difficulties following a

maneuvering motion if nodes were distributed around tracks or a better node-target

geometry was formed. Since the node-target geometry is set up poorly, the combined

tracker has trouble following the intended tracks when turning around the corner.

Consequently, trackers could switch, which leads to large RMS errors.
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Table 2: Track purity and corresponding average RMS positions errors with Na = 2
when initializing the filters using true target positions.

Scenario 1
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) via (36) 20.69 17.46 54.93 27.65
RMS err.(m) via (37) 20.69 17.46 54.93 27.65

Qm 0.970 0.981 0.966 0.969
Scenario 2 to track first and bottom targets
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) via (36) 17.55 17.91 21.63 29.41
RMS err.(m) via (37) 17.55 17.91 21.63 27.63

Qm 0.935 0.932 0.929 0.886
Scenario 2 to track middle two targets

PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) via (36) 114.4 126.5 76.19 172.8
RMS err.(m) via (37) 47.46 25.77 41.82 51.32

Qm 0.337 0.242 0.429 0.108

Table 3: Track purity and corresponding average RMS positions errors with Na = 2
when initializing the filters via (27).

Scenario 1
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) via (36) 19.90 17.55 48.45 27.66
RMS err.(m) via (37) 19.90 17.55 48.45 27.66

Qm 0.968 0.981 0.944 0.967
Scenario 2 to track first and last targets
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) via (36) 21.95 24.71 22.21 24.90
RMS err.(m) via (37) 19.02 22.48 18.67 18.57

Qm 0.905 0.890 0.923 0.903
Scenario 2 to track middle two targets
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) via (36) 115.4 126.6 78.28 151.4
RMS err.(m) via (37) 47.65 25.89 58.74 75.63

Qm 0.339 0.243 0.427 0.138
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Figure 27: Average RMS errors via (37) for Scenario 2 to track the middle two
targets by initializing the track filters using estimated target positions via (27).

4.4.2 Simulated data test

Using real data, if two targets are separated by less than seventy meters, the node

configuration where six nodes are placed as in Fig. 20 is the reason why the perfor-

mance is poor. We can test the situation where there are more available nodes by

generating simulated bearing measurements. The objective is to overcome the data

association problem by using a more intelligent node placement in the field. In the

test below, we consider a node configuration where fourteen nodes are set up as shown

in Fig. 28.

The simulated bearing measurements obtained at each node in Fig. 29 may include

measurements that truly originated from targets, merged measurements when two

targets are close, or false measurements due to noise. In addition, targets may not

be detected. The measurement at node i, θ̃i, could be:

1. A measurement that truly originated from a detected target t: θi,t + ni, where

θi,t is the noise-free bearing angle for target t and ni is Gaussian noise with zero

mean and variance σi . We set σi = 2 for all nodes.
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2. A merged measurement when two targets are close. We set the cell resolution

equal to 5◦ . In other words, if |θi,1 − θi,2| ≤ 5◦ , then θ̃i =
θi,1+θi,2

2
+ ni.

3. A false measurement due to noise. The number of false measurements follows

a Poisson distribution with density λ = 0.6, which means in one snapshot of

interest, there are on average 0.6 false measurements uniformly distributed in

the measurement space.

The simulated measurements obtained at the top right node are shown in Fig. 29.

We initially intend to track the two middle targets using the true target position and

a nonzero velocity as the initial state guesses. We also artificially design a smaller ini-

tial error covariance to emphasize the contribution of the measurements. Otherwise,

if the initial error covariance is too large, even a measurement very close to the pre-

dicted measurement will not be given the relatively large weight. Clearly, the middle

targets pose a greater challenge to the measurement-to-target association portion of

the tracker. The tracker parameters Pd and Pg and are fixed to be 0.999. A bank of

four mode-matched filters is used where three modes represent the CT model with

turn rates as mode parameters and the final mode represents a stationary dynamical

model. The initial mode probability is set uniformly. Figures 30-31 show the average

RMS position errors computed by (36) or (37) using different node configurations to

track the middle two targets. An appropriate process noise is searched over 1 m/s2

to 21 m/s2 with grid distance 2 m/s2 to minimize the RMS error. When tracking

the close targets, the MMJPDA with the GNS is able to maintain localization per-

formances as Na goes to two. As expected, the fourteen-node configuration performs

better than the six-node configuration.
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Figure 28: Fourteen-node configuration where the circles represent the node loca-
tions, the plus symbols represent the initial positions of the four targets, and the lines
represent the target trajectories.

4.4.3 Targets within close proximity

The structure in Fig. 19 combines node selection algorithms with multiple-mode mul-

titarget trackers. We note that the GB metric (20) is a function of the node configu-

ration N and the predicted state of the target t, i.e., by ρ(N , t). The node selection

algorithm chooses the best node set per target per snapshot:

N ∗
t = arg min

N
ρ(N , t). (40)

Let Nd be the desired number of active nodes per target per snapshot, Mt be the

number of detected targets, and Dn be the number of the distinct chosen nodes per

snapshot because N ∗
1 and N ∗

2 have possible overlaps. Then we have the relationship

Nd ≤ Dn ≤ Mt × Nd. Especially when targets are within close proximity, Dn could

be reduced to Nd.

In the following paragraph, we introduce a way to conserve node usage while

reaching comparable estimation performance by averaging ρ(N , t) over all the de-

tected targets. The same node set N ∗ will end up being chosen when two targets are

separated within 50m:

N ∗ = arg min
N

Mt∑
t=1

ρ(N , t). (41)
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Figure 29: Simulated bearing measurements at the top right node in Fig. 28.

In the simulation, two targets are moving at a constant velocity of 10m/s. For a

node configuration with twenty randomly distributed nodes as shown in Fig. 32, we

run fifty Monte Carlo simulations with 5-degree bearing errors. The cell resolution

is 10 degrees, which means that when two targets are separated by 10 degrees or

less, only one measurement will be given at a given node. The Poisson density of the

number of false measurements is 0.6. The maximum and the minimum separation

between targets is 360m and 5m, respectively. Tracking lasts 100 seconds with 1

second as the time interval to update the trackers. Targets are within close proximity

or separated by less than 50m for about 13 seconds. We compare two global node

selection algorithms: one choosing nodes per target per snapshot by (40), the other

choosing nodes when two estimated targets are separated by less than 50m by (41).

Table 4 shows that choosing Nd = 3 nodes over all the targets per snapshot for targets

within close proximity saves a little bit node usage Dn than choosing Nd nodes per

target per snapshot while reaching comparable estimation performance.
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Figure 30: Average RMS errors via (36) with simulated measurements to track the
middle two targets by initializing the track filters using the true target positions using
(a) six nodes in Fig. 20 , or (b) fourteen node in Fig. 28. Note the different vertical
scales.
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Figure 31: Average RMS errors via (37) with simulated measurements to track
middle two targets by initializing the track filters using the true target positions
using (a) six nodes in Fig. 20 , or (b) fourteen node in Fig. 28. Note the different
vertical scales.
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Figure 32: Node configuration with 20 randomly place nodes and two constant-
velocity tracks.

Table 4: Conservation of node usage

When two targets are Avg. RMS error(m) Avg.Dn

separated within 50m over 100s over 100s
Choose Nd = 3 nodes 33.1333 4.3869

per target per snapshot
Choose Nd = 3 nodes 32.3354 4.3358

over all targets per snapshot
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CHAPTER V

MULTIOBJECTIVE ENERGY-AWARE NODE

SELECTION

This chapter develops an energy-aware resource management strategy for a wireless

sensor network of bearings-only sensors [41]. Specifically, the resource manager deter-

mines which nodes actively sense and communicate during each snapshot in order to

achieve a tolerable level of geolocalization accuracy while attempting to maximize the

effective lifetime of the network. Unlike other methods that use the total energy con-

sumed for the given snapshot as an energy-based metric, a new energy-based (EB)

metric can achieve load balancing of the nodes without resorting to computation-

ally demanding non-myopic optimization. Simulation results show that EB provides

longer lifetime than the GB metric discussed in Chapter 3. We consider an adaptive

transmission range control based upon the remaining battery level and the knowledge

of the physical location of nodes in the network. The activation decision is performed

in a decentralized manner over the active set of nodes. Each active node transmits

just far enough to reach all the other active nodes for information sharing and the

potentially active nodes for information handoff. In determining the active set, both

global and local approaches are considered. The global approach assumes each node

knows the physical location of every other node in the network. On the other hand,

the local approach assumes that a node only knows the location of itself, the previous

active set, and neighboring nodes.
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5.1 Introduction

Recently, sensor allocation has become a hot topic in resource management [36, 35,

63, 47, 30, 31]. Motivated by information theory, Kreucher proposed myopic (short-

term) and non-myopic (long-term) sensor scheduling methods to task the sensor for

multiple-target tracking where the action the sensor takes results in the maximum

amount of Renyi’s information gain by approximating Bellman’s equation [36, 35].

Wang [63], on the other hand, proposed an efficient heuristic myopic sensor selection

algorithm to choose one sensor at each time step so that the chosen sensor would yield

the largest entropy reduction of the target location distribution. In a similar spirit,

Liu et al. [47] determine the sensor that minimizes the entropy of the posterior target

distribution in a sequential Bayesian filter. Kaplan proposed a more computationally

efficient geometry-based (GB) node selection algorithm that selects the Na active

nodes that minimize the posterior RMS error derived from the Kalman filter [30, 31].

While researchers in signal processing are engaged in finding node selection meth-

ods to minimize the localization errors of trackers, those in communication systems

have preferred to minimize transmission energy (MTE) or maximize the lifetime of

the sensor network with respect to routing because transmitting information across

the network dominates the energy consumption [60, 48, 10]. Maximizing the lifetime

of the network is more desirable for routing than minimizing the total energy usage.

The reason is that some nodes will be overused and run out of energy very quickly

because the MTE metric does not consider the current remaining battery level of

each node. Chang [10] experimentally demonstrated that the average gain in the sys-

tem lifetime is around 50 percent using energy-aware routing. Therefore, maximizing

the tracking lifetime using energy-aware metrics, where the lifetime is defined as the

first transmission failure, along with minimizing the localization error are competing

multiple objectives in sensor allocation.
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Combining two different objectives to reach a certain level of estimation perfor-

mance at a cost of a small amount of energy consumption has also drawn great interest

from researchers[15]. Chhetri introduced a composite optimization where a sensor ac-

tion minimizes the total energy from the current time step k up to a future time step

k + M while maintaining the tracking error below a predefined limit M time steps

in the future [15]. Although the results show that by increasing the error threshold

the average energy usage would decrease, two types of sensor nodes are required,

one collecting only bearing measurements, the other acting as the central powerful

decision maker to perform scheduling. The work did not consider how much energy

remains in the battery of the sensor node during tracking, but did assume that the

global topology of the network is available for evaluating the objective functions.

In this work, we first propose an energy-based metric that represents the number

of snapshots remaining for the active node set. Unlike other methods that use the

total energy consumed for the given snapshot as the metric, the new metric can

achieve load balancing of the nodes without resorting to computationally demanding

non-myopic optimization. For example, if targets are traveling down a road, the new

metric is able to limit the overuse of nodes alongside the road so that communication

consumption increases gracefully when nodes further from the road must be employed.

In contrast, an energy consumption metric would require a k-horizon optimization to

catch the effects of Greedy use of the roadside nodes. Optimization of the EB metric

could be implemented via a Greedy search in practice. Simulation results show that

the EB metric provides longer lifetime than an existing geometry-based (GB) metric,

which was proposed by Kaplan in [30] and minimizes the posterior RMS position

error.

How the energy consumption or the tracking lifetime is measured is entangled

with how the activation decision is made in a decentralized manner, or how the

broadcast range is determined based upon the available location information and
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current battery information. Unlike other transmission range controls where active

nodes transmit signals to other nodes only within a certain fixed range, we consider an

adaptive transmission range control based upon the current remaining battery level

in the active nodes and the knowledge of physical location of nodes in the network.

The activation decision is performed in a decentralized manner over the active set

of nodes after the currently obtained information is shared among the active set of

nodes. To this end, each active node determines the next active set by evaluating

a metric, and decides whether it will remain active or whether it should wake-up

and hand off information to inactive nodes that are members of the next active set.

Energy is consumed during information sharing over the currently active set and

during information handoff to the next active set. Therefore, the broadcast range

should be just long enough to reach all the active nodes for information sharing or

reach the next active set for information handoff. The next active set must be known,

which means that the physical location information of the next active set must be

available at the presently active set. It must also be reachable in the sense that the

next active set must be within the maximum reach of the active nodes according to

their remaining battery level.

Another contribution of this work is to provide practical ways to optimize a con-

straint metric where one metric is used as the optimization metric while the other

obeys a constraint. We discuss three algorithms to search for the best set of nodes

given the constraint. Listed in descending order of computational complexity, they

are 1) exhaustive search, 2) sequential search, and 3) Greedy search. The simulations

indicate that all search methods provide comparable network lifetime and geoloca-

tion performance. However, the Greedy search is typically three times faster than

sequential search, and the exhaustive search is prohibitively slow. In the simulations,

the effective lifetime of the sensor network is measured by two definitions: Type 1)

the time when at least one active nodes has too little energy to reach the other active
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nodes, and Type 2) the time it is not possible to meet the location constraint even

when using all the nodes.

The process of determining which nodes are active and how far to communicate

is performed at each node. Specifically, each node uses knowledge about the other

nodes in the network to search for the best active set. If the node belongs in that best

set, it collects and communicates a measurement over the next snapshot. Otherwise,

it conserves its battery. In the following sections, we investigate both global and

neighborhood-based selection approaches.

5.2 Background and Metrics

The objective of this work is to investigate node selection algorithms that use different

metrics and to embed them into existing trackers, such as Kalman filters, so that we

can evaluate the localization performance and the tracking lifetime of the system.

A node selection algorithm embedded in the resource manager to determine which

set of nodes should be active has to be performed at each node in a distributed

system. In a distributed architecture, each node must also be capable of implementing

tracking filters to extract useful information out of the locally obtained measurements,

broadcast the intermediate results, integrate them into a global state and predict

the state for the next snapshot. The global predicted information including the

predicted target state and the predicted error covariance would then be used in the

node selection for the next snapshot.

The bearing measurement obtained at the i-th node for a given snapshot is the

true retarded bearing angle embedded in additive white Gaussian noise. The re-

tarded bearing angle model is used to generate measurements in the simulations (see

Section 2.1). However, an extended Kalman filter (EKF) assumes that the mean

measurement is the non-retarded bearing θi,0. In the EKF, the target is assumed to

follow a constant-velocity dynamic model (see Section 2.3).
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5.2.1 Energy-based (EB) metric

In order to describe the lifetime of a sensor network, this thesis models the energy

consumed for transmitting l bits over d meters in a multipath environment as

E = l · εamp · d4,

where εamp is a constant that represents the energy expense of engaging the power

amplifiers to transmit sufficient signal power for delivery of one bit over a range of

d meters. This transmission model was derived from the model used in [23], and it

assumes that the energy usage is dominated by the radio transmission rather than

the computation [57]. Let C be the capacity of the battery in Joules, and let pi(k)

be the remaining energy at time k. Since radio transmission dominates the energy

usage, the i-th node in a hypothesized set Na could survive for pi(k)

εd4
i,Na

number of time

intervals without further handoff to a different node set, where

di,Na = max
j∈Na

{di,j}, (42)

and di,j is the distance between node i and node j.

The optimization of the lifetime of a sensor network, whether the Type 1 or 2

definition is considered, requires a non-myopic strategy. A simple minimization of

the energy usage over one snapshot does not consider whether or not a particular

node has been over utilized and is near death. To provide better load balancing, we

consider the following energy-based metric for a hypothesized node set Na,

E(Na) = min
i∈Na

pi(k)

εd4
i,Na

. (43)

Equation (43) defines the minimum number of time intervals that the hypothesized

node set Na could survive with all nodes still operating.
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5.2.2 Transmission range control: knowledge pool (KP)

Without defining the transmission range of an active node, we could not measure how

much energy is consumed or how long the tracking system could operate. In Chap-

ter 3, we proposed a transmission range control using available network information

and called it the knowledge pool. The activation decision is performed in a decen-

tralized manner over the active set of nodes after the currently obtained information

is shared among the active set of nodes. To this end, each active node determines

the next active set by evaluating a metric, and decides whether it will remain active

or whether it should wake up and hand off information to inactive nodes that are

members of the next active set. Therefore, the broadcast range should be just long

enough to reach all the active nodes for information sharing and to reach the next

active set for information handoff.

We mentioned how active nodes hand over the useful information to the potentially

active nodes for the next snapshot. The distributed system works collaboratively if

every node makes its own active/inactive decision intelligently. Each node in the

sensor network is equally powerful and capable of implementing a Kalman filter. The

predicted target state and the predicted target error covariance would be broadcast by

active nodes for information hand off or evaluation. If a node beyond the transmission

range of the active nodes could not hear any useful information including the predicted

target state and the predicted state error covariance, it has nothing to evaluate so it

would decide to turn off. Furthermore, an active node must be aware of its remaining

power level. In other words, if it is beyond the maximum reach of an active node, a

node should not be considered as a candidate for the next snapshot. Let

Nmr
j =

{
i|di,j ≤ 4

√
pj

ε

}
(44)

be the maximum reached node set from the j-th node. A common maximum reached
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node set by the currently active node set Na is determined by the intersection

Nmr =
⋂

j∈Na

Nmr
j . (45)

Only nodes that are elements of Nmr can be candidates for activation over the next

snapshot. The node selection method chooses a subset N ′
a ⊆ Nmr to be active over

the next snapshot. If node i is currently active, it must transmit di,N ′
a

meters (see

(42)) for information handoff. Over the next snapshot, if node i is active, it must

transmit its measurements di,N ′
a

meters to share with other active nodes.

5.3 Global Network Knowledge

This section first discusses the global node selection method using either the GB or

EB metric. Then, the joint metric method and its search strategies are discussed.

Global node selection (GNS) assumes that every node knows the physical location

of every other node in the sensor network in order to compute the GB metric. Fur-

thermore, each node keeps a table of the battery level of every node in the network

so that it can calculate the EB metric. The active nodes broadcast this table so that

all inactive nodes within earshot can update their battery information. Because the

battery level is monotonically decreasing with usage, a node will update its battery

usage table with the lowest reported level for each node. Using the global knowl-

edge of node locations and battery levels, each node can now determine whether or

not to be active by optimizing one of the metrics (GB or EB) or performing a joint

optimization as discussed in the following subsections.

5.3.1 Single Metric

Let Nd be the desired number of active nodes per snapshot and Na be the currently

active node set. Our goal here is to determine the next set of active nodes N ′
a. The

solution found by evaluating the GB or EB metric is listed in Fig. 33.
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1. Determine the maximum reached node set Nmr by (45).

2. Determine the next set of active nodes:

EB: N ′
a = arg max

N⊆Nmr
E(N ),

GB: N ′
a = arg min

N⊆Nmr
ρ(N ),

where |N | = Nd.

3. For i ∈ Na, εd4
i,N ′

a
is consumed for the information handoff.

4. For i ∈ N ′
a, εd4

i,N ′
a

is consumed for the information exchange at the next
snapshot.

Figure 33: Global EB/GB node selection using KP where a node’s maximum reach
or battery level is considered in the search space.

Figure 34 shows information handoff using a KP when the GB metric is used to

choose nodes. In Fig. 34(a), each node in Na(k) shares local information obtained at

time k. After the currently active nodes share and process the current information,

they know which set of nodes will be active for the next snapshot by evaluating a

metric. Then the nodes in Na(k) could ping the inactive nodes that are members of

the next active set to wake them up by adjusting the broadcast range. The infor-

mation handoff is dependent on having the global location knowledge and knowing

the strength of the currently active nodes (i.e., the search space is denoted by Nmr).

The problem with the knowledge pool is that the currently active nodes must ping

an inactive node to wake up. As a result, the i-th node in Na(k) consumes not only

εd4
i,Na(k) for the information sharing, but also εd4

i,Na(k+1) for the information handoff

to the next set of active nodes, Na(k + 1).

5.3.2 Joint Metric GB-EB

Two metrics were investigated when selecting nodes: one for minimizing the estima-

tion error unaware of the current battery level, the other for maximizing the number

of time intervals used as the lifetime metric unaware of the estimation performance.
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Figure 34: Illustration of the information handoff using KP where the chosen nodes
are the origins of the broadcast ranges denoted by the black circles: (a) Na(k) (b)
Na(k) adjusts the broadcast range to transmit the information to the next active
nodes where Nmr is denoted by symbol ′∇′ and (c) Na(k + 1) becomes active.
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This gives rise to a more challenging problem: Is there a composite metric to balance

these two goals?

The EB and GB metrics represent competing goals. Better localization accuracy

requires a larger array of active nodes at the cost of more energy consumption. To

balance the localization accuracy in lieu of the energy costs, we let the user define

an acceptable level of location accuracy, and the algorithm optimizes the EB metric

over a subset of nodes that can meet this requirement. Specifically, the conditioned

joint metric denoted by GB-EB is written as:

N ∗ = arg max
N∈Cρ0

E(N ), (46)

where

Cρ0 = {N |N ⊆ Nmr; ρ(N ) ≤ ρ0} , (47)

and |Nmr| = N . The subsetNmr is the common reachable node set of the active nodes

(45). The joint metric chooses the node set maximizing the proposed EB metric while

maintaining the estimation performance below the desired threshold. Three different

methods to determine an active set that approximates (46) are discussed below.

5.3.2.1 Exhaustive Search

Exhaustive search finds the global maximum of the EB metric under the constraint

of the error threshold by searching the entire candidate space denoted by (47). Ex-

haustively enumerating the node sets whose lengths vary from 2 to N to form Cρ0 is

prohibitive and impractical because the computational complexity for metric evalua-

tions is O(2N).

5.3.2.2 Sequential Search

We start by choosing two active nodes per snapshot. If a certain number of nodes

could not meet the error threshold, the number of active nodes is increased. Suppose

Nmr is the maximum reachable node set from all the currently active nodes (45).

76



1. Md = 2, N = |Nmr|;
2. while Md ≤ N ,

enumerate all Md-node subsets to form Ccand(Md)

as given by (48);

if Ccand(Md) is not empty, then

Cs = Ccand(Md);

N ∗ = arg maxN∈Cs E(N );

break;

else

Md = Md + 1;

end

end

Figure 35: Sequential search for the joint GB-EB optimization.

The candidate active sets consisting of Md nodes are

Ccand(Md) = {N | |N | = Md;N ⊆ Nmr; ρ(N ) ≤ ρ0 } ; (48)

The steps to find the next active node set, N ∗, via Sequential search are enumerated

in Fig. 35.

The sequential search starts with two nodes and then adds one node at a time

making sure that the chosen node set satisfies the threshold. The drawback of the

sequential search is that the search space denoted by (48) is not the complete search

space, which was defined in (47). Whether there exists a node set with larger length

that has a larger EB value is unknown via the sequential search. The sequential

search reduces the search space by considering the minimum number of active nodes

first and then adding one node at a time until the error threshold is met. In fact,

the sequential search finds the minimum number of active nodes to meet the error

threshold. However, enumerating all the possible subsets with a certain length and

performing the metric evaluation is still expensive. The computational complexity

for metric evaluations is O(Nd) where d is the minimum number of active nodes that
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1. Md = 2, N = |Nmr|;
2. enumerate all Md-node subsets to form C = {N ||N | = Md;N ⊆ Nmr},

and Ccand = {N |N ∈ C; ρ(N ) ≤ ρ0};
3. Nm = arg minN∈C ρ(N );

4. while Md ≤ N & Ccand is empty,

C = {N |N = Nm

⋃{j}; j ∈ Nmr \ Nm};
Ccand = {N |N ∈ C; ρ(N ) ≤ ρ0};
Nm = arg minN∈C ρ(N );

Md = |Nm|;
end

5. Cg = Ccand;

6. N ∗ = arg maxN∈Cg E(N );

Figure 36: Greedy search for the joint GB-EB optimization.

meets the error threshold (|N ∗| = d).

5.3.2.3 Greedy Search

The Greedy search uses an “add one node at a time” strategy to build the candidate

space until the space contains sets that meet the threshold constraint. The steps of

the search method are given in Fig. 36. Instead of exhaustively enumerating all the

node sets with a certain length, say Md, the Greedy search adds one more node into

the existing suboptimal Md-node set (Step 4) and stops when Ccand is not empty. The

computational complexity of the Greedy search consists of exhaustively evaluating

2-node sets, O(N2), and adding one at a time, O((|N ∗| − 2)N). If the Greedy

search continued past the point that Ccand is nonempty, it will not find a better

solution because the setNm will lead to a smaller EB metric according to the following

theorem.

Theorem 1 If N1 ⊆ N2 and ρ(N1) ≤ ρ0, then ρ(N2) ≤ ρ(N1) ≤ ρ0 and E(N2) ≤
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E(N1).

Proof : Suppose node l ∈ N1. Node l provides the shortest tracking lifetime in N1,

that is, E(N1) = pl

εd4
l,N1

. We add one more node m into N1 to form N2 = {m,N1}.
Then we have

E(N2) = min{ pl

εd4
l,N1

,
pl

εd4
l,m

,
pm

εd4
m,N1

}.

Therefore, E(N2) ≤ E(N1).

Suppose N1 = N and N2 = N ∪ {j} where j 3 N . The posterior squared

RMS error ρ2(N ) = trace(S−1
N ) where S−1

N = [J−1
f (N )]1:2,1:2. Explicitly SN = A −

BD−1C + Jm(N ) where Jp =




A B

C D


.

SN2 = SN1 +
njnT

j

σ2
j r2

j
where nj = [− sin(φj), cos(φj)]

T . Both SN1 and SN2 are positive

definite and invertible, and SN2 ≥ SN1 . Therefore both S−1
N2

and S−1
N1

are positive

definite, and S−1
N2
≤ S−1

N1
. Then

trace(S−1
N2

) ≤ trace(S−1
N1

).

Then, ρ(N2) ≤ ρ(N1). Q.E.D.

5.3.3 Joint Metric EB-GB

Another interesting joint metric, denoted by EB-GB, depends on the EB metric,

E(N ) and a user-defined threshold, τ0, to determine the size of search space in the

following manner

N ∗ = arg min
N∈Ccand

ρ(N ), (49)

where

Ccand = {N |N ⊆ Nmr;E(N ) ≥ τ0} , (50)

and where |Nmr| = N by (45). Recall that the EB metric has units of seconds. This

optimization requires that we assume the global location information is available at
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each node. As the counterpart of the GB-EB, the EB-GB tries to find the node

set which provides the best geometric view while its EB value is longer than the

user-defined threshold, τ0.

5.3.3.1 Exhaustive Search

The solution via Exhaustive Search minimizing the GB metric under the constraint

of a time threshold is obtained by searching for the candidate space denoted by (50).

The candidate search is complete considering the node set whose length is from two

to N . We did not provide the simulation results via Exhaustive Search because it is

impractical. Instead, we provide two practical ways, Sequential Search and Greedy

Search, to reduce the search space.

5.3.3.2 Sequential Search

We start with the maximum number of nodes N where N is the length of the max-

imum reachable nodes Nmr. If a certain number of nodes could not meet the time

threshold, the number of active nodes must be adjusted or decreased because a node

set with fewer members has a better chance of meeting the time threshold. The steps

to find N ∗ via Sequential Search are shown in Fig. 37.

In this Sequential Search, we start with N nodes and then we remove one node

at a time while making sure that the chosen node set satisfies the threshold. The

actual number of chosen nodes cannot be less than two. The Sequential Search finds

the maximum number of nodes to meet the time threshold. The drawback of the

Sequential Search is that the solution via the Sequential Search may not provide the

minimum GB value because the search space defined by (51) in the Sequential Search

is not as complete as in the Exhaustive Search. Although the search space in the

Sequential Search is reduced to some extent, enumerating all the possible subsets with

a certain length for metric evaluation is still painful. The computational complexity

for metric evaluations is O(Nd) where d is the maximum number of active nodes that
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1. Md = N = |Nmr|.
2. while Md ≥ 2,

enumerate all Md-node subsets to form

Ccand = {N ||N | = Md;N ⊆ Nmr;E(N ) ≥ τ0}. (51)

if Ccand is not empty,

Cs = Ccand;

N ∗ = arg minN∈Cs ρ(N );

else

Md = Md − 1;

end

end

Figure 37: Sequential search for the joint EB-GB optimization.

meet the time threshold, i.e., d = |N ∗| .

5.3.3.3 Greedy Search

As opposed to the Greedy Search for the GB-EB, we start with N nodes. Inspired

by Theorem 1, if three nodes could meet the time threshold, it is not necessary to

remove one more node because three nodes can provide smaller RMS position error

than two nodes. The steps to find N ∗ are shown in Fig 38. The computational

complexity consists of enumerating all two-node sets to check if a two-node set with

the maximum EB value could meet the time threshold, O(N2), and removing one

node at a time from the suboptimal solution Nm, O((|N ∗| − 2)N).

5.4 Partial Network Knowledge

For large sensor networks, it becomes impractical for each node to store a table

containing information about all the other nodes in the network. In practice, a node

will only keep a table about its neighbors, i.e., the set of nodes within a distance of

rnei. Furthermore, it is reasonable for the nodes within earshot of the active set to be
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1. Md = N = |Nmr|.
2. enumerate all 2-node subsets to form C = {N ||N | = 2;N ⊆ Nmr},

and C∗ = {N |N ∈ C;E(N ) ≥ τ0}.
3. if C∗ is not empty,

while Md ≥ 2&E(Nm) ≤ τ0,

C = {N |N = Nm \ {j}; j ∈ Nm};
Ccand = {N |N ∈ C;E(N ) ≥ τ0};
Nm = arg maxN∈C E(N );

Md = |Nm|;
end

end

4. Cg = Ccand;

5. N ∗ = arg maxN∈Cg E(N );

Figure 38: Greedy search for the joint EB-GB optimization.

able to store information about the active nodes. Let Nnei(i) = {j|di,j ≤ rnei, i 6= j}
be the neighbor node set of the i-th node. Like the global approach, the active nodes

will provide battery level updates to the other nodes, but only the neighbors.

The steps of the partial node selection (PNS) algorithm are provided in Fig. 39.

PNS exploits the fact that each active node will know the location of the other active

nodes. Therefore, each active node can determine which of its neighboring nodes is a

neighbor of all the active nodes and reachable by all active nodes (52). Therefore, each

node is able to define a candidate space that is consistent over all active nodes. The

efficient optimization of the GB-EB metric in Step 1 can be performed by Sequential

or Greedy search. Note that as rnei grows to infinity, the PNS becomes equivalent to

GNS.
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1. Determine the next set of active nodes N ′
a from the point of view of

the currently active node set Na:

GB-EB: N ′
a = arg max

N∈Ccand(i)
E(N ),

where
Ccand = {N ||N | = Md;N ⊆ Nknown; ρ(N ) ≤ ρ0} ,

and
Nknown = {{∩i∈NaNnei(i)} ∪ Na} ∩ Nmr. (52)

2. For i ∈ Na, εd4
i,N ′

a
is consumed for the information handoff.

3. For i ∈ N ′
a, εd4

i,N ′
a

is consumed for the information sharing at the next
snapshot.

Figure 39: One cycle of the GB-EB-PNS method.

5.5 Simulations

In the simulations, a target traverses along a straight line at a constant speed of

10m/s as shown in Fig. 40. The goal here is to measure how accurate the tracking

estimates are over the lifetime of the network. The time interval for updating the

tracker is set to 1 second. We use the knowledge pool to determine the broadcast

range. The search space consists of the nodes that are reachable by the active nodes

according to their battery level, that is, Nmr in (45). We also use the posterior GB

metric denoted by (19) to choose a best set of nodes.

Assuming the global physical location information of nodes is available, Fig. 41

shows the lifetime of EB and GB by averaging ten node configurations. The lifetime

for such a single metric optimization is defined as the earliest time point when one

or more active nodes has too little energy to reach the other active nodes. The EB

method has a longer lifetime than the GB method especially when the number of

active nodes is small. We note that the lifetime using the GB method is estimation-

dependent while that using the EB method does not depend on the target location

or the accuracy of the estimation.
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Figure 40: One node configuration with twenty nodes where ◦ denotes the node and
the solid line denotes the true target track along which a target goes back and forth
for an infinite time.

Defining the tracking lifetime as the earliest time point when the transmission fails

is called Type 1. Because it is desirable that the average RMS error over the lifetime

be less than the error threshold, we have defined an alternative lifetime, called Type

2, as the earliest time point when even using all the possibly reachable nodes we could

not meet the error threshold (i.e., ρ(Nmr) ≥ ρ0). If the tracking is governed by Type

1 but Type 2 happens earlier, we can make the tracking continue after the Type 2

failure by making all the possibly reachable nodes, Nmr, active for the next snapshot.

On the other hand, if the tracking is governed by Type 2 but Type 1 happens earlier,

the tracking continues by simply removing the node that fails to communicate.

Given a node configuration and ρ0 = 60m, Fig. 42 and Table 5 demonstrate the

performance of GNS over one Monte Carlo run. Specifically, they show that Type 1

lasts longer than Type 2 lifetime for the one Monte Carlo run. Since the joint metric

chooses the one with the largest EB value among those candidate sets whose GB value
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Figure 41: Performance of the global EB and the GB (a) average lifetime (b) scat-
tered points of different trials where the symbol ◦ denotes the lifetime of EB and the
symbol + denotes the lifetime of GB.
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is below the error threshold, it is likely that the solution would be one whose GB value

is a little bit smaller than ρ0 and whose EB value is large as shown in Table 5. When

a handoff occurs, the node selection does not consider the energy required for the

handoff. Therefore, while the EB-metric may be high before the handoff, it becomes

low after the handoff. For example, the jump in the EB value from snapshot 55

to snapshot 56 or from snapshot 56 to snapshot 57 is due to the fact that nodes

remaining active could not pass the error threshold, and they have no choice but to

choose the nodes which may provide a worse EB value but meet the GB constraint

(see Fig. 43 for the chosen node set and information handoff). After enough handoffs,

the chosen active set might not have enough energy to handoff its information to any

other nodes. The active nodes will simply collect and share their measurements even

though they will no longer satisfy the GB constraint. For example, from snapshot 57

to 61, the active set meets the GB constraint, but does not meet the constraint by

snapshot 62 because the active nodes do not have enough energy to handoff to better

sensors. Eventually, these nodes exhaust their battery supplies while providing poor

localization performance (see Fig. 42 after 60 seconds). As a result, Type 1 lifetime

is longer than Type 2. Table 5 shows that after Snapshot 61, the geolocalization

constraint can never be met when ρ0 = 60m. By loosening the GB constraint, it

would be possible to extend the network lifetime.

Figure 44 shows the tradeoff between the tracking lifetime and the RMS position

error averaged over the period of the lifetime using the joint metric via different search

algorithms. Figure. 44 shows the standard deviation of the RMS position error versus

the lifetime. We run ten node configurations, each with ten or twenty randomly

placed nodes. Given a node configuration and a value for ρ0, we run ten Monte

Carlo simulations with five-degree bearing measurement error. The error threshold

ρ0 varies from 10m to 70m with a 10m increment. We omit the simulation results via

exhaustive search when the node configuration consists of twenty nodes because it
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Figure 42: RMS error versus time using the joint metric where the solid line denotes
the RMS error over Type 2 and the dotted line denotes the RMS error over Type 1
when ρ0=60m.

Table 5: Illustration of GB and EB values for some snapshots where Nmr is the
maximum reachable node set of previously active nodes Na(k−1) and Na(k) ⊆ Nmr.

Time k ρ(Na(k − 1)) ρ(Nmr) ρ(Na(k)) E(Na(k))
52 56 27 56 297635
53 56 18 56 297634
54 57 19 57 297632
55 59 19 59 297630
56 61 19 59 53783
57 62 19 57 304
58 56 56 56 303
59 56 56 56 301
60 58 58 58 299
61 60 60 60 297
62 62 62 62 295
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Figure 43: Illustration of global GB-EB where the chosen nodes are the origins of
the broadcast ranges denoted by the black circles and Nmr is denoted by the symbol
′∇′: (a) information sharing at snapshot 55 (b) information handoff at snapshot 55
(c) information sharing at snapshot 56 (d) information handoff at snapshot 56 (e)
information sharing at snapshot 57 (f) information handoff at snapshot 57.

takes too long to run. There are a few observations for these three search algorithms

in Figs. 44 45.

1. The performance differences among these three search algorithms are small

although their search spaces are quite different.

2. Type 1 lasts longer than Type 2 lifetime, which means that breaking the error

threshold occurs earlier than the first transmission failure. The performance

after Type 2 until Type 1 is determined by all the nodes within the maximum

power reach, that is Nmr in (45). This is the reason why as the threshold ρ0

increases, the tracking lifetime or the RMS error does not increase monotonically

when the tracking is terminated by a Type 1 failure.

3. In most cases, the exhaustive search, denoted by symbol ′¦′ for Type 1 lifetime

and ′×′ for Type 2 lifetime, respectively, leads to the longest lifetime. The

reason is that its search space is complete.
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Table 6: Comparisons among different search algorithms using global GB-EB when
ρ0 = 60m.

Monte Carlo run 1
RMS er. Type 1 Node usage Processing time
(meters) lifetime(s) per snapshot(ms)

Sequential 72.29 215 2.00 17.46
Greedy 72.29 215 2.00 3.63

Exhaustive 72.29 216 2.00 10746
Monte Carlo run 2

RMS er. Type 1 Node usage Processing time
(meters) lifetime(s) per snapshot(ms)

Sequential 81.49 178 2.00 15.92
Greedy 81.49 178 2.00 3.54

Exhaustive 117.4 230 2.00 4981.4

4. When the tracking is terminated by Type 2 failures, increasing ρ0 leads to more

sets with large EB values in the candidate space. As a result, the tracking

lifetime increases at a cost of higher RMS errors.

5. Fig. 45 shows the error bars and ellipse around the data points for Type 2

lifetime. The error bars are not shown for Type 1 lifetime because it is beyond

the text.

Table 6 compares the speed of running different search algorithms given a node

configuration, a threshold and a Monte Carlo run. The processing time per snapshot

includes running the filter update and the search algorithm. The Greedy search is

at least four times faster than sequential search, and exhaustive search is the most

time-consuming taking four times longer than one snapshot to process one snapshot’s

data. The Monte Carlo runs were performed on a Dell 700m laptop with a Intel

Pentium 1.6GHz CPU and 512 MB of RAM. We also observe the exhaustive search

could provide longest lifetime among those three searches.

Figure 46 shows the lifetime and the standard deviation of the lifetime using the

global EB-GB metric to choose nodes. Since the constraint is on EB metric, Type

2 lifetime is defined as the earliest time when any two-node set could not meet the
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Figure 44: Performance of GB-EB-GNS using different search algorithms when a
node configuration consists of (a) ten nodes, (b) twenty nodes.
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Figure 45: Error bars and error ellipse from 100 runs of GB-EB-GNS using Greedy
Search for Type 2 lifetime.
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Table 7: Comparisons among different search algorithms using global EB-GB when
τ0 = 20s.

RMS er. Type 1 Node usage Processing time
(meters) lifetime(s) per snapshot(ms)

Sequential 366.1 2822 2.29 115
Greedy 371.4 4679 2.12 9

Exhaustive 14.1 151 2.62 3715

time threshold. We consider ten node configurations, each with ten randomly placed

nodes. Given a node configuration and a time threshold, we run ten Monte Carlo

experiments with five-degree measurement errors. For some values of τ0, the Greedy

Search gives similar lifetime to the Sequential Sequential search. For other values

of τ0, the Greedy Search falls apart from the Sequential Search because the Greedy

Search for EB-GB-GNS utilizes “remove one node at a time” strategy and may be

more dependent on the node layout. Another observation is that Type 2 and Type 1

lifetimes are similar. For the Sequential Search, with τ0 increasing, only node sets

with small size could easily pass the strict time threshold, so the result is that the

lifetime increases.

Table 7 compares the speed of running different search algorithms given a node

configuration with twenty randomly placed nodes and a threshold. The processing

time per snapshot includes running the EKF filter update and the search algorithm.

The Greedy Search is the fastest and the Exhaustive Search is almost four times

longer than one time interval while the Exhaustive Search has the largest node usage

and lowest RMS error.

Figure 47 shows the performance of GB-EB-PNS. The RMS position error is

averaged over Type 2 lifetime when ρ(Nknown) ≥ ρ0 and Nknown is given by (52).

We consider ten configurations, each with twenty nodes and we vary the estimation

threshold ρ0=[10 30 50 70]m. Given a value of ρ0 and a configuration, we run one

hundred Monte Carlo simulations using the Greedy search. From Fig. 47, we make
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Figure 46: Performance of the global EB-GB (a) lifetime (b) error bars from 100
runs for Type 2 where the symbol ◦ denotes Greedy Search and the symbol ? denotes
Sequential Search.

93



the following observations:

1. PNS with rnei = 1200m approaches GNS.

2. For a given rnei, as ρ0 increases, the RMS error or the lifetime increases.

3. As rnei increases from 0 to 800m, it seems that the lifetime increases while the

RMS error gets worse. More neighbor information helps prolong the lifetime.

However, for a given ρ0 (10 ≤ ρ0 ≤ 70), the lifetime decreases when going from

rnei=800m to rnei=1200m. This fact reveals a conflicted role for rnei on the

constraint metric. On one hand, more knowledge of the neighbors means that

more node sets could pass the error threshold, leading us to choose a node set

with a longer EB value. On the other hand, more knowledge of the neighbors

could also mean that a far away node set with longer EB value could be chosen

for the next snapshot, which costs the currently active node set higher energy for

longer information handoff. What is more, that a node set with longer EB value

is chosen means more information handoff in the future because a node set with

longer EB value may not have smaller GB value. In a word, more knowledge

of the neighbors could shorten the lifetime due to longer or more information

handoff in the future.In the experiments, we found that nodes, that are close to

each other and far away from the active nodes, are chosen at earlier snapshots

when rnei=1200m, which might lead to breaking the error threshold earlier than

expected.

4. For a given rnei, as ρ0 increases, the standard deviation of lifetime or RMS error

is not monotonously increasing. This may be because the number of Monte

Carlo runs, i.e., ten node configurations each with 100 Monte Carlo runs, is not

enough.
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5.6 Lifetime for multitarget case

Chapter 4 was dedicated to showing how estimation performance changes when we

combine the GB metric with multitarget trackers. Because the EB tries to maximize

the lifetime, measuring the lifetime would make more sense when we apply EB or

constrained metric to a multitarget case. The following simulation addresses the

question: “how long is the tracking lifetime when the system tracks two targets

instead of tracking a single target of interest in the presence of two targets?”

Measuring the tracking lifetime in the multitarget scenario is related to which

multitarget tracker (PDA or JPDA) is used. The PDA or JPDA is a target-oriented

tracker, which means that given a particular target, we calculate how much contri-

bution each measurement could make. Each broadcast packet includes the predicted

information for one target. That a node receives two packets belonging to different

targets means a node has the predicted information from two targets. A node ca-

pable of implementing the PDA algorithm for a particular target does not require

the predicted information for other targets while a node capable of implementing the

JPDA algorithm does. Suppose clusters are formed where a cluster consists of an

established target and its associated node set. Bearing information is shared over

the nodes within the same cluster. The PDA tracker naturally simplifies the com-

munication control by treating other targets as noise and saving the energy used for

information sharing among clusters, although it has a weakness when tracking close

targets. However, the JPDA may spend extra energy in information sharing among

clusters. For preliminary research on measuring tracking lifetime in a multitarget

case, we use PDA over other multitarget trackers.

In the simulations, we consider two targets moving along straight lines for infinite

time in a network with twenty randomly placed nodes as shown in Fig. 48. The

minimum separation distance between these two targets is 5 meters. We assume that

global information including node location information and battery level is available.
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Table 8: Tracking lifetime using different metrics and PDA.

Metric and Mt Lifetime(s)
GB: Mt = 1, Nd = 3 91
GB: Mt = 2, Nd = 3 52
EB: Mt = 1, Nd = 3 2110
EB: Mt = 2, Nd = 3 1236

GB-EB ρ0 = 50m: Mt = 1 242
GB-EB ρ0 = 50m: Mt = 2 78

Energy is spent in information sharing among nodes in a cluster and information

handoff from the current cluster to the next cluster belonging to the same target. For

a single metric optimization, the tracking lifetime is defined as the first transmission

failure while for the constrained metric it is defined as the earliest time point when

using all reachable nodes could not meet the error threshold. The simulated bearing

measurements obtained at each node may include measurements that truly originated

from targets, merged measurements when two targets are close, or false measurements

due to noise. The detection probability is set equal to 0.98. The bearing measurement

model and the PDA tracker were previously discussed in Chapter 4. When there are

always two targets present, we could underestimate the number of targets by tracking

a single target of interest.

Table 8 shows the tracking lifetime using different metrics and the PDA tracker

for fifty Monte Carlo runs where Mt denotes the number of assumed targets and Nd

is the predefined number of active nodes. The chosen node set is obtained via the

Greedy Search. It is shown that the lifetime for tracking two targets is 2.0-3.0 times

shorter than that for tracking one target of interest. For example, the lifetime lasts

242 seconds for tracking one target while it lasts 78 seconds for tracking two targets

when we use GB-EB metric with ρ0=50m to choose nodes.
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Figure 48: Node configuration and two target tracks.

5.7 Conclusions

We proposed an EB metric to maximize the number of time intervals that a hypoth-

esized active node set could survive without further information handoff to another

active set. Simulation results show that the EB metric provides longer lifetime than

the existing GB metric. In order to reduce the energy consumption and measure

the tracking lifetime, we also proposed a variable-range transmission range control

where the transmission range is determined by the knowledge of the network and the

strength of the current battery. Each active node transmits just far enough to reach

all the active nodes. In other words, the energy consumption is proportional to the

physical distance between the active set of nodes and is divided into two stages, one

for active nodes to share the currently obtained information, the other for the cur-

rently active nodes to hand off the useful information to the next active set. In order

to optimize a constrained metric using one metric as the optimization metric under

the constraint of the other, we proposed practical search algorithms whose search

space is dependent on the knowledge of the network. The tracking is terminated
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at different time points depending on whether there is a threshold and the kinds of

the threshold. In the future, we will further investigate an inconsistency problem

resulting from using KP to determine the broadcast range when partial knowledge

is available. We will also investigate an energy-based metric accounting for energy

consumption due to handoff in one hop.
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CHAPTER VI

CONCLUSIONS

6.1 Contributions

In this section, we sum up our contributions of the thesis in the following list.

• In Chapter 5, we proposed an EB metric to maximize the number of time

intervals that a hypothesized active node set could survive without further in-

formation handoff to another active set. Simulation results show EB provides

longer lifetime than an existing GB metric.

• We proposed a transmission range control, called the knowledge pool (KP),

where the transmission range is determined by the knowledge of the network and

the remaining battery level of nodes. The energy consumption is proportional

to the physical distance between the active set of nodes and is divided into two

stages, one for active nodes to share the currently obtained information, the

other for the currently active nodes to hand off the useful information to the

next active set.

• We provided practical search algorithms to optimize a constrained metric us-

ing one metric as the optimization metric under the constraint of the other.

Simulation results show the performance similarities among Greedy, Sequential

and Exhaustive Search, but the Exhaustive Search is computationally expensive

and the Greedy Search is three times faster than the Sequential Search. Met-

rics were applied to partial network knowledge where neighbors’ information is

available.
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• In Chapter 4, we applied the resource management to multitarget tracking on

the bearing measurements from the field data where the multitarget target

tracker is either PDA or JPDA. The resource manager chooses a node set to

minimize GB metric or a node set closest to the predicted target position.

Experiments show that for sufficiently separated targets, the GB metric leads to

better geolocation performance than the “closest” selection approach when the

number of active nodes is set to two per snapshot and global network knowledge

is available.

• In Chapter 3, we applied GB to partial network knowledge. Simulation results

show that the RMS errors using partial node selection (PNS) and global node

selection (GNS) are comparable while GNS is more energy-efficient when the

energy is measured using an existing transmission control, critical range (CR).

GB was also applied to partial network knowledge. We showed that using KP

saves more energy than using CR and reaches the similar estimation perfor-

mance when the available location information, i.e., rnei is greater than 700m.

• In Chapter 2, we compared the performances of EKF and UKF and showed

that UKF only outperforms EKF when the measurement noise is larger than

eight degrees. We also investigated MM and IMM to tackle the maneuvering of

target using field data test.

6.2 Future work

This section discusses possible future work related to resource management and target

tracking.

6.2.1 Energy-based metric

There are some pros and cons of the solution maximizing (43) via the KP communi-

cation strategy. The strength is that maximizing (43) is tractable. The solution could
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be obtained via Greedy Search compared to nonmyopic scheduling which would have

to be done via dynamic programming for all but simplest problems. The weakness

is that (43) does not account for the energy consumption due to handoff in one hop

although the reachable nodes of the active nodes are considered in the search space.

Let N ◦ be the active node set at time k− 1 and N be the chosen node set at time k.

A better EB metric that includes energy consumption for handoff could be:

E(N ) = min
i∈N

pi(k)

εd4
i,N

+ min
i∈N ◦

pi(k)− εd4
i,N

εd4
i,N ◦

. (53)

The term mini∈N ◦
pi(k)−εd4

i,N
εd4

i,N◦
in (53) tries to model how many time intervals the cur-

rently active node set N ◦ could still run after information handoff to N . Note that

it is the geometric constraints or the error threshold that forces handoffs to relatively

far away nodes (Fig. 43). It is expected that GB-EB with handoff, i.e., maximizing

EB (53) under the constraint of GB should prolong the lifetime. The discussion about

GB-EB with handoff is worth studying in the future.

6.2.2 Transmission range control

The advantage of using CR is that nodes that provide better geometric views could

be covered by active nodes when the available neighbor information is sparse. On the

other hand, the strength of using KP is that when the available neighbor informa-

tion is rich to some extent, using KP could save more energy while reaching similar

geolocation performance compared to using CR. The problem of using KP is that

active nodes may not be covered by each other especially when network knowledge is

meager. Investigating the pros and cons of CR and KP further may lead to a better

transmission range control as far as energy consumption and estimation performance

are concerned.
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6.2.3 Presence of multiple targets

The presence of multiple targets complicates the design of the distributed commu-

nication system which enables tracking ability. Clusters are formed where a cluster

consists of an established target and its chosen node set. Information is shared within

cluster. Information sharing between clusters is not required if PDA is used as a mul-

titarget tracker. However, when two targets are close, a tracking expert prefers JPDA

over PDA to track targets because JPDA explicitly considers the existence of multi-

ple targets. As a result, multitarget tracking naturally requires information sharing

between clusters. How to design a distributed or hierarchical communication system

to address the presence of multiple targets is worthy of more attention.

103



APPENDIX A

RELEVANT PUBLICATION

1. Q. Le, L.M. Kaplan, and J.H. McClellan “Multiobjective energy-aware node

selection,” IEEE Aerospace Conference, Mar. 2006.

2. Q. Le, J.H. McClellan, and L.M. Kaplan, “Node selection for unattended ground

sensor network when interrogating multiple targets,” IEEE Army Science Con-

ference, Nov. 2004.

3. L.M. Kaplan and Q. Le, “On exploiting propagation delays for passive target

localization using bearings-only measurements,” Journal of Franklin Institute,

vol. 342, pp. 193-211, Mar. 2005.

4. Q. Le, J.H. McClellan, and L.M. Kaplan, “Multiple-mode Kalman fitering

with node selection for wireless networks of bearings-only sensors,” 36th IEEE

Southeneastern Symposium on System Theory, Mar. 2004, vol.36, pp185–189.

5. Q. Le, L.M. Kaplan and J.H. McClellan, “Kalman filtering using bearings-

only easurements from a network of acoustical arrays,” ARL CTA Symposium,

College Park, MD, April 29–May 1, 2003.

6. Q. Le, L.M. Kaplan and J.H. McClellan, “Kalman filters using bearings-only

measurements from a network of acoustics arrays,” 10th Digital Signal Process-

ing Workshop, Pine Mountain, Georgia, October 13-16, 2002.

104



REFERENCES

[1] Bar-Shalom, Y. and Li, X., Estimation and Tracking: Principles, Techniques,
and Software. Boston: Artech House, 1993.

[2] Bar-Shalom, Y. and Li, X., Multitarget-Multisensor Tracking: Principles and
Techniques. YBS, 1995.

[3] Bertsekas, D. P., Dynamic Programming and Optimal Control. Belmont,
MA: Athena Scientific, 1995.

[4] Bertsekas, D. P. and Castanon, D., “Rollout algorithms for stochastic
scheduling problems,” Journal of Heurtistics, vol. 5, pp. 89–108, 1999.

[5] Bhardwaj, M., Garnett, T., and Chandrakasan, A. P., “Upper boundes
on the lifetime of sensor networks,” in Proc. of ICC, 2001.

[6] Blackman, S., “Multiple hypothesis tracking for multiple target tracking,”
IEEE AES Systems magazine, vol. 19, pp. 5–18, Jan. 2004.

[7] Blackman, S. and Popoli, R., Design and Analysis of Modern Tracking Sys-
tems. Boston: Artech House, 1999.

[8] Castanon, D. A., “Approximate dynamic programming for sensor manage-
ment,” Proceedings of the 36th IEEE Conference on Decision and Control, vol. 2,
pp. 1202–1207, 1997.

[9] Cevher, V. and McClellan, J. H., “General directional-of-arrival tracking
with acoustic nodes,” to appear in IEEE Trans. on Signal Processing, Feb. 2003.

[10] Chang, J. H. and Tassiulas, L., “Energy conserving routing in wireless ad-
hoc networks,” in Proc. IEEE INFOCOM, pp. 22–31, 2000.

[11] Chen, H. and Olson, T., “Adaptive spatiotemporal multiple sensor fusion,”
Optical Engineering, vol. 42, pp. 1481–1495, May 2003.

[12] Chen, P., O’Dea, B., and Callaway, E., “Energy efficient system design
with optimum transmission range for wireless ad hoc networks,” in IEEE Inter-
national Conference on Communications, pp. 945–952, 2002.

[13] Chhetri, A. S., Morrell, D., and Papandreou-Suppappola, A.,
“Scheduling multiple sensors using partical filters in target tracking,” in Proc. of
IEEE Statistical and Signal Processing Workshop, pp. 529–532, 2003.

105



[14] Chhetri, A. S., Morrell, D., and Papandreou-Suppappola, A., “Effi-
cient search strategies for non-myopic sensor scheduling in target tracking,” in
Proc.of the Thirty-Eighth Asilomar Conference on Signals, Systems and Com-
puters, vol. 2, pp. 2106–2110, 2004.

[15] Chhetri, A. S., Morrell, D., and Suppappola, A. P., “Energy efficient
target tracking in a sensor network using non-myopic sensor scheduling,” in Proc.
of the 8th Intl. Conf. on Information Fusion, July 2005.

[16] Chong, C. Y., Zhao, F., Mori, S., and Kumar, S., “Distibuted tracking in
wireless ad hoc sensor network,” Proceeding of the 6-th international Conference
on Information Fusion, vol. 1, pp. 431–438, 2003.

[17] Chu, M., Haussecker, H., and Zhao, F., “Scalable information-driven sensor
querying and routing for ad hoc heterogeneous sensor networks,” in International
Journal of High Performance Computing Applications, vol. 16, Aug. 2002.

[18] Efe, M., “Adaptive Kalman filters for manoeuvring target tracking,” in IEE
Colloquium on target tracking and data fusion, pp. 4/1–4/7, June 1998.

[19] Efe, M. and Atherton, D., “Maneuvering target tracking using adaptive turn
rate models in the interacting multiple model algorithm,” in Proc. of the 35th
IEEE on Decision and control, pp. 3151–3156, Dec. 1996.

[20] Farina, A., “Target tracking with bearing-only measurements,” Signal Process-
ing, vol. 78, pp. 61–78, Jan. 1999.

[21] Farina, A., Golino, G., Capponi, A., and Pilotto, C., “Surveillance by
means of a random sensor network: a heterogeneous sensor approach,” in Conf.
on Information Fusion, July 2005.

[22] Gomez, J. and Campbell, A. T., “A case for variable-range transmission
power control in wireless multihop networks,” in INFOCOM, vol. 2, pp. 1425–
1436, 2004.

[23] Heinzelman, W. B. and Chandrakasan, A. P., “An application-specific
protocol architecture for wireless microsensor networks,” IEEE Trans. on Wire-
less Communications, vol. 1, pp. 660–669, Apr. 2002.

[24] Hu, Z. and Li, B., “On the fundamental capacity and lifetime limits of energy-
constrained wireless sensor network,” in Proc. of the 10th IEEE Real-Time and
Embedded Techonology and Applications Symposium (RTAS/04), 2004.

[25] Julier, S., Uhlmann, J., and Durrant-Whyte, H., “A new method for
the nonlinear transformation of means and covariances in filters and estimators,”
IEEE Trans. on Automatic Control, vol. 45, pp. 477–482, Mar. 2000.

[26] Kalman, R. E., “A new approach to linear filtering and prediction problems,”
AEME. J, Basic Engineering, vol. 83, pp. 34–45, Mar. 1960.

106



[27] Kalman, R. E. and Bucy, R., “New results in linear filtering and prediction
theory,” AEME. J, Basic Engineering, vol. 83, pp. 95–108, Mar. 1961.

[28] Kaplan, L. M., “Node selection for target tracking using bearing measurements
from unattended ground sensors,” in Proc. of the IEEE Aerospace Conference,
(Big Sky, MT), Mar. 2003.

[29] Kaplan, L. M., “Transmission range control during autonomous node selection
forwireless sensor networks,” in Proc. of the 2004 IEEE Aerospace Conference,
2004.

[30] Kaplan, L. M., “Global selection for target localization in a distributed net-
work of bearings-only sensors.” to be published in IEEE Trans. on Aerospace
and Electronic Systems, Oct. 2005.

[31] Kaplan, L. M., “Local selection for target localization in a distributed network
of bearings-only sensors.” to be published in IEEE Trans. on Aerospace and
Electronic Systems, Jan. 2006.

[32] Kaplan, L. M. and Le, Q., “On exploiting propagation delays for passive
target localization using bearings-only measurements,” Journal of Franklin In-
stitute, vol. 342, pp. 193–211, Mar. 2005.

[33] Kaplan, L. M., Molnar, P., and Le, Q., “Bearings-only target localization
for an acoustical unattended ground sensor network,” in Proc. of SPIE, vol. 4393,
pp. 40–51, Apr. 2001.

[34] Kaplan, L. M., Molnar, P., Srour, N., and Filipov, A., “Autonomous
node selection for wireless networks of bearings-only sensors,” in Proc. of the
23rd Army Science Conference, (Orlando, FL), Dec. 2002.

[35] Kreucher, C., Hero, A., Kastella, K., and Chang, D., “Efficient meth-
ods of non-myopic sensor management for multitarget tracking,” in Proc. of the
43th IEEE Conf. on Decision and Control, pp. 722–727, 2004.

[36] Kreucher, C., Kastella, K., and Hero, A., “A Bayesian method for in-
tergrated multitarget tracking and sensor management,” in Proc.of the 6th Int.
Conf. on Information Fusion, pp. 704–712, 2003.

[37] Kreucher, C. M. and III, A. O. H., “Non-myopic approaches to scheulding
agile sensors for multitarget detection, tracking, and identification,” in ICASSP,
vol. 5, pp. 885–888, 2005.

[38] Kreucher, C. M., Kastella, K., and III, A. O. H., “Information based
sensor management for multitarget tracking,” in Proceedings of SPIE Conference
on Signal and Data Processing of Small Targets, 2003.

107



[39] Krishnamurthy, V. and Evans, R. J., “Hidden Markov model multiarm
bandits: a methodology for beam scheduling in multitarget tracking,” IEEE
Trans. on Signal Processing, vol. 49, no. 12, pp. 2893–2908, 2001.

[40] Le, Q., Kaplan, L. M., and McClellan, J. H., “Kalman filtering using
bearings-only measurements from a network of acoustical arrays,” in ARL CTA
Symposium, (College Park, MD), 2003.

[41] Le, Q., Kaplan, L. M., and McClellan, J. H., “Multiobjective energy-
aware node selection,” in IEEE Aerospace Conference, (Big Sky, MT), 2006.

[42] Le, Q., McClellan, J. H., and Kaplan, L. M., “Multiple-mode Kalman
fitering with node selection for wireless networks of bearings-only sensors,” in
36th IEEE Southeneastern Symposium on System Theory, vol. 36, pp. 185–189,
2004.

[43] Le, Q., McClellan, J. H., and Kaplan, L. M., “Node selection for unat-
tended ground sensor network when interrogating multiple targets,” in Proc. of
the Army Science Conference, 2004.

[44] Le Cadre, J.-P. and Tremois, O., “Bearings-only tracking for maneuvering
sources,” IEEE Trans. on Aerospace and Electronic Systems, vol. 34, pp. 179–
193, Jan. 1998.

[45] Li, X. R. and Bar-Shalom, Y., “Multiple-model estimation with variable
structure,” IEEE Trans. on Automatic Control, vol. 41, pp. 478–493, Apr. 1996.

[46] Li, X. R. and Zhang, Y., “Multiple-model estimation with variable struc-
ture. V. Likely-model set algorithm,” IEEE Trans. on Aerospace and Electronic
Systems, vol. 36, pp. 448–466, Apr. 2000.

[47] Liu, J., Reich, J., and Zhao, F., “Collaborative in-network processing for
target tracking,” EURASIP Journal on Applied Signal Processing, vol. 2003,
pp. 378–391, Mar. 2003.

[48] Madan, R. and Lall, S., “Distributed algorithms for maximum lifetime rout-
ing in wireless sensor networks,” in IEEE Communications Society Globecom,
2004.

[49] Magill, D., “Optimal adaptive estimation of sampled stochastic processes,”
IEEE Trans. on Automatic Control, vol. 10, pp. 434–439, Oct. 1965.

[50] Mahler, R., “Global optimal sensor allocation,” in Proceedings of the Ninth
National Symposium on Sensor Fusion, vol. 1, pp. 167–172, 1996.

[51] Mehra, R. E., “On the identification of variances and adaptive Kalman filter-
ing,” IEEE Trans. on Automatic Control, vol. 15, pp. 175–184, Apr. 1970.

108



[52] Myers, K., “Adaptive sequential estimation with unknown noise statistics,”
IEEE Trans. on Automatic Control, vol. 21, pp. 520–523, Aug. 1976.

[53] Nardone, S., Lindgren, A., and Gong, K., “Fundamental properties and
performance of conventional bearings-only target motion analysis,” IEEE Trans.
on Automatic Control, vol. 29, pp. 775–787, Sept. 1984.

[54] Orton, M. and Fitzgerald, W., “A Bayesian approach to tracking multiple
targets using sensor arrays and particle filters,” vol. 50, no. 2, pp. 216–223, 2002.

[55] Oshman, Y. and Davidson, P., “Optimization of observer trajectories for
bearings-only target localization,” IEEE Trans. on Aerospace and Electronic Sys-
tems, vol. 35, pp. 892–902, July 1999.

[56] Poor, H., An Introduction to Signal Detection and Estimation. Springer-Verlag,
1994.

[57] Raghunathan, V., Schurgers, C., Park, S., and Srivastava, M.,
“Energy-aware wireless microsensor networks,” IEEE Signal Processing Mag-
azine, vol. 19, pp. 40–50, Mar. 2002.

[58] Rao, B. S. and Durrant-Whyte, H. F., “Fully decentralised algorithm for
multisensor Kalman filtering,” in IEE Proceedings D, vol. 138, pp. 413–420, Sept.
1991.

[59] Reid, D. B., “An algorithm for tracking multiple targets,” IEEE Trans. on
Automatic Control, vol. 24, pp. 843–854, Dec. 1979.

[60] Rodoplu, V. and Meng, T. H., “Minimum energy mobile wireless networks,”
IEEE Journal on Selected Areas in Communications, vol. 17, pp. 1333–1344,
Aug. 1999.

[61] Roecker, J. A., “A class of near optimal JPDA algorithms,” IEEE Trans. on
Aerospace and Electronic Systems, vol. 30, pp. 504–510, Apr. 1994.

[62] Shepard, T., “Decentralized channel management in scalable multi-
hop spread spectrum packet radio networks,” in Laboratory for Com-
puter Science,Massachusetts Institute of Technology, Cambridge, Tech.
Rep.MIT/LCS/TR-670, July 1995.

[63] Wang, H., Yao, K., Pottie, G., and Estrin, D., “Entropy-based sensor
selection heuristic for target tracking localization,” in Proc. of the 3rd Intl. Symp.
on Information Processing in Sensor Networks (IPSN), pp. 36–45, 2004.

[64] Watson, G. A., “Multisensor ESA resource management,” in IEEE Aerospace
Conference, vol. 5, pp. 13–27, 1998.

[65] Williams, J. L., Fisher III, J. W., and Willsky, A. S., “An approximate
dynamic programming approach for communication constrained inference,” in
Proc. IEEE Workshop on Statistical Signal Processing, July 2005.

109



[66] Williams, J. L., Fisher III, J. W., and Willsky, A. S., “An approximate
dynamic programming approach to a communication constrained sensor manage-
ment problem,” in Proc. Eighth International Conference of Information Fusion,
July 2005.

[67] Wilson, D. K., Sandler, B. M., and Pham, T., “Simulation of detection
and beamforming with acousitcal ground sensors,” in Proc. of SPIE, vol. 4743,
pp. 50–61, 2002.

[68] Wu, J. and Dai, F., “Efficient broadcasting with guaranteed coverage in mobile
ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 4, pp. 259–270,
May 2005.

[69] Xiong, N. and Svensson, P., “Multi-sensor management for information fu-
sion: Issues and approaches,” Information fusion, vol. 3, pp. 163–186, 2002.

[70] Zhang, X. and Maxemchuk, N. F., “A generalized energy consumption
analysis in multihop wireless networks,” in Wireless Communications and Net-
working Conference, pp. 1476–1481, 2004.

[71] Zhao, F., Shin, J., and Reich, J., “Information-driven dynamic sensor col-
laboration,” IEEE Signal Processing Magazine, vol. 19, pp. 61–72, Mar. 2002.

[72] Zou, Y. and Chakrabarty, K., “Energy-aware target localization in wireless
sensor networks,” in Proceedings of the First IEEE International Conference on
Pervasive Computing and Communications, pp. 60–67, 2003.

[73] Zou, Y. and Chakrabarty, K., “Target localization based on energy consid-
erations in distributed sensor networks,” in Proceedings of SPIE Conference on
Signal and Data Processing of Small Targets, 2003.

110



VITA

Qiang Le was born in a central southern town of People’s Republic of China. She

had lived there for eighteen years. During her pursuing high education in Beijing,

she fortunately met her future husband. Then she came to USA and continued her

education.

111


