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SUMMARY

The objectives of this research are to identify security vulnerabilities in LTE/LTE-A air

interface; model the network and the smart jammer dynamics under realistic constraints;

and devise adept algorithms that can help the network combat smart jamming attacks au-

tonomously. LTE/LTE-A networks provide advanced data, Voice-over-IP (VoIP), multime-

dia, and location-based services to more than a billion subscribers around the world. Lately,

it has been suggested to utilize commercially and privately-owned LTE/LTE-A networks

for mission-critical applications like public safety, smart grid and military communications.

Although LTE/LTE-A air interface provides ease of accessibility, flexibility, mobility sup-

port, low latency, high data rates, and economy of scale, it also raises serious security

concerns. It is shown that the LTE air interface is vulnerable to denial-of-service (DoS) and

loss of service attacks from power and bandwidth-limited smart jammers, without being

hacked by them. The interaction between the network and the smart jammer is modeled

as a two-player infinite-horizon Bayesian game with asymmetric information, with the net-

work being the uninformed player. This research investigates the smart jamming problem in

LTE/LTE-A networks, by using heuristic analysis, threat mechanism, reinforcement learn-

ing and approximated value iteration in repeated games to construct autonomous policies

for the network to help it combat these attacks. Moreover, this work is focused on devising

policies (algorithms) that can be practically deployed in current networks under realistic

constraints, without modifying 3GPP specifications.

The smart jamming problem poses many serious challenges in LTE/LTE-A networks.

First and foremost, network countermeasures need to be investigated that can not only

counteract smart jamming attacks, but can also be practically deployed within current 3GPP

specifications. Furthermore, the LTE network, the smart jammer and their interaction need

to be modeled in such a way that all the relevant components are represented accurately

while keeping the model tractable. Moreover, the network is modeled as the uninformed

xix



player in an asymmetric information game with almost no discernible signals in repeated

game, which makes it very hard for the network to learn and strategize. In spite of all,

the models and algorithms need to be designed for practical scenarios within realistic con-

straints and without relying on exogenous information.

The main contributions of this research are manifold. First of all, security vulnerabili-

ties in the LTE/LTE-A air interface are identified that can make 4G networks susceptible to

denial-of-service (DoS) and loss of service attacks. Second, smart jamming attacks and net-

work countermeasures are proposed based on their feasible capabilities. Third, the LTE net-

work and its interaction with the smart jammer is modeled naturally as a non-cooperative

game with asymmetric information, with the smart jammer being the informed player with

multiple types, and the LTE network being the uninformed player with a realistic learning

and game dynamics model. Fourth, many efficient algorithms have been presented to esti-

mate the jammer type and compute the strategies against the smart jammer and vice versa

that can be deployed in real networks. Finally, the algorithms’ performance is analyzed and

characterized under realistic constraints, which provides reasonable guarantees in practical

scenarios.

xx



CHAPTER 1

INTRODUCTION

1.1 The Research Problem

The objectives of this research are to identify security vulnerabilities in LTE/LTE-A air

interface; model the network and the smart jammer dynamics under realistic constraints;

and devise adept algorithms that can help the network combat smart jamming attacks au-

tonomously.

1.2 Rationale

Communication networks play a major role in the modern world - they are not only used

to connect people but also provide machine-to-machine and human-machine connectiv-

ity. These connectivity applications range from social networking to business enterprises;

from smart homes to UAVs; from e-health to smart grid; and from Internet-of-Things (IoT)

to global communication. Commercial wireless communication networks [1, 2], hold a

unique place in the arena of communication networks and cover a wide landscape of Wire-

less Personal Area Networks WPANs (e.g. Bluetooth), Wireless Local Area Networks

WLANs (e.g. WiFi), Wireless Wide Area Networks WWANs (e.g. LTE, LTE-A), device-

to-device communication, Internet-of-Things and others. With so many varieties of current

and emerging applications of commercial wireless networks a logical question comes arises

- how secure and reliable are these networks? Researchers have been looking into security

aspects of commercial LTE and LTE-Advanced wireless networks from different perspec-

tives such as physical layer secrecy; network layer security; authentication and encryption;

interference and jamming. This research is focused on adversarial jamming of LTE/LTE-A

networks, that is, intentional jamming of a network with the intent to sabotage or cheat.

1



LTE/LTE-A and other commercial cellular networks can be compromised severely by ad-

versarial jamming attacks or high-interference scenarios. If the interference is caused by

poor network planning or network overloading, several techniques can be applied to mit-

igate its effects. However, if this interference is afflicted maliciously (i.e. jamming), its

treatment can be very different and may require human intervention. This research is fo-

cused on addressing smart jamming problems without any need for human intervention

and uses heuristic analysis, threat mechanism, game-theoretic learning and reinforcement

learning, and linear programming techniques to design robust network architectures that

can combat jamming attacks.

Long Term Evolution (LTE) and LTE-Advanced (LTE-A) [3, 4], networks have been

providing advanced data, Voice-over-IP (VoIP), multimedia and location-based services to

more than 1.6 billion subscribers in 186 countries around the world [2]. However, it has

been shown that LTE networks are vulnerable to control-channel jamming attacks from

smart jammers who can “learn” network parameters and “synchronize” themselves with

the network even when they are not attached to it (cf. [5, 6, 7, 8, 9, 10, 11, 12]). It is

shown in the above-referenced articles that such a smart jammer can launch very effective

denial-of-service (DOS) and loss of service attacks without even hacking the network or its

components. Hence, pursuing autonomous techniques to address this potentially devastat-

ing problem has become an active research topic.

LTE/LTE-A networks offer high data rates, flexibility, ease of accessibility, mobility

support, ubiquitous coverage and economy of scale [3, 4]. Lately, some researchers have

proposed using commercially and privately-owned LTE and LTE-A wireless networks for

public safety communications, (cf. [13, 14, 15, 16, 17, 18]); smart grid communications,

(cf. [19, 20, 21, 22, 23]); and military communications, cf. [24, 25]. However, being

a commercial wireless network its specifications and protocols are publicly known to its

designers, developers and general audience around the world. It is a very attractive feature

for a commercial network but may not be such a good idea for communication networks

2



used for mission-critical applications. These networks can be severely compromised by

jamming attacks that jeopardize operation and robustness of underlying mission-critical

applications, such as smart grid, public safety and military operations. This research in-

volves designing algorithms to build robust LTE/LTE-A networks that can combat jamming

attacks autonomously. These dynamics are studied and analyzed from a game-theoretical

point of view in which the network and the adversary both play opposing roles. By incor-

porating heuristic analysis, threat mechanism, game-theoretic and reinforcement learning

in repeated games, it can be argued confidently that this research culminates in secure com-

munication architectures for mission-critical applications.

1.3 Related Work

A brief survey of the cutting edge theoretical and practical development is presented here

as it pertains to this research. Nevertheless, this survey is not complete by any means due

to the time and space constraints; and the fact that some of the research areas have recently

been very actively pursued among the scientific community.

1.3.1 PHY-layer Security of Wireless Systems

Information security is a real concern for this day and age, and lately its breach has been

so widespread that it is terrifying for not only ordinary people but also for big corpo-

rations and even the US government [26]. Security attacks in wireless networks can be

classified into two broad categories, i.e. passive and active attacks [27]. Passive attacks

include traffic analysis and eavesdropping. Shannon first developed the theory of secrecy

systems in his landmark paper [28] to complement the cryptographic techniques used to

secure a communication system. Later on, Wyner introduced the wiretap channel in his

classic paper [29] as a model of eavesdropper. Since then, information-theoretic security

and secrecy has been extensively studied and applied to all areas of information systems

including wireless channels [30]. Active security attacks include denial-of-service (DoS)
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attacks, resource consumption, masquerade attacks, replay attacks, information disclosure

and message modification [27]. This research is focused on denial-of-service (DoS) and

loss of service attacks.

Despite the recent interest and significant progress towards securing wireless physical

layer systems, Trappe [31] pointed out that physical layer security techniques still face

some real challenges for practical deployments, and that the adversary and wireless chan-

nel modeling oversights need to be looked into for such deployments. One of the most

common forms of physical layer security attacks include denial-of-service (DoS) attacks;

and hence physical layer security requirements include resistance to eavesdropping and

jamming [27]. Radio frequency jamming attacks can be easily launched by an adversary,

causing interference with the normal operation of a wireless network, and cannot be ade-

quately addressed via cryptographic techniques [32]. In the next section, radio frequency

jamming attacks pertaining to Wireless Wide Area Networks (WWAN) will be discussed.

1.3.2 Jamming in Wireless Wide Area Networks

Wireless Wide Area Networks (WWAN) provide voice, data, multimedia, and location-

based services to billions of subscribers around the world [1, 2]. These networks connect

to subscriber terminals (devices) through an air interface, commonly known as 4G, 3G,

or 2G wireless networks. All of these cellular/mobile air interfaces, such as LTE/LTE-

A, WiMAX, cdma2000, WCDMA, GSM etc., are composed of control and data channels

[3, 4]. The control channels carry the critical “handshake” and data channels’ configura-

tion information between the network and the subscriber terminals in order to ensure and

utilize efficient operation of data channels and, hence, exchange of user data. However,

commercial cellular networks are deployed for public use, and as such their specifications

and deployments are easily accessible to the general audience. This makes commercial

cellular networks more vulnerable to jamming attacks than their private counterparts and

LTE/LTE-A is not an exception.
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LTE being a commercially deployed wireless network raises serious security concerns,

such as denial-of-service (DoS), data integrity and information privacy attacks [33]. Re-

searchers in [34, 35] also pointed out security vulnerabilities in LTE networks related to flat

all-IP based system architecture, access authentication procedures, etc. Moreover, OFDM-

based systems like LTE are less resistant to jamming and interference as compared to their

counterpart spread spectrum systems. Hence, researchers like Stüber, Clancy, Trappe, and

their colleagues, have independently identified and analyzed the performance of OFDM

systems under pilot jamming [36], pilot nulling [37] and synchronization jamming [38]

attacks respectively. However, vulnerability of wireless networks to jamming attacks is

not limited to LTE and as such all wireless networks are susceptible to it. For example,

[39] studied the performance of a WiMAX system under jamming attacks; [40] evaluated

the performance of GSM robustness against smart jamming attacks; and [41] studied the

effects of protocol-aware shot-noise pulse-based jamming attacks in WiFi networks.

Radio frequency jamming refers to intentional blocking or disruption of ongoing com-

munication between two or more devices/networks, and can be either benign or malicious.

It works by decreasing the Signal-to-Interference-plus-Noise ratio (SINR) at the desired

receiver by injecting interference in the wireless channel or directing it at the receiver.

In addition, cellular networks are subjected to unintentional Inter-Cell Interference (ICI)

from surrounding cells, on a regular basis during their normal operation. A well-designed

cellular system is, by nature, interference-limited [42]. Lately, there has been increas-

ing interest within the engineering community in alleviating ICI in LTE/LTE-A and other

cellular networks. Andrews et al. [42] discussed prospects of various existing and po-

tential ICI mitigation techniques, such as frequency reuse, Multiuser Detection (MUD),

interference cancellation, stream control etc., and advocated the use of strategic techniques

like networked MIMO, and distributed antenna architectures that require very little chan-

nel knowledge. Yang [43] provided an industry perspective of ICI mitigation techniques,

including Fractional Frequency Reuse (FFR), and Coordinated Multi-Point (CoMP) tech-
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niques. CoMP techniques require coordinated transmissions from all the nodes participat-

ing in the scheme and utilize geographically distributed multiple antennas to reduce ICI.

Burchardt and Haas [44] discussed the development of various cooperation techniques in

large cellular networks including user-based cooperation, system-wide optimization and

multiple-base-station transmission. They argued that simple frequency reuse and power

control may not be enough to meet the growing demand of mobile data communication.

Similarly, Soret et al. [45] discussed the potential of enhanced Inter-Cell Interference Co-

ordination (eICIC) and cooperative inter-site Carrier Aggregation (CA) techniques for co-

channel interference and dedicated carrier deployments in a heterogeneous LTE-A network.

Lastly, El Ayach et al. [46] discussed practical challenges associated with deployment of

interference alignment techniques that require coordination among multiple transmitters.

However, since this research deals with the malicious interference, i.e. the jamming prob-

lem, it is assumed that ICI has already been managed by the network.

Although jamming is detrimental to wireless networks in general, it can sometimes be

used by the network to block access to unwanted users and protect desired communication,

cf. [47, 48, 49, 50]. For example, Yener and Ulukus [50] discussed the idea of cooperative

jamming, in which secrecy rate of a multiple access wiretap channel can be increased by

introducing judicial interference by some terminals in the network. Similarly, researchers

have come up with some interesting schemes to combat jamming attacks in non-OFDM-

based wireless networks. For example, Asterjadhi et al. [51] proposed the use of network

coding in order to protect broadcasting in multi-channel wireless networks. Also, [52, 53,

54, 55] proposed anti-jamming frequency-hopping techniques for spread spectrum systems;

for example, Pöpper et al. [54] proposed uncoordinated spread spectrum techniques to

enable anti-jamming broadcast communication in the presence of malicious receivers.

This research deals with the intelligent jamming of control channels, which has been

actively researched lately. Thuente et al. [56] explored the effectiveness of intelligent

jamming in IEEE 802.11b networks. Petracca et al. [40] evaluated performance of GSM
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networks’ robustness against control channel jamming attacks. The authors showed that

GSM network’s security can be significantly compromised by such attacks. Similarly, Lo

and Akyildiz [57] addressed the problem of intelligent jamming of control channels in

Cognitive Radio Ad Hoc Networks (CRAHNs) by proposing a jamming-resilient control

channel algorithm that enables user cooperation. Moreover, Liu et al. [58] explored the

case of a cognitive radio ad-hoc network suffering from control channel jamming attacks

from inside jammers. The authors proposed algorithms for unique identification of the

set of compromised nodes. Furthermore, Hussain et al. [41] investigated the effects of

shot-noise based protocol-aware jamming in WiFi networks.

This research particularly deals with the “smart” jamming of LTE/LTE-A control chan-

nels. Recently, Reed [5] brought the attention of the US Department of Commerce to po-

tential control channel vulnerabilities in LTE networks. Since then, a team of researchers

led by Reed and Clancy at Virginia Tech, cf. [6, 9, 59], has been independently involved in

identifying potential vulnerabilities of LTE networks to hostile interference and proposing

possible solutions, such as randomization of reference signals, and use of cryptographic

techniques. Similarly, Jover et al. [7] explored the issue of smart jamming attacks on

an LTE network and proposed some possible solutions, like use of spread-spectrum tech-

niques, LTE system message encryption, uplink control channel scrambling, and uplink in-

terference cancellation. However, these proposed solutions often require major changes in

LTE/LTE-A specifications which are not backward-compatible with existing deployments,

and sacrifice network efficiency and availability significantly due to excessive overhead

and suggested solutions. Furthermore, they do not prevent attacks caused by “rogue” LTE-

capable devices. Nevertheless, the impact of “smart jamming” attacks on the performance

of LTE/LTE-A networks is an open problem and has not been well researched yet.
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1.3.3 Game Theory in Wireless Networks

Game theory (cf. [60, 61, 62, 63, 64, 65, 66]) provides a rich set of mathematical tools

to analyze and address conflict and cooperation scenarios in multi-player situations, and

as such has been applied to a multitude of real-world situations in economics, biology,

cyber security, multi-agent networks, wireless networks (cf. [67, 68, 69, 70]) and more.

The interaction between the LTE network and the smart jammer has been modeled as an

infinite-horizon general-sum (non-zero-sum) Bayesian game with asymmetric information

(cf. [8, 10]), with the network being the uninformed player. Asymmetric information

games (cf. [61, 63, 64, 65, 66]) provide a rich framework to model situations in which one

player lacks complete knowledge about the “state of nature”. The player who possesses

complete knowledge about the state of nature is known as the informed player and the one

who lacks this knowledge is called the uninformed player. The informed player deals with

the ultimate tradeoff of exploiting its superior information at the cost of revealing such in-

formation via its actions or some other (unavoidable) signals during repeated interactions

with the uninformed player (cf. [61, 63]). In most game-theoretic literature on repeated

games with asymmetric information, the informed player’s strategy is computed based on

how much information it should reveal for an optimal or suboptimal policy. Furthermore,

many informed player zero-sum formulations model the uninformed player as a Bayesian

player in order to solve asymmetric games (cf. [71, 72, 73, 74]). However, relatively little

work has been done to address the optimal strategy computation of the uninformed player in

an infinite-horizon repeated zero-sum game with asymmetric information ([75]). The main

difficulty arises from the fact that the uninformed player lacks complete knowledge about

the state of nature and informed player’s belief state, which plays a crucial role in determin-

ing players’ payoffs and strategies. This problem gets further complicated for general-sum

(non-zero-sum) games with imperfect monitoring, which is still an open problem [76]. This

research addresses the lack of information problem, in the infinite-horizon general-sum re-

peated game with imperfect monitoring, by devising a state estimation algorithm to resolve
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the uncertainty of the uninformed player.

Although the interaction between the network and the jammer is modeled as a Bayesian

game with asymmetric information, this interaction can also be modeled as a Bayesian

Stackelberg game with asymmetric information, with the network being the leader and the

jammer being the follower. Stackelberg leadership or commitment model was originally

introduced by von Stackelberg in 1934 [77] for a static duopoly, in which the leader moves

first and commits to a strategy followed by the follower(s) who best responds after observ-

ing leader’s move. It is now very frequently applied to solve competitive scenarios in wire-

less networks, cf. [78, 79, 70]. The main solution concepts for simultaneous-moves and

Stackelberg games are NE and SSE respectively. Conitzer and Sandholm [80] discussed

how to compute optimal strategies to commit to in a Bayesian Stackelberg game, under

both types of commitment scenarios, i.e., commitment to pure strategies and commitment

to mixed strategies. They argued that if commitment to mixed strategies is possible, as

opposed to simultaneous play, then optimal commitment never hurts the leader. They fur-

ther showed that the problem of finding an optimal pure strategy to commit to is NP-hard in

general Bayesian games, but can be solved efficiently for two-player Bayesian games when

the leader has only a single type. Moreoever, the problem of finding an optimal mixed strat-

egy to commit to is NP-hard in general Bayesian games, even for the two-player case when

leader has only a single type. This implies that computing optimal network strategies for

such a problem could be quite challenging.

There has been substantial work done on a specific type of Stackelberg games in the

security community, namely Stackelberg Security Games (SSGs) - two-player games in

which the defender commits to a randomized deployment of security resources and the at-

tacker best responds by attacking a target that maximizes his utility. Krozhyk et al. [81]

discussed interchangeability, equivalence, and uniqueness of SSE vs. NE in a security

game. It showed that NE in security games are interchangeable, alleviating the equilib-

rium selection problem for simultaneous-move games, and under very specific additional
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constraints SSE strategies are a subset of NE strategies. However, SSE strategies fail to

be a subset of NE strategies when either of those restrictions fail, or attacker can attack

multiple targets. Similarly, Vorobeychik and Singh [82] showed that there does not always

exist a SSE in Markov stationary policies in stochastic Stackelberg games, and presented

a finite-time mixed-integer non-linear program for computing a Stackelberg equilibrium

when the leader is restricted to Markov stationary policies. Moreover, Vorobeychik et al.

[83] showed that the defender’s Markov stationary policies can be arbitrarily suboptimal

for a specific class of security games known as infinite-horizon discounted Adversarial

Patrolling Games (APGs), in which the attacker can observe the current location of the

defender and can exploit this knowledge to infer future moves. Xu et al. [84] proposed

strategically revealing information about sampled pure strategy to improve defender’s util-

ity beyond SSE in SSGs. Balcan et al. [85] argued that optimal defender strategies in SSGs

require significant information about potential attackers, and proposed a no-regret online

learning algorithm instead. Furthermore, Zheng and Castanon, cf. [86, 87], formulated

network interdiction problems (zero-sum games between an attacker and an intelligent de-

fender who adapts its operations to counteract the effects of attacker), as zero-sum min-max

Stackelberg games.

This research is focused on computing network strategies that it can deploy while be-

ing uninformed about the jammer type, but not in Stackelberg game setting. Apparently,

there is vast literature available on SSGs and network interdiction games, and there are

many similarities between our work and SSGs and network interdiction problems. Yet, our

research model differs significantly from those models, and realistic modeling and observa-

tional constraints make solving the underlying research problem much more challenging!

1.3.4 Asymmetric Information Games

Game-theoretic tools have been applied to model the interaction between the LTE network

and the smart jammer. The network’s repeated game strategies (cf. [8], [10]) to combat
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smart jamming attacks are presented in Chapter 4, but they are contingent upon the type of

adversary being faced. Threat and punishment based mechanisms are often used in non-

cooperative game theory to induce cooperation and devise strategies to arrive at equilibria

other than the minmax payoff equilibrium (cf. [62], [61]). The evolved threat-based state

estimation algorithm presented in Chapter 4 is utilized by the network to estimate the jam-

mer type. This algorithm is designed such that it does not rely on feedback from network

users nor on a specific distribution (e.g. Gaussian) of test statistic prompting us to use

non-parametric estimation. Furthermore, it does not require any “full monitoring”.

Traditionally, zero-sum formulations have been studied extensively in the game-theoretic

literature concerning asymmetric information repeated games, such as, Chapter 5 of [61],

Chapter 4 of [63], Chapters 2 - 4 of [64], and Chapter 2 of [65]. However, most of the

prior work on asymmetric zero-sum repeated games revolves around the informed player’s

viewpoint. For example, [61] and [63] pointed out that the informed player might reveal its

superior information implicitly by its actions and, hence, may want to refrain from certain

actions in order not to reveal that information. Furthermore, [64] showed that the informed

player’s belief state (conditional probability of the game being played given history of

informed player’s actions) is his sufficient statistics to make long-run decisions. More-

over, [80] showed that computing the optimal value of the infinite-horizon repeated game

is non-convex, identifying computational complexities involved in solving infinite-horizon

games. Hence, many informed player’s strategies (cf. [71, 72, 73, 74]) presented in the

game-theoretic literature use the belief state as their sufficient statistics and approximate

the optimal game value via linear programming. However, compared to the vast research

work done on the informed player, limited work has been done for the uninformed player’s

optimal strategy computation [75]. It is, however, known that the uninformed player’s secu-

rity strategy exists in infinite-horizon repeated zero-sum games, and that it does not depend

on the history of his own actions (cf. [74, 88]). The uninformed player’s sufficient statis-

tics and computation of his optimal security strategy still are open problems. Recently,
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[74] used realized regret vector as the uninformed player’s sufficient statistics to compute

its efficient but suboptimal strategy in finite-horizon asymmetric zero-sum repeated games.

Furthermore, [75] suggested that the uninformed player could use expected payoff for each

candidate game as his sufficient statistics, as he is unaware of the game being played due

to lack of information. Moreover, a recent development in [89] extends the approach used

in [74] to λ-discounted infinite-horizon zero-sum repeated games with asymmetric infor-

mation. However, all of these formulations are based on “perfect monitoring” in which

players can perfectly observe their opponent’s actions.

Most of the classic general-sum (non-zero-sum) game-theoretic literature like Chapter

6 of [61] and Chapters V and IX of [66] focus on the characterization and existence of equi-

libria in repeated games with asymmetric information, and deal with the optimal strategy

construction for the “full monitoring” case (when both players can observe each other’s

actions after every stage). Chapter V of [66] also suggests using approachability theory for

the construction of the uninformed player’s strategy for the “full monitoring” case. How-

ever, none of these formulations result in efficient computation of the uninformed player’s

optimal strategy. Furthermore, in our case the “full monitoring” assumption is not realis-

tic since both the network (the uninformed player) and the jammer (the informed player)

cannot observe their opponent’s actions with certainty. Moreover, [76] pointed out that the

solution of a stochastic game with both incomplete knowledge and imperfect monitoring

is an open problem and there is no well-established solution available so far. To the best

of our knowledge, this is still the case for repeated as well as stochastic games and, hence,

characterization of the equilibrium as well as the computation of optimal strategies are

beyond the scope of this research.

Bayesian approaches have also been widely used to solve asymmetric information prob-

lems in game-theoretic literature. They are used as a tool for updating the internal notion

of a player’s knowledge related to another. For example, [71, 72, 73, 74] modeled the

uninformed player as a Bayesian player in order to compute the informed player’s subop-
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timal strategies efficiently in repeated zero-sum games. Similarly, [90, 91, 92, 93] used

a Bayesian approach to devise an uninformed player’s strategy based on expected pay-

off. Furthermore, [76] employed Bayesian Nash-Q learning in an incomplete information

stochastic game and used Bayes’ formula to update belief of an Intrusion Detection System

(IDS), but it assumes that players can observe their opponent’s actions (full monitoring)

and quality functions. However, Bayesian approaches are rather useful for devising strate-

gies based on expected payoffs, not for estimating the opponent’s type. Another technique

used to address lack of information problems is state estimation. For example, [94] used

a Kalman filter to estimate the state of an observable, linear, stochastic dynamic system in

an infrastructure security game. Since, our system of interest is nonlinear and may not be

completely-observable, applicability of these techniques is also very limited.

There has been tremendous amount of work done on the application of game theory

on wireless systems and networks (cf. [67, 68, 69, 70]), and network security (cf. [95,

96]). Among the security games, Security Stackelberg Games (SSGs) (cf. [96, 77]) are

most commonly used to model interaction between a defender (leader) and an attacker

(follower). However, it is usually modeled that the attacker has incomplete knowledge of

network (defender) resources as opposed to our formulation. The same assumption is fol-

lowed in network interdiction games [87], in addition to perfect monitoring. In some cases,

it is modeled that the leader plays a Bayesian Stackelberg game against an unknown fol-

lower of multiple types [97], similar to our formulation. However, [97] points out that find-

ing the leader’s optimal strategies spanning multiple rounds of the game with a Bayesian

prior over follower’s preferences is an open problem, and proposes a Monte Carlo Tree

Search based algorithm to address it. In another adversarial scenario [98], the Iterated Best

Response (IBR) technique is employed to update players’ actions. Each player announces

its Best Response (BR) to a strategy announced by the opponent (full monitoring) and

the players try to minimize the error in an expected sense. The above-mentioned article

also shows that the computation of an equilibrium (even in the scalar case) requires global
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knowledge. Other game-theoretic Stackelberg formulations have also been proposed for

jamming in wireless networks (cf. [99, 100]) in which the jammer can tune its transmit

power, adapt attack duration and choose to save energy similar to our model. However,

there are many fundamental differences between these formulations and our model. For

example, [99] used a Stackelberg game to model a jamming defense problem in the pres-

ence of a smart jammer who can learn transmission power of the user. In [99], the user is

aware of the jammer’s existence and intelligence, which is in contrast with our model that

requires jamming sense. Also, [99] assumes that the user can compute the jammer’s Best

Response (BR), and fading channel gains of the opponent player are known. Our model

makes no such assumptions for its algorithm design and analysis. On the other hand, [100]

proposed a game-theoretic formulation to model the interaction between a legitimate node

and a jammer, and suggested using numerical methods for solving the imperfect knowledge

case. But, this model utilizes a timing channel for resilience that cannot be jammed and

is applicable for only low-rate and covert communication. No such mechanism exists in

LTE/LTE-A networks, which are designed and optimized for very high data rates.

Although this literature survey is not complete by any means, none of the formulations

studied so far deal with the uninformed player’s strategy and opponent’s type estimation in

an infinite-horizon asymmetric repeated game without “full monitoring”. Therefore, I am

confident that this research attempts to solve a unique problem at the intersection of smart

jamming attacks in LTE networks and non-cooperative game theory!
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CHAPTER 2

SMART JAMMING IN LTE NETWORKS

Long Term Evolution (LTE) and LTE-Advanced (LTE-A) [3, 4] are probably the most ad-

vanced broadband wireless networks deployed today. However, being a commercial wire-

less network, LTE specifications and protocols are publicly known to its designers, devel-

opers, users and the general audience around the world. Lately, some researchers have

suggested using LTE for mission-critical applications like public safety and smart grid

communications because of its ubiquity, high data rates, flexibility, mobility and ease of

access. However, it is shown that LTE networks are vulnerable to smart jamming attacks

without being hacked by an adversary. A user equipment (UE) can “learn” the network

timing and synchronize itself with the network even when it is not attached to it. A smart

jammer colludes with such a UE and jams various essential parts of the network known

as Common Control Channels by employing narrowband jamming. It can launch effective

denial-of-service (DOS) attacks against legitimate network users without using wideband

jamming techniques or excessive transmit power. A typical smart jammer implementation

uses USRPs to launch jamming attacks and is shown as a block diagram in Fig. 2.1. Poten-

tial smart jamming attacks and suggested network countermeasures are briefly presented in

this chapter.

Figure 2.1: A Typical Smart Jammer Implementation
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2.1 Potential Smart Jamming Attacks on an LTE Network

A wireless jammer can be classified as any of the following types based on its jamming

technique.

• Barrage jammer

• Pulse jammer

• Partial-band jammer

• Single-tone/multi-tone jammer or

• Smart jammer

A smart jammer can “learn” the network timing and physical layer parameters to jam

it more effectively. Since LTE is a commercially deployed network, an LTE-capable UE

can easily learn the network timing and synchronize itself with the network without even

sending an attach request. If an LTE-capable UE colludes with a simple yet reconfigurable

narrowband jammer then such a collusion may result in a smart jammer. A typical UE

spends most of its time in RRC Idle state and transitions to RRC Connected state only

when it needs to send/receive some data. Also, it cannot remain in RRC Connected state

indefinitely in order not to waste network resources and battery life. If a jammer somehow

blocks the transition of existing UEs in the cell to RRC Connected state or prevents incom-

ing UEs from transitioning to the cell or increases the rate of Radio Link Failures (RLFs)

significantly then it can launch effective Denial-of-Service (DOS) and loss-of-service at-

tacks. Moreover, if a UE is unable to receive Cell-SpecificReferenceSignal(CS-RS) reliably

(≤ 2%) for 5-10 Discontinuous Reception (DRX) cycles then it goes out-of-sync [4]. This

task can be accomplished by a smart jammer by jamming common control channels and

OFDM pilot symbols known as Cell-Specific Reference Signal (CS-RS) in LTE.

16



A power-limited smart jammer may jam specific common control and broadcast chan-

nels instead of jamming the entire network bandwidth to initiate Denial of Service (DoS)

or loss of service attacks. All of the required frequency and timing information for these

channels is broadcasted by the network as per 3GPP specifications. Hence, a smart jammer

does not need to “infiltrate” the network in order to achieve its goals. It may transmit an

unknown jamming signal at specific time and frequency instances to jam selective chan-

nels in a given radio frame, which can be easily implemented using a software-defined

radio (SDR). It is modeled that a smart jammer can launch jamming attacks by playing

following actions1:

1. Inactive (no jamming)

2. Jam CS-RS

3. Jam CS-RS + PUCCH

4. Jam CS-RS + PBCH + PRACH

5. Jam CS-RS + PCFICH + PUCCH + PRACH

The smart jammer also uses its probability of jamming (pj) and transmit power (Pj) to

decide when to jam the network and how much power to use for the jamming attack. Each

action is also associated with its corresponding duty cycle, which is modeled in the utility

function as well. All these parameters dictate the (battery) power consumption of the smart

jammer.

Inactive mode refers to the scenario when jamming is not performed hence normal net-

work operations may continue. A smart jammer might cause more damage to the network

performance by jamming multiple channels in a given frame with no additional power

requirements. However, it would need to distribute its transmit power among multiple
1See [3] or [4] for the description of various LTE channels.
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channels and transmit both in the Uplink and Downlink to achieve its goals. Jamming Cell-

Specific Reference Signal (CS-RS) may prevent users from demodulating the data channels,

degrade cell quality measurements for cell reselection and handover, and block initial cell

acquisition. This jamming technique can be applied to any pilot-based OFDM network,

such as LTE, IEEE 802.11g, WiMAX etc. [36]. Jamming Physical Control Format Indi-

cator Channel (PCFICH) may cause loss of Control Format Indicator (CFI) in the Down-

link. CFI indicates the control region associated with Physical Downlink Common Control

Channel (PDCCH), which carries all essential control information and grants associated

with both the Downlink (DL) and Uplink (UL). A UE may attempt blind CFI decode but it

could be too slow resulting in missed grants which might result in Radio Link Failure (RLF)

or the UE might go out-of-sync. Jamming Physical Uplink Control Channel (PUCCH) may

cause eNode B to loose track of critical feedback information from UEs. Jamming Physical

Broadcast Channel (PBCH) and Physical Random Access Channel (PRACH) may block

reselection and handover of UEs from neighboring cells to the jammed cell, and may also

block out-of-sync and Idle mode UEs in the jammed cell to get uplink synchronized and

transition to Connected state, respectively. Since PRACH is assumed to be contention-

based for initial access and synchronization, it is assumed that a fraction of UEs try to

access it at any given resource instant. If the jammer’s signal is received at the eNode B

along with other legitimate users, it will need to perform contention resolution which may

fail because of the jammer presence. Hence, the jammer only needs to make sure that its

signal is received with high enough power at the eNode B receiver.

2.2 Suggested Network Countermeasures

LTE air interface is an OFDM-based radio link designed to connect subscriber terminals

known as the User Equipment (UE) to network interface known as the eNode B [3]. A UE

has to follow a certain (hence vulnerable) call flow of control and data channels to send

an attach request; and/or send/receive data. Although this work is focused on Frequency
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Division Duplexing (FDD) mode networks; it can be easily extended to Time Division

Duplexing (TDD) mode as well.

As of today, network operators rely on the intervention of skilled network engineers

triggered by poor network statistics to rectify jamming problems by neutralizing the jam-

mer. However, a smart jammer can go undetected by network engineers if it keeps chang-

ing its location randomly on a regular basis and launches jamming attacks probabilistically.

In the event of incomplete jamming information (jammer’s location, jamming waveform,

probability of jamming, etc.) available at the network, it is proposed that an LTE network

can take the following countermeasures:

1. Normal Mode (default action)

2. Increase CS-RS Transmit Power (pilot boosting)

3. Throttle All UEs’ Throughput (threat mechanism)

4. Change eNode B fc + SIB2 (interference avoidance)

5. Change eNode B Timing (interference avoidance)

Normal mode refers to the default day-to-day operation of the network. However, eN-

ode B may increase CS-RS transmit power at the expense of other DL channels that may

help against CS-RS jamming, which is probably the most important signal in the network.

It may also throttle all active users’ throughput in the fear of a jamming attack. This coun-

termeasure may be used as a threat against a user who is trying to “cheat” the network for its

own benefits. eNode B may also “relocate” its center frequency fc and move all of its active

UEs to different channels chosen randomly within its allocated spectrum, hence, moving

PSS/SSS and PBCH to another frequency. LTE networks have the flexibility of occupying

bandwidths ranging from 1.4 MHz to 20 MHz. A 20-MHz network can reconfigure itself

into a 15-MHz or less bandwidth network while operating in its allocated spectrum. This
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may help combat jamming of critical control channels at the expense of reduced operating

bandwidth and excessive overhead required to move all active data sessions to new fre-

quencies. Further, the eNode B may also change its frame, slot and symbol timing after it

forcefully hands over all the UEs with active data sessions to neighboring cells. The Idle

mode UEs would autonomously reselect to neighboring cells. After the change is made, all

the UEs may transition back to the original cell. Since all the control channels are trans-

mitted at specific time and frequency resources, this countermeasure may help alleviate

control channel jamming by moving it to data channels like PDSCH or PUSCH. Moreover,

SIB 2 parameters’ change may prevent PRACH and PUCCH failures caused by jamming.

However, this would require very carefully planned reconfiguration at the network side and

the cell would not be available during the transition period.

None of the above-mentioned countermeasures require any significant changes in the

LTE standard nor do they rely on exogenous information. However, employing interfer-

ence cancellation techniques at the UEs or eNode B is not suggested due to technical dif-

ficulties, particularly the unknown jamming waveform and the absence of any “pilot” data

from the jammer. Furthermore, blind interference cancellation may not converge in time

and may require heavy computational resources, especially at resource-constrained UEs.

Beamforming is also not suggested for similar reasons and the need for regular updating of

weights [101].

Similar to the smart jammer, the network’s actions are also associated with correspond-

ing duty cycles modeled in its utility function. In addition, the network’s interference

avoidance mechanisms also incur fixed costs associated with the required overhead and

setup time delay. The average duty cycle and network’s transmit power (P0) determine the

power consumption of the network corresponding to the anti-jamming operation.

20



CHAPTER 3

LTE NETWORK & SMART JAMMER DYNAMICS

In this Chapter, LTE network and smart jammer dynamics are presented in terms of network

and game-theoretic models.

3.1 Network Model

It is assumed that UEs arrive in the cell according to a homogeneous 2D Stationary Spatial

Poisson Point Process (SPPP) with the rate λ per unit area and a fraction of them are in

active data session with eNode B. UEs are uniformly distributed over the entire cell con-

ditioned on the total number of users N. Jammer keeps changing its location randomly on

a regular basis and launches jamming attacks probabilistically in order to escape detection

by the network. It is also assumed that the total number of UEs in the cell and, hence, their

locations keep changing on regular basis albeit at a rate much slower than jammer hopping.

3.1.1 Channel Model

All transmit signals go though large-scale path loss which is modeled using Simplified Path

Loss Model [101] represented by (3.1).

Pr(dBm) = Pt(dBm) +K(dB)− 10γlog10

(
d

d0

)
(3.1)

where Pr is the received power, Pt is the transmitted power, K(dB) = 20log10

(
λ

4πd0

)
is a

constant, γ is the path loss exponent with typical values from 2.7 - 3.5 for urban microcells,

d is the distance between transmitter and receiver, and d0 is the outdoor reference distance

for antenna far field. The small-scale multipath fading is modeled as Rayleigh-faded expo-

nentially distributed channel gains for simple Narrowband Model; whereas it is modeled
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Table 3.1: Power Delay Profile of EVA Channel Model
Tap No. Excess Tap Delay (ns) Relative Power (dB)

1 0 0.0
2 30 -1.5
3 150 -1.4
4 310 -3.6
5 370 -0.6
6 710 -9.1
7 1090 -7.0
8 1730 -12.0
9 2510 -16.9

Figure 3.1: 3GPP’s Extended Vehicular A (EVA) Wideband Channel Model

as per 3GPP/ITU’s Extended Vehicular A (EVA) channel model (cf. [3, 4]) for Wideband

Model with maximum Doppler frequency of 70 Hz (which corresponds to maximum speed

of 35 km/h at 2140 MHz). The power delay profile of 3GPP’s EVA channel model is given

in Table 3.1 and plotted in Fig. 3.1.
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3.1.2 SINR Model

In an OFDM-based system like LTE, the instantaneous SINR Γ[k] of a particular subcarrier

k can be modeled as:

Γ[k] =
P0[k]|h|2K(R0

d0
)−γ

σ2 + Pj[k]|g|2K(
Rj

d0
)−γ

(3.2)

where P0 and Pj are desired and jammer transmit powers, |h|2 and |g|2 are Rayleigh-faded

exponentially distributed channel gains, K is a constant, R0 and Rj are large-scale dis-

tances from desired transmitter and jammer respectively, d0 is the outdoor reference dis-

tance for antenna far field, γ is the path loss exponent, and σ2 is the noise variance at the

receiver. Since, Inter-Cell Interference (ICI) is independent of jamming, it does not affect

the SINR model presented above. Therefore, any residual ICI can be lumped together in

σ2 for the scope of this research. It is further assumed that σ2 is the same at all receivers.

The SINR in (3.2) can also be re-written in terms of Carrier-to-Jammer ratio (C
J

),

i.e., ratio of average carrier power to average jammer power, which helps us to assess the

performance of a channel at a given (C
J

).

Γ[k] =
(C
J

)|h|2K(R0

d0
)−γ

( σ2

Pj [k]
) + |g|2K(

Rj

d0
)−γ

(3.3)

However, (3.2) or (3.3) can only be utilized to model the SINR of a narrowband flat-

faded signal. Since, LTE control channels like CS-RS, PCFICH and PUCCH are not wide-

band signals and are transmitted via subcarriers which are spaced across the bandwidth,

(3.2) or (3.3) can be used to model their SINR accurately. But, (3.2) or (3.3) cannot be

used to model the SINR of LTE’s wideband data channels like PDSCH and PUSCH.

3.1.3 SINR Estimation

SINR estimation is done in the frequency domain by estimating noise and interference

power in frequency domain as suggested in [102]. The received time-domain symbols can
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be expressed in frequency-domain as follows:

Yi[k] = Hi[k]Xi[k] +Gi[k]Ji[k] +Wi[k] (3.4)

where Hi, and Gi represent channel frequency responses for desired transmitter and jam-

mer’s signals; Xi, and Ji represent desired transmitted signal and jamming waveform; and

Wi represent DFT of i.i.d. AWGN noise at the receiver. The instantaneous noise and in-

terference power Êm[k] is estimated for each OFDM subcarrier by finding the difference

between each received (noisy) sample and the best hypothesis of noiseless received signal,

as shown in (3.5) below.

Êm[k] = |Ym[k]− X̂m[k]Ĥm[k]|2 (3.5)

where X̂m[k] and Ĥm[k] are the best hypotheses of desired symbol and channel estimate

for the kth subcarrier of the mth OFDM symbol. Thus, (3.5) can be used to estimate the

SINR of a link in LTE network by computing the quantity X̂m[k]

Êm[k]
.

3.1.4 Throughput & Multiuser Scheduling Model

It is widely known that fading channel’s capacity can be modeled as a fraction of AWGN

channel capacity [101]. Since LTE data channels operate close to Shannon Capacity at

high data rates and smart jamming does not target data channels, mth user’s DL PDSCH

throughput Rm(k, l) in kth Resource Block during lth subframe can be approximated as

Shannon’s AWGN Channel Capacity as shown in (3.6).

Rm(k, l) = WRB log2[1 + ΓPDSCH
m (k, l)] (3.6)

where WRB is the bandwidth of a single RB i.e. 180 kHz.

A UE’s throughput in a subframe would be the sum of its assigned RBs’ throughput.

It is assumed that both eNode B and UE are unable to decode control channels below
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a certain Block Error Rate (BLER) threshold and failure to decode these critical control

channels would result in declaring Radio Link Failure (RLF) or very poor performance of

data channels’ decode and missed grants. For uncoded signals like CS-RS, well-known

closed form expression for QPSK Symbol Error Rate (SER) performance in Rayleigh fad-

ing [101], is used to convert desired BLER performance threshold into required average

SINR, i.e. Ps =
(

1−
√

Γs/2

1+Γs/2

)
(where Ps = average QPSK symbol error probability

in Rayleigh fading, and Γs = average SNR per symbol). For coded signals like PBCH,

PCFICH, and PUCCH there are no closed form expressions available for coded PSK per-

formance in Rayleigh fading. So, a combination of the Union Bound for coded PSK symbol

error probability [103], i.e. PM < 2k
(

2dmin−1
dmin

) (
1

4RcΓb

)dmin

(where PM = coded M-PSK

symbol error prob., M = 2k, Rc = code rate, dmin = minimum distance of channel code and

Γb = avg. SNR per bit), channel code’s free distance dfree derived from 3GPP LTE specifi-

cations [3], and equally likely symbol error probability across entire block of a particular

signal is used to convert desired BLER performance into required average SINR.

It is modeled that eNode B uses Proportional Fair Scheduling (PFS) [104] algorithm to

allocate resources to its users that survive jamming attacks. PFS provides a good balance in

multiuser scheduling between eNode B throughput performance and fairness among users.

User m is allocated in Resource Block k during lth subframe if the ratio of his achievable

instantaneous data rate and long-term average throughput in (3.7) is the highest among

all the users in the network. The long-term average throughput of user m, Rm(l) during

subframe l is computed using the recursive equation (3.8).

m̂k = arg max
m′=1,...,N

{
Rm′(k, l)

Rm′(l)

}
(3.7)

Rm(l) =

(
1− 1

tc

)
Rm(l − 1) +

1

tc

K∑
k=1

Rm(k, l)I(m̂k = m) (3.8)

where tc represents fairness time window, and I is an indicator function.

25



3.1.5 Network Dynamics

An LTE network can be abstracted as a highly nonlinear dynamical system that can be

represented by (3.9).

χ+ = f(χ, θ, a0, aj, ω) (3.9)

where χ ∈ RM×N represents the state of the network (not to be confused with the game-

theoretic state of nature) with each row corresponding to the user m ∈ M , including N

elements for each user (such as, SINRs Γm of its control and data channels, and average

throughput for user m ∈M ); θ represents the game-theoretic state of nature (jammer type)

as described in the next section; a0 ∈ A0 represents eNode B action; aj ∈ Aj represents

jammer’s action and ω characterizes the randomness in the network induced by the channel,

arbitrary user locations, varying transmit power levels, PFS scheduling, etc. These network

dynamics evolve at a uniform rate of Ts samples/second, and can be modeled as a Markov

process if enough depth required by PFS is taken into consideration. Since, not all the states

are observable by both players (jammer cannot access network users’ states and eNode B

is not aware of jammer’s and colluding UE’s location, jamming waveform, etc.), it leads to

a Partially-Observable Markov Decision Process (POMDP).

The above-mentioned network dynamics and SINR model, along with nonlinear SINR

thresholds make the entire network abstraction mathematically intractable. Hence, this

abstracted model is simulated in MATLAB.

3.2 Game-Theoretic Model

The network dynamics (interaction between the LTE network and the smart jammer) are

modeled as an infinite-horizon 1 two-player general sum Bayesian game G with asym-
1Infinite-horizon model is used when the players believe that the game will continue for an additional

stage after each stage, i.e., there is a non-zero probability associated with game continuation at the end of
each stage [62]
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metric information, cf. [62, 61, 63]. The game G is described by

• N = {eNode B, jammer}, the set of players,

• Θ, the set of states of nature (jammer types),

• p0 ∈ ∆(Θ), the common prior probability distribution on Θ, where ∆(Θ) represents

the set of all probability distributions over Θ,

• A0 and Aj , the set of pure actions of the eNode B, and the smart jammer, respec-

tively as described in Chapter 2, and a0 ∈ A0 and aj ∈ Aj represent corresponding

elements in these sets,

• H, a set of sequences such that each h ∈ H is a history of observations,

• Ii, the information partition of player i and

• Ui : Θ×A0 ×Aj → R, the utility function of player i.

3.2.1 Jammer Types

The state of nature, i.e. the type θ ∈ Θ of smart jammer is classified as:

• Type 0: Normal (when jammer is not present)

• Type I: Cheater

• Type II: Saboteur

The type Normal refers to the state when there is no jammer present in the network, i.e.

the network is operating in its default conventional mode. A Cheater jams the network with

the intent of getting more resources for itself as a result of reduced competition among UEs.

Thus, a cheating UE is always present in the network with an active data session. On the

other hand, a Saboteur jams the network with the intent of causing highest possible damage

to the network resources. Thus, a sabotaging UE may be unattached to the network. It is
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modeled that the colluding UE and narrowband jammer are not necessarily co-located but

the colluding UE has the capability of canceling the interference caused by the narrowband

jammer due to their collusion. It is to be noted here that the type Normal should not be

confused with the jammer being inactive, where latter merely represents an action that

might be played by the smart jammer.

3.2.2 Strategies

A pure strategy of a player is a mapping from each non-terminal history to a pure action

and a mixed strategy is defined as a probability measure ∆ over the set of its pure strategies.

Whereas, a behavioral strategy specifies a probability measure ∆ over its available actions

at each point when an action needs to be taken [62]. Both the network and the jammer

are modeled as as rational and strategic players with the exception of evolved jammer

type estimation algorithm when the jammer is modeled as “myopic” (non-strategic), i.e.,

the jammer would play a myopic best response 2 to the leader’s strategy observed in the

previous stage. The assumption of a myopic follower (i.e., jammer) is not new and has

been used by many researchers, such as [97]. Also, this assumption makes perfect sense in

the assumed model as the jammer wants to either “cheat” the network or inflict maximum

damage to it in the shortest possible time without getting caught.

3.2.3 Information Partitions

The adversary is informed of the state of nature θ, i.e., its own type. However, eNode B

is only informed about the prior probability distribution on the states of nature, i.e. p0 ∈

∆(Θ). This results in a game with asymmetric information, with lack of information on

the network side, making eNode B the uninformed player.

2The best response (BR) is the strategy (or strategies) that produces the most favorable outcome for a
player given other players’ strategies [60].
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3.2.4 Observable Signals

Unlike the formulation described in classic game-theoretic literature like Chapter 6 of [61]

etc., players can only observe their own payoffs but not opponent’s actions due to inher-

ent randomization and inaccessibility of information in the network. This means that the

“full monitoring” 3 assumption cannot be realistically made in the modeled dynamics. The

eNode B’s observable signals include the number and throughput statistics of UEs with

active radio links. UEs also measure parameters related to Cell-Specific Reference Signal

(CS-RS) including Reference Signal Received Power (RSRP), Reference Signal Received

Quality (RSRQ), and Channel Quality Indicator (CQI) which are reported back to the eN-

ode B on a regular basis. From these measurements, eNode B can infer Signal-to-Noise

Ratio (SNR) and carrier Received Signal Strength Indicator (RSSI) for each UE. However,

eNode B cannot observe signals from RLF UEs, which are most adversely affected by jam-

ming attacks. Also, eNode B cannot observe the jammer and colluding UE’s locations,

probability of jamming and jamming waveform with certainty. All of these impediments

make adversary type and actions’ estimation very difficult for eNode B, further compli-

cated by inherent randomization in the links caused by channel variations, UEs’ locations

and mobility, PFS scheduling etc..

The Cheater’s observable signals include its own downlink SNRs, resource block(s) as-

signments and eNode B frequency and timing change directives. Since eNode B frequency

and timing change messages are sent to all the Connected mode UEs, the Cheater would

be able to observe these actions perfectly. On the other hand, the Saboteur does not have

any Connected mode UEs in the network and, hence, cannot listen to any Connected mode

directives from the network. The Saboteur, however, synchronizes with the network on a

regular basis.

3All players can observe the previous actions of their opponents after each stage [61].
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3.2.5 Utilities

Players’ utilities are computed as weighted sums of Key Performance Indicators (KPIs),

normalized over a baseline jamming-free scenario. The utility function of player i can be

concisely written as in (3.10).

Ui =
L∑
l=1

αlEω[gli(θ, ai, a−i)]− Ci(ai) (3.10)

where αl represents weight of the lth KPI normalized with respect to the baseline jamming-

free scenario, Eω represents the spatio-temporal expectation with respect to the randomness

caused by ω described in (3.9), gl represents the lth normalized KPI as a function of the

jammer type θ, action of the ith player ai, and action of the player other than the ith player

a−i, and Ci represents fixed cost of ith player as a function of his action ai.

The KPIs are functions of observable parameters only, for example, eNode B’s utility

is a function of parameters observed from Connected Mode UEs only with the exception

of the preliminary narrowband model results presented in Chapter 4 and [8]. For eNode B,

KPIs include throughput/UE, number of Connected Mode UEs, CS-RS, PUCCH, PCFICH

SINRs, PRACH failure rate, and transmit duty cycle τeNB. For Cheater, KPIs include its

own throughput and transmit duty cycle τc. For Saboteur, KPIs include the negative of

the eNode B throughput/UE, the negative of number of Connected Mode UEs and its own

transmit duty cycle τs. Different weights are assigned to each individual KPI based on its

significance. For example, eNode B might care more about the number of users it can

support as compared to average throughput/UE and so on. The transmit duty cycle of

each player is used to model its energy consumption and, hence, is treated as a cost for

both players. It is to be noted here that the average transmit duty cycle is derived from

the actions taken by each player representing the ON time for the transceiver. Moreover,

the fixed cost of an action does not depend on the opponent’s action and is used to model

quantities like required overhead and additional delay, etc. For example, fixed cost is used
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to model overhead needed for additional reconfiguration messages and set up time delay

for eNode B’s interference avoidance mechanisms. Furthermore, each player’s transmit

power and probability of jamming pj are implicitly included in the utility function.

The above-mentioned utility functions provide a comprehensive utility (cost and ben-

efit) model encompassing all important and relevant quantities a player might care about.

However, this results in a general sum (non-zero-sum) game, explored in Chapter 4, due

to the asymmetry of objectives and KPIs among different players. The general-sum game

is converted to more tractable zero-sum formulation in Chapter 5.

3.2.6 Game Play

At the beginning of the game, nature flips a coin and selects θ ∈ Θ (type of adversary)

according to p0 ∈ ∆(Θ), which remains fixed for the rest of the game. It is assumed that

pθ0 > 0,∀θ ∈ Θ, without loss of generality. The jammer is informed about its selected type

but eNode B is not. This leads to a game with asymmetric information, with eNode B

being the uninformed player, and smart jammer being the informed player. Although

eNode B is unaware of the jammer type, it’s history would evolve with time in a repeated

game by repeated interaction with the jammer that could affect its belief about true state of

nature, i.e. θ.
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CHAPTER 4

GENERAL-SUM GAME ALGORITHMS

The smart jamming problem in LTE/LTE-A networks has been modeled in Chapter 3 as

an infinite-horizon general-sum (non-zero-sum) repeated Bayesian game with asymmetric

information (cf. [8, 10, 12]) in which the jammer has multiple types. The information

asymmetry in the above-mentioned game is induced by the fact that the network is un-

aware of the arriving jammer type. At the beginning of the game, nature selects a jammer

type from a finite set according to a common prior probability distribution. The jammer is

informed of its type but the network is not. This situation leads to asymmetric information

or lack of information on one side problem (cf. [61, 63, 64, 65, 66]), with the network

and the jammer being the uninformed and informed player, respectively. To the best of my

knowledge, there does not exist any efficient and optimal formulations for the uninformed

(or informed) player’s strategy computation in infinite-horizon repeated general-sum games

with asymmetric information and partial monitoring. Hence, heuristic algorithms are de-

vised for strategy computation and type estimation that do not require any feedback from

the network users nor do they rely on a specific distribution (e.g., Gaussian) of test statistic

and are implemented without any notion of “full monitoring” (i.e., players cannot observe

opponent’s actions). The LTE network can combat smart jamming attacks autonomously

by employing the repeated game algorithms presented in this chapter (cf. [8, 10]). How-

ever, these network strategy algorithms are contingent upon a specific jammer type. Hence,

state estimation algorithms (cf. [8, 12]) are also presented in this chapter to estimate the

jammer type, which are based on non-parametric estimation and threat mechanisms in re-

peated games.
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4.1 Narrowband Strategy Algorithms

4.1.1 Single-Shot Game

In the single-shot game, a smart jammer infringes on regular network communication by

playing pure or mixed strategy over the jamming actions mentioned in Chapter 2. Since

jammer is power and resource limited, it tries to jam as few control channels as possible

while maximizing its utility. The eNode B counteracts as a result of jammer’s infraction

and plays a pure or mixed strategy over countermeasures described in Chapter 2. These

are modeled as two-player matrix games with eNode B as the row player and adversary as

the column player. As per famous Nash’s existence theorem every finite strategic game in

which every player’s set of actions is finite, has at least one mixed strategy Nash Equilib-

rium (NE) 1 [62].

Single-Shot Game Simulation Results

The following simulation parameters are used for MATLAB simulations based on their

anticipated significance:

• αUE = 80,

• αTput = 50,

• αRS = 10,

• αPUCCH = 8,

• αRACH = −25,

• ατ = −25,

• CRSeNB = 20,

1No single player can obtain a higher utility by deviating unilaterally from a NE by choosing a different
strategy other than the one used at that particular NE [62].
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• C throttle
eNB = 0,

• Cf Change
eNB = 50,

• C t Change
eNB = 80,

• BLERthreshold = 10%,

• C/J = 20 dB,

• pj = 0.7,

• path loss exponent γ = 3.5,

• LTE carrier frequency fc = 2140 MHz, and

• UE arrival rate λ = 8 UEs/Km2,

where C/J , and pj denote Carrier-to-Jammer power ratio and probability of jamming

respectively. The utility results obtained from the simulations are tabulated below in the

form of two-player matrix games with the network being the row player and the adver-

sary being the column player. The U0,c utility matrix representing eNode B vs. Cheater

simulation results is given as follows:

U0,c = −



0, 0 190,−10 526,-260 180, 3 520,-260

4, 14 180, 3 528,−245 172, 15 526,−251

431, 431 642, 431 1118, 443 629, 441 1116, 442

84, 57 282, 47 620,−199 273, 59 618,−199

80, 0 270,−10 606,−260 260, 3 600,−260


Similarly, U0,s utility matrix representing eNode B vs. Saboteur simulation results is

given as follows:
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U0,s = −



0, 0 193,−40 539,−226 183,−22 532,−220

4,−14 182,−39 541,−238 175,−24 539,−236

431,−431 646,−492 1134,−821 633,−471 1132,−820

84,−57 88,−53 88,−35 91,−45 88,−36

80,0 84,3 83, 22 87, 11 84, 21


In the case of Cheater, the single-shot game has two pure strategy NE at (Normal, Jam

CS-RS + PUCCH) and (Normal, Jam CS-RS + PCFICH + PUCCH + PRACH) with an ex-

pected payoff of (-526,260) and (-520,260) respectively. Whereas, in the case of Saboteur,

the game has a mixed strategy NE with expected payoff of (-81.32,0.68). This mixed

strategy NE corresponds to assigning probability distribution of [0.04, 0.05, 0, 0, 0.91]T

and [0.67, 0.28, 0, 0, 0.05]T to the network and Saboteur actions respectively. This can be

loosely translated to (’Change Timing’, ’Inactive’) and (’Change Timing’, ’Jam CS-RS’)

pure strategy NE. Thus, the network’s utility is severely compromised in case of a jamming

attack as evident from its very low utility values. It is to be noted here that the best possible

utility value for eNode B is zero as compared to its baseline jamming-free scenario. Also,

some network actions are strictly dominated against a particular type of adversary, e.g.,

’Change fc’ and ’Timing Change’ against Cheater. Hence, the network strategy depends

on the adversary action as well as its type. Similar trends are observed at other values of

C/J and pj .

4.1.2 Infinite-horizon Repeated Bayesian Game with Asymmetric Information

Single-shot games are less appealing from convergence and implementation point of view.

On the other hand, repeated games can potentially provide further opportunities for im-

proving network utility by learning and utilizing game dynamics. Hence, in this chapter, a

repeated Bayesian game [62] is used to model the game dynamics. Also, repeated game
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algorithms are presented for the network and the adversaries. All measurements and ac-

tions required by the strategy computation and state estimation algorithms are within the

capabilities of both the network and the adversaries without changing LTE specifications

significantly. In other words, they are practically implementable in current LTE networks

with minor changes. It is assumed that a certain probability of occurrence is associated

with each adversary, and only one type of adversary can be present in the network with the

network being jamming-free most of the time. Adversaries with dual or mixed personality

types are beyond the scope of this research.

eNode B’s Jammer Type Estimation Algorithm

Based on the single-shot game simulation results, the network’s Best Response (BR) de-

pends on the type of adversary it faces. Hence, it is important for the network to determine

the jammer type, if detected. A repeated game algorithm is presented in Fig. 4.1 for the

network to determine the jammer type. The network uses its long-run baseline parameter

values such as average CS-RS SNR and average PUCCH SNR, collected as a result of its

learning and feedback from UEs to decide if jamming is in effect. Here pfalse, Throttling

Test, and f Change Test refers to false alarm probability, playing ’Throttle’ and playing

’Change fc’ for few consecutive frames respectively.

The baseline statistics are defined in terms of observed samples collected during ini-

tial jamming-free observations and decisions are made based on level (threshold) crossing

of ongoing observations against baseline statistics. For example, the eNode B’s base-

line CS-RS and PUCCH SNR statistics are defined as: νRS
baseline = µRS

initial − σRS
initial, and

νPUCCH
baseline = µPUCCH

initial − σPUCCH
initial , where ν represents the baseline statistic, µ represents mean

and σ represents standard deviation. Jamming sense decision is made by the eNode B

if the ongoing sliding window SNR observations fall below certain thresholds, i.e., when

µRS
obs < 1.135 νRS

baseline or µPUCCH
obs < 0.85 νPUCCH

baseline . Jamming sense decision results in the

declaration of ’Jammer Present’ with a probability 1− pfalse as shown in the Fig. 4.1. Sim-
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Figure 4.1: eNode B’s Narrowband Jammer Type Estimation Algorithm

ilar manipulations are done for Cheater and other eNode B baseline and decision statistics.

Obviously, all of the coefficients used in the statistics’ definition are configurable. The jam-

mer type estimation algorithm’s true estimation probability p(θ̂|θ) for C
J

= 20dB, pj = 0.7,

and pfalse = 0.10 is given below in the form of a matrix. Other configuration parame-

ters include initial jamming-free observations window length = 40 subframes, eNode B’s

observations sliding window length = 10 subframes, Cheater’s observations sliding win-

dow length = 10 subframes, ’throttling’ test duration = 30 subframes, and ’f Change’ test

duration = 20 subframes.

p(θ̂|θ) =


0.06 0.16 0.78

0.07 0.37 0.56

0.09 0.09 0.82


Ideally, the above matrix should be diagonal. But, at a high value of C

J
= 20 dB,
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jamming effects are too subtle to sense so SNR values are not much affected by jamming

and hence, a lot of false alarms are detected. On the other hand, with the above-mentioned

configuration parameter values, the algorithm gets biased towards Saboteur, i.e. it tends

to declare its presence (and often erroneously) much more often. However, the algorithm

can be tweaked for a certain performance (detection) level since there are many degrees of

freedom built into it, provided that enough data is available for tweaking. Furthermore, the

jammer type estimation algorithm converges in 96 subframes on average.

Repeated Game Learning and Strategy Algorithms

After jammer type determination, eNode B uses the algorithm presented in Fig. 4.2 to

counteract jamming attacks. If no jammer is detected by eNode B, it will keep playing

’Normal’. Here phigh refers to high probability and ’throttling duration’ refers to the pa-

rameter describing number of consecutive frames for which that action is played. It is

to be noted here that the eNode B merely forms an estimate of jammer type which may

or may not represent the true state. Also the presented actions’ algorithm forms beliefs

about network state and adversary’s actions based on its observations and may not always

be true as well. This phenomenon is typical for a stochastic environment with incomplete

information.

Similarly, jammer personalities, i.e. Cheater and Saboteur devise their own corre-

sponding strategy for the repeated game. Their strategies are presented in Figs. 4.3 and 4.4,

respectively. Similar to eNode B, adversaries are also unaware of network state (not to be

confused with system state, i.e., state of nature) and actions and, hence, can only form an

estimate based on their own capabilities and measurements. Saboteur is naturally limited

in this regard, since it does not have access to dynamic resource allocation of eNode B

and can be kept in the dark by the network. Therefore, Saboteur keeps re-synchronizing

itself with the network on regular intervals denoted by periodJ in Fig. 4.4. On the other

hand, Cheater might be able to estimate network actions more accurately and can act ac-
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Figure 4.2: eNode B’s Narrowband Repeated Game Strategy Algorithm

cordingly. It forms its own baseline during the observatory (inactive) period so that future

network behavior can be interpreted in terms of eNode B actions. In addition, jammer

uses a probability distribution over frames to jam the network randomly in order to escape

detection by the network.

Repeated Game Simulation Results

The same weighting parameters are used for repeated game as single-shot game with fol-

lowing frequency of different jammer personalities occurrence: fc = 9.33%, and fs =

5.67% for Cheater and Saboteur respectively. As a result, the following repeated game

utility values are obtained from the simulation: U repeated
eNB = −23.2, U repeated

c = 466.2, and

U repeated
s = −511.3. The corresponding single-shot utility at NE would be U single

eNB = (−523)fc+

(−81.3)fs = −53.4. Evidently, eNode B enjoys 57% relative improvement in its utility

when using narrowband repeated game strategy algorithm as compared to playing best

response in its single-shot scenario.
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Figure 4.3: Cheater’s Narrowband Repeated Game Strategy Algorithm

Figure 4.4: Saboteur’s Narrowband Repeated Game Strategy Algorithm
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Brief Discussion on Simulation Results

Based on the simulation results, it becomes clear that the network can improve its utility

significantly by using the presented narrowband algorithms in case of a jamming attack.

In a single-shot game, network may not have enough information and leverage against ad-

versary, whereas it can learn jammer type and use threats against it in a repeated game.

Similarly, Cheater can also improve its utility as a consequence of repeated game formu-

lation. Although the jammer type estimation algorithm is not completely characterized, it

can be tweaked for various jammer types based on their expected behavior. It is to be noted

here that the simulation results are probabilistic in nature and only long-term averages are

reported here.

4.1.3 Summary

It is shown that LTE networks are vulnerable to denial-of-service (DOS) and loss-of-service

attacks from smart jammers even if the jammers are resource-constrained. An adversary

can easily launch these network-wide jamming attacks with the help of a smart jammer.

As a result, the network suffers significant performance loss and may not be able to recover

itself using current protocols. However, if narrowband repeated game type estimation, and

repeated game learning and strategy algorithms are used by the network, it can recover

most of its performance loss and may even force an adversary to retract.

4.2 Evolved Jammer Type Estimation Algorithm for Wideband Model

In this section, the evolved jammer type estimation algorithm is presented for the wideband

model and its performance is characterized.
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4.2.1 Test Statistic & Statistical Hypothesis Test

Although UEs report CQI, RSRP and RSRQ (and hence indirectly RSSI) to eNode B on

regular basis, these measurements are mostly based on a reference signal and are not re-

ported as frequently as desired (due to control channels scheduling and saturation con-

straints) to keep up with the network dynamics in case of a jamming attack. Furthermore,

these measurements are only available from Connected mode UEs and no immediate feed-

back is possible from the UEs who suffer RLF either due to channel variations or possi-

ble jamming attack. During initial studies, RSSI measurements were found to be more

indicative of jamming attacks than RSRQ due to inherent wideband measurements, but

consolidating these measurements from multiple UEs in the network does not provide a

robust jamming detection statistic. The network can be divided into multiple regions and

the near-cell UEs’ RSSI can be used as a test statistics but it’s not robust enough because

of unknown jammer location.

Hence, the “number of Connected mode UEs” is used as a more reliable test statistic

to detect jamming attacks and estimate jammer type in the network. Clearly, eNode B has

instantaneous access to this statistic, without requiring any explicit feedback from its users.

Furthermore, non-parametric statistical hypothesis tests are used for jamming sense, with

null hypothesis being no jamming, even though they are less powerful than their counterpart

parametric tests. However, most of the parametric tests assume some kind of Normal distri-

bution or its approximations. It can be argued that neither SINR nor LTE network dynam-

ics (and, hence, number of Connected mode UEs) can be modeled or approximated using

a Gaussian distribution which has been empirically validated by our simulations as well.

Hence, using Wilcoxon’s non-parametric Rank-Sum test a.k.a. Mann-Whitney-Wilcoxon

test [105] is used for jamming detection. It does not require the assumption of any spe-

cific distribution (e.g., Gaussian) and the only required assumption is that the underlying

distribution must be symmetric about its median.
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4.2.2 Threat Mechanisms

The following threat mechanisms are constructed for various jammer types.

‘Throttling’

The eNode B throttles Resource Block (RB) assignments for all the Connected mode UEs

as a threat mechanism against the Cheater for a fixed duration. Since eNode B is unaware

of the cheating UE, it would inflict throttling to all the UEs with active data sessions. This

mechanism acts like a credible threat to the Cheater, since Cheater cares deeply about its

own throughput. However, it cannot be extended indefinitely due to lack of credibility in

infinite-horizon when it harms the network as well.

‘Change fc + SIB 2’ - Interference Avoidance

eNode B “relocates” its center frequency fc and moves all Connected mode UEs to new

frequencies within its occupied bandwidth for a fixed duration, hence, potentially mov-

ing jamming effects from control channels to PDSCH and PUSCH data channels. SIB 2

parameters are also changed in order to alleviate PRACH and PUCCH failures. This mech-

anism acts like a credible threat to Saboteur since Saboteur cares deeply about sabotaging

the LTE network and cannot observe frequency reconfiguration messages. The aforemen-

tioned interference avoidance scheme alleviates jamming of control channels until Saboteur

re-synchronizes with the network.

4.2.3 Evolved Jammer Type Estimation Algorithm for eNode B

The devised algorithm is shown in Fig. 4.5. The network collects its baseline statistics (or

accesses it from a database based on time of the day, day of the week basis) prior to any

jamming activity (if any) on regular basis. This data corresponds to the null hypothesis.

After sensing the jamming attack presented in next section, the network runs a series of

tests to “filter” the jammer type based on myopic best-response behavior of the jammer
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using non-parametric hypothesis testing and conditional probabilities p(θ|j) and p(θ|j̄),

where j and j̄ represent ’Jamming’ and ‘No Jamming’, respectively. The network uses a

combination of above-mentioned threat mechanisms to compel a systematic response from

the smart jammer, and exploits it to estimate the jammer type.

Figure 4.5: eNode B’s Evolved Jammer Type Estimation Algorithm

Initial Jamming Sense

The devised algorithm is invoked by the network on a regular basis (or event-driven basis),

such as, daily or weekly, etc. The network uses a sliding-window to collect current statis-

tics, which are compared against its baseline statistics and the P-value is calculated using

Wilcoxon’s rank-sum test at a pre-determined significance level α1. If the network fails to

reject null hypothesis at α1 for the duration Tsense, then the algorithm terminates with a
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declaration of “No Jammer” in the network. However, if the resulting P-value is less than

α1, then the null hypothesis is rejected and “network under jamming attack” is declared

by the algorithm, which is followed by a series of tests described below to estimate the

jammer type.

‘Throttling’ Test - Threat against Cheater

A non-parametric Wilcoxon’s rank-sum test is performed at a pre-determined significance

level α2 using test and baseline statistics. If the null hypothesis (no jamming) is rejected at

α2, then the algorithm terminates with a final determination of “Saboteur”; otherwise the

algorithm proceeds to the second test “f Change”.

‘Change fc + SIB 2’ Test - Threat against Saboteur

Wilcoxon’s rank-sum test is performed at significance level α2 using test and baseline statis-

tics. If the null hypothesis (no jamming) is rejected at α2, then the algorithm terminates

with a final determination of ”Cheater”. However, if the network fails to reject null hy-

pothesis at α2, then the final determination of “No Jammer” and “Saboteur” is made with

conditional probabilities p(θ = 0|j̄) and p(θ = 2|j̄) respectively.

Jammer’s Best Response

The pure security strategies of both the Cheater and the Saboteur require them not to jam

the network, which is obviously not optimal for them. Moreover, computing optimal

strategies for an infinite-horizon repeated game might be too complicated and resource-

constraining for the jammer. Therefore, the jammer resorts to playing myopic best-responses

to eNode B’s observed strategy. The assumption of myopic player is not unprecedented and

has been used before, such as [97]. Since the jammer is myopic, it always tries to maximize

its short-term utility based on single-shot simulation results.

Cheater has a Connected mode UE in the network, hence, it can observe the network’s
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‘interference avoidance’ and ‘throttling’ actions and plays best response to them according

to single-shot formulation. For example, in case of ‘throttling’ and ‘f Change’, Cheater

plays ‘Inactive’ and ‘Jam CS-RS + PUCCH’, respectively, and so on. However, it cannot

easily distinguish between ‘Normal’ and ‘pilot boosting’ network actions. Therefore, it

assumes that the network plays both of those actions equally likely when not in receipt of

a special network directive. In that case, Cheater would respond by playing ‘Jam CS-RS +

PCFICH + PUCCH + PUCCH’ with probability 0.75 and ‘Jam CS-RS + PUCCH’ with

probability 0.25.

On the other hand, Saboteur does not have any Connected mode UE in the network

and, hence, plays an open-loop best response to eNode B’s actions. In the absence of the

instantaneous observation of eNode B actions, it assumes that eNode B plays all of them

equally likely and, hence, plays a best-response with the same probability. Thus, Saboteur

would play ’Jam CS-RS + PUCCH’ with probability 0.60 and ’Inactive’ with probability

0.40.

After sensing a jamming attack, the network runs a series of tests to “filter” the jammer

type based on the myopic best-response behavior of the jammer. At the end of the first test,

it uses conditional probability p(θ|j) to decide the jammer type. If no jamming is sensed,

it runs the second test and again decides jammer type according to p(θ|j). If no jamming

is sensed at the end of the second test, conditional probability p(θ|j̄) is used to estimate

jammer type.

4.2.4 Simulation Results

The devised algorithm’s performance is characterized using MATLAB simulations. The al-

gorithm is parameterized by initial jamming sense duration Tsense, its corresponding signifi-

cance level α1, specific type detection test duration Ttest and its corresponding significance

level α2. Moreover, the algorithm’s error probability pe and true estimation probability

p(θ̂ = k|θ = k), k = {0, 1, 2} performance is dependent on the carrier-to-jammer ratio
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Figure 4.6: False Alarm (type I error) Probability vs. Jamming Sense Duration Tsense

C
J

and probability of jamming pj as well. Since, this section is focused on characterizing

the devised algorithm’s performance under varying jammer characteristics like C
J

and pj ,

parameters Ttest, α1, and α2 are fixed to 120 ms (i.e. 120 subframes), 10%, and 5% re-

spectively. A curious reader may also want to vary these parameters to observe interesting

trade-offs.

Similar to any statistical estimator, the devised algorithm has Type I error (false alarm),

Type II error (missed detection) and misclassification errors (classifying Cheater as Sabo-

teur and vice versa). Type I and Type II error probabilities are plotted against initial jam-

ming sense duration Tsense in Fig. 4.6 and Fig. 4.7, respectively, for various levels of C
J

(pj

= 1.0). Tsense provides a reasonable trade-off between Type I and Type II errors. Higher

Tsense increases Type I error, while reducing Type II errors and vice versa. In addition,

Saboteur (θ = 2) missed detection error probability is generally lower than that of Cheater

(θ = 1) especially at higher Tsense.

The algorithm’s missed detection error performance (Type II errors) also depends on

the jamming probability pj . Type I (false alarm) and Type II (missed detection) errors

are plotted against pj in Fig. 4.8 for C
J

= 0 dB and Tsense = 160 ms. The false alarm

error probability does not depend on probability of jamming pj as expected, whereas the
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Figure 4.7: Missed Detection (type II error) Prob. vs. Jamming Sense Duration Tsense

missed detection probability decreases with increasing pj . However, higher Type II error

probability (missed detection) at lower pj may not be too devastating for the network as the

jamming impact is considerably reduced at lower pj .

Furthermore, the devised algorithm’s true estimation probability p(θ̂ = k|θ = k), k =

{0, 1, 2} is plotted against C/J in Fig. 4.9 for various levels of Tsense and pj = 1.0. State 0

(Normal) error probability only includes type I error (false alarm), whereas state 1 (Cheater)

and state 2 (Saboteur) error probabilities include type II errors (missed detection) as well

as misclassification errors. Normal state’s (θ = 0) true estimation probability does not

change much with C
J

in general and is found to be equal to or higher than 0.68 and 0.63 for

Tsense = 80 ms and Tsense = 160 ms respectively. State 1 and 2 true estimation probability

goes down with decreasing jamming power (increasing C/J). Also, Saboteur’s (θ = 2)

true estimation probability decreases more rapidly than that of the Cheater (θ = 1) due to

relatively higher misclassification errors p(θ̂ = 1|θ = 2) at lower jamming powers (higher

C/J). It is to be noted here that jamming effects become less detrimental at lower jamming

powers (higher C
J

), hence, causing less damage to the test statistic. Nevertheless, state 1

true estimation probability at C
J

= 0 dB was observed to be 0.52 and 0.68 for Tsense = 80

ms and 160 ms, respectively. Similarly, state 2 true estimation probability at C
J

= 0 dB was
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Figure 4.8: Probability of Error (pe) vs. Probability of Jamming (pj) for C/J = 0 dB

observed to be 0.66 and 0.61 for Tsense = 80 ms and 160 ms, respectively.

Finally, the algorithm converges in 267 ms and 324 ms on average for initial jamming

sense duration Tsense of 80 ms and 160 ms, respectively.

4.2.5 Performance Analysis

Although the devised algorithm uses non-parametric hypothesis tests (Wilcoxon’s rank-sum

test) as compared to more powerful parametric tests, it is still able to detect true jammer

type with a probability of 0.61 or higher at C
J

= 0 dB, with initial jamming sense duration

Tsense of 160 ms. This performance mark improves with lower Tsense with an exception

for state 1 (Cheater), when it goes down from 0.68 to 0.52. Also, the algorithm converges

remarkably fast in 267 ms and 324 ms for initial jamming sense duration of 80 ms and 160

ms, respectively. Moreover, its estimation performance is quite robust against probability

of jamming pj and carrier-to-jammer ratio C/J . Furthermore, Normal state’s (θ = 0)

true estimation performance does not degrade with decreasing jamming power (increasing

C/J), and that of states 1 (Cheater) and 2 (Saboteur) degrade gracefully with increasing

C/J .

The algorithm provides several parameters to tweak its performance and trade-off dif-
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Figure 4.9: True Estimation Probability p(θ̂ = k/θ = k) vs. C/J for pj = 1.0

ferent kinds of inherent errors in an estimator. For example, initial jamming sense duration

Tsense and α1 can be tweaked to trade-off type I (false alarm) and type II (missed detec-

tion) errors. Similarly, specific type test duration Ttest and α2 can be tweaked to trade-off

misclassification errors and average convergence time.

4.2.6 Summary

In this section, a threat-based jammer type estimation algorithm is presented for an infinite-

horizon non-zero-sum repeated game with imperfect monitoring, and its estimation perfor-

mance is characterized and analyzed for LTE/LTE-A networks. The algorithm performs

remarkably well in estimating the actual type of the jammer in the network, despite the

fact that it does not depend on the notion of “full monitoring” and uses a less powerful

non-parametric hypothesis test. The number of Connected mode UEs is used as the test

statistic, which does not require any feedback from the users. The algorithm is able to

estimate actual jammer type with a probability of 0.61 or higher and converges in 324 ms

on average. Moreover, the algorithm provides several parameters to tweak its estimation

performance and trade-off error probabilities (e.g. false alarm and missed detection er-
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rors). Furthermore, the algorithm’s false alarm error performance is quite robust against

probability of jamming pj and carrier-to-jammer ratio C
J

, whereas missed detection error

performance degrades gracefully with decreasing pj and jamming power (increasing C
J

). It

is to be noted here that jamming effects are less detrimental at lower probability of jam-

ming pj and jamming power (higher C
J

), hence, causing less change to the test statistic.

Nevertheless, the presented algorithm provides a practical yet robust way to estimate jam-

mer type without requiring any feedback from the network users nor making any unrealistic

assumptions.

4.3 Evolved Strategy Algorithms for Wideband Model

4.3.1 Single-Shot Game for Wideband Model

In a single-shot game, the eNode B and adversary choose their pure action ai ∈ Ai or

mixed ∆(Ai) strategies once and for all at the beginning of the game G. The simulations

results are presented in the form of normal-form utility matrices with the network and the

adversary being the row and column player respectively. Following weights are chosen for

utility computation based on relative significance of their corresponding KPIs:

• αUE = 100,

• αTput = 50,

• αRS = 3,

• αPCFICH = 2,

• αPUCCH = 2,

• αRACH = −25,

• ατ = −10,

• Cf Change
eNB = 5,
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• C t Change
eNB = 10

• BLERthreshold = 10%,

• LTE carrier frequency fc = 2140 MHz,

• path loss exponent γ = 3.5,

• UE arrival rate λ = 8 UEs/km2,

• C/J = 20 dB and

• pj = 0.7,

where C/J , and pj denote carrier-to-jammer power ratio and probability of jamming

respectively. The U evolved
0,c (eNB vs. Cheater) utility matrix is:

U evolved
0,c =



0, 0 7,−70 −9, 5 −5, 59 −9,−20

−1, 47 −1, 5 −11, 58 -3.5,87.5 −10,−21

−764,−535 −761,−544 −781,−546 −765,−545 −781,−553

−32,−89 −37,−55 −39, 31 −35,−6 −49,−21

−10, 0 −3,−70 −19, 5 −15, 59 −19,−20


Similarly, U evolved

0,s (eNB vs. Saboteur) utility matrix is:

U evolved
0,s =



0, 0 10,−17 −12, 10 −7,−5 −9, 3

−1, 7 7,−4 −18, 24 −6, 5 −5, 4

−764, 765 −758, 752 −778, 775 −765, 755 −777, 768

−32, 22 −35, 21 −28, 7 −32, 16 −31, 9

−10, 0 −14,−1 −5,−14 −6,−10 −5,−16



52



As per celebrated Nash existence theorem, every finite strategic game has a mixed

strategy Nash Equilibrium (NE) that captures a steady state of the game [62]. In case of

Cheater, game has a single pure strategy NE (marked above) with an expected payoff of

(-3.5, 87.5). Whereas, in case of Saboteur, game has a mixed strategy NE with expected

payoff of (-7, 0) with corresponding probability distribution of [0.585, 0, 0, 0, 0.415]T and

[0.408, 0, 0.592, 0, 0] assigned to the network and Saboteur actions respectively. Evidently,

similar to the narrowband model, the network’s utility is severely compromised in

case of a jamming attack. Also, some eNode B actions are strictly dominated against

a particular type of adversary, e.g., ’Change fc’ and ’Timing Change’ against Cheater.

Hence, the network strategy depends on adversary action as well as its type as ob-

served in the narrowband model. Similar trends are observed at other values of C/J and

pj .

4.3.2 Infinite-horizon Repeated Bayesian Game with Asymmetric Information

Repeated games model long-term interaction among players and aim to explain “real life”

phenomena like cooperation, threats, revenge and signals (cf. [61, 62]). The strength of our

algorithms comes from practicality of suggested actions; and learning and utilizing game

dynamics in the repeated game.

Initial Stage

During the initial stage, both players play their default actions and observe signals cor-

related to jamming-free scenario in order to collect “baseline statistics”. eNode B and

Cheater compute thresholds γsignal based on these “baseline statistics” to be used in later

stages.
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eNode B’s Jamming Sense Algorithm

eNode B uses sliding-window based moving-average filter for signals observed during the

game. It uses these filter’s outputs for determining if it is under attack or not. The algorithm

can be described as follows:

if (µeNB
RS ≤ γeNB

RS ) ‖ (µeNB
PUCCH ≤ γeNB

PUCCH)

set flagsense = 1 w.p. (1− pfalse)

otherwise flagsense = 0

end

abort if not sensed within (n1 × lwin), n1 ∈ Z+

where µk, γk and lwin represent observations’ average, threshold for the kth signal and

window length.

eNode B’s Adversary Type Estimation Algorithm for Wideband Model

eNode B’s best response (BR) depends on both the adversary type and its actions. If eN-

ode B senses a jamming attack twice within n2 × lwin, n2 ∈ Z+, it invokes its Adversary

Type Estimation Algorithm presented in the previous section ([12]). It uses a combination

of threat mechanism and interference-avoidance tests to make the determination.

eNode B’s Evolved Repeated Game Strategy Algorithm for Wideband Model

After determining adversary type, eNode B uses the algorithm shown in Fig. 4.10 to strate-

gize for infinite-horizon repeated game. This algorithm is different from the one presented

for narrowband model [8] since network’s best response has changed and threat is not used

due to lack of credibility for infinite-horizon.
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Figure 4.10: eNode B’s Evolved Repeated Game Strategy Algorithm

Jammer’s Repeated Game Strategy Algorithms

Cheater and Saboteur also devise their repeated game strategies shown in Figs. 4.11 and

4.12 respectively. These algorithms are also based on playing best response and semi-

best response and are different from narrowband algorithms [8]. Cheater observes signals

correlated to eNode B’s actions and tries to estimate them assuming a quasi-stationary dis-

tribution of opponent’s actions. Saboteur lacks the resources for observations and employs

an open-loop strategy.

Repeated Game’s Steady-State Simulation Results

The presented evolved Repeated Game Strategy Algorithms show significant improvement

in eNode B utility provided that adversary type is correctly estimated. When Cheater is

present in the network, the algorithm results in Urepeated
eNB = −2.34 and Urepeated

c = −1.25

as compared to U single
eNB = −3.5 and U single

c = 87.5 in its single-shot version. This trans-

lates to 33% relative improvement in eNode B’s utility and 101% relative decline in Cheater’s
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Figure 4.11: Cheater’s Evolved Repeated Game Strategy Algorithm

Figure 4.12: Saboteur’s Evolved Repeated Game Strategy Algorithm
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utility as compared to single-shot version.

Similarly, when Saboteur is present in the network, the evolved algorithms result in

Urepeated
eNB = −2.74 and Urepeated

s = −2.40 as compared to U single
eNB = −7 and U single

s = 0

in its single-shot counterpart. This translates to 61% relative improvement in eNode B’s

utility and theoretically ∞ relative decline in Saboteur’s utility. Hence, in both the cases

not only does eNode B enjoy a substantial improvement in its utility but also the jammer

suffers remarkable loss in his utility, forcing him to retract.

4.3.3 Summary

This section studies the LTE/LTE-A networks’ performance under wideband multipath fad-

ing conditions and it is shown that LTE networks are indeed vulnerable to denial-of-service

(DOS) and loss of service attacks from smart jammers even if the jammers are power and

bandwidth-limited. The jammer can launch network-wide smart jamming attacks result-

ing in significant performance loss for the network. It is further shown that the presented

evolved Repeated Game Learning and Strategy Algorithms can help the network recover

substantial part of network performance loss and may even force an adversary to retract.

4.4 Practical Implementation Challenges

Although implementing the devised algorithm on an experimental test bed is out of scope

for this research, it can be implemented by an infra vendor on a realistic eNode B if its IP

blocks and algorithms are accessible and modifiable. However, emulating this algorithm on

a USRP-based experimental test bed is non-trivial because it involves implementing multi-

ple LTE/LTE-A subcomponents, ranging from PHY-only signals to control and data chan-

nels to the resource scheduler. Furthermore, all of these subcomponents are interdependent

on each other and often require real-time operation and significant computational power

and/or specialized IP blocks. Similarly, a smart jammer can be emulated on a USRP-based

test bench but it also requires access to the UE timing and control information in order to
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launch the attacks. Despite these practical implementation challenges, I am confident that

the algorithm would perform well if implemented on a realistic eNode B.
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CHAPTER 5

ZERO-SUM GAME FORMULATION & STRATEGY ALGORITHMS

5.1 Rationale

The main purpose of this research is to employ game-theoretic and communication theory

tools to construct realistic techniques to help LTE/LTE-A networks combat smart jamming

attacks. Although previous work in Chapter 4 is focused on infinite-horizon general-sum

(non-zero sum) repeated games without “full monitoring” 1 to reflect realistic operating

environment; there does not exist any suitable game-theoretic formulations, to the best of

my knowledge, that can be used for computation of the uninformed player’s strategies in

infinite-horizon repeated games with asymmetric information. Hence, all of the algorithms

presented in Chapter 4 are based on heuristics, learning and threat mechanisms in repeated

games and knowledge of LTE network and smart jammer dynamics. This problem gets fur-

ther complicated for general-sum (non-zero-sum) games with imperfect monitoring, which

is still an open problem [76]. This is the motivation for transforming previous model of

LTE vs. smart jammer interaction into a zero-sum setting. Zero-sum formulations have

been studied extensively in the game-theoretic literature concerning asymmetric informa-

tion repeated games, such as, Chapter 5 of [61], Chapter 4 of [63], Chapters 2 - 4 of [64],

and Chapter 2 of [65]. But, almost all of the formulations deal with the informed player

with “full monitoring”. In this chapter, it is attempted to solve LTE vs. smart jammer inter-

action as a strictly competitive infinite-horizon zero-sum repeated Bayesian game with

asymmetric information, [106] by using LP formulation for both players’ strategy com-

putation developed by Li and Shamma in their recent work [89]. The informed player’s

security strategy (optimal strategy in the worst-case scenario) only depends on the his-

1It requires that all players are capable of observing previous actions of their opponents with certainty
after each stage [61].
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tory of his own actions and is independent of the other player’s actions. The informed

player models the uninformed player as a Bayesian player, making Bayesian updates with

an evolving belief state. However, in order to solve the infinite-horizon game efficiently,

fixed-sized sufficient statistics are needed for both players that do not not grow with the

horizon. The evolving belief state serves as a sufficient statistics for the informed player

in a λ-discounted asymmetric repeated game. On the other hand, the uninformed player’s

security strategy does not depend on the history of his own actions, but rather depends on

the history of the informed player’s actions. However, the uninformed player does not have

access to the informed player’s belief state and needs to find different fixed-sized sufficient

statistics. Fortunately, the uninformed player’s security strategy in the dual game depends

only on a fixed-sized sufficient statistics that is fully available to him. Furthermore, the un-

informed player’s security strategy in the dual game, with initial worst-case vector regret,

also serves as his security strategy in the primal game. Therefore, initial worst-case regret

of security strategy and its anti-discounted update (which is the same size as the cardinality

of system state) is used as the fixed-sized sufficient statistics for the uninformed player.

Although the above-mentioned sufficient statistics are fixed-sized for both players in an

infinite-horizon game, optimal security strategy computation in λ-discounted asymmetric

game are still hard to compute because of non-convexity [107]. Consequently, approxi-

mated security strategies with guaranteed performance are computed for both players, but

they require “full monitoring”. Hence, the uninformed player’s simplistic “expected” strat-

egy formulation is also explored in this chapter that does not require any “full monitoring”.

5.2 Zero-Sum Game Formulation

The eNode B vs. smart jammer game described in the Chapter 3 is converted to zero-sum

(strictly competitive) setting so that repeated game strategy algorithms presented in [89] can

be employed. Following the convention used in game-theoretic literature including [89],

the informed player, i.e., the smart jammer is played as the maximizer (row player),
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whereas the uninformed player, i.e., the eNode B is played as the minimizer (column

player). Furthermore, player’s utility functions are modified to reflect zero-sum setting,

i.e., one player’s gain is exactly the other player’s loss as described by (5.1).

U0 = −Uj (5.1)

When the system state is Cheater, the zero-sum utility function is simplified to (5.2)

below.

U cj = −αNcEw[N norm
c ] + αRcEw[δ(Rnorm

c )] (5.2)

where N norm
c represents normalized average number of Connected mode UEs in the net-

work when Cheater is present, αNc represents its corresponding weight, δ(Rnorm
c ) repre-

sents change in Cheater’s normalized average throughput from baseline scenario, αRc rep-

resents its corresponding weight and Ew represents expectation with respect to randomness

caused by w as mentioned in (3.10).

The Cheater tries to maximize (5.2) in order to reduce the number of Connected mode

UEs in the network while increasing its throughput from the baseline scenario. The eN-

ode B, on the other hand, tries to minimize (5.2) to do the opposite, hence, creating a

zero-sum game. Similarly, the zero-sum utility function for the system state Saboteur is

simplified to (5.3).

U sj = −αNsEw[N norm
s ]− αReNBEw[Rnorm

eNB ] (5.3)

where N norm
s represents normalized average number of Connected mode UEs in the net-

work when Saboteur is is present, αNs represents its corresponding weight, Rnorm
eNB repre-

sents eNode B’s normalized average throughput/UE, αReNB represents its corresponding

weight and Ew again represents expectation with respect to randomness caused by w as

mentioned above.
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The Saboteur tries to maximize the opposite (negative of) eNode B utility defined in

terms of average number of Connected mode users and average throughput/UE, hence,

defining the zero-sum game.

It is to be noted here that there are no “unilateral” fixed costs associated with either

player in order to convert the game to zero-sum. This means that the game would be

played as zero-sum at the expense of some fidelity loss associated with players’ modeling,

such as, their duty cycles and implicit cost associated with eNode B actions ’f Change’

and ’Timing Change’. Furthermore, the LTE network model was simplified to include

Rayleigh fading at each subcarrier similar to the narrowband model defined in Chapter

3 in order to simplify network dynamics and reduce convergence time, while preserving

realistic network dynamics.

5.3 Single-Shot Game

A two-player zero-sum game is defined by vector spaces Σ and T of row player and column

player strategies respectively, and a utility function U θ : Σ × T → R for given state of

nature θ ∈ Θ. The row player (the maximizer) chooses his strategy σ ∈ Σ, the column

player (the minimizer) chooses his strategy τ ∈ T , and the corresponding utility function

is U θ(σ, τ). For a given prior p0, the payoff function in a game with lack of information

on one side can be written as U(p0, σ, τ) =
∑

θ∈Θ p
θ
0 U θ(σ(θ), τ). The maxmin value v

for the row player (the informed player) for given state θ is defined as [64]:

v(p0) = sup
σ∈Σ(θ)

inf
τ∈T
U(p0, σ, τ) (5.4)

Similarly, the minmax value v for the column player (the uninformed player) is de-

fined as:

v(p0) = inf
τ∈T

sup
σ∈Σ(θ)

U(p0, σ, τ) (5.5)
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It is widely known that v ≤ v is always true. However, when v = v is satisfied, then

the game is said to have a value v. The legendary von Neumann’s celebrated Minmax

Theorem states that any matrix game has a value v in mixed strategies and the players

have optimal strategies [64], i.e., the minmax solution of a zero-sum game is the same as

the Nash equilibrium.

v = max
x∈∆(Aj)

min
y∈∆(A0)

xAy = min
y∈∆(A0)

max
x∈∆(Aj)

xAy (5.6)

where x is row player’s mixed strategy, y is column player’s mixed strategy, A is Aj ×

A0 utility matrix, and ∆(A) represents the simplex on A. Thus, both players play their

security strategies in a zero-sum game to guarantee the best outcome under the worst

conditions, due to the game’s strictly competitive nature.

The complete-information single-shot game results for a given jammer type θ are pre-

sented in this section as a reference when eNode B knows what game is being played.

Following parameter values are used for both single-shot and repeated game simulations

in addition to the ones used in Chapter 4: C
J

= 0dB, pj = 1.0, αNc = 4, αRc = 5, αNs =

5, αReNB = 4. The single-shot game’s simulation results for zero-sum game of Cheater vs.

eNode B are presented below.

U cj =



−1.0000 −1.0239 −2.2464 −1.3840 −1.0000

−0.9642 −1.0029 −2.2130 −1.3398 −0.9642

−0.8016 −0.8239 -2.0553 −1.1366 −0.8016

−0.9714 −1.0078 −2.2212 −1.3525 −0.9714

−0.8181 −0.8399 −2.0716 −1.1610 −0.8181


The game has a single pure strategy Nash Equilibrium, (aj∗, a0∗) = (’Jam CS-RS

+ PUCCH’, ’Throttling’), with the game value v = −2.0553, satisfying the following

equation.
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U cj (aj∗, a0∗) = min
a0∈A0

U cj (aj∗, a0) = max
aj∈Aj

U cj (aj, a0∗) (5.7)

Similarly, the complete-information single-shot game’s simulation results for zero-sum

game of Saboteur vs. eNode B are presented below.

U sj =



−1.0000 −0.9933 −0.5635 −0.9128 −1.0000

−0.9879 −0.9805 −0.5446 −0.9022 −0.9898

−0.9905 −0.9805 −0.4578 −0.8849 −0.9867

−0.9900 −0.9827 −0.5498 −0.9050 −0.9919

−0.9895 −0.9800 −0.4666 −0.8880 −0.9875


For complete information case when the network is aware of the jammer type, the

game does not have any pure strategy Nash Equilibrium. If the players are allowed to use

mixed strategies, i.e. a probability distribution over a player’s action set, then there exists a

mixed strategy Nash Equilibrium (x∗, y∗), where x∗ = [0 0.51 0 0 0.49]T ∈ ∆(Aj), and

y∗ = [0.59 0 0 0 0.41] ∈ ∆(A0) with the game value v = −0.9887, satisfying the following

equation. This mixed strategy probability distribution loosely translates to playing (’Jam

CS-RS’, ’Jam CS-RS + PCFICH + PUCCH + PRACH’) and (’Normal’, ’Timing Change’)

equally likely by the jammer and the eNode B, respectively.

Ex∗,y∗(U sj (aj, a0)) = min
y∈∆(A0)

Ex∗,y(U sj (aj, a0)) = max
x∈∆(Aj)

Ex,y∗(U sj (aj, a0)) (5.8)

where Ex,y(U sj (aj, a0)) = xTU sj y is the expected value of the single-stage utility given

mixed strategies x and y. Given the utility matrix, linear program is used to compute the

Nash Equilibirum [62] with x∗ and y∗, and the game value v.

However, in asymmetric information case, eNode B only knows the probability distri-
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bution p0 over jammer’s types which is public information, while the jammer knows exactly

his own type. Knowing its own type, the jammer can use different strategy for different

states θ. Therefore, in the asymmetric game, jammer’s mixed strategy x is a mapping from

Θ to ∆(Aj). The single-shot asymmetric game still has a mixed strategy Nash Equilibrium

(x∗, y∗), where x∗ ∈ ∆(Aj)|Θ| and y∗ ∈ ∆(A0) satisfying the following equation.

Ep0,x∗,y∗(U θj (aj, a0)) = min
y∈∆(A0)

Ep0,x∗,y(U θj (aj, a0)) = max
x∈∆(Aj)|Θ|

Ep0,x,y∗(U θj (aj, a0))

where Ep0,x,y

[
U θj (aj, a0)

]
=
∑

θ∈Θ p
θ
0x

θTU θj y is the expected value of single-stage

utility given initial probability p0 and mixed strategies x and y. The Nash Equilibrium for

the asymmetric information game can be computed by solving an LP by setting the time

horizon to single stage [108].

5.4 Infinite-Horizon Asymmetric Repeated Game Strategy Algorithms

The repetition of a zero-sum game in its basic form does not warrant further study as the

players can play their optimal security strategies i.i.d. at each stage to guarantee optimal

game value [64]. However, in our case, the system has multiple states and the game is

played with the lack of information on one side. Therefore, the repeated game needs to be

studied further. Li et al. showed that the security strategies for both the players in finite-

horizon asymmetric information repeated zero-sum games depend only one the informed

player’s history actions [74]. For the infinite-horizon games, this would imply utilizing

large amount of memories to record the history actions. It is, therefore, necessary for the

players to find fixed-size sufficient statistics for decision making in λ-discounted infinite-

horizon games, but it is still nontrivial to compute optimal security strategies even with

fixed-size sufficient statistics due to non-convexity. Therefore, Li & Shamma provided ap-

proximated security strategies with guaranteed performance to solve infinite-horizon games
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[89].

The λ-discounted game Γλ(p0) is defined as a two-player zero-sum asymmetric infor-

mation repeated game with prior probability distribution p0, informed player’s space of

behavioral strategies Σ, uninformed player’s space of behavioral strategies T , and payoff

function Uλ(p0, σ, τ), where σ ∈ Σ and τ ∈ T . The λ-discounted payoff function for the

discounted game Γλ(p0) for some λ ∈ (0, 1) is defined in (5.9).

Uλ(p0, σ, τ) = Ep0,σ,τ

[
∞∑
t=1

λ(1− λ)t−1U(θ, ajt , a
0
t )

]
(5.9)

where U(θ, ajt , a
0
t ) represents the payoff given state θ, jammer’s action ajt ∈ Aj , and eN-

ode B action a0
t ∈ A0 at time t.

Similarly, the average payoff function UT (p0, σ, τ) for the T-stage finite-horizon re-

peated game ΓT (p0) with prior probability p0, and behavioral strategy spaces Σ and T is

defined as follows:

UT (p0, σ, τ) = Ep0,σ,τ

[
1

T

T∑
t=1

U(θ, ajt , a
0
t )

]
(5.10)

which leads to the average payoff formulation U∞(p0, σ, τ) in (5.11) for the infinite-

horizon non-discounted game Γ∞(p0). Since, in our case, the stage payoff U(θ, ajt , a
0
t ),∀t ∈

{0, 1, 2, .....} is bounded for all possible combinations of states and pairs of actions, and

Θ,A0 andAj are finite sets, the limit exists in (5.11), and hence, can be used as a legitimate

utility function.

U∞(p0, σ, τ) = lim
T→∞

UT (p0, σ, τ) (5.11)
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5.4.1 The Informed Player’s Approximated Security Strategy Algorithm

It is shown in [89] that the game value Vλ(p) in Γλ(p) satisfies the following recursive

equation.

Vλ(p) = max
x∈∆(Aj)|Θ|

min
y∈∆(A0)

[
λ
∑
θ∈Θ

pθxθ
TU θy + (1− λ)Tp,x(Vλ)

]
(5.12)

where xθ represents jammer’s behavioral strategy given state θ, y represents eNode B’s

behavioral strategy, and Tp,x(Vλ) =
∑

aj∈Aj
x̄p,x(a

j)Vλ(π(p, x, aj)) with π representing

the belief update equation shown in (5.13).

It is shown that the informed player has a security strategy in Γλ(p) that is independent

of the uninformed player’s history action sequence HA0 and depends only on the belief

state pt at stage t. Thus, the informed player only needs to record his sufficient statistics

(belief state) pt ∈ ∆(Θ), i.e., the posterior probability over the system state θ ∈ Θ at

stage t to play the game. The belief state pt+1 at stage t + 1 can be computed recursively

as a function of pt, the informed player’s HA0-independent strategy xθt , and the informed

player’s realized action ajt based on the Bayesian law as shown in (5.13).

pθt+1(hjt+1) = π(pt, xt, a
j
t) =

pθt (h
j
t)x

θ
t (a

j
t)

x̄pt,xt(a
j
t)

(5.13)

with p1 = p in the game Γλ(p) and x̄pt,xt(a
j
t) =

∑
θ∈Θ p

θ
t (h

j
t)x

θ
t (a

j
t) represents weighted

average of xt.

Furthermore, (5.12) shows that a Bellman-like equation can be used to compute in-

formed player’s security strategy. However, the game value Vλ(p) and hence the informed

player’s corresponding optimal security strategy σ∗ computation is non-convex [107]. Hence,

the game value Vλ(p) is approximated to Vλ,T (p), i.e. the corresponding game value for a

λ-discounted T-stage asymmetric repeated game, which is played only for T stages. The
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game value Vλ,T+1(p) satisfies the following recursive equation (5.14).

Vλ,T+1(p) = max
x∈∆(Aj)|Θ|

min
y∈∆(A0)

[
λ
∑
θ∈Θ

pθxθ
TU θy + (1− λ)Tp,x(Vλ,T )

]
(5.14)

with Vλ,0(p) ≡ 0.

It is also shown that given λ ∈ (0, 1), the approximated game value Vλ,T+1 converges to

optimal game value Vλ exponentially fast with rate 1−λ. The informed player’s stationary

security strategy σ̄λ,T : Θ ×∆(Θ) → ∆(Aj), computed based on the approximated game

value Vλ,T in the game Γλ(p), satisfies the following recursive equation (5.15).

σ̄λ,T (:, p) = arg max
x∈∆(Aj)|Θ|

min
y∈∆(A0)

[
λ
∑
θ∈Θ

pθxθ
TU θy + (1− λ)Tp,x(Vλ,T )

]
(5.15)

where σ̄λ,T (:, p) is an |Aj| × |Θ| matrix whose θ th column is σ̄λ,T (θ, p).

Moreover, Li & Shamma constructed a linear program to compute the approximated

game value Vλ,T+1(p) and corresponding approximated security strategy σ̄λ,T (θ, p), which

depends only on the belief state pt and the system state θ ∈ Θ. It is shown that Vλ,T+1(p)

satisfies the following linear program in (5.16) - (5.20) in the λ-discounted zero-sum asym-

metric game Γλ(p):

Vλ,T+1(p) = max
q,l∈Q,L

T+1∑
t=1

∑
hjt∈H

j
t

λ(1− λ)t−1lhjt

 (5.16)
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s.t.
∑

θ∈Θ,aj∈Aj

qt+1

(
θ, (hjt , a

j)
)
U θaj ,: ≥ lhjt

1T ,

∀t = 1, 2, ....., T + 1, hjt ∈ H
j
t (5.17)

q1(hj1; θ) = 1,∀θ ∈ Θ, (5.18)∑
ajt∈Aj

qt+1((hjt , a
j
t); θ) = qt(h

j
t ; θ),

∀θ ∈ Θ, hjt ∈ H
j
t ,∀t = 1, . . . , T, (5.19)

qt(h
j
t ; θ) ≥ 0,∀θ ∈ Θ, hjt ∈ H

j
t ,

∀t = 2, . . . , T + 1, (5.20)

where q ∈ Q is a set of all properly dimensioned real vectors, L is a properly dimensioned

real space, and (hjt , a
j
t) corresponds to a concatenation.

The above linear program can be used to solve the approximated security strategy for

the informed player as follows:

σ̄a
j

λ,T (θ, p) = q∗2(aj, θ),∀aj ∈ Aj (5.21)

where q∗2 is the optimal solution of the linear program in (5.16) - (5.20). Interested reader

is encouraged to see [89] for further details.

The Informed Player’s Approximated Security Strategy Algorithm

Th LP-based algorithm for the informed player to compute his approximated security strat-

egy and update belief state in λ-discounted asymmetric repeated game is presented as fol-

lows [89]:

1. Initialization:
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(a) Read payoff matrices U , prior probability p0, and system state θ.

(b) Set receding horizon length T .

(c) Let t = 1, and p1 = p0.

2. Compute the informed player’s approximated security strategy σ̄λ,T based on

(5.21) with p = pt.

3. Choose an action aj ∈ Aj according to the probability σ̄λ,T (θ, pt), and an-

nounce it publicly.

4. Update the belief state pt+1 according to (5.13).

5. Update t = t+ 1 and go to step 2.

5.4.2 The Uninformed Player’s Approximated Security Strategy Algorithm

The uninformed player does not have access to the informed player’s strategy or belief state

pt, therefore, pt cannot serve as his sufficient statistics. Given the λ-discounted asymmetric

repeated primal game Γλ(p), its dual game Γ̃λ(w) is defined with respect to p, where w ∈

R|Θ| is called the initial regret. The dual game is played the same way as the primal game

with the exception that the system state is chosen by the informed player instead of nature.

In the dual game, the uninformed player is still not informed of the system state. The

informed player’s payoff (or equivalently the uninformed player’s penalty) in the dual game

Γ̃λ(w), when it uses p to choose system state is defined in (5.22).

Ũλ(w, p, σ, τ) = Ep,σ,τ

[
wθ +

∞∑
t=1

λ(1− λ)t−1U(θ, ajt , a
0
t )

]
(5.22)

The game value Ṽλ(w) of the dual game Γ̃λ(w) satisfies the following equation (5.23).

Ṽλ(w) = min
τ∈T

max
p∈∆(Θ),σ∈Σ

Ũλ(w, p, σ, τ) = max
p∈∆(Θ),σ∈Σ

min
τ∈T
Ũλ(w, p, σ, τ) (5.23)
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Moreover, the game value Ṽλ(w) of the dual game and the game value Vλ(p) of the

primal game are related in the following way.

Ṽλ(w) = max
p∈∆(Θ)

{
Vλ(p) + pTw

}
(5.24)

Vλ(p) = min
w∈R|Θ|

{
Ṽλ(w)− pTw

}
(5.25)

The regret µθt (h
j
t) in state θ is defined as the difference between the expected realized

utility so far and the security level of eNode B’s security strategy, given state θ, i.e.

µθt (h
j
t) = −µθ∗ + Eτ̄

(
t−1∑
s=1

λ(1− λ)s−1U j(ajs, a0
s)|θ, h

j
t

)
(5.26)

µθ∗ = max
σ(θ)∈Σ(θ)

Eσ(θ),τ∗

(
∞∑
s=1

λ(1− λ)s−1U j(ajs, a0
s)|θ

)
(5.27)

where τ ∗ is the eNode B’s security strategy, σ(θ) indicates jammer’s behavior strategy

given θ ∈ Θ, and Σ(θ) is the corresponding set including all σ(θ).

The anti-discounted regret wθt (h
j
t) at stage t with respect to the state θ given the in-

formed player’s history action sequence (h
Aj

t ) is defined as follows in (5.28).

wθt (h
j
t) =

µθt (h
j
t)

(1− λ)t−1
,∀θ ∈ Θ (5.28)

The anti-discounted regret wθt (h
j
t) can be recursively computed as follows in (5.29)

with w1 = w.

wθt+1(hjt , a
j
t) =

wθt (h
j
t) + λ U θ(ajt , :)τ̄(hjt)

1− λ
, ∀θ ∈ Θ (5.29)

It is shown in [64] that the security strategies of the uninformed player in both primal

and dual games depend only on the informed player’s history actions and that the optimal
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security strategy w∗ of the uninformed player in the dual game Γ̃λ(w
∗) is also his optimal

security strategy in the primal game Γλ(p). Mathematically speaking, w∗ is the optimal

solution of the problem on the right hand side of (5.25) and logically, it is the uninformed

player’s worst case regret of his security strategy.

It is shown in [89] that anti-discounted regret wt is the sufficient statistics for the unin-

formed player in the dual game, i.e., the uninformed player can fully rely onw∗ and its anti-

discounted update wt to compute his security strategy. However, computing w∗ is difficult

because it relies on the uninformed player’s optimal security level µ∗ and game value in the

primal game, which are non-convex [107]. Furthermore, computation of the uninformed

player’s security strategy in the dual game is also non-trivial because of non-convexity.

Therefore, [89] proposed using approximated security level µθ? for approximating w∗ for a

T-stage truncated version Γλ,T (p) of the primal game that is defined as follows.

µθλ,T (τ̄ ∗) = − max
σ̄(θ)∈Σ̄(θ)

Ep,σ̄,τ̄∗
[

T∑
t=1

λ(1− λ)t−1U(θ, ajt , a
0
t )|θ

]
(5.30)

In Γλ,T (p), the conditional expected total payoff Uλ,T (τ̄ ; θ, hjT+1) given uninformed

player’s strategy τ̄ ∈ T̄ , system state θ ∈ Θ, and informed player’s history action sequence

hjT+1 ∈ H
j
T+1 is defined in (5.31).

Uλ,T (τ̄ ; θ, hjT+1) = Eτ̄

[
T∑
t=1

λ(1− λ)t−1U(θ, ajt , a
0
t )|θ, h

j
T+1

]
(5.31)

which satisfies the following:

Uλ,T (τ̄ ; θ, hjT+1) =
T∑
t=1

λ(1− λ)t−1U θ(ajt , :)yhjt (5.32)

Li & Shamma constructed the following linear program to compute the approximated

game value Vλ,T (p), i.e. the approximated security level µθ? in a λ-discounted asymmetric
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repeated game Γλ(p):

Vλ,T (p) = min
y∈Y,l∈R|Θ|

∑
θ∈Θ

pθlθ (5.33)

s.t.
T∑
t=1

λ(1− λ)t−1U θ(ajt , :)yhjT ≤ lθ,∀θ ∈ Θ,

∀hjT ∈ H
j
T , a

j
t ∈ Aj, (5.34)

1Tyhjt
= 1,∀hjt ∈ H

j
t ,∀t = 1, ...., T, (5.35)

yhjt
≥ 0,∀hjt ∈ H

j
t ,∀t = 1, ...., T (5.36)

where Y is properly-dimensioned real space, and Uλ(y; θ, :) is a |Hj
T+1| dimensional col-

umn vector whose element Uλ(y; θ, h
Aj

T+1) is a linear function of y satisfying the equation

(5.32). The approximated anti-discounted regret is w∗ = −µθ? = −l∗, where l∗ is the

optimal solution to the LP problem.

The eNode B has a stationary security strategy that only depends on the anti-discounted

regret wt [89]. Define eNode B’s stationary behavior strategy as τ̄ : R|θ| → ∆(A0).

Computing the stationary security strategy of eNode B is non-convex [89]. Therefore,

an approximated stationary security strategy τ̄(w) of eNode B is proposed in [89], which

can be computed by solving the following LP problem for Ṽλ,T+1(w) in the zero-sum λ-

discounted T + 1-stage dual game Γ̃λ,T+1(w)

Ṽλ,T+1(w) = min
y∈Y,l∈R|Θ|,L∈R

L (5.37)
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s.t. w + l ≤ L1, (5.38)

s.t.
T+1∑
t=1

λ(1− λ)t−1U θ(aj, :)yhjT+1
≤ lθ,∀θ ∈ Θ,

∀hjT+1 ∈ H
j
T+1, a

j ∈ Aj, (5.39)

1Tyhjt
= 1,∀hjt ∈ H

j
t , ∀t = 1, ...., T + 1, (5.40)

yhjt
≥ 0,∀hjt ∈ H

j
t , ∀t = 1, ...., T + 1 (5.41)

where Y is properly-dimensioned real space, and Uλ,T+1(y; θ, :) is a |Hj
T+2| dimensional

column vector whose element Uλ,T+1(y; θ, h
Aj

T+2) is a linear function of y satisfying the

equation (5.32). The uninformed player’s approximated security strategy τ̄λ,T (w) is y∗
hj1

,

when the anti-discounted regret at stage t is wt = w.

Li & Shamma further showed that the truncated game value Ṽλ,T converges to Ṽλ ex-

ponentially fast with respect to the time horizon T with convergence rate 1 − λ. Curious

reader is encouraged to see [89] for further details.

The Uninformed Player’s Approximated Security Strategy Algorithm

Th LP-based algorithm for the uninformed player to compute his approximated security

strategy in λ-discounted asymmetric repeated game Γλ(p0) is presented as follows [89]:

1. Initialization:

(a) Read payoff matrices U , and prior probability p0.
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(b) Set receding horizon length T .

(c) Solve the LP problem (5.33) - (5.36) with p = p0 and let µ∗ = l∗.

(d) Let t = 1 and w1 = −µ∗.

2. Solve the LP problem (5.37) - (5.41) with w = wt, and the uninformed player’s

approximated security strategy τ̄(wt) = y∗
hj1

.

3. Choose an action a0 ∈ A0 according to the probability τ̄λ,T (wt), and announce

it publicly.

4. Read the informed player’s action, and update the anti-discounted regret wt+1

according to (5.29).

5. Update t = t+ 1 and go to Step 2.

5.4.3 The Uninformed Player’s Expected Security Strategy Algorithm

The “Expected Strategy” algorithm for the eNode B is defined as a simplex ∆ over its

complete-information single-shot game security strategies σ1 with the same probability as

prior p0. In other words, the eNode B would play the complete-information single-shot

security strategies σ1|θ = 1 and σ1|θ = 2 with the probabilities p1
0 and p2

0 respectively.

Since, the prior is common knowledge, it alleviates eNode B from “learning” and “full

monitoring” in a repeated game. Thus, the eNode B essentially plays a single-shot strat-

egy in a repeated game but without the requirement of “full monitoring”, which may not

be such a bad idea if the jammer plays “non-revealing” strategies. Furthermore, the net-

work does not need to observe jammer’s action with certainty that leads to more practical

implementations. Both discounted and average payoff formulations can be used with this

algorithm.

In this chapter, the approximated security strategy and expected security strategy al-

gorithms described above would be used to design strategies for both the smart jammer
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and the LTE network. Both discounted and average cost formulations would be used in

infinite-horizon asymmetric information games.

5.5 Performance Analysis of Repeated Game Strategy Algorithms

The zero-sum game-theoretic algorithms presented earlier in this chapter are used to de-

vise “approximated” strategy formulation for the network both in the average cost and

discounted cost sense. Although, average cost formulation was not developed by [89],

probably due to convergence and boundedness issues associated with generalized aver-

age cost, utility functions used in this research are bounded and hence convergence may

not pose a serious problem. However, “approximated” algorithms require “full monitor-

ing”, i.e. the network has to observe jammer’s action at every stage with certainty. There-

fore, “expected” formulation is also employed in which the network being the uninformed

player simply plays its single-shot best response (BR) in an expected sense, i.e. it would

play single-shot BR with the same probability distribution as the prior probability of jam-

mer occurrence, which is common knowledge. This enables the network to alleviate “full

monitoring” requirement, i.e. the network does not have to observe jammer’s action with

certainty and leads to more practical implementation.

The performance of both “approximated” and “expected” algorithms for both discounted

and average cost formulations is characterized in the following sections. However, not all

of the simulation results can be shared here for the sake of time and space constraints.

The following parameters in addition to the single-shot case were used for repeated game

simulation: discount facot λ = 0.70 and receding horizon length T = 4.

5.5.1 eNode B vs. Cheater

Jammer Strategy

When the Cheater is in the network, it always uses his “approximated” algorithm to devise

repeated game strategy against the network. Also, being the informed player, there is no
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ambiguity about the system state so Cheater can decide to reveal his superior information as

much as it suits him. The Cheater’s steady state belief state pt and repeated game strategy

vs. prior probability are shown in Fig. 5.1 and Fig. 5.2 respectively, where p1 and p2

represent updated belief (probability) about the states θ = 1 and θ = 2 respectively and akj

represents kth pure action of the Cheater. It is interesting to note that the Cheater always

plays the same security (pure) strategy that he uses for single-shot game, independent of the

prior probability. It is also interesting to know that Cheater’s strategies are non-revealing 2,

even at relatively low prior probability of his occurrence when p1
0 ≥ 0.25. This means

that the network does not “learn” anything new about the jammer type from jammer’s

repeated actions even in the case of “full-monitoring” when p1
0 ≥ 0.25 and Cheater takes

full advantage of his superior information. At relatively low prior probability of Cheater’s

occurrence (p1
0 < 0.25), the jammer reveals very little information in the first stage when the

belief state gets updated to p0 = [0.25 0.75]T , but it remains the same after that. This puts

the network at a disadvantageous position in the game if the network plays as a Bayesian

player, even when it can observe jammer’s actions perfectly at every stage.

eNode B Strategies

The eNode B’s steady state “approximated” and “expected” security strategies vs. prior

probability p1
0 are plotted in Fig. 5.3, and Fig. 5.4, respectively, where ak0 represents

kth pure action of the eNode B. The network’s strategies (both “expected” and “approx-

imated”) evolve with varying prior probability levels as it is the uninformed player. The

“approximated” strategy relies on full monitoring and switches to a different strategy at

p1
0 ≥ 0.35, when it starts playing ’Throttling’ (its security strategy against Cheater in

complete-information single-shot game) in addition to playing ’Change fc’. On the other

hand, the “expected” algorithm does not rely on full monitoring and hence uses an expec-

2The informed player is said to play non-revealing at stage n when the posterior probabilities in (5.13) do
not change at that stage if his mixed move at stage n is independent of the state θ ∈ Θ for all values of θ for
which pθn > 0. In case when full monitoring is assumed, not revealing the information is equivalent to not
using that information, [66].
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Figure 5.1: Cheater’s Steady State Belief State vs. Prior p1
0

Figure 5.2: Cheater’s Steady State Approximated Strategy vs. Prior p1
0
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Figure 5.3: eNode B’s Steady State Approximated Strategy against Cheater vs. Prior p1
0

tation of its single-shot strategies involving playing mixed strategy over ’Normal’, ’Throt-

tling’ and ’Change Timing’. The “expected” strategy is pre-computed based on the prior

probability and does not change as the game proceeds, whereas the “approximated” algo-

rithm converges in around 12 stages. The “expected” strategy algorithm may work well

enough for the network as the jammer’s strategies are mostly non-revealing and “approxi-

mated” algorithm requires “full-monitoring”.

eNode B’s Utilities

The eNode B’s “approximated” and “expected” λ-discounted and average utility values

are plotted in Fig. 5.5 at different prior probability p1
0 levels. The “approximated” secu-

rity strategy algorithm with discounted cost performs almost optimally when p1
0 ≥ 0.35,

whereas the “expected” algorithm with discounted cost performs poorly as compared to

its counterpart “approximated” algorithm with the exception of low prior values. The “ap-

proximated” algorithm uses full-monitoring and repeated game LP formulation to compute

its strategy and hence performs much better than its counterpart. On the other hand, the

“expected” algorithm only relies on the prior probability and does not observe jammer’s ac-

tions, hence, ends up underperforming even when the jammer uses its single-shot security
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Figure 5.4: eNode B’s Expected Strategy vs. Prior p1
0

strategy.

The average utility value does not reach the optimal complete-information single-shot

level for both “approximated” and “expected” formulations. However, “approximated”

average cost formulation trails the discounted cost at high prior values and even performs

better at low prior events when discounted cost formulation breaks down. The “expected”

strategy formulation with average cost performs linearly better with increasing prior p1
0

values, similar to discounted cost case. Hence, both discounted and average cost solutions

perform very similar for a particular algorithm, i.e. the cost selection does not change the

inherent behavior of the underlying algorithm. Both cost formulations perform essentially

the same for “expected” strategy algorithm. However, in case of “approximated” algorithm,

discounted cost mostly performs better than average cost, primarily because the algorithm

is developed for discounted case.

When prior probability for Cheater’s occurrence is low (i.e., p1
0 < 0.35), all of the

formulations discussed above fail to even come close to the complete-information single-

shot value. This happens due to the fact that it is rather unlikely for the Cheater to be

present in the network at such low prior value and eNode B strategy algorithms are not

robust enough to address this unlikely event.
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Figure 5.5: eNode B’s Utility against Cheater vs. Prior p1
0

5.5.2 eNode B vs. Saboteur

Jammer Strategy

Similar to the eNode B vs. Cheater game, Saboteur’s steady state belief states pt and “ap-

proximated security” strategies vs. prior probability of his occurrence p2
0 are shown in Fig.

5.6 and Fig. 5.7, respectively. It is very interesting to note that being the informed player,

Saboteur plays non-revealing and “misleading” strategies even at prior probability values

as high as p2
0 = 0.85 (and sometimes up to p2

0 = 0.80). It plays its state θ = 1 (Cheater)

dominant security strategy while actually being a type θ = 2 (Saboteur) jammer. At very

high prior probability values of 0.75 ≤ p2
0 ≤ 0.85, jammer further tricks the network

by revealing misinformation which causes the belief state to show higher probability of

Cheater’s presence than the prior. However, at prior probability levels of p2
0 ≥ 0.90, a little

information about the Saboteur’s (θ = 2) presence is revealed by playing its single-shot

game security strategy (play ’Jam CS-RS + PUCCH’ and ’Jam CS-RS + PUCCH + PC-

FICH + PRACH’ with almost the same probability) for the correct jammer type. Hence,

the jammer uses its superior information to its complete advantage even when full moni-

toring is allowed. This is a good example of the strength of superior information and how
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Figure 5.6: Saboteur’s Steady State Belief State vs. Prior p2
0

it can be exploited in asymmetric games against an adversary.

eNode B Strategies

Similar to the repeated game against Cheater, the eNode B adapts its repeated game strategy

against Saboteur as the game proceeds. From the simulations, eNode B’s strategy seems to

converge in 12 stages. The “expected” strategy is shown in Fig. 5.8 and is deployed similar

to the game against Cheater. Since, “expected” strategy algorithm is oblivious to the actual

jammer type and does not use full monitoring, its mixed strategy does not depend on the

system state θ and is played solely based on the prior probability value.

On the other hand, the “approximated” security strategy algorithm relies on the repeated

game and full monitoring to adapt its strategy. The network’s steady state “approximated”

strategy vs. prior probability p2
0 is plotted in Fig. 5.9. As mentioned above, the jammer

plays completely non-revealing and misleading strategies for p2
0 ≤ 0.85 and hence, eN-

ode B gets tricked into believing that it is playing against Cheater, where in fact it is playing

against the Saboteur. This leads the network to play the same strategy that it played against

Cheater with relatively high probability of Cheater’s occurrence. It gets further tricked by

the jammer into believing the incorrect jammer type when the jammer keeps playing its
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Figure 5.7: Saboteur’s Steady State Approximated Strategy vs. Prior p2
0

“trick strategy” even at very high levels of prior probability. At that time, the network

switches to more aggressive interference avoidance scheme of ’Change fc’ with very high

probability. The network gets the correct information only when the jammer switches its

strategy at p2
0 ≥ 0.90 and then the network adapts its defense strategy accordingly. It is cu-

rious to see how the network gets tricked by the jammer even with full monitoring because

it lacks information about the system state.

eNode B’s Utilities

The network’s λ-discounted and average utility values for both “approximated” and “ex-

pected” security strategy algorithms are plotted against prior probability values p2
0 in Fig.

5.10. The jammer strategies are mostly non-revealing and hence, eNode B does not seem

to “learn” much about the jammer type from its repeated interaction. Therefore, the “ap-

proximated” security strategy formulation with discounted cost performs very poorly until

p2
0 < 0.70. At p2

0 = 0.70, the eNode B switches its strategy to playing ’Change fc’ and

catches up to the optimal value at p2
0 ≥ 0.80. Obviously, the jammer also uses full moni-

toring and is forced to come out and play revealing strategy at p2
0 ≥ 0.90.

On the other hand, “expected” strategy algorithm with discounted cost seems to per-
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Figure 5.8: eNode B’s Expected Strategy vs. Prior p2
0

Figure 5.9: eNode B’s Steady State Approximated Strategy against Saboteur vs. Prior p2
0
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Figure 5.10: eNode B’s Utility against Saboteur vs. Prior p2
0

form better than the “approximated” security strategy as it does not get tricked by the

jammer’s non-revealing strategies due to its oblivion. It appears that the “expected” strat-

egy algorithm outperforms its counterpart when p1
0 ≤ 0.30 (or equivalently, p2

0 ≥ 0.70)

given that the Cheater is present in the network and p2
0 < 0.70 (or equivalently, p1

0 > 0.30)

when Saboteur is present in the network. Thus, it performs better in low prior probability

regions, when eNode B does not expect a certain jammer type in the network.

Similar to eNode B vs. Cheater case, “expected” strategy formulation with both average

and discounted costs performs very close to each other. Also, “approximated” formulation

with average cost follows the same behavior as discounted cost formulation, and performs

better at low prior values, similar to eNode B vs. Cheater scenario.

Nevertheless, it becomes clear that the network is at a very disadvantageous position in

the game against the smart jammer due to its lack of information and can be easily misled

by the jammer. Furthermore, the “approximated” and “expected” strategy algorithms work

in a complementary sense in favor of the network, and the choice of cost formulation does

not affect the algorithm’s behavior.
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5.6 Summary

In this chapter, the eNode B and the smart jammer dynamics are modeled as a strictly

competitive zero-sum repeated game for tractability purposes, while preserving all the im-

portant elements of infinite-horizon interaction between players and lack of information

on the network side. The solution of a complete-information single-shot game is based

on very familiar security strategies that lead to a Nash equilibrium. However, tractable

optimal strategy formulations do not exist in game-theoretic literature, especially for the

uninformed player in infinite-horizon repeated games. Therefore, LP formulations from

a recent work [89] are used for “approximated” security strategy algorithms to compute

repeated game strategies for both players efficiently. In addition, simplistic “expected”

security strategy algorithm is also used for the network that does not require “full monitor-

ing”.

This chapter also presents and discusses performance characterization of above-mentioned

algorithms. Two different cost formulations namely λ-discounted and average cost are used

for both algorithms. It turns out that the jammer is able to play non-revealing strategies

most of the time, which implies that the network is unable to learn any new information

about the jammer type in repeated games even with full monitoring. Hence, at low prior

values, the eNode B performs worse (or equivalently, the smart jammer performs better)

in repeated games as compared to hypothetical complete-information single-shot game. In

the game against Cheater, the “approximated” security strategy algorithm is able to strate-

gize against the jammer rather quickly and achieves its optimal utility because the jammer

plays its single-shot game security strategy in repeated game. However, this advantage

goes away in the game against the Saboteur, when the jammer plays non-revealing and

misleading strategies for a wide range of prior probabilities. Nevertheless, the network’s

algorithm eventually catches up and forces the jammer to reveal its true type. In both the

cases, average cost performs a little worse than discounted cost at high prior values when
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“approximated” algorithm catches up to the optimal utility and vice versa at low prior val-

ues when discounted cost performs worse.

The “expected” strategy algorithm performs equally well (or sometimes better) as its

counterpart “approximated” security strategy algorithm in a complementary fashion at low

prior probability values against the Cheater and for a wide range of prior probability val-

ues against the Saboteur. This is because it does not get duped by the “misinformation”

spread by the jammer due to lack of full monitoring, which plays at its advantage against

Saboteur. Both average and discounted cost formulations perform equally well for the “ex-

pected” algorithm. However, the “expected” algorithm never reaches the optimal complete-

information single-shot value. Nevertheless, the biggest advantage of simplistic “expected”

strategy algorithm comes from the fact that it does not require “full monitoring” and hence,

can be easily deployed in practical networks. Furthermore, choice of the cost formulation

does not seem to make much difference in both algorithms’ behavior as anticipated.

It is to be noted here that the zero-sum formulations presented in this chapter only deal

with the situation when the jammer is present in the network. Hence, first the network needs

to perform jamming sense (presented in Chapter 4) under normal conditions to decide if

it is under attack or not. If the network senses jamming attack then it can use algorithms

presented in this chapter to counteract jamming attacks.
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CHAPTER 6

CONCLUSION

6.1 The Last Word

It is shown that LTE/LTE-A networks are indeed vulnerable to denial-of-service (DOS) and

loss-of-service attacks from smart jammers who can “learn” network timing and control

channel configuration in order to launch smart jamming attacks, without even “hacking”

the network or sending an attach request. The eNode B and the smart jammer dynamics

are modeled as an infinite-horizon repeated Bayesian game with asymmetric information,

with the jammer being the informed player with multiple types, and the network being

the uninformed player. The smart jammer has two different types, namely Cheater and

Saboteur, which determine the system state hidden from the network. Several potential

jamming attacks and network countermeasures are proposed, all of which could be im-

plemented using current technology without changing 3GPP specifications. Furthermore,

high-fidelity models are developed for the network subcomponents, from channel model to

multiuser scheduling, while keeping the overall network dynamics tractable. It is shown

that the network suffers huge performance loss in case of a smart jamming attack. It is also

shown that the network’s best response not only depends on the jammer’s actions but also

on its type. Several heuristic and repeated game learning strategy algorithms are presented

for the jammer and the network for general-sum asymmetric repeated games, which do not

rely on the assumption of “full monitoring” (i.e., players cannot observe opponent’s actions

with certainty), nor do they require any exogeneous information. In addition, jammer type

estimation algorithms are presented for the network that use threat mechanism, repeated

game learning and non-parametric estimation to estimate jammer’s type. These algorithms

perform remarkably well under realistic modeling and observational constraints. All of the
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presented algorithms have been designed with practical constraints in mind so that they are

tractable and can be implemented in real networks. It is shown that the network can recover

some of its performance loss and may even force an adversary to retract if aforementioned

algorithms are employed. Moreover, approximated and expected strategy algorithms are

presented for the network and the smart jammer for zero-sum asymmetric repeated games

that can be used to compute suboptimal yet efficient strategies for the players. Although

there has been considerable amount of work done on protecting LTE/LTE-A networks from

smart jamming attacks, this work is far from complete!

6.2 Future Research Directions

The smart jamming problem is not limited to LTE/LTE-A networks by any means. The

similar concept can be applied to almost any wireless network. This problem is potentially

widespread across all the wireless networks especially the ones with protocols and “fea-

tures”, such as, WWAN cellular networks, WLANs, IoT, vehicle-to-vehicle networks or

even some military networks. The most unsettling part is that these smart jammers can be

easily conceived with the help of an SDR like USRP. This problem is bound to get worse

with emerging 5G technologies and Internet of Things (IoT) when everything is going to

be connected to the Internet everywhere all the time!

The research work presented in this thesis can be extended in multiple directions. First

of all, it needs to consider more involved and sophisticated real-world cellular network

deployments, such as multicell configurations, heterogeneous networks, multi-layered and

multi-mode networks, device-to-device networks, proliferation of small cells, evolution to

5G and IoT, and more. Second, more sophisticated yet tractable game-theoretic formula-

tions are needed to address this smart jamming problem, e.g., repeated Stackelberg games

in which the network is the leader and the uninformed player. Third, more sophisticated and

original techniques are needed for network countermeasures that can be deployed within

real (not realistic) constraints, without sacrificing too much network efficiency and avail-
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ability or creating more security vulnerabilities. Finally, all of these models and techniques

need to be combined together in a coherent and systematic fashion to provide a holistic

solution for the smart jamming problem!

This research has a huge potential for technological advancements and could have

greater impact on our lives and society. It must be pursued further, not for the sole purpose

of academic research, but also for the sake of solving a real-world high stake challenge

that engineers face from time to time! Without these challenges, the world would be a dull

place!!!
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APPENDIX A

A BRIEF OVERVIEW OF THE LTE AIR INTERFACE

The LTE air interface is an OFDM-based radio link designed to connect subscriber ter-

minals known as User Equipment (UE) to the network interface known as eNode B [3].

3GPP specifies LTE air interface in two duplexing modes, namely Frequency Division Du-

plexing (FDD) and Time Division Duplexing (TDD), depending on how the spectrum is

allocated/used. Although there are many similarities between the two duplexing modes;

this section is focused on FDD mode.

The LTE air interface can be divided into Downlink (DL) and Uplink (UL) depending

on the direction of data transfer, each configured into 10-ms long frames, occupying band-

widths of up to 20 MHz. Each frame is subdivided into ten 1-ms long subframes, which

in turn is divided into two slots. Each slot contains seven OFDM symbols when normal

Cyclic Prefix (CP) is used. This DL frame structure is shown in Fig. A.1 for FDD mode

[3]. In the frequency domain, an LTE cell can be configured into various flexible band-

widths ranging from 1.4 MHz - 20 MHz, with subcarrier spacing of 15 KHz for most of

the channels. LTE’s radio resources are assigned in terms of time-frequency resources. Its

DL resource grid is shown in Fig. A.2 1, indicating Resource Elements (REs) and Resource

Blocks (RBs) [3].

A.1 Mapping of Control Channels

The LTE air interface is composed of control and data channels, described in Table A.1 and

A.2 corresponding to critical DL and UL channels respectively [3]. The control channels

are mapped to specific time and frequency resources known as Resource Elements (RE) and

are transmitted according to a pre-defined schedule (periodicity) as per 3GPP specifications

1Graphics Source: https://www.slideshare.net/
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Figure A.1: 3GPP’s LTE DL Frame Structure for FDD Deployments (Type I)

Figure A.2: 3GPP’s LTE DL Resource Grid
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[3]. For example:

• PSS & SSS (the sync signals) are transmitted in the last two OFDM symbols of

the first slot of the first and sixth subframe of every frame. They are mapped to

six Resource Blocks (RBs) (1.08 MHz) in the middle of the occupied bandwidth,

irrespective of the overall system bandwidth.

• PBCH is transmitted in the first four OFDM symbols of the second slot of the first

subframe of every frame. It is mapped to six central RBs, similar to PSS and SSS.

• CS-RS (the pilot symbols) symbols are transmitted every first and third last OFDM

symbol of each slot from antenna ports 0 and 1. In frequency domain, they are spaced

six subcarriers apart.

• PCFICH is transmitted in the first OFDM symbol of every subframe. It is mapped to

sixteen Resource Elements (REs) that span the entire system bandwidth depending

on the Cell ID.

• PDCCH is transmitted in 1-4 OFDM symbols of every subframe. PDCCH region is

indicated by PCFICH in the first OFDM symbol. In frequency domain, a PDCCH in-

stance is mapped to 1-8 Control Channel Elements (CCEs) (36 REs/CCE) depending

on the Downlink Control Information (DCI) format.

• PUCCH is always mapped to the outside edges of the system bandwidth with fre-

quency hopping in every slot.

• PRACH preamble is mapped to a bandwidth corresponding to six consecutive RBs,

whose starting frequency is specified in SIB2. There is no frequency hopping for

PRACH.
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Table A.1: LTE DL: Critical PHY Channels
Channel Acronym Used for
Synchronization
Channel

SCH Time/frequency synchronization during initial
system acquisition; OFDM symbol, slot, sub-
frame, half-frame and radio-frame boundary
ID; Cell ID. Two signals: Primary (PSS) and
Secondary (SSS)

Physical Broadcast
Channel

PBCH Master Information Block

Physical Downlink
Shared Channel

PDSCH DL data transmission for different users; Up-
per layer signaling; System Information Blocks
(SIBs)

Physical Downlink
Control Channel

PDCCH Resource allocation information for DL and
UL; UL power control commands.

Cell-Specific Refer-
ence Signal

CS-RS Initial cell acquisition; Cell-specific reference
signal for coherent demodulation of DL chan-
nels; DL signal strength measurements for
scheduling and handovers

Physical Control
Format Indicator
Channel

PCFICH Control format indicator for each DL subframe
(PHY-only channel)

Physical Hybrid In-
dicator Channel

Hybrid ACK/NAK for UL data transmission

Table A.2: LTE UL: Critical PHY Channels
Channel Acronym Used for
Physical Random
Access Channel

PRACH Sending new UL data, control information or
ACK/NAK; or Handing over from current serv-
ing cell to a target cell in “RRC Connected”
but not“UL synchronized” state; or Transition
from “RRC Idle” to “RRC Connected” state;
or Recovering from RL failure; or Sending a
Scheduling Request (SR) occasionally

Physical Uplink
Control Channel

PUCCH UL Control Information (UCI) such as Hybrid
ARQ ACK/NAK, CQI, RE. Not transmitted si-
multaneously with PUSCH

Physical Uplink
Shared Channel

PUSCH UL data transmission from different users, up-
per layer signaling, and UCI
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A.2 UE Acquisition and Data Transfer Procedures

An LTE network broadcasts System Information (SI) in Resource Blocks (RB) on the Phys-

ical Broadcast Channel (PBCH) and Physical Downlink Shared Channel (PDSCH) and

notifies UEs of its validity and changes. A UE applies SI acquisition during the following

events [3, 4]:

• Power on/selecting a cell.

• Reselecting to a cell.

• After handover completion.

• After entering Evolved Universal Terrestrial Radio Access (E-UTRA) from another

Radio Access Technology (RAT).

• Return from out of coverage.

• Receiving a notification that SI has changed.

When powered on or after finding a suitable cell from Out-of-Service (OOS), a UE

must first send an attach request to the network before transitioning to the Radio Resource

Control (RRC) Idle state. This attach request can only be sent after going through a certain

sequence of physical and control channels as discussed below. When a UE powers on or

finds coverage after being OOS, it goes through the following procedure:

1. Decodes PSS/SSS (sync signals) to get System Frame Number (SFN)/subframe bound-

aries.

2. Decodes PBCH to get Master Information Block (MIB) (Bandwidth, SFN, PHICH-

config).

3. Decodes PDSCH to get System Information Block (SIB) 1 (cell suitability, PLMN,

cell access info, scheduling of other SIBs).
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Figure A.3: The LTE UE Attach Procedure

4. Decodes PDSCH to get SIB 2 (paging, PRACH, BCCH, PDSCH, PUSCH, PUCCH

scheduling).

At this point the UE sends an attach request on PRACH/PUCCH to camp on the net-

work and finally completes SI acquisition by decoding PDSCH to get SIB 3 (cell reselec-

tion), SIB 4-8 (neighbor info), SIB 9 (home eNode B info), SIB 10-11 (ETWS notification),

SIB 12 (CMAS notification) and SIB 13 (MBMS control info) ([3, 4]). This procedure is

shown in Fig. A.3 below [3].

Similarly, a UE must transition to Radio Resource Control (RRC) Connected state be-

fore it can make any data transfer. Moreover, a typical LTE network usually transitions the

UEs in Connected state to Idle state after a little dormancy so that it can utilize its resources

more efficiently and reduce interference. Hence, UEs need to establish RRC connection on

a regular basis. In RRC Connected state, the UE follows a certain call flow when receiving

and/or sending data in the DL and UL, respectively. This data transfer call flow sequence

is given below and also shown in Fig. A.4 [3, 4].

• DL data transfer:

1. UE decodes PCFICH to get Physical Downlink Control Channel (PDCCH)-
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Figure A.4: LTE DL and UL Data Transfer Call Flow

config.

2. UE decodes PDCCH to get DL Control Information (DCI) and resource assign-

ments in PDSCH.

3. UE decodes PDSCH to get DL data and sends ACK/NAK on PUCCH/PUSCH.

• UL data transfer:

1. UE sends initial access and UL sync requests on PRACH.

2. UE sends UL Control Information (UCI) on PUCCH/PRACH to eNode B sched-

uler.

3. eNode B sends UL resource assignments on PDCCH in response.

4. UE sends UL data, Buffer Status Report (BSR) and Power Headroom (PHR) on

Physical Uplink Shared Channel (PUSCH).

5. eNode B completes data transfer by sending ACK/NAK on Physical Hybrid

ARQ Indicator Channel (PHICH).
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