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SUMMARY

Wireless Underground Sensor Networks (WUSNs) are the networks of wireless sensors

that operate below the ground surface. These sensors are either buried completely in soil

medium, or placed within a bounded open underground space, such as underground mines

and tunnels. WUSNs enable a wide variety of novel applications, including intelligent

irrigation, underground structure monitoring, and border patrol and intruder detection.

This thesis is concerned with establishing reliable and efficient communications in the

network of wireless sensor nodes that are deployed in either soil medium or underground

mines and tunnels. The unique characteristics of the WUSNs in different underground

channels are first analyzed. Then and the communication and networking solutions are

developed based on the understanding of the underground channels.

In particular, to realize WUSNs in soil medium, two types of signal propagation tech-

niques including Electromagnetic (EM) waves and Magnetic Induction (MI) are explored.

For EM wave-based WUSNs, the heterogeneous network architecture and dynamic con-

nectivity are investigated based on a comprehensive channel model in soil medium. Then a

spatio-temporal correlation-based data collection schemes is developed to reduce the sensor

density while keeping high monitoring accuracy. For MI-based WUSNs, the MI channel

is first analytically characterized. Then based on the MI channel model, the MI waveguide

technique is developed in order to enlarge the underground transmission range. Finally, the

optimal deployment algorithms for MI waveguides in WUSNs are analyzed to construct

the WUSNs with high reliability and low costs.

To realize WUSNs in underground mines and tunnels, a mode-based analytical channel

model is first proposed to accurately characterize the signal propagation in both empty and

obstructed mines and tunnels. Then the Multiple-Input and Multiple-Output (MIMO) sys-

tem and cooperative communication system are optimized to establish reliable and efficient

communications in underground mines and tunnels.

xiii



CHAPTER I

INTRODUCTION

1.1 Backgroud

Wireless Underground Sensor Networks (WUSNs) [2] are the networks of wireless sensor

nodes operating below the ground surface. As a natural extension to the well-established

wireless sensor networks (WSNs) [3] paradigm, WUSNs are envisioned to provide real-

time monitoring capabilities in two types of underground environments: soil medium and

underground mines and tunnels. Based on the monitored environments, the WUSNs can be

further divided into two categories: the WUSNs in soil medium and the WUSNs in under-

ground mines and tunnels. In the former case, networks of wireless nodes are buried under-

ground and communicate through soil. In the latter case, although the network is located

underground, the communications take place through the air, i.e., through the voids that ex-

ist underground. Compared with existing underground monitoring strategies, WUSNs have

the advantages in timeliness of data, ease of deployment and data collection, concealment,

reliability, and coverage density [2].

A wide variety of novel and essential applications are enabled by WUSNs [2, 91, 92],

including:

• Intelligent Irrigation: With the real time monitoring of the soil moisture, temper-

ature, among other soil properties, the WUSNs can accurately determine when and

where to irrigate the crops. Considering that the irrigations constitute more than 70%

fresh water consumption all over the world [1], the WUSNs can greatly enhance the

water sustainability.

• Mine Disaster Prevention and Rescue: No existing techniques support commu-

nications and localization after mine disasters, especially when RF wireless channel
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is blocked due to tunnel collapses and wired communication is cut off due to cable

damages. Since the WUSN is able to work in harsh underground environment, it can

greatly enhance current mine safety and productivity.

• Earthquake and Landslide Monitoring: Up to now, earthquake and landslide

are still difficulty to be accurately predicted. WUSNs provide us a novel way to

monitor the signs of earthquake and landslides in real time with small deployment

and maintenance cost. As a result, the personal injury and property loss caused by

those natural disasters can be minimized.

• Underground Pipeline and Power Grid Monitoring: Underground pipelines con-

stitute one of the most important ways to transport large amounts of fluid (e.g. oil and

water) through long distances. However, existing leakage detection techniques do

not work well due to the harsh underground environmental conditions. Moreover, in

current underground power grid, various faults, such as underground power gird fire

caused by overloading and cable break caused by conductor theft or careless digging,

are difficult to be avoided, detected, localized, and fixed due to the inaccessible envi-

ronments. The WUSNs can provide real time monitoring to help the administrators

prevent the potential faults and fix existing faults in those underground structures.

• Border Patrol and Intruder Detection: Border Patrol is important for national

security. The conventional border patrol systems suffer from intensive human in-

volvement. WUSNs deployed along the border provide a low cost, reliable, and

concealed way to detect the intruders crossing the border.

Despite the potential advantages of WUSNs, the underground environment is a hostile

place for wireless communication and requires existing networking solutions and commu-

nication protocols for terrestrial WSNs be reexamined. Specifically, the key difference

between the WUSNs and the terrestrial WSNs is the communication medium. For the

WUSNs deployed in soil, the propagation medium is no longer air but soil, rock and water.
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Although the well established terrestrial signal propagation techniques based on electro-

magnetic (EM) waves may still work in soil medium, the unique channel characteristics of

EM waves in this environments needs to be modeled. Besides EM waves, alternate sig-

nal propagation techniques, such as magnetic induction (MI) can also be used for wireless

communications in soil and need to be investigated. For the WUSNs deployed in un-

derground mines and road/subway tunnels, the EM waves are suitable for wireless signal

propagation, since the radio signal propagates through the air in this case. However, the

propagation characteristics of EM waves are significantly different from those of terres-

trial wireless channels due to the restrictions caused by the walls and ceilings in mines and

tunnels. Moreover, since different physical layer techniques have to be developed to solve

the challenges brought by the harsh underground environments, the corresponding higher

layers of the protocol stack also need to be redesigned.

1.2 Research Objectives and Solutions

The objective of this thesis is to analyze the unique characteristics of the WUSNs in dif-

ferent underground environments and to find out the solutions to realize the reliable and

efficient communication in WUSNs. For WUSNs in soil medium, we develop two types

of WUSNs based on either EM wave techniques or MI technique to overcome the unique

challenges brought by the soil transmission medium. For WUSNs in underground mines

and tunnels, we utilize the Multiple-Input and Multiple-Output (MIMO) system and coop-

erative communication system to establish reliable and efficient communications.

1.2.1 EM Wave-based WUSNs in Soil Medium

In soil medium, the well established wireless communication techniques using EM waves

do not work well [4]. First, EM waves experience high levels of attenuation due to the ab-

sorption by soil, rock, and water in the soil medium. Since the underground sensor devices

have limited radio power due to the energy constraint, the transmission range between two

sensor nodes is extremely small (no more than 4 meters). Second, the path loss of the

3



EM waves in soil medium is highly dependent on numerous soil properties such as water

content, soil makeup (sand, silt, or clay), and density. Those soil properties can change

dramatically with time (e.g., soil water content increases after a rainfall) and location (e.g.,

soil properties change dramatically over short distances). Consequently, the transmission

range of the underground sensors also varies dramatically in different times and positions.

Besides the communication channel between underground sensors, the channels be-

tween underground (UG) sensor nodes and aboveground (AG) data sinks also needs to

be analyzed. Hence, three types of channels exist in WUSNs in soil medium, including:

underground-to-underground (UG-UG) channel, underground-to-aboveground (UG-AG)

channel, and aboveground-to-underground (AG-UG) channel. For the UG-AG channel, the

transmission range is much longer than the UG-UG channel [16, 98, 79, 78]. This is be-

cause a large portion of the radiation energy can penetrate the air-ground interface from the

soil to the air, and the path loss in the air is much smaller than that in the soil. For the AG-

UG channel, the transmission range is much smaller than the UG-AG channel since most

of the radiation energy is reflected back when penetrating the air-ground interface from the

air to the soil. Similar to the UG-UG channel, the transmission ranges of the UG-AG and

AG-UG channel are also dramatically influenced by many environmental conditions and

system configurations, including soil water content, soil composition, UG sensor burial

depth, AG sink antenna height, and signal operating frequency [2, 4, 53, 79, 78].

The complex characteristics of the UG-UG, UG-AG, and AG-UG channel create unique

challenges in the design of WUSNs in soil medium.

• First, in the envisioned applications of WUSNs in soil medium, the underground sen-

sor nodes are expected to transmit sensing data to one or multiple aboveground data

sinks via single or multi-hop paths. Hence, the connectivity in WUSNs is essential

for the system functionalities. Because of the complex channel characteristics, the

connectivity analysis in the WUSNs is much more complicated than in the terrestrial

wireless sensor networks and ad hoc networks.
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• Moreover, the number of underground sensors is expected to be as small as possible

due to the high deployment/maintenance cost. However, an extremely high density

of underground sensors is required to maintain the full connectivity of WUSNs due

to the harsh underground channel conditions. This conflict constitutes one of the

greatest challenges to deploy the WUSNs.

In this research, we first quantitatively model the channel characteristics of the three

types of channels of WUSNs in soil medium. Based on the channel model, we propose

a heterogeneous network architecture and analyze the dynamic connectivity of such net-

work that captures the influence of multiple system and environmental parameters. More-

over, we introduce aboveground mobile sinks to WUSNs and developed a spatio-temporal

correlation-based data collection scheme, which significantly reduces the sensor density

while keeping high monitoring accuracy. Finally, we propose a theoretical method to de-

termine the optimal sensor density under the proposed scheme, which provides principles

and guidelines for the design and deployment of WUSNs.

1.2.2 MI-based WUSNs in Soil Medium

As discussed previously, the EM wave-based techniques encounter two major problems

in soil medium: the high path loss and the dynamic channel condition. If the sensors of

WUSNs are buried in the shallow depth, sensor can communicate with the aboveground

data sinks directly using EM waves since the UG-AG channel has relatively large com-

munication range. However, many WUSN applications, such as underground structure

monitoring, require the sensors buried deep underground, where only UG-UG channel is

available.

MI is a promising alternative physical layer technique for WUSNs in deep burial depth.

Using MI technique could have several benefits. One of these is that the underground

medium such as soil and water cause little variation in the attenuation rate of magnetic

fields from that of air, since the magnetic permeabilities of each of these materials are
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similar [2]. This fact guarantees that the MI channel conditions remain constant for a

certain path in different times. However, MI is generally unfavorable for terrestrial wireless

communication, since the magnetic field strength falls off much faster than the EM waves

in terrestrial environments. In soil medium, although it is known that the soil absorption

causes high signal attenuation in the EM waves systems but does not affect the MI systems,

it needs to be analyzed whether the total path loss of the MI system is lower than that of

the EM waves system or not.

In this research, we conduct detailed analysis on the path loss and the bandwidth of the

MI system in underground soil medium. Based on the channel analysis, we develop the

MI waveguide technique in order to reduce the high path loss of the traditional EM wave

system and the ordinary MI system. By utilizing the passive relay coils, the MI waveguide

system dramatically increases the the transmission range of underground sensors in soil

medium. Moreover, we analyze the deployment strategies of MI waveguides in WUSNs.

We develop optimal deployment algorithms to use the MI relay coils to connect the under-

ground sensors. The proposed algorithm provides guidelines to deploy MI-based WUSNs

with high reliability and low costs.

1.2.3 WUSNs in Underground Mines and Tunnels

The WUSNs in underground mines and tunnels are necessary to improve the safety and

productivity in mines, to realize intelligent transportation system in road/subway tunnels,

and to avoid attacks by monitoring these vulnerable areas.

In underground mines and tunnels, wireless networking using EM waves propagation

is a more flexible and efficient solution than the wire-based or leaky coaxial cable guided

systems [29] because it is low-cost, easy to implement, and scalable. However, radio waves

do not propagate well in underground mines and road tunnels [33]. Due to the reflections of

the EM waves on the tunnel walls, the multipath fading in these environments is much more

significant than in the terrestrial wireless channels. Moreover, the tunnels in operation are
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filled with mobile vehicles with random size and positions. The reflections and the diffrac-

tions on the vehicles make the wireless channel in the tunnel even more complicated. To

setup reliable and efficient WUSNs in underground mines and tunnels, the analytical chan-

nel model that explicitly contains the dependence on the tunnel geometry, vehicular traffic

information, and other communication parameters is needed. After the channel model in

underground mines and tunnels is derived, suitable communication protocols can be devel-

oped to solve the impact of the multi-path fading in these environments.

In this research, we first developed a mode-based analytical channel model that can ac-

curately characterize the signal propagation in empty mines and tunnels. Then we analyze

the influence of the vehicular traffic flow on the signal propagation in mines and tunnels

by utilizing the uniform theory of diffraction (UTD) [48] and the traffic flow theory [37].

Based on the signal propagation model in mines and tunnels, we analyzed the capacity

distribution and outage behavior of MIMO and cooperative systems in such environments.

Finally, we developed an optimal antenna geometry design strategy for MIMO system and

an optimal relay assignment protocol for cooperative system. With these optimizations, sig-

nificantly higher spectral efficiency and link reliability are achieved in underground mines

and tunnels.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, the EM wave-based WUSNs in soil

medium are developed. In particular, the models of the three types of channels, i.e., UG-

UG channel, UG-AG channel, and AG-UG channel, are first developed. Then based on the

channel model, the network architecture and the dynamic connectivity in EM wave-based

WUSNs in soil are investigated. At the end of this chapter, a spatio-temporal correlation-

based data collection scheme is developed for WUSNs in soil medium. In Chapter 3, the

MI-based WUSNs in soil medium are introduced. Specifically, the MI channel model for
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WUSNs in soil medium is first provided. Then, the MI waveguides are developed to signif-

icantly enlarge the UG-UG communication range. At the end of this chapter, the optimal

deployment algorithms for MI waveguide are presented. In Chapter 4, the WUSNs in un-

derground mines and tunnels are explored. Particularly, the channel model of the WUSNs

in empty and obstructed mines and tunnels are first derived. Based on the channel model,

the MIMO and cooperative communication solutions for WUSNs in underground mines

and tunnels are proposed to mitigate the severe multipath fading problem. Finally, Chapter

5 summarizes the research contributions and identifies several future research directions.
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CHAPTER II

EM WAVE-BASED WUSNS IN SOIL MEDIUM

2.1 Motivation and Related Work

The EM wave-based wireless signal propagation technique is widely adopted in existing

wireless communications and networks. The underground soil medium brings unique char-

acteristics of the wireless channel using EM waves. Three types of channels with dra-

matically different transmission ranges, including UG-UG channel, UG-AG channel, and

AG-UG channel are introduced.

According to the EM wave channel characteristics and the envisioned applications of

WUSNs in soil medium, a practical WUSN network consists of UG sensors deployed in

the sensing field, fixed AG data sinks set around the sensing field, and a small number of

mobile data sinks carried by people or machineries inside the sensing field. Specifically, if

there is only one single AG data sink, a prohibitively high density of UG sensors is required

to guarantee the full connectivity, due to the small and dynamic transmission range of the

UG-UG channel. If the cost of deployment and maintenance is considered, the extremely

high density of UG sensors is unacceptable. To solve this problem, multiple AG data sinks

have to be introduced [2, 16]. Since the transmission range of the UG-AG channel is much

larger than the UG-UG channel, the WUSNs can be connected with much lower UG sensor

density if multiple AG data sinks are employed. The AG data sinks can be either fixed

or mobile. Fixed AG data sinks are deployed at random positions inside the monitored

field, while mobile AG data sinks can be handsets that are carried by people or machineries

working inside the monitored field. The mobile sink moves randomly in the monitored

field, and collects data from the UG sensors when moving into their transmission range.

Therefore, if the WUSN applications can tolerate a certain level of latency, the isolated UG
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sensors can expect a mobile sink coming and collecting their data.

In WUSN applications, real-time underground environmental conditions in different

locations are monitored, collected, and processed by the WUSNs to achieve the applica-

tion goals. The underground sensor nodes are envisioned to send the measurements to the

aboveground data sinks to guarantee a certain level of monitoring accuracy. To achieve this

requirement, the network connectivity and corresponding data collection scheme should be

investigated for the EM wave-based WUSNs in soil medium.

According to the above discussion, the connectivity analysis in WUSNs is a compli-

cated problem since the network consists of three types of wireless nodes (UG sensors,

AG fixed sinks and AG mobile sinks) in two different mediums (soil and air) with three

different transmission ranges (UG-UG, UG-AG and AG-UG). In addition, the connectivity

in WUSNs is highly dynamic due to the dynamic underground channel characteristics and

the random movement of the mobile sinks. First, the transmission ranges of the three types

of channels are all highly dynamic due to the changes of the environmental conditions as

well as the sensor burial depth and sink antenna height. Consequently, the network con-

nectivity varies in different time and locations. Second, although the mobile AG sinks can

improve the network connectivity, the random movement also bring fluctuations of the net-

work connectivity. The tradeoff between the good connectivity and the low latency needs to

be analyzed. Moreover, since the channels between AG and UG devices are asymmetrical,

the network connectivity is also asymmetrical.

Besides network connectivity, the data collection scheme is also need to be designed

to address the unique challenges in WUSNs. Specifically, one of the greatest barrier in

designing WUSNs is the conflict between the high deployment cost of underground sen-

sors and the high underground sensor density required to achieve fully connected network.

On the one hand, since each sensor needs to be buried underground, the deployment and

maintenance costs are extremely high compared with terrestrial sensor networks. Hence

the sensor density should be minimized. On the other hand, due to the material absorption
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in soil medium, the communication range between underground sensors is very limited

(≤4 m) [4]. Consequently, a prohibitively high density of underground sensors (nearly 1

sensor per m2) is required to guarantee the network connectivity [87]. Moreover, the highly

dynamic soil water content significantly affects sensor’s communication range. As a result,

the network connectivity of WUSNs is not guaranteed even with high underground sensor

density. To solve the above conflict, the data collection scheme of the WUSNs needs to be

reconsidered. Specifically, it may be not necessary to collect the measurements of every

sensor at every time stamp since the measured data over an area is usually spatio-temporally

correlated [39]. Then the requirements of the network connectivity in the WUSNs can be

lowered so that the number of the underground sensors can be reduced. The bottom line

of the WUSNs is to achieve satisfying monitoring/estimation accuracy of every position at

every time stamp.

Although a few recent papers are specifically concerned with the communication prob-

lems of WUSNs in soil medium, the literature on the subject is extremely limited. In [2],

application scenarios and research challenges of the WUSNs in soil medium are discussed,

and open research issues are described. In [4, 53, 100], the channel characteristics of EM

waves in soil medium are investigated. The analysis shows that the path loss is much higher

than the terrestrial case due to the material absorption. In addition, the communication

success significantly depends on the composition of the soil and the operating frequency.

The feasible transmission range of the underground sensors in soil medium is no more

than 4 meters. The theoretical analysis of [4, 53, 100] is validated by field experiments in

[79, 78].

To date, no existing work has analyzed the connectivity problems in WUSNs. However,

the connectivity in the homogenous ad hoc networks has been well analyzed. In [40], the

necessary and sufficient scaling of the transmission range is analyzed to achieve the full

connectivity. In [13], the upper bound of the connectivity probability is proposed as a func-

tion of the node density. Comprehensive simulation results for the connectivity in mobile ad
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hoc network are provided in [74]. The above connectivity analysis are based on the deter-

ministic disk shaped model. In [14], the impacts of large scale lognormal shadowing on the

network connectivity are analyzed. In[72], the network connectivity is investigated in the

presence of both large scale fading and small scale fading as well as the unreliable nodes.

In [47], the dynamic connectivity caused by unreliable links is analyzed. All the above

works are based on the homogenous network architecture with only one types of nodes,

which is much simpler than the case in WUSNs where three types of wireless devices are

deployed in two types of mediums. Moreover the simple terrestrial channel models cannot

characterize the complex channels among devices in both underground and aboveground.

The connectivity of ad hoc networks with a heterogeneous network architecture is analyzed

in [32]. It is proved that the connectivity of ad hoc networks can be improved by deploying

base stations under certain conditions. This result is also suitable in wireless sensor net-

works by replacing the base stations by the data sinks. In [31], the connectivity in a sensor

network with node sleeping scheme is analyzed. However, the authors assume that only

one data sink exists. Therefore the connectivity criteria is the same as in the ad hoc net-

works. In [35], multiple sinks are considered in the connectivity analysis in wireless sensor

networks. However, the authors assume that the sensors can be connected to the sinks only

in a single-hop fashion, which is not true in most multi-hop wireless sensor networks. The

above works are based on the determined terrestrial channel model and do not consider the

possible connectivity improvement introduced by mobile data sinks.

The spatio-temporal correlations have been widely used in the environmental monitor-

ing. In [99], the spatio-temporal correlations in wireless sensor networks are exploited to

improve the performance of communication protocols. In [43], a simplified spatio-temporal

soil moisture model is proposed. This model is utilized to design the WUSN in [30]. These

works assume that the sensor networks are fully connected so that all measurements are

available at the monitoring center. However, due to the harsh underground channel condi-

tion and the high deployment cost of underground sensors, the fully connected network is
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difficult to achieve in WUSNs. In [66], the spatio-temporal planning is summarized as a

problem of the cooperative control of multiple mobile robots. As an example of the spatio-

temporal planning in sensor networks, an event collection scheme using a single mobile

sink is developed in [106]. The authors assume that all the sensors are isolated and can

only communicate with the mobile sink. However, in WUSNs, although the network is not

necessarily to be fully connected, there may still exist connections between adjacent un-

derground sensors. The multiple aboveground mobile sinks can either communicate with a

single sensor or a cluster of sensors. Moreover, the connectivity is subject to change due to

the dynamic underground channel conditions.

In this chapter, we first extend the underground channel model provided in [4, 53, 100]

and quantitatively analyze the characteristics of all the three types of channels in WUSNs,

including the UG-UG, UG-AG, and AG-UG channel. Then based on the channel model,

we investigate the dynamic network connectivity of the WUSNs in soil medium. A mathe-

matical framework to determine the lower and upper bounds of the connectivity probability

in WUSNs is developed, which analytically captures the effects of the density and distri-

bution of both the UG sensors and the AG fixed sinks, the number and mobility of the

AG mobile sinks, the soil properties especially the dynamic soil moisture, the UG sensor

burial depth, the AG sink antenna height, the tolerable latency of the envisioned applica-

tion, the radio power, and the system operating frequency. Finally, we develop a spatio-

temporal correlation-based data collection scheme to reduce the WUSN deployment cost

while maintaining satisfying monitoring accuracy. The optimal sensor density in WUSNs

is also derived by jointly analyzing the underground channel characteristics, the spatio-

temporal correlation, the dynamic network connectivity, and the random or controlled mo-

bility of multiple mobile sinks.
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2.2 Channel Modeling of EM Waves in Soil Medium

As discussed in Chapter 1, the complex channel characteristics of the UG-UG channel, the

UG-AG channel, and the AG-UG channel constitute one of the major challenges in the con-

nectivity analysis in WUSNs. We have developed the channel model for UG-UG channel

in our previous works [4, 53]. In this section, we extend this channel model to characterize

all the three types of channels and provide the formulas to calculate the transmission ranges

of those channels. Since the WUSNs are mainly deployed in spacious fields (e.g. crop field

or sports field), the multi-path fading effects can be ignored.

2.2.1 UG-UG Channel

The channel model for UG-UG channel proposed in [4, 53] is first overviewed. Assuming

that LUG (d) is the signal loss of an underground soil path with length d (meters), then

LUG (d) = 6.4 + 20 log d + 20 log β + 8.69αd , (1)

where α is the attenuation constant with the unit of 1/m, and β is the phase shifting constant

with the unit of radian/m. The values of α and β depend on the dielectric properties of soil:

α = 2π f

√
µε′

2

√1 + (
ε′′

ε′
)2 − 1

 ,
β = 2π f

√
µε′

2

√1 + (
ε′′

ε′
)2 + 1

 , (2)

where f is the operating frequency, µ is the magnetic permeability, ε′ and ε′′ are the real

and imaginary parts of the relative dielectric constant of soil medium:

ε′ = 1.15[1 +
ρb

ρs
(εα

′

s ) + mβ′

v ε
′α′

fw − mv]1/α′ − 0.68,

ε′′ = [mβ′′

v ε
′′α′

fw ]1/α′ , (3)

where mv is the volumetric water content (VWC) of the soil medium, ρb is the bulk den-

sity, ρs = 2.66 g/cm3 is the specific density of the solid soil particles, α′ = 0.65 is an

empirically determined constant, ε′fw and ε′′fw are the real and imaginary parts of the relative
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dielectric constant of water, β′ and β′′ are empirically determined constants, dependent on

soil composition in terms of sand and clay.

Since the UG sensors are buried near the air-ground interface (the burial depth is less

than 2 m), the reflection from the air-ground interface needs to be considered. If the burial

depth of UG sensors is hu, the total path loss of the UG-UG channel LUG−UG is deduced as

[4, 53]:

LUG−UG = LUG (d) − 10 log V(d, hu) , (4)

where V(d, h) is the attenuation factor due to the second path:

V2(d) =1 +
(
Γ · exp (−α∆r)

)2

− 2Γ exp (−α∆r) cos
(
π −

(
φ −

2π f

c
√
ε′

∆r
))
, (5)

where Γ and φ are the amplitude and phase angle of the reflection coefficient at the reflection

point, c is the velocity of light in vacuum, and ∆r =
√

d2/4 + h2
u −d, is the difference of the

two paths.

Assuming that the transmit power of the UG sensor is Pu
t , the antenna gains of the

receiver and transmitter are gr and gt. Then the received power, PU−U
r , at a receiver sensor

node d meters away is PU−U
r = Pu

t + gr + gt − LUG−UG . Consequently, the transmission range of

the UG-UG channel is:

RUG−UG = max{d : PU−U
r /Pn > SNRth} , (6)

where Pn is the noise power; and SNRth is the minimum signal-to-noise ratio required by

the receiver.

2.2.2 UG-AG Channel

The path loss of the UG-AG channel LUG−AG consists of three parts: the UG path loss LUG ,

the AG path loss LAG and the refraction loss from soil to air LR
UG−AG

:

LUG−AG = LUG (dUG ) + LAG (dAG ) + LR
UG−AG

, (7)
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Figure 1: Illustration of (a) UG-AG channel and (b) AG-UG channel

where dUG is the length of the UG path, and the dAG is the length of the AG path, as shown

in Fig. 1(a). The UG path loss LUG can be derived from (1). The AG path loss LAG is:

LAG (d) = −147.6 + 20 log d + 20 log f , (8)

Since the dielectric constant of soil is much larger than the air, the signals with an inci-

dent angle θI that is larger than the critical angle θc will be completely reflected. Moreover,

because the length of the AG path dAG is much larger than the height of the AG sink antenna

ha, the incident angle θI is approximately equal to θc; and the refracted angle θR is approxi-

mately equal to 90◦, as shown in Fig. 1(a). Then the horizontal distance d between the UG

sensor and AG sink is approximately equal to dAG . And

dUG '
hu

cos θc
; θc ' arcsin

1
√
ε′
. (9)

The refraction loss LR
UG−AG

can be calculated as:

LR
UG−AG

' 10 log
(
√
ε′ + 1)2

4
√
ε′

. (10)

Then the received power is PU−A
r = Pu

t + gr + gt − LUG−AG at the AG sink. Consequently

the transmission range of the UG-AG channel is calculated as:

RUG−AG ' max{dAG : PU−A
r /Pn > SNRth} . (11)

2.2.3 AG-UG Channel

Similar to the UG-AG channel, the path loss of the AG-UG channel is:

LAG−UG = LUG (dUG ) + LAG (dAG ) + LR
AG−UG

, (12)
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Figure 2: Transmission ranges of the three types of channels in WUSNs as functions of
(a) volumetric water content and (b) sensor burial depth.

where LR
AG−UG

is the refraction loss from air to soil. As shown in Fig. 1(b), because the

dielectric constant of soil is much larger than the air, most radiation energy from the AG

sink will be reflected back if the incident angle θI is large. Therefore, we only consider the

signal with small incident angle. Consequently, the refracted angle θR in the soil is even

smaller hence it can be viewed approximately as zero. Then the UG path length dUG ' hu,

and the horizontal distance d between the UG sensor and AG sink is:

d '
√

d2
AG
− h2

a , cos θI =
ha

dAG

. (13)

The refraction loss LR
AG−UG

can be calculated as:

LR
AG−UG

' 10 log
(cos θI +

√
ε′ − sin2 θI)2

4 cos θI

√
ε′ − sin2 θI

. (14)

If the transmit power of the AG sink is Pa
t , then the received power is PA−U

r = Pa
t + gr +

gt − LAG−UG at the UG sensor. Therefore the transmission range of the UG-AG channel is

calculated as:

RAG−UG ' max{d : PA−U
r /Pn > SNRth} . (15)
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2.2.4 Numerical Results

The numerical results of the transmission ranges of the channels in WUSNs are given in

Fig. 2. It shows that RUG−UG is the smallest (≤ 5 m) among the three channels. RUG−AG

and RAG−UG are in the range of 10 m to 50 m, depending on the soil water content and

the sensor burial depth. RUG−AG is larger than RAG−UG due to the reflection and refraction

on the air-ground interface. Moreover, Fig. 2(a) shows that the soil water content has

significant influences on all the three types of channels in WUSNs. Fig. 2(b) shows that

the sensor burial depth only affects the UG-AG channel and AG-UG channel while does

not dramatically influence the UG-UG channel. It should be noted that the range changes

of the UG-UG channel is not showed clearly in Fig. 2 due to the much smaller value of

the UG-UG channel range compared with the ranges of the other two channels. When soil

water content increases from 5% to 25%, the UG-UG range RUG−UG decreases dramatically

from 3.42 m to 2.36 m. However, when sensor burial increases from 0.5 m to 1 m, the

UG-UG range RUG−UG does not change a lot but fluctuates between 2.7 m to 2.9 m. Beside

the soil water content and the sensor burial depth, the antenna height of the AG sinks also

has obvious effect on the AG-UG channel, the numerical result of which is not given due

to the page limit.

2.3 Dynamic Connectivity in WUSNs
2.3.1 Problem Formulation

After the channel models of the three types of channels in WUSNs are provided, we

formulate the problem of the connectivity analysis in WUSNs in this section. We con-

sider a WUSN deployed in a bounded region R2, as shown in Fig. 3. The UG sensors

{Ni, i = 1, 2, · · · } are distributed inside the region R2 according to a homogeneous Poisson

point process of constant spatial intensity λu. The AG fixed sinks {S j, j = 1, 2, · · · } are

distributed inside R2 according to another homogeneous Poisson point process with spatial
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Figure 3: The network model of the WUSNs. The gray disk is the range in which other
nodes can connect to the node in the center of the disk.

intensity λa. In addition, there are m AG mobile sinks {Mk, k = 1, 2, · · ·m} carried by peo-

ple or machineries inside the region R2. The monitored region R2 is much larger than the

transmission range of the UG-UG channel. Hence the scale of the network is large and the

border effects can be ignored.

In this section, we analyze the probability of the full connectivity of such WUSNs. A

WUSN is defined to be fully connected if every UG sensor is connected to at least one AG

data sink in a multi-hop fashion within the tolerable latency. Specifically, we introduce the

following definition of the full connectivity in WUSNs:

Definition 1: In a WUSN, a UG sensor is connected if either of the following statements

is true.

• The UG sensor is connected to at least one fixed AG sink directly or in a multi-hop

fashion;

• The UG sensor is connected to at least one mobile AG sink directly or in a multi-hop

fashion within the duration tmax, where tmax is the maximum tolerable latency.

Definition 2: A WUSN is fully connected if all its UG sensors are connected.
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The functionalities of the WUSNs include two phases: the sensing phase and the con-

trol phase. In the sensing phase, the UG sensors report sensing data to the AG sinks, while

in the control phase, the AG sinks send control messages to the UG sensors. Since the UG-

AG channel and the AG-UG channel are asymmetrical, we analyze the connectivity in the

two phases separately. In the sensing phase, the UG-UG and the UG-AG channels are used,

while in the control phase UG-UG and the AG-UG channel are utilized. The maximum tol-

erable latencies in the sensing phase and control phase are ts and tc, respectively. ts � tc in

most envisioned applications. Since the only differences between the connectivity analysis

in the two phases are the transmission ranges and the tolerable latencies, we calculate the

connectivity probability in the sensing phase in the following sections. The connectivity

probability in the control phase can be derived from the developed formulas by changing

the values of the transmission range and the tolerable latency.

The connectivity in WUSNs is highly dynamic due to the dynamic underground channel

characteristics and the random movement of the mobile sinks. Hence, we mathematically

formulate these two randomness in the rest part of this section.

2.3.1.1 Randomness Caused by Dynamic Channel Characteristics

As discussed in Section 2.2, the transmission ranges of the three types of channels in

WUSNs are functions of soil water content, the sensor burial depth, and sink antenna

height. In most applications of WUSNs, those three environmental and system parame-

ters are either temporally or spatially random, which cause the randomness of connectivity

in WUSNs.

Soil Water Content:

According to [43] among many other previous works, the daily soil water content data

can be well-fitted by a gamma distribution. The gamma distribution can be completely

characterized by its mean and variance, which are given by [43]:

µmv =
b2πζ

arR
2ηβ

, σ2
mv

=
4πζ
ηβ2rR

2

b2

a(η + a)
, (16)
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where ζ is the intensity of the Poisson rain process; a is the normalized soil water loss; b

is the rain/irrigation coefficient; 1/rR , 1/η, and 1/β are the mean cell radius, duration, and

intensity of each rain, respectively. Then, the probability density function (PDF) of the soil

water content can be derived:

f (mv) = m
−1+µ2

mv/σ
2
mv

v ·
e−mv·µmv/σ

2
mv(

σ2
mv
µmv

)µ2
mv/σ

2
mv
· Γ( µ

2
mv
σ2

mv
)
, (17)

where Γ(x) is the Gamma function [61]; µmv and σ2
mv

are given in (16). It should be noted

that the randomness brought by the dynamic soil water content is only in temporal scale. In

a give time stamp, the soil water content throughout the monitored field can be considered

to be the same.

Sensor Burial Depth and Sink Antenna Height:

In WUSN applications, the burial depths of all UG sensors are not necessarily the same.

The data at different soil levels may be required and the depth deviations may be incurred

during the deployment processes. Hence, the sensor burial depth throughout the whole

WUSN is a random variable. Similarly, the antenna height of each mobile AG sink is

different since different people or machineries may carry the sink handsets at different

positions. Moreover, the antenna heights of different fixed AG sinks are different due to the

deviations in the deployment process. Therefore, the antenna heights of all the AG sinks

throughout the monitored field are also random variables.

In this section, we model the random sensor burial depths and sink antenna heights as

uniformly distributed variables. Specifically, the UG sensor burial depths are uniformly

distributed in [hmin
u , hmax

u ]; and the antenna heights of the AG fixed and mobile sinks are

uniformly distributed in [hmin
a , hmax

a ]. It should be noted that the randomness brought by the

different sensor burial depth and the sin antenna height is only in the spatial scale. After

the deployment, the burial depth and the antenna height are assumed to be remain the same

during the WUSN operation.
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2.3.1.2 Randomness Caused by AG Sink Mobility:

The employment of the AG mobile sinks can improve the connectivity in WUSNs if a cer-

tain level of delay is allowed. Meanwhile, the random movement of the AG mobile sinks

also brings randomness. Since the mobile AG sinks are carried by people or machiner-

ies, the movement of the AG mobile sinks can be modeled by the widely used Random

Waypoint (RWP) Model [20]. In RWP model, the random movement of a mobile sink is

modeled as a sequence of steps. A step includes a flight and a following pause. In a flight,

the sink first select a destination that is uniformly distributed in the whole region R2. Then

the sink starts to move towards the destination with a constant speed v m/s. After it arrives

the destination, the sink pauses for τ second and then starts the next step. The speed v and

the pause τ are chosen uniformly from [vmin, vmax] and [0, τmax], respectively.

2.3.2 Lower Bound of Connectivity Probability in WUSNs

According to the channel models derived in Section 2.2 and the network, environment,

and mobility models derived in Section 2.3.1, the connectivity in WUSNs depends on var-

ious environmental and system parameters. Here and in the next section, the lower and

upper bounds for the connectivity probability in WUSNs are derived analytically. These

theoretical bounds enable the quantitative analysis of the effects of multiple system and

environmental parameters on the connectivity in WUSNs.

From Definition 2, the full connectivity probability Pc of WUSNs can be expressed as:

Pc = P(Every UG sensor is connected)

=

∞∑
n=0

P(All n UG sensors are connected) × P(There are n UG sensors in R2) . (18)

According to the FKG inequality [62],

P(All n UG sensors are connected)


≥

∏n
i=1 P(Ni is connected) , if n ≥ 1

= 0 , if n = 0 .
(19)
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Since each UG sensor node is assumed to be identically distributed, then

n∏
i=1

P(Ni is connected) = Pn(Ni is connected)

Additionally, since the UG sensors are distributed according to a Poisson point process,

P(There are n UG sensors in R2) =
(λu SR2)n

n!
e−λu SR2 , (20)

where SR2 is the area of the region R2. Then

Pc ≥

∞∑
n=0

Pn(Ni is connected) ·
(λu SR2)n

n!
e−λu SR2

= exp
{
− λu SR2 ·

[
1 − P(Ni is connected)

]}
= exp

{
− λu SR2 · P(Ni is not connected)

}
. (21)

Next, we evaluate the upper bound of P(Ni is not connected) in (21), the probability

that a single UG sensor node Ni is not connected. According to Definition 1, we have

P(Ni is not connected)= P
(
Ni ←×→ fixed sink ∩ Ni ←×→ mobile sink within ts

)
(22)

where A←×→ B indicates that A is not connected to B; ts is the maximum tolerable latency

in the sensing phase given in Section IV. Since the event {Ni ←×→ fixed sink} and event

{Ni ←×→ mobile sink within ts} can be viewed as independent, then

P(Ni is not connected) = P
(
Ni ←×→ fixed sink

)
· P

(
Ni ←×→ mobile sink within ts

)
. (23)

According to (18) to (23), to derive the lower bound of the connectivity probability Pc in

WUSNs, the upper bounds of two probabilities need to be found out. The two probabilities

are: the probability that the UG sensor Ni is not connected to all fixed AG sinks, P
(
Ni ←

×→ fixed sink
)
, and the probability that the UG sensor Ni is not connected to all mobile AG

sink within time ts, P
(
Ni ←×→ mobile sink within ts

)
. In the rest part of this section, the

upper bounds of the two probabilities are developed.
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2.3.2.1 Upper Bound of P
(
Ni ←×→ fixed sink

)
The probability that the UG sensor Ni is not connected to any fixed AG sinks P

(
Ni ←×→

fixed sink
)

can be further developed as

P
(
Ni ←×→ fixed sinks

)
=

∞∑
n=0

P(Ni ←×→ S 1 ∩ Ni ←×→ S 2 ∩ ... ∩ Ni ←×→ S n)

× P(There are n fixed AG sinks in R2) , (24)

where S j is jth fixed AG sink. Since AG fixed sinks are distributed according to a Poisson

point process with density λa, the probability P(There are n fixed AG sinks in R2) can be

calculated using (20) by just replacing λu with λa. {Ni ←×→ S j1} and {Ni ←×→ S j2} ( j1 , j2)

can be viewed as independent events. Then

P
(
Ni ←×→ fixed sinks

)
=

∞∑
n=0

Pn(Ni ←×→ S j) ·
(λa SR2)n

n!
e−λa SR2

= exp
{
− λa SR2 ·

[
1 − P(Ni ←×→ S j)

]}
= exp

{
− λa SR2 · P(Ni ←→ S j)

}
, (25)

where A←→ B indicates that A is connected to B.

Since the position of the UG sensor Ni and the position of the fixed sink S j are dis-

tributed according to two different homogeneous Poisson point processes, then

P
(
Ni ←×→ fixed sinks

)
= exp

{
− λa SR2 ·

∫
R2

∫
R2

( 1
SR2

)2
·P

(
xi ←→ z j

)
dxidzi

}
, (26)

where xi is the vector position of the UG sensor node Ni; z j is the vector position of the

fixed sink S j; P
(
xi ←→ z j

)
is the probability that the UG sensor at xi is connected to the AG

fixed sink at z j.

Next, we investigate the lower bound of the probability P
(
xi←→z j

)
. To derive the lower

bound, we first map the WUSN on a discrete lattice, as shown in Fig. 4. The square lattice

L over the region R2 is constructed as follows. The location of the UG sensor xi is on one

vertex of the lattice, which is set as the origin of the lattice. The straight line e f connecting
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SinkSensor

Figure 4: Mapping the WUSN on a lattice L (dashed) and its dual L’ (plain).

xi and z j forms a sequence of horizontal edges of the lattice L. The length of each edge is

d. Let L′ be the dual lattice of L. The vertexes of L′ are placed in the center of every square

of L. The edges of L′ crosse every edge of L. According to the above structure, there exists

a one-to-one relation between the edges of L and the edges of L′. L and L′ have the same

edge length d = 1
√

5
RUG−UG (mv). The value is chosen so that two UG sensors deployed in two

adjacent squares of the dual lattice L′ are guaranteed to be able to connect to each other.

Note that the soil water content mv is a random variable as discussed in Section IV, and

RUG−UG (mv) is a function of the soil water content mv. Hence the edge length of the lattice

d is also a random variable. According to [43], at one time stamp, the soil water contents

can be viewed as the same throughout the whole monitored field since the water contents

are highly spatio-correlated. Therefore, all the edges have the same length d in the lattice

L and L′ at one time stamp. The edge length d(mv) is random in different time stamps.

Some definitions are first given before the next step.

Definition 3: An edge l′ of the L′ is said to be open if both squares adjacent to l contains

at least one UG sensor.

Definition 4: An edge l of the L is said to be open if and only if the corresponding edge

of L′ is open.

Definition 5: A path of the L or L′s is said to be open (closed) if all edges forming the
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path are open (closed).

If a open path of the L is given, all the UG sensors in the squares in L′ along the open

path are connected to each other.

Now consider the connection between the sensor at xi and the sink at z j. The region R2

is divided into two parts, the region inside the circle Cz j and the region outside the circle.

Cz j is defined as the circle with radius RUG−AG (mv, hu) and center located at z j, as shown

in Fig. 4, where the UG-AG channel range RUG−AG (mv, hu) is a function determined by two

random variables: the soil water content mv and the burial depth of the last hop UG sensor

that is directly connected to the AG fixed sink hu. All UG sensors located inside Cz j are

connected to the sink directly. Note that the UG-AG channel range RUG−AG (mv, hu) is used

since we aim to calculate the connectivity probability in sensing phase of the WUSNs. For

the control phase of the WUSNs, the UG-AG channel range RAG−UG (mv, hu, ha) is used and

the connectivity probability of the control phase can be derived in the similar way.

If there is an open path of L connecting xi and a vertex V of L inside Cz j , then UG

sensor and the AG sink are guaranteed to be connected by each other. Note that the square

in L′ containing vertex V should be completely inside the circle Cz j . The set of these open

paths is denoted as Po = {P1
o, P

2
o, ...}, where P1

o, P
2
o, ... denote all possible open paths. Then,

P
(
xi←→zj

∣∣∣mv, hu
)
= P

(
∪∞i Pi

o

)
≥


maxi{P(Pi

o)},

P
(
|Po|>0

)
=1−P

(
|Po|=0

)
,

(27)

where P
(
xi←→ zj

∣∣∣mv, hu
)

is the conditional probability assuming that mv and hu are given;

|Po| is the number of the existing open paths. In (77), two bounds of P
(
xi←→ zj

∣∣∣mv, hu
)

are

given, which are the maximum probability that a certain open path exists, i.e. maxi{P(Pi
o)},

and the probability that there is at least one open path, i.e. P
(
|Po|>0

)
. The larger one of the

two bounds is utilized as the lower bound of P
(
xi←→ zj

∣∣∣mv, hu
)
, which is determined by the

UG sensor density λu. Hence,

P
(
xi←→zj

∣∣∣mv, hu
)
≥ max

{
max

i
{P(Pi

o)}, 1−P
(
|Po|=0

)}
, (28)
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We first calculate maxi{P(Pi
o)} in (28). Since the UG sensors are distributed according

to a homogeneous Poisson point process, the shortest open path connecting xi and z j can

yield the maximum existing probability. Specifically, the shortest path is the line segment

on e f between xi and the first vertex of L inside Cz j . This line segment is illustrated by the

thick gray segment in Fig. 4. The length of the line segment is Wd, where

W=


⌈
||xi−z j ||−RUG−AG (mv,hu)

d

⌉
+1, if ||xi−z j||≥RUG−AG (mv, hu)

0, if ||xi−z j||<RUG−AG (mv, hu)
(29)

where dae means rounding a to the nearest integer ≥ a. Hence, the maximum probability

that a certain open path exists is

max
i
{P(Pi

o)} = P(There exists an open path with length W)

= PW+1(There exists at least one sensor in a square d2)

= (1 − q)W+1 , (30)

where

q = P(There is no sensor in a square d2) = e−λud2
. (31)

We then calculate P
(
|Po| = 0

)
in (28).

∣∣∣{Po}
∣∣∣ = 0, if and only if the sensor xi lies in

the interior of some closed circuits of the dual lattice L′, which do not contain a whole

common square that is also inside the circle Cz j , such as C1 and C2 (thick black circuits) in

Fig. 4. Hence, P
(
|Po|= 0

)
can be evaluated by counting the number of such closed circuits

in L′. Let ρ(n) be the number of circuits in L′ which have length nd and contain xi in their

interiors. To contain xi in their interiors, those circuits pass through some point on the line

e f , as shown in Fig. 4. The position of the corresponding pass vertex in L′ has the form of

(kd − 1
2d, 1

2d). k cannot be larger than bn
2c − 1. Otherwise the circuits would have a length

larger than n. Thus, such a circuit contains a self-avoiding walk of length n − 1 starting

from a vertex at (kd − 1
2d, 1

2d) and k > b n
2c − 1. Moreover, to contain xi inside, the length of
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the circuits n ≥ 4. The number of self avoiding walks of L′ having length n and beginning

at a vertex is denoted as σ(n). It has been proven in [62] that σ(n) ≤ 4 · 3n−1 in a 2-D plane.

Since those closed circuits do not contain a whole common square with the circle Cz j ,

such as C1 or C2 in Fig. 4, they must pass through at least one point on the shortest path

connecting xi and z j (illustrated by the thick gray segment in Fig. 4). Hence, those closed

circuits contain a self-avoiding walk of length n − 1 (n ≥ 4) starting from a vertex at

(kd − 1
2d, 1

2d) and k ≤ min{bn
2c − 1,W}. The total number of such closed circuits is denoted

as CN. Based on the above discussions, the upper bound of CN can be calculated as follows.

CN ≤
∞∑

n=4

σ(n − 1) +

∞∑
n=6

σ(n − 1) + · · ·

∞∑
n=2W

σ(n − 1) . (32)

Then the upper bound of P
(
|Po|= 0

)
, the probability that there is no open path connecting

the UG sensor at xi and the AG fixed sink at z j, is:

P
(
|Po|=0

)
≤

∞∑
n=4

σ(n−1)·qn+

∞∑
n=6

σ(n−1)·qn+...+

∞∑
n=2W

σ(n−1)·qn

=


36 · q4 ·

1−(3q)2W−2

(1+3q)(1−3q)2 , if q < 1
3

1 , if q ≥ 1
3

(33)

Substituting (80) and (33) into (28), we derive

P
(
xi←→zj

∣∣∣mv, hu
)
≥


max

{
(1 − q)W+1, 1− 36q4·[1−(3q)2W−2]

(1+3q)(1−3q)2

}
, if q < 1

3

(1 − q)W+1, if q ≥ 1
3

(34)

def
= γ1(xi, z j, λu,mv, hu) (35)

Based on the discussion in Section IV.A, the probability without conditions P
(
xi←→ zj

)
can be calculated by

P
(
xi←→zj

)
=

1
hmax

u − hmin
u

∫∫
P
(
xi←→zj

∣∣∣mv, hu
)
·f (mv) dmvdhu, (36)

where f (mv) is the PDF of the soil water content given in (17); hmax
u and hmin

u are the maxi-

mum and the minimum UG sensor burial depths defined in Section IV.A. Substituting (34)
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and (36) into (26) yields the upper bound of P
(
Ni ←×→ fixed sink

)
:

P
(
Ni ←×→ fixed sink

)
≤ exp

{
−

λa

hmax
u − hmin

u
·

1
SR2
·

∫
R2

∫
R2

∫
mv

∫
hu

f (mv) (37)

·γ1(xi, z j, λu,mv, hu) dxi dzi dmv dhu

}
.

2.3.2.2 Upper Bound of P
(
Ni ←×→ mobile sink within ts

)
Beside fixed sinks, mobile sinks also contribute to the network connectivity in WUSNs. In

this subsection, we calculate the upper bound of the probability that a UG sensor Ni is not

connected to any mobile sink within time ts, i.e. P
(
Ni ←×→ mobile sink within ts

)
given in

(23). Due to the mobility of the mobile sinks, the contributions of the multi-hop connection

is much smaller than those of the direct connection. Therefore, only the direct connection

is considered while deriving the upper bound of the probability, i.e.

P
(
Ni ←×→mobile sink within ts

)
≤ P

(
Ni

direct
←×→ mobile sink within ts

)
. (38)

As discussed in Section IV, m mobile sinks randomly move in regionR2 according to the

RWP model. The stationary node distribution of RWP model is provided in [42], while the

intermeeting time between the mobile nodes in RWP model is proved to be exponentially

distributed in [19]. We utilize their results to derive the upper bound of the probability

P
(
Ni

direct
←×→ mobile sink within ts

)
.

The UG sensor Ni is regarded as directly connected by the mobile sinks if at least one of

the m mobile sinks visits the UG-AG communication range around Ni at least once during

the time slot [0, ts]. Let Hk(t) be the event that the kth mobile sink does not directly cover

the sensor Ni at time stamp t, then

P
(
Ni

direct
←×→ mobile sink within ts

)
= P

(
∩t∈[0,ts]∩k=1,...,mHk(t)

)
, (39)

Note that the event Hk(t) is determined by the position of the sensor Ni and the kth

mobile sink, the soil water content, and the sensor burial depth. Let yk(t) denotes the

position of the kth sink at time stamp t. If sensor node Ni’s position xi, the soil water
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content mv, and the UG sensor burial depth hu are given, the event Hk(t) can be further

expressed as

{Hk(t)
∣∣∣xi,mv, hu} = {||yk(t) − xi|| > RUG−AG(mv, hu)}, (40)

where RUG−AG(mv, hu) is the communication range of the UG-AG channel as a function of

mv and hu. Then the probability that event
{
∩k=1,...,m Hk(t)

}
in (39) happens is

P
(
∩k=1,...,m Hk(t)

)
=

1
hmax

u −hmin
u

1
SR2

∫∫∫
P
(
∩k=1...m Hk(t)

∣∣∣xi,mv, hu

)
·f (mv) dxidmvdhu, (41)

where the conditional probability P
(
∩k=1,...,m Hk(t)

∣∣∣xi,mv, hu

)
can be calculated by

P
(
∩k=1,...,m Hk(t)

∣∣∣xi,mv, hu

)
=

(∫
x∈R2−C2[xi,RUG−AG(mv,hu)]

ξ(x) dx
)m

def
= γm

2 (xi,mv, hu) , (42)

where C2[xi, RUG−AG(mv, hu)] is the disk region centered at xi with radius RUG−AG(mv, hu);

ξ(x) is the PDF that a sink visit the position x at arbitrary time stamp (stationary node

distribution), which is defined by the RWP model; the detailed expression of ξ(x) is given

in [42].

Given the convex region R2, the maximum flight length is denoted by D, which is the

maximum length of a line segment in R2. Then the maximum time duration tD for a sink to

finish two sequential flights is:

tD = 2(τmax + D/vmin) . (43)

where τmax and vmin are the maximum pause time and the minimum velocity of each flight,

respectively, which are defined in Section IV.B.

The current positions of all the sinks are independent with their positions tD ago since

all the sinks have already finished at least two flights. We choose an index set of time

stamps in [0, ts]:

TD =
{
0, tD, 2tD, ..., b

ts

tD
c·tD

}
.
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Then the events {∩k=1,...,m Hk(t j), t j ∈ TD} are all independent. Hence,

P
(
∩t∈[0,ts]∩k=1,...,mHk(t)

)
≤ P

(
∩t j∈TD∩k=1,...,mHk(t j)

)
= Pbts/tDc

(
∩k=1,...,m Hk(t)

)
, (44)

By substituting (39), (41), (42), and (44) into (38), the upper bound of the probability

P
(
Ni ←×→ mobile sink within ts

)
is derived:

P
(
Ni ←×→ mobile sink within ts

)
(45)

≤

(
1

hmax
u −hmin

u
·

1
SR2
·

∫
R2

∫
mv

∫
hu

γm
2 (xi,mv, hu)·f (mv) dxidmvdhu

)b tstD
c

.

2.3.2.3 Lower Bound of the Connectivity Probability in WUSNs

According to the above analysis, the lower bound of the connectivity probability in WUSNs

can be derived by substituting (23) into (21):

Pc≥exp
[
−λu · SR2 · P

(
Ni ←×→ fixed sink

)
(46)

· P
(
Ni ←×→ mobile sink within ts

)]
.

where P
(
Ni ←×→ mobile sink within ts

)
is given by (45); and P

(
Ni ←×→ fixed sink

)
is given

by (37).

2.3.3 Upper Bound of Connectivity Probability in WUSNs

The absence of isolated UG sensor is a necessary but not sufficient condition for the full

connectivity in WUSNs. Hence the probability that there are no isolated UG sensors, de-

noted by P(no isolated UG sensor), is an upper bound for the connectivity probability in

WUSNs. Therefore we have:

Pc ≤ P(no isolated UG sensor)

=

∞∑
n=0

P(All n UG sensors are not isolated) × P(There are n UG sensors in R2) . (47)
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The isolation events of each node can be viewed as independent according to [13, 74].

Hence

P(no isolated UG sensor)

=

∞∑
n=0

Pn(Ni is not isolated) · P(There are n UG sensors in R2) . (48)

Then using the same strategy in (20) and (21), we derive:

Pc ≤ exp
{
− λu SR2 · P(Ni is isolated)

}
. (49)

To derive the upper bound of Pc in (49), we analyze the lower bound of the probabil-

ity P(Ni is isolated). Due to the randomness of the soil water content mv and the sensor

burial depth hu, the P(Ni is isolated) is calculated by utilizing the conditional probability

P(Ni is isolated
∣∣∣mv, hu), i.e.

P(Ni is isolated) =
1

hmax
u − hmin

u

∫∫
P(Ni is isolated

∣∣∣mv, hu)·f (mv) dmvdhu, . (50)

Moreover, a UG sensor is isolated, if and only if no other UG sensors, AG fixed sinks

and AG mobile sinks exist inside its transmission range. Note that the three events are

independent. Then

P(Ni is isolated
∣∣∣mv, hu) = P(no sensor, fixed sink, mobile sink in Ni’s range

∣∣∣mv, hu)

= P(no other UG sensor in Ni’s range
∣∣∣mv)

× P(no fixed sink in Ni’s range
∣∣∣mv, hu)

× P(no mobi. sink moves in Ni’s range within ts

∣∣∣mv, hu) . (51)

Since the UG sensors are distributed according to a homogeneous Poisson point process

with density λu, we have

P(no fixed sink in Ni’s range
∣∣∣mv, hu)

= P(Ni has no sensor neighbor
∣∣∣mv) = e−λuπR2

UG−UG
(mv) . (52)
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Similarly, the AG fixed sinks are distributed according to a Poisson point process with

density λa. Therefore,

P(no fixed sink in Ni’s range
∣∣∣mv, hu)

=

∞∑
n=0

P(There are n fixed sinks in R2) · P(All the n fixed sinks are not in Ni’s range
∣∣∣mv, hu)

=

∞∑
n=0

(λa SR2)n

n!
e−λa SR2 ·

SR2 − π · R2
UG−AG

(mv, hu)
SR2

n

= e−λaπR2
UG−AG

(mv,hu) . (53)

The probability that a UG sensor is connected to a mobile sink is affected by the position

of the UG sensor. Hence,

P(no mobi. sink moves in Ni’s range within ts

∣∣∣mv, hu) (54)

=
1

SR2

∫
SR2

P(no mobi. sink in xi’s range within ts

∣∣∣mv, hu) d xi ,

where

P(no mobi. sink in xi’s range within ts

∣∣∣mv, hu) (55)

= Pm(kth mobi. sink is not in xi’s range within ts

∣∣∣mv, hu)

=
[
1 − P(kth mobi. sink is in xi’s range within ts

∣∣∣mv, hu)
]m
.

Since the mobile sinks have limited moving velocity, i.e. v < vmax, the upper bound of

the probability P(kth mobi. sink is in xi’s range within ts

∣∣∣mv, hu) can be derived by assuming

that the mobile sink moves towards xi’s range with its maximum velocity at the time stamp

0. Therefore,

P(kth mobi. sink is in xi’s range within ts

∣∣∣mv, hu) (56)

≤

∫
x∈C2[xi,RUG−AG(mv,hu)+vmax·ts]

ξ(x) dx

def
= γ3(xi,mv, hu) ,
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where C2[xi, RUG−AG(mv, hu) + vmax · ts] is the circular region centered at xi with radius

RUG−AG(mv, hu) + vmax · ts; ξ(x) is the PDF of the stationary node distribution in the RWP

model, which is given in [42].

By substituting (50)-(56) into (49), the upper bound of the connectivity probability in

WUSNs is obtained.

Pc≤exp
{
−

λu

hmax
u − hmin

u

∫
mv

∫
hu

∫
xi

e−π
[
λu·R2

UG−UG
(mv)+λa·R2

UG−AG
(mv,hu)

]
·
[
1 − γ3(xi,mv, hu)

]m
·f (mv) dmv dhu dxi

}
. (57)

2.3.4 Numerical Evaluation

According to the analytical results shown in (46) and (57), the lower and upper bounds of

the connectivity probability in WUSNs are functions of multiple system and environmental

parameters, including the UG sensor node density λu, the AG fixed sink density λa, the

number of AG mobile sinks m, the mobility model of the mobile sinks, the tolerable la-

tency (ts in the sensing phase and tc in the control phase), the transmission ranges (RUG−UG,

RUG−AG in sensing phase and RUG−UG, RAG−UG in control phase), the operating frequency, the

distribution of the random soil water content, the sensor burial depth, and the sink antenna

height. In this section, we numerically analyze the effects of the above system and environ-

mental parameters on the connectivity in WUSNs. The theoretical probability bounds are

validated by the simulations in the meantime. Note that the analysis is based on the sensing

phase unless otherwise specified.

Except studying the effects of certain parameters, the default values are set as follows:

The monitored region is a 500 m × 500 m square. The UG sensors are deployed according

to a homogeneous Poisson point process of spatial intensity λu with random burial depths.

The density of the UG sensor node λu is in the range from 0.05 m−2 to 1.6 m−2. The mean

number of the UG sensor node is calculated by multiplying the region area by the UG sensor

node density λu. The burial depths of all the UG sensors are uniformly distributed in the
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Figure 5: Connectivity probability in WUSNs as a function of UG sensor node density
with default system and environmental parameters.

interval [0.4, 0.6] m (i.e. the mean burial depth is 0.5 m). The density of the fixed AG sinks

λa is 0.001m−2. There are 10 mobile AG sinks moving inside the region according to RWP

model. The velocity of each flight is uniformly chosen from [1, 2] m/s. The pause duration

is uniformly chosen from [0, 30] sec. The tolerable latencies are ts = tc = 30 sec in both the

sensing phase and the control phase. All the transceivers in sensors and sinks are assumed

to be the same. The transmitting power is 10 mW at 900 MHz. The minimum received

power for correct demodulation is −90 dBm. The antenna gains gt = gr = 5 dB. The

antenna heights of all AG fixed and mobile sinks are uniformly distributed in the interval

[0.8, 1.2] m (i.e. the mean antenna height is 1 m). In the soil medium, the sand particle

percent is 50%. The clay percent is 15%. The bulk density is 1.5 grams/cm3, and the solid

soil particle density is 2.66 grams/cm3. The volumetric water content (VWC) in the soil is

randomly distributed according to a gamma distribution defined in (17), where the mean is

µmv = 8% and the variance σ2
mv

= 10−4.

In Fig. 5 to Fig. 11, the theoretical upper and lower bounds are compared with the

simulation results with various system and environmental parameters. Each simulated con-

nectivity probability is calculated based on 500 simulation iterations. The lower and upper

bounds are calculated by (46) and (57) respectively. As shown in Fig. 5 to Fig. 11, the
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Figure 6: Connectivity probability in WUSNs as a function of UG sensor node density in
soil medium with higher soil moisture (VWC=22%).

theoretical upper and lower bounds are valid in all the simulation scenarios. It should be

noted that the upper bound is tighter than the lower bound, since the sufficient condition

of the connectivity (lower bound) is more difficult to achieve than the necessary condition

(upper bound).

Fig. 5 shows the upper bound, lower bound, and the simulation results of the connectiv-

ity in a WUSN with the default parameters. The connectivity probability increases as the

UG sensor density increases. There exists a turning point in x-axis, where the WUSN has

a high probability to be fully connected if the UG sensor density is larger than the turning

point. This result is consistent with the connectivity analysis of terrestrial wireless net-

works [40]. In the following part of this section, the unique effects of various parameters

of the WUSN system and the underground environments on the WUSN connectivity are

discussed.

2.3.4.1 Soil Moisture

The effects of the higher soil moisture on the WUSNs’ connectivity are illustrated in Fig. 6,

where the connectivity probabilities are given as a function of UG sensor node density in

soil medium with much higher soil moisture. Instead of the 8% mean VWC in default

settings, the mean VWC in Fig. 6 is 22%. The variance σ2
mv

remains the same. It indicates
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Figure 7: Connectivity probability in WUSNs as a function of UG sensor node density
with deeper sensor burial depth (mean depth is 1 m).

that the connectivity in WUSNs highly depends on the soil moisture. To achieve equal

connectivity probability, the UG sensor node density of the WUSN in wet soil (µmv = 22%)

is more than twice of the density required in dry soil (µmv = 8%). This is because the

transmission ranges of both the UG-UG and the UG-AG channel are significantly reduced

when the water content in the soil increases, as discussed in Section III.

2.3.4.2 Sensor Burial Depth

In Fig. 7, the effects of the deeper sensor burial depth on the WUSNs’ connectivity are

captured, where the mean sensor burial depth is doubled, i.e. the burial depth is uniformly

distributed in the interval [0.8, 1.2] m. Similar to the influence of the soil moisture, the con-

nectivity probability in WUSNs dramatically decreases if the sensor burial depth increases,

since the transmission range of the UG-AG channel significantly decreases as sensor burial

depth increases. Note that the impacts of the sensor burial depth are smaller that the impacts

of the soil moisture, since the burial depth does not dramatically affect the UG-UG channel

while the soil moisture influence both the UG-UG channel and the UG-AG channel.
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Figure 8: Connectivity probability in WUSNs as a function of UG sensor node density
with four times more AG mobile sinks (m = 50).
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Figure 9: Connectivity probability in WUSNs as a function of UG sensor node density
with two times AG fixed sink density (λa = 0.002 m−2).
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Figure 10: Connectivity probability in WUSNs as a function of UG sensor node density
with longer tolerable latency (ts = 300 sec).

2.3.4.3 Number of Mobile Sinks and Fixed Sink Density

In Fig. 8 and Fig. 9, the effects of mobile sink number and fixed sink density on the connec-

tivity in WUSNs are investigated. Specifically, in Fig. 8, four times more AG mobile sinks

are added in the monitored field (m = 50), while in Fig. 9, the density of the AG fixed sinks

is doubled (λa = 0.002 m−2) compared with the default parameters. It is shown that the

connectivity probabilities increase if the number of mobile sinks or the fixed sink density

increases, which can be explained by the definition of WUSN connectivity. With larger

fixed sink density, both upper and lower bound of the connectivity probability dramati-

cally increase. However, the lower bound of connectivity probability does not significantly

increase with more mobile sinks because of the following reason. Due to the highly ran-

dom mobility of the mobile sinks, the sufficient conditions (lower bound) are not becoming

significantly easier to achieve with more mobile sinks.

2.3.4.4 Tolerable Latency and Sink Mobility

Fig. 10 shows the effect of the longer tolerable latency on the network connectivity, where

the tolerable latency is prolonged from 30 sec to 300 sec. As expected, the connectivity
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Figure 11: Connectivity probability in WUSNs as a function of UG sensor node density
in control phase with lower sink antenna height (mean height is 0.2 m).

probability increases with longer tolerable latency. Therefore, there exists a tradeoff be-

tween the lower latency and higher connectivity probability. In Fig. 10, with the 300 sec

tolerable latency, the upper bound of the WUSN connectivity probability become constant

100% since the mobile sink can move to any position in the monitored region within the

prolonged tolerable latency in the best case. However, similar to the effects of the mobile

sink number, the tolerable latency does not have obvious effects on the lower bound of the

WUSN connectivity due to the highly random mobility model. It should be noted that the

effects of the mobility model parameters (moving velocity and pause time), are similar to

the tolerable latency, since the tolerable latency and mobility model parameters have equal

effects in determining whether the mobile sink can move into the range of a UG sensor or

not.

2.3.4.5 Connectivity in Control Phase

Due to the asymmetrical channel between the UG sensors and AG sinks, the connectivity

performances of the sensing phase and the control phase are different. In Fig. 12, the

connectivity probability of a WUSN with the default parameters in the control phase is

shown as a function of the UG sensor density. Compared with the sensing phase, the
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Figure 12: Connectivity probability in WUSNs as a function of UG sensor node density
in control phase with default parameters.

connectivity probability in the control phase is obviously lower due to the following reason.

In the control phase, the AG-UG channel is utilized. Since the transmission range of the

AG-UG channel is much smaller than the UG-AG channel as discussed in Section III, the

coverages of either the fixed sinks or the mobile sinks in the control phase are much smaller.

Consequently, the connectivity probability decreases in the control phase.

The effects of all the system and environmental parameters on the WUSN connectivity

in sensing phase are similar in control phase. Besides, the antenna height of the AG fixed

and mobile sinks may influence the connectivity in WUSNs since the AG-UG channel is

affected by the AG sink antenna heights. In Fig. 11, the connectivity in a WUSN with lower

sink antenna heights is investigated, where the antenna heights of the AG fixed and mobile

sinks are uniformly distributed in the interval [0.1, 0.3] m, i.e. the mean antenna height is

0.2 m. Fig. 11 shows that the connectivity probability in WUSNs with lower sink antenna

heights slightly decreases. The influence of the antenna heights is not as significant as the

influence of the sensor burial depth since the path loss in the soil is much larger than the

path loss in the air.
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Figure 13: The snapshots of the dynamic network topology of the WUSN at three sequen-
tial time stamps in the space-time domain. (Only one of the multiple mobile sinks is plotted
here for clear illustration.)

2.4 Spatio-Temporal Correlation-based Data Collection in WUSNs

In this section, we proposed a spatio-temporal correlation-based data collection scheme in

WUSNs to release the unfeasible sensor density requirement of the full connectivity. By

utilizing the spatio-temporal correlations and the AG mobile sinks, the WUSNs are not

necessary to be fully connected so that the UG sensor density can be reduced. Meanwhile,

the WUSN is divided into multiple unconnected clusters due to the reduced density of the

UG sensors. The number of the clusters can range from one (fully connected) to the number

of all UG sensors (totally isolated), depending on the UG sensor density. The UG sensors

in an unconnected cluster in the network can only report their data when any one of the UG

sensors in the same cluster connects to an AG mobile sink.

The scheme of the spatio-temporal correlation-based data collection in WUSNs is illus-

trated in Fig. 13, where the dynamic topologies of the WUSNs are plotted in the space-time

domain. When an AG mobile sink moves into the communication range of one UG sensor,

the communication is initiated by the data request from the AG mobile sink. This request is

then broadcasted by this connected UG sensor to all other UG sensors in the same cluster.

Finally, all the UG sensors in this cluster report their measurement data to the AG mobile

42



sink in a multi-hop fashion. Due to the reduced network connectivity and the usage of AG

mobile sinks, not every UG sensor’s data is available at the monitoring center at every time

stamp. The time stamp when a certain data is available depends on the network connec-

tivity and the sink mobility. Moreover, not every position in the field has a UG sensor due

to the limited sensor density. Since all the monitored data are spatio-temporally correlated,

the unavailable data at any interested locations and time stamps can be estimated by the

least-squares linear regression (kriging) algorithms.

2.4.1 Sensor Density Optimization in WUSNs

After the spatio-temporal data collection scheme is derived, we develop the analytical so-

lution for sensor density optimization in WUSNs under this data collection scheme. The

network model and spatio-temporal correlation model are first described. Then the sensor

density optimization is formalized and decomposed into a network connectivity analysis

and a sink mobility analysis. Finally, the optimal sensor density is explicitly expressed as

a function of multiple system and environmental parameters.

2.4.1.1 Network Model

The network model is similar to the model used in Section 2.3. The only difference is that

the fixed AG sinks are not considered since the the underground sensors directly covered

by a fixed AG sink do not need the spatio-temporal data collection scheme. The m mobile

AG sinks are carried by people, machineries, or robots inside region R2. The movement of

those mobile sinks can be either random (if they are carried by the people) or under control

(if they are carried by machineries or robots).

2.4.1.2 Spatio-Temporal Correlation Model

By using the least-squares linear regression (kriging) algorithms [39], the unavailable data

z(x, t) at an interested location x and time stamp t can be estimated. Assuming that the

mean E[z(x, t)] = µ is constant throughout the region R2 at arbitrary time stamp. If there
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are n sensors, the unbiased estimated data z∗(x, t) can be expressed as a linear combination

of the latest available measurement data of all the n UG sensors {z(xi, ti), i = 1, 2, ... n}:

z∗n(x, t) =

n∑
i=1

αi

[
z(xi, ti) − µ

]
+ µ , (58)

where the weights {α1, α2, ..., αn} are determined to minimize the error variance σ2 =

Var
{
z∗(x, t) − z(x, t)

}
. The optimal weights {αopt

1 , α
opt

2 , ..., α
opt
n } can be obtained by setting

to zero each of the n partial first derivatives {∂σ
2

∂αi
, i = 1, 2, ..., n}. Then the minimum error

variance can be derived as

σ2
n = C(0)

[
1 −

n∑
i=1

αopt

i · ρ(xi, x,∆ti)
]
, (59)

where C(0) is the variance of the data; ρ(xi, x,∆ti) is the correlation function between the

data at the space-time coordinate (xi, ti) and the data at the coordinate (x, t); ∆ti = t − ti.

The mean, variance, and correlation function of the monitored data can be derived by

the spatio-temporal models, which varies from case to case in different applications. In

this section, we use the soil moisture as an example of the monitored data. Note that the

monitored data can be easily changed to other physical quantity (such as temperature and

vibration) by changing its statistical parameters. For soil moisture, the mean, variance, and

correlation function are provided in [43, 30]:

µ =
b2πζ

arR
2ηβ

, C(0) =
4πζ
ηβ2rR

2

b2

a(η + a)
,

ρ(xi, x j,∆ti j) =
ηe−a∆ti j − ae−η∆ti j

η − a

(
1 +

rRdi j

4

)
e−rR

di j
2 , (60)

where ζ is the intensity of the Poisson rain/irrigation process; a is the normalized soil

water loss; b is the rain/irrigation coefficient; 1/rR , 1/η, and 1/β are the mean cell radius,

duration, and intensity of each rain/irrigation, respectively; di j is the distance between the

two locations xi and x j; ∆ti j = ti − t j. By substituting (60) into (58) and (59), the monitored

data at any coordinate in the space-time domain can be estimated and the corresponding

estimation error can be calculated.
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2.4.1.3 Optimization Problem Formalization

The optimal sensor density is actually the minimum sensor density that can guarantee a

certain level of overall monitoring accuracy in the WUSNs. The monitoring accuracy of a

certain position at a certain time stamp is measured by the estimation error given in (59).

Hence, the overall monitoring accuracy in a WUSN is measured by the average error of

every position and every time stamp through out the WUSN, which is denoted as E
[
σ2].

Then the sensor density optimization problem can be formalized as

Given : Underground channel conditions,

Spatio-temporal correlation model,

Number and mobility model of mobile sinks.

Find : min λ

s.t. : E
[
σ2] < σ2

max, (61)

where σ2
max is the maximum tolerable mean error. To solve this optimization problem, we

first calculate the objective function E
[
σ2]. Due to the highly random network topology, it

is impossible to find out the exact expression of E
[
σ2]. Hence, we use the upper bound of

E
[
σ2] as the new objective function, which can guarantee the required monitoring accuracy.

Before the calculation, notations are described first: tnow is the current time stamp;

{a←→ b} denotes that the sensor located at position a is connected to the sensor at position

b by single or multiple hops; {a←→ sink at ∆t} denotes the event that, at time stamp tnow−∆t,

the sensor at a is connected to a mobile sink for the last time by single or multiple hops; and

{a
direct
←→ sink at ∆t} denotes the event that, at time stamp tnow − ∆t, the sensor at a is directly

covered by a mobile sink for the last time. Then the average error is given by

E
[
σ2]= E

[
E
[
σ2

∣∣∣n sensors
]]

=

∞∑
n=1

E
[
σ2

n
] (λ SR2)n

n!
e−λ SR2 , (62)

where the probability that there are n sensors is calculated according to the Poisson point

process of the sensor distribution; SR2 is the area of the region R2; E
[
σ2

n
]

is calculated by
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(59). To avoid calculating the partial derivatives to get the optimal weights {αopt

1 , α
opt

2 , ..., α
opt
n }

in (59), a simple weight setting {α∗1, α
∗
2, ..., α

∗
n} is used to calculate the upper bound of the

error variance, where α∗i = 1 if xi is the closest to x among the n sensors, otherwise α∗i = 0.

This weight setting is equal to the commonly used strategy that the data at the closest sensor

is utilized. Then

E
[
σ2

n
]
≤ 2C(0)

{
1 − E

[
ρ(xi, x,∆ti)

∣∣∣∣xi is closest to x, i ∈ {1, ..., n}
]}
. (63)

We first define three events as follows:

A : One of the n sensors is located at x′;

B : This sensor←→ sink at ∆t ≤ ∆t′;

C : This sensor is closest to x than any other n−1 sensors.

Then,

E
[
ρ(xi, x,∆ti)

∣∣∣∣xi is closest to x, i ∈ {1, ..., n}
]

(64)

≥ E
[
ρ(x′, x,∆t′)

∣∣∣A, B,C]
=

∫
x∈R2

1
SR2

∫ ∆tmax

0

1
∆tmax

∫
x′∈R2

ρ(x′, x,∆t′) fx′(A,B,C) dx dx′ d∆t′ ,

where ∆tmax is the maximum usable time deviation, i.e. for ∆t > ∆tmax, the temporal

correlation is very small.

The probability density function (pdf) of the conditions {A, B,C} can be calculated as

fx′(A,B,C) = fx′(A) · P(C|A) · P(B | A,C) , (65)

where

fx′(A) =

n∑
i=1

f (sensor Ni is located at x′) = n
1

SR2
, (66)

since the UG sensors are distributed according to the homogeneous Poisson point process.

P(C|A) = P(C1,C2, ...,Cn−1) , (67)
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where Ci denotes the event that the ith sensor of the n−1 sensors is outside the region C2;

C2 is the circular region centered at x with radius dxx′ = ||x′ − x||. Since all the UG sensors

are distributed according to a Poisson point process, {C1, ...,Cn−1} are independent events.

Then

P(C1,C2, ...,Cn−1) = P(C1) · P(C2) · · · P(Cn−1)

= Pn−1(Ci) =
(
1 −

SC2∩R2

SR2

)n−1
, (68)

where SC2∩R2 is the area of the joint region of C2 and R2.

So far, the first two terms fx′(A) and P(C|A) in (65) is calculated. In the last term in

(65), the event {B | A,C} is equivalent to the event B′, where

B′ : x′ ←→ sink at ∆t ≤ ∆t′ without using relay sensors inside region C2;

If the positions of the other n− 1 sensors is denoted as {x1
S , x

2
S , ..., x

n−1
S }, event B′ can be

further developed as the union of a set of sub-events B′0 ∪ {B
′
i , i = 1, 2, ..., n−1}:

B′0 : x′
direct
←→ sink at ∆t ≤ ∆t′;

B′i : x′←→xi
S not via relay sensors inside region C2, and xi

S
direct
←→ sink at ∆t ≤ ∆t′.

Then

P(B | A,C) = P(B′) = P(B′0) +
[
1 − P(B′0)

]
· P(∪n−1

i=1 B′i) , (69)

Due to the homogeneous sensor distribution, P(B′1) = P(B′2) = ... = P(B′n−1) = P(B′i).

Hence,

P(B | A,C) ' P(B′0) +
[
1 − P(B′0)

]
· (n − 1) · P(B′i) , (70)

By substituting (63)-(70) into (62) and using the identical equation
∑∞

n=0
λn

n! e−λ ≡ 1,∀λ,

we derive:

E
[
σ2] ≤ 2C(0)

{
1 − E[closest ρ]

}
, (71)
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where

E[closest ρ]≥
λ

∆tmaxSR2

∫∫∫
x, x′∈R2

∆t′∈[0,∆tmax]

ρ(x′, x,∆t′) · e−λSC2∩R2 (72)

·
{
P(B′0) + λ·(SR2−SC2∩R2)·

[
1 − P(B′0)

]
·P(B′i)

}
· dxdx′d∆t′ ,

where

P(B′0) = P(x′
direct
←→ sink at ∆t ≤ ∆t′) , (73)

P(B′i) =
1

SR2−SC2∩R2

∫
xS∈R2−C2

P(xS
direct
←→sink at ∆t ≤ ∆t′)

· P(x′↔xS not via C2) dxS , (74)

where P(x′↔xS not via C2) is the probability that the sensor at x′ is connected to the other

sensor at xS without using relay sensors inside region C2.

According to (71) and (72), the upper bound of the average monitoring error E
[
σ2] is

determined by the correlation function ρ(xi, x j,∆ti j) in (60) and the probabilities P(B′0) and

P(B′i) in (73) and (74). To calculate P(B′0) and P(B′i), two probabilities, P(x′↔xS not via C2)

and P(y
direct
←→sink at ∆t ≤ ∆t′) need to be analyzed, where y = x′ or xS . Hence, the sensor

density optimization problem is decomposed into a network connectivity probability anal-

ysis on P(x′↔xS not via C2) and a sink mobility analysis on P(y
direct
←→sink at ∆t≤∆t′).

2.4.1.4 Network Connectivity Analysis

In this subsection, the lower bound of the probability P(x′↔xS not via C2) is calculated.

The notations are first described: daernd means rounding a to the nearest integer; and dae

means rounding a to the nearest integer ≥ a.

Proposition 1. The lower bound of the probability that a UG sensor located at x′ is con-

nected to another UG sensor located at xS by single or multi-hops without using the relay

nodes inside the circular region C2 is given by

P(x′↔xS not via C2) ≥
(
1 − e−

2
5λR2

UG−UG

)ε(x′, xS , x)
, (75)
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Figure 14: Mapping the WUSN on a lattice L (plain) and its dual L′ (dashed).

where RUG−UG is the communication range of the UG-UG channel that is derived in Sec-

tion 2.2; the detailed expression of the function ε(x′, xS , x) is given in the proof.

Proof. We use the similar strategy in Section 2.3.2.1 to proof this proposition. First map

the WUSN on a square lattice L (plain) and its dual L′ (dashed), as shown in Fig. 14. The

vertices of L′ are placed in the center of every square of L. The edges of L′ cross every

edge of L. Hence, there exists a one-to-one relation between the edges of L and L′. L and

L′ have the same edge length d = 1
√

5
RUG−UG. The edge length is designed so that two UG

sensors deployed in two adjacent squares of the lattice L are guaranteed to be connected to

each other. One vertex of the dual lattice is located at x′. The straight line e f connecting x′

and x forms a sequence of vertical edges of the dual lattice L′, as shown in Fig. 14.

Given an open path of the L′, all the UG sensors in the squares in L along this open path

belong to the same cluster and are connected to each other. The states of the edges (open or

closed) are independent from each other. The probability that an edge is closed is denoted

as q. According to the Poisson point process of the UG sensors:

q = P2(No sensor in a square) = e−
2
5λR2

UG−UG . (76)
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If there is an open path of L′ connecting the two squares in L where x and xS are located,

these two sensors are guaranteed to be connected. The set of all open paths connecting x

and xS without using the relay nodes inside region C2 is denoted as {Po
i , i = 1, 2, ...}, then

P(x′↔xS not via C2) = P
(
∪∞i Po

i

)
≥ P(Po

i ) , (77)

where the probability of a certain open path P(Po
i ) is used as the lower bound of P(x′↔

xS not via C2). To maximize the lower bound, the shortest open path is selected. Hence, the

probability of the shortest open path in L′ connecting x′ and xS is calculated as the lower

bound of P(x′↔xS not via C2):

P(x′↔xS not via C2) ≥ (1 − q)ε(x
′, xS , x) , (78)

where q is the close edge probability given in (76); ε(x′, xS , x) is the length of the shortest

open path connecting x′ and xS .

The shortest open path may not be a simple straight line since relay nodes can not be

inside region C2. As shown in Fig. 14, a rectangular circuit C1 is set up so that if the open

path does not via the squares inside C1, the relay nodes along the open path are guaranteed

to be outside of circular region C2. The width and length of the rectangular circuit C1 are

wcd and lcd, respectively, where

wc =
⌈
2
√

5 dxx′/RUG−UG + 0.5
⌉
,

lc = 2
⌈√

5 dxx′/RUG−UG − 0.5
⌉

+ 1 , (79)

where dxx′ = ||x′ − x|| is the distance between x′ and x, which is the radius of region C2.

Construct a new Cartesian coordinate by setting x′ as the origin, e f as the y−axis (x is on

the positive of y-axis). The new coordinate of xS is (xnew
S , ynew

S ). As shown in Fig. 14, the

possible positions of xS are divided into three regions. In different regions, the shortest

path connecting x′ and xS is different, e.g. path P1, P2, and P3 in Fig. 14. The length of the
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shortest path is ε(x′, xS , x), and

ε(x′, xS , x) =



⌈ √
5 |xnew

S |

RUG−UG

⌉
rnd

+

⌈ √
5 |ynew

S |

RUG−UG

⌉
rnd

, if xS ∈ Region I

2 +

⌈ √
5 |xnew

S |

RUG−UG

⌉
rnd

+

⌈ √
5 |ynew

S |

RUG−UG

⌉
rnd

, if xS ∈ Region II

lc + 3 −
⌈ √

5 |xnew
S |

RUG−UG

⌉
rnd

+

⌈ √
5 |ynew

S |

RUG−UG

⌉
rnd

, if xS ∈ Region III

, (80)

where the regions are defined as follows:

Region I : ynew
S ≤ −1

2d;

Region II : ynew
S > −1

2d and |xnew
S | ≥

1
2 lcd;

Region III : ynew
S > (wc −

1
2 )d and |xnew

S | <
1
2 lcd.

Since xS cannot appear inside the circuit C1, there is only one undiscussed region for

xS in the plain: the square in L that contains x′, where ε(x′, xS , x) ≡ 0. Finally, substituting

(80) into (78) completes the proof. �

2.4.1.5 Sink Mobility Analysis

In this subsection, we analyze the random and controlled mobility of the AG mobile sinks

to derive the probability P(y
direct
←→ sink at ∆t ≤ ∆t′) in (73) and (74). Before the analysis, it

should be noted that due to the query-based data collection scheme, the effective commu-

nication range of the mobile sink is RAG−UG, which is a function of the sensor burial depth

as discussed in Section 2.2.

Random Sink Mobility:

In most WUSN applications, the mobile sinks are carried by the people and vehicles

working inside the monitored field. As shown in Fig. 15(a), the mobility of those people

and vehicles can be modeled by the widely used Random Waypoint (RWP) Model [42],

which is described in Section 2.3.1.2. Using the same strategy in Section 2.3.2.2, we have

the following proposition.
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Figure 15: (a) Random sink mobility and (b) controlled sink mobility.

Proposition 2. Given m mobile sinks in region R2, at time stamp tnow − ∆t, the sensor at

coordinate y is directly covered by a mobile sink for the last time. Then, the probability

that ∆t ≤ ∆t′ is lower bounded by

P(y
direct
←→sink at ∆t ≤ ∆t′) ≥ 1 − γ b

∆t′
tD
c
, (81)

where

γ =
1

zmax−zmin

∫ zmax

zmin

∫
x∈R2−C2

S(y)
ξ(x) dx

m

dz′ ,

tD = 2(τmax + D/vmin) , (82)

where z′ is the burial depth of the sensor; ξ(x) is the pdf that a sink visit position x at

arbitrary time stamp (stationary node distribution) given in [42]; C2
S(y) is the circular

region centered at y with radius RAG−UG; D is the maximum flight length in the convex

region R2; vmin and τmax are the minimum moving speed and the maximum pause time of

the sink, respectively

Controlled Sink Mobility:

Since the randomly moving sinks are inefficient to collect data, dedicated robots may be

employed in certain applications to improve the data collection efficiency. In this section,

we adopt the most straightforward strategy to control the multiple robots: The whole region

R2 is divided into m subregions with equal area. Each robot moves inside one of the m
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subregions with fixed loop route covering the whole subregion, as shown in Fig. 15(b).

Note that the control strategy of the multiple robots may be further optimized. However, it

is out the scope of this thesis.

In the proposed sink control strategy, each mobile sink collects data from a different

subregion with equal area. Hence, the m sinks are uniformly allocated in the whole moni-

tored region. In each subregion, the loop route with minimum length lroute is designed for

each sink to cover every position.

lroute ≤
S R2/m

RAG−UG(zmax)
. (83)

where RAG−UG(zmax) is the communication range of AG-UG channel when the sensor is

buried at the maximum depth.

Assuming that all the mobile sink moves at a constant velocity vrobot without pause.

Then the time duration for a sink to complete one loop route in the subregion is Troute = lroute
vrobot

.

That means the UG sensor at any position inside the monitored region can be covered by a

sink at least once in every period Troute. Therefore, for controlled AG sinks,

P(y
direct
←→sink at ∆t ≤ ∆t′) (84)
≥ ∆t′

Troute
≥

∆t′m vrobot RAG−UG(zmax)
SR2

, if 0 ≤ ∆t′ < SR2

m vrobot RAG−UG(zmax)

= 1 , otherwise
.

2.4.1.6 Sensor Density Optimization Solution

Substituting (75), (81), and (84) into (71)-(74) yields the upper bound of the average moni-

toring error in WUSNs with random or controlled sink mobility, which is denoted as E
[
σ2],

E
[
σ2] =2C(0) −

2λ·C(0)
∆tmaxSR2

∫∫∫
x, x′∈R2

∆t′∈[0,∆tmax]

ρ(x′, x,∆t′) · e−λSC2∩R2

·

{
F2(x′,∆t′) + λ·

[
1 − F2(x′,∆t′)

]
(85)

·

∫
xS∈R2−C2

F2(xS ,∆t′) · F1(x′, xS , x) dxS

}
· dxdx′d∆t′ ,

53



where the function F1(x′, xS , x) and F2(y,∆t′), y = x′ or xS , are expressed as

F1(x′, xS , x) =
(
1 − e−

2
5λR2

UG−UG

)ε(x′, xS , x)
; (86)

F2(y,∆t′) =


1 − γ b

∆t′
tD
c
, if random sink mobility

∆t′m vrobot RAG−UG(zmax)
SR2

, if controlled sink mobility
.

By substituting (85) into (61), the optimal sensor density in WUSNs with random or

controlled sink mobility is derived:

λopt = min
{
λ : E

[
σ2] > σ2

max

}
. (87)

2.4.2 Numerical Analysis

In this section, we numerically analyze the effects of multiple system configurations and

environmental conditions on the optimal sensor density in WUSNs.

Except studying the effect of certain parameters, the default values are set as follows:

The monitored region is a 100 m × 100 m square. The UG sensors are deployed according

to a homogeneous Poisson point process of spatial intensity λ with random burial depths.

The burial depths are uniformly distributed in the interval [0.3, 0.7] m (i.e. the mean burial

depth is 0.5 m). There are M mobile sinks in the field. For the randomly moving sinks,

the velocity of each flight is uniformly chosen from [0.5, 3] m/s. The pause duration is

uniformly chosen from [0, 5] min. For the controlled robots, the constant moving velocity

is set to be 0.5 m/s. All the transceivers in sensors and sinks are assumed to be the same.

The transmitting power is 10 mW at 900 MHz. The minimum received power for correct

demodulation is −90 dBm. The antenna gains gt = gr = 5 dB. The antenna height of

the AG mobile sinks is 1 m. The mean volumetric water content (VWC) in the soil is

5%. The monitoring error is represented by the normalized error, which is calculated by

E[σ2
norm] = E(σ2)/C(0). The normalized maximum tolerable error (σ2

max)norm is set as

10%. Each simulation result is averaged over 500 iterations. We use the soil moisture as

an example of the monitored physical quantity, since the spatio-temporal model of the soil
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Figure 16: Normalized monitoring error in WUSNs as a function of the UG sensor density.

moisture has been well analyzed thoroughly. However, the soil moisture is much more

spatio-temporally correlated than other physical quantities (e.g. vibrations). To reveal the

general characteristics of the data collection scheme in most WUSN applications, we select

the scenarios where the soil moisture is not so highly correlated. The related parameters in

the spatio-temporally correlation model are set as follows: the normalized soil water loss

a = 20 /day; the irrigation cell radius 1/rR = 5 m; and the irrigation duration 1/η = 60 sec.

The theoretical bound of the monitoring error derived in Section 2.4.1 is first validated

by simulations. In Fig. 16, the normalized monitoring error is given as a function of UG

sensor density with different number and different mobility model of AG mobile sinks. It

shows that the error bound is tight enough to serve as the optimization objective function

under various system configurations. The optimal sensor density can be read from Fig. 16

by checking the x-coordinate of the intersection point of the error upper bound and the

error threshold.

Next, we analyze the effects of multiple system and environmental parameters on the
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Figure 17: Optimal sensor density in WUSNs as a function of the number of mobile sinks.

optimal sensor density in WUSNs, including the number and mobility model of the mobile

sinks, the mean burial depth of the UG sensors, the soil water content, and the spatio-

temporal correlation model.

2.4.2.1 Number and Mobility Model of Mobile Sinks

The effect of the number and mobility of mobile sinks on the optimal sensor density is

captured in Fig. 17. The optimal sensor density is given as a function of the number of

mobile sinks with different mobility models. Both random and controlled mobility models

with different velocities and pause times are considered. It indicates that the optimal sensor

density can be significantly reduced by three ways: 1) introducing more mobile sinks,

2) increasing the sink velocity and reducing the pause time, and 3) employing controlled

mobile sink instead of the randomly moving sinks. As shown in Fig. 17, thousands of

UG sensors can be saved in a 100 m2 region by the three ways. The reason behind this

phenomenon is explained as follows. On the one hand, when the number of mobile sinks is
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Figure 18: Optimal sensor density in WUSNs as a function of the mean burial depth.

small or their moving velocity is low, a large portion of the UG sensors in the WUSN need

to be connected to guarantee the temporal sampling rate to achieve the required monitoring

accuracy, which results in a high optimal sensor density. On the other hand, when the

number of mobile sinks is large or their moving velocity is high, the mobile sinks can

collect the data from each unconnected UG sensor cluster on time. Hence, the request on

the UG sensor connectivity is lowered and the optimal sensor density is also reduced. Since

the controlled sink mobility can enhance the data collection efficiency by guaranteeing the

temporal sampling rate of every UG sensor cluster, the optimal sensor density can be further

reduced by using the controlled mobile sinks. Note that when the moving velocity of the

controlled mobile sink is high, the effect of the number of mobile sinks is not obvious since

the data collection efficiency is already high enough.
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Figure 19: Optimal sensor density in WUSNs as a function of the volumetric soil water
content.

2.4.2.2 Mean Burial Depth and Soil Water Content

The effects of the UG sensor burial depth and soil water content are analyzed in Fig. 18

and Fig. 19, respectively. In Fig. 18, the optimal sensor density is give as a function of the

mean burial depth. When changing the mean burial depth, we assume that the span of the

random depths remains the same, which is 0.4 m. In Fig. 19, the optimal sensor density

is given as a function of mean volumetric soil water content. As discussed in Section 2.2,

the communication ranges of the three types of channels in WUSNs significantly decrease

as the UG sensor burial depth and the soil water content increase. Therefore, the optimal

sensor densities of WUSNs dramatically increase as the mean burial depth or the soil water

content increases, especially when the mobile sink moves randomly or the number of sinks

is small.
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Figure 20: Optimal sensor density in WUSNs as a function of the irrigation duration.
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Figure 21: Optimal sensor density in WUSNs as a function of the irrigation cell radius.
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2.4.2.3 Spatio-Temporal Correlation Model

In Fig. 20 and Fig. 21, we analyze the effects of the different parameters of the spatio-

temporal model on the WUSN optimal sensor density. Note that we ignore the change of

the soil water content due to the change of the spatio-temporal model parameters, since the

spatio-temporal model does not affect the soil water content in most WUSN applications.

In Fig. 20, we change the temporal correlation parameter, the mean irrigation duration

1/η. As the irrigation duration increases, the temporal correlation between the monitored

data also increases. The increased temporal correlation can help the WUSN estimate the

unavailable data more accurately using the available data. As a result, the optimal sensor

density decreases as the mean irrigation duration increases. In Fig. 21, we change the

spatial correlation parameter, the mean irrigation cell radius 1/rR . As the irrigation cell

radius increases, the spatial correlation between the monitored data also increases. Similar

to the analysis on the temporal correlation, the optimal sensor density decreases as the

mean irrigation cell radius increases.
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CHAPTER III

MI-BASED WUSNS IN SOIL MEDIUM

3.1 Motivation and Related Work

Traditional wireless communication techniques using EM waves encounter two major prob-

lems in underground environments: the high path loss and the dynamic channel condition

[4, 53]. In particular, first, EM waves experience high levels of attenuation due to absorp-

tion by soil, rock, and water in the underground. Second, the path loss is highly dependent

on numerous soil properties such as water content, soil makeup (sand, silt, or clay) and

density, and can change dramatically with time (e.g., increased soil water content after a

rainfall) and location (soil properties change dramatically over short distances). The unre-

liable channel brings design challenges for the sensor devices and networks to achieve both

satisfying connectivity and energy efficiency.

If the sensors of WUSNs are buried in the shallow depth, sensor can communicate with

the aboveground data sinks directly using EM waves. This is because the underground path

is short in this case. Hence the impacts of the additional path loss and the dynamic channel

caused by the soil medium are much smaller. However, many WUSN applications, such

as underground structure monitoring, require the sensors buried deep underground, where

only underground-to-underground channel is available.

Magnetic induction (MI) is a promising alternative physical layer technique for WUSNs

in deep burial depth. It can address the problems on the dynamic channel condition. Specif-

ically, the underground medium such as soil and water cause little variation in the attenu-

ation rate of magnetic fields from that of air, since the magnetic permeabilities of each of

these materials are similar [2, 44, 80]. This fact guarantees that the MI channel conditions

61



remain constant for a certain path in different times. In addition, since the radiation resis-

tance of coil is much smaller than electric dipole, very small portion of energy is radiated

to the far field by the coil. Hence, the multi-path fading is not an issue for MI communica-

tion. However, MI is generally unfavorable for terrestrial wireless communication. As the

transmission distance r increases, magnetic field strength falls off much faster (1/r3) than

the EM waves (1/r) in terrestrial environments. In underground environments, although it

is known that the soil absorption causes high signal attenuation in the EM wave systems but

does not affect the MI systems, it is not clear whether the total path loss of the MI system is

lower than the EM wave system or not. Additionally, since the MI communication involves

reactance coils as antenna, the system bandwidth needs to be analyzed.

The magnetic induction has been introduced as a new physical layer technique for wire-

less communication in recent years. In [80], MI communication is employed in the mine

warfare (MIW) operations to provide a more reliable wireless command, control and nav-

igation channel. The EM channel is qualitatively analyzed and the low data rates of 100

to 300 bit/s are achieved in various MI communication experiments carried out in coastal

areas. The authors notice that the high path loss limits the transmission range. They sug-

gest to place more MI transceivers to mitigate the high path loss, which is not feasible for

underground wireless networks due to cost/energy constraint and deployment difficulty. In

[67, 9, 18], the MI is utilized as an alternative personal communication technique to the

Bluetooth. In the near-field communication applications (such as the link between a cell

phone or an MP3 player and a headset), the rapid fall off of the MI signal strength is ex-

ploited to provide each user with his own private bubble, without having to worry about

mutual interference among multiple users, and permitting bandwidth reuse. However, in

the underground communication applications, the high path loss is obviously not an advan-

tage.

In [44], the MI is first introduced to the field of wireless underground communication.

It shows that the MI transmission is not affected by soil type, composition, compaction, or
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moisture content, and requires less power and lower operating frequencies than RF trans-

mission. However, the theoretical/experimental results show that the communication range

is no more than 30 inches (0.76 m). Moreover, the bandwidth of the MI system is not

considered in the paper. Besides underground, the MI communication can also be used in

other RF-impenetrable environments, such as human body. In [83], a body network is built

to collect data from, and transport information to, implanted miniature devices at multiple

sites within the human body. The MI technique is employed to link information between a

pair of implants, and to provide electric power to these implants. In [102], a new magnetic

material is analyzed to guide magnetic information to the receiver coil, permitting a clear

image deep within the body.

In this chapter, we first provide a detailed analysis on the path loss and the bandwidth

of the MI communication channel in underground environments. Then based on the anal-

ysis, we develop the MI waveguide technique for WUSNs, which can significantly reduce

the path loss, enlarge the transmission range and achieve practical bandwidth for MI com-

munication in underground environments. In particular, the MI transmitter and receiver

are modeled as the primary coil and secondary coil of a transformer. Multiple factors are

considered in the analysis, including the soil properties, coil size, the number of turns in

the coil loop, coil resistance, operating frequency. The analysis shows that the ordinary

MI systems have larger transmission range but lower bandwidth than the EM wave sys-

tems. However, neither the ordinary MI system nor the EM wave system is able to provide

enough communication range for practical WUSNs applications. Motivated by this fact,

we develop the MI waveguide technique to enlarge the communication range. In this case,

some small coils are deployed between the transmitter and the receiver as relay points,

which form a discontinuous waveguide.

Up to now, the MI waveguide has been designed and used as artificial delay lines and

filters, dielectric mirrors, distributed Bragg reflectors, slow-wave structures in microwave

tubes, coupled cavities in accelerators, modulators, among others [93, 45, 94]. However,
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Figure 22: The structure and the communication range of a MI waveguide.

there is no attempt to utilize the MI waveguide in the wireless communication field. The

theoretical analysis of the MI waveguide in [45] is validated by experiments in [103]. Note

that we adopt similar theoretical analysis method as [45] in this paper.

The MI waveguide has three advantages in underground wireless communications: first,

by appropriately designing the waveguide parameters, the total path loss can be greatly

reduced. The maximum communication range between two transceivers can achieve sev-

eral hundreds meters. Second, MI waveguide is not a continuous structure like traditional

waveguide. It is only required to deploy one relay coil every 5 meters (or even longer)

between the transceivers. Hence it is very flexible and easy to deploy and maintain. Third,

the relay coils do not consume any energy and the cost is very small. The bandwidth of

the MI waveguide systems is several KHz. Although it is much smaller than the EM wave

system, it is enough for the low data rate monitoring applications of WUSNs.

Despite of the potential advantages, the deployment of the MI waveguides to connect

the underground sensors is challenging due to the following reasons. First, on the one hand,

a non-trivial number of relay coils are required to guarantee the network connectivity and

robustness. On the other hand, the intensive deployment of the coils in underground soil

medium cost a great amount of labor. Therefore the optimal number of relay coils needs
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Figure 23: MI communication channel model

to be found out. Second, the communication range of the MI relay coil is not the same

as each other, as shown in Fig. 22. Consequently, the shape of the communication range

of the MI waveguide is much more complex than the disk communication range of the

traditional wireless devices. Current sensor deployment strategies [101, 113] are based on

the disk communication range, hence cannot be utilized to deploy the MI waveguides in the

WUSNs. Therefore, at the end of this chapter, we analyze relay coil deployment strategies

for the WUSNs using MI waveguides. The optimal deployment algorithms to use the MI

relay coils to connect the underground sensors is developed.

3.2 Channel Modeling

In MI communications, the transmission and reception are accomplished with the use of

a coil of wire, as shown in the first row in Fig. 23, where at and ar are the radii of the

transmission coil and receiving coil, respectively; r is the distance between the transmitter

and the receiver.
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Suppose the signal in the transmitter coil is a sinusoidal current, i.e., I = I0 · e− jωt,

where ω is the angle frequency of the transmitting signal. ω = 2π f and f is the system

operating frequency. This current can induce another sinusoidal current in the receiver

then accomplish the communication. The interaction between the two coupled coils is

represented by the mutual induction. Therefore, the MI transmitter and receiver can be

modeled as the primary coil and the secondary coil of a transformer, respectively, as shown

in the second row in Fig. 23, where M is the mutual induction of the transmitter coil and

receiver coil; Us is the voltage of the transmitter’s battery; Lt and Lr are the self inductions;

Rt and Rr are the resistances of the coil; ZL is the load impedance of the receiver. We use its

equivalent circuit to analyze the transformer, as shown in the third row in Fig. 23, where,

Zt =Rt + jωLt;

Zrt =
ω2M2

Rr + jωLr + ZL
;

Zr =Rr + jωLr;

Ztr =
ω2M2

Rt + jωLt
;

UM =− jωM
Us

Rt + jωLt
. (88)

where Zt and Zr are the self impedances of the transmitter coil and the receiver coil, respec-

tively; Zrt is the influence of the receiver on the transmitter while Ztr is the influence of the

transmitter on the receiver; UM is the induced voltage on the receiver coil.

In the equivalent circuit, the transmitting power is equal to the power consumed in the

primary loop. The receiving power is equal to the power consumed in the load impedance

ZL. Both received power and transmitting power are functions of the transmission range r:

Pr(r) =Re
{

ZL · U2
M

(Z′r + Zr + ZL)2

}
Pt(r) =Re

{
U2

s

Zt + Z′t

}
(89)

According to the transmission line theory, the reflections take place unless the line is

terminated by its matched impedance. In the equivalent circuit described in Fig. 23, to
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maximize the received power, the load impedance is designed to be equal to the complex

conjugate of the output impedance of the secondary loop, i.e.

ZL = Zr + Z′r (90)

The following task is to find the analytical expression for the resistance, self and mutual

induction of the transmitter and receiver coils. The resistance is determined by the material,

the size and the number of turns of the coil:

Rt = Nt · 2πat · R0;

Rr = Nr · 2πar · R0 (91)

where, Nt and Nr are the number of turns of the transmitter coil and receiving coil, respec-

tively; R0 is the resistance of a unit length of the loop. According to American Wire Gauge

(AWG) standard, R0 can be a value from 2×10−4 Ω/m to 3 Ω/m with different wire diameter

[6].

Since the coil is modeled as a magnetic dipole, the self induction and mutual induction

can be deduced by the magnetic potential A of the magnetic dipole, which is provided in

polar coordinate system by [36],

A(r, θ, φ) =
µ

4πr
πa2

t I0e− jωt sin θ
(
1
r
− j

2π
λ

)
· âφ (92)

where µ is the permeability of the transmission medium; λ is the wavelength of the signal.

By using Stokes’ theorem [36], the mutual induction of the two coils can be calculated:

M =
Nr

∮
lr

A · d~lr

dI
' µπNtNr

a2
t a2

r

2r3 (93)

The self induction can be derived in the same way:

Lt '
1
2
µπN2

t at;

Lr '
1
2
µπN2

r ar (94)
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Consequently, by substituting (88), (90), (91), (93) and (94) into (89), the received power

and the transmitting power can be calculated.

It should be noted that, the underground transmission medium contains different type

of soil, water, rocks and etc. It is necessary to analyze the differences between the perme-

abilities of these materials. According to [97], the substances of the underground medium

can be categorized into four main groups including organic materials, inorganic materials,

air, and water, where organic materials come from plants and animals; inorganic materials

include sand, silt and clay. The relative permeabilities of the plants, animals, air and water

are very close to 1. If the sand, silt, and clay do not consist of magnetite, their permeabili-

ties are also close to 1. An example is that the average value for sedimentary rocks is given

in [97] as 1.0009. Since most soil in the nature does not contain magnetite, we can assume

that the permeability of the underground transmission medium is a constant based on the

above discussion.

3.2.1 Path Loss

For wireless communication using EM waves, the Friis transmission equation [49] gives

the power received by one antenna, given another antenna some distance away transmitting

a known amount of power. Since the radiation power is the major consumption of the

EM wave transmitter, the transmitting power of the EM wave system is a constant and not

influenced by the position of the receiver, i.e. for EM waves, Pr is a function of distance r

while Pt is a constant. Hence the path loss is measured by the ratio of the received power

to the radiation power. The path loss LEM of the EM wave propagation in soil medium is

given by [4, 53]:

LEM(r) = −10 lg
Pr(r)

Pt
(95)

= 6.4 + 20 lg r + 20 lg β + 8.69αr

where the transmission distance r is given in meters; the attenuation constant α is in 1/m

and the phase shifting constant β is in radian/m. The values of α and β depend on the

68



dielectric properties of soil, and is derived in [53] using the Peplinski principle [68]. Note

that the reflection from the air-ground interface is neglected since the burial depth is large,

which has been explained in [4, 53].

Unlike the EM wave transmitter, the radiation power of the MI communication sys-

tem can be neglected since the radiation resistance is very small. Meanwhile, the induced

power consumed at the MI receiver is the major power consumption since the MI com-

munication is achieved by coupling in the non-propagating near-field. The transmitting

power of the MI system consists of the induced power consumed at the MI receiver and

the power consumed in the coil resistance. If the coil resistance is small, the ratio of the

received power to the transmitting power will be close to 1 since the receiving power and

transmission power decrease simultaneously as the transmission distance increases. The

advantage of this feature is that the limited transmission power won’t be wasted on radia-

tion to the surrounding space. Most power is transmitted to the receiver, which is favorable

to the energy constrained WUSNs. However, as the transmission distance increases, less

and less power is transmitted to the receiver. Hence there still exists a so called Path loss.

It should be noted that the power is not really lost but in fact not transmitted. To fairly

compare the performance of the EM wave system and MI system, the path loss of the MI

system with transmission distance r is defined as LMI(r) = −10 lg Pr(r)
Pt(r0) , where Pr(r) is the

received power at the receiver that is r meters away from the transmitter; Pt(r0) is the ref-

erence transmitting power when the transmission distance is a very small value r0. We can

consider that Pt(r0) ' U2
s/Rt if r0 is small enough. In case of low coil resistances and high

operating frequency (R0 << ωµ), the path loss of the MI communication system can be

simplified as

LMI (r)=−10 lg
Pr(r)
Pt(r0)

'−10 lg
Nra3

t a3
r

4Ntr6 (96)

=6.02 + 60 lg r + 10 lg
Nt

Nra3
t a3

r

We compare (95) with (96) to analyze the path loss of MI and EM wave systems in
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Figure 24: Path loss of the EM wave system and the MI system with different soil water
content

underground environments. In (95), there are two terms in the path loss that are determined

by the distance r, where the term (20 lg r) is due to the space spread and the term (8.69αr)

is due to the material absorption. The transmission medium has significant influence in

the path loss since it determines the propagation constants α and β. In (96), only one term

(60 lg r) is determined by the distance r, which is due to the spread of the magnetic field.

The transmission medium has no obvious influence on the MI path loss since we assume

that the permeability of the medium is a constant as discussed in the beginning. Although

the path loss term (60 lg r) in MI case is much higher than the term (20 lg r) in EM waves

case, it is not clear whether the total path loss of MI system is larger than that of the EM

wave system or not, since the material absorption term (8.69αr) in EM wave path loss

varies a lot in different transmission medium.

3.2.2 Numerical Analysis

3.2.2.1 Path Loss

The path losses of the MI system and the EM wave system shown in (95) and (96) are

evaluated using MATLAB. The results are shown in Fig. 24. According to [4, 53], the

propagation of the EM waves in soil medium is severely affected by the soil properties,
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especially, the volumetric water content (VWC) of soil. Hence in the evaluations, we set

the VWC of the soil medium as 1%, 5% and 25%. The permittivity and conductivity of

soil medium is calculated by the Peplinski principle [3, (8)-(12)], which are functions of

VWC and soil composition. In our simulations, besides VWC, the soil composition is set

as follows, the sand particle percent is 50%, the clay percent is 15%, the bulk density is

1.5 grams/cm3, and the solid soil particle density is 2.66 grams/cm3, which are typical

values in nature. As discussed in the beginning, the permeability of the underground trans-

mission medium is a constant and is the same as that in the air, which is 4π × 10−7 H/m.

Other simulation parameters are set as follows: for EM wave system, the operating fre-

quency is set to 300 MHz. The reason for this choice is as follows: on the one hand, lower

frequency bands are necessary for acceptable path loss. On the other hand, decreasing

operating frequency below 300 MHz increases the antenna size, which can also prevent

practical implementation of WUSNs. For MI system, the transmitter and the receiver coil

have the same radius of 0.15 m and the number of turns is 5. The coil is made of copper

wire with a 1.45 mm diameter. Hence the resistance of unit length R0 can be looked up

in AWG standard [6] as 0.01 Ω/m. The operating frequency is set to 10 MHz. This low

operating frequency together with the small number of turns can effectively mitigate the

influence of the parasitic capacitance [22].

In Fig. 24, the path losses of the MI system and EM wave system are shown in dB

versus the transmission distance r with different soil VWC. As expected, the path loss of

the MI system is not affected by the environment since the permeability µ remains the

same. On the other hand, the path loss of the EM wave system dramatically increases as

the VWC increases. When the soil is very dry (VWC=1%), the path loss of the EM waves

is smaller than that of the MI system. When the soil is very wet (VWC=25%), the path

loss of the EM waves is significant larger than that of the MI system. When VWC=5%,

the path losses of these two systems are similar. It can be seen that the path loss of the MI

system is a lg function of the distance r while the path loss of the EM wave system is an
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Figure 25: Bit error rate of the EM wave system and the MI system with different soil
water content and noise level

approximately linear function of the distance r. This is because that the path loss caused

by material absorption is the major part in the EM waves’ propagation. When VWC=5%,

in the near region between 0.5 m and 3 m, the EM wave system has smaller path loss; in

the relatively far region (r > 3 m), the MI system has smaller path loss than the EM wave

system. Even in the very dry soil medium (VWC=1%), the MI system can achieve smaller

path loss than the EM wave system after a sufficient long transmission distance.

3.2.2.2 Bit Error Rate

Furthermore, we investigate the bit error rate (BER) characteristics of the two propagation

techniques. The results are shown in Fig. 25. The BER characteristic depends mainly on

three factors: 1). the path loss, 2). the noise level and 3). the modulation scheme used by

the system. The path loss of the MI system and the EM wave system has been given in

(95) and (96). The noise power in soil is measured using the BVS YellowJacket wireless

spectrum analyzer [12] in [4, 53]. The average noise level Pn is found to be −103 dBm.

Besides the experiment measurement, we also assume a high noise scenario where the

72



9.998 9.999 10.000 10.001 10.002
40
45
50
55

r=1 m

9.998 9.999 10.000 10.001 10.002
65
70
75
80

Pa
th

 L
os

s 
(d

B
)

r=2 m

9.998 9.999 10.000 10.001 10.002
80
85
90
95

Frequency (MHz)

r=3 m

Figure 26: Frequency response of the MI system with different transmission range

average noise level Pn is set to be −83 dBm. Then the signal to noise ratio (SNR) can be

calculated by S NR = Pt − L − Pn, where Pt is the transmitting power and L is the path loss

given in (95) and (96). We set Pt as 10 dBm in the simulation. Considering the modulation

scheme as the simple but widely used 2PS K, the BER can be derived as a function of SNR:

BER = 0.5er f c(
√

S NR), where er f c(·) is the error function [71].

In Fig. 25, the BERs of the MI system and EM wave system are shown as a function of

the transmission distance r with different soil VWC. In low noise scenario, the transmission

range of the MI system is larger than the EM wave system no matter what VWC is, which

can be explained by the following reasons: 1) path loss below 100 dB cannot influence

the BER performance when the noise is low. 2) The MI system has higher path loss than

the EM wave system at the near region where the path losses of both systems are below

100 dB; while in the far region where the path losses are higher than 100 dB, the MI system

has lower path loss. 3) It is the path loss in the far region that determines the transmission

range. In the high noise scenario, the transmission range of MI system is between the range

of EM wave system in dry soil and the system in wet soil, since this time the path loss above

80 dB can influence the BER performance.
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3.2.2.3 Bandwidth

It should be noted that, the path loss of the MI system derived above is based on the assump-

tion that the load impedance is designed to be equal to the complex conjugate of the output

impedance of the secondary loop. However, since the output impedance of the secondary

loop consists of not only resistance but also reactance, only one central frequency can re-

alize this load matching. Any deviation from the central frequency will cause the power

reflections and increase the path loss. Hence it is necessary to analyze the bandwidth of the

MI system. In Fig. 26, the frequency response of the MI system described above is shown

with different transmission distance. It indicates that the 3-dB bandwidth of the MI system

is around 2 KHz when the operating frequency is 10 MHz. The bandwidth is not affected

by the transmission distance. Although the 2 KHz bandwidth is much smaller than the EM

wave system, it should be enough for the WUSNs considering that the underground sensing

and monitoring applications do not require very high data rate [2].

To sum up, the MI system provides larger transmission range (around 10 m) than that

of the EM wave system (around 4 m). The MI system also has the advantage that its

performance is not influenced by the soil medium properties, especially the water content.

Although the bandwidth of the MI system is smaller than that of the EM wave system,

it should to a large extent fulfill the requirements of the WUSNs applications. However,

the transmission ranges of both systems are still too short for a practical applications in

underground medium.

3.3 MI Waveguide Technique

Although the ordinary MI system has constant channel condition and relatively longer

transmission range than that of the EM wave system, its transmission range is still too

short for practical applications. One solution is to employ some relay points between the

transmitter and the receiver. Different from the relay points using the EM wave technique,

the MI relay point is just a simple coil without any energy source or processing device.
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Figure 27: MI waveguide communication channel model

The sinusoidal current in the transmitter coil induces a sinusoidal current in the first relay

point. This sinusoidal current in the relay coil then induces another sinusoidal current in

the second relay point, and so on and so forth. Those relay coils form an MI waveguide in

underground environments, which act as a waveguide that guides the so-called MI waves.

A typical MI waveguide structure is shown in the first row in Fig. 27, where n− 2 relay

coils equally spaced along one axis between the transmitter and the receiver, hence the

total number of coils is n; r is the distance between the neighbor coils; d is the distance

between the transmitter and the receiver and d = (n − 1)r; a is the radius of the coils. Each

relay coil (including the transmitter coil and the receiver coil) is loaded with a capacitor C.

By appropriately designing the capacitor value, resonant coils can be formed to effectively

transmit the magnetic signals. There exists mutual induction between any pair of the coils.

The value of the mutual induction depends on how close the coils are to each other. In
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underground communication, we set the distance between two relay coils to 5 m, which

is larger than the maximum communication range of the EM wave system. Hence the

MI waveguide system do not cost more on deploying the underground device than the

traditional EM wave system. A lot of money can be saved by replacing the expensive relay

sensor devices using EM waves by the relay coils that have very low cost. In the later part

of this section, we vary the relay distance of the MI waveguide to analyze the influence.

We assume that the radius of the relay coil is around 0.15 m. Comparing to the coil radius,

the relay distance is large enough to validate the fact that the coils are sufficiently far from

each other and only interact with the nearest neighbors. Hence, only the mutual induction

between the adjacent coils needs to be taken into account in this thesis.

3.3.1 System Modeling

Similar to the strategy in section 3.2, the MI waveguide is modeled as a multi-stage trans-

former, where only adjacent coils are coupled, as shown in the second row in Fig. 27. Since

in practical applications, the transceivers and the relay points usually use the same type of

coils, we assume that all the coils have the same parameters (resistance, self and mutual

inductions). M is the mutual induction between the adjacent coils; Us is the voltage of

the transmitter’s battery; L is the coil self induction; R is the resistances of the coil; C is

the capacitor loaded in each coil; ZL is the load impedance of the receiver. The equivalent

circuits of the multi-stage transformer is shown in the third row in Fig. 27, where

Z =R + jωL +
1

jωC
; (97)

Zi(i−1) =
ω2M2

Z + Z(i+1)i
, (i = 2, 3, ...n−1 and Zn(n−1) =ZL);

Z(i−1)i =
ω2M2

Z + Z(i−2)(i−1)
, (i = 3, 4, ...n and Z12 =

ω2M2

Z
);

UMi =− jωM
UM(i−1)

Z + Z(i−2)(i−1)
, (i = 2, 3, ...n and UM1=Us).

where Zi(i−1) is the influence of the ith coil on the (i − 1)th coil and vice versa; UMi is the

induced voltage on the ith coil. Then the received power at the receiver can be calculated
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as:

Pr = Re
{

ZL · U2
Mn

(Z(n−1)n + Z + ZL)2

}
(98)

3.3.2 System Optimization

To maximize the received power is equal to maximize the induced voltage UMn at the

receiver coil. According to (97), if the coils are resonant, then the impedance of each coil

consists of only resistance and the absolute value becomes much smaller. Hence we design

the capacitor to fufill jωL + 1
jωC = 0, then using the expression of the self induction in (94),

the value of the capacitors should be:

C =
2

ω2N2µπa
(99)

In case that the coils are resonant, the expression of the received power UMn in (97) can

be developed as:

UMn =Us ·
− jωM

R
·
− jωM

R+ ω2 M2

R

·
− jωM

R+ ω2 M2

R+ω2 M2
R

· · ·
− jωM

R+ ω2 M2

R+ω2 M2
R+···

= Us · ( j)n−1 ·
1
x1
·

1
x2
· · ·

1
xn−1

(100)

where

xi =
R
ωM

+
1

xi−1
, (i = 2, 3, ...n−1 and x1 =

R
ωM

)

Basing on the above equations, it can be shown that the multiplication x1 · x2 · x3 · · · xn−1 is

in fact an (n−1) order polynomial of x1 = R
ωM , which is denoted as ζ( R

ωM , n−1) and:

ζ( R
ωM , n−1) = bn−1( R

ωM )n−1 + bn−2( R
ωM )n−2+ (101)

· · · + b2( R
ωM )2 + b1( R

ωM ) + b0

where {bi, i = 0, 1, 2, ..., n − 1} are the coefficients of the polynomial, which is fixed for a

certain n and not affected by other parameters.
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Since the coils are all resonant, the matched load impedance is pure resistance, which

is ZL = Z(n−1)n + R. Finally, in the MI waveguide system, if the receiver is d m away from

the transmitter and there are n − 2 relay coils between them, the received power can be

expressed as:

Pr(d) =
1

4(Z(n−1)n + R)
·

U2
s

ζ2( R
ωM , n−1)

(102)

where d is the total transmission range and d = (n − 1)r.

The same as the ordinary MI system, the transmission power and the receiving power of

the MI waveguide system decrease simultaneously as the transmission distance increases.

Hence, the path loss of the MI waveguide LMIG is defined in the same way:

LMIG (d) = −10 lg
Pr(d)
Pt(r0)

(103)

' 10 lg
4(Z(n−1)n + R)

R
+ 20 lg ζ( R

ωM
, n−1)

= 10 lg 4
[
1 +

1
( R
ωM )2 + 1

1+ 1
( R
ωM )2+ 1

1+···

]
+ 20 lg

[
bn−1( R

ωM
)n−1 + · · · + b1( R

ωM
) + b0

]

where Pt(r0) is defined as the transmission power when the transmitter is very close to the

receiver and no relay coil exists.

According to (103), the path loss of the MI waveguide system is actually a function

of R
ωM . It is the polynomial ζ( R

ωM , n−1) that has the major influence on the path loss.

Therefore the path loss is a monotone increasing function of the variable R
ωM . Consequently,

to minimize the path loss is equal to minimize the variable R
ωM . By using the expressions of

the wire resistance R and the mutual induction M in (91) and (93) respectively, the variable

R
ωM can be expressed as:

R
ωM

=
4R0

ωNµπ
·

( r
a

)3
(104)

Note that here the relay distance r is only 1
n−1 of the total transmission range d. By this

means the influence of the cubic function of the distance on the path loss can be signifi-

cantly mitigated. Using this scheme, we can reduce the path loss by:
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• Reduce the ratio of the relay distance to the coil radius r
a ;

• Increase the operating frequency ω and the number of turns of the coils N;

• Reduce the wire resistance R0.

However, there are other factors that constrain the path loss minimization:

• To ease the device deployment, the ratio of the relay distance to the coil radius is

expected to be as large as possible, which conflicts with the requirements of the

low total path loss. In our work, to keep the incontrovertible advantage over the

underground EM wave system, the relay distance is set to at least the maximum

transmission range of EM wave system, which is 4 m. Considering the coil radius is

0.15 m, the ratio of the relay distance to the coil radius is over 27.

• It is also impossible to unlimitedly increase the operating frequency and the number

of turns of the coils, since these two parameters are constraint by (99). The loaded

capacitors in each resonant coil should be larger than 10 pF, otherwise it is com-

parable to the coil parasitic capacitance. To achieve a practical value of the loaded

capacitors in each resonant coil, the ω and N cannot be too large. Moreover, extreme

high operating frequency and large number of turns may induce severe performance

deterioration caused by the parasitic capacitance [22]. In our work, we use 10 MHz

operating frequency and the each coil contains 5 loops of wire. The loaded capacitor

is around 35 pF in this case.

• Although reducing the wire resistance can reduce the total path loss, it may cause two

problems: 1) lower wire resistance require larger wire diameter, which cost more and

cause the coils heavier; 2) low wire resistance can also cause dramatical in-band sig-

nal fluctuation, which may create difficulties on equalization of the received signal.

In our work, the coil is made of copper wire with a 1.45 mm diameter. According
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Figure 28: Path loss of the the MI waveguide system with different wire resistance and
relay distance

to AWG standard [6], the resistance of unit length R0 is 0.01 Ω/m. The influence of

different wire resistances will be analyzed in the later part of this section.

3.3.3 Numerical Analysis

3.3.3.1 Path Loss

The path losses of MI waveguide system shown in (103) are evaluated using MATLAB.

The results are shown in Fig. 28. For better comparison, the path loss of the 300 MHz

EM wave system in 5% VWC soil and the path loss of the 10 MHz ordinary MI system are

also plotted. According to the previous discussion, the performance of the MI system is not

affected by the soil properties and the soil medium has the same permeability as that in the

air, which is 4π×10−7 H/m. Hence in the evaluation of the MI waveguide, we do not need to

consider the environment parameters. Except studying the effects of certain parameters, the

default values are set as follows: all the coils including the transmitter, receiver and relay

points have the same radius of a = 0.15 m and the number of turns is N = 5. The resistance

of unit length is R0 = 0.01 Ω/m for normal coil and R0 = 0.005 Ω/m for low resistance coil.

The operating frequency is set to 10 MHz. The relay distance r is 5 m. The total number
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Figure 29: Bit error rate of the the MI waveguide system with different wire resistance,
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of coils n is determined by the transmission distance d, where d = (n − 1)r. In Fig. 28, the

path losses of the MI waveguide system are shown in dB versus the transmission distance d

with different relay distances r and different wire resistances R0. It can be found that the MI

waveguide can greatly reduce the signal path loss comparing with the EM wave system and

the ordinary MI system. The path loss of the MI waveguide is less than 100 dB even after

250 m transmission distance, while the path loss of the EM wave system and the ordinary

MI system becomes larger than 100 dB when the transmission distance is larger than 5 m.

In addition, the path loss can be further reduced by reducing the relay distance and the wire

resistance.

3.3.3.2 Bit Error Rate

In Fig. 29, we investigate the bit error rate (BER) characteristics of the MI waveguide. The

same as the analysis in section 3.2, 2PS K is selected as the modulation scheme. Two noise

level are considered, where the average noise level Pn in low noise scenario is −103 dBm

while Pn in high noise scenario is −83 dBm. The transmission power Pt is set to 10 dBm.
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Figure 30: Frequency response of the the MI waveguide system with different wire resis-
tance and relay distance

In Fig. 29, the BER of the MI waveguide system are shown as a function of the trans-

mission distance d with different relay distances r and different wire resistances R0. The

BER of the EM wave system and the ordinary MI system are also plotted for comparison.

Comparing with the small transmission range of the other two techniques (less than 10 m),

the transmission range of the waveguide system is above 250 meters even in the high noise

scenario. It means that the transmission range of the MI waveguide system is increased for

more than 25 times compared with the other two systems. In accord with the analysis on

the path loss, the transmission range of the MI waveguide can be extended by reducing the

relay distance and the wire resistance.

3.3.3.3 Bandwidth

The above path loss and the transmission range of the MI waveguide system is calculated

under the assumption that the transmitted signal has only one frequency. Under this central

frequency, all the coils can achieve the resonant status. However, if there is any deviation

from the central frequency, the resonant status of each coil will disappear and the load

at the receiver also becomes unmatched with the system. Hence we need to analyze the

bandwidth of the MI waveguide system. In Fig. 30, the frequency response of the MI
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waveguide system is shown with different relay distances r and different wire resistances

R0. The number of relay coils n are fixed to 7. The results indicate that, when the operating

frequency is 10 MHz, the 3-dB bandwidth of the MI waveguide system is in the same range

with the ordinary MI system, which is 1 KHz to 2 KHz. Although lower wire resistance

can reduce the path loss in the central frequency, the fluctuation of the in-band frequency

response becomes so serious that may cause difficulties in the equalization at the receiver.

The bandwidth can be enlarged by reducing the relay distance. However, for a certain

transmission range, reducing the relay distance means that more relay coils needs to be

deployed hence more effort is cost in the deployment. Two practical parameter sets maybe:

1) the relay distance r = 5 m and the unit length resistance R0 = 0.01 Ω/m. In this case,

the 10 MHz operating MI waveguide system can accomplish the communications within

250 m range and achieve 1 KHz bandwidth. And 2) the relay distance r = 4 m and the unit

length resistance R0 = 0.01 Ω/m. In this case, the 10 MHz operating MI waveguide system

has 400 m transmission range and 2 KHz bandwidth.

3.3.3.4 Influence of Position Deviation

It should be noted that the above performance of MI waveguide system is derived in the

ideal deployment case, where all the relay coils are accurately deployed so that the n −

2 relay coils are uniformly distributed between the transceivers. The transmission range

is divided into n − 1 exactly equal intervals hence the mutual inductions between each

relay coil are the same. However, in the practical applications, this requirements may not

be precisely satisfied due to the following two reasons: on the one hand, in the initial

deployment stage, the relay coils can not be set in the exact position as planned because of

deployment constraints, such as rocks or pipes in the soil; on the other hand, the positions

of the coils may change while the network is operating due to the above ground pressure

or the movement of the soil. Hence, in Fig 31 and Fig 32, the influence of the non-ideal

deployment is analyzed.
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Figure 31: Path loss of the the MI waveguide system with different deviation from the
designed relay distance

We assume that the relay coils are not deployed at the exact planed positions but may

not deviate a lot. There are n − 2 relay coils deployed between the transceivers and the

transmission. Their designed positions are {i · d/(n − 1), i = 1, 2, · · · n − 2}. The position

xi of relay coil i is a gaussian random variable with mean value i · d/(n − 1) and standard

deviation σr. Then the transmission distance d is divided into n − 1 intervals with length:

r1, r2, ... rn−1, where ri = xi − xi−1. x0 and xn−1 are the positions of the transmitter and the

receiver, respectively. We assume that the standard deviation are either 5%, 10% or 20% of

the designed relay distance. Other simulation parameters are set to the default value. The

results are the average of 100 iterations. Both mean value and the standard deviation of the

results are plotted.

It is shown that there exists additional path loss in practical deployment. Moreover,

the bandwidth decreases dramatically when the standard deviation is 20%. The level of

the additional path loss and the bandwidth decrease are determined by the standard devia-

tion. Higher standard deviation can cause larger performance deterioration. Moreover, the

additional path loss also increases as the transmission distance increase, which is because
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Figure 32: Frequency response of the the MI waveguide system with different deviation
from the designed relay distance

that more relay coils are deployed with longer transmission distance hence more deploy-

ment deviation may occur. The standard deviation of the path loss and the bandwidth also

increases dramatically as the deployment deviation increases, which indicates that the re-

liability of the MI waveguide system also decreases if deployment deviation occurs. It

should be noted that the influence of the deployment deviation on the performance of the

MI waveguide system can be neglected if the standard deviation is less than 10%.

3.4 Optimal Deployment

So far we derive the MI waveguide technique to connect two underground sensors. In this

section, we analyze the deployment strategy to use MI waveguides to construct a connected

and reliable underground network with low cost. In particular, we first consider the one-

dimensional (1D) WUSNs. The optimal number of relay coils between two sensors are

analyzed according to the required bandwidth and the distance between two sensors. Then

based on the analysis of the 1D WUSNs, the optimal MI waveguide deployment strategy

is developed for the two-dimensional (2D) WUSNs. Two coil deployment algorithms, the

MST algorithm and the TC algorithm are proposed. To minimize the number of relay coils,

we provide the MST algorithm, where the MI waveguides are deployed along the minimum
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spanning tree of the WUSN. The weight of each link of the network is the optimal relay coil

number. Since the WUSN constructed by MST algorithm is not robust to sensor failure, we

propose the TC algorithm. In the TC algorithm, the MI waveguides are deployed around

the centroids of the triangle cells that are constructed by the Voronoi diagram [11]. The

WUSN constructed by the TC algorithm is robust to sensor failure but requires more relay

coils.

3.4.1 MI Waveguide Deployment in 1D WUSNs

In this section, the deployment of the MI waveguides in a 1D WUSN is analyzed. The

underground sensors are buried along a line or a polygonal line. This 1D network topology

is applicable in the underground pipeline monitoring system. Moreover, the analysis results

lay the foundation of the MI waveguide deployment strategy in 2D WUSNs.

The 1D WUSN can be divided into multiple links that starts at one sensor and ends at

the next sensor. The goal of the optimal deployment of the MI waveguide in 1D WUSNs

is to use as few relay coils as possible to connect the two sensors in each link. The optimal

number of relay coils for each link is determined by the length of the link and the required

bandwidth. We assume that the length of each link and the bandwidth have been determined

by the requirements of the specific applications.

To minimize the deployment cost while maintaining the proper network functionality of

the WUSNs, a MI waveguide should use the minimum number of relay coils to connect the

two sensors on the link. According to (103), the path loss increases monotonically when

the signal frequency deviates from the central frequency ω0. Therefore, if the signal with

the frequency ω = ω0 + 0.5B can be correctly received, a communication channel with

bandwidth of B can be established between the two sensors. Assuming that transmission

power is Pt and the minimum power for a sensor to correctly receive a signal is Pth. Using

the path loss given in (103), the received power can be calculated. Then the optimal number
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of relay coils for this link is:

nopt(d, B) = arg min
n
{Pt − LMI (d, n, ω0 + 0.5B) ≥ Pth}. (105)

According to (105), the optimal number of relay coils is the function of the link length and

the required bandwidth. Since the required bandwidth can be viewed as a constant, it is the

link length that determines the optimal number of relay coil.

By using the parameters of the MI waveguide developed in [89], we can numerically

analyze the optimal number of relay coils with different link length. In the following anal-

ysis, the transmission power is set to be 2.5 mW (4 dBm). The threshold of the power

for correctly reception is set to be −80 dBm. Due to the resonant characteristics of the

MI waveguide, the bandwidth of the system is much smaller than the terrestrial wireless

networks. However, the small bandwidth is acceptable for WUSNs since the underground

sensing and monitoring applications do not require very high data rate [2]. Therefore, the

system bandwidth of the MI waveguide is set to be 1 KHz. The operating frequency is set

to 10 MHz. The relay coils have the same radius of 0.15 m and the number of turns is 20.

The coil is made of copper wire with a 1.45 mm diameter. The cost and weight of coils

made of this kind of wire is neglectable. The wire resistance of unit length can be looked

up in AWG standard [6] as 0.01 Ω/m. This relatively high wire resistance also effectively

mitigates the in-band signal fluctuation. The permeability of the underground soil medium

is a constant and is similar to the permeability of the air, since most soil in the nature does

not contain magnetite. Therefore, µ = 4π × 10−7 H/m. The soil moisture and the soil

composition do not affect the MI communication as discussed perviously.

In Fig. 33, the received power of the 10 MHz + 0.5 KHz signal using MI waveguides

with different relay coil numbers is shown as the function of the link length d. The axial

communication range of a MI waveguide with a certain relay coil number is shown as the

intersection point of the received power and the −80 dBm threshold. Fig. 33 shows that

the axial communication range increases as the relay coil number increases. However,

the increment of the communication range caused by additional relay coils decreases as
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Figure 33: Received power of a 10 MHz + 0.5 KHz signal using MI waveguides with
different relay coil numbers.

the relay coil number increases. For example, the axial communication range of a MI

transceiver pair can be increased by 36 meters by adding the first 10 relay coils but can be

only increased by 27 meters by adding another 10 relay coils. This phenomenon is due to

the fact that the coils relay the signal in a passive way and there is no extra power added at

each relay coil.

According to (105), the optimal relay coil number for the link with a certain length

can be read from Fig. 33 by finding out the curve with the minimum relay coil number

that has the axial communication range larger than the link length. We summarize the

optimal number of relay coils and the corresponding link length in Table. 1. It shows

that the optimal number of the relay coils increases faster than the link length increases.

Consequently, the required interval between two adjacent coils decreases as the link length

increases.

3.4.2 MI Waveguide Deployment in 2D WUSNs

In most WUSN applications, the network has a 2D topology. In this section, we investigate

the deployment strategies of the MI waveguides to connect the underground sensors in a

2D WUSN. Compared with the MI waveguide deployment in 1D WUSNs, the deployment
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Table 1: Optimal Number of Relay Coils and Corresponding Link Length

Link Length Optimal Number Coil Interval
(m) of Relay Coils (m)

(0, 10] 0 10
(10, 14.5] 1 7.3

(14.5, 18.5] 2 6.2
(18.5, 22.5] 3 5.6
(22.5, 26] 4 5.2
(26, 29.5] 5 4.9

...
...

...
(43, 46] 10 4.2

...
...

...
(70, 73] 20 3.5

...
...

...

in 2D WUSNs is much more complicated due to the following reason: 1) in 1D WUSNs,

the route connecting the sensor nodes are determined, while in 2D WUSNs, the optimal

route to connect all the sensors needs to be found out; and 2) it is possible in a 2D WUSN

that some common relay coils can be shared by multiple links.

Note that the MI waveguide deployment is also influenced by the topology of the sen-

sors in the WUSNs. The topology of the sensors is determined by specific applications. If

full sensor coverage is required in a sensing area where underground sensors can be buried

at any desired positions, the hexagonal tessellation topology is preferred due to its effi-

ciency and simplicity. If only some specific positions need to be monitored by sensors or

some positions in the sensing area are not suitable to bury underground sensors, the WUSN

has a random topology. In the hexagonal tessellation topology, the underground sensors of

the WUSN are set in all vertexes of a hexagonal tessellation. The length of each tessel-

lation edge is determined by specific applications. In the random topology, the positions

of the sensors can be viewed as random distributed. Therefore, the hexagonal tessellation

topology can be viewed as a special case of the random topology. In this section, we start

the analyze of the MI waveguide deployment in WUSNs with the hexagonal tessellation
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topology. Then we extend our research to the deployment strategy in WUSNs with random

topologies.

3.4.2.1 Deployment in WUSNs with Hexagonal Tessellation
Topology

Hexagonal tessellations have been widely used for the wireless network topologies, such

as the base station placement of the cellular networks [104]. Due to the disk shape of the

sensing range of the sensor devices, using hexagonal tessellation topology is the most ef-

ficient way to cover the whole sensing area. Different from the terrestrial wireless sensor

networks, the communication range of the underground sensors is very limited. Hence, the

MI waveguides are used to connect the sensors on the vertexes of the hexagonal tessella-

tion. In the following analysis, we assume that the sensor density of the WUSN with the

hexagonal tessellation topology is λhex (m−2).

Minimum Spanning Tree (MST) Algorithm:

If the network robustness is not considered, the optimal deployment goal is to connect

all the sensors in a WUSN with minimum number of relay coils. Therefore, the minimum

spanning tree [105] can be used to find the optimal routes of MI waveguides. If the sensor

number is K, the number of edges of the minimum spanning tree is K − 1. The weight

of each edge in the spanning tree is the optimal number of the relay coil. As discussed

in Section 3.4.1, the optimal number of relay coils for a link is determined by the length

of the link. The edges of the hexagonal tessellation have the same length ehex, which is

determined by the sensor density of the hexagonal tessellation λhex. Hence,

ehex = 2 · 3−
1
4 · λ

− 1
2

hex , (106)

Then the required number of the relay coils to connect K sensors based on the MST algo-

rithm can be calculated as

Nhex
mst = (K − 1) · nopt(2 · 3−

1
4 · λ

− 1
2

hex, B) , (107)
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Figure 34: The MI waveguide deployment using TC algorithm in the WUSN with hexag-
onal tessellation topology.

where nopt(2 · 3−
1
4 · λ

− 1
2

hex, B) is the optimal coil number for each edge in the tessellation,

which can be calculated by (105).

It should be noted that the WUSN constructed by the MST algorithm is only 1-connected.

Consequently, the failure of any one sensor can disconnect the network.

Triangle Centroid (TC) Algorithm:

To enhance the robustness of the network, more edges should be established. If the

MI waveguides are deployed along all the edges in the hexagonal tessellation, every sensor

in the WUSN is connected to all the 6 neighbors in the tessellation. Consequently, the

network becomes 6-connected. We define this deployment strategy as the full-deployment.

However, in the full deployment strategy, the required number of relay coils for K sensors

is doubled at the same time:

Nhex
f ull ' 2K · nopt(2 · 3−

1
4 · λ

− 1
2

hex, B) , (108)

To reduce the number of relay coils, we change the positions of the MI waveguides

so that multiple links can share one set of the MI waveguide. In particular, the three MI

waveguides along the three edges of one triangle cell can be replaced by one MI waveguide
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with a shape of the three-pointed star, as shown in Fig. 34. The center of the three-pointed

star is located at the centroid of the triangle so that the sensors on all the three vertexes

can use the same waveguide to communicate with each other directly. It can be proved that

the total edge length of the three-pointed star is minimized if its center is located in the

triangle centroid. Hence, the number of the relay coils to form the three-pointed star MI

waveguide is minimized. To connect all the sensors in the WUSN, the three-pointed star

MI waveguides are deployed in every other triangle in the tessellation, as shown in Fig. 34.

The total number of triangles in the tessellation is approximately the same as the number

of all sensors. Hence, the three-pointed star MI waveguides are deployed in half of the

triangles. The edge length of the three-pointed star is
√

3 · ehex. Then, the total required

number of the relay coils to connect K sensors based on the TC algorithm is:

Nhex
tc '

K
2
· nopt(2 · 3

1
4 · λ

− 1
2

hex, B) . (109)

The WUSN constructed by the TC algorithm is 6-connected, the same as the full-

deployment strategy. By comparing (108) with (109), we find that the required relay coil

number of the TC algorithm is much smaller than that of the full deployment if the sensor

density is not too low. Detailed numerical analysis is given in Section 3.4.3.

3.4.2.2 Deployment in WUSNs with Random Topology

Based on the analysis on the WUSNs with the hexagonal tessellation topology, we inves-

tigate the deployment algorithms for WUSNs with random topology in this section. As-

suming that the underground sensors are uniformly distributed with the spatial density λrand

(m−2). Similar to the strategy in hexagonal tessellation, the MST algorithm are provided

to achieve the minimum relay coil number, while the TC algorithm are implemented to

provide the robustness to sensor failure with acceptable relay coil number.

MST Algorithm:

The MST algorithm for WUSN with random topology is similar to the MST algorithm

in hexagonal tessellation. First, the edge lengths between any two underground sensor
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Figure 35: The MI waveguide deployment using TC algorithm in the WUSN with random
topology.

nodes are calculated. Second, the optimal number of relay coils for each edge is calculated

by (105), which is the weight of each edge. Third, the minimum spanning tree of the

WUSN is found out by the Boruvka’s algorithm [105]. Finally, the MI waveguides with

the optimal relay coil number are deployed along each edge of the minimum spanning tree.

TC Algorithm:

As discussed previously, the TC algorithm needs to find out the centroid in each triangle

cell of the network. In the hexagonal tessellation topology, the network is well partitioned

into numerous equilateral triangle cells. Therefore the centroid in each triangle cell is

easy to be located. However, in the random topology, the TC algorithm encounters two

problems: 1) how to partition the random network into non-overlapped triangle cells; and

2) how to deploy the three-pointed star MI waveguide in those randomly distributed triangle

cells.

To solve the above problems, we introduce the Voronoi diagram [101]. As shown in the

left of Fig. 35, the Voronoi diagram of the sensors partitions the whole area into polygons

(Voronoi cells). Each Voronoi cell contains only one sensor. All the points in one Voronoi
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cell are closer to the sensor in this Voronoi cell than to any other sensors. By connecting the

sensors that are in the adjacent Voronoi cells, the sensing area can be partitioned into non-

overlapped triangle cells. Then in every other triangle cell, the MI waveguide is deployed

along the three lines connecting the triangle vertexes and the centroid, which forms the

three-pointed star MI waveguide, as shown in the right of Fig. 35. The detailed procedure

of the TC algorithm in WUSNs with random topology is described in Algorithm 1.

Create the Voronoi diagram of the K sensors, and derive K Voronoi cells
VC = {VC1,VC2, ...,VCK}.
Keep a subset G of VC; G initially contains VC1.
while (Not all Voronoi cells are in G) do

Find a Voronoi cell VCx in G that has the neighbor Voronoi cells {VC1
x,VC2

x, ...,VC j
x}

which are not in G.
Connect the adjacent sensors in {VC1

x,VC2
x, ...,VC j

x} and VCx, and derive the
non-overlapped triangle cells {Tr1,Tr2, ...,Tr j−1}.
if ( j is odd) then

In triangle cells Tr1,Tr2,Tr4, ...,Tr j−1, deploy the MI waveguide along the the
three lines connecting the vertexes and the centroid.

else
In triangle cells Tr1,Tr3,Tr5, ...,Tr j−1, deploy the MI waveguide along the the
three lines connecting the vertexes and the centroid.

end if
Add {VC1

x,VC2
x, ...,VC j

x} to G.
end while

Algorithm 1: TC Algorithm for MI Waveguide Deployment in WUSNs with Random
Topology

For the random topology, the WUSN constructed by the MST algorithm is only 1-

connected. Meanwhile, the network created by the TC algorithm in random topology is k-

connected, where k ≥ 3. The required number of relay coils of the MST algorithm as well

as the TC algorithm in the WUSN with random topology cannot be accurately estimated

since the positions of the sensors are highly random. The simulation analysis is given in

the next section.
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3.4.3 Performance Evaluation

In this section, we numerically evaluate the required relay coil number and the network

robustness of the MST algorithm and the TC algorithm in both WUSNs with hexagonal

tessellation topology and WUSNs with random topology. The performance of the full-

deployment strategy is also shown as a reference. In the following simulations, 100 sen-

sors are deployed in a square area according to the hexagonal tessellation topology or the

random topology. The size of the square area is determined by the sensor density. The

MI waveguide parameters used in the simulations are the same as the parameters used in

Section 3.4.1.

3.4.3.1 Hexagonal Tessellation Topology

In Fig. 36(a), the required relay coil numbers of the deployment algorithms are given

as a function of the sensor density in the WUSN with hexagonal tessellation topology.

Fig. 36(a) shows that the relay coil number required by the TC algorithm is slightly larger

than the number required by the MST algorithm but much smaller than the number required

by the full-deployment strategy. Meanwhile, the network constructed by the TC algorithm

is 6-connected, the same as the full-deployment strategy and far more robust than the 1-

connected network constructed by the MST algorithm.

Therefore, in the WUSNs with hexagonal tessellation topology, the TC algorithm achieves

both small relay coil number and high network robustness.

3.4.3.2 Random Topology

Fig. 37 shows the deployment results of the MST algorithm, the TC algorithm and the full-

deployment strategy. The network constructed by the MST algorithm is only 1-connected.

Consequently, the failure of any one sensor can disconnect the network. One the other

hand, the networks constructed by the TC algorithm and the full-deployment strategy have

the same network topology, since the three-pointed star MI waveguide in a triangle cell is
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Figure 36: The number of relay coils to connect 100 sensors in WUSNs with (a) hexagonal
tessellation topology and (b) random topology.

96



0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x (m)

y 
(m

)

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x (m)
y 

(m
)

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x (m)

y 
(m

)

(c)

Figure 37: The deployment results of (a) the MST algorithm, (b) the TC algorithm, and
(c) the full-deployment strategy. (The red dots are the sensors; the black lines represent the
MI waveguides; and the blue cells are the Voronoi diagrams. 100 sensors are uniformly
distributed with of a spatial intensity λrand = 0.01 m−2.)
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equivalent to the three MI waveguides on the edges of the triangle cell. Except the sensors

on the border, the network constructed by the TC algorithm or the full-deployment strategy

is k-connected. k is determined by the sensor topology and k ≥ 3. Therefore, the TC

algorithm and the full-deployment strategy are more robust to sensor failures.

In Fig. 36(b), the required relay coil numbers of the deployment algorithms are given

as a function of the sensor density in the WUSN with random topologies. It indicates that

the relay coil number required by the TC algorithm is obviously larger than the number

required by the MST algorithm. As the sensor density increases, the differences in terms of

the coil number between the deployment algorithms become smaller. Compared with the

hexagonal tessellation topology, the advantages of the MST algorithm in terms of the relay

coil number is much more obvious in the random topology.

Therefore, in the WUSNs with random topology, the relay coils number required by the

MST algorithm is significantly smaller than other deployment algorithms. However, the

MST algorithm is not robust to sensor failures. Although the The TC algorithm requires

more relay coils than the MST algorithm, it can construct a k-connected WUSN. Moreover,

the required coil number of the TC algorithm is much smaller than the number required by

the full-deployment strategy.
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CHAPTER IV

WUSNS IN UNDERGROUND MINES AND TUNNELS

4.1 Motivation and Related Work

Reliable and efficient WUSNs in underground mines and tunnels are important to improve

the safety and productivity [2, 23]. Wireless communications experience severe fading

problems in underground mines and tunnels[4]. Due to the reflections of EM waves on

tunnel walls, the channel characteristics in these environments are dramatically different

from the terrestrial wireless channels [84, 86, 21]. Moreover, the tunnels in operation

are filled with mobile vehicles with random size and positions. The reflections and the

diffractions on the vehicles make the wireless channel in the tunnel even more complicated.

To setup reliable and efficient wireless communication systems in underground mines and

tunnels, the analytical channel model that explicitly contains the dependence on the tunnel

geometry, vehicular traffic information, and other communication parameters are needed.

The underground mines have complex structures: multiple passageways are developed

to connect the aboveground entrance and different mining areas. The structure of mining

area is determined by mining methods, while the mining methods are dertermined by the

shape and position of the ore body [38].

• If the ore body is flat and competent, room-and-pillar mining can be implemented.

The mining area can be viewed as a big room with some randomly shaped pillars in

it, as shown in Fig. 38(a).

• If the ore body has a steep dip, cut-and-fill mining, sublevel stoping or shrinkage

stoping can be employed. Mines using those techniques have similar structures: the

mining area consists of several types of tunnels, e.g. mining tunnel and transport

tunnel. The sectional plan of cut-and-fill mining is shown in Fig. 38(b).
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Figure 38: Mine structure of different mining methods

• If the ore body has a large, thin, seam-type shape, longwall mining is preferred, as

shown in Fig. 38(c). Besides the entry tunnels, the mining area near the longwall

face can also be modeled as a tunnel since it is encircled by the hydraulic support

and the longwall face.

Therefore, underground mines require two kinds of channel models. The tunnel channel

model is used to describe the signal propagation in passageways and mining area tunnels.

On the other hand, the room-and-pillar channel model characterizes the wireless channel of

room-and-pillar mining areas. It should be noted that the structure of road/subway tunnels

is similar to that of underground mine tunnels, thus they can share the same tunnel channel

model.

Existing channel models for tunnels include the GO model [59], the waveguide model

[34] and full wave model [95]. In the GO model, EM waves are approximately modeled

as optical rays. The EM field is obtained by summing the contributions of rays undergoing

reflections on the tunnel walls. In [41, 111], the rays diffracted near tunnel wedges are con-

sidered to improve the accuracy of the GO model. Except in some very idealized situations,

e.g., the waveguide with two perfectly reflecting side walls [59], the GO model depends
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on computer simulations to obtain numerical solutions, and the computational burden in-

creases dramatically as the signal path is prolonged [70, 110]. In the waveguide model,

the tunnel behaves as an oversized waveguide with imperfectly lossy walls. Maxwell’s

equations are solved by taking consideration of the boundary conditions. The eigenfunc-

tions and propagation constants for the EM field of all possible modes are provided in [50].

The waveguide model assumes that there is only the lowest mode signal propagation in

the tunnel. However, since the operating frequency (UHF) is much higher than the cut-off

frequency in tunnels, the large number of modes will be exited near the transmitter antenna

[112]. Consequently, the waveguide model can not characterize the multi-mode operat-

ing channel in the near region. Full wave models can solve the Maxwell’s equations with

arbitrary boundary conditions using numerical methods, such as FDTD [95]. The partial

differential equations are solved at discrete time and discrete points (finite grid). However,

it is required that the size of the finite grid in space should be less than one tenth of the free

space wavelength, and the time integration step must be less than the grid size divided by

the velocity of the light. Given the large size of tunnels and the high operating frequency

(UHF), the computational burden exceeds well beyond the capacity of existing comput-

ers. For curved tunnels, the additional attenuation coefficients of each propagation mode

caused by the tunnel curvature are given in [69]. For the signal propagation around tunnel

junctions, the coupling from the main tunnel to the sub-tunnel is analyzed in [52].

Currently, there is no existing channel model for room-and-pillar mining area. In

[56, 55], some experimental measurements are provided. It is indicated that the signal

experiences higher attenuation in room-and-pillar environments than in tunnels. Addition-

ally, the multipath fading is severe in both near and far region of the transmitter.

For tunnels with vehicular traffic flow, current channel analyses are limited to either

experiments [107, 46] or numerical methods (i.e., GO model [8, 24, 25, 54] and Full

Wave model [5]). These experimental and numerical solutions cannot provide explicit
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description on the effect of tunnel geometry, the vehicular traffic information, antenna posi-

tion/polarization, operating frequency, and other environmental or communication param-

eters. Moreover, the numerical solutions require a great amount of input data of detailed

geometric information of the vehicular traffic flow, including the exact size and position of

each vehicle in the traffic flow, which is infeasible to acquire from the in-operation tunnels.

In this chapter, we first provide a new hybrid model that combines the GO model and

waveguide model using Poisson sum formula. Analytical solutions for both near and far

regions are developed for tunnel environments. Combined with the shadow fading model,

our model can also characterize the wireless channel in the room-and-pillar mining area.

Then based on the channel model in empty underground mines and tunnels, we extend our

work to characterize the influence of the vehicular traffic flow on the signal propagations.

According to the channel models, the wireless link error caused by the multipath fading

in underground tunnels is much more severe than the terrestrial wireless channels. To solve

this problem, spatial diversity-based techniques including MIMO (Multiple Input Multiple

Output) and Cooperative Communication system can be utilized. In particular, the MIMO

system employs multiple antenna elements at both transmitter and receiver to achieve the

spatial diversity [96], which is suitable for large devices such as the base stations and the

mobile terminals on vehicles. In contrast, the cooperative communication system [75]

explores the broadcast nature of the wireless channel and utilize multiple wireless nodes

with single antenna to form a virtual MIMO, which is suitable for small and low-cost

devices such as wireless sensors and handsets.

The MIMO capacity has been widely analyzed in terrestrial wireless communication

systems. In [96] and [60], the MIMO capacity over the additive Gaussian channel with

and without multipath fading is analyzed. In [77], the effect of MIMO antenna geometry

on capacity is analyzed to mitigate the impact of the correlated MIMO channel. In [65],

it is proved that the distribution of the MIMO capacity in terrestrial channel follows a

normal distribution under the condition that the number of antenna elements is large. All
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the above works are based on the terrestrial wireless channel model that is simpler and

fuzzier than the tunnel channel model in two aspects: 1) The channel gain of the terrestrial

channel is assumed to be a Rayleigh random variable multiplied by a power function of the

transmission distance. However, the parameters of the Rayleigh fading cannot be accurately

calculated. In contrast, the channel gain in underground tunnels is a weighted sum of

multiple propagation modes. The intensity and the field distribution of each mode can

be accurately characterized. 2) In terrestrial channel, each pair of TX and RX antenna

elements in the MIMO system is assumed to have the same mean channel gain. However,

in underground tunnels, the positions of the transceivers have significant influences on the

channel gain. Hence the MIMO antenna geometry significantly affects MIMO channel

capacity in tunnels.

In [26], current terrestrial MIMO techniques are evaluated in tunnel environments by

simulations. It shows that the MIMO technique can also effectively mitigate multipath fad-

ing in underground tunnels. In [58, 64], the MIMO channel capacity in empty waveguide

and cavity channels are calculated using the modal expansion technique. Those existing

works on MIMO capacity in tunnels are based on the empty tunnel channel model. How-

ever, in real underground tunnels, there are a large number of random obstructions, such as

vehicles and mining machines. Hence the randomness of the MIMO capacity caused by the

random obstructions has significant influence on the performance of the MIMO systems in

underground tunnels. To the best knowledge of the authors, the capacity distribution as

well as the outage behavior of the MIMO systems in tunnels have not been investigated

yet.

The cooperative communication technique has also been intensively investigated in ter-

restrial environments recently. In [51], several efficient cooperative schemes are proposed,

and the corresponding outage behavior in terms of outage probability are investigated in

high SNR regime. In [7], the outage capacity of cooperative communication system is
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calculated in low SNR regime. In [76], a centralized cooperative relay assignment proto-

col is proposed to maximize the minimum cooperative capacity in the whole network. In

[10], a distributed relay assignment protocols are proposed. However, it still requires the

information exchanges among the source node, relay nodes and destination node, which

is difficult to achieve in networks with high dynamic topology, such as the vehicular net-

works in road tunnels. In [73], a nearest neighbor relay assignment protocol is proposed

based on the analysis on the outage probability, which is fully distributed and only requires

the local position information. Similar to the existing works on MIMO system, the above

works on cooperative communications are also based on the terrestrial wireless channel.

Currently, there is no existing paper on either the outage analysis or the relay assignment

for cooperative communications in underground tunnels.

At the end of this chapter, we analyze the capacity distribution and outage behavior of

the MIMO and cooperative communication system in underground tunnel environments.

The parameters of the capacity distribution and the outage probability are explicitly ex-

pressed as functions of the tunnel environmental conditions, the antenna geometry (for

MIMO), and the relay assignment strategy (for cooperative communications). Then, based

on the capacity and outage analysis, the optimal MIMO antenna geometry and the opti-

mal cooperative relay assignment protocol are developed for wireless communications in

underground tunnels.

4.2 Channel Modeling

To settle the problems of current tunnel channel models, we introduce the multimode

model, which can be viewed as a multi-mode operating waveguide model. Since the modes

derived by the waveguide model are actually all possible solutions for the Maxwell’s equa-

tions, only the EM waves that have the same shapes as those modes are possible to exist in

the tunnel. However, the intensity of each mode depends on the excitation, which cannot be

given by the waveguide model. Hence, the GO model is involved to analyze the EM field
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distribution for the excitation plane, i.e., the tunnel cross-section that contains the transmit-

ter antenna. This field distribution can be viewed as the weighted sum of the field of all

modes. The mode intensities are estimated by a mode-matching technique. Once the mode

intensity is determined in the excitation plane, the mode propagation is mostly governed by

the tunnel itself. Then the EM field in the rest of the tunnel can be predicted by summing

the EM field of each mode.

The room-and-pillar environment can be viewed as a planar air waveguide superim-

posed with some random distributed and random shaped pillars in it. A simplified mul-

timode model is able to describe the EM wave propagation in the planar air waveguide.

The random distributed and random shaped pillars form an environment very similar to a

terrestrial metropolitan area with many buildings. Hence, the shadow fading model can be

used to describe the signal’s slow fading caused by the reflection and diffraction on those

pillars.

In the remainder of this section, we first develop the multimode model for tunnel chan-

nels. Then the multimode model is extended to cover the room-and-pillar case.

4.2.1 Multimode Model in Tunnel Environments

Actual tunnel cross sections are generally in-between a rectangle and a circle. However,

the EM field distribution and attenuation of the modes in rectangle waveguide are almost

the same as the circular waveguide [56]. Hence, in our model, the tunnel cross section

is treated as an equivalent rectangle with a width of 2a and a height of 2b. A Cartesian

coordinate system is set with its origin located at the center of the rectangle tunnel. kv,

kh and ka are the complex electrical parameters of the tunnel vertical/horizontal walls and

the air in the tunnel, respectively, which are defined as: kv = ε0εv + σv
j2π f0

, kh = ε0εh + σh
j2π f0

and ka =ε0εa + σa
j2π f0

, where εv, εh and εa are the relative permittivity for vertical/horizontal

walls and the air in the tunnel; ε0 is the permittivity in vacuum space; σv, σh and σa are

their conductivity; f0 is the central frequency of the signal. The three areas are assumed
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to have the same permeability µ0. The wave number in the tunnel space is given by k =

2π f0
√
µ0ε0εa. We define the relative electrical parameter kv and kh for concise expression,

which are kv = kv/ka and kh = kh/ka. We assume that the transmitter antenna is an X-

polarized electrical dipole. The results for Y-polarized antenna can be obtained simply by

interchanging the x- and y-axes. The major polarized field plays a dominant role inside the

tunnel and the coupling term can be omitted. Hence, in our multimode model, we only

consider the major polarized field.

4.2.1.1 Multiple Mode Propagation in Tunnels

The propagation of EM waves in tunnels can be viewed as the superposition of multi-

ple modes with different field distribution and attenuation coefficients. By solving the

Maxwell’s equations, the field distribution of each mode can be derived in the form of

eigenfunctions [29, 50, 27]:

Eeign
m,n (x, y) ' sin

(mπ
2a

x + ϕx

)
· cos

(nπ
2b

y + ϕy

)
(110)

where ϕx = 0 if m is even; ϕx = π
2 if m is odd; ϕy = 0 if n is odd; ϕy = π

2 if n is even.

The field at any position (x, y, z) inside the tunnel can be obtained by summing up the

field of all significant modes, which is given by:

ERx(x, y, z) =

∞∑
m=1

∞∑
n=1

Cmn · Eeign
m,n (x, y) · e−(αmn+ jβmn)·z (111)

where Cmn is the mode intensity on the excitation plane; αmn and βmn are the attenuation

coefficient and the phase-shift coefficient, respectively, which is given by [29, 34, 50]:

αmn =
1
a

( mπ
2ak

)2
Re

kv√
kv − 1

+
1
b

( nπ
2bk

)2
Re

1√
kh − 1

βmn =

√
k2 −

(mπ
2a

)2
−

(nπ
2b

)2
(112)

The waveguide model considers that only the lowest order mode exists in the tunnel, i.e.

C11 = 1 and Cmn = 0 if (m, n) , (1, 1). However, in the near region of the transmitter,
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there exist multiple modes. The intensity of each modes need to be determined. In the next

step, we first analyze the field distribution of the excitation plane by the GO model. Then a

mode matching technique is utilized to convert the sum of rays of the GO model to the sum

of modes. Consequently, the mode intensity Cmn on the excitation plane can be obtained.

4.2.1.2 Field Analysis of the Excitation Plane by the GO Model

The total field in the tunnel is equal to the sum of ray contributions from all reflection

images and the source. The reflection images and the source on the excitation plane are

located as Fig. 39 shows. Due to the geometry characteristic of rectangle cross section

shape, the images and the reflection rays have the following properties:

• The ray coming from image Ip,q experiences |p| times reflection from vertical wall

and |q| times reflection from horizontal ceiling/floor.

• Suppose that α is the incident angle on the ceiling/floor, and β is the incident angle

on the wall. For a certain ray, these angles remain the same.

Consider that the transmitter is located at the coordinate (x0, y0, 0), and the observation

point is set at the coordinate (x, y, z). The field at the transmitter is E0. The field at the

observation point is the sum of the rays coming from all the images:

ERx(x, y, z) = E0 ·

∞∑
p=−∞

∞∑
q=−∞

[
exp(− jkrp,q)

rp,q

]
· S (kv)

|p|
· R(kh)

|q|
(113)

where rp,q is the distance between image Ip,q and the receiver:

rp,q =
√

(2pa±x0− x)2 + (2qb±y0− y)2 + z2; (114)

where ”+” sign is for the case when p or q is even, while ”−” sign is for that case when

p or q is odd. R(kh) and S (kv) are the reflection coefficients on the horizontal and vertical

walls.
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Figure 39: The set of images in the excitation plane in a rectangular cross section tunnel.

If the tunnel size is much larger than the free-space wavelength of the incidence wave,

the reflection coefficients are given by [36]:

R(kh) =
cosα −

√
kh − sin2α

cosα +

√
kh − sin2α

; S (kv) =
kv cos β −

√
kv − sin2β

kv cos β +

√
kv − sin2β

(115)

where α is the incident angle of rays on the horizontal ceiling/floor; and β is the incident

angle of rays on the vertical walls. Since we only consider the rays with small grazing

angle (otherwise the path loss is huge), R(kh) and S (kv) can be approximated as:

R(kh)=−exp
(−2 sinα√

kh−1

)
=−exp

( −2√
kh − 1

·
|2qb±y0− y|

rp,q

)
;

S (kv)=−exp
(−2kv sinβ√

kv−1

)
=−exp

( −2kv√
kv − 1

·
|2pa±x0− x|

rp,q

)
(116)
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4.2.1.3 Mode-Matching in the Excitation Plane

By rearranging the ray sum in (113), we can divide the ray sum into four parts:

ERx(x, y, z) =

∞∑
p,q=−∞

f (4qa + x0 − x, 4pb + y0 − y) +

∞∑
p,q=−∞

f (4qa + x0 − x, 4pb + 2b − y0 − y)

+

∞∑
p,q=−∞

f (4qa + 2a − x0 − x, 4pb + y0 − y) +

∞∑
p,q=−∞

f (4qa + 2a − x0 − x, 4pb + 2b − y0 − y)

(117)

where f (u, v) is the function defined as:

f (u, v)= E0·
exp(− jk

√
u2 + v2 + z2)

√
u2 + v2 + z2

· (−1)p(v)+q(u) (118)

· exp

 −2
√

u2 + v2 + z2

( |v|p(v)√
kh − 1

+
|u|kvq(u)√

kv − 1

)
where p(v) and q(u) are discontinuous functions that takes values of 0,±1,±2, · · · . To

facilitate the mode matching, we approximately transform p(v) and q(u) to continuous

functions. Then,

p(v) =
|v|
2b

; q(u) =
|u|
2a

(119)

Note that each part in (117) is a periodic function of 4a and 4b. We first consider the first

part in (117). According to 2-dimension Poisson Summation Formula [108], the sum can

be converted to:

∞∑
p,q=−∞

f (4qa + x0 − x, 4pb + y0 − y) =
1

4a
1

4b

∞∑
m=−∞

∞∑
n=−∞

F1(m, n) · e j mπ
2a xe j nπ

2b y (120)

The coefficient F1(m, n) is the 2-dimension Fourier transform of the function f (x0−x, y0−y)

in the first part in (117):

F1(m, n)=

∫∫ ∞

−∞

f (x0−x, y0−y)e− j mπ
2a xe− j nπ

2b ydxdy (121)

We utilize the saddle-point method [28] to derive the closed-form result of the integra-

tion. 2-dimensional saddle point method provides the approximate integration results of
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the form
∫ b

a

∫ d

c
g(u, v)eh(u,v)dudv. The integration in (121) has exactly the same form, where

g(u, v) =
E0

√
u2 + v2 + z2

(122)

h(u, v) = − jk
√

u2 + v2 + z2 − j
mπ
2a

(x0 − u) (123)

− j
nπ
2b

(y0−v) −
2

√
u2+v2+z2

( |v|p(v)√
kh−1

+
|u|kvq(u)√

kv−1

)

Note that the last term in (123) can be omitted since
√

u2 + v2 + z2 is much larger than 1.

The saddle point of the integration is (u0, v0) so that ∂h(u,v)
∂u |u=u0 = 0 and ∂h(u,v)

∂v |v=v0 = 0.

Hence the saddle point for (121) can be calculated as:

u0 = |z| · tan θm; v0 = |z| · tan θn (124)

where

θm = arcsin
mπ
2ka

; θn = arcsin
nπ
2kb

(125)

Then the approximate results of the integration can be expressed as:∫∫ ∞

−∞

g(u, v)eh(u,v)dudv ' (126)

g(u0, v0)·eh(u0,v0) ·
π√∣∣∣∣∂2h(u0,v0)

∂u2

∣∣∣∣·∣∣∣∣∂2h(u0,v0)
∂v2

∣∣∣∣−(∂2h(u0,v0)
∂u∂v

)2
By this way, the approximate result of the integration in (121) can be obtained by sub-

stituting (122), (123) and (124) into (126). Note that here we only care about the field

ERx(x, y, z) on the excitation plane where z = 0. Therefore, the coefficient F1(m, n) on the

excitation can be expressed as:

F1(m, n)'E0
π√

1−( mπ
2ak )2−( nπ

2bk )2
·e− j( mπ

2a x0+ nπ
2b y0) (127)

By this way, the first part of the ray sum in (117) can be converted to the sum of complex

modes in (120). In the same way, the Poisson sum formula can be utilized in the rest parts
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in (117), and the coefficients F2(m, n),F3(m, n),F4(m, n) can also be derived by the saddle

point method. Therefore, the field in the excitation plane can be expressed as:

ERx(x, y, 0) =
1

4a
1
4b

∞∑
m=−∞

∞∑
n=−∞

[
F1(m, n) + F2(m, n) + F3(m, n) + F4(m, n)

]
· e j mπ

2a xe j nπ
2b y

=

∞∑
m=−∞

∞∑
n=−∞

E0π

16ab
√

1 − ( mπ
2ak )2 − ( nπ

2bk )2
· e j mπ

2a xe j nπ
2b y

·
(
e− j mπ

2a x0e− j nπ
2b y0 + e j mπ

2a x0−mπe j nπ
2b y0−nπ − e j mπ

2a x0e j nπ
2b y0−nπ − e j mπ

2a x0−mπe j nπ
2b y0

)
=

∞∑
m=1

∞∑
n=1

E0π

ab
√

1−( mπ
2ak )2−( nπ

2bk )2
sin

(mπ
2a

x0+ϕx

)
cos

(nπ
2b

y0+ϕy

)
sin

(mπ
2a

x+ϕx

)
cos

(nπ
2b

y+ϕy

)
(128)

Note that (128) is exactly the weighted sum of the eigenfunction of each propagation mode

in (110). The weight of each eigenfunction is the mode intensity Cmn in the excitation

plane:

Cmn =
E0π

ab
√

1 − ( mπ
2ak )2 − ( nπ

2bk )2
sin

(mπ
2a

x0 + ϕx

)
cos

(nπ
2b

y0 + ϕy

)
(129)

By substituting (110), (112) and (129) into (111), the field of any position in the tunnel can

be analytically calculated.

Then suppose the transmitting power is Pt; Gt and Gr are the antenna gains of the trans-

mitter and the receiver, respectively. The predicted received signal power at the coordinate

(x, y, z) is given by:

Pr(x, y, z) = PtGtGr

 1
E0

∑
m,n

Cmn · Eeign
m,n (x, y) · e−(αmn+ jβmn)·z


2

(130)

4.2.1.4 Power Delay Profile for Wideband Signal

If the transmitting signal is wideband, significant signal distortion may happen due to the

dispersion effect of the tunnel waveguide, which will cause severe inter symbol interference

(ISI). We characterize this channel effect by calculating the power delay profile (PDP).
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We assume that the wideband signal s(t) has a bandwidth of B around the central fre-

quency f0, i.e. f ∈ [ f0−B/2, f0+B/2]. The frequency spectrum of the signal is characterized

by its fourier transform S ( f ). This signal can be viewed as the sum of all the sinusoidal

waves whose frequencies fall into the band. The intensity of each sinusoidal wave is deter-

mined by the fourier transform S ( f ). In addition, if the signal s(t) is real, then its fourier

transform S ( f ) is an even function of the frequency f . Hence,

s(t) =

∫ f0+B/2

f0−B/2
S ( f ) · 2 cos (2π f · t) d f (131)

Different frequency elements in (131) have different wave number k( f ). Consequently, the

mode intensity Cmn( f ), field distribution Eeign
m,n (x, y, f ), attenuation coefficients αmn( f ) and

phase-shift coefficients βmn( f ) become the functions of the frequency f .

Moreover, the propagation delay of a certain mode also varies with the frequency. For

a sinusoidal wave signal with a single frequency f , the propagation delay of EHmn mode

can be calculated by τmn( f ) = z/vmn( f ), where vmn( f ) is the group velocity that is given by:

vmn( f ) = c

√√√√
1 −

(c
√(

mπ
2a

)
2
+

(
nπ
2b

)
2

2π f

)2

(132)

According to (132), the group velocity is a function of both the operating frequency f

and the mode’s order (m, n). For the same mode, different frequency signals have different

propagation delay. For a single frequency, different modes also have different delay. Hence,

both the dispersion among modes and the dispersion among frequency elements should be

considered when calculating the power delay profile of a wideband signal. At a certain

time t and position (x, y, z) in the tunnel, the received power of a wideband signal PWB can

be calculated by summing up the contributions of all the arrived significant modes of all

frequency elements, which is given by:

PWB(x, y, z, t)= PtGtGr

{
1
E0

∑
m,n

∫ f0+B
2

f0− B
2

[
Cmn( f )·Eeign

m,n (x,y, f )

· e−αmn·z ·S ( f )·δ(t−
z

vmn( f )
)·cos(2πf t−βmn·z)

]
d f

}2

(133)
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where

δ(x) =


1, if x ≥ 0

0, otherwise
(134)

Then the power delay profile can be derived by calculating (133) in a continuous time slot.

4.2.2 Multimode Model in the Room-and-pillar Environment

As discussed in the beginning of Section III, simplified multimode model combined with

shadow fading model is implemented to characterize the wireless channel in room-and-

pillar environment.

4.2.2.1 The Simplified Multimode Model

Because the room of the room-and-pillar channel in underground mines is usually very

large, the influence of the reflection on the vertical walls is very limited. However, the

reflection on the ceiling and floor cannot be omitted. Hence, the room without pillars is

modeled as a planar air waveguide. It can be viewed as a simplified rectangular waveguide

with dependence on only one coordinate. Hence, we use the same procedure as in the

tunnel case to develop the multimode model in room-and-pillar environment.

First, we utilize the GO model to analyze the excitation area. Because the planar air

waveguide has dependence on only one coordinate, the excitation plane is degenerated to

a line that is perpendicular to the ceiling and floor plane and contains the point of the

transmission antenna. The geometry of the cross section is just the same as that of tunnels

but with only y-coordinate. The properties of the images and the reflection rays in the

tunnel case is still valid. The difference lies in: 1) only y-coordinate takes effect; and 2) the

incident angle on the ceiling and floor is a constant – 0◦, hence the reflection coefficient is

(1 −
√

kh)/(1 +
√

kh) for X-polarized field and (
√

kh − 1)/(
√

kh + 1) for Y-polarized field.

In the following derivation, we assume the transmission antenna is X-polarized. The result

for Y-polarized antenna can be derived in the similar way. Consider that the transmitter is
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located at the height y0, and the observation point is set at the height y. The major field at

the observation point is given by:

ERx = E0 ·
∑

q

[
exp(− jkyq(y))

yq(y)

]
·

(
1 −
√

kh

1 +
√

kh

)|q|
(135)

where yq(y) is the distance between image Iq and the receiver, which is given by:

yq(y) =


|2qb − y0 − y| , if q is odd

|2qb + y0 − y| , if q is even
(136)

Second, we express the field on the excitation line obtained above into the weighted sum

of planar air waveguide modes, and then derive the mode intensity. The eigenfunctions of

X-polarized modes in planar air waveguide is given by [70]:

Ex
n(y) = E0 · cos

[(
nπ
2b
− j ·

nπ
2b2k

kh
√

kh − 1

)
y + ϕy

]
' E0 · cos

(nπ
2b

y + ϕy

)
(137)

where ϕy = π
2 if n is even; ϕy = 0 if n is odd.

The mode intensity Cn is derived by converting the ray sum in (135) into mode sum

using the Poisson sum formula. By using the same saddle point method as in the tunnel

case, the mode intensity Cn is:

Cn(z) =
E0π

bz
√

1 − ( nπ
2bk )2

· cos
(nπ
2b

y0 + ϕy

)
(138)

Note the intensity Cn is now a function of the distance z. With the intensity and eigenfunc-

tion of each mode, the field at any position can be predicted for the case without pillars.

4.2.2.2 Shadow Fading Model and the Combined Result

The pillars in the room-and-pillar mining area are randomly distributed and have random

shapes. Signals may experience many reflection and diffraction on those pillars before

reaching the receiver. It is very similar to the terrestrial metropolitan area with many build-

ings. Hence, the shadow fading model can be used to describe the signal’s slow fading
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caused by the reflection and diffraction on those pillars. The amplitude change caused by

shadow fading is often modeled using a log-normal distribution [82]. Since one mode can

be viewed as a cluster of rays with the same grasping angle, we assume that each mode

experiences identically distributed and independent shadow fading when it goes through

the pillars. Therefore, the predicted field at any position (b + y m above the floor, z m apart

the transmitter) can be obtained by summing up the field of all modes, which is given by:

ERx(y, z) = E0 ·
∑

n

Cn(z) · Ex
n(y) · e−(αn+ jβn)·z · χn (139)

where {χn} are identically distributed and independent log-normal random variables; the

field is divided by 2πz because the plane wave in the room-and-pillar environment spreads

in all horizontal directions; αn is the attenuation coefficient and βn is the phase-shift coeffi-

cient, which is given by [29, 70]:

αn =
1
b

( nπ
2bk

)2
Re

1√
kh − 1

; βn =

√
k2 −

(nπ
2b

)2
(140)

In the room-and-pillar environment, since the shape, number and position of the pillars

are random and vary from case to case, it is not possible to derive a general analytical solu-

tion to calculate the power delay profile. Consequently, to characterize the signal distortion

of wideband signals in the room-and-pillar environments, field experiments are needed to

measure the power delay profile in such mining areas.

4.2.3 Comparison with Experimental Measurements

To validate the multimode model, we compare our theoretically predicted received power

with the experimental measurements in both tunnel and room-and-pillar environments pro-

vided in [33] and [56]. Additionally, we also compare our calculated power delay profile

with the experimental measurements in a tunnel shown in [41].

In [33], the experiments were conducted in a concrete road tunnel. The tunnel is 3.5 km

long and has an equivalent rectangle (7.8 m wide and 5.3 m high) cross section shape.

The transmitting and receiving antennas are vertical polarized dipoles at the same height
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Theoretical 900 MHz

Theoretical 450 MHz

Experimental 900 MHz

Experimental 450 MHz

(a) Received power of 450 MHz and 900 MHz signals in
a road tunnel (the theoretical result is displaced 75 dB
downward).

Theoretical 900 MHz

Experimental 900 MHz

(b) Received power of 900MHz signal in a room-and-
pillar mining area (the theoretical one is displaced 40
dB downward).

Figure 40: Experimental and theoretical received power
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(2 m). Both antennas are placed at the same horizontal position of one-quarter of the tunnel

width. Using the same parameters stated above, we calculated the received power by the

multimode model. In Fig. 40(a), the calculated results at the frequency of 450 MHz and

900 MHz are compared with the measurements shown in [32, Fig. 18]. The theoretical

curves are vertically displaced from the experimental curves for better comparison. It is

shown that the curves of the theoretical and experimental results are close to each other.

Our multimode model accurately predicts the attenuation velocity, the fast fading in the

near region, the flat fading in the far region and the effects of different operating frequency

in the tunnel environment.

In [56], the experiments were conducted in a room-and-pillar mining area with an av-

erage height of 6 m. The ceiling and floor are made of rocks and the typical values of

electrical parameters are εh = 10ε0 and σh = 0.01 S/m. The air in this mining area has

the same electrical parameters as the atmosphere. The transmitting and receiving antennas

are vertical polarized dipoles placed at the same height (2 m). In Fig. 40(b), the calcu-

lated results in the frequency of 900 MHz are compared with the measurements shown in

[55, Fig. 8 (b)]. As it can be seen, the theoretical results have a good agreement with the

experimental measurements in the room-and-pillar environment in underground mines.

In [41], wide-band propagation measurements were performed in a rectangular concrete

subway tunnel that is 3.43 m wide, 2.6 m high and 258.7 m long. The signal has a 400 MHz

bandwidth at the central frequencies of 900 MHz. The noise floor is 84 dBm, which yields

a threshold of 74 dBm for an input 10 dB SNR. The transceiver antennas are horizontally

polarized at the center of the tunnel and 50 m apart. In our estimation, we use 900 MHz

carrier to modulate a 10 ns wide raised-cosine pulse, which has the same signal bandwidth

and central frequency as the experiments. In Fig. 4.2.3, the calculated power delay profile is

compared with the measurements shown in [40, Fig. 8 (a)]. It indicates that the theoretical

results have a good match with the measurements in signal shape, delay spread and signal

strength.
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Theoretical

Experimental

Figure 41: Power delay profile in a Tunnel. The signal bandwidth is 400 MHz and the cen-
tral frequency is 900 MHz. Transceivers are 50 m apart. The theoretical result is displaced
60 dB downward.
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4.2.4 Numerical Evaluation

In this section, we first implement the multimode model to analyze the path loss and delay

spread under various tunnel conditions. Then we extend our analysis on path loss to the

room-and-pillar case.

4.2.4.1 The Tunnel Environment

Except studying the effects of certain parameters, the default values are set as follows: The

tunnel cross section shape is a rectangle with a height of 6 m and a width of 10 m; the tunnel

wall, ceiling and floor are made of the same material with electrical parameters ε = 5ε0,

σ = 0.01 S/m; the tunnel interior is filled with air (ε = ε0, σ = 0 S/m). The operating

frequency (carrier frequency) is set to 1 GHz. The wideband signal is a 20 ns wide raised-

cosine pulse, which has a bandwidth of 200 MHz. The noise floor for the wideband signal

is set to 90 dBm according to the strategy in [41]. It yields a threshold of 80 dBm for

an input 10 dB SNR. The transmitting power is assumed to be 0 dBm. The transmitting

and receiving antennas are horizontal polarized dipoles at the same height (one-third of the

tunnel height). Both antennas are placed at the same horizontal position of one-quarter of

the tunnel width.

The Operating Frequency:

In Fig. 42 we illustrate the effects of operating frequency on the path loss in tunnels.

Specifically, in Fig. 42(a) and Fig. 42(b) we give the signal power and the corresponding

power distribution among significant modes as a function of axial distance at the frequency

of 500 MHz and 1.0 GHz. The curve of the signal power can be divided into two regions.

In the near region, the power attenuates fast and fluctuates very rapidly. This is attributed

to the combined effect of multiple modes. While in the far region, the fall in the signal

power is gradual. This is due to the fact that the higher order modes attenuate very fast as

the distance increases. Hence, the field in the far region is governed by the few low-order

modes left. The relationship between power distribution among modes and the received
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(a) Received signal power and the power distribution
among modes at 500 MHz.
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(b) Received signal power and the power distribution
among modes at 1 GHz.

Figure 42: Received power in tunnels at different operating frequencies.

power is clearly shown in Fig. 42(a) and Fig. 42(b). Although the operation frequency

does not affect the power distribution of modes significantly, it has an obvious influence

on the propagation constants. Signals with higher frequency attenuate slower. Thus, as

the frequency increases, the signal attenuation decreases and the fast fluctuating region is

prolonged, as shown in Fig. 42(b).

In Fig. 43 we analyze the effect of operating frequency and transmission distance on

the power delay profile in tunnels. It is shown that the raised-cosine pulse is widened

and the pulse shape is distorted after propagation in the tunnel, which is caused by the

following two reasons: 1) each frequency element and the each mode of the original signal

has different propagation delay; and 2) the attenuation and phase-shift rates of different

frequency elements and modes are also different. As shown in Fig. 43(a), the delay spreads

of the 500 MHz signal is larger than that of the 1 GHz signal when the transmission distance

is 200 m. This is because that: 1) there are multiple significant modes for both frequency in

the near region; 2) for the signal with lower operating frequency, the differences of group

velocity between the frequency elements are larger, which causes larger delay spread. As

the transmission distance increases to 1200 m, only lower order modes of the 500 MHz

signal are left due to its high attenuation rate. Meanwhile the 1 GHz signal still has several
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(a) Power delay profile at 200 m.
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(b) Power delay profile at 1200 m.

Figure 43: Power delay profile in tunnels at different operating frequencies.

significant modes at 1200 m. Hence the delay spread of the 1 GHz signal is larger in the

far region. For the same signal with different transmission distance, it is observed that the

delay spread increases as the distance increases, which is because that the difference of

propagation delays among the modes and frequency elements increases as the transmission

distance increases. However, after a certain distance, as higher order modes disappear in the

far region, fewer modes are left and the delay spread decreases. Therefore, the delay spread

is a function of distance, which is an increasing function at first and become a decreasing

function after a turning point.

The Tunnel Size:

The tunnel size has similar effects on the path loss and the delay spread as the operating

frequency. In larger dimension tunnels, the attenuation constant
(
αmn in eq (112)

)
is smaller.

Thus, more mode remains significant in far regions. Therefore, the speed of the signal

attenuation decreases and the fast fluctuating region is prolonged in the larger tunnels.

Moreover, since there are more significant modes in the larger dimension tunnel, the delay

spread of the signal in such tunnel is also larger, as shown in Fig. 44. For horizontal

polarized antennas, the tunnel width plays a more important role because the reflection

coefficients on the horizontal ceiling and floor are larger than those on the vertical walls.

Similarly, the tunnel height weights more for vertical polarized antenna.

The Antenna Position and Polarization:
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Figure 44: Power delay profile in tunnels with different tunnel sizes at 1200 m.
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(a) Received signal power and the power distribution
among modes when Tx antenna is placed near the tun-
nel center.
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(b) Received signal power and the power distribution
among modes when Tx antenna is placed near the tun-
nel wall.
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Figure 45: Path loss characteristics in tunnels with different antenna position and polar-
ization.
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(a) Power delay profile when Tx antenna is placed near
the tunnel center.
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(b) Power delay profile when Tx antenna is placed near
the tunnel wall.
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(c) Power delay profile of different antenna polariza-
tion.

Figure 46: Power delay profile in tunnels with different antenna position and polarization
at 1000 m.
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As discussed above, the mode attenuation is mostly determined by the tunnel size and

operating frequency. The mode intensity is to a large extent governed by the position of

the transmitter antenna. In Fig. 45 we give the received power and power distribution

among modes with different antenna positions and polarizations. In Fig. 45(a) we show the

case that the transmitter antenna is placed near the center of the tunnel cross section. The

receiver antenna is placed either at the center or at the marginal position that is one-eighth

of the tunnel height and one-eighth of the width. It is shown that the lowest modes are

effectively excited. If the receiver is also at the center, both the signal attenuation and the

fluctuation are small. If the receiver is placed near the tunnel walls, the attenuation and

fluctuation are much more significant. In Fig. 45(b) we show the case that the transmitter

antenna is placed near the tunnel wall (1/8 of the width and 1/8 of the height). The receiver

antenna is also placed either at the center or at the margin of the tunnel. Near the excitation

plane, the high order modes play the dominant role. In this case, the position of receiver

antenna does not affect the received signal as much as the former case. The attenuation and

fluctuation of received power is significant, no matter where the receiver is placed.

Besides the antenna position, we analyze different antenna polarization in Fig 45(c). To

make the effects more obvious, we choose a wide but low tunnel (10×3 m2) here. We show

that the signal excited from a horizontal polarized antenna attenuates much slower than that

excited from a vertical polarized one. It is consistent with the previous discussion about the

relationship between the tunnel size and antenna polarization. Hence, it can be pointed out

that: in wide but low tunnel, the horizontal polarized antenna is more appropriate while for

narrow but high tunnel, the vertical polarized antenna is more suitable.

In Fig. 46, we investigate the effect of antenna position and polarization on the power

delay profile in tunnels. In particular, we show the case that the transmitter antenna is

placed near the center of the tunnel cross section in Fig. 46(a). The case that the transmitter

antenna is placed near the tunnel wall is shown in Fig. 46(b). The comparison between the

power delay profiles of different polarizations is given in Fig. 46(c). It is shown that the
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delay spread is determined by the power of existing modes and the noise level. If more

modes have much higher power level than the noise, the delay spread is relatively larger.

Otherwise, although the pulse is widened, most of the pulse is submerged in the noise and

only a small portion of the pulse can be observed. Hence, for different antenna positions,

the delay spread of the case when both transceivers are placed in the tunnel center is much

larger than other cases. For different antenna polarizations, the delay spread of horizontal

polarized antenna is larger than the vertical polarized one in wide tunnels where the width

is larger than the height.

The Electrical Parameters:

The electrical parameters consist of permittivity ε and conductivity σ. The tempera-

ture, humidity and pressure have little influence on the air permittivity but may affect the

conductivity more. However, the effect of different conductivity of tunnel air may be ne-

glectable, because it is very small compared to the permittivity. Therefore, the electrical

parameters of tunnel air can be considered the same as those of atmosphere air. Tunnel

walls’ electrical parameters can be looked up in [29], where the permittivity of tunnel ma-

terials are in the range of 5ε0 ∼ 10ε0 and the conductivity is on the order of 10−2 S/m

at the UHF frequency band. In this value range, the received power curves with different

wall electrical parameters are very close to each other. Hence it can be concluded that the

electrical parameters of either tunnel wall or tunnel air do not considerably influence the

signal propagation inside the tunnel.

4.2.4.2 The Room-and-Pillar Environment

We conduct similar simulations in the room-and-pillar environment under the condition

that: 1) the average height of the room is 6 m; 2) the electrical parameters of the ceiling

and floor are εh = 7ε0 and σh = 0.01 S/m; 3) the air in this mining area has the same

electrical parameters as the atmosphere (εa = ε0 and σh = 0 S/m); and 4) the transmitting

and receiving antennas are vertical polarized dipoles placed at the same height (2 m). The
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(a) Received signal power and the power distribution
among modes at 500 MHz.
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among modes at 1 GHz.

Figure 47: Path loss characteristics in room-and-pillar environments with different oper-
ating frequencies.

transmitting power is assumed to be 0 dBm.

We give the received power in dB and the corresponding power distribution among

significant modes as a function of axial distance at the frequency of 500 MHz and 1.0 GHz

in Fig. 47(a) and Fig. 47(b), respectively. It can be observed that the signal attenuates

faster in the near region of the source than in the far region. Due to the shadow fading and

multiple-mode operating, signals experience significant fluctuations in both near and far

region. Since higher frequency signal has lower attenuation coefficients, more number of

modes remain significant in the far region. However, due to the shadow fading caused by

the pillars and the path loss caused by the plane wave spreading, signal propagation with

different operating frequency does not have significant differences.

Besides the operating frequency, other factors such as room height, antenna position/polarization

and electrical parameters in the room-and-pillar environment affect signal propagation in a

similar way as in the tunnel case. However, their influence is much smaller, which can be

explained as follows. Compared to the tunnel case, signals in the room-and-pillar mining

area experience extra multipath fading caused by the pillars. Moreover, higher path loss is

experienced by the wave spreading in the room.
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4.3 Influence of Vehicular Traffic Flow
4.3.1 Channel Model in Empty Tunnels

Let Nmode be the set of significant modes in the tunnel. Nmode = {(m, n)} and |Nmode| = N.

Since the mode’s attenuation rate rises fast as the mode order increases, only a small num-

ber of modes are left after the signal propagates for a certain distance. The number of sig-

nificant modes that need to be considered is determined by multiple parameters, including

the size of the tunnel, the distance between the transceivers, and the operating frequency.

In most cases, the received signal strength is convergent when the first 50 (m + n < 10)

modes are considered. Based on the channel model in empty tunnel given in Section 4.2,

the electric field E
RX
(xr, yr, zr) at the position of the receiver can be obtained by by

E
RX
(xr, yr, zr) =

√
GtGr ·

∑
(m,n)∈Nmode

Eeign
mn,(xr ,yr) · e

−Γmn·zr ·C
T X

mn , (141)

where zr is the distance between the transmitter and the receiver; (xr, yr) is the coordinate

of the receiver at the tunnel cross section; Gt and Gr are the TX and RX antenna gain,

respectively; Eeign
mn,(xr ,yr) is the value of the eigenfunction of the mode EHmn at the position

of the receiver; Γmn = αmn + jβmn where αmn is the attenuation coefficient of the mode

EHmn and βmn is the phase shift coefficient of EHmn; CT x
mn is the intensity of the mode

EHmn excited by the transmitter. The expressions of Eeign
mn,(x,y), αmn, βmn, and CT x

mn are given

by (110), (112), and (129), respectively. If the tunnel is curved, the expressions of αmn and

βmn should be modified according to [69].

4.3.2 Signal Propagation around a Single Vehicle

The propagation modes can travel along the tunnel without interference with each other if

the tunnel is empty. Vehicles in the tunnel may cause additional propagation loss of each

mode, which is regarded as in-mode loss. Moreover, part of the energy of each mode may

be coupled to the other modes due to the existence of the vehicles, which is regarded as
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Figure 48: Influence of a single vehicle on the mode propagation.

mode coupling. In this section, we analyze the influence of a single vehicle on the mode

propagation inside the tunnel.

Without loss of generality, the vehicles are modeled as metal cubes with different sizes.

According to US Federal Regulations, the width w, height h and length l of most vehicles

(including cars, vans, buses and trucks) fall into the following intervals (unit is meter):

w ∈ [1.5, 2.5], h ∈ [1.3, 4.2], and l ∈ [3.5, 16.2] . (142)

4.3.2.1 Classification of Vehicle Influence

Assuming that there is a vehicle with size (w × h × l) inside the tunnel. Fig. 48 shows the

top view and the side view of the tunnel with a vehicle. The vehicle is zv meters apart from

the transmitter. The middle axle of the vehicle lies parallel to the z-axes with the position

x = xv. In the empty tunnel between the transmitter and the vehicle, the field of the EHmn

mode can be calculated according to (179):

Emn(x, y, z) = CT x
mn · e

−Γmn·z · Eeign
mn,(x,y) , (143)
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Substituting (110) into (143) yields:

Emn(x, y, z)

' CT x
mn · e

−Γmn·z · sin
(mπ

2a
x + ϕx

)
· cos

(nπ
2b

y + ϕy

)
= CT x

mn · e
−(αmn+ jβmn)·z ·

1
2

[
ρ1(m)e j mπ

2a x + ρ2(m)e− j mπ
2a x

]
·

1
2

[
ρ2(n)e j nπ

2b y + ρ1(n)e− j nπ
2b y

]
=

1
4

CT x
mn · e

−αmn·z ·
{
ρ1(m)ρ2(n)eik[sin(αm)·x+sin(βn)·y−βmn/k·z]

+ ρ2(m)ρ2(n)eik[sin(−αm)·x+sin(βn)·y−βmn/k·z] + ρ1(m)ρ1(n)eik[sin(αm)·x+sin(−βn)·y−βmn/k·z]

+ ρ2(m)ρ1(n)eik[sin(−αm)·x+sin(−βn)·y−βmn/k·z]} , (144)

where ρ1(u) = − j if u is even; ρ1(u) = 1 if u is odd; ρ2(u) = j if u is even; ρ2(u) = 1 if u is

odd. It shows that each propagation mode can be viewed as the superposition of four plane

waves with four symmetric directions. ±αm and ±βn are the grazing angles of the plane

waves on the tunnel walls, which satisfy:

sin(αm) =
mπ
2ak

and sin(βn) =
nπ
2bk

. (145)

It indicates that the higher order modes have larger grazing angles. Since higher order

mode has much higher attenuation rate [84, 86], we pay more attention on the lower order

modes. For the lowest order mode EH11, the grazing angle is very small (around 1◦).

As illustrated in Fig. 48, the influence of the vehicle on the propagation mode EHmn

can be classified into two categories:

• The plane waves hitting the vehicle’s front surface will be reflected back. The back-

ward waves will travel in the opposite direction of the receiver hence will not in-

fluence the receiver. Therefore the energy of the waves hitting the vehicle’s front

surface can be viewed as additional loss of the EHmn mode caused by the vehicle.

This kind of influence is defined as in-mode loss.

• The plane waves hitting the edge between two surfaces of the vehicle will be diffracted.

The diffracted waves has different transmission directions, which means that the en-

ergy is coupled to other modes. This kind of influence is defined as mode coupling.
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4.3.2.2 In-Mode Loss

The in-mode loss is first calculated. The eigenfunction of the propagation mode gives

the energy distribution pattern in the tunnel cross section of each mode. Based on the

eigenfunctions, the energy reflected back by the vehicle’s front surface can be obtained.

The in-mode loss is the ratio of the energy reflected back to the total energy in the cross

section:

Lmn =

∫ xv+ w
2

xv−
w
2

∫ −b+h

−b
[Eeign

mn,(x,y)]
2dxdy∫ a

−a

∫ b

−b
[Eeign

mn,(x,y)]
2dxdy

(146)

=
1

4ab

[
w −

2a
mπ

(−1)m cos(
mπ
a

xv) sin(
mπ
a

w)
]
·
[
h −

b
nπ

sin(
nπ
b

h)
]
.

It shows that the in-mode loss is a function of the width, height and the position of the

vehicle. Actually, in the interval of the tunnel where the vehicle exists, the mode attenuation

coefficient Γmn increases. It is because that the tunnel cross section in this interval is smaller

than the empty tunnel. The increased attenuation coefficient causes the additional in-mode

loss. However, this part of in-mode loss can be ignored for low order modes, since the

attenuation coefficient is small for low order mode and the vehicle length is relatively short

(less than 20 m).

4.3.2.3 Mode Coupling

The diffraction on the vehicle edges causes a portion of one mode’s energy coupling to

other modes. According to Fig. 48, the diffraction occurs on the four vertical edges and the

two horizontal edges on the vehicle. Before quantitatively calculating the mode coupling

coefficient, the property of the mode diffraction on the edge is first analyzed.

Proposition 1: In a rectangular tunnel, the vertical edge on an obstruction can only

cause one mode to be coupled to the modes that have the same eigenfunctions on y-axes (the

eigenfunctions on x-axes can be different). In other words, when mode EHmn is diffracted

on a vertical edge, it can only be coupled to the modes {EHtn|t = 1, 2, · · · }. Similarly,
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Figure 49: Diffraction of an incident wave on a vertical edge in the tunnel.

when mode EHmn is diffracted on a horizontal edge, it can only be coupled to the modes

{EHms|s = 1, 2, · · · }.

Proof: Here we only prove the vertical edge case. The horizontal edge case can be

proved in the same way. Consider that the incident wave of mode EHmn hits a vertical edge,

as shown in Fig. 49. The angle between the vertical edge and the direction of the incident

wave is β, while the angle between the vertical edge and the direction of the diffracted

wave is β′. β is the complementary angle of the grazing angle on the tunnel ceiling/floor βn

(βn +β = 90◦). According to the geometrical theory of diffraction (GTD) [17], β′ should be

equal to β (forming the Keller cone). As a result, the grazing angle of the diffracted waves

on the tunnel ceiling/floor is βn. In the meantime, the diffracted keller cone generates an

equivalent radiation source only in the x-z plane. Therefore, after the diffraction on the

vertical edge, the mode EHmn’s grazing angle on the vertical walls can change to any value,

but the grazing angle on the ceiling/floor remains the same. That is, after diffracted on a

vertical edge, mode EHmn can only be coupled to the modes {EHtn|t = 1, 2, · · · }.#

The proposition 1 simplifies the mode coupling analysis in tunnels to two 2-dimensional

problems: the mode coupling in x-z plane for the four vertical edges; and the mode coupling

in y-z plane for the two horizontal edges. In the following part, detailed calculations of the

mode coupling in the y-z plane are given. The results of the mode coupling in the x-z plane

can be derived in the similar way. The total mode coupling effect is the superposition of all
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Figure 50: Side view (y-z plane) of the diffractions on the horizontal edges of a vehicle in
the tunnel.

the six edges’ contributions.

Fig. 50 shows the diffracted rays on the two horizontal edges in the y-z plane. The prop-

agation mode EHmn hits the front upper horizontal edge F0 and the rear upper horizontal

edge R0. Since the attenuation coefficient of the low order mode is small and the vehicle

length is usually several meters, the field attenuation and phase shift from the vehicle front

to the rear can be ignored. Hence the fields at the front edge can be considered as the same

as the field at the rear edge, which is:

Ei
mn = CT x

mn · e
−Γmn·zv · Eeign

mn,(x,h−b) (147)

= CT x
mn · e

−Γmn·zv · sin
(mπ

2a
x + ϕx

)
·

1
2

[
ρ2(n)eik(h−b) sin(βn) + ρ1(n)eik(h−b) sin(−βn)

]
, Ei

mn(βn) + Ei
mn(−βn) ,

where we view the field as the sum of two rays with grazing angle ±βn on y-z plane.

Mode Coupling on the Rear Horizontal Edge:
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We first consider the diffracted field caused by the rear edge. Note that only the incident

rays with direction −βn is considered for the diffractions on the rear edge, which is due to

the reason that rays with direction βn cannot hit the rear edge, as shown in Fig. 48(b).

The edge can be viewed as a new radiation source. Due to the reflections on the tunnel

ceiling/floor, the new source generates periodically positioned source images, as shown in

Fig. 50. The diffracted field caused by the rear edge can be calculated by summing up all

the rays coming from all the images, which is:

ED(x, y, z+zv) =

∞∑
p=−∞

Ei
mn(−βn)·D(αm,π∓φp,βn)·R(φp)|p| ·

e− jkrp

√rp
, (148)

where the upper sign is used for the case when p is zero, positive odd or negative even; the

lower sign is for other cases; rp is the distance from image Rp in Fig. 50:

rp =

√
z2 +

[
2pb ± (h−b) − y

]2


+ if p is even

− if p is odd
; (149)

φp is the angle of the grazing angle on the tunnel celing/floor of the rays coming from image

Rp; it is also the diffracted angle on the y-z plane:

φp = tan−1
[
|2pb ± (h−b) − y|

z

] 
+ if p is even

− if p is odd
; (150)

R(φp) is the reflection coefficient that can be simplified as an exponential function [84, 86]:

R(φp) ' − exp
(
−

2 sin φp
√
εw

)
; (151)

D(θ1, θ2, θ3) is the diffraction coefficient on an edge, where π
2 − θ1 is the angle between the

incident ray and the edge; θ2 is the angle of the diffracted ray on the plane perpendicu-

lar to the edge; and θ3 is the angle of the incident ray on the plane perpendicular to the

edge. Since the GTD method cannot characterize the diffraction near the shadow boundary

and the reflection boundary, we adopt unified theory of diffraction (UTD) to calculate the

coefficients, which is given in [20, fomula (25)].
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To calculate the energy coupled to the other modes, the Poisson summation formula

[109] is introduced to translate the sum of rays in (148) to the sum of modes. The ray sum

in (148) can be sorted into two parts: the sum of all the functions that the subscript p is

even and the sum of the functions that the subscript p is odd:

ED(x, y, z+zv) =

∞∑
q=−∞

f (4qb+h−b−y) +

∞∑
q=−∞

f (4qd+3b−h−y) . (152)

Each sum in (152) is a function with period 4b. According to the Poisson summation

formula, the sum of even subscript can be transformed to
∞∑

q=−∞

f (4qb+h−b−y) =
1
4b

∞∑
s=−∞

Fe(s) · e j sπ
2b y , (153)

where the coefficient Fe(s) is the Fourier transform of the function f (h − b − y) with even

subscript:

Fe(s)=
∫ ∞

−∞

f (h−b−y) · e− j sπ
2b ydy (154)

= Ei
mn(−βn)·

∫ ∞

−∞

D(αm,π∓φ0,βn)·(−1)p(y) ·exp
(
−2p(y) sin φ0
√
εw

)
·

e− jk
√

z2+(h−b−y)2

[z2+(h−b − y)2]
1
4

· e− j sπ
2b y dy,

where φ0 = tan−1
[
|h−b−y|

z

]
. Note that a continuous function p(y) = |y − h + b|/2b is used to

approximate the discrete number of reflections on the tunnel ceiling/floor. The motivation

for the approximation is to fit the ray sum in (148) to the Poisson sum formula. The saddle-

point method [28] is deployed to evaluate the integration in (154). The saddle-point ysp

is:

ysp ' |z| · tan βs , (155)

where βs is the grazing angle of the mode EHms on the tunnel ceiling/floor that can be

calculated by (145). It is assumed that the order number s is small and the permittivity of the

tunnel wall is large. Then, using the saddle point method, we can obtain the approximate

result of the integration in (154):

Fe(s)'
1
2
Ei

mn(−βn)·[D(αm,π−|βs|,βn)+D(αm,π+|βs|,βn)] (156)

·sgn(s)·

√
2πk

k cos(βs)
·e−jk cos(βs)z ·e− j sπ

2b (b−h) .
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The coefficient Fo(s) for the sum of odd subscript in (152) can be calculated in the same

way. Hence the total field right behind the vehicle (z ' 0) can be expressed as

ED(x, y, 0+zv) =
1

4b

∞∑
s=−∞

[Fe(s) + Fo(s)] · e j sπ
2b y (157)

=
1

4b
Ei

mn(−βn)
∞∑

s=1

[
D(αm,π−βs,βn)+D(αm,π+βs,βn)

]
·

√
2πk

k cos(βs)
·cos

( sπ
2b

h + ϕy

)
· cos

( sπ
2b

y + ϕy

)
,

where ϕy = 0 if s is odd; ϕy = π
2 if s is even. Note that the second line in (157) is exact

the sum of the propagation modes. The total contribution caused by the whole edge can

be calculated by integrate (157) along the horizontal edge. Therefore we can derive the

coupling coefficient Br,h
mn→ms from mode EHmn to mode EHms caused by the rear horizontal

edge:

Br,h
mn→ms =

a
√

2πk
2mπkb cos(βs)

·ρ1(n)·eik(h−b)sin(−βn) ·
[
D(αm,π−βs,βn)+D(αm,π+βs,βn)

]
·sin(

mπxv

2a
+ ϕx) sin(

mπw
4a

)·cos(
sπ
2b

h+ϕy) , (158)

where ϕx = 0 if m is even; ϕx = π
2 if m is odd.

Mode Coupling on the Front Horizontal Edge:

The mode coupling coefficient for the front horizontal edge can be calculated in the

similar way as the rear horizontal edge. As shown in Fig. 50, the only two differences are:

1) the incident waves have both the directions ±βn; and 2) due to the shadow effect of the

vehicle itself, not all the images can illuminate the rest of the tunnel; Only the original

source, the images with positive odd subscripts and the images with negative subscripts

take effects. As a result, the coupling coefficient B f ,h
mn→ms from EHmn to EHms caused by the

front horizontal edge can be expressed as

B f ,h
mn→ms =

a
√

2πk
2mπkb cos(βs)

· sin(
mπxv

2a
+ ϕx) sin(

mπw
4a

)·cos(
sπ
2b

h+ϕy) (159)

·
{
ρ1(n)·eik(h−b)sin(−βn)·D(αm,π−βs,βn) +ρ2(n)·eik(h−b)sin(βn)·D(αm,π−βs,−βn)

}
.
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Total Mode Coupling:

The mode coupling coefficient for the four vertical edges can be derived in the same

way as the horizontal edges. We only need to interchange the x-axes data and the y-axes

data. Therefore the total coupling coefficient Btotal
mn→ms from EHmn to EHms caused by the

vehicle is the sum of the coefficients of the two horizontal edges:

Btotal
mn→ms=

a
√

2πk
2mπkb cos(βs)

·sin(
mπxv

2a
+ϕx) sin(

mπw
4a

)·cos(
sπ
2b

h+ϕy) (160)

·
{
ρ2(n)·eik(h−b)sin(βn)·D(αm,π−βs,−βn) +ρ1(n)·eik(h−b)sin(−βn)·

[
2D(αm,π−βs,βn)+D(αm,π+βs,βn)

]}
.

The total coupling coefficient Btotal
mn→tn from EHmn to EHtn caused by the vehicle is the sum

of the coefficients of the four vertical edges:

Btotal
mn→tn =(−1)d

n
2e·

b
√

2πk
2nπka cos(αt)

·cos(
nπ
2b

h) (161)

·

{
cos

( tπ
2a

(xv+
w
2

)
)
·
[
ρ1(m)eik(xv+

w
2 )sin(αm)·D(βn,π−αt,−αm)

+ρ2(m)eik(xv+
w
2 )sin(−αm)·

(
2D(βn,π−αt,αm)+D(βn,π+αt,αm)

)]
+cos

( tπ
2a

(xv−
w
2

)
)
·
[
ρ2(m)eik(xv−

w
2 )sin(−αm)·D(βn,π+αt,αm)

+ρ1(m)eik(xv−
w
2 )sin(αm)·

(
2D(βn,π+αt,−αm)+D(βn,π−αt,−αm)

)]}
.

4.3.2.4 Analytical Expression of a Single Vehicle’s Effect

We construct the influence matrix of a vehicle using the results shown in (183), (160) and

(161). If there are N significant modes inside the tunnel, the size of the influence matrix

I is N × N. The elements in the diagonal of the matrix consist of the in-mode loss of

each significant mode, which is given by (183). The other elements in the matrix are the

mode coupling coefficients. According to proposition 1, mode coupling can only happen

between two modes that has the same field distribution either in x-z plane or y-z plane.

The coupling coefficients between those modes are given by (160) and (161). The mode

coupling coefficients between other modes are zero. Given the size and the position of the

vehicle, its influence on the signal propagation can be analytically expressed by using the
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influence matrix I, which is:

I=



1 − L1 Btotal
2→1 · · · Btotal

N→1

Btotal
1→2 1 − L2 · · · Btotal

N→2

...
...

. . .
...

Btotal
1→N Btotal

2→N · · · 1 − LN


. (162)

Hence, the intensity of all the significant modes behind a vehicle inside the tunnel are:

(
C′1,C

′
2, · · · ,C

′
N
)T

=I·(C1,C2, · · · ,CN)T , (163)

where {C1,C2, . . . ,CN} are the intensity of all the significant modes in front of the vehicle;

and {C′1,C
′
2, . . . ,C

′
N} are the intensity behind the vehicle.

4.3.3 Channel Modeling for Underground Tunnels with Deterministic and Random
Vehicular Traffic Flows

In the real tunnels, there exist multiple vehicles between the transceivers. In this section, the

wireless channels for the L-lane (L = 1, 2, ...) road tunnel with deterministic and random

vehicular traffic flows are characterized, respectively. In particular, we first develop the

deterministic model for the case when the geometric information of the vehicular traffic

flow (the size and position of each vehicle between the transceivers) are known. Then we

extend the channel model to cover the case when the statistical data of the vehicular traffic

flow is given but the exact number, sizes and the positions of the vehicles of the traffic flow

between the transceivers are not known. This channel model is defined as statistical model.

It should be noted that the statistical model is suitable for most real world applications.

Finally, the theoretical models are validated by comparing the predicted received power

with the simulation result provided in [8].

4.3.3.1 Deterministic Model

Given the geometric information of the tunnel and all vehicles, the influence of multiple

vehicles on the signal propagation can be derived basing on the results in Section 4.3.1 and
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Section 4.3.2. Assuming that there are M vehicles between the transceivers in the tunnel.

The tunnel geometry is the same as Section 4.3.1. The position and size of the ith vehicle

are (xi
v, zi) and (wi, hi, li), respectively. The transmitter is placed in the tunnel cross section

where z = z0 and the receiver is placed at (xr, yr, zr). Since the mode propagation can be

expressed using matrix [58, 85], the field intensity at the position of the receiver can be

expressed as

E
RX
(xr,yr,zr)=Eeign

(xr,yr)
·DM · C

TX
, (164)

where Eeign
(xr,yr)

is the eigenfunction vector at the position (xr, yr):

Eeign
(xr,yr)

=
[
Eeign

1,(xr ,yr), E
eign
2,(xr ,yr), · · · E

eign
N,(xr ,yr)

]
; (165)

DM is the propagation matrix, which is a N ×N matrix that indicates the mode propagation

characteristics in the tunnel with M vehicles between the transceivers. DM is defined as

DM = A(zr−zM) ·
M∏

i=1

[
Ii · A(zi−zi−1)

]
, (166)

where A(z) is the mode attenuation matrix for transmitting all the significant modes for z

meters in an empty tunnel:

A(z) =



e−Γ1·z 0 · · · 0

0 e−Γ2·z · · · 0
...

. . .
...

0 0 · · · e−ΓN ·z


; (167)

Ii is the influence matrix caused by the ith vehicle that is defined in (162). CTX
is the mode

intensity vector excited by the transmitter at z0:

C
TX

=
[
C

TX

1 ,C
TX

2 , · · ·C
TX

N

]T
. (168)

4.3.3.2 Statistical Model

In practical applications, the exact sizes and positions of all the vehicles in the tunnel cannot

be acquired. Consequently, the propagation matrix DM in (185) cannot be accurately calcu-

lated. Therefore, instead of using the deterministic vehicular traffic information, we adopt
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the traffic flow theory and the vehicle size distribution model to predict the propagation

matrix DM.

Distribution of the Propagation Matrix DM:

According to (162), (185), and (167), the element Duv in the uth row and the vth column

of the propagation matrix DM can be calculated as

Duv = (169)
N∑
i1

N∑
i2

· · ·

N∑
iM−1

I1,{i1,v}·e
−Γv·(z1−z0) ·

M−1∏
l=2

[
Il,{il,il−1} ·e

−Γil−1·(zl−zl−1)
]
·IM,{u,iM−1}·e

−ΓiM−1·(zM−zM−1)·e−ΓiM·(zr−zM)

,
where Il,{il,il−1} is the element in the il

th row and the il−1
th column of the influence matrix Il.

Since Il,{il,il−1} and Γn are complex, Duv is also complex. Hence it can be expressed as

Duv = Re(Duv) + j · Im(Duv) . (170)

For clear expression, we use Θi1,i2,...iM−1 to denote the addends in the summation in (169).

Therefore,

Duv =

N∑
i1

N∑
i2

· · ·

N∑
iM−1

Θi1,i2,...iM−1 . (171)

Since the tunnel is considered to be long, we assume that the total number of vehicles

in the traffic flow is correspondingly large. Moreover, the vehicles have random sizes and

positions. Thus, Il,{il,il−1} and (zl−zl−1) are random variables. Therefore, Re(Duv) and Im(Duv)

can be viewed as the summation of a sufficiently large number of independent random vari-

ables, each with finite mean and variance. According to the central limit theorem and the

Lindeberg’s condition [15], Re(Duv) and Im(Duv) are approximately normally distributed.

Mean and Variance of the Propagation Matrix DM:

To characterize the above normal distributions, in this section, we calculate the mean

and variance of Re(Duv) according to the traffic flow theory and the vehicle size distribution

model. The mean and variance of Im(Duv) can be derived in the similar way.

In long road tunnels, there is usually no traffic lights and the vehicular traffic flow

has only one direction (separate tunnels for traffic with different directions). Hence the
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vehicular traffic flow can be modeled as a Poisson flow [37]. The total number of the

vehicles within the distance d is denoted as M. The probability that the number of vehicles

M = m is:

P(M = m) =

(
λ

d
v

)m
·

1
m!
· e−λ

d
v , (172)

where λ is the average rate of vehicle arrival (vehicles/sec) in the tunnel; and v is the average

velocity of the vehicles. The distance between the ith and (i−1)th vehicle ∆z = zi−zi−1 obeys

independent and identical exponential distribution. The probability density function (pdf)

is:

f (∆z) = λ · e−λ
∆z
v . (173)

Every vehicle runs in one of the L lanes in the tunnel. Hence the x-coordinate of the ith

vehicles xi
v belongs to {a(1+2l

L −1)|l = 0, 1, . . . L−1}. The x-coordinate of the vehicle obeys

uniform distribution with the probability 1/L. The size of the vehicles are also assumed to

have the uniform distribution in the size interval defined in (142).

According to the central limit theorem and the Lindeberg’s condition [15], the mean

and variance of Re(Duv) are approximately the summation of the mean and variance of the

real part of each addend in (171), respectively. Therefore,

E [Re(Duv)] '
N∑
i1

N∑
i2

· · ·

N∑
iM−1

E
[
Re(Θi1,i2,...iM−1)

]
= Re

[
E
( N∑

i1

N∑
i2

· · ·

N∑
iM−1

Θi1,i2,...iM−1

)]
; (174)

σ2[Re(Duv)] '
N∑
i1

N∑
i2

· · ·

N∑
iM−1

σ2[Re(Θi1,i2,...iM−1)
]

(175)

= −E2 [Re(Duv)] +
1
2

E
( N∑

i1

N∑
i2

· · ·

N∑
iM−1

|Θi1,i2,...iM−1 |
2
)

+
1
2

Re
[
E
( N∑

i1

N∑
i2

· · ·

N∑
iM−1

Θ2
i1,i2,...iM−1

)]
.

According to (174), the mean of Re(Duv) is the real part of the element in the uth row

and the vth column of the mean of the propagation matrix DM. Since the sizes/positions

of all vehicles in the vehicular traffic flow can be viewed as independently and identically

distributed, the mean of the propagation matrix DM can be calculated as

E(DM) = E [E(DM |M = m)] =

∞∑
m=0

E[A(∆z)] ·
{
E(I) · E[A(∆z)]

}m
· P(M = m) , (176)
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where E(I) is the mean of the influence matrix that can be calculated according to (142) and

(162); E[A(∆z)] is the mean of the mode attenuation matrix that can be calculated using

(167) and (173). Based on the Eigendecomposition method [81], the matrix E(I) ·E[A(∆z)]

can be decomposed as

E(I) · E[A(∆z)] = V ·



Λ1 0 · · · 0

0 Λ2 · · · 0
...

...
. . .

...

0 0 · · · ΛN


· V−1 , (177)

where Λi is the ith eigenvalue of the matrix E(I) · E[A(∆z)]; V is the square (N × N) matrix

whose columns are the eigenvectors of E(I) · E[A(∆z)]. Then, by substituting (193) and

(177) into (176), we derive:

E(DM) =

∞∑
m=0

{
E[A(∆z)] · V ·



Λm
1 0 · · · 0

0 Λm
2 · · · 0

...
...

. . .
...

0 0 · · · Λm
N


· V−1 ·

(
λ

d
v

)m
·

1
m!
· e−λ

d
v

}

=E[A(∆z)] · V ·



eλ
d
v (Λ1−1) 0 · · · 0

0 eλ
d
v (Λ2−1) · · · 0

...
...

. . .
...

0 0 · · · eλ
d
v (ΛN−1)


· V−1 . (178)

E[Re(Duv)] is the real part of the element in the uth row and the vth column of the matrix

E(DM) given in (178). The variance of Re(Duv) (i.e. σ2[Re(Duv)]) can be calculated in the

same way according to (175). Due to limited space, the detail deductions are not elaborated

here.

The Gaussian-distributed entries in the propagation matrix DM can be completely char-

acterized after the mean and the variance are derived. Then the received power at any

positions in the tunnel can be analytically predicted by (180).
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4.3.3.3 Comparison with Simulation Results

To validate the deterministic model and the statistical model, we compare our theoretical

results with the numerical simulation results provided in [8]. The numerical results in [8]

are simulated by the geometrical optics (GO) model. Noted that we use the numerical

simulation results instead of the experiment measurements due to the following reasons:

1) it is difficult to conduct experiments in the real road tunnels with running vehicles; 2)

most existing experiment results are taken in empty tunnels; 3) although the GO model

requires a great amount of detailed input data of the parameters to describe the tunnel

environments and the vehicles, which is impossible in practical applications, the accuracy

of the GO model has been widely accepted. We choose the simulation results in [8] because

the simulation scenario is complicated enough and very similar to the real road tunnel.

In the simulation in [8], the tunnel is 1000 m long with 2 lanes. The tunnel cross section

has a equivalent rectangle (10 m wide and 6 m high) shape. The tunnel can be viewed as

straight for the first 500 m. Form 500 m to 1000 m, the tunnel turns left and forms a 1
4 circu-

lar arc. The transmitter is vertical polarized dipoles at the height of 4.4 m with 1 W power,

which is placed near the entrance of the tunnel. The operating frequency is 945 MHz. The

receiver is also vertical polarized and the coordinate in the tunnel cross is (2.6 m,−1.5 m).

There are 23 vans (1.8 m wide, 1.8 m high, and 5 m long) uniformly distributed on the left

lane and 24 buses (2.2 m wide, 3 m high, and and 10 m long) uniformly distributed on the

right lane.

Using the same scenario parameters stated above, we first calculated the received power

along the tunnel by the deterministic model. As shown in Fig. 51, the received power

calculated by the deterministic model is compared with the simulation results given in

[8, Bild 6.7]. It is shown that the results derived by the deterministic model match the

simulation results accurately. Then the accuracy of the statistical model is tested. The

statistical model does not require the size and position information of each specific vehicle.

According to the scenario parameters stated above, we can derive that the vehicular traffic
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Figure 51: Numerical and theoretical received power in a curved tunnel with traffic (the
numerical one is displaced 40 dBuV upward for better comparison).
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flow parameter λ
v = 0.047 m−1. Then the received power along the tunnel can be calculated

by the statistical model. In Fig. 51, the received power calculated by the statistical model

is compared with the simulation results given in [8, Bild 6.7]. The curve of the statistical

model accurately match the simulation results, especially when the axial distance is larger

than 200 m. The prediction of the statistical model is less accuracy in the very near region,

since the condition of the central limit theorem is no longer valid if the distance between the

transceivers is too short. It should be noted that In the curved tunnel section, the prediction

accuracy of both the deterministic model and the statistical model is not as high as in

the straight tunnel section, which is because that the Eigenfunction in the curved tunnel

deviates from its original value. However, the error is small and tolerable.

4.3.4 Numerical Anaylsis

In this section, we utilize the proposed channel models to analyze the signal propagations

in different tunnels with different vehicular traffic flows. Three types of tunnels are inves-

tigated, including a straight one-lane road tunnel, a straight two-lane road tunnel, and a

curved two-lane road tunnel. First, we use the deterministic model to analyze the effects

of the size, number and the positions of the vehicles on the signal propagation in the tun-

nels. Then, the statistical model is utilized to give the received power as a function of the

transmission distance, vehicular traffic load and vehicle average velocity.

Except studying the effect of certain parameters, default values are set as follows: The

tunnel cross section shape is a rectangle with a height of 6 m and a width of 10 m for two-

lane tunnels and with a height of 5 m and a width of 6 m for one-lane tunnels; the tunnel

wall, ceiling and floor are made of the same material with electrical parameter εw = 5ε0,

σ = 0.01 S/m; the tunnel interior is filled with air (ε = ε0, σ = 0 S/m). The transmitting

and receiving antennas are vertically polarized dipoles at the same height (one-third of the

tunnel height). Both antennas are placed at the same horizontal position of one-quarter of

the tunnel width. The transmitting antenna has the power of 1 W and the impedance of
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50 Ω. The operating frequency is 1 GHz.

4.3.4.1 Tunnels with Deterministic Vehicular Traffic Flow

The deterministic model is first analyzed to capture the effects of the size, number and the

positions of the vehicles on the signal propagation in the tunnels.

Straight One-Lane Road Tunnel:

Fig. 52(a) illustrates the effects of the size, number and position of the vehicles on the

received power in a straight one-lane tunnel. Compare with the signal propagation in empty

tunnels, the existence of the vehicles causes the two impacts: the additional path loss and

additional signal fluctuation. These effects can be clearly explained by the theory proposed

in Section 4.3.2: 1) the additional path loss is caused by the in-mode loss; and 2) due to

the mode coupling, more significant modes appear behind the vehicle; hence the received

signal experiences more serious fluctuations. Comparing the received power when there

are 10 trucks with the power when there are 20 trucks, we find that the additional loss

and fluctuation are approximately proportional to the number of vehicles. The size of

the vehicle has significant effects on the path loss, since the influence of 10 cars is much

smaller than the influence of the 10 trucks. We compare the received power when 10 truck

are uniformly placed in the 1000 m tunnel and the power when all the trucks are placed

in the first 500 m of the tunnel. It indicates that the influence of the axial position of the

vehicles is not significant.

Straight Two-Lane Road Tunnel:

Fig 52(b) shows that the signal propagation in a straight two-lane road tunnel. It shows

that the path loss and signal fluctuation are much smaller than the one-lane tunnel. The

phenomenon can be explained by the following reasons: 1) the two-lane tunnel has a larger

cross section. Hence the signal attenuation of each mode in the empty tunnel is smaller

than the one-lane case. 2) the ratio of the vehicle’s cross section area to the tunnel’s cross

section area is much smaller than the one-lane case, hence the in-mode loss and the mode
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(c) Received signal power in curved two-lane road tunnel.

Figure 52: Signal propagation in road tunnels with determined vehicular traffic flows.
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coupling become less significant.

Curved Two-Lane Road Tunnel:

Fig. 52(c) illustrates the signal propagations in a curved tunnel with different types of

vehicular traffic flows. The curve radius of the tunnel is 500 m. Since the attenuation rate

of the signal excited by a vertically polarized antenna does not change significantly in the

curved tunnels [69], the signal propagation characteristics are similar to the straight tunnel

case.

4.3.4.2 Tunnels with Random Vehicular Traffic Flow

In most practical applications, the sizes and positions of all the vehicles in the traffic flow

are not deterministic. However, the traffic load and the average vehicle velocity can be

estimated in the tunnel. Then, our statistical model can be utilized to predict the received

power in the road tunnel. In this section, the statistical model is used to analyze the effect

of traffic load and the average vehicle velocity. The traffic load is described using the

average rate of vehicle arrival λ. We define λ = 0.5 as the high traffic load case and

λ = 0.3 as the low traffic load case. In the same way, we define the average vehicle velocity

v = 54 km/hour as the high speed case and v = 36 km/hour as the low speed case. It should

be noted that the Doppler effect is not considered since the velocity of the vehicles is not

high. The motivation to define the vehicle velocity is to determine the mean number of

vehicles inside the tunnel.

Fig. 53(a), Fig. 53(b) and Fig. 53(c) show the received power under the influence of

different types of vehicular traffic flows in a straight one-lane tunnel, a straight two-lane

tunnel, and a curved two-lane tunnel, respectively. The curve radius of the curved tunnel is

500 m. The received power is shown as a function of the transmission distance. According

to the statistical model, the sizes of the vehicles are uniformly distributed in the size interval

defined in (142). Each vehicle runs in one of the L lanes with the same probability. The

number of vehicles in the traffic flow is determined by the traffic load and the vehicle
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(c) Received signal power in curved two-lane road tunnel.

Figure 53: Signal propagation in road tunnels with random vehicular traffic flows
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velocity. Fig. 53 shows that the impact of the random vehicular traffic flow is similar to the

impact of the deterministic traffic flow. Specifically, 1) The additional loss caused by the

traffic flow in the one-lane tunnel is much more significant than the additional loss in the

two-lane tunnel, since the same vehicle can block higher ratio of the one-lane tunnel cross

section than the two-lane tunnel cross section. 2) The traffic flow with lower load and higher

speed causes smaller additional loss than the traffic flow with higher load and lower speed

does, which can be explained as follows: When the traffic load is light, fewer vehicles enter

the tunnel; and when the average vehicle speed is high, the vehicles in the tunnel leave

the tunnel more quickly. Consequently, the number of vehicles in the tunnel is smaller.

According to the previous discussion on the effects of vehicle number, the additional path

loss caused by the traffic flow with lower load and higher speed should be less significant.

3) In the curved tunnel, the influence of the vehicles on the signal propagation is similar

to the straight tunnel case due to the vertically polarized antenna. The signal fluctuation is

more severe than the straight tunnel case, which is not caused by the vehicles but the tunnel

curvature.

4.4 Capacity and Outage Analysis of MIMO and Cooperative Commu-
nication Systems in Underground Mines and Tunnels

As the most important criteria in designing MIMO and cooperative communication sys-

tems, the channel capacity and the outage behavior need to be investigated in underground

tunnel environments. Specifically, according to channel model in underground mines and

tunnels, the channel characteristics in underground tunnels are significantly different from

the terrestrial channel. First, due to the reflections on the tunnel walls, the propagation of

electromagnetic (EM) waves form regular patterns (i.e. modes) in underground tunnels.

Each propagation mode has different field distribution and attenuation rate. The effec-

tiveness of excitation and reception of those modes is determined by the position of the

transmitter and the receiver [84, 86]. Second, obstructions with random sizes and positions

inside the tunnel, such as vehicles and machineries, cause additional loss and coupling of
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Figure 54: Tunnel Environment

the propagation modes [88, 90]. Since the channel characteristics have straightforward

influences on the channel capacity, in this section, we analyze the capacity and outage be-

havior of the MIMO and cooperative communication systems based on the unique channel

model in the underground tunnels.

4.4.1 MIMO Channel in Underground Tunnels

If the underground tunnel is empty, the complex channel gain hi j between receiver i and

transmitter j inside the tunnel can be obtained by summing up the gains of all significant

modes at receiver’s position [86]:

hi j =
√

GtGr ·
∑

(m,n)∈Nmode

Eeign
mn,(xi,yi)

·C
T X

mn, j · e
−Γmn·zr , (179)

where zr is the distance between the transmitter and the receiver; (xi, yi) is the coordinates

on the tunnel cross section of the receiver i; Gt and Gr are the TX and RX antenna gain,

respectively; Γmn = αmn + jβmn where αmn is the attenuation coefficient of the mode EHmn

and βmn is the phase shift coefficient of EHmn; Eeign
mn,(x,y) is the eigenfunction of mode EHmn

at (x, y); C
T X

mn, j is the intensity of the EHmn mode near the transmitter j. The expressions of

Eeign
mn,(x,y), αmn, βmn, and CT x

mn are given by (110), (112), and (129), respectively.

Actual tunnels are filled with obstructions with different sizes and positions. In Sec-

tion 4.3, we have theoretically modeled the influence of the traffic flow on the signal

propagation in tunnels. Consider that a traffic flow with M vehicles exists between the

transceivers in the tunnel, as shown in Fig. 54. The position and size of the kth vehicle are

(xk
v, z

k
v) and (wk, hk, lk), respectively. The transmitter is located at z0 = 0 m and the receiver
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is located ate zr. Then the channel gain hi j between the transmitter j and the receiver i can

be expressed as

hi j =
√

GtGr · Eeign
(xi,yi)
·A(zr−zM) ·

M∏
k=1

[
Bk · A(zk−zk−1)

]
· C

TX

(x j,y j) , (180)

where Eeign
(xiyi)

is the eigenfunction vector of the receiver i at (xi, yi, zr); and CTX

(x jy j)
is the mode

intensity vector of the transmitter j at (x j, y j, z0):

Eeign
(xiyi)

=
[
Eeign

1,(xi,yi)
, Eeign

2,(xi,yi)
, · · · Eeign

N,(xi,yi)

]
, CTX

(x jy j)=
[
CTX

1,(x j,y j),C
TX
2,(x j,y j), · · ·C

TX
N,(x j,y j)

]
; (181)

A(z) is the N × N attenuation matrix of transmitting all the N modes for z meters in an

empty tunnel; and Bk is the N × N influence matrix caused by the kth vehicle in the traffic

flow:

A(z) =



e−Γ1·z 0 · · · 0

0 e−Γ2·z · · · 0
...

. . .
...

0 0 · · · e−ΓN ·z


, Bk =



1 − Lk
1 Bkl

2→1 · · · Bk
N→1

Bk
1→2 1 − Lk

2 · · · Bk
N→2

...
...

. . .
...

Bk
1→N Bk

2→N · · · 1 − Lk
N


, (182)

where Lk
mn on the diagonal of the matrix is the additional loss of the EHmn mode caused by

the kth vehicle in the traffic flow:

Lk
mn =

1
4ab

[
wk −

2a
mπ

(−1)m cos(
mπ
a

xk
v) sin(

mπ
a

wk)
]
·
[
hk −

b
nπ

sin(
nπ
b

hk)
]

; (183)

Except the elements on the diagonal of the matrix Bk, the other elements, i.e. Bk
mn→st, are

the mode coupling coefficients. According to [88, 90], the influence matrix Bk can be

approximately viewed as a diagonal matrix since the mode coupling coefficients are much

smaller than the elements on the matrix diagonal. Consequently, the channel gain hi j in

(180) can be simplified as

hi j =
√

GtGr · Eeign
(xi,yi)
·D

M

zr
· C

TX

(x j,y j) , (184)
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where DM

zr
is the propagation matrix given by

D
M

zr
=


e−Γ1·zr·

∏M

k=1
(1−Lk

1) · · · 0
...

. . .
...

0 · · · e−ΓN·zr·
∏M

k=1
(1−Lk

N)

 . (185)

4.4.2 Capacity and Outage Behavior of MIMO Systems in Underground Tunnels

In this section, the capacity and the outage behavior of the MIMO systems are investigated.

Explicit formulas of capacity probability density function (PDF), ergodic capacity, and out-

age capacity are developed. Based on the analysis of MIMO capacity and outage behavior,

an outage-optimal MIMO antenna geometry design scheme is developed to maximize the

MIMO outage capacity.

4.4.2.1 MIMO Capacity in Underground Tunnels

We consider a narrowband channel with p transmitting (TX) and q receiving antenna ele-

ments. The complex channel gain matrix H is a q × p matrix [hi j]q×p. The matrix element

hi j is the channel gain between RX antenna i and TX antenna j, which is given in (184). We

assume that the transmitter does not have the channel state information (CSI). Hence, equal

power is allocated to each TX antenna. The MIMO capacity with equal power allocation is

given by [96]

CMIMO = E
[

log det
(
Iq×q + ρ/p ·H ·H∗

)]
, (186)

where ρ is the signal to noise ratio (SNR) at the transmitter, which is defined as ρ = Ptot
N0

,

where Ptot is the total transmission power of all TX antenna elements; N0 is the noise power.

The channel gain matrix H can be derived from (184):

H =
√

GtGr · ERX · D
M

zr
· CT X , (187)
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where DM(zr) is the propagation matrix defined in (185); ERX is the mode eigenfunction

matrix at RX side; and CT X is the mode intensity matrix at TX side:

ERX=



Eeign
1,(x1,y1) Eeign

2,(x1,y1) · · · Eeign
N,(x1,y1)

Eeign
1,(x2,y2) Eeign

2,(x2,y2) · · · Eeign
N,(x2,y2)

...
...

. . .
...

Eeign
1,(xq,yq) Eeign

2,(xq,yq) · · · Eeign
N,(xq,yq)


; CTX=



CTX
1,(x1,y1) CTX

1,(x2,y2) · · · CTX
1,(xp,yp)

CTX
2,(x1,y1) CTX

2,(x2,y2) · · · CTX
2,(xp,yp)

...
...

. . .
...

CTX
N,(x1,y1) CTX

N,(x2,y2) · · · CTX
N,(xp,yp)


.

Substitute (187) into (186) and let Gt = Gr = 1 for brevity, the MIMO capacity CMIMO

becomes:

CMIMO= log det
(
Iq×q +

ρ

p
·ERX·D

M

zr
·CTX ·CTX∗ ·D

M∗

zr
·ERX∗

)
. (188)

Since det(I+AB)=det(I+BA) [81], the MIMO capacity becomes:

CMIMO= log det
[
IN×N +

ρ

p
(ERX∗ERX)·D

M

zr
·(CTXCTX∗)·D

M∗

zr

]
. (189)

It is difficult to derive the exactly PDF of the MIMO capacity in (189). However,

approximate results can be derived if we assume the SNR at the receiver is either high

enough or low enough.

High SNR Regime Analysis:

Theorem 3. In the high SNR regime, the MIMO capacity in underground tunnels follows a

normal distribution.

Proof. As discussed in Section 4.2, only modes that have significant energy need to be

considered. Consequently, all the elements on the diagonal of the mode propagation matrix

DM

zr
is not trivial. Moreocer, in high SNR regime analysis, we assume that the number of TX

antenna elements p and RX antenna elements q are larger than the number of significant

modes N (i.e. p ≥ N and q ≥ N). Then DM

zr
, CTX and ERX are all N×N full-rank matrix. If the

SNR at the RX side is high enough, then the MIMO capacity in (189) can be approximated

as

C
high

MIMO
'

N∑
l=1

log
(
ρ·

∣∣∣e−Γl·zr ·

M∏
k=1

(1−Lk
l )
∣∣∣2) + log det

(
ERX∗ERX

)
+ log det

(1
p

CTXCTX∗
)
. (190)
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The last two terms in (190) are determined by the geometry of the RX and TX an-

tenna elements, respectively. The first term in (190) is the sum of the capacities of N

sub-channels. Each sub-channel refers to a propagation mode. The capacity of each sub-

channel is governed by the tunnel size and the vehicular traffic flow. Since the number,

positions, and sizes of the vehicles between the transceivers are random, the capacities of

each sub channels are also random. The first term in (190) can be further developed as

N∑
l=1

log
(
ρ·

∣∣∣∣e−Γl·zr ·

M∏
k=1

(1−Lk
l )
∣∣∣∣2) =

N∑
l=1

(
log ρ + 2 log

∣∣∣e−Γl·zr
∣∣∣) +

N∑
l=1

M∑
k=1

2 log(1−Lk
l ). (191)

The first sum in (191) is determined by the SNR and the mode attenuation coefficients,

which are constants after the communication starts. The second sum in (191) is determined

by the traffic flow of random vehicles. The additional loss parameters {Lk
l , k = 1, 2, ...M; l =

1, 2, ...N} are independent random variables. Since the tunnel is considered to be long, we

assume that the number of vehicles M is correspondingly large. Therefore, the second

sum in (191) can be viewed as the sum of a sufficiently large number of independent ran-

dom variables, each with finite mean and variance. According to the central limit theorem

and Lindeberg’s condition [15], the second sum in (191) are approximately normally dis-

tributed. Then the MIMO capacity in (190) is actually the sum of a normal distributed

random variable and several constants. Therefore, the MIMO capacity in high SNR regime

follows a normal distribution, which completes the proof. �

Since the normal distribution can be completely characterized by its first two moments,

we calculate mean and variance of the MIMO capacity in the rest part of this subsection.

Substitute (191) into (190) and calculate the mean value, we derive

E[C
high

MIMO
]=

N∑
l=1

(
log ρ+2 log

∣∣∣e−Γl·zr
∣∣∣)+logdet

(
ERX∗ERX

)
+logdet

(1
p

CTXCTX∗
)
+E

[ N∑
l=1

M∑
k=1

2log(1−Lk
l )
]
.

(192)

In underground tunnels, vehicular traffic flow can be modeled as a Poisson flow [37].

If the distance between the transceivers is zr, the probability that the number of vehicles
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M = m is:

P(M = m) =

(
λ

zr

v

)m
·

1
m!
· e−λ

zr
v , (193)

where λ is the average rate of vehicle arrival (vehicles/sec) in the tunnel; and v is the average

velocity of the vehicles. Then the last term in (192) can be further developed as

E
[ N∑

l=1

M∑
k=1

2 log(1−Lk
l )
]
=

∞∑
m=0

{
P(M=m)·

m∑
k=1

E
[ N∑

l=1

2 log(1−Lk
l )
]}
. (194)

Every vehicle runs in one of the L lanes in the tunnel. Hence the x-coordinate of the ith

vehicles xi
v belongs to {a(1+2l

L −1)|l = 0, 1, . . . L−1}. The x-coordinate of the vehicle obeys

uniform distribution with the probability 1/L. The size of the vehicles are also assumed to

have the uniform distribution in the size interval defined in (142). Then the expectations

E[
∑N

l=1 2 log(1−Lk
l )] in (194) are the same for all k ∈ {1, 2, ...M}. Thus, we denote:

µL = E
[ N∑

l=1

2 log(1−Lk
l )
]
, (195)

which can be calculated using (183). Substituting (193) and (195) into (194) yields

E
[ N∑

l=1

M∑
k=1

2 log(1−Lk
l )
]
=

∞∑
m=0

(
λ

zr

v

)m
·

1
m!
· e−λ

zr
v ·m·µL = λ ·

zr

v
· µL . (196)

Substituting (196) into (192) yields the mean (ergodic) MIMO capacity in high SNR regime:

E[C
high

MIMO
]=

N∑
l=1

(
logρ+2log

∣∣∣e−Γl·zr
∣∣∣)+logdet

(
ERX∗ERX

)
+logdet

(1
p

CTXCTX∗
)
+λ

zr

v
µL , (197)

The variance of the MIMO capacity in high SNR regime can be calculated in the similar

way:

Var[C
high

MIMO
]=λ ·

zr

v
· σ2

L
, where σ2

L
= Var

[ N∑
l=1

2 log(1−Lk
l )
]
, (198)

Note that σ2
L

can also be calculated using (183). After the mean and variance of the MIMO

capacity are given, the capacity distribution in high SNR regime is completely character-

ized.
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Corollary 4. In the high SNR regime, the ε-outage capacity of the MIMO systems in un-

derground tunnels is given by

Outageε[C
high

MIMO
]=E[C

high

MIMO
]+erf−1(2ε−1)·

√
2Var[Chigh

MIMO
] , (199)

where erf−1(x) is the inverse function of the error function erf(x); E[C
high

MIMO
] and Var[C

high

MIMO
] are

given by (197) and (198), respectively.

Proof. According to Theorem 1, the MIMO capacity in high SNR regime follows the nor-

mal distributionN(E[C
high

MIMO
],Var[C

high

MIMO
]). Since the ε-outage capacity is the capacity guaran-

teed for (1−ε) of the channel realizations, we have

ε = PN
(
C

high

MIMO
< Outageε[C

high

MIMO
]
)

=
1
2

[
1 + erf

(Outageε[C
high

MIMO
] − E[C

high

MIMO
]√

2Var[Chigh

MIMO
]

)]
, (200)

Corollary 1 can be derived from (200), which completes the proof. �

Low SNR Regime Analysis:

Theorem 5. In the low SNR regime, the MIMO capacity in underground tunnels follows a

lognormal distribution.

Proof. For brevity, we first use a simple matrix to denote the product of matrixes in (189):

G def
=
ρ

p
(ERX∗ERX)·D

M

zr
·(CTXCTX∗)·D

M∗

zr
. (201)

According to the relationship between matrix determinant and matrix trace [81], (189) can

be further developed as

CMIMO= log det(I + G)= log
(
exp

{
tr[log(I+G)]

})
= log

{ ∞∑
k=0

1
k!

[
−

∞∑
j=1

(−1) j

j!
tr(G j)

]k}
, (202)

where tr(X) is the trace of the matrix X. In low SNR regime,

|tr(G)| � |
(−1) j

j!
tr(G j)| , j > 1 ; |tr(G)| � |

1
k!

[−tr(G)]k| , k > 1 . (203)
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Substituting (203) into (202) yields

C
low

MIMO
' log

[
1+tr(G)

]
' tr(G)·log e=

ρ

p
log e·

p∑
j=1

q∑
i=1

∣∣∣∣∣ N∑
l=1

[
Eeign

l,(xi,yi)
·C

TX

l, j ·e
−Γl·zr ·

M∏
k=1

(1−Lk
l )
]∣∣∣∣∣2, (204)

For brevity, we denote fl,i, j
def
= Eeign

l,(xi,yi)
·C

TX

l, j ·e
−Γl·zr . Then

∣∣∣∣∣ N∑
l=1

[
Eeign

l,(xi,yi)
·C

TX

l, j·e
−Γl·zr·

M∏
k=1

(1−Lk
l)
]∣∣∣∣∣2=∣∣∣∣∣ N∑

l=1

{[
Re( fl,i, j)+ j·Im( fl,i, j)

]
·

M∏
k=1

(1−Lk
l )
}∣∣∣∣∣2=X1

2+X2
2 , (205)

where

X1 =

∣∣∣∣∣∣ N∑
l=1

[
Re(fl,i, j)·

M∏
k=1

(1−Lk
l )
]∣∣∣∣∣∣ ; X2 =

∣∣∣∣∣∣ N∑
l=1

[
Im(fl,i, j)·

M∏
k=1

(1−Lk
l )
]∣∣∣∣∣∣ . (206)

where Re(x) and Im(x) denote the real and imaginary part of the complex value x, respec-

tively;

Again, we assume that the number of vehicles M is large enough so that
∏M

k=1(1−Lk
l )

can be viewed as the product of a sufficiently large number of independent and positive

random variables. According to the central limit theorem [15],
∏M

k=1(1−L
k
l ) in (206) approx-

imately follow log-normal distributions. X1 and X2 shown in (206) are the absolute values

of two weighted sums of the log-normal variables
∏M

k=1(1−Lk
l ), respectively. According to

[63], it has been well recognized that the sum of log-normal random variables can be well

approximated by a new lognormal variable. It can be proved that this result also applies to

the absolute values of the weighted sums of log-normal variables. Therefore, X1 and X2 are

also log-normal variables. Moreover, based on the definition of the log-normal distribution,

it is easy to prove that the square of a log-normal variable is also a log-normal variable. As

a result, X1
2 and X2

2 follow the log-normal distribution. The MIMO capacity shown in

(202) is the sum of the log-normal variables given in (205). Therefore, the MIMO capacity

in low SNR regime follows a log-normal distribution. This completes the proof. �

Substitute (205) into (204) and calculate the mean value, we derive

C
low

MIMO
=
ρ

p
log e·

p∑
j=1

q∑
i=1

(X1
2 + X2

2) . (207)
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According to the proof of Theorem 2, X1
2 and X2

2 are log-normal variables. The mean

(or variance) of the sum of the log-normal variable can be approximated calculated by the

sum of the mean (or variance) of each addend variable [63]. Therefore,

E[C
low

MIMO
]=

ρ

p
log e·

p∑
j=1

q∑
i=1

(
E[X1

2] + E[X2
2]
)
, (208)

Var[C
low

MIMO
]' (

ρ

p
log e)2 ·

p∑
j=1

q∑
i=1

(
Var[X1

2]+Var[X2
2]
)
, (209)

In the following, we show the detailed calculating process of E[X1
2] and Var[X1

2], while

E[X2
2] and Var[X2

2] can be easily derived by exchanging Re(fl,i, j) with Im(fl,i, j).

According to [57], the mean and variance of the square of a log-normal variable can be

expressed as functions of the mean and variance of the log-normal variable. Then we have:

E[X1
2] = E2[X1] + Var[X1] , Var[X1

2]=
(
E2[X1]+Var[X1]

)2[(1+
Var[X1]
E2[X1]

)4−1
]
, (210)

Next we calculate the mean and variance of lognormal variable X1:

E[X1]=

∣∣∣∣∣∣ N∑
l=1

{
Re(fl,i, j)·E

[ M∏
k=1

(1−Lk
l )
]}∣∣∣∣∣∣ , Var[X1]'

N∑
l=1

{
Re2(fl,i, j)·Var

[ M∏
k=1

(1−Lk
l )
]}
, (211)

We first calculate E[X1] in (211), where

E
[ M∏

k=1

(1−Lk
l )
]

=

∞∑
m=1

P(M=m)·E
[ m∏

k=1

(1−Lk
l )
]
. (212)

Since the positions and the sizes of the vehicles have independent and identical distri-

butions,

E
[ m∏

k=1

(1−Lk
l )
]

=

m∏
k=1

E
[
1−Lk

l
]

= Em[
1−Lk

l
] def

= µl
m , (213)

where E
[
1−Lk

l

]
can be calculate using (183). Here we use µl to denote E

[
1−Lk

l

]
for brevity.

Substituting (193), (212), and (213) into (211) yields:

E[X1] =

∣∣∣∣∣∣ N∑
l=1

{
Re(fl,i, j)·eλ

zr
v (µl−1)

}∣∣∣∣∣∣ . (214)
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Similarly, we can derive

Var[X1]'
N∑

l=1

{
Re2( fl,i, j)·

[
eλ

zr
v (µl

2+σ2
l−1)−eλ

zr
v (µl

2−1)]}; and σ2
l

def
= Var

[
1−Lk

l
]
. (215)

where µl is defined in (213); we use σ2
l to denote Var

[
1−Lk

l

]
for brevity.

By substituting (210), (214), (215) into (208) and (209), we can calculate the mean

(ergodic capacity) and variance of the MIMO capacity in low SNR regime. Then the outage

capacity of the MIMO systems in low SNR regime can be calculated based on the following

corollary.

Corollary 6. In the low SNR regime, the ε-outage capacity of the MIMO systems in under-

ground tunnels is given by

Outageε[C
low

MIMO
] =

E[C
low

MIMO
]

√
κ
· eerf−1(2ε−1)·

√
2 ln κ , where κ = 1 +

Var[C
low

MIMO
]

E2[Clow

MIMO
]
, (216)

where E[C
low

MIMO
] and Var[C

low

MIMO
] are calculated in the above analysis.

Proof. According to Theorem 2, the MIMO capacity in low SNR regime follows the log-

normal distribution. Then we have

ε = P log-N

(
C

low

MIMO
< Outageε[C

low

MIMO
]
)

=
1
2

[
1 + erf

( ln Outageε[C
low

MIMO
] − ln

E[C
low
MIMO

]
√
κ

√
2 ln κ

)]
, (217)

Corollary 2 can be derived from (217), which completes the proof. �

4.4.2.2 MIMO Antenna Geometry Design Scheme

So far the MIMO capacity in underground tunnels are thoroughly analyzed. In this subsec-

tion, the optimal MIMO antenna geometry is designed to maximize the outage capacity.

Since the MIMO capacity in tunnels have different attributes in high SNR and low SNR

regime, in this subsection, we first develop the optimal MIMO antenna geometry in high

SNR regimes. Then this optimal MIMO antenna geometry is modified to fit the attributes

in the low SNR regime.

MIMO Antenna Geometry in High SNR Regime:
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In (199), the high SNR ε-outage capacity is determined by the mean and variance of

the high SNR MIMO capacity. According to (197) and (198), the TX and RX antenna

geometries can only affect the mean capacity in (197) but have no effect on the capacity

variance in (198). As a result, in high SNR regime, to maximize the ε-outage capacity is

equal to maximize the mean capacity. Hence, in the next step, we design the TX and RX

antenna geometry to maximize the mean capacity given in (197).

The first term and the last term in (197) are determined by the tunnel size and the vehic-

ular traffic flow between the transceivers, which are not affected by the TX and RX antenna

geometry. The optimal antenna geometries are expected to maximize the second and third

term in (197). It is equal to maximize det(ERX∗ERX) by selecting optimal RX antenna geom-

etry, and to maximize det( 1
pCTXCTX∗) by selecting optimal TX antenna geometry.

According to (110), the eigenfunctions of different modes are orthogonal to each other:

∫ a

−a

∫ b

−b
Eeign

i,(x,y) · E
eign∗
j,(x,y) dx dy '


ab, if i = j

0, otherwise
(218)

At RX side, the matrix ERX∗ERX is in fact the covariance matrix of the eigenfunctions

of all significant modes at the positions of the RX antenna elements. Due to the mode

orthogonality, det(ERX∗ERX) is maximized if ERX∗ERX is diagonal. If the RX antenna elements

are placed at all the positions where the eigenfunctions of significant modes have extrema

values, the matrix ERX·ERX∗ can be approximately diagonalized. The maximum value of

det(ERX∗ERX) is

max
{
det(ERX∗ERX)

}
'

N∏
i=1

[ q∑
i=1

|Eeign
i,(x,y)|

2
]
' qN . (219)

At TX side, we first check the mode intensity CTX
mn, j given in (129). Since

√
1−( mπ

2ak )2−( nπ
2bk )2'

1 for low order modes (i.e. the significant modes considered in this section), CTX
mn, j approx-

imately equals to the mode eigenfunction multiplied by a constant. Hence, the matrix

CTXCTX∗ can also be viewed as the covariance matrix of the eigenfunctions of all significant

modes at the positions of the TX antenna elements. Therefore, in high SNR regime, the
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optimal TX antenna shares the same geometry as the optimal RX antenna geometry, where

antenna elements are placed at all the positions where the eigenfunctions of significant

modes have extrema values. And

max
{
det(

1
p

CTXCTX∗)
}
'

N∏
i=1

[ p∑
j=1

1
p

∣∣∣∣ πab
Eeign

j,(x,y)

∣∣∣∣2] ' ( π
ab

)2N
(220)

Based on the above discussion, the optimal RX and TX MIMO antenna geometry in

high SNR regime is described as follows: the number and geometry of the antenna elements

depend on which modes have significant power in the tunnel. For mode EMmn, p = q =

m × n antenna elements are needed. Their positions {(xu, yv)} should be

xu = −a + (u −
1
2

)
2a
m
, u ∈ [1,m] ; yv = −b + (v −

1
2

)
2b
n
, v ∈ [1, n] (221)

Since lower order modes have lower attenuation rates, the probability that the lower

order modes have significant power is higher. Therefore, lower order modes are first to be

considered when the number of available antenna elements is limited. For example, if we

only have one antenna element, the lowest order mode EH11 is considered. The position

of the antenna element is (0, 0). If we have three antenna elements, both mode EH11 and

EH21 are considered. The positions of the three antenna elements are (0, 0), (−a/2, 0) and

(a/2, 0), so on and so forth.

Intuitively, in high SNR regime, each significant mode needs a set of TX and RX an-

tenna elements to be efficiently excited and received. By substituting (219) and (220) into

(197) and (199), we find that the high SNR ε-outage capacity increases linearly with log q

where q is the number of RX elements. It indicates that more RX elements are always fa-

vorable although the capacity increase becomes trivial when q is larger than a threshold. In

contrast, the high SNR ε-outage capacity remains the same as the number of TX elements

increases, which is because that the total TX power Ptot is a constant and is equally divided

and allocated to each TX elements.

MIMO Antenna Geometry in Low SNR Regime:
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In low SNR regime, the optimal RX antenna geometry designed for high SNR regime

still works, since the proposed RX antenna geometry can effectively receive all significant

propagation modes no matter whether the SNR is high or low. However, the number and

geometry of the TX antenna elements in low SNR regime need to be redesigned since it may

be not efficient to involve a large number of TX antenna elements to excite all propagation

modes in low SNR regime.

Based on the above discussion, our goal in this subsection is to maximize the low

SNR ε-outage capacity in (216) by designing the number and geometry of the TX antenna

elements while keep the RX antenna geometry designed for high SNR regime. In (216), the

low SNR ε-outage capacity is determined by the mean capacity E[C
low

MIMO
] and the coefficient

κ, where κ is determined by the ratio Var[Clow
MIMO]

E2[Clow
MIMO]

, which can be approximately viewed as a

constant if only antenna geometry can be changed, according to (208) - (215). Hence,

the coefficient κ becomes a constant. As a result, in low SNR regime, to maximize the ε-

outage capacity is equal to maximize the mean capacity E[C
low

MIMO
], in the condition that only

the antenna geometry can be designed.

Since the optimal RX antenna geometry for high SNR regime is also utilized in low

SNR regime, the correlation matrix ERX∗ERX becomes a diagonal matrix. Then (201) and

(204) becomes:

C
low

MIMO
' log e · tr

[ρ
p

(ERX∗ERX)·D
M

zr
·(CTXCTX∗)·D

M∗

zr

]
= log e · tr

[ρ
p
· q · I·D

M

zr
·(CTXCTX∗)·D

M∗

zr

]
= log e · tr

[qρ
p

(CTXCTX∗)·(D
M∗

zr
D

M

zr
)
]
=

qρ
p

log e·
N∑

l=1

p∑
j=1

∣∣∣∣CTX

l, j

∣∣∣∣2·∣∣∣∣e−Γl·zr ·

M∏
k=1

(1−Lk
l )
∣∣∣∣2. (222)

To determine the optimal number and positions of the TX antenna elements in low SNR

regime, we first assume that a sufficient large number of TX antenna elements are placed

at the whole tunnel cross section. Then we define a set of indicators {δ j, j = 1, 2, ..., p}

where δ j = 1 if the jth TX antenna element is actually used, otherwise δ j = 0. Then (222)
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becomes:

C
low

MIMO
'

qρ log e∑p

j=1
δ j
·

p∑
j=1

δ j ·

N∑
l=1

∣∣∣∣CTX

l, j·e
−Γl·zr

∣∣∣∣2· M∏
k=1

(1−Lk
l )

2. (223)

Hence,

E[C
low

MIMO
] (224)

'
qρ log e∑p

j=1
δ j
·

p∑
j=1

δ j ·

N∑
l=1

∣∣∣∣CTX

l, j·e
−Γl·zr

∣∣∣∣2·E[ M∏
k=1

(1−Lk
l )

2
]

=
qρ log e∑p

j=1
δ j
·

p∑
j=1

δ j ·

N∑
l=1

∣∣∣∣CTX

l, j·e
−Γl·zr

∣∣∣∣2·eλzr
v (µl

2+σ2
l−1) ,

where µl and σ2
l is defined in (213) and (215), respectively. Therefore, to find the optimal

TX antenna geometry in low SNR regime, it is equal to an optimization problem, which is:

Find : {δ j, j = 1, 2, ..., p}

Maximize :
qρ log e∑p

j=1
δ j
·

p∑
j=1

δ j ·

N∑
l=1

∣∣∣∣CTX

l, j·e
−Γl·zr

∣∣∣∣2·eλzr
v (µl

2+σ2
l−1)

It is not difficult to find the solution of this optimization problem, which is: δk = 1 if

k = arg max j
∑N

l=1

∣∣∣CTX

l, j·e
−Γl·zr

∣∣∣2·eλzr
v (µl

2+σ2
l−1); otherwise δk =0. Therefore, the optimal TX antenna

geometry in low SNR regime involves only one antenna element. According to the channel

model given in Section 4.2, the position of the optimal TX antenna element is located at

the center of the tunnel cross section, i.e., (x, y) = (0, 0).

To sum up, the optimal RX antenna geometry in low SNR regime is the same as in the

high SNR regime. The optimal TX antenna geometry in low SNR regime involves only

one antenna element that is located at the center of the tunnel cross section. This results

can be intuitively explained as follows. In low SNR regime, given a fixed total transmitting

power Ptot, it is more efficient to concentrate all TX power at the antenna element that can

achieves smallest path loss.

4.4.3 Capacity and Outage Behavior of Cooperative Communication Systems in Un-
derground Tunnels

In many applications, such as wireless sensor networks, it is impossible to place multiple

antenna elements on a single device due to the limited size and cost. In this case, instead of
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MIMO, cooperative communication systems can be utilized. In this section, the capacity

and outage behavior of the cooperative communication systems in underground tunnels are

investigated.

4.4.3.1 Capacity and Outage Probability

In this subsection, we investigate the capacity and the outage performance of the selection

Decode-and-Forward (DF) cooperative scheme [51], which has been widely recognized.

The selection DF scheme consists of two phases. In the first phase, the source node sends

out the information, which is received by both the relay node and the destination node.

In the second phase, the relay node check the SNR of the received signal. If the SNR is

above a threshold, the relay node decodes and forwards the received data to the destination

node. Otherwise, the source nodes just send the information again to the destination node.

According to [51], the channel capacity of this cooperative system is given by

Ccoop =


1
2 log

(
1+2ρ|hsd|

2), if |hsr|
2<eR−1

ρ

1
2 log

(
1+ρ|hsd|

2+ρ|hrd|
2), if |hsr|

2≥eR−1
ρ

(225)

where hsd, hrd, and hsr are the channel gains between the source and the destination, the

relay and the destination, and the source and the relay, respectively; ρ is the SNR at the

transmitter; R is the expected data rate. In underground tunnels, the channel gain hsd,

hrd, and hsr can be calculated by (184). Then the instantaneous cooperative capacity in

underground tunnels can be derived. However, the distribution of the cooperative capacity

in underground tunnels does not fall into any type of classical random distributions. In the

following, we calculate the outage probability to characterize this distribution. The outage

probability of the DF cooperative scheme can be derived according to (225), which is given

by:

P[Ccoop<R]= P
(
|hsr|

2<
eR−1
ρ

)
·P

(
|hsd|

2<
eR−1
2ρ

)
+P

(
|hsr|

2≥
eR−1
ρ

)
·P

(
|hsd|

2+|hrd|
2<

eR−1
ρ

)
.

(226)
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According to (226), we find that the outage probability is determined by the channel

gains |hsd|
2, |hrd|

2, and |hsr|
2. In Section 4.1.2, the square of the channel gain norm |hi j|

2

is developed as (205), which is proved to follow a log-normal distribution. The mean and

variance of this log-normal variable, E[|hi j|
2] and Var[|hi j|

2], can be calculated using (210)-

(215). Then,

P
(
|hi j|

2<
eR−1
ρ

)
=

1
2

[
1+erf

( ln eR−1
ρ
− µ|hi j |2

√
2 · σ|hi j |2

)]
, (227)

where

µ|hi j |2 = ln(E[|hi j|
2])−

1
2

ln
(
1+

Var[|hi j|
2]

E2[|hi j|
2]

)
; σ2

|hi j |2
= ln

(
1+

Var[|hi j|
2]

E2[|hi j|
2]

)
. (228)

The sum of two log-normal variable, |hsd|
2 + |hrd|

2, also follows a log-normal distribu-

tion:

P
(
|hsd|

2 + |hrd|
2<

eR−1
ρ

)
=

1
2

[
1+erf

( ln eR−1
ρ
− µ(|hsd |2+|hrd |2)

√
2 · σ(|hsd |2+|hrd |2)

)]
, (229)

where

µ(|hsd |2+|hrd |2) = ln(E[|hsd|
2] + E[|hrd|

2]) −
1
2

ln
(
1 +

Var[|hsd|
2] + Var[|hrd|

2]
(E[|hsd|

2] + E[|hrd|
2])2

)
;

σ2
(|hsd |2+|hrd |2) = ln

(
1 +

Var[|hsd|
2] + Var[|hrd|

2]
(E[|hsd|

2] + E[|hrd|
2])2

)
. (230)

Substituting (227) and (229) into (226) yields the outage probability in underground

tunnels:

P[Ccoop < R]=
1
4

[
1+erf

( ln eR−1
ρ
− µ|hsr |2

√
2 · σ|hsr |2

)]
·
[
1+erf

( ln eR−1
2ρ − µ|hsd |2

√
2 · σ|hsd |2

)]
+

1
4

[
1−erf

( lneR−1
ρ
−µ|hsr |2

√
2 · σ|hsr |2

)]
·
[
1+erf

( ln eR−1
ρ
−µ(|hsd |2+|hrd |2)

√
2 · σ(|hsd |2+|hrd |2)

)]
. (231)

Note that the ε-outage cooperative capacity Outageε[Ccoop] can be also calculated from

(231) by letting R = Outageε[Ccoop] and P[Ccoop < Outageε[Ccoop]] = ε.
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4.4.3.2 Optimal Relay Assignment in Tunnels

So far we assume that the relay position is determined. However, in real applications,

especially the mobile wireless networks, the positions of the cooperative users are highly

dynamic. Since the relay position has obvious influence on the outage probability, the

cooperative relay assignment is of great important. In this subsection, we first use the

outage probability given in (231) as the relay assignment metric and propose an outage-

optimal and fully distributed cooperative relay assignment protocol. Then, we develop

a much simpler relay assignment metric based on the outage probability to reduce the

computation burden on each cooperative node.

Outage-Optimal Relay Assignment Protocol:

Assuming that in an underground tunnel, the source node s is to send data to the des-

tination node d. Node s assign one of its neighbors {ri, i = 1, 2, ...} as the relay node and

adopts the selection DF scheme. All the nodes have its own position information, which is

valid in most applications. The source first sends RTS message to all its neighbors. RTS

message contains the position information of the source and the destination. Each neighbor

that can correctly receives the RTS message calculates the relay assignment metric. Here

we first use the outage probability given in (231) as the relay assignment metric. To calcu-

late this metric, the following information is required: 1) the position information of itself,

the source, and the destination, and 2) the statistical vehicular traffic load information in

the underground tunnel, which is assume to be available at each node. No information

exchanging among neighbor nodes and the destination node is required.

After deriving the relay assignment metric, each neighbor node randomly select a back-

off time and start timing. The mean value of the back-off time is proportional to the relay

assignment metric, i.e. the outage probability. The neighbor node sends out a CTS message

to the source node after the back-off time out if it does not receive any other CTS messages

from other neighbors during the back-off time. Then the source node assigns this neighbor

as the relay node and start the selection decode-and-forward cooperative communication.
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By this relay assignment protocol, the neighbor node that has the least outage probabil-

ity will be selected as the cooperative relay. Therefore, the protocol is outage-optimal.

Moreover, since calculating the relay assignment metric only require the the source and

destination position information in the RTS message and the position information of each

neighbor node itself, the proposed protocol is also fully distributed.

Simpler Relay Assignment Metric:

Despite the advantages of the proposed relay assignment protocol, the computation

burden to calculate the outage probability in (231) may be heavy for low cost and resource

limited devices, such as the sensor nodes. Therefore, we propose a simpler relay assign-

ment metric based on the outage probability given in (231).

According to (231), to minimize the outage probability is equal to maximize the pa-

rameters µ|hsr |2 and µ(|hsd |2+|hrd |2) while minimizing the parameters σ|hsr |2 and σ(|hsd |2+|hrd |2). Sim-

ilar to the analysis in Section 4.2.2, it can be proved that the position of the relay node

does not significantly affect the ratio Var[|hsd |
2]+Var[|hrd |

2]
(E[|hsd |2]+E[|hrd |2])2 and the ratio Var[|hsr |

2]
E2[|hsr |2] . Hence, accord-

ing to (228) and (230), to minimize the outage probability in (231) is equal to maximize

ln(E[|hsr|
2]) and ln(E[|hsd|

2] + E[|hrd|
2]). Since E[|hsd|

2] is determined, ony E[|hsr|
2] and

E[|hrd|
2] need to be considered. However, there exists tradeoff between |hsr| and |hrd|. The

optimal relay node should be placed at the position where |hsr| and |hrd| are both sufficient

large. Motivated by the above discussion, to reduce the metric computation complexity, we

use min{E[|hsr|], E[|hrd|]} as a simpler metric instead of the outage probability.

This simpler metric metric can be calculated based on (205), (206), and (214), which

can be further simplified by the following approximation. Since the lowest order mode

EH11 has the lowest attenuation rate in tunnels, if the distance between source and destina-

tion is large enough, we can approximately assume that only the lowest order mode exists.

This assumption is valid since the cooperative communication is not necessary in short

range distance communication where the impact of multipath fading is negligible. Then
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Figure 55: Ergodic and 10%-outage MIMO capacity as functions of the axial distance
between transceivers.

the simpler metric can be calculated as

min{E[|hsr|], E[|hrd|]} (232)

' min
{∣∣∣ π

ab
Eeign

1,(xr ,yr)
·Eeign

1,(xs,ys)
·ezsr ·[−Γ1+

λ
v (µ1−1)]

∣∣∣, ∣∣∣ π
ab

Eeign
1,(xr ,yr)

·Eeign
1,(xd ,yd)

·ezrd ·[−Γ1+
λ
v (µ1−1)]

∣∣∣},
where zsr is the axial distance between the source and the relay; zrd is the axial distance

between the destination and the relay; Γ1 is the attenuation coefficient of mode EH11; Eeign
1,(x,y)

is given in (110); µ1 is defined in (213).

The simpler relay assignment metric given in (232) can be adopted in resource limited

devices instead of the outage probability given in (231). Note that the back-off time is

inversely proportional to this simpler relay assignment metric.

4.4.4 Numerical Analysis

In this section, the capacity and outage behavior of MIMO and cooperative communica-

tion systems in underground tunnels are numerically analyzed. Then, the proposed MIMO

antenna geometry as well as the cooperative relay assignment protocol are compared with

existing geometry and protocols, respectively. Except studying the effect of certain pa-

rameters, the default simulation parameters are set as follows: The one-lane tunnel has a

168



10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

MIMO Capacity (bit/s/Hz)

C
D

F

 

 

High SNR Theorem
Simulation

(a)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

MIMO Capacity (bit/s/Hz)

C
D

F

 

 

Low SNR Theorem
Simulation

(b)

Figure 56: CDF of MIMO capacity: (a) high SNR, (b) low SNR.

rectangle cross section with a height of 4 m and a width of 6 m. The operating frequency

is 1 GHz. The SNR at the transmitter ρ = Ptot
N0

is 100 dB. The traffic load is described using

the average rate of vehicle arrival λ and average vehicle velocity v. The default values are

set as λ = 0.5 s−1 and v = 72 km/hour.

4.4.4.1 MIMO Systems in Underground Tunnels

Fig. 55 shows the ergodic and the 10%-outage MIMO capacity as functions of of the axial

distance between the transceivers, where the 5 × 5 MIMO antenna with optimal geometry

is adopted. It shows that the theoretical results in high SNR regime have a good match

with the simulations when the axial distance is smaller than 500 m, while the theoretical

results in low SNR regime have a good match with the simulations when the axial distance

is larger than 1000 m. Therefore, the theoretical ergodic and outage MIMO capacities have

a good match with the simulations in both high SNR regime and low SNR regime.

In Fig. 56(a), the cumulative distribution function (CDF) of the normal distribution with

parameters derived in high SNR regime is compared with the simulated capacity distribu-

tion when axial distance is 400 m. In Fig. 56(b), the CDF of the log-normal distribution
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with parameters derived in low SNR regime is compared with the simulated capacity dis-

tribution when axial distance is 1200 m. A good match is shown between the theoretical

and simulation results.

Fig. 57(a) and Fig. 57(b) show the 10%-Outage capacity of the optimal MIMO antenna

geometries with different element number as a function of the axial distance and the SNR

at the transmitter, respectively. The capacity of a traditional linear antenna array with 3

antenna elements is also provided for comparison. For fair comparison, one terminal of the

traditional linear antenna array is placed at the center of the tunnel. The array is placed

parallel to the floor with interval of one wavelength (0.33 m). Fig. 57(a) and Fig. 57(b)

indicate that, the MIMO capacity with optimal geometry is significantly higher than that of

the undesigned geometry. In low SNR regime, the undesigned linear array has even smaller

capacity than that of the SISO (1 × 1) system placed at the optimal position. In high SNR

regime (axial distance smaller than 500 m), the optimal 3×3 MIMO antenna achieves much

higher capacity than the optimal 1 × 3 SIMO antenna. In low SNR regime (axial distance

larger than 600 m), the optimal 1 × 3 SIMO antenna achieves higher outage capacity than

the optimal 3 × 3 MIMO antenna. This phenomenon is consistent with our analysis on the

MIMO antenna geometry design in Section 4.4.2.2, i.e. the spatial diversity at the TX side

is more efficient in the high SNR regime that in the low SNR regime.

Moreover, Fig. 57(a) and Fig. 57(b) also show the capacity of a 3 × 3 MIMO system

and a SISO system in terrestrial environments. A widely used terrestrial channel model is

utilized, where the Friis transmission equation with a exponent of 3 is used to model the

path loss and a Rayleigh random variable is used to model the multipath fading. The MIMO

antenna elements are placed far enough to guarantee they are not correlated. Fig. 57(a)

and Fig. 57(b) show that the capacity of MIMO and SISO system is much smaller than

the capacity in tunnels since the signal energy in tunnels does not spread as much as in

terrestrial environments. Meanwhile, the gain of MIMO compared with SISO in terrestrial

environments is larger than in tunnels since the MIMO antenna elements in tunnels are
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Figure 57: 10%-Outage MIMO capacity with different antenna geometries as a function
of (a) axial distance (SNR at the transmitter is 100 dB) and (b) SNR at the transmitter (axial
distance is 500 m).
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Figure 58: Outage probabilities of cooperative communication systems with different traf-
fic loads.

more correlated.

4.4.4.2 Cooperative Communication Systems in Underground Tunnels

In the following analysis on cooperative communication systems in tunnels, we assume the

source node and the destination node are 400 m apart. Both nodes are placed at the center of

the tunnel cross section. First, we assume that the relay node is fixed, which is placed in the

middle point of the distance between the source and the destination, i.e., at the center of the

tunnel cross section and 200 m apart from both the source and the destination. In Fig. 58,

it is shown that the theoretical outage probability is consistent with the simulation results

with different traffic load (average arrival rate λ). As the traffic load become heavier, the

mean cooperative capacity decreases and the variance of the cooperative capacity increases,

which is due to the reason that heavier traffic load causes higher additional path loss and

more randomness.

Then, the performance of the relay assignment protocols is analyzed. In the following

simulations, we let 50 cooperative relay nodes uniformly distributed between the source
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Figure 59: Outage probability with different cooperative relay assignment strategy as func-
tions of different (a) SNR at the transmitter and (b) traffic load.

and the destination. The position of each relay node on the tunnel cross section is also uni-

formly distributed. Four relay assignment strategies are adopted: 1) optimal strategy that

use the outage probability given in (231) as the metric; 2) simpler metric strategy that use

the metric given in (232); 3) nearest neighbor strategy given in [73] that select the nearest

neighbor as the relay node; and 4) farthest neighbor strategy that that select the farthest

neighbor as the relay node. In Fig. 59, the outage probability of the four strategies are pro-

vided as functions of the TX SNR and the traffic load (λ). As expected, the optimal strategy

achieves the lowest outage probability in all conditions. The simpler metric strategy has

higher outage probability than the optimal strategy but much lower than the nearest and

farthest neighbor strategy.
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CHAPTER V

CONCLUSION

WUSNs enable a wide variety of novel applications, such as intelligent irrigation, smart un-

derground power grid, border patrol and intruder detection, assisted navigation, sports field

maintenance, and leakage detection of underground pipelines and tanks. Despite the po-

tential advantages, the harsh underground environments are challenging for wireless com-

munications. Hence, existing communication and networking solutions and protocols for

terrestrial WSNs have to be reexamined and redesigned.

In this thesis, we analyze the unique characteristics of the WUSNs in two underground

environments, i.e. soil medium and underground mines/tunnels. For WUSNs in soil

medium, we develop the WUSNs based two types of signal propagation techniques based

on either EM wave-based or MI to overcome the challenges brought by the soil medium.

Corresponding networking solutions are also developed for each signal propagation tech-

nique. For WUSNs in underground mines and tunnels, we optimize the MIMO system and

cooperative communication system based on a comprehensive channel model to establish

reliable and efficient communications.

In Chapter 2, the WUSNs in soil medium based on EM wave technique are analyzed.

• First, a complete channel model that can characterize all the three types of EM wave

channels in soil medium are developed. The transmission ranges of the three types

of channels are analytically expressed. The analysis shows that the range of UG-UG

channel is the smallest (≤ 5 m) among the three channels, while the range of UG-AG

and AG-UG channel are in the range of 10 m to 50 m, depending on the soil water

content and the sensor burial depth. The range of UG-AG channel is larger than

the AG-UG channel due to the reflection and refraction on the air-ground interface.
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The soil water content has significant influences on all the three types of channels

in WUSNs. The sensor burial depth only affects the UG-AG channel and AG-UG

channel while does not dramatically influence the UG-UG channel. Beside the soil

water content and the sensor burial depth, the antenna height of the AG sinks also

has obvious effect on the AG-UG channel.

• Second, the dynamic network connectivity in WUSNs is theoretically investigated

based on the channel model of EM waves in soil medium. The soil transmission

medium and the heterogeneous network architecture make the WUSN connectivity

analysis much more complex than the terrestrial wireless sensor networks. The upper

and lower bounds of the connectivity probability are analytically developed to pro-

vide the necessary and sufficient conditions to achieve the full-connected network,

which give the guidelines to design the system parameters of the WUSNs according

to the environmental conditions. The theoretical bounds are validated by simula-

tions in various scenarios. Our analysis quantitatively captures the effects of multiple

system and environmental parameters on the WUSN connectivity, including the UG

sensor density, the AG fixed sink density, the number of AG mobile sinks, the UG

sensor burial depth, the AG sink antenna height, the soil moisture, the tolerable la-

tency, the mobility of the AG mobile sinks, and the AG sink antenna height.

• Third, a spatio-temporal correlation-based data collection scheme is proposed to re-

lease the unfeasible sensor density requirement of the full connectivity in WUSNs.

More importantly, an explicit solution for the sensor density optimization in WUSNs

under the proposed data collection scheme, which can guarantee the overall moni-

toring accuracy with minimum deployment/maintenance cost. To formalize the opti-

mization solution, the dynamic underground channel conditions, the spatio-temporal

correlation, the network connectivity, and the random or controlled mobility of mo-

bile sinks are jointly analyzed. Our optimization solution clearly reveals the tradeoff
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between the optimal sensor density and the number and mobility of the mobile sinks.

Moreover, the effects of multiple environmental parameters, including the sensor

burial depth, the soil water content, and the spatio-temporal model of the monitored

physical quantity, are explicitly captured. The developed optimization solution pro-

vides a flexible tool to determine the optimal sensor density for different application

requirements and environmental conditions in WUSNs.

In Chapter 3, the WUSNs in soil medium based on MI technique are investigated.

• First, an analytical model is developed to characterize the underground MI commu-

nication channel. The MI technique has constant channel condition because its path

loss only depends on the permeability of the propagation medium, which remains the

same if the medium is air, water and most kinds of soil and rock. However, the path

loss of a simple MI communication system is still high since magnetic field strength

falls off much faster than the EM waves in most environments. In soil medium, al-

though it is known that the soil absorption causes high signal attenuation in the EM

waves systems but does not affect the MI systems, the total path loss of the MI system

is still similar to that of the EM waves system.

• Second, based on the MI channel analysis, we develop the MI waveguide technique to

significantly enlarge the transmission range. In underground environments, the path

loss of the MI system is slightly smaller than the EM wave system in normal and

wet soil medium; while in very dry soil, the EM wave system has smaller path loss.

However, due to the high path loss, both the systems can not provide a transmission

range that is more than 10 m, which prevent them from practical applications. To this

end, the MI waveguide is developed. The MI waveguide technique can greatly reduce

the path loss, which is attributed to the relay coils deployed between the transceivers.

It should be noted that the relay coils do not consume any energy and the cost is

very low. The relay distance is also larger than the maximum transmission range of
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the EM wave system. With the help of MI relay coils, the transmission range of the

MI waveguide system is increased dramatically compared with that of the ordinary

MI system and the EM wave system. Although the bandwidth of the MI system and

the MI waveguide system is only 1 to 2 KHz, which is much smaller than the EM

wave system, it is enough for the low data rate monitoring applications of WUSNs.

Another advantage of the MI and MI waveguide system is that, as the transmission

range increases, the transmission power decreases simultaneously with the received

power, which is favorable for the energy-constrained WUSNs.

• Third, the deployment of those MI waveguides to connect the underground sensors

in the WUSNs is investigated. In 1D WUSNs, the optimal number of relay coils

between two adjacent sensors is derived. Based on the results in 1D WUSNs, two

solutions to deploy the MI waveguides in 2D WUSNs is developed. To minimize

the relay coil number, the MST algorithm is provided. The MST algorithm use the

minimum spanning tree to connect all the sensors with the optimal relay coil number.

However, the WUSN constructed by the MST algorithm is 1-connected hence is not

robust to sensor failure. To enhance the network robustness while not increasing

the relay coil number too much, the TC algorithm is proposed. The TC algorithm

first use the Voronoi diagram to partition the whole network into non-overlapping

triangle cells. Then the MI waveguides with the shape of the three-pointed star is

deployed in every other triangle cells. The network constructed by the TC algorithm

is k-connected (k ≥ 3). Hence, the TC algorithm is robust to sensor failures.

In Chapter 4, the WUSNs deployed in underground mines and tunnels are explored.

• First, the propagation of EM waves in empty underground mines and tunnels is mod-

eled. The typical structures of current underground mines and road tunnels is ana-

lyzed. The channels in those environments are divided into two cases: tunnel chan-

nel and room-and-pillar channel. The multimode model is developed to characterize
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both tunnel channel and room-and-pillar channel. Based on the multimode model,

our analysis shows that:

– For tunnel environment:

1) Due to the combination of multiple modes, high signal attenuation and in-

tense fluctuation occur in the near region. The fall in the received power is grad-

ual in the far region because the higher order modes attenuate very fast as the

distance increases. The division of near and far region depends on the operation

frequency, the tunnel size and the transmitter positions, which is quantitatively

analyzed for the first time.

2) The attenuation is mostly determined by the tunnel size and operating fre-

quency, while the power distribution among modes is governed by the position

of the transmitter’s antenna.

3) The delay spread of the wideband signals is determined by how many signif-

icant modes exist and how long the transmission distance is.

4) In their normal value range, the humidity, pressure and temperature of the

tunnel air, as well as the material of tunnel walls have little influence on the

signal propagation in tunnels.

– For room-and-pillar environment:

Signal propagation has similar characteristics as in the tunnel case. The dif-

ference is that signals experience significant fluctuations in both near and far

regions. Additionally, the operating frequency, the room height, the antenna

position/polarization and the electrical parameters have much smaller influence

on the channel characteristics in the room-and-pillar environment than in the

tunnels.

• Second, an analytical channel model for the tunnel with a vehicular traffic flow is

developed. Specifically, the propagation modes experience in-mode loss and mode

178



coupling around a vehicle. The UTD method, Poisson sum formula and saddle point

method are utilized to calculate the in-mode loss and mode coupling coefficients.

Then based on the deterministic model, a statistical model is developed to character-

ize the signal propagation in a tunnel with random vehicular traffic flow. Instead of

using the deterministic vehicular traffic information, the traffic flow theory and the

vehicle size distribution model is utilized. The entries in the propagation matrix are

theoretically proved to be normally distributed. In addition, the means and variables

of the entries are analytically calculated. Based on the proposed channel model, our

analysis shows that: the vehicles in tunnels induce additional path losses and signal

fluctuations. In the tunnel with deterministic vehicular traffic flow, the number and

size of the vehicle, as well as the size of the tunnel determine the intensity of the

vehicles’ influence. In the tunnel with random vehicular traffic flow, the average ve-

hicle arriving rate, the average vehicle velocity, and the size of the tunnel determine

the additional loss and signal fluctuation caused by the vehicular traffic flow.

• Third, the capacity and outage behavior of the MIMO and cooperative communica-

tion systems is investigated based on the underground tunnel channel model. For

MIMO system, it is proved that the MIMO capacity in underground tunnels follows

either a normal distribution in high SNR regime or a log-normal distribution in low

SNR regime. The ergodic and outage capacity of MIMO systems in tunnels are ex-

plicitly expressed as functions of tunnel size, transmission power, vehicular traffic

load, and MIMO antenna geometry. Then the optimal MIMO antenna geometry de-

sign scheme is proposed, which obviously increases the outage capacity. For cooper-

ative communication systems, the outage probability of such systems in underground

tunnels is calculated. Based on the formula of the outage probability, we proposed

an outage-optimal cooperative relay assignment protocol, which significantly out-

performs the existing relay assignment protocols in term of outage probability in

underground tunnel environments.
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In the future, for WUSNs in soil medium, we plan to extend our work in several direc-

tions, including 1) an information theoretical study of the channel and network capacity,

especially the MI waveguide-based WUSNs; 2) the protocol development that involves

close coupling between the unique soil medium conditions and the system design, leading

to a cross-layer communication and coordination module; 3) the evaluation testbed devel-

opment to verify the theoretical result through field experiments; and 4) the development

of a hybrid WUSN system using both EM Waves and MI Waveguides that takes advantages

of both techniques.

For WUSNs in underground mines and tunnels, so far we have developed the commu-

nication strategies for normally operating mines and tunnels. However, no existing tech-

niques support communications and localization after mine disasters or tunnel collapse. To

this end, we plan to investigate the MI-based WUSNs in underground mines and tunnels

to achieve robust wireless communications and localization for survivor rescue after mine

disasters.
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