
REGULATION OF TRICHODESMIUM NITROGEN FIXATION BY COMBINED
NITROGEN AND GROWTH RATE: A FIELD AND CULTURE STUDY

A Dissertation
Presented to

The Academic Faculty

By

Carolyn M. Holl

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in Biology

Georgia Institute of Technology

December 2004

Copyright ” Carolyn Marie Holl 2004



REGULATION OF TRICHODESMIUM NITROGEN FIXATION BY COMBINED
NITROGEN AND GROWTH RATE: A FIELD AND CULTURE STUDY

Approved by:

Dr. Joseph P. Montoya, Advisor
Dr. Patricia Sobecky
Dr. Thomas DiChristina
Dr. Douglas Capone
Dr. Christopher Klausmeier
Dr. Samantha Joye

DATE APPROVED: October 21, 2004



March 18th. —We sailed from Bahia. A few days afterwards, when not far distant from
the Abrolhos Islets, my attention was called to a reddish-brown appearance in the sea.
The whole surface of the water, as it appeared under a weak lens, seemed as if covered by
chopped bits of hay, with their ends jagged. These are minute cylindrical confervae, in
bundles or rafts of from twenty to sixty in each. Mr. Berkeley informs me that they are
the same species (Trichodesmium erythraeum) with that found over large spaces in the
Red Sea, and whence its name of Red Sea is derived.  Their numbers must be infinite: the
ship passed through several bands of them, one of which was about ten yards wide, and,
judging from the mud-like colour of the water, at least two and a half miles long. In
almost every long voyage some account is given of these confervae. They appear
especially common in the sea near Australia; and off Cape Leeuwin I found an allied but
smaller and apparently different species. Captain Cook, in his third voyage, remarks, that
the sailors gave to this appearance the name of sea-sawdust.

From the journals of Charles Darwin aboard the H. M. S. Beagle
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SUMMARY

Trichodesmium is a globally significant marine diazotroph responsible for

supplying new N to the oligotrophic regions in which it is found.  Though it has been

studied for decades, our understanding of the ways in which environmental factors can

affect N2-fixation rate remains limited.  A continuous culture of Trichodesmium was

established and characterized to determine the extent to which growth rate and the

presence and uptake of nitrate affect N2-fixation rates.  Results indicate that N2-fixation

increases linearly with growth rate and that the uptake of nitrate inhibits N2-fixation up to

70% and in a concentration dependent manner at initial nitrate concentrations <10µM.

Results from a field study of this cyanobacterium show that areal N2-fixation rates in the

Gulf of Mexico are comparable to measurements made in other oligotrophic basins.

Stable isotope evidence from this field study confirms that Trichodesmium is important to

C cycling as well.  These findings can be added to modeling efforts used to quantify

Trichodesmium N2-fixation on an oceanic scale.  Implications for future research are

discussed.
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CHAPTER 1

INTRODUCTION

Trichodesmium sp. is a filamentous, non-heterocystous marine cyanobacterium

important to the introduction of new nitrogen (N) to oligotrophic tropical and subtropical

seas worldwide (Capone, et al. 1997).  It was first reported to fix N2 by Dugdale, et al.

(1961) and since has been the focus of many research expeditions, modeling efforts,

theses, and dissertations yet still there is much we do not know about its ecology and its

physiology.  This enigmatic bloom-forming cyanobacterium necessarily fixes N2

concurrently with photosynthesis yet does not obviously separate these processes

temporally or spatially even though the enzyme necessary to fix N2 can be inactivated by

photosynthetically produced O2.  Actively growing, diazotrophic Trichodesmium exist in

natural populations as single filaments and as colonies, however, we are still unsure of

the ultimate cause of colony formation.  Trichodesmium have only a few known

consumers, are a physical substrate for a wealth of epiflora and epifauna, and one species

reputedly emits a cyanotoxin.  This non-motile cyanobacterium can be found deep in the

water column “mining” for phosphate (P), at the surface in dense aggregations, and are

able to maintain a subsurface maximum ostensibly to avoid photoinhibition of both C and

N2-fixation.  Due to the characteristic absorption and fluorescence of one of their light-

harvesting pigments, phycoerythrin, and to the backscattering from their gas vacuoles,

Trichodesmium can be remotely sensed using SeaWiFS satellite images.  Extensive

blooms have even been photographed from space. Despite the myriad limitations that

face the oceanographers who study the large, oligotrophic, central oceanic gyres,

Trichodesmium has been studied for decades.  Though the physiology of natural
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populations is still perplexing, their global significance as a supplier of N to oligotrophic

gyres is indisputable (Capone, et al. 1997).

Natural History

Global distribution

Trichodesmium has been reported in nearly all tropical and subtropical waters

worldwide.  This cyanobacterium has been studied in the Atlantic (Goering, et al. 1966,

Carpenter, et al. 1995, Carpenter, et al. 2004), Pacific (Karl, et al. 1997, Letelier, et al.

1996), and Indian Oceans (Jyothibabu, et al. 2003, Lugomela, et al. 2002) as well as in

the Caribbean (Carpenter, et al. 1977), China (Saino 1977, Chen, et al. 2003), Sargasso

(Orcutt, et al. 2001), and Arabian Seas (Capone, et al. 1998).  Though it has been seen in

all of these tropical seas, its distribution can be extremely irregular with large surface

aggregations occurring only when conditions are optimal.  High sea surface temperature

and irradiance, low ambient nutrients, and calm, quiescent seas (Capone, et al. 1998,

Eleuterius, et al. 198, Carpenter 1983) can promote dense aggregations.  Under optimal

conditions surface aggregations can cover hundreds of thousands of square kilometers

(Capone, et al. 1998).  Recent modeling efforts have confirmed that Trichodesmium

distribution is defined by high light intensity, weak vertical mixing, and low

concentrations of DIN (Hood, et al. 2004).

Janson, et al. (1999) analyzed both the hetR gene fragment and the 16S rDNA

gene sequence of natural samples collected from the Caribbean Sea, the central Atlantic,

and the southern Pacific oceans.  They found three distinct clades among these natural
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populations.  These clades are comprised of T. hildebrandtii and T. thiebautii, T.

contortum and T. tenue, and T. erythraeum along with the two common lab strains

NIBB1067 and IMS 101 (Janson, et al. 1999). Carpenter and Price report T. thiebautii as

the most common species encountered in the Sargasso Sea, tropical North Atlantic and

Caribbean Sea (Carpenter, et al. 1977) and Carpenter more recently confirmed that T.

thiebautii is the most common species in the north Atlantic (Carpenter, et al. 2004).  The

distribution of colony morphology has been under investigation and the reasons for

colony formation are still unclear.  “Bundleness” has been inversely related to wind speed

(Bryceson, et al. 1981) and directly related to nutrient limitation (Logan, et al. 1988).  In

the Pacific, single filaments are more common (Letelier, et al. 1996) than in the Atlantic

where colonies make up as much as 89 to 92% of the Trichodesmium biomass

(Carpenter, et al. 2004).

Vertical distribution

Trichodesmium has permanent gas vacuoles (Walsby, et al. 1978), which render

this cyanobacterium positively buoyant.  Like freshwater cyanobacteria, Trichodesmium

can regulate its buoyancy such that they frequently maintain a subsurface maximum

(Kromkamp, et al. 1986, Rijn, et al. 1985).  Often when dense surface aggregations are

encountered, the majority of the biomass sits just below a thin lens of water.  In the

Caribbean Sea and sub-tropical Atlantic, Carpenter and Price (1977) and Carpenter and

McCarthy (1975) report subsurface maxima between 10 and 40 m and the same has been

shown to be true for the southern East China Sea (Chang, et al. 2000).  More recently, on

three cruises in the tropical N Atlantic, the maximum was encountered at 12m in
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May/June of 1994 and October 1996 and as deep as 40m in April 1996 (Carpenter, et al.

2004).  65% of total biomass was found in the upper 20m and as much as 94% of the

biomass was in the upper 50m (Carpenter, et al. 2004).  It is clear that the majority of the

biomass is found in the upper euphotic zone however, trichomes have been found at

175m in the Western Sargasso Sea (Carpenter, et al. 1975) and as deep as 200m at station

ALOHA in the North Pacific subtropical gyre (Letelier, et al. 1996).  These depths are

well below the nutricline and, depending on the time of day and level of cloud cover, are

below the 1% light level as well.

There is no evidence for chromatic adaptation with depth (McCarthy, et al. 1979).

Therefore, because this phytoplankter does not adapt its light-harvesting pigments, it

cannot permanently make a living at depths at which it is unable to gather enough light to

photosynthesize.  Though the majority of Trichodesmium biomass is found above 50m,

trichomes and colonies are commonly found throughout the water column.  Therefore,

theories have developed that revolve around the vertical migration of this

cyanobacterium.  A 15m subsurface maximum might indicate the avoidance of

photoinhibition of both photosynthesis and N2-fixation and may support the theory that

Trichodesmium spp. are able to descend in the water column to acquire phosphate.  It is

hypothesized that carbohydrate storage at the surface temporarily counteracts the positive

buoyancy of trichomes and colonies, which then allows this non-motile cyanobacterium

to migrate downward to the nutricline to acquire phosphate (Karl, et al. 1992,Villareal, et

al. 2003).  Studies of the gas vacuoles found within Trichodesmium have revealed that the

vacuoles are extremely strong and will not burst under the pressure encountered at the

depth of the nutricline (Walsby, et al. 1978).  As the stored carbohydrates are respired at
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depth, the trichomes and colonies again become positively buoyant and return to the

surface nutrient replete. Empirical evidence and models show that a vertical migration to

at least 70m is possible (Villareal, et al. 2003) though trichomes have been found much

deeper in the water column (Letelier, et al. 1996).  We report herein that while

Trichodesmium is at the nutricline to acquire phosphate, cells may take up nitrate as well,

which may also help support growth upon return to the surface (Holl, et al. submitted).

It is generally accepted that Trichodesmium C and N2-fixation are negatively

affected by decreasing light intensity though a systematic field study of these effects has

not yet been published.  Carpenter et al., report a decrease in Trichodesmium volumetric

C-fixation rate with depth to the 1% light level in the sub-tropical N Atlantic (Carpenter,

et al. 2004).  As part of a Trichodesmium N2-fixation model, Hood, et al. report

photoinhibition of N2-fixation in 7 out of 17 incubations of samples incubated in 100% Io

in the subtropical and tropical Atlantic (Hood, et al. 2002).  In the Central N Pacific,

Mague et al report some evidence of photoinhibition of Trichodesmium photosynthesis at

the highest light intensity tested and they also report that Trichodesmium N2-fixation

attenuates with decreasing light intensity in incubator experiments with natural

populations (Mague, et al. 1977).   A decrease in Trichodesmium N2-fixation with depth

was reported for three of five stations (Goering, et al 1966).  In a study of Trichodesmium

in the Gulf of Mexico we report an attenuation of N2-fixation with depth as light intensity

decreases from 50% incident light, where our rates exhibit a maximum, to the 1% light

level.  In culture under nutrient replete conditions, increasing light intensity from 10

µmol quanta m-2 s-1 to 160 µmol quanta m-2 s-1 increased N2-fixation activity in

Trichodesmium (Fu, et al. 2003).
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Trophic Interactions

Trichodesmium colonies host a whole cadre of organisms (Sheridan, et al. 2002)

including heterotrophic bacteria (Paerl, et al. 1989) and other species of filamentous non-

heterocystous cyanobacteria (Siddiqui 1992b).  Interestingly T. thiebautii, but not T.

erythraeum, has been reported to produce a toxin (Hawser, et al. 1991, Hawser, et al.

1992) to which these associated organisms must be immune or insensitive.  The toxin in

approximately 50% of T. thiebautii culture samples caused more than 50% lethality in

Artemia salina and calanoid and cyclopoid copepods but not harpacticoid copepods were

found susceptible to the T. thiebautii toxin in bloom samples (Hawser, et al. 1992).

Additionally, Trichodesmium fresh tissue, lyophilized homogenates, and chemical

extracts were rejected by two of three fish species considered generalist consumers

(Bullard, et al. 2002).

There are few known grazers of Trichodesmium (O'Neil, et al. 1992).   The

cyclopoid copepod, Macrosetella gracilas is the most well known and the distribution

and life cycle of this copepod has been directly related to the distribution and abundance

of Trichodesmium (Calef, et al. 1966, Bottger-Schnack, et al. 1989).  M. gracilas not only

ingests Trichodesmium, up to 21% in 15N labeled feeding assays (O'Neil 1998) and from

90 to 126% of its body carbon (Roman, et al. 1978), but also uses Trichodesmium as a

place to deposit their eggs and as a “nursery” for the development for naupliar stages of

growth (O'Neil, et al. 1992).

Because there are so few known grazers it has been widely accepted that

Trichodesmium sp. is important to oligotrophic systems primarily as a supplier of new N
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by way of DON excretion (Capone, et al. 1994, Glibert, et al. 1994, Mulholland, et al.

2000, Mulholland, et al. 1999).  In fact Glibert, et al., report that as much as 50% of

Trichodesmium N2- fixation is released as DON (Glibert, et al. 1994) and Capone et al.,

report that approximately 25% of the concurrent N2-fixation in Trichodesmium is

released as glutamate (Capone, et al. 1994).  Mulholland et al., reports the direct release

of NH4
+ by Trichodesmium in batch culture (Mulholland, et al. 2000).  We know that 10

to 15% of cells along a trichome contain active nitrogenase (Lin, et al. 1998, Bergman, et

al. 1991), thus it has been hypothesized that Trichodesmium exudes this DON as a means

of supplying N to the non-diazotrophic cells along the trichome or within a colony.

Capone et al., report that the Ks for glutamate in Trichodesmium is high and therefore, it

is possible that glutamate is the common means for N exchange in Trichodesmium

(Capone, et al. 1994).

Newly fixed N can be traced through the organisms living in an oligotrophic

marine system by determining the ratio of the natural abundance of the two stable

isotopes of N.  Newly fixed N has a stable isotopic signature close to that of atmospheric

N, a standard of 0 ‰, and therefore isotopically light N in the biota can indicate

diazotrophy at the base of the food chain (Wada, et al. 1980, Wada, et al. 1976).

Isotopically light N is fixed by diazotrophs and subsequently taken up by non-

diazotrophic phytoplankton.  These light phytoplankton are then ingested by zooplankton

thus the diazotrophic signal is propagated up the food chain.   Isotopically light

particulate matter and zooplankton have been identified in regions where Trichodesmium

N2-fixation is prevalent (Montoya, et al. 2002, Capone, et al. 1998).
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The stable isotopic signature of N in the amino acids of an organism can also

indicate diazotrophy in an oligotrophic system (McClelland, et al. 2003).  The isotopic

ratio of the essential amino acid phenylalanine does not change from food source to

consumer and as such can be used as an indicator of the N source at the base of the food

chain (McClelland, et al. 2002).  Glutamate changes approximately 7‰ from food to

consumer and therefore is a good indicator of trophic level (McClelland, et al. 2002).

The stable isotopic signature of amino acids in zooplankton from a transect across the

Atlantic Ocean has shown that Trichodesmium was a food source (or a source of DON to

non-diazotrophic phytoplankton that were, in turn, ingested by these zooplankton)

(McClelland, et al. 2003).  

Trichodesmium sp. has a characteristically heavy C isotopic signature as well

(Carpenter, et al. 1997) that can be used as a tracer for the direct incorporation of

Trichodesmium sp. into the biomass of a particular region.  Typical values for the

particulate C in oligotrophic systems are from –22‰ to –25‰ however Trichodesmium

values are much heavier isotopically, and range from -15.2 to -11.9‰ (Carpenter, et al.

1997).  The stable isotope of carbon as an indicator of Trichodesmium as a food source or

as a source of heavy DOC has not been used widely but our work in the Gulf of Mexico

indicates that as much as 60% of the carbon found in the zooplankton of the 250 and

500µM size fractions may be coming from direct Trichodesmium ingestion.  We believe

that this may be true for other oceanic basins at times when Trichodesmium is a dominant

member of the phytoplankton community.
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Stoichiometry

There are several reports in the literature of flexible elemental stoichiometric

ratios in Trichodesmium.  Letelier and Karl (Letelier, et al. 1996) report C:N for

Trichodesmium of 6.3 in the subtropical N Pacific.  Both McCarthy et al., (1979) and

Carpenter et al., (2004) report a C:N of 6.5 for Trichodesmium in the central N Atlantic

and in the tropical N Atlantic respectively.  Mague et al., report a Trichodesmium C:N of

4.1 in the central N Pacific (Mague, et al. 1977) and Post et al., report values of 4.1 to 4.3

in a study of a Trichodesmium bloom in the Gulf of Aqaba (Post, et al. 2002).   We report

herein a mean C:N ratio across a range of steady state growth rates in culture of 5.6 ±

0.35 (mean ± SD, N=93).   All values, with the exception of those of Mague et al., and

Post et al., are close to the canonical Redfield ratio of 6.6.  It is not extraordinary that uni-

algal cultures and natural population samples of this diazotroph might differ from the

total marine phytoplankton community upon which Redfield was based (Redfield 1934,

Falkowski 2000) particularly since these C:N ratios are below Redfield, which indicates

this diazotroph is not N limited.

At low growth rates and under P or N limitation, phytoplankton can exhibit large

variability in their stoichiometry (Goldman 1986).  Trichodesmium is no exception, and it

is in the N:P ratios of both natural and cultured populations that we begin to see the P-

sparing ability of Trichodesmium as demonstrated by its amazingly flexible

stoichiometry.  Letelier and Karl report an N:P of 45 (Letelier, et al. 1996), significantly

different than that of Redfield N:P of 16.  In bloom conditions Karl et al., report an N:P

of 125 for Trichodesmium sp. (Karl, et al. 1992).  Sanudo-Wilhelmy, et al., (2001) report

a range of Trichodesmium sp. N:P in the tropics of 35 to 61 and in the subtropics of 14 to



10

30.  Mulholland et al., reports N:P ratios of 25 or higher in natural populations along the

north coast of Australia and in a batch culture study of Trichodesmium sp. growing on

DOP, report a wide range of N:P ratios from 4.4 to 156 dependent on the initial DOP

concentration (Mulholland, et al. 2002).  Herein we report a mean N:P ratio of  27.1 ± 4.2

(mean  ± SE, N=74) across the range of steady state growth rates attained in continuous

culture.   Interestingly, the high variability in this ratio did not correlate with growth rate.

Physiology

Diel Nitrogenase Activity

In Trichodesmium, nitrogenase activity increases rapidly at the start of the light

day, peaks at midday, decreases throughout the afternoon, and is completely shut down

until the following morning. Nitrogenase is produced de novo every day approximately 2

hours prior to first light (Capone, et al. 1990) and there is evidence that an additional

protein is translated late in the afternoon that inhibits nitrogenase synthesis thus shutting

down nitrogenase activity late in the light day (Capone, et al. 1990).   The nitrogenase

protein appears to be completely degraded throughout the night and absent from the cells

several hours before dawn.  The pattern of gene expression and nitrogenase activity has

been shown to be robust even in constant light and therefore is thought to be the result of

an endogenous rhythm (Ohki, et al. 1992, Chen, et al. 1998).  The transcription of two

photosynthetic genes, psbA and psaA, are also controlled by an endogenous rhythm and

transcription of these two genes follows transcription of nifHDK prior to a light cue at the

beginning of the light period (Chen, et al. 1999).
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Simultaneous N2-fixation and Photosynthesis

A major focus of Trichodesmium culture and fieldwork has been to understand the

way in which this diazotroph is able to fix di-nitrogen in the presence of

photosynthetically produced O2. Many cyanobacteria separate these processes either

spatially with specialized sites for N2-fixation, heterocysts, or temporally by fixing N2 at

night and C during the day.  In Trichodesmium, both processes proceed simultaneously

and obligately during the day with no obvious mechanism of separation. Initially it was

suggested that only cells in the interior of colonies fixed N2 and that these “micro-

aerobic” zones within the colonies could support N2-fixation (Fogg 1974, Paerl 1994).

However, Ohki, et al. found the highest rates of N2-fixation in a culture of strain NIBB

1067 during exponential growth when the culture consisted primarily of single trichomes

(Ohki, et al. 1991).  Additionally, nitrogenase exists in the active form during the day and

in only 15 to 10% of the cells along a trichome (Lin, et al. 1998, Bergman, et al. 1991)

and CO2 uptake is reduced in N2-fixing cells (Lin, et al. 1998).  Thus, some form of

cellular differentiation may be involved.

The photosystem I to photosystem II (PSI to PSII) ratio was determined to be

approximately 25 in Trichodesmium (Subramaniam, et al. 1999), which is extremely high

for a marine phytoplankter.  Cyclic electron transport in PSI generates ATP for

nitrogenase activity and Mehler reaction activity within PSI may also protect nitrogenase

from the O2 formed in PSII (Raven, et al. 1988, Kana 1993) via the formation of O2

radicals.

The most recent work studied the combination of both temporal and spatial

segregation as a means of protecting nitrogenase.  In this work, the protection of
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nitrogenase was shown to be via electron flow through PSII and the subsequent oxidation

of the quinone pool (Berman-Frank, et al. 2001). High respiration rates early in the

photoperiod further reduce the quinone pool, which sends a negative feedback to PS

electron transport, down regulates PSII, and allows for high N2-fixation rates during the

photoperiod when O2 consumption exceeds O2 production (Berman-Frank, et al. 2001).

Spatial separation is evident in the production of H2O2 occurring at high rates in

nitrogenase containing cells (Berman-Frank, et al. 2001).  The accumulation of H2O2 is a

result of super oxide dismutase activity reducing the radicals produced during Mehler

reaction activity.

Regulation of N2-fixation

Trace Metal Limitation

Though it has been studied for decades Trichodesmium N2-fixation rate

measurements still vary considerably and the source of this variation remains unclear.

Because nitrogenase has a large metallic component, limited access to molybdate

(Howarth, et al. 1985) or iron (Rueter, et al. 1992, Berman-Frank, et al. 200) has been

implicated in variability in N2-fixation rates.  As supporting evidence of iron limitation in

Trichodesmium, a model of Trichodesmium distribution mimics the pattern of high dust

deposition (Tyrrell, et al. 2003), which is the greatest input of Fe in the oligotrophic

ocean (Duce, et al. 1991, Baker, et al. 2003).  More recently another model has

determined that iron concentration may limit the absolute amount of Trichodesmium

biomass but does not control the occurrence of Trichodesmium (Hood, et al. 2004).
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The catalytic activity of nitrogenase per mole of iron is the lowest of any iron-

containing enzyme in nitrogen metabolism (Raven, et al. 1988).  In fact Raven, et al.

report that the iron requirement for diazotrophs is approximately 100x higher than the

requirement for non-diazotrophic phytoplankton. Kustka, et al. present revised iron use

efficiency data for Trichodesmium and report that for their predicted set of requirements

(diazotrophic growth of 0.1 d-1, PS1:PSII ratio from 1-4, and 48% Mehler activity)

Trichodesmium would require only 7-11 times more iron than a non-diazotrophic

(eukaryotic) phytoplankter (Kustka, et al. 2003).  The available iron in the Atlantic and

Caribbean Sea could support and possibly even exceed that which is necessary for the

observed rates of Trichodesmium N2-fixation (Kustka, et al. 2003). In the Gulf of

Mexico, iron rich dust deposition has been implicated in a 100-fold increase the

Trichodesmium biomass (Lenes, et al. 2001). Culture studies of the effects of iron

limitation on N2-fixation have determined that N2-fixation is more sensitive to Fe stress

than is cellular yield (Fu, et al. 2003) and that cellular iron quota, photochemical quantum

yield, PSI:PSII ratio, as well as N2-fixation rate all decline in iron-limited culture

conditions (Berman-Frank, et al. 2001).  The genetic marker, IdiA, has been used as an

indicator of iron stress in Trichodesmium (Webb, et al. 2001).  Achilles, et al. have shown

that inorganic iron (III) as well as siderophore-bound iron (III) is bioavailable to

Trichodesmium (Achilles, et al. 2003) and small, newly-formed, colloidal-complexed

iron is available to Trichodesmium also (Wang, et al. 2003).

Though shipboard trace metal experiments are problematic, a great deal of

evidence supports the theory that iron availability can affect growth rate and N2-fixation

rate in diazotrophs.  However, the opposite has also been reported.  In field studies in the
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central Atlantic, N2-fixation rates have been shown to be independent of both dissolved

iron and Trichodesmium colony iron content (Sanudo-Wilhelmy, et al. 2001) or co-

limited by both low iron and low phosphate availability (Mills, et al. 2004).

Phosphate Availability

Similar to trace metal limitation, it has been suggested that the lack of available

phosphate in the euphotic zone of oligotrophic oceans can inhibit growth and N2-fixation

(Wu, et al. 2000, Wu, et al. 2003, Sanudo-Wilhelmy, et al. 2001).  Stihl et. al, (2001) and

Mulholland et al., (2002) report alkaline phosphatase activities in both phosphate deplete

cultures and in natural populations and both studies report the ability of Trichodesmium

to take up organic P in the form of glycerophosphate.  Illustrating Trichodesmium’s

remarkable P-scavenging ability under growth limiting oligotrophic conditions. An ELF

labeling technique, which labels PhoA, the enzyme responsible for alkaline phosphatase

activity, has been shown to detect cell-specific phosphorous stress (Dyhrman, et al.

2002).  It is still unclear to what extent limited P availability affects the rate of N2-

fixation in natural populations.  However, in culture, inorganic phosphorous up to 1.2 µM

and organic phosphorous have been shown to stimulate N2-fixation in Trichodesmium

(Fu, et al. 2003).

Combined N uptake

Another potential source of variability in N2-fixation rates is the presence and

preferential uptake of combined N.  In addition to its ability to fix dinitrogen,

Trichodesmium can take up various forms of combined nitrogen (NH4
+, NO3

-, urea,
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amino acids, and DON) from solution (Carpenter, et al. 1975, Glibert, et al. 1988,

Goering, et al. 1966, Mulholland, et al. 1999, Mulholland, et al. 2001).  Most studies of

both natural populations and cultures show that uptake of combined N is extremely low

and even undetectable. In the Sargasso Sea, Goering et al. (Goering, et al. 1966) report

specific uptake rates that ranged from undetectable to 9 ¥ 10-5 h-1 in non-bloom

conditions to 1.75 ¥ 10-3 h-1 in bloom conditions and Carpenter and McCarthy (1975)

reported nitrate uptake rates at or below their limit of detection in the Sargasso Sea and

reported no detectable NO3
- uptake at substrate concentrations below 10 mg-atoms N⋅L-1.

Mulholland et al. (Mulholland, et al. 1999, Mulholland, et al. 2001) report a stimulation

of NO3
- uptake when elevated NO3

-  (10µM) is added to batch cultures in exponential

growth phase but do not report inhibited N2-fixation at a 1µM initial NO3
- concentration

(Mulholland, et al. 2001).  We report here the inhibition of N2-fixation across the entire

range of initial NO3
- concentrations we tested in our continuous cultures (0.25µM to

20µM) and propose that Trichodesmium is able to overcome the inhibition of N2-fixation

by NO3
- uptake if the initial NO3

- concentration is above 2.5µM (Holl, et al. submitted).

Growth Rate

One cannot know or predict the growth rate or history of a population that one

might encounter at sea yet N2-fixation rate measurements necessarily are affected by

growth rate.  We know that N2-fixation decreases linearly from early exponential growth

to stationary phase in batch culture (Mullholland, et al. 2000, and reported herein)

however to date, all N2-fixation rate measurements and experimental manipulations have

been made on batch cultures in exponential growth phase.
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We have established and maintained Trichodesmium in continuous culture across

a range of growth rates in order to establish a stable N2-fixation rate over a period of at

least five days.  Our data suggest that as growth rate increases, total culture biomass

decreases and N2-fixation rates increase across the range of growth rates at which steady

state growth was achievable for Trichodesmium IMS 101.

At the Level of the Gene

Regulation of N2-fixation is still not well characterized in Trichodesmium,

however the genome of Trichodesmium has recently been completed by the DOE joint

genome project, which will undoubtedly facilitate this endeavor.  In Trichodesmium as

well as in many other cyanobacteria, the Fe protein of nitrogenase is subject to post-

translational modification when under high O2 tension or in the presence of ammonium

(Bergman, et al. 1997).  In Trichodesmium, the modified Fe protein has been detected

under high O2 tension (Zehr, et al. 1993) and in the presence of NO3
- (Ohki, et al. 1991)

and the modification is reversible when the conditions are once more favorable for N2-

fixation.

In addition to post-translational regulation, many of the genes encoding for N

assimilation in cyanobacteria are repressed by ammonium and are under control of a

transcription regulator that is common to the different N assimilation pathways in

cyanobacteria (Herrero, et al. 2001).  NtcA is a CAP family transcriptional regulator that

mediates N control in cyanobacteria and appears to respond to the C:N balance of the cell

(Lee, et al. 1999).  NtcA is positively autoregulatory and is necessary for the expression

of genes encoding for the proteins involved in the assimilation of N sources, for
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heterocyst development, and for the full expression of glutamine synthetase (Herrero, et

al. 2001).  It is clear that NtcA is important for N control in cyanobacteria and, in

combination with the circadian rhythm (Ohki, et al. 1992), is likely responsible for

control of the N assimilation pathways in Trichodesmium as well.

Modeling Efforts

Because of the difficulties inherent in tracking Trichodesmium biomass in situ, a

number of models of Trichodesmium distribution and their potential to supply new N to

oligotrophic systems have been published of late.  One of these is a model by Fennel et

al., (2002) of the N2-fixation dynamics of Trichodesmium at station ALOHA that takes

into account the physical forcing that may affect N2-fixation in this diazotroph (Fennel, et

al. 2002).  This model accounts for temperature, irradiance, and wind speed, allows for

fluctuating N:P ratios in the inorganic and organic pools, and ultimately captures the

interannual variation in diazotrophic biomass in the subtropical North Pacific (Fennel, et

al. 2002).  Hood, et al (2001) model N2-fixation by Trichodesmium in the North Atlantic

and implications of this N2-fixation upon the drawdown of DIC as well as export flux

(Hood, et al. 2001).  Their results point to significant interannual variation in N2-fixation

rates as a result of decadal-scale climate fluctuations.  In a model designed to estimate

Trichodesmium N2-fixation via remote sensing, Hood, et al. (2002) employs the use of

empirical measurements of N2-fixation with respect to light intensity from shipboard

incubator experiments as well as enumerated vertical trichome profiles in conjunction

with SeaWiFS-derived Trichodesmium chlorophyll concentration.
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CHAPTER 2

ESTABLISHMENT AND CHARACTERIZATION OF A CONTINUOUS CULTURE
OF TRICHODESMIUM IMS 101

Introduction

Trichodesmium is an important diazotroph broadly distributed in subtropical and

tropical oligotrophic oceans (Capone, et al. 1997, Tyrrell, et al. 2003).  Its ability to fix

dinitrogen and its cosmopolitan distribution make it an important contributor to the pool

of new nitrogen in the oligotrophic ocean (Carpenter, et al. 1991, Capone, et al. 1997).

Natural populations have been studied for decades, yielding wide variation in reported

rates of N2-fixation (Capone, et al. 1997, Mulholland, et al. 1999, Letelier, et al. 1996).

Seasonality, availability of dissolved species including combined N (Holl, et al.

submitted, Mulholland, et al. 2001), phosphorous (Sanudo-Wilhelmy, et al. 2001,Wu, et

al. 2003, Mulholland, et al. 2002), trace metals (Berman-Frank, et al. 2001, Kustka, et al.

2003) or combinations of these factors (Mills, et al. 2004) may all contribute to variation

in the N2-fixation rate measurements observed in the field.

Trichodesmium has now been cultured and studied under controlled laboratory

conditions for more than a decade (Mulholland, et al. 1999, Mulholland, et al. 1999,

Ohki, et al. 1986, Chen, et al. 1996, Saino, et al. 1978, Fu, et al. 2003) yet much of its

physiology remains poorly understood.  Typically, metabolic and physiologic work has

been carried out on batch cultures in exponential growth phase.  However, N2-fixation

rates do not remain constant during exponential growth (Mulholland, et al. 1999)
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potentially leading to significant variation in rates measured at different time points. The

highest rates of N2-fixation are typically observed in early phase cultures (Mulholland, et

al. 1999), which also release significant quantities of combined N that is then available

for reuptake (Mulholland, et al. 1999, Glibert, et al. 1994). The decline in N2-fixation rate

has been attributed to the uptake of combined N released by the growing culture in the

form of NH4
+ (Mulholland, et al. 1999, Mulholland, et al. 1999) as well as dissolved

amino acids such as glutamine and glutamate (Capone, et al. 1994, Carpenter, et al. 1992,

Mulholland, et al. 1999). The switch from a culture acquiring N solely from N2-fixation

to one in which recycling and combined N uptake is dominant occurs during mid

exponential growth (Mulholland, et al. 2000).

Growth rate is intimately related to N2-fixation rate in diazotrophs but this

relationship has not been studied extensively in Trichodesmium, in part because of the

challenges associated with developing a continuous culture of this organism.  A

continuous culture approach allows maintenance of a constant physiological state under

which controlled rate measurements and experimental manipulations can be carried out.

We established a continuous culture of Trichodesmium in which we could study the

interactions among growth rate, N2-fixation rate, and biomass under steady state growth

conditions.  To our knowledge, this is the first successful continuous culture of

Trichodesmium, and the first study to yield insight into the steady state dynamics of N2-

fixation and biomass production in this globally significant diazotroph.
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Materials and Methods

Culture conditions

Batch cultures – In three trials, triplicate unialgal cultures of Trichodesmium erythraeum

(IMS-101) were grown at 26°C with a 12:12 light:dark cycle and a daytime photon flux

of approximately 170 µE m-2 s-1.  We used an artificial seawater medium with trace metal

and vitamin concentrations as described by (Chen, et al. 1996).  This medium contains no

added N and an initial phosphate concentration of 5mM.  Each culture was grown in a 2.5

L Nalgene‚ 3-port polycarbonate magnetic culture vessel fitted with a tetra-

fluoroethylene stir bar and polypropylene/polyvinylidene fluoride stirring assembly in a

volume of 1.5 L.

Continuous cultures – Two replicate unialgal cultures of Trichodesmium erythraeum

(IMS-101) were grown as continuous cultures under the same temperature and light cycle

conditions as our batch cultures.  We used the same N-free artificial seawater medium

with trace metal and vitamin concentrations as described by (Chen, et al. 1996) and an

initial phosphate concentration of 5mM.  Both cultures were grown in the same vessels as

described above with a working volume of 1.7 L.  New medium was introduced

continuously with a Manostat peristaltic pump at dilution rates ranging from 0.27 d-1 to

0.67 d-1.  The culture vessel was continuously mixed by suspended magnetic stir bar.  A

stream of 0.2 mm filtered air maintained a slight positive pressure in the headspace to

facilitate overflow of the culture through a riser tube and helped minimize airborne

contamination.  These cultures were not axenic but aseptic techniques were used to

minimize contamination.  Cultures were considered to be at steady state when in-vivo
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chlorophyll fluorescence in the culture overflow was constant for five or more

consecutive days.

Analyses and Calculations

At steady state, the continuous culture growth rate (µ) was equal to the medium

dilution rate (D), which in turn was controlled by the speed of the peristaltic pump.  We

measured the volume of the culture overflow daily to monitor dilution rate.

In-vivo fluorescence was measured on a subsample of each culture at the start of the light

day (0900 local time) using a Turner model 112 fluorometer at a door setting of 10x.

Nutrient samples were immediately filtered through a pre-combusted (450˚C for 2 to 4 h)

25 mm Whatman GF/F filter and stored frozen until analysis of nitrate, phosphate and

ammonia with a Lachat QuikChem FIA 8000 nutrient analyzer.  The filters were dried at

60° C and then packed in tin capsules for analysis of elemental and stable isotope

composition by continuous-flow isotope ratio mass spectrometry (CF-IRMS) using a

Carlo Erba NC 2500 elemental analyzer interfaced to a Micromass Optima mass

spectrometer.

N2-fixation was measured using the acetylene reduction assay (ARA) carried out

as described in Capone and Montoya (2001).  In brief, incubations were carried out in 30

mL Nalgene vials fitted with Teflon-lined septum caps with a 3 mL headspace to which

we added 3 mL of acetylene.  Incubations were conducted under the same light and

temperature conditions as the continuous cultures.  The ethylene concentration in the

headspace was measured in triplicate by gas chromatography using a SRI model 8610c

gas chromatograph fitted with a 2m Hayesep A column and a flame ionization detector.
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Acetylene reduction rates were calculated for the three-hour (0900 to 1200 local

time) experimental incubation using the average of three headspace measurements at the

final time point.  We used a reduction ratio (C2H2:N2) of 4:1 to convert acetylene

reduction to N2-fixation rates (Capone, et al. 2001).  The rates for the replicate vials were

then averaged and normalized to the particulate N concentration measured at the start of

the incubation and to the total time of the incubation to obtain an hourly N2-fixation rate

normalized to biomass.  Hourly rates were extrapolated to daily rates based on the daily

time course of N2-fixation described by Mulholland and Capone (2001).

Total phosphorous (TP) was measured on a fraction of the particulate filter by

persulfate oxidation (Raimbault, et al. 1999).  Oxidizing agent was made fresh daily and

oxidized samples were filtered through a Millex-GV 0.22 µm filter unit before analysis of

total nitrate and phosphate with a Lachat QuikChem FIA 8000 nutrient analyzer.

Results

Batch cultures

N2-fixation decreased as biomass increased from the first day of exponential

growth in each of the three trials (Figure 1 panels A – C) and did not stabilize at any time

during exponential growth.  The hourly N2-fixation rate in all three trials ranged from 0.5

x 10-2 h-1 to 0.3 x 10-1 h-1 with a mean of 0.2 ± 0.07 x 10-1 h-1 (mean ± SD, N = 19).

Mean daily N2-fixation rates within each trial were 0.5 ± 0.2 d-1 (mean ± SD, N = 6), 0.3

± 0.06 d-1 (mean ± SD, N = 7), and 0.3 ± 0.1 d-1 (mean ± SD, N = 6), respectively (Figure

1 panels A – C).  The slope of the linear portion of the curve of PN vs. time was used to

calculate specific growth rates that ranged from 0.39 d-1 to 0.45 d-1 with a mean of 0.42 ±

0.03 d-1 (mean ± SD, N=9) during the exponential growth phase.
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Figure 1 – Time course of PN accumulation (open circles) and specific N2-fixation
(triangles) in Batch Culture



24

In our batch cultures, phosphate concentrations declined from an initial value of

5µM to below the limit of detection during the middle to late exponential growth phase.

Ammonium concentration increased in two of the three trials from 0.5 µM at the start of

exponential growth to 0.8 µM at the end of exponential growth (nutrient data not shown)

and did not change during exponential growth in the third set of batch cultures.  Nitrate

was not measurable at any time in these batch cultures.

Continuous cultures

In our continuous cultures, N2-fixation rate and biomass (PN) are inversely

related, reflecting the normal relationship between growth rate and biomass in a

continuous culture.  Particulate N concentration decreased linearly as growth rate

increased from 0.27 to 0.67 d-1 (Figure 2).  With each adjustment of the dilution rate we

measured in-vivo chlorophyll fluorescence, PN, and ARA daily.  Steady state was

defined as less than 5% variation in in-vivo chlorophyll fluorescence for 5 or more

consecutive days.  We determined the maximum growth rate of Trichodesmium under

these culture conditions, µmax = 0.67 d-1, by increasing the dilution rate until we observed

washout of biomass.

Biomass specific N2-fixation rates, normalized to PN concentration, increased

with growth rate to a maximum of 0.77 d-1 at a growth rate of 0.51 d-1 (Figure 2). The

increase was linear (N2-fixation rate = 1.63  x µ (d-1) – 0.24, R2 = 0.76, N=7 p<0.05) with

growth rate from µ = 0.27 to 0.51 d-1 (Table 1).  Interestingly, the two steady state

experiments with µ > 0.57 d-1 showed reduced N2-fixation rates.  Our biomass specific

N2-fixation rates are equal to instantaneous N-specific growth rates, which are linearly
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Figure 2 – Particulate N (open diamonds) and N2-fixation (triangles) as a function of
specific growth rate.
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Figure 3 – N-specific growth rate as a function of dilution rate
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related to dilution rate (D) across the entire range of growth rates with a slope of 0.91, R2

= 0.49 (Figure 3).

Neither elemental (C:N, N:P) nor fluorescence:PN ratios varied significantly with

growth rate.  C:N ratios varied from 4.58 to 6.56  with a mean of 5.63 ± 0.35 (mean ±

SD, N= 93).  N:P ratios showed considerably greater variation, with a range of 8 to 54

and a mean of 27.14 ± 7.42 (mean ± SD, N=74), but there was no correlation with growth

rate.   The fluorescence:PN ratio, which we used as a proxy for biomass specific

fluorescent pigment concentration, did not change across our range of growth rates

(Table 1).

Discussion

 Our batch culture study showed a clear decrease in N2-fixation rate during the

exponential growth phase.  This decrease could reflect increasing phosphate limitation

(Wu, et al. 2000) and/or re-uptake of newly fixed and exuded N as the culture matures

(Mulholland, et al. 1999, Glibert, et al. 1994). N2-fixation rates in early exponential phase

are roughly double those measured in late exponential phase (Figure 1 panels A-C).  The

constantly changing growth conditions in a batch culture can cause variation in N2-

fixation rate and may help explain much of the variation found in field populations. The

pattern of decreasing N2-fixation rates during exponential growth in batch culture

necessitates the establishment of a continuous culture of Trichodesmium in which one can

maintain a steady state growth rate, and therefore N2-fixation rate.  This physiological

steady state provides a standard or baseline, which can then be experimentally

manipulated.
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Table 1 – Dilution rate, PN, N-specific growth rate, and fluorescence:PN ratio for the
range of growth rates in continuous culture.

D (d-1)
PN

(µmol N L-1)
N Specific growth

rate  (d-1)
SD N Fluorescence:

PN ratio
0.27 210.82 0.19 0.07 12 0.13

0.31 182.66 0.35 0.07 10 0.14

0.38 169.64 0.29 0.06 10 0.13

0.43 137.57 0.39 0.16 10 0.15

0.48 116.53 0.48 0.14 14 0.15

0.51 74.79 0.77 0.20 12 0.20

0.57 115.24 0.64 0.10 10 0.12

0.62 83.06 0.53 0.14 12 0.13

0.67 57.95 0.49 0.08 10 0.15
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In continuous culture, decreasing biomass with increasing growth or dilution rate

is the normal pattern for nutrient or light limited chemo- or cyclostats.  This pattern has

been shown for natural phytoplankton assemblages from an oligotrophic lake (Suttle, et

al. 1986), the marine microalga, Isochrysis galbana (Grima, et al. 1997), the diazotrophic

unicellular cyanobacterium Gloeothece sp. (Ortega-Calvo, et al. 1991), the freshwater

alga Scenedesmus sp. (Rhee, et al. 1981), the coccolithophorid Emiliania huxleyi

(Riegman, et al. 2000), the marine diatom Thalassiosirea fluviatilis (Laws, et al. 1980),

and for the freshwater cyanobacteria Anabaena sp. and Aphanizomenon flos-aquae

(Nobel, et al. 1997). Likewise, in our continuous cultures, as dilution rate increased PN

concentration decreased linearly (Figure 2) (R2=0.88) and we were able to maintain a

steady state biomass concentration at each of the growth rates across the range we tested

for 5 or more days.

The lowest steady state we attempted to maintain was µ = 0.27 d-1.  At low

growth rates, the culture was fairly dense, potentially leading to self-shading and light-

limitation of growth. However, the ratio of fluorescence to PN concentration did not

change across our range of growth rates (Table 1), suggesting that self-shading and

photoadaptation at low growth rates was not significant.  To determine if Trichodesmium

could maintain a steady state lower that 0.27 d-1 would have required further

manipulation of the culture conditions to alleviate density dependent effects.

C:N ratios remained constant at all growth rates, which reflects close coupling of

carbon and N2-fixation across the range of growth rates we investigated. N:P ratios also

remained stable across the growth rates investigated and stable macronutrient ratios

suggest we had achieved balanced growth in our continuous cultures.  A C:N:P ratio of
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152:27:1 and no measurable residual P in the overflow, at even high growth rates,

suggests P limitation at all growth rates.  This limitation may have been overcome by

APA activity (Stihl, et al. 2001, Dyhrman, et al. 2002, Mulholland, et al. 2002) since N:P

ratio did not deviate significantly across the range of growth rates we investigated.

It is difficult to compare continuous culture studies as the culture conditions often

differ depending on the physiological processes under investigation.  An even greater

distinction is that, with the exception of Gloeothece sp., Anabaena sp., and

Aphanizomenon flos-aquae, the organisms studied to date are not diazotrophs and were

supplied with a source of combined N, as opposed to our obligately diazotrophic culture

conditions. Among the diazotrophic species studied in continuous culture, the freshwater

cyanobacteria Anabaena sp. and Aphanizomenon flos-aquae are the most closely related

to Trichodesmium.  However, both of these cyanobacteria are heterocystous and thus

spatially separate O2 production and N2 fixation, in contrast to the nonheterocystous

Trichodesmium (Berman-Frank, et al. 2001).  This fundamental physiological difference

may distinguish them from Trichodesmium in terms of growth rate and N2-fixation rate.

Therefore, though it is unicellular, the marine cyanobacterium Gloeothece sp.

may be a better comparison to our work. In continuous culture, Gloeothece sp. fixes

dinitrogen concomitantly with photosynthesis and during light phase regardless of the

imposed light-dark cycle (Ortega-Calvo, et al. 1991).  N2-fixation in Gloeothece sp.

increased with increasing growth rate until the culture began to washout. The nitrogen

content of the diazotrophic Gloeothece sp. culture decreased with increasing growth rate

as did protein and chlorophyll a (Ortega-Calvo, et al. 1991). N2-fixation rates of

Gloeothece sp. measured at three dilution rates (Ortega-Calvo, et al. 1991) increased as
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dilution rate increased from 0.12 to 0.36 d-1. As seen in Gloeothece sp. cultures,

Trichodesmium N2-fixation rate increased with increasing dilution rate and N content of

the culture decreased linearly with increasing dilution rate (Figure 2).  Though there was

some variation in N2-fixation rate at each growth rate (Figure 2), the increase in specific

N2-fixation rate was linear from a growth rate of 0.27 d-1 to 0.51 d-1 (R2 = 0.76).  At the

two highest growth rates tested, N2-fixation decreased, but only the highest growth rate

tested yielded a specific N2-fixation rate markedly lower than the dilution rate (Figure 3).

Trichodesmium may excrete DON (Capone, et al. 1994, Glibert, et al. 1994,

Mulholland, et al. 1999), which then becomes a potential source of combined N to

individual cells that do not possess actively fixing nitrogenase (Berman-Frank, et al.

2001, Lin, et al. 1998).  We did not measure DON concentration directly in this study but

our data allow us to constrain the magnitude of excretion and re-uptake under steady state

conditions.  ARA measures nitrogenase activity rather than the incorporation of N2 into

protein.  As a result, ARA will reflect the production and accumulation of DON in the

medium as well as the production of new biomass, yielding N-specific activity rates

greater than the continuous culture dilution rate when DON production is important.

Accumulation of significant quantities of DON in the growth medium can occur only if

the N-specific rate of N2-fixation measured by ARA is greater than the culture dilution

rate.

In our continuous cultures, Trichodesmium fixed N2 at a specific rate

indistinguishable from D at all except the highest dilution rate tested (Figure 3). Our data

imply that little or no DON accumulated in solution, therefore either DON excretion was

unimportant, or rapid uptake prevented accumulation of DON following excretion.  Our
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data do not allow us to distinguish between these two possibilities, though they show a

closed N budget across a range of steady state growth rates for this important

cyanobacterium.

A consistent challenge in field studies of Trichodesmium is assessing the growth

status and history of a natural population of Trichodesmium at the time of sampling.

Some of the variation in N2-fixation rates measured on field populations may reflect

differences in the growth phase of the population at the time of sampling, as well as the

potentially inhibitory effects of trace metal limitation, phosphate limitation, non-optimal

temperature and light regimes, as well as the presence of combined N.  Our work clearly

shows that N2-fixation rate is intimately related to growth rate.  Growth rate and the rate

at which a bloom may be progressing need to be included in models of Trichodesmium

N2-fixation in order to accurately assess the impact of new nitrogen supplied by this

important diazotroph to the oligotrophic waters in which it thrives.



33

CHAPTER 3

INTERACTION BETWEEN N2-FIXATION AND NITRATE UPTAKE IN
CONTINUOUS CULTURES OF TRICHODESMIUM IMS 101

Introduction

Trichodesmium is a non-heterocystous, diazotrophic marine cyanobacterium

found in oligotrophic tropical and sub-tropical seas worldwide (Capone, et al. 1997).  It

can form extensive blooms and appears to supply a significant quantity of newly fixed

nitrogen to the oligotrophic ocean (Capone, et al. 1997, Carpenter, et al. 1991).  Much

effort has gone into quantifying the rate of N2-fixation in natural populations (Carpenter,

et al. 1975, Mulholland, et al. 1999, Saino, et al. 1978) and in lab cultures of

Trichodesmium (Mulholland, et al. 1999, Mulholland, et al. 1999) and in extending such

measurements to estimate the impact of Trichodesmium N2-fixation on the regional and

basin scale (Hood 2002). In addition to its ability to fix dinitrogen, Trichodesmium can

take up various forms of combined nitrogen (NH4
+, NO3

-, urea, amino acids, and DON)

from solution (Carpenter, et al. 1975, Glibert, et al. 1988, Goering, et al. 1966,

Mulholland, et al. 1999, Mulholland, et al. 2001).  Studies of natural populations

(compiled in Mulholland, et al. 1999) have shown that Trichodesmium has a high

capacity for NH4
+ uptake and that amino acid and urea uptake rates are typically low and

variable but detectable.  In contrast, NO3
- uptake rates were either very low or

undetectable in most studies to date.  In the Sargasso Sea, Goering, et al. (1966) used a

tracer addition of 2 mg-atoms 15NO3
-⋅L-1 to measure nitrate uptake and reported specific

uptake rates that ranged from undetectable to 9 ¥ 10-5 h-1 in non-bloom conditions to 1.75
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¥ 10-3 h-1 in bloom conditions.  Carpenter and McCarthy (1975) reported nitrate uptake

rates at or below their limit of detection in the Sargasso Sea and reported no detectable

NO3
- uptake at substrate concentrations below 10 mg-atoms N⋅L-1.

In batch cultures growing exponentially, Mulholland (Mulholland, et al. 2001) has

shown that NO3
- uptake is stimulated by increased concentrations of NO3

-  (1 µM and 10

µM additions).  However, short-term rates of N2 fixation were not affected by additions

of 1µM NO3
- to cultures or to natural populations of Trichodesmium (Mulholland, et al.

2001).

Although Trichodesmium is generally thought to obtain the great majority of its N

ration via N2-fixation, rates measured in the field show wide temporal and spatial

variation (Mulholland, et al. 1999).  The causes of this variability remain unclear, but

environmental factors including the availability of combined nitrogen may contribute to

the observed variation in N2-fixation rates. Relatively little effort to date has been

devoted to studying the utilization of combined nitrogen sources by Trichodesmium, or

the interactions among potential nitrogen sources.  While it is clear that Trichodesmium

can in fact take up at least some forms of combined N, the effects of combined N uptake

on the rate of N2-fixation have not been systematically studied.  Here we report on the

effects of NO3
– exposure on both N2-fixation and NO3

– uptake by Trichodesmium (IMS-

101) maintained in continuous culture on a nitrogen-free medium.  In this study, we

focused on quantifying the physiological interactions between N2-fixation and uptake of

environmentally relevant concentrations of NO3
–.
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Materials and Methods

Continuous Culture Conditions

A unialgal culture of Trichodesmium erythraeum (IMS-101) was grown in

continuous culture at 26° C with a 12:12 light:dark cycle and a daytime photon flux of

approximately 128 mmol m-2⋅s-1.  This culture was not axenic but every effort was made

to keep contamination to a minimum.  We used an artificial seawater medium with trace

metal and vitamin concentrations as described by Chen, et al. (1996).  This medium had

no added N and a phosphate concentration of 10 mM.  Each culture was grown in a 1 L

Nalgene‚ 3-port polycarbonate magnetic culture vessel fitted with a tetra-fluoroethylene

stir bar and a polypropylene/polyvinylidene fluoride stirring assembly.  The volume of

the culture was maintained at 1.5 L by passive overflow, and new medium was

introduced continuously at a dilution rate of 0.3 d-1.  The culture vessel was gently mixed

by a suspended magnetic stir bar and a stream of 0.2 mm filtered air maintained a slight

positive pressure in the headspace to facilitate overflow of the culture through a riser tube

as well as to minimize airborne contamination.  Cultures were considered to be at steady

state when in-vivo chlorophyll fluorescence in the culture overflow was constant for three

or more consecutive days.

Experimental Manipulations

Just before the start of the light day (08:00 local time) the medium pump was

stopped, the culture was split and half was transferred to either an additional acid-washed

culture vessel or an acid-washed 500 mL Nalgene polycarbonate bottle.  One vessel was

then amended with NO3
-while the other was left unamended as a control.  Immediately

following the NO3
- addition, and at hourly intervals throughout the day, samples were
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collected from the control and experimental (NO3
- amended) vessels for measurement of

nutrient and particulate nitrogen (PN) concentrations.  Additional samples were collected

from each vessel for duplicate acetylene reduction assays every two hours beginning

immediately after the NO3
- addition to the experimental vessel and continuing through the

light day.

Acetylene reduction assays were carried out as described in Capone and Montoya

(2001).  In brief, incubations were carried out in 30 mL Nalgene vials fitted with Teflon-

lined septum caps with a 3 mL headspace to which we added 3 mL of acetylene.  Each

assay vial was incubated for three hours under the same light and temperature conditions

as the original continuous culture.  Upon termination of each incubation, the ethylene

concentration in the headspace was measured in triplicate by gas chromatography using

an SRI 8610c gas chromatograph fitted with a 2m Hayesep A column and a flame

ionization detector.

Analyses and Calculations

Fluorescence was measured on an aliquot of each culture at the start of the light

day using a Turner fluorometer model 112 at a door setting of 10x.  Nutrient samples

were filtered through a 25 mm Whatman GF/F filter immediately after collection and

stored frozen until analysis with a Lachat QuikChem FIA 8000 nutrient analyzer.  The

filters were dried at 60° C, then packed in tin capsules for analysis of carbon, nitrogen

and stable isotope composition by continuous-flow isotope ratio mass spectrometry (CF-

IRMS) using a Carlo Erba NC 2500 elemental analyzer interfaced to a Micromass

Optima mass spectrometer.
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Acetylene reduction rates were calculated for each three-hour experimental

incubation using the average of three terminal headspace measurements.  We used a

reduction ratio (C2H2:N2) of 4:1 to convert acetylene reduction to N2-fixation rates

(Capone, et al. 2001).  The rates for the replicate vials were then averaged and

normalized to the particulate nitrogen concentration.  The total N2-fixation during the

light day was computed by integrating the rates of the six sequential acetylene reduction

incubations started at two-hour intervals spanning the entire light day.

NO3
- uptake rates were calculated from the rate of disappearance of nitrate from

solution, and then normalized to particulate nitrogen concentration.  Both the acetylene

reduction and the nitrate uptake rates were normalized to the particulate nitrogen

concentration measured at 11:00 (local time) to produce biomass-specific rates for

comparison across experiments.

Results

NO3
- uptake and inhibition of N2-fixation

We observed measurable inhibition of N2-fixation even at the lower end of the

range of NO3
- additions tested (0.5 – 20 µM) (Figure 4), and the inhibition persisted

through much or all of the light day in most cases.   In experiments with small nitrate

additions (< 5 mM) we observed some recovery of N2-fixation activity approximately 8

hours after the NO3
– addition (Figure 4B).  The recovery of N2-fixation activity appeared

to coincide with a reduction of ambient NO3
– concentrations below about 0.5 µM.  In

experiments with large initial NO3
– additions the ambient concentration of NO3

– did not

decrease to such low levels over the course of the experiment, and no recovery of N2-

fixation activity was observed (Figure 4A).  The inhibition effect showed apparent
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Figure 4 – Time course of N2-fixation in Nitrate Amended Cultures
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saturation kinetics, reaching an asymptotic value of about 70% inhibition at an initial

NO3
– concentration of 10 µM (Figure 5).

We did not find complete inhibition of N2-fixation at even the highest NO3
–

concentrations used in this study.  For example, a 20 µM NO3
– addition suppressed N2-

fixation by 66%, yet N2-fixation still accounted for 8% of the total N assimilation by

Trichodesmium in the experimental vessel (Figure 6) despite the presence of abundant

NO3
– throughout the day.

NO3
- Uptake Kinetics

Our data clearly show immediate and continuing uptake of added NO3
– during the

“daytime” portion of the 12:12 L:D cycle. Nitrate uptake rates (VNO3-) increased with

increasing initial NO3
– concentration (VNO3- = 8.7 x 10-4 + 1.4 x 10-3[NO3

-], R2 = 0.85).

Nitrate uptake rates during the 14 hour incubation ranged from 1.5 ¥ 10-3 h-1 at the lowest

initial NO3
– addition, 0.5µM, to 2.4 x 10-2 h-1 at the highest NO3

– addition, 20 µM.

Nitrate consumption was negligible during the dark portion of the 12:12 L:D cycle.

The instantaneous N-based specific growth rate  (Vtotal) in the treatments was computed

using total N uptake (NO3
- uptake plus N2-fixation) over the 14 hour experimental time

period and PN measurements made at the end of the experimental time period.  Vtotal

varied between 0.12 d-1 and 0.61 d-1 as a linear function of initial NO3
- concentration

(Vtotal = 0.1 + 2.4 x 10-2 [NO3
-], R2 = 0.83).
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Figure 5 – Relative inhibition of N2-fixation as a function of initial nitrate concentration



41

Only those treatments with the highest initial NO3
- concentrations (7 µM and

20µM) had N-based instantaneous growth rates comparable to the steady state growth

rate of these cultures before the start of the experiment, 0.3 d-1 (i.e., a doubling time of

2.3 d).  An initial NO3
- concentration of 20 µM produced a doubling time of 1.14 d, while

the lowest initial NO3
- addition tested (0.5 µM) produced a doubling time of 5.85 d in

these experiments.  D Vtotal, defined as the difference between Vtotal in the treatment and

control incubations, increased with increasing initial NO3
- concentration (D Vtotal  = -6.7 x

10-2 + 1.8 x 10-2 [NO3-], R2=0.72).  By definition, D Vtotal is therefore negative when

control Vtotal is higher than treatment Vtotal and this pattern was observed in four of the

five treatments amended with <2.5µM NO3
-.

Effect of NO3
- uptake on total N assimilation

The impact of NO3
– on the total rate of N uptake by Trichodesmium varied across

the range of NO3
– concentrations investigated.  At high concentrations (>2.5 µM) the

uptake of NO3
– more than compensated for the inhibition of N2-fixation.  This resulted in

greater total N consumption in the treatments amended with >2.5µM NO3
- than in the

corresponding controls (Figure 7).

Small additions of NO3
– (< 2.5 µM) led to significant inhibition of N2-fixation by

Trichodesmium (Figures 4C and 4D).  However, at the lower initial NO3
- concentrations

(<2.5 µM) most treatments were just able make up for the inhibition of N2-fixation by

taking up NO3
–.  Therefore, total N consumption in the treatments was not significantly

different than total N consumption in the corresponding controls (Figure 7).
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Figure 6 – Contribution of N2-fixation to total N uptake as a function of initial nitrate
concentration.
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Figure 7 – Total N uptake in nitrate amended treatments as compared to total N uptake in
corresponding unamended controls.
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Discussion

The ability to fix dinitrogen potentially gives Trichodesmium a strong competitive

advantage in oligotrophic waters where the availability of combined nitrogen may

severely limit the growth of non-diazotrophs.  Although appreciable NO3
- concentrations

are uncommon at the surface in regions where Trichodesmium is typically found, mixing

events may inject NO3
- into the surface layer and NO3

- is always available near the base

of the mixed layer where Trichodesmium colonies and free trichomes can be found.  As a

result, Trichodesmium in the field may encounter measurable concentrations of NO3
- on a

regular basis.  However, relatively little is known about the effects of combined nitrogen

on the N acquisition strategy of Trichodesmium.

 N2-fixation by Trichodesmium in culture and natural populations exhibits a

reproducible diurnal pattern when incubated under simulated in situ conditions:  N2-

fixation rates increase rapidly at the start of the light day, peak at midday, and decrease in

mid-afternoon when nitrogenase is inactivated and subsequently degraded (Capone, et al.

1990).  At night, N2-fixation is completely shut down until the following morning.

Previous studies have shown that nitrogenase is produced de novo each day

approximately 2 h prior to first light (Capone, et al. 1990) and that transcription of

nitrogenase genes as well as the activity of the protein itself is regulated by an

endogenous clock (Chen, et al. 1998).

NO3
- Inhibition of N2-Fixation

The inhibition of N2-fixation followed a reproducible temporal pattern in our

experiments.  NO3
- was added to the culture flask immediately preceding the daily
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dark/light transition.  In the presence of NO3
-, NO3

- uptake and N2-fixation occurred

simultaneously and N2-fixation was typically inhibited as early as our first time point.

Even a 0.5 µM initial NO3
- concentration induced immediate consumption of NO3

- by

Trichodesmium.  These treatments show a clear increase in NO3
- uptake rate as well as an

increase in the inhibition of N2-fixation as the initial NO3
- concentration is increased.

In experiments with an initial NO3
- amendment greater than 5 µM, the ambient NO3

-

concentration and uptake rate remained high throughout the afternoon, and we found no

recovery of N2-fixation activity during the remainder of the light day (Figure 4A).  In

treatments amended with less than 5 µM NO3
- we observed some recovery of N2-fixation

late in the afternoon when NO3
- concentrations fell below 0.3 – 0.4 µM (Figure 4).

Treatments with low initial concentrations of NO3
–  (<2.5 µM) typically resulted in the

ambient concentration decreasing to 0.1 - 0.3 µM by midday, after which the rate of N2-

fixation in the experimental vessel increased and approached that of the control.

In all of our experiments, NO3
- uptake by Trichodesmium rapidly lowered the

ambient concentration in the experimental vessel, but higher initial concentrations

naturally led to a longer exposure of the experimental culture to elevated NO3
-

concentrations.  The persistence of significant ambient NO3
- concentrations through the

early afternoon when nitrogenase activity is normally decreasing may be critical in

maintaining a high degree of inhibition of N2-fixation through the end of the light day

(Figure 4).

In exponentially growing batch cultures, Mulholland et al. (2001) found inhibition

of N2-fixation after a 10 µM NO3
- amendment at the start of the light day.  However, they

did not report significant inhibition of N2-fixation relative to the corresponding control
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for a 1 µM NO3
- amendment.  The physiology of cells growing at steady state in a

continuous culture clearly differs from that of cells in exponential growth in batch

culture, which may explain the difference between our results and those of Mulholland et

al. (2001).  It is possible that the uptake we observed is a result of “luxury consumption”,

a strategy that may not be available to exponentially growing batch cultures. We have not

yet completely characterized the growth kinetics of our continuous cultures, but our

results clearly show that Trichodesmium at steady state can take up NO3
– from solution at

significant rates, and that NO3
– uptake has a strong inhibitory effect on N2-fixation over

the range of concentrations tested.  Our results also demonstrate that Trichodesmium can

meet essentially all of its instantaneous N demand via NO3
- assimilation when

concentrations are high enough.

Kinetics of NO3
– Uptake and Inhibition of N2-fixation

Our results clearly show immediate NO3
- uptake when Trichodesmium is exposed

to NO3
- at the start of the light day.  In the presence of NO3

-, the rate of N2-fixation is

reduced by as much as 70% relative to unamended controls (Figure 5).  The inhibition of

N2-fixation increases with NO3
- concentration and reaches values between 50 and 60% at

initial nitrate concentrations above roughly 10 µM (Figure 5).  Nitrate uptake rates

increase with increasing initial concentration and these addition experiments do not

appear to exhibit saturation kinetics at concentrations < 20 µM NO3
-. Previous studies

have shown that exposure to NO3
- leads to a post-translational modification that

inactivates the Fe-protein of the nitrogenase complex (Ohki, et al. 1991), the enzyme

complex responsible for the reduction of dinitrogen.  However, this work involved
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cultures that had grown for 15 generations in the presence of 2 mM nitrate (Ohki, et al.

1991) and our amendment experiments show significant inhibition on an hourly timescale

and at much lower (µM) NO3
- concentrations.  Should this post-translational modification

occur rapidly, our data suggest that this response mechanism may become at least

temporarily saturated at NO3
- concentrations of 10 µM or greater.

The interaction between N2-fixation and NO3
- uptake may reflect the competition

between these two processes for energy and reductant.  Both NO3
- uptake and N2-fixation

occur during the day in Trichodesmium and it is likely that they compete for

photosynthetic energy and reductant, particularly in experiments like ours where NO3
-

uptake and N2-fixation occur simultaneously.  Reduction of either NO3
- or N2 to NH3 or

N2 to NH3 requires a transfer of six electrons to N, but NO3
- reduction and N2-fixation

involve very different energetic pathways.  Ferredoxin and NAD(P)H are required by

nitrate reductase and nitrogenase requires ferredoxin and ATP for N2-fixation.  Indirect

repression of nitrogenase by NO3
- and the immediate uptake of NO3

- may reflect a

preference for a particular N source and/or the redox or energetic state of the cells.  It is

also clear from our results that if NtcA, the transcriptional regulator of N uptake and

assimilation (Herrero, et al. 2001), is active in Trichodesmium as it is in many other

cyanobacteria then a hierarchy of N preference is established at the gene level.

Repression of N2-fixation in our experiments may be caused by the intracellular

accumulation of ammonium from NO3
- uptake and reduction.

Effects of NO3
– on Total N Uptake

The effect of NO3
– exposure and uptake on the total rate of N uptake by

Trichodesmium varied across the range of NO3
– concentrations we investigated.  Small
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additions of NO3
– (<2.5 µM) led to significant inhibition of N2-fixation by

Trichodesmium.  However, over the 14 h time-course of our experiments, these

treatments were just able to make up for the inhibition of N2-fixation by uptake of

available NO3
–.  Therefore, total N consumption in these treatments (<2.5 µM) was not

significantly different than total N consumption in the controls.  In treatments with initial

NO3
- concentrations greater than 2.5µM, the uptake of NO3

- more than compensated for

the observed inhibition of N2-fixation, resulting in greater total uptake of N in the

amended treatments than in the controls.

Our data show that N2-fixation and NO3
– uptake interact strongly and that the

presence of NO3
- at low concentrations similar to those found at the base of the nutricline

can inhibit total N uptake in Trichodesmium at least on short time scales.  Over longer

time scales, Trichodesmium, strain NIBB1067, exhibits similar growth rates on 2 mM

NO3
- and under N-free conditions (Ohki, et al. 1991).  In contrast to our results, acetylene

reduction by strain NIBB1067 was not inhibited in cells grown in N-free medium and

subsequently incubated for 7 hours in the presence of 2 mM nitrate (Ohki, et al. 1991).

The point during the light:dark cycle at which these cells were initially exposed to

combined nitrogen was not specified but may be an important factor contributing to the

differences between their results (Ohki, et al. 1991) and ours.

N specific Growth Rate

Our results show that the instantaneous N-based growth rate (Vtotal) in our

experimental incubations varied with the size of the NO3
- amendment.  Cultures exposed

to high initial NO3
- concentrations (>2.5µM) showed higher total N consumption over the

14 h experimental day and therefore higher Vtotal than cultures exposed to low initial NO3
-
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concentrations  (<2.5µM).  Control Vtotal ranged from 0.03 d-1 to 0.34 d-1 with a mean of

0.20 ± 0.09 d-1 (mean ± SD, N = 12).  Thus, the instantaneous growth rate in the presence

of 20 µM NO3
- (0.61 d-1) represents a substantial increase in Vtotal relative to the Vtotal of

the corresponding controls. There is clearly a trend for higher growth rates in treatments

with high initial NO3
- concentrations, which may reflect a preference for NO3

- as an N

source.

Immediately preceding the NO3
- amendment in our experiments, the cultures were

at a steady state growth rate of 0.3 d-1.  Interestingly, only the treatment bottles given high

initial NO3
- amendments (7 to 20 µM) were able to take up N at a specific rate equal to or

higher than that at which the experiment was started.  At lower initial concentrations or

under control conditions, the treatment bottles do not take up N at the same rate at which

they did at steady state under constant growth conditions.

Ecological Implications

Trichodesmium is unlikely to encounter NO3
– concentrations in excess of 1 µM

near the surface in oligotrophic waters.  However, our data provide insights into the

potential interaction between NO3
– uptake and N2-fixation deeper in the water column or

at the surface immediately following a mixing event.  Exposure to low concentrations of

NO3
- (< 2.5 µM) inhibited N2-fixation and lowered instantaneous N-based growth rates

within a 14 hour time period.  Therefore, because Trichodesmium is frequently observed

tens of meters below the surface, both as colonies and as free filaments, NO3
- exposure

may play a significant role in the overall nitrogen budget of Trichodesmium.  Exposure
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to, and consumption of, NO3
- clearly affects both N2-fixation activity and the total rate of

N uptake in this cyanobacterium.

Trichodesmium abundance measurements are frequently expressed as areal

standing stocks in order to compute areal N2-fixation rates.  Therefore, published data on

the vertical distribution of Trichodesmium are limited.  However, at several stations along

a subtropical north Atlantic cruise track in April of 1996 Trichodesmium filaments were

found at depths where NO3
- concentrations were between 1.8 µM and 12.2 µM

(Carpenter, et al. 2004).  Our experiments indicate that NO3
- at these concentrations

would inhibit N2-fixation as well as alter total N uptake in Trichodesmium.  The available

data from the Pacific suggest that surface aggregations of Trichodesmium will rarely

encounter NO3
– concentrations high enough to inhibit N2-fixation.  However, Letelier and

Karl (1996) found free trichomes at depths as great as 200 m at Station ALOHA between

October 1989 and December 1992.  At ALOHA, during this time period, the nutricline

typically started at about 100 m depth (http://hahana.soest.hawaii.edu), so trichomes or

colonies at or below this depth would encounter enough NO3
- to inhibit N2-fixation and

potentially affect total N uptake as well as growth rate.

Though not well documented in Trichodesmium, the frequent occurrence of

Trichodesmium deep in the water column may well reflect a migratory strategy for

obtaining PO4
3- from the nutricline (Karl, et al. 1991) and recent work suggests that

migration of at least 70 m is possible for Trichodesmium (Villareal, et al. 2003).  Any

Trichodesmium at the nutricline will be exposed to NO3
– as well as PO4

3-.  Our results

show unequivocally that Trichodesmium can take up NO3
– from solution even at low

concentrations and that this uptake immediately inhibits N2-fixation.  Furthermore,
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uptake of NO3
– at depth may help explain why N:P ratios of sinking and floating colonies

are not significantly different in the Pacific (Villareal, et al. 2003).  To the extent that

Trichodesmium does migrate vertically through the water column, its uptake of NO3
– at

the nutricline represents a second mechanism, in addition to N2-fixation, that can inject

new nitrogen into the upper water column.

To date, most studies of Trichodesmium have focused on the large populations

occurring in surface aggregations where NO3
- concentrations are typically undetectable,

but our results clearly demonstrate the potential for NO3
– at low ambient concentrations

to have a significant effect on the N budget of this organism.  Further studies of the

vertical distribution of Trichodesmium with concurrent measurements of dissolved

nutrient concentrations, along with focused efforts to measure the rates of consumption of

inorganic nutrients by natural populations are clearly needed.
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CHAPTER 4

CHARACTERIZATION OF A BLOOM OF THE DIAZOTROPHIC MARINE
CYANOBACTERIUM, TRICHODESMIUM: IMPLICATIONS FOR N CYCLING IN

THE GULF OF MEXICO

Introduction

Both geochemical estimates and empirical measurements show that N2-fixation is

a major source of new nitrogen supporting primary production in the oligotrophic ocean.

Trichodesmium sp., one of the first known and best studied colonial cyanobacteria

(Capone, et al. 1997), is considered an important source of new nitrogen to the

oligotrophic ocean and studies of this cosmopolitan cyanobacterium are still necessary as

there is much we do not know about its physiology. Trichodesmium sp. is frequently

found in the oligotrophic gyres of the world ocean.  Though common in tropical and sub-

tropical seas, its distribution can be irregular, yet spatially extensive when present.  Dense

blooms can form when the conditions are right; high sea surface temperature, high light

intensity, low nutrients, and quiescent seas (Capone, et al. 1998, Eleuterius, et al. 1981).

Measurements of N2-fixation rates of this diazotroph in both bloom and non-bloom

abundances have been made in the Atlantic (Goering, et al. 1966), Pacific (Karl, et al.

1997, Letelier, et al. 1996), and Indian Oceans (Jyothibabu, et al. 2003, Lugomela, et al.

2002) as well as in the Caribbean (Carpenter, et al. 1977), China (Saino, et al. 1976,

Chen, et al. 2003), Sargasso (Orcutt, et al. 2001), and Arabian Seas (Capone, et al. 1998).

These areal rate measurements have determined that when it is present, Trichodesmium is

an important source of new nitrogen to nutrient-poor regions of the global ocean.   This
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new nitrogen may significantly amplify primary production and the consequent export of

carbon to the deep ocean.

Trichodesmium sp. has been studied for decades both in natural populations and

more recently in laboratory cultures (Chen, et al. 1996, Mulholland, et al. 1999,

Mulholland, et al. 2001, Ohki, et al. 1986, Holl, et al. submitted) and though the

importance of new nitrogen input by Trichodesmium to many sub-tropical and tropical

gyres has been established, few studies of this cyanobacterium have been conducted in

the Gulf of Mexico.  To our knowledge no studies have reported N2-fixation rates by

Trichodesmium in the Gulf, though Trichodesmium is frequently present (Biddanda, et al.

1995, Eleuterius, et al. 1981).

Of the work that has been undertaken in the Gulf of Mexico, one locus of study

has been the West Florida shelf where Trichodesmium biomass increased 100-fold due to

wet deposition of nutrients from Saharan dust (Lenes, et al. 2001).  The subsequent

increase in DON following a West Florida shelf Trichodesmium bloom has been shown

to be the stimulus for harmful algal blooms of the dinoflagellate, Karenia brevis (Walsh,

et al. 2001).    In the Mississippi Sound in the northeastern Gulf of Mexico, the causes of

an extensive bloom of Trichodesmium were determined to be the combination of high sea

surface temperature, high light intensity and increased salinity as well as low nutrients

and low wind activity (Eleuterius, et al. 1981).  Summer Trichodesmium blooms and the

resultant increased nutrient load have been implicated in the enhancement of

heteroptrophic bacterial respiration rates below the euphotic zone (Biddanda, et al. 1997).

These studies have shown that Trichodesmium is important to the nutrient cycling in the
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coastal Gulf of Mexico however, we do not know the extent to which Trichodesmium can

supply new N to this oligotrophic region.

Here we describe an extensive bloom of Trichodesmium in the western Gulf of

Mexico in July 2000 (Figure 8).  We measured N2-fixation rates and pigment

concentrations within the bloom as well as the stable isotopic signature of the organic and

inorganic nitrogen to assess the impact of this new nitrogen on the planktonic food web.

Our results show that N2-fixation by Trichodesmium in the Gulf of Mexico is equal to and

in many cases even exceeds N2-fixation measured in other oligotrophic gyres (Table 3).

Materials and Methods

We collected samples and carried out experiments in the northwestern Gulf of

Mexico during a cruise on the R/V Longhorn in July 2000 (Figure 8).  Water samples

were collected for isolation of particles and for nutrient analysis with a CTD-rosette

system.  Zooplankton were collected in diagonal tows through the upper 100 m of the

water column using a 1 m diameter net with a 220 µm mesh size.  Trichodesmium

colonies were collected at the surface by hand-casting a 30 cm diameter net with a 64 µm

mesh size while the ship was adrift.
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Figure 8 – Gulf of Mexico Cruise track, July 2000.
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Hydrography

The CTD-rosette system was equipped with a Sea-Bird 911-Plus temperature and

conductivity sensor as well as a SeaTec FL0500 fluorometer and a Datasonics atltimeter.

This equipment was used to produce vertical profiles of temperature, salinity and

chlorophyll fluorescence at each of the ten stations along the cruise track.

Nutrients, Chlorophyll, and Trichodesmium Abundance

Samples for measurement of dissolved nutrients and bulk chlorophyll were taken

from the CTD-rosette immediately after recovery. Nutrient samples were immediately

frozen for later analysis ashore.  Concentrations of nitrate, phosphate, and silicate were

measured with a Lachat QuikChem FIA 8000 nutrient analyzer.

Bulk chlorophyll was measured fluorometrically using a non-acidification

technique (Welschmeyer, et al. 1994) after extraction in 100% methanol.

Trichodesmium abundance was determined by 3 methods:  1.  For the vertical

profile at station 4, the contents of a 12 L niskin bottle were filtered through a 10 µm 47

mm polycarbonate filter. The filter was then examined in a stereoscope at sea and

Trichodesmium colonies counted. Using this method, free trichomes could be seen but

not enumerated. 2. At other stations, Trichodesmium colony abundance was determined

at the surface where bucket samples were collected, volume determined with a graduated

cylinder, and colonies counted visually.  3. Discrete depth water samples (250 ml) were

collected and preserved in acid Lugol’s iodine (Throndsen, et al. 1978).  100 ml was

settled and counted on an inverted microscope (Hasle 1978).
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Stable Isotope Abundances

Suspended particles were collected for stable isotope analysis by gentle pressure

filtration (∆P < 7 psi) of at least 10L of seawater through a pre-combusted 47mm

Whatman GF/F filter.  The filters were stored frozen for stable isotope analysis ashore.

In the lab, filters were dried at 60˚C and acid-fumed to remove carbonates.  A portion of

each filter was then packed into a tin capsule and pelletized for elemental and isotopic

analysis by continuous-flow isotope ratio mass spectrometry (CF-IRMS) using a Carlo

Erba NC 2500 elemental analyzer interfaced to a Micromass Optima mass spectrometer.

At selected depths, an aliquot of filtrate from the suspended particle sampling was

preserved by acidification (pH 2 - 3) for isotopic analysis of nitrate ashore. Nitrate was

reduced with Devarda's alloy and isolated for isotopic analysis by diffusion (Sigman, et

al. 1997).

Zooplankton samples were separated into discrete size fractions by passage

through a series of Nitex sieves (4000, 2000, 1000, 500, and 202µm), thoroughly rinsed

with surface seawater to remove any Trichodesmium caught in the sieves, and frozen for

later isotopic analysis ashore.  In the laboratory, the samples were dried at 60°C and

homogenized by grinding with a mortar and pestle.  After grinding, a subsample (ca. 400

µg) was weighed and packed into a tin capsule for elemental and isotopic analysis.

Nitrogen and Carbon Fixation

Trichodesmium colonies were isolated using a plastic inoculating loop and

transferred into filtered surface seawater for distribution into 250mL polycarbonate

bottles fitted with silicone septum caps.  The bottles were completely filled with filtered
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surface seawater to exclude bubbles before being sealed.  Trace additions of 13C-

bicarbonate and 15N2 gas were made to each bottle using a gas-tight syringe and the

samples were incubated either under simulated in situ conditions in deck incubators, or

under in situ conditions on a drifting array.  Shipboard incubations lasted between 6 and 8

hours and in situ incubations spanned an entire light day.

Incubations were terminated by gentle vacuum filtration through pre-combusted

25mm GF/C filters, which were stored frozen.  In the lab, filters were dried at 60˚C and

acid-fumed to remove carbonates before being packed into tin capsules for elemental and

isotopic analysis CF-IRMS using a Carlo Erba NC 2500 elemental analyzer interfaced to

a Micromass Optima mass spectrometer.  N2-fixation rates were calculated by isotope

mass balance as described in Montoya et al. (Montoya, et al. 1996).  To calculate CO2-

fixation rates, we estimated the concentration of dissolved inorganic carbon based on

temperature and salinity (Parsons, et al. 1984) and applied the same isotope mass balance

approach.

Results

Hydrography
There is considerable variation in the vertical temperature profiles along the

offshore transect however, surface temperatures show little variation across the transect

with one exception (station 1).  The surface temperature at stations 2 through 9 is

approximately 29° C and at station 1 is 27° C.   The mixed layer depth is the shallowest

at stations 1 and 9, at approximately 10m.  At stations 2 through 4 the mixed layer depth

is 30m and at stations 5 through 8 the mixed layer depth is 40m.  With the exception of

station 1 where the temperature at 50m is 22° C, the temperature of all other stations at
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50 m converges on 27° C.  It is at 50m that the temperature profiles diverge such that the

temperature at stations 2 through 4 remains relatively elevated at 25° C at 100m while the

temperature at the remainder of the stations drops off quickly from 50 to 100m and

converges on 18° C.

Nutrient and Chlorophyll Concentrations

Nitrate concentrations ranged from below our limit of detection at the surface at

all stations to 30 µM at 500m at station 1 and to 25 µM at 500m for stations 2 and 4.  The

start of the nitricline was considerably deeper at those stations furthest from shore. At

stations 2, 3, and 4 the nitracline started at approximately 125m and at stations 1 and 5

the nitracline started at approximately 60m. We did not find measurable NO3
- shallower

than 55 m at stations 1 and 5, shallower than 103 m at stations 4, or shallower than 125m

at stations 2 and 3.   The phosphocline started only slightly shallower in the water column

than the nitricline; 50m at stations 1 and 5 and 90 to 95m at stations 2, 3, and 4.

Bulk water chlorophyll measurements were made at all stations along the cruise

tract.  Chlorophyll concentrations ranged from a minimum of 0.06 µg L-1 at 250m at

station 3 to 1.4 µg L-1 at 22m at station 10.  Bulk chlorophyll maxima ranged from 0.3 µg

L-1 at 119m at station 4 to 1.4 µg L-1 at 22m at station 10.  The chlorophyll maximum

increased in depth from approximately 65 meters at those stations closer to shore (1, 5,

and 8) to approximately 125m at stations 2, 3 and 4 (Figure 9).

Trichodesmium Abundance

Trichodesmium was present at nine of ten stations (except Station 8) along our

cruise track, and surface slicks were evident at stations 1 through 4.  We used three
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different approaches to quantifying Trichodesmium abundance.  Enumerating the

trichomes present in discrete 100 ml samples from the CTD-rosette and in bucket-

collected samples showed the highest trichome abundance at the surface, with values

ranging as high as 104 trichomes⋅L-1 with a mean of 1.5 x 103 ± 1.1 x 103 trichomes⋅L-1

(mean ± SE, N=10).  The highest Trichodesmium surface abundance occurred at station 2

and was 100-fold higher than at any other station.  Removing this large outlier yields a

mean Trichodesmium surface abundance of 360 ± 159 trichomes⋅L-1  (mean ± SE, N=9).

Three of the five stations sampled had a second, subsurface maximum in Trichodesmium

abundance between 10 and 15 m depth (Table 2).  Trichome abundance at these depths

were as high as 440 trichomes⋅L-1 with a mean of 82 ± 41 trichomes⋅L-1  (mean ± SE,

N=10) The highest subsurface peak occurred at station 2, the furthest offshore of our

transect (Table 2).
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Table 2 - Trichodesmium biomass in the NW Gulf of Mexico in July 2000. Areal 100mL
sample trichome counts are integrated over the upper 50m.  * Denotes areal trichome
counts that include surface bucket counts as well as the 100mL discrete depth counts.

Station Date Trichomes L-1

at surface
Trichomes L-1

at 10-15m
Trichomes L-1

at maximum
Depth of
trichome

maximum (m)

Trichomes
m-2

to 50 m
1 7/24/2000 1060 300 1060 0 1.3 x 108*

2 7/25/2000 10,200 440 10,200 0 5.4 x 108*

3 7/26/2000 1000 20 1000 0 5.5 x 107*

4 (100ml) 7/27/2000 400 110 400 0 3.4 x 107*

4 (12L) 7/27/2000 400 640 640 10 1.0 x 108*

5 7/28/2000 400 10 400 0 2.4 x 107*

6 7/28/2000 0 10 30 35 2.0 x 106

7 7/28/2000 10 10 20 30 2.5 x 106

8 7/28/2000 0 0 0 -- 0

9 7/29/2000 10 10 140 20 6.8 x 106

10 7/29/2000 0 120 120 10 2.7 x 106
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Figure 9 – Depth profiles of bulk chlorophyll concentration.
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A larger discrete volume (12 L) from the CTD-rosette was sampled for

Trichodesmium abundance at station 4, where the large volume sampling produced

estimates of Trichodesmium abundance considerably higher than estimates based on 100

mL samples (Table 2).  Thus our trichome abundance estimates based on the 100 mL and

bucket samples are underestimates.  Despite the difference in absolute abundance, the

general shape of the profile is similar with a distinct surface maximum and the bulk of the

trichomes found above 50 m.   This vertical profile also shows that Trichodesmium

trichomes were found throughout the upper water column down to the upper boundary of

the nutricline and a significant number of colonies were found as deep as 175 m at this

station.

Stable Isotope Abundance

d15N of Dissolved Inorganic Nitrogen

Extraction and stable isotopic analysis of the DIN was completed on stations 2

and 4.  The d15N of the dissolved inorganic nitrogen at these two stations was 2.00 ‰ ±

0.45 (mean ± SD, N=3) at 200 m depth, and 4.05 ‰ ± 0.12 (mean ± SD, N=2) at 900m.

Particulate Organic Matter d15N and d13C

The d15N of the particulates (>0.7µm) in surface samples decreased with distance from

the shore (d15N = 3.0 - 0.01 x kilometers from shore, R2 = 0.72).  The same trend is seen

in the d15N of the particulates at 20m (d15N = 4.2 – 0.03 x kilometers from shore, R2 =

0.87). Vertical profiles at stations 2, 3, and 4 show a d15N minimum (-4 to -2 ‰) at

approximately 20m (Figure 10), just at or below the subsurface maximum in
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Trichodesmium abundance (Figure 10).  Stations 1 through 4 have similar d13C profiles

(Figure 11).  At station 5 the d13C of POC is markedly heavier, though there is no clear

trend in d13C of suspended particles along our onshore to offshore transect.

Zooplankton d15N and d13C

The d15N of the zooplankton varied across the transect with the largest change in

d15N in the smallest (250-500µm) size fraction (Figure 12).  At stations 1, 5 and 8 the

d15N of the 250-500 µm size fraction varied from 3.7 ‰ to 4.5 ‰ with a mean of 3.9 ±

0.4 ‰ (mean ± SE, N=3).  The 250-500µm size fraction at stations 2, 3 and 4 varied from

1.6 ‰ to 2.2 ‰ with a mean of 2.0 ± 0.2 ‰ (mean ± SE, N=3, p< 0.05).  The larger size

fractions of zooplankton (500-1000 and 1000-2000 µm) had higher d15N relative to the

250-500µm size fraction and exhibited the same spatial trends along our transect.  There

was little difference between the d13C of the 250-500µm and 500-1000µm size fractions,

which ranged from –18.83 ‰ to –18.15 ‰ and from –19.7 ‰ to –18.5 ‰, respectively.

A cross-plot of zooplankton d15N as a function of d13C shows two clear groups of

different zooplankton d15N.  Zooplankton in the 250-500µm and 500-1000µm size

fractions from stations 1, 5, and 8 have a higher d15N than the same zooplankton size

fractions from stations 2, 3, and 4 (Figure 14). d13C is essentially unchanged across

zooplankton size fractions and stations.  A weighted average calculation between the two

sources of C available to these zooplankton, Trichodesmium POC and particulate POC,
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Figure 10 - d15N of the Particulate organic matter.
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Figure 11 - d13C of the particulate organic matter.
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Figure 12 - d15N of the zooplankton as a function of the distance from shore.
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shows that as much as 60% of the C in the zooplankton may come from Trichodesmium

POC and the remaining 40% from particulate POC (Figure 14).

N2-fixation Rates

We used a colony size of 200 trichomes colony-1 (Carpenter, et al. 1977) to compute

trichome specific N2-fixation rates, which ranged from 1.3 x 10-4 nmol N⋅trichome-1⋅h-1 to

2.6 x 10-2 nmol N⋅trichome-1⋅h-1 with a mean of 3.4 x 10-3 ± 7.6 x 10-4 nmol N⋅trichome-

1⋅h-1  (mean ± SE, N = 45) over the entire range of Io. The maximal volumetric rate of N2-

fixation ranged from 4.1 x 10-3 µmol N⋅L-1⋅h-1 to 4.5 x 10-1 µmol N⋅L-1⋅h-1, with a mean

of 8.0 x 10-2 ± 0.09 (mean ± SE, N = 45).  The rate of N2-fixation by Trichodesmium

showed significant photoinhibition at full surface irradiance (Io) and maximal rates at

0.50 Io (50% of surface irradiance) (Figure 13), which occurred at approximately 15 to 20

m depth in the water column. At full surface irradiance, N2-fixation rates were almost

20% lower, from 9.0 x 10-3 µmol N⋅L-1⋅h-1 to 4.5 x 10-2 µmol N⋅L-1⋅h-1 with a mean of 2.4

x 10-2 ± 7.0 x 10-3 µmol N⋅L-1⋅h-1 (mean ± SE, N = 6).  

Incubations attached to an in situ array deployed at station 4 and allowed to

incubate for the entire light day showed a similar pattern of decreasing N2-fixation

activity with decreasing light intensity (Figure 13).  Bottles were placed at depths of 5,

15, 30, 50, and 70m on the array.  To complete the depth profile, we added the mean N2-

fixation rate at 100% light intensity from our incubator experiments to our in situ profile

(Figure 13).  The complete profile shows surface photoinhibition of N2-fixation and a

maximum N2-fixation rate at the 50% light intensity.  We used a least-squares parabolic
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regression of N2-fixation rate as a function of light intensity with our conservative

estimate of the vertical distribution of colony abundance at each station to estimate areal

N2-fixation rates for stations 1 through 4 (Figure 8).  The areal fixation rates range from

47.2 µmol N⋅m-2⋅d-1 to 119 µmol N⋅m-2⋅d-1 with a mean of 84.5 ± 17.7 µmol N⋅m-2⋅d-1

(mean ± SE, N=4) at our four study stations.  The area of the open circle (Figure 8) is

proportional to the areal N2-fixation rate at each station.  We did not find a trend for

increasing N2-fixation rates with increasing distance from shore.  The highest N2-fixation

rates were found at station 3, one of the three deep chlorophyll max stations farthest from

shore (Figure 8).
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Figure 13 – Trichodesmium N2-fixation as a function of Io (% of surface irradiance).
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Discussion

Trichodesmium was clearly abundant at each station on our cruise, except station

8, with depth integrated trichome concentrations ranging from 1.8 x 103 trichomes⋅m-2 to

4.3 x 104 trichomes⋅m-2 with a mean of 1.2 x 104 ± 8.5 x 103 trichomes⋅m-2 (mean ± SE,

N = 5 for stations 1-5).  Conditions that favor development of Trichodesmium blooms

(Carpenter 1983, Capone, et al. 1998, Eleuterius, et al. 1981) are prevalent in the Gulf of

Mexico particularly during the summer months, making the Gulf an ideal environment

for this colonial cyanobacterium. Though blooms are unpredictable and patchy in

distribution, when they occur the resulting increased DIN and DON may contribute to an

increase in primary production (Carpenter, et al. 1991, Capone, et al. 1997, Karl, et al.

1997), increased secondary production (Landry, et al. 2001), and enhanced heterotrophic

bacterial production (Biddanda, et al. 1997).

N2-fixation rates measured at four stations within the bloom show significant

spatial heterogeneity and no trend in N2-fixation rate with distance from shore (Figure 8).

Vertically integrated rates at the four stations where we had depth profiles of rate
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Figure 14 – Cross plot of d15N as a function of d13C for Trichodesmium, particulate
organic matter, and zooplankton.

Legend:  Trichodesmium (filled diamonds), surface POM stations 2, 3, and 4 (open
square), surface POM stations 1 and 5 (open circle), 20 m POM stations 2, 3, and 4 (filled
circle), 20 m POM station 1 and 5 (filled square), 250 µm size fractioned zooplankton
(filled triangles), and 500 µm size fractioned zooplankton (open triangles).

Stations
1, 5, and 8

Stations
2, 3, and 4
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measurements fall within the range of values for Trichodesmium in other oligotrophic

basins (Table 3).

While recognizing that ideally Trichodesmium would be collected at each of the

in situ light levels and then incubated at the corresponding light level, time constraints as

well as patchy vertical Trichodesmium distribution in the water column dictate that

surface samples must be used for this type of assay.  N2-fixation of surface-collected

Trichodesmium samples incubated in situ declined with depth (Figure 13), with the

highest N2-fixation rates at the 50% light level at roughly the same depth as the maximal

trichome concentration (15m).  Trichodesmium can regulate its buoyancy (Walsby, et al.

1978, Carpenter, et al. 1979, Villareal, et al. 1990, Villareal, et al. 2003) and may avoid

photoinhibition of both C and N2-fixation by aggregating at a depth that maximizes N2-

fixation (Carpenter, et al. 1977).  At greater depths, photosynthesis is light limited, which

in turn reduces the energy available for N2-fixation, leading to the observed decrease in

N2-fixation rate with depth.  We used a parabolic regression to describe the relationship

between N2-fixation and light intensity with a maximum located at 50% surface

irradiance (Figure 13). The same parabolic pattern was shown for both our in situ and our

deck incubations, therefore validating the use of the regression from the in situ

incubations to compute depth integrated areal N2-fixation rates.

DON leakage or excretion (Glibert, et al. 1994, Capone, et al. 1994, Bronk, et al.

2000) is an important sink for newly fixed nitrogen and a potential source of new

nitrogen to non-diazotrophic phytoplankton.  Our particulate nitrogen d15N vertical

profiles show generally lower values in the upper water column at stations 2, 3, and 4
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relative to stations 1 and 5 in the upper water column (Figure 10).  Surface and 20m

particulate d15N signatures generally decrease with increasing distance from shore.  The

smallest zooplankton fractions (250µm and 500µm) have lower d15N in areas where N2-

fixation was prevalent (Figure 12).  Both the PN and zooplankton data indicate that the

nitrogen available to the non-diazotrophic phytoplankton is isotopically depleted and

consistent with significant inputs of recently fixed nitrogen.

A third characteristic marker of diazotrophy is the low d15N of the DIN. In a

system dominated by diazotrophy the dissolved organic pool can become isotopically

depleted.  Because microbial nitrifiers are subsequently degrading a pool of depleted N,

the product of this nitrification will also be depleted.  Typical deep(mid)water N

signatures are 4-6 ‰ (Liu, et al. 1989, Sigman, et al. 1997) but at stations 2 and 4 at

200m, the signature is 0.5 and 1.5 ‰, respectively. DIN with an isotopic signature of

even 1.5 ‰, the higher value in the range, at 200m depth is considerably lower than

would be expected for water at a depth that would be potentially mixing with deep(mid)

water nitrate. This isotopic signature may be indicative of a diazotrophic source of

nitrogen in the water column.
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Table 3:  Summary of Trichodesmium N2-fixation measurements for oligotrophic
waters. Acetylene reduction (AR) estimates are based on a 3:1 reduction ratio for
conversion to N2-fixation rates.

Location Dates Mean Areal Rate
(µmol N m-2 d-1)

SE N Method Citation

Southwestern N. Atlantic
0°-24°N, 45°-66°W

Nov 1964
May 1965

41
108

7.6
24

19
17

15N2
uptake

(Goering, et al
1966)

Caribbean, 12° to 22°N 161 20 12 AR (Carpenter, et
al 1977)

BATS 1995-1997 41 14 15N2
uptake

(Orcutt, et al
2001)

N. Pacific, 21°N, 159°W 1972 134 2 AR (Gundersen
1976)

East China Sea, 10°-25°N 126 49 32 AR (Saino 1977)
HOT/ALOHA 1990–1992 84 43 8 AR (Karl, et al

1997)
Arabian Sea, 7-10°N May 1995 35 7.4 9 AR (Capone, et al

1998)
Arabian Sea, 10°N bloom May 1995 99 25 5 AR, (Capone, et al

1998)
Coastal Tanzania (bloom

– upper 0.5 m)
1975-1999 59 AR (Lugomela, et

al 2002)
Gulf of Mexico July 2000 85 18 4 15N2

uptake
This study
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There are few known direct consumers of Trichodesmium (O'Neil 1998, Bottger-

Schnack, et al. 1989, Calef, et al. 1966).  However, the d13C isotope results from our 5

study stations imply that much of the zooplankton C may be coming from

Trichodesmium (Figure 14) either by direct ingestion or by the incorporation of

Trichodesmium-derived DIC.  Trichodesmium has a characteristically heavy C isotope

signature (Carpenter, et al. 1997, Minagawa, et al. 1986, Wada, et al. 1976), -13.86 ‰,

when compared to the POC, which at our study stations has a d13C of approximately -

25.00 ‰.  Two distinct carbon sources with characteristic d13C isotope signatures allow

us to employ a two source mixing model to determine the potential fate of

Trichodesmium C and mass balance calculations indicate that as much as 60% of the

zooplankton C is coming from Trichodesmium and the remaining 40% from POC (Figure

14).

While the relative importance of diazotrophic unicellular cyanobacteria in

supplying new nitrogen to the oligotrophic ocean is becoming increasingly clear

(Montoya, et al. 2004, Dore, et al. 2002, Falcon, et al. 2004, Zehr, et al. 2001),

Trichodesmium remains an important supplier of “new” nitrogen to the areas in which it

is found (Montoya, et al. 2002, McClelland, et al. 2003). Its capacity to fix nitrogen has

been studied in many tropical and subtropical regions of the world ocean, yet the Gulf of

Mexico has been virtually un-represented in regards to Trichodesmium N2-fixation even

though it is commonly found there (Biddanda, et al. 1997, Eleuterius, et al. 1981). To our

knowledge, our data are the first published Trichodesmium N2-fixation rates in the Gulf

of Mexico.  Our sampling, though spatially limited, produced areal N2-fixation rates for

the Gulf of Mexico comparable to N2-fixation rates measured in other oceanic basins
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(Table 3).  Because the Gulf of Mexico is easily accessible and typically has extensive

surface blooms of Trichodesmium each summer, it provides an ideal location for field

studies of Trichodesmium biology and its role in oceanic biogeochemistry.
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CHAPTER 5

CONCLUSION

Trichodesmium is a quantitatively important supplier of N to the oligotrophic

regions in which it is found.  It is common in subtropical and tropical seas worldwide

where surface aggregations can occur over enormous stretches of the ocean.  Its

importance to the ecology of these regions, both as a source of new nitrogen and as a

physical substrate, has been established.  Trichodesmium N2-fixation has been studied in

many of the areas in which it is found and recently in laboratory cultures, but our

understanding of the ways and the extent to which environmental factors can affect N2-

fixation rate remains limited.

We established a continuous culture of Trichodesmium and maintained this

cyanobacterium at a range of dilution rates to establish a physiological steady state with

constant growth and N2-fixation rates through time.  In our continuous culture, biomass

(PN) concentration decreased with growth rate and N2-fixation increased with growth

rate.  The C:N:P ratio remained constant across all growth rates, suggesting balanced

growth and macronutrient uptake in our cultures.  Though somewhat variable, N2-fixation

rate was stable at each of our steady state growth rates and N-specific growth rate varied

linearly with dilution rate, implying a closed N budget in a culture of a cyanobacterium

that is known to excrete DON.

At steady state, our continuous culture provided a system with which we could

investigate the effects of the presence and uptake of nitrate on N2-fixation.  Our study

showed that exposure to nitrate at µm levels inhibits N2-fixation by as much as 70%
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relative to unamended controls, with an apparent saturation of inhibition at an initial

nitrate concentration of 10µM.  Nitrate uptake made up for the reduced rate of N2-

fixation over the light day.  In fact, even though N2-fixation was severely inhibited in

cultures initially amended with more than 2.5 µM nitrate, total integrated daily N uptake

in the presence of nitrate was higher than total integrated N uptake in unamended

controls.  While our results may not be directly related to surface waters of an

oligotrophic system where appreciable amounts of combined N are rare, they shed light

on the potential effects of nitrate exposure on N2-fixation by migrating populations of

Trichodesmium, which may encounter significant concentrations at the nutricline.

Our field efforts in the Gulf of Mexico revolved around the quantification of N2-

fixation by Trichodesmium in an oligotrophic basin where N2-fixation by this diazotroph

has received little attention.  We combined biomass measurements (trichome abundance

profiles) with in-situ N2-fixation assays to compute areal N2-fixation rates for the NW

Gulf.  Our rates for the Gulf are comparable to many of the published areal fixation rates

from other oligotrophic basins.  Trichodesmium is of course known to be important to N

cycling, however in this field study we also used stable carbon isotope signatures to

establish the importance of Trichodesmium in supplying C to higher trophic levels.  Our

results suggest that as much as 60% of zooplankton C in the 250 to 1000 µm size

fractions came either directly or indirectly from Trichodesmium.  Our work established

that this diazotroph is important to the ecology of the water column of the Gulf of Mexico

where it is frequently found and where its presence has important implications for the

cycling of both N and C.
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Establishment of a continuous culture was the first step towards determining the

effects of growth rate and nitrate uptake on N2-fixation rates of this globally significant

cyanobacterium.  Future work employing continuous cultures should include the effects

of ammonium and trace metal concentration on N2-fixation.  Continuous cultures may

also be used to explore the effects of phosphate concentration, temperature, and light

intensity on N2-fixation.  Such studies will help to elucidate how these factors may affect

N2-fixation deep in the water column where trichomes are frequently found.  Results

from these culture explorations could then be used in modeling efforts to quantify

Trichodesmium N2-fixation on an oceanic scale. These results can also be added to

models of global N2-fixation estimates in an attempt to balance the N budget.

Balancing the N budget in the ocean has become more than just an academic

pursuit.  The strength of the biological pump, the main pathway for the export of CO2

from the atmosphere to the deep ocean, is controlled by the amount of new N available to

support biological production in the surface ocean.  It is therefore important for us to

understand how much new N enters the oligotrophic ocean in an attempt to quantify how

much C can be removed.  Understanding the ways in which N2-fixation by diazotrophs is

affected by commonly occurring environmental factors such as light, temperature,

combined N, trace metals, etc. is a critical step in accurately quantifying the input of new

N to the oligotrophic ocean via diazotrophy.
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