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SUMMARY

Monte Carlo algorithms can be used to estimate the state of a system given relative

observations. In this dissertation, these algorithms are applied to physical layer commu-

nications system models to estimate channel state information, to obtain soft information

about transmitted symbols or multiple access interference, or to obtain estimates of all of

these by joint (or dual) estimation.

Initially, we develop and analyze a multiple access technique utilizing mutually orthog-

onal complementary sets (MOCS) of sequences. These codes deliberately introduce inter-

chip interference, which is naturally eliminated during processing at the receiver. However,

channel impairments can destroy their orthogonality properties and additional processing

becomes necessary.

We utilize Monte Carlo algorithms to perform joint channel and symbol estimation for

systems utilizing MOCS sequences as spreading codes. Linearity and Gaussianity in the

system model simplifies the problem significantly. Using Rao-Blackwellization, we obtain

and track only the first two moments of the channel, which is modeled as a random vector.

However, dense signaling constellations, multiuser environments, and the interchannel in-

terference introduced by the spreading codes all increase the dimensionality of the symbol

state space significantly. A full maximum likelihood solution is computationally expensive

and generally not practical. However, obtaining the optimum solution is critical and looking

at only a part of the symbol space is generally not a good solution. Unlike estimation in

continuous spaces, where a small error is forgivable, incorrect symbol detection, even if it is

the neighboring one in the constellation, causes bit errors. We have sought algorithms that

would guarantee that the correct transmitted symbol is considered, while only sampling a

portion of the full symbol space.

xiii



We have developed a method that partitions the symbol state-space based on the recur-

sive structure of the posteriors. The Markovian structure enables us to sample a significantly

smaller subspace and obtain an intermediate likelihood function. We then proceed by up-

dating the likelihood based on the next observation, which adds additional information

about the transmitted symbol. The performance of the proposed method is comparable

to the Maximum Likelihood (ML) algorithm. While the computational complexity of ML

increases exponentially with the dimensionality of the problem, the complexity of our ap-

proach increases only quadratically.

Markovian structures such as the one imposed by MOCS spreading sequences can be

seen in other physical layer structures as well. We have applied this partitioning approach

with some modification to blind equalization of frequency selective fading channel and to

multiple-input multiple output (MIMO) receivers that track channel changes.

The performance of the regular and simplified Monte Carlo algorithms are analyzed.

The effects of channel order, number of antennas, cardinality of the signaling constellation,

receiver noise, interference power, and spatial correlation are demonstrated through simula-

tions. The performance is compared to the performance of previous algorithms that tackle

the same problems.

Additionally, we develop a method that obtains a metric for quantifying the convergence

rate of Monte Carlo algorithms. Our approach yields an eigenvalue based method that is

useful in identifying sources of slow convergence and estimation inaccuracy.
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CHAPTER I

INTRODUCTION

In wireless communications, transmitting users must use a common channel, whose pa-

rameters are unknown to them, to transmit information. The receiver also typically starts

with no information about the channel and must determine the transmitted information.

Additionally, the receiver is often interested in only one particular message and discards

the information originating from other users. All of this communication must be coordi-

nated somehow, so that all the users in the communications system are able to deliver their

messages.

Since the transmitting medium is a single common channel, users must share it intelli-

gently. Various access methods have been developed to enable the sharing of channels, such

as time division multiple access (TDMA), frequency division multiple access (FDMA), and

code division multiple access (CDMA).

FDMA and TDMA assign orthogonal channels to users. The users are allocated slices of

the frequency spectrum or the transmission time for their exclusive use. These channels are

orthogonal because ideally no interference exists among them, but in practice distortions

introduce interference. CDMA techniques, on the other hand, allow the users to use all

of the time and frequency resources simultaneously by assigning a code to each user. The

structure of the codes determines how these resources are used. In the direct sequence

CDMA (DS-CDMA), these codes are called pseudo noise (PN) codes. The inherent non-

perfect orthogonality of these codes and various channel effects introduce interference issues.

Under Rayleigh fading, multiple transmit and receive antennas canb increase the capac-

ity of a communications channel [96, 97]. Various codes have been developed that increase

the diversity of the system in such communication channels [74–76]. With all of these

improvements over the single user channel, similar improvements can be expected in the

respective multiuser communication channels. The interference issues, however, become
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more complicated as the number of antennas per user increases. Clearly the implementa-

tion of the optimum multiuser detector is computationally prohibitive [83]. To combat the

complexity issue, various suboptimal multiuser detectors have been developed [62,83,95].

In this dissertation, we concentrate on mutually orthogonal complementary sets (MOCS)

of sequences instead of PN sequences. The former have properties that make them suitable

for scenarios where uncoupled parallel channels exist. We construct a low complexity mini-

mum mean square error (MMSE) multiuser detector [58]. We evaluate its performance in a

serially concatenated turbo scheme with a channel code. We study its performance through

simulations and analytically provide upper bounds on the diversity order of the system.

In the above scenarios, the receiver was assumed to have complete channel state in-

formation (CSI), which can be achieved by periodical transmission of training symbols

known by the receiver [62]. Blind techniques based on knowledge of user codes or statis-

tics of transmitted symbols also exist [37,95]. Particularly interesting are the Monte Carlo

Markov chain techniques, because they yield soft information outputs and can be utilized

in iterative multiuser receivers.

We propose a method to decrease the computational demand of the standard SMC algo-

rithm when used as a multiuser detector. Monte Carlo algorithms are known for their high

computational complexity. However, they are very useful when the analytical solution of a

problem is intractable. Maximum likelihood (ML) sequence estimation/detection (MLSE

or MLSD) solutions are known to be optimal, but their complexity increases exponentially

with the dimension of the parameter to be estimated [62]. SMC algorithms provide an

approximation to the solution and, yet, approach the accuracy of ML detectors.

To analyze the improvements, we utilize this approach in single user scenarios. We pro-

pose an SMC based equalizer design for frequency selective fading channel communications.

We compare the performance to other type equalizers, and analyze how the performance

degrades as the number of used particles decreases. We also construct a receiver for a

multi-antenna communications system. We analyze the improvements and the effects of the

utilized blind algorithms on diversity.

We propose a method to analyze and quantify the convergence rate of SMC algorithms.
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This approach enables one to quantify the effects of changes made to the algorithm, such

as choosing different proposal functions, using different resampling methods, or simply

changing the number of particles.

The remainder of this chapter is organized as follows. We briefly describe some basic

multiuser detector techniques. Then, we introduce iterative (turbo) detection methods and

discuss the internal mechanics of such receivers. Next, we introduce Monte Carlo methods

and give a brief description of the most commonly used kinds. We discuss the state of the

art of Monte Carlo methods in telecommunications literature. We conclude the chapter

with a summary of the contributions of this thesis.

1.1 Multiuser Detectors

Multiuser detection has been studied extensively. In this section we describe some basic

multiuser detector techniques for DS-CDMA.

The baseband received vector after chip-matched filtering can be expressed with the

following equation.

r[n] =

K∑

k=1

Akbk[n]sk + η[n], (1)

where Ak is kth user’s channel gain, bk[n] is kth user’s data symbol, sk is the kth user’s PN

sequence vector, and η[n] is white receiver noise with a complex Gaussian pdf [83, 95] and

variance σ2. The above equation can be written in a more compact form by constructing

A , diag[A1, . . . , AK ], S , [s1, . . . , sK ], and b[n] , [b1[n], . . . , bK [n]]T . The vector b[n] is

also known as the multiuser symbol vector.

r[n] = SAb[n] + η[n] (2)

The optimum receiver would choose the symbol b̂[n] such that

b̂[n] = arg max
b̂[n]∈AK

exp {−|r[n] − SAb[n]|2
σ2

} (3)

Note that the complexity of this method increases exponentially with the number of users

K. Lower-complexity sub-optimal algorithms are discussed below.

Linear detectors apply linear processing to the received vector r[n].

z = wHr[n] (4)
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Then, z is compared to some threshold and a decision about the symbol is made. With these

methods, the estimate for the whole multiuser symbol need not be computed [62,83,95].

1.1.1 Decorrelating Detector

The decorrelating detector is a zero-forcing solution. When applied to the received vector,

it results in zero multiple-access interference (MAI). Let R , SHS. The decorrelating

detector for user 1 is

w1 = SR−1e1 (5)

The major drawback of this detector, like similar zero-forcing solutions, is noise en-

hancement [83].

1.1.2 MMSE Detector

The MMSE detector minimizes the total effect of the MAI and the noise.

w1 = arg max
w1∈CN

E{‖wHr[n] −A1b1[n]‖2} (6)

For user 1 the detector is

w1 = S(R + σ2|A|−2)−1e1 (7)

Note that the receiver must know the received power of each user’s signal [62,83].

1.2 Nonlinear Detectors

Decision-driven detectors are nonlinear detectors. They detect other interfering users’ sym-

bols, recreate their contributions to the received signal, and then subtract them from the

received signal, yielding a better estimate for the desired user’s transmitted symbol. Typ-

ically this processing is performed in multiple stages. Based on how the interferers are

subtracted, there are a few subcategories of detectors [83].

1.2.1 Successive Interference Cancelation (SIC)

This method is also called stripping or successive decoding. The algorithm detects the most

powerful interferer and subtracts it from the received signal. Then, based on the received

signal with one less interferer, the next strongest interferer is detected and subtracted out.
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The process continues until all the interferers are canceled. Finally, the desired user’s data

symbol is estimated [83].

1.2.2 Parallel Interference Cancelation (PIC)

This algorithm is similar to SIC, except that all the interferers’ signals are detected si-

multaneously, based on the received signal. Their contributions are subtracted, and the

desired user’s data symbol is estimated. This algorithm can be implemented in parallel.

Additionally, it performs better than SIC in cases with equal power interferers such as sys-

tems with strict power control, because incorrect interferer estimates in SIC may lead to

incorrect symbol estimates of the other interferers. In the PIC method, interferer estimates

are independent of each other and depend on the received vector only [60,83].

1.2.3 Multistage Detection

These types of detectors are an improved version of PIC detectors. They perform matched

filter detection for each user in the system in parallel. Then, based on the cross-correlation

properties of the codes, their estimates are corrected. The algorithm at the end of the second

stage produces K soft estimates with the interferer effects subtracted. Additional stages

that refine the estimates even further may be added to improve the performance [62,83].

1.2.4 Decision-Feedback (DF) Detection

DF detectors are based on the Cholesky decomposition of the cross-correlation matrix R =

FTF. The matrix F−T is used to “prewhiten” the received signal. Note that the first

element in F−T r is the estimate of the first user data symbol with all the interference

subtracted. The second user’s symbol estimate contains interference from user 1, and so

on. To cancel this interference, the effect of the first user is subtracted from the rest of the

estimates, yielding an interference-free estimate of the second user’s signal. We continue

the process until the last user.

b̂ = sgn(F−Tr − diag{F}Ab̂) (8)

Note that this method ignores the effect of noise and, like the decorrelating detector, suffers

from noise enhancement. An MMSE version can be formulated by the Cholesky factorization
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of R + σ2A−2 = FTF and application of the above steps [83].

1.3 Iterative (Turbo) Receiver Architectures

Recently, turbo processing techniques have been developed quickly since the initial discovery

of turbo codes [7, 8]. The turbo principle can be applied not only to channel decoders, but

also to a wide variety of combinations of detectors, decoders, equalizers, multiuser detectors,

coded modulators, joint source/channel coders, etc. (Figure 1) [95].

A simple communications system consists of a collection of cascaded system blocks. For

example, let’s consider a receiver consistsing of a symbol detector and a decoder (Figure

2). In a conventional system, the detector makes a hard decision about the symbol based

on the received signal. Then,its decision is passed to the decoder that decides what the

transmitted data bits were. This solution works, but there is significant information loss

when the information about a symbol is truncated to a hard decision. If the confidence level

of the detector is passed along with its symbol decision, approximately 2dB of performance is

gained [60,62,95]. However this performance is still far from optimal, because earlier stages

are not getting any of the information gleaned by the later stages in the chain (Figure

2) [95].

The optimal solution is a maximum likelihood sequence estimation technique, requiring

the construction and evaluation of a super-trellis that includes the channel and code effects.

This way, the estimation process considers the joint effects of both the channel and the

coder. Although this approach is optimal, it is computationally prohibitive.

Iterative processing methods provide an alternative to pass the information from later

stages to earlier stages. For iterative processing to work, the individual sub-blocks must pro-

duce maximum a posteriori (MAP) estimates of the quantities that they estimate. Namely,

both the detector and the decoder must produce MAP estimates of the transmitted bits.

1.3.1 Iterative Detector and Decoder Components

Let us take a closer look at the detector. At each iteration of the loop in Figure 2, the

detector makes a decision about the coded bits c[n] by considering the received signal r[n],

a priori information about the coded bits from previous iteration, and using knowledge of
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the system structure, which includes channel structure, modulation type, noise statistics,

etc. The superscript j indicates the jth iteration of the turbo processing algorithm. The

system blocks indicated by π and π−1 are called interleaver and deinterleaver respectively.

Their function purpose and function will be described later. By applying Bayes’s rule we

get the following factorization:

pj(c[n] = 1|r[n], system structure) =
p(r[n]|c[n] = 1)pj−1(c[n] = 1)

p(r[n])
(9)

pj(c[n] = 0|r[n], system structure) =
p(r[n]|c[n] = 0)pj−1(c[n] = 0)

p(r[n])
(10)

Instead of posterior distributions, usually log-likelihood ratios (LLRs) are used.

Λj
1(c[n]) = log

pj(c[n] = 1|r[n])

pj(c[n] = 0|r[n])
= log

p(r[n]|c[n] = 1)

p(r[n]|c[n] = 0)
︸ ︷︷ ︸

λj
1(c[n])

+ log
pj−1(c[n] = 1)

pj−1(c[n] = 0)
︸ ︷︷ ︸

λj−1
2 (c[n])

(11)

The quantity λj
1(c[n]) is called the extrinsic information produced by the detector, which

is the information about the coded bit extracted from the received signal, and the a priori

information about the other coded bits, but not from the a priori probability of c[n]. The

quantity λj−1
2 (c[n]) is the a priori LLR of c[n]. The extrinsic information λj

1(c[n]) is sent to

the channel decoder, which uses it as a priori information.

The channel decoder uses the information passed by the detector and information about

the channel structure to calculate an a posteriori LLR.

Λj
2(c[n]) = log

pj(c[n] = 1|λj
1(c[n]), code structure)

pj(c[n] = 0|λj
1(c[n]), code structure)

= log
p(λj

1(c[n])|c[n] = 1, code structure)

p(λj
1(c[n])|c[n] = 0, code structure)

︸ ︷︷ ︸

λj
2(c[n])

+ log
pj(c[n] = 1)

pj(c[n] = 0)
︸ ︷︷ ︸

λj
1(c[n])

(12)

The likelihood here again is expressed as a sum of the extrinsic likelihood λj
2(c[n])

gleaned from the input, the code structure and all coded bits except c[n], and the a priori
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Equalizer Detector Decoder

Non-iterative: Non-iterative:Iterative: Iterative:
MMSE
Decorrelator

MS-PPIC Convolutional Turbo
LDPC

Figure 1: A typical turbo processing receiver architecture

Detector Decoder

π

π−1r[n] c[n] b[n]

Figure 2: A simple receiver that allows turbo processing.
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likelihood λj
1(c[n]). The extrinsic information λj

2(c[n]) is fed back to the first block as a

priori information about the coded bits.

It is important to note that the above equations hold only if the inputs to the individual

sub-blocks are independent. Obviously, the sequence of coded bits is not independent,

because the parity bits are generated from the data bits and, hence, there is some correlation

among them. To remedy this, a device that shuffles the bits is inserted to make the bit

sequence appear random. The block on which it operates must be large (approximately on

the order of 1000 bits or more.) This device is called an interleaver. For simplicity here

we employ a random interleaver. Another advantage of the interleaver is that it disperses

burst errors evenly throughout the frame. Also, bits that happen to be transmitted during

a long lasting fade of the channel, get shuffled and more confident decisions about the new

neighbors helps reconstruct the original.

Remarkably, after a few iterations, the decisions become refined, and the estimates

become significantly confident. The overall performance of the receiver approaches the

performance of the full complexity MLSE receiver.

The individual components in a turbo receiver can be of any type as long as they can

produce soft information (Figure 1), and the structure of the detector can vary significantly

depending on the type of the communications system. It can be a multiuser-detector, MIMO

BLAST type detector, single user detector/equalizer, etc. Poor and Wang, for example,

develop an iterative MMSE receiver, that after surprisingly few iterations, approaches the

single-user receiver performance [89, 93]. Their detector utilizes a priori symbol estimates

from the outer decoder and subtracts them from the received signal. An MMSE processing

is applied to the residual signal to further improve the estimate.

The decoder structure can also vary significantly depending on the channel code used.

In fact, any kind of code can be used as is seen from Figure 1. For example, the code can

be a convolutional code, LDPC code, or even a cascade of a turbo decoder itself. In this

work we utilize a simple convolutional coder, but a different code can also be chosen. In

the following section the structure of a MAP decoder is described.
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1.3.2 MAP Channel Decoder

The MAP decoder takes an a priori LLR as an input and produces an a posteriori LLR

based on knowledge of the structure of the code and the code constraints. The algorithm

decodes the coded bit sequence by constructing a trellis and by evaluating the probabilities

of state transitions in the trellis.

Consider a binary convolutional code of rate k0/n0, with constraint length of k0L. At

each time epoch n, assume that the input to the encoder is the information bit sequence

bn = [b1[n], . . . , bk0[n]]T , (13)

and the output of n0 coded bit sequence is

cn = [c1[n], . . . , cn0 [n]]T . (14)

At each time epoch n the state of the trellis can be represented by the memory of the

code.

Sn = [s1n, . . . , s
k0(L−1)
n ]T = [bT

n−1, . . . ,b
T
n−L+1]

T (15)

The dynamics of the convolutional code are fully represented by a trellis describing the state

transitions in two consecutive time epochs. Let us denote the input information bit sequence

that causes a transition from state Sn−1 = s′, to state Sn = s by b(s′, s). Similarly, let us

denote the output coded bit sequence that results from the same transition with c(s′, s). Let

us also denote a path of the trellis between time n1 and n2 > n1 by the states it traverses

as

Ln2
n1

= [ST
n1
, . . . , ST

n2
]T (16)

If a systematic code is used, the pair (s′, cn) fully describes the state transition (s′, s).

Let us assume that the encoding starts from a state of all zeros at n = 0 and ends with

a state of all zeros at n = N + L, where N is the length of the frame. The sequence of

information bits is denoted by {bn}N
n=0.

We compute the probability of the state transition s′ → s, given the a priori probability

of the code bits cn and the code structure. It is the sum of the probabilities of all paths

from beginning to end, that have the state transition (s′ → s) at time n.
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P (Sn−1 = s′, Sn = s) =
∑

LN+L
0 :Sn−1=s′,Sn=s

P (LN+L
0 )

=
∑

Ln
0 :Sn−1=s′

P (Ln
0 )

︸ ︷︷ ︸

αn−1(s′)

P (cn = c(s′, s))
∑

LN+L
n+1 :Sn=s

P (LN+L
n+1 )

︸ ︷︷ ︸

βn(s)

(17)

In equation (17), αn−1(s
′) is the total probability of all path segments from the beginning

to n − 1 that end at state s′, and βn(s) is the total probability of all path segments from

n to the end that start with state s. These quantities are called forward and backward

recursions, respectively, and can be computed recursively as follows:

αn(s) =
∑

s′

αn−1(s
′)P (cn = c(s′, s)) , n = 1, 2, . . . , N + L (18)

βn(s) =
∑

s′

βn+1(s
′)P (cn = c(s, s′)) , n = N + L− 1, N + L− 2, . . . , 0 (19)

The starting and ending boundary conditions are α0(0) = 1, α0(s) = 0 for s 6= 0 and

βN+L(0) = 1, βN+L(s) = 0 for s 6= 0, because the trellis starts and terminates at state 0.

Knowing the probability of the state transitions, we can calculate the a posteriori LLRs

for the coded bits. Assuming ideal interleaving, the joint distribution of coded bits factorizes

as

P (cn = c(s′, s)) =

n0∏

i=1

P (ci[n] = ci(s′, s)). (20)

The a posteriori LLR also factorizes as

Λ2(c
j [n]) = log

p(cj [n] = 1|P (cn), code structure)

p(cj [n] = 0|P (cn), code structure)

= log

∑

(s′,s)∈S+
j

αn−1(s
′)βn(s)

n0∏

i=1
P (ci[n] = ci(s′, s))

∑

(s′,s)∈S−

j

αn−1(s′)βn(s)
n0∏

i=1
P (ci[n] = ci(s′, s))

= log

∑

(s′,s)∈S+
j

αn−1(s
′)βn(s)

n0∏

i6=j

P (ci[n] = ci(s′, s))

∑

(s′,s)∈S−

j

αn−1(s′)βn(s)
n0∏

i6=j

P (ci[n] = ci(s′, s))

+ log
P (cj [n] = +1)

P (cj [n] = −1)
,

(21)
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where the first part of the sum is the extrinsic LLR, and the second part is the a priori

LLR.

1.4 Blind Multiuser Detectors

Multiuser detection techniques can substantially increase the capacity of CDMA systems.

Considerable recent attention has been focused on the problem of adaptive multiuser de-

tection [38, 39]. Woodward investigated a range of adaptive multiuser detectors such as

the adaptive decorrelating detector, the zero-forcing detector, the linear MMSE detector

and the MMSE-Block decision Feedback (MMSE-BDF) detector [99]. However, all these

adaptive detectors considered require training sequences, which significantly reduces the

achievable effective throughput and the resulting spectrum efficiency. To circumvent this

problem, Honig proposed the minimum-output-energy (MOE) based blind adaptive detec-

tor, which only requires the prior knowledge of the signature waveform and the timing of

the reference user, but does not invoke any training sequences. Schodorf et. al proposed

a method that reduces the residual power in MOE methods by applying array processing

techniques [65].

Subspace methods were first introduced by Wang and Poor for single-carrier DS-CDMA

systems communication over synchronous AWGN channels [91]. Later they extended their

approach to dispersive asynchronous CDMA environments, where a subspace based channel

estimation approach was proposed [90]. Similar approaches were applied to uplink DS-

CDMA systems, which exploited the prior knowledge of all known signature waveforms,

rather than the one of the desired user [40,88].

A thorough discussion on existing blind multiuser detection approaches can be found

in [95]. Bayesian multiuser detection is a recent research area. The contributions of this

thesis are in this area and will be discussed thoroughly in the subsequent sections.
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1.5 Blind Equalization

Many practical channels in communications present intersymbol interference (ISI). Blind

equalization algorithms attempt to determine the transmitted symbol sequence in the pres-

ence of ISI without prior knowledge of the channel state information. The earliest blind

equalization algorithm has been proposed by Sato [63]. The algorithm was generalized by

Benveniste et al. [5] and Godard [30]. They defined classes of algorithms called BGR and

Godard, respectively. The constant Modulus Algorithm (CMA), which is one member of

the Godard family, has been extensively implemented because of its simplicity [80]. On the

other hand CMA algorithms may converge to undesired local minima [19]. Furthermore the

convergence is extremely slow compared to training based equalizer algorithms. These algo-

rithms are based on steepest gradient approaches. The algorithms differ mainly in the cross-

correlations which are computed between the equalizer signal output and some non-linear

transformation of it. Bellini generalized these algorithms to the Bussgang algorithm [4].

These algorithms were further generalized into the Multimodulus algorithms [100, 101].

Some more recent work exists that is also based on second order statistics, but involves

subspace methods as well [78,79].

Second-order statistics of the received signal are known to provide information on the

magnitude of the channel characteristics, but not the phase. Using cyclostationarity prop-

erty of the received signal allows recovery of the phase information [79].

It is also possible to obtain an estimate of the channel impulse response by using higher

order statistical methods. In particular, discrete linear time invariant systems can be ob-

tained explicitly from cumulants of the received signal [10, 28]. Such methods were also

proposed by [26, 36, 82]. Analysis and simulations have shown that convergence time for

these high-order-statistics-based algorithms is much too long for mobile communication

channels. The methods that are based on cyclostationarity properties of the received signal

exhibit faster convergence [79].

Another type of blind equalizers is the maximum likelihood (ML) type equalizers. These

equalizers can be derived in a systematic way. In addition, their performance is optimal

because they approximate the minimum variance unbiased estimators. Asymptotically, ML
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estimators approach the Cramér–Rao bound (CRB), which is the lower bound on variance

for all unbiased estimators. Although very complex, these methods can be made very

effective by subspace methods or other suboptimal approaches as initialization procedures

[61].

The ML approaches can be classified into two groups: deterministic ML (DML) and

statistical ML (SML). The DML approach turns the estimation problem into a least-squares

problem. The formulation of the problem enables separation of the joint symbol and channel

estimation. There are a number of methods that tackle this problem such as IQML [9] and

TSML [41, 42]. Slock and Papadias pointed out the connection of these algorithms with

DML [69,70]

Seshadri proposed a ML based equalization method that utilized the Viterbi algorithm

(VA) to obtain the optimal estimate [66]. A similar algorithm was also proposed by Ghosh

et. al. [27]. In their approaches, the channel estimation problem was turned into an LS

problem, whereas the symbol estimation problem remained ML, and it was solved using the

VA. In another approach Seshadri used generalized VA (GVA) [67]. He assigned a set of

channel estimates to each symbol state and expanded the trellis. The correct channel was

estimated by eliminating the sequences and keeping the survivors.

Another statistical method is proposed by Iltis et. al. [44, 45]. Their algorithm turns

the problem into a Kalman filtering problem using the EKF. These are main approaches

that perform blind symbol estimation. There are many publications in this area and one

may find many variations of an algorithm. A very thorough literature survey can be found

in [20,29].

Bayesian approaches for the blind deconvolution problem and possible solutions based

on Monte Carlo methods are thoroughly discussed in the subsequent sections of this thesis.

1.6 Blind MC Receivers

A sequential Monte Carlo (SMC) framework has been developed and a wide range of appli-

cations have been discussed in [50]. This Bayesian technique is primarily utilized in target

tracking algorithms [12]; however, other applications also exist. Blind receivers are one
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application of this technique in the telecommunications field, and an adaptive scheme has

been proposed in [17].

With SMC methods one tries to estimate a set of parameters based on an observation

that is a function of these parameters. In the communications area, the parameters are the

channel information h(·) and the transmitted symbols s. The observation is the received

signal r.

r = h(s) + n (22)

Simply, the goal is to obtain an estimate for the parameters given the observations. One

approach is to process the received signals with a function that reverses the effect of h(·).

Depending on how the noise is treated, the estimator takes the form of a zero forcing (ZF)

or a minimum mean squared error (MMSE) estimator.

The Bayesian framework treats the problem differently. It considers the parameters as

random quantities that are statistically related to the observation. Instead of estimating

the parameters directly, the probability density function of the parameters is obtained:

p(s, h(·)|r) : joint pdf of s, and h(·) given r. (23)

Once the pdf of a random quantity is evaluated, various (such as mean (MMSE), mode

(MAP), median, and higher order) estimates of the parameter could be obtained by evalu-

ating Monte Carlo integrals.

Evaluating the posterior density may be impossible. Therefore we resort to distribution

functions that are proportional to the posterior by a scalar scaling factor. The Bayes’ rule

can be applied to the above distribution:

p(s, h(·)|r) ∝ p(r|s, h(·))p(s)p(h(·)), (24)

where p(s, h(·)|r) is called the posterior, p(r|s, h(·)) is called the likelihood, p(s) the prior

distribution of the data symbols, and p(h(·)) the prior distribution of the channel. The

transmitted symbols and the communications channel are physically independent entities;

therefore, their joint distribution factorizes naturally.
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From the above equations, it is essential that the likelihood distribution be known. If it

can not be expressed analytically, a numerical representation can be evaluated. Namely, the

continuous parameter space is discretized and the likelihood function is evaluated at each

sampling point. In communications theory problems, the channel is a continuous random

process, and it must be discretized. However, the symbol space is usually discrete already,

and either all points can be evaluated or some other smart sampling method can be utilized

to evaluate the likelihood function efficiently. In the next section we describe how Monte

Carlo methods are used to obtain a sampled representation of the density of interest.

1.7 Monte Carlo Methods

Monte Carlo methods provide a general statistical approach for simulating multivariate

distributions by generating an efficient discretized representation of the needed posterior

density.

Monte Carlo Markov chain (MCMC) methods construct Markov chains whose station-

ary probability approaches the posterior distribution that we want to simulate. Generally,

sampling sampling from the distribution of interest is difficult. As an alternative, these

algorithms update the Markov chain, based on the outcome of a sample from a separate

distribution called the proposal transition and the likelihood evaluated at that particular

point. The stationary distribution of the drawn samples converges to the desired distri-

bution. Dynamic processes can not be simulated with these methods. Only stationary

channels can be simulated.

Sequential Monte Carlo (SMC) methods, on the other hand, provide a Bayesian frame-

work that models time varying channels, and produces a numerical representation of the

posterior distribution. This is done by sampling from a proposal distribution and weight-

ing the drawn samples with proper weights. In the literature, this method is also called

sequential importance sampling.

In the next subsections, we will describe several MCMC methods (including the acceptance-

rejection algorithm, Metropolis-Hastings algorithm, and the Gibbs sampler), and the SMC

method.
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1.7.1 Acceptance-Rejection Algorithm

Let us assume that we have a distribution π(x) ∝ α(x) that is easy to evaluate at discrete

points, but from which samples are difficult to draw, and our goal is to obtain realizations of

π(x). In such cases we use the acceptance-rejection algorithm. According to the algorithm,

a sample is drawn from another distribution β(x) and, based on the outcome, a decision is

made on whether to keep the sample or reject it. This algorithm is summarized in Table 1.

The distribution β(x) must be chosen such that α(x) ≤ cβ(x) for some constant c. The

convergence rate of the algorithm depends on the choice of the proposal distribution β(x).

The convergence rate is slow, because the proposed transition to the next state x′ could be

anywhere in the parameter space.

Table 1: Acceptance-Rejection Sampling

i. Generate a sample x′ from β(x′).

ii. Generate a sample u ∼ U(0, 1) , the uniform distribution on (0, 1).

iii. if u ≤ α(x′)
cβ(x′) , then x = x′(accept). Otherwise go to step i.

1.7.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm is similar to the Acceptance-Rejection (A-R)

algorithm described above. It differs in the way the Markov chain is evolved. In the A-R

algorithm when a new state is proposed, it can be anything no matter what the previous

state is. With the M-H algorithm, on the other hand, there is a proposal transition density

q(x→ x′), which proposes a new sample conditioned on the previous sample. The algorithm

is summarized in Table 2.

The perturbation function q(x → x′) is nearly arbitrary and is completely specified

by the user. Metropolis et al. restricted their choice to symmetric functions only, i.e.

q(x → x′) = q(x′ → x), which means that there is no trend bias in the choices of next

states [52,53].
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Table 2: Metropolis-Hastings Algorithm

i. Generate a sample x′ from the perturbation function q(x→ x′).

ii. Compute the Metropolis ratio

r(x, x′) = min

{

1,
π(y)q(x′, x)

π(x)q(x, x′)

}

.

iii. Draw a sample u ∼ U(0, 1), from the uniform distribution on (0, 1).

iv. if u ≤ r(x, x′), then x = x′ (accept), otherwise keep the old state x as the new one

Hastings generalized the choice of q(x → x′) to those that satisfy the property q(x →

x′) > 0, if and only if q(x′ → x) > 0 [35]. Such a transition function satisfies the balance

condition. Namely, when both x and x′ are from the distribution π(·) the following equation

is specified:

π(x)q(x→ x′) = π(x′)q(x′ → x) (25)

Equation (25) implies that the Markov chain is reversible, and its invariant distribution is

π(·).

Let’s assume that the proposed transition x′ violates the balance equation:

π(x)q(x→ x′) > π(x′)q(x′ → x) (26)

We need to balance the equation with the metropolis ratio r(x, x′):

π(x)q(x→ x′)r(x, x′) = π(x′)q(x′ → x), (27)

which means that the moves from x to x′ are accepted with probability

r(x, x′) = min

{

1,
π(x′)q(x′ → x)

π(x)q(x→ x′)

}

. (28)

Note that the algorithm keeps the old state as the new state, if the the proposed state

is rejected. If the transition distribution is symmetric, the chain evolves with updates that

increase the likelihood of the state.

18



1.7.3 Gibbs Sampler

Let X = [x1, . . . ,xd], where xi could be a scalar or a vector. Suppose the goal is to obtain

samples from a joint distribution p(X). Let’s define X[−i] , X\xi, which is the vector

X with the ith element deleted. The Gibbs sampler, chooses a coordinate i and draws a

new sample x′
i from p(xi|X[−i]). There are a few variations of the algorithm, which are

summarized in Table 3 and Table 4.

Table 3: Random-Scan Gibbs Sampler

Suppose the current sample is X(n) = [x
(n)
1 , . . . ,x

(n)
d ]. Then:

• Select i randomly from the index set {1, . . . , d}.

• Draw x′(n+1)
i from the conditional distribution p(xi|X(n)

[−i]), and let X
(n+1)
[−i] = X

(n)
[−i] (accept the

sample, and keep the rest the same)

Note that each conditional update does not modify the joint distribution p(·). Suppose

that currently, X(n) ∼ p(·). Then,

p(x(n+1)|X(n)
[−i]).p(X

(n)
[−i]) = p(x(n+1),X

(n)
[−i]), (29)

which means that the joint distribution is not changed after an update.

Table 4: Systematic-Scan Gibbs Sampler

Suppose the current sample is X(n) = [x
(n)
1 , . . . ,x

(n)
d ].

• For i = {1, . . . , d}
Draw x′(n+1)

i from the conditional distribution

p(xi|x(n+1)
1 ,x

(n+1)
2 , . . . ,x

(n+1)
i−1 ,x

(n)
i+1, . . . ,x

(n)
d ) (30)

The convergence of the Gibbs sampler has been investigated by several authors [13,47,

64,73,98]. It have proved that
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• The distribution of X(n) converges to p(X), as n→ ∞

• For any integrable function f(·),

1

N

N∑

n=1

f
(

X(n)
)

a.s−→
∫

f(X)p(X)(d)X, as N → ∞ (31)

Although the algorithm has been proven to converge, it converges slowly. An initial pe-

riod of n0 burn-in samples are required to let the algorithm reach equilibrium. These initial

samples must always be discarded. The convergence is detected with heuristic methods.

For example one can look at the discrepancy between the sampled and desired distributions

and stop the algorithm when the difference is small enough to satisfy the user [73].

Also, note that because the draws are from conditional distributions, the samples are not

independent. One solution for reducing the correlation between samples is to consider every

rth sample. When r is large enough, the samples are almost independent [47]. Another way

to reduce correlation is to group variables together and draw them jointly. Thus, reducing

correlation and increasing convergence rate [47].

1.7.4 Sequential Monte Carlo

Monte Carlo Markov chain (MCMC) methods cannot be used to track parameters of a

dynamic system. Every time the system parameters evolve, their distribution also changes.

After such a change, the algorithm must be allowed a burn-in period to let it converge, and

a number of samples in the burn-in must be discarded. Moreover, previous state estimates

cannot be used in the estimate of the current state and must also be discarded, because the

algorithm does not allow for dynamic updates. All of these result in wasted computational

resources.

In a dynamical system, the parameters are expected to change, but not too quickly.

Hence, when the parameter distribution is being calculated, it can be assumed that the new

state of the system will be correlated with the previous state (using the state update model).

Hence, results of previous computations should not be discarded, but kept to improve the

overall estimate.
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Consider the following state-space model:

xn ∼ q(xn|xn−1)

yn ∼ fn(yn|xn)
(32)

The function q(·) is called the state density function and fn(·) is the observation density

function. Let us denote with boldface x0:n = {x0, . . . , xn} the sequence of data samples.

Then, the target posterior can be factorized as

p(x0:n|y0:n) =
p(yn|x0:n,y0:n−1)p(x0:n|y0:n−1)

p(yn|y0:n−1)

=
p(yn|x0:n,y0:n−1)p(xn|x0:n−1,y0:n−1)

p(yn|y0:n−1)
p(x0:n−1|y0:n−1)

(33)

Using the state-space model in (32) and Markov assumptions, we get

p(x0:n|y0:n) = f(yn|xn)q(xn|xn−1)p(x0:n−1|y0:n−1) (34)

Given the approximation for the posterior distribution at time n−1 and the most recent

observations, we want to obtain the posterior distribution at time n. The SMC algorithm, as

we had mentioned before, generates an approximation to the posterior density by sampling

the continuous space at discrete points. The distribution is sampled at these points, chosen

by a proposal function g(·), and weighted so as to appear as if they are samples of the

desired posterior distribution.

Let us introduce some terminology. A random variable X drawn from distribution g(·)

is said to be properly weighted by a weighing function w(X) with respect to the distribution

π(·) if for any integrable function h(·)

Eg{h(X)w(X)} = Eπ{h(X)}. (35)

Since our goal is approximate the posterior distribution, we have a number of discrete draws

of samples. Now follows the discretized version of the above definition. A set of random

draws and their weights {x(j), w(j)}, j = 1, 2, . . . , Ns is called properly weighted with

respect to π if

lim
Ns→∞

∑

j
h(x(j))w(j)

∑

j
w(j)

= Eπ{h(X)} (36)
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for any integrable function h(·). Clearly the weights must satisfy

w(j)
n ∝ p(x

(j)
0:n|y0:n)

g(x
(j)
0:n|y0:n)

. (37)

If the expression above is factorized, then, using the state-space formulation along with

Markov chain assumptions, the following expression is derived:

w(j)
n ∝ w

(j)
n−1

fn(yn|xn)qn(xn|xn−1)

g(xn|xn−1, yn)
(38)

The proposal function must have the same support as the posterior. If this is not the

case, some parameter values will not be realized at all, and the resulting approximation

will deviate significantly. Alternatively some other values will be realized more often than

they should, and will be assigned low weights. A large number of weights close to zero

will cause a wasting of computational resources. The proposal function must be as close

as possible to the posterior. Significant mismatch between the two will deteriorate the

estimation performance, both in terms of accuracy and computational efficiency.

The degeneracy problem, characterized by the weights gradually assuming values close

to zero is a common problem with all variations of SMC methods [50, 73]. An additional

step called resampling is required to keep the efficiency at normal levels [48]. With this step,

particles with low weights are discarded and the rest are replicated so that the distribution

is efficiently represented. If resampling is done too often, the resulting estimate gets biased.

The choice for the number of particles and the resampling frequency form a tradeoff between

estimate variance, bias and the computational power requirement [11]. Clearly, a poor choice

of a proposal distribution will lead to a faster decay of the weights, which will require more

frequent resampling and cause large variance of the estimate.

Let us illustrate the effect of proposal function choice on estimation performance with

the following two examples.

In the first example we represent the distribution with its realizations at discrete samples

in the state-space domain. Let us assume that the distribution that we would like to

represent is the well known Gaussian density with mean µ and covariance matrix Σ:

p(x) =
1

√

2π|Σ|
exp

{

−(x− µ)TΣ−1(x − µ)

2

}

, (39)
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where

µ =






1

1




 Σ =






1 −
√

2

−
√

2 2




 . (40)

We draw N = 1000 samples from the posterior distribution by using a square root of

the covariance matrix to introduce the desired correlation. The dots in Figure 3 are the

sampling points and the ellipse

(x − µ)TΣ−1(x − µ) = 4 (41)

is displayed to illustrate the correlation property of the drawn samples.
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Figure 3: Samples from the posterior distribution when chosen as the proposal distribution

The sample mean and sample covariance of this distribution can be easily calculated:

E {x} =
1

N

N∑

j=1

x(j) =






1.0005

1.001




 (42)
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and

E
{
(x − µ)(x − µ)T

}
=

1

N

N∑

j=1

(

x(j) − 1

N

N∑

i=1

x(i)

)(

x(j) − 1

N

N∑

i=1

x(i)

)T

=






1.014 −0.7303

−0.7033 1.989






(43)

These estimates improve as the sample size N is increased and converge to the ensemble

expectations asymptotically.

The next example illustrates how we obtain the same mean and covariance estimates

when we have to sample from a different distribution called a proposal distribution. In this

particular case, a different distribution might be used because of a lack of computational

resources to generate correlated samples. We obtain the estimates by calculating a weighted

sum of the particles:

E {h(x)} ≈
∑N

j=1 h(x
(j))w(j)

∑N
j=1w

(j)
(44)

This computation requires that the support of the proposal function must cover the support

of the distribution of interest [22]. The weights simply are a ratio of the distributions

evaluated at the sampling points (37).

Let us choose a proposal function g(x) ∼ N (µg,Σg). In this example we choose a

slightly different mean, to illustrate that the importance sampling method works as long as

the support regions match.

µg =






1.5

1.5




 Σg =






2 0

0 2




 (45)

The black dashed ellipse represents the posterior distribution, and the red ellipse represents

the proposal distribution (Figure 4).

E {x} =
1

N

N∑

j=1

w
(j)
∗ x(j) =






0.9845

1.004




 (46)
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and

E
{
(x− µ)(x − µ)T

}
=

1

N

N∑

j=1

w
(j)
∗

(

x(j) − 1

N

N∑

i=1

w
(j)
∗ x(i)

)(

x(j) − 1

N

N∑

i=1

w
(j)
∗ x(i)

)T

=






0.9536 −0.6855

−0.6855 1.942






,

(47)

where

w
(j)
∗ =

w(j)

∑

j w
(j)
. (48)

Note that although the distribution parameters are mismatched, the estimated mean

and covariance are very accurate. Also it has been proven that the estimation variance

improves as the particle number increases [11,22,50]

1.8 State-of-the-Art

All blind receivers have ambiguity problems [95]. Phase ambiguity arises from the fact that

the receiver cannot tell whether the phase changes originate from the transmitted symbol

or from the phase of the unknown channel coefficients. Differential coding is one solution to

the problem, where information is transmitted on the phase differences of the signal rather

than on the absolute phase. In some works, authors use symbol constellations that are not

symmetric about the origin, which is another way to avoid ambiguity [14, 49, 50]. Others

assume Gaussian channels, with unknown, but real positive only, channel coefficients [93].

This case constrains the source of phase changes to the symbol constellation.

Antenna ambiguity is another type of ambiguity, in which the receiver cannot determine

from which antenna the signals are transmitted. Space-time coding solves this problem by

introducing orthogonality among the space-time symbols [75,76]. Some authors spread the

signals with distinct spreading codes, a scheme called space-time spreading, which is just

another form of orthogonalization [60].

The other type of ambiguity is user ambiguity which is resolved by using distinct spread-

ing or scrambling codes which can be processed by multiuser detectors at the receiver end.
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In all of the applications below, some method of eliminating these ambiguities is used. If

the ambiguities were not eliminated, the received signal distributions would be multi-modal.

Consequently, any of the utilized MC algorithms would exhibit extremely slow convergence.

Rather than refining the estimate at each iteration, the algorithms would keep dwelling

among the proximities of the ambiguous states and never converge on one of them [11].

One of the early applications of MCMC processing in communications is done by Chen

and Li. They propose an application of the Gibbs sampler for blind deconvolution [14].

Liu and Chen also propose a SMC algorithm for the same problem [49]. This applications

is very similar to the problem of symbol estimation for frequency selective channels that

introduce ISI. In [50] the authors investigated the effects of different resampling techniques

and concluded that residual resampling with dynamic decisions on when to resample results

in smaller estimate variances.

Wang and Poor designed numerous symbol detectors based on MCMC methods [95].

Initially, they concentrated on multi-user detectors for DS-CDMA systems that transmit

on AWGN channels. The transmit power and noise variance are assumed unknown, and

Monte Carlo integration is performed to account for their effects. The symbols are drawn

and detected with a Gibbs sampler technique using batch processing.

The Gibbs sampler is capable of accounting for any kind of noise, since it can generate

samples from any distribution. Using this property, the detection technique can be gener-

alized to non-Gaussian channels, impulsive noise channels [84,89], and correlated unknown

channels [92]. Some recent Markov chain Monte Carlo receiver applications for wireless

communicatoins are discussed in [87].

The use of Markov chain Monte Carlo methods is not limited to these special cases only.

They can be used to estimate any stationary system parameters. The MCMC method has

been adapted to be used in time-invariant ISI channels [85] where the channel coefficients

are assumed stationary, and they, along with the noise variance, are estimated using MCMC

methods. In [94, 102], this processing has been extended to multicarrier CDMA systems

with space-time coding. In this case, the receiver has knowledge of the spreading codes of

each, user and it estimates the channel coefficients and noise variance jointly using a Gibbs
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sampler receiver. In [103] the work has been generalized to asynchronous CDMA with

quasistatic multipath fading, where the asynchronous delay parameter is another variable

to be estimated. In all of these applications, the unknown system parameters are stationary

and are estimated via MCMC methods.

MCMC methods have a wide range of applications in telecommunications as can be

seen in the literature. However, they cannot be applied to dynamic systems. Time varying

channels are a good example of a dynamically evolving system. The receivers which are

designed for such channels must adapt to the new system state quickly enough to be able

to estimate the transmitted data accurately. SMC methods are designed for this purpose

specifically. The algorithms track system changes and estimate the system parameters in

a recursive manner. Namely, they use the previous estimate, process the observation data,

and infer the new estimate.

In telecommunications, an example by Liu and Chen of using SMC methods was given

in [49,50]. They illustrate a blind deconvolution problem, in which the channel parameters

are known, and the symbol constellation is asymmetric around the origin of the complex

plane to avoid phase ambiguity. SMC methods have been applied to various channels

and modulation schemes such as OFDM [104]. They have also been used, along with

wavelet characterization of the communications channel, in [33]. MIMO systems have been

considered in [32]. Many of these algorithms utilize mixture Kalman filters.

Mixture Kalman filters relieve the computational complexity and improve the conver-

gence rate of SMC algorithms significantly. Mixture Kalman filters were introduced by

Chen and Liu in [15]. Many systems can be described by distinct sets of linear equations

for the state update and observation. The perturbations in the state and the observa-

tion noise are modeled as Gaussian random processes. At a given time, one particular set

of equations represents the current observation and the state update. The choice for the

right set of state-space equations that describe the observation depends on the realization

of some auxiliary random variable. Such systems are called conditional dynamical linear

models (CDML), which are conditioned on the realization of the random indicator variable.
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The authors tackle the equalization problem by solving the linear part analytically by Rao-

Blackwellization (i.e. a Kalman filter), and the indicator random variable part by Monte

Carlo processing. This idea not only speeds up the processing by significantly by reducing

the number of required particles, but also improves the accuracy via the Rao-Blackwell

theorem.

Rao-Blackwellized SMC have been applied to telecommunications by Wang, Liu and

Chen in [86]. They introduce an SMC based MIMO multiuser detector. Another application

to MIMO has been elaborately discussed in [21, 32]. The authors using QR factorization

and convert the observation equation to an upper triangular matrix form. Then, using

back-substitution processing, all the symbols are detected. Because of the random nature

of the problem, and the artificially introduced sequential dependence, SMC processing is

applied. Simple nulling and cancelation is used to detect the symbols and calculate their

weights. However, to detect each symbol they use only a part of the observation, which is

sub-optimal.

In their alternative algorithm, which Dong et al. call deterministic SMC, a trajectory

search is performed [21, 32]. Imagine a ML sequence detector (MLSD), that constructs a

trellis with a certain memory length and keeps track of the best paths and their metrics

to make decisions about the system state. Their algorithm does similar processing, with

the exception that the system memory is truncated and the number of system states is

significantly smaller. The amount of truncation is a design parameter and zero trunca-

tion corresponds to full MLSD processing. Indeed they report better performance for the

deterministic SMC.

Djuric et al. apply SMC processing to frequency selective channels [54]. They improve

the accuracy by introducing delay in the channel estimate [54]. The performance is also

analyzed when the true channel impulse response length does not match the model. To

combat this problem they design an SMC method that has the length of the channel impulse

response as a parameter to be estimated. They report significantly better performance than

other equalization methods such as linear MMSE and per-survivor processing. They claim

that SMC processing approaches the performance of MLSE equalizer.
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Huang et al. also design a SMC based MIMO detector [43]. A Cholesky factorization

was performed on the observation equation after matched filtering, which not only results

in a triangular matrix structure, but also whitens the noise after matched filtering. They

exploited this structure and by back-substitution for nulling and canceling, and recovered

the transmitted symbols. Instead of considering one conditional posterior at a time, which

is sufficient for simple nulling and canceling, they considered M branches with the largest

posterior densities, which is the key principle of the M-algorithm [1, 68]. Analogously to

Wang et al. they also proposed a stochastic M-algorithm which used SMC processing on

the posteriors.

In the early literature, only basic applications of Monte Carlo processing have been

applied to the telecommunications field. The methods have been adapted to different sys-

tem architectures, and various assumptions have been made about the channel models. In

more recent publications, authors are more creative [43]. They take advantage of the data

structure and channel structure to construct more sophisticated algorithms that achieve

higher detection accuracy and lower computational complexity. Instead of blindly sam-

pling the entire state-space, the support region is reduced intelligently. In addition, rather

than approximating a single easy to compute posterior, more complex posteriors, based on

additional observations, are also considered when making symbol decisions.

1.9 Contributions of the Thesis

The contributions of this thesis can be summarized as follows. In Chapter 2 a multiuser

receiver based on MOCS is constructed. MOCS are used because they introduce significantly

lower bandwidth expansion compared to standard pseudo-noise codes. The constructed

receiver also exploits space-time codes to increase spatial diversity. The properties of the

MOCS are used to distinguish between the desired user and the interferers, all of which

are using multiple transmit antennas. A high order of diversity is achieved in flat Rayleigh

fading channels and the ability to cancel multi-user interference. The performance of the

system in the presence of multiple users is shown, both analytically and by simulation, to

be comparable to the single user case. We also derive an upper bound for the bit error rate,
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which guarantees that the system maintains its diversity order with the MOCSs.

In the next chapter we propose a state-space partitioning method on the symbol space of

a blind SMC based equalizer. The receiver is used in a single user communications system,

however it can be generalized to multiuser scenarios easily. The main contribution of this

work is in the reduction of the complexity of the SMC algorithm. With the proposed tem-

poral partitioning of the symbol space, we draw sub-symbols from each subspace and then

we merge the results. We show that the proposed partitioning reduces the computational

complexity without any performance loss or additional error propagation effects.

In chapter 4, we apply a similar partitioning approach to MIMO systems. We propose

a blind MIMO detector based on SMC methods. The partitioning in this case is spatial,

and analagous to vertically layered BLAST systems. Similar techniques could be applied to

diagonally and horizontally layered systems, depending on the structure of the space-time

code. We compare the performance to a standard SMC algorithm that does not have any

embedded partitoning scheme.

In chapter 5, we design a blind multiuser receiver that also incorporates symbol space

partitioning. In this case the transmitter is exactly the same as the transmitter used in

chapter 2. The symbol space is partitioned based on the conditional independence of the

likelihood distributions for each received signal. With this approach the computational

complexity of the algorithm is decreased, from being exponential in the constraint length of

the MOCS to only quadratic in the same parameter. We analyze the ability of the algorithm

to track channel changes and compare the algorithm to the regular SMC algorithm without

partitioning.

In chapter 6, we propose a novel method that quantifies the convergence rate of SMC

algorithms. With the proposed method we describe how various parameters, such as noise

power, channel fading rate, or simply the utilized number of particles, affect the convergence

rate. We also show how the convergence of our partitioned algorithms differs from the un-

partitioned SMC algorithms.
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Figure 4: Samples drawn samples from a proposal function requiring less computation
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CHAPTER II

AN ITERATIVE MMSE MULTIUSER RECEIVER FOR

MUTUALLY ORTHOGONAL COMPLEMENTARY SETS

We propose an iterative multi-user detectoion scheme that exploits the properties of mutu-

ally orthogonal (MO) complementary sets and space-time codes for multi-user communica-

tions with spatial diversity and minimal bandwidth expansion. The properties of the MO

sequences are used to distinguish between the desired user and the interferers, all of which

are using multiple transmit antennas. We achieve a high order of diversity in flat Rayleigh

fading channels and the ability to cancel multi-user interference. The performance of the

system in the presence of multiple users is shown, both analytically and by simulation, to

be comparable to the single user case.

2.1 Introduction

Recently, much research has been done on signal processing techniques for transmit diversity

over fading channels to take advantage of the large capacity of multi-antenna systems [24].

Space-time (ST) codes that maximize transmit diversity have been discovered and system-

atic constructions have been found [75]. In particular, the orthogonal structure of ST block

codes makes them attractive because maximum likelihood (ML) decoding can be imple-

mented with a linear decoder.

In wireless communication systems, many users share the same communications medium.

Direct sequence code division multiple access (DS-CDMA) is one of the techniques that

enables sharing the common medium. The maximum number of DS-CDMA users depends

on the properties of the pseudo-noise (PN) codes assigned to them. Among the many

multiuser detection (MUD) and multiuser access interference (MAI) cancellation algorithms

that have been found is the minimum mean square error (MMSE) interference cancellation

algorithm. At the receiver end, after matched filtering, MMSE techniques can be applied
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to the signal to eliminate interference from other users [55]. Poor et al. proposed a turbo

technique to improve the performance of the system [93].

The multi-user detection method that we propose is also an iterative approach. Unlike

the single antenna technique discussed in [93], the transmitters in our case have multiple

transmit (Tx) antennas. We also utilize mutually orthogonal complementary sets (MOCS)

rather than DS-CDMA PN codes, allowing effective multi-user communication and a natural

spatial diversity implementation with almost no bandwidth expansion.

2.2 System Description

We consider a convolutionally coded system with K users. Each user k employs a distinct

mutually orthogonal complementary mate set of sequences (Akm[n], 1 ≤ m ≤ M) of

length p as a means to distinguish itself from the other users. Complementary series were

first investigated in [31] and, consequently, their autocorrelation properties have been found

to be suitable for the field of communications. They can be used to send data in uncoupled

parallel channels and still allow interference cancelation [57]. A more detailed discussion on

the construction and properties of MOCS can be found in [81].

Let ψApmApm be the autocorrelation function of the sequence Apm[n], and let ψApmApm[k]

denote the kth element of this sequence. The set of sequences (Apm[n], 1 ≤ m ≤M) is a

complementary set of sequences if and only if:

M∑

m=1

ψApmApm [k] = 0, ∀k 6= 0. (49)

Let ψApmAqm be the cross correlation function of the sequences Apm and Aqm. A set of

sequences (Aqm[n], 1 ≤ m ≤M) is a mate of the set Apm[n] if:

• the length of the sequences Apm and Aqm are the same for 1 ≤ m ≤M

• the set (Aqm[n], 1 ≤ m ≤M) is a complementary set

•
M∑

m=1
ψApmAqm [k] = 0, ∀k

Notice that, MO sequences, unlike PN sequences in DS-CDMA, are not orthogonal to

each other. Instead, the sum of cross correlations between sequences from two mate sets is
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zero. We use these properties as a means to distinguish between the desired user and the

interferers. The convolutionally encoded data ck[n] is interleaved and then encoded with

these sequences to produce the signals skm[n]. These signals are encoded with a space-time

block code and are transmitted from M antennas (Figure 5).

In space-time block code (STBC) systems, the elements of the symbol vector of user

k, sk[n] = [sk1, sk2, . . . , skM ]T , are mapped into a ST code matrix Sk of size L×M and

transmitted through a flat, block static, Rayleigh fading channel from the M transmit (Tx)

antennas. The variable hkm[n] denotes the channel coefficient for the kth user’s mth Tx

antenna at time epoch n. The received vector due to user k, rk[n], is then decoded using

the STBC decoder matrix for user k Hk [74, 75].

Sk =


























sk1 sk2 sk3 sk4

−sk2 sk1 −sk4 sk3

−sk3 sk4 sk1 −sk2

−sk4 −sk3 sk2 sk1

s∗k1 s∗k2 s∗k3 s∗k4

−s∗k2 s∗k1 −s∗k4 s∗k3

−s∗k3 s∗k4 s∗k1 −s∗k2

−s∗k4 −s∗k3 s∗k2 s∗k1


























, hk =












hk1[n]

hk2[n]

...

hkM [n]












(50)

The received signal equation can be written compactly as

rk[n] = Skhk + ν[n]. (51)

The next step is to take the complex conjugate of the second half of the received vector.

The resulting vector can be expressed in terms of the decoder matrix Hk.

r̃k[n] ,



















r[n]

...

r[n+M/2 − 1]

r∗[n+M/2]

...

r∗[n+M − 1]



















= Hksk +



















ν[n]

...

ν[n+M/2 − 1]

ν∗[n+M/2]

...

ν∗[n+M − 1]



















, (52)
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where the superscripts ∗ and H denote complex conjugation and Hermitian of a matrix,

respectively, and the STBC decoder matrix has the following form:

Hk =


























hk1 hk2 hk3 hk4

hk2 −hk1 hk4 −hk3

hk3 −hk4 −hk1 hk2

hk4 hk3 −hk2 −hk1

h∗k1 h∗k2 h∗k3 h∗k4

h∗k2 −h∗k1 h∗k4 −h∗k3

h∗k3 −h∗k4 −h∗k1 h∗k2

h∗k4 h∗k3 −h∗k2 −h∗k1


























L×M

. (53)

The matrices in (50) and (53) are an example for a 1/2 rate STBC code that utilizes M = 4

Tx antennas for L = 8 successive times [74, 75]. Obtaining the symbol estimate vector is

simple because of the orthogonal structure of the code.

ŝk[n] = HH
k [n]r̃k[n] = Csk[n] + η[n], (54)

where C =
∑ |hk|2 is a positive scalar and η is, again, a white Gaussian noise because of

the orthogonal structure of the code.

b[n] c[n]

Ak1

Ak2

AkM

Channel Code sk1[n]

sk2[n]

skM [n]

Space-Time

Code...

...

πk

Figure 5: Transmitter model for a MOCS multiuser system

Here, the receiver utilizes one receive antenna (Figure 6). The performance of the

system increases as more Rx antennas are used, but here we investigate transmit diversity
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specifically. The receiver is assumed to have complete channel state information (CSI).

The signal from the receive antenna is processed with a linear minimum mean-square error

(MMSE) filter that also utilizes a priori information about the coding of the interferers.

The result is the extrinsic log-likelihood ratio (LLR) of the desired user’s coded data. This

extrinsic information is processed with a soft-input soft-output (SISO) channel decoder

utilizing the BCJR algorithm [2], producing an extrinsic LLR λ2[ck[n]] of the coded symbols

and LLR Λ2[dk[n]] of the desired user’s information symbols. The extrinsic LLR λ2[ck[n]]

is fed back to the MMSE filter to improve the estimate during the next iteration.

replacemen

π
−1

1

π
−1

2

π
−1

K

λ2[c1[n]]

λ2[c2[n]]

λ2[cK [n]]

λ1[c1[n]]

λ1[c2[n]]

λ1[cK [n]]

Λ2[b1[n]]

Λ2[b2[n]]

Λ2[bK [n]]

π1

π2

πK

Channel Decoder

Channel Decoder

Channel Decoder

MMSE

Multi-

user

Detector

...
...

...

Figure 6: Turbo Receiver Model

Let us elaborate on the signaling at the transmitter end:

skm[n] = c[n] ∗Akm[n], (55)

where (∗) denotes convolution. We stack skm[n]

sk[n] , [sk1[n] . . . skM [n]]T . (56)

We define the following quantities by stacking each user’s successive samples of the coded

data vectors. The goal here is to obtain a transmitter model that will account for all K

users. c[n] is the channel coded symbols vector, s[n] is the vector of symbols filtered with
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the MOCS. r[n] is the received signal, and η[n] is the noise in the received signal:

c[n] ,









c[n− (p− 1)]

...

c[n+ (p− 1)]









K(2p−1)×1

(57)

s[n] ,























s1[n]

...

sK [n]

...

s1[n+ (p − 1)]

...

sK [n+ (p− 1)]























KMp×1

(58)

r[n] , [r[n] . . . r[n+ (p− 1)]]TLp×1, (59)

η[n] , [η[n] . . . η[n+ (p− 1)]]TLp×1 (60)

where c[n] , [c1[n], . . . , cK [n]]T .

Let us represent the convolution in Equation (55) with a convolution matrix, where

Ak[i] , [Ak1[i] . . . AkM [i]]TM×1, (61)

A[i] ,









A1[i] . . . 0

...
. . .

...

0 . . . AK [i]









KM×K

, and (62)

A ,









A[p − 1] . . . A[0] . . . 0

...
. . .

. . .
. . .

...

0 . . . A[p− 1] . . . A[0]









KMp×K(2p−1)

s[n] = Ac[n] (63)
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Now, let us define H[n] so we can account for all K users.

H[n] =

[

HH
1 [n] . . . HH

K [n]

]

L×KM

, (64)

where HH
k [n] is a block ST decoding matrix constructed as in [74,75]. H[n]is defined to be

a block diagonal matrix with an STBC matrix in the main diagonal:

H ,












H[n] 0 . . . 0

0 H[n+ 1] 0
...

...
. . .

. . .
...

0 . . . . . . H[n+ p− 1]












Lp×KMp

. (65)

Above, H[n] is an L×KM STBC matrix associated with time epoch n.

Let the matrix P be a diagonal matrix containing the amplitudes
√
Pk of all K users’

signals.

P = I2p−1 ⊗ diag[
√

P1 . . .
√

PK ]. (66)

The received signal vector r[n] can be described as

r[n] = H[n]APc[n] + η[n] (67)

Now, we have simplified our model to a single line of notation, and we have a sufficient

vector r[n] that can be passed to the MMSE filter.

2.3 Performance Analysis

Equation (67) can be written as

r̃[n] =
K∑

k=1

√

PkSk[n]hk[n] + η̃[n], (68)

by taking the complex conjugate of the second half of r[n] [75]. Here, hT
k [n] is a row vector

containing the complex amplitudes of each channel.
√
Pk is the transmit power amplitude

of each user. Sk[n] is a ST code matrix constructed from the skm[n]s [74, 75]. Notice that

the statistics of the noise η are not affected. The new noise vector η̃[n] is also a complex
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Gaussian vector with zero mean and the same variance. Therefore, the pairwise error

probability (PEP) of transmitting S[n] and receiving Ŝ[n] is

P (S[n] ↔ Ŝ[n]|h[n]) = Q

(

−h[n]TP(S[n] − Ŝ[n])(S[n] − Ŝ[n])TPT h[n]

4N0

)

≤ exp

{

−h[n]T (S[n] − Ŝ[n])(S[n] − Ŝ[n])T h[n]

4N0

}

.

(69)

We assume that the channel is a Rayleigh fading channel. Hence, the channel coefficients

are i.i.d. complex Gaussian random variables with zero mean and unit variance. We average

the above expression to get rid of the conditioning on h[n]. The resulting expression depends

on the eigenvalues of the square of the symbol difference matrix, i.e. (S[n] − Ŝ[n])(S[n] −

Ŝ[n])T .

P (S[n] ↔ Ŝ[n]) ≤
K∑

k=1

M∏

i=1

1

1+
Ek
4N0

λik

, (70)

where the λiks are the eigenvalues of the square of the symbol difference matrix. At high

SNR

P (S[n] ↔ Ŝ[n]) ≤
K∑

k=1

(
r∏

i=1
λik)

−1( Ek

4N0
)−r, r ≤M. (71)

We find that the rank of the above matrix does not change as the number of users

increases, and the distribution of eigenvalues is not adversely affected by introducing addi-

tional users to the system. Thus, the system should perform well regardless of the number

of users in it, as long as each user is assigned a distinct code set.

2.4 Low Complexity MMSE Multi-user Detector

The soft-input soft-output (SISO) MMSE filter takes the sufficient vector r[n] and the a

priori LLR of the code bits of all users λ2[ck[n]], and produces the extrinsic LLR of the code

bits λ1[ck[n]] by accounting for the interference to the desired user’s signal.

First, soft estimates of the code bits are formed:

c̃[n] = tanh(0.5λ2[c̃[n]]) (72)

Then c̃k[n] is defined by setting the K(p− 1) + kth element to zero:

c̃k[n] = c̃[n] − c̃[n]K(p−1)+keK(p−1)+k, (73)
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where eK(p−1)+k is a column vector of zeros with a one at the K(p − 1) + k position.

Soft interference cancellation is performed for each user k by subtracting the effect of the

interferers

rk[n] = r[n] −H[n]APc̃k[n] = H[n]AP(ck[n] − c̃k[n]) + η[n]. (74)

Then, a MMSE filter is applied to suppress the interference even more

zk[n] = wH [n]rk[n], (75)

where

w[n] = arg min
w[n]

E{‖ck[n] − wH [n]rk[n]‖2}. (76)

Let us define B , H[n]AP and R[n] as the covariance matrix cov{c[n] − c̃k[n]}. Because

of the interleaver effect and because of independent users, R[n] will be diagonal, and

w[n] = [BR[n]BH + σ2I]−1BeK(p−1)+k. (77)

The signal zk[n] is our estimate for the kth user’s nth coded bit. However, we need to

obtain the LLR λ1[ck[n]]

λ1[ck[n]] , log
p[zk[n]|ck[n] = 1]

p[zk[n]|ck[n] = −1]
. (78)

Referring to [46,93], we find that we can compute it as follows:

λ1[ck[n]] ,
4R{zk[n]}

1 − eH
K(p−1)+kBH [BR[n]BH + σ2I]−1BeK(p−1)+k

, (79)

where R{} denotes the real part of its argument. Notice that the matrix inversion above

can be implemented efficiently using the well-known matrix inversion lemma:

A = B−1 + CD−1CH (80)

A−1 = B − BC(D + CHBC)−1CHB (81)

2.5 Soft Input Soft Output Channel Decoder

In our system, there are K channel decoders − one for each user. The input to the kth

channel decoder is the extrinsic LLR λ1[ck[n]] computed by the MMSE multiuser detector.
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The channel decoder computes the extrinsic LLR λ2[ck[n]] and the information bit LLR

Λ2[bk[n]] based on the constraints of the convolutional code.

The algorithm implemented here is the log-MAP algorithm [18, 93], which is a slight

modification of the well-known BCJR algorithm. For a more elaborate discussion the reader

may refer to [2].

Note that our system is a system of serially concatenated blocks. We must choose

an appropriate outer code so that our system performs well. In such systems there is

a constraint on the properties of the inner code - it must be recursive, because it must

generate long error events [93]. However, there is no such constraint on the properties of

the outer code. Thus, we choose a nonsystematic convolutional code.

2.6 Simulation Results

For our simulations, the channel encoder uses a rate 1/2 convolutional code with generators

23, 35 in octal form. The channel was a flat, block static, Rayleigh fading channel. The

receiver had complete CSI, and, hence, the time selectivity of the channel did not affect the

performance of our system. We utilized M = 4 transmit antennas per user. The mutually

orthogonal sequences were of length p = 4. We had four sequences per mate set and we

had K = 4 mate sets − one for each user. All interferers had equal transmit power and we

repeated the simulation for various signal-to-interference ratios (SIR). In our simulations

we utilized a STBC for 4 Tx antennas [75].

In Figures 7 and 8, it is clear that the system performs very close to the single-user

scenario. Although there is a loss of roughly 0.5 − 0.7 dB, the diversity gain of the system

is retained. The performance loss can be attributed to incorrect estimation of the inter-

ferers’ signals, which causes incorrect detection of the desired user’s signal. Note that at

low signal-to-interference ratios (SIR) (Figure 9), the estimate of the desired user’s signal

improves significantly at each iteration. In this case, the interferers are stronger, their sig-

nals are detected more reliably, and their effect on the received signal is accounted for more

accurately. At high SIR, in contrast, there is no significant improvement as we iterate the

information back and forth between the decoders. In these cases, the interferers are too
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Figure 7: Performance of system with K = 2 users, 4 Tx antennas per user, after 5
iterations, compared to the single user case.
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Figure 8: Performance of system with K = 4 users, 4 Tx antennas per user, after 5
iterations, compared to the single user case.
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Figure 9: Convergence of system with K = 4 users, 4 Tx antennas per user, SIR=-10dB
after 1,2, and 5 iterations, compared to the single user case.
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weak to be estimated reliably and additional iterations are only moderately useful.

2.7 Conclusions

With this receiver we have utilized the properties of MOCS to achieve near single user

performance for an iterative MMSE multiuser detector concatenated with a channel decoder.

Additionally, the diversity order of the system is preserved as is seen from the results. At

each iteration, the MUD improves the estimate of the desired user’s signal.

The complexity of the proposed system increases only linearly with the number of users

in the system. The performance results indicate that there is no need to decode all users

jointly in a large trellis. Maximum likelihood sequence detection would be prohibitively

expensive to implement.
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CHAPTER III

A SEQUENTIAL MONTE CARLO ALGORITHM FOR

FREQUENCY SELECTIVE FADING CHANNELS

3.1 Introduction

Detection of symbols transmitted through a time-varying frequency-selective channel is an

important problem in telecommunications. Sophisticated algorithms have been developed

to allow a performance close to theoretical capacity limits. When the channel parameters

are known, optimal detection can be implemented based on maximum likelihood sequence

detection methods such as the Viterbi algorithm [62]. When the channel coefficients are

unknown, a training symbol sequence, which is known by the receiver in advance, is trans-

mitted. This technique is effective, but results in efficiency loss, because a fraction of the

bandwidth is wasted on sending training symbols. Therefore, much research has focused

on blind methods. These methods detect the transmitted symbols, without knowledge of

channel state information or training data. Such algorithms usually do joint channel esti-

mation and symbol detection, there are numerous ways to do this, including the expectation

maximization algorithm, or utilizing the Viterbi algorithm and implementing per-survivor-

processing (PSP) [3,62].

Until recently, Monte Carlo methods have been ignored because of their computational

requirements. With the advances in computation technology, these methods have gained

popularity again. These methods are called Monte Carlo methods because they form an

estimate for a parameter from a random measure that approximates the true distribution.

Monte Carlo Markov chain (MCMC) methods and sequential Monte Carlo methods partic-

ularly have attracted significant attention [95].

The Gibbs sampler, which is an MCMC method, has been widely used to estimate

stationary features. The method requires the assumption that the parameter to be estimated
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does not vary in time. In addition, this method is a batch processing method. It requires

that the entire batch of observations be received before processing begins [95]. This method

cannot be applied without modification to estimate a time-varying channel, because every

time the channel state changes significantly, a long burn-in period must be performed.

Therefore, a mechanism that would sense the channel changes must be incorporated in the

algorithm.

The sequential Monte Carlo method, as its name suggests, does not require that all

observations be available. It can process the data on the fly, as data is received. This method

calculates samples (called particles) of the desired posterior distribution and assigns weights

to them. With these pairs, any estimator can be tightly approximated. Another name for

this method is sequential importance sampling (SIS). It has been reported that BER bounds

are lower for this method compared to the Gibbs sampler method [54]. Numerous articles

on SIS applications to communications have been written by Poor and Wang and then

collected in their book [95].

In this work we tackle the blind equalization issue for single user communication systems.

We define the signal model and a Bayesian formulation of the problem. We also use Rao-

Blackwellization to simplify the channel update part of the problem to reduce the necessary

number of particles. The main contribution of this work is in the reducing of the complexity

of the SMC algorithm. We propose temporal partitioning of the symbol space. We draw

sub-symbols from each subspace and then we merge the results. The proposed partitioning

reduces the computational complexity without any performance loss or additional error

propagation effects.

The organization of the work is as follows. Section 3.2 describes the signal model.

In section 3.4 the recursive density updates that are necessary for the SMC algorithm

are formulated. The incremental weight updates and the choice of a proposal function

are described in section 3.5. In section 3.6 Rao-Blackwellization is described. Channel

modeling and Doppler effects are modeled in section 3.3. Channel resampling methods and

an extra channel particle update after resampling are described in sections 3.7 and 3.8.

The algorithm is summarized in section 3.9. Symbol space partitioning and the modified
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algorithm are described in section 3.10 and 3.11. Finally, results and conclusions are in

sections 3.12 and 3.13.

3.2 The Signal Model

Consider a digital communications system where BPSK symbols sn ∈ ±1, n = 0, 1, . . . are

transmitted through a frequency selective multipath fading channel. Assuming a receiver

front-end consisting of a matched filter and a symbol sampler, the discrete time received

signal can be written as

rn =

L−1∑

l=0

sn−lhn[l] + vn, n = 0, 1, 2, . . . , (82)

where vn = N (0, σ2) is a complex additive white Gaussian noise with zero mean and variance

σ2, and hl[n] is the discrete-time channel impulse response. Assuming the channel impulse

response is finite, it can be represented by the L× 1 vector

hn , [hn[d− 1], hn[d− 2], . . . , hn[0]]T , (83)

where the superscript T denotes transposition, and d is the number of resolvable propagation

paths. The channel order d determines the dimension of the vectors and the span of the

intersymbol interference (ISI). Every symbol sn is dispersed in d consecutive observations

of the received signal rn.

The symbols can also be represented in a vector form:

sn , [sn−L+1, sn−L+2, . . . , sn]T . (84)

The received signal equation (82) can be written more compactly as:

rn = sT
nhn + vn, n = 0, 1, 2, . . . (85)

The notation s0:n represents the set s0, s1, . . . , sn. Similar notation will be used in describing

the density functions below.
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3.3 Channel Modeling

The communications channel is a slow Rayleigh fading channel. Its temporal autocorrelation

can be characterized by a zeroth order Bessel function of the first kind [72]

φh[l]h[l](τ) =
1

2
J0(2πfmτ). (86)

The symbol τ , above, is the time delay, and fm is the Doppler frequency shift.

The power spectral density of this process is a non-rational function (equation (87)) and

must be approximated by an autoregressive moving average process of high order. However,

the impulse response of such a process is long and the increases computational complexity

significantly [72]

Sh[l]h[l](f) =







1
4πfm

1√
1−(fm/f)2

, |f | ≤ fm

0, otherwise

. (87)

Instead, our algorithm uses a first order autoregressive model (equation (88)). Essen-

tially, the Bessel function is approximated by an exponential function. The discrepancy

between the true channel and the model used by the algorithm is compensated by increas-

ing the number of particles.

hn = ζhn−1 + (1 − ζ)ηn−1, (88)

where ηn is a complex Gaussian random process with zero mean and 1 variance and ζ is

defined as

ζ = 2 − cos(2πfmT ) −
√

(2 − cos(2πfmT ))2 − 1 (89)

3.4 Recursive Definition of the Posterior

The maximum a posteriori estimate of the transmitted symbol sequence is

s0:N = arg max
s0:N

p(s0:N |r0:N+L−1). (90)

The optimum solution is given by the maximum likelihood sequence detector, whose com-

putational complexity grows exponentially with the number of symbols N and the length of
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the channel impulse response L. This solution is out of the question because of its enormous

complexity. A lower complexity, recursive update of the posterior density can be considered

as an alternative.

The posterior density is difficult to calculate, but it is proportional to this likelihood.

p(s0:n|r0:n+L−1) =

∫

p(s0:n|r0:n+L−1,h0:n)p(h0:n)dh0:n

∝
∑

sn+1:n+L−1∈{±1}L−1

∫

h0:n

p(r0:n+L−1, sn+1:n+L−1|s0:n,h0:n)

p(h0:n)dh0:n

(91)

The summation comes from the assumption of iid symbols. Alternatively, the posterior

density for the symbol sn rather than the whole sequence is

p(sn|rn:n+L−1) =

∫

p(sn|r0:n+L−1,hn:n+L−1)p(hn:n+L−1)dhn:n+L−1

∝
∑

sn+1:n+L−1∈{±1}L−1

∫

hn:n+L−1

p(r0:n+L−1, sn+1:n+L−1|s0:n,hn:n+L−1)

p(hn:n+L−1)dhn:n+L−1

(92)

We further factorize the above likelihood in the integrand trying to obtain a recursive

expression.

p(r0:n+L−1|s0:n,h0:n) =

=
∑

sn+1:n+L−1

∫

p(rn:n+L−1, sn+1:n+L−1, hn|r0:n−1, s0:n−1,h0:n−1)

p(r0:n−1|s0:n−1,h0:n−1)p(hn|h0:n−1)dhn

(93)

A delay of L− 1 samples is introduced because the effect of the nth transmitted symbol is

dispersed in the next L− 1 observations.

3.5 Incremental Weight Update

The complicated high dimensional posterior density can be represented by multiple Monte

Carlo samples drawn from it. We obtain a set of samples and assign weights to it; w
(i)
n , i =

1, . . . , Ns; so it is properly weighted with respect to the posterior that it represents. Note
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that {s(i)n , w
(i)
n }Ns

i=1 denotes a random measure that characterizes the a posteriori distribution

p(s0:n|r0:n+L−1).

The symbol s
(i)
n is sampled from the proposal density q(s

(i)
n |rn:n+L−1) and the weights

are set to

w(i)
n =

p(s
(i)
0:n|r0:n+L−1)

q(s
(i)
0:n|r0:n+L−1)

. (94)

After applying the recursion above we get

w(i)
n = w

(i)
n−1

p(s
(i)
0:n|r0:n+L−1)

p(s
(i)
0:n−1|r0:n+L−2)q(s

(i)
n |s(i)0:n−1, r0:n+L−1)

. (95)

If the proposal density q(·) is chosen as

q(sn|s0:n−1, r0:n+L−1) , p(sn|s0:n−1, r0:n+L−1), (96)

Then, the weight update simplifies even further to

w(i)
n = w

(i)
n−1

p(s
(i)
0:n−1|r0:n+L−1)

p(s
(i)
0:n−1|r0:n+L−2)

∝ w
(i)
n−1

∑

s
(i)
n+1:n+L−1∈{±1}L−1

∫

p(rn:n+L−1, s
(i)
n+1:n+L−1,hn:n+L−1|r0:n−1, s

(i)
0:n−1,h0:n−1)

p(hn:n+L−1|h0:n−1)dhn:n+L−1

w(i)
n ∝ w

(i)
n−1u

(i)
n .

(97)

3.6 Rao-Blackwellization of the Channel Coefficient Up-

date

We need to evaluate the above incremental weight update. The distribution actually is very

easy to evaluate. The likelihood p(r, ·|·, ·) is Gaussian because of equation (85). The channel

is a Rayleigh channel, which implies that the second distribution is also Gaussian. Hence,

the weight update is also Gaussian. Because of Gaussianity and linearity in the observation

equation (85), we can Rao-Blackwellize the channel coefficient updates [48]. Namely, instead

of representing the posterior distribution with a discretized approximation, we can represent

it with the analytically computed first and second moments of the Gaussian distribution .
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The channel coefficients are Gaussian random processes with mean h
(i)
n and covariance

Σ
(i)
n . The weight update function is also Gaussian with mean µ

(i)
n and covariance P

(i)
n .

Instead of sampling from p(h), our algorithm updates the mean and covariance of the

channel estimates

u(i)
n ∼ N (µ(i)

n , P (i)
n ), (98)

where

µ(i)
n = s(i)

n

T
h(i)

n (99)

and

P (i)
n = σ2 + s(i)

n
T
Σ(i)

n s(i)
n . (100)

The channel state can be updated with Kalman filter equations.

h(i)
n = h

(i)
n−1 + K(i)

n (rn − µ(i)
n ) (101)

Σ(i)
n = (1 −K(i)

n )s(i)
n

T
Σ

(i)
n−1, (102)

where the Kalman gain is

K(i)
n = Σ

(i)
n−1s

(i)
n /P(i)

n . (103)

3.7 Resampling

Sequential Monte Carlo algorithms suffer from a degeneracy problem. After a number of

iterations, most of the particles diverge from the state they are expected to estimate, and

are accordingly, assigned a low weight. Only a few of the particles concentrate on the mode

of the distribution. Eventually, only one particle remains at the mode of the distribution,

and the rest get scattered in the tails, resulting in low efficiency. Namely, computational

resources are spent on calculating particle likelihoods, even though their weight is zero and

they don’t contribute to the estimates [50].

A solution called resampling replicates the particles with high weight and deletes the

ones with low weight. If done often enough (but not too often), the particles are kept from

diverging and algorithm efficiency is maintained [50].

A method called simple random sampling, replicates the particles with a probability

proportional to their weights. At the end, all resulting particles are assigned equal weights
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[50]. Typically the Metropolis-Hastings algorithm or the acceptance-rejection method is

used to draw the particles.

Another method called residual sampling, is reported to be sightly better [50] and is

summarized in Table 5. With this method, fewer particles must be drawn at random, which

Table 5: Residual Resampling Pseudo-code

• Let w(i) be the normalized weights of the particles. Retain ki = ⌊Nsw
(i)⌋ copies of

h
(i)
n for each i.

• Let Nsr = Ns −
Ns∑

i=1
ki be the number of non-replicated particles.

• Obtain Nsr iid draws from the original particles set with probabilites proportional to
Nsw

(i) − ki, i = 1, . . . , Ns.

• Assign equal weights.

relieves the computational complexity. Also the efficiency of the random draw algorithm

is increased, because the distribution from which the particles are drawn is more uniform

and, hence, suitable for A-R.

3.8 Extra Reshuffle

This step is optional (Table 7). If utilized, an extra reshuffle improves the channel coefficient

estimate variance. The idea comes from the fact that, after resampling, many particles are

identical. Also, some particles, even though their likelihood is high, may not be significantly

close to the mode of the distribution.

We apply this step on the channel coefficient particles. It does not improve the current

symbol decision, because the likelihoods are evaluated based on already drawn symbols.

However, this step improves the channel tracking ability of the algorithm. The channel

coefficients for the next time step are estimated with smaller variance.
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Table 6: Additional Perturbation

1. Particle likelihoods are calculated.

2. A very small random perturbation is added to each particle.

3. The resulting likelihoods are calculated.

4. For each particle, acceptance-rejection method is used to decide if the resulting particle
should be substituted for the old one or not.

5. go to step 1 and repeat 5-10 times

3.9 The SMC algorithm

We summarize the standard sequential Monte Carlo algorithm for blind equalization in

Table 7. The process of obtaining symbol samples is described in Table 8. Each channel

sample is evolved according to the channel model. Then, the likelihoods β(·) of all possible

transmitted symbols are computed. The transmitted symbol is chosen based on the realiza-

tion of a random variable drawn from a distribution that is proportional to the computed

likelihoods. The symbol’s weight, which is also a measure of certainty, is a function of

the same likelihoods. Based on the outcome of the random draw, the channel sample is

updated according to the Rao-Blackwellized equations. This process is repeated for each

channel sample. After the iteration is completed, we have obtained a collection of symbol

samples and their weights. The estimate of the transmitted symbol is just a weighted sum

of these particles.

One problem with this algorithm is that it must account for all possible transmitted

symbols. Likelihoods for all possible transmitted symbols from an L dimensional constella-

tion space must be calculated and stored. The symbol estimate is drawn from a distribution

that is proportional to the computed likelihoods. The symbol can be drawn using an A-R

method, M-H method or a Gibbs sampler method as described earlier. For that particular

received signal, the symbol distribution conditioned on the channel information is static,

rather than dynamic. Therefore MCMC methods are acceptable. To obtain a reliable
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Table 7: Blind equalizer SMC pseudo-code

• Initialization

• for i = 1, . . . , Ns /*for each particle*/

– Calculate β(·) as described in Table 8

– Draw s̃
(i)
n+k ∼ β(·) as described in Table 8

– Update

h(i)
n = h

(i)
n−1 + K(i)

n (rn − µ(i)
n )

Σ(i)
n = (1 −K(i)

n )s(i)
n

T
Σ

(i)
n−1,

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1s

(i)
n (P (i)

n )−1

– Update weight w
(i)
n ∝ w

(i)
n−1β

(i)
n:n+L−1(·)

• Obtain symbol estimate as

ŝn = arg max
sn∈{±1}

Ns∑

i=1

w(i)δ(sn − s(i)n ),

• Resample if needed

• Perturb channel particles and update based on likelihoods.
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estimate, again a burn-in period is required, which is an additional computational burden.

In the next section we propose a method that uses the Markovian structure of the obser-

vations and reduces the overall complexity by partitioning the symbol space and calculating

the likelihoods recursively.

3.10 Temporal Partitioning

The standard Monte Carlo method for blind equaliziation is of high complexity. When the

channel has a long impulse response, the complexity of the algorithm increases significantly.

The problematic areas of the conventional MC based blind equalizer can be itemized as

follows.

• A likelihood function, which is also the incremental weight update, must be evaluated

2L times for each channel particle.

• An L dimensional symbol must be drawn from an L dimensional distribution. Typi-

cally, a variation of Metropolis-Hastings algorithm, or an accept-rejection method is

used for symbol draws. To draw a proper symbol of this dimensionality, a significant

number of trials must be made, which also increases the complexity.

• Vector dimensions grow linearly with L, which also increases the computational com-

plexity of the channel update equations.

The biggest problem here is the high dimensionality of the likelihood function from which

the symbols are drawn. Upon careful analysis, we notice the conditional independence of

the received signals, which makes factorization of the likelihood function possible

p(rn:n+L−1, s
(i)
n+1:n+L−1,hn:n+L−1|r0:n−1, s

(i)
0:n−1,h0:n−1) =

=
L−1∏

l=0

p(rn+l, sn:n+l,hn+l|r0:n−1, s
(i)
0:n−1,h0:n−1).

(104)

As a result of this factorization we get L distributions βl,n(·), l = 0, . . . , L− 1,

βl,n(rn+l, sn:n+l,hn+l|r0:n−1, s
(i)
0:n−1,h0:n−1). (105)
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In the standard algorithm, to estimate sn, L consecutive received signals rn:n+L−1 must

be considered, because of ISI. Evaluation of the likelihood function and a draw of a multi-

dimensional symbol sn:n+L−1 is necessary. However, it is interesting to see that the symbol

sn+L−1 has effect only on rn+L−1. Respectively, the symbol sn+L−2:n+L−1 has effect on

rn+L−2:n+L−1 only. Following the pattern we can draw the “sub-symbols” sequentially.

Namely,

• Evaluate

∑

s
(i)
n:n+L−2∈{±1}L−2

βL−1,n(rn+L−1, sn:n+L−1,hn+L−1|r0:n−1, s
(i)
0:n−1,h0:n−1) (106)

for sn+L−1 ∈ {±1}, and draw s̃n+L−1.

• Substituting the drawn symbol s̃n+L−1 in βL−1,n(·), evaluate

∑

s
(i)
n:n+L−3∈{±1}L−3

βL−1,n(rn+L−1, sn:n+L−2, s̃n+L−1,hn+L−1|r0:n−1, s
(i)
0:n−1,h0:n−1)

(107)

and

∑

s
(i)
n:n+L−3∈{±1}L−3

βL−2,n(rn+L−2, sn:n+L−2,hn+L−2|r0:n−1, s
(i)
0:n−1,h0:n−1) (108)

for sn+L−2 ∈ {±1}. Take their product, and draw s̃n+L−2.

• Repeat the recursion until s̃n is drawn, which is the desired draw.

The SMC algorithm for blind equalization with temporal partitioning is summarized

in Table 9. Note how the likelihood calculation and symbol draws are interleaved. This

also results in reduced storage requirements: once a ’sub-symbol’ is drawn, there is no need

to store the likelihoods of the unlikely ’sub-symbols’. In the table only the modifications

in computing the likelihoods are shown. The symbol draws are again done by an MCMC

method such as the A-R algorithm or the M-H algorithm.
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Table 8: Symbol draw pseudo-code

• for l = 0, ..., L − 1

– Compute
hn+l = ζhn−1+l + (1 − ζ)ηn−1

µ
(i)
n+l = s

(i)
n+l

T
h

(i)
n+l

P
(i)
n+l = σ2 + s

(i)
n+l

T
Σ

(i)
n+ls

(i)
n+l

, for each possible s̃
(i)
n:n+L−1 ∈ {±1}L

– Compute β
(i)
n+l(·) = p(rn+l|h(i)

n+l, s̃
(i)
n:n+l, s0:n−1)

• Draw s̃
(i)
n:n+L−1 ∼ β

(i)
n:n+L−1(·)

Table 9: Likelihood calculation and sub-symbol draws based on temporal par-
titioning of symbol space

• for k=m-1,...,0 /*start with last sub-symbol*/

– for l=k,...,m-1 /*iterate*/

∗ Compute
hn+l = ζhn−1+l + (1 − ζ)ηn−1 (109)

µ
(i)
n+l = s

(i)
n+l

T
h

(i)
n+l

P
(i)
n+l = σ2 + s

(i)
n+l

T
Σ

(i)
n+ls

(i)
n+l

,for each possible s
(i)
n+k ∈ {±1}

∗ Compute β
(i)
l,n(·) = p(rn+l|h(i)

n+l, s
(i)
n+k, s̃

(i)
n+k+1:n+L−1, s0:n−1)

– Draw s̃
(i)
n+k ∼

m−1∏

l=k

β
(i)
l,n
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3.11 Nested SMC approach

The above algorithm is based on back-substitution. Namely, a symbol is obtained from

observations that form sufficient statistics, and in the next recursion step the symbol is

used to form the distribution for the next symbol.

The drawn sub-symbol is the best estimate one can obtain, because it is based on

sufficient statistics. However, if an incorrect decision is made, the effect propagates and

affects the decisions about the rest of the sub-symbols. One may argue that an incorrect

decision made by all particles happens extremely rarely. In other words, if the number of

particles is set to a sufficiently large number, the majority of the particles correct the overall

decision. This is not quite the case though. Because of spectral nulls, incorrect decisions

can be very frequent become the majority.

Let us illustrate this phenomenon with an example. Suppose the impulse response of our

communications channel is time-invariant and is set to h = [1, 1, 1]T . Let the transmitted

symbols be BPSK symbols that are set to sn−2:n+2 = {1,−1,−1, 1, 1}. The receiver noise

is AWGN with variance σ2. Let us also assume that the all symbols in the past have been

detected correctly. The received signals at times n, n+ 1, and n+ 2 are:

rn = −1 + ηn

rn+1 = −1 + ηn+1

rn+2 = 1 + ηn+2

(110)

Performing the recursion, we take rn+2 and evaluate the log-likelihood βn+2(s̃n:n+2|·) =

−(rn+2 − s̃T
n:n+2h)2.
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βn+2(s̃n:n+2 = {−1,−1,−1}|·) ∼ −16 − 32ηn+2

βn+2(s̃n:n+2 = {−1,−1, 1}|·) ∼ −4 − 8ηn+2

βn+2(s̃n:n+2 = {−1, 1,−1}|·) ∼ −4 − 8ηn+2

βn+2(s̃n:n+2 = {−1, 1, 1}|·) = −η2
n+2

βn+2(s̃n:n+2 = {1,−1,−1}|·) ∼ −4 − 8ηn+2

βn+2(s̃n:n+2 = {1,−1, 1}|·) = −η2
n+2

βn+2(s̃n:n+2 = {1, 1,−1}|·) = −η2
n+2

βn+2(s̃n:n+2 = {1, 1, 1}|·) ∼ −16 − 32ηn+2

(111)

After marginalization, almost equal likelihoods are assigned to s̃n+2 = 1 and s̃n+2 = −1. An

incorrect choice here propagates and eventually affects the outcome of s̃n. This is precisely

the reason why a high order of diversity can not be obtained with back-substitution based

methods.

The channel in the above scenario has zeroes on the unit circle in the complex z− plane

and, therefore, has adverse effect on the transmitted signal which has uniform spectrum.

This particular scenario is not a rare and isolated event. In fact the roots of random

polynomials tend to group around the unit circle in the complex plane [71]. Namely, a

fading channel has deep nulls in its spectrum with very high probability. Conversely, from a

time-domain perspective, the energy of a symbol is spread to neighboring symbols creating

ISI. The goal of wide-band communications is to take advantage of spectral diversity and

improve the symbol detection rate at high SNRs.

To eliminate the decision error propagation effect, we propose a nested particle filtering

approach to the equalization algorithm similar to the algorithms used in sphere decoding

[34]. Instead of drawing sub-samples and keeping them fixed, we sample the sub-symbol

space with particles and retain a portion of them for further processing. The weights of

the particles are updated as we proceed to the next sub-symbol. Because of the Markovian

structure, we can take advantage of the recursion again. This approach retains choices with

nearly equal likelihoods (like in the above example) and passes them on to the next stage,

reducing decision error propagation.
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Effectively we only change the portion of the algorithm that calculates the likelihoods

and draws the symbol sn. The algorithm, as summarized in Table 10, is a sequential Monte

Carlo approach by itself. The Markovian structure of the likelihood functions is used to

derive an artificial sequential dependence of the observations. The structure is further

utilized to generate a list of trajectories which expand at each step.

The special property of this SMC application is that the parameter state-space is dis-

crete. A conventional resampling stage after each trajectory expansion would yield repli-

cating trajectories. In a continuous state-space scenario resampling is used to combat

degeneracy. However in this case, it results in wasted computational resources, because of

replicated trajectories.

A different resampling strategy that does not result in replicated trajectories must be

utilized. Initaially there is one null trajectory. At each subsequent stage, the number

of trajectories grows progressively. When the number of trajectories does not exceed the

maximum allowed by the system, which is a design parameter chosen by the user, there

is nothing to do. All possible states are fully represented. However, when there are more

trajectories than this maximum, a subset of them must be chosen and retained according

to some criteria.

A residual resampling approach is utilized here. Those trajectories with normalized

likelihoods greater than or equal to 1/Nparticles are retained. The remaining spots of the

total of Nparticles max trajectories are taken by trajectories randomly chosen among the

rest. Those trajectories are selected based on their likelihoods.

The overall algorithm is summarized in Table 11.

3.12 Simulation Results

We simulate the performance of our algorithm in a Rayleigh frequency selective slow fading

channel. The simulated channel has delay spread of m = 2, 3, and 4 symbols. The paths

are set to coincide with the delays of consecutive symbols. Namely, the delay for the path 0

is τ0 = 0. The delay of path 1 is τ = T , where T is a symbol period. Let us also denote the

variance of the complex gain of path 0 with σ2
0 . The variance of path 1 would be represented
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Table 10: Symbol draw using nested SMC

• Set Npartilces = 1

• for k=0,...,m-1 /*start with first sub-symbol*/

– Compute
hn+k = ζhn−1+k + (1 − ζ)ηn−1 (112)

µ
(i)
n+k = s

(i)
n+k

T
h

(i)
n+k

P
(i)
n+k = σ2 + s

(i)
n+k

T
Σ

(i)
n+ks

(i)
n+k

,for each possible s
(i)
n+k ∈ {±1}

– Compute p(rn+k|h(i)
n+k, sn+k) = −(rn+k − µ

(i)
n+k)

2/P
(i)
n+k

– For j = 1, . . . , Nparticles

∗ Expand each trajectory to |{±1}| = 2 (alphabet size) distinct paths

β(2∗j)(rn+k|h(i)
n+k, sn+k) = β(j)(rn+k−1|h(i)

n+k−1, sn+k−1)

p(rn+k|h(i)
n+k, sn+k−1, sn+k = −1)

β(2∗j+1)(rn+k|h(i)
n+k, sn+k) = β(j)(rn+k−1|h(i)

n+k−1, sn+k−1)

p(rn+k|h(i)
n+k, sn+k−1, sn+k = +1)

– Update Nparticles = Nparticles ∗ alphabet size
– if Nparticles > Npartilces max Truncate the trajectory list to Npartilces max and

set Nparticles = Npartilces max. Use residual resampling when choosing the subset
to be retained.

• Choose s̃
(i)
n based on the trajectory with highest likelihood.
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Table 11: Blind equalizer using nested SMC

• Initialization

• for i = 1, . . . , Ns /*for each particle*/

– Draw s̃
(i)
n+k ∼ β(·) as described in Table 10

– Update

h(i)
n = h

(i)
n−1 + K(i)

n (rn − µ(i)
n )

Σ(i)
n = (1 −K(i)

n )s(i)
n

T
Σ

(i)
n−1,

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1s

(i)
n (P (i)

n )−1

– Update weight w
(i)
n ∝ w

(i)
n−1β

(i)
n:n+L−1(·)

• Obtain symbol estimate as

ŝn = arg max
sn∈{±1}

Ns∑

i=1

w(i)δ(sn − s(i)n ),

• Resample if needed

• Perturb channel particles and update based on likelihoods.
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with σ2
1 and so on.

For the m = 2 case we use equal power profile for each delay coefficient, i.e. σ2
1/σ

2
0 =

1 = 0dB. We used N = 300 particles to estimate the channel state, and maintained

N max = 2 trajectories for symbol estimates. Setting N max = 4 would be the full MLE

solution. The proposed SMC algorithms outperform the Gibbs based algorithm. While the

Gibbs equalizer exhibits an error floor, the proposed algorithms do not, because the SMC

algorithm can track the state of dynamic systems. The nested SMC algorithm outperforms

the partitioning approach because it keeps track of a few trajectories, instead of only one.

Note that spectral diversity is preserved in this case as the slope of the BER plot is retained.

The genie aided SMC in Figure 10 is the nested SMC algorithm with perfect channel

information. Its performance can easily be seen to converge to the MLE equalizer (N max =

4) as SNR is increased.

Using more particles to estimate the channel state does not justify the increase in com-

putational cost. As it is seen in Figure 11, using 100 particles results in approximately only

a 1dB loss.

The power profile of the m = 3 tap channel is chosen to represent a realistic channel,

i.e. σ2
1/σ

2
0 = 0dB, σ2

2/σ
2
0 = −6dB. Comments similar to the above can be made about

these plots as well (Figure 12). The nested SMC approach outperforms the other blind

algorithms and diversity is preserved again.

In the case of m = 4 multipath delays, the power profile is σ2
1/σ

2
0 = 0dB, σ2

2/σ
2
0 = −6dB,

σ2
3/σ

2
0 = −9dB. The average power in the last path is very little, therefore significant

spectral diversity gain is not expected (Figure 13).

To further analyze the ability of the SMC algorithm to take advantage of spectral

diversity in severe ISI conditions, we set the communications channel to have equal average

energies on each multipath: σ2
1/σ

2
0 = 0dB, σ2

2/σ
2
0 = 0dB, σ2

3/σ
2
0 = 0dB. The nested SMC

approach is observed to outperform the one based on temporal partitioning. However,

for the rich spectral diversity case, the blind algorithms tend to lose their effectiveness in

capturing all energy from the multiple delays, because the equalizer is unable to track all

of the channel coefficients reliably well. The genie aided equalizer preserves the diversity
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Figure 10: Performance of the SMC blind equalizer with comparison to the Gibbs equal-
izer, and to ML equalization.
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Figure 11: Effect of number of used particles on SMC algorithm performance.
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Figure 12: Performance of SMC blind equalizer, m = 3 multipath channel
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(b) Effect of number of used particles on performance.

Figure 13: Performance of SMC blind equalizer, m = 4 multipath channel
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order firmly by retaining only 2 symbol trajectories. However, the blind equalizers cannot

obtain reliable estimates for the channel state.

3.13 Conclusion

We studied Bayesian methods for blind equalization. We constructed a signal model and

communications channel model. As in all equalizers, the goal is to obtain reliable estimates

for the transmitted symbols, eliminate ISI and possibly achieve some spectral diversity gain.

We defined the Bayesian problem and formulated the posterior distribution definitions. We

noted the recursive Markovian structure and also defined the recursive incremental weight

update for the SMC algorithm.

We outlined the standard SMC algorithm that solves the equalization problem. Then

we realized that because of the Markovian structure of the underlying densities, the whole

symbol space need not be sampled each time. Instead, we partitioned the symbol space

recursively. In the following section we introduced an alternative way to obtain symbol

samples. By taking advantage of the recursive posteriors, we applied a SMC algorithm

to draw the symbol samples. The particles of the this SMC stored information about the

evolution of symbol trajectories.

In the results section we displayed the simulation results and concluded that the SMC

algorithm is a very effective algorithm when applied to blind equalization. It outperforms

the other blind MCMC algorithms significantly. Even with the simplifications to the symbol

space sampling approaches, it outperforms MCMC algorithms and is very close to the regu-

lar SMC solution approach, but with significantly reduced computational complexity. The

complexity is reduced from being exponential in the path delay spread, to only quadratic.
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Figure 14: Performance of SMC blind equalizer, m = 3 multipath channel
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Figure 15: Performance of SMC blind equalizer, m = 4 multipath channel
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CHAPTER IV

A SEQUENTIAL MONTE CARLO ALGORITHM FOR

MIMO SYSTEMS

In this work we propose an SMC algorithm for Multiple-Input Multiple-Output system re-

ceivers. The algorithm estimates the transmitted MIMO symbol vectors without knowledge

of the channel state information. In addition, temporal partitioning of the symbol space

is applied to decrease the computational complexity of the algorithm. The performance

of the algorithm is compared to the performance of a receiver with perfect channel state

information. Spatial diversity is shown to be preserved.

4.1 Introduction

Symbol detection in multiple input multiple output (MIMO) systems has been researched

significantly [23, 24]. Maximum likelihood sequence estimator receivers perform optimally;

however, their computational complexity is very high. The parameter space grows exponen-

tially with the number of transmit antennas and the symbol constellation size. Interference

cancelation and nulling techniques have been applied to decrease the dimensionality of the

search space [23, 24]. Namely, the symbol from the antenna with the strongest signal is

detected, and then its effect is subtracted from the received signal. The technique is similar

to SIC described in the introduction chapter in this dissertation. Foschini and Gans showed

that capacity increases linearly with the lesser of Nt, the number of transmit antennas, and

Nr, the number of receive antennas number [24].

SMC algorithms have been applied in the design of receivers for MIMO systems. Many

proposed designs assume that channel state information is present at the receiver or obtain

some estimate by using a training symbol sequence. The SMC architecture in these cases

is utilized to take advantage of the artificially introduced sequential processing of serial

interference cancelation and nulling. This technique is applied at each layer of symbol
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detection, and symbol estimates are refined as the algorithm proceeds from one layer to the

next [21,43].

In this work, we apply an SMC algorithm in the design of a blind receiver for a MIMO

system. The receiver obtains and refines its knowledge of the channel state as more symbols

are received. The nature of SMC allows for the receiver to track changes in the channel

coefficients. We use spatial partitioning of the symbol space to decrease the sampling space

and, consequently, decrease the computational complexity of the algorithm.

4.2 System Model

We consider a flat Rayleigh fading MIMO system. The transmitter has Nt transmit an-

tennas, and, accordingly, its bit stream is split into Nt substreams. After encoding and

mapping, the transmit symbols are fed into Nt antennas.

The receiver has Nr antennas. For the symbols to be properly detected, we require

that Nr ≥ Nt. The received signal sampled at the symbol rate can be represented by the

standard MIMO received signal equation:

r = Hs + η, (113)

where s = [s1, . . . , sNt ]
T is the transmitted symbol vector. The matrix H is a Nr × Nt

matrix that contains the complex gains of the channels from the Nt transmit antennas at

the transmitter to the Nr receive antennas at the receiver. We assume a flat Rayleigh

fading channel. Thus, the elements of H are i.i.d. zero-mean, complex Gaussian random

variables. The noise term η is a zero mean complex additive white Gaussian noise vector

with covariance σ2INr .

4.3 Channel Model

With this representation we assume that the channel coefficients represent the state of a

continuous Markov process. Therefore, the channel can be modeled as a Markov chain with

transition kernel q1(·|·). In reality this is acceptable because the communications channel

is a slow-fading, flat Rayleigh channel. The autocorrelation function of the coefficients of
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such a channel can be described by a zeroth order Bessel function of the first kind [72]:

φh[l]h[l](τ) =
1

2
J0(2πfmτ) (114)

The symbol τ , above, is the time delay, and fm is the Doppler frequency shift.

The power spectral density (psd) of this process is a non-rational function

Sh[l]h[l](f) =







1
4πfm

1√
1−(fm/f)2

, |f | ≤ fm

0, otherwise

(115)

and can be estimated by an autoregressive moving average process of high order. However,

the impulse response of such a process is long and increases computational complexity

significantly [72].

Each element of the channel matrix H is a random process that satisfies the above

autocorrelation and psd equations. Each element can be approximated by a Markov process,

or equivalently, as a first order autoregressive model (equation (116)), or a Markov process.

Hn = ζHn−1 + (1 − ζ)Wn−1, (116)

where Wn is a matrix with the same dimension as H and each of its element is an iid

complex Gaussian random process with zero mean and variance 1, and ζ is defined as

ζ = 2 − cos(2πfmT ) −
√

(2 − cos(2πfmT ))2 − 1. (117)

Essentially, the Bessel function is approximated by an exponential function.

4.4 Symbol Prediction

No correlation among transmitted matrix symbols is assumed. Therefore, we model the

symbols as an uncorrelated uniform distributed discrete random process

p(sn|sn−1) ∝ 1, ∀sn, sn−1. (118)
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4.5 Sequential Monte Carlo

The system can be represented with the following state-space representation:

hn ∼ q1(Hn|Hn−1)

Sn ∼ q2(sn|sn−1)

rn ∼ f(rn|sn,Hn)

(119)

4.6 Brute force detection algorithm

The SMC algorithm approximates the posterior distribution by sampling and evaluating

at discrete points in the state space. Each sample is called a particle and, along with the

assigned weights, the set {s(i)n , w
(i)
n }Ns

i=1 is called a random measure that characterizes the a

posteriori distribution p(s0:n|r0:n).

The particles are assigned weights in order to make them appear as if they are drawn

from the desired posterior distribution. If the posterior density is chosen for the symbol

draws, the incremental weight update simplifies:

w(i)
n = w

(i)
n−1

p(s
(i)
0:n−1|r0:n)

p(s
(i)
0:n−1|r0:n)

∝ w
(i)
n−1

∫

p(rn,Hn|r0:n−1, s
(i)
0:n−1,H0:n−1)p(Hn|H0:n−1)dHn

w(i)
n ∝ w

(i)
n−1u

(i)
n

(120)

The algorithm first updates the channel state according to the Markov transition prob-

ability for all particles. Next, a symbol is drawn for each particle from the posterior dis-

tribution, conditioned on the predicted channel coefficients. Then, based on the symbol

outcome and the received signal, the channel state is updated and a weight for each particle

is assigned.

Rao-Blackwellization is used for the channel coefficient estimation part of the problem.

Because of the Gaussian noise and linearity of the state update and observation equations,

in the observation, the estimates for the channel coefficients can also be viewed as Gaussian

random variables. Gaussian random variables are fully characterized by their means and
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covariances. Therefore, instead of obtaining Monte Carlo estimates of the channel coeffi-

cients, we approach the problem differently. We obtain analytic expressions for the mean

and the covariance of the channel estimates. Furthermore, we obtain expressions that per-

form incremental updates from the previous state. These equations, in fact, are the Kalman

filter equations.

The algorithm is summarized in Table 12. In the table Ns denotes the number of

particles, and σ2 is the observation noise variance. The symbol Σn indicates the covariance

matrix of the channel coefficient estimates and is also an indicator of the uncertainty of the

estimate. Therefore, at initialization, Σn is assigned to be a diagonal matrix with very large

numbers on the diagonal.

This algorithm requires the computation of symbol likelihoods from a multidimensional

space. For example in the case of signaling in 16 − QAM space and utilizing 8 transmit

antennas, 232 possible transmitted symbols must be considered. In addition, obtaining

uncorrelated sample realizations from such a multidimensional distribution is extremely

computationally intensive. A Gibbs sampler with a long burn-in period must be utilized to

obtain such samples. In the results section, we do not provide results for the full complexity

algorithm, because it is computationally intractable to simulate.

4.7 An SMC approach for sampling the symbol space

The BLAST techniques utilize a back-substitution approach for obtaining reliable estimates

of the transmitted symbols. They, however, suffer from error propagation problems and low

spatial diversity. The reason for the error propagation problems is that those algorithms do

not provide methods for altering a previously made decision. Low spatial diversity results

from the inability to use sufficient statistics in the decision for a given symbol. The latter

will become clearer in the following sections.

Let us multiply the received signal vector with the Hermitian of the channel matrix.

r̃ = HHHs + η̃, (122)

where η̃ is Gaussian noise with covariance matrix E{HHH}σ2.
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Table 12: Temporally Partitioned SMC for Frequency Selective Fading Chan-
nels

• Initialization

• for i = 1, . . . , Ns

– Compute

H(i)
n = ζH

(i)
n−1 + (1 − ζ)Wn

µ(i)
n = H(i)

n s(i)
n

– Let h
(i)
n = vect(H

(i)
n ), and construct S

(i)
n so that S

(i)
n h

(i)
n = H

(i)
n s

(i)
n

P (i)
n = σ2I + S(i)

n Σ(i)
n S(i)

n

H

,for each possible s
(i)
n ∈ {±1}Nt

– Compute β
(i)
n (·) = p(rn|H(i)

n , s
(i)
n )

– Draw ŝ
(i)
n ∼ β

(i)
n (·)

– Construct Ŝ
(i)
n

– Update

h(i)
n = h

(i)
n−1 + K(i)

n (rn − µ(i)
n )

Σ(i)
n = (I −K(i)

n Ŝ(i)
n )Σ

(i)
n−1,

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1Ŝ

(i)H
n (P (i)

n )−1

– Update weight w
(i)
n ∝ w

(i)
n−1β

(i)
n:n+L−1(·)

• Obtain symbol estimate as

ŝn = argmax
sn

Ns∑

i=1

w(i)δ(sn − ŝ(i)
n ), (121)

• Resample if needed

• Perturb channel particles and update based on likelihoods.
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4.7.1 Zero Forcing

The product HHH is a positive definite Hermitian matrix. Therefore, it has a unique

Cholesky factorization UH
ZF UZF = HHH, where UZF is an upper triangular matrix. If we

multiply the equation with U−H
ZF we find:

y = UZF s + ν, (123)

where ν is white noise with covariance matrix σ2INt . The inverse of a triangular matrix

can be easily computed using back-substitution and its computational burden is negligible.

To make the equations more readable and understandable, we flip the matrices upside-

down so that the upper-triangular matrix becomes lower triangular. The flipping corre-

sponds to a permutation of the antennas and does not change the problem. The subscripts

in the equations below denote the index of a vector or a matrix. The colon (:) operator in

m : n, for example, refers to integers in the [m,n] range, including the bounds.

The above equation can be solved for s easily by back-substitution, which is a very

commonly seen decision feedback scheme. Namely,

ŝ1 =
y1

U1,1
(124)

ŝ2 =
y2 − U2,1Q(ŝ1)

U2,2
(125)

ŝ3 =
y3 − U3,1Q(ŝ1) − U3,2Q(ŝ2)

U3,3
(126)

and so on and so forth. The Q(·) function above is a quantization function that maps

the soft symbol ŝ to the nearest symbol in the constellation. This particular approach is

equivalent to the zero forcing (ZF) V-BLAST approach [23–25].

4.7.2 MMSE

The MMSE approach can be obtained by applying the MMSE solution to the received

signal,

ŝ = R−1
MMSEHH(Hs + η) (127)

with RMMSE = HHH + σ2I.
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The above equation is a linear MIMO detector. The symbol estimate is soft and needs

to be quantized to the nearest symbol in the constellation. This equation cannot be solved

efficiently like the ZF approach by triangularizing the equation. However, it has been

reported that it achieves better performance than the ZF V-BLAST, which is also a linear

approach [23–25].

4.7.3 SMC

A drawback to the ZF approach is error propagation. There is no mechanism in the algo-

rithm that can correct a previous decision. In addition, the information passed during the

back-substitution process is hard information. Any information about the certainty of a

particular decision is lost.

Moreover, sufficient statistic are not utilized fully when making a decision about a

symbol. For example, the sufficient statistics for the symbol sNt is the whole vector y.

However, only the last element is used in making a decision about sNt , resulting in spatial

diversity loss.

These two drawbacks could be dealt with by using a sequential Monte Carlo algorithm.

Using the structure in equation (123), instead of setting symbols fixed at each stage (i.e.

layer) and letting wrong decisions propagate, a number of nearly equiprobable choices could

be stored for processing in later stages. Beginning at the first layer, there would be 16 choices

for the first symbol (assuming 16-QAM signaling.) In the next stage, the number of possible

choices for the combination of the first and second symbol would be 256. Keeping track of

all possible choices is equivalent to the ML solution. An alternative is to limit the number

of stored symbol states to a fixed number.

This procedure can be illustrated as an expanding trellis of states (Figure 16). Each

state represents the detected symbol state. Because of the tree structure, the path to the

root is unique. Each branch is labeled with the conditional posterior symbol density. To

obtain the probability of a symbol, all probabilities along the branches leading back to the

root must be multiplied. In order to avoid storage and computational issues, some paths

with low probabilities are terminated and discarded.
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Figure 16: Symbol state trajectory.
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Such a recursive formulation is essential in SMC algorithms, as it simplifies the cal-

culations significantly. Let us formulate the SMC algorithm that would obtain a symbol

estimate ŝ from the observation r. The structure of the algorithm is presented in Table

13. The symbol state space is expanded. At each recursion the the number of particles

increases, as is seen in Figure 16. Then, a weight for each particle is computed and resam-

pling is performed when necessary. The process is repeated until the whole symbol space is

covered, and at the end a soft estimate about the transmitted symbol is obtained.

Table 13: SMC algorithm for symbol draw

• for i = Nt : −1 : 1

– Calculate likelihoods for each possible particle trajectory

– Obtain samples from the space based on the computed likelihoods

– Update weights

– Resample if necessary

• Obtain a symbol estimate according to the most likely particle trajectory

Because of the Markovian structure of the densities we write the following factorization:

p(s1:n|r1:n) = p(sn|r1:n, s1:n−1)p(s1:n−1|r1:n) (128)

The proposal density that is used to obtain samples from the symbol space is denoted by

q(·). The weights of the drawn samples are computed by the familiar equation

w(i)
n =

p(s
(i)
1:n|r1:n)

q(s
(i)
1:n|r1:n)

. (129)

After applying the recursion above we get

w(i)
n = w

(i)
n−1

p(s
(i)
1:n|r1:n)

q(s
(i)
1:n−1|r1:n−1)q(s

(i)
n |s(i)1:n−1, r1:n)

. (130)

If the posterior density is used to sample from the symbol space, the incremental weight

update simplifies even further. Since the symbol space is a discrete space, exact evaluation

of the probability mass functions is possible. Approximations to this density are needed
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only in cases where the symbol constellation size is very large and computation of entire

distribution is not practical.

We set q(·) = p(·) and find

w(i)
n = w

(i)
n−1p(rn|s

(i)
1:n−1, r1:n−1). (131)

The weights are sufficient to characterize the underlying densities up to a normalizing

constant. Therefore, normalization on every recursion of the algorithm is necessary.

We improve the SMC algorithm described in Table 13 by taking advantage of the discrete

state space. We calculate the exact posterior distribution and obtain samples from the entire

symbol space at each processing layer. In order to keep the number of particles low, we

retain only a subset with high likelihoods. Those particles are chosen based on a modified

version of the residual resampling method.

The number of particles to be kept is set to N max. From the expanded list of particles

we choose the particles with normalized weight greater than 1/N max. These particles are

not replicated as in the regular residual resampling method. Replication would result in

wasted computation, as the state-space is discrete. The rest of the spots to fill the necessary

N max space are filled by particles chosen randomly from the rest of the particles. Here

care must be taken not to pick the same particle more than once, for the reason pointed to

above.

We summarize the modified SMC algorithm based on the discrete space improvements

in Table 14.

4.8 Blind MIMO detection with SMC

In this section we incorporate the symbol draw algorithm within the channel coefficient

estimation algorithm. The structure of the algorithm is similar to the full complexity SMC

version. The difference is in the triangularization of the received signal equations.

It is significantly easier for the particle filtering algorithm to obtain symbol estimates

from a triangular1 equation system than to obtain symbol estimates from a general matrix

1Please remember that we permute the rows so that the matrix is lower triangular.
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Table 14: SMC algorithm for symbol draw

• Set N cur particles = 1

• for k = 1 : Nt

– Expand symbol space, i.e. Set N cur particles = N cur particles× alphabet size

– Calculate likelihoods for each possible particle trajectory branch

p(yk|s(i)1:k−1, r1:k−1),

by using the equation from the kth row of

y = Us + ν.

The estimate for the lower triangular matrix U is obtained elsewhere.

– Extend trajectories for all possible transmitted symbols

– Update weights for each trajectory

– If N cur particles > N max

∗ Select particles with normalized weight greater than 1/N max

∗ Draw particles with probability proportional to their weights from the rest of the unse-
lected choices

∗ Set N cur particles = N max

• Obtain a symbol estimate corresponding to the most likely particle trajectory
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equation. By taking this approach we avoid sampling from the entire symbol space and

process the data layer by layer.

4.9 Simulation Results

We simulate this algorithm in systems with 4× 4 and 8× 8 channel matrices. To illustrate

the performance in large symbol spaces we utilize both QPSK and 16-QAM constellations.

The channel is a flat Rayleigh fading channel with a Doppler coefficient of fmT = 1e − 3.

Such a channel is usually described as a slow fading flat channel.

In Figure 17 we compare the performance of the SMC receiver to other receivers. It

is clear that the proposed receiver outperforms the standard ZF-VBLAST and MMSE-

VBLAST techniques with full CSI. V-BLAST algorithms degrade due to their inherent

error propagation effect. The Gibbs sampler based receiver does not perform well because

the receiver cannot account for dynamically changing channel states. The used algorithm

utilizes the Markovian structure of posterior densities and dramatically reduces the size of

the symbol space to be sampled. This reduction results in approximately 1dB of perfor-

mance degradation. If we add the effect of having an unknown channel state, the perfor-

mance degradation grows another ∼ 3dB, however, which is still significantly better than

the VBLAST techniques. The performance difference of utilizing 100 vs 300 particles for

the channel estimates is minimal - only 0.5dB. Similar results are observed in the 16 -

QAM scenario (Figure 18). We were unable to perform a full ML-simulation, as the size

of the symbol space is 164. However, having full CSI and increasing the number of traced

symbol trajectories to 16 makes a big difference. In addition to the coding gain, there is

also a spatial diversity gain realized. The latter is a result of the ability to resolve spatial

diversity by keeping track of more symbol trajectories.

In Figure 19, the case of spatial correlation among the antennas is illustrated. The

cross-correlation coefficient is set to ρ = 0.9, and the effect of spatial diversity is reduced.

At low SNRs, the receiver is unable to track the channels during deep fades. Therefore,

the performance is very degraded. At high SNR, the performance approaches the known

channel scenario.

84



Table 15: Blind MIMO detector using SMC

• Initialization

• for i = 1, . . . , Ns

– Compute

H(i)
n = ζH

(i)
n−1 + (1 − ζ)Wn

– Obtain the Cholesky factorization UHU = HHH.

– Obtain y = U−HHHr

– Use the modified SMC algorithm in Table 14 to obtain an estimate ŝ
(i)
n .

– Let h
(i)
n = vect(H

(i)
n ), and construct Ŝ

(i)
n so that Ŝ

(i)
n h

(i)
n = H

(i)
n ŝ

(i)
n

– Compute
µ(i)

n = H(i)
n ŝ(i)

n

P (i)
n = σ2I + Ŝ(i)

n Σ(i)
n Ŝ(i)H

n

– Update

h(i)
n = h

(i)
n−1 + K(i)

n (rn − µ(i)
n )

Σ(i)
n = (I −K(i)

n Ŝ(i)
n )Σ

(i)
n−1,

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1Ŝ

(i)H
n (P (i)

n )−1

– Update weight w
(i)
n ∝ w

(i)
n−1β

(i)
n (·), where β

(i)
n (·) is the likelihood of the symbol trajectory

computed in Table 14.

• Obtain symbol estimate as

ŝn = argmax
sn

Ns∑

i=1

w(i)δ(sn − ŝ(i)
n ), (132)

• Resample if needed

85



4 5 6 7 8 9 10 11 12 13 14
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

S
E

R

nested SMC (N=300,N_max=4)
nested SMC (N=100,N_max=4)
ZF−VBLAST
MMSE−VBLAST
Gibbs N=200
genie aided nested SMC (N_max=4)
genie aided nested SMC (N_max=16)

Figure 17: Performance of blind SMC MIMO equalizer with 4 × 4 antennas and QPSK
signaling
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Figure 18: Performance of the blind SMC MIMO equalizer with 4 × 4 antennas and
16-QAM signaling
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Figure 19: Performance of blind SMC MIMO equalizer for the spatially correlated case,
ρ = 0.9, with 4 × 4 antennas and QPSK signaling
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Figure 20: Channel estimates obtained by nested SMC with 4 × 4 antennas, QPSK sig-
naling, 20dB SNR, and 300 particles. Solid thick lines are the true channel coefficients, and
the thin jagged lines are the estimated values.
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In Figure 20, the channel state tracking capability is displayed. For high SNRs, the

channel coefficients are estimated well. For low SNRs (Figure 21), the thermal noise, symbol

phase, symbol magnitude, and antenna ambiguities introduce larger errors. The particles

begin tracking a rotated replica of the multidimensional channel state-space.

The problem is more complex in the 8 × 8 case. The symbol space has 48 and 168

elements, respectively, for the the QPSK and 16-QAM cases. We observe again that the

proposed method significantly outperforms V-BLAST techniques, which are based on de-

cision feedback (Figure 22). The gain in our receiver comes from the stored and traced

multiple symbol trajectories.

As is evident from Figure 24, the larger we keep the maximum number of stored trajec-

tories N max, the better the results are. The computational cost grows linearly with the

number of trajectories. Even in the case of genie aided receivers, where the true channel

state information is obtained by our “genie”, there is approximately 2dB of performance

difference in the cases with N max = 8 and N max = 16. The performance degrades

significantly when the receiver has to obtain the values of the 8 × 8 channel matrix and

obtain symbol estimates. The SER performance is still better than DF-based V-BLAST

algorithms.

In case of spatial correlation among the channels, the performance degrades significantly.

In Figure 23, the case of spatial correlation among the antennas is illustrated. We observe

similar effects as in the 4 × 4 case.

4.10 Conclusion

We constructed signal and communications channel models for MIMO systems. We then

formulated a few approaches for obtaining symbol estimates. We defined the Bayesian prob-

lem, formulated the posterior distribution definitions, and obtained recursive formulations

for the distributions and weight updates.

Given the problem, we outlined the standard SMC algorithm, which requires sampling

from the entire symbol space. Based on the recursive formulation, we sample at each layer

and retain symbol trajectories in order to avoid error propagation. With this approach the
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Figure 21: Channel estimates obtained by nested SMC with 4 × 4 antennas, QPSK sig-
naling, 10dB SNR, and 300 particles. Solid thick lines are the true channel coefficients, and
the thin jagged lines are the estimated values.
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Figure 22: Performance of the blind SMC MIMO equalizer with 8×8 antennas and QPSK
signaling
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Figure 23: Performance of the blind SMC MIMO equalizer, for the spatially correlated
case, ρ = 0.9, with 8 × 8 antennas and QPSK signaling
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Figure 24: Performance of blind SMC MIMO equalizer with 8× 8 antennas and 16-QAM
signaling
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complexity is reduced from being exponential in the number of transmit antennas, to only

quadratic.

We tested the algorithm and compared it to the performance of other blind and non-

blind algorithms. We found that the performance degradation because of layered sampling

is minimal justifying our approach. The blind nested SMC algorithm outperforms standard

DF based V-BLAST approaches with full CSI.

As the dimensionality of the problem decreases with both signalling constellation size

and antenna numbers, the ambiguities also decrease. The performance of our blind algo-

rithm is very close to that of the full complexity ML solution.

95



CHAPTER V

A BLIND RECEIVER BASED ON A SEQUENTIAL

MONTE CARLO ALGORITHM FOR SPACE-TIME

CODES AND MOCS

We propose a blind multiuser detector based on Monte Carlo Markov chain (MCMC) tech-

niques. The detector exploits mutually orthogonal complementary sequences to distinguish

between transmitting users and space-time codes to take advantage of the available spatial

diversity. We propose a partitioning scheme for the symbol draws in the MCMC algorithm

that reduces the complexity without any degradation in performance. We also propose a

sequential Monte Carlo method to obtain the symbol estimates. The detector’s performance

is simulated in an iterative receiver that utilizes an outer coder. The simulations display

some loss in coding gain because of the blind nature of the system; however, diversity gain

is preserved.

5.1 Introduction

A sequential Monte Carlo (SMC) framework has been developed and a wide range of appli-

cations have been discussed in [50]. This Bayesian technique is primarily utilized in target

tracking algorithms [12]; however, other applications also exist. Blind receivers are one

application of this technique in the telecommunications field, and an adaptive scheme has

been proposed in [17]. Here we extend this SMC technique for efficient blind detection of

multiple users in multi-antenna scenarios.

Our approach utilizes mutually orthogonal (MO) sets rather than pseudo-noise (PN)

sequences. MO sets introduce minimal bandwidth expansion since the chip-rate can be set

to be the bit-rate. MO sets are also suitable for multi-user applications where uncoupled
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parallel communication channels exist. A soft multi-user detector was introduced and uti-

lized in an iterative receiver in [58], where the channel was assumed known at the receiver.

In this work the channel is unknown at the receiver; however, a slow fading rate is assumed.

The contribution in this work is in the partitioning of the symbol space. Partitioning has

been applied previously to visual and acoustic tracking problems with particle filters [51,56].

Here, though, we take advantage of the conditional independence of the received signal

vectors. Instead of drawing symbols from the entire symbol space, we partition it, draw

“sub-symbols” from the subspaces, and then merge the results. This technique reduces the

complexity of the algorithm significantly without any performance loss or additional error

propagation. We display the performance of the detector in an iterative receiver utilizing

an outer channel code.

5.2 System Description

A detailed discussion on the construction and properties of MO complementary sets can be

found in [81]. Use of these sets in multi-user communications has been discussed in [58].

Let us elaborate on the signaling at the transmitter in Fig. 25. The channel coded symbols

ck are differentially encoded into dk and then convolved with the mutually orthogonal set

Akm assigned to the kth user:

dk[n] = dk[n− 1]ck[n] (133)

skm[n] = dk[n] ∗ Akm[n], (134)

where (∗) denotes convolution. We stack skm[n]

sk[n] , [sk1[n] . . . skM [n]]T . (135)

We define the following quantities by stacking each user’s successive samples of the coded

data vectors. The goal here is to obtain a transmitter model that will account for all K

users. Then, the symbols in the vector sk are mapped to the space-time block code matrix
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Sk[n]. Here a code matrix designed by Tarokh is chosen [75]

Sk =


























sk1 sk2 sk3 sk4

−sk2 sk1 −sk4 sk3

−sk3 sk4 sk1 −sk2

−sk4 −sk3 sk2 sk1

s∗k1 s∗k2 s∗k3 s∗k4

−s∗k2 s∗k1 −s∗k4 s∗k3

−s∗k3 s∗k4 s∗k1 −s∗k2

−s∗k4 −s∗k3 s∗k2 s∗k1


























. (136)

5.3 A Blind Multiuser Detector

To simplify notation we stack Sks, hks, cks and dks as follows: c[n] = [c1[n] . . . cK [n]]T ,

d[n] = [d1[n] . . . dK [n]]T , S[n] = [S1[n] . . .SK [n]], h[n] = [h1[n]T . . .hK [n]T ]T . Here, hk[n]

is a column vector containing the complex amplitudes of each channel. Subscripts for the

remainder of the paper will indicate time epoch rather than user number or a sequence

number within a set.

dn1:n2 , [d[n1]
T ,d[n1 + 1]T , ...,d[n2]

T ]T , n2 > n1 (137)

and similarly rn , r[n].

The received signal vector can be described as:

rn = Snhn + ηn, (138)

where ηn is receiver noise, which is additive white Gaussian noise with zero mean and σ2

variance. In this paper we assume that the noise power is known and in practice it can be

easily estimated.

Our goal is to calculate the a posteriori distribution p(cn|r0:n+L−1) of all the users’ coded

symbols c without prior knowledge of the channel state information h. The architecture

of the receiver is illustrated in Figure 26, which consists of serially cascaded MUD and

channel decoders that pass extrinsic soft information to each other. Our contribution is in

the design of the MC-MUD.
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Figure 26: Iterative Receiver Model
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5.4 The SMC Detector

The MOCS codes disperse the symbol dn in the transmitted signal throughout L consecutive

time epochs, where L is the length of the MO sequences. Namely, the sufficient statistics

for dn are the received signals rn:n+L−1. The joint posterior distribution of the symbol

state-space and the channel state-space can be represented as the following factorization

p(dn,hn|rn:n+L−1) = p(dn|rn:n+L−1,hn)p(hn|rn:n+L−1). (139)

We need to come up with a good representation of the above density. To simplify the

equations, let us assume that we have a good estimate for the channel hn. Later we will

include the effect of the uncertainty on hn.

5.4.1 Symbol detection

Let {d(i)
n , w

(i)
n },Ns

i=1 denote a random measure that characterizes the a posteriori distribu-

tion p(dn|d0:n−1rn:n+L−1). Conditioning on d0:n−1 implies that those symbols have been

detected previously. Let d
(i)
n , i = 1, . . . , Ns be a sample draw. Our goal is to obtain samples

of the transmitted symbols {d(i)
n , w

(i)
n }, properly weighted with respect to the distribution

p(dn|d0:n−1, rn:n+L−1).

The weights are defined as:

w(i)
n ∝ p(d

(i)
0:n|r1:n+L−1)

q(d
(i)
0:n|r1:n+L−1)

. (140)

We choose a proposal density:

q(dn|d0:n−1, r1:n+L−1) , p(dn|d0:n−1, r1:n+L−1). (141)

We choose to use the full posterior density as the proposal density, requiring heavy

calculations in continuous state-space parameters. However, the symbols are from a discrete

state-space and the posterior density is actually a probability mass function.

As a result of the proposal choice, the weight update simplifies significantly:

w(i)
n ∝ w

(i)
n−1p(rn+L−1|r1:n+L−2,d

(i)
0:n−1). (142)
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The goal is to draw a sample from the posterior distribution. Alternatively, the draw can

be done from its normalized likelihood probability mass function, requiring the evaluation

of the likelihood at the entire symbol state-space. A MCMC method such as A-R, M-H, or

the Gibbs sampler can be utilized to draw a sample from this distribution. The algorithm is

outlined in Table table:MOCSblind:SMC pseudocode1. The process of likelihood evaluation

and symbol draws is outlined in Table 17.

5.4.2 Channel Estimation and Rao-Blackwellization

In this section we elaborate on how the channel estimate is obtained.

The symbols dn−(L−1):n contribute to the received signal rn. Therefore, the probability

distribution of the received signal conditioned on the channel coefficients and the symbols

dn−(L−1):n is Gaussian:

p(rn|dn−L+1:n,hn) ∼ N (Snhn, σ
2I) (144)

We are interested in computing the multidimensional likelihood that appears in the

factorization

p(dn|rn:n+L−1) ∝
∫

p(rn:n+L−1|dn−(L−1):n+L−1,hn:n+L−1)

p(hn:n+L−1)p(dn−(L−1):n+L−1)dhn:n+L−1

(145)

The first distribution in the integrand is Gaussian. The second distribution describes the

channel. The channel is a flat Rayleigh fading channel, and its distribution is that of a

complex Gaussian random process. Hence, the above integral is also a complex Gaussian

pdf

β
(i)
n:n+L−1(rn:n+L−1|dn−(L−1):n+L−1,hn:n+L−1) =

p(rn:n+L−1|dn−(L−1):n+L−1,hn:n+L−1) ∼ N (µ
(i)
n,j,P

(i)
n,j)

(146)

µ
(i)
n,j =












S
(i)
n,j 0 . . . 0

0 S
(i)
n+1,j . . . 0

0 0
. . . 0

0 . . . 0 S
(i)
n+L−1,j























h
(i)
n

h
(i)
n+1

...

h
(i)
n+L−1












. (147)
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Table 16: Blind MUD SMC pseudo-code

0. Initialization

1. for i = 1, . . . , Ns /*for each particle*/

• Update channel coefficients using state-update equation

• Calculate β(·) as described in Table 17

• Draw d̃
(i)
n ∼ β(·) as described in Table 17

• Update channel state based on outcome of the draw

• Differentially decode

c(i)
n = d̃(i)

n ⊙ c
(i)
n−1, (143)

where ⊙ denotes element-wise multiplication.

2. Update weight w
(i)
n ∝ w

(i)
n−1β

(i)
n:n+L−1(·)p(c

(i)
n ), where the last term is apriori probabil-

ity, supplied by a previous iteration of the turbo receiver. Initially it is uniform.

3. Obtain symbol estimate

ĉn = arg max
cn∈{±1}

Ns∑

i=1

w(i)δ(cn − c(i)
n ),

4. Resample if needed

5. Increment time epoch and go to 1.
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The elements in the main diagonal are space-time code matrices associated with the ith

particle and jth symbol in the alphabet AKL. For shorter notation:

µ
(i)
n,j = Ξ

(i)
n,jh

(i)
n:n+L−1. (148)

Each particle h
(i)
n:n+L−1 for the channel is also associated with a covariance matrix Σ

(i)
n−1,j,

which is defined recursively in equation (151). The covariance of the distribution in (146)

is

P
(i)
n,j = σ2I + Ξ

(i)
n,jΣ

(i)
n−1,jΞ

(i)
n,j

H
. (149)

The channel estimate can be modeled as a Gaussian random process. Such random

processes are fully characterized by their first and second moments. Dynamic updates

of their means and covariances will increase the accuracy of the channel estimates. It is

interesting to note that the updates turn out to be the Kalman filtering equations. With

µ
(i)
n,j and P

(i)
n,j known, the channel updates are formulated easily.

h
(i)
n:n+L−1 = h

(i)
n−1:n+L−2 + K(i)

n (rn:n+L−1 − µ
(i)
n,j) (150)

Σ
(i)
n,j = (I −K(i)

n )Ξ
(i)
n,jΣ

(i)
n−1,j, (151)

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1,jΞ

(i)
n,j

H
(P

(i)
n,j)

−1. (152)

The algorithm is described in a more detailed fashion in Table 18.

5.5 Temporal Partition Particle Filter (TPPF)

The algorithm described in the previous section requires the computation of a weight update

that involves length-2ML vectors, increasing the complexity of the algorithm even further

in equation (149). 2KL matrices must be computed, each of which requires multiplication of

2ML×LMK sized matrices. Moreover, in equation (152) the inverse of a 2ML×2ML sized

matrix must be calculated. The primary contribution of this work is in the simplification

of this process. We propose a partitioning scheme for the symbol draws that reduces the

complexity of the algorithm and preserves the performance.
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Our goal is to draw samples from the following distribution:

p(dn,hn|rn:n+L−1) ∝ p(rn:n+L−1|dn−(L−1):n+L−1,hn:n+L−1)

p(hn:n+L−1)p(dn−(L−1):n+L−1).

(159)

However, the received vectors are conditionally independent:

p(dn,hn|rn:n+L−1) ∝
L−1∏

l=0

[p(rn+l|dn−(L−1)+l:n+l,hn+l)

p(hn+l)]p(dn−(L−1):n+L−1).

(160)

As a result of this partitioning, we get L distributions β
(i)
l,n,j(·), l = 0, . . . , L − 1, whose

product is proportional to the incremental weight update.

β
(i)
0,n,j(rn|hn) = |P(i)

n,j|−1 exp
{

−(rn − µ
(i)
n,j)

H

(P
(i)
n,j)

−1(rn − µ
(i)
n,j)
}

p(cn = d
(i)
n−1 ⊙ dn)

(161)

β
(i)
1,n,j(rn+1|hn+1,dn+1) = |P(i)

n+1,j|−1 exp
{

−(rn+1 − µ
(i)
n+1,j)

H

(P
(i)
n+1,j)

−1(rn+1 − µ
(i)
n+1,j)

}

p(cn = d
(i)
n−1 ⊙ dn)

(162)

β
(i)
L−1,n,j(rn+L−1|hn+L−1,dn+1:n+L−1) = |P(i)

n+L−1,j|−1 exp
{

−(rn − µ
(i)
n,j)

H

(P
(i)
n+L−1,j)

−1(rn − µ
(i)
n,j)
}

p(cn = d
(i)
n−1 ⊙ dn)

(163)

We may appear to be making the process more complex, but actually the computational

complexity is relieved significantly because the matrix P
(i)
n,j has to be evaluated NL

symb times

less. The matrix itself is L times smaller in each dimension, hence computation of its inverse

is also easier. Nsymb above is the cardinality of the symbol constellation.

Let us summarize our TPPF blind detector:

0. Initialization

1. For each particle i

• Compute

µ
(i)
n,j = S̃

(i)
n,jh

(i)
n (164)
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P
(i)
n,j = σ2I + S̃

(i)
n,jΣ

(i)
n−1,jS̃

(i)H
n,j (165)

β
(i)
0,n,j, β

(i)
1,n,j , . . . , β

(i)
L−1,n,j

(166)

for each possible S̃n:n+L−1 ∈ AKL

• Draw a sample d̃
(i)
n+L−1 ∈ AK from the distribution:

p(d
(i)
n+L−1|d0:n−1, rn+L−1) ∝

∑

dn:n+L−2

p(rn+L−1|dn:n+L−1,hn+L−1)p(hn+L−1)p(dn:n+L−1) ∝

∑

dn:n+L−2

β
(i)
L−1,n,j

(167)

• For p = L− 2, L− 3, . . . , 2 draw a sample d̃
(i)
n+p ∈ AK from the distribution:

p(d
(i)
n+p|d0:n−1, rn+p:n+L−1, symn+p:n+L−1) ∝
∑

dn:n+p−1

L−1∏

l=p

p(rn+l|dn:n+p−1,hn+p, symn+p:n+L−1)p(hn+p)p(dn:n+p−1) ∝

∑

dn:n+p−1

L−1∏

l=p

β
(i)
l,n,j

(168)

• Draw a sample d̃
(i)
n ∈ AK from the distribution:

p(d(i)
n |d0:n−1, rn:n+L−1) ∝
L−1∏

l=0

p(rn+l|dn,hn+l, symn+1:n+L−1)p(hn+l)p(dn) ∝

L−1∏

l=0

β
(i)
l,n,j

(169)

• Differentially decode

c(i)
n = d̃(i)

n ⊙ c
(i)
n−1, (170)

where ⊙ denotes element-wise multiplication.
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• Update the a posteriori mean and covariance of the channel: h
(i)
n and Σ

(i)
n,j for

the particular drawn symbol. Update the mean and covariance of the received

signal vector, µ
(i)
n:n+L−1,j and P

(i)
n:n+L−1,j, using equations (164-165)

h(i)
n = h

(i)
n−1 + K(i)

n (rn − µ
(i)
n,j) (171)

Σ
(i)
n,j = (I − K(i)

n )S
(i)
n,jΣ

(i)
n−1,j, (172)

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1,jS

(i)
n,j

H
(P

(i)
n,j)

−1. (173)

• Update the weights:

w(i)
n ∝ w

(i)
n−1

L−1∏

l=0

β
(i)
l,n,jp(c

(i)
n ), (174)

where the last term is the a priori probability, supplied by a previous iteration

of the turbo receiver.

• Normalize the weights such that
Ns∑

i=1
w

(i)
n = 1.

2. Obtain symbol estimate ĉn = arg max
cn∈{±1}

Ns∑

i=1
w(i)δ(cn − c

(i)
n )

3. Resample if needed

4. Increment time epoch and go to 1.

Notice that the new algorithm uses sufficient statistics to estimate the current symbol.

The space from which the symbols are drawn, however, has L times fewer dimensions. If the

symbol constellation has cardinality Nsymb, the complexity is reduced from Nsymb exp(KL)

to NsymbL
2 exp(K) without any sacrifice in performance.

One may argue that any error in the “sub-symbol” draws may propagate and lead to

incorrect symbol estimates and, consequently, an incorrect channel estimate. Such is not

the case, because the received signal vectors are conditionally independent. Also note that,

p(rn:n+L−1|dn+L−1) = p(rn+L−1|dn+L−1). Similar expressions could be written for the rest

of the “sub-symbols.” Therefore, the probability of incorrectly drawing a “sub-symbol” in

the temporally partitioned case is the same as if we had considered the entire received signal
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vector and the entire symbol space. Our temporal partitioning of the space does not affect

the performance of the algorithm other than reducing the computation significantly.

5.6 A SMC approach to the symbol draw

We utilize the nested SMC approach to obtain a more reliable estimate for the transmitted

symbols. The recursive structure of the probability densities is utilized to obtain a tree of

symbol states similar to the one obtained in the previous chapter. The tree is traversed

from the root toward the leaves and the less likely branches are discarded. The retained

branches are expanded as we proceed to the next symbol. If the total number of the

trajectories exceeds the chosen limit, a subset of them is chosen according to a stochastic

criterion that was defined in the previous chapter.

This approach retains multiple trajectories corresponding to distinct samples from the

symbol space. It is a more accurate approach because of decreases in the error propagation

effect due to the decision feedback in the previous approach. Hence, the SMC approach

results in fewer required channel particles to solve the problem.

Because of the similarity of the approach to the one in the previous chapter we only

give basic pseudocode in Table 19 and Table 20.

5.7 Simulation Results

For our simulations, the channel encoder uses a rate 1/2 convolutional code with generators

23, 35 in octal form. The channel was a flat, block static, slow (fmT = 1e − 3) Rayleigh

fading channel. We utilized M = 4 transmit antennas per user. The mutually orthogonal

sequences were of length L = 4. We had 4 sequences per mate set and K = 2 and K = 4

mate sets − one for each user. All interferers had equal transmit power. In our simulations

we utilized a space-time block code for 4 Tx antennas [75].

The architecture of the transmitter causes a low transmission rate. A data symbol is

transmitted in eight consecutive time slots. The transmitted power is normalized for com-

parison with other approaches. Obtaining reliable estimate for the channel state information
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Table 17: Symbol draw pseudo-code

• for l = 0, ..., L − 1

– Compute
hn+l = ζhn−1+l + (1 − ζ)ηn−1

– For each possible S̃
(i)
n:n+L−1 ∈ {±1}L construct the space-time code matrix S̃n

using equations (134), (135) and the structure of a STBC.

µ
(i)
n+l = S

(i)
n+l

H
h

(i)
n+l

P
(i)
n+l = σ2I + S

(i)
n+l

H
Σ

(i)
n+lH

(i)
n+l

– For each possible S̃
(i)
n:n+L−1 ∈ {±1}L compute β

(i)
n+l(·) =

p(rn+l|h(i)
n+l, S̃

(i)
n:n+L−1, s0:n−1)

• Draw S̃
(i)
n:n+L−1 ∼ β

(i)
n:n+L−1(·)
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Figure 27: Channel as estimated by the temporally partitioned method with K = 2 users,
4 Tx antennas per user, and SNR=8dB. One user’s channel shown.
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Table 18: SMC algorithm for blind MOCS MUD

0. Initialization

1. for i = 1, . . . , Ns /*for each particle*/

• Update channel coefficients using state-update equation, for l = 0 : L− 1

hn+l = ζhn−1+l + (1 − ζ)ηn−1

• For each possible S̃
(i)
n:n+L−1 ∈ {±1}KL construct the space-time code matrix Ξ̃

(i)
n,j

using equations (134), (135), the structure of a STBC, and equation (147).

• Calculate
µ

(i)
n,j = Ξ

(i)
n,jh

(i)
n:n+L−1. (153)

P
(i)
n,j = σ2I + Ξ

(i)
n,jΣ

(i)
n−1,jΞ

(i)
n,j

H
. (154)

• For each possible S̃
(i)
n:n+L−1 ∈ {±1}KL compute

β
(i)
n:n+L−1(rn:n+L−1|S̃(i)

n:n+L−1,hn:n+L−1).

• Draw S̃
(i)
n:n+L−1 ∼ β

(i)
n:n+L−1(·) using M-H sampler, or Gibbs sampler.

• Update channel state based on outcome of the draw

h
(i)
n:n+L−1 = h

(i)
n−1:n+L−2 + K(i)

n (rn:n+L−1 − µ
(i)
n,j) (155)

Σ
(i)
n,j = (I − K(i)

n )Ξ
(i)
n,jΣ

(i)
n−1,j, (156)

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1,jΞ

(i)
n,j

H
(P

(i)
n,j)

−1 (157)

• Differentially decode

c(i)
n = d̃(i)

n ⊙ c
(i)
n−1, (158)

where ⊙ denotes element-wise multiplication.

• Update weight w
(i)
n ∝ w

(i)
n−1β

(i)
n:n+L−1(·)p(c

(i)
n ), where the last term is the a priori

probability, supplied by a previous iteration of the turbo receiver. Initially it is
uniform.

2. Obtain symbol estimate ĉn = arg max
cn∈{±1}

Ns∑

i=1
w(i)δ(cn − c

(i)
n )

3. Resample if needed

4. Increment time epoch and go to 1.
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Table 19: Nested SMC algorithm for blind MOCS MUD

0. Initialization

1. for i = 1, . . . , Ns /*for each particle*/

• Update channel coefficients using state-update equation, for l = 0 : L− 1

hn+l = ζhn−1+l + (1 − ζ)ηn−1

• Obtain a symbol sample according to Table 20.

• Update channel state based on outcome of the draw

h
(i)
n:n+L−1 = h

(i)
n−1:n+L−2 + K(i)

n (rn:n+L−1 − µ
(i)
n,j) (175)

Σ
(i)
n,j = (I − K(i)

n )Ξ
(i)
n,jΣ

(i)
n−1,j, (176)

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1,jΞ

(i)
n,j

H
(P

(i)
n,j)

−1. (177)

• Differentially decode

c(i)
n = d̃(i)

n ⊙ c
(i)
n−1, (178)

where ⊙ denotes element-wise multiplication.

• Update weight w
(i)
n ∝ w

(i)
n−1β

(i)
n:n+L−1(·)p(c

(i)
n ), where the last term is apriori

probability, supplied by a previous iteration of the turbo receiver. Initially it is
uniform.

2. Obtain symbol estimate ĉn = arg max
cn∈{±1}

Ns∑

i=1
w(i)δ(cn − c

(i)
n )

3. Resample if needed

4. Increment time epoch and go to 1.
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Table 20: Symbol draw using nested SMC

• Set Npartilces = 1

• for k=0,...,L-1 /*start with first sub-symbol*/

– Compute

– Calculate
µ

(i)
n+k,j = S

(i)
n+k,jh

(i)
n+k. (179)

P
(i)
n+k,j = σ2I + S

(i)
n+k,jΣ

(i)
n−1,jS

(i)
n+k,j

H
. (180)

,for each possible S
(i)
n+k ∈ {±1}K . The matrices Sn+k are STBC matrices con-

structed fromthe elements of sn+k.

– Compute p(rn+k|h(i)
n+k, sn+k) = −(rn+k − µ

(i)
n+k)

HP
(i)
n+k

−1
(rn+k − µ

(i)
n+k)

– For j = 1, . . . , Nparticles

∗ Expand each trajectory to |{±1}K | = 2K (alphabet size of a multiuser sym-
bol) distinct paths

β(2K∗j)(rn+k|h(i)
n+k, sn+k) = β(j)(rn+k−1|h(i)

n+k−1, sn+k−1)

p(rn+k|h(i)
n+k, sn+k−1, sn+k = {−1, . . . ,−1})

β(2K∗j+1)(rn+k|h(i)
n+k, sn+k) = β(j)(rn+k−1|h(i)

n+k−1, sn+k−1)

p(rn+k|h(i)
n+k, sn+k−1, sn+k = {−1, . . . ,−1,+1})

– Update Nparticles = Nparticles ∗ alphabet size
– if Nparticles > Npartilces max Truncate the trajectory list to Npartilces max and

set Nparticles = Npartilces max. Use residual resampling when choosing the subset
to be retained.

• Choose s̃
(i)
n based on the trajectory with highest likelihood.
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becomes problematic. At low SNRs, the algorithm performs poorly, mainly because no reli-

able channel estimate can be obtained. As the SNR is increased, at a certain threshold, the

performance improves rapidly (Figure 28). The channel estimates become significantly more

reliable, and the turbo decoder helps to drastically improve the bit estimates. Consequently,

the BER plot exhibits a steep slope.

This phenomenon is better observed in the 4 interferers scenario (Figure 29). The gap

between the blind and the receivers with full CSI has increased because the uncertainty

in the channel estimates for all 4 transmitters, each of which has 4 antennas, increases.

We have also found that increasing the particle number for the channel estimates beyond

300 does not improve the performance significantly and does not justify the additional

computational complexity (Figure 30).

5.8 Conclusion

In this chapter, we have utilized the properties of MOCS codes to construct a blind mul-

tiuser detector. The full complexity SMC detector has been illustrated in detail to point out

the modifications made to the algorithm. This detector’s implementation is nearly impos-

sible because its complexity grows exponentially with the number of users and the length

of the MOCSs. The complexity is significantly reduced by implementing a smart partition-

ing of the symbol space without any reduction in performance. Through simulations, the

performance of these algorithms has been found to be acceptable and the solution of the

problem tractable.
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Figure 28: Performance of the nested SMC approach compared to the case of full channel
state information (CSI) at receiver with K = 2 equal power users and 4 Tx antennas per
user.
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Figure 29: Performance of the nested SMC approach compared to the case of full channel
state information (CSI) at receiver with K = 4 equal power users and 4 Tx antennas per
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N particles = 1000 with K = 4 equal power users and 4 Tx antennas per user.
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CHAPTER VI

CONVERGENCE ANALYSIS AND COMPARISONS OF

SEQUENTIAL MONTE CARLO ALGORITHMS

Recently, sequential Monte Carlo methods have been applied in the telecommunications

field and found application in receiver design. The properties of these receivers make these

design approaches very attractive. These receivers do not require channel state information

or training. Therefore, they are bandwidth efficient and no communication bandwidth needs

to be wasted on training. The receivers are optimal in the sense that they achieve minimum

symbol error rate regardless of the noise distribution, nonlinearities in the system, and dis-

tribution of the transmitted symbol. Moreover, these receivers are capable of producing

soft-information outputs, which enables the designer to utilize iterative receiver architec-

tures for near-optimal performance. In this work we investigate the convergence properties

of these algorithms when utilized in various types of receivers. We quantify the convergence

rate. We describe how various parameters (e.g. noise power, channel fading rate, etc) and

factors (e.g. state-space model mismatch) affect the convergence rate and point out the

factors that should be improved first to gain speed and accuracy in the convergence.

6.1 Introduction

Monte Carlo methods allow sampling from complex, intractable distributions by simulating

a Markov chain, whose invariant distribution approaches the desired stationary distribution

almost surely [50]. In Monte Carlo terms, distributions are represented by discrete state

realizations, called particles, that are distributed according to the underlying distribution

after convergence. On the other hand, sequential Monte Carlo methods, also known as

particle filters, employ a different approach to recursively sample from dynamically varying

distributions: they reuse the current particle support to help reconstruct the new particles

needed to represent the evolving system. All these Monte Carlo methods rely on the proposal
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function, whose choice depends on the practitioner [73].

SMC methods use a weighting mechanism to account for the discrepancies caused by

mismatch between the true distribution and the discrete support generated by the proposal

distribution. Hence, the performance of the SMC methods is mainly determined by the

proposal function given a constant number of particles. In theory, directly sampling the

posterior would be optimal but is generally impractical. Therefore, algorithm designers

resort to distributions that are very easy to sample from and in some manner resemble the

posterior in terms of shape, support coverage, or some other metric [11]. One possible metric

is the Kullback-Leibler divergence. However, it does not satisfy the triangle inequality and,

therefore, cannot be used to compare the quality of the proposal functions [11].

For an SMC algorithm to work effectively, the proposal distribution must move the

particles to their new support, mimicking the true posterior. Specifically, the particles must

appear to represent the posterior distribution as closely as possible. Proposals functions

that disperse the particles to the tail regions of the posterior instead of concentrating them

in the mode regions are not efficient. In these cases, we spent computational power on

the tail particles that do not affect the estimation because they have very low weights.

The converse scenario is also bad. If the proposal distribution concentrates and restricts

the particles to a small range within the mode of the posterior, the posterior is under

represented and the estimates for higher moments for this distribution become inaccurate.

Hence, a good proposal function should correctly cover the support of the posterior, while

preserving computational power [22].

We propose a method to evaluate the quality of the proposal functions in terms of the

particle filter convergence rate. The method is similar to the convergence analysis methods

applied to the discrete Markov chains [16]. We relate the convergence speed of the chain to

the magnitude of the second largest eigenvalue of the Markov chain transition probability

matrix. We also compare the effectiveness of different proposal functions by monitoring

temporal evolution of this eigenvalue.

The organization of this section is as follows. We introduce the convergence conditions
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for the SMC proposal functions in section. Next, we describe a way to evaluate the con-

vergence rate of such chains and SMC algorithms. We propose a method to measure the

convergence of continuous Markov chains. In the last section we provide discrete state-space

SMC examples from the telecommunications field.

6.2 Convergence of Sequential Monte Carlo Algorithm

The trajectory of each particle in SMC algorithms can be viewed as a realization of a Markov

chain. At every iteration of the SMC algorithm, the particles are moved to a new position

by the proposal distribution. The proposal distribution constitutes a Markov transition

kernel. As the algorithm iterates, the trajectory of each particle reflects the state changes

of the system. However, observation noise, model mismatches, and other factors cause

deviations from the ideal trajectory [50]. For the algorithm to continue tracking a dynamic

state space, the Markov chain should quickly converge around the mode of the posterior.

When this convergence rate is slow, the resulting estimates are inaccurate.

6.2.1 Basics of Markov Chains

Let us denote a trajectory with {x(i)
0 ,x

(i)
1 , . . . ,x

(i)
N }, which is also a realization of a Markov

chain defined on a state space E [16, 48]. Let E be a countably generated σ-algebra on E.

Let P (A|x) = P (x
(i)
n+1 ∈ A|x(i)

n = x) for all A ∈ E and x ∈ E, which is the probability of

transition from state x to state A (x is in the state space and A is in the σ-algebra). Let

also Pn(A|x) denote a n-step transition function Pn(A|x) = P (x
(i)
n ∈ A|x(i)

0 = x).

The property of irreducibility is a first measure of the sensitivity of the Markov chain to

the initial conditions. Irreducibility is crucial because it leads to a guarantee of convergence,

without detailed study of the transition function.

Basically, a chain is irreducible if all of its states communicate [11]. The formal definition

is a little more involved. Given a measure φ, the Markov chain xn with transition kernel

P (A|x) is φ-irreducible if, for every A ∈ E with φ(A) > 0 there exists n such that Pn(A|x) >

0 for all x ∈ E.

Another property of the Markov chain that must be specified is its aperiodicity. A
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period of a state x ∈ E is defined as

d(x) = g.c.d{n ≥ 1;Pn(x,x) > 0} (181)

The value of the period for all states that communicate with x is the same. If the chain is

irreducible, the period is the same for all states. If the period is one for the state x and the

chain is irreducible, then the chain is called aperiodic.

Here, we introduce the L1-distance between two measures P and Q, defined as

‖P −Q‖var = sup
A∈E

|P (A) −Q(A)|

=
1

2

∑

x∈E

|P (x) −Q(x)| ≡ 1

2
‖P −Q‖L1

(182)

When the two measures have density functions p(x) and q(x), the distance can be written

as

‖P −Q‖var =
1

2

∫

|P (x) −Q(x)|dx (183)

Theorem 6.2.1. [77]: Suppose the state space E of a Markov chain is finite. The transition

function of this chain is irreducible and aperiodic; then, Pn(A|x) = Pn(x
(i)
n ∈ A|x(i)

0 = x)

as a probability measure on A converges to its invariant distribution π(·) geometrically in

variation distance; namely, there exists a 0 < r < 1 and c > 0 such that

‖Pn(A|x) − π(A)‖var ≤ crn (184)

Theorem 6.2.2. (Tierney [77]) : Suppose A is π-irreducible and πA = π. Then A is

positive recurrent and π is the unique invariant distribution of A. If A is also aperiodic,

then, for almost all x ( for all x except a subset whose measure under π is zero),

‖Pn(A|·) − π(·)‖var → 0, (185)

where ‖ · ‖var denote the total variation distance.

The above two theorems prove that all Markov chains that are irreducible and aperiodic

converge geometrically to their invariant distribution. This convergence proof is achieved

without the explicit analysis of the transition kernel.
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6.2.2 Convergence Rate

Consider a Markov chain on a finite discrete state space with κ states. We define a state

transition probability matrix P whose entry pij indicates the transition probability from

state i to state j. By definition,
∑

j
pij = 1 for all i. Hence, P has an eigenvalue equal to 1.

Consider an arbitrary function g on the state-space E. Because the state-space is dis-

crete, the function can be represented by a vector g0. The vector after the state transition

is g1 = Pg0, which is simply the conditional expectation function:

g1(x) = E {g(x1)|x0 = x} (186)

We also note that

var {E{g1(x)}} ≤ var {g(x1)} . (187)

Hence, the eigenvalues of the matrix P must be less than or equal to 1 in absolute value.

Moreover, Berrman and Plemmons show that all of P’s eigenvalues are real and can be

diagonalized [6]

P = BΛB−1, (188)

where Λ = diag([1, λ2, . . . , λκ]), with the eigenvalues sorted in descending order of their

absolute value, 1 ≥ |λ2| ≥ . . . |λκ|. Therefore, as n→ ∞,

Pn = B












1 0 0

0 λn
2 0

. . .

0 λn
κ












B−1 n→∞−→ B












1 0 0

0 0 0

. . .

0 0












B−1 (189)

The above is true if and only if |λ2| < 1. Because πPn = π and the limit of Pn is of rank

1, every row of P∞ must be the same as π.
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6.3 Convergence Analysis of an SMC Blind Equalizer for

Frequency Selective Fading Channels

Details of receiver design and computational complexity improvements are thoroughly dis-

cussed in Chapter 3 and in [59]. Here we briefly outline the algorithm.

6.3.1 System Model

Consider a communications system that transmits a sequence of symbols s0:n = {s0, s1, . . . , sn}

randomly chosen from some constellation A. At the receiver end, the receiver observes

the signal r0:n which is a random process that depends on the symbols s0:n and chan-

nel parameters h0:n. Typically the channel state information h0:n is a multidimensional

continuous-valued quantity. The system can be described with the following state-space

representation:

hn ∼ q1(hn|h0:n−1)

sn ∼ q2(sn|sn−1)

rn ∼ f(rn|s0:n,h0:n).

(190)

Based on the state-space representation, we can formulate two inference problems:

• Symbol Sequence Detection: Assuming the channel h0:n is known, find

ŝ0:n = arg max
s0:n∈An+1

p(s0:n|r0:n,h0:n) (191)

• Channel Estimation: Assuming the transmitted symbols s0:n are known, find

ĥ0:n = arg max
h0:n

p(h0:n|r0:n, s0:n) (192)

The channel is usually not known and needs to be estimated. For this purpose either a

training sequence of symbols is required or a blind approach must be utilized. Using Monte

Carlo processing, the channel parameters can be marginalized out

ŝ0:n = arg max
s0:n∈An+1

E{p(s0:n|r0:n,h0:n)|h0:n}, (193)

where the expectation is taken with respect to the distribution of h0:n.
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We represent the posterior with a discretized approximation. We obtain a set of samples

and assign weights to it. The notation {s(i)
n , w(i)}Ns

i=0 is called a random measure that char-

acterizes the posterior distribution p(s0:n|r0:n). A maximum a posteriori estimate (MAP)

is calculated as follows:

ŝn = arg max
sn∈{A}

Ns∑

i=1

w(i)δ(sn − s(i)n ), (194)

A detailed description of the equalizer algorithm is given in Table 21.

Table 21: Temporally Partitioned SMC for Frequency Selective Fading Chan-
nels

• Initialization

• for i = 1, . . . , Ns /*for each particle*/

– for k=m-1,...,0 /*start with last sub-symbol*/

∗ for l=k,...,m-1 /*iterate*/

· Compute
hn+l = ζhn−1+l + (1 − ζ)ηn−1 (195)

µ
(i)
n+l = s

(i)
n+l

T

h
(i)
n+l

P
(i)
n+l = σ2 + s

(i)
n+l

T

Σ
(i)
n+ls

(i)
n+l

,for each possible s
(i)
n+k ∈ {±1}

· Compute βl
(i)
n (·) = p(rn+l|h(i)

n+l, s
(i)
n+k, s̃

(i)
n+k+1:n+L−1, s0:n−1)

∗ Draw s̃
(i)
n+k ∼

m−1∏

l=k

βl
(i)
n

– Update

h(i)
n = h

(i)
n−1 + K(i)

n (rn − µ(i)
n )

Σ(i)
n = (1 −K(i)

n )s(i)
n

T
Σ

(i)
n−1,

where the Kalman gain is:

K(i)
n = Σ

(i)
n−1s

(i)
n (P (i)

n )−1

– Update weight w
(i)
n ∝ w

(i)
n−1β

(i)
n:n+L−1(·)

• Resample if needed

• Perturb channel particles and update based on likelihoods.
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6.3.2 Convergence

We utilize Rao-Blackwellization in the algorithm, which means that we proceed with ana-

lytical solutions rather than resorting to Monte Carlo whenever possible and feasible. This

results in improved efficiency and convergence. In this case we Rao-Blackwellize the channel

coefficient part of the problem. As it is easily seen the results resemble Kalman filtering

equations. The symbol estimation part, however, is a non-Gaussian problem. The symbol

distribution is non-Gaussian. Therefore, we retain Monte Carlo methodology. The symbols

are drawn from the posterior distribution that can be analytically computed, which also

results in increased convergence and efficiency.

The properties of the transition distribution p(s0:n|s0:n−1, r0:n) determine the conver-

gence rate of the algorithm. Let us factorize the posterior distribution:

p(s0:n|r0:n) =
p(rn|s0:n, r0:n−1)p(sn|s0:n−1, r0:n−1)

p(rn)
p(s0:n−1|r0:n−1) (196)

The transition kernel turns out to be

p(s0:n|s0:n−1, r0:n) =
p(s0:n|r0:n)

p(s0:n−1|r0:n−1)

∝ p(rn|s0:n, r0:n−1).

(197)

The second term in the numerator in (196) gets absorbed in the proportionality because

the transmitted symbols are independent and uniformly distributed. The denominator in

(196) is just a proportionality constant.

The transition kernel turns out to be the incremental weight update factor, when the

posterior distribution is used for the symbol draws (Table 21) .

To analyze the convergence we construct a transition probability matrix for each particle

and compute an average matrix with the particle weights (198). Since our transmitted

symbols are from the set {±1}, we have a 2×2 probability transition matrix. Each element

contains the following transition probability:

p(sn|sn−1, rn) =

Ns∑

i=1

p(s(i)
n |s(i)

n−1, rn)w(i)
n (198)
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As was described in the previous section, the second eigenvalue of this matrix determines

the rate of convergence.

6.4 Numerical Results

In our simulations we use frequency selective channels with d = 2 and 4 channel coefficients.

We implement the SMC algorithm with temporal partitioning of the symbol space [59]. The

transmitted symbols are BPSK. The receiver noise is additive white Gaussian noise.

We display the distribution of the second largest eigenvalue with a boxplot and with a

plot of the cumulative distribution function. In the boxplot, the horizontal axis indicates the

SNR, and the vertical axis is the magnitude of the second largest eigenvalue. The eigenvalue

is obtained from the simulations and depends on the particular realizations of the channel,

received signal and transmitted data. The line in the middle of the box indicates the median

value for the collected samples of λ2. The upper and the lower edge of the box indicate the

upper and the lower quartile of the data. The vertical lines, extending from each end of

the boxes, show the extent of the rest of the data. The horizontal lines at the ends of the

extending vertical lines indicate an interval of 1.5 times the interquartile range. The red +

markers indicate outliers.

As expected, the median of λ2 decreases as we increase the SNR as seen in the box plots

in Figures 31 ,33, and 35. Similar observations can be made about the cdf plots as well

(Figures 32 ,34, and 36).

Comparing Figure 32 to Figure 36, one may conclude more particles are needed to track

a 4 dimensional channel state vector relative to the d = 2 case.

There is another interesting observation that can only be seen in the cdf plot, but not

in the boxplot (Figures 37 and 38). For a fixed SNR, as the particle count for the channel

state is increased, the eigenvalue distribution tends to get bi-modal. At a low number of

channel particles, there tends to be a peak close to |λ2| = 1 (look at the slope). This is an

indication of an estimation bias. When the number of particles is insufficient, the wrong

transmitted symbol is selected.

To have an idea, of how the algorithm tracks the channel coefficients, we display a
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Figure 31: Boxplot of convergence rate for temporally partitioned SMC on a time-invariant
frequency selective channel with d = 2 taps and 300 channel particles.
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Figure 32: CDF of convergence rate for temporally partitioned SMC on a time-invariant
frequency selective channel with d = 2 taps and 300 channel particles.
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Figure 33: Boxplot of convergence rate for temporally partitioned SMC on a time-invariant
frequency selective channel with d = 3 taps and 300 channel particles.
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Figure 34: CDF of convergence rate for temporally partitioned SMC on a time-invariant
frequency selective channel with d = 3 taps and 300 channel particles.
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Figure 35: Boxplot of convergence rate for temporally partitioned SMC on a time-invariant
frequency selective channel with d = 4 taps and 300 channel particles.
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Figure 36: CDF of convergence rate for temporally partitioned SMC on a time-invariant
frequency selective channel with d = 4 taps and 300 channel particles.
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Figure 37: CDF of convergence rate for temporally partitioned SMC on a time-invariant
frequency selective channel with d = 3 taps, SNR = 6dB and varying number of channel
particles.
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Figure 38: CDF of convergence rate for temporally partitioned SMC on a time-invariant
frequency selective channel with d = 3 taps, SNR = 6dB and varying number of channel
particles. The display is zoomed at the second mode.
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sample realization in Figure 39.

Similar conclusions can be drawn from the results of the fading channel case.The ability

of the SMC algorithm to track time-varying channels is illustrated in Figure 44. The

channel is a slowly fading Rayleigh channel with Doppler coefficient fmT = 10−3. The

channel coefficients are symbol spaced and mutually independent. In all simulations there

were used 300 particles.

Figures 40 and 41 display the boxplot and the cdf of |λ2| for the 3-tap fading channel.

As SNR increases, the eigenvalue gets smaller, which indicates that the number of used

particles to estimate the channel may be reduced at high SNR. Similar behavior is observed

at the channel with delay spread of 4 symbol intervals (Figures 42 and 43).

The dependence between the second largest eigenvalue and used particles is illustrated

in Figures 45 and 46. The bias as the particle number decreases is evident.
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Figure 39: Channel coefficient magnitude estimates. Random initialization. Time invari-
ant frequency selective channel with d = 4 taps, SNR=10dB.
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Figure 40: Boxplot of convergence rate for temporally partitioned SMC on a frequency
selective fading channel with d = 3 taps, 300 channel particles and a Doppler shift of
fmT = 10−3.
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Figure 41: CDF of convergence rate for temporally partitioned SMC on a frequency
selective fading channel with d = 3 taps, 300 channel particles and a Doppler shift of
fmT = 10−3.
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Figure 42: Boxplot of convergence rate for temporally partitioned SMC on a frequency
selective fading channel with d = 4 taps, 300 channel particles and a Doppler shift of
fmT = 10−3.
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Figure 43: CDF of convergence rate for temporally partitioned SMC on a frequency
selective fading channel with d = 4 taps, 300 channel particles and a Doppler shift of
fmT = 10−3.
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Figure 44: Channel coefficient magnitude estimates. Random initialization. Rayleigh
fading frequency selective channel with d = 4 taps, SNR=10dB, fmT = 1e− 3.
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Figure 45: CDF of convergence rate for temporally partitioned SMC on a frequency
selective fading channel with d = 3 taps, SNR = 8dB, a Doppler shift of fmT = 10−3 and
varying number of channel particles.
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Figure 46: CDF of convergence rate for temporally partitioned SMC on a frequency
selective fading channel with d = 3 taps, SNR = 8dB, a Doppler shift of fmT = 10−3 and
varying number of channel particles. The display is zoomed at the second mode.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the research results and contributions of this dissertaion, and

suggest directions for the future work.

7.1 Contributions and Conclusions

The research reported in this dissertation has given us an in-depth understanding of various

detection and estimation algorithms and the challenges they bring for an effective utilization

of resources in a telecommunications system.

We have developed a multi-antenna spread spectrum communications system model that

utilizes MOCS codes as spreading codes. The MOCS’s variable spreading gain and their

ability to naturally suppress multiple-access interference (MAI) in multi-antenna transmis-

sion cases makes them a superb candidate in multi-antenna communications systems. We

specified a coded space-time spreading transmitter. We designed an iterative linear receiver

that suppresses MAI and preserves the diversity rate of the system. We analyzed the perfor-

mance of the receiver analytically and through simulations, and concluded that the system

is near-far resistant and the diversity rate is preserved.

Then, we examined blind multiuser detection algorithms. Monte Carlo algorithms were

particularly attracting, because of their ability to estimate parameters in non-linear and

even non-Gaussian systems. They can be used in dual estimation scenarios, accept a priori

information and output soft information about the estimate. These properties make them

suitable for utilization in blind and iterative detection scenarios.

We applied the sequential Monte Carlo algorithm to equalize blindly a frequency selective

fading channel. Then we found a method to take advantage of the recursive structure of the

posterior densities. We simplified the process of evaluating symbol likelihoods and obtaining

symbol draws from the posterior distribution. We partitioned the symbol space temporally.
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This process significantly accelerates the algorithm by reducing the complexity from being

an exponential function of the channel order to only a polynomial function. We merged the

symbol estimation and the channel estimation components and obtained a blind receiver.

We demonstrated that the performance of this equalizer approaches the performance of the

maximum likelihood solution.

Similar recursive structures in posterior density definitions can be found in MIMO sys-

tems. After a linear processing stage, analogous techniques for spatially partitioned symbol

spaces were used. This algorithm resembles the tree searching algorithm used in sphere

decoding algorithms. However, the technique used here is stochastic rather than determin-

istic. We analyzed the performance of this receiver in MIMO systems with various antenna

numbers and spectral utilization factors. We concluded that the designed blind receiver is

able to perform significantly better than existing DF receivers with full CSI.

We returned to the MOCS spread spectrum system and applied the simplified SMC

algorithm in the receiver design. We constructed a system utilizing an outer convolutional

code. We adapted the blind SMC algorithm to accept a priori information from previous

iterations and simulated the system. We concluded that the system preserves its spatial

diversity order. The BER performance is degraded mainly because of the uncertain channel

estimates. We also demonstrated the degraded performance in the case of spatial correlation

among the communications channels. We show that the simplifications made to symbol

likelihood evaluation and symbol draws reduces the complexity significantly, without a

significant degradation compared to the full complexity blind receiver.

Finally, in this work, we investigate the convergence properties of SMC algorithms

when utilized in various types of receivers. We propose a metric that is based on the

likelihood functions of the symbol samples. Analogous to the MCMC convergence evaluation

techniques, we construct a transition probability matrix and extract the second largest

eigenvalue in magnitude . Using this metric, we quantify the convergence rate of the SMC

algorithms utilized in a particular system. We describe how various parameters, such as

noise power and channel fading rate, and system modeling factors such as state space model

mismatch, affect the convergence rate. Using this metric, it is possible to point out the factor

143



that should be improved first to gain convergence speed and estimation accuracy.

7.2 Suggestions for Future Work

Some directions for research that follow the currently designed simplifications to MC algo-

rithms are:

• Preprocessing: MC algorithms can be significantly accelerated if the support region

of the distribution to be approximated is reduced. Initial processing that localizes the

solution to a small region in the parameter space could prove to be useful. The

accuracy of such processing need not be precise. Even coarse solutions could be

beneficial.

• Multiuser MIMO receivers: In this dissertation, we only analyzed a single user,

SMC-based MIMO receiver. The scenario with multiple transmitters and interfering

links could also be considered.

• Application in systems with pilot or training sequences: We did not consider

the performance of the algorithm in systems with training sequences. The algorithm

could be used to refine the channel estimates. Alternatively, the algorithm could be

used to aid in the estimation process when other algorithms fail. A system with a

blind SMC algorithm that is turned on only during severe channel conditions could

be analyzed and the additional complexity could be quantified.
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