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3.1 α-Rényi divergence under sampling(q=0.01, σ=4) . . . . . . . . . . . . . . 73

3.2 Privacy parameter ε v.s. epoch . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 privacy loss ε v.s. sampling ratio q & noise scale σ . . . . . . . . . . . . . . 79

3.4 The change of noise scale σ during training . . . . . . . . . . . . . . . . . 83

3.5 The accuracy comparison of different schedules . . . . . . . . . . . . . . . 85

3.6 The accuracy under fixed training time . . . . . . . . . . . . . . . . . . . . 85

3.7 exponential decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8 validation-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.9 learning rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.10 hidden units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.11 Initial noise scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.12 Accuracy in training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.13 Privacy in training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.14 Accuracy (Cancer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.15 Accuracy (Cifar-10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 An illustration of the RNN model and its unfolding in time steps. . . . . . . 98

4.2 An illustration of a trained RNN model for generating sequences. . . . . . . 99

4.3 An illustration of 4× 4 grid and two encoded trajectories. . . . . . . . . . . 102

4.4 An illustration of two layer LSTM neural network. . . . . . . . . . . . . . 104

xii



SUMMARY

The widespread use of internet-connected mobile devices, internet of things(IoT) and

cloud computing has enabled a large scale collection of personal data, including user pro-

files, daily activities, locations, photos and health states, etc, of millions and billions of

users from a wide range of scenarios such as the usage of mobile apps, smart home, and

cloud storage services. The availability of these huge amounts of datasets has been driving

the breakthrough in deep learning and explosion of data-driven applications for enriching

human with life-enhancing experiences. At the same time, however, these datasets often

encode privacy-sensitive information related to individuals, which raises serious privacy

concerns to the society. Therefore, it is imperative to develop principled privacy preserving

approaches to harvesting the power of those big data. This dissertation research contributes

original ideas and innovative techniques in applying differential privacy, a rigorous math-

ematical framework that offers provable privacy guarantee, to protect data privacy with

improving the trade-off between privacy and utility in the era of big data from three per-

spectives respectively: data collection, data usage, and data publication.

The first contribution of this dissertation research is the development of PIVE [1], a two-

phase Bayesian differential location privacy framework that aims to protect users location

privacy in location based services while ensuring the service quality. With the popularity

of location based services for navigation, point-of-interest recommendation and social net-

work etc, the companies that offer such services can continuously collect users locations.

The collected location information may open doors to potential misuse and abuse of pri-

vate location information, exposing users travel patterns and uncovering their health state

and political views. PIVE provides a Bayesian differentially private location perturbation

mechanism which transforms the users exact location to a perturbed location in a geo-

indistinguishable way while being resilient against Bayesian attacks before reporting it to

the servers. This approach essentially augments differential location privacy by bounding

xiii



the inference error of the adversaries with specific prior knowledge, while enabling adap-

tive privacy control to improve the utility and user experience.

The second contribution of this dissertation research is the development of differen-

tially private deep learning for protecting the privacy of the training data [2]. Because of

the breakthrough of deep learning, more companies are interested in training deep neu-

ral networks on the collected data to empower their business with new competitive edges.

However, a deep neural network usually has millions of model parameters, leading to large

effective capacity that could be sufficient for encoding the details of individual data into

model parameters. Our research addresses a collection of related topics within the context

of deep learning with differential privacy. We provide more refined analysis of the pri-

vacy losses for differentially private stochastic gradient descent algorithms(SGD) for dif-

ferent data batching strategies including random reshuffling and random sampling. Also,

we propose a family of methods for non-uniformly allocating privacy budget across SGD

iterations to improve model accuracy while retaining privacy guarantees.

Last, we propose a differentially private data synthesis approach for data publication.

Because the collection of individual data by governments and corporations can create

tremendous opportunities for knowledge-based decision making, there is a demand for the

exchange and publication of data among various parties. However, publishing data in its

original form will violate individual privacy. Instead, releasing synthetic data that mimic

original data provides a promising way for privacy preserving data publication while al-

lowing rich data analytics. In particular, we propose to use deep generative models with

differentially private training for location data synthesis, compared our approach with con-

ventional methods that rely on sophisticated feature engineering, and examine the utility of

synthesized data.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The widespread use of internet-connected mobile devices, internet of things(IoT) and cloud

computing has enabled a large scale collection of personal data, including user profiles,

daily activities, locations, photos and health states, etc, of millions and billions of users

from a wide range of scenarios such as the usage of mobile apps, smart home, and cloud

storage services. The availability of these huge amounts of datasets has been driving

the breakthrough in deep learning and explosion of data-driven applications for enrich-

ing human with life-enhancing experiences. However, because these datasets often encode

privacy-sensitive information related to individuals, serious privacy concerns has been rto

the society. Therefore, it is imperative to develop principled privacy preserving approaches

to harvesting the power of those big data.

One type of widely collected data from users is the location data, due to the widespread

use of mobile devices with GPS and popularity of location based services (LBSs) and

applications, such as Uber, Yelp and Foursquare. On one hand, the emergence of location

aware computing and location-based services creates great opportunities for empowering

business with new competitive edges and enriching citizen with life-enhancing experiences.

But on the other hand, such continuous collection of mobile users’ location information

may open doors to potential misuse and abuse of private location information and serious

location privacy risks, such as exposing places that a user has visited, the travel patterns

of a user, and using the location information to infer users’ activities and uncover many

unauthorized personal information such as their political views, religious affiliation, or

state of health. Therefore, location privacy continues to attract significant attentions in
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recent years.

The wide availability of personal data, not only limited to location data, collected from

individuals and the success of deep learning in a wide range of AI tasks spurs significant

interest of applying machine learning techniques to extract useful knowledge from large

collection of individual data and provide personalized services. However, recent studies on

membership attacks and model inversion attacks have shown potential privacy risks from

a number of dimensions. Deep neural networks have a large number of hidden layers,

leading to large effective capacity that could be sufficient for encoding the details of some

individual data into model parameters or even memorizing the entire data set [3]. It has been

shown that individual information can be effectively extracted from neural networks [4, 5].

Therefore, there are severe privacy concerns accompanied with the wide deployment of

deep learning applications and deep learning as a service platform. On the other hand, the

publishing and sharing of trained models have always been of great interest in deep learning

applications. The model owners can also publish their trained models to the cloud and allow

other users to get predictions through APIs. In mobile applications, entire models are stored

on-device to enable power-efficient and low-latency inference. Transfer learning [6], a key

technique of deep learning, can leverage and adapt the already existing models to new

classes of data, saving the effort of training the entire neural network from scratch. People

who only have small datasets can use the model trained on a large dataset as fixed feature

extractor in their neural networks or adapt the model to their own domain. A large amount

of pre-trained models have been publicly available in model zoo repositories [7]. In these

cases, the model parameters are completely exposed, making it easier for the adversaries

to launch inference attacks, such as membership attacks [5] or model inversion attacks [4],

to infer sensitive data records about individuals in the training datasets. Therefore, it is

imperative to develop principled privacy preserving deep learning techniques to protect

private training data against the adversaries with full knowledge of model parameters.

Not only in applying machine learning techniques on the collected dataset, there is also

2



a large interest and demand in releasing and sharing of data among collaborators for re-

search and development. For example, the location trace data collected from individuals

can be shared with different parties for different purpose like city/traffic planning, location-

driven advertising and human behavior study. But because of privacy concerns, data holders

usually are wary or not willing to share their data. To solve such dilemma, privacy preserv-

ing data publishing has received considerable attention, which studies how to transform

original data into the version immunized against privacy attacks but still allow effective

data analytics. Traditional data anonymization techniques [8, 9, 10] transform the data by

removing key identifiers or generalizing quasi-identifiers to ensure data privacy. However,

it has been shown that they are susceptible to privacy attacks that ”de-anonymize” datasets

via linkage to external or public datasets, with some notable examples on Netflix movie

rating dataset [11], and the AOL search log [12] and the Washington State health record

identification [13].

Data synthesis with differential privacy is a promising approach for privacy preserv-

ing data publication [14, 15, 16, 17, 18, 19], which generates synthetic data that mimic

original data in terms of important characteristics and that can be released without compro-

mising the privacy of individuals. The synthesized data can act as surrogate for the original

dataset to allow data users to run arbitrary statistical analysis of their own as if they had

the original data. However, existing methods rely on sophisticated feature engineering and

probabilistcally modeling, which makes them difficult to apply on high dimensional data

and implement in practice. They usually differ with each other on the selected features, it is

not clear how they can adapt to new datasets. On the other hand, deep learning is powerful

in learning from high dimensional data with its automatic feature learning and end-to-end

modeling. Deep generative models have been proposed to model and generate text and im-

age data. Therefore, deep learning with differential privacy can be an attractive approach

for differntially private data synthesis.
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1.2 Dissertation Scope and Contributions

The first contribution of this dissertation research is the development of PIVE, a two-phase

Bayesian differential location privacy framework that aims to protect users location privacy

in location based services while ensuring the service quality. In Phase I, we take into ac-

count the user-defined inference error threshold and the prior knowledge about the user’s

location to determine a subset of locations as the protection location set for protecting the

actual location by increasing adversary’s expected location inference error. In Phase II,

we generate pseudo-locations (i.e., perturbed locations) in the way that satisfies a Bayesian

differential privacy that is defined over the protection location set and achieves resiliency

against Bayesian attacks. This two-phase location obfuscation is constructed dynamically

by leveraging the relationship between two privacy notions based on adversary’s current

prior information and user-specific privacy requirements on different locations and at dif-

ferent times. Experiments with real-world datasets demonstrate that our PIVE approach

effectively guarantees the two privacy notions simultaneously and outperforms the existing

mechanisms in terms of adaptive privacy protection in presence of skewed locations and

computation efficiency.

The second contribution of this dissertation research is the development of differen-

tially private deep learning for protecting the privacy of the training data. we propose a

differentially private approach to train the neural networks with several new techniques to

optimize both the privacy loss and model accuracy. We employ a generalization of differ-

ential privacy, named as concentrated differential privacy(CDP), with refined privacy loss

analysis on different data batching strategies. We implement a dynamic privacy budget al-

locator over the course of training to improve both the privacy loss and the model accuracy.

Extensive experiments demonstrate that our approach effectively improves the privacy loss

accounting, the training efficiency and the model quality under a given privacy budget.

Last, we propose Deepsynthesizer, a differentially private data synthesis approach for
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data publication. Because the collection of individual data by governments and corpora-

tions can create tremendous opportunities for knowledge-based decision making, there is a

demand for the exchange and publication of data among various parties. However, publish-

ing data in its original form will violate individual privacy. Instead, releasing synthetic data

that mimic original data provides a promising way for privacy preserving data publication

while allowing rich data analytics. We propose to use deep generative models with differ-

entially private training for location data synthesis and examine the utility of synthesized

data in a set of data analytics tasks.

1.3 Dissertation Organization

The rest of this dissertation is organized into three technical chapters and conclude in Chap-

ter 5. Each chapter addresses one or more of the problems described above. In each chap-

ter, we introduce the background of the problem being addressed, present our solution

techniques followed by experimental evaluation, and describe related work. In Chapter

2, we present PIVE, our two-phase dynamic differential location privacy framework for

protecting users location privacy in location based services. In Chapter 3, we introduce

differentially private model publishing approach for deep learning for protecting the pri-

vacy of the training data. In Chapter 4, we present Deepsynthesizer, a differentially private

data synthesis approach for data publication. We summarize the main contributions of this

dissertation in Chapter 5.
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CHAPTER 2

BAYESIAN DIFFERENTIAL LOCATION PRIVACY FOR LOCATION BASED

SERVICES

2.1 Introduction

Location privacy research has drawn significant interests in recent years. Considering the

high utility of location information and personalized privacy risk variations, instead of

cryptographic solutions, a large body of location privacy research have been centered on the

location obfuscation mechanisms that allow mobile travelers to use LBSs with perturbed

location instead of exact location, referred to as pseudo-location, such that the release of the

pseudo-location can prevent the disclosure of user-specific and request-specific sensitive

location information [20, 21, 22, 23, 24, 25], while maintaining desired utility of location

information.

Recently, geo-indistinguishability [20] and expected inference error [26, 22] are pro-

posed in the literature as the two statistical notions of location privacy. Geo-indistinguishability

is derived from differential privacy [27] and ensures that for any two location points that are

geographically close, the location obfuscation mechanism will produce a pseudo-location

with similar probabilities. The expected inference error, as a statistical metric instead, takes

into account the prior information of an adversary about user’s location, and measures lo-

cation privacy by the expected distance between the estimated location by the adversary

and the true location. A number of location obfuscation mechanisms [22, 28] have been

developed solely based on the privacy notion of expected inference error.

In this paper, we argue that geo-indistinguishability and expected inference error are

two complementary notions for location privacy. Existing geo-indistinguishable mecha-

nisms [20, 21] guarantee location privacy with respect to the information leakage through

6



a differential privacy based location obfuscation mechanism, but they do not consider the

inference attacks using prior knowledge [25]. We performed the bound analysis to for-

mally examine the relationship between geo-indistinguishability and expected inference

error. We show that geo-indistinguishability may not adequately protect the absolute pri-

vacy of user’s location against inference attacks with using prior information. On the other

hand, the mechanisms with expected inference error as privacy metric are constructed based

on the assumption of certain types of prior information that the adversary may have, but

without consideration of constraint on the posterior information gain from the release of

pseudo-locations. These mechanisms may be vulnerable to inference attacks with arbitrary

prior knowledge. Thus, we argue that a strategic combination of the two privacy notions

can double shield location privacy by simultaneously limiting information leakage of the

location perturbation mechanism and ensuring the inference error to be constrained for

inference attacks with prior information the adversary may have.

In addition to combining the two privacy notions for effective defense against inference

attacks, we also argue that an effective location obfuscation mechanism should maintain

desired location utility and service quality for respective mobile users and their LBSs. In

practice, mobile users may have very different privacy requirements for different types of

LBSs. Even for the same LBS, users may have different privacy demands for different

locations or for the same location at different times. For example, a user may want the

expected inference error of adversary to be larger than 1km when he is in a hospital or a

religious event, but may reduce this requirement to 200 meters when he is in a restaurant

with a lot of other restaurants nearby; or the user may not care about privacy at some places

(e.g., her home or office) during certain periods of a day, but needs the privacy at other

places, such as her travel routes and stops along some trajectories.

In this paper, we propose to design a Bayesian differential location privacy mechanism

that can protect location against Bayesian inference attacks with personalized error bounds.

First, we formally study the relationship between geo-indistinguishability and expected in-
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ference error and examine their limitations through experimental study. The relationship

between two privacy notions helps to determine the noise level of location obfuscation re-

quired for protecting a location against inference attacks. Second, we allow users to define

personalized error bound for each of their locations and introduce the concept of protec-

tion location set for each location, which identifies the neighborhood locations based on

both the personalized error bound constraint and the prior distribution that the adversary

may have based on historical locations of a user, her mobility model or the population

density. Based on the above development, we design a two-phase dynamic differential

location privacy framework, called PIVE, which integrates geo-indistinguishability and ex-

pected inference error to effectively protect location privacy against two popular types of

inference attacks: optimal inference attack and Bayesian inference attack. This framework

constructs pseudo-locations dynamically and adaptively, based on multiple pieces of infor-

mation that may change frequently in the spatial-temporal context of a mobile user, such

as the user’s current location at the time of her service request, her current location privacy

requirements, her location utility and LBS quality preferences, and the prior information

that the adversary may have at this time. In Phase I, we utilize the user-defined inference

error threshold and the prior knowledge about the user’s location to determine the protec-

tion location set for protecting the actual location of a user and ensuring the lower bound

of adversary’s expected location inference error over this protection location set. In Phase

II, we generate pseudo-locations that achieve geo-indistinguishability on this protection lo-

cation set. The former aims to bound the expected inference error in the worst case and

the latter aims to scope the possible posterior information leakage. The PIVE approach

provides dynamic differential location privacy with personalized error bound and can work

adaptively in presence of skewed prior distribution of locations and efficiently for the sce-

narios in which users may have personalized and non-uniform privacy needs at different

locations and for different LBSs.

Previous work [25] by Shokri is the first to identify the need for integrating the two
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privacy notions and to propose a joint optimization approach. This approach combines the

two privacy notions together in parallel in a linear program and produce the distribution

of perturbed locations statically once for all locations in an area, and we refer to it as

the global optimization approach. Compared to the joint optimization [25], PIVE takes a

sequential and local approach to combine two privacy notions. It separately applies the

expected inference error metric first, which produces a neighborhood protection location

set for the user’s location by leveraging user defined error bound and the prior information,

and then produces the perturbed location by ensuring geo-indistinguishability and at the

same time increasing the resilience of perturbed location against inference attacks. Another

feature of PIVE that is different from the joint optimization approach is to leverage the

user defined personalized error bound (threshold) for different locations or for the same

location at different times and for computing the protection location sets dynamically and

adaptively. This allows PIVE to balance privacy and utility for different locations while

meeting the personalized inference error bound constraint for perturbed locations.

PIVE algorithms are highly efficient in terms of computation complexity, compared to

existing mechanisms that need to solve a linear program with |X |2 decision variables and up

to O(|X |3) constraints for previous joint optimization approach [25], where X is the num-

ber of all possible locations of a user. First, PIVE only requires the search of a protection

location set locally within the neighborhood of a user’s current location by leveraging user-

defined error bound, and simple probability computation for the exponential mechanism.

This locality based design enables PIVE to adapt to the dynamic changes of both prior in-

formation and privacy preferences per location more efficiently. Second, PIVE adaptively

adjusts the noise level of location obfuscation to prior information through searching a pro-

tection location set under the minimum inference error bound constraint, which provides

Bayesian differentially private mechanism to generate perturbed locations. We implement

the PIVE dynamic location obfuscation mechanism and evaluate PIVE with real-world

datasets. Our experimental results show that the PIVE approach effectively guarantees the
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two privacy notions simultaneously and outperforms the existing mechanisms that secure

geo-indistinguishability or that quantify location privacy by expected inference errors.

2.2 Overview

In this section we first introduce the notation of differential privacy, describe the model

of location obfuscation and the adversary model used in this paper. Then, we state the

problem to be addressed in this paper.

2.2.1 Differential Privacy

Differential privacy is a rigorous mathematical framework that offers provable privacy

guarantees for protecting individual data in statistical databases and has recently become a

de-facto standard for privacy. It ensures that arbitrary changes to a single individual’s row

result in only statistically insignificant changes in the outcome of a data analysis. Formally,

Definition 1 (Differential Privacy [27]). A randomized mechanismA provides ε-differential

privacy if for any two neighboring database D1 and D2 that differ in only a single entry,

∀S ⊆ Range(A),
Pr(A(D1) ∈ S)

Pr(A)(D2) ∈ S)
≤ eε (2.1)

The standard approach to achieve differential privacy is the sensitivity method [29, 27]

(e.g., Laplacian mechanism) that adds to the query output the noise proportional to the

sensitivity of the query function. The sensitivity measures the maximum change in the

query answers due to the change of a single database entry.

Definition 2 (Sensitivity [29]). The sensitivity of a query function q : D → Rd is

∆q = max
D1,D2

||q(D1)− q(D2)||1 (2.2)

where D1, D2 ∈ D are any two neighboring datasets that differ at most one element, || · ||1

denotes L1 norm.
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To achieve ε-differential privacy, the Laplacian mechanism perturbs the output by q(D)+

Lap(∆q/ε), where Lap(∗) = (Z1, . . . , Zd) in which Zi are drawn i.i.d from Laplace dis-

tribution. Such differentially private mechanism ensures that two neighboring datasets are

indistinguishable on the distribution of query answers.

The exponential mechanism [30] is another mechanism that preserves ε-differential pri-

vacy. Given the output range R, a utility function u : D × R → R is defined, which maps

the dataset/output pairs to utility scores. The sensitivity of utility function u is

∆u = max
r∈R

max
D,D′
|u(D, r)− u(D′, r)| (2.3)

over any two neighboring datasets D and D′.

Definition 3 (The exponential mechanism [30]). The exponential mechanism selects and

outputs an element r ∈ R with probability proportional to exp( εu(D,r)
2∆u

).

2.2.2 Location Obfuscation Mechanism

In this paper we are interested in the location based services in which the users sporadically

reveal their locations for issuing spatial queries, e.g., finding the nearby points-of-interests

or friends. We do not consider the protection of the users’ identities that prevents the ad-

versary to discover which user issues the query. In this case, the typical way to preserve

the users’ location privacy is to randomly obfuscate the user’s actual location to a pseudo-

location and report this pseudo-location to the location based service providers. In this

paper we assume discretized locations as in [21, 22] and use X to denote the set of the

user’s possible locations. An obfuscation mechanism determines the random mapping be-

tween the user’s actual locations A and pseudo-locations O, with following the probability

distribution

f(x′|x) = Pr(O = x′|A = x) x, x′ ∈ X (2.4)

That is, it takes the actual location x as input and chooses a pseudo-location x′ by sam-

pling from the distribution f(x′|x). An obfuscation mechanism is indeed a specification of
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probability distributions f(·|·) over X . Different obfuscation mechanisms determine such

probability distributions in different ways.

2.2.3 Adversary Model

This paper assumes the adversary that has prior knowledge about user’s location. We argue

that the prior information about users’ locations inherently exists because of the publicly

available transportation information, geographical information of points of interest, road

networks, residential area, population distribution, and human movement pattern, etc. Fol-

lowing previous works [26, 22], the prior knowledge is captured by a prior (probability)

distribution π over the set of possible locations of the user, X . The adversary can build π

for the target user in multiple ways:

• Using the population density or popularity [31, 32] of every place as π that can be

obtained from public traces, check-in datasets or demographic information;

• Using the user’s historical access information to a location based service that records

his locations from which he sent location based queries [22].

• Using the mobility pattern modeled by Markov chain to infer the possible locations

of a user at current time and their probabilities given his previous disclosed loca-

tions [28].

In this paper we assume the adversary with prior knowledge of π regardless of in which

way it is derived. We also assume that the adversary also knows the location obfuscation

mechanism, i.e, how it works and the distribution f . Such adversary is called an informed

adversary [29].

The adversary’s goal is to infer the user’s actual location x. Once the adversary observes

the pseudo-location x′ reported by the user, he computes the posterior probability distribu-

tion, Pr(x|x′) for x ∈ X , i.e., the probability that x is the actual location that generated
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x′:

Pr(x|x′) =
π(x)f(x′|x)∑
x∈X π(x)f(x′|x)

(2.5)

Based on the posterior distribution, a Bayesian adversary can perform optimal infer-

ence attack [22] which aims to minimize his expected inference error, i.e., the expected

distortion between the estimated location x̂ and user’s actual location x, given an observed

pseudo-location x′. That is,

x̂ = arg min
x̂∈X

∑
x∈X

Pr(x|x′)dp(x̂, x) (2.6)

where dp can be Hamming distance or Euclidean distance between locations, or their se-

mantic dissimilarity, which captures the privacy loss from inference attack. We assume dp

to be Euclidean distance d for optimal inference attack.

If dp is Hamming distance, for which dp(x̂, x) = 0 if x̂ = x, and dp(x̂, x) = 1 otherwise,

it is easy to see that the optimal inference attack actually guesses the actual location as the

one having the maximum posterior probability. We call this attack as Bayesian inference

attack, represented by

x̂ = arg max
x∈X

Pr(x|x′) (2.7)

2.2.4 Problem Statement

We can categorize the existing research on quantifying location privacy into two broad cat-

egories based on two notions of location privacy: geo-indistinguishability and expected

inference error. The location privacy solutions that promote geo-indistinguishability are

primarily based on the theory of differential privacy [27]. The solutions that quantify loca-

tion privacy by the amount of expected inference error are typically based on Bayesian the-

ory and thus are referred to as Bayesian optimal mechanisms. The class of solutions based

on geo-indistinguish-ability protect location privacy without any assumption of adversary’s

prior information but consequently do not consider absolute location privacy against infer-

ence attacks in terms of expected inference error when the adversary has some prior knowl-
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edge about the user’s exact location or past released locations. In contrast, the Bayesian

optimal mechanisms advocate the background inference resilient location privacy but are

not as robust as geo-indistinguishability against adversary with arbitrary prior information.

The problem statement can be summarized from three dimensions. First, geo-indistinguishability

and expected inference error are two complementary privacy notions for protecting loca-

tion privacy against inference attacks. It is critical to understand the relationship between

the two privacy notions, and the limitations of existing location obfuscation mechanisms

that support only one of the two privacy notions. Second, it is not only beneficial but also

feasible to develop a location obfuscation mechanism that can effectively integrate the two

privacy notions. Third, incorporating user-defined constraint, such as minimum inference

error bound, not only improves the usability perspective, which is critical for the wide

deployment of privacy protection models, but also enables adaptive noise adjustment for

geo-indistinguishability and supports customizable privacy/utility requirement of mobile

users that allows personalized error bounds at different locations, different times, and for

different LBSs. This motivates the design and implementation of PIVE, a two-phase dy-

namic differential location privacy framework for ensuring both notions of location privacy

with personalized error bounds.

2.3 Location Privacy Notions

In this section we provide a detailed analysis and illustration of the two location privacy

notions: expected inference error and geo-indistinguishability. We first briefly describe

each notion, its respective location perturbation model, compare the mechanisms based on

these two privacy notions and identify and illustrate their inherent problems through both

formal and experimental analysis.
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2.3.1 Expected Inference Error

Under the inference attack of Bayesian adversary, the location privacy offered by a mecha-

nism is measured by the expected inference error of the adversary averaged over all possible

locations in X , referred to as unconditional expected inference error [26, 22], computed as

∑
x′∈X

Pr(x′) min
x̂∈X

∑
x∈X

Pr(x|x′)dp(x̂, x) (2.8)

=
∑
x′∈X

min
x̂∈X

∑
x∈X

π(x)f(x′|x)dp(x̂, x) (2.9)

Similarly, the service quality loss is measured by the unconditional expected distance

between actual location and reported pseudo-location over the quality metric dq(·), i.e.,

∑
x∈X

∑
x′∈X

π(x)f(x′|x)dq(x
′, x) (2.10)

where dq determines the quality loss by reporting x′ instead of actual location x. Since the

accuracy of location based queries like nearest neighbor and range queries usually depends

on the Euclidean distance between the actual location and reported location, we use the

Euclidean distance d as dq, as in previous works [21, 25].

An optimal mechanism [22] has been proposed to maximize the expected inference

error (resp. service quality) given the constraint on the service quality loss (resp. expected

inference error). In such approach, privacy and quality are controlled in terms of these

global performance metrics that are averaged over all locations, which does not provide

users a straightforward way to explicitly specify different privacy/quality requirements at

different locations and times. Also, for the prior information that is dynamically built by

the adversary with mobility model [28], a linear program has to be recomputed under every

change. More importantly, the construction relies on the assumption about adversary’s

prior information, different prior information with higher accuracy level may cause privacy

degradation of the mechanism, as shown in [25].

We note that the upper limit of expected inference error is achieved when the maximum
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tolerable service quality loss becomes sufficiently large or not bounded. In this case, the

pseudo-locations are generated independently of user’s locations, and the adversary’s best

strategy is to make guess based on prior distribution. Therefore, the upper limit of expected

inference error is

ExpErrmax = min
x̂

∑
x∈X

π(x)dp(x̂, x) (2.11)

2.3.2 Geo-indistinguishability

A mechanism satisfies εg-geo-indistinguishability [20] iff for all x, y,

f(x′|x)

f(x′|y)
≤ eεgd(x,y) (2.12)

where d(x, y) is the Euclidean distance between x and y. It ensures that for two loca-

tions that are geographically close, the probability distributions of pseudo-locations gen-

erated at them are similar. Note, as shown in [20], εg is decided by a privacy parameter

ε (≥ 0) and the range of circular region centered at the user’s location x. Essentially it

means that geo-indistinguishability aims to protect this circular region with guaranteeing

ε-differential privacy over it. Because the actual location is protected by being hidden

among all the locations in the region due to their similar probability distributions for gener-

ating pseudo-locations, we call such region as the protection region and the set of locations

within the region as the protection location set. Let D be the diameter of protection region

and εg = ε/D, we say the mechanism is ε-differentially private over the region if for any

two locations x and y in the protection region

e−ε ≤ f(x′|x)

f(x′|y)
≤ eε. (2.13)

Upper bound of posterior probability: Let Φ be the protection region. An upper bound

of the posterior distribution of location x ∈ Φ, given any observed pseudo-location x′, can
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be obtained as follows:

Pr(x|x′) =
π(x)f(x′|x)∑
y∈X π(y)f(x′|y)

(2.14)

=
π(x)f(x′|x)∑

y∈Φ π(y)f(x′|y) +
∑

y∈X\Φ π(y)f(x′|y)
(2.15)

≤ π(x)f(x′|x)∑
y∈Φ π(y)f(x′|y)

(2.16)

=
π(x)∑

y∈Φ π(y)f(x′|y)/f(x′|x)
(2.17)

Applying (2.13),we have

≤ π(x)

π(x) + e−ε
∑

y∈Φ,y 6=x π(y)
(2.18)

Since 0 < e−ε < 1,we have

≤ eε
π(x)∑
y∈Φ π(y)

(2.19)

The upper bound of posterior probability (2.19) implies that no matter what prior in-

formation the adversary has, geo-indistinguishability constrains the multiplicative distance

between posterior distribution Pr(x|x′) and prior distribution π(x)∑
y∈Φ π(y)

within eε, and thus

limits the posterior information gain of the adversary. This makes location obfuscation

more robust against Bayesian adversary compared with the Bayesian mechanism [22] that

could be constructed with incomplete knowledge about the adversary’s prior information.

Lower bound of inference error: We further consider location privacy in terms of

expected inference error. Let z be the estimated location by the adversary, i.e., z =

argminx̂
∑

x∈X Pr(x|x′)d(x̂, x). The conditional expected inference error is

∑
x∈X

Pr(x|x′)dp(z, x) (2.20)

Here we consider the lower bound for it, which is indeed achieved in the worst case that

the adversary narrows possible guesses to the location set within the protection region that
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contains the user’s actual location. Therefore, the lower bound is

min
x̂∈X

∑
x∈Φ

Pr(x|x′)∑
y∈Φ Pr(y|x′)

dp(x̂, x) (2.21)

Let z′ = argminx̂∈X
∑

x∈Φ
Pr(x|x′)∑
y∈Φ Pr(y|x′)dp(x̂, x), the above becomes

=
∑
x∈Φ

Pr(x|x′)∑
y∈Φ Pr(y|x′)

dp(z
′, x) (2.22)

=
∑
x∈Φ

π(x)f(x′|x)∑
y∈Φ π(y)f(x′|y)

dp(z
′, x) (2.23)

Using (2.13), we have

≥ e−ε
∑
x∈Φ

π(x)∑
y∈Φ π(y)

dp(z
′, x) (2.24)

≥ e−ε min
x̂∈Φ

∑
x∈Φ

π(x)∑
y∈Φ π(y)

dp(x̂, x) (2.25)

where we have the derivation from (2.24) to (2.25) given that Φ is convex and thus the

minimum is obtained when x̂ is the weighted geometric median of Φ that lies in the region.

The bounds of posterior probability (2.19) and inference error (2.25) indicate the capa-

bility of geo-indistinguishability for defending against Bayesian inference attack (2.7) and

optimal inference attack (2.6) respectively. Both of them depend on the prior distribution

over protection region Φ, which suggests that geo-indistinguishability may not provide

enough location protection against Bayesian adversary with sufficient prior information.

The protection of geo-indistinguishability only measures the impact of user’s location on

the output, but not the inference capability of Bayesian adversary with his prior informa-

tion. We have argued that certain prior knowledge to identify the user’s location inherently

exists, but geo-indistinguishable mechanisms produce pseudo-locations as if the adversary

does not have any prior knowledge.

Also, we can see that it has limitations for geo-indistinguishable mechanisms in existing

works [20, 21, 23, 24] to use uniform differential privacy parameter and protection region

radius, independently of the user’s locations. Because the prior distribution over protection
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regions around different locations are mostly different, geo-indistinguishablity may not

achieve the same level privacy against Bayesian adversary, indicated by bounds (2.19) and

(2.25) that change with priors. For example, in an urban area with many possible locations

densely distributed, the user can use a small radius r for his protection region in which ε-

differential privacy is achieved; but in a rural area, when the user’s location is only possible

location within it, using a small radius to generate a pseudo-location does not provide

sufficient protection. This is indicated by that the upper bound (2.19) achieves maximum

eε (≥ 1)and the lower bound (2.25) becomes zero, which actually means no bound for the

posterior probability and inference error. Indeed, the adversary can easily associate the

pseudo-location with the actual location given the prior knowledge that there is only one

possible location in this area.

2.3.3 Experimental Illustration
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Figure 2.1: The 50 regions in the location dataset.

In this section we evaluate the privacy of geo-indistinguishability against optimal and

Bayesian inference attack and validate our analysis result in previous section. In order

to see the lack of protection against inference attacks with geo-indistinguishability, we

compare a geo-indistinguishable mechanism with a mechanism constructed with expected

inference error as privacy metric that is optimal against inference attacks. Two mechanisms

are given below:

• The optimal εg-geo-indistinguishable mechanism [21], denoted by Mεg , that mini-

mizes the service quality loss (2.10) subject to geo-indistinguishability (2.12);
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Figure 2.2: The average inference error of optimal inference attack.

0 10 20 30 40 50
Region id

0

0.2

0.4

0.6

0.8

1

A
tta

ck
 S

uc
ce

ss
 P

ro
ba

bi
lit

y

Bayesian
Geo-indistinguishability
Bayesian (Hamming)

Figure 2.3: The success probability of Bayesian inference attack.

• The optimal Bayesian mechanism [22], denoted byMB, that maximizes the expected

inference error (2.8) under the constraint of the maximum tolerable service quality

loss Qmax
loss for (2.10).

We choose them because it has been shown in [21] that Mεg and MB can achieve the same

level of location privacy in terms of expected inference error (2.8) defined with Euclidean

distance, which enables us to make a fair comparison of them under optimal inference

attack. To achieve that, given Mεg and the minimum quality loss q it obtains, MB is derived

with letting Qmax
loss = q. Besides, we are particularly interested in the local performance

of the mechanisms for protecting each location, rather than only considering the global

average metrics as previous works [21, 22].

In our experiment we use location data extracted from Geo-life dataset [33, 34, 35].

The details of data processing is described in Section 2.5. Specifically, here we use all-day

location data of a single user with id 0, and consider 50 regions shown in Figure 2.1 as

X . The prior for the user is computed by counting and normalizing the number of his/her

location points falling into each of 50 regions.
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Optimal inference attack

We use εg = 0.9 for Mεg that incurs minimum quality loss 0.89km. Letting Qmax
loss =

0.89km, we follow the approach in [22] to obtain MB with maximum expected inference

error 0.89km. We simulate a user using two mechanisms at every region in X , repeat

the simulation 1000 times, and measure the inference error, i.e., the distance between the

actual location and the location inferred by optimal inference attack (2.6), averaged over

1000 times for every region. The result is shown in Figure 2.2.

Though both Mεg and MB can guarantee the expected inference error 0.89km at most

locations, we can see that Mεg has almost zero inference error at regions with id 48, 49

and 50, but the optimal solution against the inference attack MB incurs much larger infer-

ence error at them. This indicates that geo-indistinguishability does not provide sufficient

privacy protection against optimal inference attack at these locations. The essential rea-

son is that geo-indistinguishability does not consider any prior distribution the adversary

may have. As we can see from Figure 2.1, region 48, 49 and 50 are isolated locations

on the prior distribution over X , which means zero probabilities for any other locations in

their neighborhood. Such skewed probability distribution lets the upper bound of posterior

probability (2.19) to be eε (larger than 1) given any pseudo-locations reported from these

isolated locations, which means no bound for the posterior probability and thus it can get

close to one on the true locations. Similarly, the lower bound of expected inference error in

(2.25) becomes zero at these regions, meaning no guarantee for location privacy in terms

of expected inference error. Consequently, with minimization on the quality loss, Mεg has

probability larger than 0.9 to report truthfully at these regions, and the posterior probability

Pr(x|x′) conditioned on x′ = 48, 49, 50 get close to one on x = 48, 49, 50 respectively.

In Figure 2.4, we vary εg from 0.7 to 0.1 andQmax
loss from 1 to 2 and measure the expected

inference error (2.8). We can see that bothMεg andMB have the expected inference error to

increase to 1.178 and remain the same after that. This value is exactly the value calculated

by (2.11), which validates the upper limit (2.11). We note Mεg and MB achieve this limit in
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different ways: Mεg always chooses the same region 25 as pseudo-location for any user’s

location, but MB turns out to uniformly sample a location from X as the pseudo-location.

In essence, both break the dependency between pseudo-locations and actual locations.

Bayesian inference attack

For Bayesian inference attack, we are interested in the probability that Bayesian inference

attack makes correct guesses about the actual location for a user. We replace optimal infer-

ence attack in the above simulation with Bayesian inference attack, repeat the simulation

1000 times, and calculate the percentage of successful guesses at every location. Note that

MB is constructed with using Euclidean distance based privacy metric. With using Ham-

ming distance, an optimal Bayesian mechanism against Bayesian inference attack M ′
B can

be derived in the same way as MB. Since we focus on Euclidean distance based privacy

notions and Hamming distance does not guarantee it, M ′
B is only used as a reference for

examining the resilience of the two other mechanisms constructed with Euclidean distance

based privacy notion against Bayesian inference attack. With the same Qmax
loss = 0.89km,

Figure 2.3 shows the attack success probabilities of three mechanisms. As we can see,

M ′
B has zero attack success probabilities at all regions except region 25, which demon-

strates M ′
B’s optimality with using Hamming distance against Bayesian inference attack

compared with MB and Mεg . MB has at least 50% success probabilities at 50% regions

but Mεg has zero attack success probabilities at more than 70% regions. The result demon-

strates the improvement introduced by geo-indistinguishability compared with MB, as a

result of limiting the relative ratio between posterior distribution and prior distribution.

For Mεg , there are multiple locations, i.e., region 48, 49 and 50, with high success

probabilities close to 1. This is because that the posterior probability Pr(x|x′) conditioned

on most pseudo-locations reported from these regions is much higher on the actual locations

(close to 1) than on others, which also causes lowest inference error at these regions in

Figure 2.2. Intuitively, a region has weak protection against inference attacks if the pseudo-
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locations generated from it are highly associable with the true location, represented by high

posterior probability on the true location. Our result demonstrates that no guarantee on the

bounds (2.19) and (2.25) for inference attacks allows such strong association to happen to

the skewed locations with Mεg , leading to weak protection for these regions. Note that,

because for M ′
B region 25 is the maximum point of posterior distributions Pr(x|x′) for

any x′, the adversary always guess 25 no matter where the user is, and thus region 25 has

success probability 1. It is not because of the weak protection as for regions 48-50 with

Mεg . The posterior probability achieves maximum on region 25 but only up to 0.37, which

is much smaller than that on regions 48-50 with Mεg . High posterior probability incurs

both low inference error and high success probability, and skewed locations actually show

the worst case vulnerabilities of that, thus in our experiment we have particular discussions

for such regions.

Because the user has different probabilities to visit every region, we evaluate the ex-

pected success probability of Bayesian inference attack as follows:

Ps =
∑
x∈X

∑
x′∈X

π(x)f(x′|x)c(x, x′) (2.26)

where c(x, x′) = 1 if the actual location x is correctly inferred given pseudo-location x′,

i.e., x = arg maxy∈X Pr(y|x′); otherwise c(x, x′) = 0. We compute Ps for two mecha-

nisms shown in Figure 2.3, and obtain Ps = 0.19 for MB and Ps = 0.27 for Mεg . MB

that is constructed with prior information against Bayesian inference attack achieves bet-

ter privacy than Mεg . We also measure the expected attack success probability for Mεg

with different privacy parameter εg, shown in Figure 2.5. Smaller εg indicates higher pri-

vacy. When εg gets close to zero, the multiplicative distance between posterior and prior

distribution approaches to one, which means that the adversary cannot do better than just

guessing the actual location by prior knowledge. That’s why the curve becomes flat when

εg approaches to zero in Figure 2.5. In contrast, when εg (as also ε) increases, the upper

bound of posterior probability (2.19) increases, letting the mechanism truthfully report the

23



𝜖𝜖 𝑔𝑔

Ex
pe

ct
ed

 In
fe

re
nc

e 
Er

ro
r (

km
)

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

Bayesian

Geo-indistinguishability

00.20.40.60.8

Figure 2.4: Max Expected Error.

0 0.5 1 1.5 2 2.50g

0.1

0.2

0.3

0.4

0.5

0.6

A
tta

ck
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Figure 2.5: εg v.s. Ps.

locations with higher probabilities under quality loss minimization.

2.3.4 Our Design Objective

From our formal and experimental analysis, we can see that geo-indistinguishability limits

the privacy leakage by bounding the relative information gain of the adversary given ob-

served pseudo-locations, regardless of what kind of prior information the adversary may

have. But it does not ensure absolute location privacy guarantee in terms of expected

inference error against inference attacks (2.6) and (2.7). Bayesian optimal mechanisms

protect location privacy by maximizing expected inference error against inference attacks

but require assuming a prior location distribution that the adversary has, which is not
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robust against adversaries with arbitrary knowledge. Thus, it is desirable to have both

privacy notions in a location obfuscation mechanism. On the other hand, existing geo-

indistinguishable mechanisms suppose uniform differential privacy parameters over every

location, which may either cause unnecessarily large noise level at some locations or in-

sufficient noise level at others leading to privacy disclosure, and their formulations do not

provide the user a straightforward way to customize his privacy preference for his current

location. Considering these issues, we aim to design a location obfuscation mechanism

that can effectively combine geo-indistinguishability and expected inference error, while

operating adaptively with supporting customizable privacy preferences for the users.

2.4 Our Solution Approach

In this section we describe PIVE, a two-phase dynamic approach to protect location privacy

in terms of both geo-indistinguishability and expected inference error. We first present the

PIVE, two phase location obfuscation framework, and then describe each phase in detail. In

the first phase, we determine a set of locations (i.e., protection location set) to protect user’s

actual location, with guaranteeing the expected location inference errors with the user-

defined threshold and the adversary’s prior knowledge with respect to the user’s location.

we develop a Hilbert curve based method and its optimization for efficiently and accurately

determining the protection location set. In the second phase, we devise a differentially

private mechanism to generate pseudo-locations with strong utility guarantee with respect

to the service quality.

2.4.1 PIVE Two-Phase Framework

Our goal is to design a mechanism that achieves geo-indistinguishability while providing

lower bound on expected inference error against optimal inference attacks. A challenging

problem is how to integrate both privacy notions to a mechanism designed to obfuscate

locations instantly and adaptively. Basically, our solution is to dynamically choose a pro-

25



tection location set to guarantee expected inference error and produce pseudo-locations in

a differentially private way for every location in the set.

To introduce our approach, we first define ε-differential location privacy over an arbi-

trary region containing the actual location, as opposed to geo-indistinguishability that is

defined over the circular neighborhood centered at the actual location.

Differential privacy requires that a query function has unsubstantial difference for the

outputs over any two neighboring datasets that differ only in a single element. The loca-

tion obfuscation mechanism for a user only involves a single data record, i.e., his current

location. Differentially private location obfuscation requires the definition of “neighbor-

ing” location points to the user’s location, such that they have the similar probabilities to

produce a pseudo-location. The neighborhood consisting of all “neighboring” locations

indeed functions as “a minimum crowd” for the actual location to “be hidden in a crowd”.

As mentioned in Section 2.3.2, previous geo-indistinguishabile mechanisms [20, 21] actu-

ally regard the circular region centered at the user’s location with a uniform radius as such

neighborhood for protection. In this paper, we define “neighboring” relationship over a set

of locations in an arbitrary region that contains the user’s actual location, referred to as pro-

tection location set, and accordingly differentially private location obfuscation is defined

as follows:

Definition 4. A randomized location obfuscation mechanism f(·|·) satisfies ε-differential

location privacy on protection location set Φ, if for any locations x, y ∈ Φ, and any output

x′,
f(x′|x)

f(x′|y)
≤ eε (2.27)

Based on the upper bound of posterior probability (2.19), here ε is chosen to achieve a

desired bound of the multiplicative distance between posterior distribution and prior distri-

bution, to limit the adversary’s posterior information gain.

Then, we consider how to guarantee the expected inference error via protection location
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set. Let

ExpEr(x′) = min
x̂∈X

∑
x∈X

Pr(x|x′)d(x̂, x) (2.28)

E(Φ) = min
x̂∈Φ

∑
x∈Φ

π(x)∑
y∈Φ π(y)

d(x̂, x) (2.29)

where we choose Euclidean distance as privacy metric as previous works [21], ExpEr(x′)

is the conditional expected inference error given any observed pseudo-location x′. For

optimal inference attack with using x′, according to the lower bound result for expected

inference error in (2.25), we have

ExpEr(x′) ≥ e−εE(Φ) (2.30)

To ensure a lower bound for conditional expected inference error ExpEr(x′), we intro-

duce privacy parameter Em that is specified by the user according to his current location’s

sensitivity, such that ∀x′, ExpEr(x′) ≥ Em. To ensure that, it is sufficient to satisfy that

E(Φ) ≥ eεEm (2.31)

Then, we have the following theorem (with the above as a proof):

Theorem 1. For a location obfuscation mechanism that achieves ε-differential location

privacy on protection location set Φ, if E(Φ) ≥ eεEm, the optimal inference attack using

any observed pseudo-location x′, ExpEr(x′) ≥ Em.

Based on (2.31), we regard Φ as a variable and propose to dynamically search a region

of Φ where the user is located to satisfy E(Φ) ≥ eεEm. Then, with the protection location

set Φ, we propose an exponential mechanism that generates a pseudo-location in the way

that achieves ε-differential location privacy on Φ, defined in Definition 4. Because the

maximum change of the user’s location is within the range of Φ, the sensitivity method to

achieve differential privacy introduces the noise perturbation proportional to Φ’s diameter

D(Φ), as shown in Section 2.4.3. To maximize the utility, the noise magnitude should be
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Figure 2.6: The framework of PIVE.F is the algorithm to determine the protection location
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minimized, and thus it is desired to find Φ that satisfies (2.31) with a minimum diameter.

Figure 2.6 illustrates the workflow of PIVE. It shows two components with their in-

puts: the algorithm F for generating the protection location set and the differentially pri-

vate mechanism K for producing a pseudo-location. In essence, via protection location set

that is determined with prior distribution π and eεEm, PIVE achieves differential privacy

while guaranteeing a lower bound for the adversary’s expected inference error. This frame-

work offers adaptive location protection for users according to their current locations and

requirements on two privacy notions (expressed by Em and ε), and the latest prior distribu-

tion the adversary could have known (e.g., by inference with the mobility model of users).

Previous geo-indistinguishable mechanisms [20, 21] can be regarded as the special cases of

our framework with F using the circular neighborhood with a fixed radius as the protection

location set without considering any prior distribution and inference error bound.

PIVE provides two privacy control knobs: 1) the minimum inference error Em and 2)

the differential privacy parameter ε. Through these parameters, we allow users to define

their desired privacy preferences at different locations. The min error parameter Em aims

to bound the expected inference error in the worst case. The differential privacy parameter

ε allows users to constrain the posterior information leakage via the provisioning of differ-

ential privacy. Given that ε-differential privacy is the property of the random mechanism

K producing pseudo-locations, one possible way for a user to set these two parameters is

28



𝐸"
2

𝑟

Figure 2.7: The non-optimal case for the simple approach

to use a fixed ε for K and set Em according to this user’s tolerance estimation on the low-

est bound of expected inference error of the adversary against the protection region, for

example, Em=0.1km.

2.4.2 Determining Protection Location Set

Given the user’s location x, the problem is how to efficiently determine its protection lo-

cation set Φ (x ∈ Φ) that satisfies E(Φ) ≥ eεEm with a diameter as small as possible.

Meanwhile, we note the diameter of the protection location set cannot be less than eεEm,

given by the following theorem.

Theorem 2. Let D(Φ) be the diameter of protection location set Φ that is the largest

distance between any two locations in Φ. If E(Φ) ≥ eεEm, we have D(Φ) ≥ eεEm.

Proof. D(Φ) ≥ d(x̂, x) for ∀x̂, x in Φ, so

eεEm ≤ E(Φ) ≤ min
x̂∈Φ

∑
x∈Φ

π(x)∑
y∈Φ π(y)

D(Φ) = D(Φ)

A simple way to determine the protection location set is to gradually increase the radius

of circular region centered at the user’s location from eεEm/2 (given by Theorem 2) until it

satisfiesE(Φ) ≥ eεEm. However, this approach may produce unnecessarily large diameter,

leading to significant service quality loss. Figure 2.7 shows an example in which the desired

protection location set is obtained by increasing radius to r to include four location points,

resulting in 2r diameter. However, in this way we cannot find another qualified set that is

the rectangle area in the figure with a much smaller diameter.
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Hilbert Curve based Search: To efficiently search over the plane for the protection loca-

tion set, we propose a Hilbert curve based search algorithm. Hilbert curve [36] is a popular

member in the family of space-filling curves. It provides a mapping from a data point in a

2-D space to a point in one dimensional space that preserves the proximity of data. That is,

points which are close to one another in the 2-D space will also remain close to each other

in the transformed 1-D space. It has been shown that Hilbert curves have the superior dis-

tance preserving properties [37]. Figure 2.8 shows the Hilbert curves for 4× 4 and 16× 16

grids in 2-D space. The Hilbert curve maps a location point x to a 1-D value denoted by

H(x). We call H(x) as the Hilbert value of x. The locations in X is sorted by their Hilbert

values, and the rank of a location x in the sorted X is denoted by R(x).

Given user’s location x, our algorithm searches the neighborhood of x along the Hilbert

curve to find a protection location set Φ that satisfies x ∈ Φ and E(Φ) ≥ eεEm. The basic

search strategy in the algorithm can be generally described as follows. Let x−l, x−l+1, . . .,

x0(= x), x1, x2, . . . , xr be the sequence of locations in the searching neighborhood of x

along the Hilbert curve, sorted by their Hilbert values. For each xi ( −l ≤ i ≤ 0), the

algorithm checks every interval from xi to xj for 0 ≤ j ≤ r in the sequence, denoted by

[xi, xj], and evaluate E([xi, xj]) by (2.29). Once an interval that has E([xi, xj]) ≥ eεEm

is found for xi, the algorithm stops interval check for xi, adds location set in [xi, xj] to a

candidate list, and repeats with the next xi. Finally, the set having the smallest diameter in

the list is returned, with breaking ties by a random choice.

In the case that all locations in Φ have zero prior probabilities, i.e.,
∑

y∈Φ π(y) =
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Algorithm 1: Protection Location Set Search Algorithm
Input: x: user’s location Em: error bound, ε: privacy parameter

1 if π(x) = 0 then
2 S ← {l | H(l) ∈ [H(x)− range,H(x) + range] on H };
3 else
4 S ← {l | H(l) ∈ [R(x)− range,R(x) + range] on sorted X};
5 Let S be x−l, x−l+1, . . ., x0 = x, x1, x2, . . . , xr;
6 L← ∅;
7 for i from −l to 0 do
8 for j from 0 to r do
9 Φ = {xk | i ≤ k ≤ j} ;

10 Calculate E(Φ) by(2.29) ;
11 if E(Φ) ≥ eεEm then
12 Add Φ to L;
13 break ;
14 return a set having the smallest diameter in L;

0 in (2.29), we define π(x)∑
y∈Φ π(y)

= 1
|Φ| , because a uniform distribution is assumed in an

area when the adversary does not have any prior information about it. Accordingly, the

algorithm searches Φ for locations with zero and non-zero prior probability inX in different

ways. Because over the plane any locations outside X (e.g., the un-numbered regions in

Figure 2.1) indeed have zero prior probabilities, the protection location set Φ for the user’s

location x with π(x) = 0 can involve them with E(Φ) being computed in the defined

way. Thus, the searching range is determined as all the locations on the plane with Hilbert

values in a range [H(x) − range,H(x) + range]. For the protection location set of x

with π(x) > 0, the locations with zero prior probabilities contribute zero to E(Φ) in (2.29)

and thus the locations outside X are not considered. The searching range is defined as the

locations with ranks in [R(x)− range,R(x) + range] over the sorted sequence of X . The

algorithm applies the search strategy mentioned above to the searching range to obtain the

protection location set. The pseudo-code is given in Algorithm 1.

The range must be large enough to have better chance to find a qualified protection

location set. Given T = eεEm and Theorem 2, range can be decided heuristically. We can

traverse along the Hilbert curve in both directions from user’s location x. Once reaching

the locations a and b in each direction with their distances to x being some multiple of T ,
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we set range = max(|H(a) −H(x)|, |H(b) −H(x)|). In our implementation we simply

choose sufficiently large range that incurs low failure rate for finding protection location

set. We can also specify an upper bound for range to limit the searching cost and avoid

large region that causes unacceptable quality loss. Note the algorithm may not find any

qualified protection location set, for example, in the case that the user’s current location

is only possible location for him and all other locations has zero prior probabilities on the

plane. Thus, if an empty set is returned, which indicates the location privacy cannot be

protected, the user can choose to suppress location report.

Improvement with Multiple Rotated Hilbert Curves: Although using Hilbert curve

enables efficient search over 2-D plane, a drawback is that the search is conducted along

a single direction and the searched regions can only be ones that consist of neighboring

locations on the curve. A cell actually can have four neighbors on the plane while two

neighboring cells may be far apart on the curve (e.g., location 2 and 15 in Figure 2.8).

Since there are regions where locations are not adjacent on the curve, we propose to use

multiple different Hilbert curves to connect locations in different ways such that more pos-

sible regions can be involved, which can improve the chance to find the protection location

set with a smaller diameter. Previous works have utilized multiple Hilbert curves to im-

prove the quality of k-Nearest Neighbor queries [38] and reduce cloaking area [39]. In

PIVE, given a Hilbert curve H over 2n × 2n grid, other three Hilbert curves are generated

by rotating it 90, 180, 270 degrees clockwise about the center point. We use Algorithm 1

to find the protection set of the user’s location x for each Hilbert curve, and choose the one

with smallest diameter among four results.

2.4.3 Differentially Private Mechanism

Given the protection location set Φ, PIVE achieves differential location privacy on it through

the exponential mechanism [30]. Considering the set X as the output range of location ob-

fuscation, the utility of output x′ is measured by the distance between x′ and user’s location
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x in Φ. Smaller distance has higher utility. As the protection location set decides “neigh-

boring” locations to the user’s location, the sensitivity of the utility function u is

∆u = max
x′∈X

max
x,y∈Φ

|d(x, x′)− d(y, x′)| (2.32)

It is easy to see, according to triangle inequality, for any x, y ∈ Φ, |d(x, x′) − d(y, x′)| ≤

d(x, y) ≤ D(Φ), so ∆u = D(Φ) where D(Φ) is the diameter of Φ.

Exponential mechanismK: Given the user’s location x and location protection set Φ, the

exponential mechanism K selects and outputs a location x′ ∈ X with probability propor-

tional to exp(−εd(x,x′)
2D(Φ)

).

The mechanismK samples each location x′ fromX with the probabilitywxexp(−εd(x,x′)
2D(Φ)

)

where wx is the normalization factor for the probability distribution over X ,

wx = 1
/(∑

x′∈X

exp
(−εd(x, x′)

2D(Φ)

))
(2.33)

Following the proof of Theorem of McSherry and Talwar [30], we can easily obtain the

theorem below,

Theorem 3. The exponential mechanism K preserves ε-differential privacy on the protec-

tion location set Φ.

Proof.

f(x′|x)

f(x′|y)
=
wxexp

(
− εd(x, x′)/(2D(Φ))

)
wyexp

(
− εd(y, x′)/(2D(Φ))

)
≤ wx
wy
eε|d(x,x′)−d(y,x′)|/(2D(Φ)) ≤ wx

wy
eεd(x,y)/2D(Φ)

≤ wx
wy
eε/2 ≤

(∑
x′∈X exp

(−εd(y,x′)
2D(Φ)

))(∑
x′∈X exp

(−εd(x,x′)
2D(Φ)

))eε/2
≤

(∑
x′∈X exp

(−ε(d(x,x′)−D(Φ))
2D(Φ)

))(∑
x′∈X exp

(−εd(x,x′)
2D(Φ)

)) eε/2

≤

(∑
x′∈X exp

(−εd(x,x′)
2D(Φ)

))(∑
x′∈X exp

(−εd(x,x′)
2D(Φ)

))eε/2eε/2 ≤ eε

(2.34)
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The exponential mechanism provides strong utility guarantees since it discounts the

pseudo-locations exponentially quickly as their distances to the actual location increase.

To see that, we have the following theorem

Theorem 4. Given the actual location x, let x′ be the pseudo-location randomly sampled

from X by the exponential mechanism K, with probability at least 1− δ we will have

d(x, x′) ≤ 2D(Φ)

ε

(
ln |X |+ ε

2
− ln |Φ| − ln δ

)
(2.35)

Proof. For any x′ that has d(x, x′) ≥ c, the probability it is sampled with is at most

wxexp( −εc
2D(Φ)

). Thus, the total probability of d(x, x′) ≥ c for all x′ is at mostwx|X |exp( −εc
2D(Φ)

).

On the other hand,

wx = 1
/( ∑

x′∈Φ

exp
(−εd(x, x′)

2D(Φ)

)
+

∑
x′∈X\Φ

exp
(−εd(x, x′)

2D(Φ)

))
≤ 1
/( ∑

x′∈Φ

exp
(−εd(x, x′)

2D(Φ)

))
≤ 1
/( ∑

x′∈Φ

e−ε/2
)

=
eε/2

|Φ|

Thus, we have Pr(d(x, x′) ≥ c) ≤ |X |eε/2
|Φ| exp( −εc

2D(Φ)
). Let δ be the right-hand side and we

can derive (2.35).

Because the searching range is limited in Algorithm 1, ln |Φ| is bounded by ln(2range)

that is a small constant (e.g, at most 4 in our experiment), while D(Φ) can vary a lot

given possible sparse location distribution. Therefore, the value of right hand side of (2.35)

mainly depends on D(Φ)
ε

. Given fixed Em, increasing ε can incur a protection location set

with a larger diameter since D(Φ) ≥ eεEm given by Theorem 2. Because D(Φ) increases

exponentially with ε, with increasing ε from the value close to zero, D(Φ)
ε

will decrease first

and then increase. Therefore, we expect that the service quality and also location privacy

will exhibit the similar changing pattern, which is demonstrated in our evaluation.

34



2.5 Evaluation

In this section we first evaluate the performance of our PIVE mechanism, and compare

PIVE approach with other mechanisms on location privacy and service quality. Our evalu-

ation shows that PIVE effectively combines two privacy notions, and efficiently addresses

the issues of existing location obfuscation mechanisms.

We use the dataset provided by authors of [21]. The dataset was extracted from the

GeoLife GPS Trajectories dataset [33, 34, 35], which contains 17621 traces collected from

182 users in Beijing, China, during a period of over five years. The traces record users

outdoor movements with locations being logged every 1-5 seconds or every 5-10 meters.

The details of data processing can be found in [21] and here we provide a brief description.

The map of Beijing is divided into a grid of regions 0.658km wide and 0.712km high,

the 50 “most popular” regions of the grid is used as the set of all locations X , as shown

in Figure 2.1, and the users who have few recorded points for each time period at these

regions are filtered out. The final dataset contains 84 users. The prior for each user is

computed by counting and normalizing the number of points falling in each of 50 regions

with in different time periods (all day, morning, afternoon and night). In this paper we use

all-day prior to construct mechanisms. In order to demonstrate the performance in a single

user setting, at default we always choose the user with id 0, as in Section 2.3.3.

2.5.1 Performance of Protection Location Set Search

Given ε and Em, a threshold T = eεEm is determined and Algorithm 1 searches a location

protection set Φ for user’s location that has E(Φ) in (2.29) no less than T while with the

smallest diameter. In this section we study the performance of our search algorithm in

terms of the diameter D(Φ) and value E(Φ). In the algorithm, we choose sufficient large

range=50 at default. The searching range range decides the chance to find a qualified

location protection set for a location. To see its impact, we test range with values 20, 40,
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50 and 60 for T = 2 that is corresponding to the largest average diameter in Figure 2.9.

The number of regions for which the algorithm fails to find qualified protection location set

is 19, 8, 6, 6 for each range value respectively. We can see that from range=50 that is the

size of X , the number of such regions remains to be 6. Smaller range 40 has approximate

number of failures as 50. Since the size of 50 regions is small, in our experiment we

choose 50 that incurs smallest number of failures. Within a large size of X , range can be

a relatively smaller value.

We vary T from 0.1 and 2.0 and measure the diameters of protection (location) sets

obtained by our algorithm for user’s location at each of 50 regions. The results are shown

in Figure 2.9 where the whiskers represents minimum and maximum diameters in each

group. It is clear that the average diameter of all regions increases with the threshold T . The

diameters for isolated region 48, 49, and 50 remain between 4km and 5km under different

T . They are maximum ones in the results from T=0.1 to 0.8. For some regions like 24,

25, 32, 33 and 34, the diameters become higher than 12km from T=1.2. From T=1.4 to

2.0, the algorithm cannot find qualified protection sets for regions like 24, 25, 26, 32 and

33. Figure 2.10 shows the corresponding E(Φ) values of obtained protection sets for every

region under different T . As we can see, the average E(Φ) value increases linearly with

T and is approximate to T . This indicates that our algorithm effectively finds the qualified

protection location set with E(Φ) ≥ T as desired. We also observe that the maximum

E(Φ) for each T is about 2km from T=0.1 to 1.5, which is because that the protection set

for region 49 always has maximum E(Φ) 2km. By further looking into the results, we find

that for both region 49 and 50, the protection location set remains the same from T=0.1 to

1.5, resulting the same diameter and E(Φ). Region 49 always has protection set {47, 49},

and 50 has {48, 50}. From Figure 2.1, we can see the reason is that they are isolated regions

and their nearest neighbors are 47 and 48 respectively that provide qualified protection sets.

For T > 1.5, region 50 has to involve another region 45 to satisfy E(Φ) ≥ T .

To see how the diameter of protection location set varies among different regions, we
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Figure 2.9: Boxplot of Diameter with different T
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Figure 2.10: Boxplot of E(Φ) with different T

show the results of T=0.5, 1.0 and 1.5 in Figure 2.11a. It is clear that the diameter of

protection location set for each region increases with T . The curve is discontinuous at

some points for T=1.5 because the algorithm cannot find qualified set at those locations.

The diameters for regions 49 and 50 remains the same with three different T due to the

reasons mentioned above.

Improvement with Multiple Hilbert curves: Our algorithm utilizes multiple Hilbert

curves that are generated by the rotation of the original Hilbert curve to find protection

location set with the smallest diameter. To see the effectiveness of such improvement, we

compare the diameter of every region with the search algorithm using one single Hilbert

curve and multiple ones respectively, under a given T . Figure 2.11b shows the result with

T=1.0. We can see that using multiple Hilbert curves effectively reduces the diameter of

protection location set. At some regions the improvement is significant. For example, the

diameter is reduced by more than half at region 31 and 50. Such improvement holds for

different T values.

We further investigate the diameters for all 84 users in the dataset and show the result

with T=1 in Figure 2.12. All users have approximate average diameters between 2km and

4km, but the maximum diameter for some users can be as large as 14km. Large diameter

will incur significant noise and extremely low utility. To avoid that, a maximum tolerable

diameter Dm can be specified in the mechanism, such that the mechanism can use the
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Figure 2.12: The diameters under T = 1 for every user.

location set with maximum E(Φ) among those with diameters no larger than Dm if the

diameter of the produced protection location set exceeds Dm.

2.5.2 Location Privacy and Service Quality

In this section, we evaluate the impact of differential privacy parameter ε and inference error

threshold Em on location privacy and service quality under a single user setting. Although

PIVE allows different privacy parameters at different locations, we use uniform parameters

over all locations and unconditional expected inference error (2.8) and quality loss (2.10)

as privacy and quality metric, in order to examine the effects of different ε and Em on the

performance.

Figure 2.13a and 2.13b show that under different ε, both location privacy and quality

loss monotonically increase with Em. This is because that higher Em leads to larger diam-

eter of the protection location set, and the pseudo-location is more likely to be further from

the actually location and thus incurs lower utility, which is indicated by Theorem 4. The

monotonic relationship between Em and the corresponding location privacy (i.e., expected
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Figure 2.13: Impact of privacy parameters ε and Em

inference error) indicates that Em is an effective control knob to guarantee the expected

inference error. The difference in order of magnitude between Em and corresponding ex-

pected inference error is because Em is the lower bound of the expected inference error

given any pseudo-locations in the worst case that the adversary have identified the protec-

tion set. Therefore, Em should be determined with consideration of such worst case to

protect location privacy in terms of unconditional expected inference error.

For smallest ε=0.5 indicating the strongest privacy guarantee, eεEm increases linearly

with Em with a small factor eε, that is to say, the impact of diameter changes on the privacy

and quality is much smaller compared with that of ε. In contrast, under larger ε like 1.9 that

incur weak requirement for differential privacy,E(Φ) increases withEm with a much larger

factor eε, which incurs larger diameter variance. Therefore,Em has more significant impact

on location privacy and quality loss for ε=1.9, indicating by its highest curve steepness in

Figure 2.13a and 2.13b. Also, in Figure 2.13a, location privacy for different ε increases to

the same upper limit 1.178 as in Section 2.3.3. ε=0.5 achieves this limit regardless of Em.

Other cases have location privacy approximate to the upper limit starting from Em=0.1.

Therefore, we can choose Em no larger than 0.1 for improving utility. Accordingly, in our
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comparison experiment we focus on Em=0.05 and 0.09.

We further examine the impact of ε on location privacy and quality loss with given

Em. The results are shown in Figure 2.13c and 2.13d. We can see that the relationship

between ε and location privacy as well as quality loss is not monotonic. Location privacy

and quality loss first decrease with ε and then increase. This result confirms our discussion

following Theorem 4. The reason is that, at first ε takes control of location privacy and

quality loss, and thus increasing ε incurs lower location privacy and quality loss. As the

diameter increases exponentially with ε, the diameter takes effects, thus increasing ε causes

higher privacy and quality loss. Comparing Figure 2.13c and 2.13d, we can see that the

turning points of both metrics under the same Em occurs at the same ε values.

2.5.3 Comparison with other mechanisms

In this section we compare PIVE with typical geo-indistinguishable mechanisms to ver-

ify the advantage of introducing inference error bound. Because PIVE focuses on local

performance of privacy protection for every region rather than the global average perfor-

mance examined in previous works [21, 25, 22], we compare PIVE with other mechanisms

mostly in a single user setting, in order to check the privacy protection performance at each

individual region. We examine the performance of PIVE for every user, and only show

results with regard to user with id 0 due to the similar behaviors of these mechanisms for

other users. It is worth to note that PIVE provides the users a way to specify different pri-

vacy requirements for different locations through two privacy parameters Em and ε. Given

that the existing mechanisms like optimal geo-indistinguishable mechanism do not support

different privacy specifications for different locations, we set the same privacy parameters

everywhere for PIVE in order to make meaningful comparisons.

We first consider an exponential mechanism EM, that is like the one proposed in PIVE

except using uniform constant diameter for every location’s protection location set. It rep-

resents geo-indistinguishable mechanisms like discrete Planar Laplace Mechanism that en-
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Figure 2.14: Boxplot of quality loss of 84 users

sure ε-differential privacy in the circular neighborhood centered at the user’s location. To

make a fair comparison, for each user, we run PIVE with different ε and Em, and obtain its

location privacy (i.e., expected inference error (2.8)). Then, given the same ε, we derive EM

by choosing the diameter to achieve the same location privacy. To deal with floating point

comparisons, two values with less than 0.005 difference are regarded to be equal for loca-

tion privacy. Figure 2.14 shows boxplots of the quality losses of all users for PIVE and EM

respectively under different pairs of ε and Em. In each subfigure, we can see that overall

PIVE achieves smaller quality loss than EM, though they have the same location privacy.

This is because that PIVE adaptively determines protection location sets to implement geo-

indistinguishability but EM uses protection regions of uniform radius everywhere. At some

locations with sufficient number of possible locations in their neighborhood, PIVE can use

smaller diameters than at locations in sparse areas for providing the same level of location

privacy. Comparing these subfigures, we can see that lower ε or higher Em, both indicating

higher privacy requirements, incur larger quality loss.

We further look into the level of privacy protection for a single user at every region, with

using the same simulation approach described in Section 2.3.3. Suppose Em = 0.05 and

ε = 1.5 for PIVE. We derive EM with ε = 1.5 and also the optimal geo-indistinguishable

mechanism Opt-geo (Mεg in Section 2.3.3) with εg = 0.7 such that they achieve the same

expected inference error as PIVE. Figure 2.15a and 2.15b show the average error of op-
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timal inference attack and success probability of Bayesian inference attack against each

region for three mechanisms. We can see that for both EM and Opt-geo, the skewed re-

gions 48, 49 and 50 suffer strong association between pseudo-locations and true locations,

manifested by approximate zero inference error for the optimal inference attack and high

success probability for Bayesian inference attack simultaneously. PIVE is resilient to such

vulnerable cases due to the skewed probability distribution on these isolated regions by

finding a sufficient protection location set and ensuring the lower bound of inference error

in the worst cases. By using a protection region to include other possible locations, PIVE

avoids the strong association between pseudo-location and true location for skewed cases

that happen to EM and Opt-geo. That is the reason of why PIVE has much larger inference

error and approximate zero attack success probabilities at these isolated locations. Fur-

thermore, with PIVE, the Bayesian inference attack success probability is capped to be no

more than 60% as shown in Figure 2.15b. To see the PIVE’s difference compared with

others against Bayesian inference attack, in Table 2.1 we show the percentage of regions

that have the Bayesian inference attack success probability higher than X% with X range

50%∼90% for all mechanisms. As we can see, given different threshold X , PIVE obtains

the least percentage of regions that have success probability larger than X . Comparing

the service quality losses of three mechanisms, we have EM=1.49 > PIVE=1.32 > Opt-

geo=1.02. PIVE has smaller quality loss than EM, which has been explained above, and

Opt-geo achieves smallest quality losses due to its global optimization on service quality.

Here we also note that region 25 is not skewed location and does not have as strong asso-

ciation issue (high posterior probability) as the skewed locations, thus with just satisfying

minimum lower bound 0.05, PIVE does not have much effect on the inference error and

success probability on region 25, compared with others mechanisms.

Next, we compare PIVE with the joint optimization mechanism [25] in terms of effec-

tivess for privacy protection by combining geo-indistinguishability and expected inference

error. We choose the same parameters for PIVE as in the previous expeirments, and then
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Figure 2.15: Comparison of local privacy protection at every region
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Figure 2.16: Comparison of PIVE and joint mechanism

use its expected inference error as the minimum desired distortion privacy level dm for con-

structing the optimal joint mechanism. εg in the joint mechanism is chosen to achieve the

same location privacy as PIVE in terms of unconditional expected inference error. Figure

2.16 shows the average inference error and success probability for two inference attacks

respectively at each region, with dm=0.9986km and εg=0.8. It can be seen that (1) the joint

mechanism and PIVE exhibit similar performance at most locations with small variation;

and (2) the joint mechanism incurs the weak regions, e.g., region id 48, 49 and 50, against

inference attacks, despite having bound on global expected distortion metric. These weak

regions represent some skewedness as they are far away from the rest of the regions. Con-
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X . PIVE EM Opt-geo Joint
> 50% 6% 8% 14% 12%
> 70% 0% 6% 8% 10%
> 90% 0% 6% 6% 4%

Table 2.1: The percentage of locations exceeding given success probability

cretely, PIVE has the average inference error bounded to be no lower than 0.22 and at the

same time the Bayesian inference attack success probability capped to be no higher than

60% (Table 2.1 shows PIVE has smaller percentage of regions compared to the joint mech-

anism with different X). In comparison, the joint optimization achieves good privacy at

most of the locations but fail to avoid the worst case scenarios when the location dataset

contains some skewed locations.

Note for the joint mechanism, when εg increases, its performance gets close to the op-

timal Bayesian mechanism, since its linear model is equal to the optimal Bayesian mecha-

nism with geo-indistinguishability constraint and larger εg will relax the constraint of geo-

indistinguishability. But it will cause less robustness against the adversary with arbitrary

prior information. PIVE shows the benefits of both privacy notions against optimal infer-

ence attack simultaneously: similar (or sometimes slightly lower) expected inference error

as the joint mechanism under strong geo-indistinguishability (with εg=0.8) except regions

48-50 where PIVE provides similar privacy protection as the optimal Bayesian mechanism

given in Figure 2.2. We would like to make two remarks: (1) The level of privacy pro-

tection offered by both PIVE and joint optimization are exceeding the user-defined lower

error bound at most locations, thus are acceptable for users as good privacy protection,

even though the inference error of PIVE can be slightly lower at some locations. (2) For

the weak locations, PIVE shows high resilience and adaptivity to the skewed distribution

against inference attacks, compared to all three existing approaches (see Figure 15 and

Figure 16).
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2.6 Related Work

Location privacy research started about ten years ago with the notion of location k-anonymity

with two landmark results: (i) uniform location k-anonymity [40] and (ii) user-defined,

personalized location k-anonymity [41]. The location k-anonymity based solutions hide

a user’s exact location point using a spatial region that meets the two constraints: (a) it

contains the exact location point of the user; and (b) there are at least k − 1 other users

who will use the same location region as their released location to meet the k anonymity

requirement. Alternatively, some location obfuscation mechanisms achieve privacy by us-

ing landmark objects or random perturbation instead of k-anonymity. [42] proposes to use

the location of a closest landmark object as the perturbed location such that the LBS sev-

ers process the location query based on the landmark. [31] proposes to search the region

that has sufficient user footprints such that the user can feel safe for his location privacy.

However, neither user-defined privacy notion nor any formal privacy notion is provided and

guaranteed by the proposed region-based location cloaking mechanism.

Recently, two stronger privacy notions are proposed based on statistical quantification

of attack resilience: expected inference error [22, 26] and geo-indistinguishability [20].

The former advocates the privacy notion based on its attack resilience to the prior infor-

mation of adversary by measuring the expected inference error and the latter promotes

the differential privacy notion to constrain the posterior information gain of an adversary

based on the release of pseudo-locations of mobile user. A number of location obfusca-

tion mechanisms [22, 20, 32, 21, 25] have been developed based on them. For example,

based on the prior distribution of user’s location, Shokri et al. [22] proposed an optimal

construction mechanism for location perturbation against inference attacks through linear

programming. The mechanism aims to maximize the expected inference error (resp. ser-

vice quality) given the constraint on the service quality loss(resp. expected inference error).

The service quality loss is characterized by the expected distance between real and reported
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locations. Based on Shokri et al.’s optimization framework, Theodorakopoulos et al [28]

advocated to follow a user over his trajectory and maximizes privacy for each location with

considering privacy leakage due to location correlation between past, current and future

locations in a trajectory. Andrés et al. [20] proposed the notion of geo-indistinguishability.

A Planar Laplace (LP) mechanism is developed to achieve the ε geo-indistinguishability

by adding noise to actual location drawn from a polar Laplacian distribution. Several re-

cent location privacy development projects [23, 24, 43] have adopted or extended ε geo-

indistinguishability for location privacy protection. Bordenabe et al. [21] proposed an

optimal geo-indistinguishable mechanism to minimize the service quality loss. Similar to

[22], it uses linear programing to minimize global expected service quality loss, with a

uniform privacy parameter for geo-indistinguishability. Chatzikokolakis et al [32] defines

privacy mass over the point of interests on the plane and adaptively decide the privacy pa-

rameter of geo-indistinguishability for a location with considering local characteristics of

each area.

The mechanisms in [21, 22, 25] follow a global optimization framework: given the

privacy or service quality constraints, a linear programming model is formulated to max-

imize service quality or privacy respectively. Such formulation uses uniform differential

privacy parameter and global privacy/quality metrics averaged over all locations, which

offers uniform privacy/utility with respect to all locations and all LBSs. It could be a dif-

ficult task to pre-determine the constraint for every location where a user will ask for any

LBS service request with his personalized and spatial-temporal dependent as well as LBS

dependent privacy requirement. Besides, these techniques are computationally costly due

to solving a linear program with |X |2 decision variables, and the perturbation solution is

statically constructed once for all locations, which can be prohibitively expensive for fre-

quently changing prior information and frequently changing privacy/utility preference by

users at different locations and times.

Our work is primarily related to two recent research efforts in [25] and [32]. Concretely,
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Shokri [25] is the first to propose a joint mechanism to integrate the two privacy notions

using a linear programming framework, demonstrating the potential for improvement on

privacy protection. However, the joint optimization mechanism uses uniform differential

privacy parameter and global privacy/utility metrics by averaging over all locations. We

argue that an overall metric for all locations and a per-location based metric may result in

different allocations of privacy and utility. Thus PIVE is more suitable to situations where

mobile users may have different privacy/utility preferences for different locations, at differ-

ent time and working with different LBSs. Next, unlike most existing geo-indistinguishable

mechanisms that consider uniform differential privacy parameters for all users and all loca-

tions, Chatzikolakis and his co-authors [32] propose to adaptively decide the noise level of

geo-indistinguishability according to the privacy characteristics of local area. They com-

pute the density of a local area for each location and adds less noise for perturbed location

if the density of the actual location area is high and more noise when the actual location

falls into the low density areas. However, the density of a local area is defined in terms

of the public locations such as restaurants, churches and hospitals. Thus this approach as-

sumes that these different types of public locations are of the same privacy sensitivity for all

mobile users at all time, and thus fails to model the personalized geo-indistinguishability

with respect to different locations, different times and different LBSs. In comparison, PIVE

adaptively adjusts the noise level of location obfuscation according to a personalized error

bound and the prior distribution in the local area.

2.7 Concluding Remarks

Privacy Claim: The propose PIVE approach aims for Bayesian differential location pri-

vacy that enhances differential privacy with the resiliency against Bayesian inference at-

tacks. It leverages the prior information of Bayesian inference attacks to improve the pri-

vacy parameter ε of differential location privacy for the resiliency against Bayesian infer-

ence attacks for the locations that presents skewed prior distribution. On the other hand, the

47



differential location privacy is not equivalent to the standard differential privacy. The differ-

ential location privacy is always defined over a protection region to make any two locations

inside the region differentially private, i.e., the distribution of outcome fake locations from

these two locations are ratio bounded by eε.

Utility Claim: With achieving the same resiliency against Bayesian inference attacks,

PIVE improves the location utility compared with existing geo-indistinguishable mecha-

nisms, because it adapts the noise introduced by differential location privacy according to

the prior information around a location.
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CHAPTER 3

DIFFERENTIALLY PRIVATE MODEL PUBLICATION FOR DEEP LEARNING

3.1 Introduction

In recent years, deep learning techniques based on artificial neural networks have dramati-

cally advanced the state of art in a wide range of AI tasks such as speech recognition, image

classification, natural language processing and game playing. Its success relies on three

sources of development: high performance computing, large-scale datasets, and and the

increasing number of open source deep learning frameworks, such as TensorFlow, Caffe,

Torch.

Privacy Concerns in Deep Learning. However, recent studies on membership attacks

and model inversion attacks have shown potential privacy risks from a number of dimen-

sions. First, when large scale datasets collected via crowdsourcing platform are collected

via crowdsourcing platforms from individuals, such as location, images, medical and fi-

nancial data of the users, and users usually do not have any control over how their data is

being used or shared. Second, deep neural networks have a large number of hidden lay-

ers, leading to large effective capacity that could be sufficient for encoding the details of

some individual data into model parameters or even memorizing the entire data set [3]. It

has been shown that individual information can be effectively extracted from neural net-

works [4, 5]. Therefore, there are severe privacy concerns accompanied with the wide

deployment of deep learning applications and deep learning as a service platform.

On the other hand, the publishing and sharing of trained models have always been of

great interest in deep learning applications. Google’s cloud machine learning services pro-

vide several pre-trained models usable out-of-the-box through a set of APIs. The model

owners can also publish their trained models to the cloud and allow other users to get pre-
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dictions through APIs. In mobile applications, entire models are stored on-device to enable

power-efficient and low-latency inference. Transfer learning [6], a key technique of deep

learning, can leverage and adapt the already existing models to new classes of data, saving

the effort of training the entire neural network from scratch. People who only have small

datasets can use the model trained on a large dataset as fixed feature extractor in their neu-

ral networks or adapt the model to their own domain. It is believed to be the next driver of

machine learning success in industry and significantly stimulate the sharing of pre-trained

models. A large amount of pre-trained models have been publicly available in model zoo

repositories [7]. In these cases, the model parameters are completely exposed, making it

easier for the adversaries to launch inference attacks, such as membership attacks [5] or

model inversion attacks [4], to infer sensitive data records about individuals in the training

datasets. Even only providing the query API to access remote trained models, the model

parameters still can be extracted from prediction queries and in turn used to infer the sensi-

tive training data [44]. Therefore, it is imperative to develop principled privacy preserving

deep learning techniques to protect private training data against the adversaries with full

knowledge of model parameters.

Deep learning with Differential Privacy. Although privacy preserving machine learning

has attracted much attention over the last decade, the privacy preserving deep learning pro-

posal was first appeared in 2015 [45]. It argues for privacy preserving model training in a

collaborative federated learning system which involves multiple participants jointly train a

model by only sharing sanitized parameters and their updates with each other while keeping

their training data private and local. Following this work, deep learning with differential

privacy was proposed in 2016 [46]. Differential privacy, a defacto standard for privacy that

offers provable privacy guarantees, has been applied for privacy preserving machine learn-

ing [47, 48, 49, 50, 51]. Differential privacy requires characterization of output differences

over any two input datasets differing in at most one element, but it is not known to char-

acterize that for deep learning because the internal representations of deep neural networks
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is already notoriously difficult to understand. The prior works [46, 52, 53] suggest to use

norm gradient clipping in the stochastic gradient descent (SGD) algorithm to bound the in-

fluence of any single example on the gradients and apply differentially private mechanisms

to perturb the gradients accordingly. By ensuring each gradient descent step differentially

private, the final output model satisfies a certain level of differential privacy given its com-

position property. It is known that the SGD training process of a deep neural network tends

to involve a large number of iterations. Given the targeted differential privacy guarantee,

its differentially private version needs a tight estimation on the privacy loss for the com-

position of differentially private iterations, such that the algorithm can track accumulative

privacy loss during the training process and terminate it before the loss exceeds the privacy

budget. Unfortunately, Abadi and his co-authors [46] have shown existing strong compo-

sition theorem [54] for differential privacy does not yield a tight analysis. To address this

problem, the moments accountant method is proposed, which tracks the log moments of

privacy loss variable and provide much tighter estimate of the privacy loss for composing

Gaussian mechanisms with random sampling.

In this paper, we address several issues with using the above differentially private SGD

algorithm and privacy accounting method for deep learning. The first problem is related to

underestimation of privacy loss caused by data batching strategies. For the computation ef-

ficiency, the SGD algorithm usually takes small batches from the training dataset each time

to compute gradients and update model parameters. The previous work [46] exploits pri-

vacy amplification of random sampling to produce tighter estimation on privacy loss. It is

based on assumption that the data batches for mini-batch SGD input are generated through

random sampling with replacement on the training dataset. In practice, for better efficiency,

the data batching strategy is implemented through random reshuffling that randomly shuf-

fles the training dataset and then partition them into batches of the similar size. We note that

the random sampling and random reshuffling are two different implementation strategies

for data batching. Our analysis and experiments show that they actually cause distinct pri-
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vacy loss. Thus, the analysis of composition of differentially private mechanisms depends

on how data is accessed by every mechanism, and simply treating random reshuffling and

random sampling as the same data access will lead to underestimation of privacy loss.

The second issue is the need of a tight analysis on accumulative privacy loss for dif-

ferentially private SGD that tends to have a large number of iterations. To address this

problem, we propose to use concentrated differential privacy (CDP), a generalization of

differential privacy recently introduced by Dwork and Rothblum [55]. It is developed to

focus on the cumulative privacy loss for a large number of computations and provide a

sharper analysis tool. Based on CDP, we analyze the privacy loss under different data batch

strategies and develop privacy accounting methods for each respectively. In particular, for

the random reshuffling, we show that our analysis provides a tighter estimation on privacy

loss than the approach that applies strong composition theorem even with taking advantage

of the privacy amplification effect of random sampling by assuming random reshuffling

as a random sampling process. For the random sampling batching strategy, we show that

CDP is not able to capture its privacy amplification effect. We address this problem by a

relaxation and conversion to traditional (ε, δ)-differential privacy. Compared with the mo-

ments account method that require numerical computation of log moments for a range of

moment orders, our method for privacy accounting under random sampling produces very

close estimation but with much simpler and faster computation.

The third novelty of our approach to differentially private model publishing for deep

learning is our development of dynamic privacy budget allocation to improve the model

accuracy under differentially private training. The perturbed gradients during the training

process inevitably degrade the model accuracy but for the deep learning accuracy is the

most important goal. Because we aim to achieve differential privacy guarantee on the final

output model, we have much less concern on the privacy loss of single iteration, which

naturally provide opportunities to optimize the model accuracy via adjusting privacy budget

allocation for every training iteration. In this paper we develop several different ways for
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dynamic privacy budget allocation and our extensive experiments demonstrate its benefit

on improving the model accuracy. It is worth to note that, the techniques proposed in

this paper, including the CDP based privacy accounting, its refinement under different data

batching strategies, and dynamic privacy budget allocation over iterations, not only apply

to neural networks, but also apply to any other iterative model training algorithms.

3.2 Background

3.2.1 Deep Learning

Deep learning uses neural networks that are defined as a hierarchical composition of pa-

rameterized functions to model the input data. For supervised learning, the training data

are labeled with correct classes, and a multi-layer neural network is deployed to model the

correlation between data instances and their labels. A typical neural network consists of

n(n > 1) layers of neurons. Each layer of neurons is parameterized by a weight matrix

W (l) and a bias vector b(l). Layers apply an affine transformation to the previous layer’s

output and then computes an activation function σ over that. Typical examples of the acti-

vation function σ are sigmoid, rectified linear unit(ReLU) and tanh.

The training of a neural network aims to learn the parameters θ = {W (l), b(l)|1 ≤

l ≤ n} that minimize a loss function L defined to represent the penalty for misclassifying

the training data. It is usually a non-convex optimization problem and solved by gradient

descent. The gradient descent method iteratively computes the gradient of the loss function

L and updates the parameters every step until the loss converges to a local optimum. In

practice, the training of neural networks uses the mini-batch stochastic gradient descent

(SGD) algorithm, which is much more efficient for large datasets. At each step a batch

B of examples is sampled from the training dataset and the gradient of the average loss

is computed, i.e., 1
|B|
∑

x∈B∇θL(θ, x) as ∇θL(θ). The SGD algorithm then applies the
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following update rule for parameters θ

θ = θ − α∇θL(θ) (3.1)

where α is the learning rate. The running time of the mini-batch SGD algorithm is usually

expressed as the number of epochs. Each epoch consists of all of the batches of the training

dataset, i.e., in an epoch every example has been seen once. Within an epoch, the pass of

one batch of examples for updating the model parameters is called one iteration.

3.2.2 Differential Privacy

Differential privacy is a rigorous mathematical framework that formally defines the privacy

properties of data analysis algorithms. Informally it requires that any changes to a single

data point in the training dataset can only cause statistically insignificant changes to the

algorithm’s output.

Definition 5 (Differential Privacy [27]). A randomized mechanismA provides (ε, δ)-differential

privacy if for any two neighboring database D and D′ that differ in only a single entry,

∀S ⊆ Range(A),

Pr(A(D) ∈ S) ≤ eε Pr(A)(D′) ∈ S) + δ (3.2)

If δ = 0, A is said to be ε-differential privacy. In the rest of this paper, we write

(ε, δ)-DP for short.

The standard approach to achieving differential privacy is the sensitivity method [29,

27] that adds to the output some noise that is proportional to the sensitivity of the query

function. The sensitivity measures the maximum change of the output due to the change of

a single database entry.

Definition 6 (Sensitivity [29]). The sensitivity of a query function q : D → Rd is

∆ = max
D,D′
||q(D)− q(D′)|| (3.3)
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where D, D′ ∈ D are any two neighboring datasets that differ at most one element, || · ||

denotes L1 or L2 norm.

In this paper, we choose the Gaussian mechanism that uses L2 norm sensitivity. It adds

zero-mean Gaussian noise with variance ∆2σ2 in each coordinate of the output q(D), as

q(D) +N (0,∆2σ2I) (3.4)

It satisfies (ε,δ)-DP if σ2 > 2 log(1.25
δ

)/ε2 and ε ∈ (0, 1) [56].

3.2.3 Concentrated Differential Privacy

Concentrated differential privacy (CDP) is a generalization of differential privacy recently

introduced by Dwork and Rothblum [55]. It aims to make privacy-preserving algorithms

more practical for large numbers of computations than traditional DP while still providing

strong privacy guarantees. It allows the computation to have much less concern about

single-query loss but high probability bounds for the cumulative loss, and provides sharper

and more accurate analysis on the cumulative loss for multiple computations compared to

the popular (ε, δ)-DP.

CDP considers privacy loss on an outcome o as a random variable when the randomized

mechanism A operates on two adjacent database D and D′:

L
(o)
(A(D)||A(D′))

∆
= log

Pr(A(D) = o)

Pr(A(D′) = o)
(3.5)

The (ε, δ)-DP guarantee ensures that the privacy loss variable is bounded by ε but exceeds

that with probability no more than δ. As a relaxation to that, (µ, τ)-concentrated differential

privacy, (µ, τ)-CDP for short [55], ensures that the mean (i.e., expectation) of the privacy

loss is no more than µ and the probability of the loss exceeding its mean by an amount of t·τ

is bounded by e−t2/2. An alternative formulation of CDP to Dwork and Rothblum’s (µ, τ)-

CDP is proposed by Bun and Steinke [57], called “zero-concentrated differential privacy”

(zCDP for short). Instead of mean concentrated as (µ, τ)-CDP, zCDP makes privacy loss
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concentrated around zero (hence the name), still following sub-Gaussian such that larger

deviations from zero become increasingly unlikely.

Definition 7 (Zero-Concentrated Differential Privacy (zCDP)[57]). A randomized mecha-

nism A is ρ-zero concentrated differentially private (i.e., ρ-zCDP) if for any two neighbor-

ing databases D and D′ that differ in only a single entry and all α ∈ (1,∞),

Dα(A(D)||A(D′))
∆
=

1

α− 1
log
(
E
[
e(α−1)L(o)

] )
≤ ρα (3.6)

Where Dα(A(D)||A(D′)) called α-Rényi divergence between the distributions of A(D)

and A(D′).

The (ε, δ)-DP bounds the privacy loss by ensuring Pr(L(o) > ε) ≤ δ. In contrast, zCDP

entails a bound on the moment generating function of privacy loss L(o), indicated by an

equivalent form of (3.6)

E
[
e(α−1)L(o)

]
≤ e(α−1)αρ (3.7)

This implies that for zCDP, privacy loss L(o) is assumed to be a sub-Gaussian random

variable such that it has a strong tail decay property, namely, Pr(L(o) > t + ρ) ≤ e−t
2/(4ρ)

for all t > 0 [57]. The following propositions are restatements of some zCDP results given

in [57] that will be used in our paper.

Proposition 1. If A provides ρ-zCDP, then A provides (ρ + 2
√
ρ log(1/δ), δ)-DP for any

δ > 0.

Proposition 2. The Gaussian mechanism with noise N (0,∆2σ2I) satisfies ( 1
2σ2 )-zCDP.

We use zCDP instead of original (µ, τ)-CDP because zCDP is comparable to (ε, δ)-DP,

as indicated by Proposition 1 and is immune to post-processing while (µ, τ)-CDP is not

closed under post-processing [57].
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3.2.4 Composition

Differential privacy offers elegant composition properties that enable more complex algo-

rithms and data analysis task via the composition of multiple differentially private building

blocks. The composition should have privacy guarantees degraded gracefully with multiple

outputs that may be subjected to the joint analysis from building blocks.

For a sequential composition of k mechanisms A1, . . . ,Ak satisfying (εi, δi)-DP for

i=1,. . ., k respectively, the basic composition result [56] shows that the privacy com-

poses linearly, i.e., the sequential composition satisfies (
∑k

i εi,
∑k

i δi)-DP. When εi = ε

and δi = δ, the strong composition bound from [54] states that the composition satisfies

(ε
√

2klog(1/δ′) + kε(eε − 1), kδ + δ′)-DP. For zCDP, it has a simple linear composition

property [57]:

Theorem 5. Two randomized mechanisms A1 and A2 satisfy ρ1-zCDP and ρ2-zCDP re-

spectively, their sequential composition A = (A1,A2) satisfies (ρ1 + ρ2)-zCDP.

Compared with (ε, δ)-DP, CDP provides a tighter bound on the cumulative privacy loss

under composition, which makes it more suitable for algorithms running a large number of

iterations. In other words, while providing the same privacy guarantee, CDP allows lower

noise scale and thus better accuracy. Consider k iterative composition of a Gaussian mecha-

nism with noiseN (0, σ2I). To guarantee the final (ε, δ)-DP, in terms of (εi, δi)-DP for every

iteration, the permitted loss εi of each iteration is εi = ε/(2
√

2k log(1/(δ − kδi))), which

will be very low when k is large. The noise scale is σ =
√
k
ε

(4
√

log(1.25/δi) log(1/(δ − kδi))).

Suppose δi = δ/(k + 1), we then have σ >
√
k
ε

(4 log((k + 1)/δ)). In contrast, with using

ρi-zCDP for every iteration, because ρ ≈ ε2/(4 log(1/δ)) zCDP satisfies (ε, δ)-DP [57] and

ρi = 1
k
ρ. It is easy to show that the noise scale σ =

√
k
ε

√
2log(1/δ) which is multiple times

smaller than the noise scale derived under (ε, δ)-DP. On the other hand, a single parameter

ρ of zCDP and its linear composition naturally fit the concept of a privacy budget. Thus,

zCDP is an appropriate choice for privacy accounting.
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3.3 Overview

Because it is difficult to characterize the maximum difference of the model parameters over

any two neighboring datasets for neural networks, differentially private deep learning [46,

52, 53] relies on differentially private stochastic gradient descent (DP-SGD) to control

the influence of training data on the model. This approach explicitly bounds per-example

gradients∇θL(θ, x) in every iteration by clipping the L2 norm of gradient vectors. Given a

clipping threshold C, this is done by replacing the gradient vector g with g/max(1, ||g||2
C

)

which scales g down to norm C if ||g||2 > C. A Gaussian mechanism with L2 norm

sensitivity of C is then applied to perturb the gradients before the gradient descent step in

Eq. (3.1) updates the model parameters. Because each SGD step is differentially private,

by the composition property of differential privacy, the final model parameters are also

differentially private. The problem with DP-SGD is that the training of a deep neural

network (DNN) tends to have a large number of iterations, which causes large cumulative

privacy loss at the end. Therefore, a tight estimation of privacy loss under composition

is critical for allowing lower noise scale or more training iterations (for desired accuracy)

when we have a fixed privacy budget.

To analyze the cumulative privacy loss of DP-SGD, we employ concentrated differen-

tial privacy(CDP) which was developed to accommodate a larger number of computations

and provides sharper and tighter analysis of privacy loss than the strong composition theo-

rem of (ε, δ)-DP. One way to track the privacy loss of DP-SGD is the Moments Accountant

(MA) method proposed by Abadi et al. [46]. It assumes that the data batches for mini-

batch SGD are generated by randomly sampling examples from the training dataset with

replacement, MA takes advantage of the privacy amplification effect of random sampling

to achieve a much tighter estimate on privacy loss than the strong composition theorem.

It has been shown in [58] that running an (ε, δ) differentially private mechanism over a

set of examples each of which is independently sampled with probability q (0 < q < 1)
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achieves (log(1 + q(eε − 1)), qδ)-DP. However, in practice, random batches are generated

by randomly shuffling examples and then partitioning them into batches for computation

efficiency, which is distinct from random sampling with replacement. By analyzing the

privacy loss under these two data batching methods, random sampling with replacement

and random reshuffling respectively, we show that 1) random sampling with replacement

and random reshuffling result in different privacy loss; and 2) privacy accounting using

the MA method underestimates the actual privacy loss of their neural network training,

because it simply regards random reshuffling as random sampling with replacement. To

address these problems, we develop different privacy accounting methods for each of the

batching methods, and our algorithm makes proper choices depending on which method is

used for data batching. For privacy accounting under random sampling based batching, we

show that CDP is unable to capture the privacy amplification effect of random sampling. To

address that, we propose a relaxation of zCDP and convert it to (ε, δ)-DP. Compared with

MA, which needs to compute log moments of privacy loss over a range of moment orders,

our method uses explicit expressions to compute privacy loss and thus is more efficient,

particularly when the noise scale of the Gaussian mechanism dynamically changes along

the training.

In our approach, dynamic privacy budget allocation is applied to DP-SGD to improve

the model accuracy. In model publishing the privacy loss of each learning step is not our

primary concern. This allows us to allocate different privacy budgets to different training

epochs as long as we maintain the same overall privacy guarantee. Our dynamic budget

allocation approach is in contrast to the previous work [46], which employs a uniform

privacy budget allocation, and uses the same noise scale in each step of the whole training

process. Our dynamic privacy budget allocation approach leverages several different ways

to adjust the noise scale. Our experimental results demonstrate that this approach achieves

better model accuracy while retaining the same privacy guarantee.

Algorithm 2 presents our DP-SGD algorithm. In each iteration, a batch of examples
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Algorithm 2: Differentially Private SGD Algorithm
Input: Training examples {x1, . . . , xN}, learning rate ηt, group size L, gradient norm bound

C, total privacy budget ρtotal
1 Initialize w0 ;
2 Initialize cumulative privacy loss cprivt = 0;
3 for t = 1 : T do
4 Dynamic privacy budget allocation:
5 σt ← AdpBudgetAlloc(ρtotal, t, T, schedule);
6 update cprivt according to data batching method, t and σt;
7 If cprivt > ρtotal, break ;
8 data batching:
9 Take a batch of data samples Bt from the training dataset;

10 B = |Bt|;
11 Compute gradient:
12 For each i ∈ Bt, gt(xi)←5wtL(wt, xi);
13 Clip gradient:
14 ĝt(xi)← gt(xi)/max

(
1, ||gt(xi)||2C

)
;

15 Add noise:
16 g̃t ← 1

B

(∑
i ĝt(xi) +N (0, σ2

tC
2I)
)
;

17 Descent:
18 wt+1 ← wt − ηtg̃t ;
19 Output wT ;

is sampled from the training dataset and the algorithm computes the gradient of the loss

on the examples in the batch and uses the average in the gradient descent step. The gra-

dient clipping bounds per-example gradients by l2 norm clipping with a threshold C. The

Gaussian mechanism adds random noiseN (0, σ2
tC

2I) to
∑

i ĝt(xi) to perturb the gradients

in every iteration. We have a total privacy budget ρtotal and cumulative privacy cost cprivt .

The way to update cprivt depends on which batching method is used. If the privacy cost

exceeds the total budget, then the training is terminated. In the pseudo code, the function

AdpBudgetAlloc(ρtotal, t, T, schedule) is used to obtain the noise scale σt for the current

training step t, according to schedule that decides how the noise scale is adjusted during

the training time.
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3.4 Details of Our Approach

In this section, we present the details of our approach for differentially private deep learn-

ing. We first propose our dynamic privacy budget allocation techniques and then develop

privacy accounting methods based on zCDP for different data batching methods.

3.4.1 Dynamic Privacy Budget Allocation

In Algorithm 2, the privacy budget allocated to an epoch decides the noise scale of Gaussian

mechanism used by each iteration within that epoch. For a given privacy budget ρtotal, the

final model accuracy depends on how the privacy budget is distributed over the training

epochs. Our approach aims to optimize the budget allocation over the training process to

obtain a differentially private DNN model with better accuracy.

Concretely, our dynamic privacy budget allocation follows the idea that, as the model

accuracy converges, it is expected to have less noise on the gradients, which allows the

learning process to get closer to the local optimal spot and achieve better accuracy. A

similar strategy has been applied to the learning rate of DNNs in common practice. It

is often recommended to reduce the learning rate as the training progresses, instead of

using a constant learning rate throughout all epochs, to achieve better accuracy [59, 60].

Therefore, we propose a set of methods for privacy budget allocation, which effectively

improve the model accuracy by dynamically reducing the noise scale over the training time

(as demonstrated by our experiments).

Adaptive schedule based on public validation dataset

One approach for adjusting the noise scale is to monitor the validation error during training

and reduce the noise scale whenever the validation error stops improving. We propose an

adaptive privacy budget allocation that dynamically reduces the noise scale according to

the validation accuracy. Every time when the validation accuracy improves by less than a

61



threshold δ, the noise scale is reduced by a factor of k until the total privacy budget runs

out. However, when the validation dataset is sampled from the private training dataset, the

schedule has some dependency on the private dataset, which adds to the privacy cost. In

this case, if we can leverage a small publicly available dataset from the same distribution

and use it as our validation dataset, then it will not incur any additional privacy loss.

In our approach, with a public validation dataset, the validation accuracy is checked

periodically during the training process to determine if the noise scale needs to be reduced

for subsequent epochs. The epochs over which the validation is performed are referred to

as validation epochs. Let σe be the noise scale for the DP-SGD training in the validation

epoch e, and Se be the corresponding validation accuracy . The noise scale for the subse-

quent epochs is adjusted based on the accuracy difference between current epoch e and the

previous validation epoch e− 1. Initially, S0 = 0,

σ′e =

{
kσe, if Se − Se−1 ≤ δ (3.8)

σe (3.9)

The updated noise scale σ′e is then applied to the training until the next validation epoch

e+1. The above equations amount to say that if the improvement on the validation accuracy

Se − Se−1 is less than the threshold δ, it triggers the decay of noise scale σe = kσe where

k (0 < k < 1) is decay rate, a hyperparameter for the schedule. We note that the validation

accuracy may not increase monotonically as the training progresses, and its fluctuations

may cause unnecessary reduction of noise scale and thus waste on the privacy budget. This

motivates us to use the moving average of validation accuracy to improve the effectiveness

of validation-based noise scale adjustment: at validation epoch e, we define an averaged

validation accuracy S̄e over the previous m validation epochs from e, including itself, as

follows:

S̄e =
1

m

e∑
i=e−m+1

Si (3.10)

The schedule checks the averaged validation accuracy every period (period ≥ m) number

of validation epochs and compares the current result with that of the last checking time to
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decide if the noise scale needs to be reduced according to Eq. (3.8).

Pre-defined schedules

When the public validation dataset is not available, we propose to use an alternative ap-

proach that pre-defines how the noise scale decreases over time without accessing any

datasets or checking the model accuracy. Concretely, in our approach, the noise scale is re-

duced over time according to some decay functions. The decay functions update the noise

scale by epoch, while the noise scale keeps the same for every iteration within an epoch.

By leveraging the Gaussian mechanism that adds noise fromN (0, σ2
tC

2I), we provide four

instances of decay functions, all of which take the epoch number t as an argument.

a) Time-Based Decay: It is defined with the mathematical form

σt = σ0/(1 + kt)

where σ0 is the initial noise parameter for σ, t is the epoch number and k (k > 0) is decay

rate. when k < 1, it is known as “search-then-converge” [61], which decreases the noise

scale linearly during the SGD search phase when t is less than the “search time” 1/k, and

decreases the noise by 1/t when t is greater than 1/k.

b) Exponential Decay: It has the mathematical form

σt = σ0e
−kt

where k (k > 0) is decay rate.

c) Step Decay: Step decay reduces the learning rate by some factor every few epochs. The

mathematical form is

σt = σ0 ∗ kbt/periodc

where k (1 > k > 0) is the decay factor and period decides how often to reduce noise in

terms of the number of epochs.
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d) Polynomial Decay: It has the mathematical form

σt = (σ0 − σend) ∗ (1− t/period)k + σend

where k(k > 0) is the decay power and t < period. A polynomial decay function is

applied to the initial σ0 within the given number of epochs defined by period to reach σend

(σend < σ0). When k = 1, this is a linear decay function.

The schedules for noise decay are not limited to the above four instances. In this paper

we choose to use these four because they are simple, representative, and also used by

learning rate decay in the performance tuning of DNNs. Users can apply them in various

ways. For example, a user can use them in the middle of training phase, but keep constant

noise scale before and after. Note that in the time-based decay and exponential decay, t can

be replaced by bt/periodc as done in the step decay such that the decaying is applied every

period number of epochs. The polynomial decay requires a specific end noise scale after

period epochs, and we make the noise scale constant after the training time exceed period

epochs.

Privacy Preserving Parameter Selection

The proposed schedules require a set of pre-defined hyperparameters, such as decay rate

and period. Their values decide the training time and affect the final model accuracy.

It is expected to find the optimal hyperparameters for the schedules to produce the most

accurate model. A straightforward approach is to test a list of k candidates by training k

neural networks respectively and trivially choose the one that achieves the highest accuracy,

though this adds the privacy cost up to kρtotal. A better approach is to apply differentially

private parameter tuning, such as the mechanism proposed by Gupta et al. [50]. The idea

is to partition the dataset to k + 1 equal portions, train k models with using k schedules

on k different data portions respectively, and evaluate the number of incorrect predictions

for each model, denoted by zi (1 ≤ i ≤ k), on the remaining data portion. Then, the
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Exponential Mechanism [30] is applied, which selects and outputs a candidate with the

probability proportional to exp(−εzi
2

). This parameter tuning procedure satisfies ε-DP, and

accordingly satisfies 1
2
ε2-zCDP [57].

3.4.2 Refined Privacy Accountant

The composition property of zCDP allows us to easily compute cumulative privacy loss for

the iterative SGD training algorithm. Suppose that each iteration satisfies ρ-zCDP and the

training runs T iterations, then the whole training process satisfies (Tρ)-zCDP. In this sec-

tion we show that 1) the composition can be further refined by considering the property of

the mini-batch SGD algorithm, and 2) more importantly, different batching methods lead

to different privacy loss. In particular, we analyze the privacy loss composition under two

common batching methods: random sampling with replacement and random reshuffling.

With random reshuffling, the training dataset is randomly shuffled and then partitioned into

batches of similar size and SGD sequentially processes one batch at a time. It is a ran-

dom sampling process without replacement. For random sampling with replacement, each

example in a batch is independently sampled from the training dataset with replacement.

Because these two data batching methods have different privacy guarantees, for tracking

privacy loss correctly, it is important for the users to choose the right accounting method

based on the batching method they use.

Under random reshuffling

SGD takes disjoint data batches as input within an epoch with random reshuffling. We note

that the existing results [55, 57, 29] on the composition of a sequence of differential private

mechanisms A1, . . . ,Ak assume that each mechanism Ai runs with the same dataset X

as input. It is expected that their composition has less cumulative privacy loss if each of

differentially private mechanisms runs on disjoint datasets. The formal composition result

in this scenario is detailed in Theorem 6.
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Theorem 6. Suppose that a mechanismA consists of a sequence of k adaptive mechanisms,

A1, . . . ,Ak, where each Ai :
∏i−1

j=1Rj ×D → Ri and Ai satisfies ρi-zCDP (1 ≤ i ≤ k).

Let D1,D2, . . . ,Dk be the result of a randomized partitioning of the input domain D. The

mechanism A(D) = (A1(D ∩ D1), . . . ,Ak(D ∩ Dk)) satisfies
ρ-zCDP, if ρi = ρ, ∀i

max
i
ρi-zCDP, if ρi 6= ρj for some i, j

(3.11)

Proof. Suppose two neighboring datasetsD andD′. Without loss of generality, assume that

D contains one more element de thanD′. LetDi = D∩Di andD′i = D′∩Di. Accordingly,

there exists j such that Dj contains one more element than D′j , and for any i 6= j, Di = D′i.

Consider any sequence of outcomes o = (o1, . . . , ok) of A1(D1), . . . ,Ak(Dk).

Because only Dj is different from D′j , for any i 6= j, we have

Pr[Ai(Di) = oi|Ai−1(Di−1) = oi−1, . . . ,A1(D1) = o1]

equal to

Pr[Ai(D′i) = oi|Ai−1(D′i−1) = oi−1, . . . ,A1(D′1) = o1]

Then, we have

L
(o)
j

∆
= log

(
Pr(A(D) = o

Pr(A(D′) = o)

)
= log

(∏
i∈[n] Pr[ADii = oi|ADi−1

i−1 = oi−1, ..,AD1
1 = o1]∏

i∈[n] Pr[AD
′
i

i = oi|A
D′i−1

i−1 = oi−1, ..,A
D′1
1 = o1]

)

= log

(
Pr[ADjj = oj|A

Dj−1

j−1 = oj−1, ..,AD1
1 = o1]

Pr[AD
′
j

j = oj|A
D′j−1

j−1 = oj−1, ..,A
D′1
1 = o1]

)
∆
= cj(oj; o1, . . . , oj−1)

where ADii denotes Ai(Di) for short.
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Once the prefix (o1, . . . , oj−1) is fixed,

Cj
∆
= cj(oj; o1, . . . , oj−1) = log

(
Pr(Aj(Dj) = oj)

Pr(Aj(D′j) = oj)

)
By the ρj-zCDP property of Aj , E

[
e(α−1)Cj

]
≤ e(α−1)αρj , thus

E
[
e(α−1)L

(o)
j

]
= E

[
exp

(
(α− 1)Cj

)]
≤ e(α−1)αρj

Because of randomized partition of the input domain D, the extra element de of D is

randomly mapped to k partitions. Therefore, j is uniformly distributed over {1, . . . , k},

and thus the privacy loss L(o) under random data partition is the mixture of independent

random variables L(o)
1 , · · · , L(o)

k ,

f(L(o)) =
1

k
f(L

(o)
1 ) + . . .+

1

k
f(L

(o)
k )

where f(X) is the probability distribution function of X .

We have

E
[
e(α−1)L(o)

]
=

1

k

k∑
j=1

E
[
exp

(
(α− 1)L

(o)
j

)]

Because L(o)
j satisfies zCDP, by (3.7) then we have

≤ 1

k

k∑
j=1

exp((α− 1)αρj)

If ρj = ρ ∀j, we have E
[
e(α−1)L(o)

]
≤ exp((α− 1)αρ), and thus the mechanismA(D)

satisfies ρ-zCDP.

If not all ρj are the same, we replace each ρj with max
j
ρj , we have E

[
e(α−1)L(o)

]
≤

exp((α− 1)αmax
j
ρj), and the mechanism A(D) satisfies maxi ρi-zCDP.
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Theorem 6 provides a tighter characterization of privacy loss for the composition of

mechanisms having disjoint input data. Assume for all i ∈ (1, . . . , k), ρi = ρ. Given

Theorem 6, it is trivial to demonstrate that mechanism A satisfies ρ-zCDP. Compared with

a guarantee of (kρ)-zCDP using the composition property in Proposition 5, we demon-

strate that the total privacy loss of sequential computations on disjoint datasets is just ρ,

equivalent with one computation step in the sequence. For ε-DP, the similar result in [62]

of the parallel composition theorem says that when each εi-differentially private mecha-

nism queries a disjoint subset of data in parallel and work independently, their composition

provides (maxi εi)-DP instead of the
∑

i εi derived from a naive composition.

In the differentially private mini-batch SGD algorithm shown in Algorithm 2, each

iteration step t satisfies ( 1
2σ2
t
)-zCDP according to Proposition 2. Suppose that each iteration

from the same epoch uses the same noise scale σ and each uses a disjoint data batch.

Then, by Theorem 6, we know that the computation of this epoch still satisfies ( 1
2σ2 )-zCDP.

Because the training dataset is repeatedly used every epoch, the composition of the epoch

level computations follows normal composition of Proposition 5. Thus, when the training

runs a total of E epochs and each epoch e satisfies ρe-zCDP, the whole training procedure

satisfies (
∑E

e=1 ρe)-zCDP.

Under random sampling with replacement

We have shown a privacy amplification effect resulting from the disjoint data access of ev-

ery iteration within one epoch under random reshuffling. In contrast, the MA method [46]

exploits the privacy amplification effect of random sampling with replacement. In this

section, we examine how random sampling with replacement affects the privacy loss in

terms of zCDP. Intuitively, the random sampling with replacement introduces more uncer-

tainty than the random reshuffling process which samples data batches without replace-

ment. However, our analysis shows that CDP cannot characterize the privacy amplification

effect of random sampling. It is because of the restrictive notion of sub-Gaussianity in CDP
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which requires moment constraints on all orders, i.e., α ∈ (1,∞) in Eq. (3.7). To address

this problem, we propose a relaxation of zCDP and convert it to (ε, δ)-DP. This then allows

us to capture the privacy amplification of random sampling.

Suppose a new mechanismA′ that runs ρ-zCDP mechanismA on a random subsample

of dataset D where each example is independently sampled with probability q. Without

loss of generality, we fix D and consider a neighboring dataset D′= D ∪ de. we use Λ(∗) to

denote the sampling process over dataset ∗, let T be any subsample that does not include de

and T ′ = T ∪ de. Because de is randomly sampled with probability q, A′(D′) is distributed

identically as u0
∆
= Pr(Λ(D) = T )A(T ) with probability (1− q), and as u1

∆
= Pr(Λ(D′) =

T ′|de ∈ T ′)A(T ′) with probability q. Therefore, the following holds:

A′(D) ∼ u0, A′(D′) ∼ qu1 + (1− q)u0 (3.12)

By Pr
(
Λ(D) = T

)
=Pr

(
Λ(D′) = T ′|de ∈ T ′

)
due to T ′ = T ∪de, it is easy to prove thatA′

still satisfies ρ-zCDP. Suppose A′ that runs ρ-zCDP mechanism A on a random subsample

of dataset D. Following the result (3.12) in the paper, the proof is as follows: Because

Pr(Λ(D′) = T ′|de ∈ T ′) = Pr(Λ(D) = T ) and A satisfies ρ-zCDP, Rényi divergence

Dα(u0||u1) ≤ Dα(A(T )||A(T ′)) ≤ αρ (3.13)

Dα(u1||u0) ≤ Dα(A(T ′)||A(T )) ≤ αρ (3.14)

Using jointly quasi-convexity of Rényi divergence [63], we have

Dα(u0||qu1 + (1− q)u0) ≤ Dα(u0||u1) ≤ αρ (3.15)

Dα(qu1 + (1− q)u0 || u0) ≤ Dα(u1||u0) ≤ αρ (3.16)

and thus A′ still satisfies ρ-zCDP.

No privacy amplification for A′ in terms of CDP. Consider

(α− 1)Dα(A′(D′)||A′(D))
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= log

(
Eu0

[(qu1 + (1− q)u0

u0

)α])
> log

(
Eu0

[(
q
u1

u0

)α])
= α log q + (α− 1)Dα(u1||u0) (3.17)

When α→∞, we have

Dα(A′(D′)||A′(D)) > αρ+
α

α− 1
log q → αρ+ log q (3.18)

This shows that the sampling does not produce any reduction with regard to q on ρ and still

Dα(A′(D′)||A′(D)) = Θ(αρ). Therefore, by definition, zCDP is not able to capture the

privacy amplification effect of random sampling.

The reason there is no privacy amplification with random sampling on zCDP is that

concentrated DP requires a sub-Gaussian distribution for privacy loss, and thus moments

must be bounded by exp(O(α2)) at all orders α ∈ (1,+∞). This is a fairly strong con-

dition. Alternatively, it requires that a mechanism A has α-Rényi divergence bounded by

αρ for all α ∈ (1,+∞). To demonstrate that, we assume a Gaussian mechanism A that

A(T ) ∼ N(0, σ2) and A(T ′) ∼ N(1, σ2). Denote N(0, σ2) by p0 and N(1, σ2) by p1. It is

trivial to show thatDα(u1||u0) = Dα(p1||p0) andDα(qu1+(1−q)u0||u0) = Dα(qp1+(1−

q)p0||p0). We can then numerically compute Dα(u1||u0) and Dα(qu1 + (1− q)u0||u0) with

q = 0.01 and σ = 4. Results are shown in Figure 3.1. Dα(u1||u0) is linear in α because

Dα(u1||u0) = αρ = α/(2σ2). However, we can see that Dα(qu1 + (1 − q)u0||u0) has a

changing point at α = 147. Before this changing point it is close to zero, because q = 0.01

is very small and the two distributions qu1 + (1 − q)u0 and u0 are close to each other.

At higher orders, the sampling effect vanishes and the divergence increases at the rate of

Dα(u1||u0). This indicates that the privacy amplification effect from random sampling does

not hold for all orders α ∈ (1,+∞), and we cannot improve the privacy metric in terms of

zCDP under the random sampling. On the other hand, Figure 3.1 suggests that we need to

analyze the α-Rényi divergence within a limited range of α to capture the privacy ampli-

fication effect. We will show that having a bound on Dα(·||·) within a limited range of α
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makes it possible to capture the privacy amplification effect of random sampling. However,

such constraint does not fit into the definition of CDP since it indicates a sub-exponential

privacy loss variable, a relaxation to sub-Gaussianity in the definition of CDP. Therefore,

in this paper we address it by converting the α-Rényi divergence under such relaxation to

traditional (ε, δ)-DP.

In the following we show the conversion to (ε, δ)-DP in a general form for a Gaussian

mechanism with bounded α-Rényi divergence in some limited range of α parameterized

by q and σ, and then consider specific cases with concrete values for the range of α and

bounds on α-Rényi divergence.

Suppose that f : D → Rp with ||f(·)||2 ≤ 1. Consider a mechanism A′ that runs

a Gaussian mechanism adding noise N (0, σ2I) over a random subsample J ⊆ D where

each example is independently sampled with probability q, i.e., A′(D) =
∑

i∈J f(xi) +

N (0, σ2I). Let Dα(·||·) be the α-Rényi divergence between A′(D) and A′(D′) for two

neighboring datasets D and D′. Let P (∗) and Uα(∗) be bounded functions (e.g., polynomial

function) of q and σ. We assume Dα(·||·) is bounded by α · P (q, σ) within a limited range

of 1 < α ≤ Uα(q, σ). Then, we have the following theorem:

Theorem 7. Let ρ̂ = P (q, σ) and uα = Uα(q, σ). If the mechanism A′ has

Dα(A′(D)||A′(D′)) ≤ αρ̂ (3.19)

for 1 < α ≤ uα, it satisfies
(
ρ̂+ 2

√
ρ̂ log(1/δ), δ

)
−DP, if δ ≥ 1/ exp(ρ̂(uα − 1)2) (3.20)(

ρ̂uα −
log δ

uα − 1
, δ
)
−DP, otherwise (3.21)

Proof. Let Z = L
(o)
(M(D)||M(D′)) be privacy loss random variable, then for 1 < α ≤

σ2 log 1
qσ

+ 1,

E
[
e(α−1)Z

]
= e(α−1)Dα(M(D)||M(D′)) ≤ e(α−1)αρ̂ (3.22)
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By Markov’ inequality,

P (Z ≥ ε) =P (e(α−1)Z > e(α−1)ε) ≤
E
[
e(α−1)Z

]
e(α−1)ε

(3.23)

≤ exp((α− 1)(ρ̂α− ε)) (3.24)

The unconstrained minimum of function g(α) = (α − 1)(ρ̂α − ε) occurs at α∗ =

(ε + ρ̂)/(2ρ̂), and the minimum value is −(ε − ρ̂)2/(4ρ̂). If α∗ ≤ uα, this unconstrained

minimum corresponds to the constrained minimum as well that is subject to α ≤ uα. Let

δ = exp
(
− (ε− ρ̂)2/(4ρ̂)

)
, and then we have ε = ρ̂ + 2

√
ρ̂log(1/δ), which has the same

form as in Proposition 1. In this case,

α∗ = (2ρ̂+ 2
√
ρ̂log(1/δ))/(2ρ̂)

, and it requires

(2ρ̂+ 2
√
ρ̂log(1/δ))/(2ρ̂) ≤ uα (3.25)

From (3.25) we have

δ ≥ 1/ exp(ρ̂(uα − 1)2) (3.26)

Otherwise, if

δ < 1/ exp(ρ̂(uα − 1)2) (3.27)

which means

α∗ > uα

Then, because the function g(α) is monotonically decreasing in the interval (0, α∗], the

constrained minimum is achieved at the boundary point

α+ = uα
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Figure 3.1: α-Rényi divergence under sampling(q=0.01, σ=4)

and accordingly we let δ = exp
(
(α+ − 1)(ρ̂α+ − ε)

)
and have

ε = ρ̂α+ − logδ

α+ − 1

.

Theorem 7 shows how to convert bounded α-Rényi divergence within a limited range

of α to (ε, δ)-DP, once the bound functions P (q, σ) and Uα(q, σ) are determined. Proper

choice of Uα(q, σ) for the range of α (for example, let Uα(q, σ) < 147 in Figure 1) with

a corresponding P (q, σ) can capture the privacy amplification effect of random sampling

with replacement, which we will discuss soon. Combined with the composition rules given

below, Theorem 7 provides an easy way to estimate privacy loss for DP-SGD under random

sampling based batching.

Composition. Now we consider the composition of a sequence of Gaussian mechanisms

with random sampling. Suppose k mechanisms, denoted byM=(A′1,. . . , A′k) where each

A′i uses sampling ratio qi and noise scale σi. Because the constraint of α in Eq. (3.19)

depends on the sampling ratio and noise scale, we examine their composition in two cases:

1.) Each mechanism uses the same q and σ. For 1 < α ≤ uα, by the composition

property of α-Rényi divergence [57], we have Dα(M(D)||M(D′)) ≤ kαP (q, σ). The

conversion to (ε, δ)-DP can be done by letting ρ̂ = kP (q, σ) in (3.20) and (3.21) in Theorem

7.
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2.) The sampling ratio and noise scale are different for each mechanism. Then, for

each Ai, we have Dα(Ai(D)||Ai(D′)) ≤ αP (qi, σi) for 1 < α ≤ Uα(qi, σi). To allow the

composition of α-Rényi divergence of mechanisms with different qi and σi, we constrain

α to the range 1 < α ≤ mini{Uα(qi, σi)}. It is then clear that Dα(M(D)||M(D′)) ≤

α(
∑

i P (qi, σi)) holds within this α range. Letting ρ̂ =
∑

i P (qi, σi) and replacing q and σ

by qj and σj where j = arg mini{Uα(qi, σi)|1 ≤ i ≤ k} in Eq. (3.20) and (3.21), we can

still obtain the corresponding (ε,δ)-DP.

When random sampling is used for batching, Algorithm 2 follows the above method to

estimate privacy loss in terms of (ε, δ)-DP. In particular, the algorithm specifies a fixed

δ = δ0 and a total privacy budget εtotal, and at every iteration step t, it updates ρ̂ =∑t
i=0 P (qi, σi) and computes the corresponding cumulative privacy loss εt. If εt > εtotal,

the training is terminated and the final model satisfies (εtotal, δ0)-DP.

The bound on α-Rényi divergence. To apply Theorem 7 while capturing the privacy

amplification effect of random sampling, proper range constraint Uα(q, σ) and the bound

P (q, σ) have to be determined. We noted that, an asymptotic bound on the log moment was

given in Lemma 3 in previous work [46] when q ≤ 1
16σ

. By definition, α-Rényi divergence

is equal to the log moment multiplied by a factor of 1
α−1

. Then, it is easy to know that, under

the same condition, Dα(·||·) has an asymptotic bound of q2

1−qα/σ
2 +O(q3(α− 1)2/σ3) for

1 < α ≤ σ2 log 1
qσ

+ 1. This bound exhibits the privacy amplification with having a factor

of q2 on α. Therefore, a possible solution here is to determine an appropriate P (q, σ) within

1 < α ≤ Uα(q, σ) = σ2 log 1
qσ

+ 1 given q ≤ 1
16σ

.

In the conference version of our paper [2], we noted that in previous work [46] the proof

of Theorem 1 uses an approximation q2λ2/σ2 as the log moment bound. Accordingly, we

set P (q, σ) = q2/σ2 for Theorem 7. The problem with it is that the bound q2λ2/σ2 does not

strictly bound the log moment at order λ due to the approximation, although our experiment

in [2] shows that using P (q, σ) = q2/σ2 produces valid upper bound and very close result

to that produced by MA [46] which computes the exact log moment value numerically.
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We examined this problem and experimentally confirmed it. In this paper, instead, we use

q2λ(λ + 1)/σ2 as the upper bound of the log moment because our numerical computation

shows that it is valid in a wide range of parameter settings, and at the same time upper

bound q2α/σ2 of α-Rényi divergence still holds in this case. In our validation, we compare

the bound q2α/σ2 of α-Rényi divergence with the result numerically computed with the

MA implementation [46] considering the factor of 1
α−1

difference between log moment

and α-Rényi divergence. We test σ and q with a precision of 0.001, by varying σ from 2 to

30 and q from 0.001 to 1
16σ

with a step size of 0.001. To avoid the overflow in numerical

computation of MA, we limit Uα = min(σ2 log 1
qσ

+1, 200). In our validation, we compute

the result on integer values of α ∈ (1, Uα). It is interesting that our result shows that this

upper bound holds in all the parameter settings we checked for q and σ.

In summary, we have shown that CDP is not able to capture the privacy amplification

effect of random sampling. We address this issue by bounding α-Rényi divergence over a

constrained range of α instead of (1,∞) and convert to (ε, δ)-DP. Comparing with MA, our

approach produces a bit higher privacy loss estimation due to the use of an upper bound

instead of exact log moment values. However, it provides an alternative but easy way to

estimate privacy loss, especially when we use different sampling ratios and noise scales for

each iteration of DP-SGD for dynamic privacy budget allocation.

More importantly, we have provided formal analysis to show that the compositions

of differential privacy under two batching methods are distinct. As demonstrated by our

experimental results, this causes different privacy loss. Therefore, we argue that the privacy

accounting method has to be chosen according to which data batching method is used. In

our implementation, we focus on random reshuffling, because it is a common practice in the

neural network implementation [64, 65]. In fact, several existing deep learning frameworks

such as TensorFlow provide convenient random reshuffling APIs for generating batches. It

is also numerically observed that random reshuffling outperforms its random sampling with

replacement [66].
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3.4.3 DP Composition Under Dynamic Schedules

For pre-defined schedules, once the hyperparameters are specified, they follow the decay

functions to update the noise scale without accessing the data and the model, and thus

do not incur any additional privacy cost. Since the noise scale is updated by epoch, each

iteration step within an epoch uses the same noise scale. Suppose the epoch t uses the

noise scale σt. Each iteration of epoch t is then ρ = 1/(2σ2
t ) zCDP by Proposition 2,

and the total privacy cost of epoch t can be calculated by Theorem 6 or 7 depending on

which batching method is used. Over the course of training, the cumulative privacy loss

is updated at each epoch, and once the cumulative privacy loss exceeds the fixed privacy

budget ρtotal, the training is terminated. To achieve a target training time under a given total

privacy budget, we can determine the exact values of hyperparameters for these schedules

in advance before the training time.

For the validation-based schedule, the access to the public validation dataset does not

incur additional privacy cost. With this schedule, the composition of differential privacy

involves adaptive choices of the privacy parameter ρ at every epoch, which is corresponding

to the noise scale σ of the Gaussian mechanism. This means that the choice of privacy

parameters itself is a function of the realized outcomes of the previous rounds. It has been

shown by Rogers et al. [67] that the strong composition theorem for (ε, δ)-DP fails to hold

in this adaptive privacy parameter setting since the theorem requires the privacy parameters

to be pre-defined ahead of time. To address this problem, they define the privacy loss as a

random variable as done in Eq. (3.5) for CDP and develop the composition for (ε, δ)-DP

using privacy filters. Privacy filters provide a way to halt the computation with probability

1−δ before the realized privacy loss exceeds ε. Our approach relies on zCDP which defines

privacy loss as in Eq. (3.5) by nature and therefore the composition accumulating privacy

cost with regard to Rényi divergence holds for the adaptive parameter settings.
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3.5 Experimental Results

In this section, we evaluate the proposed privacy accounting methods, and demonstrate the

effectiveness of dynamic privacy budget allocation on different learning tasks. Our imple-

mentation is based on the TensorFlow implementation [68] of DP-SGD in the paper[46].

3.5.1 Comparing Privacy Accounting Approaches

In Section 3.4.2 we derive different privacy accounting methods for two data batching

methods: random reshuffling (RF) and random sampling with replacement (RS). We re-

fer to them as zCDP(RF) and zCDP(RS) respectively. To numerically compare them with

other privacy accounting methods including strong composition [54] and the moments ac-

countant (MA) method [46], we unify them into (ε, δ)-DP. Following [46], we assume that

the batches are generated with RS for both the strong composition and MA. We use the

implementation of [46] in TensorFlow to compute MA. For strong composition, we apply

the strong composition theorem in [54] to the composition of (log(1 + q(eε − 1)), qδ)-DP

mechanisms that are the privacy amplified version of (ε, δ)-DP mechanisms running with

random sampling ratio q. We compute (ε, δ)-DP for zCDP(RF) with Proposition 1 and for

zCDP(RS) with the methods in Section 3.4.2.

In our experimental setting, we assume a batch size B for random reshuffling. For

random sampling we assume a sampling ratio q = B
N

given a total of N samples. In the

following, when we vary q, it is equivalent to change the batch size for random reshuffling.

The number of iterations in one epoch is 1
q
. For simplicity, we use the same noise scale

for Gaussian mechanism N (0, C2σ2I) for every iteration and set q = 0.01 and σ = 6 by

default. Given σ = 6, the Gaussian mechanism satisfies both (ε = 0.808, δ = 1e − 5)-

DP and ρ = 0.0139-zCDP. We track the cumulative privacy loss by epoch with different

privacy accounting methods and convert the results to ε in terms of (ε, δ)-DP with fixed

δ = 1e− 5.
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Figure 3.2 shows the growth of privacy loss metric ε during the training process. It

shows that zCDP(RF) has lower estimation on privacy loss than that of the strong compo-

sition during the training. The final spent ε at epoch 400 by zCDP(RF) and strong com-

position are 21.5 and 34.3 respectively. Although random sampling introduces higher un-

certainty and thus less privacy loss than random shuffling, zCDP(RF) still achieves lower

and thus tighter privacy loss estimation even than the strong composition with random

sampling. This demonstrates the benefit of CDP for composition of a large number of

computations. The results for zCDP(RS) and MA are very close to each other because

that they both exploit the moment bounds of privacy loss to achieve tighter tail bound and

take advantage of the privacy amplification of random sampling. The final spent ε is 2.37

and 1.67 for zCDP(RS) and MA respectively. The reason for zCDP(RS) to have a slightly

higher estimation is that its conversion to (ε, δ)-DP explicitly uses the log moment bound

instead of the numerical computation of log moments. The benefit of zCDP(RS) is that it is

easy to compute with explicit expressions in Theorem 7, and its composition for dynamic

privacy budget allocation is also simple and thus more efficient.

Figure 3.2 shows that zCDP(RF) has higher privacy loss compared to MA and zCDP(RS),

because more uncertainty is introduced with RS. However, it is worth noting that the com-

mon practice in deep learning is to use RF, including the implementation of [46]. Thus,

zCDP(RF) is the proper choice for them and also straightforward due to the composition

property of ρ-zCDP which simply adds up on ρ values. The results show that MA underes-

timates the real privacy loss when treating the random reshuffling as random sampling with

replacement.

We further examine how zCDP(RF) and zCDP(RS) change with the sampling ratio q

and the noise scale σ. Using the default σ = 6, Figure 3.3a shows the privacy loss ε at the

end of 200 training epochs with varying q values. For zCDP(RF), the cumulative privacy

loss does not change with q. This is because the composition of ρ-zCDP iterations within

one epoch still satisfies ρ-zCDP by Theorem 6 and across epochs the linear composition
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Figure 3.3: privacy loss ε v.s. sampling ratio q & noise scale σ

of ρ-zCDP in Theorem 5 is applied, which makes the final privacy loss depend exclusively

on the number of training epochs. We have fixed 200 epochs so the final privacy loss does

not change. In contrast, the privacy loss given by zCDP(RS) increases with the sampling

ratio q, which can be seen in Eq. (3.20) where ε increases with ρ̂ which is proportional to

q2. Similarly, Figure 3.3b shows the privacy loss after 200 epochs by varying noise scales

with the same q=0.01. We observe that increasing σ from 5 to 14 significantly reduces ε

for zCDP(RF) but has noticeably less impact on zCDP(RS). It suggests that under random

sampling, a small sampling ratio contributes much more on privacy than the noise scale σ.

This indicates that we may reduce the noise scale to improve the model accuracy without

degrading much privacy. However, for random reshuffling, the privacy loss does not depend

on the sampling ratio (i.e., the batch size) but is decided by σ, so it is more critical to

achieve a good trade-off between privacy and model accuracy in this case. Our privacy
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budget allocation techniques optimize this trade-off by dynamically adjusting σ during the

training to improve model accuracy while retaining the same privacy guarantee.

3.5.2 Evaluating Dynamic Privacy Budget Allocation

In this section we evaluate the effectiveness of dynamic privacy budget allocation compared

to uniform privacy budget allocation adopted by Abadi et al. [46]. Since the TensorFlow

implementation uses random reshuffling to generate batches, privacy accounting in Section

3.4.2 should be used to avoid the underestimation of privacy loss. We therefore use ρ as the

metric to represent the privacy budget and loss. Because the techniques for adjusting noise

scales are independent of the batching method, the benefit of dynamic privacy budget allo-

cation on model accuracy demonstrated under random reshuffling also applies to random

sampling.

Datasets and Models

Our experiments use three datasets and different default neural networks for each dataset.

MNIST. This is a dataset of handwritten digits consists of 60,000 training examples and

10,000 testing examples [69] formatted as 28X28 size gray-level images. In our experi-

ment, the neural network model for MNIST follows the settings in previous work [46] for

comparison: a 60-dimensional PCA projection layer followed by a simple feed-forward

neural network comprising a single hidden layer of 1000 ReLU units. The output layer is

softmax of 10 classes corresponding to the 10 digits. The loss function computes cross-

entropy loss. A batch size 600 is used. The non-private training of this model can achieve

0.98 accuracy with 100 epochs.

Cancer Dataset. This dataset [70] consists of 699 patient examples. Each example has

11 attributes including an id number, a class label that corresponds to the type of breast

cancer (benign or malignant), and the 9 features describing breast fine-needle aspirates.

After excluding 16 examples with missing values, we use 560 examples for training and
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Table 3.1: Budget Allocation Schedules under Fixed Budget ρtotal = 0.78125, initial noise
scale σ0 = 10 for dynamic schedules. The parameters for validation based schedule is
k=0.7,m=5, δ=0.01,period=10.

Uniform
σc = 8

Time
(k=0.05)

Step(k=0.6,
period=10)

Exp
(k=0.01)

Poly(k=3,σend=2,
period=100)

Validation

epochs 100 38 31 71 44 64
training
accu-
racy

0.918 0.934 0.928 0.934 0.930 0.930

testing
accu-
racy

0.919 0.931 0.929 0.929 0.932 0.930

non-
private
SGD

0.978
/0.970

0.959
/0.957

0.955
/0.954

0.971
/0.965

0.963 /0.959 0.97 /0.964

uniform
#epochs

0.922
/0.925

0.921
/0.925

0.922
/0.925

0.925 /0.929 0.924
/0.926

123 examples for testing. A neural network classifier with 3 hidden layers, containing 10,

20, and 10 ReLU units, is trained to predict whether a breast tumor is malignant or benign.

Each iteration takes the whole training data set as a batch and thus each iteration is one

epoch. The non-private training of this model achieves testing and training accuracy 0.96

with 800 epochs.

CIFAR-10. The CIFA-10 dataset consists of 32×32 color images with three channels

(RGB) in 10 classes including ships, planes, dogs and cats. Each class has 6000 images.

There are 40,000 examples for training, 10,000 for testing and 10,000 for validation. For

experiments on CIFAR, we use a pre-trained VGG16 neural network model [71]. Following

the previous work [46], we assume the non-private convolutions layers that are trained over

a public dataset (ImageNet [72] for VGG16) and only retrain a hidden layer with 1000 units

and a softmax layer with differential privacy. We use 200 training epochs and batch size

of 200. The corresponding non-private training achieves 0.64 training accuracy and 0.58

testing accuracy.
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Results on MNIST

In differentially private model training, we keep the batch size at 600, clip the gradient

norm of every layer at 4, and use fixed noise scale σpca = 16 for differentially private PCA.

Note that, since the PCA part has constant privacy cost 1/(2σ2
pca) in terms of ρ-zCDP, we

exclude it from the total privacy budget ρtotal in our experiment, i.e., ρtotal is only for the

DP-SGD in Algorithm 2. A constant learning rate 0.05 is used by default. We evaluate the

model accuracy during training under different privacy budget allocation schedules. For the

validation-based schedule, we divide the training dataset into 55,000 examples for training

and 5000 examples for validation, and perform validation every epoch.

The results in Table 3.1 demonstrate the benefit of dynamic privacy budget allocations

and the effect of earlier training termination on the model accuracy. For comparison, we

consider the uniform privacy budget allocation in [46] with a constant noise scale σc=8

for every epoch as our baseline. We choose a fixed total privacy budget ρtotal=0.78125.

This results in 100 training epochs in the baseline case. We test all dynamic schedules

with the hyperparameters given in the table and present their testing and training accuracy

in numbers rounded to two decimals. The training is terminated when the privacy budget

runs out, and the hyerparameters are chosen from a set of candidates to demonstrate varied

training times in epochs which are reported in the table. We also ran a non-private version

of SGD with using the same training time as these schedules to see the impact of DP-SGD

on accuracy. We can see from Table 3.1 that the baseline with constant σc=8 achieves 0.918

training accuracy and 0.919 testing accuracy. By comparison, all non-uniform privacy bud-

get allocation schedules improve the testing/training accuracy by 1%∼1.6% while running

fewer epochs. Because DP-SGD is a randomized procedure and the numbers in the table

vary among trials, we repeat all the experiments 10 times and report in Figure 3.5 the mean

accuracy along with the min-max bar for every schedule. These results show that dynamic

schedules consistently achieve higher accuracy than the baseline. Therefore, given a fixed

privacy budget, the dynamic budget allocation can achieve better accuracy than using the
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Figure 3.4: The change of noise scale σ during training

uniform budget allocation.

The accuracy improvement shown with dynamic schedules in the above example comes

from two sources: less training time and non-uniformity of budget allocation (i.e., decaying

of the noise scale). With uniform allocation under a fixed privacy budget, reducing the

training time increases the privacy budget allocated to every epoch and thus decreases the

noise scale used by the Gaussian mechanism. Therefore, when the model training benefits

more from the reduced perturbation rather than longer training time, using less training

time can improve the model accuracy. As verification, we apply uniform budget allocation

with the noise scale
√
T/(2ρtotal) to achieve the same training time T as the corresponding

dynamic schedule. The training accuracy and testing accuracy are presented respectively

in the final row of Table 3.1. All cases outperform the baseline case with σc = 8 with

less than 100 training epochs, indicating the benefit of trading the training time for more

privacy budget per epoch. however, it is worth noting that in certain cases, increasing the

noise scale to prolong the training time may help improve the accuracy, exemplified by

the result of the validation-based schedule on the Cancer dataset. Overall, when compared

with the uniform allocation under the same training time, dynamic schedules demonstrate

higher accuracy, therefore illustrating the benefit of non-uniformity and dynamic budget

allocation.
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Table 3.2: decay rate values for different training times

#epochs 30 40 50 60 70 80 90 100
Time 0.076 0.0441 0.0281 0.019 0.0132 0.0093 0.0067 0.0048
Step 0.5459 0.7008 0.7922 0.851 0.891 0.919 0.94 0.956
Exp 0.0442 0.0282 0.0193 0.0138 0.0101 0.0075 0.0056 0.0041
Poly 6.2077 3.5277 2.1948 1.4317 0.9549 0.6382 0.4167 0.1626

Figure 3.4 shows how the noise scale σ changes with the epochs under different sched-

ules in Table 3.1. The curves terminate at the end of the training due to the depleted privacy

budget. For the validation-based decay, the duration of the noise scale keeping unchanged

decreases over the training time. The noise scale keeps 10 for 29 epochs, 7 for 20 epochs

and 4.9 for 10 epochs. It is because that, as the model converges, the increment rate of the

validation accuracy declines and it is more often to find that the accuracy increment does

not exceed the given threshold.

We additionally manipulate different hyperparamters individually while keeping the

rest constant to demonstrate their effects on training/testing accuracy and training time..

By default all accuracy numbers are the average of five trials.

The effect of decay functions. In our previous experiments, we evaluate four types of

decay functions for the pre-defined schedules. Here we compare their effects on the model

accuracy with constant training time. Given the total privacy budget and initial noise scale,

we can use the composition theorem of ρ-zCDP to search for proper values of the parameter

k in these functions for the schedule to achieve a target training time. Table 3.2 provides

the values of k for different decay functions to achieve training times of 60, 70, 80, 90, and

100 epochs respectively. These values are derived via search in step size 1e − 4, with the

same initial noise scale and other parameters as stated in Table 3.1.

Figure 3.6 shows the training and testing accuracy of pre-defined schedules under dif-

ferent training times along with the accuracy achieved by uniform budget allocation [46]

using the same privacy budget. We observe that all training instances using pre-defined

schedules achieve higher accuracy compared to the uniform budget allocation given a fixed
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training time. However, there is no clear winner among the different decay functions. Their

accuracy increases from 30 to 50 or 60 epochs and then decreases as the training time in-

creases from 50 or 60 to 100 epochs. At 100 epochs, all pre-defined schedules have an

accuracy closer to that of the uniform budget allocation schedule running 100 epochs. Due

to the similar behaviors of the different decay functions, we choose to simply set the decay

function to the exponential decay in subsequent experiments unless otherwise stated.

Decay rate. The decay rate k decides how fast the noise scale decays. Keeping other

parameters as the same as those reported in Table 3.1, we vary k from 0.005 to 0.5 for

exponential decay and from 0.3 to 0.9 for validation-based decay. Figure 3.7 and 3.8 show

the accuracy and training time under different values of k. We make three observations.

First, in both cases, there exists an optimal decay rate to achieve maximum accuracy. For

exponential decay, the best accuracy occurs at k=0.2; for validation-based decay, it occurs
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at k=0.7. Second, for exponential decay, with the increase of k, the noise scale decreases

at a higher rate. The privacy budget is therefore spent faster and the training time strictly

decreases. For the validation-based decay, it reduces the noise scale to a k fraction of the

original, so the decay rate is actually 1-k and the training time should increase with k.

Figure 3.8 shows that the training time overall increases with k but with some random fluc-

tuations. This is because that the validation-based decay adjusts the noise scale according

to the validation accuracy which may change during the training in a non-deterministic

way.

Third, the results at the ends of the x-axis in both figures indicate two interesting facts.

At one end, although the lowest decay rate leads to the longest training time, it also pro-

duces the worst accuracy because the noise scale decays more slowly in this case and there-

fore more epochs will suffer relatively higher noise scales. This degrades the efficiency of

the learning process and lowers the accuracy. At the other end of the axis, the highest decay

rate causes the training to stop much earlier, resulting in an insufficient training time which

also degrades the accuracy.

Learning rate. Next we fix the decay rate k=0.0138 for exponential decay. Given a

privacy budget 0.78125, the training lasts 60 epochs. With an initial learning rate 0.1, we

linearly decrease the learning rate to endlr over 10 epochs and then fix it at endlr thereafter.

We vary endlr from 0.01 to 0.07. Figure 3.9 shows that the accuracy decreases significantly

when the learning rate is too small or too large.

Number of hidden units/layers. Next, we vary the number of hidden units in the model

from 200 to 1600. The results are shown in Figure 3.10. Although more hidden units

increase the sensitivity of the gradient, leading to more noise added at each iteration, we

observe that increasing the number of hidden units does not decease the model accuracy

under the exponential decay schedule. This is consistent with the observation in [46] using

uniform budget allocation. This shows that the effectiveness of dynamic budget allocation

schedules scales to neural networks of different sizes. We also vary the number of hidden
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Figure 3.9: learning rate
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Figure 3.10: hidden units

layers from 1 to 3, each with 1000 hidden units. The accuracy results are given in Table 3.3

and are consistent with [46] under the uniform allocation wherein the authors claim that,

for MNIST, one hidden layer combined with PCA works better than networks with more

layers.

Table 3.3: Accuracy results under different number of layers

Layer numbers 1 2 3
training accuracy 0.9315 0.9228 0.902
testing accuracy 0.931 0.921 0.898

Initial noise scale. In the previous experiments, the initial noise scale σ0=10 is set as the

default. To examine the effect of σ0, we vary its value from 7 to 20 and measure the model

accuracy under the fixed privacy budget 0.78125 in two cases: 1) for each σ0, we choose
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the exponential decay rate to achieve a fixed training time of 60 epochs; 2) the exponential

decay rate is fixed to 0.015, leading to variation in training time. Figure 3.11a and 3.11b

show that, overall, increasing the initial noise scale reduces accuracy. In comparing the

two figures, we observe that when the training time is fixed, the choice of σ0 has less

impact on accuracy. This is because, when the training time is fixed, a larger σ0 results in a

higher decay rate of the noise scale which benefits accuracy. However, for fixed decay rate,

although higher σ0 leads to more training epochs, there is no accuracy improvement. This

indicates that the model accuracy is more sensitive to the noise scale than the training time.

Accuracy and privacy in training. Figure 3.12 and 3.13 illustrate the change of model

accuracy and privacy loss during training time for schedules with the same parameters as

in Table 3.1 except the parameters explicitly noted in the figures. Figure 3.13 shows that

the uniform privacy budget allocation in [46] incurs linear growth of privacy loss in terms

of ρ-zCDP while our dynamic budget allocation schedules have faster growth rate due to

the reduction of noise scale with time. All instances stop when the given total privacy

budget of 0.78125 is reached. Combined with Figure 3.12, we can see that the exponential

decay schedule consistently achieves better accuracy before the training ends compared to

the uniform allocation, thanks to its faster noise scale reduction, while the validation-based

schedule performs more conservatively and has a relatively longer training time.

An important implication of Figure 3.12 is that the gap between uniform budget alloca-

tion and non-private SGD indicates the maximum potential for the accuracy improvement

through dynamic budget allocation over the uniform allocation. The proposed dynamic

budget allocation schedules provide users a way to improve the accuracy of DP-SGD

to approach that of non-private SGD. It is not possible for dynamic budget allocation to

completely close this gap because gradient perturbation inevitably hurts model accuracy.

Therefore, we argue that the effectiveness of dynamic privacy budget allocation should be

evaluated on how much it can reduce the gap between non-private SGD and DP-SGD with

uniform allocation. In our experiment, the accuracy difference between non-private SGD
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and DP-SGD of uniform case is 0.05 at the end of training. The exemplified schedules re-

duce this difference by 20%∼30%. One of our ongoing research directions is to investigate

the ways to effectively find the best hyperparameters to apply these schedules.
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Figure 3.11: Initial noise scale

Results on other datasets

We repeat the experiments on the Cancer Dataset and CIFAR-10 datasets. By applying

exponential decay and validation-based decay to each learning task, we compare corre-

sponding model accuracy with the uniform allocation method [46]. In this set of experi-

ments, we first consider a uniform schedule that uses a constant noise scale to achieve a

desired training time under the given privacy budget. Then we choose a value around this

noise scale as the initial noise scale for decay schedules. A set of candidates for the decay

rate is evaluated, and we use each candidate to train a model and compare achieved model

accuracy. The parameters for the schedules we used are given in Table 3.4.

Table 3.4: Schedule parameters

Dataset Uniform Exp Decay Validation
Cancer σ=25, #epochs=500 σ0=30, k=0.001 σ0=35,k=0.99,

period=50,δ =0.01,
m=1

CIFAR-10 σ=8, #epochs=200 σ0=6, k=0.001 σ0=6,k=0.99,
period=10,δ =0.05,
m=5

89



Sheet12

Page 1

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98
0.75

0.8

0.85

0.9

0.95

1

Non-private 
Uniforrm(σ=8) 
Exp(k=0.02) 
Validation(k=0.8)

Epoch number

te
st

in
g

 a
cc

u
ra

cy

Figure 3.12: Accuracy in training
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Figure 3.13: Privacy in training
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Figure 3.14: Accuracy (Cancer)
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Figure 3.15: Accuracy (Cifar-10)

Results for testing and training accuracy are show in Figures 3.14 and 3.15. For the Can-

cer dataset, the exponential decay produces the model accuracy closer to the non-private

SGD, about 3% higher accuracy than the uniform allocation case, and reduces the gap

between non-private SGD and DP-SGD with uniform allocation by 70%. The validation-

based schedule produces about 1.8% higher accuracy than the uniform case, with taking

advantage of a longer training time as shown in Figure 3.14. For CIFAR-10, the expo-

nential decay achieves 2% higher accuracy than the uniform case, and reduces the gap

by about 12%. The validation-based schedule improves model accuracy by 4% over the

uniform case, and reduces the gap by about 19%.
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3.6 Discussion

We discuss a number of nuances/caveats as take-away remarks for deploying differentially

private deep learning in practice for model publishing.

Understanding privacy parameter. Although differential privacy (DP) as a theory has

evolved through different forms, today it is still not clear how a realistic privacy benefit

can be realized as a function of the privacy parameters in the DP definitions such as the

ε and δ parameters in traditional DP and the ρ in zCDP. These privacy parameters lack

understandable interpretations to the end-users. For ρ-zCDP, results like Proposition 1

would help if ε and δ had straightforward privacy-related interpretations. Advancement in

interpretability and usability of DP parameters by end-users and domain-scientists can have

profound impact on the practical deployment of differential privacy.

Data Dependency. The characteristics of input data, for example, dependency among

training instances or dependency in the presence of training instances can render a differ-

entially private mechanism ineffective for protecting the privacy of individuals [73, 74, 52].

The baseline definition of differential privacy is focused on the privacy of a single instance

and therefore when multiple instances of the same user are present, a DP mechanism needs

to be extended to group-level differential privacy to provide sufficient protection. One di-

rection of our future work is to investigate and explore the ways of extending our DP-SGD

techniques to provide a group-level privacy guarantee.

Resilience to Privacy Risks and Attacks. Differentially private deep learning aims to

compute model parameters in a differentially private manner to limit the privacy risk as-

sociated with output model parameters. There are a number of known attacks in deep

learning such as model inversion attacks and membership inference attacks. Model inver-

sion attacks exploit the prediction output along with model access to infer an input instance.

Membership inference attacks exploit the black box access to the prediction API to infer

the membership of individual training instances. However, there is no formal study on
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whether or not a differentially private deep learning model is resilient to such attacks and

what types of privacy risks known in practice can be protected with high certainty by a dif-

ferentially private DNN model. In fact, DP only absolves the differentially-private release

as a (quantifiably) strong cause of an inference. The work [75] provides an upper bound on

the inferential privacy guarantee for differentially private mechanisms. DP, however, does

not prevent the inference. This is another grand challenge in differential privacy and data

privacy in general.

3.7 Related Work

Privacy threats in machine learning Existing works [76, 4, 5, 77] have shown that ma-

chine learning models and their usage may leak information about individuals in the train-

ing dataset and input data. Fredrikson, et al. [76] proposed a model inversion attack, which

uses the output/prediction produced by a model to infer the unknown features of the input

data and apply this attack against decision trees and neural networks in a pharmacoge-

netics scenario [4]. Reza et al. [5] developed a membership inference attack that aims to

determine if an individual record was used as part of the training dataset for the model

using only the black-box access to the target model. Song et al. [77] proposed training

phase attacks which perform minor modifications to training algorithms to make them out-

put models which encode a significant amount of information about the training dataset

while achieving high quality metrics like accuracy and generalizability. In addition, model

extraction attacks proposed in [44] aim to duplicate the functionality of the model with

black-box access. Such attacks can be leveraged to infer information about the model’s

training dataset.

Privacy-preserving deep learning To enable deep learning over the data from multiple

parties while preserving the privacy of each party’s training dataset, Reza et al [45] pro-

posed a distributed deep learning framework that lets the participants train their model

independently on their own dataset and only selectively share a subsets of their models’ pa-
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rameters during training. Abadi et al. [46] proposed a differentially private SGD algorithm

for deep learning to offer provable privacy guarantees on the output model. DP [27] as a

defacto standard for privacy has been applied to various machine learning algorithms, such

as logistic regression [47, 48], support vector machines [49] and risk minimization [50, 51],

aiming to limit the privacy risk associated with the output model parameters on the training

dataset. Our work in this paper is primarily related to [46]. We improve their approach

in a number of ways. For example, instead of using traditional (ε, δ)-differential privacy,

we apply concentrated differential privacy [55, 57] to provide tight cumulative privacy loss

estimation over a large number of computations. Furthermore, we characterize the effect

of data batching methods on the composition of differential privacy and propose a dynamic

privacy budget allocation framework for improving the model accuracy.
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CHAPTER 4

DEEPSYNTHESIZER: DIFFERENTIALLY PRIVATE DATA SYNTHESIS WITH

DEEP LEARNING

4.1 Introduction

With the advancement of computing and storage devices and networking infrastructure,

the digital information about individuals are collected by governments and corporations

at a tremendous scale. Because the collection of individual data can create wide opportu-

nities for knowledge-based decision making, there is a large interest and demand for the

sharing of data among collaborators or releasing data publicly. However, the collected

data related to individuals often encode their privacy sensitive information, which impose

serious privacy risks. Therefore, privacy preserving data publishing that studies how to

transform original data into the version immunized against privacy attacks but still allow

effective data analytics has received considerable attention. Traditional data anonymization

techniques [8, 9, 10] transform the data by removing key identifiers or generalizing quasi-

identifiers to ensure data privacy. However, it has been shown that they are susceptible to

privacy attacks that ”de-anonymize” datasets via linkage to external or public datasets, with

some notable examples on Netflix movie rating dataset [11], and the AOL search log [12]

and the Washington State health record identification [13].

Data synthesis with differential privacy provides a promising approach for privacy pre-

serving data publication and has been receiving much attention recently [14, 15, 16, 17,

18, 19]. It aims to generate synthetic data that mimic original data in terms of important

characteristics and that can be released without compromising the privacy of individuals.

Its advantages lie on that: on one hand, differential privacy [27] provides a rigorous privacy

framework offering provable privacy guarantee and has recently emerged as a de-facto stan-
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dard for data privacy; on the other hand, the important motivation for producing synthetic

data is that the synthesized data can act as surrogate for the original dataset to allow data

users to run arbitrary statistical analysis of their own as if they had the original data. Note

that data synthesis is non-interactive setting for differential privacy. In the interactive set-

tings differential private access mechanisms are used to answer the queries to the original

database. Due to the composition of differential privacy, only a certain number of queries

can be allowed on the same dataset before a pre-specified privacy budget is exhausted. In

contrast, data synthesis eliminates the need to design various differentially private mecha-

nisms to sanitize results for different types of queries. It avoids the requirement in inter-

active settings for trusted data curators to run these mechanisms and consistently monitor

queries. Also, it does not have limits on the number of queries to be made on the synthetic

data and thus largely facilitate exploratory, open-ended and iterative analyses.

The common framework for all the differentially private data synthesis approaches can

be summarized to three steps: 1) carefully select features of interest and importance and

extract them from original data sets in a differentially private way; 2) learn a data model

or estimate model parameters in a differentially private way; 3) generate samples from the

data model. For instance, PrivBayes [16], a differentially private method for releasing tabu-

lar dataset, 1) generate a set of conditional distributions of datsets and construct a Bayesian

network over the attributes, 2) derive the approximate distribution model of tuples, and 3)

sample tuples from the distribution; DPT [17], a system for generating synthetic trajectory

data, 1) extract prefix tree for each resolution in a hierarchy of reference systems privately,

2)assume Markov model for mobility trajectories and estimate transition probabilities pri-

vately, 3) sample trajectories from the model; Pygmalion [18], a differentially private graph

synthesis approach, extracts the graph’s degree correlation statistics, and learn a dK-graph

model from which the synthetic graphs can be generated. All the existing works conduct

sophisticated process to determine and extract features of dataset in order to maximally

capture the characteristics of original dataset. More often they involves multiple features
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and models, and thus require an allocation of privacy budget for each part respectively.

However, it is not known how to optimally allocate it and thus most works choose evenly

allocation privacy budget among each part. For high dimensional data, the data synthesis

becomes more challenging because statistical models with high dimension is computation-

ally impractical to use and excessive noise will be added to satisfy differential privacy.

In this paper we explore the application of differentially private deep learning for data

synthesis. The power of deep learning is partially due to its ability to automatically learn

appropriate features from raw datasets, which obviates manual feature engineering. Also,

deep neural networks has been shown to effectively overcome the curse of dimensional

with using large datasets and work well with high dimensional data such as images and

text. Therefore, it is promising to use it for data synthesis to effectively avoid sophisticated

feature extraction process in previous works and high dimensionality problem. Differen-

tially private data synthesis is simply achieved with training the deep generative models

with differentially private SGD algorithm.

An important application of data synthesis is for the publication of location trace data.

The collection of people’s precise location traces has been made quite easy and common

due to the widespread use of mobile devices with GPS and location based services. The

release of location trace data has always been of tremendous interest for research and de-

velopment because it can be used for city/traffic planning, location-driven advertising and

human behavior study. However, because of the concerns over the location privacy of in-

dividuals, the data holders are wary about publishing these data. Privacy-preserving data

synthesis offer a promising solution for this dilemma, by sharing synthesized data with

provable privacy guarantee, while ensuring high data utility that is preserving similar ag-

gregate properties as the original location traces. A number of methods [17, 78] have been

proposed for location trace synthesis, with differential privacy guarantee. In this paper,

we propose DeepSynthesizer that applies deep generative models with differential privacy

to synthesize location traces. DeepSynthesizer uses a recurrent neural network model for
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modeling sequential location trajectory data. Compared with the existing methods [17,

78], DeepSynthesizer provides an end-to-end approach for location data synthesis with dif-

ferential privacy guarantee, which obviates sophisticated feature selection, data structure,

sampling techniques and related privacy budget allocations among different feature extrac-

tion steps involved in their design. Therefore, the approach of DeepSynthesizer is easier to

implement, deploy and tune in practice. Another important advantage of DeepSynthesizer

is a straightforward realization of differential privacy at user level by the mini-batch training

of deep learning. The target dataset usually contains a group of records (e.g., trajectories

for location data) collected from one user. The conventional methods [17, 78] focus on dif-

ferential privacy at record level, which may fail to protect the privacy of trajectories at the

user level since the presence/absence of one user results in more than one records change in

the dataset. The group privacy in differentially privacy tells that any ε-differentially private

mechanism is kε differentially private for groups of size k. Because their design is highly

coupled with record level differential privacy, it can be difficult to adapt them to protect

user level differential privacy, if not impossible. Instead, because of the mini-batch nature

of training algorithms for deep neural network models, we show that DeepSynthesizer can

have formal privacy guarantees of user-level privacy.

Moreover, we compare DeepSynthesizer with state-of-art differentially private data

synthesis approaches in terms of the utility of synthetic location data and privacy cost. The

utility of synthetic data is analyzed in two scenarios: extracting statistics for data analy-

sis and performing prediction tasks using machine learning. Our experiment demonstrates

that deep learning with differential privacy can significantly facilitate privacy preserving

location data synthesis. For the privacy cost, the training of deep neural network models

can have unlimited privacy cost because it is an iterative process and each iteration adds to

the privacy cost. We investigate the privacy cost under different conditions such as training

time, data size and batch size, and the achieved utility. We aim to provide some guidelines

for users to choose between deep learning based differentially private data synthesis and
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Figure 4.1: An illustration of the RNN model and its unfolding in time steps.

conventional methods.

4.2 Preliminaries

4.2.1 Neural Network Models for Sequential Data

Recurrent neural networks (RNNs) have become the state of the art for sequence modeling

and generation, especially in the tasks of machine translation [79], text generation [80],

speech recognition [81] and sentiment analysis [82]. It is a deep feedforward neural net-

work whose weights are shared across time. At each time step, the RNN receives an input,

updates its hidden state and makes a prediction. The high dimensional hidden state and

non-linear activation function enable the RNN to integrate information over many time

steps and make accurate predictions.

A standard RNN model can be formalized as follows [83]: Given a sequence of inputs

{x1, x2, . . . , xT}, the RNN computes a sequence of hidden states {h1, h2, . . . , hT} and a

sequence of outpus {o1, o2, . . . , oT} by iterativelly computes the following for t = 1 to T :

ht = tanh(Whhht−1 +Whxxt + bh) (4.1)

ot = Wohht + bo (4.2)

where Whh is the hidden-to-hidden weight matrix, Whx is the input-to-hidden weight ma-

trix, Woh is the hidden-to-output weight matrix and the vectors bh and bo are the biases.

Figure 4.1 illustrates an example of RNN model.

Long short term memory (LSTM) [84] is one of the most popular variations of RNNs
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Figure 4.2: An illustration of a trained RNN model for generating sequences.

which is designed to avoid the gradient vanishing/exploding problem [85] of RNNs for

learning long-range temporal dependencies. It has been successfully applied in the tasks of

speech recognition [86], image captioning [87]. and human mobility modeling [88, 89].

RNN as a generative model. The RNN model can be used as a generative model with

predicting the next value in a sequence. Given a training word sequence {x1, x2, . . . , xT}

from a fixed vocabulary {w1, . . . , wk} of size k, the RNN computes the output vectors

{o1, o2, . . . , oT} and accordingly obtains a sequence of predictive distribution P (xt+1|x1, . . . , xt) =

softmax(ot) where the softmax function computes P (xt+1 = wj) = exp(o
(j)
t )/

∑
j exp(o

(k)
t )

for j = 1, . . . , k. For the language modeling, the learning objective is to maximize the log

probability of the training sequence
∑

t = 0T−1logP (xt+1|x≤t. To generate a sentence,

we can iterative sample a word from the conditional distribution P (xt+1|x≤t that can be

obtained from the output of the RNN model, and use it as the input for sampling the next

word from P (xt+2|x≤t+1.

4.2.2 Differential Privacy

Differential privacy is a rigorous mathematical framework that formally defines the privacy

properties of data analysis algorithms. Informally it requires that any changes to a single

data point in the training dataset can only cause statistically insignificant changes to the
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algorithm’s output.

Definition 8 (Differential Privacy [27]). A randomized mechanismA provides (ε, δ)-differential

privacy if for any two neighboring database D and D′ that differ in only a single entry,

∀S ⊆ Range(A),

Pr(A(D) ∈ S) ≤ eε Pr(A)(D′) ∈ S) + δ (4.3)

If δ = 0, A is said to be ε-differential privacy. In the rest of this paper, we write

(ε, δ)-DP for short.

The standard approach to achieving differential privacy is the sensitivity method [29,

27] that adds to the output some noise that is proportional to the sensitivity of the query

function. The sensitivity measures the maximum change of the output due to the change of

a single database entry.

Definition 9 (Sensitivity [29]). The sensitivity of a query function q : D → Rd is

∆ = max
D,D′
||q(D)− q(D′)|| (4.4)

where D, D′ ∈ D are any two neighboring datasets that differ at most one element, || · ||

denotes L1 or L2 norm.

A standard differentially private mechanism for achieving (ε, δ)-differential privacy is

Gaussian mechanism that uses L2 norm sensitivity. It adds zero-mean Gaussian noise with

variance ∆2σ2 in each coordinate of the output q(D), as

q(D) +N (0,∆2σ2I) (4.5)

It satisfies (ε,δ)-DP if σ2 > 2 log(1.25
δ

)/ε2 and ε ∈ (0, 1) [56].

4.2.3 Differentially Private Deep Learning

Differentially private deep learning was first formally proposed in [46]. It relies on dif-

ferentially private stochastic gradient descent (DP-SGD) to preserve the privacy of training
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data. DP-SGD computes per-example gradients ∇θL(θ, x) of the loss L on the input x

with regard to the model parameter θ in every iteration and clipping the L2 norm of gradi-

ent vectors. Given a clipping threshold C, this is done by replacing the gradient vector g

with g/max(1, ||g||2
C

) which scales g down to norm C if ||g||2 > C. A Gaussian mecha-

nism with L2 norm sensitivity of C is then applied to perturb the gradients before applying

gradient descent to update the model parameters. The details of DP-SGD algorithm can be

found in Chapter 3.

To tightly track the cumulative privacy loss of DP-SGD during training, Abadi et al. [46]

proposed Moments Accountant (MA). This method assumes that the data batches for mini-

batch SGD are generated by randomly sampling examples from the training dataset with

replacement, By taking advantage of the privacy amplification effect of random sampling,

it achieves a much tighter estimate on privacy loss than the strong composition theorem.

4.3 Design of DeepSynthesizer

4.3.1 Overview

Consider a set of real location trajectories denoted by Dreal = {τ1, τ2, . . . , τi, . . .} and each

τi =< l1, l2, . . . , lm > is a trajectory that consists of a sequence of locations with the

timestamps. Each li is a three item tuple (xi, yi, ti, ui) where xi and yi are the geographic

coordinates of the location, ti is the timestamp, and ui is the user id. Because the location

is usually recorded in a continuous geographic domain, a common way to analyze the

trajectories is to discretize the geographic domain of Dreal by imposing a uniform grid

structure over the space and choose the centroids as anchor points. A location can then be

mapped to the cell it belongs to and a trajectory is encoded as a sequence of cells. Figure

4.3 shows an example.

DeepSynthesizer aims to train a LSTM based neural network model with (encoded)

Dreal as the training dataset and uses it as the generative model for data synthesis. In this

paper we want to keep neural network architecture design for DeepSynthesizer as simple as
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Figure 4.3: An illustration of 4× 4 grid and two encoded trajectories.

possible as a demonstration of the capability of differentially private deep learning for data

synthesis. More sophisticated neural network model designs like [89] may further improve

the utility of synthesized data, which however is not our focus in this paper.

DeepSynthesizer has options for different privacy guarantee at two different levels, ei-

ther at record level or at user level. For the differential privacy at the record level, the neigh-

boring trajectory datasets D and D′ defined in 4.3 differs in only one trajectory. Per record

privacy is preserved in the sense that changing a single record in the dataset only result in

statistically insignificant changes in the outcome. However, in the trajectory dataset, record

level differential privacy is insufficient, because one individual may contribute many tra-

jectories to the dataset. For example, in Geo-life dataset [35], every user contributes about

5 to 800 trajectories. Since an individual user may repeat a sensitive route several times

and thus creates multiple similar trajectories records, they should be protected as a whole in

order to protect the sensitive route. To achieve that, differential privacy should be applied at

user level to protect all the trajectory data contributed by a single user, rather than a single

trajectory. The differential privacy at user-level is formally treated in [52] for differentially

private language modeling. The user-level differential privacy applies differential privacy

definition in 4.3 over user-adjacent datasets. D and D′ are user-adjacent datasets if D′ can

be formed by adding or removing all of the data records associated with a single user from

D.

Suppose a trajectory dataset is collected from N users, each user contributes his trajec-

tories multiple times, and each trajectory is labeled with its source of user id. We group
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the trajectories by their sources of users, that is, D = Du1

⋃
Du2

⋃
. . .
⋃
DuN . Accord-

ingly D′ = D
⋃
DuN+1

is regarded as a neighboring trajectory dataset to D. By using

each Dui as a single example for training the neural network, the per-example gradient

clipping/perturbation in differentially private SGD can be naturally applied and then the

example level differential privacy in DP-SGD achieves the differential privacy for trajecto-

ries at user level.

4.3.2 Details of DeepSynthesizer

Input Sequences

The spatial discretization requires a grid to divide the geographic domain of trajectories into

cells. Given the cell size ofw×w and aN×N uniform grid on the space domain, each grid

cell is assigned with a unique symbol and each location in the trajectory is mapped to the

symbol of the cell that the location belongs to. A trajectory is then encoded as a sequence

of cell symbols and all cell symbols compose a vocabulary of N × N . An example is

shown in Figure 4.3. A starting symbol > and a stopping symbol ⊥ are introduced into the

vocabulary, and prepended and appeneded respectively to the encoded trajectories. As a

result, τ2 =< >, C14, C10, C9, C5,⊥ > in Figure 4.3. These two special symbols are used

to capture the starting and stopping probabilities for a trajectory.

Multi-Layer LSTM Model

We use LSTM neural network for trajectory modeling. In particular, we consider a multiple-

layer LSTM network, which use the hidden state of the previous layer as the input of each

corresponding LSTM block in the next layer. Figure 4.4 demonstrate a two layer LSTM

neural network. Each LSTM block maintains a hidden vector ht and a cell state vector ct,

and feed them into itself in the next time step. The cell state is the memory unit for keeping

track of long-term dependencies between the elements in the input sequence.
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Figure 4.4: An illustration of two layer LSTM neural network.

Differentially Private Neural Network Training

To achieve record level differential privacy, we can directly apply the differentially private

SGD (DP-SGD) algorithm in Chapter 3 for training. For simplicity,our implementation

use uniform noise scale along the training process for DeepSynthesizer. To achieve lower

privacy cost, we use random sampling to construct mini-batch.

However, the previous differentially private SGD algorithm cannot be directly used to

achieve user level differential privacy. A direct adaption of differentially private SGD algo-

rithm for user level privacy is presented in Algorithm 3. In this algorithm, a batch of users

are randomly sampled, and for each sampled user we obtain the gradient of the model pa-

rameters with respect to a batch of the user’s data. Per-user gradient here is equivalent

to per-example gradient in the original DP-SGD algorithm, and therefore the algorithm

has the same per-example gradient clipping and perturbation method. An improvement to

this straightforward adaption is differentially private FederatedAveraging (FedAvg) algo-

rithm [52]. The key idea is to perform local training with the user’s whole data instead of

one batch in one epoch, compute the change of model parameters at each sampled user, and

aggregate the model changes from the sampled users. In this paper we focus on Algorithm

3 and evaluate its performance, and leave FedAvg as our future work.
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Algorithm 3: User-level Differentially Private SGD Algorithm
Input: examples from users {u1, . . . , uk}, learning rate ηt, gradient norm bound C, total

privacy budget ρtotal
1 Initialize w0 ;
2 Initialize cumulative privacy loss cprivt = 0;
3 for t = 1 : T do
4 update cprivt according to data batching method, t and σt;
5 If cprivt > ρtotal, break ;
6 U t← sample users with probability q ;
7 for each user u ∈ U t do
8 select a batch of size B from u’s examples;
9 gu(B)←5wtL(wt, B);

10 ĝu ← gu(B)/max
(

1, ||gu(B)||2
C

)
;

11 g̃t ← 1
|Ut|
(∑

u ĝu +N (0, σ2
tC

2I)
)
;

12 Descent:
13 wt+1 ← wt − ηtg̃t ;
14 Output wT ;

4.4 Evaluation

4.4.1 Dataset

In this paper we use Brinkhoff dataset for our experiment. It contains 50,000 vehicle trajec-

tories simulated by Brinkhoff network generator for moving object [90]. The dataset was

generated on the map of Oldenburg, Germany with simulating the movement of 50,000

vehicles, and the locations were sampled at equal time intervals.

Another dataset we consider is GeoLife GPS Trajectories dataset which contains 17621

traces from 182 users, moving mainly in the north-west of Beijing, China, in a period of

over five years (from April 2007 to August 2012). We preprocessed data to limit the spatial

domain to be within the 50th ring road of Beijing city.

4.4.2 Utility Metrics

To measure the utility of synthesized data, we use three metrics, including trip distribution,

diameter distribution and frequent patterns, introduced in the previous works [17, 78].
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• Diameter Distribution: The diameter for a trajectory is defined as the maximum dis-

tance between any pair of locations. For a trajectory dataset D, we quantize the

diameter into 25 equal width buckets [0, x), [x, 2x), . . . , [24x, 25x), compute the di-

ameter of each trajectory and obtain its empirical distribution over the buckets. Here

x is set to 500m in our experiment. We compute the diameter distribution for both

original trajectory dataset Dreal and synthetic dataset Dsyn, denoted as Q(Dreal) and

Q(Dsyn) respectively. We measure the error in diameter distribution by Jensen Shan-

non divergence JSD(Q(Dreal),Q(Dsyn)).

• Trip Distribution: We use Dcs ce to denote the set of trajectories in D which starts

from the region/cell cs and ends at the cell ce. The trip distribution Pr(cs  ce) for

any two cells cs and ce of the grid measures the probability of a trajectory starting at cs

and ending at ce respectively, which can be computed as Pr(cs  ce) = |Dcs ce |
|D| . We

compute the trip distribution for Dreal and Dsyn, denoted as T(Dreal) and T(Dsyn)

respectively, and measure the error in trip distribution by Jensen Shannon divergence

JSD(T(Dreal),T(Dsyn)).

• Frequent Patterns: Frequent travel patterns are always of interest in location data

mining tasks.We consider trajectories that are encoded to the sequence of cells given

a grid discretization. pattern is then an ordered sequence of cells. We find the top k

patterns from Dreal and Dsyn respectively, denoted by Fk(Dreal) and Fk(Dsyn). The

error in frequent patterns is measured by the F1-measure, F1(Fk(Dreal),Fk(Dsyn))

i.e., harmonic mean of precision and recall, between two top-k frequent pattern sets.

4.4.3 Comparison with Existing Generators

In this section we compare DeepSynthesizer with recent proposed methods for location

trace synthesis, DPT [17] , SGLT [91], and AdaTrace [78], at the record level differential

privacy. This is because that all the existing approaches are designed on record level dif-
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Table 4.1: Comparison with existing conventional methods on Brinkhoff Data.

ngram DPT SGLT AdaTrace DS(NoDP) DS(DP)
Trip Error ε=0.5 0.156 0.170 0.298 0.052 0.153 0.182

ε=1.0 0.150 0.120 0.298 0.045 0.153 0.167
ε=2.0 0.139 0.106 0.298 0.043 0.153 0.158

Diameter Error ε=0.5 0.151 0.143 0.126 0.022 0.07 0.12
ε=1.0 0.103 0.084 0.126 0.023 0.07 0.095
ε=2.0 0.092 0.061 0.126 0.022 0.07 0.081

FP F1 ε=0.5 0.41 0.56 0.47 0.61 0.61 0.45
ε=1.0 0.39 0.64 0.47 0.62 0.61 0.56
ε=2.0 0.42 0.71 0.47 0.62 0.61 0.60

ferential privacy and cannot be adapted to user-level differential privacy. In particular, we

use Brinkhoff dataset for the comparison, because the dataset does not involve any user

level differential privacy and each trajectory is generated by a single vehicle. To ensure

comparable experiment results with AdaTrace, we follow the similar settings (e.g., similar

grid size). The results are provided in Table 4.1, with reusing the metrics reported in [78]

. DeepSynthesizer is named as DS in the table. In the table, DS(NoDP) denotes DeepSyn-

thesizer without differential privacy in which case we add no noise to SGD training, so the

metrics demonstrate the performance of our LSTM generative model. The model is trained

with 5 epochs, and batch size 100. Also, we evaluate DeepSynthesizer with differential pri-

vacy guarantee (DS(DP)). The small batch size with respect to large number of trajectories

50000 is equivalent to a very low sampling ratio 0.002. Due to the privacy amplification of

random sampling based data batching, the privacy cost is small even with 20000 training

steps. As we can see, DeepSynthesizer can obtain comparable data utility with the same

privacy cost compared with existing conventional methods. It is expected to

4.4.4 The impact of DP-SGD at user level

In this section we consider Algorithm 3. It is equivalent to the DP-SGD algorithm discussed

in Chapter 3, in the sense of that per-example gradient is replaced by per-user gradient. In

the Geo-life dataset, all trajectories are grouped by user ids, and thus we consider the user-
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Table 4.2: Evaluation on Geo-life dataset.

DS(NoDP) DS(DP)
Trip Error 0.45 0.51
Diameter Error 0.10 0.21
FP F1 0.40 0.33

level differential privacy for the training over this dataset. For simplicity, we removed the

trajectories that has length more than 1000, resulting in 12167 trajectories of 182 users.

Our interest is to examine how much privacy cost when achieving comparable data utility

compared with non-private training. The result is show in Table 4.2.

However, in this case, the final privacy cost is much higher than in the Brinkhoff data

case. The total number of users is 182, and the smallest sampling ratio we can have is

1/182. The data utility metrics in Table 4.2 has privacy cost ε = 5.57, with δ = 1e− 5.

4.5 Related Work

Privacy-preserving synthetic data generation Data synthesizing protects data privacy by

sampling data from a pre-trained statistical model and releasing the sampled data in place

of the original data. Many works have been proposed for generating privacy-preserving

synthetic data. The recent work [91] proposes a trajectory synthesizing approach. It aims

to capture both geographic and semantic features of real location traces, and based on that

to construct a Markov chain model. The synthetic trajectories sampled from the model are

passed through a privacy test to ensure plausible deniability. But it does not provide formal

privacy guarantees.

Differentially private data synthesizing Mohammed et al. [14] proposed DiffGen that

performs data generalization by partitioning attribute domain in a differentially private

way to effectively anonymize raw data. It only generalizes predictor attributes for max-

imizing the class homogeneity within each partition. It has problems to deal with high-

dimensional and large-domain data. Li. et al. [15] developed DPCopula for synthesizing

multivariate data by using Copula functions to take into account the dependency structure.
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PrivBayes [16] is a differentially private method for releasing high-dimensional tabular

data. It uses a Bayesian network and perturbed marginals for differential privacy to derive

an approximation of the data distribution in the dataset. The tuples are sampled from the

approximate distribution to construct a synthetic dataset. DPT [17] is a system to syn-

thesize mobility data while ensuring ε-differential privacy. It uses hierarchical reference

systems to capture individual movement speeds, computes prefix tree counts privately and

based on that estimates the transition probabilities of Markov model. The synthetic trajec-

tories are sampled from the model. Sala et al. proposed Pygmalion [18] that extracts degree

correlation statistics from the original graph data, adds noise to resulting dataset and gen-

erates synthetic graph. Jorgensen et al. proposed to adapt Attributed Graph Model(AGM)

to add differential pravacy while preserving the utility of the synthesized graphs. Xiao et

al. [19] proposed to uses a statistical hierarchical random graph(HRG) model and guarantee

differential privacy by sampling possible HRG structures via Markov chain Monte Carlo.

Data synthesizing using deep learning There are a few works that consider generating

artificial datasets via deep learning approach. Kulkarni et al. [88] proposes to use recurrent

neural networks to learn patterns of mobility traffic data and generate synthetic dataset. Wu

et al. [92] also designs RNN based models for trajectory modeling. You et al. [93] propose a

deep generative model for graphs. However, they focus on the modeling without providing

formal privacy guarantee. Triastcyn et al. [94] proposes using a generative adversarial

network to synthesize data and achieve differential privacy with differentially private SGD

training. But it focuses on the image data.
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CHAPTER 5

CONCLUSION

In this dissertation, we have presented PIVE, a two-phase dynamic differential location pri-

vacy framework for providing stronger notion of location privacy in terms of background

knowledge based inference attacks. It makes three novel contributions. First, we formally

study the relationship between geo-indistinguishability and expected inference error, and

demonstrate inherent problems of using geo-indistinguishability alone as the ultimate goal

of location privacy protection through formal analysis and experimental illustration. Sec-

ond, we propose a dynamic differential location privacy protection framework, where we

first determine a set of protection locations by guaranteeing the expected inference error

bound defined by a mobile user with respect to her service request by taking into account

the adversary’s prior distribution of the user’s locations. Then, we generate the pseudo-

locations in a differentially private way. Third, this two-phase framework constructs lo-

cation obfuscation dynamically by capturing the relationship between two privacy notions

based on adversary’s current prior information and user-specific privacy requirements for

different spatial-temporal contexts. Our experimental evaluation shows that the proposed

PIVE approach effectively guarantees the two privacy notions simultaneously and outper-

forms the existing mechanisms that either offer geo-indistinguishability or quantify location

privacy by expected inference errors, in terms of adaptive privacy protection and computa-

tion efficiency.

We have presented our approach to differentially private deep learning for model pub-

lishing with three original contributions. First, since the training of neural networks in-

volves a large number of iterations, we apply CDP for privacy accounting to achieve tight

estimation on privacy loss. Second, we distinguish two different data batching methods

and propose privacy accounting methods for each to enable accurate privacy loss estima-
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tion. Third, we have implemented several dynamic privacy budget allocation techniques

for improving model accuracy over existing uniform budget allocation schemes. Our ex-

periments on multiple datasets demonstrate the effectiveness of dynamic privacy budget

allocation.

Finally we have presented DeepSynthesizer that provides an end-to-end privacy pre-

serving location data synthesis approach through differentially private deep learning. Deep-

Synthesizer uses the recurrent neural network as generative model for data synthesis and

applyies differentially private SGD algorithm to train it to protect the privacy of the in-

put dataset. We have compared DeepSynthesizer with existing conventional methods in

terms of the utility of synthesized data. Our experiment shows that DeepSynthesizer can

achieve comparable performance without sophiscated feature engineering, tuning and care-

ful privacy budget allocation. In addition, DeepSyntheizer considers user level differential

privacy that aims to protect a single user’s contribution to the input dataset as a whole,

which cannot be easily achieved by conventional methods.
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