
REALIZABLE PATHS AND THE NL VS L PROBLEM

A Thesis
Presented to

The Academic Faculty

by

Shiva Kintali

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
December 2011

REALIZABLE PATHS AND THE NL VS L PROBLEM

Approved by:

Professor Richard Lipton, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Merrick Furst
School of Computer Science
Georgia Institute of Technology

Professor Anna Gal
Department of Computer Science
University of Texas at Austin

Professor Maria-Florina Balcan
School of Computer Science
Georgia Institute of Technology

Professor William Cook
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: 24th August 2011

To my parents.

iii

ACKNOWLEDGEMENTS

I am very grateful to my advisor Richard Lipton for his constant support and encour-

agement throughout my stay at Georgia Tech. He has given me abundant freedom to

work on a variety of research problems. The research discussions with him inspired

me to develop interest on many research topics and helped me grow to be a more ma-

ture researcher. I benefited immensely from his breadth of knowledge and his ability

to explain complicated mathematical proofs in a simple and intuitive way. His ideas

and personality were a great source of inspiration for me.

All the faculty members in the theory group of School of Computer Science have

helped me in making my time as a graduate student a very memorable experience. I

am very grateful to Willliam Cook from School of Industrial and Systems Engineering

and Robin Thomas from School of Mathematics for several useful research discussions.

Many thanks to my committee members Anna Gal, Asaf Shapira, William Cook,

Merrick Furst, Prasad Raghavendra and Maria-Florina Balcan for their support and

useful feedback. Special thanks to Prof. Anna Gal for going through preprints of

my earlier results and providing invaluable feedback. I gratefully acknowledge helpful

discussions with Eric Allender, Klaus-Jörn Lange, Nutan Limaye, Richard Lipton,

H. Venkateswaran, Dieter van Melkebeek and Anna Gal. These discussions played a

crucial role in developing my thesis.

I thank my parents and my sister for their unconditional love and support in all

the decisions I have made. Without their support I wouldn’t have made this far. I

am thankful to them for their patience and letting me pursue my dreams.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

SUMMARY . viii

I INTRODUCTION . 1

1.1 Preliminaries, Related Work and Our Results 2

1.2 Why is Balanced ST-Connectivity an interesting and important
problem ? . 7

II REALIZABLE PATHS . 10

2.1 STREAL . 11

2.2 USTREAL . 12

2.3 DSTREAL . 13

2.4 Relationship among STREAL, USTREAL and DSTREAL 14

2.5 Graph Representation . 14

2.6 Realizability with Symmetric Gap 16

III POLYNOMIALLY BOUNDED REALIZABLE PATHS 19

IV REALIZABILITY WITH ONE STACK SYMBOL 21

4.1 1STREAL, 1USTREAL and 1DSTREAL 21

4.2 1SGUSTREAL . 21

4.3 Polynomial length paths . 22

V BALANCED PATHS . 24

VI LENGTHS OF REALIZABLE PATHS 27

6.1 Length of Balanced Paths . 27

6.2 Length of Realizable Paths . 29

v

VII TRANSITIVE CLOSURE . 32

7.1 Tensor Products . 32

7.2 Squaring Operation . 34

VIIIPARALLEL ALGORITHMS FOR SGSLOGCFL 38

8.1 An O(log2n) time parallel algorithm 39

8.2 An O(log3/2n) time parallel algorithm 44

8.3 An O(lognloglogn) time parallel algorithm 46

IX SGSLOGCFL ⊆ DSPACE(LOGNLOGLOGN) 49

X NEW RESEARCH DIRECTIONS 51

APPENDIX A — SYMMETRIC AUXPDA’S 53

vi

LIST OF FIGURES

1 Relationship among the complexity classes lying between L and LogCFL 26

2 A non-simple balanced path from s to t 27

3 An instance of STREAL with a unique exponential length realizable
path from s to t . 30

vii

SUMMARY

A celebrated theorem of Savitch [63] states thatNSPACE(S)⊆DSPACE(S2).

In particular, Savitch gave a deterministic algorithm to solve ST-Connectivity

(an NL-complete problem) using O(log2n) space, implying NL ⊆ DSPACE(log2n).

While Savitch’s theorem itself has not been improved in the last four decades, sev-

eral graph connectivity problems are shown to lie between L and NL, providing new

insights into the space-bounded complexity classes. All the connectivity problems

considered in the literature so far are essentially special cases of ST-Connectivity.

In the first half of this thesis, we initiate the study of auxiliary PDAs as graph con-

nectivity problems and define sixteen different graph realizability problems and study

their relationships. The complexity of these connectivity problems lie between L and

P. ST-Realizability, the most general graph realizability problem is P-complete.

1DSTREAL(poly), the most specific graph realizability problem is L-complete. As

special cases of our graph realizability problems we define two natural problems, Bal-

anced ST-Connectivity and Positive Balanced ST-Connectivity, that lie

between L and NL.

In the second half of this thesis, we study the space complexity of SGSLogCFL,

a graph realizability problem lying between L and LogCFL. We define generaliza-

tions of graph squaring and transitive closure, present efficient parallel algorithms for

SGSLogCFL and use the techniques of Trifonov [70] to show that SGSLogCFL is

contained inDSPACE(lognloglogn). This implies that Balanced ST-Connectivity

is contained in DSPACE(lognloglogn). We conclude with several interesting new re-

search directions.

viii

CHAPTER I

INTRODUCTION

A celebrated theorem of Savitch [63] states that NSPACE(S) ⊆ DSPACE(S2). In

particular, Savitch gave a deterministic algorithm to solve ST-Connectivity (an

NL-complete problem) using O(log2n) space, implying NL ⊆DSPACE(log2n). ST-

Connectivity (in short STCONN) is the problem of determining whether there

exists a path between two distinguished vertices s and t in a directed graph. Sav-

itch’s algorithm runs in time 2O(log2n). It is a longstanding open problem to improve

Savitch’s theorem i.e., to prove (i) NL ⊆ DSPACE(o(log2n)) or (ii) NL ⊆ SC2,

i.e., STCONN can be solved by a deterministic algorithm in polynomial time and

O(log2n) space.

While Savitch’s theorem itself has not been improved in the last four decades,

several graph connectivity problems are shown to lie between L and NL, providing

new insights into the space-bounded complexity classes. Allender’s survey [5] gives an

update of progress related to several special cases of STCONN. Recently STCONN

in planar DAGs with O(logn) sources is shown to be in L [64]. Stolee and Vinodchan-

dran proved that STCONN in DAGs with 2O(
√

logn) sources embedded on surfaces of

genus 2O(
√

logn) is in L [65].

All the connectivity problems considered in the literature so far are essentially

special cases of STCONN. In the first half of this thesis, we initiate the study of

auxiliary PDAs as graph connectivity problems and define sixteen different graph

realizability problems and study their relationships. The complexity of these connec-

tivity problems lie between L and P. STREAL, the most general graph realizability

problem is P-complete. 1DSTREAL(poly), the most specific graph realizability

1

problem is L-complete. As special cases of our graph realizability problems we define

two natural problems, Balanced ST-Connectivity and Positive Balanced

ST-Connectivity, that lie between L and NL.

In the second half of this thesis, we study the space complexity of SGSLogCFL

(See Section 3 for definition). We define generalizations of graph squaring and tran-

sitive closure, present efficient parallel algorithms for SGSLogCFL and use the

techniques of Trifonov [70] to show that SGSLogCFL is contained in DSPACE

(lognloglogn). This implies that Balanced ST-Connectivity is contained in

DSPACE(lognloglogn).

1.1 Preliminaries, Related Work and Our Results

Auxiliary Pushdown Automata : A language is accepted by a non-deterministic

pushdown automaton (PDA) if and only if it is a context-free language. Deterministic

context-free languages are those accepted by the deterministic PDAs. LogCFL is the

set of all languages that are log-space reducible to a context-free language. Similarly,

LogDCFL is the set of all languages that are log-space reducible to a deterministic

context-free language. There are many equivalent characterizations of LogCFL.

Sudborough [66] gave the machine class equivalence. Ruzzo [61] gave an alternating

Turing machine (ATM) class equivalent to LogCFL. Venkateswaran [72] gave a

circuit characterization and showed that LogCFL = SAC1. For a survey of parallel

complexity classes and LogCFL see Limaye’s thesis [43].

An Auxiliary Pushdown Automaton (NAuxPDA or simply AuxPDA), introduced

by Cook [17], is a two-way PDA augmented with an S(n)-space bounded work tape.

If a deterministic two-way PDA is augmented with an S(n)-space bounded work

tape then we get a Deterministic Auxiliary Pushdown Automaton (DAuxPDA). We

present the formal definitions in the appendix (see Section A). Let NAuxPDA-

SpaceTime (S(n),T (n)) be the class of languages accepted by an AuxPDA with

2

S(n)-space bounded work tapes and the running time bounded by T (n). Let the

corresponding deterministic class be DAuxPDA-SpaceTime (S(n),T (n)). It is easy to

see that NL ⊆ NAuxPDA-SpaceTime (O(logn), poly(n)). It is shown by Sudborough

that NAuxPDA-SpaceTime (O(logn), poly(n)) = LogCFL and DAuxPDA-SpaceTime

(O(logn),poly(n)) = LogDCFL [66]. Using ATM simulations, Ruzzo showed that

LogCFL ⊆ NC2 [61]. Simpler proofs of DAuxPDA-SpaceTime (O(logn),poly(n)) =

LogDCFL and LogCFL = SAC1 are given in [44].

Many proof techniques and results obtained in the context of NL, are generalized

to obtain the corresponding results for LogCFL. For example : (i) Borodin [12]

proved that NL ⊆ NC2. Ruzzo [61] introduced tree-size-bounded alternating Turing

machines, gave a new characterization of LogCFL, and proved that LogCFL ⊆

NC2. (ii) Immerman [31] and Szelepcsényi [67] proved that NL = co-NL. Borodin

et. al. [13] generalized their inductive counting technique and proved that LogCFL

= co-LogCFL. In fact, they proved a stronger result showing that SACi is closed

under complementation for i > 0. (iii) Wigderson [76] proved that NL ≤r ⊕NL.

Gál and Wigderson [21] proved that LogCFL ≤r ⊕LogCFL. (iv) Nisan [48] proved

that BPL ⊆ SC2. Venkateswaran [73, 74] proved that BPLogCFL ⊆ SC2 and

BPLogCFL ⊆ NC2. Here BPLogCFL (resp. RLogCFL and ZPLogCFL) is the

bounded error (resp. one-sided error and zero error) probabilistic version of LogCFL.

All the above results are elegant and non-trivial generalizations of the corresponding

results in the logspace setting.

Throughout this thesis, we consider O(logn)-space bounded AuxPDAs. The sur-

face configuration (introduced by Cook [17]) of an AuxPDA, on an input w, consists

of the state, contents and head positions of the work tapes, the head position of the

input tape and the topmost symbol of the stack i.e., the rightmost symbol of the push-

down tape. Note that for an S(n)-space bounded AuxPDA, its surface configurations

3

take only O(S(n)) space. In the rest of the paper, we will refer to surface configura-

tions as configurations. For an input w, a pair of configurations (C1, C2) is realizable

if the AuxPDA can move from C1 to C2 ending with its stack at the same height as

in C1, and without popping its stack below its level in C2 for any of the intermedi-

ate configurations. An AuxPDA M accepts an input w iff there is a realizable pair

(I, A), where I is the initial configuration and A is the unique accepting configuration.

ST-Realizability : In Section 2, we initiate the study of auxiliary PDAs as graph

connectivity problems and define STREAL and several special cases of STREAL.

Our definition of STREAL is motivated by (i) Hardest CFL [25, 66, 26], (ii) La-

beled Acyclic GAP, which is LogCFL-complete [24] (iii) CFL-reachability, which is

P-complete [45, 1, 58, 71] and (iv) the insights from Niedermeier and Rossmanith’s

parsimonious simulation of LogCFL by SAC1 circuits [46].

Symmetric AuxPDAs : In Section 2.2, we define USTREAL, a symmetric ver-

sion of STREAL. To study the space complexity of USTREAL we define symmetric

auxiliary pushdown automata, a natural generalization of symmetric Turing machines

introduced by Lewis and Papadimitriou [42]. We introduce a new complexity class

called SLogCFL (a generalization of SL) and show that LogDCFL ⊆ SLogCFL

⊆ LogCFL.

More Graph Realizability Problems : In Sections 4 and 5, we study several

variants of STREAL and the corresponding complexity classes. We study the rela-

tionship between sixteen different graph realizability problems, whose complexity lies

between L and P. Balanced ST-Connectivity and Positive Balanced ST-

Connectivity are two natural graph connectivity problems that lie between L and

NL. Figure 1 summarizes the relationship among the newly defined classes.

4

Generalizations of Transitive Closure and Graph Squaring : Unlike STCONN,

using breadth-first search (or) depth-first search and keeping track of “visited” ver-

tices does not result in efficient algorithms for STREAL. In Section 7, we generalize

the notions of transitive closure and graph squaring. Using these generalizations we

present a natural repeated squaring algorithm to compute the generalized transitive

closure, thus solving STREAL.

Space Efficient Algorithms : STCONN (resp. USTCONN) is the problem of

determining whether there exists a path between two distinguished vertices s and t in

a directed (resp. undirected) graph. These two graph connectivity problems played

a central role in understanding the complexity classes L, SL and NL [3, 42, 13, 49,

34, 50, 62, 11, 55, 70, 53].

The L vs SL question (i.e., is there a log space algorithm for solving USTCONN)

motivated an exciting series of new concepts and techniques. Lewis and Papadim-

itriou [42] introduced symmetric Turing machines to study the space complexity of

USTCONN. Prior to their work, Aleliunas et. al. [3] proved that USTCONN ∈RL,

implying SL ⊆ RL. Nisan, Szemeredi and Wigderson [49] showed that USTCONN

can be solved deterministically in spaceO(log
3
2n). This result was later subsumed by a

beautiful result of Saks and Zhou, showing that BPHSPACE(S) ⊆ DSPACE(S3/2)

[62]. Armoni, et. al. [11] showed that USTCONN ∈ DSPACE(log
4
3n). Trifonov

[70] gave an O(lognloglogn)-space deterministic algorithm for USTCONN. Indepen-

dently at the same time, using completely different techniques, Reingold [53] settled

the space complexity of USTCONN and proved that SL = L. The zig-zag graph

product, introduced by Reingold, Vadhan and Wigderson [56], played a crucial role

in Reingold’s algorithm. Rozenman and Vadhan [60] introduced a derandomized

analogue of graph squaring and presented an alternative proof of Reingold’s theorem.

5

One of our goals in this paper is to develop techniques to design space efficient algo-

rithms for graph realizability problems. In particular, we study the space complexity

of SGSLogCFL. Applying the techniques of [56, 53, 60] to design space-efficient

algorithms for SGSLogCFL seems to be a challenging task. Our space efficient al-

gorithm for SGSLogCFL (see Section 9) is based on Trifinov’s technique [70]. The

main idea in [70] is to space-efficiently simulate parallel algorithms for USTCONN.

Trifonov’s proof of SL ⊆ DSPACE(lognloglogn) is based on Chong-Lam’s parallel

algorithm [16] solving USTCONN in O(lognloglogn) time on EREW PRAM.

Research in parallel algorithms for USTCONN has a rich history. Hirschberg,

Chandra and Sarwate [28] presented anO(log2n) time parallel algorithm using n2/logn

processors on a CREW PRAM to find connected components of an undirected graph.

Their algorithm remained the best known for almost a decade. In a breakthrough

work, Johnson and Metaxas [33] presented a CREW algorithm running in O(log
3
2n)

time using n+m processors. Subsequently they improved their algorithm to run on an

EREW PRAM with the same time complexity and number of processors [32]. Chong

and Lam [16] presented an O(lognloglogn) time deterministic EREW PRAM algo-

rithm with O(m+n) processors. Chong, Han, and Lam [15] showed that the problem

can be solved on the EREW PRAM in O(logn) time with O(m+ n) processors.

In Section 8, we start by generalizing the parallel algorithm of [28]. This general-

ization introduces the basic connections between our generalized graph squaring and

the hook and contract based parallel algorithms. These connections play a crucial role

in understanding the parallel algorithms in the subsequent sections. We then general-

ize the algorithms of [33] and [16] and design the corresponding parallel algorithms for

SGSLogCFL. In Section 9, we use these generalizations and the techniques of Tri-

fonov [70] to prove that SGSLogCFL is contained in DSPACE(lognloglogn). This

implies that Balanced ST-Connectivity is contained in DSPACE(lognloglogn).

6

1.2 Why is Balanced ST-Connectivity an interesting and
important problem ?

It is well known that STCONN is NL-complete. Savitch gave a deterministic al-

gorithm to solve STCONN, implying NL ⊆ DSPACE(log2n). Reingold proved

that SL = L, thus showing that USTCONN is L-complete. The zig-zag graph

product, introduced by Reingold, Vadhan and Wigderson [56], played a crucial role

in Reingold’s algorithm. Unfortunately it is also known that these techniques are

not applicable to STCONN. Reingold’s algorithm heavily relies on the “undirected”

nature of USTCONN and the well-studied notion of (undirected) expander graphs.

While there are notions of directed graph expansion, they do not seem to be helpful in

generalizing Reingold’s techniques to improve Savitch’s theorem. The “directed” na-

ture of STCONN is frustrating all attempts of applying the techniques of [56, 53, 60]

to improve its space complexity. Are there intermediate problems between L and NL

that can help us better understand the limitations of these techniques ?

Prior to our work all the connectivity problems between L and NL are essentially

special cases of STCONN. Balanced ST-Connectivity is a new kind of a natu-

ral graph connectivity problem (see Section 5 for definition) lying between L and NL.

An instance of Balanced ST-Connectivity is a directed graph. We show that this

instance can be represented using two symmetric matrices, a standard matrix and a

gap matrix (see Section 2.5 for definitions). The symmetry of these matrices combined

with our generalized graph squaring procedure (see Section 7.2) allowed us to natu-

rally generalize the known parallel algorithms of USTCONN, which in turn allowed

us to apply Trifonov’s techniques and prove that Balanced ST-Connectivity ∈

DSPACE(lognloglogn) (see Corollary 9.0.2). The main insight from this result is

that Trifonov’s techniques are applicable in a much more general setting than just

USTCONN. On the other hand there does not seem to be a natural way of applying

the techniques of [56, 53, 60] to Balanced ST-Connectivity and achieve even

7

o(log2n) upper bound.

On one hand, our work motivates further investigation of applicability of Trifonov’s

techniques in more general settings. On the other hand, our work leaves a challeng-

ing task of generalizing Reingold’s techniques to Balanced ST-Connectivity.

After all, Balanced ST-Connectivity has lots of “symmetry” in its definition.

What concepts are we missing, to apply Reingold’s techniques to Balanced ST-

Connectivity ? Do we need an appropriate generalization of graph expansion de-

fined in the context of Balanced ST-Connectivity ? Do we need a new kind of

graph product (along the lines of zig-zag graph product and replacement product)

? Investigating such expansion parameters and graph products is an interesting re-

search direction towards understanding and developing the right notion of “directed

expansion” and graph products to be used in the context of STCONN.

One of the most interesting open problems arising from our work is to improve

Theorem 9.0.1. As mentioned earlier, SGSLogCFL is a generalization of Balanced

ST-Connectivity. Is SGSLogCFL ∈ L ? Resolving this seems to be a challenging

task. An intermediate step is to prove that SGSLogCFL ∈ SC2. One way to achieve

this goal is to prove that SGSLogCFL ∈ RL and use Nisan’s theorem (RL ⊆ SC2)

[48].

One of the oldest results concerning the space complexity of USTCONN is that

of Aleliunas et. al. [3]. They proved that USTCONN ∈ RL. Their algorithm is

very elegant. Simply start from the source node (say s) and perform a random walk

for polynomial number of steps. If the destination node (say t) is visited within these

steps, declare that s and t are connected. Can we generalize their techniques to prove

that SGSLogCFL ∈ RL ? This approach necessitates an appropriate generalization

of random walks and associated concepts like cover time. Defining such concepts will

shed new light on the connectivity problems that are intermediate between L and

NL.

8

Our work opens up several such intriguing new research directions. They are

discussed in Section 10. To improve Savitch’s theorem it is important that we seek

answers to these questions.

9

CHAPTER II

REALIZABLE PATHS

As mentioned earlier, an auxiliary pushdown automaton (AuxPDA) is a multi-tape

Turing machine with a two-way read-only input tape, a pushdown tape, and one or

more work tapes. The pushdown alphabet has a distinguished symbol (say $) which

is initially pushed on the pushdown tape. The pushdown head never shifts left of $

or changes $. Further, the pushdown head can never shift left when scanning any

tape symbol unless it first erases (i.e., pops) that symbol, and it can never shift

right from a square unless it first prints (i.e., pushes) a nonblank symbol on that

square. If the Turing machine is non-deterministic we get a non-deterministic Auxil-

iary Pushdown Automaton (NAuxPDA or simply AuxPDA). If the Turing machine

is deterministic we get a deterministic Auxiliary Pushdown Automaton (DAuxPDA).

Space on an AuxPDA is the space used on the work tapes without counting the space

on the pushdown tape. In this paper we use the terms pushdown tape and stack

interchangeably.

Throughout this thesis, we consider AuxPDAs that are O(logn)-space

bounded. We will assume that an AuxPDA (i) accepts with its stack empty

and halts on all computations, and (ii) there is a unique accepting configuration

(assuming an empty pushdown tape, an empty work tape, a fixed position for all

tape heads, and a unique final accepting state).

We first define a graph connectivity problem called ST-Realizability (in short

STREAL) that captures the computations of an AuxPDA. We are given a directed

graph (say G) where each vertex has a stack symbol associated with it and each edge

10

is labeled push, pop or ε. Let s and t be two distinguished vertices of G and let P be a

directed (not necessarily simple) path from s to t. We maintain a stack and traverse

the path P starting from s by first pushing the label of s into the stack. Throughout

the traversal the top of the stack is called the current symbol. We traverse the edges

of P according to the following rules :

• We are allowed to traverse along any edge e = (u, v) labeled ε, without modify-

ing the stack, provided the label of v is same as the current symbol.

• While traversing any edge e = (u, v) labeled push, we have to push the label of

v into the stack, so that it becomes the current symbol.

• We are allowed to traverse any edge e = (u, v) labeled pop, so long as the label

associated with the vertex v agrees with what would become the current symbol

after popping the top symbol off the stack.

If we reach the vertex t with the stack in the same configuration as we started at

s, then the path P is called a realizable path. This traversal defines a computation

path of an AuxPDA and each vertex of G represents a surface configuration of the

AuxPDA. The graph G represents the configuration graph of the AuxPDA. The terms

realizable paths and surface configuration are first introduced by Cook [17]. We now

present a formal definition of STREAL.

2.1 STREAL

We are given a directed graph G(V,E), a vertex labeling function LV : V→ {α1, α2,

. . . , αk} and an edge labeling function LE : E→{push, pop, ε}. The ordered pair (s, t),

where s, t ∈ V , is said to be realizable if the following two conditions hold :

• There is a directed path (say P) from s to t.

• The concatenation of the vertex and edge labels along the path P is a realizable

string (see Definition 2.1.1).

11

Definition 2.1.1. Let A = {push, pop, ε, α1, α2, . . . , αk} be the set of alphabets. A

realizable string is a nonempty string of alphabets from A, defined in the following

recursive manner :

• for all 1 ≤ i ≤ k, “αi” is a realizable string.

• for all 1 ≤ i ≤ k, “αi ε αi” is a realizable string.

• if S is a realizable string then so is “αi push S pop αi”, for all 1 ≤ i ≤ k.

• for all 1 ≤ i ≤ k, if “αi S1 αi” and “αi S2 αi” are realizable strings then so is

“αi S1 αi S2 αi”.

STREAL : Given a directed graph G(V,E) with vertices labeled from

{α1, α2, . . . , αk} and edges labeled from {push, pop, ε} and two distinguished nodes

s and t, decide if there is a realizable path from s to t in G.

We use the notation (u;v) to denote that there is a realizable path from u to v.

If all the vertices of G are labeled α1 (i.e., k = 1) and all the edges are labeled ε, we

get an instance of STCONN. Hence, STREAL is a generalization of STCONN.

2.2 USTREAL

We now define USTREAL, a symmetric version of STREAL. USTREAL captures

the computation of symmetric AuxPDAs. Intuitively, a symmetric AuxPDA is a

nondeterministic multi-tape Turing machine which has an extra tape called pushdown

tape, with an additional requirement that every move of the machine is “reversible”.

In other words, the “yields” relation between its (surface) configurations is symmetric.

Such a machine is allowed to scan two symbols at a time on each of its tapes. We

present the formal definitions and properties of symmetric AuxPDAs in the appendix

(see appendix A).

12

We are given an undirected graph G(V,E), a vertex labeling function LV : V→{α1

, α2, . . . , αk} and an edge labeling function LE : E→{push, pop, ε}. Moreover, the

edge labels are “symmetric” i.e., they satisfy the following properties : (i) LE(u, v) =

push if and only if LE(v, u) = pop and (ii) LE(u, v) = ε if and only if LE(v, u) = ε.

The pair (s, t), where s, t ∈ V , is said to be realizable if there is an undirected path

(say P) from s to t and the concatenation of the vertex and edge labels along the

path P is a realizable string. Since the edge labels are symmetric, (s, t) is realizable

if and only if (t, s) is realizable. We denote this by (s!t).

USTREAL : Given an undirected graph G(V,E) with vertices labeled from

{α1, α2, . . . , αk} and symmetric edge labels from {push, pop, ε} and two distin-

guished nodes s and t, decide if s and t are realizable in G.

If all the vertices of G are labeled α1 (i.e., k = 1) and all the edges are labeled ε,

we get an instance of USTCONN. Hence, USTREAL is a generalization of UST-

CONN.

2.3 DSTREAL

We now define a deterministic version of STREAL, called DSTREAL, capturing the

behavior of deterministic AuxPDAs. An instance of DSTREAL is a graph with ver-

tex labels and edges labels similar to STREAL. The definition of a realizable path is

also the same. The graph G associated with DSTREAL satisfies the following prop-

erties reflecting the deterministic behavior of computation paths of a deterministic

AuxPDA.

• Let e = (u, v) be a directed edge of G. If (u, v) is labeled ε, then e is the only

out-going edge from u.

13

• Let e = (u, v) be a directed edge of G. If (u, v) is labeled push, then e is the

only out-going edge from u.

• Let u have l out-going edges all labeled pop. Let v1, v2, . . . , vl be the out-

neighbors of u. Then the labels of the vertices v1, v2, . . . , vl are all distinct.

DSTREAL : Given a directed graph G(V,E) with vertices labeled from

{α1, α2, . . . , αk} and edges labeled from {push, pop, ε} (satisfying the above men-

tioned properties) and two distinguished nodes s and t, decide if there is a realiz-

able path from s to t in G.

2.4 Relationship among STREAL, USTREAL and DSTREAL

As mentioned earlier, AuxPDAs are introduced by Cook [17]. In the same paper,

Cook proved that O(logn)-space bounded AuxPDAs (both deterministic and non-

deterministic) accept precisely those languages that are accepted by a polynomial

time bounded Turing machine. Hence, the following theorems are immediate.

Theorem 2.4.1. STREAL and DSTREAL are P-complete.

We use the same names STREAL, USTREAL and DSTREAL to denote lan-

guages that are logspace reducible to the connectivity problems STREAL, US-

TREAL and DSTREAL respectively. Since DSTREAL⊆USTREAL⊆ STREAL

by Theorem A.0.4 (see appendix), we have the following corollary.

Theorem 2.4.2. DSTREAL = USTREAL = STREAL = P.

2.5 Graph Representation

We now discuss the representation of an instance of STREAL i.e., a directed graph

G with the vertex and edge labels. Let this graph be G(V,E) with |V | = n. For

simplicity we assume that there are no multi-edges. We represent G as a 4-tuple

14

G = 〈L,Ppush,Ppop, E〉, where L is an integer array of length n, Ppush, Ppop and E

are n×n boolean matrices. L is an integer array of length N representing the vertex

labels. L[u] represents the label of vertex u i.e., L[u] = i iff the label of u is αi. The

[u, v]th entry of the matrix Ppush (resp. Ppop and E) is 1 if and only if the directed

edge (u, v) is labeled push (resp. pop and ε). We may assume that LE(u, u) = ε for

all u ∈ V i.e., E [u, u] = ε for all u ∈ V .

Definition 2.5.1. (Niedermeier and Rossmanith [46]) : Let a,b,c,d be four configu-

rations such that : a and b have same pushdown heights, c and d have same pushdown

heights and there exists a computation path from a to c and one from d to b. The

level of the pushdown must not go below the level of a and b during the computation.

We say that (a,b) is realizable with gap (c,d).

In the context of STREAL, we relax the above definition as shown below. This

allows us to define a natural repeated squaring algorithm to solve STREAL. For the

rest of this paper, we will use the following definition.

Path with gap : A path with gap consists of four vertices a, b, c, d such that (i)

there is a computation path P1 from a to c and P2 from d to b (ii) the vertex

labels of a and b are the same (iii) the vertex labels of c and d are the same (iv)

let P be the path formed by concatenating P1 and P2 i.e., identifying c and d (iv)

the concatenation of the vertex and edge labels along the path P is a realizable

string. We denote such a “path with gap” by (a;(c, d);b) and say that (a,b) is

realizable with gap (c,d). The length of such a path with gap is the length of P .

Path with gap (a;(c, d);b) is interpreted as if the two surface configurations c

and d were the same, i.e., as if a realizable path from c to d would exist. To keep

track of paths with gaps, we maintain a boolean gap matrix Υ, indexed by 4-tuple

15

of vertices [a, (c, d), b] such that if Υ[a, (c, d), b] = 1 then (a;(c, d);b). We initialize

the gap matrix Υ with the labels from the matrices L,Ppush and Ppop as follows.

InitializeGapMatrix(Υ)

for all a, b, c, d ∈ V Υ[a, (c, d), b] = 0

for all a, b, c, d ∈ V

if ((Ppush[a, c] == 1)&&(Ppop[d, b] == 1)&&(L[a] == L[b])&&(L[c] == L[d]))

then Υ[a, (c, d), b] = 1

for all a ∈ V Υ[a, (a, a), a] = 1

for all a, b ∈ V Υ[a, (a, b), b] = 1

All the required information from the matrices L,Ppush and Ppop is now present in

the gap matrix Υ. We call E the standard matrix and Υ the gap matrix and assume

that an instance of STREAL, H, is represented by an n× n standard matrix E and

an n2×n2 gap matrix Υ and denote this by H = 〈Υ, E〉. The rows and columns of Υ

are indexed by pairs of vertices of H. Υ[a, (c, d), b] corresponds to the [(a, b), (c, d)]th

entry in the n2 × n2 matrix.

2.6 Realizability with Symmetric Gap

As noted earlier, an instance of STREAL is represented by an n×n standard matrix

E and an n2 × n2 gap matrix Υ. In an instance of USTREAL, the standard matrix

is symmetric. We define SGUSTREAL to be a graph realizability problem in which

both the standard matrix and the gap matrix are symmetric. The prefix SG stands

for symmetric gap 1. We now give a formal definition of SGUSTREAL.

We are given an undirected graph G(V,E), a vertex labeling function LV : V→{α1,

1A moment of thought would reveal that the case of symmetric gap matrix and asymmetric
standard matrix does not make much sense

16

α2, . . . , αk} and an edge labeling function LE : E→{push, pop, ε}. The edge labels

are “symmetric” as defined in Section 2.2. The pair (s, t), where s, t ∈ V , is said to

be realizable with symmetric gap if the following two conditions hold :

• There is an undirected path (say P) from s to t.

• The concatenation of the vertex and edge labels along the path P is a realizable

string with symmetric gap (see Definition 2.6.1).

Definition 2.6.1. Let A = {push, pop, ε, α1, α2, . . . , αk} be the set of alphabets. A

realizable string with symmetric gap is a nonempty string of alphabets from A,

defined in the following recursive manner :

• for all 1 ≤ i ≤ k, “αi” is a realizable string.

• for all 1 ≤ i ≤ k, “αi ε αi” is a realizable string.

• if S is a realizable string then so is “αi push S pop αi”, for all 1 ≤ i ≤ k.

• if S is a realizable string then so is “αi pop S push αi”, for all 1 ≤ i ≤ k.

• for all 1 ≤ i ≤ k, if “αi S1 αi” and “αi S2 αi” are realizable strings then so is

“αi S1 αi S2 αi”.

Since the edge labels are symmetric, (s, t) is realizable if and only if (t, s) is

realizable. We initialize the gap matrix as described in Section 2.5. By the definition

of realizable string with symmetric gap, (a;(c, d);b) if and only if (c;(a, b);d).

Hence the corresponding n2 × n2 gap matrix Υ is a symmetric matrix. We denote

this symmetry by (a!(c, d)!b).

17

SGUSTREAL : Given an undirected graph G(V,E) with vertices labeled from

{α1, α2, . . . , αk} and symmetric edge labels from {push, pop, ε} and two distin-

guished nodes s and t, decide if s and t are realizable with symmetric gap in

G.

Note : STREAL, USTREAL and DSTREAL capture the behaviour of non-

deterministic AuxPDAs, symmetric AuxPDAs and deterministic AuxPDAs re-

spectively. Defining such a machine (or a circuit) characterization for SGUS-

TREAL is an open problem. In this thesis, we study SGUSTREAL purely as a

graph connectivity problem.

18

CHAPTER III

POLYNOMIALLY BOUNDED REALIZABLE PATHS

There are instances of DSTREAL (and hence USTREAL and STREAL) with

a unique exponentially long realizable path from s to t (see Chapter 6). We now

define realizability problems seeking realizable paths of polynomial length. Since we

are studying these connectivity problems under logspace reductions, it is sufficient to

look for realizable paths of length n where n is the number of vertices in the graph

G.

STREAL(poly) : Given a directed graph G(V,E) with vertices labeled from

{α1, α2, . . . , αk} and edges labeled from {push, pop, ε} and two distinguished nodes

s and t, decide if there is a realizable path of length at most n = |V | from s to t

in G.

USTREAL(poly), DSTREAL(poly) and SGUSTREAL(poly) are defined

analogously. Sudborough showed that NAuxPDA-SpaceTime (O(logn), poly(n)) =

LogCFL and DAuxPDA-SpaceTime (O(logn),poly(n)) = LogDCFL [66]. Hence

the following theorems are immediate.

Theorem 3.0.2. STREAL(poly) is LogCFL-complete.

Theorem 3.0.3. DSTREAL(poly) is LogDCFL-complete.

Note : It is known that the circuit class SACi is equivalent to the set of languages

recognized by Non-deterministic AuxPDAs using O(logn) space and O(login) stack

height (for details see [61, 72]). We note that STREAL(nlogi−1n), defined similar to

19

STREAL(poly), is complete for the complexity class SACi.

We now define the complexity classes corresponding to USTREAL(poly) and

SGUSTREAL(poly).

SLogCFL is the class of languages accepted by a logspace bounded and polyno-

mial time bounded symmetric AuxPDA. In other words, SLogCFL is the class

of languages that are logspace reducible to USTREAL(poly).

SGSLogCFL is the class of languages that are logspace reducible to SGUS-

TREAL(poly).

Independent to our work, Allender and Lange [6] defined symmetric AuxPDAs

and proved that every language accepted by a nondeterministic auxiliary pushdown

automaton in polynomial time can be accepted by a symmetric auxiliary pushdown

automaton in polynomial time. Their definition of symmetric AuxPDAs is equivalent

to ours [4]. Hence, the following theorem is immediate.

Theorem 3.0.4. (Allender and Lange [6]). SLogCFL = LogCFL.

20

CHAPTER IV

REALIZABILITY WITH ONE STACK SYMBOL

The realizability problems 1STREAL, 1USTREAL, 1DSTREAL and 1SGUS-

TREAL are obtained by restricting the previously defined realizability problems to

use only one stack symbol i.e., by insisting that k = 1 in the above definitions. Since

the vertices are all labeled with one label, we may omit the vertex labels in the defini-

tions. After omitting the vertex labels, the corresponding realizability can be defined

using a context-free language as shown below.

4.1 1STREAL, 1USTREAL and 1DSTREAL

1STREAL is the following graph realizability problem. We are given a directed

graph G(V,E), with edges labeled from {push, pop, ε}. The ordered pair (s, t), where

s, t ∈ V , is said to be realizable if the following two conditions hold :

• There is a directed path (say P) from s to t.

• The concatenation of the edge labels on the path P is a string produced by the

following context-free grammar : S → S S; S → push S pop; S → ε; S → ∅.

Here ∅ denotes the empty string.

1USTREAL and 1DSTREAL are defined analogously with the symmetric and

deterministic restrictions.

4.2 1SGUSTREAL

1SGUSTREAL is the following graph realizability problem. We are given an undi-

rected graph G(V,E), with the edges labeled from {push, pop, ε}. The edge labels are

21

“symmetric” as defined in Section 2.2. The pair (s, t), where s, t ∈ V , is said to be

realizable if the following two conditions hold :

• There is an undirected path (say P) from s to t.

• The concatenation of the edge labels on the path P is a string produced by the

following context-free grammar : S → S S; S → push S pop; S → pop S push;

S → ε; S → ∅. Here ∅ denotes the empty string.

4.3 Polynomial length paths

1DSTREAL(poly), 1SGUSTREAL(poly), 1USTREAL(poly) and 1STREAL

(poly) are defined analogously. Let 1LogDCFL, 1SGSLogCFL, 1SLogCFL and

1LogCFL be the corresponding complexity classes.

Theorem 4.3.1. 1DSTREAL and 1DSTREAL(poly) are equivalent. Moreover,

L = 1LogDCFL.

Proof. Recall the definition of DSTREAL (see Section 2.3). In the corresponding

definition of 1DSTREAL there are no stack symbols. Hence the underlying graph

has outdegree at most one for each vertex. In this graph any s-t path has at most n

vertices. Hence 1DSTREAL and 1DSTREAL(poly) are equivalent. Also, such a

graph represents the configuration graph of a deterministic logspace Turing machine.

Hence, deciding the existence of an s-t path in such graphs is L-complete.

Theorem 4.3.2. NL = 1LogCFL.

Proof. 1LogCFL ⊆ NL: An NL-machine (sayM) non-deterministically guesses an

s-t path (say P). M traverses the edges along P and maintains a counter C. M

increments (resp. decrements) C if the current edge is labeled push (resp. pop). If C

was ever negative then M rejects. M accepts iff C = 0 when it reaches t.

22

NL ⊆ 1LogCFL: We replace each directed edge (say (u, v)) of STCONN by two

directed edges (u,w) and (w, v) and label them push and pop respectively. We add a

new vertex w for each edge (u, v). There is an s-t path in the original graph iff there

is a realizable path (according to the definition from Section 4.1) in the modified

graph.

23

CHAPTER V

BALANCED PATHS

In this section, We introduce two natural graph connectivity problems characterizing

1SGSLogCFL and 1SLogCFL.

Let G(V,E) be a directed graph. Let G ′(V,E ′) be the underlying undirected graph

of G. Let P be a path in G ′. Let e = (u, v) be an edge along the path P . Edge e is

called neutral edge if both (u, v) and (v, u) are in E. Edge e is called forward edge if

(u, v) ∈ E and (v, u) /∈ E. Edge e is called backward edge if (u, v) /∈ E and (v, u) ∈ E.

A path (say P) from s ∈ V to t ∈ V in G ′(V,E ′) is called balanced if the number of

forward edges along P is equal to the number of backward edges along P . A balanced

path might have any number of neutral edges. By definition, if there is a balanced

path from s to t then there is a balanced path from t to s. The path P may not be

a simple path. We are concerned with balanced paths of length at most n.

Balanced ST-Connectivity : Given a directed graph G(V,E) and two dis-

tinguished nodes s and t, decide if there is balanced path (of length at most n)

between s and t.

Let P be a path from s ∈ V to t ∈ V in G(V,E). We say v ∈ P if the vertex v

is on the path P . For v ∈ P we denote by Pv the subpath of P starting from s and

ending at v. We say that P is positive if the number of forward edges of Pv is at least

the number of backward edges of Pv, for all v ∈ P . In other words, the number of

forward edges minus the number of backward edges of Pv is positive, for all v ∈ P .

We say that P is positive balanced if P is positive and balanced. By definition, if

there is a positive balanced path from s to t then there is a positive balanced path

24

from t to s.

Positive Balanced ST-Connectivity : Given a directed graph G(V,E) and

two distinguished nodes s and t, decide if there is positive balanced path (of length

at most n) between s and t.

Theorem 5.0.3. Balanced ST-Connectivity is 1SGSLogCFL-complete.

Proof. Balanced ST-Connectivity ∈ 1SGSLogCFL: Let G(V,E) be an in-

stance of Balanced ST-Connectivity. Let G ′(V,E ′) be the underlying undirected

graph of G. If (u, v) ∈ E and (v, u) ∈ E then we label the edges (u, v) and (v, u) of G ′

with ε. If (u, v) ∈ E and (v, u) /∈ E then we label the edge (u, v) of G ′ with push and

label the edge (v, u) of G ′ with pop. Note that the edge labels of G ′ are symmetric.

There is a balanced s-t path in G iff there is a realizable s-t path (according to the

definition from Section 4.2) in G ′.

Balanced ST-Connectivity is 1SGSLogCFL-hard: As mentioned earlier, an

instance of 1SGSLogCFL is an undirected graph (say G) with edges labeled from

{push, pop, ε}. These edge labels are symmetric as defined in Section 2.2. We con-

struct a directed graph H on the same vertex set. If the edge (u, v) of G is labeled

ε we add the edges (u, v) and (v, u) in H. If the edge (u, v) is labeled push (by

symmetry the edge (v, u) is labeled pop) we add a directed edge u, v in H. There is

a realizable s-t path in G iff there is a balanced s-t path in H.

Theorem 5.0.4. Positive Balanced ST-Connectivity is 1SLogCFL-complete.

Proof. Similar to the proof of Theorem 5.0.3.

Corollary 5.0.5. L = 1LogDCFL ⊆ 1SGSLogCFL ⊆ 1SLogCFL ⊆ 1LogCFL

= NL.

25

In chapter 6, we prove the following theorem (See the proof of Theorem 6.1.2).

Theorem 5.0.6. Let G(V,E) be a directed graph with two distinguished vertices

s, t ∈ V and let P be a balanced path from s to t. Then there exists a balanced path

P ′ from s to t such that the length of Q is O(n3).

Hence we have the following corollary.

Corollary 5.0.7. 1SGUSTREAL and 1SGUSTREAL(poly) are 1SGSLogCFL-

complete.

Figure 1 summarizes the relationship among the above defined classes that lie be-

tween L and LogCFL. A directed edge from class A to class B shows that A ⊆ B.

In addition to the relations shown, RL ⊆ RLogCFL and BPL ⊆ BPLogCFL. Re-

call that Balanced ST-Connectivity is 1SGSLogCFL-complete and Positive

Balanced ST-Connectivity is 1SLogCFL-complete.

Figure 1: Relationship among the complexity classes lying between L and LogCFL

26

CHAPTER VI

LENGTHS OF REALIZABLE PATHS

Let 〈G, s, t〉 be an instance of STCONN. If there is a directed path from s to t in G,

then there is a simple directed path (of length at most n) from s to t. In the case of

Balanced ST-Connectivity the balanced paths may not be simple paths. The

example in Figure 2 shows an instance of Balanced ST-Connectivity where the

only balanced path between s and t is of length Θ(n2). The directed simple path

from s to t is of length n/2. There is a cycle of length n/2 at the vertex v. All the

edges (except (v, u)) on this cycle are undirected. The balanced path from s to t is

obtained by traversing from s to v, traversing the cycle clockwise for n/2 times and

then traversing from v to t. This path is not a simple path.

Figure 2: A non-simple balanced path from s to t

6.1 Length of Balanced Paths

We now claim a polynomial upper bound on the length of balanced path in any

instance of Balanced ST-Connectivity. We need the following lemma to prove

our claim.

27

Lemma 6.1.1. Let c1 6= c2 6= · · · 6= cr ∈ [n] and k ∈ [n]. If m1,m2, . . . ,mr are

integers such that

m1c1 +m2c2 + · · ·+mrcr = k,

then there exists integers m′1,m
′
2, . . . ,m

′
r satisfying

m′1c1 +m′2c2 + · · ·+m′rcr = k

such that |m′1|+ |m′2|+ · · ·+ |m′r| ≤ O(nr2).

Proof. Let |c1| < |c2| < · · · < |cr| and m1c1 +m2c2 + · · ·+mrcr = 1. Let mi = aicr+bi

for 1 ≤ i ≤ r − 1. We have,

(a1cr + b1)c1 + (a2cr + b2)c2 + · · ·+ (ar−1cr + br−1)cr−1 +mrcr = 1

Rearranging the coefficients,

b1c1 + b2c2 + · · ·+ br−1cr−1 + (mr + a1c1 + a2c2 + · · ·+ ar−1cr−1)cr = 1.

Note that |bi| < cr < n for 1 ≤ i ≤ r − 1 and the coefficient of cr is O(nr). Setting,

m′i = bi for 1 ≤ i ≤ r − 1 we get the required result.

Theorem 6.1.2. Let G(V,E) be a directed graph with two distinguished vertices

s, t ∈ V and let P be a balanced path from s to t. Then there exists a balanced path

P ′ from s to t such that the length of Q is O(n3).

Proof. We replace each undirected edge (say e = (u, v)) in G by two directed edges

e1 = (u,w) and e2 = (v, w) where w is a new vertex. This process increases the

number of vertices and the length of balanced paths by at most a factor of two.

It will neither create new balanced paths nor destroy any existing balanced paths.

Hence, we may assume that there are no undirected edges in G.

We decompose P into a simple path (say P ′) from s to t and a set of cycles

C = {C1, C2, . . . , Cl}. Let c1, . . . , cr be the distinct lengths of the cycles in C. Let k

denote the number of forward edges minus the number of backward edges along P ′

28

from s to t. Since there is a balanced path from s to t using the path P ′ and cycles

from C, we may assume that m1, . . . ,mr are integers satisfying m1c1 + · · ·+mrcr = k.

Applying Lemma 6.1.1 there exist integers m′1, . . . ,m
′
r satisfying m′1c1+· · ·+m′rcr = k

and |m′1|+ · · ·+ |m′r| ≤ O(n3).

We now construct a balanced path Q from s to t as follows : For every m′i we walk

m′i times around the cycle of length ci (if there are several cycles of this length, we

choose one of them arbitrarily). Note that these cycles may not be connected to each

other. We now connect each of these walks to t by simple paths (say P1, P2, . . . , Pr)

from an arbitrary vertex of each walk.

The new balanced path Q starts from s and follows the simple path P ′ from s to

t and uses Pi to reach the cycle of length ci and walks around it m′i times and comes

back to t. This is repeated for 1 ≤ i ≤ r. Since each Pi is used once while going

away from t and once while coming back to t, the paths P1, P2, . . . , Pr do not add any

excess to Q. Since m′1c1 + · · ·+m′rcr = k the excess k along P ′ is compensated by the

walks along the cycles. The combined length of paths P1, P2, . . . , Pr is O(n2). Since

|m′1|+ · · ·+ |m′r| ≤ O(n3) the overall length of the balanced path Q is O(n3).

6.2 Length of Realizable Paths

Theorem 6.2.1. There exists an instance of STREAL on n vertices such that there

is a unique realizable path from s to t of length O(2O(n)).

Proof. We construct an instance of STREAL with an undirected graph G(V,E) and

two distinguished nodes s and t. The vertices of G are labeled with {0, 1, $} and

its edges are labeled with {push, pop, ε}. The graph has 7k + 2 vertices and has no

undirected edges. Figure 3 shows the construction of G for k = 4. The graph G is

drawn such that the push-edges point upwards and pop-edges point downwards and

the blue edges are labeled ε.

We maintain a stack S (initially filled with $ symbol) and traverse the graph

29

Figure 3: An instance of STREAL with a unique exponential length realizable path
from s to t

G starting from s along the directed edges. We applying the following rules while

traversing an edge e = (u, v) from u (labeled with lu) to v (labeled with lv).

• If the edge e is labeled push then push the symbol lv into the stack S. Note

that whenever an edge e = (u, v) is labeled push in G the vertex u has only one

outgoing edge. Hence this edge must be used to traverse the graph.

• If the edge e is labeled pop then pop the symbol lu from the stack and let the

current symbol on the stack (after popping lu) be lx. If lx is same as lv them

move to v. Note that whenever an edge e = (u, v) is labeled pop in G the vertex

u has at most two outgoing edges. If u has two outgoing edges then the end

points of these two edges are labeled with different labels. Hence only one of

the edges must be taken (based on the symbol lx) to traverse the graph.

• If the edge e is labeled ε then move from u to v without changing the stack

contents.

30

The graph G in Figure 3 is drawn such that the push-edges point upwards and

pop-edges point downwards. Hence, it is easy to see that the maximum height of S is

k = 4. Based on the above mentioned observations there is a unique way of traversing

G starting from s. We will now prove that this traversal ends at t after O(2k) steps.

Note that the first k steps of the traversal pushes k 1’s onto the stack. Subsequent

steps of traversal do the following :

• The traversal pops all the zeros from the stack until the top of the stack S is

1. Now the next two steps replace 1 by a 0 in the stack. Next steps push 1’s in

the stack until the stack height is k.

Hence the stack contents (from bottom to top ignoring the $ symbol) at interme-

diate steps of this traversal (when the stack is full) are ’1111’, ’1110’, ’1101’, ’1100’,

. . . , ’0010’ ’0001’, ’0000’. When the traversal reaches t the stack contains only the

$ symbol. This unique traversal from s to t defines a realizable path and is sim-

ulating a counter (stored implicitly in the stack S) from 2k − 1 to 0. Hence, the

STREAL instance constructed as shown has a single realizable path from s to t of

length O(2k).

31

CHAPTER VII

TRANSITIVE CLOSURE

The definitions and theorems in this section are applicable to all the graph realizability

problems defined above. We present the definitions and theorems for STREAL, the

most general graph realizability problem. We now define the transitive closure of an

instance of STREAL.

Definition 7.0.2. Let G = 〈Υ, E〉 be an instance of STREAL. The transitive

closure of G, denoted by G∗ = 〈Υ∗, E∗〉, is a pair of gap and standard matrix such

that for all a, b, c, d ∈ V ,

(i) E∗[a][b] = 1 iff (a;b) and

(ii) Υ∗[a, (c, d), b] = 1 iff (a, b) is realizable with gap (c, d).

The transitive closure of STREAL(poly) deals only with paths (realizable paths

and paths with gap) of length at most n.

Definition 7.0.3. Let G = 〈Υ, E〉 be an instance of STREAL(poly). The transi-

tive closure of G, denoted by G∗ = 〈Υ∗, E∗〉, is a pair of gap and standard matrix

such that for all a, b, c, d ∈ V ,

(i) E∗[a][b] = 1 iff (a;b) and this realizable path from a to b is of length at most

n and

(ii) Υ∗[a, (c, d), b] = 1 iff (a;(c, d);b) and this path with gap is of length at most

n. Recall the definition of the length of path with gap from Section 2.5

7.1 Tensor Products

We now present several tensor products acting on E and Υ. The products ⊗1 to

⊗5 are introduced in [73] to study probabilistic AuxPDAs. We introduce ⊗6 and

32

⊗7. These products update the standard matrix E and the gap matrix Υ with new

“connectivity information” of G. Let E , E1, E2 represent standard matrices and Υ,

Υ1, Υ2 represent gap matrices. Let a, b, c, d, z represent the vertices of G. Matrices

indexed by two (resp. four) indices are standard (resp. gap) matrices. Since we

are dealing with boolean matrices, all the summations (resp. multiplications) are

interpreted as boolean ∨ (resp. boolean ∧).

1. If (a;z) and (z;b) then (a;b) :

(E1 ⊗1 E2)[a, b] =
∑
z

E1[a, z]·E2[z, b].

2. If (a;(c, d);b) and (c;d) then (a;b) :

(Υ⊗2 E)[a, b] =
∑
c,d

Υ[a, (c, d), b]·E [c, d].

3. If (a;(c, d);b) and (b;z) then (a;(c, d);z) :

(Υ⊗3 E)[a, (c, d), z] =
∑
b

Υ[a, (c, d), b]·E [b, z].

4. If (z;a) and (a;(c, d);b) then (z;(c, d);b) :

(E ⊗4 Υ)[z, (c, d), b] =
∑
a

E [z, a]·Υ[a, (c, d), b].

5. If (a;(c, d);b) and (c;(e, f);d) then (a;(e, f);b) :

(Υ1 ⊗5 Υ2)[a, (e, f), b] =
∑
c,d

Υ1[a, (c, d), b]·Υ2[c, (e, f), d].

6. If (a;(c, d);b) and (z;d) then (a;(c, z);b) :

(Υ⊗6 E)[a, (c, z), b] =
∑
d

Υ[a, (c, d), b]·E [z, d].

7. If (a;(c, d);b) and (c;z) then (a;(z, d);b) :

33

(Υ⊗7 E)[a, (z, d), b] =
∑
c

Υ[a, (c, d), b]·E [c, z].

All the above mentioned products are sound. For example, let G = 〈Υ, E〉 and

G ′ = 〈Υ⊗3 E , E〉. It is easy to see that there is an s-t realizable path in G if and only

if there is an s-t realizable path in G ′. In the following subsection, we show that these

products are sufficient to define a natural graph squaring operation.

7.2 Squaring Operation

Given G = 〈Υ, E〉 the following algorithm computes the “square” of G. Theorem 7.2.1

implies a natural polynomial time algorithm to solve STREAL(poly). It plays a

crucial role in the proofs of correctness of parallel and space efficient algorithms for

SGSLogCFL (see Section 8 and Section 9).

Square(〈Υ, E〉)

E = E ⊗1 E

E = Υ⊗2 E

Υ = Υ⊗3 E

Υ = E ⊗4 Υ

Υ = Υ⊗5 Υ

Υ = Υ⊗6 E

Υ = Υ⊗7 E

return 〈Υ, E〉

Theorem 7.2.1. Let G be an instance of STREAL(poly). G∗ = 〈Υ∗, E∗〉 can be

computed using O(logn) repeated applications of Square(G).

Proof. We may assume that there are no ε edges in an instance of STREAL. This

can be achieved by replacing each directed edge (u, v) labeled with ε with two directed

34

edges (u,w) and (w, v), where w is a new node. The label of (u,w) (resp. (w, v)) is

set to push (resp. pop). Repeat this for every edge, adding a new node every time.

We introduce a new label αk+1 and label all the new nodes with αk+1. It is easy to see

that a path from s to t is realizable in the original graph if and only if it is realizable

in the new graph. Hence STREAL reduces to STREAL with no ε edges.

Equivalently, we may assume that an AuxPDA always pushes or pops a symbol

at every step. If an AuxPDA doesn’t push or a pop at every step then we introduce

an extra symbol in its stack alphabet which is pushed onto the stack when nothing

is done to the stack. This alphabet is first popped before performing a valid stack

move. In the rest of this proof we assume that all realizable paths are of even length.

We first state the relevant definitions and lemmas from [46]. A path description is

a triple (A,B, i) consisting of two surface configurations A and B and an even natural

number i. A description is realizable if A and B are realizable. In particular, (A,B, i)

represents several paths of length i between A and B.

The relation ` shows how to split computation paths recursively into shorter and

shorter paths until we end up with trivial paths. Let x = (A,B, i), y = (C,D, j), and

z = (E,B, k) be path descriptions. Then we write y, z ` x and z, y ` x if and only if

(1) the level of the pushdown is equal for A, E and B;

(2) there exists a computation from A to C in one step, pushing a symbol α onto

the pushdown tape during this step;

(3) there exists a computation from D to E in one step, popping α from the

pushdown tape; and

(4) j + k = i− 2.

Note that identical pushdown heights of A, E and B imply that C and D have

same pushdown height. Also, j and k are always even. In this way we can reduce the

checking of realizability of x to the checking of the realizability of smaller paths y and

z. We now state two crucial lemmas from [46] that gives a “balanced” partition of

35

realizable computation. The proofs of these lemmas are based on a recursive descent

using the properties of the decomposition relation `.

Lemma 7.2.2. (Niedermeier and Rossmanith [46]) Let (A,B, i) denote a realizable

path description for a fixed computation path of length i ≥ 2 between A and B.

Then there exist uniquely determined subpaths (C,D, i1), (E,F, i2) and (G,D, i3) of

(A,B, i) such that (E,F, i2), (G,D, i3) ` (C,D, i1) and i2, i3 ≤ i/2 < i1.

Lemma 7.2.2 splits a fixed computation path into three paths. The first two paths

are the subpaths (E,F, i2) and (G,D, i3) and the third one is the path (A,B, i) with

gap (C,D, i1). This means that the verification of the realizability of (A,B, i) can be

reduced to showing that (E,F, i2), (G,D, i3) and the pair-with-gap (A, (C,D, i1), B, i)

are realizable.

A description for a path with gap (A, (C,D, j), B, i) consists of four surface con-

figurations A,B,C,D and two even numbers i and j with j ≤ i. A path with gap

(A, (C,D, j), B, i) is called realizable iff (A;(C,D);B) and there exists a compu-

tation path from A to C and one from D to B with total number of steps j − i.

Now we generalize the decomposition relation ` to computation paths with gap. Let

x = (A, (C,D, j), B, i) and, first, let y = (E, (C,D, j), F, k) and z = (G,B, l) or,

second, let y = (E,F, k), z = (G, (C,D, j), B, l). Then we write y, z ` x and z, y ` x

if and only if

(1) the level of the pushdown is equal for A,G and B;

(2) there exists one step from A to E pushing a symbol α onto the pushdown

tape;

(3) there is one step from F to G popping α from the pushdown tape; and

(4) k + l = i− 2.

The following lemma is the analogue of Lemma 7.2.2 for a fixed computation path

with gap.

36

Lemma 7.2.3. (Niedermeier and Rossmanith [46]) Let (A, (C,D, j), B, i), i− j ≥ 2

denote a realizable path with gap. Then there exist uniquely determined paths y =

(E, (C,D, j), F, i1) and either

(1) z1 = (G, (C,D, j), H, i2) and z2 = (I, F, i3), such that z1, z2 ` y and i2 − j ≤

(i− j)/2 < i1 − j or

(2) z1 = (G,H, i2) and z2 = (I, (C,D, j), F, i3), such that z1, z2 ` y and i3 − j ≤

(i− j)/2 < i1 − j.

Lemma 7.2.3 is used to decompose paths with gaps in a balanced way. To check the

realizability of (A, (C,D, j), B, i) we examine the realizability of (A, (E,F, i1), B, i),

z1 and z2. Both possible subpaths with gap have length less than or equal to half

of the lenght of the whole path with gap (A, (C,D, j), B, i). The arising subpath

without gap may have a maximum length of i− j − 2 and will be split in a balanced

way using Lemma 7.2.2.

We are now ready to prove our theorem. For realizable paths (both standard

and gap paths) of length at most four, it is easy to verify that an application of

SimpleSquare reduces the path length by a factor of at least 3
4
. For paths of length

greater than four, we divide the path into three smaller paths using Lemma 7.2.2 for

standard paths and Lemma 7.2.3 for path with gaps and use induction. This implies

that one applcation of SimpleSquare reduces the path length by a constant factor.

Hence O(logn) repeated applications of SimpleSquare(G) suffice to compute the

transitive closure G∗.

37

CHAPTER VIII

PARALLEL ALGORITHMS FOR SGSLOGCFL

Let G = 〈Υ, E〉 be an instance of SGSLogCFL. Let the vertices of G be V =

{1, 2, . . . , n}. G is represented by an n × n standard matrix E and an n2 × n2 gap

matrix Υ. In this section, we present parallel algorithms to compute G’s transitive

closure G∗ = 〈Υ∗, E∗〉. Let V 2 = V × V be the set of pairs of vertices. In the

rest of this thesis the term “vertex” refers to elements from V as well as V 2. Let

V 4 = V × V × V × V . G has two types of edges. The standard edges from V 2 are

present in E and the gap edges from V 4 are present in Υ. In the rest of this paper

the term “edge” refers to elements from V 2 as well as V 4.

Definition 8.0.4. A subset of vertices S ⊆ V is a standard component (s-

component) of G iff for all u, v ∈ S it holds that (u;v) and (v;u).

Definition 8.0.5. A subset S ⊆ V 2 is a gap component (g-component) of G iff for

all (a, b), (c, d) ∈ S it holds that (a;(c, d);b) and (c;(a, b);d).

In the rest of this paper the term “component” refers to both standard and gap

components. If there is ambiguity we will explicitly say s-component or g-component.

A pseudotree P = (C,D) is a maximal connected directed graph with |C| vertices

and |D| arcs such that |C| = |D| and each vertex has outdegree one. Note that every

pseudotree has exactly one simple directed cycle (which may be a self-loop). The

number of arcs in the directed cycle of a pseudoree P is called its circumference. A

pseudotree whose cycle is a self-loop on some vertex r (called the root) is called a

rooted tree. A rooted star R with root r, is a rooted tree whose arcs are of the form

(x, r) with x ∈ R. A pseudoforest is a collection of pseudotrees.

38

Symmetric Squaring : We first present a simplified squaring algorithm when

the input graph is an instance of SGSLogCFL. Here the matrices E and Υ are

symmetric i.e., E [a, b] = E [b, a] and Υ[(a, b), (c, d)] = Υ[(c, d), (a, b)]. Moreover,

Υ[(a, b), (c, d)] = Υ[(a, b), (d, c)] = Υ[(b, a), (c, d)] = Υ[(b, a), (d, c)]. Due to this sym-

metry, the products ⊗3, ⊗4, ⊗6 and ⊗7 are equivalent. Corollary 8.0.6 follows from

Theorem 7.2.1.

SymmetricSquare(〈Υ, E〉)

E = E ⊗1 E

E = Υ⊗2 E

Υ = Υ⊗3 E

Υ = Υ⊗5 Υ

return 〈Υ, E〉

Corollary 8.0.6. Let G be an instance of SGSLogCFL. G∗ can be computed using

O(logn) repeated applications of SymmetricSquare(G).

8.1 An O(log2n) time parallel algorithm

We will assume that there is one processor Pi assigned to each vertex i ∈ V , one

processor Pij assigned to each edge (i, j) ∈ V 2 and one processor Pijkl assigned to

each gap edge (i, j, k, l) ∈ V 4. We use a vector XE of length n to specify the s-

components of G as follows : if Vc ⊆ V is any s-component, then for all i ∈ Vc, XE(i)

equals the least element of Vc. We use an n×n matrix XΥ to specify the g-components

of G as follows : if Wc ⊆ V 2 is any g-component, then for all (i, j) ∈ Wc, XΥ(i, j)

equals the lexicographically least element of Wc.

The algorithm Connect iteratively computes the vectors XE and XΥ from the

input G = 〈Υ, E〉 and updates Υ∗ and E∗. It is based on a hook and contract algorithm

39

[28] that works as follows : Initially each element from V is an s-component by itself.

Their edge-lists correspond to the undirected edges of E . These components will

eventually grow and become the corresponding s-components. Initially each element

from V 2 is a g-component by itself. Their edge-lists correspond to the undirected

edges of Υ. These components will eventually grow and become the corresponding

g-components. The “components” at each stage of the algorithm are sets of “vertices”

found so far to belong to the same (standard or gap) component of G. Each component

is equipped with a linked list of edges that connect it to other components. The

algorithm repeats the following steps until there are no edges left :

1. Each component picks an edge pointing to a lexicographically minimum vertex

from its edge-list leading to a neighboring component and hooks to it. If a

component has an empty edge-list, it hooks to itself. The details of hooking are

presented in StandardHook and GapHook. Note that both these hooking

steps use the previously computed connectivity information from both Υ∗ and

E∗. These hooking processes create clusters of components called pseudotrees.

The s-components form pseudotrees on the vertex set V and g-components form

pseudotrees on the vertex set V 2.

2. Each pseudotree is merged into a new component with one of its vertices as

its representative. Each representative receives into its new edge-list all the

edges contained in the edge-lists of its pseudotree. At this stage the matrices

E∗ and Υ∗ are updated with “new” edges i.e., new connectivity information

gathered from the hooking and contracting steps. Edges that are internal to

the components are removed.

In the algorithm Connect, during the first iteration the edges connecting each

vertex to neighboring vertices are examined (steps 6-11), and sets of vertices which

are known to be connected are identified (steps 14-17). Each such set of vertices is

40

merged into a “supervertex”. These supervertices are specified by the vectors XE(i)

and XΥ(i, j). For each i in a supervertex, XE(i) equals the smallest-numbered vertex

in the supervertex. For each (i, j) in a supervertex, XΥ(i, j) equals the lexicograph-

ically first vertex in the supervertex. In succeeding iterations, the edges connecting

each supervertex to neighboring supervertices are examined in steps 6-11, and sets of

supervertices are merged in steps 14-17. The process continues until all the vertices

in a (standard and gap) component have been merged into one gigantic supervertex.

Connect(G = 〈Υ, E〉)
1: E∗ ← E
2: Υ∗ ← Υ
3: for all i do XE(i) = i
4: for all i do XΥ(i, j) = (i, j)

5: for O(logn) iterations do

6: for all i do TempE(i)← StandardHook(i)
7: for all i do TempE(i)← minj{TempE(j) | XE(j) = i and TempE(j) 6= i}
8: if none then TempE(i)← XE(i)

9: for all i do TempΥ(i, j)← GapHook(i, j)
10: for all i do TempΥ(i, j) ← min(k,l){TempΥ(k, l) | XΥ(k, l) =

(i, j) and TempΥ(k, l) 6= (i, j)}
11: if none then TempΥ(i, j)← XΥ(i, j)

12: for all i do XE(i)← TempE(i)
13: for all (i, j) do XΥ(i, j)← TempΥ(i, j)

14: for O(logn) iterations do
15: for all i do TempE(i)← TempE(TempE(i))
16: for all (i, j) do TempΥ(i, j)← TempΥ(TempΥ(i, j))
17: end for

18: for all i do XE(i)← min{TempE(i), XE(TempE(i))}
19: for all (i, j) do XΥ(i, j)← min{TempΥ(i, j), XΥ(TempΥ(i, j))}

20: for all i, j do if XE(i) = XE(j) then E∗[i, j]← 1.
21: for all i, j, k, l do if XΥ(i, j) = XΥ(k, l) then Υ∗[i, (k, l), j]← 1.

22: end for

23: return G∗ = 〈Υ∗, E∗〉

Theorem 8.1.1. The algorithm Connect finds G∗ = 〈Υ∗, E∗〉 in parallel timeO(log2n)

41

StandardHook(i)

1: S1 ← {XE(j) | E∗[i, j] = 1 and XE(j) 6= XE(i)}
2: S2 ← {XE(j) | Υ∗[i, (k, k), j] = 1 and XE(j) 6= XE(i)}
3: S = S1 ∪ S2

4: if S = ∅ then
5: return XE(i)
6: else
7: return min(S)
8: end if

GapHook(i, j)

1: S1 ← {XΥ(k, l) | Υ∗[i, (k, l), j] = 1 and XΥ(k, l) 6= XE(i, j)}
2: S2 ← {XΥ(k, j) | E∗[i, k] = 1 and XΥ(k, j) 6= XΥ(i, j)}
3: S = S1 ∪ S2

4: if S = ∅ then
5: return XΥ(i, j)
6: else
7: return min(S)
8: end if

using n4 processors in the CREW PRAM model.

Proof. The following observations state that the hooking process creates pseudotrees

on vertices from V and V 2.

Observation : Let Vs ⊆ V denote an s-component of G such that |Vs| ≥ 2 and define

the function C : Vs → Vs by C(i) = StandardHook(i). The function C defines a

directed graph Gs(C) = (Vs, F) where F = {(i, C(i)) | i ∈ Vs}. Then Gs(C) is a

collection of pseudotrees with circumference one, and the smallest-numbered vertex

in each pseudotree is in the cycle of the pseudotree.

Observation : Let Vg ⊆ V 2 denote a g-component of G such that |Vg| ≥ 2 and

define the function C : Vg → Vg by C(i, j) = GapHook(i, j). The function C defines

a directed graph Gg(C) = (Vg, F) where F = {((i, j), C(i, j)) | (i, j) ∈ Vg}. Then

Gg(C) is a collection of pseudotrees with circumference one, and the lexicographically

42

smallest vertex in each pseudotree is in the cycle of the pseudotree.

The hooking processes (StandardHook and GapHook) and the contraction step

are implemented to mimic the functionality of SymmetricSquare. Hence the cor-

rectness of the contraction step and the overall algorithm follows from Corollary 8.0.6.

Time and Processor Bounds : The main loop of the Connect program is executed

O(log n) times. Within the loop, the iteration at step 14 is executed O(log n) times.

Thus the algorithm requires Ω(log2n) time. Steps 3, 12, 18 require O(1) time using

Ω(n) processors. Steps 4, 13, 19 require O(1) time using Ω(n2) processors. Steps

14-17 require O(logn) time using Ω(n2) processors. StandardHook and GapHook

are essentially computing minimum of at most O(n2) integers (accessing both E and

Υ) and hence can be programmed to execute in O(logn) time using O(n2) processors.

Hence the total running time is O(log2n). The total number of processors used is

O(n4).

Connect algorithm is a generalization of the parallel algorithm presented in [28].

We added two hooking procedures (one for growing s-components and one for growing

g-components). Unlike [28] the new edges found after the contraction step are added

in the matrices Υ∗ and E∗ before starting the next hooking step.

The algorithms of [33] and [16] can similarly be generalized to compute G∗ =

〈Υ∗, E∗〉 in parallel time O(log3/2n) and O(lognloglogn) respectively. The processor

bounds in all these algorithms is polynomial in n. We now present an outline of the

parallel algorithms of [33] and [16] and the necessary modifications to apply them

to SGSLogCFL. We refer the reader to [33] and [16] for low-level implementation

details of these algorithms.

43

8.2 An O(log3/2n) time parallel algorithm

In the algorithm presented in the previous section, the size of the components formed

after the hooking phase may vary a lot. A slow growing component may consist of

as few as two vertices, whereas a fast growing component may have as many as n

vertices in an s-component and n2 vertices in a g-component. In order to allow the

biggest component to contract to a single vertex, the contraction (steps 14-17) requires

Θ(logn) time. The slow-growing component may only double its size in each iteration.

Hence, the algorithm must iterate logn times so that slow-growing components can

eventually grow to its full size. A crucial observation made by Johnson and Metaxas

[33] is that the slow-growing components need little time to contract and fast-growing

components require fewer iterations to grow to their full size.

Johnson and Metaxas [33] presented an algorithm in which components are “sched-

uled” to hook and contract according to their growth rate. Their algorithm schedules

every component to grow by a factor of at least 2
√

logn in a phase of O(logn) time.

Hence,
√

logn phases suffice to find all the connected components in the graph. This

implies an overall running time of O(log3/2n). Within each phase the slow growing

components are scheduled to hook and contract in o(logn) time repeatedly until they

catch up with the fast growing components, whereas the fast growing components

are left idle once they have achieved the intended size. We refer the reader to [33]

for low-level implementation details of their algorithm. We now explain the main

contributions of Johnson and Metaxas [33] and discuss how to apply their techniques

to SGSLogCFL. Since the matrices Υ and E are both symmetric matrices, the

following techniques are applicable to SGSLogCFL with only minor changes to the

Connect algorithm.

• In the algorithm of [28] the vertices hook to a lexicographically minimum vertex.

Hence the cycles in the pseudotrees are always self-loops. In Johnson-Metaxas

44

algorithm vertices hook to the first edge in their edge-list. This creates pseu-

dotrees of arbitrary circumference. These pseudotrees are to be contracted

properly in the contraction phase. Johnson and Metaxas [33] introduced cycle-

reducing shortcutting technique to solve this problem. This technique (i) con-

tracts a pseudotree into a rooted tree in time logarithmic in its circumference,

(ii) contracts a rooted tree into a rooted star in time logarithmic in the length of

its longest path. We modify the StandardHook and GapHook to hook to the

first edge in the edge list of the s-components and g-components respectively

and apply the cycle-reducing shortcutting technique to the pseudotrees created

by StandardHook and GapHook independently.

• There are potentially a large number of components that hook together in the

hooking step. All these components are ready to give their edge-lists simul-

taneously to the new supercomponent’s edge-list. It is expensive to compute

the set of edges of all these components especially when concurrent writing is

not allowed. Johnson and Metaxas [33] introduced edge-plugging scheme which

achieves this objective in constant time. This technique uses the adjacency list

representation of the input graph and maintains two twin copies of each edge to

efficiently put all the edges previously belonging to the edge-lists of each vertex

(of a pseudotree) into the edge-list of the newly created supervertex. We apply

this edge-plugging scheme to the pseudotrees created by StandardHook and

GapHook independently.

• There may be a large number of edges internal to a component. These internal

edges cannot be used to find a mate (to hook) in the subsequent steps. Re-

moving all the internal edges before picking an edge is expensive. Johnson and

Metaxas [33] introduced a growth-control schedule. Components grow in size in

a uniform way that controls their minimum sizes as long as continued growth

45

is possible. The internal edges are identified and removed periodically to make

the subsequent hooking steps more efficient. This growth control schedule is ap-

plied to both the s-components and g-components independently. We modify

the Connect algorithm to run in
√

logn phases each running in O(logn) time.

After each contraction step the newly found standard and gap edges are added

in the matrices E∗ and Υ∗ respectively.

8.3 An O(lognloglogn) time parallel algorithm

The Chong Lam algorithm [16] is also based on a hook and contract approach. Unlike

the previous algorithm their algorithm creates pseudotrees without cycles i.e., rooted

pseudotrees. The hooking schemes of [28, 33] may create pseudotrees with few vertices

but a large degree. The hooking scheme of [16] guarantees that any pseudotree with a

large degree must also contain a large number of vertices. This is achieved as follows :

There is an ordering <d of the vertices such that u <d v iff the degree of u is less than

the degree of v (or) the degrees are the same and u is less than v in their lexicographic

ordering. Before every phase of the algorithm, every vertex is either active, inactive

or done. All active and inactive vertices have nonzero degree, the done vertices have

zero degree. The algorithm ensures that there are no multiedges between active

vertices. The inactive vertices are always organized as a set of pseudotrees. In the

beginning of the algorithm all vertices with nonzero degree are active, and the rest

are done. The active vertices perform the following steps (in parallel). (i) if a vertex

v has a neighbor larger (according to <d) than itself, then v hooks to the largest such

neighbor. (ii) if after the first step all neighbors of v are hooked to it, then v hooks

to itself. Otherwise, if after the first step a neighbor u of v is hooked to a vertex

different from v, then v hooks to u.

The representative vertex (of a pseudotree) is the only vertex in the pseudotree

46

which is hooked to itself. In a contraction phase some of the pseudotrees are con-

tracted to a representative vertex. A parameter is used to determine if a pseudotree is

to be contracted. For every contracted pseudotree, its representative becomes a new

active vertex and the rest of its vertices become done. The done vertices do not play

any role for the rest of the algorithm. All multiedges between new active vertices are

removed. The vertices of every uncontracted pseudotree become inactive.

The processing required by a hooking phase is performed (using pointer jumping)

in parallel time O(logd), where d is the degree of the active vertex. Checking the

degree of a hooking tree during the contraction phase is done (using pointer jumping

and a constant time edge-list plugging technique) in parallel time O(logc), where c

is the contraction parameter. The algorithm of Chong Lam (see Connect below) is

a recursive algorithm. The size of the pseudotrees to be contracted varies with each

recursive call. MaxHook and Contract are the hooking and contracting procedures

explained above. Chong and Lam proved that a call to Connect(dloglogne) contracts

every connected component of the graph to a single vertex and all the other vertices

are organized in a set of pseudotrees such that the root of the tree of a vertex u is

the vertex to which the connected component of u is contracted.

Connect(k)

MaxHook;

if k > 0 then

Connect(22k)

Connect(k − 1)

Connect(k − 1)

Contract(22k+1
)

47

The modifications needed to generalize Chong Lam algorithm are very similar to

those explained in Section 8.2. The hooking and contraction procedures are applied

to the s-components and g-components separately. The new edges found after every

contract operation are added to the matrices Υ∗ and E∗ and the new degrees of the

vertices are recomputed.

As mentioned earlier the hooking procedure simulates the squaring procedure

SymmetricSquare. To create the pseudotrees corresponding to s-components the

hooking procedure accesses the gap matrix Υ also. Similarly to create the pseudotrees

corresponding to g-components the hooking procedure accesses the standard matrix E

also. This violates the exclusive read property of Chong Lam algorithm. We maintain

two copies of E and Υ to implement the exclusive read property. We thus obtain an

O(lognloglogn) time EREW parallel algorithm computing G∗ = 〈Υ∗, E∗〉.

48

CHAPTER IX

SGSLOGCFL ⊆ DSPACE(LOGNLOGLOGN)

Trifonov’s algorithm [70] is based on the above mentioned Chong Lam algorithm. A

sequential algorithm is first derived from Chong Lam algorithm with minor changes

to the hooking process. Each “step” of this sequential algorithm naturally defines a

configuration of the algorithm, corresponding to a snapshot of the algorithm. All the

edges incident to a given vertex are ordered and the hooking process is simulated se-

quentially. The recursive algorithm Connect (mentioned in Section 8.3) is converted

into an O(log2n) space algorithm, which instead of storing all of its current configu-

ration recomputes it whenever required. To simulate the edge-list plugging technique

and pointer jumping techniques Trifonov made use of exploration walks on trees de-

fined by Koucky [38]. These walks allow efficient traversal of the pseudotrees. Since

each vertex takes Θ(logn) space and the vertices are stored locally at every level, this

straighforward implementation takes an O(log2n) space.

To overcome this bottleneck all the functions are modified such that they never

keep a vertex in their local variables. Instead of using vertices as arguments to

functions, one current vertex is maintained in a global variable. All functions are

implemented to return the required “information” about this vertex. The current

vertex is an implicit argument to all functions. Only Θ(loglogn) space is used to store

the index of a bit of this current vertex. The concept of current vertex eliminates

the need to store a vertex in a local variable. The introduction of one global current

vertex and always returning information about this vertex is the main crucial idea

behind Trifonov’s algorithm. For more details of the algorithm and its pseudo-code

see [70].

49

Trifonov’s algorithm finds the transitive closure of a given symmetric 0-1 matrix.

An instance of SGSLogCFL consists of two symmetric 0-1 matrices, E and Υ. We

implement two sequential algorithms similar to Trifonov’s algorithm, one each for

E and Υ. The algorithm running on the standard matrix is the main algorithm.

It simulates the hooking and contracting steps of Chong Lam algorthm outlined in

the previous section. The hooking processs needs access to the gap matrix Υ also.

Whenever a “new” gap edge is required, the required entries of the gap matrix Υ

are recomputed using the hooking and contracting functions acting on Υ. Thus

the exploration walks and the manipulation of the current standard and current gap

vertices are performed on both the s-components and g-components. At the end of

all recursive calls the main function determines whether there is a realizable path with

symmetric gap (recall the definition from Section 2.6) between two given vertices s

and t.

Theorem 9.0.1. Let G = 〈Υ, E〉 be an instance of SGUSTREAL(poly). G∗ =

〈Υ∗, E∗〉 can be computed deterministically inO(lognloglogn) space i.e., SGSLogCFL

⊆ DSPACE(lognloglogn).

Corollary 9.0.2. Balanced ST-Connectivity ∈ DSPACE(lognloglogn).

50

CHAPTER X

NEW RESEARCH DIRECTIONS

Several interesting new research directions arise from our work :

1. Balanced ST-Connectivity and Positive Balanced ST-Connectivity

are natural graph connectivity problems lying between L and NL. Studying

their space complexity is an interesting research direction towards improving the

space complexity of STCONN. In particular, it would be interesting to improve

Theorem 9.0.1. Is SGSLogCFL ∈ L ? Less ambitiously, is SGSLogCFL ∈

SC2 ? See Section 1.2 for detailed discussion.

2. An alternate proof of Theorem 9.0.1 using the techniques of [56, 53] or [60]

seems to be a challenging task.

3. We studied SGUSTREAL purely as a graph connectivity problem. Is there a

machine (or circuit) characterization of SGSLogCFL ? What is the relation-

ship between (i) SGSLogCFL and NL ? (ii) SGSLogCFL and LogDCFL

? (iii) SGSLogCFL and DET1 ?

4. We know that DSTREAL = USTREAL = STREAL = P. We proved that

SGUSTREAL(poly) ∈ DSPACE(lognloglogn). What is the complexity of

SGUSTREAL ? Is it P-complete ?

5. In Chapter 6 we proved that 1SGUSTREAL = 1SGUSTREAL(poly). Is

1USTREAL = 1USTREAL(poly) ? Is 1STREAL = 1STREAL(poly) ?

1DET is the class of problems NC1 Turing reducible to the determinant [19].

51

6. Allender and Lange [6] proved that SLogCFL = LogCFL. Is 1SLogCFL =

1LogCFL ? i.e., is Positive Balanced ST-Connectivity NL-complete ?

7. Cook proved that LogDCFL ⊆ SC2 [18]. This is the best known upper bound

for LogDCFL for the last three decades. As noted earlier, DSTREAL(poly)

is LogDCFL-complete. Can our techniques be applied to DSTREAL(poly)

to simulate LogDCFL using o(log2n) space ?

8. SLogCFL vs LogDCFL : In the logspace setting we have L = SL ⊆ NL.

In the LogCFL setting, we have LogDCFL ⊆ SLogCFL = LogCFL (see

Theorem 3.0.4). By definition, we have NL ⊆ LogCFL. It is known that

LogDCFL ⊆ SC2 [18]. This motivates the study of the relationship between

LogDCFL and SLogCFL. It would be interesting to understand what con-

cepts are required to generalize the techniques of [56, 53] to prove LogDCFL

= SLogCFL. This would imply NL ⊆ SC2, i.e., STCONN can be solved by

a deterministic algorithm in polynomial time and O(log2n) space.

9. SLogCFL vs RLogCFL : We have LogDCFL ⊆ SLogCFL = LogCFL

and LogDCFL ⊆ RLogCFL ⊆ LogCFL implying RLogCFL ⊆ SLogCFL.

In the logspace setting, prior to Reingold’s work, Aleliunas et. al. [3] proved

that SL ⊆ RL, using random walks. It would be interesting to generalize their

techniques to prove SLogCFL ⊆ RLogCFL. Since BPLogCFL ⊆ SC2 [73],

a proof of SLogCFL ⊆ RLogCFL would imply NL ⊆ SC2. For more details

see Section 1.2.

52

APPENDIX A

SYMMETRIC AUXPDA’S

An auxiliary pushdown automaton (AuxPDA) is a multi-tape Turing machine

with a two-way read-only input tape, a pushdown tape, and one or more work tapes.

The pushdown alphabet has a distinguished symbol (say $) which is initially pushed

on the pushdown tape. The machine is designed so that the pushdown head never

shifts left of $ or changes $. Further, the pushdown head can never shift left when

scanning any tape symbol unless it first erases (i.e., pops) that symbol, and it can

never shift right from a square unless it first prints (i.e., pushes) a nonblank symbol

on that square. Space on an AuxPDA is the space used on the work tapes without

counting the space on the pushdown tape. Formally, an AuxPDA is an 8-tuple M =

(Q,Σ,Σ0,Σα, l,∆, s, F), where Q is a finite set of states, Σ is a finite tape alphabet,

Σ0 ⊆ Σ is the input alphabet, Σα ⊆ Σ is the pushdown alphabet, l is the number of

tapes, s ∈ Q is the initial state, F ⊆ Q is the set of final states and ∆ is a finite set

of transitions.

We first define the transition of an AuxPDA that enable the AuxPDA to “peek”

one square right or left on the input and work tapes and one square below the top

symbol of the pushdown tape while changing its configuration. A transition is of

the form (p,S, t1, . . . , tl, q), where p and q are states, S is a stack triple, l is the

number of tapes, and t1, . . . , tl are tape triples. A stack triple is either of the form

(i) (αaαb, P, αcαd), where αa, αb, αc, αd ∈ Σα and P is +1 or -1 ; or is of the form (ii)

(αa, 0, αb), where αa, αb ∈ Σα. A tape triple is either of the form (i) (ab,D, cd), where

a, b, c, d ∈ Σ and D is +1 or -1; or is of the form (ii) (a, 0, b), where a, b ∈ Σ.

A transition of the form (p,S, t1, . . . , tl, q) signifies that M moves from state p

53

to state q according to the stack and tape triples. The tape triple ti = (ab,+1, cd)

signifies that when M is scanning symbol a on tape ti, and with the square just

to the right of the scanned square containing symbol b, M may rewrite these two

squares to contain symbols c and d, respectively, move its tape head one square to

the right. Similarly, a transition (ab,−1, cd) signifies a potential left movement of the

tape head, except that now the scanned symbol must be b and the one to its left a

and these are rewritten as d and c, respectively. The tape triple (a, 0, b) signifies that

M replaces the symbol a with b without moving its head position. The stack triple

is defined analogously with P = +1 (resp. P = −1) corresponding to a push (resp.

pop) operation on the pushdown tape.

The surface configuration (introduced by Cook [17]) of an AuxPDA on an

input w consists of the state, contents and head positions of the work tapes, the head

position of the input tape and the topmost symbol of the stack. Note that for a space

S(n)-bounded AuxPDA, its surface configurations take only O(S(n)) space. In the

rest of this section, we will refer to surface configurations as configurations. Let C(M)

denote the set of all configurations of M . For an input w, and C1, C2 ∈ C(M) we

write C1 `M C2 to denote that C1 “yields” C2. A computation by M is a sequence

C0 `M C1`M . . . `M Cn, where n ≥ 0 and C0, . . . , Cn ∈ C(M). The reflexive,

transitive closure of `M is denoted by `∗M and the transitive closure is denoted by

`+
M . An AuxPDA M is nondeterministic (resp. deterministic) if `M is multi-valued

(resp. single-valued).

Since the tape triples and stack triples of M enable it to peek into only a constant

number of symbols, M can be simulated by a standard AuxPDA extending the notion

of big-headed Turing machines [27]. The “peeking” version of M enables us to define

symmetric computation. Each transition δ = (p,S, t1, . . . , tl, q) has an inverse δ−1 =

(q,S−1, t−1
1 , . . . , t−1

l , p) where if S = (α, P, β) then S−1 = (β,−P, α) and for i =

1, . . . , k if ti = (a,D, b) then ti
−1 = (b,−D, a).

54

The inverse of an AuxPDA M = (Q,Σ,Σ0,Σα, l,∆, s, F) is M−1 = (Q,Σ,Σ0,Σα,

l,∆−1, s, F), where ∆−1 = {δ−1 : δ ∈ ∆}. An AuxPDA is symmetric if it is its

own inverse i.e., if δ−1 ∈ ∆ whenever δ ∈ ∆. The symmetric closure of an AuxPDA

M = (Q,Σ,Σ0,Σα, l,∆, s, F) is M = (Q,Σ,Σ0,Σα, l,∆∪∆−1, s, F). Note that the

symmetric closure of an AuxPDA is symmetric and a symmetric AuxPDA is its own

symmetric closure. We now define the complexity class SLogCFL.

SLogCFL is the class of languages accepted by log space bounded and polynomial

time bounded symmetric AuxPDA.

Let # be a new special symbol in the tape alphabet that does not belong to

input alphabet. For an AuxPDA M , M# is its normal form such that (1) M and

M# accept the same language in the same space bound, and have the same number

of tapes; (2) M# has no transitions into its initial state or out of any final state;

(3) for any configurations C1, C2 ∈ C(M#) if C1`M#C2 then |C1| ≤ |C2|, where |C|

represents the space of C. M# is constructed from M by adding a new initial state

and transitions from it to the old initial state; eliminating any transitions out of final

states; and introducing a new pseudoblank symbol which M# writes instead of writing

(or rewriting) a blank on a worktape, and which M# treats as indistinguishable from

a blank when seen on a worktape. M# is the symmetric closure of M#.

The following lemma is proved by Lewis and Papadimitriou [42] in the context

of symmetric Turing machines. By our definition of symmetric AuxPDA’s, its proof

follows by treating the “configurations” of a symmetric Turing machine as the “surface

configurations” of a symmetric AuxPDA and augmenting the transitions with stack

triples. We skip its proof since it is essentially the proof of [42].

Lemma A.0.3. Let M = (Q,Σ,Σ0,Σα, l,∆, s, F) be any AuxPDA, and let A ⊆

C(M). Suppose that

55

(a) for any A1, A2 ∈ A, if A1 `+A
M A2 then A2 `+A

M A1

(b) for any A ∈ A∪I(M), and B /∈ A and any C1, C2, C3, if A `∗AM C1 a∗AM C2 aM

B `M C3, then C2 = C3

(c) for any A1 ∈ A ∪ I(M), any A2 ∈ A, and any B, if A1 `∗AM B a∗AM A2 then

A1 = A2.

Then M# accepts the same language as M in the same space as M .

Theorem A.0.4. LogDCFL ⊆ SLogCFL ⊆ LogCFL.

Proof. Let M be a deterministic logspace bounded AuxPDA accepting a language

L ∈ LogDCFL. Then M satisfies the hypothesis of Lemma A.0.3, with A = ∅. M

satisfies the hypothesis (a) and (c) trivially. Since M is deterministic it satisfies the

hypothesis (b). Hence M# accepts L. Hence, LogDCFL ⊆ SLogCFL. The second

inclusion is trivial, since nondeterminism is more general than symmetry.

It is routine to check that the AuxPDA thus constructed, satisfies the properties

of Lemma A.0.3 and the following theorem is immediate.

Theorem A.0.5. USTREAL(poly) is SLogCFL-complete.

56

REFERENCES

[1] Afrati, F. N. and Papadimitriou, C. H., “The parallel complexity of simple

chain queries,” in PODS, pp. 210–213, 1987.

[2] Agrawal, M., Allender, E., and Datta, S., “On tc0, ac0, and arithmetic

circuits,” J. Comput. Syst. Sci., vol. 60, no. 2, pp. 395–421, 2000.

[3] Aleliunas, R., Karp, R. M., Lipton, R. J., Lovász, L., and Rackoff,

C., “Random walks, universal traversal sequences, and the complexity of maze

problems,” FOCS, pp. 218–223, 1979.

[4] Allender, E., “Personal communication,”

[5] Allender, E., “Reachability problems: An update,” in CiE, pp. 25–27, 2007.

[6] Allender, E. and Lange, K.-J., “Symmetry coincides with nondeterminism

for time-bounded auxiliary pushdown automata,” To appear in 25th Computa-

tional Complexity Conference, 2010.

[7] Alon, N., “Eigenvalues and expanders,” Combinatorica, vol. 6, no. 2, pp. 83–96,

1986.

[8] Alon, N. and Milman, V. D., “λ1, isoperimetric inequalities for graphs, and

superconcentrators,” J. Comb. Theory, Ser. B, vol. 38, no. 1, pp. 73–88, 1985.

[9] Alon, N. and Roichman, Y., “Random cayley graphs and expanders,” Ran-

dom Struct. Algorithms, vol. 5, no. 2, pp. 271–285, 1994.

[10] Alon, N. and Sudakov, B., “Bipartite subgraphs and the smallest eigenvalue,”

Combinatorics, Probability & Computing, vol. 9, no. 1, 2000.

57

[11] Armoni, R., Ta-Shma, A., Wigderson, A., and Zhou, S., “An o(log4/3n)

space algorithm for (s, t) connectivity in undirected graphs,” J. ACM, vol. 47,

no. 2, pp. 294–311, 2000.

[12] Borodin, A., “On relating time and space to size and depth,” SIAM J. Com-

put., vol. 6, no. 4, pp. 733–744, 1977.

[13] Borodin, A., Cook, S. A., Dymond, P. W., Ruzzo, W. L., and Tompa,

M., “Two applications of inductive counting for complementation problems,”

SIAM J. Comput., vol. 18, no. 3, pp. 559–578, 1989.

[14] Cai, J., Chakaravarthy, V. T., and Melkebeek, D., “Time-space tradeoff

in derandomizing probabilistic logspace,” Theory Comput. Syst., vol. 39, no. 1,

pp. 189–208, 2006.

[15] Chong, K. W., Han, Y., and Lam, T. W., “On the parallel time complexity

of undirected connectivity and minimum spanning trees,” in SODA, pp. 225–234,

1999.

[16] Chong, K. W. and Lam, T. W., “Finding connected components in

o(lognloglogn) time on the erew pram,” J. Algorithms, vol. 18, no. 3, pp. 378–

402, 1995.

[17] Cook, S. A., “Characterizations of pushdown machines in terms of time-

bounded computers,” J. ACM, vol. 18, no. 1, pp. 4–18, 1971.

[18] Cook, S. A., “Deterministic CFL’s are accepted simultaneously in polynomial

time and log squared space,” in STOC, pp. 338–345, 1979.

[19] Cook, S. A., “A taxonomy of problems with fast parallel algorithms,” Infor-

mation and Control, vol. 64, no. 1-3, pp. 2–21, 1985.

58

[20] Gál, A., “Semi-unbounded fan-in circuits: Boolean vs. arithmetic,” in Structure

in Complexity Theory Conference, pp. 82–87, 1995.

[21] Gál, A. and Wigderson, A., “Boolean complexity classes vs. their arithmetic

analogs,” Random Struct. Algorithms, vol. 9, no. 1-2, pp. 99–111, 1996.

[22] Gottlob, G., Leone, N., and Scarcello, F., “The complexity of acyclic

conjunctive queries,” J. ACM, vol. 48, no. 3, pp. 431–498, 2001.

[23] Gottlob, G., Leone, N., and Scarcello, F., “Computing LogCFL certifi-

cates,” Theor. Comput. Sci., vol. 270, no. 1-2, pp. 761–777, 2002.

[24] Greenlaw, R., Hoover, H. J., and Ruzzo, W. L., “Limits to parallel com-

putation: P-completeness theory,” Oxford University Press, 1995.

[25] Greibach, S. A., “The hardest context-free language,” SIAM J. Comput.,

vol. 2, no. 4, pp. 304–310, 1973.

[26] Harrison, M. A., “Introduction to formal languages theory,” Addison-Wesley

series in computer science, 1978.

[27] Hennie, F., “Introduction to computability,” Addison-Wesley, Reading, MA,

1977.

[28] Hirschberg, D. S., Chandra, A. K., and Sarwate, D. V., “Computing

connected components on parallel computers,” Commun. ACM, vol. 22, no. 8,

pp. 461–464, 1979.

[29] Horwitz, S., Reps, T. W., and Binkley, D., “Interprocedural slicing using

dependence graphs,” ACM Trans. Program. Lang. Syst., vol. 12, no. 1, pp. 26–60,

1990.

[30] Horwitz, S., Reps, T. W., and Sagiv, S., “Demand interprocedural dataflow

analysis,” in SIGSOFT FSE, pp. 104–115, 1995.

59

[31] Immerman, N., “Nondeterministic space is closed under complementation,”

SIAM J. Comput., vol. 17, pp. 935–938, 1988.

[32] Johnson, D. B. and Metaxas, P. T., “A parallel algorithm for computing

minimum spanning trees,” J. Algorithms, vol. 19, no. 3, pp. 383–401, 1995.

[33] Johnson, D. B. and Metaxas, P. T., “Connected components in o(log3/2n)

parallel time for the crew pram,” J. Comput. Syst. Sci., vol. 54, no. 2, pp. 227–

242, 1997.

[34] Karchmer, M. and Wigderson, A., “On span programs,” in Structure in

Complexity Theory Conference, pp. 102–111, 1993.

[35] Kintali, S., “Realizable Paths and the NL vs L Problem,” Electronic Collo-

quium on Computational Compexity, Technical Report, October 2010., 2010.

[36] Kintali, S., “Realizable Paths and the Closure Under Complementation,” Un-

der Preparation, 2011.

[37] Kintali, S. and Shapira, A., “On the Lengths of Realizable Paths,” Under

Preparation, 2011.

[38] Koucký, M., “Universal traversal sequences with backtracking,” J. Comput.

Syst. Sci., vol. 65, no. 4, pp. 717–726, 2002.

[39] Lange, K.-J., “Are there formal languages complete for symspace(log n)?,” in

Foundations of Computer Science: Potential - Theory - Cognition, pp. 125–134,

1997.

[40] Lange, K.-J., McKenzie, P., and Tapp, A., “Reversible space equals deter-

ministic space,” in IEEE Conference on Computational Complexity, pp. 45–50,

1997.

60

[41] Lautemann, C., McKenzie, P., Schwentick, T., and Vollmer, H., “The

descriptive complexity approach to logcfl,” J. Comput. Syst. Sci., vol. 62, no. 4,

pp. 629–652, 2001.

[42] Lewis, H. R. and Papadimitriou, C. H., “Symmetric space-bounded com-

putation,” Theoretical Computer Science, vol. 19, pp. 161–187, 1982.

[43] Limaye, N., “Parallel complexity classes centered around LogCFL,” M.Sc. the-

sis, Anna University, 2005.

[44] McKenzie, P., Reinhardt, K., and Vinay, V., “Circuits and context-free

languages,” in COCOON, pp. 194–203, 1999.

[45] Melski, D. and Reps, T. W., “Interconvertibility of a class of set constraints

and context-free-language reachability,” Theoretical Computer Science, vol. 248,

no. 1-2, pp. 29–98, 2000.

[46] Niedermeier, R. and Rossmanith, P., “Unambiguous auxiliary pushdown

automata and semi-unbounded fan-in circuits,” Information and Computation,

vol. 118, no. 2, pp. 227–245, 1995.

[47] Nisan, N., “Pseudorandom generators for space-bounded computation,” Com-

binatorica, vol. 12, no. 4, pp. 449–461, 1992.

[48] Nisan, N., “RL ⊆ SC,” Computational Complexity, vol. 4, pp. 1–11, 1994.

[49] Nisan, N., Szemerédi, E., and Wigderson, A., “Undirected connectivity in

O(log3/2n) space,” in FOCS, pp. 24–29, 1992.

[50] Nisan, N. and Ta-Shma, A., “Symmetric logspace is closed under comple-

ment,” STOC, pp. 140–146, 1995.

[51] Pratikakis, P., Foster, J. S., and Hicks, M., “Existential label flow infer-

ence via cfl reachability,” in SAS, pp. 88–106, 2006.

61

[52] Reingold, O., “Undirected st-connectivity in log-space,” in STOC, pp. 376–

385, 2005.

[53] Reingold, O., “Undirected connectivity in log-space,” J. ACM, vol. 55(4),

2008.

[54] Reingold, O., Trevisan, L., and Vadhan, S. P., “Pseudorandom walks on

regular digraphs and the rl vs. l problem,” STOC, pp. 457–466, 2006.

[55] Reingold, O., Vadhan, S. P., and Wigderson, A., “Entropy waves, the

zig-zag graph product, and new constant-degree expanders and extractors,” in

FOCS, pp. 3–13, 2000.

[56] Reingold, O., Vadhan, S. P., and Wigderson, A., “Entropy waves, the zig-

zag graph product, and new constant-degree expanders and extractors,” Annals

of Mathematics, vol. 155, no. 1, 2002.

[57] Reps, T. W., “Shape analysis as a generalized path problem,” in PEPM, pp. 1–

11, 1995.

[58] Reps, T. W., “On the sequential nature of interprocedural program-analysis

problems,” Acta Inf., vol. 33, no. 8, pp. 739–757, 1996.

[59] Reps, T. W., Horwitz, S., Sagiv, S., and Rosay, G., “Speeding up slicing,”

in SIGSOFT FSE, pp. 11–20, 1994.

[60] Rozenman, E. and Vadhan, S. P., “Derandomized squaring of graphs,” in

APPROX-RANDOM, pp. 436–447, 2005.

[61] Ruzzo, W. L., “Tree-size bounded alternation,” J. Comput. Syst. Sci., vol. 21,

no. 2, pp. 218–235, 1980.

[62] Saks, M. E. and Zhou, S., “BPHSPACE(S) ⊆ DSPACE(S3/2),” Journal

of Computer and System Sciences, vol. 58(2), pp. 376–403, 1999.

62

[63] Savitch, W. J., “Relationships between nondeterministic and deterministic

tape complexities,” J. Comput. Syst. Sci., vol. 4, no. 2, pp. 177–192, 1970.

[64] Stolee, D., Bourke, C., and Vinodchandran, N. V., “A log-space al-

gorithm for reachability in planar acyclic digraphs with few sources,” in IEEE

Conference on Computational Complexity, pp. 131–138, 2010.

[65] Stolee, D. and Vinodchandran, N. V., “Space-efficient algorithms for

reachability in surface-embedded graphs,” Electronic Colloquium on Computa-

tional Complexity, TR10-154, 2010.

[66] Sudborough, I. H., “On the tape complexity of deterministic context-free

languages,” J. ACM, vol. 25, no. 3, pp. 405–414, 1978.

[67] Szelepcsényi, R., “The method of forcing for nondeterministic automata,”

Bulletin of EATCS, vol. 33, pp. 96–100, 1987.

[68] Tanner, M. R., “Explicit concentrators from generalized n-gons,” SIAM J.

Algeb. Disc. Meth., vol. 5(3), pp. 287–293, 1984.

[69] Tarjan, R. E. and Vishkin, U., “An efficient parallel biconnectivity algo-

rithm,” SIAM J. Comput., vol. 14, no. 4, pp. 862–874, 1985.

[70] Trifonov, V., “An O(lognloglogn) space algorithm for undirected st-

connectivity,” SIAM J. Comput., vol. 38, no. 2, pp. 449–483, 2008.

[71] Ullman, J. D. and Gelder, A. V., “Parallel complexity of logical query

programs,” in FOCS, pp. 438–454, 1986.

[72] Venkateswaran, H., “Properties that characterize LogCFL,” J. Comput.

Syst. Sci., vol. 43, no. 2, pp. 380–404, 1991.

63

[73] Venkateswaran, H., “Derandomization of probabilistic auxiliary pushdown

automata classes,” IEEE Conference on Computational Complexity, pp. 355–370,

2006.

[74] Venkateswaran, H., “Derandomization of probabilistic auxiliary pushdown

automata classes,” Georgia Tech, College of Computing Technical Report GT-

CS-09-06, 2009.

[75] Wigderson, A., “The complexity of graph connectivity,” in MFCS, pp. 112–

132, 1992.

[76] Wigderson, A., “NL/poly ⊆ ⊕L/poly (preliminary version),” in Structure in

Complexity Theory Conference, pp. 59–62, 1994.

[77] Xu, G., Rountev, A., and Sridharan, M., “Scaling CFL-reachability-based

points-to analysis using context-sensitive must-not-alias analysis,” in ECOOP,

pp. 98–122, 2009.

64

