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SUMMARY

The explosive growth in networked systems and applications and the increase in de-

vice capabilities (as evidenced by the availability of inexpensive multimedia devices) enable

novel complex distributed applications, including video conferencing, on-demand comput-

ing services, and virtual environments. These applications’ need for high performance,

real-time, or reliability requires the provision of Quality of Service (QoS) guarantees along

the path of information exchange between two or more communicating systems. Execution

environments that are prone to dynamic variability and uncertainty make QoS provision

a challenging task, e.g., changes in user behavior, resource requirements, resource avail-

abilities, or system failures are difficult or even impossible to predict. Further, with the

coexistence of multiple adaptation techniques and resource management mechanisms, it

becomes increasingly important to provide an integrated or cooperative approach to dis-

tributed QoS management.

This work’s goals are the provision of system-level tools needed for the efficient inte-

gration of multiple adaptation approaches available at different layers of a system (e.g.,

application-level, operating system, or network) and the use of these tools such that dis-

tributed QoS management is performed efficiently with predictable results. These goals are

addressed constructively and experimentally with the Q-Fabric architecture, which provides

the required system-level mechanisms to efficiently integrate multiple adaptation techniques.

The foundation of this integration is the event-based communication implemented by it, re-

alizing a loosely-coupled group communication approach frequently found in multi-peer ap-

plications. Experimental evaluations are performed in the context of a mobile multimedia

application, where the focus is directed toward efficient energy consumption on battery-

operated devices. Here, integration is particularly important to prevent the multiple energy

management techniques found on modern mobile devices to negate the energy savings of

each other.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, we have witnessed an explosive growth in networked systems and applica-

tions, ranging from on-demand access to high-end computational services offered by grid

computing to the proliferation of multi-peer multimedia applications over wired and wireless

links. This is accompanied by a dramatic increase in device capabilities, as evidenced by

the availability of inexpensive multimedia devices (high-resolution color displays, cameras),

more powerful processors, larger and faster storage devices, and multiple choices for wireless

communication links such as WiFi, Bluetooth, or GSM. These trends enable novel complex

distributed applications, including video conferencing [14], tele-teaching [5], distributed

multi-player games [74], on-demand computing services [59], and virtual environments [62].

The need for high performance, real-time, or reliable service provision requires Quality of

Service (QoS) guarantees along the path of information exchange between two or more end

systems. For example, a network-based video player requires sufficient CPU, network, mem-

ory, and bus resources to receive, decompress, and display video frames at real-time rates,

and Internet data centers that lease out processing resources, storage, or applications to

paying customers must provide resource availability and performance guarantees. However,

these execution environments are prone to dynamic variability and uncertainty caused by

changes in user behavior, resource requirements, resource availabilities, or by system anoma-

lies (e.g., failures). Further, application workloads are difficult to characterize a priori [143].

Therefore, in order to meet a user’s requirements for Quality of Service, careful manage-

ment of resources and applications is required. In the past, over-provisioning of resources

has been used to address the heterogeneity, large scale, and dynamics of these systems.

However, these approaches are inefficient or even infeasible as in the case of resource-scarce

mobile and embedded devices. QoS management capabilities deployed into these systems
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can address the variations in resource requirements and availabilities by dynamically and

autonomically adapting and responding to variations in user requirements, workloads, or

resource availabilities, without the need for human intervention. The efficient provision of

QoS is further complicated by the trend toward the use of general-purpose systems, which

are not well equipped for high performance or real-time applications. Thus, applications

will increasingly have to develop workload characterizations and resource requirements at

runtime – instead of relying on accurate offline characterizations – and they will have to

rely on the dynamic adaptation of resource allocations and applications to match resource

requirements with resource capacities.

Previous work has introduced approaches at different layers of a system, e.g., at the

application-, system-, or hardware-level, that address the shortcomings of general-purpose

systems by extending them with novel quality management support [100, 116, 134, 35, 57,

44, 93]. More recently, there has been increasing effort on the coordinated management of

multiple resources and applications within layers and across layer boundaries [156, 136, 147,

155, 49]. However, there are few comprehensive approaches to integrate multiple adaptation

techniques across multiple layers of a system and across multiple hosts. Further, much

remains to be done for the study of the effects of one adaptation technique on another and

to understand the complex relationships between resource management and application-

level adaptations.

The goal of this research is twofold: (1) to provide the system-level tools needed for

the efficient integration of multiple adaptation techniques available at different layers of a

system, and (2) to use these tools to integrate multiple adaptation techniques such that QoS

management is performed efficiently with predictable results. This thesis addresses these

goals constructively and experimentally with the Q-Fabric architecture, which provides the

required system-level mechanisms to efficiently integrate multiple adaptation approaches.

The foundation of this integration is the event-based communication implemented by Q-

Fabric, realizing a loosely-coupled group communication approach much like those increas-

ingly chosen in distributed applications such as video-conferencing or multi-player gaming.

Experimental evaluations of the Q-Fabric approach are performed in the context of a mobile

2



wireless multimedia application. They key advantage derived from using Q-Fabric is the

ability to better understand the complex effects of using and managing multiple system re-

sources, like CPU, network links, and memory, on both single machines and on distributed

platforms. A particularly complex quality metric is energy consumption. Closely tied to

the utilization of all system resources, energy is either non-replenishable for the duration

of a mission (limited battery life time) or associated with costs in data centers (energy bill,

cooling). The second part of this thesis uses Q-Fabric to study the integration of multiple

energy management techniques [33, 32, 3, 124, 121, 97, 131] in a distributed system, with

the goal to both reduce energy consumption and provide acceptable Quality of Service to

end user applications. Q-Fabric affords us the ability to perform end-to-end resource and

application management, which to date has received little attention with energy as the driv-

ing resource. Specifically, this work utilizes local energy management techniques (residing

in one or more layers of a device) to achieve some global energy consumption goal, e.g., to

maximize the operational time of a distributed application or to minimize the cooling costs

of a cluster server.

1.2 Terminology

Quality of Service (QoS) is an umbrella term for a number of methods and approaches to

match the needs of applications to the resources available in a distributed system. The

definition of Quality of Service given by ITU-T Rec. E.800 reads as follows:

The collective effect of service performance which determines the degree of sat-

isfaction of a user of the service.

This implies that the ultimate decision of good versus bad quality is subjective to the user.

Satisfaction is usually associated with non-functional requirements such as dependability,

reliability, timeliness, throughput, or robustness. In order to satisfy these requirements,

applications require the management of Quality of Service, which is fundamentally an end-

to-end issue, i.e., from the producer of data to the consumer. An end system is the end point

of a communication, i.e., the producer or consumer of data. Traditionally, QoS support was

considered a problem of the network layer in a distributed system, however, this approach
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had to be extended in order to take all other services that contribute to user-perceived

qualities into consideration. Therefore, quality is determined by the efficient integration of

management across multiple layers, including the application layer, the operating system,

and the network. The work presented in this dissertation focuses on end system QoS

management, i.e., the management of applications and resources found on an end device,

rather than on intermediate network nodes (e.g., routers and switches).

Multimedia is a key application domain in the research of quality management. New

classes of distributed multimedia applications have emerged, including tele-teaching, video

conferencing, video-on-demand, or multi-player gaming. These applications are charac-

terized by their highly interactive nature, large and continuous data transfers, and their

requirements for timeliness and small jitter. The following definition is taken from [149]:

Multimedia communication deals with the transfer, the protocols, services and

mechanisms of discrete media data (such as text and graphics) and continuous

media data (like audio and video) in/over digital networks. Such a communi-

cation requires all involved components to be capable of handling a well-defined

quality of service. The most important QoS parameters are used to request (1)

the required capacities of the involved resources, (2) compliance to end-to-end

delay and jitter as timing restrictions, (3) restriction of the loss characteristics.

QoS management is then the supervision and control of applications and resources from the

producer to the consumers of multimedia. This management ensures that user-perceived

qualities are attained and sustained, even when resource availabilities fluctuate, when user

requirements change, or when multiple applications simultaneously compete for the same

set of resources.

The user of a QoS-aware application has to be given the opportunity to express the

requirements or desired qualities via a QoS specification. The task of QoS translation is to

convert these user-perceived requirements (e.g., image quality, frame rate) into system-level

resource requirements (e.g., CPU or network bandwidths). Further, since QoS management

is an end-to-end issue, resources and applications residing on remote devices have to be
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supervised and controlled cooperatively, often with very different resource availabilities

(e.g., devices with different amounts of memory and disk space, network link bandwidths,

or processor speeds).

The task of a QoS manager is to perform high-level QoS management activities, e.g.,

the setup and teardown of control paths between distributed applications, the allocation

of resources, the communication between applications and system-level services, and the

high-level long-term planning of QoS management. In contrast, resource managers are

responsible for the low-level adaptation, i.e., they control one or more attributes of system-

level resources such as processor and network bandwidths or memory utilization. Both QoS

and resource managers base adaptations on information retrieved from distributed resource

monitors. This feedback-based approach to QoS and resource management has its roots in

control theory and allows systems to react to observed mismatches between desired and

achieved QoS, bottlenecks, or failures.

One contribution of this thesis is Q-Fabric’s provision of a uniform mechanism for com-

munication and cooperation between resource managers, QoS managers, and monitors,

based on events and event channels. Resource monitors, resource managers, QoS man-

agers, and even applications can subscribe to these event channels as event producers and

consumers. Event communication is anonymous and asynchronous, thereby supporting de-

coupled communication that has been found useful in a number of distributed applications

using group communications.

Finally, multimedia applications belong to the domain of soft real-time applications, i.e.,

besides performance and quality requirements, they also have timing requirements (e.g., in

regard to latencies and jitter). However, these applications can also tolerate degraded

performance (late or dropped frames or reduced image size), i.e., even if application or data

quality is reduced, it is still of use to the user.

The unique resource of importance in many systems and applications is energy. Energy

is unique in that it is closely linked to all resources previously investigated and managed in

QoS management approaches, such as CPU, network, or disks. That is, increased utilization

of any of those resources also increases the consumption of energy. It is therefore a suitable
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vehicle for demonstrating the advantages of Q-Fabric in the management and control of

multiple resources and multiple systems. In the remainder of this thesis, energy is expressed

in Joules (J) or Watt-seconds (Ws) and power is expressed in Watts (W), e.g., 1J expresses

the power of 1W expended over a period of 1 second.

1.3 Quality of Service of Multimedia Applications

The driving application for this dissertation is multimedia in mobile environments, where

QoS management has to consider the limited battery life times (and therefore the limited

energy resources) as an additional constraint. This section, therefore, describes the QoS

management challenges for mobile multimedia applications and discusses the importance of

energy as a constraining resource in mobile and wireless computing environments.

ISO 91 defines multimedia as the property of handling several types of representation

media, which is the type of data that defines the nature of the information as described in

its coded format (e.g., for audio: CCITT G711, MIDI, MPEG/audio) [54]. Some media are

characterized by sequences of finite sized samples with strict temporal dependencies and

are categorized as continuous or streaming media. There is a growing need for the support

of Quality of Service for multimedia applications, partly due to the increase in real-time

applications such as video and audio streaming and the anticipated growth in wireless access

to the Internet. However, the large-scale deployment of distributed multimedia applications

will result in high demands on the resources of these systems. In the mobile computing do-

main, additional problems are caused by resource scarcity, the mobility of users, associated

issues with connectivity and transmission errors, and limited battery life times. Multimedia

applications can gracefully adapt to scarcity of resources, i.e., image qualities can change, as

can frame rates or compression methods. Figure 1 shows a 60s snapshot of a video stream-

ing application between two devices. The left graph shows the achievable frame replay

rates (measured at the receiver) for two different video streams. After 30s, a sender-side

CPU-intensive task (compiler) is started which affects the achievable frame rate and the

maximum and average jitter (right graph). Further, while the video stream is not disturbed,

the frame rates vary by 7% in the worst case, however, when the system is disturbed, the
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Figure 1: Frame rate (left) and jitter (right) for a video streaming example.

achieved rates vary by 80% and more. Another insight from these graphs is the difference in

achievable frame rates for two different streams (left graph), which indicates that resource

requirements also depend on the content of the data. Although multimedia applications

require a continuous transfer of data, the actual frame rates, end-to-end latencies, and jitter

can vary without degrading the overall quality below an unacceptable level. This can be

exploited by trading resource utilization (and therefore quality) with energy consumption,

as will be shown in the remainder of this thesis.

Energy as a First Class Resource. The resources of interest in this thesis are CPU,

network, and energy. Energy is of particular interest because of its close ties to all other

resources, i.e., utilization of a resource such as CPU and network always translate into

energy consumption. Energy management can be considered as a type of quality manage-

ment; the goal is to reduce energy consumption, while providing good or sufficient quality of

service. Typically, devices were designed to deliver peak performance when requested, but

workloads are variable and the full resources are only needed sometimes. Most resources

are not fully utilized or do not have to be active all the time, therefore, dynamic power

management (DPM) mechanisms detect idle times and switch unused components into low-

power sleep or off modes. Other system-level approaches include energy-aware scheduling
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of tasks, re-arranging disk accesses (to reduce seek times), and buffering network trans-

missions (to increase traffic burstiness). Power management can also be supported at the

application-level, i.e., applications can trade the use of ‘expensive’ (in terms of energy)

resources for ‘cheap’ resources. However, for both system-level and application-level ap-

proaches, determining or predicting the energy costs associated with resource utilization is

a difficult challenge. Moreover, when multiple energy management techniques are deployed,
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Figure 2: Energy savings when using dynamic frequency scaling (left) and the sleep mode
of a wireless network card (right).

the uncoordinated combination can have unintended adverse effects, i.e., the combined en-

ergy savings are suboptimal. The left graph in Figure 2 shows the energy savings attainable

if dynamic frequency scaling (DFS) [84] is used on a sample mobile processor for a snapshot

of 1s and a CPU utilization of 25%. With DFS, the clock speed can be reduced, decreas-

ing the device performance, but also decreasing the energy consumption. The frequency

is scaled from 206.4MHz to 59MHz; at the lowest clock frequency the device saves 46mJ

(compared to running at the default frequency). In comparison, the right graph shows the

energy savings achievable by exploiting the sleep mode [87] of a wireless network card, i.e.,

when no communication occurs, the device is switched into a low-power mode. Depending

on the network utilization, the savings can reach up to 850mJ. Compared to the savings

of the frequency scaling, the network card’s savings are much more significant. However,
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the achievable savings depend on the architecture, e.g., more recent mobile processors also

offer a similar technique called dynamic voltage scaling (DVS) [122], which results in higher

energy savings at the CPU-level. Figure 3 shows the expected and actual energy savings
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Figure 3: Expected energy savings (left bars) and actual energy savings (right bars) for
the combined use of dynamic frequency scaling and a network card’s sleep mode.

when both DFS and the network card’s sleep mode are deployed. The CPU is operated at

the lowest possible clock frequency, resulting in 46mJ derived from the use of DFS. The left

bars show the expected energy savings, i.e., the sum of the energy savings for deploying DFS

and the sleep mode of the network card, dependent on the network utilization. However,

the actual energy savings are significantly lower than the expected savings (right bars), e.g.,

at 50% network utilization, the expected savings are 473mJ, the actual (measured) savings

are only 266mJ (44% less). This is due to the effect frequency scaling has on network trans-

mission, i.e., with DFS, all components of network communication that involve the CPU

are slowed down, e.g., protocol processing and packet scheduling. Particularly if fragmen-

tation is used (e.g., in the 802.11b standard), the MAC protocol layer and packet scheduler

are invoked for each fragment (which can be as small as 256 bytes). This underlines that

if multiple adaptation and management techniques are available, the integration of these

techniques has to be performed carefully in order to obtain optimal results and to prevent

one technique from negating the advantages of another. Therefore, Chapters 6 and 7 of this
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thesis will describe in detail the integrated management of multiple energy management

techniques based on Q-Fabric.

1.4 The Thesis

Distributed complex applications deployed in uncertain environments require end-to-end

QoS management. Moreover, with the availability of multiple adaptation ‘knobs’ at all

layers of a system, an integrated approach to QoS management has to be taken.

This dissertation’s thesis is that:

The integration of multiple QoS management mechanisms – possi-

bly residing at different system layers or multiple hosts – is essential

for achieving efficient adaptations and for preventing adverse effects

stemming from the uncoordinated use of multiple management ap-

proaches. System support for this integration is important in order

to obtain acceptable overheads, fine-grained adaptations, and unre-

stricted access to a system’s resources. The approach is also shown to

be useful for global energy management, which is key to the effective

reduction of energy consumption in a distributed system.

The main contribution of this dissertation is the extension of a general-purpose oper-

ating system to efficiently integrate quality management approaches at different layers of

a system. Based on this integration, efficient adaptations of both applications and system

resources can be performed in concert. The integration is based on system-level, event-

based communication mechanisms, which ensure the low-overhead coordination necessary

for fine-grained adaptations. The integrative approach introduced in this work is shown

useful for multimedia applications in mobile wireless systems. For example, techniques

such as energy-efficient media transcoding, energy-aware real-time video decoding, and the

exploitation of resource idleness (processor, network card, etc.) are used collaboratively

to ensure that energy consumption is reduced wherever it is necessary (e.g., as expressed

in a global energy management goal). Integrated quality management is supported by the
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Q-Fabric (Quality-Fabric) infrastructure, which provides the tools necessary to efficiently

integrate application-level and system-level QoS management techniques in a distributed

system.

1.5 Organization of the Dissertation

The rest of this document validates the thesis. Chapter 2 sets the context for this work. It

explains the quality management model used, introduces the concept of integrated quality

management, and discusses the key components of Q-Fabric.

The integration between applications and resources (‘vertical’ integration) is addressed

in Chapter 3. The ECalls mechanism is a collection of communication tools, giving applica-

tions the flexibility to choose the most appropriate tool, e.g., depending on their real-time

or performance requirements. In Chapter 4, the integration in the ‘horizontal’ direction

(between devices) is addressed, which is implemented by the KECho event service.

Chapter 5 continues with a case study of the use of Q-Fabric for a distributed multimedia

application. The results underline the importance of integration in both the vertical and

the horizontal directions to ensure effective QoS management.

Chapter 6 begins the second part of the thesis, where the focus is moved toward energy

as the driving constraint for the management of Quality of Service in distributed battery-

operated systems. The chapter introduces several techniques for energy management and

how they are linked into the Q-Fabric approach. This is continued in Chapter 7, where the

previously introduced energy management techniques are combined to ensure efficiency in

energy preservation, to prevent adverse effects of uncoordinated integration, and to achieve

a global application-specific energy management goal.

Chapter 8 compares the work introduced in this dissertation with previous and ongo-

ing related work in the areas of QoS management, event-based communications, resource

monitoring and management, and energy-awareness. Finally, Chapter 9 concludes the dis-

sertation with a summary of its contributions and an outlook on possible future research

directions.
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CHAPTER 2

THE Q-FABRIC ARCHITECTURE

In order to compensate for varying resource requirements and availabilities, applications

rely on the adaptation of (a) application behavior, (b) the data streams these applications

produce, and (c) the allocation of system-level resources. Over-provisioning of resources is

inefficient or even infeasible in resource-scarce environments and limits the number of appli-

cations that can use these resources simultaneously. This dissertation, therefore, introduces

a dynamic online Quality of Service management approach that addresses the real-time and

performance needs of QoS-aware applications. This chapter introduces the key elements of

the Q-Fabric architecture and the rationale behind the design decisions underlying this

architecture.

2.1 A QoS Management Model

QoS management consists of multiple steps, including QoS specification, QoS translation,

negotiation, setup, resource reservation, resource scheduling, and resource adaptation. A

possible categorization of these tasks is presented in Figure 4. Q-Fabric’s concentration is

QoS Specification

QoS Translation

High−Level Management

Resource Management

Low−Level Management

Q
oS

 M
an
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em

en
t

Mechanisms, Protocols, Traffic Shaping, 
Scheduling

OS/Kernel: Management of Resources, Admission

Adaptation, Application Adaptation
Setup, Negotiation, Teardown, High−Level

Language to Translate Subjective Requirements

QoS Levels, QoS Regions
Application−Specific QoS Characteristics,

Control, Protection, Monitoring

into Attributes ‘Usable’ for Lower Layers

Figure 4: QoS management layers.
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on the management issues at system level, including the low-level mechanisms such as CPU

and packet schedulers or network protocols, and the functionality required to monitor and

control resource availability and allocations. Although not the focus of this work, Q-Fabric

includes simple solutions to QoS specification and translation. More specifically, with Q-

Fabric, users can specify their requirements with utility functions [112], QoS ranges [52],

and weights or priorities. A utility function is a non-decreasing relationship between the

allocation of a resource or an application-specific metric and the gain derived from it by

an application or user (see Figure 5). In other words, the more resources can be made

non−decreasing

Qij(min) Qij(max)

simple utility function QoS range
Utility Utility

Resource/Metric

QoS range

Figure 5: Utility functions and QoS ranges.

available to an application, the higher the user-perceived quality, e.g., expressed as more

throughput for servers or better image quality for video streaming applications. Multiple

application-specific utility functions can be provided, where the collection of these functions

expresses a user’s preferences. For example, for a video streaming application, a user could

provide separate utility functions for the frame rate, the image size, and the color depth.

The sum of the utilities for each metric j returns the total utility Ui for an application i:

Ui =
∑

Uij .

The total system utility U is expressed by the sum of all application utilities Ui, each

multiplied by its weight wi:

U =
∑

(wi ∗ Ui).
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Finally, a QoS range is expressed in the form {Qij(min), Qij(max)} and indicates the por-

tion of each utility function that is acceptable to the user (Figure 5). That is, the task

of QoS management is to ensure that each utility function returns a non-zero utility (i.e.,

maintains a QoS metric above the lower boundary Qij(min)) and that no resources are

wasted (i.e., maintains a QoS metric below Qij(max)).

Feedback control or closed-loop control has been key to the development of systems in

uncertain and changing environments. Originating from work in electrical engineering, in

recent years, researchers have adopted this theory for scheduling in QoS-aware and real-

time systems [31, 133, 158]. Q-Fabric is based on the same theory, i.e., a monitor collects

information that can be used to derive the quality of application performance and to de-

tect possible bottlenecks. A controller utilizes this information, together with the QoS

requirements specified by users, to decide when, where, and how to adapt [147]. The timing

requirements of a feedback loop are typically more stringent than the timing requirements

of the controlled application, i.e., if adaptation is too slow, it can exacerbate the detected

problems, instead of solving them. With Q-Fabric, resources and applications at each host

Resource

Resource

Application

Controller

Controller

Controller

control
events

Monitor

Monitor
monitoring events

Specification

Monitor

Figure 6: Feedback QoS control.

are ‘guarded’ by separate monitors, whose collected information is shared with controllers
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via monitoring events (Figure 6). The error between desired results (as expressed with

the utility functions and QoS ranges) and the actual results is used by the controllers to

decide whether adaptation is required. The controllers communicate with each other via

control events in order to coordinate the adaptation of multiple resources or applications at

multiple hosts.

2.2 Organization of Q-Fabric

The Q-Fabric architecture consists of several components (depicted in Figure 7), which

cooperatively support the deployment of distributed QoS management policies. This section

briefly describes the individual components.

Resource
Monitor

Resource
ManagerQ−Channel

Attribute

Monitors
Controllers

LibraryQ−Fabric
ManagerQoS

Customization
Extension &

Interface
Q−API

Application

Memory

Disk

Battery
Resource Pool

Network

LAN/WAN

Operating
System

Processor

Figure 7: Q-Fabric overview.

QoS Manager and Q-Fabric Library. The QoS manager’s task is to provide an ap-

plication with the basic tools to specify its desired Quality of Service, to setup, control,

and teardown QoS management connections with remote devices, and to coordinate the

adaptation of applications in response to user requests or events from the system-level com-

ponents of Q-Fabric. The QoS manager is part of Q-Fabric’s user-level library, which has to

be linked to any application that wishes to utilize Q-Fabric-based QoS management. This
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library also implements the data structures and function calls required by an application to

setup QoS management and to specify its QoS requirements.

Resource Monitoring. Resource monitoring in Q-Fabric is a two-level process: each at-

tribute monitor (Figure 7) has the responsibility to monitor one or more attributes of a

resource, e.g., the run queue length of a CPU scheduler, the consumed bandwidths of a

network connection, or the available memory or disk space (first level). These attribute

monitors are called periodically by a resource monitor (second level), whose task it is to

collect information from all attribute monitors and distribute it via monitoring events to

other components of the Q-Fabric architecture. Passive attribute monitors are implemented

as functions that, at the time of invocation by the resource monitor, inspect the attribute of

the resource they are supposed to monitor, and return the current value. Active monitors, in

contrast, are implemented as kernel threads that continuously monitor a resource attribute

and return the collected information to the resource manager when called (e.g., as sums

or averages). For example, an active attribute monitor for a network card might be acti-

vated whenever data arrives at the card, whereupon the monitor updates a data structure

to reflect the amount of bytes received since the last invocation by the resource manager.

The poll period is the time between successive invocations of attribute monitors, which is

customizable by an application to any desired value and can be different for all attribute

monitors. That is, an application can let Q-Fabric poll resources that are of importance

to the application more frequently than others, or an application can provide approaches

to dynamically determine (e.g., through feedback control) optimal values for poll periods.

Finally, thresholds can be specified by applications for each active attribute monitor, i.e.,

when the monitored attribute exceeds or falls below a threshold, the attribute monitor

calls back to the resource manager, instead of waiting for the current poll period to expire,

thereby increasing the responsiveness of QoS management.

Resource Management. Similar to resource monitoring, resource management consists

of two parts: (a) resource controllers, which are application-specific QoS policies, and (b)
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a resource manager, which is responsible for invoking the resource controllers whenever a

monitoring or control event arrives. More specifically, each resource controller has a list

of resources of interest associated with it, i.e., whenever the resource manager observes a

change of a resource (through a received monitoring event), all resource controllers that

have expressed interest in this resource are invoked. Further, the resource manager also

has the responsibility of admission control and ‘global’ resource management. For example,

if a new application is admitted, but as a consequence, the resource allocations of other

applications have to be adjusted, the resource manager invokes the corresponding resource

controllers to perform the required adaptations.

Q-Channel. Key to Q-Fabric’s operation is the efficient integration of mechanisms and

tools for quality management residing at different layers of a system. Figure 8 shows a
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Figure 8: Layered system view.

scenario of multi-layer quality management, i.e., QoS management techniques are deployed

at different layers of a system, and these techniques can cooperate within layers (intra-layer

integration), across layers (cross-layer integration), and across device boundaries (cross-

device integration). This document also refers to integration between different layers of

a single system as vertical integration, whereas the cooperation within layers and among

devices is called horizontal integration.

Event services have received increased attention as scalable tools for the composition of

large-scale, distributed systems, as evidenced by their successful deployment in interactive
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multimedia applications and scientific collaborative tools. Past work on system monitor-

ing [83, 139, 46] has routinely used event-based paradigms to represent and manage monitor-

ing data, and this approach has also been extended to the domain of adaptive systems [148].

Further, for wide-area and web applications, event-based communication has received in-

creased attention in the past, in part because of its support for decoupled communication:

event producers are unaware of number or identities of event consumers (anonymous com-

munication), and events can be raised anytime without the producer waiting for a response

from the consumer and without the consumer having control over when events are raised

(asynchronous communication).

With Q-Fabric, each distributed application has its own event channel, called a Q-

Channel, which takes the function of a control path between distributed resource monitors

and managers (i.e., integration in the horizontal plane). Many multimedia applications are

multi-peer applications in nature, such as video conferencing, remote teaching, or multi-

player gaming. These multi-peer applications are increasingly supported by group commu-

nication approaches, including event services [119, 27, 48, 77]. It is only natural to map

these group communication between distributed applications onto the underlying system-

level QoS management mechanisms. QoS managers, resource managers, and applications

Q−Channel

Application
Level

OS
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Hardware
Level

Host 1 Host 2 Host 3 Host 4

failure

migration

Subscribers

Figure 9: Q-Channel overview.

at different layers of a system can therefore subscribe to a Q-Channel as event producers

and consumers (Figure 9). Event-based communication supports lightly coupled exchange

of data, i.e., if a subscriber fails, leaves, or migrates, the communication between all other

subscribers is unaffected. Event publication and receipt imply an action triggered by the
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event, like the execution of a handler function or the transfer of certain data. Such an

action is defined at the time an application subscribes to the event channel. Furthermore,

the specific publish/subscribe implementation of Q-Channels in Q-Fabric describes events’

data content with well-defined formats known to producers and consumers. Using formats,

event-based interactions can be enriched with application- or service-specific, dynamically

created event handlers, able to manipulate event content. One result is that Q-Fabric’s

event communication need not prescribe a specific synchronization strategy for access to

event data, thereby permitting consumers to receive any number of different events and use

them as they see fit, subject only to restrictions in the total memory available for storing

event representations.

Q-API. Q-Fabric supports a variety of well-defined, per-channel ways in which control

is passed between application and system domain or between services within the system

domain upon event production and receipt. By separating data and control, multiple spe-

cializations of each may be used to implement efficient system/user event sharing, thereby

addressing different applications and usage scenarios. For instance, a ‘real-time’ event chan-

nel implies that upon event generation by the kernel, a real-time signal will be generated

to the address space subscribed to this channel.

While a Q-Channel is responsible for the horizontal integration between remote devices,

the Q-API is the interface linking application-level and system-level, i.e., in the vertical

direction. The focus here is on flexibility and performance, e.g., by offering multiple ways

of interaction between applications and Q-Fabric (including shared memories, system calls,

signals, or the /proc interface). While Q-API was created with flexibility in mind, it was

also a goal to keep the application interaction simple if desired by the user. For example,

an application ‘registers’ with Q-Fabric by calling a function with the following prototype:

int qfabric_config (char *application_id,

char *group_id,

struct qos_node *qos_params);

The first two attributes are unique strings, identifying the application. A central group
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server is contacted by Q-Fabric, transparent to the application, to see if an application with

the corresponding strings has already registered on a remote host. If so, Q-Fabric, again

fully transparent to the application, sets up a Q-Channel between all subscribed monitors

and managers. If no entry is found, Q-Fabric registers the application with the group

server, thereby announcing its existence to future – remote – instances of the application

contacting the group server. The third and last attribute, qos params, is a data structure

containing application-relevant QoS information, most importantly the desired QoS ranges.

An example for such a data structure is given here for a video streaming application:

struct qos_node {

int min_frame_rate;

int max_frame_rate;

int min_color_depth;

int max_color_depth;

int min_image_width;

int max_image_width;

int min_image_height;

int max_image_height;

};

Utility functions are expressed as simple C code, e.g., the following two utility functions

show a linear relationship between (a) the frame rate and its utility to an application and

(b) the color-depth and its utility to an application:

int utility1 (int rate) {

return rate*4;

}

int utility2 (int color_depth) {

return color_depth;

}

In this example, these functions implicitly express that higher frame rates are preferable

to higher color depths (in bits per pixel), e.g., a frame rate of 20 will return a utility of 80,

while a color depth of 24 bits per pixel will return a utility of only 24.
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Extension and Customization Interface. The extension interface allows applications

to interact more closely with the system-level Q-Fabric components than Q-API would

allow. It gives users the opportunity to add new functionality such as attribute monitors

or resource controllers. The customization interface allows users to modify poll periods and

thresholds for attribute monitors or to ‘download’ filters into Q-Channels to customize the

event traffic to the needs of a particular application.

2.3 Arguments for a System-level Approach

Q-Fabric adopts a system-level approach to QoS management, i.e., besides a small user-

level library that is linked with QoS-aware applications, its components are implemented as

extensions to an operating system kernel. Past work has shown that fine-grain, kernel-level

resource management can provide applications with benefits not derived from coarser-grain,

user-level QoS management [51]. Specifically, with user-level QoS management, excessive

delays or overheads experienced by dynamic adaptations can negatively affect or even negate

the advantages of run-time adaptation for real-time applications [117]. The issue is that

delays and overheads may be caused by an application-level QoS manager’s interactions

with the system-level mechanism they must use to monitor and steer resource allocations.

OS kernels or network services may present interfaces to application-level resource man-

agers that necessitate repeated kernel calls in order to determine the resources available for

allocation to certain application tasks. Inappropriate interfaces may require managers to

poll for changes in resource state or make unnecessary resource reservations (as also noted

in [57] and [105]). In comparison, within OS kernels or in network services, it is straight-

forward to inspect and manipulate the data structures involved in resource allocation. In

addition, OS kernels can enforce constraints on the delays experienced by applications when

they are informed about changes in their allocations, or when they must be adapted to con-

form to new QoS requirements or resource availabilities, whereas application-level resource

managers may be at the mercy of CPU schedulers. Finally, a system-level approach allows

Q-Fabric to perform certain functions at interrupt time, i.e., outside of the context of any

process, removing the need for context switches. The result is that certain operations (e.g.,
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resource monitoring) can be performed at the expense of a function call, giving Q-Fabric

even higher levels of predictability and accuracy.

2.4 Periodic Processing and Communication Model

In this thesis, the applications managed by Q-Fabric rely on a periodic processing and

communication model, as can be found in many multimedia applications, e.g., video and

audio streaming. The two key resources considered are CPU and network. This section

describes how both of these resources can be controlled, enabling the QoS management

required by multimedia applications.

2.4.1 DWCS Scheduling

The traditional UNIX scheduler has been shown to have unacceptable performance for mul-

timedia applications [92]. For example, an application with a fixed real-time priority could

have precedence over all other applications at all times, and therefore, starve best-effort

applications. This has led to the development of new scheduling approaches, including

those based on reservations and on proportional share resource allocations [100]. To ef-

ficiently support real-time applications, this thesis uses a hard real-time CPU scheduler,

called DWCS (Dynamic Window-Constrained Scheduler) [146, 145]. DWCS assigns each

process the following attributes: a period T , a service time C, and a window-constraint x/y.

Using these attributes, DWCS attempts to service a process for at least C time units in

a period of T time units, and it guarantees that it will service a process in y − x periods

in a window of y periods if the CPU utilization is less than or equal to 100%. Thus, the

minimum CPU utilization consumed by a process i is determined by

Ui(min) = (1 − xi/yi) ∗ Ci/Ti.

The period Ti of a process i is used to set a deadline until the scheduler has to service

process i for at least Ci time units. If the process misses its deadline more than xi times

in a window of Ti ∗ yi, the scheduler violated the real-time guarantees to this process. Each

process can be scheduled once in its period, unless it is marked as work-conserving ; in that
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case it is possible to schedule this process several times within its period as long as CPU

utilization allows.

Scheduling attributes are adjusted dynamically to reflect the progress of a process.

DWCS distinguishes between the original window-constraint x/y and the current window-

constraint x′/y′, where the latter is modified dynamically according to the following rules:

Rule a: If the scheduler allocates Ci time units to process i within a period Ti, the window-

constraint is relaxed by decrementing the window denominator. If the denominator

and the numerator of the window-constraint are equal (y ′

i = x′

i), both are decremented

until they reach zero, at which they are reset to their original values:

if (y′i > x′

i) then y′i = y′i − 1;

else if (y′i = x′

i) and (x′

i > 0) then

x′

i = x′

i − 1; y′i = y′i − 1;

if (y′i = x′

i = 0) then y′i = yi; x′

i = xi;

This ensures that a process that has been serviced already within its period, will relax

its window-constraint.

Rule b: If a process misses to be scheduled within its current period, the window-constraint

is adjusted to reflect an increased urgency:

if (x′

i > 0) then x′

i = x′

i − 1; y′i = y′i − 1;

if (y′i = x′

i = 0) then x′

i = xi; y′i = yi;

else if (x′

i = 0) then y′i = y′i + 1;

This gives the process a tighter window-constraint and therefore an increased prob-

ability of being scheduled in the near future. Note, that if the window numerator is

zero and a process misses to be scheduled within its period, a violation has occurred.

The precedence rules used by DWCS among processes are shown in Table 1.

The simplified pseudo-code for DWCS is as follows:
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Table 1: Precedence rules.

Earliest deadline first (EDF)
Equal deadlines, then order

tightest window-constraint first
Equal deadlines and zero window-constraints,
then order highest window-denominator first

Equal deadlines and equal non-zero
window-constraints, then order lowest

window-numerator first
All other cases: first-come first-serve

while (TRUE) {

find process i according to the precedence rules in Table 1;

adjust window-constraints for process i (Rule a);

for (each process j<>i missing its deadline) {

adjust window-constraint for j (Rule b);

adjust deadline for j;

}

schedule i;

adjust deadline for i;

}

In [145], the following real-time guarantees of DWCS are demonstrated:

(a) DWCS is able to give firm bounds for the maximum delay of service to a given process

on the run queue in both under-load and over-load situations.

(b) The least upper bound on the system utilization is 100% if Ci = k and Ti = nk ∀i with

k, n being integers ≥ 1.

2.4.2 Coordinated CPU and Network Management

In this dissertation, the same scheduler, DWCS, is used for both CPU and packet scheduling.

Here, the end of a period T specifies a deadline by which the transmission of a packet has

to be initiated. The periods of the CPU scheduler and the packet scheduler are identical,

in order to ensure that packet generation and packet transmission are synchronized (e.g.,

for video streaming, the period corresponds to the inverse of the frame rate). However, the

periods of the packet scheduler are phase-delayed with the periods of the CPU scheduler,
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Figure 10: Coordinated CPU and packet scheduling.

as shown in Figure 10. This phase Θ determines the latency of a packet – from packet

generation to transmission – acceptable to the user: lmax = Θ + T . For example, a period

of 30ms and a phase of 15ms cause a maximum latency of 45ms for a packet. The actual

end-to-end latency is further determined by the transmission delays and the reception and

processing delays at the client.

2.5 Summary

QoS management with Q-Fabric is based on the exchange of events and event channels,

called Q-Channels. Once a Q-Channel has been created (transparent to an application),

the QoS and resource managers and monitors of a system are free to join, leave, and com-

municate with other managers and monitors at remote hosts. Besides Q-Channels, the

key components of Q-Fabric are the resource monitoring and controller parts, the Q-API

interface, and an extension and customization interface. The coordinated management of

distributed resources can be particularly complicated in large-scale applications, where (1)

multiple data sources and sinks communicate, (2) data streams have relationships such

as synchronization, (3) data streams reserve resources together (resource sharing), (4) re-

sources or applications can migrate, or (5) the system is highly dynamic, i.e., applications

and their Quality of Service requirements can change at any time. Q-Fabric addresses this

complexity by tying the creation of event channels for resource management with the cre-

ation of data channels, i.e., the setup of control paths between distributed monitors and

managers is transparent to the application and occurs at the same time applications set up

their communication paths (e.g., the creation of a video streaming connection between a
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client and a server initiates the creation of a Q-Channel control path between the underly-

ing resource managers). QoS ‘engineers’ can therefore rely on Q-Channels to automatically

interconnect the resource managers along the path of a data stream, allowing them to focus

on the development of efficient QoS policies instead of the actual linkage between distributed

resource managers. Further, event communication in Q-Fabric is asynchronous, i.e., event

sources publish events on Q-Channels without waiting for a response. This loose coupling

of event publishers and subscribers supports the dynamic behavior of multimedia systems

(e.g., resource migration). Also, subscribers to a Q-Channel are unaware of the identities

or even number of other subscribers, which further facilitates the dynamic joining, leaving,

or migrating of subscribers. Finally, the target application domain is mobile multimedia;

therefore, the model used for resource allocation is based on the periodic processing and

communication commonly found in these applications. Specifically, in this dissertation, the

resources CPU and network are controlled by a real-time scheduler (DWCS), which provides

applications with the timeliness they require.
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CHAPTER 3

INTEGRATION ACROSS PROTECTION DOMAINS

System-level resource management and user-level application adaptation have to be per-

formed cooperatively to attain efficient QoS management for multimedia applications. Effi-

cient integration across protection boundaries, i.e., between kernel- and user-level, is essen-

tial to the successful coordination of QoS managers, applications, and resource managers.

This chapter introduces ECalls, a novel mechanism to provide cooperation of application-

level and system-level QoS management. Without ECalls, applications and user-level QoS

managers would be restricted to use existing interfaces – such as system calls – that are

known to be expensive and they would not have full access to system-level functionality.

This chapter addresses the integration between user-level and system-level QoS manage-

ment provided by ECalls as part of the Q-Fabric infrastructure and describes ECalls’ com-

ponents and approaches to cross-domain communication in detail. Using ECalls, user-level

QoS managers and applications can leverage system-level mechanisms while limiting the

penalties of frequent crossings of protection domain boundaries. It thereby provides the

tools necessary for the efficient integration of user-level and system-level QoS management

mechanisms in the ‘vertical’ direction (i.e., across protection domains within a system).

3.1 Introduction

Lack of QoS support from operating systems can be a detriment to the efficient implementa-

tion of applications like distributed virtual environments, multi-player games, telepresence,

remote sensing, or remote collaboration. This is because these applications’ multiple and

continuous data streams require bounds on latency, data loss, and jitter, e.g., to prevent

audible gaps in audio or choppy replay of video. Previous research has addressed these

needs by enhancing operating systems with multimedia and real-time CPU schedulers [57]

or fair share packet schedulers [44], or with distributed resource managers operating across
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multiple machines and resources [90]. Such work can take advantage of the extensibility

of operating systems to add new functionality without having to modify and re-compile

current system images. In commercial systems, such as Microsoft Windows products or

Linux, OS extensibility is routinely used to support new hardware like disk drives or net-

work cards with dynamically loadable device drivers. Extensibility is also used to realize

more complex and demanding services, like load balancing mechanisms in parallel comput-

ing environments, facilities that support distributed resource management and Quality of

Service for real-time applications, or kernel ports of certain application components that

used to reside in user-level, but have shown performance gains if implemented in the kernel,

such as the Linux in-kernel HTTP servers and accelerators tux1 and khttpd2.

For purposes of protection/safety and interoperability, applications and system services

typically run in different protection domains, using well-defined interfaces between these

domains. For instance, device drivers operating in the system domain use socket interfaces

to isolate applications from the different types of network cards being used. There are two

well-known problems with this approach:

• Cross-domain calls, such as system calls and signals, can be expensive. The resulting

high delays in the transfer of control and data between caller and callee are detrimental

to service responsiveness, and it limits the scalability of applications with high call-

frequencies (e.g., busy web servers). In response, researchers have introduced ways to

control the costs associated with cross-domain communication [26, 73] and ways to

reduce the frequency of system calls by extending kernels with appropriate application-

specific functionality [8, 29, 39].

• Cross-domain calls can be restrictive, in that they may not offer the flexibility needed

by QoS-aware or real-time applications. Past work has addressed this issue by pro-

viding domain-specific interfaces (e.g., quality sockets [34]) or by better integrating

kernel- with corresponding user-level actions via efficient upcall primitives [23, 53],

1http://www.redhat.com/products/software/tux
2http://www.fenrus.demon.nl
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including variants addressing multimedia and real-time applications [43].

In comparison to previous work focused on specific applications or services, this chapter

introduces a single, uniform cross-domain transfer facility for control and data that is (1)

sufficiently flexible to support a wide range of QoS-aware applications or services and (2)

customizable to individual needs. This facility, called ECalls, permits QoS-aware applica-

tions to communicate with OS-based resource management services (such as Q-Fabric) to

monitor resource availability, to re-negotiate QoS specifications, or to be notified when an

application must adapt its own behavior (e.g., adaptation of image quality to reduce pro-

cessing and networking requirements). Moreover, ECalls implements multiple, alternative

notification methods concerning system-level events. For instance, consider the notification

of single-threaded web servers about the arrival of new service requests, which is commonly

done in a pull-based fashion using select() or poll() system calls. Here, ECalls facilitates

the implementation of alternate pull methods, since both select() and poll() calls have been

shown to have poor scalability with high request frequencies [17].

The interaction model supported by ECalls offers the flexibility and efficiency needed for

intra-machine cross-domain calls, but its design also permits its extension to cross-machine

interactions. This is because ECalls uses the notion of events and event channels, where

parties interested in certain events subscribe to shared channels to which events are pro-

duced and from which they are received. Event publication and receipt imply an action

triggered by the event, like the execution of a handler function or the transfer of certain

data. Such an action is defined at the time an application subscribes to the event chan-

nel. Furthermore, ECalls’ publish/subscribe implementation describes events’ data content

with well-defined formats known to producers and consumers. Using formats, event-based

interactions can be enriched with application- or service-specific, dynamically created event

handlers, able to manipulate event content. One result is that ECalls need not prescribe

a specific synchronization strategy for access to event data, thereby permitting an applica-

tion to receive any number of different events and use them as it sees fit, subject only to

restrictions in the total memory available for storing event representations. For example,
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the implementation of ECalls requires the memory areas shared between kernel and user to

be pinned in memory, thereby defining certain limits on the amounts of data shared in this

fashion.

ECalls uses the event channel paradigm to support the application- or service-customized

transfer of control and data across protection domains:

• Event delivery means that an interested object (e.g., a multimedia application) re-

ceives a notification of a system-level event (e.g., the arrival of data at a network

connection). The delivery of an event may include a cross-domain control transfer,

where the event-related action (e.g., the execution of a handler routine) is performed

in the context of the consumer process. This can require a processor switch to the

consumer if it is not a currently active process. Alternatively, the event-related action

can be performed by the event producer (e.g., an operating system service), where

the action is performed by the producer on behalf of the consumer without the need

for a control transfer.

• Events can be accompanied by data, as part of the event itself (e.g., passed as at-

tributes to the event handler), or as separated data items (described by data formats).

In the latter case, a cross-domain data transfer takes place, which consists of copying

the data associated with the event to a memory area accessible by both the event

producer and consumer.

Extending prior work, the event-based communication supported by the ECalls mechanism

has the following, novel functionality:

• By its ability to link cross-domain with intra-domain calls, ECalls can provide new

functionality. An example is the cooperation between its event dispatcher and the

operating system’s process scheduler to attain bounded delays on event delivery, which

is important for real-time applications.

• Event filters can initiate low-overhead cross-domain control transfers and attach ar-

bitrary, necessary constraints to such transfers [79], before other, more heavyweight
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control transfer facilities are utilized. This can be used to pre-process data associ-

ated with events or to provide behavior analogous to that of optimistic active mes-

sages [142].

• Custom event handlers can be deployed – or even dynamically generated – by appli-

cations, therefore specializing the system’s behavior to the needs of the application

using them.

• Remote event notification can be achieved by installing kernel-level event handlers

that redirect event notification to remote applications without explicit application

involvement. Further, applications can install event handlers and event filters on

remote devices on behalf of other applications, e.g., to customize the type of events

being delivered.

3.2 Design and Implementation

The key components of ECalls are:

• shared memory between applications and kernel services for both event notification

and data sharing,

• multiple event notification approaches, e.g., signals and kernel event handlers,

• dynamic generation of kernel event handlers,

• coordination of event dispatch and CPU scheduling, and

• event notification across networks.

ECalls has been implemented as a dynamically loadable kernel module as part of the Q-

Fabric approach. It provides event channels between event producers and event consumers,

e.g., resource managers and applications. As an example, kernel services such as device

drivers, load balancers, or resource managers can raise events which are passed on to one or

more applications by the ECalls event notification. If multiple applications are consumers of

an event, the order of event notification is determined by the applications’ CPU scheduling
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priorities if a processor switch is involved. Otherwise, the event handlers are invoked in

the same order the applications registered with the kernel service. ECalls offers several

registration interfaces for both applications and kernel services:

• Service Registration Interface - kernel services announce the availability of their ser-

vices by registering with this interface, specifying a unique name which will be used

to identify the service. This unique name is exported to applications via the /proc

virtual file system, i.e., applications can obtain a list of all currently available services

by accessing the /proc directory.

• Event Channel Subscription Interface - applications express their interest in events

published by a service by registering through this interface, where an event channel,

and therefore a kernel service, is identified by the name of the service found in /proc.

• Kernel Handler Registration Interface - kernel services and kernel modules can use

this interface to register kernel-level functions, that can be executed by ECalls on

behalf of applications (as kernel event handlers).

The registration of a new kernel service has the following syntax:

kernel_service {

...

service_id = register_service(NAME_OF_SERVICE);

while (service_needed) {

/* perform kernel service (e.g., resource management) */

...

/* raise event */

raise_event(service_id, pid, data_pointer, deadline, cpu);

...

}

unregister_service(NAME_OF_SERVICE);

}

The actual event notification is performed with the invocation of the raise event function

with the following attributes:
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• service id: this attribute contains the unique identifier returned by the service regis-

tration interface and is used by ECalls to associate an event producer (kernel service)

with event consumers (applications).

• pid: even if multiple applications subscribe to the same event channel, a service is

able to direct an event to only one event subscriber (identified by the process ID). If

all event subscriber are to receive the event, pid is −1 and ECalls notifies all processes

registered for this event. A wake-one policy as supported with the pid attribute is

desirable if, for example, multiple server threads wait for requests on a socket. The

kernel can then notify only one of these servers instead of all of them (e.g., in a

round-robin fashion).

• data pointer: this attribute of type unsigned long can be used to pass data along

with an event, either as a simple unsigned long value or it can be pointer to a kernel-

or user-level memory location holding the data to be shared.

• deadline: events can have a deadline (expressed in microseconds) associated and

events are dispatched to applications according to the EDF scheduling policy; events

that miss their deadline are discarded from the event queue.

• cpu: the final attribute, cpu, indicates if the kernel service wishes to take advantage

of ECalls’ ability to cooperate with the CPU scheduler (‘1’ yes, ‘0’ no).

An application registers for events in the following way:

main {

struct ecalls my_ecalls;

struct sh_memory my_memory_up;

struct sh_memory my_memory_down;

...

my_ecalls.signal = SIGRTMIN + 0;

my_ecalls.process_id = getpid();

ECalls_subscribe(NAME_OF_SERVICE, &my_ecalls, &my_memory_up, &my_memory_down);

...

while (running) {

...

33



}

ECalls_unsubscribe(NAME_OF_SERVICE);

}

An application initializes a data structure (struct ecalls) with information how it wishes

to be notified of events. The data structure contains the following entries:

• signal: specifies the real-time signal number (between 32 and 63). It is the responsi-

bility of the application to subscribe a signal handler with the chosen signal number.

• process id: the application can specify if the event should be received by itself (pro-

cess id = getpid();) or by some other process, identified by its process ID.

• k handler: this string identifies the name of a kernel event handler that has been pre-

viously registered with ECalls and will be called by ECalls on behalf of the application

when events are raised.

• k code: this string identifies C-like code that will be ‘downloaded’ into the kernel by

ECalls, compiled, and added to the list of available kernel event handlers.

• k thread: this flag indicates if a kernel event handler is to be executed in the context

of a kernel thread provided by ECalls.

With ECalls, an application can register two shared memory segments, one for data transfer

from user to kernel level, and one for the opposite direction, simplifying the synchronization

between application and kernel service. Besides the methods described above, shared mem-

ory can be used for event notification, e.g., a kernel service can toggle a flag in the memory,

which is being polled periodically by the application. Further information passed in struct

ecalls includes the order of event notification (e.g., first ‘k handler’, then ‘signal’) if more

than one method is desired. After the data structure is initialized, the application registers

interest in a kernel service and the associated event channel by calling ECalls subscribe,

specifying the name of the kernel service, the above mentioned data structure, and the

memory locations for the data transfer between kernel service and application.
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3.2.1 Application Events

Fast User-ECalls. Fast User-ECalls are a low-overhead version of system calls, with the

restriction that the invoked handler function is not allowed to block. On return of a regular

system call function, the kernel first checks for pending bottom halves (the slow part of

interrupts). Next, the kernel checks if it is necessary to invoke the scheduler, and finally,

the kernel looks for pending signals and invokes signal handlers if necessary. In the case

of Fast User-ECalls, the default situation is to avoid these steps altogether and directly

return to the user application. The return value of the short non-blocking function exe-

cuted by a Fast User-ECall decides if any or all of the steps described above are required

to be executed. In addition, the return value can indicate that it is necessary to turn the

non-blocking Fast User-ECall into a regular (and possibly blocking) system call. In that

case, the function executed upon a Fast User-ECall acts as an optimistic handler function,

which returns immediately if the optimistic assumption that the handler function is not

required to block, holds true. If the assumption fails, a regular system call is invoked. Fast

User-ECalls are useful for short and simple actions such as toggling flags in the kernel or

updating QoS attributes for resource managers, i.e., where ordinary system calls would be

too expensive.

Deferred User-ECalls. Deferred User-ECalls are similar to Fast User-ECalls in that

they invoke a non-blocking handler function. However, in contrast to Fast User-ECalls,

they never handle bottom halves or signals, and the invocation of the function is deferred

until a later point in time. More specifically, the application can decide when the handler

function is invoked, on a per-call basis. Possible invocation times are: (a) at return from

the next system call, (b) after a certain time delay (in multiples of jiffies, i.e., 10ms on

Intel computers), or (c) before the next invocation of the CPU scheduler. The advantage

of Deferred User-ECalls is the reduced number of crossings of the user/kernel boundary,

particularly when several events cause only one invocation of the handler function. This

is useful when kernel extensions want to handle several events at once (batched events), or

when only the most recent event is of interest to the kernel service, while in both cases a
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delay in handler execution does not result in a significant performance loss. As an example,

an application might want to update QoS attributes in the kernel, but the updated values

will not be required until the next invocation of the resource manager.

System Calls. ECalls also offers a generic system call, which takes the unique character

string identifying the service as a parameter. ECalls then redirects the system call to the

corresponding kernel extension, which executes a system call function (useful when it is not

desired to implement new system calls for each new kernel extension).

3.2.2 Kernel Events

A kernel service (e.g., QoS manager, load balancer) raises an event and associates a deadline

with the event. The event is added to an event queue which is ordered ‘earliest deadline

first’. Events are taken from the head of the queue and delivered to all subscriber processes
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Figure 11: ECalls event delivery architecture.

(see Figure 11). Each process has one or more handler actions associated with an event,

e.g., the execution of a kernel event handler, or the raising of a real-time signal. If more

than one action has been registered, the actions are performed one-by-one and return values

of actions can determine if subsequent steps are skipped. Consider, for example, a kernel

service that notifies processes of activity on sockets (i.e., as replacement for select() system
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calls). The first activity could be a kernel event handler that reads the incoming data and

copies it into a pre-allocated user-level memory area belonging to the process receiving the

event. The second activity is the raising of a real-time signal; upon signal receipt, the

process is able to immediately use the received data. In a similar scenario, a kernel event

handler could aggregate several events and submit summaries by raising signals as a second

step if the number of received events has reached a certain number or after certain time

limits have expired (e.g., for periodic collection of monitoring information).

Real-Time Signals. The POSIX.4 standard extends the signal interface with real-time

signals. Unlike regular signals, real-time signals are queued and can carry a small amount of

data with them. In [17], the authors show that real-time signals are a highly efficient mech-

anism, providing good throughput compared to select() or poll() system calls. To ensure

predictability and high responsiveness in the dispatching of real-time system calls, the sig-

nal handling sequence implemented in Linux 2.4.19 has been modified. In particular, Linux

supports 32 regular and 32 real-time signals. The signals are identified by a 64 bit variable,

each bit indicating if a signal has been raised or not. In the original implementation, the

lower 32 bit are checked first, and if a bit is set, the corresponding signal handler is invoked.

However, the lower 32 bit correspond to the regular signals, therefore, regular signals are

handled before real-time signals. Keeping in mind that regular signals can be ‘caught’

and handled by user-specified signal handler code (except SIGKILL and SIGSTOP), this

can lead to delays to the invocation of – potentially more important or time-constrained

– real-time signals. Therefore, the sequence has been changed to the following order: (a)

SIGKILL and SIGSTOP are checked first (the only two signals which can not be caught by

the user and which always result in termination or stopping of the process), (b) all real-time

signals are checked, with SIGRTMIN having the highest priority and SIGRTMAX having

the lowest priority of all real-time signals, and (c) all remaining regular signals are checked

and handled if required.

Kernel Event Handlers. Kernel event handlers can be either provided by kernel-loadable
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modules or dynamically inserted into the kernel by applications themselves. The main ad-

vantage of using kernel event handlers on behalf of applications is the minimal overhead of

handler invocation, i.e., no cross-domain calls are needed. An example of the use of such

an event handler is the recent trend of implementing HTTP accelerators in kernel space. A

kernel event handler can be invoked through activity on a socket and as a consequence, the

handler reads the request from the socket, analyzes it, and decides whether to service the

request directly from within the kernel (e.g., static web requests) or whether to pass the

request on to an application-level web server (e.g., dynamic web requests).

Kernel Threads. Kernel event handlers are a powerful and efficient way to handle events.

However, if an event is dispatched outside of a process context (e.g., during a timer in-

terrupt) and the event handler would run too long if executed at interrupt context, the

event handler can be invoked within the context of a kernel thread provided by ECalls.

ECalls maintains a pool of pre-forked threads, where the pool size is dynamically modified

as needed.

Shared Memory. The memory areas shared between an application and a kernel service

can be used to notify an application of kernel-level events. Here, instead of executing costly

system calls to obtain information about kernel-level events, an application can simply scan

entries in the shared memory which are modified by the kernel service whenever an event

is raised.

Execution Context. If an application is notified of an event through real-time signals

or via the pinned shared memory, the event is handled in the context of the application.

However, when a kernel thread is executed, the event is handled in the context of that

kernel thread. If this kernel thread has to access resources of the application, e.g., file

and socket descriptors, certain provisions may be necessary to overcome access restrictions.

As example, as part of the ECalls mechanism, the kernel source was modified such that a

kernel service is able to access the file descriptors of the applications that registered with this
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kernel service via ECalls. Further, if kernel event handlers are used, the handler function

may be executed in interrupt context. Again, provisions have to be made to ensure that an

application’s resources can be accessed.

3.2.3 Cross-Domain Data Transfer

During registration of an application with a kernel extension, two memory areas are created

and locked into memory, which are used for event notification and the exchange of data

between the application and the extension. The reason for using two separate memory

areas is to minimize the need for synchronization between application and kernel service.

The memory’s structure is described in a C header file, and is organized in one of two

possible ways. In either way, the first entry is an integer value (called flag), which can be

modified each time an event is generated or handled. The following code shows the two

possible structures of the memory:

struct sh_memory { struct sh_memory {

int flag; int flag;

unsigned long bit_pattern[MAX]; int front;

[data part] int back;

}; [data part]

};

In the first case, an array called bit pattern holds a bit per data entry in the following

data part. When an event is generated, flag is incremented, the event data is written into

the corresponding position in the data part, and the corresponding bit in bit pattern is set.

The bit pattern facilitates the search for new events in the memory segment. There are

three possibilities to use the memory: (1) each entry in the data part is of the same data

type and new event data is put into the next available slot; (2) each entry is of the same

data type as in (1), but the position of the new event data denotes its priority and therefore

the sequence in which new data is read; and (3) entries in the data part have different data

types and new event data is put into the corresponding entry according to its type. In the

second approach, the memory segment can be structured as a ring buffer, in that case the

flag entry is followed by a front and a back entry, pointing to the beginning and the end
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of the momentarily used part of the memory segment, respectively. In the case of the ring

buffer, new event data is put at the the end of the written part of the memory segment

(indicated by back) as long as there is sufficient space. In both cases, the size of the data

part is determined offline by the developer of the particular kernel service and can not be

changed during runtime.

3.2.4 Dynamic Handler Generation

Another functionality of ECalls is its ability to support dynamic instrumentation of kernel

functionality by allowing applications to insert dynamically generated code into a running

kernel. Unlike kernel modules, this feature supports simple functions that can be shipped

between systems as strings and translated into native machine code by a low-overhead in-

kernel compilation component. These functions are expressed in E-code, a C-like language

that has been developed as part of the ECho event service [28]. E-code itself is based on

Icode, an internal interface developed at MIT as part of the ’C project [106]. For ECalls,

the E-code code generator has been ported to the Linux kernel and consists of two loadable

modules. Currently, E-code supports the C operators, for loops, if statements, and return

statements. While these limitations restrict the capabilities of E-code, they also facilitate

the protection from malicious code. However, future work will extend E-code’s capabilities

(e.g., adding dynamic memory management and pointers), while at the same time adding

protection mechanisms. In addition, other efforts [144, 38] have contributed protection

mechanisms that can be used in conjunction with ECalls.

In order to generate and install new code in the kernel, an application passes a string

carrying the code (e.g., with a system call or via /proc) to the ECalls mechanism, where

the code is translated into machine code. When the corresponding kernel service raises an

event, ECalls invokes the newly generated kernel event handler on behalf of the application.

Figure 12 shows how the code is deployed in ECalls: an application passes the code as

string to ECalls, where it is passed to its ‘dynamic code generation’ component. The string
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is parsed and translated into binary code and placed into memory. The memory location

of the newly generated binary code is shared with the event dispatcher, which will invoke

the new code whenever an event for the corresponding application occurs. The following

code shows a simple example of an E-code function, where resource attributes – possibly

collected by a resource monitor – are inspected. With E-code, parameters can be passed

as basic types (e.g., integer, char) or as structures as shown with input in the sample code.

Similarly, return results can be basic types or structures (e.g., output in the sample code).

char * my_code = ‘‘{

int i;

int j;

for (i = 0; i < NUM_RESOURCES; i++) {

for (j = 0; j < input.resource[i].num_attributes; j++) {

if (input.resource[i].attribute[j] > input.resource[i].threshold[j])

output.resource[i].exceeded[j] = 1;

else

output.resource[i].exceeded[j] = 0;

}

}

}’’

In Q-Fabric, ECalls’ code generation functionality is used to ‘download’ application-

specific code into Q-Fabric, e.g., to customize the event traffic on Q-Channels, to deploy

novel resource or attribute monitors, and to deploy application-specific QoS policies.
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3.2.5 Combinations of Event Notifications

Event notification can consist of more than one action, where the first action can modify

or even block events and the associated data. Two scenarios are considered: event prepro-

cessing and event filtering.

Event Preprocessing. The different methods of event notification offered by ECalls can

be combined, e.g., where the first handler acts as an event preprocessor. Here, a kernel event

handler can inspect certain data and modify it before a second action is invoked. Consider

the following examples:

• A kernel event handler can read service requests from a socket and put them into the

shared memory. As a second step, an application is notified of the newly arrived data,

either through the shared memory or a real-time signal. However, the application can

access the request immediately in the shared memory and service the request.

• A kernel event handler can collect information from different resources in the system

and compute averages, which are passed to applications via a second event notification

approach (e.g., signals).

Event Filtering. In contrast to event preprocessing, the goal of event filtering is to reduce

the overheads for an application by blocking unnecessary information from being passed to

user space. Consider the following examples:

• A kernel event handler inspects data received from the network or from an in-kernel

resource monitor and decides if the data is of interest to an application. If so, the

information is passed to the application, e.g., through the shared memory, otherwise

the data is discarded in the kernel.

• An kernel event handler serving as HTTP accelerator can inspect service requests

and handles them directly if the requests are for static web pages, otherwise they are

passed, as a second step, to a user-level web server (e.g., for dynamic web requests).
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3.3 Event-Aware CPU Scheduling

The timely delivery and processing of events is particularly important for time-constrained

applications such as multimedia streaming, virtual environments, or interactive distributed

simulations. Consider, for instance, a distributed game for which (1) jitter in the replay of

media streams should be minimized, and (2) game events like position updates and certain

actions of avatars must be delivered in a timely fashion. Techniques like proportional share

scheduling of tasks and communications can reduce jitter for continuous media streams.

However, the coordination of task scheduling with important game events can further reduce

variations in inter-frame times and increase responsiveness to player actions.

To illustrate the performance advantages derived from event-awareness realized with

ECalls, consider a distributed video player, which uses timed waits to achieve the inter-

frame times necessary for its desired frame rates. In other words, this application sleeps

for a certain amount of time, and when it wakes up, it is placed back into the run queue of

the CPU scheduler. However, the delay between the point when this application becomes

schedulable (i.e., wakes up) and when it begins to run (i.e., enters the ‘running state’) (see

Figure 13) varies depending on the scheduling policy implemented, the scheduling attributes

assigned to this and other schedulable applications, and the current CPU load. These delays

display next frame

runningsleeping

time

schedulable 

timed wait run queue
delay

Figure 13: Run queue delays depend on the CPU scheduler, the scheduling attributes of
all schedulable applications, and the current CPU load.

– termed run queue delays – can increase latencies and jitters for continuous media streams,

and they can reduce the responsiveness of real-time applications like distributed games. For

instance, when running on a general-purpose operating system like Linux, a single video

player can experience significant run queue delays when it has to compete with a second

real-time process due to the coarse granularity of the system’s time base, which is 10ms

on Intel-based Linux systems. When it has to compete with other video players for the
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same CPU, run queue delays increase substantially, resulting in significant variations in

inter-frame times even for a small number of video players, as shown in Figure 14.
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Figure 14: Average run queue delays for a number of video players that have to compete
for the CPU with each other and with another real-time process (running in an endless
loop).

In the ECalls approach, the arrival of a message at a network connection triggers an

ECalls event, where the ECalls mechanism not only notifies the application of the arrival

of the event, but also cooperates with the CPU scheduler to ensure the timely delivery of

the event.

Most systems deploy CPU schedulers that ignore important application-level events like

message arrivals. ECalls offers the basic functionality needed for creating event-aware

systems by linking the scheduling of processes with the delivery of events for these pro-

cesses. The effect is that processes acting as sinks of events are favored over other processes

whenever they receive events. Thus, ECalls may be used to implement policies by which

applications cooperate with system services like CPU scheduling.

Coordinated scheduling support for processes and events can be implemented for any

ECalls-enabled CPU scheduler. The current implementation supports two such schedulers:

the traditional UNIX scheduler and the DWCS hard real-time scheduler. Note that event

and CPU schedulers are separated, thus permitting the event scheduler to utilize any appro-

priate CPU scheduler. This is achieved by building ECalls’ event scheduler ‘on top’ of the
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CPU scheduler, i.e., ECalls possibly revises the CPU scheduler’s decision, without modifi-

cations to the actual CPU scheduler implementation. In this chapter, the event-aware task

scheduling for the real-time DWCS CPU scheduler is described.

The remainder of this section describes the cooperation between ECalls’ event scheduler

and DWCS, where the goal is to maximize event responsiveness without compromising the

hard real-time guarantees of DWCS.

3.3.1 Event scheduling with DWCS

If ECalls’ event queue is non-empty, the event scheduler is invoked each time the CPU

scheduler runs. After the CPU scheduler finished the selection of the next process, the

event scheduler compares the scheduling attributes of this process with the attributes of

the sink process for the first event in the event queue.

Assume that process i is the process selected by DWCS and process j is the sink of

the first event on the event queue. The event scheduler applies the following five rules to

processes i and j:

Rule 1: If j = i (i.e., DWCS already selected the sink process), the only action the event

scheduler has to perform is to remove the event from the event queue.

Rule 2: If task i is a best-effort task, ECalls replaces i by j and removes the event for

process j from the event queue. DWCS schedules best-effort processes only if all

runnable real-time processes have been serviced within their respective periods and

none of them is a work-conserving process. That means further that process j receives

an additional time unit in its current period, so that it is able to react to an event

immediately. No real-time guarantees are compromised since all real-time processes

have been serviced in their corresponding periods.

Rule 3: If process i is a work-conserving process that received at least Ci time units of

CPU time in its current period Ti, the event scheduler replaces i with j and removes

the event for process j from the event queue. The real-time guarantees of i are not

compromised in this case, since process i received Ci time units in its current period
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already.

Rule 4: Assume that both processes i and j have not been serviced in their current periods

yet, and both have the same deadline. Further assume, that DWCS selected process i

as the next running process due to its tighter window-constraint compared to process

j. ECalls’ event scheduler gives process j preference over process i, if this does not

lead to a missed deadline for i (i.e., ∆t−Cj −Ci > 0, where ∆t is the remaining time

in period Ti). In other words, process i will be delayed by Cj , but since its deadline

will not expire, DWCS will select this process after process j has exhausted its service

time Cj .

Rule 5: In addition to the rules above, the notion of a task server is introduced, which is

a pseudo process with scheduling attributes determined as follows:

xts/yts = 0/ymax, ymax = max{yi} + 1.

This assigns the task server the tightest window constraint possible. The service time

Cts is the same as the service time of the sink process of the first event in the event

queue, or 1 otherwise. The rest utilization Ur of the system, which is the maximum

utilization minus the current utilization, is used to determine the value of the period

Tts:

Tts = Cts/Ur.

The attributes for the task server have to be re-calculated when the service time of

the first event in the event queue changes (e.g., when the first event has been delivered

and the new event at the front of the queue has a different service time). Each time

the task server is selected by DWCS, the event scheduler replaces it with the sink of

the first event in the event queue. If there are no events pending, a best-effort task

can be scheduled instead. The purpose of the task server is to reserve the remaining

CPU time for processes that have events pending.

Examples for these rules are shown in Figure 15, where ‘BE’ is a best-effort task and ‘TS’

is the task server. In each graph, the top part shows the scheduling output of DWCS,
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Figure 15: Examples for Rule 2 (a), Rule 3 (b), Rule 4 (c), and Rule 5 (d).

while the bottom part shows the scheduling output revised by ECalls. In graphs (a) and

(b), task T1 has the following attributes: T = 4, C = 1, x/y = 1/2 and task T2 has the

following attributes: T = 2, C = 1, x/y = 1/4. In both cases, T1 is being notified of an

event at time 2.5, however, in (a) both tasks are non-work-conserving, while in (b) they

are both work-conserving. In graphs (c) and (d), both tasks have a period T = 3 and

a service time C = 1. T1’s value for x/y is 1/2, while T2’s value for x/y is 1/4. Again,

both tasks are work-conserving. In (c), the event is raised at time 2.5, while in (d) the

event is raised at time 4.5. Further, in (d), the task server’s period is computed as follows:

T = C/Ur = 1/0.58 = 1.7 => T = 2.

The event scheduler is presented in the following pseudo-code, where i is the process

selected by DWCS and j is the sink process for the first event on the event queue:

while (TRUE) {

if (i == j) schedule i;

else if (i is best-effort task) schedule j;

else if (i is work-conserving and has been serviced

in its current period) schedule j;

else if (deadline(i) = deadline (j) and a delay of i

does not cause a violation for i) schedule j;

else if (i is task server) schedule j;

else schedule i;
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}

3.4 Remote Event Notification

ECalls event notification can operate across multiple machines, i.e., cross-domain event

communication is mapped to cross-machine event communication. ECalls offers the ability

to (a) deploy event notification mechanisms remotely and (b) redirect event notifications to

remote locations. This section addresses these two scenarios.

Remote Handler Deployment. Figure 16 presents the use of the remote handler de-

ployment: an application A (on node A) passes an E-code-based function as string to its

local ECalls module. ECalls passes the string to a ‘forwarding service’, which then forwards

the string to one or more remote ECalls modules. An application has the opportunity to
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Figure 16: Remote deployment of a kernel event handler.

specify the remote target application (which will receive the events) either directly by its

process ID and host name or by a unique name. As an example, applications such as video

conferencing or remote teaching typically involve a large number of participants, where

these participants obtain information about other participants via a centralized group ser-

vice. Similarly, ECalls can obtain the host names of all hosts involved in a distributed

application from a group service, and the string containing these names is forwarded to all

participants. When a string is received by the event service, it is passed to ECalls which
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then generates binary code as described before. This allows ECalls to distribute new kernel

functionality and to deploy event handlers without concern about differences in system ar-

chitecture. Scenarios where this approach is of use include remote maintenance of systems,

remote system optimizations, or remote debugging.

Event Redirection. Similarly, an application can deploy a handler function whose task

it is to redirect some or all occurring events of interests to one or more remote sites, via

the distributed event service. Figure 17 shows the scenario for event redirection. A kernel
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Figure 17: Event redirection.

service on node A issues an event, which is submitted to a kernel event handler by ECalls.

The kernel event handler then returns the event to ECalls for transmission to one or more

remote systems, e.g., node B. At node B, the event is again passed to ECalls, which then

notifies application B of the event. Possible scenarios for the use of this approach include:

• Remote monitoring: consider a cluster server, where certain system events, e.g., excep-

tions or exceeded thresholds for buffer queue fill levels or a processor’s heat emission,

etc., are redirected to a centralized load balancer, which – based on the collected

information – decides to relieve an overloaded server.

• Remote debugging: exceptions, failures, and error messages can be collected remotely,

where a user or an application can analyze this information, act upon this information

(e.g., by migrating essential tasks and data to other hosts), and plan and execute
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measures to predict and prevent future failures.

• Intrusion detection: imagine a kernel-level mechanism that watches file and memory

accesses, detects system modifications, or unaccounted use of resources. Events raised

by such a kernel-level mechanism can be redirected to a remote – trusted – system,

where these events are analyzed and possible strategies for defense are devised.

3.5 Case Studies and Experimental Evaluation

3.5.1 Implementation of an I/O Event Delivery Module

Unix systems provide select() and poll() system calls, which query a set of file descriptors

passed in an array for activity. The system call returns when there is activity in at least

one of these descriptors or when the system call times out. The application then has to

scan a returned array to find the descriptors that are actually active. Web servers such as

Zeus, Flash [96], or thttpd use the ‘select’ approach, which for thousands of file descriptors

does not scale very well. The problem here is that the kernel has to scan the entire array

each time a system call is executed.

ECalls is used to implement a scalable I/O event delivery module (called I/O module in

the following) using the Linux 2.4.19 kernel. Applications register their interest in sockets

via the ECalls mechanism. If data arrives at one of these sockets, the registered application

will be notified using one or more of the methods described in the sections above. A similar

example has been presented in [6], which introduces a scalable event notification mecha-

nism to replace the expensive select() system call. To be able to support this notification

mechanism, approximately 20 lines of code to the networking code inside the kernel and

one additional entry into the sock structure have been added, the latter being a flag that

can be used by the socket owner to express interest in event notification if socket activity

is monitored.

When the I/O module detects activity on one of the monitored sockets (Figure 26), it

generates an event for the application owning this socket. Each application has two data

structures, which are both locked into memory and shared between the application and the

event delivery mechanism. The first data structure has the following entries:
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struct socket_interest {

int flag;

unsigned long fd_list[MAX];

unsigned long updated_fd_list[MAX];

};

The first entry, called flag, is incremented each time the application submits a change

of interest. The next entry, called fd list, is an array used to indicate which file descriptors

the application has registered for, each bit in fd list corresponds to a file descriptor. The

second array, called updated fd list, is used to indicate the changes in fd list since the last

time the registration module read from this data structure. Its purpose is to accelerate the

registration process.

The second data structure looks as follows:

struct socket_ready {

int flag;

unsigned long fd_active[MAX];

};

The value of flag indicates how many sockets are active, i.e., how many sockets have

data in the receive buffer. The actual file descriptors for the active sockets can be found in

the next entry, called fd active.
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3.5.2 Experiments with a Distributed Video Player

ECalls provides a flexible mechanism for coordination and information sharing for real-

time and multimedia applications that use certain kernel services or that extend kernels

with application-specific functions. A distributed MPEG video player has been modified

such that it uses ECalls to communicate with the I/O module described above. In this

experiment, a number of video players (running on a Pentium II with 450MHz and 512MB

RAM) request video streams from several video servers (running on five Ultra 30 with

248MHz and 128MB RAM each).
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Figure 19: Achieved frame rates without ECalls (left) and with ECalls (right).

Each video player writes the desired frame rate, a frame counter, and the time stamp of

the last displayed frame into the pinned memory supplied by ECalls. The frame rate can

be changed dynamically if desired (e.g., as image resolution or compression changes). The

I/O module uses this information to compute the display time of the next frame. Incoming

frames are monitored by the I/O module, and ECalls places the notification events into the

event queue ordered by the display time of the next frame. The DWCS CPU scheduler uses

this information to modify the scheduling priority of the video players. In this experiment

all players have the same attributes of x/y = 1/5 and service time C = 10ms, and a priority

T corresponding to the desired frame rate, e.g., for a frame rate of 10 fps, T = 100ms. This

experiment shows that the interaction between an application and a kernel-level service
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(using ECalls) allows the application to achieve its desired QoS, even when the host is

perturbed by several CPU-intensive tasks. Figure 19 (left) shows that the achieved frame

rates drop rapidly when the number of players increases. Using ECalls, one is able to

maintain frame rates close to the desired frame rates (Figure 19 (right)). ECalls achieves

that by delaying event notification for a period of time determined by the frame rate and

by influencing the scheduling decisions such that the scheduler reorders the run queue to

favor applications receiving these events.

3.5.3 Experiments with a Web Server

The next experiments investigate the performance changes in a web server running on top

of ECalls. Here, thttpd3, a small and fast single-process event-driven web server, has been

modified such that it uses the I/O event delivery module described above. The thttpd

web server uses the select() system call for all HTTP requests. Further, the API has been

modified such that thttpd subscribes every new incoming request with the I/O event delivery

module and instead of a select() call, thttpd continues to service requests and selects the

next connection to service via the fd active array.

The client requests are generated using the httperf Version 0.8 [89] performance tool.

The HTTP server is a Pentium II with 450 MHz and 512MB RAM, running the modified

thttpd application. The client machines are five Sun Ultra 30 with a 248MHz processor and

128MB RAM each. The machines are connected via a switched 100Mbps Ethernet.

In this experiment, the clients request a small static web page for a duration of 180s,

each request with a timeout value of 1s. Figure 20 (left) shows the achieved reply rates

with both the original thttpd server and the modified server using ECalls (thttpd-ECalls).

The web server thttpd is highly optimized, so that the difference in performance for small

loads is irrelevant, as evident from the graph. On the other hand, in the case of overload,

thttpd displays poor behavior: its reply rate drops to 25% at request rates of 2000 per

second. The reply rate for thttpd with ECalls also decreases in the case of overload, but

less dramatically (e.g., to 40% at a request rate of 2000 per second).

3http://www.acme.com/software/thttpd
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Figure 20: Reply rates (left) and response times (right) for both the thttpd web server
and the modified thttpd web server using ECalls and the I/O event delivery module.

Figure 20 (right) shows the average response times for thttpd and thttpd-ECalls. Here,

the response times of thttpd settle at approximately 150ms when the server is overloaded,

whereas in the case of thttpd-ECalls the response time increases until it settles at approxi-

mately 300ms. The reason for this behavior is the higher reply rate of thttpd-ECalls, i.e.,

thttpd-ECalls is able to respond to more requests than thttpd, resulting in higher response

times.
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numconnects
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requests

I/O Module

Figure 21: Modified thttpd web server using ECalls and the I/O module: ECalls monitors
both the number of open connections (numconnects) and the buffer fill level of the listen
queue with completed requests (ACK-queue) to determine the size of the listen queue with
incomplete requests (SYN-queue).
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The next experiment investigates whether the use of ECalls can improve the overload

behavior shown above. In [108, 109], the authors analyzed the overload behavior for the

thttpd and phhttpd web servers. In [108], real-time signals are used to notify the web

server of new requests, and the number of signals and therefore, the number of pending

requests is used as indicator for server overload. The overload behavior shown in Figure 20

is referred to as receive livelock; in [85], the authors suggest to drop requests as early as

possible to achieve more request completions. While in [108] requests are dropped by the

server if overload is detected, ECalls drops requests early in the kernel. That is, the server

is flooded with requests, this time with a more complex web page, and monitor overload

behavior, but then the overload behavior is improved by using the ability of ECalls to

cheaply exchange information between user- and kernel-level. Specifically, the web server

continuously updates a new variable, numconnects, in the memory segment, telling ECalls

the current number of open connections being serviced by the server. In addition, ECalls

monitors the buffer fill level of the completed connection queue of the listening socket (ACK-

queue in Figure 21). If both values (number of connections and buffer fill level) are above

a certain threshold, ECalls reduces the buffer length of the incomplete connection queue

(SYN-queue in Figure 21), until either the number of connections or the number of accepted

requests drops under their respective thresholds. The reason why two criteria are used is to

prevent ECalls from decreasing the queue size in case of transient overloads. As an example,

if the ACK-queue is above the threshold but the number of open connections is under its

threshold, it is assumed that the server will soon be able to service this burst of requests.

On the other hand, if the number of connections is over the threshold, but the buffer fill

level is under its threshold, it is assumed that the small number of pending requests will

reduce the server load soon such that it is not necessary to drop requests.

Both graphs in Figure 22 show the results of this experiment. ECalls is able to im-

prove the overload case such that more replies are generated and at the same time average

response times are reduced. As an example, Figure 22 (left) shows that thttpd is able

to service 80 requests per second at a request rate of 300 per second, while thttpd using

ECalls is able to service 140 requests per second. Figure 22 (right) indicates a 250% better

55



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  50  100  150  200  250  300  350  400  450  500

Su
cc

es
sfu

l R
ep

lie
s [

1/s
]

Requests [1/s]

Reply Rates [1/s]

thttpd
thttpd with ECalls

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300  350  400  450  500

Re
sp

on
se

 T
im

e [
ms

]

Requests [1/s]

Response Times [ms]

thttpd
thttpd with ECalls

Figure 22: This graph shows the improved overload behavior of the web server when ECalls
modifies the size of the incomplete connection queue of the listening socket according to the
load (left) and how this adaptive approach also improves the response time of requests
(right).

response times than the original thttpd web server. The values for the thresholds have been

determined via experimentation, and could also be made adaptive instead of fixed as done

in this experiment. Also, more knowledge from both kernel-level and user-level can help

improve the overload case even more (such as the average response time measured in the

web server or the type of a request).

3.5.4 Resource Monitoring and Management

Monitoring of system resources is essential to resource and QoS management techniques;

the information collected is analyzed and possible resource re-allocations are planned and

executed. In distributed systems, such as cluster servers, parallel systems, multimedia

streaming applications, etc., the monitored information has to be transmitted to either a

centralized resource manager or to all other nodes in the system if a decentralized approach

is chosen (as in Q-Fabric). In either case, the frequency of transmission and the amount

of data transmitted determines both the overheads introduced by the monitoring and the

quality of resource management possible. Insufficient information, for example, can prevent

intelligent resource adaptations; on the other hand, information that is not needed only
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increases the overhead. Infrequent transmissions force the resource manager to use stale

information or prevent it from reacting to resource shortages quickly, while too frequent

transmissions may be undesired because of the overheads associated with them. In other

words, the type of information transmitted and the frequency of transmissions depends on

what applications are running, which resources are used and controlled, and what is the

desirable granularity of resource adaptations.

In this experiment, a distributed monitoring system that periodically exchanges relevant

resource information is used. A resource monitor resides in each node, inspecting resource

usage with a poll period. After this information is collected, an event is raised. A remote

centralized resource manager previously installed a kernel event handler in each node, where

the event handler has two tasks: (a) to filter and aggregate the collected information ac-

cording to the needs of the resource manager and (b) to redirect the event to the centralized

resource manager. The monitored information in this example consists of the CPU sched-

uler’s run queue length and the number of open and pending service requests (obtained

from the activity at the sockets). A centralized load balancer uses the monitored informa-
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Figure 23: Average response times (left) and number of timeouts (right) for different poll
periods.

tion to distribute service requests among a number of back-end servers. This experiment

is performed on a cluster of 8 Pentium Pros with 200MHz processing speed and 512MB
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Figure 24: Resource management with static CPU priorities (left) and dynamic CPU
priorities (right).

RAM each, connected via a switched 100MBit Ethernet. As before, service requests are

generated using the httperf benchmarking tool and all requests have a timeout value of 1s.

Figure 23 compares the response times and the number of timeouts for a back-end server

when the monitoring frequency is varied between 1s, 0.5s, and 0.25s. Both response times

and timeouts improve significantly with increasing monitoring frequencies, and therefore

fresher information. However, increasing the frequency also increases the overheads caused

by resource monitoring, e.g., in the given example, the cost of redirecting an event to the

distributed event service is 80µs and the cost of handling an event is 250µs. Next, the

resource information is used to provide differentiated service to service requests. Requests

are categorized into three classes: low priority (L), medium priority (M), and high priority

(H). Figure 24 (left) shows the average response times for each individual class when server

threads are given static CPU scheduler priorities appropriate to the class of service han-

dled. This approach is then extended such that a kernel-level resource monitor watches the

socket activity and determines the rate at which requests are being handled for different

classes. This is being achieved by using separate listening sockets for each request class.

The resource monitor periodically raises an event which is then caught by a E-code-based

kernel event handler. The kernel event handler increases the priority of all threads in a class
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if the rate of responses is lower than the rate of requests for this class. However, it also

ensures that high priority requests are given higher priority than low priority requests. This

ensures that dynamic variations, e.g., bursts of requests within a class, etc., are considered

and acted upon, resulting in the improved response times shown in Figure 24 (right).

3.6 Summary

The efficient implementation of QoS-aware applications requires that the underlying op-

erating system supports these applications’ needs for timely delivery of information. In

particular, the existing interfaces between applications and system-level services (such as

resource managers) are restrictive and expensive. The ECalls mechanism supports the

efficient communication across protection boundaries with a variety of features: (a) com-

munication is based on event channels, where deadlines can be associated with events, (b)

besides standard call mechanisms such as signals, ECalls uses shared memory between appli-

cations and kernel services for low-overhead event notification and data sharing, (c) ECalls

supports the linking of event dispatching with CPU scheduling, therefore maximizing the

responsiveness of applications to critical events, (d) multiple event handling approaches can

be combined in order to support ‘filters’, or ‘optimistic’ event handlers, and finally (e) appli-

cations can be notified of ‘remote’ events by extending the cross-domain approach of event

notification to a cross-machine approach. Particularly, kernel event handlers are a powerful

mechanism, because (a) they offer minimal overheads for event handling and (b) they can

be dynamically generated and inserted into a running kernel by an application, both in local

and remote systems. The experiments shown in this chapter with a video player application

and a web server show the utility and performance improvements achievable with ECalls.

In the context of the Q-Fabric architecture, ECalls is used to link user-level applications

and QoS managers with system-level resource managers and monitors. The use of ECalls

ensures that the cooperative or integrated management of system- and user-level entities

(such as CPU schedulers, network protocols, or applications) is performed efficiently and

that relevant events (e.g., exceeded thresholds) are shared in a timely manner.
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CHAPTER 4

CROSS-DEVICE INTEGRATION

Q-Fabric relies on Q-Channels for the integration in the ‘horizontal’ direction, i.e., between

multiple hosts. Similar to the integration in the vertical direction provided by ECalls

(Chapter 3), Q-Channels rely on events and event channels for the communication and

coordination among multiple resource managers and monitors. Q-Channels themselves rely

on KECho, a kernel-level publish/subscribe mechanism for the run-time coordination among

distributed kernel services, such as resource monitors and resource controllers. Based on

this event communication, QoS management in Q-Fabric can be extended to any number

of hosts, i.e., monitoring and control events can be shared efficiently among a group of

distributed system-level and user-level QoS management mechanisms.

4.1 Introduction

The need to offer high or predictable levels of performance, especially in distributed and

embedded systems, has resulted in the kernel-level implementation of certain applications

and services. Examples include the in-kernel web servers khttpd and tux on Linux, kernel-

level QoS management and resource management mechanisms [100], and load balancing

algorithms [9]. To attain desired gains in predictable performance, distributed kernel-level

extensions must coordinate their operation. For example, for load balancing, multiple

machines in a web server cluster must not only exchange information about their respective

CPU and device loads (e.g., disks), but must also be able to forward requests to each

other without undue involvement of clients and forwarding engines [4]. Similarly, to ensure

the timely execution of pipelined sensor or display processing applications in embedded

systems, hosts must not only share detailed information on their respective CPU schedules

and the operation of the communication links they share [116, 134], but they must also
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coordinate the ways in which they allocate resources to pipelined tasks. Finally, the run-

time coordination among kernel-level services illustrated above is highly dynamic, involving

only those kernel services and machines that currently conduct a shared application-level

task. In addition, the extent of such cooperation strongly depends on the application-level

quality criteria being sought, ranging from simply ‘better performance’ to strong properties

like ‘deadline guarantees.’

This chapter presents KECho, a kernel-level publish/subscribe mechanism for the run-

time coordination among distributed kernel services, such as resource monitors and resource

controllers. KECho is the tool used to implement Q-Fabric’s Q-Channels, using which any

number of kernel-level services, such as resource managers, residing on multiple hosts can dy-

namically join and leave a group of information-sharing, cooperating hosts. Using KECho,

services can exchange resource information, share resources (e.g., via request forwarding),

and coordinate their operation to meet desired QoS guarantees. KECho uses anonymous

event-based notification and data exchange, thereby contrasting it to lower-level mechanisms

like kernel-to-kernel socket communications, RPC [11], or the RPC-like active messaging

developed in previous work [140]. Furthermore, compared to object-based kernel interac-

tions [47] or to the way in which distributed CORBA, DCOM, or Java objects interact at

the user level [94, 12, 150], KECho’s model of communication provides improved flexibility,

since its use of anonymous event notification permits services to interact without explicit

knowledge of each others identities.

The KECho kernel-level publish/subscribe mechanism shares several important attributes

with its user-level counterparts. First, KECho events may be used to notify interested

subscribers of internal changes of system state or of external changes captured by the sys-

tem [77]. Second, it may be used to implement kernel-level coordination among distributed

services, perhaps even to complement the application-level coordination implemented with

user-level event notification architectures [119, 27, 48, 77]. Applications constructed with

event-based architectures include peer-to-peer applications like distributed virtual envi-

ronments, collaborative tools, multi-player games, and certain real-time control systems.
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Third, KECho’s functionality is in part identical to that of known user-level event sys-

tems, which means that in this document it is described using interchangeable terms like

event notification mechanism, event service, and publish/subscribe mechanism. Further,

KECho’s event services faithfully implement the publish/subscribe paradigm, where events

are sent by publishers (or sources) directly to all subscribers (or sinks). Channel members

are anonymous, which implies that members are freed from the necessity to learn about

dynamically joining and leaving members. Application-level counterparts to such function-

ality typically require additional kernel calls and inter-machine communications, and they

may even require the implementation of extensions to existing user/kernel interfaces, so that

applications can gather the resource information they need from their respective operating

system kernels. In contrast, the kernel-level solutions to distributed resource management

enabled by KECho can access any kernel or network service and any kernel data structures

without restrictions, which is particularly important for fine-grained resource monitoring or

control. Finally, KECho can also be used directly by applications, thereby permitting them

to directly interact with their distributed components.

4.2 Kernel Event Channels

Event notification systems have been used in applications including virtual environments,

scientific computing, and real-time control. Compared to user-level implementations of

event services, the advantages of a kernel-level implementation include:

• Performance: each call to a user-level function of the event system (e.g., residing in

statically or dynamically linked libraries associated with the application) can inter-

nally result in a high number of system calls. These calls can block, thereby delaying

an application and causing unpredictable application behavior. By using a kernel-

based service, one can significantly reduce both the number of system calls used in

its implementation and the effects on predictability of its execution. Furthermore, if

the application components using event services are implemented entirely within the

kernel, then no system calls are required at all, and performance is improved further

by minimized blocking delays within the kernel. Specifically, a kernel-thread waiting
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for an event can be invoked immediately after the event occurs, while a user-level

application may suffer further delays by waiting in the CPU scheduler’s run queue for

a time period dependent on its scheduling priority and the current system load.

• Functionality: an increasing number of services is being implemented inside of an

operating system’s kernel, mainly for performance reasons. Only a direct, kernel-

to-kernel connection of such services without the additional overheads of user/kernel

crossings allows for fine-grained and direct communication and coordination among

remote kernel services.

• Accessibility of resources: typical user/kernel interfaces restrict the number and type

of kernel resources that can be accessed. Kernel-based implementations have no re-

strictions regarding the access to such resources, that is, resources and kernel data

structures (e.g., task structures, file structures) can be accessed and used directly

(however, a QoS-developer still has to consider the careful use of atomic locks to ac-

cess the resources, if required). Using a system-level approach allows for ‘smarter’

decisions compared to user-level solutions.

4.2.1 Architecture of KECho

The goal of a kernel-based event service is to support the coordination and communication

among distributed operating system services. Figure 25 shows the use of KECho, where

both kernel- and user-level OS services and user-level applications can dynamically create

and open event channels, subscribe to these channels as publishers and subscribers, and

then submit and receive events. Although the event channel in Figure 25 is depicted as a

logically centralized element, it is a distributed entity in practice, where channel members

are connected via direct communication links. The channel creator has a prominent role in

these communications only in that it serves as the contact point for anyone wishing to join

or leave a group. Any number of kernel services can subscribe to an event channel, and

events can be typed, the latter meaning that only events that fit a certain description will

be forwarded to subscribers.

The implementation of KECho is based on its user-level counterpart, called ECho [27],
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Figure 25: A KECho-based Q-Channel.

the libraries of which have been ported to a number of kernel-loadable modules, each with

a certain task:

• KECho Module: the main interface to kernel services for channel management and

event submission/handling.

• Group Manager Module: a user-level group server, running on a publicized host, serves

as channel registry, where channel creators store their contact information and channel

subscribers can retrieve this information. This module supports the communication

among subscribers and the group server.

• Communication Manager Module (CM): this module is responsible for the connection

management, including creating and operating the connections between remote and

local channel members.

• Attribute List Module: this module implements attributes, which are name-value pairs

with which performance or QoS information may be piggybacked onto events.

• Network Monitoring Module (NW-MON): this module monitors socket activity and

notifies the CM module of newly arrived data at any of the sockets associated with

an event channel.
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4.2.2 Event Delivery

The lowest module in the KECho module stack, the network monitoring module (NW-

MON), allows KECho to register interest in certain sockets. Specifically, KECho registers

interest in all sockets associated to event channels. NW-MON then will be notified by the

network interrupt handler once data arrives at one of these sockets. In return, this module

then notifies the CM module of this event.

As an example, a subscriber waits for a new event (step 1 in Figure 26) by sleeping or

blocking. Activity of a socket related to an event channel (step 2) prompts the network

monitoring module to send a wake-up call to the CM module (step 3). CM then reads the

data from the socket (step 4) and identifies and notifies (step 5) the thread owning this

socket. Finally, the thread can now copy the received data from the CM module (step 6)

and act upon this event.

While CM awakens and notifies waiting threads about the arrival of events, it can also

accelerate event responsiveness by increasing the CPU scheduling priority of the process

receiving an event. This is part of the ECalls module and is described in more detail in

Chapter 3.
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4.2.3 Filtering

Most event systems offer the possibility to limit the number of events received through

event filters. Filters can be placed at either the event sink or the event source and can

significantly reduce event processing and network overheads. The most basic filters ensure

that events are delivered only if they are of certain types. Typical event systems allow

those filters to base their decisions only on a per-connection basis, where a filter makes

its decision without considering the overall channel condition. In addition to event filters,

KECho offers so-called channel filters, which (1) can be dynamically inserted by the event

source and (2) can decide on a per-channel basis which sinks will receive an event, that is,

filtering decisions are based on information collected from the publishers and subscribers via

separate event channels or via attributes piggybacked onto events. As an example consider

the task of load balancing. Here, a service request from a machine in a web server cluster

is forwarded to an event channel if the local server is not able to service this request. A

filtering function can collect load information from all other servers and then decide which

other server will receive the event carrying the forwarded request. Alternatively, if load

information is outdated and requests are idempotent, then the quality of load balancing

can be improved by simultaneously forwarding the request to n servers, where n is chosen

by the event source. Upon delivery of the event to the n best servers (e.g, the servers with

the lightest loads) and completed event handling, duplicate responses can be discarded

by the load balancing mechanism. In this example, the event source supplies the number

of desired recipients of a forwarded request and all event sinks supply their current load

information.

A filter can also be applied to incoming events, in which case it is simply invoked each

time an event arrives at the channel. For example, such a filter can decide – based on

information from the event source and from all sinks – to which sinks the event will be

dispatched. In the load balancing example mentioned above, this kind of filter could make

sure that the response to a request is being returned to only the one sink that issued

the original request, or it could block multiple responses to the same request. A kernel
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service can register two filter functions with an event channel, an IN-filter and an OUT-

filter (Figure 27). An IN-filter is invoked each time an event is being received by KECho.

The IN-filter is able to investigate the event before it is being dispatched to the event sinks.

On the other hand, an OUT-filter is being invoked each time an event is being submitted

by a local event source. Again, the filter inspects the event and can decide which remote

sinks will ultimately receive the event.

4.3 Resource Management with KECho

Applications rely on the availability of certain system resources in order to perform their

tasks successfully. System resources can include processing power, network bandwidth,

disk bandwidth, RAM, and input/output devices such as cameras or printers. Resource

management systems [61, 35] have the task to allow applications to discover, allocate, and

monitor such distributed resources. This task is made difficult by (i) the dynamic behavior

of resources (i.e., resources can join and leave at any time), (ii) the dynamic arrival and

departure of application components requiring resources (e.g., through process migration),

and (iii) run-time variations in the current resources required by an application.

Figure 28 shows how KECho connects resource managers to facilitate the task of locating

and acquiring resources for applications. Kernels I and II have 3 resp. 2 resources that are

shared with other hosts, e.g., CPU, disk, and network resources. As an alternative, a kernel
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Figure 28: Resource management with KECho.

could have only one resource manager, which assumes the task of managing all available

resources at a host, as shown in kernel III. In both cases, resource managers can forward

requests for resource allocations from applications to other, remote resource managers by

submitting an event. If a remote resource manager can fulfill the request, it responds

accordingly to the manager that forwarded the original request. If there are several positive

responses, a resource manager can use certain criteria (e.g., response times, location of the

resource) to decide which response to accept or discard. Resource managers can dynamically

join or leave resource-sharing groups, by joining a group it makes its resources publicly

available to all other members in the group. However, all managers are unaware of the

number or the location of other group members and resource requests are submitted and

accepted/denied via events.

4.4 Microbenchmarks

The following microbenchmarks have been performed on a dual-Pentium III with 2x800MHz,

and 1GB RAM. The intent is to investigate the overheads associated with event submission

and delivery, channel management, and filtering.

4.4.1 Event submission

The first measurement compares the event submission overheads of the user-level implemen-

tation of event channels (ECho), the kernel-level event channels used by a user-level applica-

tion (KECho-UL), and the kernel-level event channels used by a kernel-thread (KECho-KL).
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Figure 29: Event submission overheads for data sizes of 100 bytes (left) and 1 Kbyte
(right).

The graphs in Figure 29 compare the event submission overheads of these three scenarios

for 100b and 1Kbyte, where the overheads of ECho and KECho-UL differ only minimally.

This can be explained by the fact that ECho uses only two system calls per sink for the

submission of an event, where KECho requires also two system calls, but that number is

independent from the number of sinks. Event submissions with KECho-KL show up to 15%

(for 100b) and up to 20% (for 1Kb) less overhead compared to ECho.

Table 2: Overheads and number of system calls.

ECho KECho-UL KECho-KL

Channel Creation 850µs (56) 182µs (5) 170µs (-)

Channel Opening approx. 1.5s (117) approx. 1.5s (5) approx. 1.5s (-)

Event Submission 100µs (2 per sink) 95µs (2) 85µs (-)

Event Polling 32µs (4) 40µs (2) 5µs (-)

Table 2 compares the performance of some of the functionality of KECho (KECho-

UL/KECho-KL) with the performance of the user-level implementation ECho. Channel

creation requires 850µs in ECho, compared to 182µs in KECho-UL and 170µs in KECho-

KL. The large difference between kernel-level and user-level approach can be explained by

the number of system calls required for the creation of a channel in ECho, which is 56,

compared to 5 in KECho-UL. The opening of a channel depends on the current number of
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subscribers, the network transmission delays and other factors, however, typical values for

this operation are approximately 1.5s in all three cases. Event submission takes about 100µs

per event subscriber for ECho, compared to 95µs and 85µs for KECho-UL and KECho-UL,

respectively. In ECho, the overhead for polling for new events is 32µs (4 system calls)

compared to 40µs (2 system calls) in KECho-UL. The reason for this increase are some

inefficiencies in the implementation which will be addressed in the future work. However,

the overhead for event polling in KECho-KL decreases to only 5µs. Note that while typical

applications using ECho have to periodically poll for new events, KECho is able to notify

kernel threads almost immediately of the arrival of a new event. This ability is investigated

in the following section.

4.4.2 Event Delivery

Events in KECho are pushed from event sources to event sinks. The network monitoring

module of KECho is able to immediately notify a waiting thread of the arrival of such an

event. Typical latencies measured from the arrival of an event at a socket to the invocation

of a handler function are in the range of 250-300µs. In the case of ECho and KECho-

UL, these latencies depend heavily on the polling frequency, the systems load, and the

scheduling priority of the application receiving the event. However, ECalls’ ability to boost

the scheduling priority of an application that receives a newly arrived event can significantly

reduce these latencies (as described in the previous chapter).

4.4.3 Filtering Overhead

The following measurements have been performed on a cluster of 4x200MHz Pentium Pros,

with 512MB RAM, connected via 100Mbps Ethernet, running Q-Fabric.

The filtering functions (IN- and OUT-filter) serve to reduce processing and network

overhead depending on application-specific attributes, supplied by the event producer and

the event subscribers.

The left graph in Figure 30 compares the advantages of event filtering with IN- and

OUT-filters. The left bars show the event handling overhead for a host with 8 sinks, i.e., an

incoming event is dispatched to all 8 sinks and the overhead is approximately 950µs (event
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Figure 30: Filtering of events can reduce event submission and event handling overheads
(left), while the filtering overhead is only in the microsecond range (right).

handling in this example means copying of the incoming event into a buffer and printing

a time-stamp into a file). This overhead can be reduced significantly when an IN-filter is

used to block the event from being dispatched to all 8 sinks, e.g., if only one sink receives

the event, the overhead is reduced to 312µs. If the filter blocks the event completely (i.e.,

the event is discarded), the overhead is a little more than 200µs. The right bars in the same

graph compare a similar scenario, however, the overhead shown in the graph is the overhead

associated with event submission, when the number of remote sinks is 8. The overhead in

this example is 430µs. However, when an OUT-filter is being used to block the submission

of the event to some servers, this overhead can be reduced, e.g., if the event is submitted to

only one sink, the overhead is 156µs. If the event is discarded (i.e., no sink will receive the

event), the overhead is 56µs. The right graph in Figure 30 compares the overhead of the

IN- and OUT-filters that have been used for the results in the left graph. Both the IN-filter

and the OUT-filter use a number of simple if-else statements to decide if an event has to

be submitted/dispatched to a certain sink or not. The overheads are independent of the

number of events submitted or blocked and are very low in the example shown here, e.g.,

approximately 1µs for the OUT-filter and 0.9µs for the IN-filter.
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4.5 Simulated Web Server Results

For this section, measurements have been performed on a cluster of 8 nodes, acting as a web

server cluster. The simulated web servers receive requests at rates ranging from 20 to 50

requests per second. Each request requires a simulated web server to perform processing for

approximately 38ms. The left graph in Figure 31 shows the response times (in milliseconds)

without any load balancing compared to the scenario where load balancing is being used.

Requests in this experiment have a time-out of 5s, leading to the leveling off at 5s of the first

line in the graph, i.e., requests are either being handled within 5s after request receipt or

discarded otherwise. Next, the server is modified such that requests that have been waiting

for more than 2.5s are being forwarded to other servers in the cluster. In these experiments,

it is assumed that there is at least one server in the cluster with utilization less than 10%.
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Figure 31: Response times for a simulated web server cluster (left) and overheads of the
load balancing mechanism used in this experiment (right).

The second line in the graph (with load balancing - local requests) shows the response

times of all requests which are handled on the local node. This time, the response times

level off at 2.5 at request rates of approximately 33 per second. The third line shows the

response time of the requests being handled on remote servers, which is slightly higher than

the times measured at the local server due to the overhead of two events being submitted and

received (forwarded request and request response). The right graph in Figure 31 analyzes the
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overhead for the load balancing mechanism, which makes sure that only one other server

(dependent on load information collected from these servers) will receive the forwarded

request. The graph compares the overhead of three actions performed by the load balancing

mechanism: (i) the monitoring of CPU utilization and the submission of events carrying

this information, (ii) the handling of incoming CPU information from other servers in the

cluster, and (iii) the filtering necessary to ensure the delivery of the forwarded request

to the server with the lowest utilization. The graph shows that all these overheads vary

only minimally with the number of requests, where the task of event handling is the most

expensive (approximately 70% of the total load balancing overhead).

The final experiment investigates the advantage of event filtering in more detail. The

OUT-filter introduced above forwards requests to the servers with low load to ensure small

response times. However, the frequency of load information exchange among the nodes

in a server cluster has an obvious influence on the load balancing quality, i.e., if load

information is not exchanged frequently enough, the forwarding decision can be based on

outdated information, which reduces the effectiveness of load balancing.
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Figure 32: Comparison of update frequency of load information (left) and forwarding of
events to more than one server in the cluster (right).

The left graph in Figure 32 compares the overhead of load balancing dependent on the

frequency of load information events. The overhead is mainly due to the event handling

73



process, followed by the load monitoring and event submission process. Smaller overheads

are caused by the actual forwarding of the requests and the filtering functions. The overhead

increases rapidly with the number of events exchanged per second, e.g., more than 8ms with

a frequency of 5 events per second. The right graph in Figure 32 compares the approach,

where the frequency of load events is kept constantly at 1 per second, however, the filter

forwards the request to up to 5 different servers. In other words, multiple servers in the

cluster respond to the event and only the first response is being used by the server that issued

the event carrying the forwarded request. Again, the event handling and the load monitoring

and event submission contribute most to the overheads, but the overhead increases only

minimally with the number of event sinks. The biggest increase in overhead is caused by

the IN-filter, which has the task of discarding duplicate responses. This experiment ignores

the increased total utilization in the whole cluster due to the request handling by multiple

servers. As an alternative to the solution suggested above, a server could issue a cancel

event to all other servers, that makes sure that only one server handles a request. If several

servers issue a cancel event, a time-stamp or some other criterion can decide which server

wins. This approach reduces the unnecessary processing on the servers, however it increases

the event communication by up to n cancel events per forwarded request.

4.6 Summary

Event services have received increased attention as scalable tools for the composition of

large-scale, distributed systems, as evidenced by their successful deployment in interactive

multimedia applications and scientific collaborative tools. This chapter introduced KECho,

a kernel-based event service aimed at supporting the coordination among multiple kernel

services in distributed systems, typically to provide applications using these services with

certain levels of Quality of Service. The publish/subscribe communication supported by

KECho permits components of remote kernels as well as applications to coordinate their

operation. The target group of such a kernel-based event service is the rapidly increasing

number of extensions that are being added to existing operating systems and are intended

to support the Quality of Service and real-time requirements of distributed and embedded
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applications. For example, in Q-Fabric, KECho is used to establish ‘Q-Channels’ between

distributed resource and QoS managers, supporting the integration of distributed system-

level resource managers and monitors in the ‘horizontal’ direction, thereby providing the

backbone required for system-level end-to-end QoS management.
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CHAPTER 5

END-TO-END QOS MANAGEMENT

Distributed multimedia applications require the dynamic management of the underlying

system resources, including CPUs, networks, disks, and sensor/display devices. For in-

stance, remote sensing applications need sufficient network bandwidth to receive images

with the latencies they require, and they need sufficient memory and CPU cycles to process

and display these images when needed by end users. In all such cases, the resource managers

located at the hosts involved in a distributed multimedia application have to dynamically

allocate the resources required, monitor the QoS received, alter resource allocations when

necessary, and perform run-time adaptations of applications, middleware, and operating

or communication systems [1, 90, 115]. Specifically, local resource management on a host

ensures that resources are distributed across applications to help them achieve their desired

Quality of Service. However, since achieving and maintaining QoS for distributed appli-

cations is an end-to-end issue [91], multiple local resource managers must cooperate – i.e.,

perform global resource management – so that QoS guarantees can be applied to the entire

flow of data. Such end-to-end QoS management addresses the delivery and processing of

data from the server to the client and the management of associated resources, including

CPU, memory, disk, and network bandwidth, along the path of the application data flow

(e.g., from a server to its clients). In addition and to meet the specific needs of individual

applications, QoS-awareness of applications [70] has been shown important.

This chapter introduces a concrete example of end-to-end QoS management, based on

the Q-Fabric architecture, with the goal of demonstrating the importance of efficient and

low-overhead cooperation of distributed adaptations of applications and system resources.

The used scenario is that of a video conferencing application, where video streams are shared

between multiple hosts and Q-Fabric is used link the resource managers across these hosts

and across protection boundaries.
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5.1 Multipoint Feedback Adaptation

5.1.1 Experimental Setup

Adaptations in Q-Fabric are based on feedback provided by resource monitors that notice

changes in resource availabilities or insufficient Quality of Service provided to an application.

A resource monitor uses a Q-Channel to communicate these observations with other resource

monitors and with resource managers. This simple scenario becomes a complex problem if a

stream is received by a large number of clients, i.e., a large number of resource monitors issue

monitoring events back to a server-based resource manager. A common problem of large-

scale feedback-based systems has been described as reply implosions [154] in the literature,

where a server solicits information from clients and all clients reply almost simultaneously

to the server.

To evaluate the performance and functionality of Q-Fabric, the vic video conferencing

tool has been modified such that it operates on top of the KECho event service instead of

standard sockets. Using Q-Fabric, a resource manager and a resource monitor have been

implemented. Whenever user A starts an instance of vic, a data channel is set up. Trans-

parently to vic (and the user), the resource monitor and the resource manager subscribe

to a newly created Q-Channel. Once a second user B requests to receive a video stream

from A, the resource managers of B subscribe to the Q-Channel. If both A and B decide to

submit and receive each others streams, their resource managers subscribe to two different

Q-Channels, one created by A and managing A’s data stream and one created by B and

managing B’s data stream.

The task of the resource monitor is to monitor the rate of incoming packets over the

data channel. This is done by installing a filter into the data channel, which keeps track

of the received images from each participants. The resource monitor periodically submits

a monitoring event. Another filter in the Q-Channel makes sure that only the resource

manager at the data source will receive such monitoring events. On the other hand, upon

receipt of a monitoring event, the QoS controller at the data source reconsiders its own

resource allocations for this stream or issues a control event, which is submitted to either

(a) one specific resource manager, e.g., the same that issued the monitoring event, or (b)
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all resource managers. The resource managers on the sinks then reconsider their resource

allocations upon receipt of a control event.

5.1.2 Event Submission and Handling

As argued in previous sections of this dissertation, kernel-level implementations of resource

management can profit from limited calls across protection boundaries, e.g., with system

calls. Kernel services and data structures are directly accessible to the resource management

mechanism, permitting fine-grain adaptations. A Q-Channel achieves further performance

gains by ensuring that new events arriving on a channel are dispatched to the corresponding

threads with minimal delays. This is achieved by the cooperation of KECho with the CPU

scheduler (via ECalls) such that kernel threads with pending events are given preference

over other (user-level) processes [104].

The following experiments have been performed on a cluster of 8 Quad-Pentium Pros

with 200MHz each, 512 MB RAM, running Q-Fabric. The left graph in Figure 33 compares

the cost associated with event submission in the kernel-level event service, KECho, with

the event submission of a similar user-level implementation, called ECho [27] (both rely

on TCP for event communication). In these measurements a source transmits an event
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Figure 33: Event submission overheads (left) and round-trip delays (right).

of size (i) 100 bytes and (ii) 2 kBytes to 100 sinks with a variable update frequency
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(number of transmissions of events per second) in the range of 2-10. The chosen data sizes

reflect the sizes of monitoring and control events used in these implementations, which

are typically only a few hundred bytes large. With an update frequency of 10 events per

second, 1000 TCP packets have to be sent out each second. In this situation, the CPU

overhead of event submission in KECho is slightly above 0.4%, compared to 0.7% for the

user-level equivalent of KECho (excluding protocol processing). The graph shows further

that this overhead increases minimally with larger data sizes. The right graph in Figure 33

shows the measured round-trip times: here the time beginning from the submission of

an event at the server until receipt of a reply event from the client is measured. The event

size is 100 bytes and a disturber process is run such that it consumes CPU bandwidth

from 0 to 70%. It can be seen that the kernel-level implementation shows constant round-

trip times independent from the CPU load, whereas the user-level implementation suffers

significant increases in round-trip-times above CPU loads of 30%. This is due to ECalls’

ability to coordinate event notification with the CPU processor such that handler functions

are invoked as soon as possible after event arrival to increase the responsiveness of the

resource management system, while maintaining the real-time requirements of all running

tasks [104].

5.1.3 Multipoint Feedback Control

Consider a point-multipoint scenario where a source streams data to several sinks and each

sink declares a QoS range. The first, high-priority client declares a QoS range of {20, 25},

a medium-priority client declares a QoS range of {15, 20}, and a low-priority client declares

a QoS range of {10, 15}. The resource management mechanism tries to supply all clients

with the best possible quality within their ranges. If this quality cannot be sustained, it is

desirable to reduce the qualities of the low-priority sink first, then of the medium-priority

sink, and finally of the high-priority sink.

In this particular example (1 source, many sinks), monitoring events are only issued by

sink-based resource monitors and directed to the source-based resource manager. On the
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other hand, control events are only issued by the source-based resource manager to all sink-

based resource managers. Q-Channel filters make sure that sink-issued monitoring events
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Figure 34: Feedback mechanism.

are propagated to the source only, and that source-issued quality events are propagated to

all sinks or to a subgroup of them.

The resource controlled for the investigated application is network bandwidth. The vic

video conferencing tool is executed as a real-time process in the SCHED RR (round-robin)

queue with priority 1. To limit and adapt communication bandwidth, Class-Based Queuing

(CBQ) is used to define classes with a bandwidth of 200 Kbit each, and the Token Bucket

Filter (TBF) algorithm is used to transmit packets. This algorithm has been modified such

that the QoS controller is able to influence the rate of token generation and therefore, in-

fluence the rate of packet transmission.

Stream Management. Figure 34 shows the mechanism for one stream: a video server

streams packets through a token bucket filter to the video player, where a QoS monitor

watches the packet arrival at the video player and feeds this information back to a QoS

controller at the server. The controller is then able to adjust the rate at which tokens

are added to the bucket, and therefore the rate at which packets are sent over the event

channel. Figure 35 shows the achieved frame rates of 3 streams, one with high priority, one

with medium priority, and the last one with low priority. First, all 3 streams are started

simultaneously, and the rate control achieved with the token bucket filter ensures that all
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three streams achieve the highest frame rate in their desired QoS ranges. After 40 seconds,

a disturber process is started, which transfers files at increasing rates from the server to

the clients, thereby causing the network to get saturated. After 50 seconds, the resource

manager is not able to further sustain the frame rates and it starts reducing the frame

rate of the low-priority stream, while sustaining the rates of the two other streams. After

the low-priority stream reaches its minimum (10 fps), the medium-priority stream suffers

a drop in achieved frame rate. Finally, after both the low- and medium-priority streams

have dropped to their minima, the high-priority stream is reduced to its minimum value of

20 fps. After 80 seconds, the controller is not able to sustain all of the desired frame rates

and starts reducing the rate of the low-priority stream until it reaches 0. It continues this

process until, after 110s, all three streams have stopped.

Reply Implosion. The problem of receiving a large number of requests almost simulta-

neously is referred to as reply implosion. Solutions to this problem include probabilistic

replies, statistical probing, and randomly delayed replies [154]. The advantage of the Q-

Fabric-based approach is that a push-based mechanism is used, which largely avoids this

problem. This is because resource monitors submit their monitoring events to a server-

based resource manager independently at certain intervals (e.g., every 500ms). However,
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it is still possible, particularly in large-scale applications, that many monitoring events are

issued almost simultaneously. In Table 1 we analyze the event distribution for 1 second

in the same setup as described in Section 5.1.2 (i.e., 1 server and 100 clients). The first

Table 3: Event distribution.

w/o adapt. w/ adapt.

Time t=10 t=100 t=10 t=100

0-100ms 9 8 7 9

100-200ms 14 16 9 10

200-300ms 14 12 13 11

300-400ms 7 7 16 10

400-500ms 11 12 7 11

500-600ms 14 13 5 10

600-700ms 2 6 11 9

700-800ms 11 8 14 10

800-900ms 5 7 7 10

900ms-1s 13 11 11 10

column shows the event distribution measured after 10 seconds of running the experiment

and displays the number of received monitoring events at the server per 100ms. With 100

clients and a update frequency of 1 (i.e., each client sends exactly 1 monitoring event every

second), the ideal distribution in the simplified scenario would show 10 events per 100ms.

The event distribution is measured again 90 seconds later, showing a similar distribution

with minor deviations due to timing and measurement errors. However, it can be seen

that the distribution ranges from 2 to 16 events. In a second experiment, an adaptation

algorithm is used. The algorithm determines the number of clients N and the number of

expected events per 100ms: n = N/10. For every time interval i of 100ms, the resource

manager counts the number of actually received events (ri). For all time intervals i, the

number of excess events is computed (ei = ri − n if ri > n), and then ei randomly chosen

clients from interval i receive a delay request with the next quality event. This delay request

forces the client (i.e., the QoS monitor) to submit the next monitoring event 100ms later.

Over time, this succeeds in distributing the issuance of monitoring events more evenly as

can be seen in the last column of Table 1.
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Polling versus ECalls. The frequency of resource monitor and resource manager invo-

cations influences both the granularity of adaptations achievable as well as the overhead

of adaptations. The left graph in Figure 36 shows the behavior of a video stream with a
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Figure 36: Effect of handler invocation frequency on the dynamics of the system (left)
and event receipt with ECalls (right).

target frame rate of 10 fps±1. In the left graph, the resource manager is invoked (a) once

per second and (b) ten times per second to poll for possibly pending monitoring events.

In the case of a frequency of only 1/s, the video stream needs more than 12s to reach its

target frame rate. When the resource manager is run ten times as often, the stream needs

approximately 3s. However, KECho relies on the ECalls interface, which makes polling

unnecessary by invoking the QoS controller immediately at event arrival. The right graph

in Figure 36 shows a video stream operated at 10 fps, this time ECalls ensures the timely

handling of incoming monitoring events. The graph also shows the CPU consumption of

the QoS controller function when one (a) polls for events ten times per second and (b) uses

ECalls instead. Without ECalls, the CPU consumption is approximately twice as much

as with the support of ECalls because the resource manager is run only when there are

monitoring events pending.

Q-Filters. Q-filters are application-specific event channel filters, parameterizable through
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the QoS management system built on top of Q-Channels. Such filters can perform tasks

such as down-sampling, color depth reduction, or even dropping of images to reduce net-

work load. In other words, additional computation at the server is introduced to reduce the

required network bandwidth between server and client or to reduce the required computa-

tion at the client (e.g., visualization of images with fewer colors or smaller size). However,

a resource manager can activate or affect such filters without the active involvement of the

application, further improving the granularity of adaptations. This is particularly useful for

transient overload situations, where frequent application adaptations can be counterproduc-

tive, however, the resource manager can simply change the parameters of the Q-filter with

less overhead. Consider a Q-filter that simply drops certain frames (e.g., B- and P-frames

of an MPEG stream). If a resource manager considers it necessary to change the number of

frames transmitted to ease the network load temporarily, it can simply change a parameter

of the Q-filter, which takes effect immediately. However, if the resource manager decides in-

stead to notify the application to let itself perform this adaptation, the additional delay can

be significant, particularly when the system is highly loaded. As an example, a filter that

drops frames if the network is overloaded has been implemented. When the client-side QoS

monitor detects a network overload, it issues a monitoring event directed to the server-side

QoS controller. The controller then adjusts a Q-filter parameter that decides if and when

a frame is being dropped. The overhead from the receipt of the monitoring event until the

parameter is adjusted is in the range of 10µs. However, if a signal is sent to the application

notifying it about the overload, the overhead from the receipt of the monitoring event until

the application changes the rate of frame creation ranges from 50ms in a system with about

80% CPU load to several hundred milliseconds with CPU load > 100%.

5.2 Experimental Setup

All experiments are performed on a dual-Pentium II with 400MHz, 512MB RAM, 512KB

cache and a dual-Pentium II with 300MHz, 256MB RAM, 512KB cache, both connected via

a switched 100Mbps Fast Ethernet and running Redhat Linux 7.1. The experiments in this

section analyze the behavior of Q-Fabric in a specific application setting. The application
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used is that of a video conferencing tool, called vic, which is part of the OpenMASH toolkit1.

Resource 1: CPU. The CPU scheduler used in this example is the Linux real-time round-

robin scheduler. The resource manager adjusts an application’s priority class to react to its

varying computational needs. The CPU resource manager has no monitoring component,

only an adaptation component, that is, only quality events and no monitoring events are

being issued. Applications are assigned a default priority class (e.g., 50 in the following

experiments) and can be modified in the range of 1 and 99.

Resource 2: Network. The attributes of the DWCS scheduler (period, window-constraint)

translate easily to streaming multimedia applications that require the generation and trans-

mission of data (such as video or audio) with a certain rate. However, such applications can

often tolerate infrequent losses or misses of data generation or transmission. The adjustable

parameters of a DWCS stream are the period and the window-constraint or loss-rate. The

following experiments use a default period of 50ms (to achieve a frame rate of 20fps) and a

loss rate of x/y = 1/10.

Application Adaptation. Vic can react to the receipt of control events by adjusting a

variety of parameters:

• Encoding Method. For the experiments in this sections, H.261 and JPEG images

are used. Vic can dynamically switch between different methods, where the choice of

encoding can significantly affect the resulting CPU and network overheads.

• Image Quality. In vic, the used image qualities are in the range of 1 to 95 for JPEG

images and 1 to 30 for H.261.

• Image Size. Both JPEG and H.261 images can have the two following sizes: small

(176*144) and medium (352*288). In addition, JPEG images can also have the image

size large (640*480).

The primary goal of the following experiments is to maintain a frame rate of 20fps or

the best possible frame rate if resource contention is too high. The secondary goal is to

minimize jitter at the client.

1www.openmash.org
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5.3 Application-level Adaptation

Policy. The client-vic feeds achieved frame rates back to the server-vic (once per second),

which then adjusts the image quality to maintain the desired frame rate. The images are

H.261 encoded and have a default quality of 15. The quality is modified in steps of 1.

Perturbation. A CPU-intensive task (endless for-loop) is run first at the server, then at

the client.

Details. Application-level adaptation is a useful tool to adjust the application behavior to

changing environments. Application adaptation can significantly improve the overall qual-

ity of a media stream, however, the possibilities are limited without the support of a global

resource management mechanism. The left graph in Figure 51 shows the frame generation

rate at the server side of a vic conference. The desired frame rate is 20fps, however, the

actual generation rate can vary significantly at times, for example, to 11fps at 113s. After
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Figure 37: Frame generation rate (server) without resource management and adaptations
(left) and frame generation rate (server) with application adaptation (right).

146s, a CPU-intensive task starts at the server, causing the frame generation rate of the vic

server to drop to a range of 4fps to 13fps. After 250s, this perturbation is stopped. The

right graph in Figure 51 repeats the same experiment, however this time, the client-vic uses

Q-Fabric’s event channel to inform the sender-vic about the achieved frame rate. After 146s,

the server-side CPU perturbation is started and this time, the server manages to maintain
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the frame rate of 20fps by reducing the image quality. Note, however, that application

adaptation is still not able to handle the strong deviations from the desired frame rates,

which are caused by resource contention on both the server and the sink. The left graph
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Figure 38: Frame replay rate (client) without resource management and adaptation (left)
and frame replay rate (client) with server-side application adaptation (right).

in Figure 38 shows the behavior of the client-vic when (a) the server and (b) the client

experiences CPU contention. After 146s, notice the drop in frame replay rate, which is due

to the server-side CPU contention described in the previous measurements. After 330s, a

newly started client-side CPU-intensive perturbation task creates strong variations of frame

replay rates between 0fps and 86fps. The right graph in Figure 38 repeats this experiment

with application-level adaptation. Though the adaptation manages to successfully handle

the server-side contention, it fails to manage client-side contention properly even though

image quality is reduced, resulting in smaller image sizes and less computational needs at

the client-vic. This is also underlined by the next two graphs in Figure 39, which show the

jitter at the client. Without adaptation, the jitter for the server-side contention increases

from an average of 0.05s to 0.5s for the server-side contention and to more than 1s for

the client-side contention. Peak values for the jitter for the client-side contention are close

to 5s. With adaptation it is possible to eliminate the increase in jitter for the server-side

contention, however not for the client-side contention.
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Figure 39: Jitter in frame replay (client) without adaptation (left) and jitter in frame
replay (client) with adaptation (right).

Results. Summarizing, one can observe that in this example, application adaptation (e.g.,

changing the image quality) can significantly limit the negative effects of server-side CPU

contention. However, application-level adaptation fails to efficiently support the application

at client-side contention. Further, note that frame rates can vary significantly even without

relevant CPU or network contention, due to a variety of reasons such as network latencies,

contention with OS daemons, sending of frames in bursts, etc. In the following measure-

ments it is further underlined that only management of all involved resources in conjunction

with application adaptation leads to an acceptable application quality of service.

5.4 Distributed Resource Management

Policy. The network resource manager at the client-vic issues monitoring events containing

the rate of received images at the client once per second. The CPU resource manager at the

server modifies the CPU allocation to the server-vic if this rate differs from the desired frame

rate. The default real-time priority is 50, which is being modified in steps of 1 (between 1

and 99).

Perturbation. A CPU-intensive task (endless for-loop) is run at the server. The CPU-

intensive task has a real-time priority of 50.

Details. The problem with application-level adaptation is that it succeeds in reacting to
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changing environments in some cases only, and that competing applications have no way

of preventing each other from stealing resources. Distributed or global resource reservation

and management is required to distribute resources between applications. Figure 40 displays
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Figure 40: Frame replay rate (left) and jitter in frame replay (right) at the client with
global resource management.

the client-side frame replay rate and the jitter for the same experiment, this time, however,

with global resource management. The server CPU resource manager uses feedback from

the client-based CPU resource manager to adjust the CPU allocations to the server-vic. In

addition, the client CPU resource manager adjusts the CPU allocation for the client-vic if

CPU contention exists.

Results. Global resource management succeeds in adjusting resource allocations such that

the desired frame rate of 20fps can be maintained. The jitter can also be maintained

at its average value of 0.05s. Note, however, the strong deviations in frame replay rate

(which can be up to 100%) and jitter (which can reach several seconds) when contention

starts. Although global resource management succeeds in maintaining a desirable replay

rate and jitter eventually, it takes about 10s to stabilize both replay rate and jitter in these

measurements.
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5.5 Integrated Approach

The following experiments display the successful interaction of multiple resources (CPU,

network) and applications to achieve optimal QoS management.

1st Approach: Client-feedback.

Policy. The client-vic issues monitoring events (once per second) to the resource managers

and to the server-vic, containing the achieved frame rate. The server-vic adjusts the image

quality of the H.261 encoded images (between 1 and 30) if the frame rate differs from the

desired frame rate. Both the CPU resource managers at the server and the client adjust

the CPU resource allocations as described in the previous experiment.

Perturbation. A CPU-intensive task (endless for-loop) is executed at the client.

Details. In the integrated approach of QoS management, applications and distributed re-

source managers cooperatively adjust their allocations and behaviors to react to changing

system environments or load situations. Figure 41 shows the frame replay rate and the

0

5

10

15

20

25

30

35

40

1 30 59 88 117 146 175 204 233 262 291 320 349 378 407 436

Time (seconds)

Fr
am

e R
at

e (
fp

s)

Perturbation
at Sender

Perturbation
at Client

-1

0

1

2

3

4

5

6

1

54
1

10
81

16
21

21
61

27
01

32
41

37
81

43
21

48
61

54
01

59
41

64
81

70
21

75
61

81
01

86
41

91
81

97
21

Frames

Jit
te

r (
se

co
nd

s)

Figure 41: Frame replay rate (left) and jitter (right) at the client with global resource
management and application adaptation.

jitter when global resource management and application adaptation are performed in con-

junction.

Results. The left graph in Figure 41 shows that the integrated approach succeeds in
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maintaining the desired frame rate of 20fps at all times. The jitter graph (right graph in

Figure 41), however, indicates where the contentions start with a large deviation from the

desired value for both server-side and client-side contention. In a feedback-based approach

as used in these experiments, these short deviations are unavoidable because they are re-

quired to trigger adaptations.

2nd Approach: Network-feedback.

Policy. The network resource manager uses information from the DWCS scheduler about

the number of missed deadlines and issues this information as monitoring events once per

second.

Perturbation. Network perturbation is simulated by limiting the network traffic between

sender and client to 14kBps.

Details and Results. The left graph in Figure 42 shows the frame replay rate at the
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Figure 42: Frame replay rate at the client with kernel resource management (left) and
kernel resource management and application adaptation (right).

client. While the desired frame rate is 20fps, the achieved frame rate fluctuates around

15fps. The right graph of Figure 42 displays the same scenario, this time with integrated

adaptation and resource management.
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3rd Approach: Client- and Server-feedback.

Policy. Feedback about the generated frame rate (server) and the achieved frame rate

(client) are used to adjust image quality and size.

Perturbation. Instead of perturbation, JPEG compression is used, which causes CPU

overheads too high to maintain a frame rate of 20fps.

Details. In this final set of experiments, JPEG images are used instead of H.261 due to

their increased CPU requirements. In fact, when generating a video stream using JPEG

compression, vic is not able to generate the frames at the desired rate of 20fps (see the

left graph of Figure 43), even with the support of kernel resource management. The CPU
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Figure 43: Frame generation rate (server) with kernel resource management but with-
out application adaptation (left) and both kernel resource management and application
adaptation (right).

resource manager tries to allocate more and more CPU bandwidth to the application, until

it receives almost 100% of the CPU. In the second measurement shown in the right graph

of Figure 43, we use feedback from the client-vic (frame replay rate) and from the server-vic

(frame generation rate) to adjust the CPU resource managers (particularly CPU) and to

adapt the application (reduce quality and image size). This time the desired frame genera-

tion rate of 20fps is achieved.

Results. This shows that when resource limits are hit, application adaptation can en-

sure that the quality of the stream degrades gracefully while achieving the desired frame
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rate. The conclusion is that the global management of resources complemented with adap-

tations of applications can benefit applications in their goal to achieve a desired quality

of service, particularly when the application has to compete with others. In this chapter,

an event-based cooperation scheme between multiple distributed resources and distributed

applications has been introduced, allowing to cooperate their management decisions by ex-

changing events directly between each other. Receipt of an event triggers the execution

of application adaptation and resource re-allocations in an attempt to maintain or improve

the received QoS.

5.6 Summary

This chapter experimentally investigated the Q-Fabric approach to QoS management, which

is used to integrate application adaptation and resource management closely via a kernel-

based event service. Q-Channels are shared between resource managers and applications to

exchange resource management information and requests, both asynchronously and anony-

mously. The advantages of having applications and resource managers share the same

control path are several. First, distributed applications can interact freely to monitor and

adapt their behavior according to the desired and achieved QoS. Second, applications are

able to directly address resource managers, locally and globally. Previous approaches either

prohibited the access to remote resource managers or only allowed this by crossing several

interfaces, typically involving actions by underlying resource managers. Third, resource

managers can interact with each other to support applications in achieving their desired

QoS and to ensure fair distribution of resources. Fourth, resource managers can address

applications directly by issuing monitoring and control events to them, therefore requesting

application adaptations. Finally, QoS management policies can be developed that combine

application adaptation with distributed resource management.
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CHAPTER 6

ENERGY AS A FIRST CLASS RESOURCE

The management of multiple resources across multiple hosts is a challenging problem in

end-to-end QoS management. While the device capabilities of modern mobile and wireless

systems increase, energy is becoming the constraining resource for application domains

such as mobile multimedia. Therefore, in mobile settings, the goal is to prolong battery life

time to maximize the duration of device usage. Further, large-scale Internet data centers

with hundreds or thousands of hosts cause large energy costs or require significant cooling

efforts, e.g., to protect hosts from device or component failures. Making energy management

even more challenging, energy takes an exceptional role as a resource in that it is closely

linked to the utilization of all other resources of a system, e.g., increased CPU or network

utilization translates to increased energy consumption. The goal of any QoS management

is to maximize total system utility (and user-perceived quality), however, if energy has to

be considered, the goal is also to minimize the system’s energy consumption. This chapter

introduces energy management techniques typically found in modern mobile devices and

describes their use in the Q-Fabric infrastructure. Using the Q-Fabric integration interfaces,

this chapter underlines the importance of information sharing and cooperation between

multiple adaptive approaches in order to attain efficient QoS management results and to

prevent conflicting adaptation decisions.

6.1 Introduction

A necessity for the acceptance of wireless devices and wireless applications is an acceptable

life time of their finite energy sources. Batteries of wireless systems are drained by device

display, network card, memory, and the processor. In the last few years, there has been

significant work on the development of energy saving techniques, e.g., exploiting the volt-

age and frequency scaling capabilities of modern mobile processors [75, 130, 98, 45, 60] or

94



application-level approaches that utilize the adaptivity of applications and the flexibility in

acceptable user-perceived qualities, e.g., in video and audio streaming [102, 7, 19]. At the

network level, previous work has investigated energy conserving mechanisms at different

layers of the protocol stack, including the medium access control layer [153, 58, 88], trans-

port protocols [2, 64], or routing [21, 42]. The key problems of wireless communication for

multimedia applications are the provision of Quality of Service and energy efficiency. The

goal is to balance both such that users are satisfied with the multimedia qualities and the

energy consumption of a device is minimized. Energy management can be performed at

multiple layers of a system: the physical layer, the protocol stack, the operating system,

and at application-level. With a rising number of energy management techniques available

at all these layers, it is increasingly important to provide an approach that involves all layers.

Frequently, energy management techniques are used to exploit resource idleness, e.g.,

resource utilization can be ‘slowed down’ such that a resource is fully utilized or unused

resources can be switched off. The first approach is supported by the frequency and volt-

age scaling approaches of modern mobile processors or the dynamic modulation scaling

approach of wireless connections. The latter approach is supported by timeout-based tech-

niques, where after certain periods of inactivity, a device is turned off or put into a low-power

sleep mode. The problem here is to decide when to wake up a device and to prevent fre-

quent switches between shutdown and wake-up due to the high costs associated with these

switches. While timeouts are a common approach to save energy during idle time, energy is

wasted during these timeout periods. Predictive approaches, e.g., for hard disks, networks,

or terminals, force a device into a low power state as soon as a predictor estimates an idle

period of sufficient length. Wrong predictions can result in performance and energy penal-

ties. Another method is to actively re-arrange resource requests (e.g., disk reads/writes,

network transmissions) in order to better predict and to lengthen idle periods.

Communication over wireless or cellular links is often associated with costs, i.e., the

bandwidth utilization translates to a financial burden to the user. Therefore, it is desirable
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to minimize the utilization of this resource. On the other hand, mobile devices are battery-

operated and have to minimize the resource utilization in order to prolong battery life.

While the approach for minimal network utilization is straightforward – e.g., low frame

rates, small image size – the approach for minimal energy utilization is more difficult for

two reasons. First, different resources have different energy costs associated, which have

to be balanced. Consider, for example, the use of a media transcoder that reduces the

size of a video image to be sent. Energy can be saved on the sender device if the costs of

executing the transcoder are outweighed by the energy savings of transmitting a smaller-

sized image. Second, energy management techniques have to be considered globally, e.g.,

in the previous example, employing the transcoder and therefore changing the image can

have consequences for the resource utilization and therefore energy requirements of the

receiver of the image. Depending on the global energy management goal, e.g., maximize

the operational time of the application or minimize the energy requirements of a particular

device, energy management has to be performed globally over all involved devices.

6.2 Media Transcoding

Previous work has pointed out the importance of quality-aware transcoding of multime-

dia [18] in order to provide differentiated services. In video transcoding, as an example,

such transcoder functions can customize the video images to the restricted capabilities of

mobile devices like handhelds or cellular phones. The proliferation of media streaming be-

tween resource-constrained wireless devices has raised the need for techniques that adapt

these streams both to clients’ Quality of Service requirements and to the energy restrictions

of battery-driven mobile systems. First, the heterogeneity found in the resources of mo-

bile devices (e.g., different specifications for displays, processors, or network cards) requires

that media streams are adapted to a device’s capabilities. Second, dynamic variations in

resource demands and in user requirements necessitate the run-time customization of dis-

tributed applications and of the services they utilize. In particular, with client-specific

service differentiation, each client requires services to be adapted to its individual needs,
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thereby better matching the resources expended on service provision with client require-

ments and capabilities.

Transcoding is the process of transforming information from one form into another, e.g.,

to convert large images to smaller ones that are suitable for the limited resources of handheld

devices or cellular phones. Frequently, the transcoding of data at one end-host of a client-

server communication has consequences on the processing and communication requirements

for both end-hosts. More than one transcoding function or set of transcoder parameters can

be used to transform data into suitable forms, making it necessary to compare transcoders

with respect to their potential provision of quality of service and energy savings. These

transcoders can be classified into mandatory transcoders, i.e., transcoders that have to be

executed by at least one end-host, and optional transcoders. The goal is to use transcoders

(a) to ensure that clients receive data in a form that corresponds to their QoS needs, such

that (b) energy consumption can be reduced.

An interesting aspect of the approach introduced in this work is its ability to conserve

energy by adding processing – in the form of transcoders – to a device. The intent is

to reduce the energy consumption of a device by transforming large data elements into

smaller ones, thereby reducing the costs of wireless data transmissions. However, such data

transformations come at a price, i.e., the additional processing results in additional energy

usage. As a result, data transformations reduce overall energy needs only if the additional

energy consumed for the execution of a transcoder is outweighed by energy savings due

to the transmission of smaller data items and the reduced processing needs at the other

end-host. Fortunately, for applications like video streaming, past work has resulted in the

creation of many useful transcoders [67, 24], and there has also been substantial work on the

selection of suitable transcoder parameters [138]. By leveraging such results, this work can

focus on maintaining a client’s desired QoS characteristics, using different transcoders that

result in varying energy savings, depending on QoS specifications, device and transcoder

characteristics, and data content.

Though applicable to many areas with large-data communications, wireless multimedia

applications are an important target for energy-aware transcoding, for three reasons: (1)
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their increasing importance in mobile applications; (2) the fact that multimedia communica-

tions typically involve the long-running exchange of large data items, where data complexity

or content change slowly over time; this justifies the potentially expensive deployment of

transcoder functions; and (3) because these items can easily be changed in size and qual-

ity depending on resource availabilities and user needs. Video streams, as an example,

can be customized in quality, including image size, color depth, resolution, or compression

method. Here, different transcoders can be deployed and depending on a client’s prefer-

ences, transcoders can be made parameterizable, e.g., a ‘resolution-transcoder’ can be tuned

with different parameters for the desired resolution. As a concrete example, consider two

raw image

Sender−side Transcoding Receiver−side Transcoding

Mobile Device 1 Mobile Device 2

Transcoder 1
(Resizing)

Transcoder 2
(Compression)

Transcoder 3

Transcoder 4

(Decompression)

Camera Display

wireless link

(Gray Conversion)

Figure 44: Video streaming example.

handhelds participating in a video communication, as shown in Figure 44. This could be

part of an emergency communication system where firefighters and paramedics communi-

cate in a disaster area using their handhelds, using visual communication to bring expertise

wherever needed. Consider two devices used by medical personnel instructing each other in

how to perform emergency care. One device captures raw images through its camera, which

are then adjusted in size to fit the display of the receiver handheld and then compressed and

transmitted to the receiver. At the receiver, these images are decompressed and further ad-

justed if required, e.g., converted to gray images if the device features a monochrome display

only. In such cases, device battery life is critical and the decision about where transcoders

are executed affects the energy requirements of both the sender and the receiver. Further,

one cannot assume the availability of nearby servers or support infrastructure. As a result,

it is assumed that transcoders can only be placed at the end-points of a communication,

i.e., intermediate points such as wireless access points and base stations are not available
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to users for the deployment of application-specific functionality such as video transcoders

(e.g., in wireless ad hoc networks).

6.2.1 A Transcoding Framework

The approach introduced here is based on the following observations. First, applications

require that media streams have qualities that are suitable for the limited capabilities of

mobile devices, where these qualities can be expressed as QoS ranges or as utility functions.

Second, transcoding is an appropriate technique in media streaming to adapt media quality

to suit the needs of the clients, where lower quality media typically results in reduced

communication needs. Frequently, multiple transcoding techniques can be applied, resulting

in different qualities and data sizes. Figure 45 shows the architecture of this approach. The
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Figure 45: Transcoder selection.

sender transmits a media stream to a receiver, while the media stream is modified by a

number of transcoders at either end-host. The transcoder selection algorithm collects a

number of parameters in order to accurately predict the potential energy savings achievable

by utilizing transcoder functions:

• Clock Frequency (n). The clock frequency used at a device is required information

since it affects the transcoder run-time. In all measurements in this chapter, the clock

frequency is kept constantly at the highest possible frequency.
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• Power Model. The device’s power model is obtained through off-line measurements

of the relationship between run-time and processing energy for each available clock

frequency (Kr(n)) and the relationship between data size and transmission energy

(Kd(n)).

• QoS Specification. The user specifies the desired quality of service, which is trans-

lated into parameters for the transcoders. These QoS parameters include the mini-

mum image width and height, minimum color depth, or the frame rate. Note that

the approach in this section only addresses image-related qualities such as size or

color depth; QoS parameters such as frame rate and jitter are managed separately by

Q-Fabric’s system-level resource managers.

• Transcoder Characteristics. Transcoder characteristics are determined off-line,

i.e., the relationship between input data size and output data size (expressed as ratio

rd) and the relationship between input data size and transcoder run-time (expressed

as ratio rr), for each transcoder.

• Data Sizes size(d) and size(d′). The input data size (size(d)) is the size of some

data d to be transmitted before a transcoder function is applied, and the output data

size (size(d′)) is the predicted size of the output data (i.e., the size of the data after

a transcoder is applied).

• Transcoder Run-Time (rtt). This is the predicted execution time for each of the

transcoders.

The transcoder selection is executed at the sender of a data stream, where the sender uses

control events to inform the receiver whenever new transcoders (or new transcoder param-

eters) have been selected, allowing the receiver to decide if other transcoders need to be

executed at the receiver host. The transcoder selection algorithm is executed periodically,

however, other choices are possible, e.g., to invoke the algorithm for each frame or only

when the user changes the QoS requirement or the video frames change significantly in size

or content.
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Obtaining Transcoder Characteristics. In order to compare transcoders, the relation-

ship between input data size and output data size (rd) as well as the relationship between

input data size and transcoder run-time (rr) are required. In this work, these relationships

are measured off-line for sample input data and stored in tables. Each table entry contains

the following information: input data size, output data size, and transcoder run-time. The

transcoder selection framework predicts the output data size and the transcoder run-time

by approximating these relationships based on the table entries. Different approximation

methods exist, such as least squares regression. For simplicity, one can approximate these

ratios by searching the table for the input data sizes closest to a given data size (i.e., the

nearest entry higher and the nearest entry lower) and then compute the mean value for the

output data size and the run-time of these two entries. When a transcoder is executed,

the actual transcoder run-times and output data sizes are determined and can be used to

update table entries. To ensure that the entries for transcoders that have not been used

for a period of time are still accurate, unused transcoders can be executed periodically to

obtain recent numbers for transcoder run-time and output data size, while considering these

additional overheads in the transcoder selection process.

6.2.1.1 Computation of Potential Energy Savings

Next, the approach of this framework to determine the energy savings that can be achieved

by deploying a transcoder at the sender is described. For each transcoder, the algorithm

obtains an estimated transcoder run-time from the input data size and the ratio rr:

rtt = rr ∗ size(d)

Then the run-time - energy factor Kr(n) is used to obtain the energy consumed by the

execution of the transcoder at a particular clock frequency n:

Et = Kr(n) ∗ rtt.

Next, the output data size is obtained from the ratio rd:

size(d′) = rd ∗ size(d).
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The output data size (size(d′)) is used along with the factor Kd(n) to determine the energy

consumption for the transmission of the output data:

Ed′ = Kd(n) ∗ size(d′).

Further, the input data size size(d) is used to determine the energy consumption for the

transmission of the original data:

Ed = Kd(n) ∗ size(d).

Finally, the transcoder energy quality TEQ is determined by subtracting the energy used for

the transcoder execution (Et) from the gains in energy caused by transmitting the output

data instead of the input data (Ed −Ed′). The result is further corrected by Ea, the energy

consumed by the transcoder selection algorithm. Similar to the monitoring of the transcoder

run-time, the algorithm monitors its own run-time and uses this to determine the energy

overhead of the algorithm. The resulting transcoder energy quality is:

TEQ = (Ed − Ed′) − Et − Ea.

The resulting number, TEQ, is the energy that can be saved by executing the correspond-

ing transcoder. Only those optional transcoders that have positive TEQs are eligible for

data transformation. If more than one transcoder has a positive TEQ, the one with the

largest TEQ is applied. If transcoders can be chained, all acceptable transcoder orderings

(which can be specified by the client) are considered separately, i.e., TEQs are computed

and compared for each suitable chain.

Algorithm Complexity. If the clock speed is determined by a separate approach, e.g.,

by a power-aware CPU scheduler, TEQs have to be computed for each available transcoder

(and parameter setting) for the given clock frequency and input data size, resulting in

O(t ∗ p) operations, where ‘t’ indicates the number of transcoders and ‘p’ is the number

of parameter settings. If the clock frequency can be changed by the transcoder selection

algorithm, transcoders have to be evaluated at all clock frequencies. Here, the costs are

O(t ∗ p ∗ n), where n is the number of frequency levels. Typically, both the number of
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transcoders and the number of frequency levels are low (e.g., less than 10 transcoders for

video streaming and less than 15 frequency levels for mobile devices).

6.2.2 Case Study: Video Transcoding

The mobile device under consideration is a Compaq iPAQ H3870 with a StrongARM SA1110

processor. This device supports dynamic frequency scaling and runs a modified version of

the familiar Linux distribution (version 0.7.1), supporting 11 different clock frequency levels

from 59MHZ to 206.4MHz. The iPAQ consumes about 1.32W of power in idle state (with

disabled LCD screen) independent of the used clock frequency, and about 2W when active

at the highest clock frequency. A Lucent Technologies Orinoco Gold 11Mbps wireless card

is used for the wireless communication. This card causes a power consumption of 0.8W

in receive mode and 1.3W in transmit mode. Energy measurements are performed with

a Picotech ADC-100 PC Oscilloscope (2 channels, 100kS/second, 12-bit resolution). To

facilitate energy measurement, the batteries of both the handheld device and its extension

sleeve are unplugged, thereby forcing the device to draw its power from the DC adapter

(5V, 2A max).

Image Transcoding. In the following measurements, images are read from disk in PPM

format (Portable Pixel Map) and then transformed using a set of image transcoders (gray

conversion, crop, reduce, Huffman and LZ77 compression). The first transcoder, gray, has

no input parameters and converts the color coding of an existing image into a gray coding.

Figure 46 (left) compares the energy consumption of transmitting unmodified data with

the energy consumption of gray converting and transmitting the resulting smaller data.

Figure 46 (right) shows a similar experiment for the crop transcoder. Here, the energy

consumption for different ratios of output data size to input data size for three different

input data sizes is compared. The horizontal line shows the costs of gray conversion of

a 518kBytes image in comparison. Figure 47 (left) compares the reduce transcoder with

three different input data sizes and the costs of gray conversion for data of size 518kBytes.

The key result in these graphs is that the energy costs depend both on input data size
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Figure 46: ‘Gray’ transcoder (left) and ‘crop’ transcoder (right).

and the parameters of the transcoder (e.g., the ‘reducefactor’ for the reduce transcoder).

Finally, in Figure 47 (right), we compare the energy consumption for the two compression

algorithms. The key result is that two different approaches to the same goal (compression of

data) can have different energy requirements for different data, e.g., data transcoded with

the Huffman compression and transmitted over the wireless link requires less energy than

the LZ77 compression, except for input data size in the range from 140kBytes to 400kBytes.

Transcoder Chains. Transcoders can be chained together, e.g., a client may wish to

receive gray-scale images with a certain size, i.e., both the gray transcoder and the crop

or reduce transcoders are applicable. An important issue here is the transcoder or-

dering, i.e., the order with which transcoder chains are built. Figure 48 (left) compares

combinations of two of the transcoders used in this paper with different orderings, namely

the gray and the crop transcoders. The transcoders are first chained such that the gray

transcoder is executed before the crop transcoder, then the ordering is changed so that the

crop transcoder is executed before the gray transcoder. Here, the energy consumption of the

crop-gray combination is lower than that of the gray-crop combination. The reason is that

the gray transcoder leaves the image size untouched, and the crop transcoder’s run-time
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Figure 47: ‘Reduce’ transcoder (left) and Huffman and LZ77 compression (right).

is independent of the color depth of the image. On the other hand, the crop transcoder

reduces the size of the image, thereby also reducing the amount of work required by the

gray transcoder (for its pixel by pixel conversion of the image). Next, Figure 48 (right)

compares the chains ‘gray conversion - LZ77’ and ‘gray conversion - Huffman’, showing how

chaining can affect the energy requirements of transcoders. Here, the chain ‘gray conversion

- Huffman’ outperforms (in terms of energy savings) the chain ‘gray conversion - LZ77’ for

all image sizes.

Data Complexity. The content of data can have an influence on the amount of energy a

transcoder function can save. In the case of the gray, crop, and reduce transcoders, image

content has no affect on the transcoder run-time – and therefore energy requirements – or

output data size (due to the pixel-by-pixel operation of these transcoders). However, the

compression algorithms depend on the content of the images. Figure 49 (left) compares the

energy consumption of the Huffman and LZ77 compression algorithms for four images with

varying content but identical sizes. Figure 49 (right) compares the size of the transcoded

images, which shows that variation in image content has an affect on the achievable image

size and therefore the gains achievable with the transmission of smaller-sized data over the
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Figure 48: Ordering: gray and crop (left) and gray and compression (right).

wireless link. Both graphs indicate that the content of an image plays an important role

in the energy requirements of a transcoding process, which indicates that off-line measure-

ments of the energy characteristics of a transcoder are not sufficient. Although it can be

assumed that in many scenarios video image content varies little from image to image, a

dynamic approach to determining the characteristics of transcoders is required.

Power Model. Power models are used to describe the energy consumption behavior of

system devices or software components. It is to expect that in the near future, ‘on-board’

power measurement mechanisms will be used to measure the energy consumption of a device,

allowing for the automated generation and revision of power models. However, the results

presented in this chapter rely on off-line obtained power models. Here, the processing costs

of transcoders and the communication costs of submitting media streams are of interest.

The iPAQ handheld device is examined using an oscilloscope while the transcoders are

executed and media streams are transmitted. Figure 50 (left) depicts the measurements of

the relationship between the run-time of a transcoder function and the energy requirements

caused by the transcoder’s execution. Note that this relationship is linear for all clock

frequencies for the given architecture. This and all subsequent energy graphs depict the
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Figure 49: Effects of variation in data complexity on energy consumption (left) and output
data size (right).

active energy, i.e., the total energy minus the idle energy. The results obtained allow us

to derive the energy costs for transcoder executions. In comparison to these CPU-centric

measurements, it is well-known that wireless network cards consume considerable power

for message receipt and transmission. The specification of the Orinoco wireless card notes

a receive power of 800mW and a transmit power of 1.3W. For Figure 50 (right), data of

varying size is transmitted and the energy consumption for the wireless network card is

measured as a function of data size. To utilize the obtained raw energy measurements, the

results are turned into factors: Kr(n) for the relationship between transcoder run-time and

energy and for a given clock frequency n (Figure 50 (left)) and Kd(n) for the relationship

between data size and energy (Figure 50 (right)).

6.2.3 Results

The following measurements have been performed with the same setup as in Section 6.2.2. In

the first experiment, the overheads associated with the transcoder selection mechanism are

measured. Figure 51 (left) shows the overheads in microseconds for both the transcoder se-

lection algorithm and the table updates with an increasing number of transcoders. Figure 51

(right) evaluates the sender-side computation of transcoder run-times for the gray, crop,
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Figure 50: Energy cost of transcoder execution (left) and data transmission (right).

and reduce transcoders for 100 images with random sizes between 1kByte and 900kBytes.

The graph shows the number of run-time predictions (in %) that deviate from the actual,

measured run-times. The accuracy of the run-time predictions determines the accuracy of

the energy predictions for the transcoder executions. For example, for an image of size

200kBytes, a deviation in 1ms in run-time prediction results in an error of less than 2%

in the energy computation (TEQ) for the gray transcoder. In comparison, the predictions

of the output data sizes for the gray, crop, and reduce transcoders were accurate within

1kByte in about 98% of all cases.

Figure 52 shows the results of the TEQ computations for the gray, crop, and reduce

transcoders. The first graph compares the three transcoders for different input event sizes,

where the parameters for the crop transcoder and the reduce transcoder where set to resize

the original image to 1/4 of its original size. The second graph compares the crop transcoder

for three different parameter settings with the gray transcoder for data sizes of 58, 230, and

518kBytes. These results indicate that for different parameters and different input data

sizes, the TEQ computation will result in different transcoder selections, e.g., for data size

of 518kBytes the crop transcoder achieves higher TEQs (and therefore energy savings) than

the gray transcoder for images that are cropped to 40% or or less of the original size.
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Discussion. Table 4 summarizes the mean deviations obtained with the framework intro-

duced in this chapter. For example, the predictions for the run-times deviate by 3.8ms for

the gray transcoder (corresponding to 5.4% of the total run-times), where the predictions

for the output data sizes deviate less than 1kByte or 0.2%. These numbers result in a TEQ

prediction for the gray transcoder that deviates 3.2mJ (or 5.6%) from the measured results.

The predictions for the crop and reduce transcoders are only slightly worse than the ones for

the gray transcoder. The approach evaluated here is comparable to the solution proposed

Table 4: Mean deviations.

Transcoder Run-time Data Size TEQ

gray 3.8ms (5.4%) 1kByte (0.2%) 3.2mJ (5.6%)

crop 9.7ms (6.9%) 1kByte (0.2%) 7.3mJ (8.4%)

reduce 7.6ms (6.2%) 1kByte (0.2%) 6.5mJ (6.2%)

in [87], where video streams are retrieved from a multimedia server and a proxy between

server and clients executes transcoders. Their middleware approach collects residual energy

availability information on the client and uses this information on the proxy for real-time
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Figure 52: TEQ computation.

transcoding. This is similar to the approach introduced here in that relevant energy in-

formation of devices is shared and used to perform transcoding. However, the framework

used in this chapter addresses situations where both client and server are mobile devices,

and transcoder execution is only feasible at either end-host (e.g., in ad-hoc networks, access

points without customization capabilities, etc.). This solution can easily be applied to the

same setup as introduced in [87], i.e., where the transcoder selection algorithm is executed

in an access point or proxy.

6.3 Exploitation of Network Idleness

Wireless cards consume a substantial percentage of a mobile device’s energy. For instance,

the Compaq iPAQ handheld with a StrongARM processor requires approximately 1.32W

when idle, while an Orinoco Gold 11Mbps wireless card requires about 1.4W when transmit-

ting. A key motivation for this research is the fact that this large contribution of network

components to total system energy requirements is likely to increase in the future, due to

current trends toward increasingly thin, continuously connected client devices.

Key approaches to energy management are: (a) reducing the amount of work (or avoid-

ing work with little or no ‘profit’), (b) ‘smart’ scheduling of resources (e.g., bursty disk or

network accesses), and (c) reducing data reads and writes, e.g., to and from networks and
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disks. In the 802.11b standard, mobile devices can announce to an access point that they

wish to switch to a low-power doze or sleep mode. The access point’s task is to send out a

beacon periodically (e.g., every 100ms), followed by a traffic indication map or ‘TIM’. Each

sleeping device has to wake up periodically to listen for the beacon in order to exchange

control information with the access point. The TIM is used by an access point to indicate

if it has data buffered for a sleeping device. In the case of the Orinoco wireless card, the

idle mode requires 0.8W, however, the doze mode requires only 45mW, which suggest that

maximizing the times a device can be placed in doze mode can be very effective for the

preservation of energy.

The approach to energy management proposed in this work is summarized as follows:

• Real-time data streams have ready times tr (earliest allowable transmission time) and

deadlines td (latest allowable transmission time) associated with each packet. The

task of a QoS packet scheduler is to transmit packets according to their scheduling

attributes. Best-effort packets (i.e., no associated deadlines) are transmitted after

real-time packets. If no schedulable packets are in the device’s packet queue, the

wireless network card is switched to a low-power ‘doze’ mode.

• When a packet is placed into the device’s packet queue, the device’s watchdog timer

tw is set to the packet’s deadline minus an adjustable offset to: tw = td − to. This

delays the packet’s transmission to the latest possible time, increasing the likelihood

of bursty transmissions, i.e., if multiple packets are in a device’s queue, tw is set such

that these packets can be transmitted together as one burst. The offset value is

dynamically adjustable and ensures that data transmission is successful even under

network medium contention: If packet deadlines are missed, the offset is increased and

if packet deadlines are met consistently over a period of time, the offset is decreased.

• When tw expires, the device is woken up and the packet scheduler transmits all queued

packets with tr ≤ tcurr, where tcurr is the current time. After transmission, the device

is switched back to doze mode (i.e., no timeout periods).

• Dynamic frequency scaling is coordinated with this approach such that when the
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packet scheduler’s queue is empty, the lowest possible CPU clock frequency is used

to delay the generation of new packets. As soon as the first packet is generated,

the system switches to the highest possible clock frequency, in order to increase the

number of packets queued (i.e., increasing the burstiness of data transmission) and to

accelerate data transmission.

• The real-time CPU scheduler is adjusted such that tasks that have a low probability

of packet generation are preferred while the packet scheduler’s queue is empty, and

tasks that have high probability of packet generation are preferred when the queue is

non-empty, again, to increase the burstiness of data transmission.

The goals of these steps are twofold: (1) increase the burstiness of data transfer in

order to reduce the number of switches between low- and high-power modes of the wireless

card, and (2) minimize the potentially negative effects of dynamic frequency scaling on the

energy efficiency of traffic shaping. The resulting advantages are increased burst sizes, a

reduced number of costly switches between doze and idle modes, the elimination of costly

timeouts, and increases in the communication device’s sleep times by ‘accelerating’ data

transmissions.

6.3.1 Bursty Packet Transmission

The first element of the integrated management approach introduced int this section in-

creases the burst size of packet transmissions over a wireless link. Figure 53 (left) shows a

scenario where 3 streams are submitted periodically, all with identical periods (T=200ms)

and packet sizes (5kBytes). All measurements are performed on a Compaq iPAQ H3870

with an Orinoco Gold 11Mbps wireless card. In this scenario, as soon as a packet is sub-

mitted to the device’s packet queue, the device immediately tries to deliver the packet at

the earliest possible time (i.e., ready time). In keeping with standard energy management

techniques, the device is kept in doze mode whenever possible. In this scenario, the net-

work card needs to wake up 3 times each period and transmit a packet. Note the ‘peaks’

at 90 and 190ms, which occur when the device wakes up to receive a beacon signal from
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Figure 53: Packet transmission without traffic shaping (left) and with traffic shaping
(right).

the access point. Figure 53 (right) shows the same scenario, but packet transmission is de-

layed in order to increase the likelihoods of large bursts. When a packet is entered into the

packet queue, the transmission time is determined as shown in the following code segment,

where tw is the current watchdog time, to is the offset, tx is the predicted transmission

time, Tx is the sum of the predicted transmission times of all previously queued packets,

and q len is the the number of queued packets that will be transmitted before the newly

arrived packet (according to the DWCS packet scheduling policy). As before, td denotes

the packet’s deadline and tr the packet’s ready time.

1: if (q_len == 0) {

2: t_w = t_d - t_o;

3: } else {

4: T_x = 0;

5: for (i=0; i<q_len; i++) {

6: T_x += queue[i].t_x;

7: }

8: t_x = t_w + T_x;

9: if (t_d < t_x) {

10: prev_t_w = t_w;

11: t_w = t_w - (t_x - t_d);

12: restore = FALSE;
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13: for (i=0; i<q_len; i++) {

14: if (queue[i].t_x < queue[i].t_r) {

15: restore = TRUE;

16: break;

17: }

18: }

19: if (restore == TRUE) {

20: t_w = prev_t_w;

21: }

22: }

23: if (t_d < t_w) {

24: t_w = t_d - t_o;

25: }

26: enqueue(packet);

27: }

Lines 1-2 describe the case when the packet queue is empty and tw is set such that

the newly arrived packet will be transmitted as late as possible. Lines 4-8 compute the

predicted transmission times for all packets in the queue that will be transmitted before the

newly arrived packet; this time will be used in the subsequent steps. If the scheduler would

not be able to transmit the packet before its deadline, the algorithm attempts to adjust tw

such that the new packet will ‘fit’ into the current burst (lines 9-22). This is done by moving

tw forward by tx − td, but only if this action will not cause any previously queued packet

to be transmitted before its ready time (lines 14-17). Finally, if td < tw, a new watchdog

time is set (lines 23-25), i.e., the new packet will form a new burst. The adaptive offset is

initially set to zero; when the packet scheduler observes that deadlines are missed beyond

the ‘allowable’ deadline misses (expressed by x/y), it is increased in steps of 1ms.

Once all ‘eligible’ packets (i.e., the packet’s ready time has expired) are transmitted, the

watchdog time is set to the deadline (minus the offset) of the next packet in the queue, if

the queue is non-empty. This approach can further be refined to coordinate data reception

and data transmission, i.e., the watchdog time is set such that each burst is transmitted

right before a beacon signal is expected from the access point. That is, a device wakes

up, submits all queued packets and then remains awake to listen for a beacon signal and

returns to doze mode if no data is pending at the access point. This optimization is not
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further considered in this dissertation. All packets that do not have deadlines associated are

considered best-effort packets and are transmitted at the end of the current burst. Finally,

this paper considers UDP streams, i.e., streams that support lossy transmission of data,

e.g., video and audio streams. If either a TCP packet or a UDP packet that has been

marked as ‘urgent’, is submitted to the device, the packet is transmitted immediately and

all queued packets with tcurr ≥ tr are transmitted.

6.4 DWCS and Dynamic Frequency Scaling

Modern mobile processors support multiple clock frequencies or voltages; this dissertation

uses frequency scaling.
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Figure 54: Video decoding on a mobile device (left) and energy consumption versus
execution time for clock frequencies ranging from 59MHz to 206.4MHz (right).

Figure 54 (left) shows a snapshot of a video decoding process on the iPAQ H3870

handheld. A video stream is received at a rate of 10 frames per second, giving the decoder

100 ms for the display of each individual frame. If the device is under-utilized, frame

decoding can be performed faster than that, resulting in ‘idle times’. It is possible to

reduce such idle times by reducing the CPU clock frequency, while still meeting each frame’s

soft deadline for decoding [82, 107]. To enable such per-frame device power management,

measurements in Figure 54 (right) compare the energy consumption of the iPAQ with the
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execution time of a simple for-loop with 107 iterations (simulating a video decoding process)

at 11 different clock frequencies. The iPAQ is run without any extension or network cards

and with the LCD screen turned off. The energy consumption

E(Joule) = Pactive ∗ Tactive + Pidle ∗ Tidle

is the sum of the ‘active’ period of the device (Pactive ∗ Tactive) and the ‘inactive’ (or idle)

period of the device (Pidle ∗ Tidle). The energy consumption depicted in Figure 54 (right)

and in all subsequent energy graphs is computed over the period of the worst-case execution

time (WCET) of the emulated function handling video frame decoding; in this experiment

the handler function has a WCET of 3.09s running at 59MHz. The idle power of the iPAQ

is 0.29W.

The key result depicted in Figure 54 (right) is that although the run-time of the examined

code increases by more than 2 seconds when CPU frequency is scaled from 206.4MHz to

59MHz, energy consumption is reduced by 200mJ (Pactive for 206.4MHz: 0.92W, Pactive

for 59MHz: 0.41W). These graphs indicate that there is a possibility to save energy by

‘intelligently’ slowing down processing on a mobile device. One can also observe that at

some frequencies the energy consumption rises, however, this behavior is disregarded in this

dissertation, but others (e.g., in [84]) have investigated this issue.

6.4.1 Dynamic Frequency Scaling Algorithm

The example considered in this section is that of a video player on a mobile device. Clock

frequencies are typically computed such that the rest utilization of the CPU is exploited by

slowing down task execution. With DWCS, a new clock frequency is computed whenever

the system utilization changes, e.g., when tasks join or leave the run queue. The current

utilization of all tasks is computed with:

U =
∑

(1 −
xi

yi

) ∗
Ci

Ti

Ci is the service time allocated to task i at the default clock frequency and this service time

increases when the clock is slowed down. For each clock frequency n, a scaling factor kn can

be obtained by executing a sample processing-intensive code at both the default frequency
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fmax and fn and dividing the measured run-times: kn = Cn/Cmax. This is repeated for

each available clock frequency (or core voltage) for a given processor. The goal of frequency

scaling is to get as close to 100% utilization as possible, i.e.,

U100% =
∑

(1 −
xi

yi
) ∗

Ci ∗ k′

Ti

where k′ is the yet unknown scaling factor. To guarantee that best-effort tasks are not

starved, one can replace U100% with Ux%, e.g., U95%. Then k′ can be determined with:

k′ =
U95%∑

(1 − xi

yi
) ∗ Ci

Ti

The resulting k′ is compared to the previously obtained scaling factors, and the scaling

factor kn closest to k′ (kn ≤ k′) is selected, and the clock frequency is adjusted to frequency

n.

6.4.2 Run-Time Variations

In addition to computing the most appropriate clock frequency, Q-Fabric also measures

application progress for deadline-constrained periodic activities. Here, if the execution is

faster or slower than expected, Q-Fabric can adjust the clock frequency such that application

termination before the deadline is ensured. Variations in the run-time can be large due

to external and internal influences. External influences are outside of the control of

Q-Fabric, e.g., tasks can be delayed or preempted by other tasks with higher priorities.

Internal invariants are under the control of Q-Fabric and are caused by variations in data

size or complexity (e.g., changing size or resolution of images).

6.4.2.1 Power Checkpoints

With power checkpoints, clock frequency adjustments can be made while a task executes,

that is, adaptivity is introduced at a finer granularity. Two types of checkpoints are sup-

ported in this implementation: (i) code checkpoints and (ii) scheduler checkpoints.

Code Checkpoints. Code checkpoints (Figure 55) are placed directly in the task by the

application developer or by a compile-time tool. Each time a checkpoint is reached, the
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Figure 55: Code checkpoints.

task execution is interrupted and a call-back into Q-Fabric is performed. Q-Fabric then

compares the actual run-time of the task with the predicted run-time and changes the clock

frequency if necessary. This is useful for situations where external influences delay the exe-

cution of the task. The positioning of a code checkpoint has an influence on the usefulness

of the checkpoint. For example, a checkpoint placed in the second half of the code may

be more useful than a checkpoint in the first half. Further, a code checkpoint has one

argument which is a simple integer in the range from 0 to 10. This argument allows the

task to inform Q-Fabric about the complexity of the currently processed data, which then

allows Q-Fabric to choose a more conservative frequency level if required. As an example,

a video decoding task can ‘inform’ Q-Fabric about an image size or quality that deviates

from the size or quality of previous images. Q-Fabric determines the clock frequency level as

described before, however, it takes the checkpoint argument into consideration. For exam-

ple, an argument of ‘2’ indicates that Q-Fabric should choose a clock frequency of at least

2 levels higher than it would choose without this argument. This allows the task to force

Q-Fabric to be more conservative in frequency scaling. Figure 56 compares the number

of missed deadlines with different checkpoints. The first bar indicates that 215 executions

out of 1000 miss their deadlines in this experiment. Note that some of these executions

have such early deadlines that they are not able to meet them even running at the highest

possible clock frequency (in this experiment about 60-70 of all executions fall into this cat-

egory). The following bars then indicate the missed deadlines for 1,2,3, and 4 checkpoints,

which are set at equal intervals in the code. It can be seen that the number of missed
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Figure 56: Missed deadlines (left bars) and number of frequency adaptations (right bars).

deadlines drops from 215 with no checkpoints to 80 with 4 checkpoints. The second set

of bars show the number of power adjustments that were necessary, the more checkpoints

the more adjustments are being made. Figure 57 shows that the average clock frequency

increases with the number of checkpoints, however, the change here is only about 10MHz

between 0 and 4 checkpoints. Note that in this implementation, only if a handler finishes

without clock frequency adjustment during run-time, the measured run-time will be used

for re-computation of the run-time average.

Scheduler Checkpoints. A second approach to the checkpoint solution relieves the appli-

cation developer from finding appropriate places in the code for the checkpoint placement.

Instead, the Linux CPU scheduler has been modified such that each time the scheduler is

about to schedule a Q-Fabric-supported task, it first calls back into Q-Fabric. The advan-

tage here is that the checkpoints are set ‘automatically’ by the scheduler. However, the

code is not able to inform Q-Fabric about increased complexity of the processed data con-

tent. Further, with scheduler checkpoints the clock frequency is only re-considered when

the scheduler runs and when the task actually is being preempted. Figure 58 shows this

scenario. Each time the CPU scheduler selects the Q-Fabric-supported task as the next
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Figure 58: Scheduler checkpoints.

task to run (after it got previously preempted by another task), the scheduler calls back

into Q-Fabric, which then re-adjusts the clock frequency if necessary. The call-back func-

tionality is independent from the scheduling policy used. To enable any CPU scheduler to

make use of per-task frequency levels and to make call-backs into Q-Fabric the following

changes have been applied to the Linux kernel:

(a) The task structure in linux/sched.h (struct task struct) has been extended with two

new entries: clock frequency, which is used to store the most recently used clock frequency

in kHz for this task and kecho task, which is a flag that indicates if a task is a Q-Fabric-

supported task.

(b) After the CPU scheduler has selected the next task to be run it first inspects the
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kecho task variable in the task structure of this task and makes a call back into Q-Fabric

if the entry indicates that the task is a Q-Fabric-supported task. This gives Q-Fabric the

opportunity to re-compute the required clock frequency.

(c) Finally, the CPU scheduler checks the clock frequency entry (which might have been

modified by Q-Fabric in the previous step) and re-adjusts the clock speed if the entry differs

from the current value of the clock speed.

In the case of scheduler checkpoints, the actual number of checkpoints can vary and

depends on the run-time of the task, the number of preemptions, and the frequency of

scheduler invocations.
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Figure 59: Comparison of ‘bad’ and ‘good’ code checkpoint placement, and scheduler
checkpoint placement.

While in the case of scheduler checkpoints the checkpoint placement is ‘performed’ by

the CPU scheduler, with code checkpoints the task developer has to identify appropriate

places in the code for such call-backs (possibly with the help of compile-time tools). Fig-

ure 59 compares the effect of ‘bad’ checkpoint placement (e.g., situations where checkpoints

are placed only in the first half of a task) with ‘good’ checkpoint placement (e.g., situations

where the checkpoints are evenly distributed in the task). The latter case shows greater
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reductions in missed deadlines with larger numbers of checkpoints. In addition, the sched-

uler checkpoint approach is compared with the code checkpoint approach: the results are

comparable to the ‘good’ placement policy for the code check points.

6.5 Summary

Limiting the energy consumption of mobile devices has evolved into a key issue for QoS

management. This chapter introduced three different approaches to energy management

supported with Q-Fabric: (a) media transcoding, (b) DWCS-based CPU scheduling coupled

with dynamic frequency scaling, and (c) deferred packet transmission for wireless commu-

nication. In the first approach, energy-aware media transcoding carefully balances the costs

associated with the use of different resources in order to find the ‘cheapest’ (in terms of

energy) approach. Dynamic frequency scaling is an approach to slow down the operation of

the device, reducing application performance, but preserving energy. This chapter further

introduced an approach to compute the optimal clock frequency when a real-time scheduler

such as DWCS is used. Finally, wireless network connections make significant contributions

to the energy requirements of a mobile device. This chapter also introduced an approach to

reduce the number of switches between doze and active modes by increasing the burstiness

of packet transmission. It does so by delaying packet transmission up to their deadlines

to increase the probability of large bursts. While each individual approach succeeds in re-

ducing a system’s energy consumption, only the cooperative management of all approaches

results in maximum energy savings, which is further underlined in the following chapter.
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CHAPTER 7

INTEGRATED ENERGY MANAGEMENT

Energy management can be performed at multiple layers of a system: the physical layer,

the protocol stack, the operating system, and the application. With the rising number of

energy management techniques available at all of these layers, it is increasingly important

to integrate these techniques within and across layers and across devices. The previous

chapter introduced three energy management techniques and their deployment in the Q-

Fabric architecture. In this chapter, the combined use of these techniques is studied and the

concept of global energy management directives is introduced. The goal is to underline the

importance of integration in distributed QoS management and to describe this integration

in the context of the Q-Fabric infrastructure. Using Q-Fabric, multiple energy management

techniques residing on multiple hosts can efficiently cooperate and thereby ensure that

energy consumption in a distributed system is minimized.

7.1 Energy-Aware Traffic Shaping

Besides communication, computation is another significant source of energy consumption.

Clock frequencies and CPU voltages of modern mobile processors can be reduced with

dynamic frequency scaling (DFS) and dynamic voltage scaling (DVS). A similar approach

has been suggested for the use in wireless cards, called Dynamic Modulation Scaling or

DMS [127]. Here, modulation frequencies are selected such that transmission times are

prolonged while energy requirements are reduced, similar to the effects of dynamic voltage

scaling.

The approach to energy management proposed in this section extends the approach

introduced in Chapter 6 with the following steps:

• Dynamic CPU frequency scaling is coordinated with network-level traffic shaping such
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that when the packet scheduler’s queue is empty, the lowest possible CPU clock fre-

quency is used to delay the generation of new packets. As soon as the first packet

is generated, the system switches to the highest possible clock frequency, in order to

increase the number of packets queued (i.e., increasing the burstiness of data trans-

mission) and to accelerate data transmission.

• The real-time CPU scheduler is adjusted such that tasks that have a low probability

of packet generation are preferred while the packet scheduler’s queue is empty, and

tasks that have high probability of packet generation are preferred when the queue is

non-empty, again, to increase the burstiness of data transmission.

The goals of these steps are twofold: (1) increase the burstiness of data transfer in order

to reduce the number of switches between low- and high-power modes of the wireless card

and (2) minimize the potentially negative effects of dynamic frequency scaling on the energy

efficiency of traffic shaping. The resulting advantages are increased burst sizes, a reduced

number of costly switches between doze and idle modes, the elimination of costly timeouts,

and increases in the communication device’s sleep times by ‘accelerating’ data transmissions.

When multiple energy management techniques are deployed, the uncoordinated combination
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Figure 60: Energy savings for using dynamic frequency scaling (left) and sleep modes for
network cards (right).

can have unintended adverse effects, i.e., the combined energy savings are suboptimal.
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Figures 60 and 61 repeat the results introduced in the first chapter of this dissertation: the

left graph in Figure 60 shows the energy savings achievable by using frequency scaling (DFS)

on a sample processor for a snapshot of 1s and a CPU utilization of 25% (resulting in energy

savings of up to 46mJ). In comparison, the right graph shows the energy savings achievable

by exploiting the sleep mode of a wireless network card, i.e., when no communication occurs,

the device is switched into a low-power mode. Depending on the network utilization, the

savings can reach up to 850mJ. Figure 61 shows the expected energy savings when both
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Figure 61: Expected energy savings (left bars) and actual energy savings (right bars) for
the combined use of dynamic frequency scaling and the network card’s sleep mode.

DFS and the network card’s sleep mode are deployed. In this example it is assumed that

the lowest clock frequency is used, resulting in energy savings of 46mJ from the use of DFS.

Ideally, the total energy savings are the sum of the savings from using DFS and the network

card’s sleep mode; the expected results are shown as the left bars in Figure 61. However,

the actual energy savings are significantly lower than the expected savings (right bars), e.g.,

at 50% network utilization, the expected savings are 473mJ, the actual (measured) savings

are only 266mJ. This discrepancy is addressed in this section.

Scaling the clock frequency has been shown to be effective in saving energy when the

processor has idle times [75, 130, 98, 45, 60]. Network activities that involve the CPU,
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including protocol processing and packet scheduling, particularly when packet fragmenta-

tion is used (such as in the 802.11b standard), affect how long a network card requires

to transmit data and how long it can be kept in doze mode. Figure 62 (left) shows the
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Figure 62: Packet transmission without (left) and with (right) dynamic frequency scaling.

current drawn by the network device when a packet of size 12kByte is transmitted over

a wireless connection at the default clock frequency of 206.4MHz on the Compaq iPAQ,

requiring 31ms. In contrast, Figure 62 (right) shows the same packet being transmitted

when the clock frequency is scaled down to 59MHz, requiring 55.5ms. IEEE 802.11b sup-

ports fragmentation, where packets are transmitted in fragments of typically 256 to 2048

bytes. In the example shown here, at 59MHz, the network card has to remain active 78%

longer than compared to the case with 206.4MHz. This means that frequency scaling – and

similarly voltage scaling – affects adversely the doze mode approach for wireless network

cards. Further, as shown in Figure 63, slowing down the clock frequency also reduces the

burstiness of data transmission. The first half of Figure 63 shows the transmission of two

packets as a single burst at 206MHz; after 200ms the clock frequency is changed to 59MHz,

resulting in both packets being transmitted separately. The reason is that once the first

packet is entered into a packet queue, it takes longer, possibly beyond the deadline of the

first packet, until other applications can generate more packets. Figure 64 explains this
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Figure 63: Effect of frequency scaling on transmission times and burstiness.

situation in detail. Consider two tasks that generate packets with identical periods, but

with a phase delay. When task 1 submits a packet, the transmission is delayed until the

packet’s deadline. In the meantime, task 2 also generates a packet, which is placed in the

scheduler queue behind task 1’s packet and both are transmitted together. In the snapshot

shown in the graph, the network is active 4 times. Now consider the case with a low clock

frequency, the execution of tasks 1 and 2 requires more time, leading to a scenario where

task 2 cannot generate the packet in time such that it could be send at the same time as

task 1’s packet, and therefore will be transmitted at its own deadline. The result is that the

network has to be active twice as frequent. Again, this reduces the possibility of forming

large bursts. This problem is addressed by modifying the way frequency scaling is used.

7.1.1 Modified Frequency Selection Algorithm

The frequency selection method introduced in the previous chapter is now adjusted in the

following way. The clock frequency is kept at its maximum (fmax) while the packet scheduler

queue is non-empty and while packets are transmitted. This ensures that packet transmis-

sion is executed at the highest clock speed and that the traffic burstiness is maximized.

Once the queue is empty, Q-Fabric switches to a lower clock frequency to exploit idle CPU

127



TASK 1

TASK 2
period T

period T

TASK 1

TASK 2
period T

period T

Network
Activity

Activity
Network

Processing

Communication

time

HIGH CLOCK FREQUENCY

LOW CLOCK FREQUENCY

Figure 64: Effect of frequency scaling on burstiness.

time. Here, k′ is calculated as follows:

k′ =
U − U ′

(
∑

(1 − xi

yi
) ∗ Ci

Ti
) − U ′

U ′ is obtained by measuring and averaging the time from the arrival of the first packet in

the device’s queue until the end of the transmission of the last packet in the next burst. It

expresses the part of the total system utilization that is measured when fmax is used as the

clock frequency. Therefore, k′ and consequently kn and fn are determined for the period of

time when the queue is empty; whenever the queue is non-empty, the CPU clock is run at

fmax. Figure 65 (left) shows the transmission of one packet at fmax on the first y-axis and

the used clock frequency on the second y-axis (in this case, 206.4MHz). Figure 65 (right)

compares this to the transmission of a packet at f59 (59MHz). Finally, Figure 66 shows the

packet transmission with the modified approach, where computations are performed with

frequency f59 until packets are enqueued, then the clock frequency is switched to fmax.

Burst Sizes. If the average burst size is small (e.g., 1 packet), there is no advantage in

switching the clock frequency at the time the packet is placed into the queue. Therefore,

the actually achieved burst sizes are monitored and Q-Fabric switches between two modes:
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Figure 65: Packet transmission at maximum clock frequency (left) and minimum clock
frequency (right).

(a) if the average burst size is 2 or higher, the clock frequency is switched to fmax at the

time the first packet is enqueued, (b) otherwise, the clock frequency is switched to fmax at

the time packet transmission starts.

Scheduler Queue Fill Level. The ready time of a packet determines the packet’s earliest

possible transmission time. Typically, ready times are either the current time or in the near

future, e.g., for a live video streaming application where the CPU’s and packet scheduler’s

attributes are synchronized, the ready time is at most the offset Θ ahead of the current time.

However, it could happen that an application submits packets with ready times further in

the future, preventing them from being transmitted in the current burst. In that case, the

algorithm would not switch back to fn after the burst is transmitted because packets are

still pending in the queue. Here, the algorithm is modified to ensure that the CPU clock

is executed at the lower frequency for at least 50% of the time, to exploit idle CPU times.

This is achieved by setting the device clock to fn after transmitting a burst and the CPU

clock is set to fmax at packet arrival in the queue only if the CPU clock has run at fn for

at least tb time units, where tb is the measured average burst size.
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Figure 66: Packet transmission and clock frequency.

7.1.2 CPU Scheduling

With each task or task’s time slice is associated a probability of network communication.

For example, a probability of ‘0’ may be assigned to processing-intensive tasks that do

not use the network card, where a probability of ‘1’ may be assigned to communication-

intensive tasks. In the general case, such probabilities can be assigned to tasks through

the use of online monitoring. For example, a video capture task may require 3 time slices

for each frame. While the first and second slices in each period are required for camera

operation, the processing, and the compression of a video frame, the third time slice may

be the one during which the frame is actually submitted to the network connection. In

that case, time slices 1 and 2 will have a low probability and slice 3 has a high probability

of network communication. Consider Figure 67, where the top graph shows the task or

time slice communication probabilities, and the bottom shows the network activity. While

the network queue is empty, the CPU scheduler chooses low probability tasks in order to

maximize the time the device is operated with a low clock frequency, and in addition, the

network card can be kept in doze mode. When the first packet is generated and placed in

the packet scheduler queue, the scheduler begins to prefer tasks with high probabilities of

packet generation in order to ensure that as many packets as possible will arrive in the packet
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queue to maximize burstiness. Further, the DFS mechanism switches the clock frequency to

the highest possible clock frequency. Once the packets are transmitted, the clock frequency

is set to low and low-probability tasks are preferred. Table 5 shows the precedence rules

used by the modified DWCS CPU scheduler to find the next process to be scheduled. The

Table 5: Modified precedence rules.

Earliest deadline first (EDF)
Equal deadlines, then order lowest/highest

probability of network activity first
Equal deadlines and equal probabilities, then

order tightest window-constraint first
Equal deadlines and zero window-constraints,
then order highest window-denominator first

Equal deadlines and equal non-zero
window-constraints, then order lowest

window-numerator first
All other cases: first-come first-serve

new rule (shown in bold) ensures that a task’s probability of network activity is considered

when multiple tasks share the same deadline. Note that this rule is executed frequently

(i.e., task deadlines are identical), since (a) periods for multimedia streaming are likely to

be ‘close’ to each other (e.g., corresponding to transmission rates of audio and video), (b)

periods in the DWCS CPU scheduler are ‘aligned’ such that hyper periods can be formed,

which facilitate the computation of CPU utilization or clock frequencies, and (c) the timing
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parameters in DWCS are not chosen randomly, but as multiples of ‘jiffies’, the unit of time

used in Linux (e.g., 10ms).

7.1.3 Overhead Considerations

By running the device at two different clock frequencies (fmax and fn), it is possible that

CPU idle times are not fully exploited. However, this is acceptable when the potential

loss in energy savings for running the CPU at higher clock frequencies is compared with

the gains in energy savings for aggregating larger bursts and faster data transmissions.

Consider the graphs in Figure 68. The left graph compares the energy costs of a mobile

device at both the default clock frequency (206.4MHz) and the lowest possible frequency

(59MHz), where the x-axis shows CPU utilization for a snapshot of 100ms. This could be

the period of a video encoder for a frame rate of 10fps. If the utilization is 100%, then the

difference in energy consumption is 13.1mJ for the execution of the same code at 206.4 and

59MHz. The handheld used in these experiments has 12 different clock frequencies, i.e.,

between two neighboring frequencies, the difference in energy consumption is only slightly

more than 1mJ. Since the algorithm uses fmax for at most 50% of the time, the differences

in energy consumption are 6.55mJ between the highest and lowest possible clock frequencies

and 0.5mJ between neighboring clock frequencies in the worst case. In contrast, Figure 68

(right) shows the difference in energy costs for the transmission of data over a wireless

link at the default frequency and the lowest clock frequency. For example, a packet of size

19.3kBytes takes 25ms to be transmitted, i.e., the wireless card is active for that period of

time. At 59MHz, even though the costs for the actual transmission are identical, the card

has to stay in idle mode longer because of the delays caused by the the lower clock frequency.

Here, the card has to stay active for 80ms, resulting in an additional energy consumption

of 44mJ. Again, the difference for neighboring clock frequencies would be about 3.7mJ.

That is, if the clock frequency is set to a higher value than necessary, then the loss of

energy savings for the CPU are outweighed by a gain in energy savings for the network

transmission by a factor of at least 7.4 in this example (the higher the communication, i.e.,

more or larger packets, the higher this factor).
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Figure 68: Energy savings of frequency scaling (left) and energy costs of network commu-
nication (right).

7.1.4 Evaluation: Video Streaming

The multi-resource scheduling approach described in this dissertation has been implemented

as part of Q-Fabric. Significant kernel changes include the CPU scheduler, the packet sched-

uler, and the Orinoco device driver. In this section, an experiment with a simulated video

capturing application is performed, i.e., images are read from disk instead of a camera

and written back to disk at the receiver side. Clients specify the desired frame rate of

the video stream, here a frame rate of 5 frames per second is used. The video streaming

application shares the CPU with 3 other applications with the following packet deadlines:

500ms, 333ms, 250ms. The intent is to emulate a mobile device used in autonomous robotics

scenarios, where robots collect sensor data in a search and rescue mission. These other ap-

plications may involve dynamic sensor data acquisition and transmission, monitoring and

control information for QoS management purposes (as used in Q-Fabric), other multimedia

applications, and other background applications running on the same device. Figure 69

(left) shows the scenario when no power management is performed, but the CPU uses

frequency scaling. The device runs at the lowest possible frequency, 59MHz and the appli-

cations transmit together 7 packets per 500ms on average. In contrast, Figure 69 (right)

shows the same scenario, however, power management has been enabled. Instead of waking
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Figure 69: No traffic shaping (left) and energy-efficient traffic shaping (right).

up the device 7 times in the time frame of 500ms, it is woken up only twice. In addition,

the total ‘awake time’ is 43.95ms, whereas in Figure 69 (left) the device has to be awake

68.15ms or 55% longer. In terms of energy savings, for the snapshot shown in this example

(500ms), the energy savings related to frequency scaling are 25mJ. If the network device

uses doze modes, but no frequency scaling is used, the energy savings are 389mJ. However,

if both approaches are used together, the energy savings are 392mJ, only slightly more

than using doze modes alone. Using the approach introduced here, the savings increase to

420mJ, a difference of about 7%. If the packet sizes are doubled, this increases to about

13%, i.e., the achievable savings depend on the number of packets transmitted and the size

of these packets.

Discussion. The resulting energy savings depend on the amount of data and the number

of packets being transmitted from a mobile device. The approach introduced here succeeds

in improving energy savings when there are several communicating real-time applications

residing on the same device. Further, the results depend on the task and packet scheduler

parameters, i.e., on the ready times and the deadlines. If deadlines of different data streams

134



are aligned such that the maximum burst size is always one, the number of switches be-

tween low- and high-power modes can not be reduced. The second part of this approach,

coordinating frequency scaling with data transmissions, aims at decreasing the transmission

times of packets. The energy savings are most significant if fragmentation is used, and here,

if small fragment sizes (e.g., 256 bytes) are used (in this work’s examples, fragment size was

2kbytes). If no fragmentation is used, retransmissions in the case of contention or errors

are more expensive, however, the potential energy savings achievable with our approach are

not as significant. Finally, the coordination of frequency scaling and data communications

is useful if there is CPU idle time available, i.e., the clock frequency can be switched to

lower speeds.

7.2 Integrated Media Transcoding, Frequency Scaling, and

Traffic Shaping

If the previously introduced approaches (energy-aware media transcoding, frequency scaling,

and the traffic shaping approach) are used simultaneously on a device, potential conflicts

have to be studied. With energy-aware media transcoding, ‘energy-expensive’ resources are

traded for ‘energy-cheap’ resources, thereby reducing the overall energy requirements. For

the device under consideration, the previous chapter has showed that adding CPU resources

allows the video streaming application to transform a given image into a smaller-sized image,

and thereby reducing the network requirements. So far, these results have not considered

that changing these resource allocations will also affect the energy management techniques

that can be applied. More specifically, if CPU resource requirements are added in the form

of media transcoders, the overall CPU utilization is increased. In Chapter 6, an approach

to determine the desired clock frequency depending on the CPU utilization was introduced,

that is:

k′ =
Umax∑

(1 − xi

yi
) ∗ Ci

Ti

In other words, a scaling factor k′ is determined based on the maximum allowable utilization

(Umax) and the actual utilization. The resulting value k ′ is compared to the previously

obtained scaling factors, and the scaling factor kn closest to k′ (kn ≤ k′) is selected, and
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Figure 70: Effect of media transcoding on average clock frequencies (left) and increase in
network card sleep times (right).

the clock frequency is adjusted to frequency fn. However, when media transcoding is

used, the CPU utilization is increased, decreasing the scaling factor and possibly the clock

frequency. Figure 70 (left) shows this scenario for two different transcoders, the ‘reduce’

transcoder (reducing an image to 25% of its original size) and the ‘gray’ transcoder. Here,

the average clock frequency is shown as a function of the size of the original image. Further,

in both cases, the CPU utilization is 20% when no transcoder is used, resulting in DFS

choosing the lowest possible clock frequency of 59MHz. However, when a transcoder is

used, the clock frequency has to be adjusted – depending on the image size – to reflect

the larger CPU utilization, e.g., for image sizes of 50kBytes, the computed clock frequency

is 103.2MHz (instead of 59MHz). In contrast, using a transcoder typically decreasing the

image size, resulting in reduced network overheads. Figure 70 (right) shows the increase

in sleep times for the network card (per period) caused by the transmission of smaller-

sized images. Summarizing, to accurately predict the potential energy savings that can

be obtained from the use of transcoders, one has to consider the energy loss caused by

running at a higher clock frequency and the energy gain caused by allowing the network

card to remain in the sleep mode longer. The following sections will utilize these insights

to accurately make global energy management decisions.
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7.3 Energy Management Directives

While a significant amount of research has focused on the development of energy man-

agement techniques on individual devices, only little attention has been given to global or

system-wide energy management. For example, in a distributed video conferencing appli-

cation, the desired global goal is that all participants can communicate as long as possible,

i.e., it is more desirable that all participants can communicate for the same amount of time

than having one subset of participants that can communicate for only a significant amount

shorter than another subset. In cluster servers, it is desirable to direct incoming requests to

a minimal set of servers to maximize the number of servers that can be kept in low-power

mode, in order to preserve energy and to reduce the energy or cooling costs. In other words,

depending on the application and the user preferences, a global energy management goal

has to be declared. In this work, these goals are described in energy management directives.

The goal of QoS management is therefore (a) to ensure that clients receive data and appli-

cation performance in a form that corresponds to their QoS needs, such that (b) a chosen

energy management directive is observed. The following directives are supported:

1. Maximize Sender’s Operational Time (MAX-SOT). The goal of this directive

is to minimize the energy requirements of the sender of a media stream, e.g., in the case

of transcoding, all applicable transcoder functions are evaluated in order to find the ones

that minimize the energy costs for the sender, without considering the consequences to the

receiver. Figure 71 shows the scenario when the sender can preserve energy by exploiting

transcoders. The left graph shows the energy costs for the transmission of the original

data (E1) and the transmission of some smaller-sized version of the same data (E2). On the

other hand, the second graph shows the processing costs for the execution of a transcoder to

obtain the smaller-sized version of the data (Ecpu). If E1 −E2 > Ecpu, then the transcoder

execution will result in reduced energy consumption at the sender.

2. Maximize Receiver’s Operational Time (MAX-ROT). Here, the goal is to min-

imize the receiver’s energy consumption, e.g., the sender will perform (a) all mandatory

transcoders and (b) all optional transcoders that result in reduced energy requirements at

the receiver.

137



3. Maximize Application’s Operational Time (MAX-AOT). Here, the battery load

levels of both sender and receiver have to be compared periodically and depending on their

current levels, either MAX-ROT or MAX-SOT has to be followed. The goal of this directive

is to keep the battery loads of the sender and the receiver at about the same level, in order

to ensure that the distributed application can run as long as possible (i.e., both sender and

receiver will run out of battery power at about the same time).

4. Minimize System’s Energy Consumption (MIN-SEC). The energy requirements

of the entire system are to be minimized, i.e., the combined energy consumption of sender

and receiver has to be kept low. This is particularly important wherever energy consumption

translates into costs (e.g., power supply for large hosting centers and cooling costs). Again,

consider the example of media transcoding. At the sender, this approach is similar to MAX-

SOT, however, with one important difference: if the execution of a mandatory transcoder

at the sender causes the sender to consume more energy compared to transmitting the

original data, then the sender will still – unlike in MAX-SOT – execute the transcoder if

the combined costs of the transmission of the original data and the costs for the execution

of the transcoder at the receiver are greater than the processing and transmission costs at

the sender.
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Figure 71: The MAX-SOT directive.

Depending on the directive chosen, energy management decisions have to be evaluated

and compared in order to determine the optimal action for a given directive. These deci-

sions have to be re-evaluated frequently due to changes in application conditions, including

changes in user requirements, resource allocations, or data content. In order to decide
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where to focus energy management, the battery charge levels of all involved devices have to

be obtained and compared periodically. In the devices under consideration in this disserta-

tion, the battery monitor DS2760 is integrated in each device and returns the current charge

level in mAh. The next section describes how the previously introduced energy management

techniques are linked together in Q-Fabric to provide global energy management.

7.4 Global Energy Management

7.4.1 A Transcoding Framework

The transcoding framework introduced in Chapter 6 is now adjusted to consider energy

management directives, i.e., the decision on where to execute a transcoder and which

transcoder(s) to execute is made such that a energy management directive is observed.

Figure 72 shows the architecture of the modified approach, where the new parameters are
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shown in bold letters:

• Energy Management Directive. Sample directives are MAX-SOT, MAX-ROT,

MAX-AOT, and MIN-SEC.

• Battery Load Levels. In the case of the MAX-AOT directive, the battery load levels

of both sender and receiver have to be compared periodically (e.g., once per minute).

The battery loads of the receiver and the sender are obtained using the /proc virtual
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filesystem (in the file /proc/asic/ds2760), which returns the battery charge level in

mAh.

• CPU Utilization. This is required to let the transcoder selection approach consider

the effects of the execution of a transcoder on the device’s clock frequency (as discussed

earlier in this chapter).

The transcoder selection is executed by a QoS manager at the sender of a data stream, and

the receiver is informed about decisions via control events over a Q-Channel. The transcoder

selection algorithm is invoked periodically, however, approaches are possible where the

algorithm runs only in response to certain events, e.g., whenever the user changes the QoS

requirements, or when the video frames change significantly in size or content. Further,

resource monitors and both sender and client watch the current battery charge levels and

exchange this information via monitoring events (see Figure 72).

As before, the transcoder algorithm has to determine the gains and costs of executing

a transcoder at either the sender or the receiver. For the sender-side, for each transcoder

one can obtain an estimated transcoder run-time from the input data size and the ratio rr:

rtt = rr ∗ size(d)

Then the run-time - energy factor Kr(n) is used to obtain the energy consumed by the

execution of the transcoder at a particular clock frequency n, adjusted by the potential

overheads Edfs:

Et = Kr(n) ∗ rtt + Edfs.

Here, Edfs is the loss of energy caused by executing a transcoder that forces the DFS

algorithm to select a higher clock frequency due to the increased CPU utilization. To

obtain this energy, the transcoder algorithm compares the current clock frequency n with

the required clock frequency by adjusting the CPU utilization (obtained via ECalls) with

the costs of executing the transcoder. That is, a new scaling factor k ′′ is computed and

compared to the list of scaling factors for the device and the new scaling factor is used to

determine a new clock frequency m:

m = n + i (i >= 0).
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In other words, the new clock frequency is i steps higher than the original frequency (i >= 0)

and therefore the energy overhead Edfs is computed as follows:

Edfs = (i ∗ Estep)/rate.

Here, Estep is the energy difference between two successive energy levels for a duration of the

transcoder execution period, which then multiplied with the number of steps (i) and divided

by the streaming rate returns the energy loss by having to use a higher clock frequency.

One can then obtain the output data size from the ratio rd:

size(d′) = rd ∗ size(d)

and the output data size (size(d′)) is used along with the factor Kd(n) to determine the

energy consumption for the transmission of the output data:

Ed′ = Kd(n) ∗ size(d′) − Esleep.

Here, Ed′ is adjusted by Esleep, the energy gain caused by transmitting a smaller sized image

therefore allowing the network card to remain in sleep mode longer. Esleep is determined

with:

Esleep = ((tx − t′x) ∗ Ptransmit)/rate.

In words, Esleep is computed by multiplying the difference in transmission times for the

original image and the transcoded image (obtained from the off-line measured network

characteristics) and the power required to transmit data, divided by the streaming rate.

As before, the input data size size(d) is used to determine the energy consumption for

the transmission of the original data:

Ed = Kd(n) ∗ size(d).

This leads us to the transcoder energy quality:

TEQ = (Ed − Ed′) − Et − Ea.

At the receiver side, Edfs is computed identically, however, the formula for computing

Esleep has to be adjusted as follows:

Esleep = ((tr − t′r) ∗ Preceive)/rate.

141



That is, it is computed with the times required to receive a transcoded image and the power

required to receive it.

Based on the directive chosen and the current batter charge levels, the algorithm decides

which transcoders to execute and where to execute them, e.g., given two transcoder energy

qualities TEQs (sender) and TEQr (receiver), two battery charge levels bs (sender) and br

(receiver), and Ercvr, which is the energy overhead of executing a transcoder at the receiver,

the simplified rules for mandatory transcoders are as follows:

if (MAX-SOT) {

if (TEQs > 0)

execute at sender;

else

execute at receiver;

} else if (MAX-ROT) {

if (TEQr > 0)

execute at sender;

else if (Ercvr > abs(TEQr))

execute at sender;

else

execute at receiver;

} else if (MAX-AOT) {

if (bs > br)

same as MAX-ROT;

else if (bs < br)

same as MAX-SOT;

else

same as MIN-SEC;

} else if (MIN-SEC) {

if ((TEQs + TEQr) > Ercvr)

execute at sender;

else

execute at receiver;

}

7.4.2 Case Study: Video Streaming

Consider a video conferencing application between multiple PDAs as described in the pre-

vious chapters. The appropriate energy management directive here is MAX-AOT, to max-

imize the application’s operational time. In this example, video conferencing is simulated
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in the sense that images are read from disk at the sender and written back to disk at the

receiver, instead of using camera and display for capture and replay.

QoS Specification. The system’s managed resources are CPU, network, and energy, and

the DWCS scheduler is used to schedule both CPU and network packets. The application’s

utility functions and QoS ranges are as follows:

Urate = rate ∗ 8;

Usize = (width + height)/2;

Qrate = {10, 25};

Qwidth = {50, 100};

Qheight = {50, 100};

In words, the frame rate has to be managed between 10 and 25fps (frames per second),

where the maximum utility achievable is 200 (rate ∗ 8). The image width and height are

between 50 and 100 pixels, resulting in a maximum utility of 100, that is the frame rate has

a weight wr = 2 and the image size has a weight ws = 1. The CPU and network resources

are similarly managed as described in Chapter 5 and the energy management techniques

described in the previous chapters are deployed.

Results. Figure 73 (left) shows the achieved utility for a snapshot of 1 minute. For the

first 30 seconds, the goal of QoS management is to maximize the total application utility

(maximum is 300), after 30 seconds, the goal is changed such that the energy consumption

of the device is to be minimized, but the total application utility has to be kept above the

minimum (130). Figure 73 (right) shows the energy consumption for the same experiment.

The first 30 seconds show the energy consumption (for a period of 1s) when no power

management techniques are used, after 30 seconds, the goal is to minimize the device’s

consumed energy, which is reduced to about 50% when coordinated energy management is

used. However, when the energy management approaches are used without coordination,
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the energy savings are significantly lower, i.e., compared to the 50% savings with coordinated

energy management, the uncoordinated approach manages to save only 20%. This is mostly

due to the effects of frequency scaling on the sleep mode times of the network card as

described in the previous chapters. If broken down, 60% of the energy savings are due to

the sleep modes of the network card, 34% are due to the media transcoding, and the rest is

due to dynamic frequency scaling and possible other unaccounted effects.

7.5 Summary

This chapter concludes the work on integrated QoS management with a study on the con-

flicting effects of multiple energy management techniques and introduces approaches to

carefully integrate them. Further, this chapter introduced the concept of energy manage-

ment directives, which determine how to use local energy management techniques to save

energy wherever needed. For example, media transcoding can be used in ways that reduce

energy consumptions on either the sender- or receiver-side of video streaming. The results

in this chapter underline the importance of careful integration and show the effects if mul-

tiple adaptation techniques are used with and without cooperation. For example, while the

combined use of all techniques can achieve energy savings of up to 20%, the coordinated or

integrated approach can achieve energy savings of up to 50%.
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CHAPTER 8

RELATED WORK

8.1 Adaptive QoS Management

Previous research has used middleware to ‘bind’ the multiple machines, applications, and re-

source managers that implement QoS provisioning, resource management, and performance

differentiation for distributed applications and platforms, sometimes enhanced by operat-

ing system (OS) extensions on individual machines [57, 81]. However, there remain some

open problems with such middleware-based approaches. First, user-level approaches must

rely on the voluntary participation of applications in QoS management, thereby enabling

non-participants to threaten the guarantees made to participants. Second, the granularity

at which resources can be managed and the fidelity of such resource management are not

always sufficiently high to meet applications’ performance needs. Reasons for this include

(1) inappropriate delays of QoS management [117], often aggravated by the overheads of

application-level QoS managers’ interactions with the system-level mechanisms they must

use to understand current resource usage and availability, and (2) inappropriate interfaces

provided by operating systems that require managers to poll for changes in resource state

or make unnecessary resource reservations, as also noted in [57, 105]. Earlier research prin-

cipally considered adaptations performed at application-level [10, 25]. Cooperation between

application-level adaptations and system-level resource management is implemented as mid-

dleware [37] or as point solutions for specific resources like computer networks [49]. Many

operating system services have been proposed in the past which enhance these systems in

order to make them suitable for multimedia applications [134, 93, 57].

In [69], the authors describe a hierarchical approach to Quality of Service management,

where adaptations are performed within applications. This is achieved by requesting appli-

cations to export a control interface allowing QoS management to activate adaptive mech-

anisms on a set of tunable QoS parameters. In the EPIQ framework [129], a distributed
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Quality of Service architecture is described, providing QoS specification, end-to-end QoS

negotiation and establishment, and QoS adaptation, implemented as middleware solution.

EPIQ provides the tools necessary for the integration and customization of QoS manage-

ment and resource management for real-time applications. Further implementations include

QLinux [136], which, like Q-Fabric, modifies a Linux kernel to provide QoS guarantees. The

focus in QLinux, however, is on scheduling algorithms for CPU, packet, and disk scheduling.

Q-RAM [40] is an analytical approach for QoS management with multiple resources and

multiple dimensions of QoS requirements, which allows resources to be traded off against

each other to obtain the same level of QoS. In the FARA framework [116], the authors use

hierarchical adaptation at middleware level to utilize multiple adaptation approaches for

real-time systems and the SWiFT project [41] resulted in a toolkit for constructing feed-

back loops from libraries, where the interaction between components is limited to a simple

input/output model.

Other recent contributions include multi-resource solutions [113, 151] using libraries [116]

and/or additional servers [51] for distributed adaptation and resource management [141].

Cooperation between application-level adaptations and system-level resource management

is implemented as middleware [37] or as point solutions for specific resources like computer

networks [49]. Other work, such as OMEGA [90] or QuO [115] introduce general QoS

architectures to address the end-to-end management of QoS.

The research described here provides efficient system-level and architectural abstractions

that enable the cooperative management of kernel-level resources with the run-time adapta-

tion of user-level applications. Abstractions are implemented as low-overhead, kernel-level

services, jointly termed Q(uality)-Fabric, which are based on the notions of distributed event

services and event handlers. The issues addressed by Q-Fabric services concern the limita-

tions experienced in current systems for cooperative resource management and application

adaptation, which are due to (a) the specific interfaces defined between applications and

resource managers and (b) the limited interactions permitted between distributed resource

managers. Moreover, (c) cooperation is particularly difficult when resource management

actions are performed at kernel-level. Finally, (d) in large-scale multimedia applications,
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the coordination of a large number of distributed resource managers for heterogeneous

resources and the adaptation of all instances of an application can be overwhelming in

complexity [116].

8.2 Energy Management

There has been substantial work on power management for mobile devices, including low-

power modes for disks and networks [50, 20], power-aware scheduling policies [122, 80,

60, 101], and energy management techniques for wireless communication [2, 88, 102, 110].

The authors in [58] describe a modification to the power saving mechanism in the IEEE

802.11 Distributed Coordination Function. Their aim is to remove the overheads associated

with the TIM windows and to increase the available bandwidth for data transmission.

In the PAMAS [131] approach, separate control and data channels are used, where the

control channel is used to determine when and how long to turn off a wireless network card.

Dynamic Modulation Scaling (DMS) [127] has been introduced as the network variant of

frequency and voltage scaling for processors. This approach is used in [111], where a WFQ

CPU scheduler is modified to take advantage of DMS. In [157, 155, 86], the authors address

the integration of resource management across different layers of a system.

Other approaches have off-loaded processing to other hosts, e.g., to extend the battery

life on mobile devices [71] or to minimize energy costs in Internet data centers [99]. For mo-

bile devices, researchers have developed energy management techniques, e.g., by addressing

the energy costs of wireless data transmissions [110], by scaling device activity according to

applications’ resource needs [22, 122], or by switching between modes with different power

characteristics [20]. The work introduced in this dissertation differs from previous work on

quality-aware transcoding [18] in that the focus is on the reduction of energy consumption

according to global energy management directives. This work is similar to the one proposed

by the authors in [19] in that they also address the use of transcoding to reduce energy con-

sumption, however they focus on storage and energy limitations in an image capture device.

This work builds further on similar work presented in [7], which investigates the trade-offs
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between processing costs of lossless compression algorithms and networking costs of trans-

mitting reduced-size data. In contrast to that, this thesis addresses more generally the

transcoding of media streams in order to maintain application-specific QoS with particular

focus on observing global energy management directives. Further, other approaches address

the integration of multiple approaches to preserve energy [87, 124], e.g., by coordinating

adaptation across protection boundaries [157, 121, 87, 33]. The GRACE project [157, 156]

proposes coordinated adaptation of hardware, operating system, and application layers to

achieve fine-grained tuning of system utility. In the Puppeteer project [32], a middleware

framework is introduced that also uses transcoding to minimize energy requirements. The

focus here is on closed-source applications, where the authors show that applications can

significantly reduce energy usage by allowing applications and power management systems

to incorporate knowledge of each other’s activities. In this thesis, feedback is used to im-

prove the predictions made of future resource requirements. This is similar to the work

presented in [33, 3], where the authors adapt network and CPU resources based on history,

or in [55], where MPEG decoders are used to maximize a system’s lifetime. Also, in [87],

the authors explore the use of transcoders for multimedia streaming, where transcoders

reside on proxies. This dissertation is mostly concerned with fully mobile situations, i.e.,

both stream generation and replay are performed on battery-operated devices and devices

cannot rely on support infrastructure such as extensible and customizable base stations.

Finally, the approach introduced in this document complements work done for server-side

traffic shaping, e.g., as in [20], and also has similarities to the approach in [97], where disk

access pattern burstiness is increased in order to decrease the time a disk has to be kept in

high-power active mode.

8.3 ECalls

Multimedia and real-time applications often require support from the underlying operating

system to achieve their real-time and QoS guarantees. This has led to the development of

operating system services that are responsible for process scheduling [81, 93, 95] and resource

management tasks [56, 126]. When using such kernel-level services, applications interact
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with them via system calls or signals. Since such interactions can be costly, researchers

have sought ways to control call overheads [26, 73], and they have attempted to reduce the

frequency of system calls, e.g., by extending kernels with appropriate application-specific

functionality [8, 29, 39]. Further, upcall primitives have been introduced [23, 53], to better

integrate the kernel- and application-level actions carried out for certain requests. Real-time

variants of upcalls address the specific needs of multimedia and real-time applications [43].

Common elements of these solutions are (1) the need to share information about events

between kernel- and user-level facilities that are critical to application performance, and

(2) to be able to act on such information in a timely fashion. For instance, communication

rates can be adjusted based on information about buffer fill-levels [134], if such information

is made available and acted upon with little delay. The same requirements exist when

exploiting knowledge about the ACK/NAK behavior of communication protocols to alter

the behavior of media streaming [63] or even scientific applications [128]. In fact, past work

has shown that system quality may be reduced rather than improved by runtime adaptation

if such actions are not performed within certain tolerances [117].

Particularly the poor scalability of system calls such as select() or poll() has been the

topic of previous research. In [26], the authors implement an integrated buffer management

and transfer mechanism optimized for high-bandwidth I/O. The goal is to achieve high

throughput across protection domains by exploiting page remapping and shared memory

techniques. The performance of select and poll system calls and POSIX.4 real-time signals is

further analyzed in [17, 6]. In [152], the authors introduce an approach to efficiently transfer

data and control between application and system domain and also provides rate-based flow

control. This is achieved by using I/O efficient buffers and independently scheduled kernel

threads. In [6], the authors introduce an event delivery system allowing applications to

register interest in event sources like sockets. However, the application still has to poll for

events, whereas ECalls is able to notify a process of pending events by executing a handler

function and raising its scheduler priority. In [96], the authors introduce a new flexible and

general I/O approach that avoids data copying with minimal overhead. I/O completion

ports, supported in Windows NT, use a number of pre-forked threads to handle incoming
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events. A throttling mechanism limits the number of currently active threads to avoid large

context switching overheads. Other implementations include the ones addressed in [68]

and [6], where both support mechanisms to (a) register interest in events and (b) collect

these events at a later time. However, these event delivery mechanisms are pull-based,

i.e., applications have to scan some form of lists, flags, or queues. Similarly, the approach

in [118] aims at reducing the need for system calls to obtain network connection states

from the kernel. Although ECalls offers the tools to implement similar approaches, it also

supports push-based delivery of events, e.g., through real-time signals or direct invocation

of handler code – including dynamically generated code – in the system domain. Further,

ECalls’ event-aware CPU scheduling can enhance the CPU scheduler with knowledge about

event receipt, e.g., which processes have events pending, and influences scheduling decisions

correspondingly. This functionality builds on and extends earlier work. For example, in [78],

the authors propose an integrated framework for interacting process and message schedulers

for distributed real-time systems. Similarly, in [66], an architecture that is aware of the

real-time characteristics of tasks sending and receiving network packets is introduced. The

goal is to overcome the traditional deficiencies like FIFO ordering of incoming packets and

processing in the kernel of all packets regardless of their priority to the receiving application.

8.4 KECho

KECho uses anonymous event-based notification and data exchange, thereby contrasting

it to lower-level mechanisms like kernel-to-kernel socket communications, RPC [11], or the

RPC-like active messaging developed in previous work [140]. Furthermore, compared to

object-based kernel interactions [47] or to the way in which distributed CORBA, DCOM,

or Java objects interact at the user level [94, 12, 150], KECho’s model of communication

provides improved flexibility, since its use of anonymous event notification permits services

to interact without explicit knowledge of each others identities. Further, event exchange

with KECho can maintain the time order between events as well as deadline- or priority-

based event ordering.

The KECho kernel-level publish/subscribe mechanism shares several important attributes
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with its user-level counterparts. First, KECho events may be used to notify interested

subscribers of internal changes of system state or of external changes captured by the sys-

tem [77]. Second, it may be used to implement kernel-level coordination among distributed

services, perhaps even to complement the application-level coordination implemented with

user-level event notification architectures [119, 27, 48, 77]. Applications constructed with

event-based architectures include peer-to-peer applications like distributed virtual environ-

ments, collaborative tools, multi-player games, and certain real-time control systems. Third,

KECho’s functionality is in part identical to that of known user-level event systems, sharing

functionality such as real-time attributes associated with events, event filtering, and anony-

mous and asynchronous communication providing decoupled linkage of event publishers and

subscribers.

8.5 Monitoring

Different monitoring tools operate at different levels of granularity with consequent trade-

offs between the quality of the information monitored and the overhead associated with it.

Cluster performance monitoring tools have been developed to allow system administrators

to monitor cluster state. A typical tool consists of two major entities: a server that collects

state information of a cluster and a GUI-based front-end, which provides a visualization of

system activity. Parmon [15], Ganglia [120], Smile [137], and many others belong to this

kind. These tools cannot deliver very frequent monitoring updates.

Paradyn [83] is a tool that does performance monitoring for long running parallel and

distributed applications. It adapts the performance of these applications by dynamically

instrumenting them at run-time using the monitoring information that it collects. The

Pablo [114] toolkit focuses on collecting and doing statistical analysis of performance data

in scalable parallel systems. Falcon [46] is an application specific on-line monitoring system

that provides its own set of instrumentation libraries and controls which the developer of

an application can use to tune its performance.

The Supermon [132] cluster monitoring system uses a modified version of the SunRPC

remote-status rstat protocol [135] to collect data from remote cluster nodes. This modified
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protocol is based on symbolic expressions which allows it to operate in a heterogeneous

environment. The Supermon kernel patch exports various kernel monitoring information

via a sysctl call. Scalability can be a problem in Supermon because of the centralized data

concentrator, which collects monitoring data from all cluster nodes.

HPVM’s performance monitor [123] is targeted toward Windows NT clusters. Like Q-

Fabric, HPVM has the ability to automatically adapt cluster applications. The SHRIMP

performance monitor [72] makes a compromise between high level software monitoring and

low level kernel monitoring to accurately monitor various resource information. MAG-

NeT [30] uses an instrumented kernel to export kernel events to user space. It maintains a

circular buffer in the kernel where all events are recorded and other nodes can obtain these

records by contacting a daemon, called magnetd. The kernel must be configured at compile-

time to enable the monitoring, which increases the administrative overhead as monitoring

needs change.

In comparison, Q-Fabric provides a low overhead, fine-grained, kernel level monitoring

facility, with communication based on strict kernel-kernel messaging. Q-Fabric is extensible,

i.e., new monitoring functionality can be added dynamically, e.g., through loadable kernel

modules. Further, Q-Fabric is customizable, i.e., applications can fine-tune the distributed

resource monitoring via parameters and dynamically generated code.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Thesis

The goal of this research was twofold: (1) to provide the framework for efficient and low-

overhead QoS management and (2) to provide the tools necessary for the efficient inte-

gration of multiple QoS management and adaptation approaches. The first is addressed

by providing a system-level event-based implementation of QoS and resource management

mechanisms, achieving low overheads, fine-grain access to system-level resources, and de-

coupled communication between multiple resource monitors and managers. The second

problem is addressed by providing a unifying integration interface, using which multiple

adaptation strategies at different system layers and different hosts can freely communicate,

share information, or cooperate their adaptive measures. Careful integration of these man-

agement mechanisms is key to attaining effective adaptations and to prevent adverse and

unintended effects, e.g., when the actions of one adaptive approach contradict the actions

of another. This work resulted in Q-Fabric, a set of system-level tools, which if used co-

operatively facilitate the deployment of QoS management approaches. The remainder of

this chapter describes the contributions of this dissertation and discusses future research

directions.

9.2 Research Contributions

9.2.1 Conceptual Contributions

The main contributions of this work are the implementation and verification of a quality

management approach that addresses the needs of current and future complex distributed

applications. It provides the performance and timeliness required of QoS-aware applications

by using a full in-kernel solution, based on low-overhead communication across protection
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boundaries and between nodes. It supports the transparency commonly required in qual-

ity management approaches, while also being highly customizable, particularly through

Q-Fabric’s dynamic code generation ability, allowing it to dynamically extend and modify

a kernel’s functionality. The in-kernel approach also enforces the participation of all ap-

plications in quality management, and the event-based approach of Q-Fabric supports the

flexibility necessary to address the dynamics of large-scale distributed applications. As a

specific contribution, the Q-Fabric approach is used to develop and deploy quality man-

agement techniques with energy as a first-class resource. Here, the integrated management

of multiple energy management techniques is essential to minimizing the system’s energy

requirements.

9.2.2 Artifacts

The following software artifacts are among this research:

• ECalls: a low-overhead alternative to existing system call and signal mechanisms,

where applications can choose the method they desire. Novel elements include shared

memory segments between protection boundaries, conditional system calls, or real-

time events with dynamically generated event handlers in the operating system kernel.

• ECalls-based CPU scheduling: an approach to attain high responsiveness by allowing

event and CPU scheduling to cooperate, as shown with a real-time CPU scheduler.

• Distributed extension and customization interface: operating system kernels can be

modified and extended (locally and remotely) with Q-Fabric’s dynamic code genera-

tion. This functionality is used to deploy resource monitors, utility functions, event

handlers, or event filters.

• KECho: a kernel-level approach to the familiar publish/subscribe communications,

including a number of enhancements, e.g., a network monitor layer (for higher re-

sponsiveness), asynchronous kernel-level socket communication, real-time events, and

‘communicating’ filters, i.e., the filter of a control channel (Q-Channel) can change
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attributes of a filter in a data channel (application-to-application communication),

thereby affecting data streams immediately without involvement of applications.

• Integration of the real-time CPU scheduler DWCS and the frequency scaling (DFS)

capabilities of modern mobile processors: frequency scaling is a popular way to pre-

serve energy on mobile devices; this dissertation introduced an approach to utilize

DFS efficiently in conjunction with the DWCS real-time scheduler.

• Energy-aware media transcoding: media transcoding refers to the downsampling of

video or audio data in order to reduce their size and therefore the communication

overheads. Energy savings can be achieved if the computation overheads associated

with the execution of a transcoder are smaller than the gains in transmitting data of

reduced size.

• Energy-efficient traffic shaping: this approach carefully integrates the frequency scal-

ing capabilities of the CPU and the low-power sleep mode of the network card, in

order to increase the burstiness of network traffic (to avoid costly switches between

the sleep and active modes of a wireless network card) and to prevent adverse effects

of using both approaches simultaneously.

9.2.3 Evaluation Results

The results in this dissertation underline the advantages of a system-level event-based ap-

proach to QoS management and the importance of careful integration of multiple quality

management techniques. Both microbenchmarks and real applications (such as video play-

ers or web servers) show that both ECalls- and KECho-based solutions have significant

performance advantages compared to their user-level counterparts. Further, the real-time

capabilities of these approaches make them attractive to applications with stringent timing

requirements. Chapter 5 presented an example of a multi-peer video streaming scenario

based on the Q-Fabric approach, showing that the best adaptation results are achieved

if (1) application-level and system-level QoS management are used cooperatively and (2)

end-to-end QoS management is used, e.g., by sharing monitoring information among all
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peers of a distributed application. Chapters 6 and 7 presented a comprehensive study of

QoS management in mobile multimedia systems, where energy is the constraining resource.

Here, the results underline the importance of integrated energy management, where energy

management techniques cooperate within layers of a system, across layers, and across de-

vice boundaries. The specific example used in these chapter, a video streaming application,

shows that energy savings can be as high as 50% if integration is used, as opposed to 20%

without integration.

9.3 Future Research Directions

The Q-Fabric approach can be used to study a multitude of questions related to distributed

quality management, including the development and verification of sample control policies

integrating the management of multiple resources. Of particular interest here is the issue of

the non-linearity in resource management, i.e., the re-allocation of one resource to a given

process may affect the resource requirements of the same process for a different resource.

If this is not taken into account, adaptive measures can aggravate resource shortages as

previously identified in [117]. While the presented work focuses primarily on energy, future

work will address other resources, such as disk, CPU, network, and memory. Q-Fabric offers

a powerful set of tools for developers to implement efficient and application-specific control

mechanisms in a distributed system, using off-the-shelf components. However, a certain

knowledge of the system architecture of all involved nodes, of the applications involved, and

of the potential resource requirements and adaptation possibilities is required to efficiently

implement working solutions. Quality management toolkits, implemented as user libraries,

can help in the development of management policies and monitoring/control components,

e.g., such a toolkit could allow application developers to use knobs that can be turned

‘manually’ (command interface) or automatically by the applications in order to find optimal

management policies. Results of such experimental policy development will be knowledge

about the resource information to be monitored and adaptation strategies to control resource

allocations. A first step into this direction will be the development of a graphical interface

to develop, deploy, and verify QoS management policies. The ultimate goal will be that

156



applications themselves can fine-tune coarse quality management strategies.

QoS management will continue to be an important area of research in Computer Sci-

ence. Particular with the proliferation of new computing environments and applications,

QoS-awareness has to be introduced into both applications and the underlying systems.

Three areas are of particular interest because of their challenges due to heterogeneity and

size. First, large-scale multimedia applications over the Internet will be used to perform

video conferences, remote teaching, or multi-player games. While the work in this disser-

tation has focused on end-system management, future work will have to extend this to the

networks linking these systems. For example, overlay networks promise to efficiently select

communication paths based on bandwidth or latency requirements, which are essential for

QoS-aware applications. Second, sensor networks are typically very resource-scarce, com-

plicating the QoS management due to this limitations. Further, energy plays a particular

role, and ‘intelligent’ resource sharing and communication can support the task of energy

management. Finally, large scale Internet data centers are emerging, where QoS manage-

ment is of importance to ensure that (a) service providers achieve optimal throughput, (b)

clients receive their requested services with low latencies, and (c) thermal management is

part of the load balancing decisions to prevent overheating or failure of parts of the data

center.
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