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SUMMARY

This thesis is composed of two parts. The first parts deals with a technique for pricing
American-style contingent options. The second part details a statistical arbitrage model using sta-
tistical process control approaches.

We propose a novel simulation approach for pricing American-style contingent claims. We de-
velop an adaptive policy search algorithm for obtaining the optimal policy in exercising an American-
style option. The option price is first obtained by estimating the optimal option exercising policy
and then evaluating the option with the estimated policy through simulation. Both high-biased and
low-biased estimators of the option price are obtained. We show that the proposed algorithm leads
to convergence to the true optimal policy with probability one. This policy search algorithm re-
quires little knowledge about the structure of the optimal policy and can be implemented naturally
using parallel computing methods. As illustrative examples, computational results on pricing regu-
lar American options and American-Asian options are reported and they indicate that our algorithm
is faster than certain alternative American option pricing algorithms reported in the literature.

Secondly, we investigate arbitrage opportunities arising from continuous monitoring of the price
difference of highly correlated assets. By differentiating between two assets, we can separate com-
mon macroeconomic factors that influence the asset price movements from an idiosyncratic condi-
tion that can be monitored very closely by itself. Since price movements are in line with macroeco-
nomic conditions such as interest rates and economic cycles, we can easily see abnormal behavior
on the price changes. We apply a statistical process control approach for monitoring time series with
serially correlated data. We use various variance estimators to set up and establish trading strategy

thresholds.
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CHAPTER|

INTRODUCTION

One of the most important problems in option pricing theory is the valuation and optimal exercise of
derivatives with American-style exercise features. There have been an increasing number of impor-
tant security pricing models where analytical solutions are not available. These types of derivatives
are traded in all major financial markets (equity, commodity, foreign exchange, insurance, energy,
mortgage, swap, municipal, and real estate).

Up to now, the primary methods for pricing American-style options are trees and finite-difference
methods to solve patrtial differential equations (PDES) with associated boundary values. Broadie and
Detemple [7] provide a recent comparison of various existing methods for pricing standard Amer-
ican call and put options written on a single underlying dividend paying asset. In general, the
computational speed of these methods is significantly better than that of simulation methods for
simple models and contracts. However, due to its flexibility, Monte Carlo simulation has been a
strong alternative to price more-complex options.

Trees and finite-difference methods can be used to generate numerical solutions to pricing prob-
lems with one or two sources of uncertainty [40]. However, even though finite-difference methods
are used exclusively in practice, the major drawback of these methods is that they can often handle
only one or two sources of uncertainty. People try to reduce the dimensionality of uncertainty to
fit into a lattice model and sometimes the finite-difference approach works well. However, higher
dimension or stochastic parameter problems must use Monte Carlo simulation ([9], [66]).

Given the importance of valuing early-exercise features in problems with multiple state vari-
ables, the dearth of studies that address these problems must be explained by a need for effective
valuation procedures. This paper presents a general method for the valuation of assets with early-
exercise features. Our algorithm employs random sampling rather than the enumeration implicit in

lattice techniques such as Binomial methods; therefore, it can be applied to models with multiple



state variables and possible path dependencies. The major difficulty in valuing early-exercise fea-
tures is the need to estimate optimal exercise policies. Standard simulation procedures are forward
algorithms, i.e., state variable paths that are simulated forward in time. Given a state trajectory and
a pre-specified exercise policy, a path price is determined. An average over independent samples
of path prices gives an unbiased estimate of the security price. By contrast, pricing procedures for
assets with early-exercise features are generally backward algorithms. That is, the optimal exercise
strategy at maturity stems from the difficulty of applying an inherently forward-based procedure to
a problem that requires a backward procedure to solve.

With those difficulties, Monte Carlo simulation was first introduced to finance by Boyle [6].
In the past decade, a number of Monte Carlo simulation-based approaches have been proposed to
address the problem of pricing American-style options with a finite number of exercise opportuni-
ties. In general, these approaches try to approximate the value function or early exercise frontiers
with combinations of dynamic programming and Monte Carlo simulation. Reducing the dimen-
sionality of the value function methods was suggested by Tilley [64], Barraquand and Martineau
[4], Carr and Yang [13], and others. Approximation of the value function was proposed by Carriere
[14], Longstaff and Schwartz [45], Haugh and Kogan [38], and others. The algorithms proposed by
Broadie and Glasserman [8, 10] are based on simulated paths and lead to biased high and low estima-
tors that converge to the true values in the appropriate limit. Recently, Longstaff and Schwartz [45]
and Tsitsiklis and Van Roy [65] applied least squares methods (LSM) to the pricing of American-
options by approximating the holding value function at each time step using a linear combination
of basis functions fitted to the simulated data. In particular, Longstaff and Schwartz demonstrate
the efficiency of their least squares approach through several numerical examples, and Tsitsiklis and
Van Roy rigorously establish the general convergence properties of the method. Methods based on
the parametrization of the early exercise frontier have been proposed by Grant, Vora, and Weeks
[35], Andersen [2], Garcia [28], and 3hez and Zapatero [41].

Grant et al. [35] address specifically the pricing of American-Asian options. Their procedure
mimics the backward induction solution method of stochastic dynamic programming. At every
exercisable date, the optimal threshold parameters are estimated by testing all possible values from

a preselected finite parameter grid. Wu and Fu [66] set the threshold of the optimal early exercise



boundary to maximize the expected payoff. First, they set the threshold and estimate each parameter
using perturbation analysis to maximize its value. They derived the structural properties for the
optimal exercise policy. More thorough overviews of the simulation approach can be found in
Broadie and Glasserman [9] or Fu et al. [24].

Duality-based approaches were recently developed by Rogers [53], Andersen and Broadie [3],
and Haugh and Kogan [38]. They introduced a dual method to price American options based on
simulating the path of the option payoff and a judiciously chosen Lagrangian martingale. The main
practical contribution of their paper is a general algorithm for constructing upper and lower bounds
on the true price of the option using any approximation to the option price. The computation of the
lower bound is straightforward and relies on simulating the suboptimal exercise strategy implied
by the approximate option price. A method for finding a tight upper bound was introduced in each
paper; however, the problem of obtaining the right one seems to be more art than science. This “art”
was the drawback of their algorithm.

In this thesis, we propose a new algorithm usargss entropyto set up the early exercise
frontiers based on Monte Carlo simulation to estimate security prices. This algorithm can be applied
to models with multiple state variables and with possible path dependencies in the state variables
and nonstandard dynamics such as jumps.

The adaptive simulation algorithm studied in this paper is a variant of the cross-entropy algo-
rithm developed for combinatorial and multi-extremal optimization and rare event simulation ([55],
[68]). The essence of the algorithm lies in adaptive policy learning which leads to convergence to
the optimal policy. The advantage of the proposed simulation approach is that it is a very generic
algorithm which requires little knowledge on the structure of the optimal policy. It can be shown
to converge to an optimal policy in the finite-horizon option pricing problem. Also, this algorithm
does not require the approximation of the conditional value of the continuation function as in [45]
and [65]. Therefore, we do not have to deal with these sources of errors. In addition, we do not need
to worry about the choice of basis functions.

The rest of Part | is organized as follows. Chapter 2 contains well-known numerical methods for
option pricing, which are extensively used in practice. In Chapter 3, we propose new algorithms to

price path-dependent derivative securities and we show how to apply variance reduction techniques.



Statistical arbitrage modeling is introduced in Part Il. Part Il is organized as follows. Chapter
4 explains the reasoning of our approach. In Chapter 5, we explain how to set up the model and
provide numerical examples and various variance estimators to set up and establish the trading

strategy thresholds.
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CHAPTER I

NUMERICAL METHODS

In the mathematical treatment of financial derivatives and especially that of options, the defining
stochastic differential equation coupled with the arbitrage-free pricing condition leads to a deter-
ministic partial differential equation. The solution of this equation under appropriate boundary
conditions is interpreted as the price of the asset.

There are three main alternative approaches to finding the function that describes the price of
the contingent claim. First, we have classical methods involving the solution of partial differential
equations. These methods are widely used in physics, but they have yet to take root in the economic
arena. Their importance, however, cannot be overlooked and we note in passing that even in the
simplest cases, the solution of a partial differential equation is everything but trivial. A second
approach can be found in the methods of mathematical statistics, where the stochastic differential
equation describing the asset price is solved via the equivalence between the financial no-arbitrage
condition and that of a martingale. Both of these approaches often lead to closed-form solutions
that are easy to use and convenient for the valuation of assets in real time. Finally, when a solution
in closed form is not available or possible, numerical methods may provide an alternative solution.
Nevertheless, the application of these methods in finance still presents great practical difficulties,
due mainly to the time involved in obtaining a solution.

This chapter deals with the first of the approaches mentioned above. We first describe the Black-
Scholes equation for the valuation of European options. Later, we provide a fairly detailed and

simple description of a few useful, well-known numerical methods to solve this type of equation.
2.1 Black-Scholes Equation
Standard Brownian motion with drift is described by the stochastic differential equation [52]

dr = pdt+ odW

z(to) = zo



or

a:(t):xg—i—u/tds—i—a/tdW(s),

to to
whereW (s) is Brownian motion on a given probability spade, F, P), z is the initial condition,
u is a drift, ando is a volatility.
Since

N-1

[ W) = fim ST W (s50) — Wsi)) = W)~ Wto)
to s=00

for time increment\s = (t—t() /N, whereN is the size of discretization, we see that the Brownian

motion with drift process is given explicitly by
2(t) = x0 + plt — to) + oW (1) — W(to)].
The model for an equity asset is not the simple Brownian motion with drift but
dS = pSdt+ oS dw.
This is equivalent to
du = pdt +odW

foru = In S, so that the problem is reduced to simple Brownian motion. HowéVisra stochastic

variable and not differentiable so that the chain rule can not be applied to conclude that

Instead we need a new tool, calle@'$tLemma, to determine how a function of a stochastic variable
varies with changes of the independent variable.
We need the following approximations from the theory of Brownian motion for the increment

dW over the infinitesimal time intervaidt:

E(dtdW) = 0
Var(dt dW) = o(dt)
E((dW)?) = dt

Var((dW)?) = o(dt),



where we say thaf(t) = o(g(t)) ast — 0 if

tin@:()’

0g(t
i.e., f(t) goes to zero faster thatit) ast — 0. Note that these approximations say thél’)? — dt
anddt dW — 0 asdt — 0 so that in the limit these quantities are no longer stochastic.

Now, Itb’'s Lemma can be stated.
Lemma 1 Let X (¢) be an I process satisfying
dX(t) = a(X,t)dt+b(X,t)dW
X(O) = Xy.

Assume that(¢, x) is a smooth function of the independent variableand = (i.e., u is twice

continuously differentiable o), co) x R). Then

ou ou  10%u , ou
du(X,t) = [& +a(X )5+ ia—b (X,t)} dt + b(X, 1) 5 dW.

Proof The proof of this lemma is based on a Taylor’s series expansion.

) ) 0%u o? 0?
du = Papyr Pyt <82(d) + L0 a2 + ud:pdt>+

ox ot ot? 8t8:p
ou ou
- ax(adedW) + 5y dt
Ot + w2 + L + 2% aradt + baw)
Ox2 ot2 ata
~ [ou ou 5 0%u ou 3/2
= [&t+a(X t)a—+ b (X, zt)a 2]dt+b(X t)adeqLO(dt) :

This completes the prooj.

If we apply I©’'s Lemma tou = In S, where
dS = pSdt+ oS dWw, Q)
then (withX = S, a(S,t) = uS, b(S,t) = oS) we find

du(t) = (p — 0%/2) dt + o dW



so that
2

() = sttwyexp { (1= 5 ) (¢~ ) + o070~ W) }. @

Such a process is callggtometric Brownian Motion

While we shall need this representationsgt) later on in connection with the binomial method,
we are interested in deriving the Black—Scholes equation for the value of an equity option in which
the underlying asset satisfies the above equations.

Let V be the value of a put or call written on a underlying asset with vali#¢ at timet. We
assume that” depends differentially on the two independent varialiég and¢. Then by 16's
Lemma,V changes over infinitesimal time intervé according to

(v oV 0% 50 av
dv_(at+ pS oo+ 58 aSz)dt—i—aSanW

Consider a portfolio consisting of one option of valdeand A shares of the underlying, where
is yet undetermined, with > 0 for shares held long anfl < 0 for shares held short. The value of
the portfolio at any time is

=V (S,t) + AS. (3)

Over the time intervadlt, the gain in the value of the portfolio is

dr = dV(S,t) + AdS,

i.e.,
ov v o? ,0*V ov
_ (¥ AT — A . 4
dm (8t+“565 S 652>dt+aSanW+ (uSdt+ oS dw) 4)
We now observe that i\ = as , then the stochastic terms (i.e., the Brownian motion part) cancel

so that the gain is deterministic. Of course, if the gain in the value isf deterministic, then it
cannot be more than or less than the gain in the value of the portfolio were it to have been invested
at the risk-free interest rate— else an arbitrage opportunity would occur. Thus, it also follows

from Equation (3) and\ = — 55 V that

dﬁ:rﬁdt:r(V+AS)dt:r<Vg‘§S> dt. (5)

Equating the two expressions from Equations (4) and (5)4owith A = as’ we have that

o2V oV oV
2 P PR
25 952 +r SGS rV + BN =0.



This is theBlack—Scholes equatidor the value of an option.

There are a few assumptions necessary to derive the Black-Scholes equation:
1. The value of the asset can be described by the equation for geometric Brownian motion.
2. Options and shares can be bought and sold at any time Airtenges smoothly with time.

3. 9V/0S is a continuous smooth function 8f Therefore, the number of sharesiiis allowed

to vary continuously withs, which means that fractional shares can be traded.

4. The change in value of the portfolio is due solely to the changds ahd .S and does not
include transaction costs or the spread between selling and buying prices for options and

assets.

5. There are no transaction costs when options and assets are bought and sold.

2.2 Lattice methods

There are many products (options) which do not have closed-form solutions. Therefore, we need
to implement numerical approximation procedures to price them. We introduce two well-known
methods in this section.

First, the binomial model has proved over time to be the most flexible, intuitive and popular
approach to option pricing. It is based on the simplification that over a single period (of possibly
very short duration), the underlying asset can only move from its current price to two possible levels.
Binomial trees can also be used to determine the sensitivity of option values to the underlying asset
price (delta and gamma), to the time-to-expiration (theta), to volatility (vega), to the riskless return
(rho), and to the payout return (lambda). Of these, gamma is particularly important because it
measures the times in the life of the option when replication is likely to prove difficult in practice.

The trinomial method is an extension of the binomial method containing not only all binomial
properties but also more flexibility and faster convergence properties ([40]). We first define the

binomial method and then go on to the trinomial method later.
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2.2.1 Binomial Tree

As we mentioned earlier, the underlying process is the geometric Brownian motion described by
Equation (1). The analytical differential expression$gt) allows us to find the probability density

function (PDF) forS(¢). To do so, we observe from Equation (2) that

P(In(S(8)/S(0)) <y) = P((p—0o?/2)t+oW(t) <y)

- (y - (MJ%IQ/?)t)

1 y—(u—\;z/Q)t
oVt .2
= / e #7124z,
V2r J oo

where® is the standard normal cumulative distribution function.

Hence, the PDF of can be written

dP(SS;) < x) _ g\/%x\/f exp (—;{(lnx —InS(0) — (u— 0?/2)t) /(a\/%)}2>

for z € (0, 00). With this PDF, we can compute the expected value of stock price given the current
stock price:

E[S(t)|S(0)] = S(0)et.
Thus, the drift reflects our view on how the mean of the asset will evolve with time. Of course,

is not observable and will differ from one asset to the next. An analogous manipulation applied to
E[S*(1)|S(0)] = S*(0)e™ ™
yields
var(S(t)|S(0)) = S2(0)e2# (et — 1).

Let us now simulate this random motion $tt) with a discrete-time motion where the asset value
S™ at timet = t,, can rise at time,, + At to «S™ with probabilityp or fall to dS™ with probability

(1 — p). We impose on the rise and fall ¢f the requirement that over the time intervat, the
expected values afS anddS and their variances are identical to those of the continuous motion

starting withS™ att = t,,. This will be the case if

up+d(l—p) = e (6)

u2p + d2(1 —p) = e2uta?)At. @

11



There are two equations, (6) and (7), in the three parametetsandp. They become uniquely
defined with the additional assumption that a downward move will cancel a preceding upward move,
i.e.,

ud = 1.

A little algebra will yield values for. andd. Starting with Equations (6) and (7), we have

eHAt _ g q (62“+02)At —d?
P==—a MNP T dw—a)
This gives
W= A+ VA2 1, d=A—\/A2 1
with

e HAL + 6(#+02)At
2

A

We note that in this modelis supposed to represent the probability of an upward jump. Hence, we

require0 < p < 1. This will be the case for al\t because

e“t—A—l—\/AQ—l_l ehAt _ A

At R ———
p(At) 9/A2 _ 1 2 oAz 1

and I'Hospital’s rule implies that

1
li At) = —.
Aim p(AL) = 3

Moreover,p(At) = 0 for some positiveAt would imply that
A =d=A—/A2 -1

or
ehAt (A + \/ﬁ> —1,

which is impossible sincd > 1 for At > 0. Similarly, if p(At) = 1, then
Mt =y = A4+ VA2 — 1.

This equation uniquely determinelsas

2

A:

12
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Figure 1: One-step binomial tree.

SinceA < A(At) for any At > 0, it follows that the equatiop(At) = 1 has no solution for any
At > 0. Hencep may be interpreted as a probability for Alt.

With « andd determined we can now generate a binomial tree0letty < t; < --- <ty =T
with t,,+1 — t, = At be a partition of the intervdl, 7']. Then starting withS{ we can generate all

the nodesS}!, k = 0,1,...,n which can be reached by our discrete random walk by setting
Sptl = Sfu,  Spt! = Spd,
which is shown in Figure 1. The only nodes at the time of expigre
SN k=0,...,N.

The value of the optiomka at expiry is known at every node and provides the initial condition for
recursively pricing the option at the nodes of the preceding time interval. An arbitrage argument as
in the Black-Scholes model is used to filgt from the option value at timg, ;. Thus, suppose

we have a portfolio at time, of the form



whereA is the number of shares of the underlying with valiieLet V™ and V'~ be the option
values at time,,; corresponding t&w and.Sd. Then the value of the portfolio will be the same at
tn+1 if

VT —ASu =V~ —ASd,

in which case

¥ -
A= ‘(”U_CXS
For a European option, this value of the portfolio must be the same as the value of the riskless
investment, i.e.,

VYt —ASu = (V= 8)e™.
A little algebra allows us to find in terms ofVV ™ andV ~ as
Vo= e MprT 4+ (1-p)V ],

where
Aty
P=—Ta
Note thatp depends om and, through: andd, on the drift parameteu. If p € (0, 1), thenp may
be thought of as a probability and the value of the oplig¢hat S}’ is the discounted value of the

expected value of the option at the nearest nodes at the next time level. The price is given by

an _ e_rAt[ﬁV]Z:_ll + (1 _ ﬁ)vkn—H]

Hence, we first generate all possible binary random walks by building the binomial tree and then
price the option at the nodes of the walk by moving backwards through the tree fedmto ¢ = 0.

We note that the binomial tree reflects the stochastic movement of the underlying asset and
is independent of the option. The pricing, however, depends on the option under consideration.
The above formula holds for any European option. For an American option, the pricing must be
augmented by the requirement that an American-style option’s value cannot fall below its intrinsic
value,(K — )™ for a put or(S — K)* for a call. Therefore, the pricing formula is modified as in
the explicit finite-difference method — which will be discussed in Subsection 2.3.1 — by requiring
that

P}’ = max {K -5, e_TAt[ﬁP]?ill + (1 _ﬁ)PI?+1]}

14



for a put, and

Cp = max {K — S, e A pertl 4 (1 - p)ept))

for a call.

The pricing formula is a difference equation for the functios, ¢) at the three point§S, ¢ —
At), (uS,t), and(dS, t). Itis a common practice in numerical analysis to determine whether such
a difference formula represents a consistent approximation to an underlying differential equation.
The procedure for finding such a differential equation is standardp (%t ) be an arbitrary smooth

function of S andt. In particular, we shall assume that

o { bex

for some constank” and all(.S, t) in the domain where the differential formula is assumed to hold.

i)
RRE

0%
R

)

By the Taylor expansion about the poiitt, ¢), we have

[ﬁ(b(suv t) + (1 - ﬁ)¢<5d7 t)] - erAt¢(Sv t— At)

2
6+ 22 (5u—9)+ ;g;g(Su _ Sy

2 3 )
o+ 225a-9)+ 100150524 ;WWS _ 5)3]

1 936(5,1)

H1=D) [0+ 55 5 952

o6 10%(S,7)
_rAt _Y¥ Y YWY
¢ [¢ T o

(A1),

whereS, S and{ are various intermediate points. Collecting coefficients, we can rewrite the above

eqguation as
[1 — erAt] ¢+ plu—1)S+ (1 —p)(d—1)5] gf‘
2 2
P a1 + (-1 o2

= O((At)* + (u—1)° + (d—1)%),

where the right-hand side simply indicates that the remainder terms depend on the given rates. Now

we observe that

e = 14 rAt+ O((At)?),

Plu—1)+(1—=p)(d—1) = —1=rAt+ O((At)?),

15



and

plu—1)2+1-p)(d—1)?% = plu—d)(u+d) —2p(u—d)+d>—2d+1
(e —d)(u+d—2)+d?>—2d+1
e AMu+d—2) —ud+ 1.

At this stage, we bring in the propertieswfandd which up to now have not been used. We see

from the Taylor expansion that
u+d—2 = e M4 WAL 9 — G2AL 4 O(A?)

so that

EAu+d—2) = o2 At + O(At?)

with ud = 1. It follows that
plu—12+(1-p)(d—1)* = c2At + O(A#).

Dividing through byAt¢, we find that

1 1 0? 0 0
A ([pp(uS,t) + (1 — p)o(dS,t)] — "M (St — At)) — (202328;2 + rS% —ro+ a;b)

= O(At+ (u—1)2/At + (d — 1)3/At).

Finally, we observe that

u—1 = VA-I1(VA-1+VA+1) = O(VAL)

d—1 = VA-1(VA-1-VA+1) = O(VA?),

so that the remainder term on the right goes to zeroviket. Therefore, the binomial formula is a
consistent approximatioto the Black-Scholes equation. We see that the drift paramedees not

appear in the Black-Scholes equation so that its solution only depends on the riskless interest rate
r. Since in the limit agA¢ — 0, the value ofu drops out, it is reasonable to generate the binomial
tree withy = r, which is an observable quantity. In this cages p € (0,1) is known as the risk

neutral probability. We give the details in Chapter 3.
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Definition 1 The initial-value problem

dy _

dt—f(tvy), a<t<b, yla)=a,

is said to be a well-posed problem if:
» A unique solution, y(t), to the problem exists;

« Foranye > 0, there exists a positive constatite) with the property that, whenevésp| < e

andd(t) is continuous withd(¢)| < e on[a, b], a unique solution;(t), to the problem

dz

5 =62 +6(), as<t<bh, z(a)=a+e,

exists with

|z(t) —y(t)| < k(e)e, foralla <t <b.

Definition 2 Stability: Given an algorithimy (z) with x the input data and the error in the input

data, we say the algorithm is numerically stable for the relative error if
x—(x+e€) ~f(zr)— flx+e)

and numerically stable for the absolute error if

x—(z+e) flx)—flx+e)
T f(z)

Consistency of the approximation is no guarantee that the solution computed with the binomial
method will converge to the solution of the Black-Scholes equatioAtas— 0. However, con-
vergence is simple to show for a European option by observing that for(0, 1) the binomial
algorithm is necessarily stable so that the lax equivalence theorem below applies. A direct argument

can be made as follows.

Theorem 1 Lax Equivalence Theorem: Given a well-posed (linear) initial value problem and a

consistent finite-difference approximation to it, stability is necessary and sufficient for convergence.

Proof See Myer [51].1
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A direct argument can be made as follows. L&tS,t) be an analytic solution of the Black-
Scholes equation with bounded higher derivatives, ant;febe the value obtained from the bino-
mial tree at the poinb}’, whereS}! = dS; ' andsS,; = uSy~'. Then the above analysis shows
that the magnitude of the error

erry = |V(Sy,tn) — Vi
satisfies
e < oA {(plerrf; + (1 — plerr}} + C(ADY2,
whereC depends 0®?V/9t? andd3V/9.S3 but not onAt. Sincep € (0, 1), we see that
max err} ! < max erry + C(At)%/2,
Fromerr? = 0, it follows now that
ml?xerrz < (N —n)C(A)*? < CTVAL.

Therefore, the errasrr}! goes to zero lika/At, i.e., the values obtained with the binomial method

converge to the values of the Black-Scholes equation, albeit slowly/ike.
2.2.2 Trinomial Method

The reasoning behind a trinomial tree method is very similar to that of the binomial method. The
obvious difference is that a binomial method has only two possible movements from the current
state, while the trinomial method has three possible movements from the current state.

Let us simulate this random motion 6{¢) with a discrete-time motion where the asset value
S™ at timet = t,, can rise at time,, + At to «S™ with probabilityp,,, stay atS™ with probability
Pm, OF fall to dS™ with probabilitypy. At this time, we need to consider the first, second, and fourth
moments which are identical to those of the continuous motion startingSWittt timet = ¢,,. This

will be the case if

upy + pm +dpg = ">
u2pu NI d2pd — lauta?)At
urpy + pm + d*py = PROTING SEaVAv
PutPm+ps = 1.

18



X4 =X, +h

X4 =X -h
Figure 2: Trinomial tree with one time step fromto ¢ + At.

We will use a transformation of the underlying process to simplify the computationX Let
InS. Then

dXt :adt+ath

and for simplicity, suppose = 0, so that

E[X(t+At)— X(t)] = 0
E[(X(t+ At) — X(1))?] = o°At
E[(X(t+At) — X(1)Y] = 30'At.

With this information, letX; = In(S(t)), X: = X — ut, h be the step size in spacé, andAt be
the step size in time. For aN-step trinomial treeAt = T'/N, whereT is the time horizon. Since
we know the distribution of Xy, A+ — X¢), the criterion for constructing a trinomial tre, is to
choosep., pm, p4) andh so that the distribution ofX;, o; — X;|X;) converges to the distribution

of (X¢4ar — X¢|X}) at all timest asAt — 0. We match the first, second, and fourth moments of
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(XtJrAt — Xt) with those Of(Xt+At — Xt) by

hp, —hpg = 0

R2py + h2py = o2At
hip, + hipg = 30t(At)?
PutpPmtps = 1

By solving the above equations, we have

121

[P",pm,pd,h} - [6,3,6,0 SAt] .

To price the option on the trinomial tree, one follows the risk-neutral valuation principle. Let

C (X, t) denote the option price at nodg and timet,
C(Xp,t) = e "0 (p"C(Xt ot A+ p"O(Xp t 4+ AL) + plO(X, — byt + At)) ,
where the terminal condition is
C(Xr,T) = g(S7, T) = g(eX7 ),

and whergy is the payoff function, i.e g(eX7+#T") = max(eX7 T — K 0) for a call option. The
details are given in Subsection 2.3.1. Also, there are numerous variants derived from binomial and

trinomial tree methods ([19], [63]).

2.3 Finite-Difference Method

The Black-Scholes equation for European and some related options can be solved by explicit for-
mulas but for many other options, notably American puts and calls, the boundary conditions cannot
be satisfied by the Black-Scholes formula. Hence, an analytic solution is not available and one has
to resort to numerical methods. While such methods will always be applied to the Black-Scholes
equation in its original form, except perhaps for scaling out the strike gtic¢éheir analysis is
usually carried out for simple model problems. If the methods fail to solve the model problem then
they usually will fail in a more-complex setting.

The model problem associated with the Black-Scholes equation is the pure initial value problem

Lu=pu—us =0, (8)
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u(z,0) = eF oo <z < o0,

whereu; = du/0t, p > 0, and wherek is an arbitrary but fixed integer. By inspection, we see that
u(x,t) — 6iszk2pt
solves this problem. It follows that for all, the solutionu(z, t) is bounded for all: andt.

Definition 3 Lett(y, t) be an arbitrary smooth function. Thdp,« is a consistent approximation
to L if

lim L,y — L) =
fim Lty — Lty = 0,
whereh is mesh size of the grid on which the differential equation is approximated.

A numerical method for this problem typically involves a finite-dimensional algebraic approxi-
mation to the problem. The approximation in general depends on a discretization parameter which
we shall callh. In this exposition, we should consider only finite-difference methods for (8), where
h will be identified with the mesh size of the grid on which the differential equation is approximated.
There are many different finite-difference methods for this and related problems but all must satisfy

the same requirements ([51]).

1. The numerical approximation must be consistent so that one correctly approximates the given

problem agh — 0.

2. The numerical method must be convergenthas» 0 so that the value of the numerical

solution at a given point approaches that of the analytic solutidn-as0.

3. The numerical method must be stable. This means that the value at an arbitrary fixed point in

the domain of computation must remain bounded as 0.

We shall make these notions more precise when we talk about specific numerical methods for (8).

There are three different methods to solve this problem, and we will describe them one by one.
2.3.1 Explicit Method

Convergence and stability are very closely related. This is indeed the case for the so-called “well-

posed” problem.
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Definition 4 (Hadamard [36]) A problem is well posed if it has a unique solution which depends

continuously on the data of the problem.

The connections among consistency, convergence, and stability are given by the famous
equivalence theorerfTheorem 1). The practical importance of the theorem is due to the fact that
consistency and stability are often easy to establish while convergence of a method may require
more work.

It can be shown that the initial value problem for (8) is indeed well posed so that we need only
be concerned with consistency and stability of the numerical method.

For the numerical integration of (8) over a time interf¢alT’], we shall use a three-point finite-
difference method. Let

t, =nAt, n=0,1,...,N

.'Ej:_X+ij7 j:0717"'7M7

whereAt = T/N, Az = 2X /M and{X, M, N'} are chosen so that the mesh poifits, ¢,, } cover
the region over which we need a numerical solution.

We now approximate (8) with the explicit finite-difference formula.

+1
u = 2u" +ul Tt —
+1 1

J J J J J O (9)

(Az)? At

Lypui =p

This formula indeed yields an explicit method since given valugs-at, j, andj + 1 at time level

n, one can solve explicitly for

Note that for a pure initial value problem, the solution is computed on a narrowing mesh since at
each new time level, the right and left endpoints of thmesh have to be moved inward ofe:
step from the endpoints at the preceding time level. In particular, if the solutios &t is desired
at only one pointr;, one can restrict the computation to a triangular domain with its apex. at
This is like the trinomial method at nods.
In our finite-difference approximation, there are two mesh paramétemnd Az. We shall
make the assumption that

Az = g(At)7
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whereg(r) — 0 asr — 0. Thus, the mesh parametercan be identified withA¢. The finite

difference approximation (9) is a consistent approximation to (8) if
}lliir(l)[L(ﬁ(xj’ tn) - Lh(z)(xjv tn)] =0

for an arbitrary infinitely differentiable functioa(z, ¢t). This property is easy to verify since Tay-

lor's theorem yields

¢(xja tn—i—l) - ¢($]7 tTL)
At

= ¢(z4,tn) + O(AL)

and

¢(Tj11,t0) + d(xj-1,t0) — 20(74,tn)
(Ax)?

whereg,, = 0%¢/0z% andg, = d¢/0t. We see thal.;, correctly approximateg provided only

= ¢pa(x,t) + O(Az),

thatAt — 0 andAxz — 0. Let us now turn to stability and the behavioru:§f at a given fixed point
(x;,t,) wheren is the number of time steps it took to reach the fixed vajuasAt = T'//N — 0.
Note thatn — oo asN — oo butnAt < T.

We take as an initial condition)) = ez i =0,1,...,M, wherei = \/—1. Substitution

into (10) shows that fon = 1, we have

N . -
ul =14+ p(Ax)2 (ezkAa; + e—zkAa: _ 2) ezkxj’

so that

uj = A(k, At)e'*™i,  for all j,

where

At . )
Ak, At) = 14 p sy (ezmx 4 o—ikAr _ 2) _

If we proceed from time level to time level, we find that

ul = A" (k, At)e™ 5.

It follows thatu? will remain bounded if

|A(k, At)| < 1.

SinceA(k, At) =1+ p(i%Q (cos(kAzx) — 1), we see that

4At

—p— < AkAL) <1
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so that|A(k, At)] < 1 wheneverp(i%2 < 2or /)(AA—;)2 < 0.5. This inequality is sufficient for
stability. One might argue that for certain valueskofthe condition can be relaxed because our

estimates are based on the worst-case scenario of
cos(kAx) — 1= —2.

However, in applications the initial condition will be a general functigf:). Many such functions

can be approximated by the complex Fourier series

[e.e]

uo(z) = Z cpette.

k=—o00
The numerical solution now will be a superposition of the solutions for éaddence, one must

expect that for somg and Az, one can attainos(kAx) — 1 = —2. Thus we cannot allow

At 1
Plagz=2"°¢

for a fixede > 0 and for allAt asAt — 0.
Let us examine the implication of this stability restriction for the numerical solution of the

Black-Scholes equation. As we have seen, the equation is formally equivalent to

1(72u —u; = 0.
2 yy

The numerical integration of this equation with the explicit Euler method on a uniform grid is subject
to the stability condition ([51])

ocf—— <1

(Ay)* ~
Note that a uniform grid on thg-axis corresponds to a non-uniform grid on thexis for the

original scaled Black-Scholes equation, with
Az; = J:i(eAy —1) = z;Ay.

The stability restriction in terms af andt then is
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While in principle the Black-Scholes equation can be transformed into a constant coefficient equa-
tion, it is in general safer to avoid such transformations and discretize the equation in its original

form. The explicit Euler method for the Black—Scholes equation on a uniferi) grid is ([51])

n+1
102x2u?+1 tuj —2uy _,_MAM O B Ry
2 (Az)? J 2Azx J At

For an equation with variable coefficients, it is in general not easy to give a stability analysis.

However, theory and experience suggest that
1. The first derivative termxu, and the linear termu may be ignored in a stability analysis.

2. The stability condition known for the constant coefficient equation should hold locally at all

x.

Thus, the stability condition imposed on the explicit Euler method for the Black-Scholes equation
is
9 o At

O'I'ji

<1
(Az)> =
which is consistent with the stability condition derived from the transformed Black-Scholes equa-

tion. Failure to heed this constraint dn: and At will lead to non-sensical numerical results.
2.3.2 Implicit Method

The explicit Euler method is of interest because of its relationship to the binomial method for option
pricing as discussed in Subsection 2.2.1. However, much more effective and more generally appli-
cable is the implicit Euler method on a fixed uniform grid placed on the boundeg setr < X,

0 <t <T.As before, we write the finite-difference approximation to the equation in the form

n n __ o,m n_ .n n+l . n
Lpu? = 102:102 RSl el + r:r'ujH i uy + - 0
S22 (Ax)? 7 2Ax J At ’
forj =1,...,M — 1. Hereuj anduy, are assumed known. For example, for a European put
n_ —r(T—tp) f _
uy = e , forxzg=20
uhy = 0, forxzy, sufficiently large.

Boundary conditions for a call can be read off the put-call parity relationship.
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Definition 5 Put-Call parity: ¢ + Ke™™" = p + S(0), wherec is a European call pricep is a

European put price, an&  is a strike price.

The essential difference with the explicit method is that at each timedgyallinear system of

equations needs to be solved. To be specifid/lebe the vector
U" = (uf, ..., ul_q).

Then the system to be solved is

AU™ =",

whereA isthe(M — 1) x (M — 1) tridiagonal matrix with entries ([51])

1,, 1 1
AjJ'—l 50‘ ZU](AT)Q — Tx]m
1 1
_ 2.2
Aj,j = —0 .’E]W—T—E
1,4 1 1
Aj,j+1 = 50’ .’L'JW + T'ZL']E
forj=1,...,M — 1, and wher&" has the components
—ﬁu?“ — Aloug, _] =1
bi =9 —uptt, l<j<M-—1

1, n+l .
—ApUn—1 — Am—1muly, =M -1

It is straightforward to verify thal,¢(x;,t,) is a consistent approximation fap(x,,, t,,) for any

smooth functionp. It remains to establish stability of the method. We make the assumption that
Aji 1 >0, forallj>1. (11)
Then it follows by inspection that
|Aj;| > Aj;1+ Aj i1, forall j.

This inequality implies thatd is strictly diagonally dominant, which can be shown to imply that
Ais invertible. Hence if (11) holds then the valu{ue?} can be computed. Suppose that at some

interior mesh pointxy, t,) with 0 < k < M, 0 < p < N, the valueu], is larger than all the other
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values, i.e.;ui > u;? for all j and alln. Since the initial and boundary data are non-negative, we

have necessarily that > 0. Then it follows fromAy, 5,1, Ay k41 > 0 that

Apptt), + Ap gy + Apppity,, > Apgup + Appru), + A ppiu),

1
= —ruj — Euz, (12)

and Equation (12) is less th&%uﬁ+1, which is inconsistent with theth equation of
AUP =P,

Hence, there cannot be a valuewgf which exceeds the maximum valuewfat zg, atzy, = X
orty = T. Sinceu atx = 0, x = X and¢ = T is bounded and independent &fc and At, it
follows thatu} is uniformly bounded above allz andAt¢. An analogous argument shows that the
minimum of {«! } is bounded below by the minimum of the data functions. Therefore, if condition
(11) holds, then the numbefsu’|} are uniformly bounded so that the implicit Euler method is
stable for allAz andAt.

The unconditional stability of the implicit Euler method is bought at the expense of having to
solve the linear system

Ay ="

at each time level. Fortunately, the tridiagonal structurd ehakes this solution extremely simple
and rapid if a special Gaussian elimination procedure known as the Thomas algorithm ([51]) is

employed. A tridiagonal matrix is factored into lower and upper triangular matfieesiU so that
A=LU

This can be achieved by settidg; = U;; = 0 for |i — j| > 2, Ui;—1 = Li;+1 = 0, U = 1, and
Lii—1 = A;;_1. The remaining elements;; andU; ;,, are found fori = 1 from L;; = A;; and

L1102 = Ajpand fori = 2,..., M — 1 from
Lii Ui 1+ Ly = Ay, LU = Ajiya.

It is straightforward to verify from
~ o~ Mil ~ ~ ~ ~ ~ ~
(LU)i; = Z LixUkj = Lii—1Ui—1j + LUy
k=1



that A = LU, i.e., thatA has been factored into lower and upper triangular matrices. The linear

system
Ay ="

can now be solve by simple substitution. First we find the solujibof

and then obtaim™ from

Uu™ = y".

Itis clear fromAu™ = LUu™ = Ly™ = b" thatu” is the desired solution.
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CHAPTER Il

MONTE CARLO SIMULATION

In this chapter, we describe a method of pricing options using the Monte Carlo simulation method.

Given the increasing complexity of options that contain early exercise characteristics, a number of
methods based on Monte Carlo simulation have been studied and implemented recently. Monte
Carlo simulation is a flexible method whose applicability does not depend on the dimension of the

problem and does not suffer from the curse of dimensionality. However, the computational cost

incurred by Monte Carlo simulation might get very expensive in some cases. Therefore, various

variance reduction techniques are often implemented in many applications.

We first start with the following elementary definition.

Definition 6 An option gives its holder the right to trade an underlying asset at a specified price
(the exercise or strike price) on (and sometimes before) a specified date (the exercise or maturity

date).

There are two basic types of optionscall optiongives its holder the right to buy an underlying
asset. Aput optiongives its holder the right to sell an underlying asset.

An European optiorcan only be exercised at maturity. Therefore, its value at expiration is
known in many cases. In particular, an investor would choose to exercise a put éhly i<,
where S is the stock price at maturity anH is the strike price. Otherwise, the option expires
worthless. Similarly, a holder of a call will exercise his option onlysif> K at expiration. The

payoffs from European options for put and call options are
po(St,T) = (K — S7)* and ¢ (S7,T) = (S — K)™,

respectively, wheré& is the stock price at maturity. The owner of an American option has the
right to exercise early. An American option, therefore, is worth at least the price of its equivalent
European option. The details of American-style option values will be discussed as we progress. The

following theorem gives a general idea of what the American-style option price could be.
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Theorem 2 It is never optimal to exercise an American call before the maturity if the stock does
not pay any dividend. It is sometimes optimal to exercise an American put early on a stock paying

no dividends.

Proof See Merton [48]x

This theorem says that the call price of an American option with no dividend payment is the
same as the European call option price. However, American put prices are no less than that of a
European put.

With this basic knowledge on option pricing, we propose new algorithms for pricing options.
We start by discussing the standard call option on a single underlying asset. The price process in
the Black—Sholes model can be expressed asdaprticess. Le{W (¢),0 < t < T'} be a one-

dimensional Brownian motion process relative to filtratign The stock price then has the form

St — Soe(y7502)t+0'W(t)

)

whereSy > 0, un ando > 0 are constants. The above equation can be written as

% = pdt + o dW. (13)

Equation (13) can be interpreted heuristically as expressing the relative or percentage increment
dS/S in S during an instant of timé¢. Assuming that the stock does not pay any dividends, all the
return to an investment in the stock comes in the form of stock price appreciation (or depreciation);
and so the relative incremedi$ /.S can be interpreted as the instantaneous rate of return on the stock.
The expected instantaneous rate of returm, iand the standard deviation of the instantaneous rate
of return iso, called the volatility ofS.

In the calculation above, the%a2 term in the Black—Sholes stock price processes gets “eaten
up” by the second-order term frondls Lemma.

By a similar method, we can calculate characteristics of a money market account having a price
process of the form

M; = Mye™
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or

dM

By using Equations (13) and (14), we can calculate the discounted stock price. The stock price, mea-
sured in units of the money market account or discounted at the rolled-over instantaneous interest

rater, is S/M, which has the differential given by ([43])

S S
We can rewrite Equation (15) as
S;k _ Soe(,ufr7%02)t+UW(t)' (16)

The differencey — r, of the stock’s appreciation rate and the money market rate from Equation (15)
is called theisk premiumand measures the additional rate per unit time present for investing in the

risky stock rather than in the riskless money market. The quahtigfined by

g=H"" (17)

is called themarket price of risk The market price of risk relates the risk premiumy — r, and
the volatility, o. The probability measur@(-) is called therisk-neutral probability measurer the

equivalent martingale measuassociated with the market price of riglof Equation (17).

Theorem 3 (Girsanov) Let W (t),0 < t < T, be a Brownian motion on a probability space
(Q,F,P). LetF, 0 <t < T, be the accompanying filtration, and lett), 0 < ¢t < T, be a

process adapted to this filtration. For< ¢ < T, define

—
~~

S~—
1l

/tH(u)du + W),
0

exp{—/OtG(u)dW(u)—;/OtHQ(u)du},

and define a new probability measure by

N
—
~~
S~—
Il

Q(A) = /A Z(T)dP, VA€ F.

Under Q, the proces3V(t), 0 < ¢ < T, is a Brownian motion.
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Now we define a new proce$3V(t),0 <t < T} as
W(t) = W(t) + ot,

where)V is a standard Brownian motion under the risk-neutral mea@urg Girsanov’s Theorem.

Under the risk-neutral probability measutg, we can write (16) as the following,
St — 5106(7‘7%(:1'2)1‘,4*0'\/\/(1‘,)7 (18)

whereS, > 0, r ando > 0 are constants.

With this background, this chapter is composed of three parts. First, we propose a new heuristic
algorithm for pricing path-dependent derivative securities by applying an early exercise boundary
obtained by regression and then optimizing its coefficients. Next, we develop an adaptive policy
search algorithm for searching for the optimal policy in exercising an American-style option. The
option price is obtained by first estimating the optimal option exercising policy and then evaluating
the option with the estimated policy via simulation. Both high-biased and low-biased estimators
of the option price are computed, and we show that this algorithm leads to the convergence to the
true optimal policy with probability one. We end this chapter by showing how the variance of the

relevant estimators is reduced.

3.1 Boundary with Regression

This section describes a heuristic algorithm for pricing American-style path-dependent derivative
securities. The typical Monte Carlo simulation method used in European call option pricing is to

use simulation to estimate the expectation. That is,
co(S) = Egle ™" (Sr — K)*].

Therefore, pricing a European-style option is very simple and straightforward. The American option
pricing problem for eall is to find
Co(S) = sup Eole™""(S; — K)™]
T€[0,7T
over all stopping times. Throughout this section, we use a discrete-time approximation to the prob-

lem, where we restrict the exercise opportunities to lie in the finite set of timesty < t; <
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-+ < tqg =T and letAt = T'/d. To estimate the value of an American option, we would simulate

a path of asset price§y, S1, 5o, ..., Sy, at corresponding times=ty < 1 < ... <ty =T, then
calculate a discounted option value corresponding to this path, and average the results over many
simulated paths.

We first obtain the exercise boundary (policy), and then we use this boundary to exercise the
right since it enables us to use simulation directly. To have an initial boundary, we first obtain the
highest price in the single path through the time horizon. We repeat this process a few times to obtain
enough data to regress against time. We initially incorporate into the regression function linear (L),
guadratic (Q) and cubic (C) terms and set them as an exercise boundary which we optimize later.
Findings indicate that a higher adjusté& in regression functions tends to yield better option

estimation in general, where adjustBd can be defined as follows:

SSE
R2_q_ np _ ("= 1\ SSE
“ AT n—p) SSTO’

and wheren is the number of observations apds the number of parameters.

This suggests that if we optimize the coefficients of the highest adjuisteegression, then we
will have a better estimator for options. Itis now necessary to optimize the boundary. A key assump-
tion here is that there exists an optimal policy for the American-style option under consideration
which maximizes the option value. Suppose tfigtr) = « + [z is the optimal exercise boundary
and letf(!) (z) be our first approximation of the exercise boundary using the least squares method.
First, we find better coefficients fof(')(z) to improve the boundary. Let™)(z) = a") + bz,
let b remain the same, and let its corresponding option pric®8& Now, seta® = o) + ¢,
wheree > 0, and letf?)(z) = a® + bz, with resulting option price??). Then compare the
estimates using (') (z) and f(2)(z). If the latter is larger P(V) < P(?)), we keep moving in the
same direction. Otherwise, we move in the reverse direction until the estimate stops increasing. Af-
ter that, we change coefficiett With the last coefficiens(), we seth(® = b(1) 4 §, wheres > 0
and () (z) = o + b@z. Denote price estimates with!) () and £(??) (z) by (1) andy (),
respectively. Then compare the price estimaté¥, andy ). If (1) < @), then we keep moving
in the same direction. Otherwise, we change the direction; thakid). By the same token, we can

find theb(?) maximizing the estimate. With this algorithm, we fing@) = f(z) = o + b0z
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Figure 3: Searching for optimal boundary.

such that|f* — f||2 < & where¢ > 0. Figure 3 demonstrates this algorithm.
3.1.1 Implementation and Numerical Results

We provide some numerical results to illustrate our algorithm. We first start with the standard call
option on a single asset which pays a continuous dividend and for which the price process is a

geometric Brownian motion process described by

S, = Sn_le(r76fa2/2)At+U\/EZn (19)

for some random variablg,, independent of the parameters and the initial stock #igeaiskless
rater, volatility o, dividend ratej, and time incremen#t.

For discrete dividend cases,

S, = Sn_le(TfUQ/Q)AtJrJ\/EZn - D,

whereD; is theith dividend. With this in mind, we first price American call options.
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Table 1. Price estimate with IEB and OEB. The optimized coefficients are only for a linear function.
Option parametersk’ = 100, » = 0.05, 6 = 0.10, T' = 1.0, ando = 0.2 with At = 0.25yr and
1M replications. Error unit is %.

S L-O L Q C Rel err(L-O) Relerr(L)
70 0.122 0.116 0.125 0.111 0.826 4.132
80 0.668 0.613 0.613 0.616 0.299 8.507
90 2.258 2.054 1.993 2.003 1.954 10.812
100 5.700 4.841 4484 4.343 0.541 15.530
110 11.418 11.417 11.242 11.158 0.679 0.670
120 19.975 19.001 19.296 19.303 0.125 4.995
130 29.987 27.801 29.986 29.421 0.043 7.330

3.1.1.1 Example 1. An American call with a single asset with dividend payments

For this example, we apply our algorithm to price a standard American call option with a single
underlying with continuous dividend payments following Equation (19). The value of an American
put option is equal to the value of an American call with the following change of paramsters:

K, K — S,r—d,andd — r.

We obtained two different price estimates with Initial early Exercise Boundary (IEB) and Op-
timized early Exercise Boundary (OEB) and compared them to Glasserman and Broadie’s outputs.
For the first stage of sampling for data collection, we us#das the number of time steps a3h0
replications 820 x 10). For this case, we used the linear, quadratic, and cubic regressions for IEB
and we optimized the coefficients of the linear regression function.

Table 1 shows that OEB performs better than all other IEBs except for theSgaser0. This
finding suggests that by optimizing the quadratic or cubic function, a better estimate will be achieved

for the option prices. Relative error is computed by

|Estimate - True y

100.
True 00

Also, Table 2 compares our estimates to Broadie and Glasserman’s estimates as well as the
true values ([8]). It also shows that our estimates are better for all cases, including out-of-money,
at-the-money, or in-the-money.

The option price is not affected much Hyt, i.e., the number of exercise opportunities for

the optimized coefficients for linear and quadratic boundaries. As can be seen in Table 3, option

35



Table 2: Price estimate comparison with OEB and the stochastic tree method of Glasserman and
Broadie. The optimized coefficients are only for a linear function. Option parameters: 100,

r = 0.05,§ = 0.10, T = 1.0yr, ando = 0.2. TRUE(E) represents the true value of European
options.

S OEB TRUE TRUE(E) High Low

70 0.122 0121 0.120 0117 0.115
80 0668 0.670 0.654  0.662 0.649
90 2258 2303 2197 2316 2251
100 5700 5.731 5302  5.824 5.628
110 11.418 11.341 10.154 11.603 10.988
120 19.975 20.000 16.154 20.329 19.743
130 29.987 30.000 24.060 30.154 29.763

Table 3: Price estimates with IEB and OEB. The optimized coefficients are only for a linear function
(L-O) and quaderatic function (Q-O). Option parametefg:= 70, K = 100, » = 0.05, 6 = 0.10,
T = 1.0yr, ando = 0.2.

Time step| Reps|| L-O Q C L Q-0 C

4 2M || 0.121 0.120 0.12¢Q 0.120 0.121 0.120
8 2M | 0.122 0.120 0.120 0.121 0.122 0.118
16 1M || 0.122 0.120 0.120 0.118 0.121 0.118
32 1M | 0.121 0.117 0.117 0.117 0.122 0.117

64 1M || 0.123 0.116 0.11¢ 0.116 0.124 0.117
128 1M | 0.121 0.114 0.114 0.113 0.122 0.114
256 1M || 0.122 0.114 0.114 0.113 0.124 0.113

prices do not vary depending on the step size for optimized boundaries. However, the option prices
decrease if we makAt¢ smaller for non-optimized boundaries. That means that the boundary is not
the optimal boundary.

It may seem logical that the more chances to exercise, i.e., sriglleghe higher the option
price. For example, if Option A hakexercise opportunities and Option B I&gption B should
be more expensive than Option A. This is true as long as we know the true early exercise boundary.
However, we approximate the true boundary; and as long as our approximation is close enough to
the true boundary, it does not really matter how many exercise opportunities one has since we can
make a best decision every time. This finding provides us the opportunity to check if our OEB is

really close to the true boundary. This argument is supported by our simulation results in Table 3's
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3rd and 7th columns.

Also, we determined that if the options are deep out-of-the-money, we may not have enough
data to regress. Therefore, we must run more replications to obtain data. On the other hand, if the
options are deep in-the-money, we have a good quantity of data. In such cases, we do not need to

run many replications.
3.1.1.2 Example 2: American min put options with two assets

This example is an American put on two independent assets following geometric Brownian motion,
so that we can compare our results with Rogers (2001). The underlying processes can be described
by the following,

Si = Shexp ((r — 07 /2) t + o Wi(t)) ,

with payoff function

£(8) = e (K~ Si(1) ™

The payoff function can be rewritten as

We again optimize the early exercise boundary from the initial boundary. First, a one-piece
linear boundary is optimized. With the optimized boundary, we compute option values and a slightly
lower estimate is obtained. We next separate the time maturity as multiple pieces of boundaries.
Since multiple pieces give more flexibility for fitting the optimal boundary, the estimate based on
multiple pieces is recommended in this example.

For simplicity, two piecewise linear boundary functions are usedZlet [0,7/2) andT, =
[T'/2,T], whereT is the time to maturity. From these two time frames, we find initial early exercise
boundaries, sayj (1) andfa(t2), where0 < ¢t; < T'/2andT’/2 < t, < T. From these boundaries,
we again optimize the coefficients of each function depending on time regions. First, we optimize
the boundary functiorf(¢), 0 < t < T/2. After the coefficients are optimized, we optimize
the second boundary using the first optimized boundary function. Let us describe the boundary

functions based on this searching process:

37



1. Let f(¢), 0 < ¢t < T, be the initial boundary function anfl (¢), 0 < t < 7'/2, and f»(¢),
T/2 <t < T, be the initial boundaries for each time region. Therefd(e) can be described

as the union of two boundary functiongt) = f1(¢t) U fa(¢).

2. Optimize the first boundary function and let the optimized boundary for this regigi(be

The overall boundary function after optimization is th&m) = f1(¢) | f2(t).

3. Optimize the second half boundary functigs(t), /2 < t < T, by usingfi(t), 0 < t <

T'/2. The overall boundary function after optimizationfi§) = f1(t) U fa(t).

Once we obtain the optimized boundary functions, we can apply the forward algorithm to price the
options. In this example, we ugé = 100, T = 0.5, » = 0.06, ando; = o5 = 0.6.

We used20000 replications to perform the optimization and this process takes less than 10
seconds with a.8Mhz P4 processor. Then we raf0000 replications for each case, and this takes

less than 20 seconds. In each case, wé\get T'/50.

Table 4: Price estimation with optimized two-piecewise linear early exercise boundary. The opti-
mized coefficients are only for a linear function. Parameterd@are 100,717 = 0.5,r = 0.06, and
0] = 09 = 0.6

S1 Sy OEB FD Rogers European
80 80 37.14 37.30 37.63 36.859

80 100 31.96 32.08 32.30 31.639

80 120 29.06 29.14 29.38 28.652

100 100 2494 25.06 25.17 24.728
100 120 20.87 2091 21.10 20.610
120 120 1591 15.92 16.02 15.704

In Table 4, we compare our optimized early exercise method (OEB) to the finite-difference (FD)
method, Rogers’ upper bound estimate, and the European price computed by numerical integration.
Our estimates are always lower than the other methods. The difference, however, is very small (less
than 0.5%).

We can assume that if we havesaipiecewise linear boundary function, we can provide a better
estimate than with our two-piecewise linear boundary functions. However, we then need to optimize

the coefficients ofi functions and the computational cost grows tremendously. At this stage, we do
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not attempt to have more than two-piecewise functions. Since the two-piecewise functions give us

a better estimate, they drive us to develop the adaptive algorithm discussed in Section 3.2.

3.2 An Adaptive Simulation Algorithm

In this section, we focus on the presentation of an adaptive simulation algorithm for pricing an
American option. Let the price processesrofissets(S; = (St(l),...,St(”)), 0 <t <T}be
general-dimensional stochastic processes adapted to a filtrltien{ 7, : 0 < ¢ < T'}. For quite
general stochastic processes, the American-style option’s initial value is given by the solution to an
optimal stopping problem ([12]) with a risk-neutral meas@,e
Py= sup EolaJ(S,,)), (20)
7s€[0,T

wherea is a discount factor,7 (-) is a function of the underlying-dimensional processes, angd
is a stopping time.

For the discretized stochastic processes version of the continuous-time probléﬁghjel <
t, < T} be the stock price at time step, wheret,, = nAt, At = T/N, andN is the total number
of exercisable times. Thesedimensional stochastic processes are right-continuous and adapted to
the filtration{F; : 0 < ¢ < T'}. Hence, it is progressively measurable with respedtig ([26]).
The optimal stopping time is the earlier of the maturity and the first passage time to the exercise

boundary. Consequently, the American-style put options could be valued as

—

Py = sup Eg [aj(smin(TB,T))L (21)
{B(tn):tn€[0,T7}

wherery is the first passage time fros} to an exercise boundady(t), ¢ € [0, 7], and f(-) is a
payoff function.

Under regularity considerations, the solution to the optimal stopping problem exists and it is
unique. Namely, there exists an optimal option exercising policy of the American-style option
under consideration which maximizes the option value. In this section, we show that finding an
optimal exercise boundary provides an optimal exercise rule, and it enables us to estimate the price
of securities using Monte Carlo simulation. Now, we consider how to approximate the early exercise

boundary{B(t) : t € [0,T]}. Searching for an optimal boundary in our algorithm is equivalent to
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finding an optimal boundary of the parameter vector based on the Kullback-Lerbks entropy
(CE) measure, which defines a distance between the two distributignsand h(y) (see [25]).
That can be written as

o) = [ 1) lnﬁ@y’idy. (22)

CE has been widely used in rare-event simulations and especially for finding importance sampling
density functions (see [39]).

Our objective is to design an algorithm that starts from some initial distribytienmd iteratively
converges to the degenerate probability density function (PDF) with unit mass on the true optimal
policy. The idea is then to compute the parameter of F0Rat minimizes the cross entropy be-
tweenf andh, wheref is a probability distribution from which an early exercise policy is sampled

andh is the optimal exercise policy distribution.

Remark 1 Variance minimization (VM) with importance sampling and the CE method are used to
approximate the optimal importance sampling density in rare-event simulation. In our algorithm,
we identify the optimal sampling density for obtaining an option exercising policy which best ap-

proximates the optimal option exercising policy.

The basic idea of our algorithm is to design an adaptive procedure for identifying the optimal
option exercising policy over a policy spale which contains the optimal policy for exercising an
American-style option. We define the performance measure for a policy which measures the quality
of the policy. This measure is usually the value of the option corresponding to the to-be-evaluated
policy. These policies can be sampled from a family of probability distributionslbv&¥ith both
the performance measure and a probability distribution for sampling the option exercising policy,
we design an iterative algorithm to obtain an optimal probability distribution such that the estimated
optimal distribution samples the optimal exercising policy with the highest likelihood.

It is possible to show that we can redefine Equation (22) as

Iyea‘ic {D(u, v):=E),, [1{H(A,g)2w}W(A> u,v1)1In f(A, 1/)]} , (23)

whereH(A, G) is an option payoff value with policy vectdx andV(-) is a weight. More details

will be given later. Next, take;, = u in the above formula; we keep solving (23) to finda
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Algorithm 1 General Adaptive Simulation Algorithm

Initialization:
» Specify

- Ng: number of exercise opportunities,

- Ng: number of sample stock price paths,

- Ng: number of exercise policies,

- va: p quantile of performance measure, where (0,1).

* Specify an initial policy sampling distributiofi(-, v).

« Sample a set of policiea{? = {GSO),...,G}P)} from the population policy space
(Gy,...,G,), whereA{%t ~ f(-,vp).

Repeat until a specified stopping rule is applied:

Define a performance measuWt& A, G) which measures the quality of a poligy over a given
sample path s&j for updating the policy sampling distribution.

« Simulate a set of sample paths fon stock prices, G(SM, ... SM) =
(S @),.... 8" W) :0<t < Twe Q.

For eachAZ{k} (t=1,2,---,Ng), evaluate’{(Afk}, g).

Obtain¥, = H(AF=1([(1 — p)Ng1),G) and sety, to berg.

* Compute

R k k
max { D(u,v) = By [Lpa ) gy W (AT ) n f(ATY )]}

and set its solution to be, ;.

Sample the next set of policies Ag++1} = {ng“), e Gz(f““)} with f(-, vg41)-

e k+—FLk+1
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so that CE off(-,~*) andh(-,v) is minimized. The CE algorithm works well if the distribution
of the basic random variables in the model has finite support or if the random variables belong to
the so-called natural exponential family (NEF) (see [39] for a definition). Analytical solutions for
v* exist in the NEF. However, if there is no analytical solution, we need to implement numerical
optimization procedures to solve Equation (23).

First, a high-level description of our adaptive simulation algorithm is summarized in Algorithm

1. We now provide a detailed discussion as follows.

INITIALIZATION :

1. Pick positive simulation parameter$X, M, Nz}, Ng, Ng, andp € (0,1), whereK =
{Kl,KQ,...,Kp} € RP.

2. GenerateNg stock price sample paths of the procéé = (St(l), .. .,Si”)) € R"} over

time horizon|0, 7.

3. Policy classes are defined over a bounded subgetof0, 7], where® £ {(61,0s,...,0,) :

161 <BO K2+ THY2 i=1,...,p}.

- Make a coarse grid on a regidt, 7] x [0;,601] x --- x [0,,0,], whered; andd; are

lower and upper values of thith policy space, respectively.

4. Letk = 0. Initialize P} to be a joint probability mass function &fz independent discrete

uniform random variables with masseswai\s (m = 0,1,..., M).

5. An exercise boundary of the American option is given byNarrtuple (v1, 2, . . ., Yn,) €

‘RP on the grid generated in step 3.
| TERATIVE POLICY |MPROVEMENT :
6. Use P{*} to generatéV,; exercise boundaries.

7. Apply each exercise boundary to the setd§ sample paths and obtain an approximated

valueV,, (n, = 1,2,..., Ng) of the option value. Find a “good” set of exercise boundaries
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based oV}, n, ", WhereV}, 1 denotes the upperquantile of all the approximated option

(k)

values. LetB;™ denote theth highest option value achieving the exercise policy wiieise

the policy search iteration time.

8. Letk — k + 1. Compute a new joint probability mass function (Pl\/ﬁﬁk} depending on
each time step from good seé,(k) (t),wheret =1,...,Ng,i=1,...,[pN¢g]|, andp is a
guantile of the good set. For a fixed tirhe

priiy _ B [Lpa g2 WAL, P P IXG = 0] P(X; = ay)
’ Epmy [1na,g)2a) W (A, P, PUL)] ’

wherej =1,..., M.
9. Exit the loop if the option price converges; else, go to step 6.
10. Obtain the optimal exercise boundary basedBf .

11. Generate a set df; (N; > Ng) stock price sample paths and evaluate the American option

over these sample paths based on the optimal boundary obtained at step 10.

Remark 2 At step 8, we can directly find an optimal parametéay equating the gradieXt, D(u, v)
to zero if there exists an optimal solution of Equation (23). Moreover, if the expectation and differ-
entiation operators can be interchanged, the stationary point of Equation (23) can be obtained from

the solution of the following nonlinear equations:
VVD(ua V) = El/1 [I{H(A,Q)ZV}W(Aa U, Vl)v lnf(A> V)} =0
and for sample estimation

Ng
V,,D(u, l/) = NG_l Z [1{H(Ai,g)2'y}W(Aiv u, 1/1)V1n f(Au V)] = 0,
1=1

whereAy, ..., Ay, are random samples from the PDK-, ).

If the components of random vectdrare independent and each has a distribution innlagéural
exponential familythen there exists an analytical solution. The explicit solution agthelement
is

o _ BulYilouyyznl _ Bu[AjLgya) > HIA)W(A, u, v1)]

V. — =

T Eullgnyysyl By LAy > HIA)W (A, u,v1)]

*As usual,[ ] is a ceiling function.
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Figure 4: Distribution of the boundary for each time step. As we have more iterations, the shape of
the distribution becomes narrower, and it converges to the optimal boundary.

., Ay, are independent random variables following an NEF.

whereA = (Aq,...,An,) andAy, ..

For sample estimation,
- e Njilgran)>n W (A, u, 1)
’ SR a0z W (As,u, 1)

, AN, are independent random variables such thgthas

14

whereA = (Aq,...,Ay,) andAq, ...
an NEF distribution. Note thaA ; is an Ng-dimensional vector of jth sample.

Remark 3 At step 8,y can be replaced with. The details for obtaining this approximation are

discussed in Section 3.2.2.
Figure 4 shows the general shape of the distributions for the boundary of each time step. As

the algorithm iterates more, it puts more weight around the optimal points, and it will eventually

converge to the optimal boundaries.
Now we provide the computational complexity of the adaptive simulation algorithm. We first
discuss the complexity of finding an optimal policy and then that of the low and high estimates. We

ignore the generation of the lattice points, stock paths, and policy. Computing the optimal boundary
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can be split into two parts. One is computing the value of policies and the other is updating the
new PMF from the good sets. We compute a option value based on each policy with sample paths.

Therefore, the maximum number of computations is
NG X Ns X NE,

whereN¢ is number of policiesNg is the number of stock paths, ang; is the number of exercise
opportunities. Once the policies are evaluated, updating the new PMF is performed only with good

sets. That is, the number of computations is
{pNGfI X NE.

Therefore, the total running time for finding an optimal boundary t&ak@Ss NsNg).
Finally, after we have computed the optimal boundary, we price the options/Nyittample

paths, wheréV; > Ng. Thatis,Ng x N7 operations take place.
3.2.1 High and Low Biased Estimators

We obtained two estimators, high biased and low biased estimatorg. the&the stock price space
and assume that there exists a true price and a corresponding early exercise boundgyybeet

subset of2 and
2

Jim_ L_Jl Sy = .
For the fixedS,,), we generaten policies, denoteﬁgj)(t), wheret € [0,7]andj =1...,m. Us-
ing an adaptive algorithm, we can find an early exercise boundary under the stock pfisg,set
Let the optimal policy unde§,,y be B}, (t). The exercise strategy is that if the sample stock price
path hits the optimal boundary for the first time, then exercise. If it never hits the boundary, then we

exercise the option at maturity if it is in-the-money.
Low biased estimator,¢

Let the low biased estimator bg This can be obtained in the following way. For fixed time

t, a sample stock prics; hits the B*(¢) obtained by the adaptive algorithm and its payoff value
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fi(St) = (K — S;)™ for a put option on a single asset. Therefore, the low biased estimator
is a discounted price of intrinsic value when the underlying hits the boundary for the first time,
¢ = e " f(S;). We replicate it many times and its expected value is our low biased estimate,

denoted byE ¢, (V1)], whereN; is the number of replications.

High biased estimator,®

For the high biased estimatdr, we adopt an anticipative policy when the sample path hits the
boundary for the first time at time The option is exercised and the payoff is given by the higher of
S; and S, a;. Namely, the payoff value atis F;(S;) = max(f;(Sy), e firat(Si4as)). Then
we discount back to current valugé,= e~ "' F;(S;). By the same method, we have the high biased
estimate, denoted big[®, (N, )].

We compare two estimators. The high biased estimator is always higher than the low biased

estimator, and the difference between the two estimators converges to 2¢rapproaches zero.
Proposition 1 The high biased estimat&[®,(N, )] is no less than the low biased estimatgs (N1)].

Proof The proof is straightforward to show. At timg, where a sample stock price path hits the

exercise boundary for the first time, we have

Fy, (Sy,) = max(fi,(St,), e " fropne(St+at)) = fru(Si,)-

SinceFy, > f, for0 < b < t,, wheret, is the stopping time, we can conclude thd®,] > E[d]. i

Proposition 2 The difference between the two estimates converges to zero if the adafitdd

filtration is right-continuous.

Proof
We only need to show that the price difference between the stopping tilnarnd one-step
ahead {; + At) converges to zero as the one-step interval length converges to zero. Since the

stochastic procesS is right continuous and adapted to the filtratigfi; } as well as measurable
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with respect to{ F; }, it is straightforward to see that

li S, — S, =0.
A?—I}o | St, ts+AE ”

That shows that the differences between the two estimates converges tp zero.

We also know that if we have a big enough policy set under the given policy space, we can
obtain a good approximation to the true price with a large enough sample path set. The following

proposition states this:

Proposition 3 If the sizes of the sample stock price set and the policy set approach infinity and the
policy space contains the optimal policy, the policy obtained from the policy iteration converges to
the true early exercise boundary, and the corresponding price converges to the true option value

under the given policy spadé&G).

Proof
Let |@Q,| = n be the size of the policy set and I&f;,| = & be the size of the sample path
set. First, fix|S| and letS = Q. Also letg; be the probability of finding a true boundary outiof

boundaries (polices) witl. Then there exist andm, wherem < n, such that
P(Qn > Qm) — 1

Since we have a finite number of sample paths, the above statement might not be accomplished
with a small number for the sample path set. However, since the size of the sample path set con-
verges to infinity, the above statement is always true. By Equation (21), its corresponding price is

the true pricel

Corollary 1 For an American put on a single asset, the estimate by a policy obtained with the
adaptive algorithm converges to the true option value if the numbers of sample price paths and

policies approach infinity.

At this point, we can enumerate the advantages of our algorithm. First, the adaptive algorithm re-

quires little knowledge on the structure of the option policies. By iterating, we can find the structure
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of the optimal policy automatically. Second, it does not require an approximation of the conditional
value functions as in LSM ([45], [65]). Hence, we do not have to deal with this source of errors.

In addition, we need not be concerned with choosing basis functions in our algorithm. Our CPU
time is significantly improved compared to Rogers [53]. We could not directly make comparisons
to other competitors since our computation is run in Matlab for all cases. However, we compared

our CPU time to LSM CPU time for a jump-diffusion process case.
3.2.2 Convergence of the Optimal Exercising Policy

In this section, we discuss some issues related to the convergence of our adaptive simulation pre-

sented in Section 3.2. All proofs are provided in the appendix. Let us introduce additional notation.
* p—1 : (n — 1)th accumulated data set,

* H(A,G) : the highest value obtained by choosing the best option exercising policy among a
given set of policies\ = {Ay, ..., Ay, } with a fixed stock price s&i. Thatis,H(A,G) =

SUD A (1)t €[0,7] ol (K — Smin(ry,1)(9)) 1.

First, we show how to compute an optimal vector for one iteration. Fof:the 1)th iteration,
adaptive updating of the exercising policy at tith iteration can be obtained. First, for a fixed

Un—1, lety, be the(1 — p) quantile of H(A, G) underv,,_,. That s,
Py, {H(A,G) > v} = p,

where A ~ f(-,v,-1). Therefore, a simple estimatés, of ~,, can be obtained by drawing a
random samplé\;, A, ..., Ay, from f(-,,_1), calculatingH(A;,G) for all i, ordering them
from smallest to biggesti(;) < Hp) < -+ < H(n,,), and finally evaluating th¢l — p) quantile

as

Yn = Hn,[1-p)NeT)-

Then the adaptive estimation of is carried out as follows. For a fixeg,_, derivev,, from

the solution of the following program:

Iglea&c {D(u, V)= E,,n_l[1{H(A’g)2%71}W(A,u, Un—1)In f(A, V)]} . (24)
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The stochastic counterpart of Equation (24) is obtained by replaging with 4,,_; and the ex-
pected value with the corresponding sample average, where the sample is the same as that used to
computey,, 1.

Now, we consider the general case. Suppose we are interested in

max {D(u,v) := Ey, [Lipa,gy>t W (A, u,v1) In f(A, )]} (25)

Since there is typically no analytical solution for Equation (25), numerical optimization procedures
must be implemented in such a case. Given a safplé\,, ..., Ay, from f(-,v), we can esti-
mate the optimal solution* of Equation (25) using our proposed algorithm from Section 3.2.

We discuss convergence of the adaptive algorithm presented in Section 3.2. The papameter
plays a crucial role when we expect the adaptive algorithm to converge to the correct value. The
priori determination of whichp is acceptable can be a difficult tdsko overcome this problem, we
suggest thap can be changed adaptively. The modified new step will be introduced later. We now

state a series of assumptions that will be necessary in the sequel.

Assumption A:

P,(H(A,G)>z)>0 forallveV,

whereH (A, G) is the sample performance and the set of random polikies f (-, v).

Assumption A simply ensures that the probability being estimated does not vanish. This as-
sumption is satisfied when the distribution’éf A, G) has an infinite tail. For zero-tail distributions
such as truncated exponential, the assumption holds as long aszeithiess than the maximum

value of the functiort{(A, G), or if there is a positive probability thatis attained.

Lemma 2 Suppose that Assumption A holds andudet V. Then there existg; > 0 such that

v(v,p) > xforanyp € (0, p}).

Lemma 2 shows that by decreasipgufficiently, we can force the quantiteto increase. In

particular, we can force to increase at least by some pre-specified améusnt0. Thus, we can

TBased on our experiments,c (0, 0.10) would be a reasonable choice depending on the structure of the products
under consideration.
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modify our algorithm by replacing with p; 1 and adding the following step after Step 6 in Section

3.2 as follows:
Let p,, be such thap(vy,, p,) > min{z, y(vn—1, pn—1)} + J, Whered is a positive constant.

With this modification, it is clear that(v,,—1, pn—1) > = for somen. Also, we can rewrite Equation
(24) as

glea‘;({Eyn_1 [1{H(A,g)2min{:p,'y(zxn,1,pnfl)}}W(A7 u, Vn—l) In f(A’ V)]} (26)

Proposition 4 Suppose that Assumption A holds. Then the modified version of the adaptive algo-

rithm converges to an optimal solution after a finite number of iterations.

A few comments are in order about the modified version of our algorithm. First, the algorithm
aims to reach/* by a sequence of calculations controlled by the parametgreshich should be
kept as large as possible. In fact, in many casegthare initialized with a “moderate” value such
as0.2 and are never reduced. This follows from the fact that by construction of the algorithm, the
distribution of H(A,G) whenA ~ f(-,v,41) tends to have larger tails than whan~ f(-,v,,),
and thusy(vy41, p) > v(vn, p) for all p in these cases.

In that sense, the modified algorithm makes sure that our algorithm works even though the latter
property fails. As discussed above, there always exjst satisfying the property in the step we
added. In practice, we can plt= 0 in the algorithm.

Now, we turn to the issue of replacing the expected values with their respective sample means

in the modified version of our algorithm. That is,

Na

N 1

Uy € argmax.cy, {NG > L(An9) 23 (Apn )} W (Ady u, ) In (A, V)} :
=1

whereA, As, ..., Ay, isasample fronf (-, ,_1) (for a given realization of,,_1), W (A;, u, o, —1)

is a weight function, anéix,, (A, p,—1) is defined as the samplé—p,,—1) quantile ofH(A;,G), ...,
H(AnN,,G). The fact thaty(v, p,—1) is replaced byyn,, (A, p,—1) means that the new step added
in our algorithm may not be carried out. For example, it could happen that the saesg)
produced at two consecutive iterations are identical. The proposition below shows thaighen

large enough, the new step can be executed.
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Proposition 5 Suppose Assumption A holds anddet (0, x]. Letr € V andAj, A,,... be i.i.d.
with densityf (A, v). Then there exists, > 0 and a randomV,, > 0 (size of the sampled exercising
policies), such that with probability onéy, (A, p) > a for all p € (0, p,) and all N¢ > N,,.
Moreover, the probability that ., (A, p) > a for a givenNg goes to one exponentially fast with

Ng.

The above proposition shows not only that, (A, p) — which corresponds to thel — p)-
guantile of the highest option value obtained in the samples — reaches any thre$bokliffi-
ciently smallp and sufficiently largeVs (which ensures that the algorithm terminates), but also that
one expectVg not to be too large due to the exponential convergence, at least for moderate values
of p. In any case, to ensure that the sample size grows as needed, we can check after the added step
in our algorithm if such &, can be found. If not, the sample size should be increased and the
process is repeated.

Now we can compare the approximated soluficand the true/* using the asymptotic analysis
for optimal solutions of the stochastic optimization problem discussed in [56]. Let us consider a
real-valued functiork (), v) of two vector variables\ andv, and letA be a random vector policy

with probability measuré’(\, v). Suppose that
l(v) = E[h(A,v)] = /h(A, v)dF(\v)
exists for allv in aregionV C R™ and consider the problem
max { l(v), veV}.

Let Aq,..., Ay, be an ii.d. random sample of exercising policy random vectors with common

distribution F'(\, v). Then the stochastic counterpart of the program is
Na
max Iy, (v) = NG Zh(Ai,u), vev,
=1

where
h(Az, l/) = 1{H(Ai,g)2’y}W(Ai7 u, V) In f(Au I/).

Denote byP be the value of an American put on a single asset,

M '
P = Sup { sup <N11 ZQ(K - SI(I,‘ngH(’TA T))+> } ’
i=1

veV A
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with exercising policyA ~ f(-,v), and letiy,, be the optimal solution of the program. We consider
P andiry, to be statistical estimators of the optimal valB& and an optimal solution* of the
program.

For any fixedr € V/, we have by the Strong Law of Large Numbers that(») converges to
[(v) with probability 1. It is possible to show that the above convergence is uniform if tHé et

compact and the following two conditions hold ([56]).

Assumption B: For almost every\ with respect to the probability measufrg ), -), the function
h(A,-) is continuous orV'.
Assumption C: The family {|h(\, v)|,v € V'} is dominated by an integrable function with respect

to h(A, ).

Lemma 3 Suppose that Assumptions B and C hold. Then the expected value futetigncon-
tinuous onV. If, in addition, the se¥” is compact, then w.p.ly, (v) converges td(v) uniformly

onV.

Theorem 4 Suppose Assumptions B and C hold and thé/sistcompact. If/* is a unique maxi-
mizer ofl(v) overV, thenvy,, converges to* w.p.1. MoreoverP — which is the estimated option

value with the sampled early exercise policyffy, 7, ) — converges t@* (the true price) w.p.1.

From this, we obtain a consistency result: under appropriate assumptidfis as oo, the
distance betweeity,, and the solution set of Equation (25) goes to zero w.p.1.

Since our algorithm has a discreté-point distribution, we have to verify that the above argu-
ments can be applied into our case. We shall classify distributions into two categories: ones with
unbounded support like exponential, Possion, and normal distributions, and ones with bounded sup-
port such as uniform(a,b), truncated exponential, and disarpwnt distributions. More formally,
we say that(A, G) has bounded support #(|H(A,G)| > a) = 0 for somea large enough.

Note that bounded support distributions can be viewed as zero-tail distributions as compared to
their counterparts with infinite tails.

Finite-support distributions possess the following important general property ([55] and [56]).
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Proposition 6 Letz* be the maximum value &{(-) over the discrete set

Y={vi,--svim} X x{Ynp1ls-- - YNgM},

and suppose that the maximizer7f-) over Y (call it y*) is unique. Suppose that the random
vectorY has independent components with discrete distribudforThen the solution obtained is

the atomic measure with massgt

Figure 5 shows a standard put option price convergence depending on different initial stock
prices. In most cases, prices have converged after &bdterations. Interestingly, if the option is
deep out-of-the-money, then the exercising policy distribution converges more quickly than that of

deep in-the-money.
3.2.3 Implementation and Numerical Examples

In this section, we implement our algorithm to price several options with various initial stock prices.
We compare our estimates to other algorithms proposed in other papers.

To enhance the computation, we sort the early exercise boundaries for each iteration when we
use the policy iteration. Also, we use a coarse mesh for the time horizon for obtaining the early
exercise boundary. However, we use a cubic spline method for computation of the early exercise

boundary so that we can apply a small time interval for the low and high biased estimates.

Remark 4 If the asset price model is multiplicative, i.e., a geometric Browinan motion model, then

the early exercise boundary is convex (see [66]).
3.2.3.1 Example 1: American put options on a single asset

Our first example is an American put on a single asset following the geometric Brownian motion

(GBM) model, whose process is given by

o2
St:S(]eXp{<T—2>t+0'Wt}>

wherer is the riskless rate of interest assumed to be constaistthe constant volatility, antlV,
is a standard Brownian motion process. No closed-form solution for the price is known. However,

there are a few numerical methods giving good approximations.
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Figure 5: Standard put price convergence by updating the free boundary with different initial stock
prices. TheX -axis represents the iteration number and¥thaxis represents option prices. Param-

eters are K = 100, = 0.05,7 = 0.5, ando = 0.4
To find an optimal boundary, we generate a unifgisfl, K') random variable for the initial
boundary and update the distributiof times with a set of sample paths havidg = 7'/20. The

set of sample stock prices is of s2@00 and the number of policies i90. From this, we obtain one
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boundary. After that, we repeat the procedibdimes, pick the 3 best policies, and then average
them out for early exercise boundaries.

With the early excise boundary, we usga000 sample paths witR00 exercise opportunities
for the low and high biased estimators. The calculations were performed throughout in Matlab and
can be expected to improve further by coding with a compiled language. CPU time is recorded only
for obtaining the early exercise boundary at this time.

The results of our simulation are presented in Table 5. Parameter values-ar€6, o = 0.4,
K =100, andT = 0.5, with varying initial stock prices as shown in the table. The column of true
American prices is quoted from Ait-Sahalia and Carr [1]. Then we give the low biased estimate and
high biased estimate from our method. Point estimates are obtained by averaging the low and high
estimates. Error was calculated with point estimates and true values; a minus sign in the Error(%)
column denotes the undervaluation of prices compared to the true price. CPU time is the average of
10 runs. Based on our algorithm, the point estimates are very close to the true prices for all cases.

All errors are less tha0.25%.

Table 5: Simulation prices of high biased and low biased standard American puts. Option parame-
ters: K =100, r = 0.06, T = 0.5, ando = 0.4.

So | Lower Upper Point TRUE Error(%) CPU (s)
80| 2156 21.76 21.66 21.61 0.24 3.97
90| 14.81 15.00 1491 1492 -0.09 4.55
100| 9.87 10.02 9.94 9.95 -0.03 4.66
110| 6.38 6.48 6.43 6.44 -0.11 4.32
120| 4.02 410 4.06 406 -0.02 4.57

3.2.3.2 Example 2: American min put optionsassets

This example concerns American put options on two independent assets following GBM, so that we

can compare our results with a similar example from Rogers (2001) given by

2
Si(t) = Si(0) exp { (r — 02’> t+ aiWi(t)} ,
with payoff function

f(t) = max e (K —S;(t)T.

1=1,2
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The payoff function can be rewritten as

fy=e (K ~ min Si(t)> ! ,

1,2

and we can find the early exercise boundary for the two assets by treating the problem as a single
asset pricing problem,

S(t) = min {S1(t), S2(t)} . 27)

With this change, we calculate the high biased and low biased estimates even though the stopping
rule should ideally depend on the values of each of the underlying stocks. Hartley [37] shows that
numerical results obtained by using Equation (27) are witinof the finite-difference values in

the case of two assets. If we compa@tdimensional §D) boundariegS1, Ss, t), then we can have

better estimates. However, it takes more effort to find boundaries. Hence, we simply attempt to
transfer from the3D to 2D setting as shown in Equation (27); numerical results are given in Tables

6and?7.

Table 6: Simulation prices on min-puts on two assets with the same volatility by changing3bom
to 2D. Option parameterss’ = 100, r = 0.06, T = 0.5, ando; = o9 = 0.6.

S1 Sy | Euro FD Lower Upper Point Error(%) CPU(S)
80 80|36.86 37.30 36.95 37.51 37.23 -0.19 6.84
80 100| 31.64 32.08 31.75 32.39 32.07 -0.03 6.52
80 120| 28.65 29.14 2887 29.38 29.12 -0.06 6.29
100 100| 24.73 25.06 24.82 25.93 25.37 -0.01 6.65
100 120| 20.61 20.91 20.67 21.19 20.93 0.09 6.56
120 120| 15.70 1592 15.81 16.09 15.95 0.19 6.49

We test two different settings: symmetric and asymmetric. In Table 6, we have symmetric
initial stock prices and compare our algorithm to finite-difference methods quoted from Hartley
[37]. We ran our simulation with00 policies and2000 sample paths fot5 iterations to find the
free boundaries. After obtaining the boundaries, webs@900 additional paths with 00 exercise
opportunities. The results are very good compared to those of the finite-difference methods. Our
error is less than.2% for all cases when compared to the finite-difference methods.

Table 7 presents the results obtained for asymmetric settings, with two different volatilities. We

again compare our estimates to a those of finite-difference methods. We find interesting trends from
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our results. Estimates with lower initial stock prices and a low volatility are always underestimated
compared to those from a finite-difference method. On the other hand, estimates with higher initial
stock prices and a low volatility are overestimated. Our estimation errors are less@h#nfor all

cases.

Again, the stopping rule should ideally depend on the two underlying processes. However, we
also attempt to solve this problem by looking at the minimum of the two underlying prices and
the difference of the two underlyings. With an appropriate exercise rule, we have higher estimates
compared to the finite-difference method quoted from Hartley. Hartley shows in the case of two
assets that his approximate method delivers numerical results viithiof the finite-difference
method; our estimates are always higher than the finite-difference method from Hartley, and not
more thanl.1% for all cases. We could not directly compare our results to the finite-difference
method for the3D case since it was not provided by Rogers. We did not attempt to duplicate his
algorithm at this time. Tables 18 and 19 in the appendix show the numerical results.

Table 7: Simulation prices on min-put options on two assets with different volatilities by reducing
from 3D to 2D. Option parameterds’ = 100, r = 0.06, T = 0.5, ando; = 0.4, 05 = 0.8.

S1 Sy | Euro FD Lower Upper Point Error(%) CPU(S)
80 80|3755 38.01 37.71 3835 38.03 0.05 6.51
80 100| 31.81 32.23 3192 3242 3217 -0.18 6.38
80 120| 28.09 28.54 28.16 28.56 28.36 -0.64 6.22
100 80| 32.86 33.34 33.13 33.67 33.40 0.19 6.58
100 100| 25.47 25.81 25.63 26.17 25.90 0.34 6.45
100 120| 20.48 20.75 20.58 20.93 20.76 0.03 6.19
120 80| 30.69 31.21 31.13 31.66 31.39 0.58 6.10
120 100| 22.44 22.77 22.63 23.42 23.02 0.51 6.59
120 120| 16.76 16.98 16.80 17.23 17.02 0.21 6.70

3.2.3.3 Example 3: Bermudan max calls witlssets

The Bermudam-max-call had been studied in Broadie and Glasserman (BG) [8], Rogers [53], and
Haugh and Kogan [38]. The Bermudan option has similar properties as American options but with

a limited number of exercise opportunities. In this example, we price the following option whose
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payoff function is

f@):e-”(¢mm &@)—K>+.

i=1,...,n
As usual, the assetS;(¢t) are GBM's which are independent and identically distributed for this
example. There is a continuous dividend payout at #at€he stock price processes for only two
assets under the risk-neutral measure are assumed to follow a correlated geometric Brownian motion

process. For example,

dSl (t) 1
= (r—8)dt + o dW,
s oA
W) (5, dt + poy dW) + /T = PP d WP,
Sa(t)

We compute an early exercise boundary wifl® policies and2000 sample paths and repeat
this procesd0 times. We pick the three best boundaries and average them out for the early exercise
boundary. CPU time is recorded Table 8. Once we obtain the early exercise boundary, we can
compute the low and high biased estimators. To estimate the high biased estimator, we need a little
more effort. First, we generate the sample paths With= 3,6,9 and apply the exercise rules
for low biased estimators. However, we need to generate forward stock prices for each exercise
opportunity. For example, let, t2,t3 be possible exercise points afd = T/N = ty — t;.
Then we haves,, Sy, , Si,, St,. But we generate prices from each possible exercise point. That is,
Sto+ot, St1+6t, Sto+6t. Therefore, ifty were the optimal stopping time, then the low biased value is
f(St,) and the high biased value would B&S;, . s¢).

We ran200000 sample paths to estimate the prices. For the high biased estimator, we used
dt = T/1000. Since they do not have a closed-form solution, we just compare our estimates to
those of the other algorithms. Our upper estimate is always higher than the BG method and lower

than Rogers’ method; the point estimates are very close to those of the BG method.
3.2.3.4 Example 4: American-Bermudan-Asian option

This example concerning an American-Bermudan-Asian option has been studied by Longstaff and

Schwartz [45] and Rogers [53]. The model is a single GBM and uses the cumulative average

 Aod + [y Sudu

Ay = t>0. 28
' t+s 0 =0 (28)
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Table 8: Simulation prices of a max call option gnassetsK = 100, » = 0.05, § = 0.1 months,

T = 3 yrs, ando; = 0.2. The option can be exercised at any of times i7'/d, i = 0,1,...,d,
whered = 3,6,9. CPU-I is for computing the early exercise boundary, CPU-II is for the low
and high biased estimator, and CPU-IIl is quoted from Rogers. CPU-I and CPU-II are computed
by Matlab with a P4-2.4Ghz machine and CPU-IIl is by Scilab with a 600Mhz PC. For Rogers’
computation,1000 sample paths were used for the optimization step&@d paths to refine the
estimate. All CPU units are seconds. Rogers’ CPU times are included reference purposes only.

d| So BG Rogers Lower Upper Point CPU-I CPU-Il CPU-III
90 | 16.01 16.24 1597 16.09 16.03 4.94 4.25 337.73
3| 100| 25.28 25.70 25.24 2547 2535 4.80 4.25 227.47
110| 35.70 36.19 3558 35.87 3572 4.83 4.14 208.07
90 | 16.47 1691 16.45 16.68 16.56 6.43 6.59 299.63
6 || 100| 25.92 26.40 25.77 26.07 2592 6.42 6.62 329.52
110 | 36.50 37.18 36.35 36.74 36.55 6.41 6.69 345.98
90 | 16.66 16.98 16.51 16.75 16.63 8.13 9.04 710.71
91 100| 26.16 26.75 25.98 26.34 26.16 8.06 8.97 419.56
110| 36.78 37.61 36.63 37.05 36.84 7.98 8.99 431.86

The positive value ob prevents fluctuations near= 0. Also, there is a lockout periotf during
which the option cannot be exercised. But the option can be exercised at any time bgtardn
T and the payoffigA; — K)*. The price of this option is
Co= sup FEyla(Ar—K)"]. (29)
te[t*,T)

Rogers points out that Longstaff and Schwartz Lediscretization points per year to approx-
imate the continuous exercise feature of the option. Therefore, it may be more accurate to say that
Longstaff and Schwartz are pricing a Bermudan-Asian option.

We shall estimate the values for the American-Bermudan-Asian option where there is no re-
stricted exercise betweenh and7. We compare our estimates to the Longstaff-Schwartz figures
quoted from [53] for the finite-difference value of the options (based on a discretizationl 08y
time steps per year, ard0 space steps in each of two dimensions) and Rogers’ upper boundary of
estimation.

For this option, we need to pay attention to two things. First, there would never be an exercise

at atime wherd; < K; and second, there would never be an exercise at a time when

—rt St_At
t+9

GtEe —’I"(At—K) >0,
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since( is the derivative of the payoff at a fixed time point with respect &nd it is clear that if the
exercise value is increasing, then the optimal exercise requires the holder to wait to exercise since

the value will assuredly rise in the next small instant of time.

Avg Price, At

Exercise Region L

T |

Kt

t
Q Stock Price, St

Figure 6: Approximated early exercise boundary for American-Bermudan-Asian option at.time

We cannot directly apply the policy iteration at this frame since at each time we need to consider
the stock priceS;, and average price of the stock;. Figure 6 shows the shape of the boundary at
fixed timet, where0 < ¢ < T'. In this figure, there are three parametéfs, (), andL; which we
need to find to maximize the value of the option. Therefore, it is a much more-complicated problem
as compared to our previous problems. However, we can simplify this matter using the boundary
property of an American-Asian option.

First, we know that the early exercise boundary at maturity is at the strike pfices K. Since
K is a monotonic decreasing function &, we can use a linear function to approximafe That
is,

Ko— K
K; = Ko— (OT> t, te(0,T).

Here, we try to findK.

In addition, the “tilt point” at the maturity timel)r, is infinite or the slope is zero. However,
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we set the approximate initial and end tilt poinfk, andQr, and approximaté); for each timet

since it is a monotonic increasing function,

Qr=CQo+ <QT; QO) t, t€(0,7).

For this, we need to find two value§, and@r, using policy iteration. First we attempt to X,
to find the optimal),, and then later we relax this assumption.
Lastly, the slope after the tilt point is zero at maturity. Again, we assume that the slope is a

monotonic decreasing function to zero. That is,

'
L; = Lo (1—T>, te(0,7),

and the early exercise boundary at titrean be described as a piecewise linear function,

K for S
B(S)) = t or St < @y (30)

Kt + Lt(St — Qt) for St > Qt .

Hence, we need to find three valuksg, Qy, andLg using our algorithm. This simple structure
enhances our search algorithm very efficiently. Figure 7 shows the overall shape of the boundary.
We modify slightly the algorithm given in Section 3.2 to adjust to the structure of this product.

That is,

1. GenerateM initial triples, Kg, Qo, Ly from a uniform distribution. Let these values be

le)(o) = (Ko, Qo, Lo);, wheret: = 1,..., M.
2. From the initial triple, calculaté;, Q;, L; from the above equations.
3. Generate one set of stock pricés,(t) following GBM, and calculated,, (t) from S, ().
4. Apply Stepsr throughl1 from Section 3.2.

Table 9 compares estimates to the finite-difference method (FD), Rogers’ duality approach, and
the least squares method (LSM). Both finite-difference and least squares meth@ds tisee
steps for stock prices and average prices, and RogerstOsise steps. We usg00 time steps to

compare our algorithm to FD and LSM.
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Figure 7: Approximated boundary for American-Bermudan-Asian option.
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Table 9: Simulation prices of American-Bermudan-Asian optidt:= 100, r = 0.06,t* = § = 3
months,T" = 2 years, andr = 0.2. There ar&00 exercise opportunities.

Ap So | Lower FD Rogers LSM  Error(%)
90 80| 0.955 0.949 0.952 0.961 0.632
90 90| 3.311 3.267 3.297 3.309 0.060
90 100| 7.898 7.889 7.892 7.886 0.114
90 110| 14.471 14538 14575 14518 -0.461
90 120| 22.273 22.423 22513 22.378 -0.669
100 80| 1.107 1.108 1.094 1.101  -0.090
100 90| 3.710 3.710 3.697 3.700 0.000
100 100| 8.638 8.658 8.752 8.669  -0.231
100 110| 15581 15.717 15913 15.703 -0.865
100 120| 23.735 23.811 23.924 23.775 -0.319
110 80| 1.295 1.288 1.265 1.265 0.543
110 90| 4.163 4.136 4.409 4.186 0.652
110 100 9.751 9.821 10.359 9.830 -0.713
110 110| 17.231 17.399 17.684 17.362 -0.966
110 120| 25.256 25.453 25.661 25.406 -0.774

To find the optimal boundary, we u$e0 sample policies ant00 stock prices. After obtaining
the boundary, we run anoth200000 simulations. At this time, we simply compute the low biased
estimate since&r; already contains the future price information, and it does not provide further
information as long as the time increment for the high biased estimator is larger than the time
increment for price generationy( > At). Hence, we did not attempt to compute the high estimator.
Our estimation errors are calculated with a finite-difference method. In most cases, our errors
are less thani% compared to the finite-difference method and LSM. In addition, our estimates

compared to LSM are higher in some cases and lower in some cases.
3.2.3.5 Example 5: American put options on a single asset with jump-diffusion processes

In this section, we describe how our algorithm can be applied to pricing American put options
with a jump-diffusion underlying process. We compare our estimates to the LSM method to check
the robustness of our algorithm. First, we assume the underlying security consists of two parts: a
continuous part and a discontinuous part. The continuous part is a geometric Brownian motion with
constant instantaneous driftand volatilityo. The discontinuous part represents the change in the

security value upon arrival of some rare event. Rare events include a major disaster or political
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changes, or the release of unexpected firm or economic news. The process is

gft:udt—i-ath—i-V}dqt, (31)
where first two terms on the right-hand side represent the continuous part, the third term represents
the discontinuous part, ard= (¢;):>0 is @ homogeneous Poisson process with intensity parameter
A > 0 per year.

Let Ty, T5,. .., denote the arrival times of the jumps. Moreover,g{ = (ST;/ST;) -1,
whereVr,, Vg, ... are i.i.d. random variables representing the successive percentage changes in the
security value at the jump events. We assumeltfiat, andVz, are jointly independent.

Let A; be the logarithm of the ratio of the security value after and before the jump. We assume

it is normally distributed and state independent. That is,
A; = IHST_Jr —1In ST_f = hl(VTi + 1),

wheref(A4;) ~ N(ua,0%).
LetL = >, A; be the sum of the log jump-sizes in the interf¢all’]. Under this assumption,

L is also normally distributed,
L ~ N(uaXT, (1% + 03)AT)

by Wald’s equation ([54]).
Applying the Dokans-Dade stochastic exponential formula for semimartingales, we get a unique
solution to the stochastic differential equation,

2
St = Spexp { (r - J2> T+ O'WTQ + 12 - )\QEQ(VTZ.)T} , (32)

where@ is the equivalent martingale measure that makes the security process a local martingale.
To simplify the illustration, we use the jump-to-ruin model presented in Merton [48]. In this
model, the stock price follows a geometric Brownian motion until a Poisson event occurs at which

point the stock price becomes zero. The dynamics for this jump-diffusion process are given by

When a Poisson event occurs, the valuey gimps from zero to one and the stock price jumps

downward fromsS to zero.
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By solving the stochastic differential equation (SDE), we have in the discrete time setting,

(1 —¢)S;exp { (r +A— %2) At + a\/EZ} if jumps occur

(33)
S, exp { (r +A— "72) At + a\/ﬂz} otherwise,

Sirat =

where( is the magnitude of jumps ard= 1 for the jump-to-ruin model.

To make a comparison to LSM, we simply followed the setting of the Longstaff and Schwartz
paper. That is, we compare the price for the American put option for the cases where theme is (
possibility of a jump\ = 0.0 and i) when a jump can occur with intensity= 0.05. If A > 0, then
the distribution of stock price is no longer conditionally lognormal. Furthermore, the conditional
variance of the stock price increases\dacreases.

To make an even more meaningful comparison, we match the first and second moments for two
different underlying processes. For example, to equalize the variance between the with-jump and
without-jump cases, we adjust the parameteando such that\ + o2 is the same for all different

cases, since the variance of stock prices is
S? exp(2r) {exp (A + o*)T) - 1},

whereS§ is the initial stock price.

To find an optimal boundary, we generate a unif¢fmi’) random variate for the initial bound-
ary and iteratd 5 times with a set of sample paths haviAg = 7'/20. We generate a set @Ho0
sample stock prices arid0 policies. From this, we obtain one boundary.

With an early excise boundary, we used #0800 sample paths with0 exercise opportunities
for low and high biased estimators to compare our algorithm to LSM. CPU-I is only for obtaining
the early exercise boundary, CPU-Il is for calculating the low and high biased estimators, and CPU-
lllis for the LSM algorithm. The computational cost is more expensive than without jump processes
to obtain the early exercise boundary; however, the difference in computing time for estimating the
low biased price is insignificant.

Table 10 shows the prices of an American put with jumps and without jumps. We compare di-
rectly our algorithm to LSM for the at-the-money option case since LSM estimation is only directly
available for that case. But we compute other cases such as in-the-money and out-of-the-money op-

tions even though LSM estimates are not available in [45]. Therefore, we ran the simulation using
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Table 10: Simulation prices of high biased and low biased standard American puts with jump-
diffusion process. All computations are done on a P4 2.4Ghz PC with Matlab. CPU time units are
in seconds. Option parametefs: = 100, » = 0.06, andT = 1.

S1 Ao LSM Lower Upper Point CPU-I CPU-IIl CPU-III

441 0,03 | 253 245 255 250 6.34 1.89 26.64
0.05,0.2| 2.60 2.60 263 261 6.41 1.78 18.13
42| 0,03 | 311 3.02 3.16 3.09 6.25 1.86 35.14
0.05,0.2| 291 2.88 292 290 6.32 1.85 24.89
40| 0,03 | 3.84 3.78 394 386 6.20 1.84 53.72
0.05,0.2| 3.40 3.39 346 343 6.34 1.81 38.95
38| 0,03 | 473 4.64 482 473 6.20 1.92 91.91
0.05,0.2| 4.09 4.04 413 4.08 6.27 1.84 85.44
36| 0,03 | 569 5.64 584 574 5.96 1.84 143.97
0.05,0.2| 490 4.96 510 5.03 6.01 1.83 165.61

the LSM algorithm to compare the least squares method to our estimates. Weaxsecise points
per year in the LSM algorithm witB0000 replications.

The values of the options are lower when there is a possibility of a jump, holding fixed the
variance across the example but in the deep out-of-the-money gasel{). This makes intuitive
sense because for the diffusion coefficient in the- 0.05 case, there is a very low possibility of
jumps. That is why jumps do not affect the gain of the option holders for at-the-money and in-the-
money options. However, if the option is deep out-of-the-money, gains for the option holder are

higher even though is small because only one jump can dramatically change its payoff.
3.2.4 Conclusion

This chapter presents a generic algorithm for pricing American-style financial options by an adaptive
simulation. This method first estimates the early exercise frontiers and then evaluates the options
with the estimated policies through Monte Carlo simulation. High biased and low biased estimators
are computed and a point estimator is obtained yielding the two biased estimates. Also, the adaptive
algorithm leads to the convergence to the true early exercise frontier with probability one. Therefore,
we provide an efficient simulation-based algorithm for pricing American-style options.

We presented several examples: a put option, min puts with two assets, Bermudan max calls

with five assets, American-Bermudan-Asian options, and American put options with jump diffusion
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processes. Compared with other simulation estimators, our algorithm is very competitive in terms
of computing time as well as performance properties of its estimates.

We have already shown that the difference between the estimated optimal value and the true
value goes to zero (w.p.1) under the appropriate assumptions. Hence, we can further investigate
confidence intervals based on the estimators. The error bounds for the high biased estimator need
to be investigated more since they used future information in the paths and such information deter-

mines the distance between the high biased estimator and the true value.

3.3 Variance Reduction

The computational burden can be reduced significantly using variance reduction techniques (VRTS).
This section develops methods for increasing the efficiency of Monte Carlo simulation by reducing
the variance of simulation estimates. The greatest gains in efficiency from variance reduction tech-
niques result from exploiting specific features of a problem rather than from a generic application
of a generic method. Therefore, we need to investigate each case and choose a specific VRT for the
purpose at hand. In this section, we go over a few well-known techniques such as antithetic variates,
control variates, importance sampling, and stratified sampling and its applications.

Figure 8 shows a sample run with three different estimates, without the use of a variance re-
duction technique, with Antithetic Variates (AV), and with Control Variates (CV). The detailed de-
scriptions of these techniques are given in the next section. This figure shows the variance reduction
visually.

As we expected, the variances of our estimators are reduced significantly when we use AV
and CV. This shows that these two different techniques can be well implemented in our adaptive
algorithm and as a consequence, we can reduce the computational cost. Note that AV has better

performance than CV in our example here.
3.3.1 Antithetic Variates (AV)

This method is very simple and easy to implement compared to other variance reduction techniques.
The central idea is to make pairs of runs of the model such that a small observation on one of the

runs in a pair tends to be offset by a large observation on the other one; i.e., the two observations
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Figure 8: Price estimation with three different methods. The dotted line is the true price obtained
by the finite-difference method, the dashed asterisk is without any variance reduction technique, the
dashed plus sign is with AV, and the dashed point is with CV.

are negatively correlated.

In its simplest form, AV tries to induce negative correlation by using complementary random
numbers to derive the two runs in a pair. That i€/jfis a particular uniform (0,1) random number
used for a particular purpose in the first run, we usely, for this same purpose in the second run.

It is perfectly valid to usd — Uy, instead of simply an independent direct draw from the random
number generator sindé ~ U (0, 1) implies thatl — U ~ U(0, 1) as well.

An important point is that the use &f;, in one replication and its complement- Uy, in the
paired replication must be synchronized, i.e., used for the same purpose; the benefit of Antithetic
Variates could be otherwise lost or even perhaps could even backfire in the form of a variance
increase.

There is a mathematical basis for AV. Suppose that we magbairs of runs of the simulation,
resulting in observationgcsg), SF)), (Sél), 552)), e (S,(Ll), S,(f)), whereSj(.l) is from the first run
of the jth pair andS](?) is from the antithetic run of th¢th pair. BothS](l) andS]@) are legitimate
stock prices of the simulation model so tIié[tSJ(l)] = E[S<2)] = p = true mean. Also, each pair

J
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is independent of every other pair; i.e., far # jo, Sﬁl) andS](.f) are independent regardless of
whetherl; andl, are equal. Foj = 1,...,n, letS; = (Sj(-l) + Sj(.z))/Q, and let the average of the
S;'s, S(n), be the unbiased point estimator,of Then since thé;’s are i.i.d., we have

_Var(S)) Var(Sj(.l)) +Var(S](.2)) + 2Cov(Sj(1),Sj(2)) B Var(Sj(.l)) + COV(S,(»U,SJ@))

var (S(n)) n an 2n

If the two runs within a pair were made independently, then((Séa\}, Sj@)) = 0. On the other hand,
if we could indeed induce negative correlation bethéH and SJ@, then CO\(SJQ),S](.Q)) <0,
which reduces VafS(n)).

In many examples, AV has been shown analytically to lead to variance reductions although the
magnitude of the reduction is not necessarily known. Also note that the total number of replica-
tions is2n and thus, we need to ruln replications without AV to make a fair comparison of the
magnitude of variance reduction.

Tables 11 and 12 compare the variance of each estimation technique. In Table 11, none of the
variance reduction techniques are used when searching for the early exercising policy. However, we
used AV in Table 12 to find the early exercising policy. The parameter values ar6.06,0 =
0.4, K = 100, andT = 0.5 with varying initial prices as shown in the table. Standard deviation
is only computed from low biased estimators. We 5800 sample paths for AV and0000 for the
non-variance reduction technique and repeated the entire ex@ddisees. For all cases, we have

a smaller variances as we expected.
3.3.2 Control Variates (CV)

This method is among the most effective and broadly applicable techniques for improving the effi-
ciency of Monte Carlo simulation. In principle, at least, there is an appealing intuition to CV. Let

X be an output random variable, such as the average diotheample stock prices for a standard
American call option, and assume that we want to estirbate F[X]. Suppose that” is another
random variable involved in the simulation that is thought to be correlatedXvigkither positively

or negatively), and that we know the valuecof E[Y]. For instanceg could be an European call
option price. It is reasonable to expect that a bigger than average European call price tends to lead
to a bigger than average American call price and vice versa. Thus, if we run a simulation and notice

thatY > ¢, we might suspect that is above its expectatiofi’ as well and accordingly adjust
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Table 11: Simulation prices of low biased standard American puts with Antithetic Variates under
GBM. Option parametersi’ = 100, » = 0.06, o = 0.4, andT = 0.5. None of the variance

reduction techniques are used in obtaining the optimal early exercising policy.

Regular AV Ccv

So | Low High Point| Low High Point| Low High Point| TRUE

80| 21.56 22.01 21.7821.55 21.79 21.6721.57 2202 21.80 21.61
(0.13) (0.07) (0.11)

90| 14.80 15.13 14.96 14.82 15.01 14911480 15.14 1497 14.92
(0.14) (0.05) (0.06)

100| 9.95 10.22 10.08 9.95 10.07 10.01 994 10.21 10.08 9.95
(0.12) (0.06) (0.05)

110| 6.45 6.66 6.5 6.42 6.52 6.47 6.44 6.65 6.55 6.44
(0.08) (0.06) (0.05)

120| 4.05 4.17 4.11 4.05 411 408 4.06 4.18 4.12 4.06
(0.08) (0.05) (0.04)

Table 12: Simulation prices of low biased standard American puts with Control Variates under
GBM. Option parametersK’ = 100, » = 0.06, ¢ = 0.4, and7T" = 0.5. AV is used to find the

optimal early exercising policy.

Regular AV Ccv

So | Low High Point| Low High Point| Low High Point| TRUE

80| 21.49 2191 21.7021.54 2180 21.6721.56 2199 21.77 21.61
(0.12) (0.08) (0.12)

90 | 14.79 15.13 14.96 14.81 15.04 14.9314.80 15.14 14.97 1492
(0.14) (0.05) (0.06)

100| 9.94 10.18 10.06 9.90 10.00 9.95 9.89 10.13 10.01 9.95
(0.11) (0.06) (0.05)

110| 642 657 650 641 649 645 643 659 651 6.44
(0.08) (0.06) (0.04)

120| 4.03 414 409 405 410 407 404 415 410 4.06
(0.09) (0.08) (0.04)

downward by some amount since we are interested in estimatinile callY” a control variate for
X since it is used to adjust, or partially control it.

To carry out the above idea, we must quantify the amount of the upward or downward adjust-
ment toX. Itis convenient to express this amount in terms of the devidtion ¢, of Y from its
expectation. Lety be a constant that has the same sign as the correlation befveedY. We
usea to scale to the deviatiol — ¢ to arrive at an adjustment t&§ and thus define the controlled
estimator

Xe=X—-aY —c).

70



Note that ifY” and X are positively correlated, so that > 0, we adjustX downward whenever
Y > ¢, and upward it < c.
SinceE[X] = C andE[Y] = ¢, itis clear that for any real number, E[X.| = C; thatis, X,

is an unbiased estimator 6fand it is consistent because, with probability

i 3R =t L5 (0 a0 o)

Also it might have a lower variance than. Specifically,
Var(X.) = Var(X) + o?Var(Y) — 2a Cov(X,Y), (34)
so thatX. is less variable thaX if and only if
200Cov(X,Y) > a? Var(Y),

which may or may not be true, depending on the choicg ahda.
To find a “best” value ofx for a givenY’, we can view the right-hand side of Equation (34) as a

function f(«) of « and set its derivative to zero; i.e.,

% =2aVar(Y) —2Cov(X,Y) =0,

and solve for the optimal (variance-minimizing) value

- S e
Note that the second derivatidé f /da? = 2Var(Y') is positive, a sufficient condition far* to be
a minimizer off ().

Plugginga* from Equation (35) into the right-hand side of Equation (34), we get that the mini-
mum variance adjusted estimat®f. over all choices ofr has variance

Cov(X,Y)?

Var(X}) = Var(X) vary) = (1 — p3y)Var(X),

where pxy is the correlation betweeX andY. Thus, using the optimal value* for «, the

optimally controlled estimatoX: can never be more variable than the uncontrofednd will in
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fact have lower variance ¥ is at all correlated withX. Moreover, the stronger the correlation
betweenX andY, the greater the variance reduction; in the extremey@s — +1, we see in
fact that VafX}) — 0. Intuitively, this says that if the correlation betwe&nhandY were nearly
perfect, we can controX almost exactly ta”' every time, thereby eliminating practically all of its
variance.

In practice, CV is not easy to implement directly. Depending on the source and nature of the
control variateY’, we may or may not know the value of \af), and we will certainly not know
Cov(X,Y) exactly, making it impossible to find the exact valuexéffrom simulation runs; there-
fore, we need to estimate them. One of the simplest methods is to replat& Govand VarY’)
in Equation (35) by their sample estimators. Suppose that we makagependent replications to
obtainn i.i.d. observationsX, X», ..., X,, on X andn i.i.d. observationg7,Ys,...,Y,, onY.
Let X (n) andY (n) be the sample means of th&’s andY;’s, respectively, and le$Z (n) be the

unbiased sample variance of thgs. The covariance betweeXi andY is estimated by

i (X = X(n)(Y; —Y(n))

éXY(n) - n—1
and the estimator fa#* is then
o Cxy(n)
a*(n) = .
S%(n)

Putting everything together, we arrive at the final point estimato€for

X&(n)=X(n) —a*(n) (Y(n) —c).

We should note that since the constarithas been replaced by the random variabién),
which is generally dependent (), we cannot take expectations across the factors in the second
term of X*(n). Unfortunately, then\ (n) — unlike X, and X — will in general be biased faf'.

Tables 11 and 12 compare the variance of each estimator with the CV technique. The parameter
values are- = 0.06,0 = 0.4, K = 100, andT = 0.5 with varying initial prices as shown in the
tables. We simply compared the lower estimates at this time. W&0@i0 sample paths for the
non-variance reduction technique and CV, and we repeated the entire exer¢ises. For all

cases, we have smaller variances than those of without variance reduction techniques.

72



3.3.3 Importance Sampling (IS)

Importance sampling attempts to reduce the variance by changing the probability measure from
which paths are generated. In importance sampling, we change the measures to try to give more

weight to important outcomes. To make this idea tangible, consider

whereX is a random variable with probability densifyand is a function fromR to R. Then the

Monte Carlo estimator is
. . 1 &
I=1In)=-) h(X;),
(n) = 5 2 hX)
whereX, ..., X, are independent draws froh Let us define a new probability density function
g onR satisfying

flx) >0 = g(x) >0,

for all z € R. Then we can redefineas

I= /h(az)g(:c)dx.
g
This integral can be interpreted as an expectation with respect to the dgnshich we write as

I =Eg [h(X)g((i:))] : (36)

whereFEyg is the expectation taken withi distributed according t9. Then the Monte Carlo estima-

tor with g is

i = L3 SO0
fy = L) = 3o S,

The weightf(X;)/g(X;) is thelikelihood ratioor Radon-Nikodynderivative evaluated at’;.

It follows from Equation (36) thaEg[fg] = I and thus thalfg is an unbiased estimator of
To compare the variances with and without IS, it suffices to compare second moments. With IS, we
f(X))2 [ Qf(X)]
h(X)——= =F|h(X)"—£].
( ( )g(X) () 9(X)

This could be larger or smaller than the second mon&ght X)?2] without 1S; indeed, depending

have

Eg

on the choice of it might even be infinitely larger or smaller. Successful importance sampling lies
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in the art of selecting an effective importance sampling demsifor instance, if

g(x) o h(z) f(x), 37)

thenh(X;)f(X;)/g9(X;) equals the constant of proportionality in Equation (37) regardless of the
value of X;; thus, the importance sampling estimator in Equation (36) provides a zero variance es-
timator in this case. Of course, one cannot achieve this great variance reduction every time because

one cannot usually use such a nige).
3.3.4 Stratified Sampling

Stratified sampling refers broadly to any sampling mechanism that constrains the fraction of ob-
servations drawn from specific subsets (strata) of the sample space. Suppose our goal is to esti-
mate E[X] with X real-valued, and le#l,, ..., Ay be disjoint subsets of the real line for which

P(X e UY, A;) = 1. Then

N N
E[X]=) P(X € A)E[X|X € Aj] =) pE[X|X € A,

wherep; = P(X € A;). We first decide what fraction of samples should be drawn from each stra-
tum A;; and each observation drawn frofy is constrained to have the distributionXfconditional
onX € A,.

The simplest case is proportional sampling, in which we ensure that the fraction of observations
drawn from stratun¥; matches the theoretical probability = P(X € A4;). If the total sample
size isn, this entails generating; = np; samples from4;. Let X;;,j = 1,...,n; for each
i =1,...,N, be independent draws from the conditional distributionXofjiven X € A;. An
unbiased estimator df[ X |X € A;] is provided by the sample mean of observations fromitihe

stratum. The unbiased estimatoriofX] is

AR N R
i=1 j=1 i=1 j=1
This estimator should be contrasted with the usual sample di’ea:nZ?:l Xi/nof Xi,..., X,.

Compared withX, the stratified estimatak eliminates sampling variability across strata without

affecting sampling variability within strata.
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Figure 9: Simulated tree fob = 3.

We apply this technique to the simulated trees of Broadie and Glasserman [8]. The simulated
trees are parameterized bythe number of branches per node. State variables are simulated at a
finite number of possible decision points, i.e., exercise times. Figure 9wittB shows how to
generate the simulated tree. For examplgis the initial stock price, an&ll, Sf, andS{’ are stock
prices generated froisy. Again, Sit, S32, andS3? are generated frorfi{. The prices at each node
do not appear according to their node values as we see in the typical binomial lattice method. From
the stochastic tree, Broadie and Glasserman obtained their high and low estimates.

We elaborate on the price generation process using the stratification idea. The reason we are
usingstratificationis that we can reduce the variance of the option price while maintaining reality
of the market process. As we know, the stock price process hasattergaleproperty under the
risk-neutral measure. That is,

Eq[Si|Fi] = Si-1.

Under regular price generation, i.e., without strata, we simply generatebifaeches. |1 goes to
infinity, then the price processes possess the martingale property. Howeves léfrge, then we
have a computational problem since the tree grows exponentially. Therefore, e betbetween

20 and 50 under regular price generation.
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Figure 10: Stock tree with strataY " = 5, n = 2, T = 2.

With the idea of stratifying, we can generate an almost infinite number of stock prices as long
as we have a reasonable number of strata. That is, if we 2tave n (= number of strata< 50,
then it will take almost the same amount of time to run the simulation as compared to Broadie
and Glasserman’s tree method. However, as we mentioned abdv&!if(= total sample sizeis
large, then the stock price processes have the martingale property by the law of the large numbers.
Therefore, we apply the optimal exercise policy to the new stock prices tree.

Suppose that we have= b strata and generaf€*"* = m sample stock prices. Denote these
processes aQ;, = {S}k,ka, ..., S{'} at each time stepy, where0 < k& < T. Also, we use
equiprobable strata, for instance. Ltfori = 1,...,b be subsets df;, andPr(A?) = 1/b. We

stratify the sample prices to their own strata. Thatlispn A7 = 0 if ¢ # ;.

{S" € A c Q, for somei}

{S" € A? c Oy, for somei}

{5" € Ab c ©, for somei}.
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Then we can calculate the sample mean of each subset,

Al = Zz‘eAj S

: forj=1,....,b.
47| orj=1,...,b

When we generate the next time step prices, we usdilas the initial prices. That is,
Sp = Al _ =" /DA War  for j =1 b

Therefore, the simulated price structure looks exactly the same as that without the strata. With this
framework, we can not only derive similar price estimates but also reduce the variance. At this time,

we do not provide numerical results.
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CHAPTER IV

INTRODUCTION

A trading systenis a method of trading that uses objective entry and exit criteria based on parame-
ters that have been validated by historical testing on quantifiable data. Trading the futures and equity
markets using a trading system does many things that may help improve performance of earnings. A
trading system provides the discipline to overcome the fear and greed that in many cases paralyzes
a trader, which prevents him from making proper decisions. Each order is determined by a set of
rules that does not deviate based on anything other than market action.

There are many securities that are highly correlated with each other, for example, correlations
lp| > 0.9. The high correlation between two securities gives a good idea how one security’s price
movements ought to move along with its counter-security’s price movements. Therefore, we can
observe the process of the set of correlated securities and catch any extreme behavior from the
constituents of the ensemble. Below we motivate this approach.

Making a profit consistently by trading individual stocks is difficult. The main component of the
price signal is memoryless and overwhelmingly large. One could argue that it may in fact be easier
to make profits by trading in accordance with the oscillating rhythmic component or the fluctuating
elastic signal in the price differential of two or more stocks. To overcome the distorting influence of
the large random market signal for a single security, we structure a combination of trading positions
in a pair or group of similar stocks so that the random market signal components of all the stocks in
the overall trading position are at least partially cancelled out. This leads to an oscillating and mean
reverting price signal which people often try to model.

One of the early trading systems is based on the assumption that the spread itself is lognor-
mally distributed ([67]). This assumption has the downside of excluding the possibility of negative
spreads; its primary motivation is computational efficiency because it lets us use all the standard
Black-Scholes formulas.

Making the lognormality assumption is not very realistic but the idea of modeling the spread
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directly is tempting in itself. It lets us avoid the thorny problem of explicitly understanding the
dependence structure (correlation).

In assuming that the spread follows a given process while the component prices follow another,
one concern might be the potential for inherent inconsistency. For example, when individual prices
follow geometric Brownian motions (GBM), it is impossible for the spread to follow a GBM. On
the other hand, if we assume that the individual prices follow arithmetic Brownian motion, there is
no consistency in assuming arithmetic Brownian motion for the spread. Furthermore, in general,
even if there is some inconsistency in the assumptions about the underlying process, we are usually
able to choose the parameters of the spread process that ensure an approximate matching of the
distributions.

Karguine [42] tried to model spread process as an Ornstein-Uhlenbeck process, and he derived
the optimal differentiable and threshold policies. However, even if we succeed in choosing a process
for the spread (whether one factor or multifactor), using it for pricing and hedging the spread option
is not usually feasible ([27]). The fundamental problem is that the hedging instruments are the
individual underlying components. Correlation and leg volatilities can have a dramatic impact on

hedges. Eydeland [27] showed that the difference between the components’ “deltas” can widen
and narrow significantly with changes in volatility or correlation. The alternative delta hedge with

a constant ratio between the individual underlying contracts generated by the method that models
spreads directly, will usually result in significant losses.

In addition, the statistical properties of the spread might be more stable than those of the in-
dividual underlies. In such a situation, the estimation of the model can be much easier and the
hedging issues may assume lesser importance. We look at the stock prices from a statistical point of
view (nonparametric). It is easy to see that stock price processes are correlated and do not have the
martingale property when we see the price spreads themselves in the long run. However, percent-
age spreads seem to have a martingale property based on our empirical testing. For the rest of the

thesis, we investigate this process from a statistical point of view, try to set a reasonable strategy,

and explore arbitrage opportunities.
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CHAPTER YV

STATISTICAL TRADING MODEL

Sometimes stock prices appear to remain in a range for extended period of time. A good way
to describe this situation is to define a moving range around the stock prices. Some people use
an upper boundary and a lower boundary to define the range; the upper bound is calculated as a
moving average of a chosen period phis of the price, and the lower boundary is the moving
average minus%. These boundaries have the drawback of being too narrow to accommodate price
levels when volatility is high and too wide when volatility is low.

Bollinger [11] defines the upper boundary as a chosen moving average plus twice the corre-
sponding standard deviation, with the lower boundary as the moving average minus twice the stan-
dard deviation. Our approach for setting up the arbitrage trading model is very similar to Bollinger’'s
approach. The main difference, however, is that we use two different highly correlated securities

and we apply statistical process control methods.

5.1 Modeling

We can claim that the equity values are dependent on two factors. One corresponds to common
macroeconomic conditions and the other is firm-specific conditions. If the macroeconomic con-
ditions are changed, then the equity prices move in the same direction if they are under the same
economic conditions. However, firm-specific condition changes influence an equity’s own price
movement and do not affect other companies’ values. By continuously monitoring the macroeco-
nomic conditions influencing the equity values, we can catch any odd behavior, i.e., the prices of
two related assets do not react the same way even though they may eventually converge to the same
direction later. Then we may find an arbitrage opportunity for those cases by selling high and buying
low or buying low and selling high.

Let V be an equity value. Then we can describe its behavior as
dV =¢dE + (dF
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where E is due to common macroeconomic conditiohsjs due to firm-specific conditions, and
¢ and( are magnitudes of changes. Once we can decompose the cause of value changes, we can

utilize the following equations,

dv) = ¢ dE+ ¢ dFW

dV® = &dE + G dFWP,

whereV (1) andV () are the values of assetsind2 respectively, and’") and F(?) are firm-specific
conditions for assetsand2. Then the difference of two assets,= V() — V() can be rewritten
as

AV = (& — &) dE + ¢ dFYV) — ¢ dF@. (38)

Since(&; — &) is a deterministic value as well as a major indicator of changing equity values in the
long run, we can easily monitor whether two stock prices are converging or diverging. In addition,
if £ and&, are very close each other, then the first term in the right-hand side of Equation (38) is
negligible and we can identify arbitrage opportunities. Note ¢hat(F(®), F4)) = 0 if ; andj are
different assets.

To concretize our main idea, we analyze two highly correlated securities and catch their devia-
tion from normal behavior (against macroeconomic condition changes). If we utilize this deviation,
we may be able to get a good idea how to trade those securities. First, we use aifvidayaver-
age(MA(10)) of two highly correlated stocks’ closing prices. L€}, andY;, be thenth day closing
prices of stocksX andY’, respectively, and leD,, be the difference between the two underlying
stocks’ closing prices, i.el),, = X,, — Y,. Then we set up a threshold to establish appropriate
trading criteria.

The main calculation follows. For simplicity, we assume that the price procésées and
{Y,,} are stationary even though an empirical test may fail to show that. Section 5.2 discusses how
to avoid the stationarity assumption by usijpgrcentage spreads

Before we use the moving average, we need to specify lower moments of the price difference

process. That s, the expected value of the difference prdeess

E[D] = E[X - Y] = E[X] — E[Y], (39)
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and the variance ab is
Var(D) = Var(X) + Var(Y') — 2poxoy, (40)

wherep is a correlation coefficient between two stocks. The variances ahdY are obtained by
the following method under the GBM assumption for the underlying procesd/,LetIn(X;) —
ln(Xi_l),

and
6% = S%/At, (41)

whereU is the sample mean of stock andAt is a time increment for stock price observation. We
useAt = 1/252 in this paper since we observe the daily closing price and there are 252 trading
days for one year. In practice, the implied volatility can be used instead of Equation (41). Even
though we can use the implied volatilities, there may still exist an estimation error on the correlation
coefficient,p. In addition, the assumptions on the underlying process are not always correct, e.g.,
the GBM process may not be appropriate although estimation errors are negligible. Therefore, we
directly calculate the variance of tié;, } process from the data.

First, we fit an MAg) model of the{ D, } process. That s,

1 q
ZW:QZDM for0 <i <N —gq. (42)
j=1

Then we calculate the mean and variance ofthg process. Since thB;’s are serially correlated,
we need to be careful when computing the variance. We again assume tHaf; }herocess is

stationary. The mean is estimated by

N—q+1
- 1 g

EZl=Z=-—"— Zoii 43

and the variance af is estimated via the following set of equations.

e Empirical Estimation

6x_g11 = (N—q+1)Var(2)
2
- RZ(0)+m kZl(N—qul—k)RZ(k;), (44)
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Figure 11: A sample path of a price difference process. Days 3 and 7 are out of bounds. We need
to take an action on these events.

where
1 q—1—k
Rz(k) = 5 | (a=WRo(0) +2 > (4= H)Bp() |
j=1

andRp(k) can be estimated by

, 1 Nk _ _

Rp(k) = N _k > (Dj = D)(Dj1x — D). (45)

j=1

Using the usual market convention, we assume tha{Op\D, ;) = 0if k£ > q.

Since we know the mean and variance of {ie} process, we can use control charting ideas to
detect extreme events. In practice, market technicians typically-tiser limits; we will also use
that threshold for the initial stage of our investing strategy. To maximize the total profit, however,
we need to commit additional study on the relationship between the severity of correlations and the
gains and losses.

Figure 11 is a sample path of th process. Since days 3 and 7 are out of the threshold, we
may need to take an action depending upon the pattern of the underlying securities. For example, at

day 3, we could short security and long securityX since we assume that securities are going to
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regress toward their mean points. On the other hand, at day 7, we could short s&carnitylong
securityY'.

We now analyze further the frequency of these events and the magnitude of each event. We
assume that the events that affect gains and losses form a renewal process and the gains and losses
are independent of the times of arrival of the events. The total profit is the summation of the each
gain or loss on each arrival. L&€(t) be the total number of events that are out of bouddsy)
be the number of events that are out of the upper bound\arit) be the number of events that
are out of the lower bound. The¥(t) = Ny(t) + No(t). Let gbff) be the gain or loss on theth
out-of-upper-bound event arqzd,z) be the gain or loss on theth out-of-lower-bound event. Also,

we assume tha{wﬁf), n > 1,i=1,2} are i.i.d. Hence, total gains or losses are

Nl(t Ng(t)

)
Git)y=>_ o+ > o).
n=1

n=1

We also assume th&iV;(¢),: = 1,2} are renewal processes with inter arrival ratgsand the cor-
responding gains/losses follow normal distributions with mearand standard deviatioms. Then
we can calculate the mean and standard deviation of total gains/losses ([54]) under the independence
assumption betweepV;(t)} and{¢("}. That is,

EIG()] = ENMWIE 6] +EN:(0)]E 6]

= t(Ap1 + Aap2)

and

Ni(t) Na(t)
VarlG(t)] = Var| Y o) | +var[ Y ¢
n=1 n=1
2
— EN@)Var 6] + VarlN ()]E [6]
2
FEN (1) Var [62)] + Var[Na(6)]E [
= Nt (oF + 1) + Aot (05 + 13) -
In order to conduct a preliminary study, we applied this methodology to real market data. As in
Figure 11, we first set the upper and lower thresholds with 1.50. However, the best threshold

may be different depending on pairs and we may need to further analyze the situation to maximize

the profit.
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Figure 12: KO and PBG's difference moving average, MA(10), and upper and lower thresholds.
Date 1 is August 2, 2002 and and Date 260 is July 5, 2001. The solid square boxes are the points
out of the bounds where we may need to take a proper action. Table 13 shows overall gains and

losses by trading corresponding to this graph.

5.1.1 Numerical Example

We select two highly correlated common stocks traded in the market actively, for example, the
Coca-Cola Company and the Pepsi Bottling Group; or the Home Depot Inc. and Lowe’s Companies
Inc., and so on. For this example, we use the Coca-Cola Company (NYSE:KO) and the Pepsi
Bottling Group (NYSE:PBG). We collect the daily closing prices of the two stocks from July 5,
2001 to August 2, 2002. Based on these data, we estimate the mean and variance of the 10-day
moving average difference process using Equations (43) and (44). The sample mean is 23.88 and
the sample standard deviation is 0.4261. Figure 12 shows the overall 10-day moving average of the
differences process. Based on the figure, we notice that several data points are out of the boundary.
We set a simple trading strategy. That is, if afiy 1 < ¢ < 260, are out of the upper bound,
we short PBG and long KO. If thg; are out of the lower bound, we short KO and long PBG. The
solid boxes represent these transaction points. We first long 229%1(00000 / closing price of

KO) shares of KO and short 4613=($100000 / closing price of PBG) shares of PBG on August
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Table 13: Trading summary based on Figure 12. D and U correspond to the square boxes on the
graph. D is the first day of out of the lower threshold and U is the first day of out of the upper
threshold, prices are daily closing prices, and the numbers of shares are rounded up to be integer.
The numbers of shares are calculated by assuming that wesh@0ed00.

| Date KO§) PBGE) | #KO #PBG| Gain/Loss

D 25-Jul-02 4756  25.27| -2103 3957 0
U 5-Jul-02 56.47  31.43| 1837 -3087 6693
D || 28-May-02 54.44  32.39| -1837 3087 0
U| 27-Mar-02 52.10 26.03| 2180 -4327 952
D || 13-Dec-01 45.87 23.11] -2180 4327 0
U 5-Nov-01 48.73  23.77| 2224 -4243 7513
D 5-Oct-01 44.97  23.57| -2224 4243 0
U | 17-Aug-01 46.99 21.37| 2295 -4613 9279
D 1-Aug-01 43.57 21.68| -2295 4613 0

1, 2001; then we short 2295 shares of KO and long the 4613 shares of PBG on August 17, 2001.
These two transactions produced a profit$6280. In the same manner with all other possible

trading cases, we made a total®¥4,437 during the period under study. We can also increase the
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Figure 13: KO and PBG's difference moving average, MA(10), and upper and lower thresholds.
Date 1 is August 2, 2002 and Date 260 is July 5, 2001. In Figure 12, we just had the solid boxes;
the current graph includes solid circles to indicate the new trading dates.
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Table 14: Trading summary based on Figure 13. D* and U* correspond to square boxes on the
graph. D* is the first day out of the lower threshold and U* is the first day out of the upper threshold,

D and U correspond to solid circles on the graph. D is the first day out of the lower bound and U

is the first day returning from the upper bound. Prices are daily closing prices, and the numbers of
shares are rounded up to an integer. The numbers of shares are calculated by assuming that we have
$100,000 for each trading method.

| Date KO§) PBGE) | #KO # PBG| Gain/Loss

D 1-Aug-02 4993 24.87| 2179 -4219 3867
D* 25-Jul-02 4756  25.27| -2103 3957 0
U 22-Jul-02  45.89 23.7 | -2179 4219 0
u* 5-Jul-02 56.47  31.43| 1837 -3087 6693
D 27-Jun-02 56.09 30.75 1786 -2910 10711
D* || 28-May-02 54.44  32.39| -1837 3087 0
U 20-May-02 55.99  34.37| -1786 2910 0
u* || 27-Mar-02  52.1 26.03| 2180 -4327 952
D 24-Dec-01 47.99 23.63| 2139 -4261 1971
D* || 13-Dec-01 45.87 23.11| -2180 4327 0
U 5-Dec-01 46.75  23.47| -2139 4261 0
u* 5-Nov-01 48.73  23.77| 2224 -4243 7513
D 26-Oct-01 48.57 23.91] 2195 -4330 3083
D* 5-Oct-01 44.97  23.57| -2224 4243 0
U 1-Oct-01 45.56  22.99| -2195 4350 0
U* || 17-Aug-01 46.99  21.37| 2295 -4613 9279
D* 1-Aug-01 4357 21.68| -2295 4613 0

number of transactions by trading when the moving average returns between the upper and lower
thresholds. In fact, we use the same strategies for trading. That is, the last day of out of the upper
threshold, we long KO and the last day out of the lower threshold, we short PBG. Figure 13 shows
the dates of trading. The solid boxes are the same as those of Figure 12, and the solid circles have
been added to indicate the new trading dates.

Table 13 shows the overall transaction process based on our first trading strategy corresponding
to Figure 12. Table 15 shows the gain and loss (G&L) from the trading. The second trading strategy
is used at this time. With this trading strategy, we ma¢)69.

This works very well given the specific period. But do the mean and thresholds remain the
same for a long time? The reasonable answer would be no. The next question is when and how to
change the mean and thresholds. There are two approaches for detecting a small shift of mean —

the cumulative sum (CUSUM) charts and exponentially weighted moving average (EWMA) charts.
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Table 15: Trading summary based on Figure 12. D* and U* correspond to square boxes on the
graph. D* is the first day out of the lower threshold and U* is the first day out of the upper threshold,

D and U correspond to solid circles on the graph. D is the first day out of the lower bound and U

is the first day returning from the upper bound. Prices are daily closing prices, and the numbers of
shares are rounded up to an integer. The numbers of shares are calculated by assuming that we have
$100,000 for each trading method.

| Date Intc§) AMD($) | #INTC  #AMD | G/L
D* | 29-Aug-01  27.98 14.2 -3573.98 7042.254 0
U* | 19-Nov-01  30.88 13.65 3573.981 -7042.25% 14237.82
U | 31-Dec-01 31.34 15.86 -3190.81  6305.17 0
D | 14-Jun-02 21.23 9.6 3190.81 -6305.17 7211.264

Also, the threshold depends on the variance of the process. That means that we need to monitor the
variability of the process as well.

As stated above, a mean shift can be detected by either CUSUM or EWMA charts. We attempt
to use EWMA because it is regarded as a nonparametric (distribution-free) procedure ([50]). The

exponentially weighted moving averageis defined as
Zi = )\1‘1‘ + (1 — )\)Zi—h

where0 < )\ < 1 is a constant and the starting value is the process target, seythatu,. We
use the average of preliminary data as the starting value of the EWMA, sogthatz. If the

observations; are independent random variables with variamégthen the variance of; is

A .

2 2 21

= ) [1-(1-N2).

Therefore, the EWMA control chart would be constructed by plottingersus the sample number

7. The center line and control limits for the EWMA control chart are as follows.

UCL = po+ La\/(2 Y [1—(1—X)%] (46)
Centerline = pg
LCL = MO_LU\/(gi)\) 1—(1— X2, (47)

wherelL is the width of the control limits (see [16]). Note that the tdim- (1 — \)?/] in the above

equation approaches unity agets larger. That means that after the EWMA control chart has been
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running for several time periods, the control limits will approach the steady-state values given by

UCL = po+ Lo (48)

2-2)

>

LCL = po—Lo (49)

2-A)
There have been numerous extensions and variations of EWMA control charts. We can also use
EWMA to monitor the process standard deviation. However, we did not attempt to implement this
method since we used short trading periods and it unlikely to detect such changes of mean. If we
use a long period of data, we recommend that a check be performed on whether the mean and/or

standard deviation change.

5.2 SPC with Autocorrelated Data

So far, we have dealt with the price spread itself. By using a price spread, we face several problems.
First, the spread is not a stationary process for many cases. Therefore, we need to change the mean
and thresholds depending on changes of mean and standard deviation. That is a cumbersome prob-
lem with this approach, and it is not straightforward to detect such changes of mean and standard
deviation. Now, we use the ratio changes of price between two securities rather than price spreads
themselves. Using the same notation)f%t: Xn/Xn-1 andffn =Y,/Y,_1. Also, letD,, be the
difference of two ratio changes, i.€),, = X, — Y,,. With these changes from the previous section,

we now implement the statistical process control approach.

The standard assumptions that are usually cited in justifying the use of control charts are that
the data generated by the process when it is in control are normally and independently distributed
with meany, and standard deviation. Both i ando are considered fixed and unknown. An out-
of-control condition is a change or shift jnor o (or both) to some different value. Therefore, we
could say that when the process is in control the quality characteristic at tirpes represented
by the model

Tr=pte, t=1,2..., (50)

whereg; are i.i.d. normal with mean zero and standard deviationhis is often called the Shewhart

model of the process. When these assumptions are satisfied, one may apply conventional control
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charts and draw conclusions about the state of statistical control of the process. Furthermore, the
statistical properties of the control chart, such as the false-alarm rat&avithntrol limits, or the
average run length, can be easily determined and used to provide guidance for chart interpretation.
Even if the normality assumption is violated to a slight or moderate degree, these control charts will
still work reasonably well.

Montgomery [50] argues that the most important assumption made concerning control charts
is that of independence of the observations, for conventional control charts do not work well if the
quality characteristic exhibits even low levels of correlation over time. Specifically, these control
charts will give misleading results in the form of too many false alarms if the data are correlated.

We have already mentioned that the stock prices are serially correlated over the time (see Figure
14). An approach that has proved useful in dealing with autocorrelated data is to directly model the
correlation structure with an appropriate time series model, use that model to remove the autocorre-
lation from the data, and apply control charts to the residuals.

We collected the -minute tick data for KO and PBG for 21 trading days frérdy28/2004 to
05/26/2004. We first look at the autocorrelation function (ACF) of the differences from the raw
data and check the normality of this price difference data. Figure 14 shows the ACF of KO-PBG
and Figure 15 deals with the normality of the difference process. Figure 14 tells us that the differ-
ence process is highly autocorrelated and Figure 15 shows that the data is not normally distributed.
Therefore, we can conclude from these two figures that we cannot directly apply classical SPC these
data sets.

One way to cure this problem is to use tfech meanapproach proposed by Runger and Wille-
main [57]. The batch means approach has been used extensively in the analysis of the output from
computer simulation models, another area where highly correlated data often occurs. This approach
works because as the batch size becomes large, batch means become approximately i.i.d. normal.
The unweighted batch means (UBM) chart breaks successive groups of sequential observations into
batches, with equal weights assigned to every point in the batch. Lghth@weighted batch mean

be

o1y .
Ty = E Zx(j—l)m—i-iv J=12,...,b (51)
=1

wherem is the batch size artds the number of batches. The important implication of Equation (51)
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Figure 14: Autocorrelation plot for the KO-PBG difference process.
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Figure 15: Normality plot of KO-PBG difference process. Moving average lengthnsnutes.
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is that although one has to determine an appropriate batchsiités not necessary to construct an
ARMA model of the data.

Runger and Willemain showed that the batch means can be plotted and analyzed on a standard
individual chart. With UBM, the control chart averaging is used to dilute the autocorrelation of the
data.

Procedures for determining an appropriate batch size have been developed in the simulation
area. These procedures are empirical and do not depend on identifying and estimating a time se-
ries model. Of course, a time series model can guide the process of selecting the batch size and
also provide analytical insights. Also, note that if batch size gets big, the batch means become
approximately i.i.d. normal.

We apply the UBM approach with different batch sizedo deal with autocorrelated data. We
have also checked for normality. Again, there are no specific rules to choose the right batch size.
We picked a batch size @0 since it givesl-hour segmentation of data. Further, it provides data
that are approximately normally distributed. As we expected, the batched data exhibit much less
autocorrelation than without batching. Figure 17 tells us that the data are approximately normally
distributed except for a few outliers. Outliers can be explained by observation of the market. For
example, some individual investors or financial institutions might make occasional errors when they
trade and we can see this phenomenon easily in the US market.

With this change, we apply the standard SPC method. A;ednd B;, wheret = 1,2,...,
be stock prices. From there, we calculate the moving average processes of minud Alata,

Let them bemovingA andmovingB respectively. Then, we calculate the percentage change on
each stock price. Let them ercent A andpercentB. From these two, we obtain the process,

D = percentA — percentB. We setg = 5 andm = 60. We obtain the sample mean and standard
deviation of D. With that, we have a control chart using batch means. We set two thresholds. One is
+30 and the other if-1.6450. Figure 18 shows the batch means of percent change of the difference
process with the two different thresholds.

We have set two thresholds for the following reason. With6450, we simply take an action,
but with +30, we can imagine that the underlying process’s mean has actually changed. Therefore,

for +30, we need to recalculate the mean and standard deviation of underlying process. As can
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Figure 16: Autocorrelation plot for batch mean difference process for KO and PBG. Moving aver-
age length i$ minutes and batch size 6 minutes.
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Figure 18: Percent change of difference process. Mean and standard deviation is calculated with
the first50 data points and trading strategy is applied after that. Overall profithzss).

be seen in Figure 18, there are a few points out of the thresholds. In particular, Hatcress2
are out of the upper inside threshold1(6450) and batchl4 is out of the lower outside threshold
(—30). Note that we may have to re-estimate the mean and standard deviation sincettiatott
of the lower outside threshold.

Setting up the right strategy is another arduous task in this area. Even though we identify odd
behaviors using SPC, bad strategies can render our information useless. For now, we simply use the
following strategy. We take actions at the points where the process goes out of the threshold and
returns. For example, bat6ft is out of the upper threshold for the KO and PBG pair and bagch
bounces back in the threshold from the outside. Therefore, we short KO and long PBG at the batch
77 point and long KO and short PBG at batth On the other hand, batcl® is out of the lower
threshold and batch0 bounces back to the threshold. Therefore, we long KO and short PBG at
batch59 and we short KO and long PBG at baiéh

With this simple strategy described above, we have tested five different paird f&&y2004 to

05/26,/2004. We first compute unweighted batch means data with a batch sefof each batch
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Table 16: Trading summary on the five different pairs. The fi56t unweighted batch means

of data are used to compute the mean and thresholds. Numbers of shares are computed via
$100000/share price. One-minute tick data was collected figR8,/2004 to 05/26,/2004. A batch

size of20 is used for each batch.

Pairs| Number of Transactions G/L

KO, PBG 3 1330

NT, LU 5 3222

LOW, HD 1 -301

INTC, AMD 6 1776
FDX, UPS 0 0

and moving average length 6f With these settings, we check the normality and independence
assumptions and the two tests do not fail. We &&ainweighted batch means worth of data to
compute the mean and thresholds. With these settings, we apply the trading strategy. For each pair,
the numbers of shares are computed usiig®000/share price. Table 16 shows the overall gain

and loss from the1 trading days. The number of transactions varies depending on the pairs. Note

that there are onl§ examples and we need to investigate further with more pairs.

5.3 Variance Estimation

As we have seen previously, standard deviation plays a crucial role in our trading model. Therefore,
we investigate different variance estimators in this section.

When i.i.d. samples are used to calculate a sample average, the variance of that average is
related to the variance of the individual samplesliy (i.e., VafY,] = Var[Y;]/n or Vary;] =

o2 = nVarlY,]) . Inthis case, the classical variance estimator

52 1

VarlY,] = D (v - v)?

i=1

is often used and is generally adequate. When the independence assumption is not satisfied, the

relationship Vay;] = nVar[Y,,] no longer holds, complicating the estimation of the variance of the
sample average VAr,] (or function of VafY,,], such ass2). When the sample is correlated, the

variance of the sample average is well known to be

2 n—1
Ry + — (n—1)Ry
n

— 1
Varly,] = -
1=1
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whereR; = Cov(Y;,Y;1;), l = 0,41, £2, ..., is the autocovariance function. In contrast,

n—1

Ry — Q)Zm—z)}zl :

E [\75@7"]] T n n(n —1
=1

resulting in a biased estimate of Ve (the magnitude of the bias can be found in Marshall [46]).

It is easy to see that one-minute tick data for stock prices are highly correlated. Therefore,
using the right variance estimator is very crucial for setting up the threshold of our trading scheme.
We look at three different variance estimators: batch means, standardized time series area, and

standardized time series Crarrvon Mises.
5.3.1 Batch-Means Estimator

Variance estimation using the batch means approach is popular among experimenters. This ap-
proach has been explored by Conway [18], Fishman [21], Schmeiser [58], and many other authors.
In the batch-means approach, a sample set ofssimedivided into sub-groups of samples and
each sub-group is reduced to a single average value. These averages are then used to compute the
batch-means estimator of the variance of the grand sample averafé,|Var

Suppose the stationary procéssYs, . .., Y, with finite mearu is divided intob non-overlapping

batches, each of size (assuming that = mb).

Batch1l: Yi,Y5,...,Y,

Batch 2: Ym+1, Ym+2, ceey Yo

Batcho: Y(b—l)m—i—b Yv(b—l)m—&-2a cy Yy

The observation¥(;_1),,11, - - -, Yim COMprise batch. Fori =1,...,bandj =1,...,m, let
_ 1J "
Yij == Yy tymie and¥, = ZYk'
J =1 "=

Theith batch mean is given by

3

1 m
Yim=— Yitymer i=1,2,...,b.
k=1
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If we choose the batch size large enough, it is reasonable to treat #yg,’s as if there are i.i.d.
normal random variables with mean Then for sufficiently largen, the variance of the batch

means can be estimated by their sample variance,

—~ = 1

b
1 _ _
= — (D V2, -7 ).
b_1<i:1 o bn)

Therefore, the non-overlapping batch means (NBM) estimatef o given by

(E,m - ?n)Q

b
=1

;Z = mVar(Y,,],

where we note thatVar[Y,,] = nVar[Y,] = o?(= lim,_., o2) for sufficiently largem. That is,
for large batch sizen, one assumes that the batch means are approximately i.i.d. normal random
variables with meam and unknown variance?, /m = Var(Y; ,). Hence, we estimate® = o2

m

by m times the sample variance of the batch means. Thus, the NBM estimator ifor

Vs = 02 = mVarYy]
b

= % Z(z,m - Yn)Q

m ZZlb - —
= =3 (z; V2, - be) .

The main problem with the application of the batch means method in practice is the choice of
the batch sizen. If m is too small, the bach mea$,,, can be highly correlated. Alternatively, a
large batch size can result in the very few batches and potential problems with high variability of
resulting confidence interval half length ([15]).

Several variants of the batch-means estimation approach have been investigated by various au-
thors. Meketon and Schmiser [49] introduced the overlapping batch means method which has been
explored further by Sargent, Kang, Goldsman [61] and Song and Schmieser [62]. The overlap-

ping batch means estimator is generally offered as a variance reduction modification to the NBM

estimator.
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5.3.2 Standardized Time Series Weighted Area Estimator (STS)

The STS methodology defined by Schruben [59] uses a continuous-time random process to represent

the original sequence of samples (i¥.,: = 1,...,n) in a particularly useful form. Let
,]E,n:Y/i_Y/n i:1727~-'7n ,ZE),nEOv

whereY; is the average of the firssamples in the sequence i B, = Z§:1 Y;/i. Thus, B7Z; ,] =0
fori =0,1,...,n. Then scale the sequence by dividingo /i and scale the time index of the

sequence to the unit interval. The final STS form is

t|7, t1 (Y — Yo

Vno Vno

where| -] is the greatest integer function. Schruben points out that the original time series can be

reconstructed fronT,,(t) andY,,. Therefore, no information is lost by the transformation. The
following Assumption 1 is called the Functional Central Limit Theorem (FCLT), and is sufficient to

guarantee that the standardized time series converges to a process that we can exploit.

Assumption 1 (FCLT) (Billingsley [5]) There exist constantsand positives such that
X, = oWV asn — oo,

where)V is a standard Brownian motioss- denotes weak convergence, and

t1 (Y —
Xn(t)zw for 0 <t<1.

NG
The sample paths of,, lie in DJ0, 1], the space of functions df, 1] that are right continuous and
have left-hand limits, while the sample path9flie in C[0, 1], the space of continuous functions
on [0, 1].
Assumption FCLT leads to a result involving a standard Brownian bridge process3(bet
denote a standard Brownian bridge process define8{@y = W(t) — tW(1). ThenB(t) ~
N(0,t(1 —t)) andCov|[B(s), B(t)] = min(s,t) — st,0 < s,t < 1. Notice thatWW(1) andB(-) are

independent.
Theorem 5 Under Assumption FCLT,

(Vn(Yy — p),0T,) = (cW(1),0B).
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Proof See Foley and Goldsman [2]].

Remark 5 We have three useful properties from above theorem:
« /n(Y, — p) is asymptoticallyr N (0, 1),
» 0T, is asymptoticallyr times a Brownian bridge, and

« /n(Y, — p) and 0T, are asymptotically independent; thus, all information gleaned from

oT,, will be asymptotically independent ofn (Y, — u).
The (weighted) area estimator fof is based on the statistic
1 « k k
S(w;n) = - Zw (n) oTy (n> , (52)

wherew(t) is a certain weighting function.

The limiting functional ofS(w;n) is

1
S(w)z/o w(t)oB(t)dt,

where the weighting function () is continuous orj0, 1] and chosen to satisfy Vi (w)] = o2,

so thatS(w) ~ N(0,0?). In addition, letA(w;n) = S?(w;n) and A(w) = S%(w). Then under
mild conditions, the continuous mapping theorem (CMT) (Billingsley [5], Theorem 5.1) implies
that A(w; n) 2 A(w) ~ o2x2, and we calld(w; n) theweighted area estimatdor 2.

We illustrate a few examples of weighting functions from Goldsman and Schruben [32]:
1. wo(t) = V12 forallt € [0, 1].
2. wi(t) = V45t orwy(t) = V45(1 — t) gives greater weight for large (small) values of

3. We can also use the “antisymmetric” weighting schemg(t) = /840(3t> — 3t + 0.5),

which has good bias properties (See Theorem 6 below).

We have defined the STS of a sampled stochastic process for a single long run data samples.

Thus, variance parameter estimators utilizing the STS do not need to be based on batched data.
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Nevertheless, let us now consider the batched STS area estimator. This is the sample mean of
the corresponding estimators from the individual batches, i.e.,
Awrb,m) = 7 3" Ay(wsm)
w,o,m) = — W5 MM
) ) b ‘ 7 ) )
=1
where A; denotes an estimator from thh batch of sizen (n = bm). Since the batched estima-
tors are simply linear combinations of estimators from each batch ofsjage can produce the

following results concerning [ (w; n)] and VafA(w;n)].

Theorem 6 (Goldsman etal. [34]) Suppos§ is a stationary process for which Assumption FCLT

holds,> 7>, k% |Ry| < oo, andd_p> Ry =0 > 0. Then

[(F = F)? + Py

E[A(w; b, m)] = E[4;(w; m)] = 0% + 5 + o(1/m)
and
(2 4
Var[A(w; b, m)] = —Var[AZ(w,m)] = 2L7
b b
whereF(t) = [ w(s)ds, F = F(1 = [ F(s)ds, F = F(1),andy = —2 3%, kRy.

Remark 6 Itis possible to choose weighigt) so that the first-order bias term in front gfdisap-
pears. The antisymmetric functian,(t) = /840(3t> — 3t + 1/2) (see Goldsman et al. [31]) has

this property.

Therefore, we see that batching typically helps to decrease estimator variance (by a fator of
though this is achieved at a cost of a modest increase in estimator bias/(simove appears instead
of n in the expected value expressions). Recall thétv; m) LA Ai(w) ~ a?x3, whereZ denotes
convergence in distribution as — co. Further, under suitable moment and mixing conditions, the
A;(w;m)’s are asymptotically independent, and thus

2
A(w; b,m) 2 UbX

(Sl V)

We have discussed variance parameter estimators using the batch means and STS weighted area

methods. Now, we review another variance parameter estimator combining both.
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Theorem 7 (Goldsman et al. [33]) As the batch size — oo,

~ (b=1DVe+bVa p 02220 —1)
VC = —

2b—1 2b—1 ’
so that
E[Vo] — o2
and
Var[Ve] — 250_41.

Notice thath is asymptotically unbiased and has lower variance lﬁanr 173.
5.3.3 Cramer-von Mises Variance Estimator

The weighted Cragr-von Mises (CvM) estimator of the variance parametehas a number of
desirable properties. For certain weighting functions, it is a first-order unbiased estimatgr of

and its variance is lower than that of many other estimators. Unfortunately, the CvM estimator has
the unattractive property of occasionally assuming negative values [47]. We propose various ways
to get around the negativity problem. The best trick involves batching, in which case the negativity
problem essentially disappears.

We define thaveighted Crarér-von Misesestimator forr? and its limiting functional as

1 — k k
Clgin) = ~ Vo2 (E
=330 (5) 72 (5) 59)
and
1
Clgin) = /0 o()o> B2(t) dt, (54)

respectively, wherg(t) is a weighting function normalized so thai(Hg)] = o2 folg(t)t(l -
t)dt = 0% andg”(t) is continuous and bounded € 1]. Under Assumption FCLT, it can be shown
thatC'(g; n) A C(g) asn — oo.

The next theorem gives the expected value and variance of the weighted CvM estimator.

Theorem 8 (see [31]) Suppos¢Y;,i > 1} is a stationary process for which Assumption FCLT

holds, andy 7%, k?|Rx| < co. Then

E[C(g;n)] = o2 + %(G — 1) +o(1/n), (55)
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whereG = fo t)dt. If we also assume uniform integrability 6 (g; n), then asn — oo,

1 t
Var(C(g;n)) — Var(C(g)) = 40’4/0 g(t)(1 — t)Q/O g(s)s? ds dt. (56)

If a weighting functiorng(¢) can take on negative values, it may be possible for the CvM estima-
tor (53) or its limiting functional (54) to become negative as well. This is a disconcerting property
since a negative variance is intuitively displeasing ([47]). There exists a strategy for coping with
the problem — applying a batched version of the CvM estimators. We have so far assumed that
the CvM estimators fos? have been based on one long batch of siz&he use of batching usu-
ally results in estimators with lower variance and only modestly higher bias than their one-batch
benchmark. We desire that this lower variance will render as negligible the probability of a negative

realization of the batched version of CvM estimator. We briefly describe the batching rules.

« Divide the run intd contiguous, nonoverlapping batches, each ofgiZassuming: = mb).

Batchi consists of observationg; _1y,,+1, Y(i—1)ym+2: - - - Yim, 1 <i < b.

 Calculate an estimator from each batch (instead of from the entire run). Using the obvious

notation, we denote CvM estimator from baichsC;(g; m).

+ Thebatched CvMestimator fors? is the sample mean of the corresponding estimators from

the individual batches, i.e.,

C(g;b,m) i(g;m

||M@

Under mild moment and mixing conditions (see e.g., [31]), we can show that-asco, with fixed
b,
C(g:b,m) 2 C(g;b), (57)

whereC(g; b) is the average df i.i.d. realizations of”;(g; m).
Since the batched estimators are simple linear combinations of estimators from each batch size

m, Equations (55) and (56) immediately show that

B[C(g: b.m)] = E[Ci(g:m)] = 0 + (G = 1) + o(1/m) (58)
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and
Var(Ci(g;m))  Var(C(g))

Var(C(g;b,m)) = . — ; : (59)

Hence, we see that batching typically helps decrease estimator variance (by a fagtdhafigh
this is achieved at the cost of a modest increase in bias (sinoew appears instead af in the
expected value expressions).

If the probability is small that the estimator for one batch has a low probability of going negative,
then it stands to reason that the average of approximately independent estimators from multiple
batches will have an even-lower probability of going negative ([47]). Thus, we see from Table 17

that

» The probability of negative realizations is reduced by an order of magnitude simply by aver-

aging estimators frorh = 2 batches, at least for all of the weighting functions under study.

* For all intents and purposes, negativity disappears when ésing.

Table 17: CvM variance estimators with different numbers of batches. Underlying stochastic pro-
cess is AR(1) (autoregressive process) with- 0.9 and batch siz&024 is used. Frequencies are
obtained with1000000 replications. We use weighting functions from ([47]).

Frequency Probability
# of Batch Wgo Wg; WQZ P(Wgo < 0) P(I/Vg; < 0) P(VVQZ < 0)
1 0 84403 17732 0 0.084 0.018
2 0 9325 245 0 0.031 0.001
3 0 559 1 0 0.002 0.000
4 0 19 0 0 0.000 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0

We can put things on a more sound theoretical footing. Sinc€the m)’s, 1 < ¢ < b, are

asymptotically independent as — oo, we can argue that Equation (56)—(59) and the central limit

theorem imply

C(g;b,m) 2 C(g;b)
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~ Nor(c?, Var(C(g))/b)

~ o?Nor(1,4v(g)/b),

wherev(g) = [ g(t)(1—1)? [1 g(s)s> ds dt, and the notatior: is taken to mean “is approximately

distributed as”. Hence, for large, we have the approximation

P(C(g;b,m) < 0) = P(Nor(1,4v(g)/b) < 0)

1/ b
= @(—2 V(g)>, (60)

where®(-) is the standard normal cumulative distribution function. Note that the probability in

Equation (60) clearly goes to zerolabecomes large, proving our point.

5.4 Conclusion

Modern portfolio theory says that we can eliminate idiosyncratic risks by including many assets in
the portfolio. This process reflects the maxim “Do not put all your eggs on one basket.” However,

it admits that we have to live with the systematic risks. Within this portfolio, we can somehow take
advantage of arbitrage opportunities using the reactions of asset price movement against macroeco-
nomic condition changes. In our examples, we have shown the potential to find arbitrage opportu-
nities; and we can further study how our approach can combine with modern portfolio theory. With
elimination of non-systematic risks by portfolio theory and utilization of systematic risks with our
methodology, we might be able to further maximize the profit.

Since data are highly correlated and firm-specific conditions (risk) are unpredictable, we filter
the data so that we can significantly reduce the above effects. Thus, we could apply traditional
statistical process control concepts here. One of major tasks in setting up the right strategy is to
estimate the variance of difference process. Therefore, various variance estimators are studied. In
particular, the Crar-von Mises variance estimator is an excellent choice (in terms of low vari-
ance); but it sometimes yields negative values. We investigate how to eliminate this problem. The
use of batching results in estimators with lower variance and only moderately higher bias than their
one-batch benchmark.

We need to further study in several parts of the thesis. First, more examples should be studied

for the trading model. We have used five pairs to test our new approach due to the difficulty of
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getting tick data. Once data is available, we need to investigate the trading criteria and profitability.
With good trading strategies, we can maximize the profit. This approach can be further implemented
with options and indices. We just used this trading systems in the equity market only; however, this
approach can be used in other financial markets such as fixed income, utilities, or commaodities. In
addition, we have ignored transaction costs so far. But, these costs should be considered together.
Second, we briefly mentioned a few variance estimators. The threshold play a important role in
determining the gains and losses and estimating the variance of the serially correlated data is one of
the most challenging tasks. With a good variance estimator, we can maximize the profit by setting
up the good threshold which detect the odd behaviors with high probability. We also need to study
which variance estimator does the better performance in terms of profitability. Lastly but not least,
choosing the batch size in batch means is another big task in our problem. More extensive works

are necessary in choosing the batch size.

106



CHAPTER VI

APPENDIX

Proof [Lemma 2.] Letp: := P, (H(A,G) > z). By Assumption A,pX > 0. Letp € (0, p%) be

arbitrary. By the definition of;, we have that
P, (H(A,G) > ~(v,p)) > p

and

P, (H(A,G) <v(v,p)) 21—p>1—p;.
Suppose that(v, p) < x. Then
P, (H(A,G) <v(v,p)) <Py, (H(G) <z) =1-pj,

which is a contradiction. Thus,(v, p) > z. |

Proof [Proposition 4.] See [39]

Proof [Proposition 5.] Notice that & — p) quantile of a random variablg can be expressed as

the optimal solution of the problemin,, E4(Y, ), where

1—p)(Y — if Y
oY) = (1=p)(Y —n) ifn<
p(n—=Y) ifn>Y.

To see this, notice that the subdifferentigE¢ (Y, n) can be expressed as
MES(Y,n)=[p—P(Y >n),-(1-p)+ P <n).
Thereforey satisfies the optimality conditioh € 0,E4(Y, n) if and only if
p—P(Y >n)<0

and

—(L—p)+ P(Y <) >0,
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i.e., if and only ifp is a(1 — p) quantile ofY". A similar argument shows that the sample— p)
guantile of a sampléi,...,Yy (call it 1) is the solution to the sample average approximation
problemmin,, N ! vazl #(Y;,n). Since the objective functioB¢ (Y, n) is convex iny, it follows
that the distance betweep and the set ofl — p) quantiles ofY” goes to zero a8’ goes to infinity
with probability one. There are numerous examples in [39].

LetAq,..., Ay, beiid. samples fronf(-, ). We look at two different cases to prove.

e Case 1:P,(H(A,G) > a) > 0.

By Lemma 2, we have that(v, p*) > a for any p* € (0, p}"), wherep! = P,(H(A,G) >
a) > 0. As discussed earlier, the distance between the safhplep*) quantiledy,, (A, p*)
of H(A1),..., H(AnN,) and the set of1 — p*) quantile of A goes to zero a®/; goes to
infinity with probability one. Sincé(v, p*) > aq, it follows that9y, (A, p*) > a w.p.1 for
N¢ large enough. Moreover, the probability that, (A, p*) > a for a givenN¢ goes to one

exponentially fast.

» Case 2:P,(H(A,G) > a) = 0.
This case is that is the maximum value achieved B¥(A,G). By Assumption A, this
implies thatp? := P,(H(A,G) = a) > 0 and thus, for any* € (0, p%) we must have
(v, p*) = a. Itfollows thaty(v, p*) = a is also the uniquél — p*) quantile of the random
variableJ := alya g)=q}- Itis clear thatyy,  := al{&NG(A,p*):a} is a sampld1 — p*)
quantile of 71, ..., Ing, WhereJ; := alya,)—q}- Since the distribution of/ has finite
support, it follows from the result in [60] thaty, . = (v, p*) = a w.p.1 for N large
enough, and, moreover, the probability that, = (v, p*) = a for a givenN¢ goes to one

exponentially fast sincef; , = a if and only if 4n, (A, p*) = a.
The proof is completegy
Proof [Lemma 3.] Consider a point € V' and a sequence of pointg € V convergingv. By the
Lebesgue dominated convergence theorem and Assumption C,

lim E[h(A, )] = E[kli_)n;o h(A, v)]

k—o0
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and by Assumption B,
lim h(A, 1) = h(A,v) wp.l

k—o0
Hence /() tends ta(v).

Now consider a new sequendg of neighborhoods af in V' shrinking to{v~} and the function
di(\) = sup{|h(A\,z) — h(\,v)| : z € X}

It follows from Assumption B that for almost evedy d. () tends to zero a8 — oo. Furthermore,
Assumption C implies that the famild, (\), £ = 1,2, ...} is dominated by an integrable function;
therefore,

lim Efd(A)] = E[lim dj(A)] = 0.

k—o0

Now we have that
Ng

v () = Ing (V)] < NG BNy 2) = (A, v))|
=1
and hence,

Na
sup |Ing (#) = Ing )] < Ng' Y~ di(N).
zeX} i=1

This implies that for any givem > 0, there exists a neighborhoo¥ of v such that w.p.1 for
sufficiently largelV,
sup{|Ing (@) — In, (V)| 2 € X} < e

SinceV is compact, there exist a finite number of points...,v, € V, and corresponding

neighborhoodsX, .. ., X, coveringV such that w.p.1 for sufficiently larg¥,
sup{|ing (7) — Ing (V)| i € Xj,5 =1,...,m} <.
Furthermore, these neighborhoods can be chosen in such a way that
sup{|l(z) —l(v;)| :z € Xj,j=1,...,m} <e
sincel(v) is continuous orV. Due to the strong law of large numbers,
g () — W)l <€, j=1,....m.

Therefore, we can conclude that

lIng (V) — (V)] < 3e
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forallv e V.

Proof [Theorem 4.] From Lemma 3, we know that for any- 0 and all sufficiently largeV; and
allv eV,

lIng (V) — (V)] <€ w.p.l

Now suppose™* is a unique and consider a neighborhdodf v* € V. Sincel(v) is continuous

andV is compact, there exists> 0 such that
(V") —1(v) > 2
for all v in V andv not in X. Then two above equations tell us that
(v*) > 1(v)+e
for all v in V andv not in X. On the other hand, we have
INg(PNG) = Ting > L(V7) — €.

This then says thaty, € X, and since the neighborhoodl was arbitrary, we obtain thaty,,
converges te* w.p.1.
Since we now know thaty,, is the optimal parameter vector, option priBewith policy set

sampled fromf(-, 7n,,) is the true value of optio** by the SLLN and the definition in Equation

(21).n

Proof [Proposition 6.] See [39]
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Table 18: Simulation prices on min-put options on two assets with the same volatility by
min(S1, S2) and the difference af1 andS2. Option parametersi’ = 100, » = 0.06, T' = 0.5,
ando; = 09 = 0.6.

Sy S | Euro FD Lower Upper Point Error (%) CPU (s)
80 80 |36.86 37.30 37.12 37.83 37.47 0.47 7.30
80 100| 31.64 32.08 32.00 32.68 32.34 0.80 7.48
80 120| 28.65 29.14 28.94 29.62 29.28 0.48 7.29
100 100| 24.73 25.06 2490 25.53 25.22 0.62 7.28
100 120/ 20.61 20.91 20.87 21.44 21.15 1.17 7.35
120 120 15.70 15.92 15.87 16.28 16.08 0.99 7.24

Table 19: Simulation prices on min-put options on two assets with different volatilities by
min(S1, S2) and the difference af1 andS2. Option parametersi’ = 100, » = 0.06, 7' = 0.5,
ando; = 04,00 = 0.8.

Sy S | Euro FD Lower Upper Point Error(%) CPU(S)
80 80| 3755 38.01 37.84 3855 38.19 0.48 7.43
80 100| 31.81 32.23 32.01 3260 3231 0.23 7.27
80 120| 28.09 2854 28.34 28.97 28.66 0.41 7.17
100 80| 32.86 33.34 33.22 33.98 33.60 0.78 7.64
100 100| 25.47 25.81 25.64 26.30 25.97 0.63 7.36
100 120| 20.48 20.75 20.56 21.11 20.84 0.41 7.11
120 80| 30.69 31.21 3110 31.88 31.49 0.89 7.03
120 100| 22.44 22.77 22.63 23.29 22.96 0.84 7.42
120 120| 16.76 16.98 16.94 17.37 17.15 1.01 7.52
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