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SUMMARY

The availability and scale of user generated data in online systems raises tremendous
challenges and opportunities to analytic study of human activities. Effective modeling of
online human activities is not only fundamental to the understanding of human behavior,
but also important to the online industry. This thesis focuses on developing models and
algorithms to predict human activities in online systems and to improve the algorithmic
design of personalized/socialized systems (e.g., recommendation, advertising, Web search
systems). We are particularly interested in three types of online user activities, i.e., decision
making, social interactions and user-generated contents. Centered around these activities,

the thesis focuses on three challenging topics:

1. BEHAVIOR PREDICTION, i.e., predicting users’ online decisions. We present Collaborative-
Competitive Filtering, a novel game-theoretic framework for predicting users’ online
decision making behavior and leverage the knowledge to optimize the design of on-
line systems (e.g., recommendation systems) in respect of certain strategic goals (e.g.,

sales revenue, consumption diversity).

2. SOCIAL CONTAGION, i.e., modeling the interplay between social interactions and indi-
vidual behavior of decision making. We establish the joint Friendship-Interest Prop-
agation model and the Behavior-Relation Interplay model, a series of statistical ap-
proaches to characterize the behavior of individual user’s decision making, the interac-
tions among socially connected users, and the interplay between these two activities.

These techniques are demonstrated by applications to social behavior targeting.

3. CONTENT MINING, i.e., understanding user generated contents. We propose the Topic-
Adapted Latent Dirichlet Allocation (TLDA) model, a probabilistic model for identi-
fying a user’s hidden cognitive aspects (e.g., knowledgability) from the texts created
by the user. The model is successfully applied to address the challenge of “language

gap” in medical information retrieval.

Keywords: Predictive models, online human activities, user-generated data, behavior pre-
diction, social ties, collaborative competitive filtering, social contagion, behavior-relation

interplay, content mining, user cognitive aspects, language gap

X



CHAPTER I

INTRODUCTION

One of the central topics in many disciplines of social science (e.g., economics, psychology,
sociology) is to understand human activities, e.g., people’s decision making behaviors, social
interactions and natural languages. The emergence of online systems (e.g., online merchants,
social media, discussion forums) has contributed to this study many new promises. In par-
ticular, human activity data are generated spontaneously by real people and available at
extremely large scales we have never seen before. Moreover, compared to the offline physical
world, online systems have the unbeatable convenience in measuring and intervening the
decision environment. The availability and scale of human activities and the convenience
of manipulation in online systems raises tremendous opportunities at the interface of social
science and computer science: on the one hand, it allows social scientist to leverage compu-
tational power to test justifiable hypotheses and draw significant insights from large scale
human behavioral phenomena; and on the other hand, it motivates computer scientists to
develop powerful tools to help make sense of the big data and facilitate knowledge discovery.

The focus of this dissertation is on developing statistical models and machine learning
algorithms for explanatory and predictive analysis of human activities in online systems.
Of the large variety of human activities on the Web, we are particularly interested in three
types of activities:

e Decision making activities. A large number of user activities in online systems
can be seen as decision making behaviors, ranging from deciding which Webpage to
browser, to choosing which URL to click from the search results. We are particularly
interested in those scenarios where users are interacting with various online resources
and deciding what to choose for consumption, for example, whenever they purchase
a product, rent a movie, click an advertisement, indicate “like” to a celebrity, or
participating an activity. The fundamental question is to understand why users make
such a decision and to predict which will be the future decision of a particular user in
a particular context.

e Social interaction activities. One of the most fascinating aspect of online systems
is that it connects us together as a community, greatly facilitating interactions wher-
ever we are and whatever we are doing. As a matter of fact, many emerging online
systems include a social functionality in their systems, allowing users to connect to one
another as friends, indicate trust/distrust, follow or share with one another, etc. Such
social aspects have significant impact to individual behaviors. For example, because
it enables users of various backgrounds to behave in one environment, the visibility
of one user’s behavior could potentially influence another user. This phenomena is
widely known as “social contagion”. Our goal is to understand social interactions and
to capture the impact of social contagions in individual behavior of decision making,
and in turn to improve the accuracy of behavior prediction in a social environment.

e User generated contents. We are also interested in understanding the contents
created by users in online systems. Such user-generated contents include texts (e.g.,



status updates, tweets, blogs, comments, posts), images, videos, profiles, and even
annotations (e.g., labels, tags, named entities, answers). Our goal is to identify what
is the hidden intension behind a piece of content a particular user has generated, what
this content suggests about the author or the difference among different authors, and
how we can leverage the knowledge discovered to improve the system design to better
serve the user.

1.1 Problems and Motivations

The main interests of our research are centered around these three types of online hu-
man activities, and accordingly focused on developing models and algorithms for modeling,
understanding and predicting purposes. The main topics are three folds: (1) behavior
prediction; (2) social contagion; and (3) content mining.

1.1.1 Behavior Prediction

The first topic of this thesis is concerned with micro behavior prediction, i.e., modeling the
decision making behavior of each individual user as in a recommender system (e.g., Amazon,
Netflix, Yahoo!, Facebook friend-finder, Google Adsense). We are particularly interested
in predicting users’ online choice behavior — when a user visits an online system (e.g., a
website) and confronts with the resources (e.g., advertisement, product, movie) offered by
the system, how shall he make choices (e.g., click, purchase, rent)? and how can we design
more intelligent online systems to better serve users or to achieve certain strategic goals?
Models and algorithms developed for this purpose are not only important for improving
our understanding about human behavior but also of tremendous practical value to online
industries to enhance the design of online systems, especially recommender systems.

Formally, consider a recommender system, where we have N usersu € U := {1,2,...,N}
and M items i € 7 := {1,2,...,M}; when a user u visits the system, the system recom-
mends a set of customized items A = {i1,...,4;} and u in turn chooses a (possibly empty)

subset R C A for consumption (e.g. buys some of the recommended products). Our goal
in behavior prediction is to predict how an individual user u makes a decision R in a given
context A, i.e., to quantify p,(R|A)? And ultimately, how shall we design the recommender
system — what recommendation A should be provided to a particular user u so as to sat-
isfy the user’s information need or to achieve certain strategic goals (e.g., maximum sales,
revenue, profit)?

1.1.2 Social Contagion

We further examine decision making in a social environment (e.g., a social networking sys-
tem) where online users actively make decisions while interacting with one another. Unlike
recommender systems where users make their individual decisions independently, social
contagion plays a significant role in online systems with social functionalities — users are
connected in a community such that social interactions dramatically influence individual
behavior of decision making; and behavior in turn influences social relations. FEffective
modeling of social contagion to capture the interplay between social interactions and indi-
vidual behavior is not only of practical value to many internet services but also of general
interest to the social science community. In particular, by capturing social contagion, we
may improve social targeting to promote online services. For example, by providing better
matched search results, News articles, games, advertisements, or products, one can improve



user satisfaction and also boost the revenue of a website (e.g. via product purchases, virtual
transactions, advertisement clicks). Moreover, models for social contagion also have the
potential to improve our understanding of social relations and our society, and in turn shed
light to sociological principles in general.

Formally, consider a typical scenario in a social network where users routinely make
decisions while actively interacting with one another. Particularly, we are given a set of
users u € U :={1,2,..., N} and a set of items (e.g., News articles, advertisement, retailing
products, movies) i € Z :={1,2,..., M}. The users are connected by a social network rep-
resented by the graph G(U,C). Here C = {cy, } denotes the set of edges: ¢y, € {1, missing}
that define the connection between a pair of users (u,v) € U?. Users make decisions, for
example, by clicking links, purchasing products, rating movies. Formally, a decision is a
mapping y : U x T — ). That is: user u makes a decision regarding item ¢ with a re-
sponse y,; € YV (e.g. u rates movie ¢ with a score of y,;). Our goal is to characterize the
interplay between individual behavior and social interactions, to identify hidden social as-
pects / mechanisms, and ultimately to improve social targeting, i.e., recommendation (e.g.,
services, resources, friends) in a social networking system.

1.1.3 Content Mining

The third topic of the thesis is on discovering knowledge from user-generated contents in
online systems. We would like to infer knowledge of the user, about the user and for the
user, i.e.: what are the intentions behind the contents? what do the contents suggest about
the corresponding user? and what can we do to improve user experiences?

Of the various types of user-generated contents, we are particularly interested in texts,
images, named entities and queries. Our interests are focused on the following three topics:

e Mining hidden user aspects. As users in an online system are extremely diverse in
their background (e.g., age, nationality, race, income), one important research topic
is how to discover knowledge about the users from the textual contents they have
generated. Even more interestingly, is it possible to discover some subtle and hidden
properties of social users such as culture, knowledgability, personality, life-style, mood,
etc. from social texts? and how to identify and understand the differences in these
aspects between different people?

e Modeling social texts. Social texts are more difficult to model than normal documents
as they are mostly short, noisy and informal. How can we discover the user’s intensions
from such noisy texts and what are the more effective ways to analyze such texts?
One of our research topics is on text representation, i.e., to develop effective models
to capture more accurate information of a text and to facilitate our understanding
of the text. We brought the pyramid representation and scale-space theory from
image processing to textual domain. The proposed Language Pyramid (LaP) model
[96] casts a document as a probabilistic distribution over the joint semantic-spatial
space and efficiently encodes a document with a pyramid of matrices at a sequence
of progressive discrete-scales. The scale-space theory for text [98] further extend this
model toward continuous scales. We demonstrate how natural language documents
can be understood, processed and analyzed at multiple resolutions, and how this scale-
space representation can be used to facilitate a variety of text mining tasks. This work
is, however, not included in the thesis, please refer to [96, 98] for more information.



e Modeling complex-structure data. One important phenomena we noticed is that many
types of human activity data are structured in a much more complex form than what
we usually see in traditional scenarios. For example, traditional machine learning mod-
els assume a nonambiguous scenario where both the input (i.e. predictors) and output
(i.e. responses) of a system are i.i.d. points. However, the real-world is more like a web
where input instances and/or output instances could be complexly connected /related
to one another. Such data is particularly ubiquitous in online social media (e.g., social
entities, texts, images, video, relations). This motivates us to investigate the generic
complex-structure of such data and develop principled ways to handle it. Particularly,
we examined ambiguous data structures in supervised learning. We established one
of the first statistical models for ambiguous data [89, 88, 86]. The Dirichlet-Bernoulli
Alignment (DBA) model [89] assumes a tree-structure for ambiguous data and en-
codes the tree with a Bayesian hierarchical model. The Exponential-Multinomial
Mixture (EMM) model [88] further handles the challenge of label parsimoniousness
with hybrid generative/ discriminative learning. This work has been demonstrated
in text classification [89], entity extraction [89, 86], image annotation [88], and was
successfully applied to Bing search engine for query disambiguation [86]. This part is
not included in this thesis, interested readers may refer to [89, 88, 86] for more details.

1.2 Contributions and Organization

This dissertation focuses on the three topics of behavior prediction, social contagion and
content mining. Accordingly, the thesis is organized as three parts, with each part dedicated
to one topic.

We start with a brief introduction of related topics in Chapter 2. The reminder of the
thesis is structured as follows:

e Part I Behavior Prediction (Chapter 3-4). The first part of the thesis is on behav-
ior prediction. We present collaborative competitive filtering (CCF), a novel game-
theoretic framework for recommendation. This part consists of two Chapters:

¢ In Chapter 3, we present the CCF preference models, a set of models that learn
user preference from the interactive choice process and provide satisfactory rec-
ommendations by preference based ranking [94].

¢ In Chapter 4, we further present a game-theoretic formulation for recommenda-
tion, which enables us to optimize recommendation more strategically than what
can be achieved by a simple preference based ranking. We therefore revisit the
CCF model and extend it towards a game-theoretic framework [97].

e Part II Social Contagion (Chapter 5-6). The second part of the thesis is on social
contagion, i.e., characterizing the interplay between social interactions and individual
behavior of decision making. This part consists of two Chapters:

¢ In Chapter 5, we examine the significance of the Homophily effect and present
the joint friendship-interest propagation (FIP) model [93], a probabilistic model
that leverages Homophily to address behavior prediction and link prediction
simultaneously by coupling behavioral evidences with social interactions.

¢ In Chapter 6, we examine signed social ties such as trust-distrust or friend-
frenemy relationships, a much more complicated yet much stronger contagion



effect than Homophily. We establish the behavior-relation interplay (BIR) models
[95], a series of models that characterize the social diffusion of behavior and the
behavioral reflection into relationships. We also show how sociological principles
such as the structure balance theory and the status theory can be encoded into
the model and used to improve prediction accuracy.

e Part III Content Mining (Chapter 7). The third part of the thesis is on content
mining. We establish a set of powerful tools to understand the contents user gen-
erated in online systems. This includes models for identifying user cognitive aspects
[91, 18, 19], effective text representation [96, 97], and complex-structure (e.g., ambigu-
ous) data [89, 88, 86], of which only the first one is included in this thesis. Particularly,
in Chapter 7, we establish models for identifying user’s hidden cognitive aspects, par-
ticularly the technicality /knowledgeability of a user from the texts he has generated.
One direct motivation of the work is to address the language gap between layman
people and experts. In particular, we seek to close the gap at the thematic level via
topic adaptation, i.e., adjusting the topical structures for cross-domain documents ac-
cording to a domain factor such as technicality and providing an effective topic-level
bridge between lay and expert documents.

Finally in Chapter 8, we conclude and lay out a number of directions for future work.



CHAPTER II

PRELIMINARIES

In this chapter, we briefly review existing methodologies and related topics, which will
provide a context of the work presented in this thesis. We start with an introduction of
collaborative filtering, the most popular techniques for personalization and recommenda-
tion. We then provide a rough overview of some related topics on choice and game theories.
These two will be used as foundations to the collaborative competitive filtering framework
we present in Chapter 3 and 4. Next, we introduce some of the traditional methods for link
prediction, which will be connected with the methodology we developed for social contagion
as presented in Chapter 5 and 6. Finally, we briefly introduce topic modeling and latent
Dirichlet allocation [10], which is a basic building block for the TLDA model we developed
for mining user cognitive aspects, as will be presented in Chapter 7.

2.1 Collaborative filtering

Collaborative filtering (CF) is widely used for establishing personalized systems such as rec-
ommender systems. A typical setting for CF is to consider the rating prediction scenario,
where we have N users u € U := {1,2,...,N} and M items i € T := {1,2,..., M}; users
express opinions (e.g., by assigning ratings) with respect to the items, and these largely-
missing observations constitute a highly-incomplete matrix: ¥ € YN*M  of which only a
small number of entries are observed. Typically, a rating value is an integer value in the
range 1 to 5, i.e.: yy; € Y = {1,2,3,4,5}. Collaborative filtering predicts the values of unob-
served entries by collaboratively uncovering the patterns underlying observed evidences and
diffuse these patterns to the missing entries. In particular, collaborative filtering explores
the notion of “collaboration effects” that similar users have similar preferences to similar
items. By encoding collaboration, CF pools the sparse observations in such a way that for
predicting y(u,7) it also borrows observations from other (similar) users/items. Generally
speaking, existing CF methods fall into either of the following two categories.

Neighborhood models. A popular approach to CF, commonly known as neighborhood
models or memory based methods, is based on the principle of locality of dependencies,
which assumes that the interaction between user v and item i can be restored solely upon
the observations of neighboring users or items [72, 60]. Such neighborhood-based models
therefore connect similar items to a particular user (item-oriented) or recommend a partic-
ular item to similar users (user-oriented). Basically, such approaches first define a similarity
measure between items / users. Then, an unseen response between user u and item 7 is
approximated based on the responses of neighboring users or items [72, 60], for example,
by simply averaging the neighboring responses with similarities as weights. In particular,
the user-oriented model uses:

A ZUEQU WyvYvi
Yui = Z )
’l)GQu wuv
where €2, is the set of neighboring (behaviorally similar) users to user u, w,, measures the
degree of similarity, e.g. cosine score or Pearson correlation coefficient, between two users u



and v. Likewise, the item-based model uses:

2 e Wijluj

gui = -
ZjeQi Wij

Y

where €Q; is the neighbor set of item 4, w;; is the similarity score between item ¢ and j.

Latent factor models. The second class of methods for CF, known as matrix factorization
methods or latent factor models, learn predictive latent factors as fingerprints to profile each
user and each item and in turn estimate the missing dyadic responses based on the inner-
products of latent factors. The basic idea is to associate latent factors, p, € RF for each
user u and ¢; € RF for each item i, and assume a multiplicative model to approximate the
dyadic response, i.e., yy; ~ q;— g or Y ~ PQT. This way the factors could explain observed
ratings and in turn make prediction for the missing ones. An intuitive interpretation of
this approach is to think of the latent aspects as item-clusters (e.g., “genres” of movie,
“topics” of documents). For example, assume items could be grouped into a small number
k < min{M, N} of “genres”, we can think of the latent item profile ¢; as the degrees of
membership of the item ¢ to each of these genres, and the user profile p, as the attitudes
of user u to each of the genres; accordingly, the rating y,; is approximated by the inner-
product p, ¢;, i.e., the summation of the products of an item’s association to a genre and
the user’s altitude toward that genre.

This model implicitly encodes the Aldous-Hoover theorem [36] for exchangeable matri-
ces, i.e., it assumes that y,; are independent from each other given p, and ¢;. Parameter
estimation for the model reduces to a low-rank approximation of the matrix Y, which is
given in a regularized form by:

(IPIIE +1QIIE)-

1 A
min 5|V ~PQ|[% + 5

The solution has a close connection with singular value decomposition (SVD) of Y
Yy =UxvT,
where the matrices U and V are orthonormal and ¥ is diagonal, i.e.:

o1
=

Omin{N,M}

The values 01, 02, ..., Omin{n,Mm} are the singular values of the matrix Y. Without loss of
generality, we assume that the singular values are arranged in descending order, o1 > o9 >
“++ 2 Omin{N,Mm}- The two factors P and () can be obtained from the rank-k approximation
of Y, which can be obtained with a partial SVD using the singular vectors corresponding
to the k largest singular values of Y

A

PQT =y =0%vVT
01 Ul

= [ur ... w]



For the above reason, the approach is also commonly referred to in the CF literature as SVD.
The rank-k approximation Y has the minimum distance from Y in terms of the spectral
norm and the Frobenius norm. Note that although Y is typically sparse, Y is generally not.
Thus, Y can be viewed as a diffused version of Y.

Latent factor models have gained tremendous successes in recommendation systems
and have even become the current state-of-the-art for CF [41, 1]. A known drawback for
such models is that, because it is learned only upon past interactions, the generalization
performance is usually poor for completely new entities, i.e. unseen users or items, for
which the observations are missing at the training stage. This scenario is well-known as the
“cold-start problem” in recommendation systems. The recently proposed regression based
latent factor model (RLFM) [1] addresses this problem by incorporating entity features into
latent factor learning. The key idea is to use observable features to explain the learned
latent variables (e.g. by regression or factorization). Suppose for each user and each item,
there are observable features, x,, for user u (e.g. user’s demographic information, self-crafted
registration profiles) and z; for item i (e.g. content of a document, description of a product),
RLFM [1] assumes a regression model between the latent profile p, and observed feature
Ty, and similarly between ¢; and x;.

It is natural to combine the neighborhood models and latent factor models. A recent
example is discussed [40], where the basic idea is to apply the locality of dependencies
directly to the latent factors, for example:

L D peq, WuwDy G — _jeq, Wijdj
u T
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This model which is quite similar to [40] was deployed on the Netflix data yielding signifi-
cantly better performances over both pure-neighborhood and pure latent factor models.

2.2 Choice and game theory

In this section, we provide a brief introduction to some related concepts and topics in
rational choice and game theories.

Rational choice. Rational choice theory is a formal theoretic framework for understanding
human economic behavior (i.e., decision making) [59, 30]. The basic idea is that people make
decisions by comparing the costs and benefits of each decision option and picking the one
that maximizes their benefit and minimizes their costs.

Consider a decision scenario where an agent u is confronted with a set of exhaustive and
exclusive alternatives Z = {1,..., M}, let U; be the utility, i.e., a measure of satisfaction
received by w from consuming item ¢ € Z. U; defines a preference relationship among the
available choices. Rational choice theory makes two fundamental axiomatic assumptions
about individuals’ preferences for choices:

COMPLETENESS: A preference relation 3= is said to be complete if all the choice options
can be ranked in a consistent order of preference based on . In other words, for any two
options ¢ € 7 and i’ € Z, either i = ¢ or i’ = i unless they are equivalent ¢ ~ ¢’ (indifferent).

TRANSITIVITY: A preference relationship 5= is transitive if for three options 41, i and
i3, 11 = 1o together with i9 = i3 leads to i1 3= i3.

These assumptions together enable an individual to rank choice options consistently in
terms of his preferences. Given a set of mutually exclusive decision options, the rational
choice theory states that the agent makes a rational decision by picking the one that provides



the greatest benefit at the lowest cost. In particular, a rational decision maker considers
both opportunity cost and revenue, and decides his choice by comparing the economic profit
of each option.

REVENUE: The revenue is a measure of the gross benefit received from consuming a
good. We denote the revenue from item ¢ as r;.

OPPORTUNITY COST: Opportunity cost is the cost of taking one action that excludes
the agent to try other alternatives. It is measured in terms of the value of the next best
alternative that is not chosen. The opportunity cost can be quantified by

C; = Imax 7r;.
JEL,j#i
EcoNoMIC PROFIT: Economic profit is the net benefit an agent u received from choosing
and consuming an option ¢. It arises only when revenue exceeds the opportunity cost.
Specifically, we have the profit m; = r; — ¢;.

Choice under risk. In the above, we assume the agent has full or perfect information about
what will occur from his choice decision. In many realistic scenarios, however, different
outcomes occur with probabilities such that the decision maker has to choose between risky
or uncertain prospects, similar to what happens in gambling.

Let us consider the scenario of decision making in an uncertain environment, where
a decision maker has preferences over decision options where the outcomes realize with
objective probabilities that are known to the decision maker. A choice option is usually
called a lottery in such a case.

SIMPLE LOTTERY: Given a finite set of deterministic outcomes {z1,...,2,}, a simple
lottery p'is a n-tuple g = (p1,...,pn) with p; > 0 for all s € {1,...,n} and > ;| p;i = 1,
where p; is interpreted as the probability that outcome z; occurs. Denote §; the degen-
erated lottery that realize z; with probability 1, and P the set of all simple lotteries over
{z1,...,2n}, we have: P = {p e R | Z?:l pj = 1}, i.e., the (n — 1)-dimensional simplex.

COMPOUND LOTTERY: A lottery can also be a compound of multiple simple choices.
Given K simple lotteries, {p1,...,Pk}, a compound lottery p, = zgzl Pk, where ay, > 0
and Zszl ap = 1. It can be shown that a compound lottery can be reduced to a simple
lottery p where p; = Zszl Pk -

In the presence of risky or uncertain outcomes, a decision maker could use the expected
utility hypothesis to decide his choice. The von Neumann-Morgenstern utility theorem
[64] provides some necessary and sufficient axioms under which this expected utility crite-
rion should work. As a result, the rationality of such a decision is called von Neumann-
Morgenstern rationality [64].

Given a utility function U : P — R, which induces a preference relation = over the
lotteries in the sense that p; = ph if and only if U(p1) > U(pz). In addition to the
completeness and transitivity axioms we have already described in the deterministic case,
we need two more assumptions for the scenario of decision making under uncertainty:

CONTINUITY: Let p7, pa and p3 be three lotteries with pp = po = p3, then there exists a
constant 0 < a < 1 such that pa ~ ap] + (1 — a)ps. In essence, this assumption states that
the preference relation over lotteries is continuous.

INDEPENDENCE: Let p; and ps be two lotteries with P = pa, and p3 be another lottery,
then for any constant 0 < a < 1, the preference over p; and ps will not change if compounded
with p3 at the same proportions, that is [ap] + (1 — a)ps] = [aps + (1 — a)ps].

If all the four axioms are satisfied, the von Neumann-Morgenstern theorem [64] states
that the rational decision could be achieved by maximizing the expected utility.



[EXPECTED UTILITY THEOREM|: Suppose = is a preference that satisfies the 4 axioms,
for any two lotteries py and pa, we have: Py = P2 if and only if Ez (U) > Eg, (U).
Interactive choice and game theory. We now move our discussion from the topic of
individual’s decision making to the more complicated case involving multiple decision mak-
ers, where the decisions of different players are interdependent and examining the decision
in such an interactive scenario need tools from game theory.

Game theory is an area in applied mathematics that studies and analyzes the decision
strategies among a number of interacting rational decision makers (players). It has been
widely used to study (e.g., describe, predict, explain, model) a large variety of human
behaviors in many disciplines in social sciences, e.g., psychology, economics, philosophy
and political science. In terms of different aspects, games studied in game theory can be
classified into different types, for example, cooperative vs non-cooperative games, zero-
sSum vs non-zero-sum games, symmetric vs asymmetric games, simultaneous vs sequential
games. In Chapter 4, we show that the user-system interactions on recommender system
can be formulated as a collection of non-cooperative sequential games. We do not intend to
provide a thorough introduction to game theory, but rather, we would like to give a quite
brief description of the related concepts and the formulation in non-cooperative games. For
more detailed descriptions, please refer to any textbook on game theory, for example, the
excellent yet concise book by Leyton-Brown and Shoham [49].

In a strategic form, a game consists of two or more players; each player has a set of
strategies; for each combination of strategies (i.e., outcome), there is a numerical payoff
for each player that reflects the benefit the player obtains from an outcome. We assume
each players is a rational decision maker who seeks to maximize his payoff. A game is
said to be a cooperative game if groups of players form coalitions and the competitions are
among the coalitions rather than individuals. Otherwise, the game is non-cooperative, i.e.,
players make decision individually. Formally, a non-cooperative game G can be formulated
as a triple (P, Z,U), where P = {p1,...,pn} is the set of players where n = |P|, Z; is the
strategy space for player p;, i.e., the set of all actions (decision options) available to p;, the
joint strategy space Z = Z1 X ... X Z,. The concatenation of the selected strategies by all
the game players constitutes a strategy profile or outcome z € Z. The payoff function for
player p; is denoted by U;(z) which measures the utility of an outcome z to player p;, the
joint payoff function U(z) = (U1(2),...,Un(z)) for any z € Z. The best action strategy of
p; is defined by the strategy z; € Z; that maximizes player p;’s utility U; given other players’
strategies. As a result, to find the best strategy for a particular player, one needs to predict
other players’ strategies in advance and maximizes the targeted player’s payoff thereafter.
In this spirit, we propose the collaborative competitive filtering framework in Chapter 4 that
predicts users’ behaviors in advance and in turn maximizes system’s payoff. The games we
examined is sequential in the sense that the players do not move simultaneously. As a
matter of fact, since users choose from the recommendations by the system, at the time a
user moves, he knows everything about the system’s strategy, therefore, the interaction at
recommender systems is actually a sequential game with perfect information.

2.3 Link prediction

One of the core properties of a social network site is the social graph, represented by G =
(U, E), where the vertex set U consists of all the registered users, and the edge set £ consists
all the relationship / connections among users. One key task of fundamental importance to
a social network system is link prediction or friendship suggestion, i.e., recommends users
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to other users in the hope of acquainting people who were previously not connected in
the network (or even unfamiliar with each other). Link prediction crucially influences the
traffic, user base and revenue of a social network and is hence recognized as one of the key
tasks in social network analysis.

Node proximity and random walk.Consider a graph G with N verticesid = {1,...,N}.
A convenient way to represent a graph is to use the adjacency matrix Cy«n, where ¢, = 1
if (u,v) € £ or 0 otherwise. If G is an undirected graph, C' is a symmetric matrix. The
basic idea underlying many link prediction algorithms is to assess the similarity / proximity
between any pair of vertices (u,v) based on the observed edges of the input graph. For
example, a simple measure could be the number of common neighbors or its normalized
version, i.e., the Jaccard similarity. The problem with these simple measures is that they
can only capture local second-order information. A more reliable measure that is able to
capture higher-order information about the network topology is the length of shortest path,
which is however computationally expensive. Many existing approaches therefore employ
random walk [50, 70] and assess the similarity based on diffusion probability or hitting time.

A random walk on the graph G is a reversible Markov chain on the vertices . The
transition probability from the vertex w to vertex v is denoted py, = p(v|u). Vertices are
considered close whenever the hitting time is small or whenever the diffusion probability
is large. Let ¢, be the connection weight between vertices u and v, and d,, = ), ¢, the
degree of vertex u, one reliable way to obtain p,, is to consider random walk with restart:

Duv = )\Cd/ﬂ + (1= AN)dyy or py = ACp, + (1= Ney

u

where py = [put, ..., Pun]’, €y is the u-th column of an N x N identity matrix, C = (Cuv)
where ¢, = cyy/d,. Basically, this formulation assumes that with probability A the traveler
will go from vertex u to one of the neighboring vertices with probability proportional to
their connection weight, and with probability 1 — X it will stay at the current vertex.
Accordingly, the proximity measure p,, can be solved directly from the formulation as:

w=(1=XI = \C) e,

A simple way to obtain p, is to iteratively carry out the update above until convergence.
Note that the inverse (I — AC)~! only need to be computed once.

Latent factor network model. Recent advances in link prediction developed factoriza-
tion models for networks based on the very same idea as in collaborative filtering. The basic
idea is again low-rank matrix factorization — given the adjacency matrix C, we factorize C
in terms of low-rank factors, i.e., C' = PQ" for directed graph or C = PP for undirected
graph. These factors are learned by fitting on the current topology of the network, for
example, by minimizing the Frobenius norm of the residue matrix (C' — C). Nonetheless,
since the connections are usually binary, i.e., ¢y, = 1 or missing, a logistic loss function is
more reasonable than ¢5. Therefore, we usually use (for undirected graph):

min Z log [1 + eXp(—prv)} + A Z [|pul[?
(u,w)EE ueU

This way the factors fully characterize the network topology and in turn predicts how likely
the emergence of a edge is, e.g., through logistic regression mapping of the inner-product

p;—pv-
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A slightly different approach is to use a three-factor low-rank model, i.e., Cnxn =
PkakakPjyx x- This model can be though of as clustering vertices into k clusters (or
communities), where p, can be viewed as the memberships of vertex u to each of these
communities, and H as the base connections, which is the connection matrix between com-
munities instead of individual vertices. Here, we briefly review one representative of such
generative models for undirected graph, i.e., the Mixed Membership Stochastic Blockmodels
(MMSB) [2]. This model casts each vertex factor as a multinomial distribution and poses
the conjugate (Dirichlet) prior to obtain a full Bayesian model. MMSB assumes that each
vertex can be associated with multiple communities but in a particularly relationship (i.e.,
a particular edge), it is only associated with one of these communities. Given a network
graph G with vertex set 4 = {1,..., N} and adjacency matrix Cyyy, let 8, € R* denote
the latent factor for vertex u, MMSB assumes the following generative process for G:

e For each vertex w:
— draw vertex factor (i.e., mixed membership vector): 6, ~Dir(«)
e For each pair of vertices, (u,v):

— draw membership indicator for the initiator vertex z,_,, ~Multinomial(,,);
— draw membership indicator for the receiver vertex z,_,, ~Multinomial(6,);

— draw connection weight ¢, ~Bernoulli(zy,—,Bzy—)

The model can be learned based on the current topology of the network and inference about
new connections can be done simply through logistic regression mapping of 6, B6,.

2.4 Topic modeling

The third part of the thesis is on mining user-generated contents, especially texts. Prob-
abilistic topic models have emerged as an important set of tools for text mining (e.g.,
automatic organizing, browsing, managing). In this section, we briefly review latent Dirich-
let allocation (LDA) [10], which will be used as a building block in Chapter 7 of the thesis
for mining user-generated texts.

Latent Dirichlet allocation.The basic idea underlying probabilistic topic models is di-
mensionality reduction in a probabilistically comprehensible way. It is essentially the very
same idea underlying the latent factor models in collaborative filtering and many other
techniques. Basically, given a document-word matrix Yys«n, where M is the total number
of documents and N the total number of words (i.e., the size of the vocabulary), and each
row vector of Y is the bag-of-word (TF vector) representation of a document, the idea is
to decompose Y in terms of two low rank matrix Pps«r and Qpnxk, where k < M or N.
If we interpret the latent aspects of ) as k term-clusters or topics and P as the associa-
tion degrees of each document to these topics, such factorization leads to a semantically
coherent low-rank embedding of documents and words. As a matter of fact, this is the
very idea that underly both the matrix factorization model in collaborative filtering [41]
and the latent semantic index (LSI) model for topic modeling [20]. The probabilistic latent
semantic index (PLSI) model [33] provides a probabilistic extension to the LSI model by
casting each column vector of ) and each row vector of P as multinomial distributions.
This probabilistic view is favorable as it greatly facilitates the semantical interpretation of
the latent topics. The latent Dirichlet allocation (LDA) model [10] further extends PLSI
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Figure 1: Latent Dirichlet allocation (LDA) and its variational model.

towards a Bayesian model by imposing conjugate priors, i.e., the Dirichlet distribution, to
each multinomial. The Dirichlet priors are useful as they help model selection and is also
useful to avoid overfitting.

Fig. 1 shows the diagram of the graphical model representation of LDA. In the diagram,
each random variable is represented by a circle. A variable that is observed (its outcome
is known) is shaded. An arrow is drawn from one random variable to another if the the
outcome of the second variable depends on the value of the first variable. A rectangular
plate is drawn around a variable to show that it is repeated multiple times. Given a corpus
D consisting of M documents, with each document d,, being a finite sequence of words
wiws ... wy,,, assume the vocabulary size is W, and the number of topics is k; and to
comply with the topic modeling convention, we use 6 instead of P as document profile (i.e.,
topic distributions for documents) and (3 instead of @) as word profile (i.e., topic bases); the
LDA model assume the following process for generating a document:

e CHOOSE THE TERM PROBABILITIES FOR EACH TOPIC. The distribution of terms for
each topic ¢ is represented as a multinomial distribution (3;, which is drawn from a
symmetric Dirichlet distribution with parameter 7.

w
B~ Di)s p(3n) = ot TLA
v=1

e CHOOSE THE TOPICS OF THE DOCUMENT. The topic distribution for document d is
represented as a multinomial distribution 64, which is drawn from a Dirichlet distri-
bution with parameters a.

k
F(Zf:l ;) goi—1

fa ~ Dir(a);  p(fala) = di
[T D) 32
e For each of the token w,:

— CHOOSE THE TOPIC ASSIGNMENT FOR EACH TOKEN. The topic z4, for each
token index m is chosen from a discrete distribution based on the document-
specific topic distribution 6.

Zdn ~ Multinomial(6y) ; P(zan = 1104) = O4; -

— CHOOSE EACH TOKEN. Each token w is chosen from the multinomial distribution
associated with the selected topic.
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Wy, ~ Multinomial((3,,, ) ; p(Wan = v|zan =1, i) = Biw -

LDA provides the mechanism for finding patterns of term co-occurrence and using those
patterns to identify coherent topics. As a result of the LDA generative process, all terms
that co-occur frequently will be grouped together and appear with high probabilities in a
topic.

Training an LDA model involves finding the optimal set of parameters, under which the
probability of generating the training documents is maximized. The likelihood of a given
corpus D under LDA model is given by:

M Np

L= H H p(wdnm ’Zdnm ) ﬁ)p(zdnm \Hd)p(Hd\a)p(ﬁ]n)

d=1n=1

Unfortunately, the direct optimization of the likelihood is problematic because the topic
distribution 6y and per-word assignments zg, are not directly observed and need to be
marginalized. Even inference for a single document is intractable. Standard LDA training
algorithms including collapsed Gibbs sampling algorithm and wvariational Bayes approach.
Here, we briefly review the latter, which approximates the model with a series of simpler
models but neglect the troublesome dependencies.
Variational inference. Variational approach approximates the true posterior distribution
of the latent variables by a fully-factorized distribution—this proxy is usually referred to
as the variational model (cf Fig. 1), which assumes all the latent variables are independent

of each other. Particularly, we assume the following variational model for the posterior of
z and 6:

N N
9(0, Z|, 6) = a(017) [ | a(znlén) = Dir(6]y) | [ Multinomial (z,[¢n).

n=1 n=1
Essentially, this variational distribution is a simplification of the original LDA graphical
model by removing the edges between the vertices § and Z (Fig. 1). The optimal approx-
imation is achieved by optimizing the distance (for example, the KL divergence) between
the true model and the variational model:
min KLlg(0, Z]y, ) [| p(0, Z|ev, B)].

Y,

It can be shown that the above KL-divergence is the discrepancy between the true log-
likelihood and its variational lower-bound that is used in the variational EM algorithm
(described later in this section) for estimating the LDA hyperparameters o and .

The optimization has no close-form solution but can be implemented through iterative
updates,

N
Vi =i+ Y bnis bni X B, exp[¥(7)],

n=1
where ¥(-) is the bi-gamma function.

Variational EM for LDA training We learn a LDA topic model by maximizing the
likelihood of the corpus.

M M
max log p(d|a, ) = max lo / d,0q4, Zgla, B)dO4dZy .
na; ; gp(d|a, B) na; ; g edde( > Zdlo, B)d0adZq
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The variational approximation provides a tractable lower bound for this likelihood function:

L(v,¢) = logp(d|a, 3) — KL(q(Z, 0]y, 9)|[p(Z, 0|c, 3))
< logp(d|a, B),

where L(v,¢) = E4llogp(wg,0,Z) — logq| is the variational lower bound for the log-
likelihood. The maximum likelihood estimation therefore involves a two-layer optimization,

M

max max L(Vq, ¢q) -
O‘vﬁ C;’de(bd (/7 ¢ )

The inner-loop (the optimization with respect to v and ¢, referred to as the Variational E-
step) goes through the whole corpus and performs variational approximation for each of the
documents, which ends up with a tight lower bound for the log-likelihood. Then the M-step
updates the model parameters (o and 3) by optimizing this lower-bound approximation of
the log-likelihood. The E- and M-steps are alternated in an outer loop until convergence.
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CHAPTER III

COLLABORATIVE COMPETITIVE FILTERING I

The first part of the thesis is concerned with micro behavior prediction, i.e., modeling the
decision making behavior of each individual user as in a recommender system (e.g., Amazon,
Netflix, Yahoo!, Facebook friend-finder, Google Adsense). This includes this and the next
two chapters. We are particularly interested in predicting users’ online choice behavior
— when a user visits a online social media site and confronts with the resources (e.g.,
advertisement, product, movie) offered by the system, how shall he make choices (e.g.,
click, purchase, rent)? Models and algorithms developed for this purpose are of tremendous
practical value to personalized recommendation, advertisement targeting, web search, etc.

We propose Collaborative Competitive Filtering (CCF) [90, 94, 97], a game-theoretic
framework for recommendation. The framework consists of two parts. This section de-
scribe the first part, which is composed of a series of preference models based on the inter-
active choice process in recommender systems. In next chapter, we formally describe the
game-theoretic formulation and presented the second part of the framework, i.e., optimizing
recommendations in respect of certain strategic goals.

The proposed CCF preference models employ a multiplicative latent factor model to
characterize the dyadic utility function. But unlike existing collaborative filtering (CF)
approaches, CCF models the user behavior of choices by encoding a local competition effect.
In this way, CCF allows us to leverage dyadic data that was previously lumped together
with missing data in existing CF models. We present two formulations and an efficient large
scale optimization algorithm. Experiments on three real-world recommendation data sets
demonstrate that CCF significantly outperforms standard CF approaches in both offline
and online evaluations.

3.1 Introduction

Recommender systems have become a core component for today’s personalized online busi-
nesses. With the abilities of connecting various items (e.g., retailing products, movies,
News articles, advertisements, experts) to potentially interested users, recommender sys-
tems enable online firms (e.g. Amazon, Netflix, Yahoo!) to expand the marketing efforts
from historically a few best-sellings toward a large variety of long-tail (niche) products
[12, 79, 22]. Such abilities are endowed by a personalization algorithm for identifying the
preference of each individual user, which is at the heart of a recommender system.

Predicting user preference is challenging. Usually, the user and item spaces are very
large yet the observations are extremely sparse. Learning from such rare, noisy and largely
missing evidences has a high risk of overfitting. Indeed, this data sparseness issue has been
widely recognized as a key challenge for constructing effective recommender systems.

A straightforward way for personalization would be to learn each user’s preference based
on the prior interactions between the user and the system. Typically, such interaction is an
“opportunity give-and-take” process (c.f. Table 1), where at each interaction:

1) a user u inquires the system (e.g. visits a movie recommendation web site);
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Table 1: An example of user-system interactions and the degraded dyadic matrix.

User | Offer set | Choice i1 d2 43 a4 15 g
ui | i1, 42,43, 95 i2 wp | -1
Uz ig, i3, i4, i5 ig U2 1
us il,ig,i5,i6 i5 us . . 1
Uy ig,i3,i4,i6 i3 (0 . 1
Uus il,ig,i4,i5 n Us . . 1
Ug [il, 14,05, iﬁ] 16 Ug : : : 1

2) the system offers a set of (personalized) opportunities (i.e. items) O = {iy,...,q;}

(e.g. recommends a list of movies of potential interest to the user);
3) the user chooses one item i* € O (or more) from these offers and takes actions ac-
cordingly (e.g. click a link, rent a movie, view a News article, purchase a product).

Somewhat surprisingly, this interaction process has not been fully-exploited for learning
recommenders. Instead, research on recommender systems has focused almost exclusively
on recovering user preference by completing the matrix of user actions (u,:i*) while the
actual contexts in which user decisions are made are totally disregarded. In particular,
Collaborative Filtering (CF) approaches only captures the action dyads (u,:*) while the
contextual dyads (i.e. {(u,i)} for all i € O and ¢ # *) are typically treated as missing
data. For example, the rating-oriented models aim to approximating the ratings that users
assigned to items [72, 60, 1, 41]; the recently emerged ranking-oriented algorithms [84, 51]
attempt to recover the ordinal ranking information derived from the ratings. Although
this matrix-completion formulation of the recommendation problem has led to numerous
algorithms which excel at a number of data sets, including the prize-winning work of [41],
we argue here that the formulation is inherently flawed — a preference for Die Hard given
a generic set of movies only tells us that the user appreciates action movies; however, a
preference for Die Hard over Terminator or Rocky suggests that the user might favor Bruce
Willis over other action heroes. In other words, the context of user choice is vital when
estimating user preferences.

When it comes to modeling of user-recommender interactions, an important question
arises: what is the fundamental mechanism underlying the user choice behaviors? As
reflected by its name, collaborative filtering is based on the notion of “collaboration effects”
that similar items get similar responses from similar users. This assumption is essential
because by encoding the “collaboration” among users or among items or both, CF greatly
alleviates the issue of data sparseness and in turn makes more reliable predictions based on
the somewhat pooled evidences.

It has long been recognized in psychology and economics that, besides the effect of col-
laboration [14, 61], another mechanism governs users’ behavior — competition [53, 59, 4].
In particular, items turn to compete with each other for the attention of users; therefore,
axiomatically, user u will pick the best item i* (i.e. the one with highest utility) when con-
fronted by the set of alternatives O. For example, consider a user with a penchant for action
movies by Arnold Schwarzenegger. Given the choice between Sleepless in Seattle and Die
Hard he will likely choose the latter. However, when afforded the choice between the oeuvres
of Schwarzenegger, Diesel or Willis, he’s clearly more likely to choose Schwar-zenegger over
the works of Willis. To capture user’s preference more accurately, it is therefore essential
for a recommender model to take into account such local competition effect. Unfortunately,
this effect is absent in a large number of collaborative filtering approaches.
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In this chaper, we present Competitive Collaborative Filtering (CCF) for learning rec-
ommender models by modeling users’ choice behavior in their interactions with the rec-
ommender system. Similar to matrix factorization approaches for CF, we employ a multi-
plicative latent factor model to characterize the dyadic utility function (i.e. the utility of
an item to a user). In this way, CCF encodes the collaboration effect among users/items
just as CF does. But instead of learning only the action dyads (i.e. (u,7*) or the “1” entries
in Table 1), CCF bases the learning of the factorization on the whole user-recommender
interaction sessions. It therefore leverages not only the action dyads (u,i*) but also the
dyads in the context without user actions (i.e. (u,) for all ¢ € O and i # i*, or the dot
entries in Table 1), which were treated as potentially missing data in CF approaches.

To leverage the entire interaction session for latent factor learning, we devise probabilis-
tic models or optimization objectives to encode the local competition effect underlying the
user choice process. We present two formulations with different flavors. The first formu-
lation is derived from the multinomial logit model that has been widely used for modeling
user choice behavior (e.g. choice of brands) in psychology [53], economics [56, 59] and mar-
keting science [27]. The second formulation relates closely to the ordinal regression models
in content filtering [32] (e.g. web search ranking). Essentially, both formulations attempt
to encodes “local optimality of user choices” to encourage that every opportunity ¢* taken
by a user u be locally the best in the context of the opportunities O offered to her. From
a machine learning viewpoint, CCF is a hybrid of local and global learning, where a global
matrix factorization model is learned by optimizing a local context-aware loss function. We
discuss the implementation of CCF, establish efficient learning algorithms and deliver a
package that allows distributed optimization on streaming data.

Experiments were conducted on three real-world recommendation data sets. First, on
two dyadic data sets, we show that CCF improves over standard CF models by up to 50+%
in terms of offline top-k ranking. Furthermore, on a commercial recommender system, we
show that CCF significantly outperform CF models in both offline and online evaluations.
In particular, CCF achieves up to 7% improvement in offline top-k ranking and up to 13%
in terms of online click rate prediction.

3.2 Problem definition

Consider the user-system interaction in a recommender system: we have users u € U =
{1,2,...,U} and items i € Z = {1,2,...,I}; when a user u visits the site, the system
recommends a set of items O = {iy,...,4} and w in turn chooses a (possibly empty)
subset D C O from O and takes actions accordingly (e.g. buys some of the recommended
products). For ease of explanation, let us temporarily assume D = {i*}, i.e. D is not empty
and contains exactly one item ¢*. More general scenarios shall be discussed later.

To build the recommender system, we record a collection of historical interactions in
the form of {(u¢, O, Dy)}, where ¢ is the index of a particular interaction session. Our goal
is to generate recommendations O; for an incoming visit  of user u; such that the user’s
satisfaction is maximized. Hereafter, we refer to U as user space, I as item space, Oy as
offer set or context, D; as decision set, and i* as a decision.

A key component of a recommender system is a model r(u,i) that characterizes the
utility of an item i € Z to a user u € U, upon which recommendations for a new inquiry
from user u could be done by simply ranking items based on 7(u, ) and recommending the
top-ranked ones. Collaborative filtering is by far the most well-known method for modeling
such dyadic responses.
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3.3 Collaborative filtering

In collaborative filtering we are given observations of dyadic responses {(u, 7, yy;)} with each
yui being an observed response (e.g. user’s rating to an item, or indication of whether user
u took an action on item 4). The whole mapping:

(u,i) = yu; wherew eUU,i €T
constitutes a large matrix Y e YU*IZI. While we might have millions of users and items,
only a tiny proportion (considerably less than 1% in realistic datasets) of entries are ob-
servable!.

Collaborative filtering explores the notion of “collaboration effects”, i.e., similar users
have similar preferences to similar items. By encoding collaboration, CF pools the sparse
observations in such a way that for predicting r(u,7) it also borrows observations from
other (similar) users/items. Generally speaking, existing CF methods fall into either of the
following two categories.

3.3.1 Neighborhood models

A popular class of approaches to CF is based on propagating the observations of responses
among items or users that are considered as neighbors. The model first defines a similarity
measure between items / users. Then, an unseen response between user u and item 7 is
approximated based on the responses of neighboring users or items [72, 60], for example,
by simply averaging the neighboring responses with similarities as weights.

3.3.2 Latent factor models

This class of methods learn predictive latent factors to estimate the missing dyadic re-
sponses. The basic idea is to associate latent factors?, ¢, € RF for each user u and 1); € R¥
for each item i, and assume a multiplicative model for the dyadic response,

P(Yui|t, 1) = P(YuilTui; ©),

where © denotes the set of hyper-parameters, the utility is assumed as a multiplicative
function of the latent factors,

r(u,i) = @Il/fi-

This way the factors could explain past responses and in turn make prediction for future
ones. This model implicitly encodes the Aldous-Hoover theorem [36] for exchangeable ma-
trices — 1, are independent of each other given ¢, and ;. In essence, it amounts to a
low-rank approximation of the matrix Y that naturally embeds both users and items into
a vector space in which the inner-products directly reflect the semantic relatedness.

To design a concrete model [2, 62, 77], one needs to specify a distribution for the de-
pendence. Afterwards, the model boils down to an optimization problem. For example two
commonly-used formulations are:

Note the subtle difference in data representation: while we record entire sessions, CF only records the
dyadic responses.

2We assume each latent factor ¢ and 1 contains a constant component so as to absorb user/item-specific
offset into these factors.
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- {5 regression The most popular learning formulation is to minimize the ¢5 loss within
an empirical risk minimization framework [41]:

min D (yui = Gu i)’ + M Y el + Az > vl

T (u,i)eQ u€U i€Z
where €2 denotes the set of (u,i) dyads for which the responses y,; are observed, Ay
and A7 are regularization weights.

- Logistic Another popular formulation [62, 1] is to use logistic regression by optimizing
the cross-entropy:

min Z log [1 + exp(_d?ﬁi)} + A Z H%HQ + )\IZ HT/JZH2

¥ (u,8)eQ uel i€eZ

3.3.3 Motivating discussions

Collaborative filtering approaches have made substantial progresses and are currently the
state-of-the-art techniques for recommender system. However, we argue here that CF ap-
proaches might be a bit lacking in several aspects. First of all, although data sparse-
ness is a big issue, CF does not fully leverage the wealth of user behavior data. Take
the user-recommender interaction process described in §3.2 as an example (c.f. Table 1),
CF methods typically use only the action dyad (u,i*) of each session while other dyads
{(u,7)|i € O,i # i*} are treated missing and totally disregarded, which could be wasteful
of the invaluable training resource because these non-action dyads are not totally useless,
as shown by the experiments in this chapter.

Secondly, most existing CF approaches learn user preference collaboratively by either
approximating the dyadic responses {y,;+} [72, 60, 1, 41] or preserving the ordinal ranking
information derived from the dyadic responses [84, 51]; none of them models the user choice
behavior. Particularly, as users choose from competing alternatives, there is naturally a
local competition effect among items being offered in a session. Our work show that this
effect could be an important clue for learning user preference.

Because latent factor models are very flexible and could be under-determined (or over-
parameterized) even for rather moderate number of users/items. With the above two limita-
tions, CF approaches are vulnerable to over-fitting [1, 41]. Particularly, while most existing
CF models might learn consistently on user ratings (numerical value typically with five
levels) if given enough training data, they usually perform poorly on binary responses. For
example, for the aforementioned interaction process (c.f. Table 1), the response y,; is typi-
cally a binary event indicating whether or not item ¢ was accepted by the user v. With the
non-action dyads being ignored, the responses are exclusively positive observations (either
Yui = 1 or missing). As a result, we will obtain an overly-optimistic estimator that biases
toward positive responses and predicts positive for almost all the incoming dyads (See §3.8.1
for empirical evidences).

3.4 Local optimality of user choices

In this section, we present some axiomatic views of the user choice behaviors.

Formally, the individual choice process (i.e. user-recommender interactions) in a rec-
ommender system can be viewed as an instance of the opportunity give-and-take (GAT)
process.
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Definition [GAT]: An opportunity give-and-take process is a process of interactions among
an agent u, a system S and a set of opportunities I, at an interaction t:

- u 18 given a set of opportunities Oy CZ by S;

- u makes the decision by takeing one of the opportunities: iy € Oy;

- FEach opportunity i € Oy could potentially give u a revenue (utility) of ry; if being
taken or 0 otherwise.

Note that we assume the agent is a priori not aware of all the items, and only through
the recommender S can she get to know the items, therefore other items that are not in O,
is unaccessible to u at interaction t. This is reasonable considering that the total number of
items in the inventory is usually very large. Moreover, we assume an agent u is a rational
decision maker: she knows that her choice of item 7 will be at the expense of others i’ € Oy,
therefore she compares among alternatives before making her choice. In other words, for
each decision, u considers both revenue and opportunity cost, and decides which opportunity
to take based on the potential profit of each opportunity in O. Specifically, the opportunity
cost ¢y 1s the potential loss of u from taking an opportunity ¢ that excludes her to take
other opportunities: ¢,; = max{r,; : i € O\ i}; the profit m,; = ry; — cy; is the net gain of
an decision. By drawing the rational decision theory [53], we present the following principle
of individual choice behavior.

Proposition: A rational decision is a decision mazximizing the profit: i* = arg max;co my;.
This proposition implies the constraint of “local optimality of user choice”, a local

competitive effect restricting that the agent u always chooses the offer that is locally optimal
in the context of the offer set O;.

3.5 Collaborative competitive filtering

We present a novel framework for recommender learning by modeling the user-system inter-
action process. The key insight is that the contexts O; in which user’s decisions are made
should be taken into account when learning recommender models. In practice, a user u
could make different decisions when facing different contexts ;. For instance, an item 3
would not have been chosen by w if it were not presented to her at the first place; likewise,
user u could choose another item if the context O; changes such that a better offer (e.g., a
more interesting item) is presented to her.

The local-optimality principle induces a constraint which could be translated to an
objective function for recommender learning:

Vi* € Dy, Ty = max{ryili € Oy \ Di}
or P(i* is taken) = P(ry;+ = max{ryl|i € O \ D¢}). (1)

This objective is, however, problematic. First, the inequality constraint restricts the
utility function only up to an arbitrary order-preserving transformation (e.g. a monotoni-
cally increasing function), and hence cannot yield a unique solution (e.g. point estimation)
[56]. Second, optimization based on the induced objective is computationally intractable
due to the max operator. To this end, we present two surrogate objectives, which are both
computationally efficient and show close connections to existing models.
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3.5.1 Softmax model

Our first formulation is based on the random utility theory [53, 56] which has been exten-
sively used for modeling choice behavior in economics [59] and marketing science [27]. In
particular, we assume the utility function consists of two components r; + €,;, where: (1)
Twi 1S a deterministic function characterizing the intrinsic interest of user u to item i, for
which we use the latent factor model to quantify r,; = QSI ¥i; (2) the second part e; is
a stochastic error term reflecting the uncertainty and complexness of the choice process®.
Furthermore, we assume the error term e,; is an independently and identically distributed
Weibull (extreme point) variable:
Pleyi <€)=e "
Together with the local-optimality principle, these two assumptions yield the multino-
mial logit model [59, 56, 27]:

Tui

p(i* =tlu,0) = o for all i € O. (2)

djeo¢
Intuitively, this model enforces the local-optimality constraint by using the softmax function
as a surrogate of maxz.

Given a collection of training interactions {(u;, Oy,i7)}, the latent factors can be esti-
mated using penalized maximum likelihood via

. T T 2 2

min Y log| Y exp(oy, )| — dlat +hu D lulP +ar ol @)
’ t i€0; ueld i€l

While the above formulation is a convex optimization w.r.t. r,; as each of the objective

terms in Eq(3) is strongly concave, it is nonconvex w.r.t. the latent factors ¢ and 1. We

postpone the discussion of optimization algorithms to §3.6.

3.5.2 Hinge model

Our second formulation is based on a simple reduction of the local-optimality constraint by
noting, from Eq(1), that:

P(i = i*|u,0) = P((rui+ — rui) > (€ui — €uix), Vi € O)
< P((ruie = Ty;) > (8; — €uir)),

where 7 - = \(9\;—1 Zie@\i* T4; 18 the average potential utility that u could possibly gain from
the non-chosen items. Intuitively, the above model encourages that the utility difference
between choice and non-chosen items, r,;+ — 7, to be nontrivially greater than random
errors. Based on this notion, we present the following formulation which views the task as
a pairwise preference learning problem [32] and uses the non-choices averagely as negative

preferences.

min 30+ D 10l + Az 3 ()
B t

ueU i€l
1

W Z rui > 1 —& and & > 0.

1€O0\{i}}

s.t.: Tuir —

3The error term essentially accounts for all the subtle, uncertain and unmeasurable factors that influence
user choice behaviors, for example, a user’s mood, past experience, or other factors (e.g., whether the decision
is made in a hurry, together with her friends, or totally unconsciously)
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This formulation is directly related to the maximum score estimation [56] of the multinomial
logit model Eq(2). Intuitively, it directly reflects the insight that user decisions are usually
made by comparing alternatives and considering the difference of potential utilities. In
other words, it learns latent factors by maximizing the marginal utility between user choice
and the average of non-choices.

Again, the optimization is convex w.r.t. 7,;, but nonconvex w.r.t. the latent factors,
therefore the standard optimization tools such as the large variety of RankSVM [32] solvers
are not directly applicable.

3.5.3 Complexity

It is worth noting that our CCF formulations have an appealing linear complexity, O(|Z] x
|O]), where the offer size |O| is typically a very small number. For example, Netflix rec-
ommends |O| = 7 movies for each visit, and Yahoo! frontpage highlights |O| = 4 hot news
for each browser. Therefore, CCF has the same-order complexity as the rating-oriented CF
models. Note that the ranking-oriented CF approaches [84, 51] are much more expensive
— for each user u, the learning complexity is quadratic O(|Z|?) as they learn preference of
each user by comparing every pair of the items.

3.6 Learning algorithms

As we have already mentioned, due to the use of bilinear terms, both of the two CCF variants
are nonconvex optimization problems regardless of the choice of the loss functions. While
there are convex reformulations for some settings they tend to be computationally inefficient
for large scale problems as they occur in industry — the convex formulations require the
manipulation of a full matrix which is impractical for anything beyond thousands of users.

Moreover, the interactions between user and items change over time and it is desirable
to have algorithms which process this information incrementally. This calls for learning
algorithms that are sufficiently efficient and preferably capable to update dynamically so
as to reflect upcoming data streams, therefore excluding offline learning algorithms such
as classical SVD-based factorization algorithms [41] or spectral eigenvalue decomposition
methods [51] that involve large-scale matrices.

We use a distributed stochastic gradient variant with averaging based on the Hadoop
MapReduce framework. The basic idea is to decompose the objectives in Eq(3) or Eq(4)
by running stochastic optimization on sub-blocks of the interaction traces in parallel in the
Map phase, and to combine the results for latent factors in the Reduce phase.

3.6.1 Stochastic optimization

We derive a stochastic gradient descent algorithm to solve the optimization described in
Eq(3) or Eq(4). The algorithm is computationally efficient and decouplable among different
interactions and users, therefore amenable for parallel implementation.

The algorithm loops over all the observations and updates the parameters by moving
in the direction defined by negative gradient. Specifically, we can carry out the following
update equations on each machine separately:

- For all i € Oy do o; — ¥; — [l/(ﬂﬁ;r%)(?u + Al¢i]-
- For each u do ¢y <+ ¢, — 1 [Zieot U(pd i) + /\u¢u]-
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Here 7 is the learning rate*. The gradients are given by:

TP PR T B )
o 2jeop(ruj)
@) 52‘,2‘* —1 B
l/Hingo(Tui) = _|||C)TH(1 — Tyi* + Tuz) (6)

where H(-) is the Heaviside function, i.e. H(z) = 1 if z > 0 and H(z) = 0 otherwise.’

3.6.2 Feature hashing

A key challenge in learning CCF models on large-scale data is that the storage of parameters
as well as observable features requires a large amount of memory and a reverse index to
map user IDs to memory locations. In particular in recommender systems with hundreds of
millions of users the memory requirement would easily exceed what is available on today’s
computers (100 million users with 100 latent feature dimensions each amounts to 40GB
of RAM). We address this problem by implementing feature hashing [85] on the space of
matrix elements. In particularly, by allowing random collisions and applying hash mapping
to the latent factors (i.e. ¢ and 1)), we keep the entire representation in memory, thus greatly
accelerating optimization.

3.7 FExtensions

We now discuss two extensions of CCF to address the fact that in some cases users choose
not to respond to an offer at all and that moreover we may have observed features in
addition to the latent representation discussed so far.

3.7.1 Sessions without response

In establishing the CCF framework for modeling the user choice behavioral data, we assumed
that for each user-system interaction ¢, the decision set D; contains at least one item. This
assumption is, however, not true in practice. A user’s visit at a recommender system
does not always yield an action. For example, users frequently visit online e-commerce
website without making any purchase, or browse a news portal without clicking on any
advertisement. Actually, such nonresponded visits may account for a vast majority of the
traffics that an recommender system receives. Moreover, different users may have different
propensities for taking an action. Here, we extend the multinomial logit model to modeling
both responded and nonresponded interactions, (u¢, Oy, if) and (ug, O, D) respectively.

This is accomplished by adding a scalar 6, for each user u to capture the action threshold
of user u. We assume that, at an interaction ¢, user u; takes an effective action only if she
feels that the overall quality of the offers O; are good enough and worth the spending of
her attention. In keeping with the multinomial logit model this means that

exp(¢y ¥i)
exp(fu) + 3 jco exp(¢y ¥j)

“We carry out an annealing procedure to discount n after each iteration, as suggested by [41].

5We approximate this by the continuous function ﬁ7 which helps with convergence.

p(i* = ifu, 0) = (7)
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for all i € O and the probability of no response is given by the remainder, that is by:

exp(fy)
exp(bu) + D jc0 exp(dy ¥5)

In essence, this amounts to a model where the ‘non-response’ has a certain reserve utility
that needs to be exceeded for a user to respond. We may extend the hinge model in the same
spirit (we use a trade-off constant C' > 0 to calibrate the importance of the non-responses):

o DGH+CY et lloull? + Az 1l
TR t t

ueU €T
subject to ry,;x — 7,5 — 0y = 1 =& for all i* € Dy if Dy # 0

Ut

Hu_ruti>1—€t, Vz’e@t lthZQ
Tui = qﬁzzpi and & >0and g, >0 (8)

3.7.2 Content features

In previous sections, we use a plain latent factor model for quantifying utility, i.e. ry; =
é)1b;. A known drawback [1] of such model is that it only captures dyadic data (responses),
and therefore generalizes poorly for completely new entities, i.e. unseen users or items, of
which the observations are missing at the training stage. Here, we extend the model by
incorporating content features. In particular, we assume that, in addition to the latent
features ¢s and 1)s, there exist some observable properties z,, € R™ (e.g. a user’s self-
crafted registration files) for each user u, and z; € R™ (e.g. a textual description of an item)
for each item i. We then assume the utility r,; as a function of both types of features (i.e.
observable and latent) [93]:

Tui ~ P(Tui| gy Vi + T Ma;)

where the matrix M € R™*" provides a bilinear form for characterizing the utility based on
the content features of the corresponding dyads. This model integrates both collaborative
filtering [41] and content filtering [17]. On the one hand, if the user u or item 4 has no
or merely non-informative observable features, the model degrades to a factorization-style
utility model. On the other hand, if we assume that ¢, and ; are irrelevant, for instance, if
i or j is totally new to the system such that there is no interaction involving either of them
as in a cold-start setting [104], this model becomes the classical content-based relevance
model commonly used in, e.g. webpage ranking [102], advertisement targeting [16], and
content recommendation [17].

3.8 FExperiments

We report experimental results on two test-beds. First, we evaluate the CCF models with
CF baselines on two dyadic data sets with simulated choice contexts. The choice of sim-
ulated data generated from CF datasets was made since we are unaware of any publicly
available datasets directly suitable for CCF. Furthermore, we extend our evaluation to a
more strict setting based on user-system interaction session data from a commercial recom-
mender system.
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Table 2: Statistics of the three recommendation data sets.

#user Fitem Fdyads offer size

Social 1.2M 400 29M -
Netflix-bstar  0.48M 18K 100M -
News 3.6M 2.5K 110M 4

3.8.1 Dyadic response data

We use dyadic data with binary responses, i.e. {(u,,yy;)} where y,; € {1, missing}. We
compare different recommender models in terms of their top-k ranking performance.

Social network data. The first data set we used was collected from a commercial social
network site, where a user expresses her preference for an item with an explicit indication
of “like”. We examine data collected for about one year, involving hundreds of millions
of users and a large collection of applications, such as games, sports, news feeds, finance,
entertainment, travel, shopping, and local information services. Our evaluation focuses on
a random subset consisting of about 400 items, 1.2 million users and 29 million dyadic
responses (“like” indications).

Netflix 5 star data. We also report results on a data set derived from the Netflix prize
data®, one of the most famous public data sets for recommendation. The Netflix data set
contains 480K users and 18K movies. We derive binary responses by considering only 5-star
ratings as “positive” dyads and treating all the others as missing entries.

For both data sets, we randomly split the data into three pieces, one for training, one
for testing and the other for validation.

Evaluation metrics. We assess the recommendation performance of each model by com-
paring the top suggestions of the model to the true actions taken by a user (i.e. “like” or
5-star). We consider three measures commonly used for accessing top-k ranking perfor-
mance in the IR community:

AP is the average precision. APQn averages the precision of the top-n ranked list of each
query (e.g. user).

AR or average recall is the average recall of the top-n rank list of each query.

nDCG or normalized Discounted Cumulative Gain is the normalized position-discounted
precision score. It gives larger credit to top positions.

For all the three metrics we use n = 5 since most social networks and movie recommendation
sites recommend a similar number of items for each user visit.

Evaluation protocol. We compare the two CCF models (i.e. Softmax and Hinge) with
the two standard CF factorization models (i.e. £2 and Logistic) described in §3.3. For dyadic
data with binary responses, the Logistic CF model amounts to the state-of-the-art [62, 1].

We adopt a fairly strict top-k ranking evaluation. For each user, we assess the top
results out of a total preference ordering of the whole item set. In particular, for each user
u, we consider all the items as candidates; we compute the three measures based on the
comparison between the ground truth (the set of items in the test set that user u actually
liked) and the top-5 suggestions predicted by each model. For statistical consistency, we
employ a cross-validation style procedure. We learn the models on training data with

Shttp://www.netflixprize.com
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Figure 2: Histograms of the predicted dyadic responses obtained by CF and CCF.

Table 3: Comparison of top-k ranking performance on the two dyadic data sets with
simulated contexts.

Model | AP@5 | AR@5 | nDCG@5
Social
CF £ 0.448 | 0.230 | 0.475

CF Logistic | 0.449 | 0.230 0.476
CCF Softmax | 0.688 | 0.261 0.704
CCF Hinge 0.686 | 0.260 0.702
Netflix-5star
CF 4y 0.135 0.022 0.145
CF  Logistic | 0.135 | 0.023 0.146
CCF Softmax | 0.186 | 0.033 0.189
CCF Hinge 0.185 | 0.032 0.188

parameters tuned on validation data, and then apply the trained models to the test data to
assess the performance. All three measures reported are computed on test data only, and
they are averaged over five random repeats (i.e. random splits of the data).”

To render the data compatible with CCF we simulate a fixed-size pseudo-offer set for
each interaction. Specifically, in each step of the stochastic optimization at a positive
observation, e.g. y,; = 1, we randomly sample a handful set of missing (unobserved) entries
{yui }ir=1.m- These sampled dyads are then treated as non-choices, and together with the
positive dyad, they are used as the offer set for the current session. In our experiments, we
choose m = 9 pseudo non-choices; in other words, we assume the offer size |O;| =10.

Results and analysis. We report the mean scores in Table 3. Since the dataset are fairly
large the standard deviations of all values were below 0.001. Consequently we omitted
the latter from the results. As can be seen from the table, CCF dramatically outperforms
CF baselines on both data sets. In terms of APQ@5, the two CCF models gain about
52.8%-53.6% improvements compared to the two CF models on the Social data, and by
37.0%-37.8% on Netflix-5 star. Similar comparisons apply to the nDCG@5 measure. And
in terms of the AR@5, CCF models outperform CF competitors by up to 13.5% on Social,

" Note that the contextual information (the offer set Oy for each interaction t) is missing for both of the
two dyadic data sets. We use the datasets with simulated contexts. Results on real interaction data are
reported in §3.8.2.
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and 30% on Netflix-5 star data. All these improvements are statistically highly significant.
Note that these results are quite consistent: both CF models perform comparably with
each other on both data sets; the performance of the two CCF variants is also comparable;
between the two groups, gaps are noticeable.

One argument we made in this chapter for motivating our work is that since the CF
models disregard the context information and only learns on positive (action) dyads, they
almost inevitably yield overly-optimistic predictions (i.e. predicting positive for all possible
dyads). We hypothesize that such estimation bias is one of the key reasons for the inability
of CF models in learning binary dyadic data. As an empirical validation, in Figure 2, we plot
the histograms of the predicted dyadic responses ¢,; (i.e. entries of the diffused matrices)
obtained by a CF model (f2) and a CCF model respectively.® As we can see, the CF model
indeed predicts “positive” for most (if not all) dyads; in contrast, the results obtained by
the CCF model demonstrate a more realistic power-law distribution [21].°

In reality, since the total number of items in the inventory is too large, each user can
only afford to “like” a few items out of the huge amount of alternatives. This power-law
property is crucial for information filtering because we are intended to identify a few truly
relevant items by filtering out many many irrelevant ones. A power-law recommender is
desirable in a way analogous to a filter with narrow-bandwidth, which effectively filters out
the noises (i.e. irrelevant items) and only let the true signal (i.e. relevant items) pass to the
users.

3.8.2 User-system interaction data

We now move on to a more realistic evaluation by applying CCF to real user-system inter-
action data. We evaluate CCF in both an offline test and an online test while comparing
its results to both CF baselines.

Data. We collected a large-scale set of user-system interaction traces from a commercial
News article recommender system. In each interaction, the system offers four personalized
articles to the visiting user, and the user chooses one of them by clicking to read that
article. The recommendations are dynamically changing over time even during the user’s
visit. The system regularly logs every click event of every user visit. It also records the
articles being presented to users at a series of discrete time points. To obtain a context
set for each user-system interaction, we therefore trace back to the closest recording time
point right before the user-click, and we use the articles presented at that time point as the
offer set for the current session. We collected such interaction traces from logged records
of over one month. We use a random subset containing 3.6 million users, 2500 items and
over 110 million interaction traces. Learning an effective recommender on this data set is
particularly challenging as the article pool is dynamically refreshing, and each article only
has a lifetime of several hours — it only appears once within a particular day, is pulled out
from the pool afterward and never appears again.

Evaluation protocol. We consider the following two evaluation settings, one offline and
the other offline.

8Similar results obtained with other losses.

9Note that the distribution starts at around 0.5 instead of 0, which is consistent with our intuitions that
there is actually no truly “irrelevant” item for a user — any item has potential utility for a user; user choose
one over another based on the relative preference rather than absolute utility. This is true especially in this
era of information explosion, where a user is typically facing so many alternatives that she can only pick the
one she likes the most while ignoring the others.
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Table 4: Offline test (top-k ranking performance) on user-system interaction data.

Model | AP@4 | AR@4 | nDCG@Q4
30% Training
CF 1 0.245 | 0.261 | 0.255

CF Logistic | 0.246 | 0.263 0.257
CCF Softmax | 0.262 | 0.278 0.274
CCF Hinge 0.261 | 0.278 0.273
50% Training
CF 4y 0.250 | 0.273 0.268
CF Logistic | 0.252 | 0.276 0.269
CCF Softmax | 0.266 | 0.285 0.278
CCF Hinge 0.265 | 0.285 0.277
70% Training
CF ly 0.253 | 0.275 0.271
CF Logistic | 0.253 | 0.276 0.274
CCF Softmax | 0.267 | 0.287 0.280
CCF Hinge 0.267 | 0.286 0.280

Offline evaluation Similar to the evaluations presented in §3.8.1, we evaluate the learned
recommender models in terms of the top-k ranking performance on a hold-out test
subset. We follow the same configurations in §3.8.1 and use the three ranking mea-
sures, i.e. AP@Qn, AR@n and nDCG@n as the evaluation metrics. Note that here we
use n = 4 instead of 5, because it is the default recommendation size used in the news
recommender system.

Online evaluation We further conduct an online test. In particular. for each incoming
interaction, we use the trained models to predict which item among the four rec-
ommendations will be taken by the user. This prediction is of crucial importance
because one of the key objectives for a recommender system is to maximize the traffic
and monetary revenue by lifting the click-through rate.

Offline test results. In this setting, we train each model on progressive proportions of
30%, 50% and 70% randomly-sampled training data respectively, and evaluate each trained
model in terms of offline top-k ranking performance. The results are reported in Table 4.
The two CCF models greatly outperform the two CF baselines in all the three evaluation
metrics. Specifically, CCF models gain up to 6.9% improvement over the two CF models in
terms of average precision; up to 6.5% in terms of average recall, and up to 7.5% in terms
of nDCG. We also conducted a t-test with a standard 0.05 significance level, which further
indicate that all the improvements obtained by CCF are significant.

It is worth noting that the improvements obtained by CCF compared to CF baselines
are especially evident when the training data are sparser (e.g. using only 30% of training
data). This observation empirically validates our argument that the contexts contain sub-
stantial useful information for learning recommender models especially when the dyadic
action responses are scarce.

The offline results obtained by CCF are quite satisfactory. For example, the average
precision is up to 0.276, which means, out of the four recommended items, on average 1.1
are truly “relevant” (i.e. actually being clicked by the user). This performance is quite
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Table 5: Online test (predicted click probability) on user-system interaction data.

Model 30%train ‘ 50%train ‘ 70%train
Random 0.250
CF lo 0.337 0.343 0.347
CF Logistic 0.341 0.345 0.347
CCF Softmax 0.376 0.384 0.391
CCF Hinge 0.377 0.385 0.391

promising especially considering that most of the articles in the content pool are transient
and subject to dynamically updating.

Online test results. We further evaluate the online performance of each compared model
by assessing the predicted click rates. Click-rate is essential for an online recommender
system because it is closely-related to both the traffic and the revenue of a webshop. In our
evaluation, for each of the incoming visits (u¢, O, if), we use the trained models to predict
the user choice, i.e. we ask the question: “among all the offered items i € Oy, which one
will most likely be clicked?” We use the trained model to rank the items in the offer set,
and compare the top-ranked item with the item that was actually taken (i.e. i) by user uy.
We evaluate the results in terms of the prediction accuracy.

The results are given in Table 5. Because the size of each offer set in the current
data set is 4, a random predictor yields 0.25. As seen from the table, while all the four
models obtain significantly better predictions than the random predictor, the two CCF
models further greatly outperform the two CF models. Specifically, we observe 11.3%—
12.7% improvements obtained by CCF models compared to the two CF competitors. These
results are quite significant especially considering the dynamic property of the system.

Impact of parameters. The performance of the two CCF models is affected by the
parameter settings of the latent dimensionality, k, as well as the regularization weights, Az
and N\y. In Figure 3'°, we illustrate how the offline top-k ranking performance changes as
a function of these parameters, where we use the same value for both Az and )\y. Here we
only reported the results with nDCG@5 measure because the results show similar shapes
when other measures (including the click rate) are used. As can be seen from the Figure,
the nDCG curves are typically in the inverted U-shape with the optimal values achieved at
the middle. In particular, for both the two CCF models, the dimensionality around 20 and
regularization weight around 0.0001 yield the best performance, which is also the default
parameter setting we used in obtaining our reported results.

Nonresponded sessions. In Section 3.7 we presented two models for encoding nonre-
sponded interactions, e.g. a user visits the News website but does not click any of the rec-
ommended articles. These approaches are promising because compared to the responded
sessions, the nonresponded ones are typically much more plentiful and if learned success-
fully, this wealth of information has a potential to alleviating the critical data-sparse issue
in recommendation.

Unfortunately, due to the data-logging mechanism of the News recommender system,
we were unable to obtain such nonresponded interactions. Instead, for a preliminary test,
we conducted evaluation on a small set of pseudo nonresponded sessions that are derived

"Due to heavy computational consumptions, these results are obtained on a relatively small subset of
data.
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Figure 3: Offline top-k ranking performance as a function of latent dimensionality and
regularization weight.

from the responded ones. In particular, we hold out a randomly-sampled subset of sessions;
for each of these sessions, we hide the item being clicked by the user, and use the remaining
items as a nonresponded context set by assuming no click for this set. We augmented this
set of derived nonresponded sessions to the training set, and train the model on the com-
bined training data. The results from this preliminary evaluation did not show significant
performance improvement. This is likely due to the fact that the surrogate distribution is
invalid. A detailed analysis with more realistic data is the subject of future research.

3.9 Related Work

Although a natural reflection of a user’s preference is the process of interaction with the
recommender, to our knowledge, this interaction data has not been exploited for learning
recommender models. Instead, research on recommender systems has focused almost ex-
clusively on learning the dyadic data. Particularly collaborative filtering approaches only
capture the user-item dyadic data with explicit user actions while the context dyads are
typically treated missing values. For example, the rating-oriented models aim to approxi-
mating the ratings that users assigned to items [72, 60, 1, 41]; whereas the recently proposed
ranking-oriented algorithms [84, 51] attempt to recover the ordinal ranking information de-
rived from the ratings.

By exploiting past records of user-item dyadic responses for future prediction based on
either neighborhood based [72, 60, 51] or latent factor based methods [1, 41, 84], collaborative
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filtering approaches encode the collaboration effect that similar users get similar preference
on similar items. In this chapter, by leveraging the user-recommender interaction data, we
show that much better recommender performance can be obtained when a local-competition
effect underlying the user choice behaviors is also encoded.

The multinomial logit model we present is derived based on the random utility theory
[63, 56]. The model is well-established and has been widely used for a long time in, e.g.
psychology [53], economics [59, 56] and marketing science [27]. Particularly, [27] applied the
model to examine the brand choice of households on grocery data; [24] showed this model is
theoretically and empirically superior to the 5 regression model. More recently, the pioneer-
ing work of [22] first applied the model to characterize online choices in recommender system
and investigated how recommender systems impact sales diversity. Following these steps,
this work further employs the model to learn factorization models for recommendation.

The Hinge formulation of CCF shows close connection to the pairwise preference learning
approaches widely used in Web search ranking [32]. Our model, however, differs from these
content filtering models [32] in that instead of learning a feature mapping as in [32], our
model uses the formulation for learning a multiplicative latent factor model.

3.10 Summary

In this chapter, we proposed a framework for learning user preference by modeling user
choice behavior in the user-system interaction process. Instead of modeling only the sparse
binary events of user actions as in traditional collaborative filtering, the proposed collaborative-
competitive filtering models take into account the contexts in which user decisions are made.
We presented two models in this spirit, established efficient learning algorithms and demon-
strated the effectiveness of the proposed approaches with extensive experiments on three
large-scale real-world recommendation data sets.

A key feature of the current chapter is that we assume the recommender adopts a prede-
fined and fixed strategic policy when making recommendations, e.g., via simply preference
based ranking. In the next chapter, we show that a recommender system could act more
strategically to optimize its acts in respect of certain business objectives, which is made
possible by a novel game-theoretic formulation for recommendation.
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CHAPTER IV

COLLABORATIVE COMPETITIVE FILTERING II

Recommender systems have emerged as a new weapon to help online firms to realize many
of their strategic goals (e.g., to improve sales, revenue, customer experience etc.). However,
many existing techniques commonly approach these goals by seeking to recover preference
(e.g., estimating ratings) in a matrix completion framework. This chapter aims to bridge
this significant gap between the clearly-defined strategic objectives and the not-so-well-
justified proxy [97]. We show it is advantageous to think of a recommender system as an
analogy to a monopoly economic market with the system as the sole seller, users as the
buyers and items as the goods. This new perspective motivates a game-theoretic formula-
tion for recommendation. In this spirit, we revisit the collaborative competitive filtering
(CCF) preference models presented in Chapter 3 and extend it to a game-theoretic frame-
work consisting of two components. The first component is a model for characterizing a
buyer u’s reaction R to any given action A of the seller, i.e., the conditional distribution
pu(R|A), which is essentially the multinomial logit preference models we already described
in Chapter 3; The second one is a model for optimizing a recommender’s action policy in
respect of certain strategic goals. In this chapter, we formally describe the game-theoretic
formulation, briefly revisit the p,(R|A) model and present in detail the formulation for
action optimization. We show how objectives such as click-trough rate, sales revenue and
consumption diversity can be optimized explicitly in this framework [97].

4.1 Introduction

Recommender systems have become a core component for today’s online businesses. With
the abilities of connecting merchant supply (i.e., items of various types such as retailing
products, movies, articles, ads, experts, etc.) to market demands (i.e., potentially interested
consumers), recommender systems are helping online firms (e.g. Amazon, Netflix, Yahoo!)
to realize many of their hard-to-attain business goals (e.g., to boost sales, improve revenue,
enhance customer experiences) [12, 11, 22, 79]. Compared to an offline market, online
recommender system has the unbeatable convenience in control, intervention, monitoring
and measurement of the market, and consequently the appealing opportunity to adjust its
operational actions to optimize certain strategic objectives. Surprisingly, despite the fact
that many of these goals are clearly defined, they are not reflected in existing techniques
for recommendation in a well-justified way. Instead, research on recommendation has been
focused almost exclusively on learning preference (e.g., estimating a user’s rating to a movie)
in a matrix completion formulation [72, 60, 41, 16, 84]. It is rather unclear how preference
learning, as a proxy, approximates these goals, or how a strategic intervention should be
designed to achieve certain goals.

In this chapter, we seek to bridge this significant gap. We show it is advantageous to
look at the user-system interactions and think of a recommender system as an analogy to a
monopoly market in economics (i.e., with the system as the sole seller, users as buyers and
items as goods)!, rather than at user-item interactions as in matriz completion. This new

'"Hereafter, we will use interchangeably “system” and “seller”, “user” and “buyer”, “item” and “good”.
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perspective motivates a novel game-theoretic formulation, upon which recommendations
can be optimized strategically with respect to business objectives such as click-through
rate, sales revenue and consumption diversity.

4.1.1 User-System Interactions

Recommender systems are commonly designed by analyzing the dyadic user-item inter-
actions as can be recorded by a matrix, for example, users assigning ratings to movies.
Research has thus been focused exclusively on estimating preference or equivalently com-
pleting the matrix [5, 72, 60, 84, 2, 1, 41, 16]. This matriz-completion formulation of
recommendation has been extensively investigated and become especially popular thanks
to the Netflix Prize Competition. Nonetheless, as we show in this chapter, there are plenty
of reasons to look at wser-system interactions instead and formulate recommendation as
games [49].

The user-system interactions in a recommender system are a process where the system
acts per user inquiry and the user reacts in response. The most common type of such action-
reaction interactions, as are prevalent in today’s commercial recommender systems (e.g.,
Facebook’s News feed, Amazon’s product recommender, Yahoo! Frontpage), are described
below, where at each interaction:

1) a user u inquires the system (e.g. visits a movie recommendation web site);

2) the system acts by recommending a set of customized items (i.e. movies of potential
interest) to the user;

3) the user reacts by choosing and consuming some of the recommended items (e.g. click
a link, rent a movie, view a News article, purchase a product).

This process in many aspects resembles what happens in a monopoly market where
the recommender system, as the sole seller, has absolute market power to manipulate the
market, yet its gain is defined based on the reaction of the buyers (i.e., users), e.g., the
success of an advertising system is directly related to how users react (i.e., whether they
click the ads or not). This analogy reveals the fundamental insight that recommendation is
not just about preference estimation and should not be formulated as matriz completion:

1. Preference is not the only factor that determines a buyer’s decision, which also depends
crucially on the seller’s action (i.e., what the seller provides to him).

2. Even for estimating preference, a matrix-completion is suboptimal as we have shown
in Chapter 3. Particularly, the seller’s action serves as the context in which buyer’s
decision is made, which is vital for estimating finer preference, yet ignored by matrix-
completion.

3. More importantly, although the strategic objectives for a recommender system to
achieve are clearly defined, the role of preference estimation as a proxy is not well
justified. This is particularly frustrating to practitioners as how a recommender can
be optimized w.r.t. certain strategic goals is rather unclear.

For recommender systems to behave more strategically and intelligently, new formula-
tions are therefore needed.
4.1.2 Recommendation as Collaborative Games

In this chapter, we present a game-theoretic formulation for recommendation, where the
user-system interactions are modeled as a collection of games with each game played between
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one seller and one buyer (i.e., between the system and one user). For the sake of statistical
inference, it is nonetheless important not to model these games as mutually independent.
We therefore bring forward the notion of “collaborative games” that similar games are
expected to yield similar outcomes, which enables us to pool the sparse data across games
to obtain reliable statistical estimation.

The proposed Collaborative-competitive filtering (CCF) framework consists of two com-
ponents: (1) a model for p,(R|A), which characterizes the reaction R of a buyer u in the
context of any given action A of the seller; this conditional distribution characterizes users’
behavior and enables us to predict the outcome of a game in advance; and (2) given p,(R|A)
for every buyer u, a formulation for optimizing the seller’s action A w.r.t. a predefined payoff
(e.g., a strategic goal).

To effectively model p,(R|A), we establish a single unified model that integrates two
distinct methodologies, i.e., latent factor models in collaborative filtering and choice mod-
els in econometrics. First, by using latent factor based utility parametrization, the model
encodes the “collaboration effects” [14, 61] among games in light of the notion of “col-
laborative games”. As the policy spaces are prohibitively large yet the observations are
extremely sparse, this step is essential for reliable statistical inference as it seeks to pool
data across games [72, 60, 1, 41]. Second, by drawing on axiomatic perspectives of human
behavior, the model quantifies reaction based on the random utility theory in psychology
[53] and econometrics [59, 56, 24, 27]. This new formulation is flexible and powerful, and it
also remarkably reduces the parametric complexity of p, (R|A) significantly from prohibitive
high-order polynomial scale down to linear scale. We show that important factors such as
reaction propensities and position bias can be naturally addressed by this model as well.

The knowledge about users’ reaction behavior, as characterized by p,(R|A), enables
us to optimize the action (i.e., recommendation) of the recommender system strategically
[49]. For any input action A, the possible outcomes of the games occur with probabilities
defined upon p,(R|A). Given a payoff (i.e., a function of the outcome) that is von Neumann-
Morgenstern rational, the expected utility theory asserts that the best action is the one that
maximizes the expected payoff [64]. We show how business objectives such as click-trough
rate, sales revenue and consumption diversity can be formulated explicitly as expected
utilities and used in turn to optimize a recommender system’s action strategy.

Interestingly enough, we also show that the CCF model defined above is sequentially
rational and thus achieves the perfect Nash equilibrium [49]. Experiments on a real-world
commercial system demonstrate that the proposed CCF model not only outperforms CF
models in both offline and online tests but is also highly effective in achieving satisfactory
strategic goals.

4.2 User-Item Interactions and Collaborative Filtering

Many existing approaches generally think of recommendation as user-item interactions and
therefore aim to recover/estimate the preference of each individual user to the items. Given
a set of N users

ueld:={1,2,...,N}

and a set of M items
ieZ:={12,...,M},

this is naturally formulated as a matrix completion problem, where we are given observations
of dyadic responses {(u,i,yy,;)} with each y,; being an observed response indicating user’s

35



preference (e.g. user’s rating to an item, or indication of whether user u likes item i), the
goal is to complete the whole mapping:

(u,i) — yu; where u € Ui € T

which constitutes a large matrix Y € YMI*IZl Assume each item can be consumed multiple
times, recommendations are usually done by a simple preference-based ranking according
to Y, (i.e., recommending the items with highest y,; scores to user u). This formulation
include both of the two major categories of approaches to recommendation, i.e., content-
based filtering [5, 16] and collaborative filtering [72, 60, 1, 41], as we have already reviewed
in Chapter 2.1 and 3.3.

4.3 User-System Interaction as Collaborative Games

Based on the perspective of user-item interactions, the matrix completion formulation for
recommendation has led to numerous algorithms which excel at a number of data sets,
including the prize-winning work of [41] and many other successful collaborative filtering
algorithms [72, 60, 71, 1, 41, 84, 51]. However, as we mentioned, this formulation is inher-
ently flawed; instead, it is advantageous to consider recommendation rather as user-system
interactions. Firstly, by considering user-system interaction and putting user’s decision into
context, we can leverage data that was previously lumped together with missing data in
existing CF models and consequently capture more accurate information about user pref-
erence and/or reaction behavior. More importantly, it motivates a novel game-theoretic
formulation for recommendation and opens up a promising direction, i.e., to optimize rec-
ommender systems strategically in respect of important business objectives, which cannot
be achieved otherwise with the conventional matrix completion formulation.

Consider the user-system interaction in a recommender system: we have N users u €
U:={1,2,...,N} and M items i € Z := {1,2,...,M}; when a user u visits the site, the
system recommends a set of items A = {i1,...,4;} and u in turn chooses a (possibly empty)
subset R C A for consumption (e.g. buys some of the recommended products). From now
on, we refer to A as action, and R as reaction. For simplicity, we assume each action is
fixed-size with a given length, |A| = [, and that each reaction is either empty or contains
exactly one choice, |R| = 1 or 0. Therefore, we have A€ A=7Z'and Re R ¢ Z =TZU{0}.
See Table 1 in Chapter 3 for an example interaction and its degradation to a matrix.

Conceptually, the behavior of the recommender system and that of the users are inter-
dependent. On the one hand, since people make different decisions when facing different
contexts, a user’s decision R depends crucially on the action of the system, A, (i.e., what
was provided to him). For instance, an item ¢ would not have been chosen by u if it were
not presented to him at the first place; likewise, user u could choose another item if the
context A changes such that a better item were presented to him. On the other hand, how
a recommender system acts also depend on user’s behavior, after all, the success of recom-
mendation (i.e., in terms of click-through, revenue, etc.) is defined directly on how users
react to it (e.g., purchase a product, click an ad, rent a movie). It is therefore nature to
formulate recommendation based on game theory by thinking of the user-system interaction
as a monopoly market: the recommender as the sole seller, a user as a buyer and the items
as the goods.

Formally, the user-system interactions in a recommender system can be formulated as
a set of non-cooperative games G = {G,, = (P, Z,,U,), n =1,2,...,N}. For each game
G, the player set P, = {S,u,} consists of two players, i.e., the system (i.e., seller) S and
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a user (i.e., buyer) u,; the policy space Z, = A x R C Z! x 7 is the set of all possible
action-reaction pairs Z,, = (4., R,), where Z is called an outcome and Z the outcome
space; and the utility (i.e., payoff) function U,, = {Us(Z,,), Uy(Z,)} consists of the system’s
payoff Ug and the user’s payoff U,. At an interaction ¢, a user u; visits the system and
the game G, is played with outcome Z; = (A, R¢) and utility output U(A;, R¢). Since
the users’ behavior is not in our control, our goal in designing a recommender system is to
generate a system action (recommendations) A; for an incoming visit t of user u7 so as to
maximize the system’s payoff Us(Z;).

It is important to emphasize that the games in G should not be modeled as independent
games. Particularly, since the outcome space can be very large, yet observations are typically
sparse, it is practically important to still be able to leverage the collaboration effect such
that similar games are expected to yield similar outcomes. This way it enables us to
pool the sparse evidences across different but similar games and in turn obtain reliable
statistical inference, which is otherwise impossible. For this reason, we term the formulation
“collaborative games” with a slight abuse of terminology.

This game-theoretic formulation provides a novel perspective for recommendation. Par-
ticularly, since the strategies of the buyer and the seller are interdependent, to optimize
the seller’s action, we have to (1) predict the buyer’s reaction R to any given action A in
advance; and then (2) optimize the seller’s action A to maximize Us.

4.4 Collaborative competitive filtering revisited

In this section, we revisit the collaborative competitive filtering (CCF) preference model
an extend it towards a novel game-theoretic framework for recommendation. The CCF
framework consists of two components: (1) a model for characterizing the buyer’s (i.e.,
user’s) reaction behavior; and (2) given the information of buyer’s behavior, a formulation
to optimize the seller’s (i.e., the recommender system’s) action strategy so as to achieve
strategic objectives.

4.4.1 Conditional User Reaction Modeling

The first part of the framework is to predict a buyer’s choice R in the context of any
given action A of the seller’s. In a decision environment with imperfect information, this
means to quantify the conditional distribution p,(R|A). The full parametrized version
of this distribution requires O(NM!*1) free parameters, statistical estimation of which is
practically prohibitive since the observations are typically available only at a scale far less
than O(NM) (e.g., in matrix completion, usually less than 1% entries are observed). In
this section, we establish an effective model of complexity O(N + M) by integrating latent
factor models in collaborative filtering and choice models in econometrics.

4.4.1.1 Behavioral Azioms of Choice Process
We first present an axiomatic view of the choice process. The first axiom is the “local
optimality of choice” principle we already described in Chapter 3 and restate here.
AxioM 1 [LOCAL OPTIMALITY OF CHOICE|: A rational decision is a decision maximizing
the profit: i* = argmax;ca Ty;.

Unfortunately, this axiom is deterministic, although statistical inference is clearly more
favorable due to the complicated nature of human behavior. To this end, we draw an
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stochastic counterpart of this axiom from the random utility theory [53, 59]:

AXIOM 2 [INDEPENDENCE OF IRRELEVANT ALTERNATIVES|: For any given context set A,
the relative odds of a user u’s selecting an item i € A over another item j € A should be
independent of the presence or absence of any irrelevant items, i.e.,

pu(il{i, j}) _ pu(il4)
pu(il{i; 7)) pu(ilA)
Besides other merits, this axiom is especially important as it brings the parametric

complexity of p,(R|A) significantly down from O(NM'*1) to O(NM?), although the latter
is still practically prohibitive.

9)

4.4.1.2  User Utility Parametrization

In the spirit of the random utility theory [53, 59], we assume the buyer’s utility function
consists of two components U, (i) = 7y; + €yi, where: (1) ry; is a deterministic component
characterizing the intrinsic interest of the buyer u to the good i; (2) the second part ey;
is a stochastic unobserved error term reflecting the uncertainty, richness and complexity of
the choice process. Under very mild conditions, it has been shown that the error terms e,;
are independently and identically distributed with the Weibull (extreme point) distribution
[29]:

—€

Pleyi <€) =¢€ ¢ (10)

Furthermore, to encode the collaborative effect such that the observed evidences could
be pooled across similar games, we parametrize the deterministic utilities, r,;, with the
multiplicative latent factor model [41, 1]:

Tui = b Vi (11)

4.4.1.8  The Multinomial Logit Factor Model

The behavioral axiom and the parametrization we proposed together lead to the following
theorem.

THEOREM 1: Suppose the utility function Uy(i) = ry; + €y, where € are i.i.d. Weibull
variables, then the distribution of selecting one item that satisfies Axiom 2 is given by
pu(ilA) = € /> cpe™i for any i € A.

Proof. c.f. [59]. O

The above model is well-known as the multinomial logit model, which has been ex-
tensively used for modeling conventional offline consumer choice behavior (e.g., choose of
occupation, brand, housing) in econometrics [59, 56], sociometrics [53] and marketing sci-
ence [24, 27]. We, for the first time, adapt it for modeling online game-theoretic interactions
in recommender systems. In contrast to the traditional choice models, where the determin-
istic part of the utility r,; is a linear mapping w ! z,; of observed features x,; (i.e., measured
user and item features), here we employ the multiplicative latent factor parametrization.
The formulation proposed hereby seamlessly integrate two distinct methodologies — choice
models in econometrics and factorization models in collaborative filtering. This integration
is significant because it enables us to model the seller-buyer games collaboratively, rather
than independently as in conventional choice models. That is, it enables us to pool data
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across games such that the interactions engaging similar users, similar actions and similar
reactions are dealt with similarly. We also associate with each user a scalar latent factor,
0., to capture the response propensity of the buyer u. In keeping with the multinomial logit
model and the latent factor parametrization, we have the following model

o exp(@y, i) o
PuR=14) = O + S yeaenlordy) €Y 12)
(R =0]|A4) = exp(0u) otherwise (13)

exp(@u) + ZjeA eXp(¢J¢j)

which we refer to as multinomial logit factor or MLF model. Note that, in contrast to CF,
this model is able to leverage all the user-item dyads including those that are treated and
disregarded as missing values in CF. Also, it is worth noting that this new formulation is
able to further reduces the parametric complexity of p,(R|A) significantly to linear scale,
ie, O(k(N+ M)+ N) =~ O(N + M), where k is the dimensionality of the latent factor
¢ € RF and ¢ € R*, which is generally a small number (usually up to a few hundreds).

4.4.1.4  Conditional Mazimum Likelihood Estimation

Given a collection of training interactions {(u¢, A¢, Rt)}, the latent factors, ¢ and v, can be
estimated using penalized conditional maximum likelihood estimation via

. T b
Juin, <1og[e9w + D et = (1= Gg.) b, iz, — %,m) ) lleull® + Az Y [l
Tt i€ A, ueld i€l

(14)

where 6y, = 1 if Ry = (), or 0 otherwise.

4.4.2 Strategic System Action Optimization

The distribution p,(R|A) characterizes the buyer’s reaction policy, which enables us to
further optimize the action strategy A of the seller (i.e., the recommender system) by max-
imizing its utility (payoff) Ug [49]. In this section, we show that this can be formulated
based on von Neumann-Morgenstern’s expected utility theory. We then specify the formula-
tion in terms of three example payoff objectives, i.e., click-through rate, sales revenue and
consumption diversity.

4.4.2.1 FEaxpected Utility Mazimization

Because of the uncertainty/risk inherent in the game, it is nature to formulate action op-
timization as decision making under uncertainty. Consider a given game G, between the
seller S and a specific buyer u, the action space is the set of all possible combinations of
I goods, A = ITF. An action A € A yields an outcome Z = (A,R) € Z = A x R with
probability distribution p(Z) (aka lottery), where the reaction space R = AU {(}}. Because
our knowledge about the environment is imperfect, we would rather adopt a probabilistic
action strategy such that actions for G,, are sampled according to a distribution p,(A) de-
fined over the action space A and any A € A is taken with probability p,(A), then we have
pu(Z) = pu(A)pu(R|A), where we specify the dependence on the user with a subscript to
emphasize the fact that the action is customized for each user.
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A utility function Ug(Z) is a mapping Ug : Z — R, which defines a preference relation
= over the outcome space Z such that Z = Z’ if and only if Us(Z) > Ug(Z’). Without
loss of generality, we assume %= is von Neumann-Morgenstern rational, i.e., it satisfies the
four axioms: completeness, transitivity, independence and continuity?. The von Neumann-
Morgenstern (vNM) theorem defines the best outcome of a decision in an environment under
uncertainty as follows[64].

THEOREM 2 [EXPECTED UTILITY]: Suppose = is a preference defined by an utility function
Us that satisfies the 4 axioms, for any two distributions (lotteries) p(Z) and q(Z), we have:
p = q if and only if E,(Us) > B,y (Us).

Proof. c.f. [64]. O

Based on the vNM theorem, the optimal action strategy p,(A), given p,(R|A), can be
achieved by the following linear optimization:

max > pu(4) Y pu(RIA)Us(A, R) (15)
Puld) A ReR
s.t.: Z pu(A4) =1, and p,(A) > 0.

AeA

A simplex solution for the above is given simply by:

Pu(A) = 64,4: where A}, = arg max Z pu(R|A)Us(A, R).
ReR

In practice, it is usually favorable, (e.g., for risk-robustness reasons) to choose a less sparse
distribution (i.e., a portfolio [57]) rather than the singular distribution as defined by a
simplex solution, the discussion of which is, however, beyond the scope of this work.

4.4.2.2  Action Strategy Parametrization

Although the simplex solution looks simple, exhaustive search throughout the outcome space
is still something practically prohibitive as it requires O(NM!*1) lookups. To this end, we
propose to parameterize the action distribution in terms of a small set of parameters ©, e.g.,
to assume action A is sampled from a parametric distribution p,(A; ©). In this way, we can
search A efficiently by optimizing © instead. As a preliminary study, here we devise a simple
parametrization by randomizing a utility-based ranking scheme with a scalar parameter c.
Particularly, for any given user u, assume the top-ranked [ items (i.e., items with highest
payoffs) are denoted {3}, ..., }, we generate the action A as follows:

o A=1.
e For j from 1 to [ do:
- With probability (1 — «) add i7 to A
- With probability a add an random item to A

This way, action optimization in Eq(15) become a one-dimensional optimization, to which
the solution can be obtained efficiently, e.g., via golden-section search.

A more flexible parametrization is to factorize p(A) sequentially as p(A) = p(i1) X
p(islin)x ... x p(igli1,dg,...,9—1), with a few simplifications, we can search the action
space by dynamic programming. We leave this for future research.

2It is easy to verify that the three example payoffs we explore in this chapter satisfy these four axioms.
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4.4.2.83  Strategic Payoff Specification

So far, our discussion of action optimization is in terms of an abstract payoff function Ug.
We now specify our formulation with three concrete strategic objectives.

Payoff #1: Click-Through Rate (CTR). Click-through rate or CTR is the ratio of
responses (i.e., Ry # 0)) out of all the interactions. CTR is the most important measure of
success for many real-world recommender systems because it crucially determines so many
important factors ranging from traffic, revenue to user base. For example, it corresponds to
the advertisement click rate in Google, the movie rental rate in Netflix, the order placement
rate in Amazon, and the rate of friend connection in Facebook Friend-Finder. CTR can be
formulated in the CCF framework as follows:

CTR = E,[Ealpu(R#0A)]] =Y fu Y pu(A)pu(R #0|4)

ueld  AeA

where f, is a measure of user loyalty (e.g., user u’s visit frequency), and

exp(fy)
exp(0u) + D ;e 4 €xp(Py 15)

pu(R # @\A) =1-

Payoff #2: Sales Revenue (SR). Another important measure of success is sales revenue
or SR, which is the revenue that a recommender system receives from the transactions
(interactions) with the users. SR is a weighted version of CTR, i.e., each click is assigned
a weight of importance. Based on CCF, SR can be formulated via:

SR = Ey[Ea[Eicalcipu(R = i|A)]]] = Z fu Z pu(4) Z cipu(R = ilA)

ueU AcA i€A

where ¢; denotes the price (weight) of an item i.

Payoff #3: Consumptions Diversity (CD). It is widely believed that recommender
systems are the key contributor that turns the industry from what used to be a highly
concentrated “blockbuster” 3 towards a highly diversified long-tail (niche) market [12, 79].
Recent research shows that this is, however, not entirely true — a recommender system, if
designed improperly, could reinforce consumption concentrations [22]. In order not to turn
our society to a echo chamber, it is important to encourage consumption diversity (CD),
i.e., to ensure the consumptions of the whole population are not narrowly concentrated.
Moreover, CD is also important to online firms to help them gain profit from long-tail
market. CD can be formulated based on the CCF framework in terms of expected choice
entropy:

CD =Ey[Ea[H,(RIA) ==Y fu Y pu(A)D_ pu(R =i|A)log p,(R = i| A)

ueU AeA €A

where Hy(R|A) = >,c 4 Pu(R = i|A) log p,(R = i|A) is the entropy of user u’s choice in the
context of A.

3The well-known 80-20 rule or the Pareto principle states that, of the many goods available, consumptions
are concentrated on a small subset of bestselling ones.
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4.4.3 Implications of CCF and Future Work

We finally remark that there are some interesting properties of the proposed CCF model.
Firstly, since the games in user-system interactions are finite, there exists an equilibrium
point (i.e., a stable strategy). As a matter of fact, since that the reaction to a given
action is rational and that the action given p,(R|A) is vNM-rational, it can be shown that
the CCF model is sequentially rational and therefore achieves the perfect Nash equilibrium
[49]. From a practical point of view, it is, however, possible to optimize the recommender
systems more aggressively beyond the market equilibrium. Particularly, the analogy of
recommender system to a monopoly market provides a number of important perspectives,
e.g., the reflection of price discrimination in recommender system — how recommender
system can exploit its market power to gain consumer surplus [12]. Another interesting
topic is to explore the correlation and conflict of goods, and optimize action A as a bundle
based on portfolio theory [57, 4]. We would rather leave these interesting discussions for
future research.

4.5 Ezxperiments

We test the proposed CCF model on a real-world commercial recommender system. Because
CCF is comprised of two components, it is necessary to test each of them separately —
otherwise, it would be difficult to tell if a change of performance is due to one component or
the other or both. Our experiments therefore consist of two test-beds. Firstly, we compare
CCF with CF baselines in terms of their abilities in preference estimation, which has already
been done in Chapter 3. This comparison gives us an idea on how effective our model for
pu(R|A) is compared with state-of-the art CF models. Furthermore, we compare the CCF
framework (i.e., MLF + Action optimization) and the current recommendation scheme
(i.e., CF + utility-based ranking). This comparison further demonstrates how the game-
theoretic formulation, particularly how action optimization, further enhance the design of
a recommender system. The later is what we report here.

We evaluate the entire CCF framework (i.e., MLF + action optimization) in terms of
its ability to achieve the three strategic goals.

Evaluation metrics. We test a recommendation model by applying it on top of the
algorithm in production and comparing the results with the production baseline. To as-
sess performance, we report the relative surplus. In particular, let m denote one of the
three measures (i.e., click-through rate, sales revenue and consumption diversity), a relative
surplus score is defined by:

m(model) — m(production)

relative surplus =
P m(production)

Evaluation protocol. To illustrate how effective each of the CCF components is, we
compare CCF with action optimization (CCF+AQ), to CCF without action optimization
(CCF-AO) as well as the conventional recommendation scheme (collaborative filtering with
utility-based ranking or CF4+RK). For each model, we simulate its relative surplus score by
applying the model to the production output. In particular, we take the top 50K users who
visit our website most frequently as test probes and trace them for one month. For each of
these user u and each of the dates d, we maintain a positive set P, 4 and a negative set IV, 4
by including all the articles that user u reads on date d into P, 4 and any other items in
the content pool of date d into N, 4. We assume user u turns to take items only from P, 4
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Figure 4: Performance in achieving strategic objectives: relative surplus compared to the
production baseline in terms of CTR, SR and CD.

and ignores those in N, 4 on date d. Specifically, the reaction of user v on date d to any
action A is assumed as follows: for any item i € A, if ANP, 4 # 0 and i € ANP, 4, u takes
i with probability 1/|AN N, 4| or otherwise ignores it; a nonresponded session occurs when
P, 4 = 0. To compute sales revenue, we randomly assign to each item a positive number
as “price”, which is predefined and never changed throughout the evaluation. Moreover,
maximizing consumption diversity alone leads to meaningless random recommendations; to
this end, we impose a hard constraint to ensure that the decreases in CTR is no more than
0.5%.

Results and analysis. The aggregate results on the 50K probe users are depicted in
Figure 4. Applying a traditional recommendation scheme (CF + preference based rank-
ing) on top of the production baseline only yields marginal improvements in CTR and SR.
In contrast, the CCF model gains up to 4.5% and 3.9% surplus in CTR and SR respec-
tively; and action optimization further significantly enhance these numbers. In terms of
consumption diversity, our experiment confirms the findings of [22] since applying CF and
CCF directly without consideration of CD inevitably leads to consumption concentration,
as shown by the negative surplus scores in Figure 4. In contrast, CCF4+AOQO is the only one
among the three models that yields positive surplus in CD. In particular, with less than
0.5% reduction of CTR, it gains up to 3.2% improvement of diversity. These observations
are somewhat surprising considering that the preliminary action parametrization we used
in the experiment is a bit overly-simplistic — it merely contains one single parameter «
(c.f. Section 4.4.2.2). In future work, we plan to explore more flexible forms of action
parametrization such as the sequential factorization model mentioned in 4.4.2.2; we expect
to have even more promising results.

4.6 Summary

We presented a novel game-theoretic framework for recommendation by viewing the user-
system interactions at recommender system as buyer-seller interactions in a monopoly eco-
nomic market. Since the decisions of the user and the buyer are interdependent, this new
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perspective motivates us to optimize the action strategy of the system by first predicting
users’ reaction and then adapting its action to maximize the expected payoff. The pro-
posed CCF framework consists two essential components: (1) a model for p,(R|A) that
integrates choice models in econometrics and latent factor model in collaborative filtering
to encode the notion of collaborative games; and (2) a formulation for optimizing system
action A in terms of expected strategic payoffs such as click-through rate, sales revenue and
consumption diversity. Experiments on a real-world commercial recommender system have
demonstrated the effectiveness and appealing promise of the proposed framework.

So far, we have investigated behavior prediction in recommender systems where users
make their individual decisions independently. This is, however, not the case in systems
with social networking functionalities (e.g., in online social networking systems), where
users are interacting with one another and social contagion plays an significant role —
the interactions dramatically influence individual behavior of decision making. Starting
the next Chapter, we investigate behavior prediction in a social environment and develop
models and algorithms to capture the interplay between social interactions and individual
behavior.
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CHAPTER V

MODELS FOR HOMOPHILY

The first part of the thesis (i.e., the previous two chapters) focuses on modeling individ-
ual behavior of decision making as in a recommender system without considering social
interactions. In the second part which includes this and the next two chapters, we further
examine behavior in social communities where users are actively interacting with one an-
other and social contagion plays an significant role in influencing individual behavior due
to fundamental social effects (e.g., Homophily, trust, influence), [93, 95, 19].

A social network is not solely a social graph that connect users with their friends, but it
is also an interest graph that connect users with the resources (e.g., game, ad, brand) they
like. One problem of fundamental interest is: how to effectively propagates both friendship
and interest through the network. In this chapter, we show that the information contained
in interest networks (i.e. user-service interactions) and friendship networks (i.e. user-user
connections) is highly correlated and mutually helpful. We propose a framework [93] that
exploits the social effect of “Homophily” to establish an integrated network linking a user
to interested services and connecting different users with common interests, upon which
both friendship and interests could be efficiently propagated. The proposed friendship-
interest propagation (FIP) framework devises a factor-based random walk model to explain
friendship connections, and simultaneously it uses a coupled latent factor model to uncover
interest interactions. We discuss the flexibility of the framework in the choices of loss
objectives and regularization penalties and benchmark different variants on the Yahoo!
Pulse social networking system. Experiments demonstrate that by coupling friendship with
interest, FIP achieves much higher performance on both interest targeting and friendship
prediction than systems using only one source of information.

5.1 Introduction

Online social networking services have brought to the public a new style of social lives
parallel to our day-to-day offline activities. Popular social network sites, such as Facebook,
Linkedin and Twitter have already gathered billions of extensively acting users and are still
attracting thousands of enthusiastic newbies each day. Doubtlessly, social networks have
become one of today’s major platforms for building friendship and sharing interests.
Fundamental to all social network services is the goal to effectively model the interests
of a user and the friendship between users [69]. On the one hand, by capturing a user’s
interests and accordingly exploiting the opportunity to serve her/him with potentially in-
teresting service items (e.g. news, games, advertisements, products), one can improve the
satisfaction of a user’s participation and boost the revenue of a social network site as well
(e.g. via product purchases, virtual transactions, advertisement clicks). On the other hand,
connecting people with common interests is not only important for improving existing users’
loyalty, but also helps to attract new costumers to boost the site’s traffic. In fact, friendship
prediction (a.k.a. link prediction) and interest targeting (a.k.a. service recommendation)
are two important tools available in almost all the major social network sites. Both activities
which occur routinely in a social network have accrued a tremendous wealth of interaction
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Figure 5: An example of friendship network and interest network.

traces, both among users (i.e. friendship network) and between users and service items (i.e.
interest network). Figure 5 depicts a typical topology of a heterogeneous graph in the
context of social networks.

5.1.1 Interests and Friendship

Modeling user interests and friendship in social networks raises unique challenges to both
research and engineering communities. The information about a user’s behaviors is often
scattered in both friendship and interest networks, involving other users that are closely
connected to the user and different activities that the user has engaged in. A fundamental
mechanism that drives the dynamics of networks is the underlying social phenomenon of
homophily [61]: people with similar interest tend to connect to each other and people of
similar interest are more likely to be friends.

Traditional user profiling approaches often do not take full advantage of this fact. In-
stead they either employ feature engineering to generate hand-crafted meta-descriptors as
fingerprint for a user [75, 23] or they extract a set of latent features by factorizing a user’s
registered profile data; for example, by means of sparse coding [45] or latent Dirichlet allo-
cation [10]. These approaches could be inaccurate because neither user friendship nor user
behavior information is taken into account.

Recent approaches resort to collaborative filtering (CF) techniques [16, 71, 1, 41] to
profile user interests by collaboratively uncovering user behaviors, where users are assumed
to be unrelated to each other. While CF performs well in recommendation systems where
decisions are mainly made individually and independently, it could fail in the context of
social networks where user interactions substantially influence decision making [37, 61].

Modeling friendship is equally challenging. A typical social network is a graph both
large and sparse, involving hundreds of millions of users with each being connected to only
a tiny proportion of the whole virtual world. This property rules out traditional spectral
algorithms for graph mining [65, 66] and calls for algorithms that are both efficient to handle
large scale connections and capable of reliably learning from rare, noisy and largely missing
observations. Unfortunately, progress on this topic to date is limited [48].
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5.1.2 Friendship Interest Propagation

This chapter exploits the important role homophily plays in social networks. We show that
friendship and interest information is highly correlated (i.e. closely-connected friends tend to
have similar interests) and mutually helpful (i.e. much higher performance for both friend-
ship prediction and interest targeting could be achieved if coupling the two processes to
exploit both sources of evidence simultaneously). We present a friendship-interest propaga-
tion (FIP) model that integrates the learning for interest targeting and friendship prediction
into one single process.

The key idea in FIP is to associate latent factors with both users and items, and to
define coupled models to encode both interest and friendship information. In particular, FTP
defines a shared latent factor to assure dynamical interaction between friendship network
and interest network during the learning process. In doing so, FIP integrates both interest
and friendship networks to connect a user to both items of potential interest and other users
with similar interests. FIP hereby provides a single unified framework to address both link
prediction and interest targeting while enjoying the resources of both sources of evidence.
Experiments on Yahoo! Pulse demonstrate that, by coupling friendship with interest, FIP
achieves much higher performance on both tasks.

The contributions of this work are three-fold:

1. We present the friendship-interest propagation model that propagates two different
types of evidence through heterogeneous connections.

2. We formulate the FIP model in a computational framework, discuss the flexibility in
the choices of loss objectives (e.g. fo, logistic regression, Huber’s loss) and regulariza-
tion penalties (e.g. sparse coding, ¢2 penalties) and we benchmark different variants
in a real-world social networking system;

3. For the implementation of FIP, we present a built-in scheme for bias correction based
on pseudo-negative sampling to avoid overfitting, and we also deliver an optimization
package that allows distributed optimization on streaming data.

5.2 Problem Definition

We begin by briefly reviewing the state-of-the-art. This will come in handy as we will link
them to our model in §5.3.

Modeling dyadic interactions is the heart of many web applications, including link pre-
diction and interest targeting. Typically, a pair of instances from two parties (such as users
and items), v € U and i € Z, interact with each other with a response y,; € Y. The mapping

{(u,?) — yui where u e U,i € I}

constitutes a large matrix Y e YMIXIZl of which only a tiny proportion of entries are
observable; the goal is to infer the value of a missing entry y.-, given an incoming pair
(a, 5). Essentially, the observed interactions define a graph, either unipartite (when U = 7)
or bipartite. The task amounts to propagating the sparse observations to the remainder
(unobserved) part of the matrix. For convenience we will henceforth reserve u,v as user
index and ¢, j as item index.

5.2.1 Interest Targeting

Interest targeting, or (service) recommendation, works with a bipartite graph between two
different parties, e.g. user v and item ¢. It aims at matching the best item ¢* to a given
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user u. We consider collaborative filtering (CF) approaches, which tackle the problem
by learning from past interactions. Existing CF models can be generally divided into two
categories: neighborhood models [72, 60] and latent factor models [41, 1] as we have reviewed
in Chapter 2.1 and 3.3. It is also possible to combine the neighborhood models and latent
factor models. A recent example is discussed [40], where the basic idea is to apply the
locality of dependencies directly to the latent factors, for example:

ZUEQu Wyv Py

S i P(Yuo| by Vi ©). (16)
’l)GQu uv

qu =
This model® which is quite similar to [40] was deployed on the Netflix data yielding signifi-
cantly better performances over both pure-neighborhood and pure latent factor models.

5.2.2 Friendship Prediction

Friendship (link) prediction recommends users to other users in the hope of acquainting
people who were previously not connected in the network (or even unfamiliar with each
other). Unlike interest targeting, the user network is unipartite. For a pair of users (u,v)
the observation whether they are connected is a binary value ¢,,. Link prediction crucially
influences both the traffic and the revenue of a social network and it is hence recognized as
one of the key tasks in social network analysis.

Ideally, our goal is to learn a distribution over jointly exchangeable matrices (e.g. by
applying the Aldous-Hoover factorization theorem). For reasons of practicality we pick a
finite-dimensional factorization instead, which we shall discuss in the next section. Before
we do so, let us briefly review existing approaches. Some of them employ random walk
methods [50, 70] or spectral graph algorithms [65, 66].

Random Walk. As we have reviewed in Chapter 2.2, a random walk on the graph C is
a reversible Markov chain on the vertexes Y. The transition probability from the vertex
u to vertex v is defined p(v|u) = cyp/dy. Here d, denotes the degree of vertex u; cyy
the connection weight between nodes u and v. Vertexes are considered close whenever the
hitting time is small or whenever the diffusion probability is large.

Spectral Algorithms. For the given network C, the un-normalized Laplacian is defined
by L = D—C|, where D is a diagonal matrix with D,,, = d,. Spectral algorithms diffuse the
connections by maximizing the spectral smoothness to obtain the intrinsic kinship defined
by the dominant eigenvectors of the Laplacian:

ZCUU 2w — 20||* = 2ZLZ T, where Z = |21, ... s 2pu))- (17)

u,v

5.3 Friendship-Interest Propagation

We now consider interest targeting and link prediction in the context of social network,
where evidence for both interest and friendship are available, allowing us to solve both
tasks in a single framework. The rationale is that friendship and interest information are
to some degree correlated,? i.e. the network exhibits homophily [61] and the propagation
of friendship and interest would be mutually reinforcing if modeled jointly.

'In this case the set of neighbors €2, contains u with wy, = 1.
*Empirical analysis on Yahoo! Pulse illustrates that the interest correlation (Pearson score, max 1.0)
between two directly-linked friends is 0.43, much higher than average.
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Figure 6: Graphical representations of regression based latent factor model (RLFM) and
friendship-interest propagation (FIP) model.

The nontrivial correlation between interest and friendship motivates joint modeling of
both sources of evidence. As shown in Figure 6, the friendship-interest propagation(FIP)
model simultaneously encodes the two heterogeneous types of dyadic relationships: the
user-item interactions {y,|u € U,i € T}, and user-user connections {cy,|u,v € U}. Our
model is built on latent factor models.

5.3.1 Modeling interest

To characterize the user-item dyads, v,;, we assume that for each user v and item 7 there
exist observable properties x, (e.g. a user’s self-crafted registration files) and z; (e.g. a
textual description of a service item)3. Moreover, we also assume that there exist some
subtle properties which cannot be observed directly, such as a user’s interests, a service
item’s semantic topics. We denote these latent features by ¢, for u and v; for i respectively.
We assume the response y,,; depends on both types of features (i.e. observable and latent):

Py ~ p(¢u|xu) P~ p(¢2|xz) Yui ~ p(yui|¢uy7/)inya$iy 6),

where © denotes the set of hyper-parameters. To design a concrete model, one needs to
specify distributions for the dependencies, ¢y |zy, ¥i|z;, and yu; |y, Ti, Ou, Vi

This model is essentially an integration of collaborative filtering [1] and content filtering
[17]. On the one hand, if the user u or item 7 has no or merely non-informative observable
features such that we have access to only their identity and past interactions, the model
degrades to a factorization-style collaborative filtering algorithms [71]. On the other hand,
if we assume that ¢, and v; are irrelevant, for instance, if u or i is totally new to the system
such that there is no interaction involving either of them as in a cold-start setting [104],
this model becomes the classical feature-based recommendation algorithms [16, 102, 17],
which predict the interaction response ¥,; purely based on the observed properties of u and
i, and are commonly used in, e.g. webpage ranking [102], advertisement targeting [16], and
content recommendation [17].

3Whenever we do not have access to these properties we simply default to the expected value of the latent
variables, which is easily achieved in a probabilistic model.
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5.3.2 Modeling friendship

We now extend the interest model to incorporate the social friendship-connection infor-
mation among users. For this purpose, we define a random walk process for user-user
networking. But unlike traditional random walk models [50, 70], we assume a user u is fully
characterized by her observable features xz, and latent factor ¢,, and devise the following
model for user-user transition:

¢u ~ p(¢u’wu7 @) and ¢y, ~ p(cuv’¢ua ¢v7 Lyy Ly, @)7 (18)

where ¢, reflects an observed state transition from u to v. Unlike in random walk models
where proximity in a graph is simply used to smooth secondary estimators of parameters
(e.g. reachability, hitting times), we make direct use of it to model the latent variables ¢,,.
Note that whenever we restrict the norm of ¢, (e.g. by f2 regularization) and when we
use an inner product model QSI ¢, to assess similarity, we approximately recover the graph
Laplacian of Eq(17).

In this way our model integrates two different methodologies — collaborative filtering
and random walks. It is different from traditional random walk models in which transition
probability is defined solely based on graph topologies. It is also different from traditional
CF models in that it is defined on unipartite dyadic relationships. By doing so, this in-
tegrated model not only allows learning of latent factors to capture graph topologies, but
it also alleviates certain critical issues in random walks: for example, it naturally handles
heterogeneous graphs (e.g. a compound graph consisting of both unipartite and bipartite
connections such as Figure 5), and it also makes applicable computationally-efficient sequen-
tial learning algorithms (e.g. stochastic gradient descent), avoiding directly manipulating
large matrices.

5.3.3 The joint model

Based on the above descriptions, we finally summarize the overall FIP model in Figure 6 and
the table below. Note that the tuples (u, x,, ¢,,) now play “double duty” in encoding interest
interactions (u, 4, ¥y;) and friendship connections (u, v, ¢y, ) simultaneously. Learning shared
factors from coupled relationships gives us both more evidence and more constraints to work
with, and in turn leads to better generalization.

The Friendship-Interest Propagation (FIP) model.

Vueld Pu ~ P(du|Tu, ©)
Viel Vi ~ p(Yilxi, ©)
VueU,ie€l Yui ~ P(Yuil G Vis Tuy T3, O)
Vouveld Cuv ~ P(Cuv|Pu, Pvs Tu, Ty, O)

5.4 The computational framework
5.4.1 Model specification

So far we deliberately described the FIP model in terms of general dependencies between
random variables to make it explicit that the model is quite a bit more general than what can
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be achieved by an inner product model. Here, we specify the model within an optimization
framework.

For computational convenience we assume linear dependencies between x,, and ¢, plus
a noise term? e. This means

¢y = Az, + €, where E [¢,] = 0. (19)
1; = Bx; + ¢; where E [¢;] = 0. (20)

€ is typically assumed to be Gaussian or Laplace. Whenever nonlinearity in z is desired we
can achieve this simply by using a feature map of x and an associated kernel expansion.
Finally, we assume that the dyadic response (e.g. y,;) depends on latent features only
through the inner product (e.g. ¢, v;) and on observable features through a bilinear product
(e.g. x) Wx;) [17]. That is:

Yui ~ D(Yui| fui) Where fu; = o) b; + x) Wa;.
Cuv ~ P(Cyp|huw) where hy, = ¢I<Z5v + xIMxU.

Here, assume z,, € R™ and x; € R™, the matrices W € R™*™ and M € R™*™ provide a
bilinear form which captures the affinity between the observed features for the corresponding
dyads. We also impose Laplace or Gaussian priors on W and M. One advantage of using
an ¢1 (i.e. Laplace) prior is that it introduces sparsity, which makes Eq(19) equivalent to
sparse-coding [45] and thus improves both compactness and predictiveness of the learned
latent factors ¢ and ).

Given observed responses for the dyads {(u,?) € Oy} and {(u,v) € O.}, the problem of
minimizing the negative log-posterior of FIP boils down to the following objective:

min/\y Z E(ym-,fm')+/\c Z E(Cuvyhuv)

(u,2)€0y (u,v)€0,
A Y Y (Gulan) + Az y(Wili) (21)
ueU i€

F AW QW] + A QM) + AaQ[A] + ApQ[B],

where \.’s are trade-off parameters, £(-,-) denotes a loss function for dyadic responses. The
term y(¢|z) = Q@] + Yz (z,¢). Here Q[] is used to penalize the complexity (i.e. f2, {1
norm). The term ~,(z,®) regularizes ¢ by fitting the observed feature x, as defined by
Eq(21). This type of regularization are equivalent to applying content factorization (e.g.
LSI, NMF, LDA) to the feature z in terms of a factor ¢ and bases A~! or B~

The motivations for a computational framework instead of direct probabilistic inference
are mainly two-fold: First, the two formulations are somewhat equivalent — the distribu-
tion of the dyadic response (e.g. y,;) and its dependence on the prediction (e.g. p(yuil fui))
can be encoded precisely through the choice of loss functions; likewise, the prior over the
observations or parameters could also be readily translated into the regularization penal-
ties. Secondly, computational models allow more scalable algorithms, e.g. via stochastic
gradient descent, whereas probabilistic reasoning often requires Monte Carlo sampling or
quite nontrivial variational approximations.

“Note that the latent ‘noise’ term is actually meaningful. It indicates the deviation of the user/item
profiles from its cold-start estimates Az, and Bx; respectively.
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5.4.2 Loss

In our case, both y and ¢ are binary, i.e. yy;, cyy € {1}. We performed an extensive study in
our experiments comparing a large variety of different loss functions. For the convenience of
optimization, we limit ourselves to differentiable (in many cases, also convex) loss functions
(see also Figure 7 for details):

Least Mean Squares: This is the most popularly-used loss in matrix factorization. It
minimizes the Frobenius norm of the prediction residue matrix and leads to a SVD-
style algorithm. We have the loss

aly, ) = 51— uf)? (22)

Lazy Least Mean Squares: This is a slight modification of 5 loss for the purpose of
classification [92]. Basically, it is an iteratively truncated version of the ¢ loss via

ly(y, f) = min(1, max(0,1 — yf)?). (23)

It has been shown that this loss approximates the classification error rate in the
example space [92].

Logistic regression: This is the loss used in a binary exponential families model. It is
given by

log(y, f) = log[1 + exp(—yf)]. (24)

Huber loss: This is the one-sided variant of Huber’s robust loss function. It is convex and
continuously differentiable via

%maX(O, 1—yf)? ifyf>0.

n(y, f) = {1

25
37—yl otherwise. (25)

U loss: Unlike other loss functions, which are all convex upper bound of the 0-1 loss, the ¥
loss [74] is non-convex. Both theoretical and empirical studies have shown appealing
advantages of using non-convex loss over convex ones, such as higher generalization
accuracy, better scalability, faster convergence to the Bayes limit [74, 92]. We imple-
ment the following version:

%max(O,l—yfV7 if yf >0.

) 2 . (26)
1 —smax(0,1+yf)*, otherwise.

U(y, f) = {

5.5 Optimization and Implementation
5.5.1 Optimization

Minimizing Eq(21) is a nonconvex problem regardless of the choice of the loss functions and
regularizers due to its use of bilinear terms. While there are convex reformulations for some
settings, they tend to be computationally inefficient for large scale problems — the convex
formulations require the manipulation of a full matrix which is impractical for anything
beyond thousands of users. Moreover, the relationships between users change over time
and it is desirable to have algorithms which process this information incrementally. This
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Figure 7: Least mean squares (¢3), logistic (log), Huber and W-loss (Psi) loss functions for
binary classification.

calls for learning algorithms that are efficient and amendable to dynamic updating so as
to reflect upcoming data streams, rendering less attractive those offline learning algorithms
such as classical SVD-based CF algorithms or spectral link prediction methods that involve
manipulation of large-scale matrices. This requirement becomes more important for FIP
than for traditional latent factor models because we are now dealing with two (instead of
one) large-scale coupled interactions and feature observations.

We established algorithms for distributed optimization based on the Hadoop MapReduce
framework. The basic idea is to decompose the objective in Eq(21) by optimizing with
respect to y,; and ¢, independently in the Map phase, and to combine the results for ¢,
in the Reduce phase.

5.5.2 Bias Correction

A key challenge for learning latent factors from dyadic interactions is that the observations
are extremely sparse with almost exclusively positive interactions observable. That is, we
typically do not observe explicit information that user u does not like item i. Rather, the
fact that we have not observed (u,i) suggests that u might not even know about i. In
other words, absence of a preference statement or a social link should not be interpreted
absolutely as negative information.

At the same time, unless we have access to negative signals, we will almost inevitably
obtain an estimator that is overly optimistic with regard to preferences (e.g. predict positive
for all the interactions). To balance both requirements we draw uniformly from the set of
unobserved tuples (u,i) and (u,v) respectively and we require that, on average, observed
pairs are preferred to unobserved ones.

In practice, since we use a stochastic gradient algorithm for minimization, for every
positive observation, e.g. y,; = 1, we randomly sample a handful set of missing (unobserved)
entries {Yu;}j—1.m, and treat them as negative examples (e.g. y,; = —1,) with credibility
1/m each. Since the sampling procedure is random, the set of pseudo-negatives changes
at each iteration and consequently each missing entry is treated as a potentially very weak
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negative instance.

5.6 Discussion

This section provide a brief discussion on how our model is related to the models discussed
in §5.2.

Our first observation is that our FIP model indirectly induces a kernel for the friendship
network graph: k(u,v) = @1— ¢, via the learned embedding ¢s . This is similar to the
information diffusion kernel for graph [39, 44] in that both kernels inherent a Riemannian
manifold for I/ defined by the friendship network C, rather than a flat Euclidean space as
in traditional CF models (e.g. neighborhood [72], factorization [71], RLFM [1]). However,
it is also worth mentioning that the FIP induced kernel is different from diffusion kernels
in that (7) our feature mapping ¢,, is obtained from latent-factor based random walk model
rather than topology-based random walk; and (i) our model defines a compact low-rank
manifold rather than a manifold that is potentially of infinite dimensionality [39, 44].

Traditional latent factor CF models [1, 71] work in Euclidean space where user factors
¢, are assumed identically and independently distributed: ¢, ~ N(0,02I). Our model
relates ¢, with one another by modeling the social network graph. This is equivalent to a
row-correlated matrix-Gaussian ® ~ MN (0,2 ® I), where ® = [¢y,. .. ,QSM]T, MN is a
matrix-variate Gaussian, and ¥ € RUXIU defines the row-covariance (user-user covariance).
By inexplicably modeling the friendship manifold, our model hereby generalizes traditional
latent factor CF models from Euclidean space to Riemannian space, in a way analogous to
how diffusion kernels generalize Gaussian kernels.

Note that, although the neighborhood based latent factor model [40] also induces a
manifold structure for U, this manifold is virtual as it is directly constructed from Fu-
clidean representations that essentially reflect the same amount of information. Our model
generalizes this model by exploiting the true connections from social networks.

The FIP also differs from traditional link prediction algorithms. Actually, it borrows
the idea of latent factor CF models to model the transition probability in terms of latent
factors, making possible that (i) latent factors can be learned from network topologies;
and (i) connections can be propagated collaboratively through the interaction between
latent factors. Essentially, our approach establishes an integrated network of interest and
friendship that connects people with similar interests, and upon which both friendship and
interests could be efficiently propagated.

5.7 Experiments

We demonstrate the FIP model on Yahoo! Pulse in terms of both interest targeting and
friendship prediction.

5.7.1 Yahoo! Pulse Data

Yahoo! Pulse (pulse.yahoo.com) is a social network site that allows users to create pro-
files, connect to friends, post updates, and respond to questions, as in other social networks.
More importantly, it provides a mechanism for users to share interests, i.e. users can up-
load, download, install applications, and invite friends to try interesting applications. Our
motivation is to utilize the user-user friendship network and user-application interest net-
work from Yahoo! Pulse, so as to simultaneously propagate interest and friendship. We
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Figure 8: Degree distributions of the Yahoo! Pulse friendship and interest networks.

examine data collected on Yahoo! Pulse for about one year, involving hundreds of millions
of users and a large collection of applications, such as games, sports, news feeds, finance,
entertainment, travel, shopping, and local information services. Figure 8 shows the degree
distribution of this data set. The data is very sparse and almost half of the users only
have one friend connections and do not like any of the applications (they are essentially
not using the network). Our goal is to propagate evidence to establish reliable connections
both among users and between users and applications.

We use a subset of Yahoo! pulse data. The data set has 386 application items, 1.2M
users, 6.1M friend connections and 29M interest interactions. There is a significant difference
in the densities of the two networks in this data set. As the item set is pretty small, the
interest network is relatively dense — each user likes 23.5 items on average. In contrast, as
the user population is large, the friendship network is extremely sparse: on average, each
user only has 4.9 friends out of the total 1.2 million.

5.7.2 Evaluation Metrics

Both interest targeting and link prediction lead to a ranking of entities (e.g. items and users
that the system may recommend) according to a score function. In our context this means
that the scores f,; and h,, induce a ranking. Hence it is natural to use ranking metrics to
assess performance. We consider the following three scores:
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Table 6: Comparison of service recommendation performance.

Models loss Q] | AP@5 | AR@Q5 | nDCG@5

SIM 0.630 | 0.186 | 0.698
RLFM 0.729 | 0.211 | 0.737
NLFM 0.748 | 0.222 | 0.761
FIP Uy Uy 0.768 | 0.228 | 0.774

FIP lazy 0o o 0.781 | 0.232 | 0.790
FIP logistic /5 0.781 | 0.232 | 0.793
FIP Huber /s 0.781 |0.232 | 0.794
FIP L4 Ly 0.777 10.231 | 0.771
FIP 2 4 0.778 | 0.231 | 0.787
FIP lazy ¢ 01 0.780 | 0.231 | 0.791
FIP logistic ¢ 0.779 | 0.231 | 0.792
FIP Huber /¢ 0.786 | 0.233 | 0.797
FIP L4 4 0.765 | 0.215 | 0.772

AP is the average precision. APQn averages the precision of the top-n ranked list of each
query.

AR is the average recall of the top-n rank list of each query.

nDCG or normalized Discounted Cumulative Gain is the normalized position-discounted
precision score. It gives larger credit to top-ranked entities.

In all three metrics we use n = 5 since most social networks and recommendation sites
use a similar number of items for friend and application suggestions; it is also the standard
recommendations size used in the current system. For our evaluation we use cross-validation,
where we randomly partition the data into two equally sized pieces and use one for training
and the other for testing. All three measures are computed on testing data only, and they
are averaged over five random repeats.

5.7.3 Interest Targeting

In this section, we report the results on interest targeting (i.e. application recommendation).
We adopt a fairly strict evaluation by assessing the top results out of a total preference
ordering of the item set for each user. In particular, for each user u, we consider all the 386
items as candidates; we evaluate the recommendation performance by assessing the quality
of the top-5 items based on the comparison between ground truth (the actual list of the
applications that user ¢ liked) and the top-5 ranked shortlist outputted by each model.

For comparison, we take three popular CF models as baseline: the item-oriented neigh-
borhood model (SIM), the regression based latent factor model (RLFM) [1], and the combi-
nation of them (referred to as neighborhood based latent factor model or NLFM [71]). SIM
and RLFM use interest information; NLFM use both friendship information and interest
information.

We test the baselines and different variants of FIP model, each of which is referred to
in terms of the name combination of a loss and a regularization (e.g. FIP(¢3,¢3)). Table 6
demonstrate the overall results, i.e. the mean value of metrics averaged over 5 random runs.
As the scale of the data is quite large, the predictive variance is very small (less than 0.002)
and it is therefore not reported.
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For the relatively dense interest network, all the reported models in our system actu-
ally achieve satisfactory performance in interest propagation. For most models, both the
nDCG@5 and AP@5 scores are above 0.7, that is, out of the five recommended items, on
average 3.5 are truly “relevant” (i.e. actually being liked by the user). Such performance
is sufficiently satisfactory for propagating the 386 approved services in the current interest
network. With such good performance, there is really not much room for further improve-
ment. However, we still observe that noticeable improvements are obtained by the FIP
models. Specifically, in terms of the nDCG@5 scores (similar comparisons apply to other
metrics), FIP outperform the SIM model by up to 11.4%, RFLM by up to 10.8%, and
NLFM by up to 4.7%. All improvements are significant (according to ¢-test with confidence
threshold 0.01).

Among the 5 loss options for FIP, the one-sided Huber loss, the lazy {2 loss and logistic
regression perform equally well (with Huber slightly better). Surprisingly, the nonconvex
¥ loss performs very poorly, even worse than £5. We attribute this to the non-convexity of
the ¥ loss — while nonconvex losses perform superiorly in learning linear classifiers [74, 92],
they could totally fail in learning the bilinear form of latent factor models because of the
strong nonconvexity.

With respect to the two types of regularization, we observe that for each loss the ¢4
regularizer almost consistently outperforms fs. As ¢; regularization leads to compact (i.e.
sparse) latent factors by assigning submissive latent dimensions to exactly 0, this observation
suggests that sparseness can improve the informativeness of latent factors (being sparser
implies smaller description length) and in turn leads to superior performance.

One of our claims is that friendship information is helpful for interest targeting. An
interesting test would be to check how the credibility (i.e. A.) of the friendship influences
the performance of interest prediction. We report this result in Figure 9. We can see that, as
we increase A, the performance first increases (it peaks at 0.5, or 1.0 for ¥) and thereafter
it starts to drop. This observation coincides with our intuitions: friendship information is
truly useful for interest propagation, it helps interest targeting with discounted credit; yet,
if too much weight is given to friendship, the latter may pollute the interest evidence and
in turn harm interest targeting performance.

We also test the effects of two parameters: the dimensionality of latent factors k, and
the proportion of hold-out testing data. Results are reported in Figure 9. For most losses,
between 10 and 20 latent factors are sufficient for prediction. Also, with the exception of
the ¥ loss, the performance is quite stable to both parameters. This observation validates
our hypothesis of the ¥ loss not being very amenable to efficient optimization: as latent
dimension increases, more local optima are created and the ¥ loss performs worse; likewise,
as training data becomes more sparse, the W loss may be trapped in worse local optima.

An important procedure in our implementation is the bias-correction, i.e. generating
pseudo-negative samples to correct the selection bias, as described in §5.5.2. We demon-
strate the effects by comparing results obtained with and without this procedure in Fig-
ure 11. The comparisons are striking, indicating that latent factor models, if trained without
negative examples, turn to overfit the training observations and misleadingly predict “pos-
itive” for most dyads. Our algorithms, by sampling missing interactions and using them
as very weak negatives, guide the latent factor to capture the dyadic interactions while
avoiding being fooled by the positive-only observations.
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Figure 11: Recommendation performance with vs without bias-correction (BC): service
recommendation (left) and friendship prediction (right).

Table 7: Comparison of friendship prediction performance.

Models loss Q] | AP@5 | AR@Q5 | nDCG@5
RLFM 0.164 | 0.202 | 0.174
FIP ly by 0.359 | 0.284 | 0.244
FIP lazy £o {9 0.193 | 0.269 | 0.200
FIP logistic o 0.174 | 0.220 | 0.189
FIP Huber /5 0.210 | 0.234 | 0.215
FIP v Uy 0.187 | 0.255 | 0.185
FIP ly 2 0.186 | 0.230 | 0.214
FIP lazy 6o ¢ 0.180 | 0.223 | 0.194
FIP logistic ¢ 0.183 | 0.217 | 0.189
FIP Huber ¢ 0.188 | 0.222 | 0.200
FIP v 2 0.178 | 0.208 | 0.179

5.7.4 Friendship Prediction

We conducted similar evaluations on friendship propagation (i.e. link prediction). As the
user population in the Pulse social network is huge, it is prohibitive to take all the users as
candidate friends and generate a total ordering of the whole user set for each user to evaluate
the prediction performance; similarly, the models relying on neighborhood information (e.g.
SIM and NLFM) are no longer tractable as they require computations quadratic in the
number of users. To this end, we use a different evaluation mechanism: for each user u, we
randomly sample M users that are not connected to u, we mix them with the set of users
that u actually connects to. We then use this probe-polluted set as candidates, upon which
the ranking performance is computed. In our experiments, we use M = 300 random probes
per user.

We report the overall results in Table 7, where RLFM is used as the baseline model.
The friend-network is extremely sparse (0.0039% density). Propagating friendship based on
such sparse evidence is much more difficult, for example, RLFM only achieves 17% AP@5
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and nDCG@5, which means out of the top-5 recommendations, less than 1 is truly relevant.
Yet, we observe a significant improvement, as high as a 40% gain in nDCG@5, when FIP
is used. This observation indicates that there is strong evidence of homophily in the Pulse
social network such that users with similar interests are truly interested in each other. By
leveraging the relatively dense interest evidence to assist the extremely sparse friendship
graph, FIP achieves much higher performance in friendship predictions.

Regarding the loss functions, this time the f5 loss performs the best. We hypothesize
that for much sparser friendship networks, losses that are more suitable for classification
tasks tend to overfit the observed connections by making prematurely hard decisions to
exclude connections that are not observed at the training stage. Similarly, because the
¢ regularizer makes the latent factor sparser (some components of ¢ are shrunk to be
exactly 0), it also turns to make hard predictions and in turn performs worse. Indeed, we
observe significantly better performance for the f5 loss and/or regularizer, which turn to
make smoother decisions.

The effects of parameter settings on this task are reported in Figure 10. We observe
similar trends as in the previous task, although the performance is more sensitive: the
performance changes faster as latent dimensionality increases or training data decreases.
This matches the bias-variance analysis of statistic learning: as friendship connections are
extremely sparse, we are typically dealing with a small-sample-size estimation, for which
decrease of training data (e.g. increase hold-out proportion) or increase of model complexity
(e.g. increase latent dimensionality) will inevitably lead to the increase of either bias or
variance or both, and therefore the models are more likely to overfit the training observations
and in turn generalize poorly.

As before, Figure 11 (right) shows that bias correction significantly improves the per-
formance. Note that the difference is not as large as in interest targeting. This is likely
due to the observation sparsity: in the sparser friendship network, two users that were
not observed in the training set still have a good chance to be friends, which means many
pseudo-negatives could be false-negatives.

5.8 Related Works

Collaborative filtering (CF) and link prediction were previously studied separately in two
different research communities. The proposed FIP model bridges these two methodologies
with a unified model. Essentially, FIP embeds all the users and items into the same space
(e.g. Euclidean, simplex) so that the distances between two entities (e.g. user-item, user-
user) reflect the relatedness (e.g. interest, friendship) between them, and hence, provides a
unified treatment for both interest targeting and link prediction.

Existing approaches to link prediction diffuse the sparse connections using topology-
based random walk [50, 70, 103] or spectral graph algorithms [65, 66], both of which involve
expensive manipulation of large matrices. FIP borrows the idea of latent factor models in
collaborative filtering [71, 1, 41] and it shows connections to random walk based models.
As a side effect we obtain computationally attractive algorithms for efficient random walks.

Traditional CF techniques exploit past records of user behavior for future prediction
based on either meighborhood based or latent factor based methods. The neighborhood
latent factor model [40] merged these two models and reported significant performance
improvement on the Netflix data. Though promising, the network structure exploited in this
combined model [40] is a virtual one, constructed using the same evidence for learning latent
factors. Our FIP model extends this model to allow the actual social network structure to
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be captured in latent factor learning.

Along another line, the recently proposed regression based latent factor model (RLFM)
[1] incorporates node (user or item) features to improve recommendation performance in
the cold-start scenario. The FIP model also generalizes RLFM [40] in a way analogous
to how information diffusion kernels [39, 44] generalize the Gaussian kernels. Basically,
instead of working in the Euclidean space as RLFM does, FIP induces a limited-dimensional
Riemannian manifold defined by the topologies of both the unipartite friendship network
and the bipartite user-service interaction network.

The FIP model has a close connection with recent works on collective matrix factoriza-
tion [52, 84, 76, 103], where the tasks of learning relational data were also formulated in
terms of factorizing multiple matrices. The current work continues our prior investigations
on this topic and further examines interest and friendship propagation in the context of so-
cial networks, a task urgently motivated by emerging demands from social network services
[69]. The techniques developed in this work also advances the state-of-the art from several
aspects: (i) besides the dyadic relational data (i.e. edges), we also attempt to leverage the
rich information conveyed by the node features using regression model similar to RLFM
[1] or factorization models similar to sparse coding [45]; in this way, FIP integrates latent
factor models [41, 71, 1] and predictive bilinear models [102, 17]; (ii) we present distributed
optimization algorithms, address bias correction, discuss and benchmark different loss ob-
jectives and regularizers; and our work provides one of the first large-scale examinations of
interest-friendship propagation in a real social network system.

One work relevant to ours is the social recommendation approach proposed by [55],
where the trust relationships among users are used to improve cold-start recommendation.
This model can be seen as a special case of our FIP model by assuming (i) no node feature
x; or xj; (it) ¢y loss objective; and (i4i) asymmetric factor based random walk model,
i.e. the transition probability is modeled as a multiplicative function of user-factor and a
basis. Also, this work did not address the task of user relationships (e.g. trust, friendship)
propagation. Along this line, our work addresses both tasks with a more general framework
and conducts large-scale evaluation on a social networking system.

5.9 Summary

In this chapter, we have shown the significance of Homophily in social behavior prediction
— the behaviors (i.e., interest) of socially connected users are mutually reinforcing such that
coupling the behavioral and social evidences improves behavior prediction. Nevertheless,
as we show in the next chapter, the social contagion is way more complicated than the
simple Homophily as the underlying assumption is largely debatable — socially connected
users do not necessarily agree with one another when making decisions. Instead, a much
stronger signal is the trust-distrust relationship, e.g., we are usually more willing to follow
the opinion of someone we trust than that of someone we merely know on Facebook.
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CHAPTER VI

MODELS FOR SIGNED SOCIAL TIES

In this Chapter, we examine a more complicated social contagion effect beyond the simple
unipolar Homophily [95]. We study the problem of labeling the edges of a social network
graph (e.g., acquaintance connections in Facebook) as either positive (i.e., trust, true friend-
ship) or negative (i.e., distrust, possible frenemy) relations. Such signed relations provide
much stronger signal in tying the behavior of online users than the unipolar Homophily
effect, yet are largely unavailable as most social graphs only contain unsigned edges.

We show the surprising fact that it is possible to infer signed social ties with good
accuracy solely based on users’ behavior of decision making (or using only a small fraction
of supervision information) via unsupervised and semi-supervised algorithms. This work
[95] hereby makes it possible to turn an unsigned acquaintance network (e.g. Facebook,
Myspace) into a signed trust-distrust network (e.g. Epinion, Slashdot). Our results are based
on a framework that simultaneously captures users’ behavior, social interactions as well as
the interplay between the two. The framework includes a series of latent factor models and
it accommodates the principles of balance and status from Social psychology. Experiments
on Epinion and Yahoo! Pulse networks illustrate that (1) signed social ties can be predicted
with high-accuracy even in fully unsupervised settings, and (2) the predicted signed ties are
significantly more useful for social behavior prediction than simple Homophily.

6.1 Introduction

Social networks are playing an increasingly important role in shaping the business models of
today’s internet industry. Not only are most emerging online services providing functionality
to facilitate social interactions in their systems (e.g. last.fm, slashdot, Flikr, Yelp), but
even many traditional internet systems are actively exploiting social networks to enhance
their services, marketing and revenue, e.g., search engines (e.g., Bing), online retailers (e.g.,
Amazon), Web portals (e.g., Yahoo!). This is partly due to the widespread faith in the social
effect of Homophily [61] that people socially acquainted tend to behave similarly. However,
the extent to which this belief holds true is debatable — after all, it is unreasonable to
expect two users who know each other (e.g., who are connected in Facebook) to behave
alike in every aspect of their online decision making (e.g., purchase, ad click, movie rental,
search intent, political view, sentimental moods). Instead, a much stronger signal of social
ties is the network of trust relationships, since in many decisions we make, the opinions
from the people we trust are what we really care about and what our decisions usually
get influenced by. Unfortunately, this information is largely unavailable given the fact
that the vast majority of social networks only contain acquaintance relationships, without
distinguishing whom you trust from whom you don’t.

Quite surprisingly, we show it is possible to infer a signed label for an acquaintance
relationship — positive as trust (true friendship), negative as distrust (possible frenemy).
In this way we make possible to turn an unsigned acquaintance network (e.g. Facebook,
Myspace) to an signed trust-distrust network (e.g. Slashdot, Epinion). Moreover, by allow-
ing us to tie the behavior of an online user to whom he trusts rather than whom he knows,
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the predicted signed relations are significantly more informative than Homophily for the
purpose of behavior prediction.

6.1.1 Signed Social Ties

The main focus of this chapter is to predict the signed social ties (i.e., trust/distrust) out of
the unsigned (i.e., acquaintance) relationships in social networks. In particular, given that
two users are socially connected, we would like to infer whether the connection is positive
(e.g., trust, true friendship) or negative (e.g., distrust, possible frenemy). Effective modeling
of signed social ties is not only of practical value to many internet services but also of general
interest to the social science community. In particular, by inferring the signed relations and
tie the behavior of online users, we may improve social targeting to promote online services
[67, 58, 54, 93]. For example, by providing better matched search results, News articles,
games, advertisements, or products, one can improve user satisfaction and also boost the
revenue of a website (e.g. via product purchases, virtual transactions, advertisement clicks).
Moreover, models for signed social ties also have the potential to improve our understanding
of social relations and our society, and in turn shed light to sociological principles in general
[28, 68, 25, 47].

More importantly, by predicting signed social ties, we enable the social connections in
a social network to reflect much richer relationships that include both positive (e.g. trust,
approval, true friendship) and negative (e.g. distrust, opposition, frenemy) interactions.
This is nontrivial as we substantially extend the acquaintance relationship in standard
social networks (e.g. Facebook), and also the unipolar tie-strength analysis of traditional
link prediction [66, 68, 25] to a meaningful new dimension since we are able to en-sign' an
unsigned network by turning it to a signed network.

A number of recent papers [28, 13, 43, 46] started investigating signed relationships in
social networks. These pioneering works, however, focus on the topology of signed networks
(e.g. Epinion, Slashdot) where the signed connections are explicitly observed. Moreover,
they seem to neglect a rather important source of information. In particular, while social
tie is naturally reflected in and directly revealed by user’s behavior (e.g. user u is most likely
to trust user v if a large number of their opinions agree), such vital clues were not captured
previously. As a result, the tools developed there can only be applied to signed networks.
To our knowledge, we present the first set of tools which allow us to infer signed relations
even in unsigned social networks (e.g. Facebook, Twitter, Myspace) where the signs of social
relations are not observed but could be inferred from behavioral clues.

6.1.2 Behavior-Relation Interplay

The interplay between social relations and user’s behavior of decision making is a key
driving force underlying social activities [67, 58, 54]. On the one hand, social interactions
can influence individual’s behavior of decision making [37, 3] — for instance, users can learn
from each other, following their trusted friends’ good decisions and avoiding their mistakes.
On the other hand, a user’s behavior could in turn impact his relationships with others
— for instance, a user with malicious behavior turns to get bad reputations from others.
In this chapter, we present a framework for predicting the signed social ties by capturing

'"With slight abuse of expression, here by “en-sign” we mean “to assign a sign to” something that is
unsigned.
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such interplay. Specifically, we explore the following “mixture of effects” assumptions about
social relations and users’ behavior of decision making:

1. The decision of a user is not decided solely by his own taste but also influenced by
the opinions of other people whom he trusts.

2. The social relationship between two users depends not only on their intrinsic kinship
but is also evolving according to the agreement between their opinions.

It is desirable to distinguish these two groups of factors when modeling behavior and
social relationships. We present the Behavior Relation Interplay (BRI) model, a latent
factor model that leverages behavioral evidence to infer social interactions and at the same
time exploits the learned relations to tie users’ behavior. The key idea in BRI is to associate
latent factors with both users and items (i.e. decision options such as movies, products,
applications), and to define coupled models to simultaneously characterize both the social
interactions and behavioral evidences.

A key question is whether it is possible at all to infer signed ties in the absence of any
labels. One of the more surprising results of our work is that it is, indeed, possible. To
achieve this we design both unsupervised and semi-supervised algorithms for signed social tie
prediction. In the unsupervised setting, we only observe the acquaintance connections but
none of the sign labels, as is the typical case in the vast majority of the acquaintance social
network sites such as Facebook. We show that BRI achieves fairly accurate predictions.
The key idea is a mechanism called “automatic sign determination” that discovers the
signs of social ties automatically from user activity data. We also examine semi-supervised
prediction, where a small fraction of the sign labels are given. We show that BRI model
provides comparable performance to the leave-one-out prediction results (i.e. all but one
signs are observable) of the topology-based algorithm [46].

To further improve the prediction accuracy and deepen our understanding of signed
social ties, we extend the BRI model to encode general sociological principles, particularly
the theories of status and structure balance [28, 47]. One nice property of our model is
that it naturally provides a mapping from a user to his social status and an interesting
visualization of the network. We show the sociological principles are useful for signed social
tie prediction.

Finally, we show that by predicting signed social ties, BRI models achieve significantly
better performance in behavior prediction than models equipped with Homophily. In par-
ticular, BRI gains 5.8% improvement of RMSE in rating prediction on Epinion data, and
6.9% improvement of nDCG in top-k ranking on Yahoo! Pulse data.

6.2 Background

6.2.1 Problem Definition

We consider a typical scenario in social networks where users routinely make decisions while
actively interacting with one another. This motivates us to analyze the interplay between
an individual user’s behavior of decision making and the tie between users. Suppose we are
given a set of users

u={1,2,...,N}

and a set of items (e.g., News articles, advertisement, retailing products, movies)

T=1{1,2,...,M}.
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Figure 12: An illustration of decision making in social networks: users make decisions with
respect to items while actively interacting with one another.

The users are connected by a social network represented by the graph G(U,C). Here C =
{cuv } denotes the set of edges: ¢, € {1, missing} that define the connection between a pair
of users (u,v) € U?. In the network, users actively make decisions, for example, by clicking
links, purchasing products, rating movies. Formally, a decision is a mapping

y:UXI— ).

That is: user u makes a decision regarding item ¢ with a response y,; € ) (e.g. u rates
movie ¢ with a score of y,;). For convenience, hereafter we use v and v to index users, and
1 and j for items unless stated otherwise.

We are motivated by the following two tasks:

En-signing social relations. A signed social tie is a mapping s : C C U? — {£1} which
characterizes the overall impression (trust/distrust) of user u to user v. In essence,
our aim is to label the edges of the graph G (i.e. the acquaintance relationships in a
standard social network) with signed labels +1 or —1.

Behavior prediction. We are also interested in predicting the users’ behavior of decision
making. In particular, given a user-item pair (u,7), we want to predict the response
Yui With high precision.

We focus on the more challenging task of sign labeling in §6.3 and §6.4, and defer the second
goal to §6.5.
6.2.2 Related Work

To provide a context of our work, here we briefly review existing research on behavior
prediction and relation analysis.

Behavior Prediction. Behavior prediction aims at predicting future (unseen) decision
responses yy; of a user u w.r.t an item 7. We consider collaborative filtering (CF) approaches
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[41, 1], which tackle the problem by learning from past behavior. A widely used approach
to CF learns informative compact latent factors to uncover the dyadic interactions. The
basic idea is to associate latent factors with each user and each item, and let the decision
be explained by the interactions (e.g., multiplication) of these terms.

While CF approaches gain a lot success in recommender systems, they may be insuf-
ficient in the context of social networks where user interactions influence decision making
dramatically [37]. For example, instead of making decisions purely by following his own
taste as in recommender systems, in a social network, a user can achieve more productive
decisions by learning from his friend’s experiences. This aspect has been rapidly increasing
in importance as many online services are starting to add a social network aspect to their
system (e.g. last.fm, Yelp, Flikr) or directly rent existing social networks (e.g. Amazon,
Netflix, Bing).

The previous chapter exploits Homophily for behavior prediction, where the behavior
of two socially-connected users is tied and reinforced by each other. This chapter further
investigates a more realistic case where acquainted users are not necessarily reinforcing each
other in decision making. We do so by modeling the signed social ties, a much stronger
signal that allows us to tie the behavior of a user to whom he trusts rather than whom he
knows.

Unsigned Relation Analysis. Traditional relation analysis [50, 70, 66, 25] focuses on
unsigned relations and estimates the tie strength between two users by propagating the
observed links through the network topology. For a pair of users (u,v) the observation
whether they are connected (i.e., know each other) is binary s,, € {1,missing}. Many
existing methods employ random walk or spectral algorithms. A random walk on the
graph G is a reversible Markov chain on the vertices . The transition probability © — v,
expressed via p(v|u) is defined e.g. by p(v|u) = d;'sy,, where d, denotes the degree of
vertex u. Vertices are considered close whenever the hitting time is small or whenever the
diffusion probability is large. In some cases spectral smoothness is used to obtain similarity
via the associated graph Laplacian [78]. This yields the intrinsic kinship defined by the
dominant eigenvectors of the graph [50].

Signed Relation Analysis. Social relations are complex and subtle [47, 28], reflecting
interactions that could be either positive (e.g. trust, agreement, approval) or negative (e.g.
distrust, disagreement, opposition). Yet until recently a number of authors began to in-
vestigate signed relations by examining the links in emerging signed social networks (e.g.,
Slashdot, Epinion). [28] applied random walk algorithms to propagate both positive and
negative links on Epinion network. [43] conducted similar experiments on Slashdot data.
[47] examined the applicability of social psychology theories at multiple signed networks.
[46] further applied classification approaches to predict the sign of social relationships. While
the goal of [46] is seemingly similar to the sign-labeling task we explore here, this work is
still within the scope of link analysis since the focus there is solely on the network topology.
Furthermore, they adopted a leave-one-out setting — a rather optimistic scenario where
the sign labels for all but one edge are observable. Instead, our focus is not on network
topology, but rather on discovering the interplay between relations and behavior. Also, we
require no or fewer labels to obtain comparable prediction as [46].

6.2.3 Data

Before providing a formal description of our approaches let us briefly discuss the data, which
we will use to draw intuitions for model development, test proposed models and motivate
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Figure 13: Histograms of behavioral correlations for positively and negatively connected
users on epinion.com.

further enhancements.

Epinion We use data from www.epinion.com for our analysis as it is the only publicly
available dataset we are aware of that contains both signed social relationship and user
behavioral data. Epinion is a well-known knowledge and opinion sharing web site, where
users post reviews and assign ratings (on a scale from 1 to 5) to various of items such as
retailing products, companies, or movies. More interestingly, the site maintains a signed
social network that allows each user to indicate explicitly other users that he is connected
to as either positive (trust) or negative (distrust). We apply our models to predict the
trust/distrust relationships. The data set contains 132 thousand users, 1560 thousand
items, 13.6 million ratings and 850 thousand signed relationships. Both the user-item
matrix and the user-user network are very sparse, with densities of only 0.014% and 0.0048%
respectively.

Yahoo! Pulse pulse.yahoo.com is an unsigned social network that allows users to com-
municate with friends and also express their preference for items with explicit indications of
“like”. We examine data collected over one year, involving 10% users and a large collection
of items, such as games, sports, News feeds, finance, travel, shopping, and local information
services. Our evaluation focuses on a random subset consisting of about 400 items, 1.2
million users and 29 million “like” indications. Due to the unsigned characteristic of this
network, we are not able to use this data set to evaluate edge-sign prediction. Instead, we
will use this data set for behavior prediction evaluation (Section 6.5).

6.2.4 Motivating Observations

This chapter attempts to predict signed social ties by capturing the interplay between
behavioral and social interactions. A key insight is that we consider the behavioral data
(e.g. the ratings) to be useful for predicting signed social interactions. This is reasonable as
in reality we are often willing to follow the opinions from a trusted friend and fight against
those from a foe. As a result, decisions of positively-connected (i.e., trust) friends are more
likely to agree, whereas for frenemies the chance of disagreement would be considerably
higher. Here we empirically validate this intuition on the Epinion data, as can be seen in
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Figure 14: An illustration of the “mixture of effects” assumption in individual behavior
and social relation.

Figure 13.

In particular, we quantify behavioral agreement using the Pearson correlation score
between the ratings of two users, and we compare this between users with positive and
negative links. The Pearson score is defined as follows:

L Zie@[uv} YuilYvi
uv = 2 3’
\/ZiEO[uv] Yui ZiEO[uv] Yui

where O[uv] denote the set of items that both u and v rate. Figure 13 plots the distribution
of 7y for positive-relationships (u trusts v) and negative-relationships (u distrusts v). We
can see that the behavioral correlation is highly predictive for signed relations. Specifically,
the majority (almost 90%) of the positive links indeed show positive behavioral correlations.
The case for negative links is a bit more complicated — the distribution peaks at both -1
and +1, indicating that users with distrust relationships could agree or disagree with each
other. But even in this case, we can still observe that for almost 40% of the negative edges,
the signs of relations are consistent with the signs of behavioral correlations.

¥ (27)

6.3 Behavior Relation Interplay

The nontrivial relationship between behavioral correlation and the sign of social relations
motivates us to leverage both social and behavioral evidences when predicting signed social
ties (and/or behavior vice versa). In this section, we present models to capture the interplay
between users’ behavior of decision making and social interaction in the context of social
networks.

6.3.1 The BRI Model

Similar to the latent factor CF models for behavior prediction, we devise a latent factor
model for user behavior data {y,;}. We associate latent factors ¢,, with user u and ; with
item 4. For notation convenience we require that each latent factor contains a constant
component so as to absorb user/item-specific offset into latent factors. In particular, we
assume the following model for behavior (The gist of our approach is captured by Figure 14):

Intrinsic taste We assume user u’s interest in item 7 is quantified by ¢, ;.
Trust credit Similarly, we assume user u trusts an acquainted user v with a credit ¢, ¢, .
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Social decision making Furthermore, we assume that user v makes decision w.r.t. item
1 by taking a random walk, that is: with probability p he follows his own taste QSI Vi,
or with probability (1—p) he asks one of his friends, say v (with transition probability
gbz ¢y ) for advice, where v’s opinion is captured by gbZ ;. As aresults, aspects that are
favored/disliked by his friends should impact an individual user’s own choices. The
decision ,; therefore depends on po, ¥; + (1 — p) Zv(gbz ¢y)u1b;, which is achieved
equivalently by “coloring” the inner product between users by a normalized variant
of the correlation

M, = (trC,)~' C, where C, = Z e (28)

fui = ¢y [T + (1 — p) M, (29)

Here p € [0, 1] encodes the the probability with which a user’s behavior is decided by his
own taste.

The same model can be applied to incorporate social relations among users. We assume
a user u is fully characterized by its latent factor ¢, and the following model to characterize
the relationships of user u to user v:

Prior impression We assume user u trusts an acquainted user v a priori (i.e., prior to
any decision making behavior) with credit ¢, ¢,.

Behavior agreement User u calibrates his impression regarding v based on the agreement
between his own and v’s decisions, e.g., according to the correlation Zz(gbz Vi) (d) ;).

Social tie We assume the social interaction is a mixture of both prior impression and
behavior agreement with mixture parameter ¢, i.e.: the social tie depends on q¢,! ¢, +

(1= q) X2i(Guvhi) (9] ), or equivalently:

M, := (tr Cy) "' Cy where Cy = ZMT,Z)Z-T (30)

hus = @y, [al + (1 — q) M) ¢, (31)

Here ¢q € [0, 1] defines the mixture probability of prior impression. Unlike in random walk
models where proximity in a graph is simply used to smooth secondary estimators of param-
eters (e.g. reachability, hitting times), we make direct use of it to model the latent variables
@s.

Based on the above descriptions, we specify the probabilities with spherical Gaussian
distributions (extensions to other distributions are straightforward) and we summarize the
overall model in the table below.

The Behavior Relation Interplay (BRI) model.

Vueld bu ~ N(¢u]0,071)
Viel Yi ~ N (1i]0,071)
Vuel,icel Yui ~ N Yuil fuir 03 1)
Yuveld SquN(Sudhuv,O’?gI)

Here o1, oy, 0s, oy are scalars specifying the variance.
We develop inference algorithms for the proposed model, relying on three types of dyadic
evidences:
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1. The user behavior trace {y,;} in the form of user-item interactions such as a user’s
rating for a movie.

2. The unsigned user-user social connections (e.g., the acquaintance relations at Face-
book) {cyy}, where ¢y, = 1 when u and v know each other or missing otherwise.

Or alternatively whenever available:
3. The signed connections {Syy }, Su» = £1 or missing, e.g., the trust/distrust or friend/foe
relations at Epinion and Slashdot.

We refer to ¢y, as unlabeled tie and to s, as labeled tie. Our goal is to infer the labels of
social ties using none (i.e. unsupervised) or only a fraction (i.e. semi-supervised) of the label
observations by fitting the latent factor model BRI on the above three sources of evidences.

6.3.2 Unsupervised BRI

We first consider the case where no label is observed. This is a typical setting for the
majority of social network sites such as Facebook. Our key idea is to use an absolute-value
link function |¢|, which bridges the hidden signed-ties we aim to infer, h,,, to the unsigned
acquaintance connections we actually observed, c,,. In this way, we enable the mechanism
of automatic sign determination in the same spirit as the maximum margin clustering of [87]
— we assume the objective function achieves optimality at either h,, = +1 or hy, = —1;
through optimization, the model will automatically determine the optimal sign for h,,
because different signs correspond to different objective values.

Formulation. Given the observations of user-item behavioral interactions (u,i) € O, and
unsigned user-user connections (u,v) € O., we have the following optimization:

milgrfize )‘y Z (yui - fuz)2 + Ae Z (Cuv - ‘huv’)2 + Ay Z H‘bu,‘z + )‘IZ HT/%HZ (32)

(u,2)€Oy (u,v)€0, uel i€l

where Ay, Az, Ac, Ay are trade-off parameters, fy; and hy, are defined according to Eq(29)
and Eq(31).

Prediction. Given an incoming pair of users, (u,v), we predict the sign of the social tie
(i.e., trust or distrust) as follows:

Sup = sign(hyy — ho) (33)

Here hg is a threshold which suitably determines the fraction of positive and negative
ties. Whenever we have access to some labels on a validation set, it is straightforward to
determine hg via line search: simply sort A,, by magnitude and compute the balanced error
for each distinct value of hy,. This is in complete analogy to the line search procedure of
[35] for Fj scores.

Optimization. Eq(32) is minimized by stochastic gradient descent. Strictly speaking the
objective does not decouple entirely in terms of ¢ and ¢ due to the matrices M, and M;.
Nonetheless we found that an approximation which performs stochastic gradient descent
on ¢ and v while keeping M,, M, fixed produces good results. Also, it can be decomposed
into sessions and parallelized using the MapReduce framework.

The stochastic gradient descent procedure is entirely standard: the algorithm processes
all observations and updates the parameters in the direction of the negative gradient. For
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instance, for O, the updates are as follows:

Gy (1 - 77/_\1/{)¢u - n(fuz - ym)(p¢2 + (1 - p)Mywi) (34)
Yi — (1= nA2)vs — n(fui — Yui) (pPu + (1 — p) Myoy) (35)

Here My and A7 are regularization constants suitably adjusted with respect to the prediction
accuracy (they are obtained by normalizing Eq(32) in terms of size). The learning rate 7 is
annealed with a discount factor after each iteration, as suggested by [40].

Algorithm 1 Stochastic gradient descent learning
initialize M, = M, = I, random ¢, and 1);
fort=1to T do
Stochastic gradient descent w.r.t. ¢, with M, fixed.
Update M
Stochastic gradient descent w.r.t. ¢; with M, fixed.
Update M,

end for

The absolute-value link function || is approximated by a smooth variant (o' log 2 cosh a)
with o = 100. This approximation avoids non-differentiability in the objective function and
aids convergence of the optimization.

6.3.3 Empirical Results for Unsupervised BRI

We conducted experiments on the Epinion data set. The social relationships in Epinion are
dominated by positive ones (over 85% of the edges are positive). Following the settings of
[46, 28], we derive a balanced dataset containing equal numbers of positive and negative
relations by randomly down-sampling the positive edges. Moreover, because the behavioral
data in this dataset is extremely skewed (the mean value of the ratings is around 4.6), we
standardize all the ratings to the range [—1, 1] by applying a transformation: (y—3.0)"—1.0.

We evaluate the BRI model in terms of its unsupervised sign prediction accuracy. For
this purpose, we hide the signs of all the relationships in the training set, i.e., all the edges
are treated as “acquaintance” regardless whether they were originally trust or distrust. For
comparison, we also evaluate the following three unsupervised methods:

e RANDOM. A random guessing predictor yields 50% accuracy because the dataset is
balanced.
e CORRELATION. The 1-dimensional classifier:

guv = Sign(’}/uv - 70)

based on the behavioral correlations -, where g is the optimal threshold found by
line-search.

e F1p. The Friendship-Interest Propagation model [93] has been proved effective for
link (tie-strength) prediction using both social and behavior data. FIP can be viewed
as a special case of BRI with (1) both p = 1 and ¢ = 1; and (2) no automatic sign
determination.

Throughout this chapter, all the models are evaluated by using the 1-dimensional prediction
scheme Eq(33). In particular, for the output score p,, of a model, we predict the sign as
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Figure 15: Unsupervised sign prediction performance on Epinion.
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Table 8: Semi-supervised sign prediction performance on Epinion data.

Model RanD | Fip | Corr | Loo-LR BRI

Labels 0 0 0 All-1 0 1% 5% 10% | 20% | 50% | 90%

Accuracy | 0.500 | 0.591 | 0.644 0.934 0.709 | 0.731 | 0.747 | 0.776 | 0.818 | 0.869 | 0.912

Sup = sign(puw — po), where po is an optimal threshold scalar found by line search on
validation data.

The prediction accuracy is depicted in Figure 15, where the results of BRI and FIP are
reported at latent dimensionality £ = 5, 10 and 50 respectively. As can be seen from the
figure, BRI achieves up to 71% accuracy in this unsupervised setting and it significantly
outperform all the three baselines. In particular, BRI gains 42% improvement over RAN-
DOM, 21% over Fip and 11% over CORRELATION. The result is quite promising especially
considering that all the signs are hidden in training. It also proves the BRI model is poten-
tially usable in practice for en-signing unsigned social networks, given that we can predict
trust /distrust from acquaintance relationships with over 70% accuracy.

One key notion that motivates our work is that we assume the behavioral data should
be useful for tie-sign prediction. As can be seen from Figure 15, using the behavioral data
alone, the simple correlation-based predictor achieves the second best performance among
all the four models. This observation validates our hypothesis and indicates that behavioral
information is indeed highly predictive for signed social ties. In Figure 16 (b), we further
report the accuracy of BRI as a function of the weight for behavioral data, i.e., A, in Eq(32).
As we can see, while the best result is achieved at a moderate value of ), interestingly,
the performance does not degrade badly if we further increase A,. In contrast, if A, is
decreasing toward 0, the performance degrades quickly towards that of random prediction
— in an extreme, BRI trained on unsigned social data alone does not perform substantially
better than RANDOM. These observations reveal that, in the unsupervised setting, the
behavioral information is even more predictive than, and should be emphasized over, the
topology of the acquaintance graph.

Note that although the FiP model also leverages the behavioral data, it is ineffective
in sign prediction. F1P estimates the tie-strength between two users, i.e., it attempts to
predict whether two users, u and v, know each other. Nonetheless, it is incapable to predict
whether they trust or distrust each other, i.e. F1IP cannot discern the sign of a connection.
From another prespective, this comparison between F1pP and BRI confirms that the proposed
mechanism of automatic sign determination is effective for sign prediction.

The performance of the BRI model is affected by the parameters of mixture probabilities,
i.e.,, p and ¢ in Eq(29-31). In Figure 16, we illustrate how the prediction accuracy of BRI
changes with these two parameters, where for simplicity p and ¢ are set to the same values.
As can be seen from the figure, the accuracy curve is typically in a inverted U-shape with the
optimal performance achieved at around 0.2. This observation suggests that both the two
groups of factors (i.e. intrinsic taste vs influence, prior impression vs behavior agreement)
are important and should be taken into account simultaneously as what we do in the BRI
model.

6.3.4 Semisupervised BRI

We now consider semi-supervised formulation, where part of the labels for social ties are
observed — in practice, these labels could be obtained directly from users through an
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online survey or simply by manual annotations. In particular, assume that in addition to
the behavioral observations O, and the acquaintance relations O, we also have access to a
small set of labeled relations (i.e., trust-distrust) on pairs (u,v) € O. In this case we add

)\s Z (Suv - huv)2 (36)

(u,)€O,

to the objective function of Eq(32). This formulation has a close connection with the semi-
supervised classification model of [6]. It maximizes the fidelity to the target output (e.g.
Sup) of the labeled data, while approximating the target output for unlabeled data up to an
arbitrary sign. A notable distinction is that we are learning latent factor models (e.g., the
BRI model) rather than a global feature mapping (i.e., the classifier of the form w 'z + b in
).

The learning algorithm and prediction formula are similar to the unsupervised case and
therefore are omitted.

6.3.5 Empirical Results for Semisupervised BRI

Table 8 gives the overall results of semi-supervised sign prediction on Epinion data, where
we report the performance of the BRI model that are trained using progressive proportions
(1% to 90%) of the labeled data. As a reference, we also report the results obtained by
RANDOM guessing, CORRELATION-based 1-dimensional classifier, the Friendship-Interest
Propagation (F1p) model of [93] and the leave-one-out logistic regression model (denoted
Loo-LR) of [46].

Our first observation from the table is that the performance of the BRI model is ap-
proaching that of LOO-LR. As we increase the labeled data used for training, we see that
the prediction accuracy of the BRI model is steadily improving, indicating that the labeled
data can indeed be used to improve the prediction ability of BRI, somewhat as we ex-
pected. In particular, with 1% of labeled data, we gain over 3% improvement of accuracy;
and if we use over 90% of the labeled data, BRI can achieve comparable performance as
the leave-one-out prediction of [46] but using far less supervision information compared to
the latter.

Interestingly, it seems that the labeled data are not always helpful for BRI. For example,
the model trained using 100 (i.e. less than 0.05%) labeled edges does not perform signifi-
cantly better (in some cases, even slightly worse) than the unsupervised model. This obser-
vation suggests that the amount of the labeled data should exceed a minimum threshold in
order for it to take effect. This is quite different from the traditional semi-supervised learn-
ing in which labeled data, whenever available, seems to always help prediction. Nonetheless,
it is reasonable in our context because we are learning a latent factor model over extremely
large user/item spaces — the model is almost inevitably overparameterized and with a lot
of local optima due to the nonconvexity; the labeled data cannot guarantee to drive the
model toward a right direction if there is too little of it.

6.4 Encoding Social Psychology

Theories from social psychology [28] provide profound perspectives for understanding the
formation of signed relations in social networks. According to [47, 46], satisfactory sign
prediction accuracy could be obtained by applying social psychology principles. For exam-
ple, [46] constructed local topology-based features according to status and balance theories

75



Table 9: Comparison of sign prediction performance on Epinion: models with vs without
sociological principles.

%Labels 0% 1% 5% | 20% | 50% | 90%

BAL 0.539 | 0.557 | 0.582 | 0.601 | 0.662 | 0.735
STA 0.617 | 0.719 | 0.757 | 0.799 | 0.824 | 0.843
BRI 0.709 | 0.731 | 0.747 | 0.818 | 0.869 | 0.912

Bri+BAL | 0.711 | 0.734 | 0.751 | 0.821 | 0.870 | 0.912
Bri+StaA | 0.714 | 0.739 | 0.763 | 0.833 | 0.884 | 0.925

and employed a logistic regression classifier based on these features to predict the signed
relationships. In a leave-one-out setting, their model achieves up to 93% sign prediction
accuracy on Epinion data. In this section, we extend the basic BRI models to encode social
psychological principles, especially the theories of status and structural balance.

6.4.1 Encoding Structural Balance Theory

The first theory we try to encode is that of structural balance [31, 47]. Roughly speaking
it implies the intuition that “a friend’s friend is a friend” and that “an enemy’s enemy is
a friend”. Basically, it considers the balance of signs on a triad involving three users. It
states that a triad is balanced if and only if it contains an odd number of positive edges.

BALANCE THEORY [31, 47]: A triad (u,v,w) is balanced in either of the two cases: (1) if
Suv = 1 and Sy = 1, then sy = 1; (2) if Sy = —1 and sy = —1, then sy, = 1.

To encode the balance theory, we introduce an additional (1-dimensional) latent factor 3,
for each user u. Unlike the latent profiles ¢, G is only used to capture the structural balance
of the network topology. In particular, we assume an additional component:

Guv = Bubu, (37)

The social tie is modeled using the following mixture-of-effect model:

how = Q1¢I¢v + Q2¢IM5¢U + Q3ﬁuﬁv7 (38)

where ¢1, g2, g3 €[0, 1] and ¢1 + g2 +¢3 = 1.

The new mixture component encodes the status theory because it implies: if g, > 0
and gy > 0, then gy, > 0 (i.e. a friend’s friend is a friend); if g, < 0 and gyw < 0,
then gy, > 0 (i.e. an enemy’s enemy is a friend). This is a well known parametrization of
structural balance. In fact, it matches the models found in collaborative filtering by matrix
factorization, albeit with reduced dimensionality. Effectively we are setting aside a subspace
of the latent factors exclusively for social interactions.

6.4.2 Encoding Status Theory

In the previous sections we implicitly viewed the social network as an wundirected graph.
Here, we extend the BRI model to encode status theory [28, 47], which was developed
for directed networks. That is, from now on, the social ties are viewed as asymmetric
relationships. Basically, status theory assumes that there exists a partial order over the
user space such that positive edges only goes from low-status nodes to nodes with higher
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status; therefore, the relationships are transitive, i.e., if s, = +1 and sy, = +1 then
Suw = +1, and vice versa.

STATUS THEORY |28, 47]: A positive directed link s,, = +1 indicates that the head node u
has a higher status than the tail node v; a negative link sy, = —1 indicates that u has a
lower status than v.

To encode status theory we introduce a global parameter 6 to capture the partial ordering
of users. 6 maps the latent user profile ¢, to a scalar quantity ¢, = 67 ¢, which reflects
the corresponding user u’s social status. According to status theory, we characterize social
ties from u to v by modeling the relative status difference between user u and user v:

buw =07 (pu — b0) =0Ty — 07y, . (39)
=:ly =:ly

Note that status theory implies that the social tie is typically an antisymmetric relationship,
i.e. if sy, = +1, then s,, = —1. This implication is, however, too strong. For example, in
the Epinion case, only 2% of the bi-directional relationships are truly antisymmetric. To
relax this assumption, we therefore use a mixture of effects model as in the previous section.
This yields:

huv = Q1 Do + G2ty My + q3(u — £y). (40)

Since £, £, induce a total order on users it satisfies the requirements of social status theory:
by transitivity £y, > 0 and £y, > 0 imply £y, > 0.

6.4.3 Empirical Results

We evaluate the two extended BRI models in the semi-supervised setting and report the
results in Tabel 9. As a reference, we also report the performance of the balance model
and the status model on its own. As can be seen from the table, by encoding the status
theory, we achieve results that are comparable with the leave-one-out prediction of [46], but
we use far less supervision, i.e. observed tie labels. Also note that encoding the balance
theory only leads to very marginal improvements. The latter is to be expected since adding
a small subspace to an already existing multiplicative latent factor model will not change
the expressive richness of the model significantly.

Among all the methods, the 1D balance model performs the worst, e.g., in the unsu-
pervised case, it performs even much worse than F1p and the correlation-based approach.
Somewhat surprisingly, the plain status model perform quite satisfactorily. In most cases,
the accuracy scores achieved by the status model are very close to those obtained by the
basic BRI model. This observation is consistent with the empirical insight reported in [47]
that status theory turns to explain the signed relationship better. However, these results
do not entirely invalidate the balance theory because we use a rank-1 model that could be
too simplistic for any practical network topology.

It is worth noting that the status model provides a status mapping ¢, = 6" ¢, that
embeds the users into a 1-dimensional space with the coordinates corresponding to users’
social status. In Figure 17, we visualize the Epinion network by randomly sampling 0.1%
edges as a bipartite graph based on this embedding. In particular, the upper and lower
horizontal lines denote the embedding spaces for head nodes and tail nodes respectively;
edges that match the status theory (i.e., sy, = +1 while £, > £, or sy, = —1 while £, < ¢,)
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Figure 17: A visualization of social status and signed social ties for epinion.com.

Table 10: Behavior prediction performance on Epinion and Yahoo! Pulse.

Epinion Yahoo! Pulse

Model | RMSE | MAE | AP@Q5 | AR@5 | nDCG@5
SvD 0.556 | 0.387 | 0.726 | 0.208 0.734
Fip 0.553 | 0.386 | 0.761 | 0.225 0.767
BRI 0.524 | 0.350 | 0.778 | 0.232 0.785

are plotted as green lines; in contrast, edges mismatch the theory are depicted as red lines;
to give a clear illustration, negative edges are inverted, i.e., s,, = —1 are replaced by
Syu = +1. This figure shows a clear picture about social status and signed relations. Over
84% of signed relations, i.e., trust/distrust, are indeed consistent with the theory, going
from higher-status head nodes to lower-status tails. Noticeably, while there are confusions,
they are mainly in the middle area between users with relatively small difference of social
status. Also note that the confusions are becoming increasingly sparse for high-status head
users, indicating that these users are more likely to be trusted by most other users, which
is intuitively reasonable. An interesting investigation would be to examine how the social
status discovered by this work relates to the well-known concept of authority [38] in social
networks. We would like to leave such investigation for future research.

6.5 Behavior Prediction

A direct motivation of this work was to take advantage of signed relationships, when avail-
able, for behavior prediction purposes. The reasonable expectation in this context was that
a stronger social signal would allow us to obtain better behavior prediction than what can
be achieved via unipolar Homophily. In this section, we test whether, even in the absence of
explicitly available signed social ties, we are able to improve behavior prediction estimates.
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For this purpose, we compare three models: a plain collaborative filtering approach (SvD),
the Homophily-based model (F1p) [93] and the proposed BRI model. We evaluate these
models on both Epinion and Yahoo! Pulse data. For Epinion, we evaluate the rating pre-
diction performance in terms of root mean square error (RMSE) and mean absolute error
(MAE). For Pulse, because the behavior data is binary (either 1 or missing), we evaluate
the top-k ranking performance, i.e. we compare the top suggestions of the model with the
true actions taken by a user (i.e. whether he liked the item). We use the following three
metrics commonly used in the IR community:

AP is the average precision. APQk averages the precision of the top-k ranked list of each
query (e.g. user).

AR or average recall of the top-k rank list of each query.

nDCG or normalized Discounted Cumulative Gain is the normalized position-discounted
precision score.

In all three metrics we use k = 5 since most social networks use a similar number of items
for service recommendation. For the Pulse data, we also implement the bias correction
procedure suggested by [93].

The overall results are reported in Table 10. For both data sets we see that the BRI model
consistently outperform the two baselines in all the measures. In particular, it improves
the RMSE by 5.8% on Epinion, and the nDCG@5 score by 6.9% on Yahoo! Pulse. Note
that BRI also significantly outperforms the FiP model. In terms of methodology, both Fip
and BRI exploit social relations to improve behavior prediction; the difference, however,
lies in how they leverage the social relations: F1P models the unsigned tie-strength between
users which is then used to reinforce the decision making behavior of connected users; in
contrast, BRI models the signed ties, distinguishing those whom we truly trust from those
we do not. In this way, although behavior of two connected users is tied to each other, but
not necessarily reinforcing. BRI therefore provides a mechanism that allows social users
to follow the opinions from people they trust while at the same time fighting against the
viewpoints of their foes. Our results suggest that signed social ties, such as trust-distrust
relations, are a substantially more predictive signal in tying and regularizing social behavior
than Homophily.

6.6 Summary

We examined the problem of predicting signed social ties, such as trust and distrust, based
on the acquaintance relationships in social networks. This allows us to determine, with
surprising accuracy, whether a link corresponds to a trustworthy friend or rather a frenemy.
We present models that infer signed ties by capturing the interplay between social relations
and users’ behavior of decision making, and extend the models to encode general principles
from social psychology. We investigate sign prediction in both unsupervised and semi-
supervised settings, conduct experiments in a variety of perspectives and report promising
results. We demonstrate that the predicted signed ties are much stronger signals for relating
social behavior than traditional Homophily.

In the first two parts of the thesis, from Chapter 3 through Chapter 6, we have so far
focused on examining behavior prediction and social contagion. Starting the next chapter,
we move on to the third part of the thesis to examine user-generated contents.
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CHAPTER VII

MINING USER COGNITIVE ASPECTS

Starting this Chapter, we move on to the third part of the thesis to examine user-generated
contents especially texts. Users actively generate texts in social networks, for example, by
posting a status update, commenting to a friend’s activity, writing a note / miniblog on
recent news, contributing a review to a newly released movie, retweeting to a hot topic,
or simply asking a question or submitting a query for search, etc. As users in a social
system are extremely diverse in their background (e.g., age, nationality, race, income), one
important research topic is how to discover knowledge about the users from the textual
contents they have generated. Even more interestingly, is it possible to discover some
subtle and hidden properties of social users such as culture, knowledgability, personality,
life-style, mood, etc. from social texts? Effective techniques developed for this purpose
is not only useful for the industry to personalize social services, but also fundamentally
important, for example, for privacy protection, cross-culture behavior comparison, etc. In
this chapter, we demonstrate a model for identifying the technicality /knowledgeability of
a user from the texts he has generated. One direct motivation of the work is to address
the language gap between layman people and experts. In this chapter [91, 18], we seek to
close the gap at the thematic level via topic adaptation, i.e., adjusting the topical structures
for cross-domain documents according to a domain factor such as technicality. We present
a probabilistic model for this purpose based on joint modeling of topic and technicality.
The proposed TLDA model explicitly encodes the interplay between topic and technicality
hierarchies, providing an effective topic-level bridge between lay and expert documents. We
demonstrate the usefulness of TLDA with an application to consumer medical informatics.

7.1 Introduction

Although knowledge access is easier today than ever with the availability of numerous in-
formation sources on the Internet, transferring knowledge across domains remains a critical
challenge. Particularly, transferring expert knowledge to lay users is hampered by the
fundamental language-gap — lay users do not have enough literacy to understand expert
jargons and terminologies; likewise, experts might be unfamiliar with the slang words to
best popularize their expertise to, or precisely capture the inquiries of, a common audience.
Existing research [15, 100] attempts to close the gap at word-level by exploiting shallow
word-correlations based on machine translation techniques, e.g., by augmenting or substi-
tuting the words in a lay document with a bundle of technical words that are statistically
or semantically similar to the original text’s content. These approaches are not entirely
satisfactory because the translation is neither interpretable nor organized. They also turn
to confuse different semantic themes as documents are assumed to be topically homoge-
neous throughout the corpus, which is, however, generally not true [10]. In this chapter,
we attempt to close the gap at a deeper thematic level with a topic bridge that connects
different domains semantically. We propose topic adaptation, a framework that adapts the
underlying topical structures (rather than content words) according to a domain factor (e.g.,
time, sentiment, technicality) while the topics are discovered from cross-domain texts.
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Topic adaptation naturally arises in cross-domain topic modeling. Probabilistic topic
models [10, 26] interpret a document d as a mixture 6 over a set of topical bases (multino-
mial distributions) 8. A basic assumption in existing topic models is that all the documents
within a corpus are drawn using the same shared topical structures (i.e., a single (3). While
this assumption works well for texts from a single domain, it is undesirable for texts from
multiple domains where a significant language gap usually arises. For example, while lay
texts in the topic “cancer” are dominated by common words like “cancer”, “tumor” and
“abnormal”, an experts’ knowledge base would favor technical words like “neoplasm”, “car-
cinoma” and “metastasis”. Naively learning the two domains with a single set of topical
bases will inevitable lead to models with unacceptable fitting bias and in turn harm the
quality of the extracted topics. Therefore, it is imperative to retain related but not identical
topical bases [ for each domain and capture the correlations among s so that topics are
both coherent within each domain and consistent across domains according to the changes
of a domain factor (e.g., technicality). We refer to this problem as topic adaptation (TA).

The learning task involved in TA is challenging. On the one hand, separately learning
topical bases 3 locally from each domain corpus will lose the topical correspondence among
domains — there is no guarantee that the k-th topic learned from lay texts is thematically
relevant to the k-th topic of expert documents; On the other hand, simultaneously learning
multiple 8s from the joint corpus requires decomposing text contents into multiple sets of
word occurrence patterns ((s), which is intractable due to the lack of appropriate supervi-
sion — we only observe the words in each text but not their technicality stamps (i.e., the
degree of a word being technical). Of course, the task would be greatly eased if the quantity
of technicality, ideally for each word in the vocabulary, could be assigned a priori. However,
manual annotation is often too expensive (e.g., vocabulary is huge, and dominated power-
law by rare words that could easily exceed any individual’s scope of literacy) and unreliable
(e.g., any annotator could easily bias toward her own interest areas) to be practical.

In this chapter, we present the topic-adapted latent Dirichlet allocation (TLDA) for
topic adaptation from cross-domain documents. The 7LDA model devises a technicality-
hierarchy in parallel to the topic-hierarchy of LDA, and encodes the interplay between the
two hierarchies in the generative process. It leverages a mild supervision (the per-domain
technicality stamps) to guide cross-domain consistency, making sure topics be adaptive
to technicality changes. Moreover, it retains domain-specific topic bases (s to ensure in-
domain coherence, which is efficiently parameterized via a two-mode mixture. We derive
efficient inference and learning algorithm for 7TLDA based on variational Bayesian methods
and evaluate it with an application to consumer medical informatics.

7.2 Related work

The language discrepancy between low-literacy laypeople and expert-produced documents
has been widely recognized as a fundamental barrier for cross-domain knowledge transfer.
[99, 73] observed that the language gap substantially degrades the performance of medical
information services. [80] reported a similar challenge in legal informatics. Conventional
efforts [42, 7] take a very manual approach, e.g., by educating clinicians and manually
constructing communication scripts tailored for patients. Recently, several researches at-
tempted to close this gap via word-level machine translation [15, 100]. In contrast, we
attempt to bridge domains at the topic level to capture the deeper thematic correlation
among domains, with add-on benefits such as readily interpretable results (e.g. the topic
and technicality structures offer a comprehensible organization of texts for browsing or
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summarization).

Topic models have been established for cross-domain texts, for example, the cross-
language topic models [101, 63]. These works, however, are fundamentally different from
ours: in their setting, topics are multinomials over different vocabularies; whereas in ours,
topics are different multinomials over the same vocabulary. In essence, we are addressing
the subtle variations within a language, which are arguably (more) challenging. These
models are also limited in applications as they require a corpus containing approximately
parallel documents. Perhaps most relevant to our work is the dynamic topical model [82],
which learns drifted topics from time-evolving domains. Although such topic drifting is a
special type of topic adaptation, the assumptions for time factor (for example, causality
and Markov assumptions) are less suitable for other domain factors such as technicality.

Technicality is an important factor of natural language text, yet (surprisingly) rarely
explored in topic modeling. A noticeable exception is the recently proposed hierarchical
topic model or hLDA [8], which extracts a tree structure for learned topics. Although the
depth of each topic in the hLDA topic tree roughly reflects the degree of its specificity, the
only guidance for learning the tree is a nonparametric prior (i.e., the nested Chinese restau-
rant process), which admits a plausible monotonic constraint for topics: high-specificity
topics are always contained by lower ones. Because the regulation imposed by the nCRP
prior is rather weak and diminishing quickly as observations increase, and the monotone
assumption could be inaccurate, the technicality quantified by hLDA is usually unsatisfac-
tory. Furthermore, hLLDA is not applicable to topic adaptation for cross-domain documents
as it models a single topic structure (.

This chapter explores how the topic structure § evolves according to a continuous fac-
tor, e.g., technicality 7 € [0, 1]. We do so by extracting a family of aligned topic structures
{B(7)|T € ]0,1]}, where for any topic ID k the multinomials G (71) and S (m2) are seman-
tically about the same theme (with different technicalities). Such aligned topic structures
serve as a topic-level bridge which allow us to safely assess the similarity (e.g., match query
with documents in IR) of two documents, dy and dj, solely in terms of the corresponding
topic memberships 6; and 0 without worrying how different their technicalities are or how
they differ in BOW representations. The model is also practically appealing as it requires
only mild corpus-level (rather than word-level) supervision.

7.3 Topic adaptation

Assume we have a family of domains {D(7) : 7 € [0, 1]}, distinguished from each other
with distinct values of a domain factor! 7. Without loss of generality, we assume 7 is a
continuous variable in the range [0,1]. A domain is a collection of documents with the same
7, D(1) = {(d,74) : 7¢ = 7}, and a document is a finite sequence of words d = wyws ... wy,.
Our goal in topic adaptation is to infer the topical structures and guarantee its in-domain
coherence and cross-domain consistency for a given multi-domain corpus D = {J, ¢}y 1 P(7).

As in the latent Dirichlet allocation (LDA) model [10], we decompose the document-
word co-occurrence matrix in terms of document-specific topic mixtures #; and a set of
topical bases # (multinomial distributions). However, instead of a single common set of
bases as in LDA, we retain domain-specific topic bases {3(7) : 7 € [0,1]}, which requires
the nontrivial task of learning a functional family of multinomials. For simplicity, we adopt

'Hereafter, the domain factor 7 always refers to technicality, although other factors such as sentiment
and time might be equally applicable.
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Figure 18: The topic-adapted latent Dirichlet allocation (7LDA) model.

a two-mode mixture to efficiently parameterize 3(7). Particularly, we assume any 3(7) is a
mixture of two extremes 8% = 3(0) and #' = 3(1), that is: 3(7) = (1 — 7)° + 73%.

We establish a probabilistic generative model for topic adaptation. The key innovations
are as follows: (1) we assume a hierarchy for technicality, in parallel to the LDA topic
hierarchy; (2) we model the interplays between the topic and technicality hierarchies at the
latent level; and (3) we let each word sampling be conditioned on both latent topic and latent
technicality assignments. Specifically, the topic-adapted latent Dirichlet allocation (TLDA)
model assume the following generation process for each document-technicality pair, (d, 74),
in the joint corpus D:

1. Draw topic mixture § ~Dir(«)
2. For each topic, draw topic-level technicality 7 ~Beta(A1x, Aak)
3. For each word:

a) Choose a topic assignment z, ~Mult(f);
b) Choose domain (i.e., technicality) assignment ¢,, ~ Bernoulli(r, );
¢) Sample word w, ~ Mult(3i);

4. Generate document technicality 7 ~ p(7|t1.n,w).

In the model, we assume the number of topics, K, is a priori specified and fixed (in
practice, it could be determined via Bayesian model comparison [26]). As in the plain
LDA model, the per-document topic mixture 6 is drawn from a K-dimensional Dirichlet
distribution Dir(«), and the per-word topic assignment z is from a discrete distribution con-
ditioned on 6, i.e., Mult(#). In parallel to this topic hierarchy, we also model a technicality
hierarchy. The per-document technicality 7 is a K-vector, with each entry = specifying
the degree of technicality for each topic; each 7 is drawn independently from a Beta dis-
tribution? Beta(A1, Aok). The per-word technicality assignment ¢ is a binary scalar, it is
generated conditioned on both 7 and z from Bernoulli(r,). Basically, when the i-th topic
is sampled (i.e., z; = 1) and its technicality m; is given, ¢ further specifies a domain — from
which of the two extreme domains the topic is sampled (e.g., whether the “cancer” topic is
talked about in layman or expert domain). Thereafter, a word is sampled conditioned on
both topic and domain (technicality) assignment from a multinomial distribution Mult(3?),
where 3t = (8°)=4(81)!; both B° and 8! are K x V matrices, where V is the size of the
vocabulary. Finally, the technicality stamp associated with each document is modeled as

2Tn our implementation, we assume A1 + A2x =const for all k to further reduce parameters.
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a response varlable generated conditioned on all the technicality assignments: p(7|w'%),
where § = & Z —1Yn, Yn = tpz, is a topic-aware code of ¢,. For now, we use a cosine
regression model that enjoys the best interpretability [88]; other models will be explored
later. Particularly, we assume p(7|w'7) = % exp(Tw '), a degraded log-linear model with

constant partition Z = fol exp(Tw'g)dr = const. This model leads to regression by max-
imizing the Frobenius inner product between the model prediction and the ground-truth:
w = arg max(T:a, w ' Yr:u)-

The overall model is depicted with a graphical representation in Figure 18. For each
(d, T) pair, the joint distribution is given by:

Pd :p(ev T, Z1:N, tl:N7 W1:N, ’7'|Oé, >\7 ﬁov ﬁlv W)

41
p(@lp(rle D [T s [T palptalr o).

7.4 Inference and learning

Both parameter estimation and inferential tasks in 7TLDA involve the intractable computa-
tion of marginalizing Py over the latent variables. In this section, we derive approximate
algorithms based on variational methods [34].

7.4.1 Variational approximation

We lower bound the log likelihood by applying the mean-field variational approximation:

logpld,rla A 8%, 81 0) = log | 3" P
6,7

z,t

=L(v,®,n,pu) + KL(q||p) = max L(v,®,n, ),
7,®,m,u

where the posterior p(6, 7, z,t|d, 7, a, A, ,w) is approximated by a variational distribution
q. Here, we assume a fully-factorized distribution (per document) on the latent variables:

q(ev T, Z1:N tlZNh/v ¢7 m, M)

K N
=Dir(6|y) H Beta(mg|n.x) H Mult(zy, |¢n )Ber (ty| )
k=1 n=1

Denote H, the entropy of g, £ the operator log p(-), the variational lower bound (variational
free energy) of the log likelihood, £, is given by:

K
[0(6]c)] +ZE (znl0)] + > " Eq[€(mplAi)] + Hq
k=1
N

+ Z (Eq[e(tn‘ﬂzn)] + Eq[ﬁ(wn\ﬁﬁif)]) + Eq[e(T‘WTg)]-

n=1
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The terms in the first line are similar to those in LDA. The terms in the second line are
given (in order) by:

K
Eq[é[t]] = Z Gnke (Y (M1k) + (1 = ) W (n2) — W (01 + 12k))

~
Il
—

K
Eq[é[w]] = Z d)nk (/Ln log Bli'u + (1 - /Ln) log 6181}) (42)
1

1 <V
Eqltim) = 5 D2, 2 THnwktnn
k=1

where v is the index of w,, in the vocabulary. By setting the derivatives of £ (the Lagrangian
relaxation of £) w.r.t. the variational parameters to zero, we obtain the following coordinate
ascent algorithm:

E
Il

W= ot Y b (43)
Mme = Ak + ZN Pnkfin (44)
Mok = Aok + Z | Ok (1= in) (45)
Gk o< (B, 7 (5@)“" exp{W () — V(i + n2x)

+ un‘ll(mk) (L= pn) ¥ (n2k) + bresin } (46)

1

Z Gk (¥ (k) — ¥(n2r) + log 6 ) (47)

kv

where W(-) is the digamma function, the logistic mapping ((z) = m, and by is
a supervision bias due to the response model. For the cosine regression model, we have
b = %Tu)k.

These formulas are intuitively interpretable. We observe that the per-word topic distri-
bution, ¢, is learned as a result of negotiation between the two extreme domains. This can
be seen by rewriting Eq(46) as ¢nr o< (¢0,)1 7 (gL, ), where ¢!, = Ey[znk|t, = i], i =0
or 1. Particularly, each word occurrence is split according to its technicality into two parts,
ftn, and 1— pu,,; then ¢0 and ¢! are inferred individually in each domain conditioned on topic,
domain, word as well as technicality samplings; and finally, the two domains negotiate with
each other and output the combined results ¢,;. Another interesting observation is how
the algorithm assigns technicality for each word. It uses a logistic regression model, where
the per-topic regressors (consisting of three parts: the prior contrast W(nx) — ¥(nax), the
domain contrast log ﬁ,iv / ﬂgv, and the supervision bias by) are weighted by per-word topic
distribution ¢ and then mapped by a logistic function.

We finally note that our variational inference algorithm for 7LDA is efficient enough.
From Eq(43-47), it requires O(K N) operations per iteration, which is the same complexity
as LDA.

7.4.2 Parameter estimation

The parameters of TLDA are learned by maximizing the evidence lower bound:

M
maXL = Z Em(ag )\7 57("};,777’” ¢m777mmufm)

m=1
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This two-layer optimization involves two groups of parameters, corresponding to TLDA
and its variational model respectively. Optimizing alternatively between these two groups
leads to a Variational Expectation Maximization (VEM) algorithm, where the E-step corre-
sponds to applying variational approximation (i.e., Eq(43-47)) to each observation (d,, 7p,)
in the corpus and the M-step maximizes L with respect to the model parameters. Particu-
larly, for the topic bases, we have:

/8]21) X Z (1 - ,U*mn)(bmnkw;}rmy

m,n,k

1
Bkv X Z Nmn(bmnkw;}rmy

m,n,k

(48)

where w?,., = 1(wm, = v), 1(+) is the indicator function. From Eq(48), we see again that
each word occurrence is split according to its technicality into two part, p and 1 — p, which
contribute to the two extreme topic bases 4! and 3" respectively.

Then, both the topic and technicality mixture priors, o and A, are solved (independently)
by Newton-Raphson procedures conditioned on values of v and 7 respectively. And finally,
the response parameter, w is learned by maximizing the conditional likelihood:

mj}%XEq[lng(Tl:M@l:M,w)] = (1100w By[g1.1]),
t. o ||| = lw Eq[gruml]|l, (49)

where we pose a constraint to eliminate the scale freedom of w. Based on the Karush-Kuhn-
Tucker optimality of Eq(49), we derive a very simple close-form solution for w:

@ = h/||h]a,

where hh = 57 3, nBq[Gim]s Eqlg] = 5 2, tndnk, and A = Eq[g1aEq[gra]) T /l|7an|
l|z||a = VaT Az denotes the A-weighted la-norm.

7.4.3 Technicality analysis

Here, we derive empirical Bayesian methods to quantify technicality at different granular-
ities. The first task is to predict the document technicality, which enables domain identi-
fication [89, 88]. For a given document d, we first run variational inference on d, then, we
have: 7 = w'g. Note that the terms involving the supervision bias should be removed?® in
variational inference as 7 is unobserved for incoming documents.

At a more compact level, topic technicality directly reflects the specificity of each topic,
similar to the node-depth in the hLDA topic tree [8] Here, we have:

A Nim,1k
7, = Eq(Eq|mmr|dm 50
( q[m‘ Mznm1k+nm2k ( )
Finally, word technicality analysis provides a function mapping for the vocabulary: #(v) :
V — [0,1], which quantifies the relative specificity of a word w.r.t a targeted expertise-
intensive domain and also the relative difficulty for a lay user to grasp. Again, we use
empirical Bayesian:

ty = Ea(Ew[Eq{tnn|wmn = v}ldp]) = Zw%nﬂmn/zwz@w

3For the cosine regression model, set 74=0.5 Vd; for LR and LAD, set by = 0.
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Table 11: The cross-domain corpus consisting of documents from five domains.

Domains Yahoo! PubMed MeSH CDC ‘WebMD
T 0.0 1.0 1.0 0.7 0.3
#doc 74226 161637 25588 192258 275620

7.5 Ezxperiments

In this section, we apply TLDA to medical documents. We wish to find how a same topic
is expressed differently in lay and expert languages, and how topics are shifted according
to domain technicality.

Data. As shown in Table 11, our corpus is a combination of documents collected from
five different domains. The Yahoo! subset is a collection of user questions and corre-
sponding answers from the health category of Yahoo! QA (answer.yahoo.com), repre-
senting lay domain labeled with lowest technicality (7=0). The PubMed (medical journal
articles from www.pubmedcentral.nih.gov) and MeSH (medical subject descriptors from
www.nlm.nih.gov/mesh), in the other extreme, represent expert domain with highest tech-
nicality (7=1). In between, WebMD (documents crawled from www.webmd.com) represents
mildly non-technical domain (7=0.3), and CDC (crawled from www.cdc.gov) mildly tech-
nical domain (7=0.7)*. Note that these coarsely-assigned per-domain technicality labels,
{7}, are the only pieces of supervision information we used for topic adaptation in TLDA.

Results The language gap leads to a substantial discrepancy of word usages between differ-
ent domains, making it difficult to maintain a global vocabulary that is effectively balanced
across domains (Otherwise, the vocabulary could be extremely skewed such that the major-
ity of words come from lay domains). To this end, we first select terms (after stemming and
stop-word removal) locally from each domain based on DF (document frequency) scores,
and then interleave the sub-selection round-robin to form the global vocabulary (over 10K
words).

An important issue for implementing 7LDA is how to initialize 8’s. Although reasonable
results are obtained by totally random initialization, we find that a simple pre-feeding
initialization procedure leads to substantial performance improvement. Particularly, we
first profile the technicality for each word by using the empirical average technicality of the
training documents containing the word, i.e. fi, = > {d: f3>0) fi7a, where f7 denotes the
term frequency of word v in document d; we then train a plain LDA model and compute
the initial ’s using Eq(48), where the pre-feeded word technicalities fi are used in place of
1.

We train the 7LDA model on a 60% subset of randomly sampled documents, and test
on the rest. The results are averaged over 5 repeats. The variational algorithm is effi-
cient: for each iteration, TLDA takes (on average) 7.6 more time than LDA (the LDA-C
implementation) to converge.

Table 12 shows an intuitive view of six example topics found by 7LDA. For each topic,
we list the top-10 most probable words for lay (i.e., high values of 4°) and expert (i.e.,
high #!) domains respectively. These results reveal a notable language gap between the

“WebMD is intended to be generally comprehensible, yet it contains substantially more technical words
than Yahoo!. CDC is intended for both medical experts and public readers, more technical than average.
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Table 12: Example topics found by 7LDA: each topic is shown by the top-ten words in
both layman domain (3°) and expert domain (3'); the top row indicates the technicality
of each topic.

#1: ™= 0.06 #2: m=0.15 #3: m=0.18 #4: w=0.19 #5: ™ =0.26 #6: ™= 0.54
B° Bt 8° Bt 8° Bt B° Bt B° Bt B° Bt
who protein problemactiv better nucleic how relat treatment gene recommend data
ask associ risk chemic | below structur think program| weight analysi medicin method
much  immunolog you process | she same you report your determin | not import
bodi psycholog | your therapi | children inhibitor | someth previous food blood tell deriv
you purif fill substan¢ farther genom femal web profession model littl depart
not virolog thought poison | abl possibl googl various | fda amino past diagnost
eat enzymolog| skin conserv | print per mmwr file health enzym test measur
period induc anyth organ transmissexpress histori databas| diet biosynthes] quit complet
sometim parasitolog face virus season  chromoson) partner establish fat signal social design
agre patholog | regular cell treatmentdna websit analys | dose yeast progress  generat

'you,what,feel,eat,food,people,sleep,diseas,oral virolog,enzymolog,immunolog,pharmacolog,patholog,dna
Edaili,take,visit,like,healthi,exercis,tri,warn,check nucleic,metabol, protein,dna,organ,cell,urin,genom,plasmid
P ' 4.
0 J o1

§doctor,pill,diabet,medic,drug,symptom,pain,side,depress,test,vitamin,spiritu,nutrient,pregnanc,fda,peak,pellet

Figure 19: Example words with low-, medium- and high- technicalities.

two domains — almost all the representative words for lay domain are commonly-used or
even slang words, in contrast, most words on the expert-domain side are highly-technical
medical terminology (for example, words suffixed by “-ology”). The language gap is even
evident when the same topic is concerned, indicating that laypeople and experts interpret
differently even the same ideas.

As a reference, the technicality of each topic is also shown in the top row of Table 12.
A very interesting observation is that there is no highly-technical topic — the maximum
technicality for topics are around 0.5. In essence, this indicates that the language gap is
asymmetric: experts can occasionally talk about topics of lay interests (but in a language
mixing common words and their jargon), but laypeople are unlikely to be interested in
expert’s highly-technical topics. The absence of highly-technical topics in lay domain makes
the corresponding word-occurrence pattern too submissive (infrequent) in the overall corpus
to be captured by the model. To validate this hypothesis, we plot the topic distance between
domains D(B2||3:) (the Jensen-Shannon divergence) as a function of topic technicality 7y
in Figure 20(a). As expected, we see an evident negative correlation between D and ,
suggesting that the closer 7 is to the middle, the more ﬁ,g and ﬁ,i are overlapped. Also
note that the technicality of a topic k does not depend on the word-distribution of 62 or
BL, but rather on how much probability (i.e., relative frequency, see also Eq(50)) a topic
is present in technical than lay domain. Therefore, although the first topic in Table 12
seemingly covers the most technical words in its 3!, it has the lowest technicality — it
clusters very common word in 4° and very-technical word in 8%, but the former appears far
more frequent than the latter.

B9 and B! are two different distributions over the same vocabulary. Because different
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words have different intrinsic frequencies (e.g. technical words are less frequent), a better way
to understand the learned topics might be to label each topic with most representative terms
based on foreground-background contrast (e.g. by selecting words with highest ratio scores
(87 /3, where (3 is a background multinomial regardless of domains, 7 € {0,1}). According
to this analysis, the two sets of topic bases are nicely aligned. Here, for ease of comparison
with results of existing topic models, we comply with conventional topic labeling standard
and demonstrate (in Table 12) each topic with most frequent words (i.e. solely according
to foreground multinomial). Even from this somewhat naive analysis, we can still see that,
except the first one, the two topical structures are approximately aligned. For example,
topic #2 is about beauty and health, #3 birth and heredity, #4 medical records, #5 diet
and weight control, #6 diagnosis and laboratory, etc. This observation indicates that, for a
given k, 62 and 5,1 are roughly talking about the same topic. Such aligned topical bases are
the key to cross-domain knowledge transfer. They fundamentally provide a topical bridge
between lay domain and expert domain such that (1) documents from different domains
can be mapped to the same simplex space S = {6 : ||f||1 = 1,0, > 0}, and (2) the distances
between 6’s precisely captures the semantic similarity between documents, no matter they
are from same or different domains.

To quantitatively evaluate the quality of topic alignment, we perform an information
retrieval task based on the topic mixture 6 learned by TLDA. Our evaluation is confined
by the availability of labeled data. As a preliminary test, we use a small number of lay
documents as queries to retrieve technical documents. The results are manually graded on
a 4-point scale ranging from 0 (irrelevant) to 4 (relevant). Based on this small data set
of 25 queries with 100 documents per query °, we report the performance in terms of the
normalized Discounted Cumulative Gain on the top-five results (nDCG@5). The nDCG@5
for 7TLDA is as high as 0.51 — a huge improvement over 0.38 of LDA based retrieval model
[83].

TLDA also provide a simple mechanism to quantify technicality for words, which was
previous achieved only by sophisticated models (e.g., hLDA). A rough view of word techni-
cality learned by 7LDA is given in Figure 19. We see that most results reasonably coincide
with human intuition.

It would be interesting to examine the relationship between the topic bases learned by
LDA (i.e., 3) and those by 7TLDA (3° and '). For this purpose, we use an element-wise
interpolation: [, = xkvﬁ;v +(1 —xkv)ﬁgv or log By, = Ty log ﬁ,iv +(1—zpy) log ﬁgv, and ex-
amine the distribution of the interpolation coefficient x. We find that the interpolations are
distributed quite diversely: (1) a majority of § entries (about 68.3%, see also Figure 20(d))
are within the convex span of 3% and ! (i.e., z € [0,1]), the rest 31.7% are not; (2) while
the distribution peaks around x = 0 and = = 1, there is no singe dominant x that could fit
all the entries well; (3) the correlation between [zy,|1.v and [t,]1.v is very low (in the range
[—0.05,0.1]), hence using a global per-word technicality function ¢, to assist plain LDA (as
in the initialization procedure) could not work either. These observations indicate that the
interaction with technicality has fundamentally changed the topic structure so that from
to (8%, 8!) is non-trivially a nonlinear decomposition. From another perspective, the ob-
servations also suggest that no single topic structure § is able to interpret a cross-domain
corpus adequately well, hence, models with a unanimous 3 such as LDA will inevitably lead
to substantial learning bias if brutally applied to this scenario.

®Labeled data for this task is extremely expensive as it requires annotators with moderate medical knowl-
edge. We are working on collecting more labeled data from paid annotators and extending this experiment.
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We also examined the TF difference (i.e., B, — 3, or log 8, —log §},) between domains
as a function of word-technicality ¢,. Figure 20(b&c) shows the relationship for an example
topic k, where the differences are normalized to [-1,1]. We see that the topic structures are
nicely consistent with technicality: technical words are more frequent in technical domain
than in lay domain, and vice versa.

We finally report the prediction performance of 7TLDA. Our first evaluation is based
on the test-set log likelihood [81], a commonly used measure for topic models. We com-
pare® 7TLDA with LDA and its supervised version (SLDA, [9]). The results are shown in
Figure 20(e). We see that 7LDA significantly outperforms both LDA and sLDA. This ob-
servation suggests that, by retaining topic bases for each domain, 7TLDA is more suitable
for cross-domain topic learning than the other two competitors, which learn a single struc-
ture 3 for all the domains. We then apply TLDA to domain identification, i.e., to predict
technicality 74 for an unseen document d. Considering that our labeling of 7 is very coarse
(piecewise constant) and that precisely quantifying the degree of technicality for each do-
main is usually impractical in practice, this task requires a model capable of handling noisy
data. The cosine regression model is too sensitive to noise to fulfill this purpose. Here, we
consider two other response models. The first one is linear regression (LR):

p(rlw'y) = N(rlw'g,0%);
The other is least absolute deviation (LAD):
p(rlw'5) = £(rlw'5,9),

where £ denotes the Laplacian distribution. For these two models, the inference algorithms
are almost the same as that of cosine regression except that the supervision bias by is
different. In particular, for LR:

1 1 )
b, = N2 Yk T SN2 [; Zj: WiWkijtm + Wil
1#Fn

For LAD, we have:

. W _ 1
by, = sign(t — Eq[y])N—lg, where E,[y] = N Zwkunqﬁnk.
nk

Similarly, the learning procedure is different only in estimating w. Specifically, for the LR
model:
O =TY)'YT where Y = 1.0, T = Ti.01.

The LAD regression leads to an iterative reweighted least square algorithm, which iterative
updates:
AReW diag((:)OldTY),

onew (YTAHOWY)_IYTAHCWT,

The results are reported in Figure 20(f) with the root mean squared error (RMSE) as
evaluation metric. The performance of TLDA with cosine regression is much worse than
the others (RMSE>0.3) and is therefore omitted. We can see that, although sLDA is worse

SWe use fold-in evaluation, e.g. for TLDA: p(w,|D) = > b (ﬂnﬁév +(1- ﬂn)ﬁgu)7 where v is the ID of
wy, in vocabulary. This comparison is fair across different models.
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than LDA in terms of predictive log-likelihood, it obtains better technicality prediction
than LDA; yet, the two TLDA variants consistently outperform both LDA and sLDA (over
20% improvements). Also, less surprisingly, the LAD version of 7LDA obtains significantly
better performance than the LR variant as the former is more robust to noise.

7.6 Summary

We presented a generative model to learn related topic structures for documents from mul-
tiple domains. The 7LDA model encodes both topic and domain factor (e.g., technicality)
hierarchies as well as the interactions between them, providing an effective way to discover
topic structures that are coherent within each domain and consistent among domains. The
model offers a topic-level bridge for cross-domain knowledge transfer as demonstrated in
eHealth tasks.

Today’s personalized information services (e.g. Web 2.0) call for machine learning algo-
rithms that are capable of capturing such subtle cognitive aspects of users (e.g. interests,
capability, literacy, expertise, learning style) from their contextual texts and in turn adapt-
ing services accordingly. The TLDA offers a promising startpoint for learning user’s literacy
and expertise. It would be interesting to explore how other cognitive aspects of a user can
be captured based on the texts she crafted/read.
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CHAPTER VIII

CONCLUSION

The World Wide Web have brought to the public a new style of lives parallel to our day-
to-day offline activities. The availability and scale of human activities on the Web raises
tremendous opportunities and challenges for analytic study of human behavior. Effectively
modeling of online human activities is not only of tremendous practical value to online
industry, but also hold the key promise of deepening our understanding of human behavior
and the society. Yet to date progress has been limited as the existing technologies still face
severe challenges when applied to practice.

This dissertation aims to develop statistical models and machine learning algorithms
for explanatory and predictive analysis of online human activities. We are particularly
interested in three types of activities: decision making behavior, social interactions and
user-generated contents. Our study accordingly focuses on three topics: behavior prediction,
social contagion and content mining.

The first part of the dissertation is on behavior prediction, i.e., to predict users’ online
decision making behavior and to enhance the design of recommender systems. Recom-
mender systems are commonly designed by analyzing the dyadic user-item interactions as
can be recorded by a matrix, for example, users assigning ratings to movies. Research has
thus been focused exclusively on estimating preference or equivalently completing the ma-
trix. Nonetheless, our research shows that there are plenty of reasons to look at user-system
interactions instead and formulate recommendation from a game-theoretic framework. In
Chapter 3, we proposed a framework for learning user preference by modeling user choice
behavior in the user-system interaction process. Instead of modeling only the sparse binary
events of user actions as in traditional collaborative filtering, the proposed collaborative-
competitive filtering models take into account the contexts in which user decisions are made
and therefore are able to capture more accurate information about users’ behavior. In
Chapter 4, we further revisit the CCF preference model and present a novel game-theoretic
framework for recommendation by viewing the user-system interactions at recommender
system as buyer-seller interactions in a monopoly economic market. We show that the de-
cisions of the user and the buyer are interdependent. This new perspective motivates us
to optimize the action strategy of the system by first predicting users’ reaction and then
adapting its action to maximize the expected payoff in respect of certain strategic goals
such as click-through rate, sales revenue and consumption diversity.

We further examine human activities in systems with a social networking functionality,
where users are interacting with one another and social contagion plays an significant role.
A social network is not solely a social graph that connect users with their friends, but it
is also an interest graph that connect users with the resources (e.g., game, ad, brand) they
like. One problem of fundamental interest is: how to effectively propagates both friendship
and interest through the network. In Chapter 5, we exploited the well-established social
effect of Homophily and proposed a framework for establishing an integrated graph that
links a user to interested resources and connects different users with common interests. The
proposed models estimate the tie-strength between two social users and in turn effectively
propagates the right interest to the right person through the network. In Chapter 6, we
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further investigated the more complicated signed contagion, where behavior of socially con-
nected users could be reinforcing or conflicting. We examined the problem of predicting
signed social ties, such as trust and distrust, based on the acquaintance relationships in
social networks. This allows us to determine whether a link corresponds to a trustworthy
friend or rather a frenemy. We presented models that infer signed ties by capturing the
interplay between social relations and users’ behavior of decision making, and extended the
models to encode general principles from social psychology. Our results illustrated that the
predicted signed ties are much stronger signals for relating social behavior than traditional
Homophily.

The last part of the dissertation is on content mining, i.e., discovering knowledge from
user-generated contents in online systems. We are particularly interested in seeking answers
to three questions, i.e.: what are the intentions behind the contents? what do the contents
suggest about the corresponding user? and what can we do to improve user experiences?
In Chapter 7, we presented probabilistic models to automatically identify hidden cognitive
aspects (e.g., knowledgeability) of a user from the texts he created. We particularly ex-
amined the knowledgeability of a user and the technicality of documents. We show the
proposed TLDA model can be applied satisfactorily to address the language gap between
layman people and experts, e.g., in health informatics. We also developed powerful models
for text representation by presenting the language pyramid model [96] and the scale-space
theory for text [98], which are particularly effective for short texts such as user-generated
texts in online systems. We show the scale-space model can be used to address a variety of
text mining tasks in a scale-invariant fashion. Moreover, we developed probabilistic models
for ambiguous data [89, 88, 86] and demonstrated the effectiveness of these models in a
variety of content mining tasks such as text classification, entity extraction, query disam-
biguation and image annotation. Note that the last two works are not included in this
thesis, interested readers please refer to the papers for more details.

The long-term goal of my research is to establish a systematic paradigm for under-
standing, modeling and predicting online human activities and ultimately to help design
more intelligent online systems. My future research will continue this line of research. In
particular, my research will focus on the following dimensions: (1) social dynamics: how
social relations, the network structure, and user’s behavior of decision making (at both
microscopic and macroscopic level) evolve over time; (2) user cognitive aspect mining: how
to discover the subtle and hidden cognitive aspects of a user (e.g., culture, value, mood,
habit, personality, knowledgeability) from the data s/he generated and exploit the knowl-
edge discovered to enhance user experiences; (3) multi-scale social analytics: how social
and behavioral phenomena scales, e.g., from individuals to communities to societies, from
items to brands to companies, from daily to monthly to yearly; (4) theoretic treatments of
models that provides guarantees and/or guidelines for model designing; and (5) algorithms
and tools that scale the methodology developed up to meet the big data challenge.
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