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SUMMARY

Along with the rapidly increasing demand for high data rate communications, or-

thogonal frequency division multiplexing (OFDM) has become a popular modulation

in current and future communication standards. By distributing a high-speed data

stream to many parallel low-rate data streams, OFDM is able to mitigate the detri-

mental effects of multipath fading using simple one-tap equalizers and achieve high

spectral efficiency. However, the OFDM signal waveform suffers from large envelop

variations, which are usually measured by the peak-to-average power ratio (PAR).

In wireless transmitters, many RF components, especially the power amplifiers, are

inherently nonlinear and peak power constrained. Therefore, low power efficiency

and/or severe nonlinear distortions are the main shortcomings of OFDM systems.

In this dissertation, we develop algorithms and analyze performance bounds for

peak power constrained wireless communications. To address the balance between

power efficiency and nonlinear distortions, we model the peak power constrained

OFDM systems in both statistical and deterministic manners. We first propose an

error vector magnitude (EVM) optimization algorithm to strictly satisfy the distortion

requirements in accordance with communication standards and provide the maximum

power efficiency for OFDM transmitters without receiver-side cooperations. More-

over, we develop a multi-channel partial transmit sequence (MCPTS) PAR reduction

method for OFDM-based frequency-division multiple access (OFDM-FDMA) mul-

tiuser systems, which can achieve significant power efficiency improvement without

using side information. Joint MCPTS and power allocation schemes are also proposed

to improve the error performance of OFDM-FDMA systems.

xiii



Furthermore, diversity-enabled communication systems have practical merits in

combating channel fadings. Therefore, in the second part of this dissertation, peak

power constrained diversity techniques are proposed. The error performance of peak

power constrained single-input multiple-output (SIMO) OFDM is studied. Several

low-complexity SIMO-OFDM transceiver designs are presented to collect full antenna

diversity with respective performance and complexity tradeoffs.

The next major piece of work in this dissertation addresses the design of peak

power constrained amplify-and-forward (AF) cooperative networks, which enable the

cooperative diversity with single-antenna terminals. The effects of the availability of

channel state information and the peak power constraint on the diversity performance

are theoretically studied. Design criteria for general diversity-enabled AF relaying

strategies are established and further applied to the designs in peak power constrained

networks. In the end, a general theorem that relates the diversity gain function with

the probability density function of instantaneous signal-to-noise ratio is derived and

used to analyze the diversity performance of relay selection schemes.

xiv



CHAPTER I

INTRODUCTION

1.1 Motivations

Since Guglielmo Marconi conducted the first successful transatlantic experimental

radio communication in 1901, wireless communications have quickly and comprehen-

sively pervaded our daily life. Especially in the last two decades when information has

become ubiquitously critical to individual and social development, wireless commu-

nications have become an indispensable technology that can provide easily accessible

information, overcome geographic spans, and even save lives in disasters. Only in an-

cient movies could contemporary people imagine the life without communication tech-

nologies. Furthermore, consumers’ rapidly growing demands for high data rates, high

quality, and high mobility services are consistently pushing forward the development

of future wireless communication systems. To cope with these diverse challenges,

there have been tremendous efforts devoted to wireless technology innovations, for

example, orthogonal frequency division multiplexing (OFDM), multi-antenna multi-

input multi-output (MIMO), and multi-user code division multiple access (CDMA)

systems.

The system performance of wireless communications, however, is inevitably con-

fined by the intrinsic imperfections of radio frequency (RF) front-ends [91]. A wireless

technique designed under the assumption of ideal and linear RF components may lose

its projected merits in a practical system. Therefore, it is essential to analyze the

effects of RF imperfections on transmission performance and design wireless com-

munication systems to specifically address these practical issues. This problem is

particularly critical for multi-carrier systems, e.g., the OFDM systems. The OFDM
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modulation has been adopted by various modern communication standards and is a

promising technique for future cellular systems because of its high spectral efficiency

and low complexity in combating frequency-selective fading channels [1, 2, 3, 4, 28].

However, one of the primary disadvantages of OFDM is that the time-domain OFDM

signals exhibit a large dynamic range, which is usually characterized by the peak-to-

average power ratio (PAR) [35, 97, 100]. As a result, the performance of OFDM

systems is liable to be affected by the RF imperfections and worth special attention

[20].

For band-limited communication systems, RF imperfections may seriously deteri-

orate the error performance, arouse the inter-channel interference (ICI), and limit the

power efficiency of wireless transceivers. For example, in-band distortions result from

nonlinear RF characteristics and directly degrade the error performance [100]. To

quantify and limit the amount of in-band distortions that occur at the transmitter,

measurements are defined in communication standards, e.g., the error vector magni-

tude (EVM) for OFDM signals in the IEEE 802.16e standard [3]. The out-of-band

spectral growth is another effect of nonlinear distortions [100]. It increases the ICI,

which is detrimental to the reliable transmissions of other users. Communication

standards always specify a spectral mask requirement to constrain the out-of-band

power spectrum of the transmitted signals [2, 3]. In addition, distortions caused by

RF imperfections may also affect the synchronization and channel estimation perfor-

mance.

Typically, RF components have greater imperfections when they are working in a

high power region [91]. Thus, to manage the nonlinear distortions to stay within the

limits specified in communication standards, a common mechanism is to significantly

back off (i.e., scale down) the signal power. The cost is a reduced efficiency of the RF-

to-DC power conversion, which greatly wastes energy, limits capacity, and shortens

the duration of single-charged mobile devices. Therefore, for modern communication

2



systems, power efficiency and nonlinear distortions are conflicting metrics that must

be balanced.

It is important to acknowledge the existence of RF imperfections and design digital

signal processing algorithms to suppress the negative impacts of RF imperfections

on system performance. Extensive research has been conducted to compensate the

imperfections, for instance, the digital predistortion (DPD) methods for reducing the

RF nonlinearities and memory effects [7, 23, 51, 109], the compensations of the IQ

imbalance and carrier phase offsets [98, 103, 113], etc.

Although some of the RF imperfections can be well moderated by using signal

processing techniques and improving RF design and manufacturing skills, the peak

power constraint is an intrinsic nonlinear characteristic that cannot be overcome.

Many RF/analog components in the transmission chain are peak power constrained

(PPC) devices, for instance, digital-to-analog converters (DACs), mixers, and partic-

ularly power amplifiers (PAs). In addition, the DC power consumption of PAs, which

makes up of a large proportion of the total power consumption at transmitters, is

generally determined by the peak power constraint. Thus, consideration of the peak

power constraint is fundamental with respect to the balance between power efficiency

and nonlinear distortions. Therefore, our research on PPC wireless communications

is well motivated.

1.2 Objectives

In this dissertation, we focus on analyzing and designing power-efficient PPC wireless

communication systems.

OFDM systems will be our major subject, for which the reduction of the dy-

namic range is essential for realizing a good trade-off between power efficiency and

nonlinear distortions. Various algorithms have been proposed to achieve this goal

3



[35, 40], including the coding [24, 54], clipping and filtering [10, 12, 77], partial trans-

mit sequence (PTS) [11], selected mapping (SLM) [13, 73], active constellation exten-

sion [44], tone reservation [100], and waveform optimization methods [6]. They can

achieve respective tradeoffs among different metrics, including power efficiency, band-

width efficiency, and nonlinear distortions. However, a few limitations remain among

the existing methods. For instance, they generally cannot avoid large peak power

spikes, which result in uncontrolled distortions. Additionally, receiver-side coopera-

tion is required in some methods and makes them incompatible with existing systems.

Therefore, the designs of PAR reduction methods that can be used in current OFDM

and OFDM-FDMA systems are of particular interest.

Reliable transmission is also our objective. To quantify the error performance of

different communication systems, two parameters are usually used: diversity order

and coding gain (see for example, [83, 102]). The diversity order describes how

fast the error probability decays with signal-to-noise ratio, while the coding gain

measures the error performance gap among different schemes when they have the

same diversity. Thus, diversity-enriched transceivers have well-appreciated merits.

Various diversity techniques, e.g., antenna diversity and cooperative diversity, have

been enabled by properly designed transceivers [48, 71, 92, 96, 102]. However, little

work has investigated the diversity performance in PPC wireless systems. In this

thesis, we will also study and design low-complexity, power-efficient, and diversity-

enabled PPC systems.

1.3 Outline and Notations

The rest of the dissertation is organized as follows:

In Chapter 2, the mathematical models are established for general peak power

constrained systems, the orthogonal frequency division multiplexing systems as well

as the error performance measurements in wireless fading channels.
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In Chapter 3, PAR reduction methods are proposed to improve the power effi-

ciency in both OFDM and OFDM-FDMA systems. We focus on the methods that

are compatible with existing standards and require no receiver-side modification. The

performance is analyzed for the proposed methods, which are also combined with pa-

rameter optimization and power allocation schemes to improve relevant performance

metrics.

In Chapter 4, the antenna diversity enabled by multiple receiving antennas is

studied for peak power constrained OFDM systems. Several full-diversity transceiver

designs are presented for the PPC SIMO-OFDM systems.

In Chapter 5, amplify-and-forward cooperative networks are studied. Practical

and simple cooperative network designs, which also achieve full cooperative diversity,

are of particular concern. Besides, general design criteria for full-diversity amplify-

and-forward relaying strategies and a general theorem on diversity gain function are

given.

In the end, Chapter 6 summarizes the main contributions of this dissertation and

offers a few suggestions for future research.

Before all, let us introduce the following notations that are used throughout the

dissertation unless indicated otherwise:

Superscript ∗ denotes conjugate, T transpose, and H Hermitian. For a complex

number a, <(a) and =(a) stand for its real and imaginary parts. Bold face letters are

used for vectors and matrices, whose elements are indexed by subscripts. Specifically,

0l is an l-by-1 vector with all zero entries and Il×l is an l-by-l identity matrix. In

addition, diag(x) denotes a diagonal matrix with vector x on its diagonal and tr(·)
stands for the trace of a matrix. We denote |a| as the magnitude of scalar a and ‖x‖`

for the `th norm of vector x. As usual, the empty set is represented by ∅.
Moreover, we use fx(a) and Fx(a) to denote the probability density function (PDF)

and the cumulative density function (CDF) of a random variable x evaluated at a,

5



respectively. We also reserve Ex[·] as the expectation over x. CN (0, σ2) stands for

the complex Gaussian distribution with zero mean and variance σ2.

The Q-function is defined as Q(a) = (1/
√

2π)
∫∞

a
e−

t2

2 dt. In addition, we use

f(a)
.
= g(a) to represent the asymptotic exponential equality, i.e., lim

a→∞
ln f(a)/ln a =

lim
a→∞

ln g(a)/ln a. Similarly, “≤̇” and “≥̇” are also defined. Moreover, x → a+ (a−)

indicates that x tends to a from above (below) and o(x) represents lim
x→0+

o(x)/x = 0.
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CHAPTER II

BACKGROUND

In this chapter, a review of the peak power constrained (PPC) wireless communication

systems is presented. With respect to the PPC components of wireless transmitters,

a generic system model is introduced. The rest of this chapter is dedicated to es-

tablish the signal models for orthogonal frequency division multiplexing (OFDM) and

diversity-enabled systems.

2.1 Peak Power Constrained System Model

The diagram for general wireless transmitters is illustrated in Figure 2.1. The RF

devices, especially the power amplifiers (PAs), are indispensable components in a

communication system. However, the PAs are inherently nonlinear and peak power

constrained. As motivated in Chapter 1, although scaling down PA input signals can

restrain nonlinear distortions, the price is the low RF-to-DC power efficiency. Thus, it

is necessary to linearize PAs so that the in-band distortions and spectral broadening

effects can be surpassed without a substantial sacrifice of power efficiency at the first

place.

The PA linearization problem is well under study and a number of techniques have

been adopted for commercial use [7, 21, 23, 26, 51, 109]. From the implementation

aspect, digital baseband predistortion is among the most cost-effective techniques.

A digital predistorter is a functional block that precedes the PA and processes the

baseband PA input signal accordingly. It generally creates an expanding nonlinearity

to neutralize the compressing characteristic of the PA. In addition, by adopting a

memory polynomial model, the predistorter can also well compensate PA memory

effects which cannot be ignored for wideband systems. To adaptively identify the

7
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Figure 2.1: A generic wireless transmitter model.

polynomial model for the predistorter, the indirect learning structure can be used

and its diagram is shown in Figure 2.2. The details of the digital predistorters are

not the focus in this dissertation, but can be found in [26] and the references therein.

For the PAs that exhibit mild nonlinearities prior to saturation, existing predis-

tortion techniques are capable of producing a linearized PA that is well approximated

by an ideal soft-limit (SL) model, whose input-output characteristic is illustrated in

Figure 2.3 [7, 23, 26]. Denoting the input signal of the PA as x(t) with the average

power of σ2
x = E[|x(t)|2], the output signal of the soft-limit model is [100]

y(t) =





G · x(t), |x(t)|2 ≤ Ppeak

G2 , (2.1)

√
Ppeake

j∠x(t), |x(t)|2 >
Ppeak

G2 , (2.2)

where Ppeak is the peak power constraint for the PA output signal, G is the gain of

the linearized PA, and ∠a denotes the phase of a complex variable a. Within the SL

model, nonlinear distortions occur only when clipping (i.e., PA saturation) happens,

i.e., |x(t)|2 > Ppeak/G
2.

The input back-off (IBO) is defined as the ratio between the peak power constraint

and the average power of the input signal, namely,

IBO =
Ppeak

G2σ2
x

. (2.3)

A class-A PA is considered in this dissertation, where the DC power consumption is

twice the peak power of the PA output, i.e., Pdc = 2Ppeak. Admittedly, other types of

PAs, e.g., class-B and class-AB PAs, are more power efficient than the class-A PA in

nature. The ratio between Ppeak and Pdc is greater than 0.5 for class-B and class-AB

PAs [21]. Nevertheless, the consideration of only class-A PAs in this dissertation does
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Figure 2.2: The digital predistorter of the indirect learning structure.

not lose the generality of the discussion, and the analysis can be extended to other

types of PAs accordingly.

Because |y(t)|2 ≤ G2|x(t)|2, the average transmit power has σ2
y = E[|y(t)|2] ≤

G2σ2
x. In other words, σ2

y ∈ Sy as illustrated in Figure 2.3. For the class-A PA, the

power efficiency ρ is thus given by [110]

ρ =
σ2

y

Pdc

≤ 1

2IBO
. (2.4)

The equality in (2.4) holds if no saturation occurs at the PA, i.e., |x(t)| ≤ √
Ppeak/G.

However, for IBOs that are not too small, ρ ≈ (2IBO)−1 is a good approximation.

To characterize the signal power level with respect to the channel condition, the

signal-to-noise ratio (SNR) is usually used in ideal linear transmissions. For the

PPC systems, however, since the power consumption Pdc relies on the peak power

constraint Ppeak, it is the peak-signal-to-noise ratio (PSNR), which compares the PA

power consumption with the channel noise level, a relevant measurement, i.e.,

PSNR =
Ppeak

N0

≈ IBO · σ2
y

N0

, (2.5)

where N0 denotes the additive white Gaussian channel noise power. It is worth noting

that the use of PSNR is not conflicting with SNR. In fact, as given in Eq. (2.5), we

have PSNR ≈ IBO · SNR.
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2.2 Orthogonal Frequency Division Multiplexing Systems

The invention of the orthogonal frequency division multiplexing (OFDM) modulation

should be dated back to the 1960s. The basic principles of OFDM have already been

proposed in several publications as early as 1966 [17, 89, 111]. The idea of OFDM

is to distribute the high-rate data stream to many low-rate data streams that are

transmitted in a large number of parallel and closely-spaced orthogonal subcarriers.

It breaks a wideband spectrum into orthogonal narrowbands and thus simplifies the

equalization at the receivers. However, this idea could not be implemented efficiently

at that time.

Today, attributed to the efficient OFDM implementation with fast Fourier trans-

form (FFT) and the spring of powerful semiconductor devices in the last decade,

even relatively complex and high-rate OFDM transmission systems are technically

feasible [19, 108]. Due to its high spectral efficiency and low complexity in combating

frequency-selective fading effects, the OFDM technique has been widely adopted by

wireless communication standards, e.g., from the DVT-B broadcasting standard, to

wireless local area networks (WLAN) such as the IEEE 802.11a and the IEEE 802.16

standards, and even future cellular systems like the Long Term Evolution (LTE)

under the consideration by the Third Generation Partnership Project (3GPP), etc

[1, 2, 3, 4, 28].
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However, OFDM experiences certain implementation challenges due to the large

dynamic range of its time-domain waveforms, which is usually measured by the peak-

to-average power ratio (PAR) [100]. It forces the OFDM system vulnerable to the

PA nonlinearity, yielding significant distortions on the signals and/or highly inefficient

power consumption at the PA.

In this section, the signal model of the OFDM modulation will be presented. The

PAR and other performance metrics in OFDM systems will be discussed consequently.

2.2.1 Signal Model

OFDM is a block-wise modulation, whose system diagram is given in Figure 2.4.

For an uncoded OFDM system, data are transmitted on N orthogonal subcar-

riers. For each frequency-domain OFDM symbol, an N -point inverse fast Fourier

transform (IFFT) operation can be used to generate the time-domain signal. After

parallel-to-serial conversion (P/S), the cyclic prefix (CP), whose length Lcp should

be greater than the longest channel delay, is appended to each OFDM symbol. The

symbol is then oversampled by L times and converted to analog signals. After up-

converting it to radio frequency, it is amplified by the PA and sent to the receivers

through the wireless channel. On the other hand, the OFDM demodulation is ex-

actly the same process but in reverse order. The receivers are assumed to achieve

ideal channel estimation by the help of training symbols or pilot subcarriers [52, 53].

The estimated channel gains are subsequently used in the one-tap equalizer succeed-

ing the N -point FFT operation. Additionally, rather than power amplifiers, low-noise

amplifiers (LNAs) are adopted to amplify weak signals at the receivers [104].

Denote the frequency-domain OFDM symbol as X = [X0, · · · , XN−1]
T . Due to

the property of FFT, the oversampled OFDM signal can be efficiently generated by

zero-padding. Thus, for each OFDM symbol, the L-times oversampled time-domain
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Figure 2.4: The system diagram for OFDM transceivers.

signal can be obtained from the LN -point IFFT operation, i.e.,

x = [x[0], · · · , x[LN − 1]]T = FHX, (2.6)

where F is the N×LN oversampling FFT matrix formed by retaining only the first N

rows of a full LN ×LN FFT matrix whose (m+1, n+1)st entry is 1√
LN

e−j2πmn/(LN).

According to the standards [2, 3], the OFDM subcarriers are usually categorized

into three non-overlapping sets: pilot subcarriers, free subcarriers and data subcarri-

ers, denoted by sets of indices Kp, Kf and Kd, respectively. They have the cardinalities

|Kp| = p, |Kf | = f and |Kd| = d so that p + f + d = N . For instance, the subcarrier

categorization in IEEE 802.11a is illustrated in Figure 2.5, where p = 4, f = 12 and

d = 48 [2].

The signal transmitted over the pilot subcarriers is prescribed and known a priori

to the receivers, denoted as Xk = Pk (k ∈ Kp). It is supposed to help receivers

estimate the channel response. For example, the pilot signals are defined as Pk ∈ {±1}
(k ∈ Kp) in the IEEE 802.11a standard [2]. In order not to interfere with the channel

estimation, transmitters are not allowed to modify these pilot signals.

On the free subcarriers, any complex values can be transmitted as long as they

comply with the spectral mask constraint as specified in communication standards

and discussed in Section 2.2.3.
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Figure 2.5: The OFDM subcarrier categorization in IEEE 802.11a.

On the data subcarriers, the information bits are mapped into an ideal constella-

tion Ω of the adopted modulation schemes, namely Xk ∈ Ω (k ∈ Kd). The average

power of data subcarriers (i.e., the constellation itself) is denoted as P0 = E[|Xk|2]
(k ∈ Kd).

2.2.2 Peak-to-Average Power Ratio

The peak-to-average power ratio (PAR) is usually used to quantify the dynamic range

of OFDM signals. Since the cyclic prefix does not impact the dynamic range, it is

ignored in the analysis and x in Eq. (2.6) is taken as the RF input signal [100].

Denote the ensemble mean power of the OFDM samples x[n] as σ2
x = E[|x[n]|2],

which is equal to the infinite-time average power because x is ergodic. PAR of the

symbol-wise OFDM signal is defined as

PAR(x) = max
n∈{0,··· ,LN−1}

|x[n]|2
σ2

x

. (2.7)

Although PAR is based on sampled OFDM signals, it has been shown to well approx-

imate the dynamic range of continuous waveform when the oversampling rate L ≥ 4
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[100].

According to the Central Limit Theorem, the time-domain sample x[n] exhibits

an approximate complex Gaussian distribution when N is reasonably large [100].

For example, the power of the samples of one OFDM symbol is demonstrated in

Figure 2.6. Therefore, OFDM symbols can have very large PAR values with non-

zero probabilities. The curves of the complimentary cumulative distribution function

(CCDF) of the PAR values are plotted in Figure 2.7 for the OFDM with different

numbers of subcarriers (N = 64, 256, 512 and 1024). As shown in Figure 2.7, when the

OFDM has N = 1024 subcarriers, about 1 percent symbols still experience clipping

distortions when IBO = 11dB and the PA power efficiency is only ρ ≈ 4%.

When the PAR values exceed the IBO, clipping will occur and generate the in-band

error vector magnitude and spectral broadening effects that may exceed the distortion

limits imposed by standards or that are difficult to predict and control. Thus, IBO

needs to be made large enough to accommodate the large, albeit occasional, peaks

[20, 76]. Large IBO, however, diminishes the PA power efficiency.

Therefore, PAR reduction methods become essential in an efficient OFDM system.

By modifying the OFDM signal in a certain way, the PAR reduction methods cancel

the large peaks before passing the signals into the linearized PA. The diagram for

such an OFDM system with PAR reduction is drawn in Figure 2.8.

2.2.3 Performance Metrics

Before studying the PAR reduction methods in Chapter 3, the performance metrics

of the PPC OFDM systems are discussed in thus subsection.

2.2.3.1 Power Efficiency

As discussed in Section 2.1, power efficiency characterizes the proportion of the total

PA power consumption that is turned into effective signal power.

For a class-A PA, the power efficiency is mainly determined by the input back-off
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and is defined as

ρ =
σ2

y

Pdc

≤ 1

2IBO
. (2.8)

2.2.3.2 Error Vector Magnitude

Error vector magnitude (EVM) is widely adopted to quantify the amount of in-band

distortion that occurs at OFDM transmitters [2, 3]. It directly affects the error

performance, e.g., bit error rate. EVM can be caused by any number of non-ideal

components in the transmission chain, including the PA, the DAC, the up-converter,

etc. A distortion-based PAR reduction algorithm increases the EVM as well. As an

example, in Figure 2.9, the constellations of one OFDM symbol are compared with

those after the PA clipping. EVM is meant to characterize the constellation error

exhibited on the clipped signal.

Denote Ỹ as the frequency-domain symbol actually transmitted by the PA, and

X̃ = Ỹ/G as the corresponding PA input symbol. For each OFDM symbol, the

(symbol-wise) EVM is defined as

ε(X, X̃) =

√∑
k∈Kd

|Xk − X̃k|2
d · P0

. (2.9)

Notice that the EVM definitions may be presented in different forms among standards.

The definition in Eq. (2.9) is in accordance with the IEEE 802.11a standard, while P0

should be replaced by the maximum power of the constellation in IEEE 802.16 [2, 3].

In communication standards, the in-band distortion is constrained in terms of the

root mean-square (RMS) EVM. That is, the RMS EVM value must be no greater

than the threshold ε which is set forth in the standards, i.e.,

RMS EVM =

√
E[ε(X, X̃)2] ≤ ε. (2.10)

For example, the RMS EVM thresholds for phase-shift keying (PSK) and quadrature

amplitude modulation (QAM) constellations defined in the IEEE 802.11a standard

are summarized in Table 2.1.
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(b) Clipped OFDM (IBO = 3dB).

Figure 2.9: The constellation comparison of the original and clipped OFDM; QPSK;
N = 256 and L = 4; EVM ε = 0.18.

Table 2.1: The RMS EVM thresholds for different constellations with the coding
rate of 1/2 in the IEEE 802.11a standard.

Constellation RMS EVM threshold (dB)
BPSK -5
QPSK -10

16-QAM -16
64-QAM -22

2.2.3.3 Spectral Mask

Another negative effect of nonlinear distortions is spectral broadening. It will not

only diminish the orthogonality of in-band subcarriers, but also generate out-of-band

spectral growth which behaves as inter-channel interference to other users. Figure 2.10

gives an example of the spectral density of clipped OFDM signals. When the IBO

is small, the distortions become prominent that the out-of-band spectral components

and RMS EVM values are not ignorable.

To avoid severely interfering other channels, communication standards define the

spectral mask requirements for the transmitted power on both the in-band subcarriers
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Figure 2.10: The spectral broadening effect of PA clipping; IBO = 3 ∼ 8dB.

and the out-of-band spectral components. For instance, the IEEE 802.11a spectral

mask has been plotted in Figure 2.5. Denote Mk as the spectral mask constraints

relative to the average power P0 of data subcarriers. The signals transmitted on free

subcarriers should also satisfy

E[|X̃k|2] ≤Mk · P0, k ∈ Kf . (2.11)

2.3 Diversity-Enabled Systems in Fading Channels

In the wireless environment, random fading channels are detrimental to the transmis-

sion because they convert an exponential decay of the symbol error rate (SER) or bit

error rate (BER) on the average SNR into a linear one [99, 107].

Denote the instantaneous SNR in a fading channel as

γ = βγ̄, (2.12)

where β is a channel-dependent random variable and the average transmit SNR γ̄

is defined as the ratio between the average transmit power σ2
x and the channel noise

power N0, i.e., γ̄ = σ2
x/N0.
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Without loss of generality, additive white Gaussian channel noise is assumed so

that the instantaneous SER is in the form of

PE(γ) = κ1Q(
√

κ2γ), (2.13)

where κ1 and κ2 are constellation-specific constants, e.g., κ1 = 4(1 − M− 1
2 ) and

κ2 = 3
M−1

for M -ary QAM modulations [83, p. 278]. By averaging over the channel

variable β, the average SER in fading channels is thus given by

Pe = Eβ[PE(γ)], (2.14)

which is the function of the average SNR γ̄.

The asymptotic SER is of particular interest because it describes how much the

error rate can benefit by increasing the transmit power.

As a unified way to quantify the error performance in fading channels at high

SNR, the average SER Pe of an uncoded system is usually approximated by [99, 107]

Pe ≈ (Gc · γ̄)−Gd , for γ̄ →∞, (2.15)

where Gc and Gd are referred to as the coding gain and the diversity order, respectively

[107]. Specifically, the diversity order of the average SER is defined as (see also [99]):

Definition 2.1 (Diversity order) Suppose that Pe is the average SER as a function

of the average SNR γ̄. The diversity order Gd is defined as

Gd = lim
γ̄→∞

− log Pe

log γ̄
. (2.16)

In other words, Pe
.
= γ̄−Gd.

The diversity order Gd describes how fast the error rate decreases with SNR,

while the coding gain Gc measures the shift in SNR of the SER curves relative to the

benchmark curve of γ̄−Gd .
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The greater the diversity order, the better the asymptotic SER performance.

Therefore, diversity-enabled systems have well-appreciated virtues. The basic princi-

ple of the diversity techniques is to provide the receiver multiple faded replicas of the

same information bearing signal. A variety of diversity techniques have been proposed

in literature and adopted in practical implementations, e.g., space, time, frequency,

angle, polarization, and cooperative diversity techniques [48, 67, 82, 94, 97]. Partic-

ularly, in this dissertation, the space (i.e., multi-antenna systems) and cooperative

(i.e., cooperative networks) diversities will be investigated in Chapters 4 and 5.

With the instantaneous receive SNR γ = βγ̄, if the PDF of β (i.e., fβ(β)) can be

approximated by polynomial series around the origin, the relationship between the

diversity order and the PDF of β has been revealed [107].

In many communication systems, e.g., in wireless cooperative networks, however,

recently it has been observed that the average SER could not be accurately charac-

terized by an exponential function of the SNR [27, 41]. The average SER generally

involves the logarithm function of the average SNR and can be approximated by

Pe ≈ Gc ·Gf (γ̄), for γ̄ →∞, (2.17)

where Gf (γ̄) = γ̄−m(ln γ̄)n (m,n ≥ 0). To distinguish from the diversity order, the

following definition is introduced (see also [27]):

Definition 2.2 (Diversity gain function) The diversity gain function Gf (γ̄) is

defined as a function of the average SNR γ̄

Gf (γ̄) = γ̄−m(ln γ̄)n, m, n ≥ 0. (2.18)

If the asymptotic SER achieves Gf (γ̄), it also collects the diversity order of Gd = m

gradually. In other words, diversity gain function not only describes the asymptotic

diversity order, but also depicts how fast it is approached. Thus, the diversity gain

function can fully characterize the diversity behavior of the concerned communication

systems and is a more accurate extension of Gd.
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CHAPTER III

PAR REDUCTION IN OFDM SYSTEMS

Several PAR reduction methods are proposed in this chapter for OFDM and OFDM-

based frequency-division multiple access (OFDM-FDMA) systems. Significant perfor-

mance improvements, in terms of power efficiency, throughput and error rate, can be

achieved by the proposed methods. In addition, the presented approaches require no

receiver-side modification and are thus compatible with existing systems.

3.1 Introduction

Many methods have been proposed to reduce the PAR of OFDM signals. A complete

literature review can be found in [35, 40] and the references therein.

Any PAR reduction method has to modify the signal waveform in some fash-

ion, and is usually categorized into distortionless and distortion-based approaches.

With the soft-limit PA, distortionless PAR reduction techniques aim at avoiding

any nonlinear distortion in the transmitted signal. For example, the piece-wise lin-

ear scaling (PWLS) [76], selected mapping (SLM) [11], partial transmit sequences

(PTS) [73], and coding schemes [54] all belong to the distortionless PAR reduc-

tion methods. In this case, however, some sort of reverse operation should usu-

ally be done at the receiver and thus requiring receiver-side modifications. On the

other hand, the distortion-based PAR reduction approaches can reduce the dynamic

range of the transmitted signal by carefully managing the distortions so that we

stay within the limits as specified in the communication standards. A number of

distortion-based PAR reduction algorithms have been investigated in literature, e.g.,

in [6, 12, 13, 35, 40, 44, 45, 50, 64, 77, 100]. Some methods operate by constraining the

distortion energy on data subcarriers [12, 44, 77]; some by projecting the distortion

21



energy onto the free subcarriers [45, 50, 100].

To be compatible with existing systems is important for a practical PAR reduc-

tion method. Therefore, the PAR reduction methods that require no receiver-side

cooperation will be particularly focused in this chapter.

3.2 EVM Optimization with a Deterministic PAR Con-
straint

As introduced in Section 2.2.3, EVM is widely adopted to quantify the amount of in-

band distortion in communication standards. In the presence of digital predistorter,

it is reasonable to assume that there is sufficient EVM “headroom” left from the

analog devices to allow for a distortion-based PAR reduction algorithm.

In the recent literature [6, 64], PAR reduction has been cast as a convex optimiza-

tion problem where the symbol-wise PAR is minimized by deliberately introducing

free subcarrier signals and in-band distortions subject to the spectral mask constraint

in (2.11) and a symbol-wise EVM constraint. By exploiting the IFFT structure of

OFDM modulation, an interior-point method (IPM) can be devised to solve the con-

vex optimization problem efficiently thus providing good PAR reduction performance

with relatively low complexity.

However, the PAR-minimization method possesses two main shortcomings. First,

minimizing the symbol-wise PAR does not automatically yield power efficiency im-

provements, unless one implements adaptive biasing or piece-wise scaling [76] to boost

the average transmit power of PAR-reduced symbols. Otherwise, if the PAR has non-

zero probability of exceeding the prescribed IBO, the signal still will be clipped, in

which case the standard’s requirements (e.g., RMS EVM and spectral mask) may be

violated. Therefore, it is desirable to have an algorithm which guarantees that the

PAR of the modified OFDM signal will never exceed a given threshold so that no PA

clipping may be encountered.

Moreover, in communication standards, the RMS EVM constraint in (2.10) is
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typically given [2, 3]. Therefore, the symbol-wise EVM can fluctuate from symbol to

symbol and does not have to be as tightly constrained as in [6] and [64]. This degree

of freedom in the symbol-wise EVM can thus be taken advantage of to boost the PAR

reduction performance.

To address the above problems, in this section, an EVM optimization task is

formulated subject to the spectral mask constraint and a deterministic (as opposed

to probabilistic) PAR constraint

PAR ≤ γ, (3.1)

where γ > 0 represents a deterministic PAR constraint in this section. A low-

complexity IPM algorithm will also be derived to efficiently solve the EVM opti-

mization problem [61, 62].

Our proposed method differs from existing approaches in the following ways:

(i) We target the RMS EVM rather than the symbol-wise EVM. This is not only

standard-oriented, but also results in better PAR reduction performance. When the

RMS EVM constraint is used, certain large PAR symbols can be allocated greater

symbol-wise EVM budget to permit significant PAR reduction. If an OFDM symbol

has a small PAR value to start with, very little symbol-wise EVM allowance may be

needed in order to reach the PAR threshold. It is easier to achieve a RMS EVM goal

than to achieve a symbol-wise EVM goal of the same magnitude. Therefore, when

the RMS EVM metric is used, there is more room for the PAR reduction algorithm

to do its work. (ii) A deterministic PAR constraint is used. In other words, we are

interested in a fixed PAR threshold for all signal blocks rather than optimum but vari-

able PAR values from block to block. Once the PAR threshold is judiciously chosen,

the PA’s size, bias, and/or IBO can be determined corresponding to the threshold.

Consequently, the peak power constrained symbols achieved by the proposed algo-

rithm avoid any PA clipping, thus eliminating the possibility of uncontrolled in-band

distortion, out-of-band spectral regrowth and average power reduction.
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3.2.1 Framework

Denote X̃ as the modified symbol generated by the PAR reduction method, whose

time-domain counterpart x̃ = FHX̃ has a lower PAR than the original waveform x.

We formulate the EVM optimization algorithm that minimizes the symbol-wise

EVM while simultaneously satisfying the deterministic PAR constraint (3.1) and the

spectral mask constraint (2.11) as follows:

min
X̃

e (3.2)

s.t.
√

dP0 · ε(X, X̃) ≤ e (3.3)

X̃k = Xk, k ∈ Kp (3.4)

|X̃k|2 ≤Mk · P0, k ∈ Kf (3.5)

∑

k∈Kd

<(X∗
k(X̃k −Xk)) ≥ −e2

2
(3.6)

x̃ = FHX̃ (3.7)

|x̃[n]| ≤ √
γσx, n = 0, · · · , LN − 1. (3.8)

In particular, (3.2) and (3.3) set the symbol-wise EVM, ε(X, X̃), as the objective of

minimization. Eq. (3.4) keeps the pilot subcarriers unchanged (see Section 2.2.1).

(3.5) constrains the instantaneous power of the free subcarriers to satisfy the spectral

mask requirement. Although (3.5) provides a stricter constraint than (2.11), it is

easier to solve symbol-wise. Additionally, since directly constraining the PAR leads

to a complicated non-convex problem, we follow the derivation in [6] and separately

restrict the peak power as in (3.8) and the average power on data subcarriers according

to (3.6). Eq. (3.6) is a convex inequality constraint and is equivalent to

∑

k∈Kd

|X̃k|2 ≥
∑

k∈Kd

|Xk|2, (3.9)

when the constraint of (3.3) is active (i.e.,
√

dP0 · ε(X, X̃) = e), which always holds

in optimality. Eqs. (3.6) and (3.8) guarantee that the PAR of the optimized signal x̃

will never exceed the threshold γ.
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In summary, while strictly upper bounding the PAR of modified OFDM symbols,

the convex EVM optimization framework minimizes the symbol-wise EVM and meets

all the constraints on free and pilot subcarriers. The tradeoff between the optimized

in-band distortion (in terms of RMS EVM) and power efficiency (in terms of the PAR

threshold γ) can be subsequently determined. The minimum PAR threshold is then

ready to be chosen to comply with the RMS EVM constraint laid by standards.

3.2.2 Customized Interior-Point Method

The iterative log-barrier interior-point method can be customized to efficiently solve

the symbol-wise EVM optimization in (3.2)-(3.8) [16, Chap. 11]. The derivation and

the customized IPM algorithm are introduced in this subsection.

Let us use an N × N matrix S to indicate the locations of the data subcarriers,

whose (m,n)-th element is given by

Sm,n =

{
1, m = n ∈ Kd, (3.10)

0, m /∈ Kd, or n /∈ Kd, or m 6= n. (3.11)

Thus, S consists of block identity and zero matrices. The symbol-wise EVM in

Eq. (2.9) can be re-written as

ε(X, X̃) =
1√
dP0

‖S(X− X̃)‖2. (3.12)

Using the indicator matrix notation S, the constraint in (3.3) becomes

‖S(X− X̃)‖2 ≤ e. (3.13)

Moreover, the average power constraint (3.6) can also be expressed as

<(XHS(X̃−X)) ≥ −e2

2
. (3.14)

Therefore, the inequality constrained optimization problem in (3.2)-(3.8) can be

approximately formulated as an equality constrained problem with the inequality

25



constraints implicit in the objective function [16, Chap. 11]:

min
X̃

fo(X,Mk,Kf ,Kp, e, γ,S) (3.15)

s.t. x̃ = IFFTL(X̃), (3.16)

where

fo(X,Mk,Kf ,Kp, e, γ,S) = e+I− [−δa]+I− [−δe]+
LN−1∑
n=0

I− [−δn]+
∑

k∈Kf

I− [−φk] ,

(3.17)

I−[·] is the indicator function for the nonpositive reals,

I−[u] =

{
0, u ≤ 0, (3.18)

∞, u > 0. (3.19)

Let us denote

δa =
e2

2
+ <(XHS(X̃−X)), (3.20)

δe = e2 − ‖S(X− X̃)‖2
2, (3.21)

δn = γσ2
x − |x̃[n]|2, n ∈ {0, · · · , LN − 1}, (3.22)

φk =




Mk · P0 − |X̃k|2, k ∈ Kf , (3.23)

0, otherwise, (3.24)

all of which should be positive as required by the inequality constraints. The only

equality constraint Eq. (3.4) sets the pilot subcarriers unchanged and not to be opti-

mized over.

By using the log-barrier interior-point method as described in [16, Chap. 11], an

iterative algorithm can be constructed to efficiently solve the equivalent symbol-wise

EVM optimization problem in (3.15)-(3.16) as shown below.

Because the standard IPM optimization technique can only deal with real num-

bers, let us define the real-imaginary forms of an N -by-1 complex vector X and an
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m-by-n complex matrix A as

X =
[<(X0),=(X0), · · · ,<(XN−1),=(XN−1)

]T
, (3.25)

A2m×2n =




. . .

<(Aij) −=(Aij)

=(Aij) <(Aij)

. . .




2m×2n

. (3.26)

At each iteration, the actually transmitted OFDM symbol and its EVM are up-

dated as

X̃new = X̃ + βV, (3.27)

enew = e− β, (3.28)

where β is the step size which will be discussed later and V is the updating vector.

Then, the real-imaginary form V of the updating vector V should be calculated by

solving the following linear model

HV = −G, (3.29)

where G and H are the gradient vector and Hessian matrix, respectively. G = − ∂2f̂

∂X̃∂e

and H = ∂2f̂

∂X̃∂(X̃)T where f̂ is the log-barrier approximation of the objective function

Eq. (3.17) by replacing I−[·] with the logarithmic barrier function [16]

Î−[u] = −1

t
log(−u), u ∈ R−, (3.30)

where t > 0 is a parameter that sets the accuracy of the approximation. By implicitly

choosing

t =
∂2f̂

∂e2
−

(
∂2f̂

∂X̃∂e

)T (
∂2f̂

∂X̃∂(X̃)T

)−1 (
∂2f̂

∂X̃∂e

)
, (3.31)

Eq. (3.29) holds for the Newton’s method [75, Chap. 6].
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After some derivations, the gradient vector can be shown as

G =
4e

δ2
e

S(X̃− X)− e

δ2
a

SX, (3.32)

and the Hessian matrix becomes

H = −(A+ E+M+QTPQ). (3.33)

In Eq. (3.33), we have

A = − 1

δ2
a

(SX)(SX)T , (3.34)

E = − 2

δe

S− 4

δ2
e

S(X̃− X)(X̃− X)TST , (3.35)

M = blkdiag(M0, · · · ,MN−1), (3.36)

P = blkdiag(P0, · · · ,PLN−1), (3.37)

where blkdiag() denotes the block-diagonal structure and Mk is

Mk =
2

φ2
k



−φk − 2(<(X̃k))

2 −2<(X̃k)=(X̃k)

−2<(X̃k)=(X̃k) −φk − 2(=(X̃k))
2


 , (3.38)

for k ∈ Kf , and Mk = 02×2, otherwise. Matrix Pn (n ∈ {0, · · · , LN − 1}) is

Pn =
2

δ2
n



−δn − 2(<(x̃[n]))2 −2<(x̃[n])=(x̃[n])

−2<(x̃[n])=(x̃[n]) −δn − 2(=(x̃[n]))2


 . (3.39)

Moreover, if F is the L-times oversampling IFFT matrix such that x̃ = FHX̃, Q

consists of the corresponding d+f columns of F with the column indices in Kd

⋃Kf ,

and Q is the real-imaginary form of Q.

Two techniques can be applied to improve the computational efficiency. The

computation of Eq. (3.33) mainly resides in the matrix multiplicationQTPQ. By using

the diagonalization properties of FFT, the complexity of constructing the Hessian

matrix H can be reduced in the similar way as shown in [6]. In addition, the linear
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equations in Eq. (3.29) can be solved by Cholesky factorization or conjugate gradient

methods.

In the end, in light of the principles of interior-point methods, the step size should

be determined so that the new data vector X̃new will not violate the constraints. This

requires the step size to be

β = ξ min{βa, βe, βn, β̂k, e}, n ∈ {0, · · · , LN − 1}, k ∈ Kf , (3.40)

where ξ is selected as a positive number less than 1 to ensure the updated point

remain strictly feasible. Here, ξ = 0.95 is empirically chosen for fast convergence

speed. βa, βe, βn (n ∈ {0, · · · , LN − 1}) and β̂k (k ∈ Kf ) are determined by the

average power constraint (3.6), EVM minimization (3.3), peak power constraint (3.8)

and free subcarrier spectral mask (3.5), respectively. The results are: βa is

ba = <(XHSV)− e, (3.41)

βa =




−ba −

√
b2
a − 2δa, ba < 0 and b2

a − 2δa ≥ 0, (3.42)

∞, otherwise. (3.43)

βe is

ae = ‖V‖2
2 − 1, (3.44)

be = e + <
(
(X̃−X)HSV

)
, (3.45)

βe =





−be +
√

b2
e + aeδe

ae

, ae > 0 or (ae < 0 and be > 0), (3.46)

δe

2be

, ae = 0 and be > 0, (3.47)

∞, otherwise. (3.48)

βn (n ∈ {0, · · · , LN − 1}) has

an = |v[n]|2, (3.49)

bn = <((x̃[n])∗v[n]), (3.50)
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βn =





−bn +
√

b2
n + anδn

an

, an 6= 0, (3.51)

δn

2bn

, an = 0 and bn > 0, (3.52)

∞, otherwise, (3.53)

where v[n] with n ∈ {0, · · · , LN−1} is the n-th element of the time-domain updating

vector v = FHV. And β̂k (k ∈ Kf ) has

âk = |Vk|2, (3.54)

b̂k = <(X̃∗
kVk), (3.55)

β̂k =





−b̂k +
√

b̂2
k + âkφk

âk

, âk 6= 0, (3.56)

φk

2b̂k

, âk = 0 and b̂k > 0, (3.57)

∞, otherwise. (3.58)

In summary, the procedure of the iterative customized IPM is

1. Initialize X̃ so that it satisfies all the constraints. For instance, in the IEEE

802.11a standard, X̃k = 0 (k ∈ Kf ) satisfies the spectral mask constraint on

free subcarriers; X̃N
2

+1 =
√∑

k∈Kd
|Xk|2 and X̃k = 0 (k ∈ Kd but k 6= N

2
+ 1)

maintain the average power on data subcarriers not to be reduced; X̃k = Xk

(k ∈ Kp) keeps pilot subcarriers unchanged. The corresponding waveform x̃

has PAR close to 0dB which satisfies practical deterministic PAR constraints.

Also, initialize e = 1.05‖S(X−X̃)‖2, obtained by backing off 5% from the EVM

constraint (3.3).

2. Update the variables δa, δe, δn (n ∈ {0, · · · , LN−1}), and φk (k ∈ Kf ) according

to Eqs. (3.20)-(3.23), respectively.

3. Calculate the gradient vectorG and the Hessian matrixH according to Eqs. (3.32)

and (3.33), respectively.

4. Solve Eq. (3.29) for the updating vector V.
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5. Determine the step size β according to Eq. (3.40).

6. Update X̃ and e according to Eqs. (3.27) and (3.28), respectively.

7. Stop if the algorithm converges or the maximum number of iterations has been

reached, or return to Step 2 and start a new iteration.

Good convergence can generally be achieved within 10 iterations, for which the dif-

ference between the solution EVM and the optimal EVM is less than 0.001.

3.2.3 Performance Analysis

Some properties and numerical results of the proposed EVM optimization algorithm

are illustrated in this subsection.

3.2.3.1 Peak Power Limited for the PA Input Signal

According to the constraint (3.8), the PA input signal becomes x̃[n] whose peak

magnitude is limited as

max |x̃[n]| ≤
√

γ

IBO
· σx

√
IBO =

√
γ

IBO
·
√

Ppeak

G
, (3.59)

where the second equality of (3.59) is given by Eq. (2.3).

By choosing IBO ≥ γ in (3.59), the peak magnitude is always less than or equal to√
Ppeak

G
, thus eliminating the possibility of PA saturation as illustrated in Figure 2.3.

3.2.3.2 Average Power

From (3.9), it is straightforward to infer that, on the data subcarriers,

E
[ ∑

k∈Kd

|X̃k|2
]
≥ E

[ ∑

k∈Kd

|Xk|2
]

= dP0. (3.60)

Eq. (3.60) indicates that, with the proposed algorithm, the average transmit power

on the data subcarriers is not reduced. Also, because the signals on free subcarriers

of the original symbol X are zero, we have,

E
[ ∑

k∈Kf

|X̃k|2
]
≥ E

[ ∑

k∈Kf

|Xk|2
]

= 0. (3.61)
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Recall that the pilot subcarriers are unchanged and Kd ∪Kf ∪Kp = {0, · · · , N − 1},
we have [c.f. (3.60) and (3.61)],

E
[ N−1∑

k=0

|X̃k|2
]
≥ E

[ N−1∑

k=0

|Xk|2
]
. (3.62)

By Parseval’s theorem, the average power of the time-domain EVM-optimized sig-

nal has σ2
x̃ ≥ σ2

x. Because no clipping occurs at the PA, the average power of the

transmitted signal is G2σ2
x̃.

3.2.3.3 Deterministic PAR Constraint

The PAR of the optimized signal x̃ is upper bounded by the deterministic threshold

γ as

PAR(x̃) = max
n∈{0,··· ,LN−1}

|x̃[n]|2
σ2

x̃

≤ γ. (3.63)

To demonstrate the performance of the proposed EVM optimization scheme and

the customized IPM algorithm, a few numerical results are illustrated in this section.

If not specifically indicated, the simulation setup follows the IEEE 802.11a stan-

dard [2]. L = 4, N = 64 and the spectral mask as defined in the IEEE 802.11a

standard were used [2]. Without loss of generality, the OFDM symbols were drawn

from a normalized QPSK constellation (P0 = 1) for which the RMS EVM threshold

is ε = 0.1. p = 4 subcarriers were used for transmitting the pilot signals at the indices

of Kp = {7, 21, 43, 57} with the binary values of {1,−1, 1, 1}, respectively.

In Figure 3.1, the CCDF curves for the PAR values resulted by the EVM opti-

mization algorithm are plotted for various PAR thresholds, i.e., γ = 3, 4, 5, 6 and

7dB. The corresponding RMS EVM values of the PAR-reduced symbols are also in-

dicated in the figure. In this example, f = 12 free subcarriers were used as allocated

in IEEE 802.11a [2]. We observe that these curves do not go beyond the η = γ lines,

thus confirming that the customized IPM does implement the intended deterministic

PAR constraint.
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Figure 3.1: CCDF curves of the PAR of the EVM-optimized signal x̃ for different
PAR thresholds γ; the number of free subcarriers is f = 12. The PAR CCDF curve
of the original OFDM signal is also shown.

3.2.3.4 Spectral Mask Constraint

Because of (3.60), the EVM-optimized signal X̃ strictly satisfies the relative spectral

mask constraint

E[|X̃k|2] ≤MkP0 ≤MkP̃0, k ∈ Kf , (3.64)

where P̃0 = 1
d
E[

∑
k∈Kd

|X̃k|2] is the average power on the data subcarriers of X̃.

The power allocation of the EVM-optimized X̃ for one random symbol realization

is shown in Figure 3.2. The PAR threshold was γ = 3.95dB in this example. It shows

that the signals on free subcarriers of the optimized symbol X̃ strictly satisfy the

spectral mask constraint imposed by standards. In addition, Figure 3.2 demonstrates

that the EVM optimization algorithm keeps the pilot subcarriers unchanged. The

errors that exhibit on the data subcarriers are the source of EVM.
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Figure 3.2: One realization of the EVM-optimized power allocation for X̃; the PAR
threshold is γ = 3.95dB; the number of free subcarriers is f = 12.

3.2.3.5 RMS EVM Lower Bounds

The EVM optimization algorithm offers a way to numerically determine the fun-

damental tradeoff between the in-band distortion and the power efficiency of PPC

OFDM transmitters.

On one hand, the lower bound of RMS EVM values, denoted as εmin, can be deter-

mined for the given PAR threshold γ. The EVM optimization algorithm minimizes

the symbol-wise EVM of each OFDM symbol. Therefore, the RMS EVM value found

by the proposed algorithm is expected to be the minimum for the given deterministic

PAR constraint.

Figure 3.3 shows the achievable RMS EVM as a function of the number of free

subcarriers f for various PAR thresholds γ = 3, 4, 5, 6 and 7dB. The tradeoff between

RMS EVM and power efficiency can be improved if one is allowed to use more free

subcarriers. The cost is the reduced bandwidth efficiency since fewer subcarriers are

used for data transmission.
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Figure 3.3: RMS EVM of the EVM-optimized signal x̃ for different numbers of free
subcarriers; the PAR threshold is γ = 3, 4, 5, 6 and 7dB.

In Figure 3.4, the tradeoff curves between the optimized RMS EVM values and the

PAR threshold γ are shown for different numbers of free subcarriers (f = 0, 4, 8 and

12). The γ versus RMS EVM curves set the boundaries for system parameter designs.

The feasibility regions only lie above these curves. For the assumed transmitter with

the deterministic PAR constraint and spectral mask requirement, it also gives the

lower bound for the achievable RMS EVM threshold εmin. For instance, Figure 3.4

shows that the minimum RMS EVM threshold is εmin = 0.035 for γ = 5dB and

f = 12. It indicates that if IBO = 5dB is required with respect to the system power

efficiency, no distortion-based PAR reduction algorithm can have in-band distortion

with RMS EVM less than 0.035.

3.2.3.6 PAR Threshold Lower Bounds

On the other hand, the minimum PAR threshold can be found for the RMS EVM

constraint ε as specified in standards.

In general, the higher the PAR threshold γ, the smaller the optimized symbol-wise
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Figure 3.4: RMS EVM of the EVM-optimized signal x̃ for different PAR threshold
γ, when the number of free subcarriers f = 0, 4, 8 and 12.

EVM and RMS EVM tend to be. Therefore, we can determine, by off-line Monte

Carlo simulations, the lowest possible γ whose corresponding RMS EVM value meets

the standard’s requirement. The problem can be formulated as follows:

min γ (3.65)

s.t. RMS EVM ≤ ε, (3.66)

where RMS EVM is a function of γ and has to be numerically calculated. The

resulting minimum PAR threshold, denoted as γmin, gives the lower bound of the

deterministic PAR threshold for the given RMS EVM threshold ε. In other words,

no deterministic PAR constraint with γ < γmin is feasible for the given RMS EVM

and spectral mask constraints in the concerned system.

Figure 3.4 can be again used to determine the minimum PAR threshold γmin. For

instance, since the RMS EVM threshold is ε = 0.1 for our simulation setup, only

the curves below the RMS EVM = 0.1 dotted line are allowed. As a result, the

minimum PAR threshold is about γmin = 3.95dB when f = 12 free subcarriers are to
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Figure 3.5: The minimum PAR threshold γmin and the maximum power efficiency
ρmax as the functions of RMS EVM threshold ε; the number of free subcarriers is
f = 12.

be employed. Any requirement for a PAR threshold lower than 3.95dB is unrealistic

if the RMS EVM is expected to be ≤ 0.1. When compared with the original OFDM

signal, a PAR reduction of 6.6dB is readily achieved at the 10−3 CCDF level.

In addition, γmin is shown to be a monotonically decreasing function of the RMS

EVM value of the EVM-optimized signals. As shown in Eq. (2.4), the PA power

efficiency can be maximized by minimizing the IBO. Also, IBO ≥ γ is required.

Therefore, by setting IBO = γmin, the maximum power efficiency is given by

ρmax =
1

2γmin

. (3.67)

For f = 12, the upper bound of power efficiency is plotted for different RMS EVM

thresholds in Figure 3.5. The greater the target power efficiency is, the more the

in-band distortion should be allowed.
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3.2.3.7 In the Presence of Predistorted Nonlinear PA

This subsection is dedicated to demonstrate the effectiveness of the EVM optimization

algorithm in the presence of practical nonlinear PA.

Instead of the ideal soft-limit model in Eqs. (2.1)-(2.2), practical PAs exhibit other

nonlinearities and memory effects besides saturation. Since the EVM and spectral

growth should be measured on the output signals of the practical PA, Eq. (3.7)

becomes x̃ = g(FHX̃), where g(·) represents the response of the PA. This change will

force the EVM optimization algorithm to adjust the OFDM symbols according to the

actual PA response and thus provide the optimal solution. Intuitively, it is equivalent

to realizing the EVM optimization and the digital predistortion of the PA response

at the same time. However, it also makes the optimization problem too difficult to

solve. A closed-form customized IPM method is no longer available for general PAs.

As introduced in Section 2.1, digital predistorters can be adopted to well linearize

the practical PAs. Therefore, it is simpler to break the optimal solution into separate

blocks, i.e., the concatenation of the EVM optimization algorithm in (3.2)-(3.8) and

a digital predistorter as in [26]. Although sub-optimal performance is expected, the

numerical results in Figure 3.6 illustrate that the solution is still quite effective.

In the simulation, the deployment of a practical PA, i.e., the PM2105 GaAs power

amplifier [78], was assumed1. The nonlinearity and memory effects of the adopted

PA were compensated by realizing an adaptive DPD with the indirect learning archi-

tecture and the memory polynomial as introduced in [26]. Following the notations

in [26], the predistorter was assumed to have the memory order of Q = 3 and the

nonlinearity order of K = 5. A block of 20 OFDM symbols was also taken in the

training phase for the DPD identification.

In the presence of the linearized PA, Figure 3.6 gives the RMS EVM versus γ

1Thanks to Professor J. Stevenson Kenney for the experimental data of PA PM2105.
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Figure 3.6: The RMS EVM versus PAR threshold γ curves of the EVM-optimized
signal x̃ passed through a linearized PA; the number of free subcarriers f = 0, 4, 8
and 12.

curves for different numbers of free subcarriers. Compared with the curves in the

SL model, it is shown that the EVM optimization method can still achieve near-

optimal RMS EVM values, especially for small PAR thresholds. When the RMS

EVM constraint ε = 0.1 is effective, the linearized PA can achieve almost the same

PAR threshold (i.e., power efficiency) with the SL case. Therefore, DPD designs

further facilitate the applications of the EVM optimization method in practice.

3.2.4 Parameter Optimizations

To reduce the PAR values of OFDM signals is not the ultimate design goal. Rather,

the transmission performance, e.g., the error performance and system throughput,

should be improved by utilizing the PA power consumption more efficiently. There-

fore, the optimal system parameters can be designed within the EVM optimization

framework.

39



3.2.4.1 SNDR Maximization

The signal-to-noise-and-distortion ratio (SNDR) is an effective metric of the ratio

between the signal power and the uncorrelated noise plus distortion power [85]. It can

substitute SNR in BER or SER expressions to determine the error performance. Since

all meaningful BER and SER expressions are monotonic in SNDR, it is important to

determine the optimal PAR threshold that maximizes SNDR.

Although the EVM-optimized signal x̃ (or X̃) is a highly nonlinear function of

the original OFDM signal x (or X), the data subcarriers of X̃ can be decomposed

according to Bussgang’s theorem [88] as

X̃k = αXk + ωk, ∀k ∈ Kd, (3.68)

where ωk (k ∈ Kd) denotes the distortion noise with variance σ2
ω = E[|X̃k|2] −

|α|2E[|Xk|2]. α is a constant chosen so that ωk is uncorrelated with Xk, i.e., α =

E[X∗
kX̃k]/E[|Xk|2] and thus E[X∗

kωk] = 0 where the expectations are evaluated over

Xk and X̃k on k ∈ Kd and all OFDM symbols. The SNDR of the kth data subcarrier

of the output signal is thus defined as [77]

SNDRk =
G2|hk|2|α|2E[|Xk|2]

G2|hk|2σ2
ω + σ2

k

, k ∈ Kd, (3.69)

where hk is the frequency-domain channel response and σ2
k is the channel noise power

of the kth subcarrier. It can be further expressed approximately as a function of the

RMS EVM and γ as follows [61]

SNDRk ≈ 1− (RMS EVM)2

(RMS EVM)2 +
2dσ2

k

rP |hk|2 · γ
, k ∈ Kd, (3.70)

where P = 2LNPpeak denotes the total power consumed by the PPC class-A PA for

transmitting one OFDM symbol, and r is defined as the ratio between the power

transmitted on the data subcarriers and the total power, i.e.,

r =
E[

∑
k∈Kd

|Xk|2]
E[

∑N−1
k=0 |Xk|2]

=
dP0

dP0 +
∑

k∈Kp
|Pk|2 , (3.71)
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which is a constant and can be calculated according to the subcarrier categorization.

In the EVM optimization algorithm, because the optimized RMS EVM is a func-

tion of the PAR threshold γ, the SNDR in Eq. (3.70) can be maximized over γ for

known channel state information hk and σ2
k, i.e.,

γ? = arg max
γ

SNDRk

∣∣∣∣
hk,σ2

k

. (3.72)

It is worth noting that, the RMS EVM value that corresponds to the optimal γ?

may be different from (or even greater than) the constraint defined in the standards,

but this RMS EVM value and PAR threshold will introduce the optimal SNDR per-

formance for the given transmitters and channel. Intuitively, although in-band dis-

tortion may be increased by using a smaller γ, the average transmit power is also

boosted such that the channel noise is equivalently suppressed. Using the γ-RMS

EVM curves obtained a priori by (3.65) and (3.66), the optimal PAR threshold γ?

can be determined by on-line calculation of Eq. (3.72) which is enabled by the SNDR

approximation in Eq. (3.70). Then, the optimal tradeoff between in-band distortion

and power efficiency can be reached by the EVM optimization algorithm.

Assume flat channels with additive white Gaussian channel noise where hk = h

and σ2
k = σ2 (∀k) are known at the transmitter. In addition, define the PA-power-to-

noise ratio (PNR) for the considered class-A PA and channel as

PNR =
rP |h|2
dσ2

, (3.73)

which is completely determined by the transmitter setup and channel states. Then

the SNDR in Eq. (3.70) can be further simplified as

SNDRk ≈ 1− (RMS EVM)2

(RMS EVM)2 + 2γ
PNR

, ∀k ∈ Kd. (3.74)

For any given PNR, Eq. (3.74) can be numerically evaluated with the help of the

γ versus RMS EVM curves shown in Figure 3.4. In Figure 3.7, the γ versus SNDR

curves which are obtained from Monte Carlo simulations with Eq. (3.69) and from
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Figure 3.7: The SNDR versus PAR threshold γ curves of the Monte Carlo simula-
tion and the SNDR approximation in Eq. (3.74); PNR = 20dB; the number of free
subcarriers is f = 12.

the SNDR approximation in Eq. (3.74) are compared. The approximate expression

Eq. (3.74) is shown to be fairly accurate. Therefore, the approximation in Eq. (3.74)

enables the on-line parameter adjustment to maximum SNDR when channel state

information is known. For PNR ranging from 15dB to 30dB, their SNDR curves are

plotted in Figure 3.8. As expected, the greater the PNR, the greater the SNDR.

Consequently, the optimal γ? can be found for the given PNR value. As illustrated

in Figure 3.8, the optimal PAR threshold γ? varies as a function of PNR. Figure 3.9

summarizes the optimal γ? and the corresponding RMS EVM values for PNR from

15dB to 30dB and f = 12. The main observation is, the greater the PNR, the larger

the optimal PAR threshold γ? and the smaller the optimal RMS EVM. Intuitively,

when PNR is large, the channel noise has little effect and the distortion noise is

dominant. Instead of trying to reduce the PAR threshold and increasing the average

transmit power, lower level distortion should be pursued. On the other hand, when

the channel noise is not negligible, reducing IBO by introducing nonlinear distortions
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can help to suppress the total noise and maximize SNDR. Furthermore, Figure 3.9

demonstrates that the RMS EVM threshold ε given in the standard, which is 0.1

for the simulation setup, is not always optimal. For a small PNR, the optimal RMS

EVM can be greater than ε.

3.2.4.2 Throughput Maximization

As was argued in the last subsection, SNDR is analogous to SNR in error rate expres-

sions. Another pertinent performance optimization is system throughput (or mutual

information) maximization. The relationship between SNDR and capacity has been

derived in [85]. It shows that because the distortion term wk in Eq. (3.68) is approxi-

mately Gaussian distributed, the lower bound of the mutual information on each data

subcarrier is Ck ≥ log2(1+SNDRk) bits/symbol (∀k ∈ Kd). Accordingly, when a flat

channel response is assumed so that SNDRk = SNDR, the total system throughput

per symbol is lower bounded by

∑

k∈Kd

Ck ≥ d · log2(1 + SNDR) = C bits/symbol. (3.75)

Unlike SNDR maximization, throughput lower bound maximization involves a trade-

off in the number of data subcarriers, d. When more data subcarriers are used, the

sum in (3.75) involves more terms and leads to an increase in the throughput. How-

ever, these additional terms come at the expense of fewer free subcarriers (smaller

f), which means less PAR reduction is possible (see Figure 3.4) and may cause an

ultimately lower SNDR.

Therefore, the pair of parameters (γ, f) should be selected so that the throughput

is maximized. It can be summarized as the following maximization problem

max
γ, f

C, (3.76)

where C is defined in Eq. (3.75). This lower bound is implicitly a function of the set of

variables (γ, RMS EVM, f). With the help of off-line calculated γ-RMS EVM curves
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for different f , the lower bound in Eq. (3.75) can be evaluated and the maximization

problem of (3.76) can be solved on-line with known channel state information.

In Figure 3.10, we demonstrate how the throughput lower bound varies with the

number of free subcarriers. In this example the PNR value is set to 20dB. The plot

shows that the maximum throughput lower bound is achieved at (γ, f) = (5dB, 0)

which means all subcarriers should be used for transmitting data and pilot signals,

instead of being used to reduce EVM. On the contrary, the corresponding SNDR

values will be maximized by using as many free subcarriers as possible. Different

objectives yield different optimal system setups.

The optimal thresholds were calculated for different PNR values as shown in Fig-

ure 3.11. Surprisingly, for the simulated PNR region, the optimal number of free sub-

carriers is always 0. Intuitively, the reason is that the symbol-wise EVM has already

been minimized by the EVM optimization algorithm. With more free subcarriers, the

help on further reducing the symbol-wise EVM is trivial. Instead, subcarriers should

be used to transmit data so that the throughput is increased significantly.

This observation further simplifies the throughput maximization problem. The

number of free subcarriers can be prescribed to zero so that the throughput maxi-

mization problem simplifies to the aforementioned SNDR maximization problem.

3.2.5 PAR Reduction Performance Comparison

The PAR reduction performance of the proposed EVM optimization method is com-

pared with several existing PAR reduction algorithms in this subsection, including

the repeated clipping and filtering (RCF) [10], iterative constrained clipping (ICC)

[12] and PAR optimization algorithms [6].

In Figure 3.12, the RMS EVM thresholds of these algorithms were all set to 0.1 so

that they all satisfied the given RMS EVM constraint in IEEE 802.11a. Specifically,

this was achieved by empirically predetermining the clipping threshold at 5.3dB in
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the RCF algorithm. The ICC and PAR optimization algorithms both enforced a

symbol-wise EVM constraint of 0.1. For the ICC algorithm, the clipping threshold

of 2.8dB was empirically chosen so that the best PAR reduction performance was

obtained at the 10−3 CCDF level. 15 iterations were taken for RCF and ICC.

The EVM optimization algorithm is shown to achieve the best PAR reduction

performance either with or without the piece-wise linear scaling [76]. Without piece-

wise linear scaling, the power efficiency is inversely proportional to the maximum

PAR. For the comparisons with RCF and ICC, as well as with the PAR optimization,

it is clear from Figure 3.12 that the EVM optimization algorithm has a lower PAR

(upper-bounded by the deterministic constraint of 3.95dB) for almost all CCDF levels

and thus, will have higher power efficiency. When the piece-wise linear scaling is

applied before the PA, on the other hand, the average power efficiency has been shown

to be inversely proportional to the harmonic mean of symbol-wise PARs [64, Eq. (18)].
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Even though the CCDF curves of the EVM optimization and PAR optimization have

a crossing point, it can be shown that the EVM optimization yields the smallest

harmonic mean of symbol-wise PAR.

Furthermore, the proposed EVM optimization is the only algorithm that guaran-

tees the deterministic PAR constraint. The CCDF curves of ICC and PAR optimiza-

tion methods have negative slopes. The clipped signals in the RCF method suffered

from peak regrowth due to the filtering, which resulted in the PAR value of 5.55dB at

the 10−3 CCDF level although 5.3dB clipping ratio was used. In order to compare the

γ-RMS EVM curves, the PAR value at the 10−3 CCDF level was over-optimistically

chosen as the PAR threshold γ for these algorithms in the comparison group. The

exact γ-RMS EVM tradeoff should be even worse since 0.1% OFDM symbols are still

saturated with IBO = γ for these algorithms.

For the same setup, the γ-RMS EVM tradeoff curves of the RCF, ICC, PAR

optimization and EVM optimization algorithms are plotted in Figure 3.13. The EVM

optimization algorithm achieves the optimal tradeoff between RMS EVM and PAR

threshold. It sets the lower bound for other algorithms. The tradeoff curves for

the RCF and PAR optimization algorithms were obtained by varying the clipping

ratio and the symbol-wise EVM threshold, respectively. For the ICC algorithm, the

clipping ratio was also optimized for each symbol-wise EVM threshold off-line so that

the resulting PAR was minimized [12]. This provided the best tradeoff that could

be achieved by the ICC algorithm. The specific examples shown in Figure 3.12 (i.e.,

RMS EVM = 0.1) also confirm the tradeoff curves in Figure 3.13.

3.3 MCPTS PAR Reduction Method in OFDM-FDMA Sys-
tems

To reduce the PAR of OFDM-based frequency-division multiple access systems, we

propose a low-complexity multi-channel partial transmit sequences (MCPTS) method
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that requires no receiver-side modification and thus is compatible with existing sys-

tems.

3.3.1 OFDM-FDMA Systems

OFDM-based frequency-division multiple access (OFDM-FDMA) systems have been

defined in several standards to support multiuser communications. In OFDM-FDMA,

the frequency spectrum is channelized into adjacent fragments on each of which a

(or multiple) separate OFDM user(s) can communicate. For instance, 5-20MHz and

1.25-20MHz channelization schemes were specified in the IEEE 802.11a and the IEEE

802.16 standards, respectively [2, 3]. OFDM-FDMA is also a promising technique for

high data rate communications in future cellular systems. It is currently a strong

candidate for the downlink multiple access scheme in the Long Term Evolution of

cellular systems under consideration by the Third Generation Partnership Project

(3GPP) [28].

In practice, however, hardware restrictions present an additional factor for the
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base station design, where all downlink (from base station to mobile station) signals

are transmitted concurrently. It is possible to configure one PA and one antenna for

each channel. However, it will considerably increase the cost of the base station and

bring extra difficulty in hardware debugging. Thus, it is much favored to have a single

wideband PA transmitting the signals of all channels.

Nevertheless, the downlink signals are summed up in time domain in this case,

thus also possessing large PAR values, even if individual PAR reduction method is

applied on the OFDM signal of each channel. Therefore, the PAR problem is even

more challenging in OFDM-FDMA systems and has to be solved to enable the use of

the single-PA base station.

The structure diagram of the base station transmitter in the OFDM-FDMA sys-

tem is shown in Figure 3.14. Synchronous transmission is assumed in this section,

where the start and end times of OFDM symbols among all channels are synchronized

[63]. The asynchronous system is addressed and can be found in [65]. Independent

OFDM signals are transmitted on M different frequency bands, whose center fre-

quencies are fm and satisfy a non-overlap condition, fm+1 − fm ≥ 1
2
(Bm+1 + Bm)

(m = 1, · · · ,M − 1) where Bm is the frequency bandwidth of the mth channel.

For each of the OFDM signals, data are transmitted on Nm orthogonal subcarriers

which make up the OFDM symbol, denoted as Xm = [Xm,0, · · · , Xm,Nm−1]
T . For

notational simplicity, Bm = B and Nm = N are assumed in this section, but the

results can be generalized accordingly. An L-times oversampling IFFT operation is

performed to generate the baseband time-domain samples of each channel

xm[n] =
1√
LN

N−1∑

k=0

Xm,ke
j2πkn

LN , n = 0, · · · , LN − 1, (3.77)

i.e., xm = FHXm. Then, the baseband signals is up-converted to passband and

combined as the input to the PA, i.e.,

xp[n] =
M∑

m=1

xm[n]e
j2πnTfm

LN , (3.78)
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Figure 3.14: The (a) structure and (b) frequency spectrum diagram of the base
station in OFDM-FDMA systems.

where T = N/B is the symbol duration. The center frequency of the above passband

signal can be found as fpass = 1
2
(f1 + fM) + 1

4
(BM −B1) and the equivalent baseband

signal is x = [x[0], · · · , x[LN − 1]]T with x[n] = xp[n]e−
j2πnTfpass

LN . Since the baseband

PAR can be used to infer the passband dynamic range [100], we consider the symbol-

wise PAR defined as

PAR(x) =
‖x‖2

∞
1

LN
‖x‖2

2

. (3.79)

For the soft-limit PA, piece-wise linear scaling (PWLS) can be used so that no clip-

ping occurs, in which the OFDM symbol is modified such that xPWLS = P
1/2
peakx/‖x‖∞.

Thus, reduction in the PAR leads to increase in the average transmit power [76].

3.3.2 MCPTS in Synchronous OFDM-FDMA Systems

Partial transmit sequence (PTS) approach has been proposed to reduce the PAR

of OFDM signals [73]. The basic idea is to produce U time-domain representations

for the same OFDM symbol and transmit the representation with the smallest PAR

51



value. The set of OFDM subcarrier indices is partitioned into S disjoint sets Ss (s =

1, · · · , S), having
⋃

s=1,··· ,S
Ss = {0, · · · , N − 1} and Sp

⋂
Sq = ∅ (p 6= q, 1 ≤ p, q ≤ S).

U independent phase sequences with independent phase shifts on each set Ss, i.e.,

Θ(u) = [ejθ
(u)
1 , · · · , ejθ

(u)
S ]T and θ

(u)
s ∈ [0, 2π) (u ∈ {1, · · · , U}), are available to both

transmitters and receivers. The superscript is used for the index of the multiple

representations and the subscript is used for the index of partitions. In the time

domain, U different representations are obtained via

x(u) = IFFT[X(u)] = IFFT[X ◦ Φ(u)], u = 1, · · · , U, (3.80)

where ◦ denotes element-wise multiplication, Φ(u) = [φ
(u)
0 , · · · , φ

(u)
N−1]

T and φ
(u)
k =

ejθ
(u)
s if k ∈ Ss. Since phase rotations do not change the average power, we have

‖x‖2
2 = ‖x(u)‖2

2 (∀u ∈ {1, · · · , U}). The ũth sequence will be transmitted whose PAR

is the smallest, i.e., ũ = arg min
u∈{1,··· ,U}

PAR(x(u)). Inevitably, the index ũ has to be

sent as side information such that the phase shifts can be reversed at the receiver

side.

In this section, the PTS method is extended to the OFDM-FDMA system, referred

as the MCPTS method. In the synchronous transmitter, the whole frequency-domain

symbols Xm (m = 1, · · · ,M) can be regarded as a single data block. The individual

symbols to the data block is the same as the subcarrier subsets to the OFDM symbol

in the PTS method. Therefore, for the multi-channel system, there is a natural and

simple partition scheme determined by the channelization. The number of partitions

is S = M and Ss includes the indices of Xm (s = m ∈ {1, · · · ,M}). The M -by-1

phase sequence Θ = [ejθ1 , · · · , ejθM ]T will then be determined to minimize the PAR

value, formulating the MCPTS approach in the following way

min
θm∈[0,2π)

PAR(x̃) (3.81)

s.t. x̃m = ejθmFHXm = ejθmxm (3.82)

x̃[n] =
M∑

m=1

x̃m[n]e
j2πnT

LN
(fm−fpass). (3.83)
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In the end, the signal after adaptive linear scaling will be transmitted, i.e., xPWLS =

x̃P
1/2
peak/‖x̃‖∞. Each of the partitions in the MCPTS method is just a single channel.

With the assumption of ideal channel estimation, this property provides MCPTS a

couple of merits that make it favored for this system:

1. Neither side information nor receiver-side modification is needed. The phase

rotation is equivalently part of the channel response and can be recovered by

the channel estimation capability of each OFDM channel;

2. Since no side information should be transmitted, phase rotation can take on

any value (rather than prescribed sequences), leading to better PAR reduction

performance. Optimization techniques, such as the particle swarm optimization

(PSO) [43], can be used to solve (3.81)-(3.83).

3.3.3 Joint MCPTS and Power Allocation

For the peak power constrained PA, reducing PAR can increase the effective average

output power. However, for fading channels, power allocation should also be designed

so that the potential average power increase can be effectively utilized. Accordingly,

we propose that each subcarrier in each channel be scaled so that the average power of

the kth subcarrier in the mth channel is Pm,k, i.e., X̄m,k = Xm,k(Pm,k/E[|Xm,k|2]) 1
2 .

We assume the transmitter has the channel state information (CSI), including the

frequency response hm,k and the variance of the Gaussian channel noise σ2
m,k. The

signal-to-noise ratio of a given subcarrier is

SNRm,k = Pm,k
|hm,k|2
σ2

m,k

=
Pm,k

σ̂2
m,k

, (3.84)

where σ̂2
m,k =

σ2
m,k

|hm,k|2 is the equivalent channel noise power. The values for Pm,k will

be determined to minimize the average BER.
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Given the peak power constraint, the joint PAR reduction and average BER-

minimizing power allocation problem can be formulated as:

min
Pm,k, θm

1

MN

M∑
m=1

N−1∑

k=0

PB (SNRm,k) (3.85)

s.t.
M∑

m=1

N−1∑

k=0

Pm,k = ‖x̃‖2
2 ≤

LNPpeak

PAR(x̃)
(3.86)

x̃[n] =
M∑

m=1

x̃m[n]e
j2πnT

LN
(fm−fpass) (3.87)

x̃m = ejθmFHX̄m, ∀m ∈ {1, · · · ,M}, (3.88)

where PB(SNR) is the instantaneous BER for the constellation of interest. Eq. (3.86)

relates the average power with the peak power constraint and is a very complicated

function of both Pm,k and θm. Because the convexity of this problem is not clear, it

is hard to solve.

We propose an iterative algorithm to find a suboptimal solution to this problem.

First, for an initial objective average power P 0
av , LNPpeak

PAR0 , the BER-minimizing power

allocation solves the Lagrangian problem

∂

∂Pm,k

[
−

M∑
m=1

N−1∑

k=0

PB

(
Pm,k

σ̂2
m,k

)
− λPm,k

]
= 0 (3.89)

M∑
m=1

N−1∑

k=0

Pm,k = P 0
av. (3.90)

Assuming QPSK modulation with Gray mapping, where PB(x) = erfc(x/
√

2)/2 [83,

P. 271], Eq. (3.89) becomes

1√
σ̂2

m,kPm,k

e
− Pm,k

2σ̂2
m,k = 2

√
2πλ, (3.91)

for m = 1, · · · ,M and k = 0, · · · , N − 1. Pm,k is a function of the Lagrangian

parameter λ. By Eq. (3.90), λ can be determined and results in Pm,k’s. Unfortunately,

although Pm,k is one-to-one mapping with λ, the functional relationship cannot be

described in a closed form.
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A closed-form approximate solution to the above problem can be developed by

replacing the Q function with the Chernoff upper bound, i.e., Q(x) < e−
x2

2 . Then,

Eq. (3.89) yields

Pm,k = −2σ̂2
m,k[ln 2λ + ln σ̂2

m,k], ∀m ∈ {1, · · · ,M}, k ∈ {0, · · · , N − 1}. (3.92)

Combining with Eq. (3.90), the power allocation can be summarized as

Pm,k =





2σ̂2
m,k

[P 0
av + 2

∑
(p,l)∈M

σ̂2
p,l ln σ̂2

p,l

2
∑

(p,l)∈M
σ̂2

p,l

− ln σ̂2
m,k

]
, (m, k) ∈M, (3.93)

0, (m, k) ∈ O −M,(3.94)

where M is the largest possible subset of O , {(m, k)} (m ∈ {1, · · · ,M}, k ∈
{0, · · · , N − 1}) so that

M =
{
(m, k)

∣∣σ̂2
m,k ≤ σ̂2

p,l, Pm,k > 0, Pp,l = 0,∀(m, k) ∈M,∀(p, l) ∈ O −M}
.(3.95)

It can be determined recursively with at most MN iterations.

This upper bound of Q function is not only tight in the log scale but also approx-

imately a constant times of the true value, i.e., e−x2/2 ≈ cQ(x), for not too small x.

Replacing Q functions by the upper bounds in Eq. (3.85) just multiplies the objective

values with a constant scale and does not affect the minimization variables. There-

fore, it can provide a near-optimal power allocation scheme which solves Eq. (3.89)

in the closed form.

Secondly, because PAR is related to the allocated power, the PAR minimization

in MCPTS needs to take the scaling |X̄m,k|2 = Pm,k into consideration. By replacing

xm and Xm in Eq. (3.82) with x̄m and X̄m, the minimum PAR can be found as shown

in the MCPTS method in (3.81)-(3.83), i.e., PARmin = arg min
Θ

PAR(x̃).

Denote 0 < β < 1 as the convergence parameter. If PARmin > PAR0 or PARmin <

βPAR0, either the objective average power cannot be reached or the MCPTS yields

a much greater average power. In both cases, a new iteration begins with PAR0 =
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PARmin and P 0
av =

LNPpeak

PARmin
. Otherwise, the algorithm converges. A sub-optimal

solution in terms of both the power allocation and the phase sequence is achieved.

The iteration stops if this convergence condition is met or the maximum iteration

number is reached.

3.3.4 Simulation Results

We present some examples to illustrate the performance improvements. In the simu-

lations, adjacent channels were assumed without guard bands, i.e., fm+1 − fm = B.

The number of subcarriers was N = 64 for every channel.

3.3.4.1 MCPTS

The CCDF curves of the PAR are plotted in Figure 3.15. The constellation was

QPSK although our experiments indicated that the PAR reduction performance is

insensitive to the constellation choice. When the PSO method is used, the globally

minimum PAR can be achieved. However, more than 1,000 iterations were generally

necessary for the 10-particle PSO to achieve a good convergence. Instead, similar to

PTS, a limited number of phase sequences can be used for searching a small PAR. It

provides a tradeoff between PAR reduction performance and complexity.

3.3.4.2 Joint MCPTS and power allocation

In this simulation, the number of channels M = 8 and the oversampling rate L = 8

were used. For simplicity, we assumed Pm,k = Pm and hm,k = hm, but {hm} were

independent and identically distributed (i.i.d.) complex Gaussian random variables.

The channel noise was white Gaussian with σ2
m,k = σ2. In this setup, the PSNR can

be defined as

PSNR ,
Ppeak

M∑
m=1

E[|hm|2]
Mσ2

. (3.96)

Initialization PAR0 = 10dB and convergence parameter β = 0.95 were used.
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Figure 3.15: CCDF curves of the PAR of the original and MCPTS OFDM-FDMA
signals for different numbers of channels (M = 8 and 32) and numbers of phase
sequences (U = 4, 16, 64, 256 and 8192) as well as the PSO method.

Figure 3.16 shows the average BER versus PSNR curves. Two comparative meth-

ods are used, where the average power is either equally allocated among channels,

i.e., Pm = P , or allocated so that every channel has the same SNR and average

BER, i.e., Pm/Pn = σ̂2
m/σ̂2

n [32, Chap. 9]. In both methods, we force the condition

Pav =
∑M

m=1 Pm. MCPTS can be easily combined with these methods and shown to

improve the BER performance. Also, the curve of the proposed joint MCPTS and

BER-minimizing power allocation method is plotted in Figure 3.16. It is clear that

the proposed joint optimization method leads to much lower BER especially at high

PSNR values.

The resulting PAR of the iterative joint method might be, however, greater than

using MCPTS for a constant power allocation scheme, e.g., the equal power allocation

with MCPTS as shown in Figure 3.17. Intuitively, the joint method optimizes both

the magnitude and the phase of each OFDM channel. Although the potential average

power increase is less than using only MCPTS, the power is more efficiently allocated
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Figure 3.16: Average BER versus PSNR curves for M = 8 OFDM-FDMA sys-
tems with the equal power allocation, the same-SNR power allocation, and the joint
MCPTS and BER minimization power allocation schemes.

among channels.

3.4 Conclusions

To reduce the PAR of OFDM and OFDM-FDMA signals, the EVM optimization

algorithm and the multi-channel partial transmit sequences method have been pro-

posed in this chapter. Not only are significant performance improvements achieved,

these methods are also compatible with existing systems and standards. As practical

solutions to the PAR problem, the proposed research benefits the implementations of

OFDM systems.
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Figure 3.17: CCDF curves of the PAR of M = 8 OFDM-FDMA systems with the
equal power allocation, the same-SNR power allocation, and the joint MCPTS and
BER minimization power allocation schemes.
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CHAPTER IV

DIVERSITY-ENABLED PPC SIMO-OFDM

TRANSCEIVER DESIGN

By deploying multiple receiving antennas, single-input multiple-output OFDM can

further enhance the performance with spatial diversity, i.e., the antenna diversity.

However, due to the large dynamic range of OFDM signals and the nonlinear nature

of analog components, it is pragmatic to model the transmitter with a peak power

constraint. A natural question to ask is whether PPC SIMO-OFDM transmissions

can still enjoy the antenna diversity in this case. In this chapter, the effect of the peak

power limit on the error performance of uncoded SIMO-OFDM systems is studied.

In the case that the receiver has no information about the transmitter nonlinearity,

we show that full antenna diversity can still be collected by carefully designing the

transmitters, while the receiver performs a maximum ratio combining (MRC) method

which is implemented the same as that in the average power constrained case. On the

other hand, when the receiver has perfect knowledge of the transmitter nonlinearity,

zero-forcing (ZF) equalizer is able to collect full antenna diversity.

4.1 Introduction

For single-antenna OFDM systems with clipping at the transmitter, the approxi-

mated symbol error rate has been derived for maximum-likelihood sequence detection

(MLSD) in [81]. The results show that the clipping nonlinearity leads to a certain

(may not be full) multipath diversity order over frequency-selective Rayleigh fading

channels. However, MLSD requires near exponential complexity to collect some diver-

sity gain. When the number of subcarriers is large which is usually the case in current
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standards, the complexity of MLSD is prohibitive. In such a case, the OFDM system

loses its advantage as a simple equalizer which may reduce its practical applicability.

The low-complexity diversity-enabled transceiver design over peak power con-

strained OFDM channels is of interest. Therefore, instead of the multipath diversity,

we focus on the antenna diversity from multiple antennas deployed at the receiver

(i.e., SIMO channels). When OFDM signals are linearly transmitted, linear equaliz-

ers are sufficient to collect the antenna diversity by optimally combining the multiple

faded replicas of the same information bearing signal [30, 96]. However, the question

of whether and how the peak power constrained SIMO-OFDM system can still enjoy

antenna diversity with linear equalizers has not been addressed in the literature. A

few iterative methods to reconstruct the clipped OFDM signals in multi-antenna sys-

tems have been proposed in [14, 46, 47]. However, the diversity order has not been

quantitatively analyzed.

4.2 SIMO-OFDM System Model

In the uncoded OFDM system with the frequency-domain symbols X = [X0, · · · , XN−1]
T

where Xk’s are drawn from an ideal constellation Ω, the time-domain waveform can

be obtained from x = FHX, whose PAR definition follows in Eq. (2.7).

Without loss of generality, assume the signal is transmitted through the soft-limit

PA with the peak power constraint Ppeak and a unit gain (i.e., G = 1 in Eqs. (2.1)-

(2.2)). The output signal can be denoted as y[n] = g(x[n]) as given in Eqs. (2.1)-

(2.2). In this case, the input back-off is defined as IBO =
Ppeak

σ2
x

. Clipping occurs when

PAR(x) > IBO.

The frequency-domain transmitted in-band subcarriers can thus be obtained from

y = [y[0], · · · , y[LN − 1]]T , g(x) as

X̄ = Fy. (4.1)

Notice that, by digital clipping and filtering methods, out-of-band spectral growth
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can be constrained according to certain spectral mask or totally eliminated [10, 12].

In this case, the following analysis still holds valid and the proposed methods can

be modified accordingly by treating the clipping and filtering as a single nonlinear

process.

Suppose the receiver is equipped with Nr uncorrelated receiving antennas. After

removing the cyclic prefix and performing the FFT, the received signal in frequency-

selective Rayleigh fading channels is

r = [rT
1 , · · · , rT

Nr
]T = HX̄ + w, (4.2)

where ri denotes the OFDM symbol received on the ith antenna. H = [H1, · · · ,HNr ]
T ,

Hi = diag([Hi,0, · · · , Hi,N−1]), and Hi,k (0 ≤ k ≤ N − 1) is the channel frequency

response of the kth in-band subcarrier on the ith receiving antenna. In addition,

w = [wT
1 , · · · ,wT

Nr
]T and wi = [wi,0, · · · , wi,N−1]

T where wi,k (0 ≤ k ≤ N − 1)

consists of the circularly complex white Gaussian noise with variance N0.

Unlike linear channels, the average SER is defined in terms of PSNR (see Eq. (2.5))

in peak power constrained channels. Therefore, the definition of diversity order Gd

evolves as

Gd = lim
PSNR→∞

− log Pe(PSNR)

log PSNR
. (4.3)

For transmitters with a given Ppeak, the diversity order describes how fast the SER

decays with decreasing channel noise power.

4.2.1 Diversity Combining in Linear SIMO Channels

For linear SIMO channels, several diversity combining techniques are available to

achieve the antenna diversity [96], e.g., maximal ratio combining (MRC) and selective

combining (SC). Before discussing the peak power constrained case, we briefly review

the MRC method in the linear SIMO-OFDM channel.

Suppose that the receiver has perfect channel knowledge. Without the peak power

limit, the received signal of Eq. (4.2) becomes r = HX+w. The MRC method chooses
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the NrN × N coefficient matrix C = [c0, · · · , cN−1] to combine the received signal,

where ck is the kth column of C. The estimate of X is thus given as

X̃ = CTHX + CTw. (4.4)

To maximize the post-processing SNR in an uncoded OFDM system, the optimal

weights can be shown as [96]

ck =
h∗k

hH
k hk

, (4.5)

where hk is the kth column of H, i.e., H = [h0, · · · ,hN−1]. The corresponding receive

SNR is hH
k hkSNR. In the end, the decision X̂ is obtained by hard decoding on X̃,

denoted as X̂ =
〈
X̃

〉
.

Therefore, for uncoded SIMO-OFDM, MRC is essentially the ZF and also the

ML equalizers in the linear SIMO channel with Gaussian noise, i.e., CT = H† where

H† = (HHH)−1HH is the Moore-Penrose pseudo-inverse of H [71]. When an M -ary

QAM is used, the average SER over SIMO Rayleigh fading channels is [68]

Pe(SNR) =
4
√

M − 4√
M

(
1− µ

2

)Nr Nr−1∑
i=0

(Nr − 1 + i)!

i!(Nr − 1)!

(
1 + µ

2

)i

, (4.6)

where µ =
(
1 + 2(M−1)

3SNR

)− 1
2
. It is ready to show that

lim
SNR→∞

− log Pe(SNR)

log SNR
= Nr. (4.7)

In other words, MRC collects full antenna diversity. From the existing literature,

however, it is not clear yet whether (and if so, how) full antenna diversity can be

achieved in the presence of the peak-power constraint. We address this open question

in the following sections.

4.3 Transparent Receivers: A Statistical Model

By “transparent”, we mean that the receivers have no information about the trans-

mitter nonlinearities. In this case, no receiver-side cooperation is expected. The
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nonlinear distortion noise is dealt with in the same way as the uncorrelated Gaussian

channel noise. In this section, a statistical model is offered to quantify the clipping dis-

tortions. Afterwards, we present an optimal combining receiver and give conditions

for the transmitter to enable full antenna diversity in the peak power constrained

channel. We will illustrate the concept via several numerical examples.

Definition 4.1 (Statistical model) According to Bussgang’s theorem [88], the clipped

waveform y[n] can be decomposed into a linear term αx[n] plus a statistically uncor-

related distortion term u[n], i.e.,

y[n] = αx[n] + u[n], (4.8)

where α = E[x∗[n]y[n]]/E[|x[n]|2] is chosen so that the signal x[n] and the nonlinear

distortion noise u[n] are uncorrelated, i.e., E[x∗[n]u[n]] = 0. The distortion noise

power is σ2
u = E[|y[n]|2] − |α|2E[|x[n]|2]. The received frequency-domain symbol is

thus given as

r = H′X + Hv + w, (4.9)

where H′ = αH is the equivalent channel frequency response and v = Fu is the

frequency-domain distortion noise with variance σ2
v , E[ 1

N
‖v‖2

2] = E[ 1
LN
‖u‖2

2] = σ2
u.

Clipping causes |y[n]| ≤ |x[n]|, |α| ≤ 1 and thus the effective signal power is

reduced. In addition, the transparent receiver regards u[n] as uncorrelated channel

noise. Thus, instead of SNR, signal-to-noise-and-distortion ratio should be used to

incorporate both the signal power attenuation and nonlinear distortions, and charac-

terize the overall SER performance in the given channel [85].

Based on the statistical model, the post-processing SNDR of the kth subcarrier is

given as

SNDRk =
|α|2

∣∣cT
k hk

∣∣2 σ2
x

|cT
k hk|2 σ2

v + cH
k ckN0

, k ∈ {0, · · · , N − 1} . (4.10)

To maximize the SNDR, the MRC weights are given in the following proposition:
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Proposition 4.1 For transparent receivers that have no information about the trans-

mitter nonlinearity, the optimal MRC weights are given by C whose kth column is

ck =
h′∗k

h′Hk h′k
, where h′k = αhk (k ∈ {0, · · · , N − 1}).

Proof: The optimal MRC weights suffice to maximize the SNDR in Eq. (4.10). Taking

the first-order derivative of SNDRk with respect to ck and setting it to zero, we obtain

∂

∂ck

SNDRk =
(cT

k h′k)
∗h′kσ

2
x

|cT
k hk|2 σ2

v + cH
k ckN0

−
∣∣cT

k h′k
∣∣2 σ2

x((c
T
k hk)

∗σ2
vhk + c∗kN0)

(|cT
k hk|2 σ2

v + cH
k ckN0)2

= 0. (4.11)

Recall that h′k = αhk. After some basic algebraic manipulations, Eq. (4.11) leads to

cT
k h′kc

∗
k = cH

k ckh
′
k. (4.12)

Obviously, ck =
h′∗k

h′Hk h′k
=

h∗k
αhH

k hk
satisfies Eq. (4.12). In addition, these weights are

channel-normalizing (i.e., cT
k h′k = 1) as well as orthogonal to the channels of other

subcarriers (i.e., cT
k h′l = 0, ∀k 6= l). Therefore, C = [c0, · · · , cN−1] with ck =

h∗k
αhH

k hk

gives the optimal MRC weights and the transparent receiver can decode according to

X̂ =
〈
CT r

〉
. ¥

At first, it appears that the transparent receiver has to know α in order to acquire

C, which is inconsistent with the “transparent” definition. In fact, for OFDM systems

with embedded pilot subcarriers, since the pilot signals are also attenuated by α,

H′ = αH is the effective channel response which is acquired by channel estimation

at the receiver. Therefore, transparent receivers do not need to know α aforehand

and the SNDR-maximizing combining weights can be used to achieve the best error

performance.

Unlike the linear case, using the optimal MRC weights at the receiver may not

guarantee full antenna diversity. The necessary and sufficient condition for achieving

the antenna diversity gain is given in the following proposition:

Proposition 4.2 For OFDM transmitters with a fixed peak power limit Ppeak, the

transparent receiver is able to achieve full antenna diversity if and only if the distortion

noise vanishes as the PSNR increases.
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Proof: For transparent receivers, the SER performance is a function of the SNDR.

Therefore, a necessary condition to achieve the diversity gain is that the post-processing

SNDR goes to infinity along with the PSNR. With the optimal MRC weights given

in Proposition 4.1, the post-processing SNDR becomes

SNDRk =
hH

k hk|α|2σ2
x

hH
k hkσ2

v + N0

. (4.13)

For a given peak power limit Ppeak, increasing PSNR is equivalent to decreasing the

noise power N0. From Eq. (4.13), we have

lim
N0→0

SNDRk = lim
N0→0

|α|2σ2
x

σ2
v

. (4.14)

Because |α| ≤ 1 and σ2
x ≤ Ppeak, lim

N0→0
σ2

v = 0 is the necessary condition for the limit of

SNDR in Eq. (4.14) to go to infinity, as well as for the transparent receiver to collect

antenna diversity.

On the other hand, when lim
N0→0

σ2
v = 0, the limit of SNDR becomes

lim
N0→0

SNDRk = lim
N0→0

hH
k hkSNR, (4.15)

which is the same as the post-processing SNR of the linear channel case in Sec-

tion 4.2.1. Plugging the SER of Pe

(
PSNR
IBO

)
into the diversity gain definition of

Eq. (4.3), full antenna diversity can be easily proved. For given Ppeak and IBO,

by referring to Eq. (4.7), we have

Gd = lim
PSNR→∞

− log Pe

(
PSNR
IBO

)

log PSNR
= lim

PSNR′→∞
− log Pe(PSNR′)

log PSNR′ + log IBO
= Nr, (4.16)

where PSNR′ = PSNR
IBO

.

Therefore, for a fixed Ppeak, the necessary and sufficient condition for the transpar-

ent receiver to collect full antenna diversity is that the distortion noise power vanishes

as the PSNR increases. ¥
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4.3.1 Examples

In the following, we give some examples to illustrate the design for the peak power

constrained OFDM transmitter and the model in Eq. (4.8). The performance will be

demonstrated in Section 4.5.

4.3.1.1 Constant Clipping

To deal with the large PAR, the simplest transmission scheme is to maintain a con-

stant IBO for all OFDM symbols. When PAR exceeds the IBO, however, clipping

occurs which implies that |α| < 1 and σ2
v > 0 for the statistical model in Eq. (4.8).

Therefore, no antenna diversity can be achieved. As indicated in Proposition 4.2,

error floor should be observed.

4.3.1.2 Piece-wise linear scaling

The piece-wise linear scaling (PWLS) method guarantees that no nonlinear distortion

happens with the soft-limit PA [76]. It is realized by multiplying a symbol-wise gain

on every OFDM symbol before passing it to the PA, namely

x̄ =

√
Ppeak

‖x‖∞ x. (4.17)

Because clipping never occurs, i.e., g(x̄) = x̄, thus X̄ =

√
Ppeak

‖x‖∞ X. The symbol-

wise gain is essentially a part of the channel and can be recovered by receivers with

channel estimation. For PWLS, Proposition 4.2 indicates that full antenna diversity

can be achieved. In fact, owing to the linear transmission, the post-processing SNDR

becomes

SNDRk = hH
k hk

E
[

Ppeak

‖x‖2∞ |Xk|2
]

N0

= hH
k hk

PpeakE
[

‖x‖22
LN‖x‖2∞

]

N0

= hH
k hkPSNR · E [

PAR(x)−1] , (4.18)

which is inversely proportional to the harmonic mean of PAR. Still, low power effi-

ciency and coding gain may result due to the large PAR of OFDM signals. Certain
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distortionless methods have been proposed to reduce the PAR of OFDM signals,

e.g., coding [54], selected mapping [11], tone reservation [100] and optimizations [61].

They can improve the coding gain with respect to tradeoffs among implementation

complexity, spectral efficiency and receiver-side cooperation.

4.3.1.3 Optimal clipping

When some channel state information is available at the transmitter, clipping distor-

tion can be methodically introduced to improve the error performance for transparent

receivers [84, 85]. Instead of the original OFDM waveform, the following signal is in-

put to the PA

x̄[n] =





√
Ppeak

η
· x[n]

σx

, |x[n]|
σx

< η, (4.19)

√
Ppeake

j∠x[n], |x[n]|
σx

≥ η, (4.20)

where η ≥ 0 is called the clipping threshold [84]. Because |x̄[n]|2 ≤ Ppeak, y = x̄. α

and σ2
v in Eq. (4.8) can be numerically determined for different η’s. Then, with MRC,

the post-processing SNDR for optimal clipping becomes

SNDRk =
hH

k hk|α|2Ppeak

η2hH
k hkσ2

v + η2N0

. (4.21)

If the channel noise level N0 (or PSNR) is known at the transmitter, the optimal

clipping threshold can be determined to minimize the average SER, i.e.,

η? = arg min
η

N−1∑

k=0

Ehk
[PE(SNDRk)], (4.22)

where PE(SNDRk) ≈ 4
√

M−4√
M

Q
(√

3SNDRk

M−1

)
is the instantaneous SER for M -ary QAM

constellations [83, p. 278]. When the OFDM sample is approximated as a complex

Gaussian random variable, a numerical method to solve for η? is given by [84, Theo-

rem 1].

Unlike PWLS which is trying to avoid any clipping, for a given PSNR, the optimal

clipping method is to maximize the SNDR in Eq. (4.21). In the high PSNR region,
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a large η? is yielded in which case |α| → 1 and σ2
v → 0 [84]. Thus, full antenna

diversity is sustained according to Proposition 4.2. On the other hand, in the low

PSNR region, some distortion is introduced to achieve a more desired tradeoff for the

increase in signal power so that the error performance is optimized. Therefore, the

optimal clipping can achieve better coding gain while maintaining the full antenna

diversity with a transparent receiver.

4.4 Transmitter Nonlinearity Known at the Receiver: A
Deterministic Model

Instead of a random process, the clipping distortion is a deterministic function of the

data. When the receiver knows or estimates a priori the transmitter nonlinearity, it

can exploit the deterministic nature of the clipping process for better performance

[79]. We describe a deterministic model next to characterize the clipping process.

Definition 4.2 (Deterministic model) After clipping, the frequency-domain OFDM

symbol in Eq. (4.1) can be represented by the following deterministic matrix operation

[25, 79]

X̄ = FΛFHX = X + d, (4.23)

where

Λ = diag

([
min

(√
Ppeak

|x[0]| , 1

)
, · · · , min

( √
Ppeak

|x[LN − 1]| , 1
)])

(4.24)

is the function of X and d = F(g(x) − x) is the frequency-domain representation of

the deterministic clipping noise.

As proven in [80, 81], when IBO ≥ 3π(
√

M−3)2

8(M−1)
for M -ary QAM (M ≥ 16) and

when the MLSD receiver is used, clipping the Nyquist-rate OFDM signal only causes

a constant SNR loss on the SER performance. The effective transmit SNR becomes

SNR ≈ ∆(IBO)PSNR
IBO

, where ∆(IBO) ≈ 1 − e−IBO + 1
2
IBO

∫∞
IBO

e−t/t dt ≤ 1. Plugging
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this effective SNR into Eq. (4.6), the SER in flat Rayleigh fading SIMO channels is

given by

PMLSD(PSNR, IBO) ≈ Pe

(
∆(IBO) · PSNR

IBO

)
. (4.25)

Although clipping was also shown to enable certain multipath diversity in frequency-

selective fading channels [81], we focus on antenna diversity in this section. In ad-

dition, the SER performance for clipping and filtering oversampled OFDM signals

was shown to be well approximated by that of the Nyquist sampling in fading chan-

nels [81]. Therefore, the SER for general SIMO fading channels is approximated by

Eq. (4.25), which is referred as the MLSD bound in accordance with [81]. Again, full

antenna diversity can be verified similar to Eq. (4.16).

However, MLSD receivers have exponential complexity, which is not practical

for implementations especially for a large number of subcarriers. Instead, linear

equalizers are usually used as low-complexity solutions, but do not necessarily offer

the same diversity orders as MLSD [71]. For the received signal in Eq. (4.2), if Λ is

known at the receiver, the ZF equalizer is given as

X̃zf = H†r = X +H†w, (4.26)

where H = HFΛFH . In the following, we first quantify the diversity order collected

by the ZF equalizer when Λ is known. Then, an iterative method will be proposed to

jointly estimate both Λ and s and realize the ZF equalizer in the absence of a priori

knowledge about Λ.

Proposition 4.3 For clipped OFDM signals through SIMO fading channels with Nr

receiving antennas, if the receivers have perfect knowledge of Λ in Eq. (4.24), the

diversity order collected by ZF equalizers is Nr.

Proof: Suppose that the symbol transmitted on the kth subcarrier is Xk, but at the

receiver it is erroneously decoded as X ′
k 6= Xk. The pairwise error probability is given
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as [70]

Pr(Xk → X ′
k|H) = Q




√
|ek|2

2N0Ωkk


 , (4.27)

where ek = Xk −X ′
k and Ωkk is the (k, k)th element of

Ω = (HHH)−1 = (FΛFHHHHFΛFH)−1. (4.28)

Because the channel matrix H has full column rank with probability 1 and Λ is

a diagonal matrix with positive real diagonal entries, we have Ω = Γ(HHH)−1ΓH ,

where Γ = (FΛFH)−1 is a nonsingular Hermitian and Toeplitz matrix. Since HHH =

diag

([
Nr∑
i=1

|Hi,0|2, · · · ,
Nr∑
i=1

|Hi,N−1|2
])

, Ωkk can be expressed as

Ωkk =
N−1∑

l=0

|Γk,l|2
Nr∑
i=1

|Hi,l|2
. (4.29)

Since Γ has full rank,

{
l

∣∣∣∣|Γk,l| 6= 0

}
6= ∅ ∀k. Let p ∈

{
l

∣∣∣∣|Γk,l| 6= 0

}
and q =

arg min
l

Nr∑
i=1

|Hi,l|2. We have the following inequalities

a

(
Nr∑
i=1

|Hi,p|2
)−1

≤ Ωkk ≤ b

(
Nr∑
i=1

|Hi,q|2
)−1

, (4.30)

where a , |Γk,p|2 and b ,
N−1∑
l=0

|Γk,l|2. Therefore, the bounds for the error probability

are

Q




√
|ek|2

∑Nr

i=1 |Hi,p|2
2aN0


 ≤ Pr(sk → s′k|H) ≤ Q




√
|ek|2

∑Nr

i=1 |Hi,q|2
2bN0


 . (4.31)

Because the channel responses are complex Gaussian distributed,
Nr∑
i=1

|Hi,p|2 is a

chi-squared random variable with 2Nr degrees of freedom. Therefore, by averaging

over this random variable, the quantity on the left hand side of (4.31) obeys

EH


Q




√
|ek|2

∑Nr

i=1 |Hi,p|2
2aN0





 ≥ β1 (SNR)−Nr , (4.32)
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where SNR = σ2
x

N0
= M−1

6N0
d2

min for M -ary QAM constellations (dmin is the minimum

Euclidean distance of the constellation) and β1 is a constant that is independent of

the SNR. For the right-hand side (RHS) of (4.31), we have [70, Lemma 1]

Pr

(
Nr∑
i=1

|Hi,q|2 < ξ

)
≤ N

(
ξ

2

)Nr

, ∀ξ ≥ 0. (4.33)

Integrating the RHS of (4.31) over the channel response gives

EH


Q




√
|ek|2

∑Nr

i=1 |Hi,q|2
2bN0





 = EH

[
1

2
Pr

(
Nr∑
i=1

|Hi,q|2 <
2bN0ε

2

|ek|2
)]

(4.34)

≤ Eε

[
N

2

(
bN0ε

2

d2
min

)Nr
]

= β2(SNR)−Nr ,(4.35)

where ε is a Gaussian random variable with zero mean and unit variance and β2 is a

constant independent of the SNR. Therefore, combining (4.31), (4.32) and (4.35), we

get

β1(SNR)−Nr ≤ Pe = EH[Pr(Xk → X ′
k|H)] ≤ β2(SNR)−Nr , (4.36)

which means the diversity order collected by the ZF equalizer with known Λ is Nr.

¥

Proposition 4.3 states that ZF equalizers can achieve full antenna diversity if the

clipping-based matrix Λ is known or can be estimated at the receiver. Moreover, it

also indicates that in frequency-selective fading channels, ZF equalizers are not able

to collect any multipath diversity. It is the compromise that low-complexity solutions

have to make. The same fact was previously observed in [81]. It is also worthwhile

to mention that, unlike the linear case in Section 4.2.1, MRC is no longer the same

as the ZF equalizer in the presence of clipping.

Although Λ is a function of the data X and can not be known a priori at the

receiver, the following recursive method can jointly estimate Λ and X. The trans-

mitter peak power limit Ppeak is assumed available at the receiver. Based on decision
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feedback, the proposed iterative method can be summarized in three steps

X̂(q) =
〈
(HFΛ̂(q−1)FH)†r

〉
(4.37)

x̂(q) = FHX̂(q) (4.38)

Λ̂(q) = diag

([
min

(√
Ppeak

|x̂(q)[0]| , 1
)

, · · · , min

( √
Ppeak

|x̂(q)[LN − 1]| , 1
)])

, (4.39)

whereˆdenotes the estimation for the corresponding variable and the superscript (q)

stands for the iteration index. As the initialization, Λ̂(0) = ILN×LN .

Calculating the pseudo-inverse in Eq. (4.37) may require high computational com-

plexity, but it can be further simplified as (HFΛFH)† = (FΛFH)−1H† because of the

full column ranks of FΛFH and H [34], where H† = CT , i.e., the MRC weights.

Moreover, the inverse of FΛFH can be avoided because

(FΛFH)−1 = I− F(Λ− I)FH(FΛFH)−1. (4.40)

In each iteration, the estimate of X can be recursively updated as

X̂(q) =
〈
H†r− F(Λ̂(q−1) − I)FHX̂(q−1)

〉
. (4.41)

Because F(Λ − I)FHX = d, the clipping noise can be estimated, i.e. d̂ = F(g(x̂) −
x̂), instead of Λ, which avoids the FFT, IFFT and matrix inverse operations for

(FΛFH)−1. Therefore, the iterative method in Eqs. (4.42)-(4.44) is equivalent to the

following low-complexity method, starting with q = 1 and d̂(0) = 0N ,

X̂(q) =
〈
CT r− d̂(q−1)

〉
(4.42)

x̂(q) = FHX̂(q) (4.43)

d̂(q) = F
(
g(x̂(q))− x̂(q)

)
. (4.44)

We refer to it as the joint MRC and clipping mitigation method [55]. Its complexity

is dominated by one pair of FFT/IFFT operations per iteration and on the order of

O(N log N). Along with the iterations, the mean square error (MSE) of the estimate
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d̂(q) can be defined as

MSE
(q)
d = E[‖d− d̂(q)‖2

2]. (4.45)

MSE
(q)
d is decreasing quickly, especially in the high PSNR region, which will be shown

in Section 4.5. As a result, the joint estimation method can empirically approach the

ideal case of ZF equalizers and thus collect full antenna diversity.

Two more remarks about the use of the joint MRC and clipping mitigation method

are now in order.

1. The smaller the IBO, the larger the ratio PSNR
IBO

for a fixed PSNR. At the same

time however, ∆(IBO) in Eq. (4.25) decreases along with the IBO. Therefore, an

optimal IBO may exist with respect to the SER performance, which is defined

as

IBO?

∣∣∣∣
PSNR

= arg min
IBO

Psim(PSNR|IBO, Nr), (4.46)

where Psim(·) denotes the simulated average SER performance for the joint MRC

and clipping mitigation method.

2. The proposed method can be regarded as an extension to the iterative quasi-ML

clipping estimation method [101], which was designed for SISO-OFDM systems.

However, the quasi-ML clipping estimation method provides poor performance

in fading channels. The main reason is that the subcarriers with deep fadings

will have low receive SNR and large error probabilities. The clipping estimation

propagates the errors and yields degraded estimates for clipping noise and data.

In SIMO fading channels, multiple receptions over independently faded channels

not only provide the diversity gain for the data error performance, but also

achieve better estimation for the clipping noise. The proposed joint MRC and

clipping mitigation method thus exploits this benefit for both clipping noise and
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data estimation. In Section 4.5, we will show that the SER performance gets

close to the MLSD bound within five iterations even for very small IBOs.

In summary, the proposed joint MRC and clipping mitigation method can provide

the near-MLSD SER performance. However, it requires the knowledge about the

transmitter nonlinearity as well as receiver-side modifications. Otherwise, PWLS or

optimal clipping transmitters should be adopted for transparent receivers. In both

cases, full antenna diversity can be collected.

4.5 Simulations

For all simulations in this section, the uncoded OFDM system has N = 512 sub-

carriers and uses 16QAM modulation. Unless otherwise specified, frequency-selective

Rayleigh fading channel with two taps and Nr = 2 receiving antennas are assumed.

In Figure 4.1, the SER versus PSNR curves are plotted for the proposed transceivers

in the peak power constrained SIMO-OFDM channel.

First, the ideal case with IBO = 0dB but linear PA (i.e., no clipping, thus

E[|yn|2] = Ppeak and ∆(IBO) = 1) is plotted as a benchmark in Figure 4.1. Although

only constant-envelope modulations (rather than OFDM) may actually achieve this

error performance in practice, it gives an SER lower bound for this channel. For

OFDM, by setting σ2
x = Ppeak and assuming no clipping happens, Monte Carlo sim-

ulation gives the SER curve for this ideal case. The curve agrees well with the

theoretical MLSD bound in Eq. (4.25) with IBO = 0dB and ∆(IBO) = 1.

Using the transparent receivers with the MRC weights given in Proposition 4.1,

three transmitter schemes are also compared in Figure 4.1, namely the constant clip-

ping, the PWLS and the optimal clipping approaches. As expected in Section 4.3.1,

no antenna diversity can be obtained with the constant clipping method. In fact, the

SER reaches an error floor that is determined by the clipping threshold. The PWLS-

based transceiver can provide full antenna diversity but poor coding gain. Compared
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Figure 4.1: The SER versus PSNR curves for the constant clipping (IBO = 1.3dB),
PWLS, optimal clipping, joint MRC and clipping mitigation (with the optimal
IBO? = 1.3dB and five iterations) schemes, as well as the assumed ideal case with
IBO = 0dB but no clipping; Nr = 2.

to the case with ideal linear PA, the PSNR degradation
(
E[PAR−1]

)−1
is more than

9dB in the simulated system, as shown in Figure 4.1. On the other hand, the optimal

clipping method achieves about 3dB coding gain better than PWLS.

For the iterative method of Eqs. (4.42)-(4.44), the MSE curves for the estimate of

d (i.e., Eq. (4.45)) are plotted in Figure 4.2. The cases with PSNR = 30dB and 40dB

as well as two oversampling ratios (L = 1 and 4) are examined. The results illustrate

that the MSE decreases quickly along with iterations, especially at high PSNR. For

comparison, the corresponding MSE curves are plotted when the SISO iterative clip-

ping mitigation method [101] is adopted on one of the antennas and the combining

technique is used subsequently. It demonstrates that the benefit of multiple receiving

antennas can be exploited to improve the clipping noise estimation performance. In

Figure 4.3, the joint MRC and clipping mitigation method is illustrated to achieve

near-MLSD SER performance within five iterations for both the Nyquist-rate and
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Figure 4.2: MSE
(q)
d versus the number of iterations (q) for the joint MRC and clip-

ping mitigation methods; The corresponding MSE curves of separately using clipping
mitigation [101] and MRC methods are also plotted for comparison; IBO = 1dB,
Nr = 2, the oversampling ratio L = 1 or 4, and PSNR = 30dB or 40dB.

oversampled (L = 4) OFDM signals. It also works well for more than 2 receiving an-

tennas as shown in Figure 4.4. In contrast, if the SISO iterative clipping mitigation

method [101] and MRC are used separately, the antenna diversity cannot be collected

even after 100 iterations.

As mentioned in Eq. (4.46), the optimal IBO? can be determined to achieve the

best SER for the joint MRC and clipping mitigation method. Some numerical results

of the SER versus IBO curves are given for different PSNR values and numbers of

antennas in Figure 4.5. The optimal IBO is found to remain about the same for

different numbers of antennas. In addition, since diversity gain is achieved, IBO? is

generally independent with the PSNR. For example, IBO? ≈ 1.3dB can be found for

Nr = 2, 3 and 4 receiving antennas. With IBO? = 1.3dB and five iterations, the

SER curve for the joint MRC and clipping mitigation method is plotted back into

Figure 4.1 and shown to outperform the other approaches.
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comparison; Nr = 2.
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Figure 4.4: SER versus PSNR curves for different numbers of receiving antennas
Nr = 2, 3 or 4; The proposed joint MRC and clipping mitigation method achieves a
near-MLSD SER within five iterations; But separately using clipping mitigation [101]
and MRC cannot collect full antenna diversity even after 100 iterations. IBO = 1dB.
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Figure 4.5: For PSNR = 20dB or 30dB, the SER versus IBO curves for the joint
MRC and clipping mitigation method with Nr =2, 3 or 4 receiving antennas and 5
iterations.

4.6 Conclusions

In this chapter, we have examined the antenna diversity order in the peak power

constrained SIMO-OFDM system. The main conclusion is that full antenna diversity

can be achieved for the transparent receiver by intelligently choosing the transmission

method. To achieve full antenna diversity, the MRC coefficients are derived for the

peak power constrained channel and can be obtained in the same way with those in

the linear channel. Additionally, we showed that for systems where the receiver has

perfect knowledge of the transmitter nonlinearity, antenna diversity can be achieved

with low-complexity linear equalizers. The joint MRC and clipping mitigation method

is also proposed to employ the multiple antennas to better estimate both the clipping

noise and the data.
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CHAPTER V

DIVERSITY-ENABLED PPC COOPERATIVE

NETWORKS

Cooperative networks have been receiving a lot of attention recently as a distributed

means of improving the reliability of wireless communication links in a fading envi-

ronment. Without requiring multiple antennas for each terminal, cooperative commu-

nication among distributed single-antenna nodes can enhance the reliability of wireless

networks by exploiting the available spatial diversity, known as cooperative diversity

[48, 92]. In this chapter, the diversity performance of single- and multi-relay amplify-

and-forward cooperative networks is studied. The effects of the peak power constraint

and the availabilities of channel state information on the diversity performance are

evaluated. Practical relaying strategies are also proposed.

5.1 Introduction

Owing to the broadcasting nature of wireless communications, the transmission from

a source node can be collected by its neighboring nodes, which may act as wireless

relays and forward copies of information to the destination via independent fading

links, thus enabling the cooperative diversity gain. The two-hop single- and multi-

relay networks considered in this chapter are two typical cooperative communication

systems [48].

Depending on the functionalities of the relay nodes, the relay strategies can be

classified into two main categories, regenerative relaying and non-regenerative relay-

ing. For regenerative relaying (a.k.a. decode-and-forward (DF) relaying [48]) strategy,
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the relay node fully decodes the received signal and transmits the re-encoded sym-

bols to the destination. A well known disadvantage of DF relaying is the loss of the

diversity benefits unless sophisticated system designs are employed, e.g., the specified

combining method at the destination which accounts for the reliability of the relay

links [105], the selective DF strategy relying on cyclic redundancy check (CRC) codes

to detect errors at the relay [39], the collaborative hybrid automatic-repeat-request

(ARQ) protocols [95], distributed space-time cooperative systems [9], or link-adaptive

regeneration (LAR) based DF strategies [18, 106]. The channel estimation, the decod-

ing, and the diversity-enabling modules at the relays and the destination complicate

the processing and/or cost extra bandwidth and power.

Non-regenerative relaying strategies such as the amplify-and-forward (AF) proto-

col in [48, 112], where the relay node simply forwards a scaled version of the received

signal to the destination [48], allow simple processing with low operational power con-

sumption at relay nodes. Additionally, the cooperative diversity in Rayleigh fading

channels is generally enabled without the need of feedback mechanisms (e.g., ARQ

or CRC) [8].

To collect full cooperative diversity, however, the AF protocols encounter two

practical issues: (i) The channel state information (CSI) of the source-relay link

(i.e., two-hop (2H) channel information) should be accessible to the destination node

[49, 87]. Although this may be made feasible via distributed channel estimation

and forwarding mechanisms [87, 112], it inevitably increases the system complexity,

reduces the spectral efficiency and degrades the system performance. (ii) Another

practical concern for AF relaying is that the power scaling factor (PSF) and output

signal at the relay may be unbounded. In practice, many RF/analog components

in communication devices, e.g., the PA, are peak power constrained [7, 23]. The

unboundedness of PSF and/or output signals at the relay may cause peak power

saturation and result in an error floor. Therefore, it hinders AF relaying from being
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appropriately implemented.

Efforts to improve the performance of non-regenerative relaying networks have

been well documented in the literature. For example, to avoid channel estimation at

the relay, a fixed-gain protocol has been proposed based on the knowledge of only

channel statistics [29, 38]. However, none of them has studied the diversity perfor-

mance of the fixed-gain protocol, especially when full CSI is not available at the

destination. In addition, the unboundedness of the transmit power at the relay re-

mains a problem from the implementation point of view. A PSF that is a piecewise

function of the source-relay link CSI has been proposed with the consideration of

relay saturation [38]. However, it requires the channel estimation and may still lead

to PA saturations at the relay, resulting in the loss of diversity with PPC relay nodes.

Based on the AF protocol [48] and the fixed-gain strategy [38], various power distri-

bution schemes have been proposed with respect to different performance metrics and

power constraints [31, 37, 69]. For general fading channels, conditions on diversity-

enabling fading statistics of the links involving the AF relays are given in [90] so that

strategically positioned relay nodes can help to enable cooperative diversity.

Furthermore, how to improve the spectral efficiency of the cooperative network

without losing the diversity gain is also an important and practical problem. With

regard to spectral efficiency, several schemes have been proposed, including pre-

coders [27], space-time codes [41], two-way relay networks [22, 86], and relay selection

schemes [42], etc. However, the aforementioned problems also exist.

Therefore, in this chapter, we first develop diversity-enabled generalized amplify-

and-forward (GAF) strategies with practical PSFs at the relay without any ARQ

feedback or CSI forwarding at any hop. To address the CSI issue, two maximum ratio

combining (MRC) receivers are considered, namely, one-hop (1H) MRC with only 1H

CSI and 2H-MRC also having the 2H CSI. The conditions on PSFs for 1H-MRC and

2H-MRC receivers to collect full cooperative diversity are revealed to serve as design
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criteria for general diversity-enabled non-regenerative relaying strategies. Based on

these guidelines, we analyze the performance of 1H-MRC and 2H-MRC receivers in the

peak power constrained relay networks and propose a simple and practical intentional

peak power limit AF strategy. The benefits of the proposed method are two-folded:

(i) our proposed strategy avoids any saturation at peak power constrained relays; (ii)

low-complexity 1H-MRC is able to collect full cooperative diversity order.

Moreover, the asymptotic error performance of the relay selection schemes is an-

alyzed. With respect to the diversity gain function, we investigate the effects of the

availabilities of the 1H and 2H CSIs at the destination. A general theorem on diver-

sity gain function is presented as well. It will be shown that fixed-gain AF relaying

with the 1H-CSI selection scheme will achieve the same average SER with the 2H-

CSI selection, and thus helps simplify the implementation without error performance

degradation.

5.2 Signal Model of the Amplify-and-Forward Cooperative
Network

We first consider a single-relay network as shown in Figure 5.1, which consists of three

nodes: a source (S), a relay (R), and a destination (D).

For half-duplex nodes, two time slots are needed. Source S broadcasts its informa-

tion symbol x to Relay R and Destination D in the first time slot. In the second time

slot, R forwards the received signals to D. We consider the non-regenerative strategy

at R, which does not require feedback or repeating mechanism, and thus is simple for

practical implementations. Without loss of generality, we assume that every node is

equipped with only one antenna and all channels are mutually independent.

With subscripts signifying the corresponding link, e.g., sr denotes the link from

S to R, the mathematical model of the baseband input-output relationship can be
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Figure 5.1: Single-relay cooperative network.

formulated as

ysd = hsdx + wsd, (5.1)

ysr = hsrx + wsr, (5.2)

yrd =
√

αhrdysr + wrd, (5.3)

where y denotes the received signals, h the fading channel coefficients, and w the

additive white Gaussian noise (AWGN). α represents an adaptive PSF at the relay

and is assumed to be a function of |ysr| or |hsr|2 that is correctly measured at R. In this

chapter, we assume hij ∼ CN (0, σ2
ij), wij ∼ CN (0, N0) (i ∈ {s, r} and j ∈ {r, d}), and

the channels and noises are mutually independent. For notational simplicity, denote

ρij , |hij|2 which is exponentially distributed with mean σ2
ij. The average SNR can

be defined as

γ̄ =
Px

N0

, (5.4)

where Px = Ex[|x|2] is the average transmit power from Source S.

In practice, Relay R is usually subject to an instantaneous peak power constraint

Ppeak, i.e., the output signal of R should satisfy

α|ysr|2 ≤ Ppeak. (5.5)

The peak power constraint is applicable to model many practical scenarios, e.g.,

in the presence of power amplifiers as discussed in Chapter 2. We further define

Ppeak = KPx, where K > 0 is a finite constant. Therefore, γ̄ in Eq. (5.4) suffices to

characterize the average SNR of the relay network.
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In this single-relay network, the destination D performs MRC on the collected

signal and estimates the symbol x as

x̂ = arg min
x̃∈Ω

∣∣c∗1ysd + c∗2yrd − (c∗1hsd + c∗2
√

αhsrhrd)x̃
∣∣2 , (5.6)

where Ω is the constellation of the information symbol x. c1 and c2 are the MRC

weights for ysd and yrd, respectively. Based on the availability of the 2H CSI at the

destination, we define two types of MRC as follows.

Definition 5.1 (1H-MRC and 2H-MRC) At Destination D, one-hop MRC (1H-

MRC) only requires the estimates of one-hop fading coefficients (1H CSI) hsd and

hr , √
αhsrhrd. With the assumption of ideal channel estimation at D, the MRC

weights of 1H-MRC are given by

c1 = hsd, c2 = hr, (5.7)

and for each channel realization, the instantaneous post-processing SNR is

γ1H =
(ρsd + αρsrρrd)

2

ρsd + αρsrρrd + α2ρsrρ2
rd

γ̄. (5.8)

When the CSIs of all three links are available at the destination as assumed in

most AF papers [48, 87, 112], two-hop MRC (2H-MRC) can be applied, for which the

MRC weights become

c1 = hsd, c2 =
hr

1 + αρrd

, (5.9)

and the instantaneous SNR is given as

γ2H =

(
ρsd +

αρsrρrd

1 + αρrd

)
γ̄. (5.10)

The difference between 1H-MRC and 2H-MRC is the availability of the 2H CSI hsr

at the destination. With the full CSI of each link, 2H-MRC achieves the maximum-

likelihood error performance. On the other hand, 1H-MRC is not expected to perform
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as well as 2H-MRC. However, its low complexity and ease of deployment, together

with the comparable BER performance as we will show later, make 1H-MRC attrac-

tive from a practical standpoint.

For notational simplicity, the diversity orders (as defined in Eq. (2.16)) of 1H-MRC

and 2H-MRC destinations are denoted as G1H and G2H, respectively. In addition, in

Sections 5.2-5.4, we use E[·] to denote the expectation over all fading channels ρsd,

ρsr and ρrd ∈ [0,∞). Then, the average BER Pb can be obtained by

Pb = E[PB(γ)] =
1

σ2
sdσ

2
srσ

2
rd

∞∫

0

∞∫

0

∞∫

0

PB(γ) exp

(
−ρsd

σ2
sd

− ρsr

σ2
sr

− ρrd

σ2
rd

)
dρsddρsrdρrd,

(5.11)

where the instantaneous SNR γ is a function of γ̄ and CSI as in Eqs. (5.8) and (5.10),

and for M -ary QAM constellations, PB(γ) ≈ 1
log2 M

PE(γ) ≈ κ1

log2 M
Q(
√

κ2γ) where

PE(γ), κ1 and κ2 are given in Section 2.3. For simplicity, 4-ary QAM is assumed in

Sections 5.2-5.4 which has κ1 = 2 and κ2 = 1.

5.3 General Design Criteria for AF Cooperative Networks

The diversity performance of 2H-MRC and 1H-MRC destinations with general AF

relaying PSFs is studied in this section. The necessary and sufficient conditions for

general PSFs to achieve full diversity are also revealed.

5.3.1 General Amplify-and-Forward Strategy

To study the effect of PSF designs on system performance, we design the generalized

amplify-and-forward (GAF) strategy, with the PSF α as a function of ρsr and subject

to certain assumptions given as follows [58]:

A1) α(ρsr) is nonnegative and continuous for ρsr ∈ [0,∞);

A2) α(ρsr) =
∞∑
i=1

ai0ρ
pi0
sr as ρsr → 0+, where ai0 6= 0 and pi0 < pj0 for i < j. In other

words, there exists mr
0 > 0 such that α(ρsr) =

∞∑
i=1

ai0ρ
pi0
sr for ρsr ∈ [0,mr

0]. Note
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that if p10 > 0, ρsr = 0 is an isolated root of α(ρsr) = 0 and p10 is defined as

the order of smoothness at ρsr = 0 [107]; otherwise, if p10 ≤ 0, α(0) > 0;

A3) Define a set R = {rk|α(rk) = 0, rk ∈ (0,∞)} =
⋃

k=1,2,··· ,Z

[
rl
k, r

r
k

]
, where rl

k and

rr
k are the left and right boundaries of the kth zero interval where α(ρsr) = 0.

Z is the number of zero intervals. When rl
k = rr

k, the kth interval is an isolated

zero root. In contrast, due to the continuous assumption of α, there cannot be

isolated non-zero points, i.e., it should have rr
k < rl

k+1 rigorously;

A4) IfR 6= ∅, α(ρsr) =
∞∑
i=1

al
ik(r

l
k−ρsr)

pl
ik as ρsr → rl−

k and α(ρsr) =
∞∑
i=1

ar
ik(ρsr−rr

k)
pr

ik

as ρsr → rr+
k , where al

ik, a
r
ik > 0 and 0 < pl

ik < pl
jk, 0 < pr

ik < pr
jk for i < j. In

other words, denoting rr
0 = 0, there exist ml

k and mr
k such that rr

k−1 < mr
k−1 ≤

ml
k < rl

k for k = 1, 2, · · · , Z and mr
Z > rr

Z if rr
Z < ∞, α(ρsr) =

∞∑
i=1

al
ik(r

l
k−ρsr)

pl
ik

(∀ρsr ∈ [ml
k, r

l
k]) and α(ρsr) =

∞∑
i=1

ar
ik(ρsr − rr

k)
pr

ik (∀ρsr ∈ [rr
k,m

r
k]).

Note that no particular assumptions of average power or peak power constraints

are posed on α(ρsr) of GAF strategies yet. The model of α(ρsr) in GAF is general

enough to represent the existing PSF designs in literature, e.g., the AF protocol in

the high SNR region [48] and the fixed-gain protocol [38]. Moreover, it is also able to

incorporate many practical and general constraints, e.g., bounded output signals.

Two more remarks about the use of PSF α(ρsr) are now in order. First, although

the PSF α at the relay is assumed as a function of ρsr, we do not require ρsr to be

available at the destination. Therefore, for the GAF strategy, we can adopt either

1H-MRC or 2H-MRC to detect the transmitted signal based on the availability of the

2H CSI ρsr at the destination. Secondly, though in this subsection we assume that

the relay knows ρsr as in most AF papers [48, 87, 112], the following results can also

be extended to the scenario where the relay does not have ρsr, e.g., α is designed as a

function of |ysr| as discussed in Section 5.4. The GAF design criteria developed here

can be applied to guide the design of specific relay networks.
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In the following, we analyze the diversity performance of 2H-MRC and 1H-MRC

with the GAF strategy, respectively [59].

5.3.2 GAF with 2H-MRC

We first summarize the upper bound for the diversity order achieved by 2H-MRC

with GAF strategies in the following proposition.

Proposition 5.1 (Maximum Diversity Order of 2H-MRC) Consider a non-

regenerative relay system with a GAF α(ρsr) at the relay. The diversity order obtained

by a 2H-MRC destination is upper bounded by

G2H ≤ 1 + min
k≥1

{
z1(p10), z2(r

r
k − rl

k),
1

pr
1k

,
1

pl
1k

}
(5.12)

where

z1(t) =





1, t ≤ 0,

1
t+1

, t > 0,
and z2(t) =





0, t 6= 0,

1, t = 0.
(5.13)

Proof: We prove Proposition 5.1 by investigating the effects of the following charac-

teristics of α(ρsr) on the diversity performance: continuous zero interval, a zero point

at ρsr = 0, the order of smoothness at rr
k and rl

k, respectively.

(i) If α(ρsr) has at least one continuous zero interval, ∃k ≥ 1 such that rr
k 6= rl

k

and γ2H = ρsdγ̄ (∀ρsr ∈ [rl
k, r

r
k]) [c.f. Eq. (5.10)]. Then, we have [83, p. 818]

Pb ≥
rr
k∫

rl
k

∞∫

0

Q(
√

ρsdγ̄)

σ2
srσ

2
sd

exp

(
−ρsr

σ2
sr

− ρsd

σ2
sd

)
dρsddρsr

.
= γ̄−1. (5.14)

Therefore, the diversity order is less than or equal to 1 in this case.

(ii) We show that the diversity is also determined by the order of smoothness

around the origin ρsr = 0.

Since the destination has two independently faded receptions and the SNR of 2H-

MRC in Eq. (5.10) is the sum of the individual SNRs, the diversity order of 2H-MRC
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is the sum of those provided by each independent channel [90]. In the S-R-D link,

the instantaneous SNR is denoted as

γr =
α(ρsr)ρsrρrd

1 + α(ρsr)ρrd

γ̄. (5.15)

Consider the region of ρsr ∈ [0,mr
0], where α(ρsr) =

∞∑
i=1

ai0ρ
pi0
sr according to (A2).

To investigate the diversity order upper bound, here we only consider p10 > 0 and

a10 > 0, i.e., ρsr = 0 is an isolated zero root. By referring to [18, Lemma 6], ∃µ0 > 0

that α(ρsr) ≤ µ0ρ
p10
sr (∀ρsr ∈ [rr

k,m
r
k]). Thus, in this region, the instantaneous SNR

on the S-R-D link has

γr ≤ α(ρsr)ρsrρrdγ̄ ≤ µ0ρ
p10+1
sr ρrdγ̄. (5.16)

Therefore, the average BER of the S-R-D link is lower bounded by

E[Q(
√

γr)] ≥ 1

2
√

πσ2
srσ

2
rd

mr
0∫

0

∞∫

0

exp
(
−1

2
µ0ρ

p10+1
sr ρrdγ̄ − ρsr

σ2
sr
− ρrd

σ2
rd

)
√

1
2
µ0ρ

p10+1
sr ρrdγ̄ + 2

dρrddρsr, (5.17)

where the inequality is given by (5.16) and [5, 7.1.13]

Q(t) ≥ exp (−t2/2)
√

π( t√
2

+
√

t2

2
+ 2)

≥ exp (−t2/2)

2
√

π
√

t2

2
+ 2

. (5.18)

Referring to [33, 3.362.2], (5.17) becomes

E[Q(
√

γr)] ≥ 1

2σ2
srσ

2
rd

mr
0∫

0

e
− ρsr

σ2
sr eθεQ(

√
θε)

√
ε
√

1
2
µ0ρ

p10+1
sr γ̄

dρsr

≥ 1

2σ2
srσ

2
rd

mr
0∫

0

e
− ρsr

σ2
sr eθεQ(

√
θε)

ε
dρsr, (5.19)

where θ = 4(µ0ρ
p10+1
sr γ̄)−1 and ε = 1

2
µ0ρ

p10+1
sr γ̄ + 1

σ2
rd

. Because

eθεQ(
√

θε) =




√
2θε∫

√
θε

+

∞∫

√
2θε




exp
(
θε− u2

2

)
√

2π
du ≥ (

√
2− 1)

√
θε√

2π
, (5.20)
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and θε ≥ 2, (5.19) can be further lower bounded by

E[Q(
√

γr)] ≥ C1

mr
0∫

0

ε−1e
− ρsr

σ2
sr dρsr≥̇

mr
0∫

0

g(ρsr)dρsr, (5.21)

where C1 =
√

2−1
2
√

πσ2
srσ2

rd
and

g(ρsr) = e
− ρsr

σ2
sr

(
ρsr

(
1

2
µ0γ̄

) 1
1+p10

+ σ
− 2

1+p10
rd

)−(1+p10)

. (5.22)

The inequality (a + b)p ≥ ap + bp with a, b, p > 0 is also used in reaching (5.21).

If the integrals of g(ρsr) have

I1 , lim
γ̄→∞

∞∫

mr
0

g(ρsr)dρsr <̇ I2 , lim
γ̄→∞

∞∫

0

g(ρsr)dρsr, (5.23)

The inequality in (5.21) will lead to

lim
γ̄→∞

E[Q(
√

γr)]≥̇I2. (5.24)

Now denote ε =
(

1
2
µ0γ̄

)− 1
p10+1 σ−2

sr σ
− 2

p10+1

rd . By referring to [33, 3.382.4] and [5,

6.5.25], we have

I2 = lim
γ̄→∞

(
1

2
µ0γ̄

)−1

σ−2p10
sr eεΓ (−p10, ε)

.
= γ̄−1 lim

ε→0
Γ (−p10, ε)

.
= γ̄−(1+p10)−1

, (5.25)

where Γ(·, ·) is the incomplete Gamma function. For the left-hand side (LHS) of

(5.23), we have

I1 ≤ lim
γ̄→∞

(
1

2
µ0γ̄

)−1
∞∫

mr
0

e
− ρsr

σ2
sr

ρ1+p10
sr

dρsr
.
= γ̄−1. (5.26)

Therefore, for p10 > 0, the assumption of (5.23) is verified by Eqs. (5.25) and (5.26).

As a result, (5.21) leads to

lim
γ̄→∞

E[Q(
√

γr)] ≥̇ γ̄−(1+p10)−1

. (5.27)
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In addition, the diversity order of the direct S-D Rayleigh fading channel is 1 [83,

p. 818]. Therefore, the diversity order of 2H-MRC is bounded by (c.f. [90])

G2H ≤ 1 + (1 + p10)
−1. (5.28)

(iii) According to (A4), ∀ρsr ∈ [rr
k,m

r
k] (k ≥ 1), α(ρsr) =

∞∑
i=1

ar
ik(ρsr − rr

k)
pr

ik .

Again, pr
1k is the order of smoothness at rr

k, and ∃µr
k > 0 that α(ρsr) ≤ µr

k(ρsr− rr
k)

pr
1k

(∀ρsr ∈ [rr
k,m

r
k]) [18, Lemma 6]. Similar to Eqs. (5.16)-(5.21), we have

E[Q(
√

γr)] ≥ C1

mr
k−rr

k∫

0

e
− ρ̃sr+rr

k
σ2

sr

1
2
µr

km
r
kρ̃

pr
1k

sr γ̄ + 1
σ2

rd

dρ̃sr, (5.29)

where ρ̃sr = ρsr − rr
k. For pr

1k > 1, following the same process of Eqs. (5.21)-(5.26),

(5.29) can be readily shown to have

lim
γ̄→∞

E[Q(
√

γr)] ≥̇ γ̄−1 lim
ε̃→0

Γ(1− pr
1k, ε̃)

.
= γ̄

− 1
pr
1k , (5.30)

where ε̃ =
(

1
2
µr

km
r
kγ̄

)− 1
pr
1k σ−2

sr σ
− 2

pr
1k

rd . Therefore, (5.30) gives

G2H ≤ 1 + min
k≥1

{
1,

1

pr
1k

}
. (5.31)

(iv) For ρsr ∈ [ml
k, r

l
k], the order of smoothness leads to similar bounds on G2H,

but the proof is slightly different. In this region, ∃µl
k > 0 that α(ρsr) ≤ µl

k(r
l
k−ρsr)

pl
1k .

Accordingly, (5.29) becomes

E[Q(
√

γr)] ≥ C1

rl
k−ml

k∫

0

e
ρ̃sr−rl

k
σ2

sr

1
2
µl

kr
l
kρ̃

pl
1k

sr γ̄ + σ−2
rd

dρ̃sr (5.32)

≥̇
rl
k−ml

k∫

0

[
ρ̃sr

(
1

2
µl

kr
l
kγ̄

) 1

pl
1k

+ σ
− 2

pl
1k

rd

]−pl
1k

dρ̃sr, (5.33)

where ρ̃sr = rl
k − ρsr. For pl

1k > 1 and γ̄ → ∞, (5.33) can readily lead to the

asymptotic performance that lim
γ̄→∞

E[Q(
√

γr)] ≥̇ γ̄
− 1

pl
1k .Therefore, the diversity order

is also bounded by

G2H ≤ 1 + min
k≥1

{
1,

1

pl
1k

}
. (5.34)
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All in all, by combining the inequalities in (5.14), (5.28), (5.31) and (5.34), the

upper bound of diversity order for 2H-MRC is summarized in Proposition 5.1. ¥

Unlike the conventional AF protocol [48], Proposition 5.1 shows that for an ar-

bitrary PSF, 2H-MRC may not be able to collect full diversity order even with the

2H CSI. The diversity order is constrained by the order of smoothness of PSF α(ρsr)

around the origin (ρsr = 0), as well as the presence of and the orders of smooth-

ness around zero intervals. If p10 > 0 (i.e., α(0) = 0), max{pl
1k, p

r
1k} > 1 or there

are continuous zero intervals (rl
k < rr

k), Proposition 5.1 shows that 2H-MRC cannot

achieve full cooperative diversity order, i.e., G2H < 2. Therefore, it leads to the fol-

lowing necessary conditions on PSF designs for 2H-MRC to obtain full diversity order.

Meanwhile, the following theorem shows that these conditions are also sufficient.

Theorem 5.1 (Full Diversity Order of 2H-MRC) Consider a non-regenerative

relay system with a GAF α(ρsr) at the relay. The necessary and sufficient conditions

for 2H-MRC in Eq. (5.9) to obtain G2H = 2 are

C1) lim
ρsr→0

α(ρsr) > 0, i.e., p10 ≤ 0;

C2) If R 6= ∅, rl
k = rr

k > 0 and pl
1k ≤ 1, pr

1k ≤ 1 (∀k ≥ 1).

Proof: Proposition 5.1 gives the necessity of (C1)-(C2). Thus, we focus on showing

that (C1) and (C2) are also sufficient for G2H = 2.

The instantaneous SNR of 2H-MRC in Eq. (5.10) is upper bounded by

γ2H =

(
ρsd +

αρsrρrd

1 + αρrd

)
γ̄ ≤ (ρsd + ρsr)γ̄, (5.35)

which has diversity 2. Thus, G2H ≤ 2.

To show that G2H ≥ 2 with (C1)-(C2), we consider ρsr in three contiguous regions,

i.e., U1 = [0, B1), U2 = [B1, B2), and U3 = [B2,∞) with 0 < B1 ≤ ml
1 ≤ mr

Z ≤ B2.

Both U2 and U3 can be empty sets. In these regions, equivalent to (C1)-(C2), α(ρsr)

should have:
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U1) ∀ρsr ∈ U1, ∃L1 > 0 so that α(ρsr) ≥ L1;

U2) The set of roots is contained in U2, i.e., R ⊂ U2. In addition, there can be

only isolated zero points with the order of smoothness not greater than 1, i.e.,

rl
k = rr

k ∈ U2, pl
1k ≤ 1 and pr

1k ≤ 1 (1 ≤ k ≤ Z);

U3) ∀ρsr ∈ U3, the PSF can be represented in a polynomial that α(ρsr) =
∞∑
i=1

biρ
qi
sr

with bi > 0 and qi < qj for i < j. It is worth noting that α(ρsr) may approach

(but is strictly greater than) zero as ρsr →∞ when qi < 0 (∀i).

With (U1)-(U3), the average BER has

Pb = σ−2
sr Eρsd,ρrd

[( ∫

ρsr∈U1

+

∫

ρsr∈U2

+

∫

ρsr∈U3

)
Q

(√
γ2H(α)

)
e
− ρsr

σ2
sr dρsr

]
(5.36)

≤ E1 + E2 + E3, (5.37)

where Ei = E[Q(
√

γ2H(αi))] (i = 1, 2, 3) with αi(ρsr) = α(ρsr) for ρsr ∈ Ui and

αi(ρsr) (ρsr /∈ Ui) adopts constant values to satisfy the continuity assumption, e.g.,

α1(ρsr) = α(B1) (∀ρsr /∈ U1). The inequality of (5.37) is introduced by extending the

integration intervals in Eq. (5.36) to [0,∞).

In the following, we determine the diversity orders of E1, E2 and E3, respectively.

(i) For α1(ρsr), we further split ρsr ∈ [0,∞) into two sets: S = {ρsr|α1(ρsr) ≤ U1}
and its complement S̄ = {ρsr|ρsr ≥ 0, ρsr /∈ S}, where U1 is large enough such that

γ2H ≈ (ρsd + ρsr)γ̄, (∀ρsr ∈ S̄). For ρsr ∈ S, γ2H has

γ2H ≥
(

ρsd +
L1ρsrρrd

1 + U1ρrd

)
γ̄ , γ̃2H. (5.38)

Thus, by extending the integration intervals again, we have

E1 ≤ E
[
Q

(√
γ̃2H

)]
+ E

[
Q

(√
(ρsd + ρsr) γ̄

)]
, (5.39)
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where the second term in the right-hand side (RHS) of (5.39) is exponentially equal

to γ̄−2 in the high SNR region. For the first RHS term of (5.39), we have

E
[
Q

(√
γ̃2H

)]
≤ 1(

1
2
σ2

sdγ̄ + 1
)
σ2

rd

∞∫

0

e−ρrd/σ2
rd

L1σ2
sr γ̄ρrd

2(1+U1ρrd)
+ 1

dρrd (5.40)

=
1

1
2
σ2

sdγ̄ + 1

[
U1

ζ
+

L1σ
2
srγ̄

2σ2
rdζ

2
exp

(
1

σ2
rdζ

)
Γ

(
0,

1

σ2
rdζ

)]
,(5.41)

where ζ = 1
2
L1σ

2
srγ̄ + U1. Chernoff bound Q(t) ≤ exp

(
− t2

2

)
is used in (5.40) and

Eq. (5.41) is given by [33, 3.383.5]. Thus, by plugging (5.41) into (5.39), the diversity

order of E1 is lower bounded by

lim
γ̄→∞

− log E1

log γ̄
≥ 1 + min



1, 1− lim

γ̄→∞

log Γ
(
0, 1

σ2
rdζ

)

log γ̄



 = 2, (5.42)

where (5.42) is reached by using l’Hôpital’s rule and the derivative of incomplete

Gamma function [5, 6.5.25]. Therefore, G2H ≥ 2 for α1(ρsr).

(ii) Without loss of generality, we assume there is only one zero point in U2,

i.e., Z = 1 and r1 = rl
1 = rr

1 > 0. Multiple isolated zero roots can be addressed

accordingly. For ρsr ∈ [ml
1,m

r
1], α2(ρsr) is defined as in (A4); ∀ρsr ∈ [B1,m

l
1) ∪

(mr
1, B2), ∃L2 and U2 that 0 < L2 ≤ α2(ρsr) = α(ρsr) ≤ U2 < ∞. To keep α2(ρsr)

continuous, we assume α2(ρsr) = α2(B1) (∀ρsr ∈ [0, B1)) and α2(ρsr) = α2(B2)

(∀ρsr ∈ [B2,∞)).

As for α1, α2 with ρsr ∈ [0,ml
1)∪ (mr

1,∞) can be readily proved to yield G2H = 2.

The diversity order of E2 is only affected by α2 around the zero point r1, i.e.,

E2≤̇σ−2
sr Eρsd,ρrd







mr
1∫

r1

+

r1∫

ml
1


 Q

(√
γ2H(α2)

)
e
− ρsr

σ2
sr dρsr


 . (5.43)

For ρsr ∈ [r1,m
r
1], due to the continuity of α2, ∃U3 < ∞ such that α2(ρsr) ≤ U3;

meanwhile, ∃ιr1 > 0 so that α2(ρsr) ≥ ιr1(ρsr − r1)
pr
11 [18, Lemma 6]. Therefore, the

instantaneous SNR of 2H-MRC has

γ2H ≥
(

ρsd +
ιr1(ρsr − r1)

pr
11ρsrρrd

1 + U3ρrd

)
γ̄ , γ̃2H, ∀ρsr ∈ [r1,m

r
1]. (5.44)
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Similar to the technique used in [87, 107], G2H = 2 can be proved for γ̃2H in

Eq. (5.44). Denote ρ̃sr = ρsr−r1 ∈ [0,mr
1−r1] and V = v(ρ̃sr, ρrd) =

ιr1ρ̃
pr
11

sr (ρ̃sr+r1)ρrd

1+U3ρrd
γ̄.

Because of (5.44), the first integral of (5.43) is further upper bounded by

σ−2
sr Eρsd,ρrd




mr
1∫

r1

Q
(√

γ2H(α2)
)

e
− ρsr

σ2
sr dρsr


 ≤ E

[
Q

(√
ρsdγ̄ + v(ρ̃sr, ρrd)

)]
, (5.45)

where the expectation of the RHS is taken over ρ̃sr, ρrd, ρsd ∈ [0,∞).

The first derivative of the PDF of γ̃2H evaluated at zero is given by [87]

d

dγ̃
fγ̃2H

(γ̃)

∣∣∣∣
γ̃=0

= fρsd
(0)fV (0). (5.46)

fV (0) can be found as

fV (0) = fρ̃sr(0)

∞∫

0

fρrd
(t)

|∇v(0, t)|dt + fρrd
(0)

∞∫

0

fρ̃sr(t)

|∇v(t, 0)|dt, (5.47)

where |∇v(ρ̃sr, ρrd)| is the modulus of the gradient of v(ρsr, ρrd) [87], i.e.,

|∇v(ρ̃sr, ρrd)| =
√∣∣∣∣

∂

∂ρ̃sr

v(ρ̃sr, ρrd)

∣∣∣∣
2

+

∣∣∣∣
∂

∂ρrd

v(ρ̃sr, ρrd)

∣∣∣∣
2

. (5.48)

With 0 < pr
11 < 1, we have |∇v(0, ρrd)| = ∞ and |∇v(ρ̃sr, 0)| = ιr1ρ̃

pr
11

sr (ρ̃sr + r1)γ̄ >

ιr1r1ρ̃
pr
11

sr γ̄. Bringing them into Eq. (5.47), fV (0) has

fV (0) <
e
− r1

σ2
sr

ιr1r1σ2
rdσ

2(pr
11−1)

sr γ̄
Γ(1− pr

11) < ∞. (5.49)

Therefore, similar to the proof of Proposition 1 in [87], we have 0 < fV (0) < ∞,

0 < d
dγ̃

fγ̃2H
(γ̃)|γ̃=0 < ∞ and fγ̃2H

(0) = 0. According to [107], the RHS of (5.45) leads

to G2H = 2 for 0 < pr
11 < 1.

The same argument can be made for the second integral in (5.43), the proof of

which is similar and thus omitted for simplicity. Therefore, (5.43) shows that G2H ≥ 2

for E2.

(iii) The diversity order of E3 in (5.37) is determined by α3(ρsr) in the region of

ρsr ∈ [B2,∞).

95



Similar to [18, Lemma 6], we can find η > 0 that α3(ρsr) ≥ ηρq1
sr (∀ρsr ∈ [B2,∞)).

Denote

γ2H ≥
(

ρsd +
ρsrρrd

η−1ρ−q1
sr + ρrd

)
γ̄ , γ̃2H. (5.50)

When q1 ≥ −1, γ2H is further lower bounded by

γ2H ≥
(

ρsd +
ρsrρrd

η−1ρsr + ρrd

)
γ̄, (5.51)

the RHS of which has been shown to achieve the diversity order 2 [87]. If q1 < −1,

otherwise, denote V = v(ρsr, ρrd) = ρsrρrd

η−1ρ
−q1
sr +ρrd

γ̄. G2H = 2 can be also proved for γ̃2H

in Eq. (5.50) with the same technique used in [87, 107] and Eqs. (5.44)-(5.49) above.

Thus, we have that E3 also yields G2H ≥ 2.

Combining Eq. (5.35) and the diversity order lower bounds for the terms of E1, E2

and E3, we see that (C1) and (C2) are also sufficient for 2H-MRC to achieve G2H = 2.

It suffices to complete the proof for Theorem 5.1. ¥

In contrast to the general link-adaptive regenerative relay networks for which

α(0) = 0 is a necessary condition to enable full cooperative diversity [18], the PSF

in GAF that enables 2H-MRC to achieve full cooperative diversity order should not

start with α(0) = 0. Thus, the intuitive linear PSF α(ρsr) = ρsr, which scales down

the symbols with poor source-relay link qualities, does not provide full cooperative

diversity order. Theorem 5.1 also requires that α(ρsr) = 0 can only have isolated roots

and α(ρsr) approaches these roots linearly or concavely. According to Theorem 5.1,

infinite α(ρsr) is not necessary for G2H = 2. Therefore, bounded PSFs are not only

practical, but can also lead to full cooperative diversity order at the destination with

2H-MRC.

As a special example, the fixed-gain protocol [38] satisfies both the conditions

(C1) and (C2). Thus, with Theorem 5.1, full cooperative diversity can be readily

shown for it, which is summarized in the following corollary.
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Corollary 5.1 Consider a non-regenerative relay system with a fixed-gain PSF α(ρsr) =

C > 0 at the relay. The diversity order achieved by 2H-MRC in Eq. (5.9) is G2H = 2.

The major disadvantage of 2H-MRC is the requirement of the 2H CSI at the

destination, which increases the transmission overhead. Besides the estimates of hsd

and hr which are accessible by traditional point-to-point channel estimation methods

(e.g., via pilot subcarriers in OFDM systems [74]), 2H-MRC also needs to know ρsr

at the destination, which is impractical in certain communication environments.

5.3.3 GAF with 1H-MRC

Compared with 2H-MRC, 1H-MRC given in Eq. (5.7) only needs hsd and hr. Without

the transmission of hsr, the spectral efficiency is greatly improved and the processing

at both relay and destination is also simplified. Now, a natural question is whether

1H-MRC can still collect full cooperative diversity order? The answer is positive,

however, more conditions on PSF designs are required compared with those for 2H-

MRC. In the following theorem, we reveal the necessary conditions.

Theorem 5.2 (Full Diversity Order of 1H-MRC) Consider a non-regenerative

relay system with a GAF α(ρsr) at the relay. In addition to (C1) and (C2), another

necessary condition for the 1H-MRC in Eq. (5.7) to achieve G1H = 2 is

p10 ≥ −1

2
. (5.52)

Proof: The difference between the instantaneous SNRs of 2H-MRC and 1H-MRC can

be shown as

∆γ , γ2H − γ1H = (1 + λ)−1ρsdγ̄ ≥ 0, (5.53)

where λ = 2α−1ρ−1
rd + α−2ρ−2

rd + α−2ρ−1
sr ρ−2

rd ρsd + α−3ρ−1
sr ρ−3

rd ρsd. Thus, the diversity

orders achieved by 2H-MRC and 1H-MRC destinations have G2H ≥ G1H. It indicates

that (C1)-(C2) are also necessary for 1H-MRC to achieve full diversity order.
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In addition, ∀κ > 0 and ∀δ > 0, if α ≥ κρ
− 1

2
−δ

sr for the region of ρsr ∈ [0, ε], λ has

λ ≤ 1

κρrd

(
2ε

1
2
+δ +

ε1+2δ

κρrd

+
ε2δρsd

κρrd

+
ε

1
2
+3δρsd

κ2ρ2
rd

)
. (5.54)

By choosing a small enough ε, (5.54) can lead to λ ¿ 1. As a result, ∆γ ≈ ρsdγ̄ and

γ1H ≈ γ2H− ρsdγ̄ = αρsrρrd

1+αρrd
γ̄ ≤ ρsrγ̄ with the non-zero probability Pr(ρsr ≤ ε). In this

case, the diversity order is upper bounded by G1H ≤ 1.

Therefore, besides (C1) and (C2), another necessary condition for 1H-MRC to

achieve full cooperative diversity is α ≤ κρ
− 1

2
sr as ρsr → 0, i.e., p10 ≥ −1

2
. ¥

As revealed by Theorem 5.1, for 2H-MRC to obtain full diversity order, α(ρsr) > 0

for ρsr → 0+ is sufficient. When 1H-MRC is adopted at the destination, we further

require that α(ρsr) does not go to infinity faster than ρ
− 1

2
sr . In Section 5.3.4, we will

verify this result by showing that 1H-MRC cannot achieve diversity order 2 with the

conventional AF protocol [48, Eq. (9)], which has α(ρsr)
.
= ρ−1

sr in the high SNR

region. Nevertheless, the condition (5.52) is not difficult to satisfy, e.g., the fixed-gain

protocol.

5.3.4 Simulation Results

Numerical examples are presented in this subsection to verify the GAF design criteria

for two-hop single-relay networks. The average BER Pb versus average SNR γ̄ curves

are plotted for Rayleigh fading channels with unit variance, i.e., σ2
ij = 1 (i ∈ {s, r} and

j ∈ {r, d}). Unless otherwise specified, QPSK modulation are adopted. In addition,

ideal CSI is assumed available at the destination node: hsr, hsd and hr are known for

2H-MRC, while 1H-MRC only requires hsd and hr.

First, we validate our claims for 2H-MRC and 1H-MRC in Theorems 5.1 and 5.2

by applying some existing or generic PSFs, including α = 1 [38], the AF protocol [48,

Eq. (9)], αAa = ρ−1
sr which is used in [36], αAb = ρ

− 1
4

sr , αAc = ρsr + 1 which is an affine

PSF, and αAd which is the bounded PSF of αAa in Figure 5.2(a).
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Figure 5.2: Comparisons of PSFs for 1H-MRC and 2H-MRC.
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As shown in Figure 5.2(b), full cooperative diversity order cannot be achieved by

1H-MRC with αAa = ρ−1
sr and the AF protocol in [48], because the necessary condition

provided by Theorem 5.2 is violated in the high SNR region. In other words, although

these protocols are widely adopted, 2H-MRC is necessary in achieving the cooperative

diversity. In contrast to αAa, αAb satisfies Eq. (5.52). In Figure 5.2(b), it is shown that

αAb enables full diversity order for both 1H-MRC and 2H-MRC, verifying Theorem 5.2

again. The fixed-gain protocol [38] α = 1 satisfies the conditions in Theorems 5.1

and 5.2. With α = 1, both 1H-MRC and 2H-MRC achieve full diversity order 2 and

similar BER performance, as shown in Figure 5.2(b). However, a fixed gain α = 1

may generate unbounded output signals at the relay when ρsr →∞ and may not be

used in peak power constrained relay networks.

The BER curves for 2H-MRC with αAc and αAd are close to the corresponding

curves of 1H-MRC, and are thus omitted in order not to overcrowd Figure 5.2(b).

Both 1H-MRC and 2H-MRC achieve full diversity order with αAc and αAd, which

indicates that the “tail” of α does not affect the diversity order as long as α(ρsr) > 0

for ρsr →∞.

Besides the diversity performance and the need of 2H CSI, the choice of PSF

should also take coding gains and other practical requirements into consideration. As

indicated by Figure 5.2(b), with the same diversity order, the greater the average

relay output power, the better the coding gain. Nevertheless, the average relay out-

put power cannot be arbitrarily large. It is confined by practical concerns, such as

the boundedness of PSF and the peak power constraint, which will be discussed in

Section 5.4.

The examples of PSFs αBa to αBd shown in Figure 5.3(a) are employed to illustrate

the effects on diversity order of bounded α(ρsr) with zero intervals. The BER curves

are plotted in Figure 5.3(b) for αBa-αBd as well as the fixed gain α = 1. With these

PSF examples, 1H-MRC is shown to achieve almost the same BER performance to
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2H-MRC.

When α has continuous zero intervals (e.g., αBa), Proposition 5.1 indicates that

no cooperative diversity can be obtained, i.e., G2H = 1. For αBb where α(0) = 0

is an isolated zero root with p10 = 2, the diversity order is upper bounded by 4
3

according to Proposition 5.1. In addition, Proposition 5.1 shows that G2H is also

bounded by 1 + (pl
1k)

−1 and 1 + (pr
1k)

−1 if R 6= ∅. αBc approaches the root concavely

and should provide G2H = 2 according to Theorem 5.1. For αBd, however, the orders

of smoothness around rl
1 = rr

1 = 0.5 are pl
11 = 3 and pr

11 = 1. In accordance with

Proposition 5.1, G2H ≤ 4
3

< 2 for αBd. All the above claims for the diversity orders

of αBa to αBd are verified in Figure 5.3(b).

These two tests show that Theorems 5.1 and 5.2 provide general guidelines on

designing PSFs for GAF strategies which guarantee full cooperative diversity orders.

Following these guidelines, practical PSFs can be designed to simplify the cooperative

network implementation without sacrificing the performance. Within this scope, the

next section is dedicated to design practical AF relaying strategies for the peak power

constrained relay network with only 1H CSI available at both the relay and the

destination.

5.4 Intentional Peak Power Limit AF Relaying

The peak power constraint at the relay node imposes additional requirements on

α. Surprisingly, the extra constraints may lead to implementation and performance

advantages. In this section, we will show that by designing PSFs to meet the peak

power constraint at the relay, the relay processing can be actually simplified. In

addition, a practical peak power constrained AF strategy is designed to enable the

low-complexity 1H-MRC to achieve full diversity order.

To meet the peak power constraint in (5.5), the PSF α should satisfy

α ≤ Ppeak

|ysr|2 . (5.55)
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Figure 5.3: Effect of zero roots in PSFs.
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Thus, α should be designed as a function of the received signal ysr, instead of ρsr.

In this case, the channel estimation of ρsr can be avoided which greatly simplifies

processing at the relay node. In fact, ρsr will also be shown to be unnecessary at the

destination, i.e., 1H-MRC suffices to obtain full diversity order, while the 1H CSI hr

and hsd can be estimated by traditional channel estimation methods with embedded

pilot symbols [74]. We start the analysis with α(ysr) =
Ppeak

|ysr|2 , by which the relay node

completely avoids saturation and achieves the maximum PA power efficiency at the

relay.

Although α(ysr) =
Ppeak

|ysr|2 is used, the following proposition indicates that α(ysr)

can be analyzed equivalently with the corresponding α(ρsr) when the diversity order

is concerned.

Proposition 5.2 Consider a non-regenerative relay network with the 1H-MRC or

2H-MRC at the destination. The PSF α(ysr) =
Ppeak

|ysr|2 leads to the same diversity

order with α(ρsr) = η
ρsr

, where η > 0 is a finite constant.

Proof: The instantaneous SNR of 2H-MRC can be found as

γ̃2H , ρsdγ̄ +
ρsrρrdEx[α|x|2]

(1 + ρrdEx[α])N0

. (5.56)

In addition, in the high average SNR region, |ysr|2 ≈ ρsr|x|2. Therefore, we have

α(ysr) ≈ Ppeak

ρsr|x|2 . (5.57)

When γ̄ →∞, by plugging Eq. (5.57) and Ppeak = KPx into Eq. (5.56), we have

γ̃2H ≈
(

ρsd +
Kρrd

1 + η1K
ρrd

ρsr

)
γ̄, (5.58)

where η1 , Ex

[
Px

|x|2
]

is a modulation-dependent constant. By replacing η1K
ρsr

with

α(ρsr), Eq. (5.58) gives

γ̃2H ≈
(

ρsd + η−1
1

α(ρsr)ρsrρrd

1 + α(ρsr)ρrd

)
γ̄, (5.59)
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which is equivalent with γ2H in Eq. (5.10) and thus provides the same diversity per-

formance.

Similarly, for 1H-MRC, the instantaneous SNR in the high average SNR region is

given by

γ̃1H , ρ2
sdPx + 2ρsdρsrρrdEx[α|x|2] + ρ2

srρ
2
rdEx[α

2|x|2]
(ρsd + ρsrρrdEx[α] + ρsrρ2

rdEx[α2])N0

(5.60)

≈ ρ2
sd + 2Kρsdρrd + η1K

2ρ2
rd

ρsd + η1Kρrd + η2K2 ρ2
rd

ρsr

γ̄, (5.61)

where η2 , Ex

[
P 2

x

|x|4
]

is also a modulation-dependent constant and has 1 ≤ η1 ≤ η2.

Therefore, with α(ρsr) = K
ρsr

in Eq. (5.8), Eq. (5.61) has η−1
2 γ1H ≤ γ̃1H ≤ η1γ1H. The

constants in front of γ1H do not affect the diversity order, neither does the constant

linear coefficients in α(ρsr). Therefore, α(ysr) is equivalent with α(ρsr) ∝ ρ−1
sr in terms

of the diversity performance. ¥

Proposition 5.2 enables us to extend the results in Section 5.3 to analyze the

diversity performance for α(ysr). Because α(ρsr) ∝ ρ−1
sr satisfies Theorem 5.1, we

arrive the following corollary immediately.

Corollary 5.2 Consider a non-regenerative relay network with the PSF α(ysr) =

Ppeak

|ysr|2 at the relay. 2H-MRC can collect full cooperative diversity order, i.e., G2H = 2.

For 1H-MRC, however, α(ρsr) ∝ ρ−1
sr does not satisfy the necessary condition

(5.52) in Theorem 5.2. Therefore, G1H < 2 follows. The following corollary shows

that actually G1H = 1.

Corollary 5.3 Consider a non-regenerative relay network with the PSF α(ysr) =

Ppeak

|ysr|2 at the relay. The diversity order achieved by 1H-MRC is G1H = 1.

Proof: With Proposition 5.2, it is equivalent to prove that α(ρsr) = ρ−1
sr leads to

G1H = 1 for 1H-MRC.
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In this case, the instantaneous SNR of 1H-MRC in Eq. (5.8) is bounded by

ρsrρrd

ρsr + ρrd

γ̄ ≤ ρsr
ρsd + ρrd

ρsr + ρrd

γ̄ ≤ γ1H ≤ (ρsd + ρrd)
2

ρ2
rd

ρsrγ̄ ≤ 4ρsrγ̄, (5.62)

where ρsd ≤ ρrd is assumed for the last inequality. Thus, the first and the last terms

of (5.62) give lower and upper bounds for γ1H with the non-zero probabilities of 1 and

Pr(ρsd ≤ ρrd), respectively. Because both these bounds have diversity order 1 [87],

we have G1H = 1 for α(ysr) =
Ppeak

|ysr|2 . ¥

Corollary 5.3 illustrates that full cooperative diversity order cannot be collected

by the low-complexity 1H-MRC destination when α(ysr) =
Ppeak

|ysr|2 is used to satisfy the

peak power constraint. Moreover, this PSF is still not practical in the sense that α is

not bounded, i.e., the “refilling” gain may go infinite. Interestingly, by introducing a

“clipped” PSF

α(ysr) = min

{
Ppeak

|ysr|2 , β

}
, (5.63)

where β > 0 is a finite constant, both of these problems are solved. We refer to this

PSF as an intentional peak power limit (IPPL) strategy [60]. The PSF and the input-

output relationship of the signal power in the IPPL relaying strategy are illustrated

in Figure 5.4(a) and 5.4(b), respectively.

Similar to Proposition 5.2, the following proposition facilitates us to analyze the

diversity performance of the IPPL strategy.
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Proposition 5.3 Consider a non-regenerative relay network with the 1H-MRC at

the destination. The diversity order of the IPPL strategy is no less than that of the

PSF α0(ρsr) , min
{

K
ρsr

, β
}

at the relay, where K =
Ppeak

Px
.

Proof: To prove that G1H of α(ysr) in Eq. (5.63) is no less than G1H of α0(ρsr), we only

need to show that there exists a constant P > 0 such that the instantaneous SNR

γ̃1H(α(ysr)) is not smaller than P · γ̃1H(α0(ρsr)), where γ̃1H(α) is given in Eq. (5.60).

We split ρsr ∈ [0,∞) into two regions and analyze the instantaneous SNR in these

regions separately.

For ρsr > K
β
, in the high average SNR region, the instantaneous SNR with the

IPPL PSF can be lower bounded by

γ̃1H

(
α(ysr)

∣∣∣∣ρsr >
K

β

)

≥
ρ2

sd + 2KρsdρrdPr(|x|2 > Px) + K2ρ2
rdEx

[
Px

|x|2
∣∣∣|x|2 > Px

]

ρsd + Kρrdη1 + K2η2
ρ2

rd

ρsr

γ̄ (5.64)

≥ A1
ρ2

sd + 2Kρsdρrd + K2ρ2
rd

ρsd + Kρrd + K2 ρ2
rd

ρsr

γ̄ (5.65)

= A1γ̃1H

(
α0(ρsr)

∣∣∣∣ρsr >
K

β

)
, (5.66)

where η1 = Ex

[
Px

|x|2
]
, η2 = Ex

[
P 2

x

|x|4
]
, A1 = η−1

2 min
{

Pr(|x|2 > Px), Ex

[
Px

|x|2
∣∣∣|x|2 > Px

]}
,

and the inequality (5.64) is given by plugging the following inequalities into Eq. (5.60):

Ex[α(ysr)] ≤ Ppeak

ρsr

Ex[|x|−2], (5.67)

Ex[α
2(ysr)] ≤ P 2

peak

ρ2
sr

Ex[|x|−4], (5.68)

Ex[α(ysr)|x|2] = βEx

[
|x|2

∣∣∣|x|2 ≤ Ppeak

βρsr

]
+

Ppeak

ρsr

Pr

(
|x|2 >

Ppeak

βρsr

)
(5.69)

≥ Ppeak

ρsr

Pr(|x|2 > Px), for ρsr >
K

β
, (5.70)
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Ex[α
2(ysr)|x|2] = β2Ex

[
|x|2

∣∣∣|x|2 ≤ Ppeak

βρsr

]
+

P 2
peak

ρ2
sr

Ex

[
|x|−2

∣∣∣|x|2 >
Ppeak

βρsr

]

(5.71)

≥ P 2
peak

ρ2
sr

Ex

[
|x|−2

∣∣∣|x|2 > Px

]
, for ρsr >

K

β
. (5.72)

For ρsr ≤ K
β
, instead of (5.67) and (5.68), we have Ex[α(ysr)] ≤ β and Ex[α

2(ysr)] ≤
β2. In addition, Eqs. (5.69) and (5.71) lead to Ex[α(ysr)|x|2] ≥ βA2 and Ex[α

2(ysr)|x|2] ≥
β2A2, where A2 = Ex

[|x|2
∣∣|x|2 ≤ Px

]
. Accordingly, when ρsr ≤ K

β
, the instantaneous

SNR with the IPPL PSF has

γ̃1H

(
α(ysr)

∣∣∣∣ρsr ≤ K

β

)
≥ A2

Px

γ̃1H

(
α0(ρsr)

∣∣∣∣ρsr ≤ K

β

)
. (5.73)

By combining (5.66), (5.73) and letting P = min
{

A1,
A2

Px

}
, we have

γ̃1H(α(ysr)) ≥ P γ̃1H(α0(ρsr)). (5.74)

Therefore, the diversity order G1H for the IPPL strategy is no less than G1H of

α0(ρsr) = min
{

K
ρsr

, β
}

. ¥

Consequently, we have the following theorem to illustrate that 1H-MRC can be

used to achieve full diversity order with the IPPL strategy in Eq. (5.63).

Proposition 5.4 (Full Diversity Order of 1H-MRC with the IPPL Strategy)

Consider a non-regenerative relay network with α(ysr) in Eq. (5.63) at the relay. 1H-

MRC at the destination collects full cooperative diversity order, i.e., G1H = 2.

Proof: The upper bound of the instantaneous SNR can be given as

γ1H ≤ (ρsd + α(ρsr)ρsrρrd)γ̄ ≤ (ρsd + βρsrρrd)γ̄. (5.75)

The RHS of (5.75) can be proved to have the diversity order 2 as γ̄ →∞, which gives

G1H ≤ 2 for 1H-MRC.

For the lower bound of G1H, due to Proposition 5.3, we only need to show that

G1H = 2 with the PSF α0(ρsr) = min
{

K
ρsr

, β
}

. α0(ρsr) satisfies the necessary condi-

tions in Theorem 5.2. In the following, we show that it is also sufficient for G1H = 2.
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With α0(ρsr), γ1H can be lower bounded by

γ1H ≥ ρsd + α0(ρsr)ρsrρrd

1 + α0(ρsr)ρrd

γ̄ ≥





γ1 , ρsd + βρsrρrd

1 + βρrd

γ̄, ρsr ≤ K
β
, (5.76)

γ2 , ρsd + Kρrd

1 + βρrd

γ̄, ρsr > K
β
. (5.77)

Similar to (5.39), by extending the integration intervals, the average BER of 1H-MRC

has

Pb ≤ E[Q(
√

γ1)] + E[Q(
√

γ2)], (5.78)

and the diversity order is determined by the lowest one of γ1 and γ2.

For γ1, we need to further split it into two cases, i.e.,

γ1 =





γ1a ,
(

ρsr +
ρD1

1 + βρrd

)
γ̄, ρsd ≥ ρsr, (5.79)

γ1b ,
(

ρsd +
βρrdρD2

1 + βρrd

)
γ̄, ρsd < ρsr, (5.80)

where ρD1 = ρsd−ρsr when ρsd ≥ ρsr and ρD2 = ρsr−ρsd, otherwise. Due to the strong

memoryless property of exponential distribution, ρD1 and ρD2 are still exponentially

distributed. ρD1 is independent with ρsr and ρrd, and ρD2 is independent with ρsd

and ρrd, respectively [93]. Again, E[Q(
√

γ1)] ≤ E[Q(
√

γ1a)] + E[Q(
√

γ1b)]. With the

same technique used in [87] and Eqs. (5.44)-(5.49) in Section 5.3, it is ready to prove

that E[Q(
√

γ1a)]
.
= γ̄−2. Additionally, Corollary 5.1 gives that E[Q(

√
γ1b)]

.
= γ̄−2.

Therefore, E[Q(
√

γ1)]≤̇γ̄−2.

For the second term in (5.78), we have

E[Q(
√

γ2)] ≤ 1

σ2
sdσ

2
rd

∞∫

0

exp
(
−

(
Kγ̄

2(1+βρrd)
+ 1

σ2
rd

)
ρrd

)

γ̄
2(1+βρrd)

+ 1
σ2

sd

dρrd, (5.81)

where the Chernoff bound for Q-function is used. By substituting θ = γ̄
2(1+βρrd)

, the
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above inequality leads to

E[Q(
√

γ2)] ≤ γ̄
exp(β−1σ−2

rd )

2βσ2
sdσ

2
rd

γ̄
2∫

0

exp
(
− γ̄

2βσ2
rdθ

)

θ2(θ + σ−2
sd )

exp

(
K

β

(
θ − γ̄

2

))
dθ (5.82)

≤̇ γ̄




γ̄
2∫

0

exp
(
− mγ̄

2βσ2
rdθ

)

θ3m
dθ




1
m




γ̄
2∫

0

exp

(
n

K

β

(
θ − γ̄

2

))
dθ




1
n

,(5.83)

where Hölder’s inequality is used (∀m,n > 1 and 1
m

+ 1
n

= 1) [33, 11.313]. The second

integral of (5.83) approaches a constant as γ̄ goes to infinity and does not affect the

diversity performance. The first integral to the power of 1
m

is exponentially equal to

γ̄−3+ 1
m as γ̄ →∞ [33, 3.471.1]. Because m can arbitrarily approach 1, (5.83) leads to

E[Q(
√

γ2)]≤̇γ̄−2.

Therefore, Pb≤̇γ̄−2 in (5.78) and thus Gd ≥ 2. Combined with (5.75) and Propo-

sition 5.3, the IPPL strategy has G1H = 2. ¥

The physical meaning of Eq. (5.63) is when the received signal is weak (|ysr| is

small), the IPPL strategy will not assign a too large gain (not greater than β) because

the forwarded symbol is likely to cause an error at the destination. As a result, in

contrast to α(ysr) =
Ppeak

|ysr|2 , the noise on the source-relay link will not be arbitrarily

amplified and cause the 1H-MRC destination which has no noise normalization to

lose diversity. In addition, intentionally capping on α is also necessary, because an

unbounded coefficient is not possible to implement in hardware. Thus, α in Eq. (5.63)

models a practical and diversity-enabled power scaling scheme for the peak power

constrained relay. It is worth noting that the finite value of β does not affect the

diversity performance.

The aforementioned designs and analysis can be easily generalized to block-wise

communication systems, e.g., OFDM systems. In the block-wise transmission, a

block of symbols, i.e., x = [x0, · · · , xN−1]
T where N is the block size, is transmitted

from Source S in the first time slot. Each of the received blocks for Relay R and

Destination D also consists of N symbols, i.e., N × 1 vectors yij. Without loss of
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generality, we assume block fading channels, where hij remains constant during each

time slot. Therefore, the system model can still be represented as Eqs. (5.1)-(5.3)

with x, y and w replaced by x, y and w, respectively. In this case, by substituting

|ysr|2 with ‖ysr‖2
∞, the IPPL strategy is ready to be extended to block-wise systems.

Overall, the proposed IPPL strategy is one of the practical solutions that achieve

full diversity with 1H-MRC and a good coding gain, while addressing the aforemen-

tioned practical concerns.

Following the simulation setup in Section 5.3, a few numerical results are shown as

follows to illustrate the performance of the IPPL relaying strategy. In Figure 5.5, the

BER performance of the schemes discussed in Corollaries 5.2-5.3 and Proposition 5.4

is demonstrated for different QAM constellations. Specifically, with α(ysr) =
Ppeak

|ysr|2 ,

2H-MRC can collect full cooperative diversity order, i.e., G2H = 2, as indicated by

Corollary 5.2. With this PSF, however, Figure 5.5 shows that 1H-MRC can only

achieve G1H = 1 as mentioned in Corollary 5.3. With the proposed IPPL strat-

egy α(ysr) in Eq. (5.63), Proposition 5.4 proves that 1H-MRC can also collect full

cooperative diversity order, which is illustrated in Figure 5.5.

In Figure 5.6, the IPPL α in Eq. (5.63) is further applied to the relay nodes with

different peak power resources. Although the coding gains may degrade along with

the decrease of the peak power constraint, 1H-MRC can still collect full cooperative

diversity order. Figure 5.6 also shows that α =
Ppeak

|ysr|2 can only enable 1H-MRC to

achieve G1H = 1. In this case, however, 1H-MRC performs better with a smaller peak

power constraint. It is mainly because a smaller Ppeak (thus a smaller α) diminishes

the effect of the channel noise of the source-relay link on the post-processing SNR.

Therefore, the lack of noise normalization is less detrimental to the error performance

of 1H-MRC with a small Ppeak.

In Eq. (5.63), β is a parameter subject to design. As indicated by Proposition 5.4,

the choice of β should not affect the diversity performance. Figure 5.7 corroborates
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Figure 5.5: Average BER versus average SNR curves for 1H-MRC and 2H-MRC

with α =
Ppeak

|ysr|2 and α = min
{

Ppeak

|ysr|2 , β = 10
}

; Ppeak = Px; different QAM modulations

are compared.

this point. However, a too small β will otherwise lead to a low power efficiency at

the relay node and thus a small coding gain.

The proposed IPPL strategy can be extended to block-wise communication sys-

tems with ease. In Figure 5.8, the transmitted block of symbols is assumed as

x = [x0, · · · , xN−1]
T , where xk (k ∈ [0, N − 1]) are independent QPSK-modulated

signals. Figure 5.8 illustrates that the BER performance of the 1H-MRC method

with the IPPL strategy is close to that achieved by 2H-MRC.

It is worth noting that the proposed method is also applicable to multi-carrier

systems, e.g., OFDM. In this case, the block of symbols in OFDM systems becomes

x = FHX as introduced in Section 2.2. The BER performance for the OFDM systems

with different numbers of subcarriers N is shown in Figure 5.9. Because the dynamic

range of OFDM symbols increases as the block size N , a larger N may lead to a

smaller power efficiency at the relay node, thus a smaller coding gain.
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{
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}
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5.5 Multi-Relay Cooperative Networks

Utilizing more than one relay node can further improve the error performance by

providing higher diversity orders or better diversity gain functions [42, 87, 106]. In

this section, the diversity performance as well as the spectral efficiency issue of the

multi-relay cooperative network will be studied.

5.5.1 Half-Duplex Multi-Relay AF Relaying Strategy

Suppose that the network enables the source and destination nodes to use Nr relay

nodes for cooperation. The network diagram is shown in Figure 5.10. Assume also

that the channels among all nodes (i.e., the source, Nr relay and destination nodes)

are i.i.d. Rayleigh faded and corrupted by additive white Gaussian channel noise with

the power of N0.

Denote the channel gains from the source to the ith relay and from the ith relay

to the destination as hsi and hid (i ∈ {1, · · · , Nr}), respectively. The received signals

at each relay node can be thus expressed as

ysi = hsix + wsi, i ∈ {1, · · · , Nr}. (5.84)

In the AF relay network, each relay node forwards an amplified version of the received

signal in its assigned time slot as it does in the single-relay case. So the transmitted

signal of the ith relay is

xri =
√

αiysi, (5.85)

where αi is the PSF. At the destination, 1H-MRC and 2H-MRC [c.f. Eqs. (5.6),

(5.7), and (5.9)] can be readily extended for the multi-relay networks by combining

the Nr + 1 received signal copies with corresponding weights.

The proposed IPPL strategy can be used at the multiple relays and achieve the

same conclusions on diversity orders as in Section 5.4. Figure 5.11 shows that with

α(ysr) =
Ppeak

|ysr|2 , G2H = Nr + 1 and G1H = 1. Meanwhile, the IPPL strategy is still
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Figure 5.10: Multi-relay network with Nr relay nodes.

applicable with multiple peak power constrained relay nodes. The proposed α in

Eq. (5.63) guarantees full cooperative diversity with the 1H-MRC destination, i.e.,

G1H = Nr + 1 for an Nr-relay network. It is worth mentioning that 2H-MRC in

multi-relay networks would require the 2H CSIs of all links between the source and

the relay nodes, which is particularly impractical to implement.

However, simply extending the single-relay AF strategy to multi-relay networks

results in poor spectral efficiency. Since all relays should transmit over mutually

orthogonal channels, similar to the single-relay case discussed in Sections 5.2-5.4,

time-division multiplexing (TDM) can be adopted. In this case, Nr +1 time slots will

be needed to transmit each symbol. In the first time slot, the source node broadcasts

the symbol x to the destination and the Nr relay nodes. Then, one time slot will be

needed for every relay node to forward the signal, thus requiring Nr extra time slots

in total. The time-slot assignment is summarized in Table 5.1. Therefore, the TDM

scheme is highly spectral inefficient.

5.5.2 Relay Selection Schemes

In multi-relay networks, relay selection schemes can be used to exploit the cooperative

diversity gain without further losing spectral efficiency [15, 42]. Rather than Nr + 1,

when certain relay nodes have been selected to assist the transmission, two time slots

are enough to achieve the cooperative diversity in the multi-relay network.
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Table 5.1: The time-slot assignment in the TDM multi-relay AF strategies.

Time slot Tx�Rx Relay 1 Relay 2 · · · Relay Nr Destination
1 Source x x · · · x x
2 Relay 1 xr1

3 Relay 2 xr2
...

...
...

Nr + 1 Relay Nr xrNr
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Figure 5.12: The transmission period of single-relay selection schemes in an Nr-relay
network.

In this section, we mainly focus on the single-relay selection schemes where only

one of the Nr relay nodes is chosen to cooperate for any symbol. Following the

assumptions in literature [15, 42], for each given channel realization, a training step is

assumed in which the destination gathers the necessary CSIs, selects the cooperating

relay and delivers the selection decision to relay nodes via feedback mechanisms.

In the transmission period, the diagram of the network is shown in Figure 5.12.

Two time slots are needed for the transmission in the half-duplex AF relay network.

In the first time slot, the source node broadcasts its information symbol x to the

relay nodes. Notice that, for simplicity, it is assumed that there is no direct link

between the source and the destination in this subsection. The following results can

be easily generalized in the presence of the direct link though. Assume the cth relay

is selected for cooperation. Then, in the second time slot, the cth relay node amplifies

its received signal by a power scaling factor αc and forwards it to the destination.

In this case, the instantaneous SNR at the destination can be given as

γ = γc =
αcρscρcdPx

(αcρcd + 1)N0

=
αcρscρcd

αcρcd + 1
γ̄, c ∈ {1, · · · , Nr}, (5.86)

where Px = Ex[|x|2], ρsi = |hsi|2 and ρid = |hid|2 (i ∈ {1, · · · , Nr}) for notational

simplicity. γi is used to denote the instantaneous SNR if the ith relay is selected.

Based on the availability of CSIs at the destination, we consider two different
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selection schemes:

Definition 5.2 (1H-CSI and 2H-CSI selection schemes) In the 1H-CSI selec-

tion scheme, the relay is selected only based on the 1H CSI, i.e., hi , √
αihsihid

(i ∈ {1, · · · , Nr}). Specifically, for each channel realization, the cth relay node is

selected to cooperate if

c = arg max
i∈{1,··· ,Nr}

|hi|2. (5.87)

In addition to the 1H CSI, if the destination also possesses the 2H CSI (i.e., ρsi

or αiρid) of all relay paths, the instantaneous SNR γi of each relay will be known at

the destination. Therefore, the 2H-CSI selection picks the cth relay as

c = arg max
i∈{1,··· ,Nr}

γi. (5.88)

The 2H-CSI selection has the optimal error performance among single-relay se-

lection schemes because it maximizes the receive SNR. However, unlike the 1H CSI

which incorporates the AF relay node as a transparent part of the channel and can

be estimated at the destination, the 2H CSI could only be estimated at the relay

and made accessible to the destination via forwarding mechanisms [49, 112]. It in-

evitably increases the system complexity, reduces the spectral efficiency and exposes

the system performance to further degradations. The needlessness of the 2H CSI for

decoding at the destination further makes the 2H-CSI selection costly and redundant.

Therefore, if the 1H-CSI selection can provide comparable error performance, its low

complexity and ease of deployment make it attractive from a practical standpoint.

The diversity performance also depends on the design of the PSF αi. In this

subsection, the relay nodes are assumed subject to an average power constraint Pi.

In this case, two kinds of αi are usually used, i.e., an instantaneous gain

α0,i =
Pi

ρsiPx + N0

, (5.89)
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and a fixed gain

α1,i =
Pi

σ2
siPx + N0

, (5.90)

where σ2
si denotes the variance of ρsi [38, 48].

In this subsection, the diversity performance of the concerned PSFs with both

1H-CSI and 2H-CSI selection schemes in Rayleigh fading channels is studied.

We will show that the instantaneous gain can provide full diversity order (Gd =

Nr) for the 2H-CSI selection (a.k.a, the best relay selection in [42]), but only Gd = 1

for the 1H-CSI selection (a.k.a, the nearest neighbor selection in [42]).

In contrast to the instantaneous gain, the fixed gain is independent with the

instantaneous channel gain ρsi and thus simplifies the relay processing. In addition,

we will show that the fixed-gain AF relaying (α1,i = Ci > 0) enables both the 2H-CSI

and the 1H-CSI selection schemes to achieve the diversity gain function Gf (γ̄) =

γ̄−Nr(ln γ̄)Nr and thus the full diversity order Gd = Nr.

5.5.3 Theorem on Diversity Gain Function

When diversity gain function is needed to characterize the asymptotic error perfor-

mance (see Section 2.3), e.g., in the relay selection schemes we will show later, the

existing theories about diversity order in [107] are no longer sufficient. The major

contribution of this subsection is thus to unveil the dependency of the diversity gain

function on the PDF of the instantaneous SNR, which can be approximated by the

products of polynomials and logarithm functions at the origin. The proposed theorem

provides a simple and general way to evaluate the asymptotic error performance that

involves the diversity gain function and coding gain by only investigating the PDF of

the instantaneous SNR around the origin.

The single-user uncoded communication system is of concern, which satisfies the

following general assumptions:
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A1) The instantaneous SNR at the receiver is γ = βγ̄, where β is a non-negative

random variable depending on the channel realization;

A2) For β → 0+, the PDF of β can be approximated by

fβ(β) = aβm(ln β−1)n + o(βm(ln β−1)n), (5.91)

where a > 0, m > −1 and n ≥ 0 are channel-dependent constants;

A3) Additive white Gaussian channel noise is assumed so that the average SER

is given by Pe = Eβ[κ1Q(
√

κ2βγ̄)], where κ1 and κ2 are constellation-specific

constants, e.g., κ1 = 4(1 −M− 1
2 ) and κ2 = 3

M−1
for M -ary QAM modulations

[83, p. 278].

As a special case, when n = 0, Proposition 1 in [107] has revealed that the diversity

order of the concerned system is Gd = m + 1. However, the existing results are no

longer sufficient to characterize the diversity gain function (i.e., n > 0). In addition,

because (ln β−1)n = o(β−t) (∀t > 0), the results in [107] fail to accurately evaluate

the diversity performance. For instance, with the PDF of β following Eq. (5.91) for

β → 0+, later we will prove that the diversity gain function Gf (γ̄) = γ̄−(m+1)(ln γ̄)n

is achieved, leading to the diversity order of Gd = m + 1. Proposition 1 in [107],

however, only indicates that the diversity order may be any value between m and

m + 1.

For the considered general assumptions, the following theorem explicitly gives the

closed-form bounds on the asymptotic error performance [57].

Theorem 5.3 (Asymptotic SER bounds) For a system that satisfies the assump-

tions (A1)-(A3), at high average SNR (γ̄ → ∞), the average SER Pe only depends

on the PDF of β at β → 0+, and can be lower and upper bounded as

Glγ̄
−(m+1)(ln γ̄)n + o(γ̄−(m+1)(ln γ̄)n) ≤ Pe ≤ Guγ̄

−(m+1)(ln γ̄)n + o(γ̄−(m+1)(ln γ̄)n).

(5.92)
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The coefficients are given as

A =
aκ12

m̃− 1
2

κ
m̃+ 1

2
2 (m + 1)

√
π

m̃∏

k=0

(m +
1

2
− k) (5.93)

Gl = A

(
I(n)

(
2

κ2

)m−m̃+ 1
2

Γ

[
m− m̃ +

1

2
,
1

2

]
+ e−

1
2

(
m− m̃ +

1

2

)−1
)
(5.94)

Gu = A

((
2

κ2

)m−m̃+ 1
2

Γ

[
m− m̃ +

1

2
,
1

2

]
+

(
m− m̃ +

1

2

)−1
)

, (5.95)

where m̃ = bmc is the largest integer that is not greater than m, the product in

Eq. (5.93) is 1 if m̃ = −1, and Γ[·, ·] is the incomplete Gamma function [5, 6.5.3].

I(x) is an indicator function that

I(x) =

{
1, x = 0, (5.96)

0, x > 0. (5.97)

Proof: Let δ > 0 be a small constant so that Eq. (5.91) holds true for β < δ. We can

split the integral intervals in evaluating Pe as

Pe = Eβ

[
κ1Q

(√
κ2βγ̄

)]
= κ1(I1 + I2 + I3) + o(I1 + I2 + I3), (5.98)

where

I1 =
a√
2π

√
κ2δγ̄∫

0

e−
x2

2

x2

κ2γ̄∫

0

βm(ln β−1)ndβdx (5.99)

I2 =
a√
2π

∞∫

√
κ2δγ̄

e−
x2

2 dx

δ∫

0

βm(ln β−1)ndβ (5.100)

I3 =

∞∫

δ

Q(
√

κ2βγ̄)fβ(β)dβ. (5.101)

We start by analyzing the easy ones, I2 and I3. With I3, it is readily bounded as

I3 < Q(
√

κ2δγ̄) < e−
κ2δ
2

γ̄ = o(γ̄−(m+1)(ln γ̄)n), for γ̄ →∞. (5.102)

For I2, because the two integrals in Eq. (5.100) are separable, we have

I2 = aBQ(
√

κ2δγ̄) = o(γ̄−(m+1)(ln γ̄)n), for γ̄ →∞, (5.103)
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where B =
δ∫
0

βm(ln β−1)ndβ is a finite and positive constant for m > −1 and n ≥ 0

[33, 4.272.6].

Therefore, both I2 and I3 are not the dominant term in the asymptotic Pe. For

I1, however, it is more complicated. First, for γ̄ → ∞, via integration by parts, the

second integral in I1 has

x2

κ2γ̄∫

0

βm(ln β−1)ndβ =
1

m + 1

(
ln

κ2γ̄

x2

)n
(

x2

κ2γ̄

)m+1

+ o(γ̄−(m+1)(ln γ̄)n). (5.104)

Plugging Eq. (5.104) into Eq. (5.99), I1 reads

I1
.
=

a
√

κ2γ̄

2(m + 1)
√

2π

1∫

0

e−
κ2δγ̄

2
v

(
ln

1

δv

)n

δm+ 3
2 vm+ 1

2 dv, (5.105)

where v = x2

κ2δγ̄
is used to substitute x. For m ≥ 0, via integration by parts again,

the RHS of Eq. (5.105) further leads to

I1
.
=

aδm+ 3
2 κ

1
2
2 γ̄

1
2

2(m + 1)
√

2π

[
− 2

κ2δγ̄

(
ln δ−1

)n
e−

κ2δ
2

γ̄ +
2

κ2δγ̄

1∫

0

e−
κ2δγ̄

2
vvm− 1

2

[(
m +

1

2

)(
ln

1

δv

)n

− n

(
ln

1

δv

)n−1
]

dv

]
(5.106)

.
=

aδm+ 1
2

(
m + 1

2

)

(m + 1)
√

2π
(κ2γ̄)−

1
2

1∫

0

e−
κ2δγ̄

2
v

(
ln

1

δv

)n

vm− 1
2 dv. (5.107)

Due to the exponential equality, terms with lower orders are omitted in Eq. (5.107).

Carrying on the integration by parts repeatedly, Eqs. (5.106)-(5.107) will eventually

lead to

I1
.
=

a2m̃
m̃∏

k=0

(m + 1
2
− k)

(m + 1)
√

2π
(κ2γ̄)−(m̃+ 1

2
)

1∫

0

δe−
κ2δγ̄

2
v

(
ln

1

δv

)n

(δv)m−m̃− 1
2 dv. (5.108)

Notice that, if the product term equals 1 when −1 < m < 0, Eq. (5.108) is the same

as Eq. (5.105). Therefore, Eq. (5.108) is valid for all m > −1.
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Now the question becomes to evaluate the integral in the RHS of Eq. (5.108). By

splitting the integration interval, it can be expressed as



1/(δγ̄)∫

0

+

1∫

1/(δγ̄)


 δe−

κ2δγ̄
2

v

(
ln

1

δv

)n

(δv)m−m̃− 1
2 dv , I11 + I12. (5.109)

When (δγ̄)−1 ≤ v ≤ 1, we have ln δ−1 ≤ ln(δv)−1 ≤ ln γ̄. For γ̄ → ∞, due to the

definition of incomplete Gamma function and its asymptotic value [5, 6.5.3, 6.5.32],

the second integral of Eq. (5.109) can be bounded as

I12 ≤ (ln γ̄)n

1∫

1/(δγ̄)

δe−
κ2δγ̄

2
v(δv)m−m̃− 1

2 dv (5.110)

=

(
2

κ2

)m−m̃+ 1
2

Γ

[
m− m̃ +

1

2
,
κ2

2

]
γ̄−(m−m̃+ 1

2
)(ln γ̄)n, (5.111)

and

I12 ≥ (ln δ−1)n

(
2

κ2

)m−m̃+ 1
2

Γ

[
m− m̃ +

1

2
,
κ2

2

]
γ̄−(m−m̃+ 1

2
) (5.112)

= o
(
γ̄−(m−m̃+ 1

2
)(ln γ̄)n

)
, for n > 0. (5.113)

On the other hand, e−
κ2
2 ≤ e−

κ2δγ̄
2

v ≤ 1 for 0 ≤ v ≤ (δγ̄)−1. Thus, for γ̄ →∞, I11

in Eq. (5.109) has

I11 ≤
1/(δγ̄)∫

0

δ

(
ln

1

δv

)n

(δv)m−m̃− 1
2 dv (5.114)

=

(
m− m̃ +

1

2

)−n−1

Γ

[
n + 1,

(
m− m̃ +

1

2

)
ln γ̄

]
(5.115)

.
=

(
m− m̃ +

1

2

)−1

γ̄−(m−m̃+ 1
2
)(ln γ̄)n, (5.116)

where Eq. (5.115) is given by [5, 5.1.4] and [5, 5.1.45], and Eq. (5.116) is based on

the derivative of the incomplete Gamma function [5, 6.5.25]. Additionally, we have

the lower bound on I11 as

I11 ≥ e−
κ2
2

(
m− m̃ +

1

2

)−1

γ̄−(m−m̃+ 1
2
)(ln γ̄)n. (5.117)
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In summary, by combining Eqs. (5.98), (5.108), (5.111), (5.113), (5.116) and

(5.117), the bounds for the asymptotic SER are proved and summarized in the theo-

rem. ¥

With regard to diversity performance, Theorem 5.3 indicates that the concerned

system achieves the diversity gain function Gf (γ̄) = γ̄−(m+1)(ln γ̄)n and the diversity

order Gd = m + 1 at high SNR.

5.5.4 Diversity Performance of Relay Selection Schemes

For simplicity, independent flat Rayleigh fading channels with unit variance are con-

sidered, i.e., hsi and hid (i ∈ {1, · · · , Nr}) are i.i.d. complex Gaussian random vari-

ables with zero mean and variance σ2
si = σ2

id = 1. In addition, the relays are assumed

to have the same average power constraints with the source, i.e., Pi = Px. Thus,

the instantaneous gain becomes α0,i = (ρsi + γ̄−1)−1 and the fixed PSF becomes

α1,i = (1 + γ̄−1)−1.

5.5.4.1 Instantaneous-Gain Relays with the 2H-CSI Selection Scheme

In the high SNR region,

α0,i = ρ−1
si , for γ̄ →∞. (5.118)

Accordingly, the instantaneous SNR for each relay path becomes

γi =
ρsiρidγ̄

2

1 + ρsiγ̄ + ρidγ̄
, i ∈ {1, · · · , Nr}. (5.119)

In the 2H-CSI selection, the relay selection c is determined by

c = arg max
i∈{1,··· ,Nr}

γi. (5.120)

The SNR is thus

γ = γc. (5.121)
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Therefore, the SER can be given by

Pe = Eγ [κ1Q (
√

κ2γ)] = κ1En

[
Fγ

(
n2

κ2

)]
, (5.122)

where n ∼ N (0, 1) and Fγ(t) is the CDF of γ evaluated at t. Because of Eqs. (5.120)-

(5.121) and the relay paths are i.i.d., Fγ(t) can be evaluated as

Fγ(t) = (Fγi
(t))Nr , (5.123)

where Fγi
(t) = 2t

γ̄
. So, we have

Pe = En

[
2Nr

(
n2

kγ̄

)Nr
]

.
= γ̄−Nr , for γ̄ →∞. (5.124)

5.5.4.2 Instantaneous-Gain Relays with the 1H-CSI Selection Scheme

In the 1H-CSI selection, the relay selection becomes

c = arg max
i∈{1,··· ,Nr}

|hi|2 = arg max
i∈{1,··· ,Nr}

α0,iρsiρid. (5.125)

Because of Eq. (5.118) in the high SNR region, the relay selection Eq. (5.125) is

equivalently

c = arg max
i∈{1,··· ,Nr}

ρid, (5.126)

which is the ‘nearest neighbor’ relay selection scheme mentioned in [42]. Since the

proof in [42] is not correct, a simple proof for the same conclusion is provided as

follows.

Here, the receive SNR has

γ =
ρscρcd

ρsc + ρcd

γ̄ = β(ρsc, ρcd)γ̄. (5.127)

According to Proposition 1 in [107], we just need to show the PDF of

β(ρsc, ρcd) =
ρscρcd

ρsc + ρcd

(5.128)
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has the zero-th order of smoothness around β → 0+, i.e., 0 < fβ(0) < ∞.

Because of Eq. (5.126), the PDF of ρcd (the maximum of Nr exponential dis-

tributed random variables) has

fρcd
(t) = Nr(1− e−t)Nr−1e−t. (5.129)

Meanwhile, because

fρsc(t) = e−t, (5.130)

we have

fβ(0) = fρsc(0)

∫
fρcd

(b)

|∇β(0, b)|db + fρcd
(0)

∫
fρsc(a)

|∇β(a, 0)|da (5.131)

= fρsc(0) + fρcd
(0) (5.132)

= 1. (5.133)

Therefore, the order of smoothness for fβ(β) around β = 0 is 0. The diversity

order of the SNR γ = βγ̄ is Gd = 1.

5.5.4.3 Fixed-Gain Relays with the 2H-CSI Selection Scheme

The fixed PSF has α1,i = C , (1 + γ̄−1)−1 (∀i ∈ {1, · · · , Nr}). Consequently, the

2H-CSI selection scheme yields the instantaneous receive SNR that

γ = βγ̄ = max
i∈{1,··· ,Nr}

βiγ̄, (5.134)

where β = βc and βi = ρsiρid

ρid+C−1 . According to Theorem 5.3, the asymptotic error

performance is determined by the PDF of β around β → 0+, which thus becomes our

focus in this subsection.

Since ρsi and ρid are i.i.d., βi (i ∈ {1, · · · , Nr}) are also i.i.d. random variables so

that β1 suffices to represent them in the sense of distribution. Because of Eq. (5.134),

the CDF of β can be found as Fβ(β) = (Fβ1(β))Nr . Thus, the PDF of β is

fβ(β) =
d

dβ
Fβ(β) = Nr(Fβ1(β))Nr−1fβ1(β). (5.135)
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In [38], the CDF and PDF of β1 have been unveiled as

Fβ1(t) = 1− 2e−t

√
t

C
K1

(
2

√
t

C

)
(5.136)

fβ1(t) = 2e−t

[√
t

C
K1

(
2

√
t

C

)
+

1

C
K0

(
2

√
t

C

)]
, t > 0, (5.137)

where K0(·) and K1(·) are the zero and first-order modified Bessel functions of the

second kind [5, 9.6.2]. Because of [5, 9.6.8, 9.6.9],

lim
x→0+

K0(x) = − lim
x→0+

ln
x

2
(5.138)

lim
x→0+

K1(x) = lim
x→0+

1

x
. (5.139)

Thus, for t → 0+, we can find

fβ1(t)
.
=

2

C
ln

1√
t

=
1

C
ln

1

t
. (5.140)

In addition, using l’Hôpital’s rule and [5, 9.6.28], it is ready to show that

lim
t→0+

1− 2
√

tK1(2
√

t)

t− t ln t
= lim

t→0+

2K0(2
√

t)

− ln t
= 1, (5.141)

and the asymptotic CDF in Eq. (5.136) has

lim
t→0+

Fβ1(t) = lim
t→0+

t

C
ln

C

t
. (5.142)

Therefore, bringing Eqs. (5.140) and (5.142) into Eq. (5.135), the PDF of β has

fβ(β) =
Nr

CNr
βNr−1(ln β−1)Nr + o(βNr−1(ln β−1)Nr), for β → 0+. (5.143)

Following the notations used in (A2), we have

a =
Nr

CNr
, m = Nr − 1, n = Nr. (5.144)

The asymptotic error performance can be bounded according to Theorem 5.3, and it

achieves the diversity gain function of Gf = γ̄−Nr(ln γ̄)Nr .
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5.5.4.4 Fixed-Gain Relays with the 1H-CSI Selection Scheme

Let ρi = ρsiρid (i ∈ {1, · · · , Nr}). Requiring only |hi|2 = Cρi, the 1H-CSI selection

determines the index c of the selected relay node according to Eq. (5.87). In this case,

the instantaneous receive SNR becomes

γ =
ρc

ρcd + C−1
γ̄ , β(ρc, ρcd)γ̄. (5.145)

The PDF of β(ρc, ρcd) , ρc/(ρcd + C−1) can be determined by [83, p. 31]

fβ(β) =

∫ ∫

{a,b| a
b+C−1 =β}

fρc,ρcd
(a, b)

|∇β(a, b)| dadb, (5.146)

where |∇β(ρc = a, ρcd = b)| is the modulus of the gradient of β(ρc, ρcd)

|∇β(a, b)| =
√

a2 + (b + C−1)2

(b + C−1)2
. (5.147)

To evaluate Eq. (5.146), the missing piece is the joint PDF of ρc and ρcd, which can

be further decomposed into fρc,ρcd
(a, b) =

Nr∑
i=1

pc(i)fρc|c(a|i)fρcd|ρc,c(b|a, i) and pc(i) is

the probability mass function for c = i.

On one hand, since ρi is the product of two independent exponential random

variables, ρi (i ∈ {1, · · · , Nr}) are i.i.d. with the distribution given in [72]. Hence,

it is easy to see that pc(i) = N−1
r and fρc|c(a|i) = fρc|c(a|j) (∀i, j ∈ {1, · · · , Nr}). In

addition, similar to Eq. (5.135), using ρ1 to represent ρi (i ∈ {1, · · · , Nr}) with the

same distribution, the conditional PDF of fρc|c(a|i) has

fρc|c(a|i) =
Nr∑
i=1

pc(i)fρc|c(a|i) = fρc(a) (5.148)

= Nr(Fρ1(a))Nr−1fρ1(a) = 2NrK0(2
√

a)
[
1− 2

√
aK1(2

√
a)

]Nr−1
. (5.149)

On the other hand, since ρsi and ρid are i.i.d. random variables, and ρi = ρsiρid,

we have

fρcd|ρc,c(b|a, i) = fρ1d|ρ1(b|a) =
fρ1,ρ1d

(a, b)

fρ1(a)
=

e−b−a
b

bfρ1(a)
, ∀i ∈ {1, · · · , Nr}. (5.150)
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Therefore, the joint PDF in Eq. (5.146) is given by

fρc,ρcd
(a, b) =

Nr

b
e−b−a

b [1− 2
√

aK1(2
√

a)]Nr−1. (5.151)

Because fβ(β) at β → 0+ is of our concern, now we bring Eq. (5.151) into Eq. (5.146),

substitute a = β(b + C−1) and further split the integration interval as

fβ(β) =
Nre

−β

√
1 + β2




η∫

0

+

∞∫

η


 b + C−1

beb+ β
bC

[
1− 2

√
β(b + C−1)K1

(
2
√

β(b + C−1)
)]Nr−1

db (5.152)

, Nre
−β

√
1 + β2

(
Iη
0 + I∞η

)
, (5.153)

where η = C−1(βδ−1 − 1) > 0 for 0 < δ < 1 and β < 1.

Since the first integral Iη
0 in Eq. (5.153) integrates from 0 to η, it can be further

bounded by

Iη
0 <

[
1− 2

√
εK1(2

√
ε)

]Nr−1

η∫

0

b + C−1

beb+ β
bC

db, (5.154)

where ε = β(η + C−1) = C−1βδ. Because of Eq. (5.141) and [33, 3.471.9], the

asymptotic bound on Iη
0 is

lim
β→0+

Iη
0 < lim

β→0+

2δNr−1

CNr−1
βδ(Nr−1)(ln β−1)Nr−1

[
1

C
K0

(
2

√
β

C

)
+ 2

√
β

C
K1

(
2

√
β

C

)]

= lim
β→0+

δNr−1

CNr
βδ(Nr−1)(ln β−1)Nr . (5.155)

Since (5.155) is valid for any 0 < δ < 1, when δ → 1−, the above inequality indicates

that

Iη
0 =

1

CNr
βNr−1(ln β−1)Nr + o(βNr−1(ln β−1)Nr), for β → 0+. (5.156)

Meanwhile, the integration interval in I∞η ranges from η to ∞, in which we have

(b + C−1)/b < (1− β1−δ)−1, 1−2
√

β(b + C−1)K1(2
√

β(b + C−1)) ≤ 1, and e−
β

bC ≤ 1.

Therefore, for β → 0+,

I∞η < (1− β1−δ)−1

∫ ∞

η

e−bdb
.
= e−βδ−1

= o(βNr−1(ln β−1)Nr). (5.157)
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In summary, by substituting Eqs. (5.155) and (5.157) into Eq. (5.153), the PDF

of β at β → 0+ is shown to be the same with Eq. (5.143). Accordingly, due to

Theorem 5.3, the 1H-CSI selection with the fixed-gain AF relaying can achieve the

same asymptotic error performance with the 2H-CSI selection scheme.

5.5.4.5 Simulation Results

In Figure 5.13, the average SER Pe versus average SNR γ̄ curves are plotted for both

the 1H-CSI and the 2H-CSI single-relay selection schemes with the fixed gain αi = (1+

γ̄−1)−1. QPSK modulation (κ1 = 2 and κ2 = 1) and flat Rayleigh fading channels with

unit variance are adopted. In addition, ideal channel state information is assumed

available at the destination: both hi and hsi are known for the 2H-CSI selection, while

the 1H-CSI selection only requires hi (i ∈ {1, · · · , Nr}). The examples of Nr = 2,

3 and 4 relay nodes are illustrated in Figure 5.13, in which the 1H-CSI selection

is shown to achieve the same SER performance with the 2H-CSI selection. The

corresponding theoretical bounds given by (5.92) with the parameters in Eq. (5.144)

are also plotted. The results validate that Theorem 5.3 gives tight bounds for the

asymptotic error performance. Moreover, with the fixed-gain AF relaying, both the

2H-CSI and the 1H-CSI single-relay selection schemes can achieve the diversity gain

function Gf = γ̄−Nr(ln γ̄)Nr , which makes the 1H-CSI selection with fixed-gain relays

favored due to its implementation merits.

Moreover, the SER curves for the instantaneous PSF and fixed PSF are compared

in Figure 5.14. The diversity performance of these PSFs and selection schemes has

been evaluated above and is summarized in Table 5.2. With the instantaneous PSF,

2H-CSI selection is shown to achieve the optimal SER performance with the diversity

order Gd = Nr, while 1H-CSI selection only generates Gd = 1. For comparison,

the fixed PSF not only is easy to implement because of the needlessness of the 2H

CSI at both the relay and the destination, but also achieves the near-optimal SER
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Figure 5.13: SER versus SNR curves for 1H-CSI and 2H-CSI selection schemes with
α1,i = (1 + γ̄−1)−1; Nr = 2, 3 and 4 relay nodes are used; the theoretical upper and
lower bounds are also drawn.

Table 5.2: The diversity performance of single-relay selection schemes (γ̄ →∞).

Selection�PSF Instantaneous Fixed
2H-CSI γ̄−Nr γ̄−Nr(ln γ̄)Nr

1H-CSI γ̄−1 γ̄−Nr(ln γ̄)Nr

performance by collecting the diversity gain function and the diversity order of Gd =

Nr asymptotically.

Last but not least, the multi-relay selection schemes can be adopted to further

improve the coding gain [42], where more than one relay node can be selected to

cooperate in the second time slot simultaneously. Details are omitted and examples

of generalized 2H-CSI and 1H-CSI multi-relay selection schemes are illustrated in

Figure 5.15 to validate the performance.
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Figure 5.14: SER versus SNR curves for 1H-CSI and 2H-CSI selection schemes with
the instantaneous PSF α0,i as well as the fixed PSF α1,i; Nr = 3 relay nodes are used.
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Figure 5.15: SER versus SNR curves for both the single-relay selection and multi-
relay selection schemes; Nr = 3 relay nodes are used.
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5.6 Conclusions

In this chapter, error performance and some practical issues in amplify-and-forward

cooperative networks are studied.

Basic design criteria for generalized AF strategies are provided to guarantee full

cooperative diversity order for both 2H-MRC and 1H-MRC destinations. Based on

these guidelines, an intentional peak power limit strategy is proposed for the practical

two-hop relay network where the relay nodes are peak power constrained and have

bounded power scaling factors. It can achieve full cooperative diversity with simplified

relay and destination nodes.

To improve spectral efficiency, relay selection schemes are also studied. First, a

general theorem relating the diversity gain function with the PDF of the instanta-

neous SNR around the origin is presented, providing an easy way to evaluate the

asymptotic error performance of general wireless communication systems. With the

help of the proposed theory, the error performance of relay selection schemes in co-

operative networks is analyzed. It reveals that, unlike the instantaneous gain, the

fixed-gain relays enable the 1H-CSI selection to achieve the same asymptotic SER

with the 2H-CSI selection scheme.

The results make AF strategies more attractive to practical cooperative networks.
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CHAPTER VI

CONCLUSIONS

6.1 Contributions

In this dissertation, we have studied the power efficiency and transmission reliability

issues in peak power constrained wireless communication systems. The main research

results are summarized in the following list:

• The EVM optimization PAR reduction method was proposed for OFDM sys-

tems.

• The tradeoff between power efficiency and in-band distortions was lower bounded

and established a way to compare the PAR reduction methods in OFDM sys-

tems.

• The MCPTS PAR reduction method was proposed for OFDM-FDMA systems.

• Joint MCPTS and power allocation schemes were proposed to improve the av-

erage error performance in OFDM-FDMA systems.

• It was demonstrated how full antenna diversity order can be collected without

receiver-side modification in peak power constrained SIMO-OFDM systems.

• It was established how linear equalizers could obtain full antenna diversity order

with the proposed joint MRC and clipping mitigation method.

• General design criteria were established for AF cooperative networks to achieve

full cooperative diversity orders with 2H-MRC or 1H-MRC.

• Intentional peak power limit AF relaying strategy was proposed for low-complexity

and full-diversity peak power constrained cooperative networks.
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• A general theorem was established to relate the asymptotic error rate (measured

by diversity gain function and coding gain) only with the PDF of instantaneous

SNR at the origin.

• The diversity performance of relay selection schemes was studied.

6.2 Suggestions for Future Research

The following is a list of interesting research topics that can be pursued as an extension

of this dissertation:

• Low-complexity optimization algorithms, e.g., the minimum-spanning circle

method [56, 65, 66], are in need of achieving good, albeit sub-optimal, PAR

reduction performance.

• Design low-complexity receivers for peak power constrained MIMO-OFDM sys-

tems to collect both spatial and multipath diversity.

• Design high-spectral-efficient cooperative networks that have low-complexity

transceivers. For example, precoding in cooperative networks can achieve high

spectral efficiency [27]. However, ML equalizers are required to achieve full

diversity orders in precoded cooperative networks. It can be shown that linear

equalizers can only collect diversity order of 1
2
, while lattice-reduction aided

equalizers [70] achieve diversity order of 1. How to achieve full diversity order

and high spectral efficiency with linear equalizers remains an open question.
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