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SUMMARY

Piecewise linear functions are widely used to approximate nonlinear functiohs.
However, when minimizing (maximizing) a piecewise linear function (PLF), it is nec-
essary to introduce nonlinearities in the model if the function is not convex (concave).
Traditionally the nonlinearities are modelled by introducing auxiliary 0-1 variables
and additional constraints that relate the continuous and 0-1 variables or by special-
ized branching in the scape of continuous variables. We enhance the latter approach
through the use of strong inequalities valid for the convex hull of the feasible set in
the space of continuous variables. In the thesis we first study the convex hull of single
constraint relaxations with only positive coefficients. We then relax this assumption
and extend the idea to general single constraint relaxations. We also extend the in-
equalities to the case where the PLF is lower semi-continuous. For each case we report
computational results that demonstrate that our approach is significantly better than

the traditional approaches to these problems.



CHAPTER I

INTRODUCTION

In this thesis, we study a separable piecewise linear optimization problem of the form

minimize Y fi(z;), - (1.1)
JEN
subject to Z a;;T; < b; Vie {1, cen ,m}, (12)
JEN
z; >0 Yj€EN, (1.3)

where N = {1,...,n} and the f;(z;) are piecewise linear functions (PLF), see Figure
1.

PLFs are widely used to approximate nonlinear functions. Note that any arbi-
trary continuous function of one variable can be approximated by a piecewise linear
function, with the quality of the approximation controlled by the size of the linear
segments. Cost functions in many supply chain problems are piecewise linear. For
example, the transportation costs in a supply chain network are frequently concave

and piecewise linear, possibly with fixed costs [10]. PLFs are used to model problems

f(x)

Figure 1: A piecewise linear function



Cost

Weight

Figure 2: A typical LTL cost function

such as optimization of electronic circuits [25], transportation and production plan-
ning problems [23] , merge-in-transit (MIT) problems [10] and separable nonlinear

functions.

In MIT problem, the cost functions of different modes of transportation are piece-
wise linear. For example, the cost function of less-than-truckload (LTL) shipments
are piecewise linear, but may include flat segments with a fixed cost, see Figure 2. In
production planning problems, production costs may be concave and piecewise linear

due to economies of scale.

PLFs that are convex can be minimized by linear programming because the slope
of the segments are increasing. But when minimizing a PLF, it is necessary to intro-
duce nonlinearities in the model if the function is not convex. In this thesis we will
study minimizing nonconvex PLFs. Several methods have been used to solve problems
involving nonconvex PLFs. The most widely used ones are the mized integer program-
ming (MIP) approach and the special ordered sets of type II (SOS2) approach. In the
MIP approach, the nonlinearities are modelled by introducing auxiliary 0-1 variables
and additional constraints that relate binary ahd continuous variables. In the SOS2

approach, the nonlinearities are enforced by specialized branching. These approaches



will be discussed in detail in Chapter 2. In the following sections, we will introduce

the concepts that we will use in the thesis and we will outline our contributions.

1.1 Mized Integer Programming

A MIP is an optimization problem of the form
minimize cx,
subject to Az =1b,
I<z<u,
z; integral, j=1,...,p.

The input data are the matrices ¢(1zn), A(m,n), b(mz1), l(1zn), and u(1zn), and
the n-vector z is to be determined. If p = 0, then the problem is a linear program
(LP), and if p = n, then the problem is an integer program (IP). We sometimes use
the notation Z for integer variables and R for continuous variables, i.e z; € Z, j =

1,...,np,z; €ER, j=p+1,...,n.

MIP’s are very important in practice and are used to model a large variety of
real-life problems. Applications of MIP concern maximizing a specific criterion such
as profit or productivity, or minimizing a criterion such as cost, subject to some
restrictions due to scarce resources. T};lfi Sﬁccesful applications of MIP include finance

[6], forestry [22], steel industry [46] and supply chain management [1].

An algorithm is polynomial, if the number of “basic operations” that must be
carried out is polynomial in the size of input. We say that a problem is in class P if
it solvable in polynomial time. A problem is in-class NP, if we can check whether
a proposed solution is feasible or not in polynomial time. Clearly, P is contained in
NP. A problem is NP — hard means that, if this problem is polynomially solvable,

then so is any problem in NP. It is believed that it is not possible to design an



algorithm that runs in polyriomial time to solve any NP — hard problem. It is known
that solving MIP is NP — hard, so it is unlikely that there exists a polynomial time
algorithm for MIP, see Schrijver [44].

Many methods have been proposed to solve MIP’s. Recent advances in methods
for solving MIP’s and the ability to solve relatively large problems in a relatively small
amount of time have made the use of MIP much more widespread. More information
and references on MIPs cén be found in the books by Schrijver [44], Nemhauser and
Wolsey [38] and Wolsey [51]. The survey of Johnson, Nemhauser, and Savelsbergh

[30] gives many references to recent publications.

The most common methods used for solving MIP’s are LP-based branch and

bound algorithms. We will next discuss components of these algorithms in detail.

1.2 Linear Programs

Linear programming algorithms are often used as a subroutine in MIP algorithms to
obtain an upper bound on the value of the MIP. Any MIP can be relaxed to an LP,
called the LP relazation, by weakening the restriction z; € Ztoz; € R, j =1,...,p.
Since the feasible région of the LP relaxation contains the feasible region of the MIP,
an upper bound can be obtained through LP algorithins. In addition, if the optimal
solution to the LP relaxation satisfies the required integrality restrictions, then that
solution is also optimal to the MIP. If the LP relaxation is infeasible, then the MIP

is also infeasible.

LP is well-defined in the sense that if it is feasible, and does not have unbounded
optimal value, then it has an optimal solution. The first class of algorithms designed
for solving LPs was simplez algorithms, which was proposed by Dantzig in 1947 to
solve U.S. Air Force planning problems [13]. Although known simplex algorithms are

not polynomial, they are very fast in practice and are part of most major commercial



LP-solvers.

The first polynomial time algorithm for LPs, proposed by Khachian [32] in 1979,
is known as the ellipsoid algorithm. This algorithm is very poor in practice and is
only used as a theoretical tool. The first class of algorithms that provide both good.
theoretical and good practical performance was introduced by Karmarkar [31] in 1984
and is known as interior point algorithms. Variants of these algdrithms are also used

in commercial LP-solvers.

More information and references on LPs can be found in the books by Schrijver [44]

and Chvatal [7]. The paper by Dantzig [13] gives the history of linear programming.

1.8 LP-based Branch-and-Bound

Branch-and-bound is one of the first methods that was proposed to solve MIPs [30].
Branch-and-bound methods find the optimal solution to a MIP by efficiently enu-
merating the points in the feasible region. The basis of a branch-and-bound is the
enumeration tree. The LP at the root node of the enumeration tree correspond to the
LP relaxation of the original problem. The tree grows by a process called branching.
First the LP relaxation at a node is solved. If the optimal solution is not feasible to
the corresponding MIP thén two or more child nodes may be generated by branching
on an appropriately chosen fractional variable z;. Each of the LPs at the child nodes
is formed by adding constraints to the LP at the parent node. Typically branching
is as follows: suppose that in a given node z; assumes a fractional value between
the integers d and d 4+ 1. Then two new child nodes are generated by adding the
constraints z; < d and z; > d+1 to the LP at the parent node. The optimal solution
of the LP at the parent node does not lie among the optimal solutions of the LPs at
the child nodes. If it is unnecessary to branch on a node, we say it is fathomed. For
a minimization problem the followihg three situations result in a subproblem being

fathomed:



1. The LP at the node is infeasible, so no feasible solution can be found at that

part of the tree.

2. The LP at the node yields an integer solution. We have a feasible solution. If
this optimal value has lower value than the previously found feasible solutions,
then it becomes a candidate solution. In this case the optimal value of the node

becomes the current upper bound on the optimal solution of the MIP.

3. The optimal value of the LP at the node is more than current upper bound so

it may be eliminated from consideration

The first branch-and-bound algorithm for solving integer programs was introduced
by Land and Doig [33] in 1960. Branch-and-bound algorithms for MIPs were proposed
by Dakin [11] and Driebeck[21] in 1965. Subsequent advances in branch-and-bound
algorithms made it possible to curtail the enumeration significantly by reducing the
number of nodes required to prove optimality. The time required to process a node

can be higher but the decrease in the overall computing time can be substantial.

At any step of the branch-and-bound tree we want to fathom the nodes to obtain
a smaller enumeration tree. One case where we fathom a node is the case in which

the optimal value of the LP at the node is more than the upper bound. We can apply

fast heuristics to obtain lower upper bounds and increase the possibility of fathoming
the node. Another approach is to adq .a.constr;aint, called a cut, to the LP that has
the property that the curren,t“‘(_)pti.rﬁalv solution of the LP is not satisfied by the cut,
but every feasible solution of the MIP is satisfied by the cut. Adding such cuts will
increase the possibility of fathoming because it may result in a increase of the optimal
LP value at the node. Finally LP relaxations of different formulations can be very
different in terms of the quality of the bound they provide. So we may decrease the
size of the tree by providing a good initial formulation. We will next discuss the ways

to improve an LP-based branch-and-bound algorithm.



1.3.1 Preprocessing

Preprocessing applies simple logic to reformulate the problem and tighten the LP
relaxations. Preprocessing may reduce the size of an instance by fixing variables
and eliminating constrainté. Sometimes preprocessing may also detect infeasibility.
For example, considering one row together with' lower and upper bounds may lead
to dropping the row if it is redundant, declaring the problem infeasible if that row
is infeasible, or tightening the bounds on the variables. Preprocessing can also be
applied with probing. Probing means setting a binary variable temporarily to 0 or
1 and then applying logical testing as above. For example, if z; = 0 implies that the

instance is infeasible, then we can fix z; = 1.

1.3.2 Branching

-In a branch-and-bound algorithm an unevaluated node is chosen, the LP relaxation
is solved, and a fractional variable (if there is one) is chosen to branch on. Here we
make two main decisions: the first decision is choosing the active node to evaluate

and the second one is choosing the fractional variable to branch on.

Choosing the variable to branch on can be critical in keeping the tree small.
A simple rule is to select a variable whose fractional value is closest to 1/2. More
sophisticated rules try to choose a variable such that the optimal LP value of the child
nodes are as small as possible. Th1s is iinportant since early branching on vaﬁables

that cause big changes can be'c'ritical in keeping the tree small.

It can be expensive to compute the actual objective value changes for all candidate
variables. Instead, estimates of the rate of objective function change on both the down
and up branches, called pseudo lcosts, are used. Another variant of this idea is strong

branching. In strong branching a fairly large number of dual simplex iterations is

carried out for a small set of candidate branching variables. From these iterations,



we obtain a lower bound on the change and this lower bound is used to choose the

variable to branch on.:

Node selection rules are usually based on finding good feasible solutions as early
as possible. It is difficult to balance the advantages and disadvantages of selecting
nodes near to the top or bottom of the free. If we choose the nodes from bottom,
then the number of active nodes will be large. If we choose the nodes from the top,
then the number of active nodes will be small but it may take a long time to find a

good feasible solution.

If the fractional variable we are branching is a 0-1 variable, then one branch sets
that variable to 0 while the other sets it to 1. If it is a general integer variable, and
the value of fractional variable z; is between the integers d and d+ 1, then one branch
constraints it to be < d and the other to be > d 4 1. More complicated branching

involves sets of variables. These types of branchings will be discussed later.

A recent survey of branching techniques is presented by Linderoth and Savelsbergh
[35]. More information and references on branching can be found in the survey by

Johnson, Nemhauser and Savelsbergh [30].
1.3.3 Primal Heuristics

Primal heuristics focus on finding better lower bounds on the optimal value of the

MIP. Finding better lower bounds also means finding better feasible solutions.

If we know the structure of the problem, then any known heuristic for the problem
can be used to find a feasible solution. Other ways of finding feasible solutions are
enumerating integral vectors in the neighborhood of the current LP solution and using

successive rounding to the current LP solution.



1.4 Branch-and-Cut Algorithms

Before presenting the algorithm we introduce some of the concepts that provide the
foundation of the branch-and-cut algorithms. Most of the definitions of the next
sectidn are quoted from fhe book by Nemhauser and Wolsey [38]. More comprehensive
discussions of polyhedral theory can be found in the books by Schrijver [44] and
Nemhauser and Wolsey [38].

1.4.1 Basic Concepts

Definition 1. A polyhedron P C R" is the set of points that satisfy a finite number
of linear inequalities, i.e. P = {z € R" : Az < b} where (A,b) is a mz(n+1) matriz.

A polytope is a bounded polyhedron.

A polyhedron is said to be rational if A and b can be chosen to be rational, i.e,
it can be represented by linear inequalities with integer coefficients. In this thesis we

assume that all polyhedra are rational.

Definition 2. Given a set S C R", a point y € R" is an affine combination of the
points {z1,...,z*} C S if
K ok
y= Z/\ia:’, Z/\,‘ =1

i=1 i=1
for some A € R™. If \ is restricted to be nonnegative then y € R" is said to be an

conver combination of the points {z%,...,2*} C S.

Definition 3. The convez hull of a set S is the uniquely smallest set of all points

that are conver combinations of the points in S.

Definition 4. The points z',. .. , =¥ of R are said to be affinely independent if the

system }:f.__l a;zi =0, Z;?:l aj =0 has a; =0 for j =1,...,k as unique solution.

Definition 5. A polyhedron P is of dimension k, denoted by dim(P) = k, if the

mazimum number of affinely independent points that can be found in P is k+1.



The dimension of a polyhedron is the smallest affine space that contains that
polyhedron. A polyhedron P € R" with dim(P) = k < n has exactly n — k linearly

independent equations that are satisfied by all points in P.

Definition 6. A polyhedron is said to be full dimensional if dim(P) =

Definition 7. An inequality 7x < my s said to be a valid inequality for a polyhedron

P, if it is satisfied by all points in P.

Definition 8. If 7z < my is a valid inequality for a polyhedron P, and F = {z € P:
T = o}, then F is called a face of P, and we say that 7z < o represents F. A face

" is said to be proper if F # P and F # 0.
Definition 9. A facet is face F' of a polyhedron P with dim(F) = dim(P) — 1.
An inequality which represents a fa;cet is called a facet-defining inequality.

Theorem 1. For each facet F' of polyhedron P, one of the inequalities representing

F' is necessary in the description of P.

Besides being necessary, the facets are sufficient for the description of P. When
the polyhedron is full-dimensional, P has a unique description. This fact is stated in

the next proposition.

Theorem 2. A full—dimensz’_on'a! ipolyhe'dron P has a unique (to within scalar multi-

plication) minimal representatimii by a finite set of linear inequalities. In particular,
e

for each facet F; of P there 1 zs an znequahty a‘r < b; (unique to within scalar multi-

plication) representing F; and P ‘ {:1: ER":alz <b; fori=1,...,t}.

Definition 10. A point of a"pjolyhedron P is an extreme point if it can not be written

as a convex combination of the :otﬁﬁer points of P.
| & ‘ B
Theorem 3. A polyhedron has only a finite number of extreme points.

10



When we optimize a linear function over a nonempty polyhedron, there is an
optimal solution that is an extreme points provided that the problem is bounded.
The next theorem states that the convex hull of feasible solutions to a MIP is a

polyhedron.

Theorem 4. (adapted from Meyer [37])Let F be set of feasible solutions to MIP.
The convez hull of F' is a polyhedron whose extreme points belong to F'.

Theorem 2 and 4 imply that every MIP can be converted into an equivalent linear
program. Since all the extreme points of this linear program are feasible points of
the MIP, it is enough to solve a linear program to find the optimal solution of the
MIP. But we have two practical problems. The first one is that, for most MIP prob-
lems, although we know that the convex hull of the feasible solutions is a polyhedron,
we don’t know a linear inequality description of it. The second is that the number
of inequalities describing the convex hull of the feasible solutions can be very large.
Branch-and-cut algorithms, instead of building this very large equivalent linear pro-
| gram, successively improve the LP relaxation by adding inequalities that are implied
by the inequalities that define the convex hull. We will discuss the algorithm after
defining a powerful tool, called lifting, for finding the facets of the convex hull of

feasible solutions to a MIP.
1.4.2 Branch-and-cut Algorithm

Branch-and-cut algorithms} generate valid inequalities that are not satisfied by all
feasible points to the LP relaxations. Such valid inequalities are called cuts. A cut
which is not satisfied by the given optimal solution of the LP relaxation is called a
violated cut. By adding a violated cut to the LP relaxation, we obtain a smaller LP

region, while the feasible region of the MIP does not change.

Branch-and-cut is a generalization of branch-and-bound. After solving the LP

" relaxation, if we can not fathom the node, we try to find a violated cut. If we can

11



find one or more violated cuts, we add them to the LP relaxation and solve it again.

If we can not find a violated cut, we branch the node.

1.4.3 Valid Inequalities From Special Structures

Since it is not easy to find strong inequalities for most problems, in practice it is
common to derive valid inequalities from relaxations of the problem. If we choose a
relaxation that is common to many problems, we can use the results for that relaxation
for many other problems also. The first implementation of this idea for 0-1 integer
problems is due to Crowder, Johnson, and Padberg [8]. Their idea was to relax the 0-1
integer program to be solved by dropping all but one of its linear constraints and then
generate strong valid inequalities for the polytope defined by this single constraint.
These valid inequalities associated with the single constraint are also valid for the
original problem. In the following subsections, we review two classes of inequalities
that have been used to generate cuts for MIP.
Knapsack Cover Inequalities
Let B® = {0,1}" and K be the feasible region of a 0-1 knapsack problem, i.e.,
K={zeB":) az; <b}.
jEN

Without loss of generality, we can assume that a;j > 0 and a; < b, Vj € N. A set
C C N is called a knapsack cover if ¥jeca; > 'b. Since all variables in C can not be
equal to 1 simultaneously, the knapsack cover inequality

Yoz <|C|-1 (1.4)

jec
is valid for K2, 29, 49]. Knapsack cover inequalifies are usually not facet-defining for
conv(K). It is possible to improve (1.4) by lifting, a procedure that will be discussed

in detail later.

The computational studies presented by Gu, Nemhauser, and Savelsbergh [26]

12



showed that these lifted inequalities are very effective although the inequalities that

we use may not be facet-defining inequalities for the underlying polyhedron.

Flow Cover Inequalities

A MIP with binary integer (BMIP) variables is the appropriate mathematical
model for many practical optimization problems. This model is used, for example,
for facility location problems, distribution problems, network design problems, and
more generally when fixed or concdve costs are required in the objective function of

a linear system ([27]).

Flow cover inequalities are valid inequalities for the system
F={(z,y) € R}zB": > z;— Y, =;<d, z; <ujy;, j €N}, (1.5)
jENt jEN-
where N = Nt UN- and n = |N|. The system (1.5) can be viewed as a single node
fixed charge network flow model. It is possible to obtain relaxations of the form F
from any BMIP problem [38].
For a single-node flow model with only inflow arcs, i.e. N~ = ¢, aset C* C Nt
is called a flow cover if ¥ jcc+ uj = d + A with A > 0. The inequality
Yo+ Y (w—-N(1-y)<d | (1.6)
ject jECH
where Ctt = {j € Ct : u; > A}, is called a flow cover inequality and is valid for

(1.5) when N~ = 0.

For a general single-node flow model, a set C = C*t*UC"~ is called a flow cover if

CtC Nt,C~ C N7, and Tjec+ U5 — Ljec- ¢j = d + A with A > 0. The inequality

ozt Y = NA-y)— Y - Y zp<d+ Y u, (L7
jec+ jectt jEL— jEL—— jec-

where I~ = {j e N =C~ :u; > A}l and L™~ = N~ — (L~ UC7), is called a

generalized flow cover inequality and is valid for (1.5).

13



Flow cover inequalities for (1.5) have been derived by Padberg, Van Roy, and
Wolsey [40] and Van Roy and Wolsey [42]. Gu, Nemhauser, and Savelsbergh [27]

strengthened the flow cover inequalities through lifting.
1.4.4 Separation

Given a solution to the LP relaxation that does not satisfy the required integrality
restrictions, the separation problem is to find a violated cut. Although there must
be a violated cut among the linear inequalities which define the convex hull of the
feasible solutions, it may be difficult to find violated facet-defining inequalities. There
is usually a tradeoff between the strength of the cuts and the time it takes to find
them. Therefore, in practice, heuristics are used to find the violated inequalities.
Given an infeasible solution, there can be cases where these heuristics can not find
any violated inequalities. Also since we don’t know all of the facet-defining classes of

inequalities for most systems, we may not find a violated inequality.

As an example, we describe the separation problem for the class of knapsack
inequalities for K. We are given a fractional solution z* € R}, and we want to find
a set C with ¥;cca; > b and ¥ec 2} > |C| — 1. The separation problem is

¢=min{d (1—-1})z: Y a;z > b,z € B"},
’ - JEN JEN
where z € B™ represents the characteristic vector of the cover C that is to be deter-
mined. If ¢ < 1, the cover inequality (14) is violated by z*. Otherwise, we conclude
that there is no vioated cover inequa;lity. Observe that the separation problem for

knapsack cover inequalities is another{f‘knapsack problem. In practice, heuristics are

used to solve the separation problem.

1.4.5 Lifting

Describing the facets of high dimensional polytopes can be a difficult task. An alter-

native is to reduce the dimension by fixing some of the variables to their upper or

14



lower bounds. It is usually easier to find strong valid inequalities in lower dimensional
spaces. If we can find a valid inequality (facet) for this lower dimensional polytope,
then it can be converted into a valid inequality (facet) of higher dimensional polytope

by a tool called lifting.

The idea of lifting was introduced by Gomory [24]. It has been studied and
generalized by Padberg [39], Wolsey [50], Zemel [52] and Balas and Zemel [3].

We first introduce sequential lifting. There are two types of sequéntial lifting:
uplifting énd downlifting. Let l; and u; bé lower and upper bounds for the variable
zj. The procedure that extends a valid inequality for SN {z € S : z; = I;} to a valid
inequality for S is called uplifting and the procedure that extends a valid inequality
for SN{zr € S : z; = u;} to a valid inequality for S is called downlifting. The

sequential lifting procedure is given by the following theorem [15]:

Theorem 5. Let P C R¢ be a polytope. Define l; = min{z; : z € P} and u; =

maz{z;:z € P}, j=1,...,d. Let T € P, and suppose that

d-1
> oz < B (1.8)
j=1
is a valid inequality for PN {z € R¢ : x4 = 73}. Define
. B- E ajzj p
oM — mm{—-’—w—-—xd v z € Pand zq > Tq} if Tq < uq,
o0 : ‘ ‘ ) 'lf 5:1 = Uq,
and '
oin = {ma:tc{—wj;g‘?;’—zJ :x € Pand 4 < T3} if Tg> g,
—00 | Zf f:i = ld.
Then
d-1 .
> ajz; + 0uzy < B+ 0ua (1.9)
Jj=1

is a valid inequality for P if and only if of** < a4 < of°". Moreover, if (1.8)
defines a face of PN {z € R¢ : z4 = T4} of dimension t, and ag = o™ > —o0, or

ag = QT < 00, then (1.9) defines a face of P of dimension at least t + 1.
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In some cases we may want to lift some variables simultaneously. We next summa-
rize some results of Gu, Nemhauser, and Savelsbergh [27, 28] on simultaneous lifting.r
Consider the set of feasible points for a BMIP given by

X={zeRM:3 gz; <d,
jJEN

> wiz; < k=0,...,1,
JECk

z; € {0,1},€ I C N,
:EjSUj,jEN—I}.A

where Cy, k =0,...,tis a partition of N; a;, j € N, and d' are mz1; and w;, j € N,

and 7 are myxl.

Initially, we consider the subset of X with z; = b;, i.e., z; is fixed at one of its

bounds, for j € N — Cj given by

X0={$€le°|: Z aj:ijd,
Jj€Co

> w;z; < 1o,
j€Co
z; € {0,1},j € INCy,

z; <uj,j € (N-I)NCo}.
where d = d' — ¥jen—c, 6505 | N :

Let

i i _;1'€Co

be an arbitrary valid inequhlify f_oféxo. We want to construct a valid inequality for

X of the form
Y o+ 'Y Y ailei—b) <o (1.11)

j€Co 1<k<t jECk
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To construct such an inequality, we start with (1.10) and lift the variables in N — Cj.
We assume that the variables with indices in Ci, ... ., C; are lifted sequentially in that

order and that in a given set Cj they are lifted simultaneously.

The intermediate sets of feasible points X® for i = 1,...,t are defined by
i_ Zogkstlc"l .
- X'={zeR} PYoamit Do ) ez —by) <d,
j€Co 1<k<i jECy

> wizi <re,k=0,...,1,
JECk

z; € {0,13,5 € I € 1N (UmoCh),
25 S U5 € (N = I) N (UioCh)}-

Note that if we extend X* to X by setting z; = b; for j € Ut,,Cy, then X! C X*
fori=1,...,tand X! = X.

Fori=1,...,t, the lifting problém associated with Cj, given a valid inequality
> ozt Do D ez —b) Sao (1.12)
J€Co 1<k<i jEC
for X*71, is to find a; for j € C; such that
oozt 30 D oy(mi—b)+ 3 oz —b) S e (1.13)
J€Co 1<k<LiJEC JEC;

is a valid inequality for X*.

Fori=1,...,1, let

Zi={z€R™":3x e X*: Y aj(z; — bj) =z and

JEC;
Yoami+ Y, Y ai(z;—b) < d- 2z},
j€Co 1<k<i j€C

and for z € Z¢ let

hi(z) = maz Y aj(z; —b;)
JECi
st Y. aj(z;—bj) =2

JEC;
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> wiT; <1
Jec;

.’L‘jG{O,l},jGIﬂC,‘

OSx,-Suj,je(N—I)nC,-,

and

fiz)=minao— Y ayzi— Y Y aj(z;—b)

jeCo 1<k<i jECi

st Y aizi+ Y, Y ai(zi—bj)<d-2z2

. J€Co 1<k<i jeCy,

S wizi <rg, k=0,...,i—1
JECk

z; € {0,1},5 € I CIn (U4Ck)
z; <ujpj € (N —I)n (UEhCk))-

Proposition 1. Fori = 1,...,t, inequality (1.18) is valid for X* for any choice of
a; for j € C; such that hi(2) < fi(2) for z € Z*.

When o; for j € C; are such that hi(z) = fi(z) has |C;| solutions z*,22,...,zlCl
such that the components in C; of ! —b, 22—, ..., z!%! — b are linearly independent,

we say that the lifting is mazimal.

Theorem 6. For i = 1,...,t, if conv(X*!) and conv(X?) are full dimensional,
(1.12) defines a facet of conv(X™!) and g # 0, then (1.13) defines a facet of

conv(X?) if and only if the lifting is mazimal.

Corollary 1. Given an arbitrary valid inequality (1.10) for X°, we can construct a
valid inequality (1.11) for X by sequentially lifting sets C; for i = 1,...,t. At each
step 4, the lifting coefficients have to be such that hi(2) < fi(2) for z € Z*. If (1.10)
defines a facet of conv(X"), conv(X?) is full dimensional fori=0,...,t—1, and at

each step i the lifting is mazimal, then (1.11) defines a facet of conv(X).
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1.5 A Branch-and-Cut Approach without Binary
Variables

Many optimization problems involve only continuous variables, but are subject to

combinatorial constraints. Examples of combinatorial constraints include :

e special ordered sets of type I constraints,
e special ordered sets of type II constraints,
° cardihality constraints,

e semi-continuous constraints,

A set of variables is a special ordered set of type I (SOS1) when at most one variable
in the set can be positive. A set of variables is special ordered set. of type II (SOS2)
when at most two variables in the set can be positive, and when two variables are
positive their indices must be adjacent. A cardinality constraint requires no more
than a specified number of variables can be positive. A variable is semi-continuous if

the value of the variable is either 0 or greater than or equal to a positive number.

Traditionally such models have been modelled as MIPs by introducing auxil-

iary binary variables and additional constraints. For example, suppose that z; <

U1,..., 2 < u.. If no more than k& variables among z,,...,z; are allowed to be

positive, then we introduce the 0-1 variables 2, ..., z;, and the constraints
z; <wujzij €{1,...,1}, and

l
ZZjSk.

j=1
If z; is semi-continuous, then we introduce the 0-1 variable z; and the constraint

lij < Ty < Ujzj.

Since the number of variables and constraints becomes larger and the combina-

torial structure of combinatorial constraints are not used to advantage, MIP models
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may not be solved satisfactorily. Beale and Tomlin [4] proposed the idea of treating
special ordered sets (SOS) constraints without using binary variables and thereby not
increasing the size of the problem. Here SOS constraints are enforced through a spe-
cialized branching scheme. Additional work on SOS1 and SOS2 can be found in Beale
and Forrest [5]. Most of these combinatorial constraints suggest natural branching

strategies (see de Farias, Johnson, and Nemhauser [17]).

Let {zj,...,2;} be SOS1. Suppose that the relaxed subproblem at the current
node of the branch-and-bound tree assigns a nonzero value to z, and z;, where 1 <

r <t <. Let s be an index with r < s < t. Because of SOSI, either

Ti=..=3,=0 (1.14)

or

Tg41 = .0 =21 = 0. (1.15)

(1.14) and (1.15) eliminate the optimal solution of the relaxation at the current node
from both branches but no solution that satisfies SOS1. Let z; be a semi-continuous
variable. Suppose that the relaxed subproblem at the current node of the branch-
and-bound tree assigns a value 0 < z7 < l; to ;. We can then define two branches,

one requiring

.'Ej =0 (1.16)

and the other
ZL‘j > lj. (117)

SOS2 is crucial to our work and it will be discussed in detail later. Recently
specialized branching has been strengthened by studying the polyhedral structures
of the problems. de Farias [14], de Farias, Johnson, and Nemhauser [16, 17, 18],
de Farias and Nemhauser [19, 20] and Vandenbussche [47] have applied this new
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approach to several problems such as the generalized assfgnment problem, the com-
plementarity knapsack problem, the cardinality constrained knapsack problem, and
nonconvex quadratic programming. They enforce the nonlinearities through a spe-
cialized branching scheme and the use of strohg inequalities valid for the convex hull
of the feasible set in the space of continuous variables. In this thesis we will study

and implement this approach for piecewise linear optimization.

Solving combinatorial constraints without introducing 0-1 variables has several
advantages. The most obvious advantage is that introducing 0-1 variables increase
both the number of the variables and the number of the constraints. In many real-life
situations it is not clear how large the variable values can be. When we introduce 0-1
variables, the continuous variables must be bounded. To overcome this situation we
often have to introduce big-M constraints. Big-M constraints are usually not tight,
and when they are, they increase the degeneracy of the solution of the relaxation.
Introduction of 0-1 variables also tends to obscure the combinatorial structure of the
problem. For example, we can have fractional solutions such that the continuous
variables satisfy SOS2, while the binary variables are fractional. A general purpose
MIP solver, in this case, will continue to branch unnecessarily, trying to achieve

integrality.

1.6 OQwutline of the Thesis

In Chapter 2, we study formulations of linear programs with piecewise linear ob-
jective functions with and without additional binary variables. We show that the
two formulations without additional binary variables have the same LP bounds as
those of the corresponding formulations with binary variables. We also show that the
two formulatons without binary variables correspond to the same polyhedron in the
space of continuous variables. Therefore the formulations without binary variables

are preferable for efficient computation and it is sufficient to focus on one of them.
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In Chapter 3, we study the polyhedron of the one row relaxation of a separable
piecewise linear optimization problem. We assume that the objective function is con-
tinuous and the coefficients of the variables are positive. We give a branch-and-cut
algorithm without binary variables for this problem. We also report computational
results that demonstrate that our approach is significantly better than both an SOS2
branch-and-bound algorithm and a branch-and-cut algorithm that uses a mixed in-

teger programming formulation.

In Chapter 4, we relax the assumption.that the coefficients of the vé,riables are
positive. We generalize the inequalities and the branch-and-cut algorithm of Chapter
3 for this case. We alsdreport computational results that demonstrate the branch-
and-cut algorithm without binary variables is significantly better than a branch-and-

cut algorithm that uses a mixed integer programming formulation.

In Chapter 5, we relax the assumption that the objective function is continuous.
We study the polyhedron when the cost function is lower semi-éontinuous. In this
case we need to introduce binary variables to formulate the problem. Therefore
we generalize the inequalities of Chapter. 3 to the case where binary variables are
introduced. We again report computational results that demonstrate that introducing

our cuts improves the performance of the branch-and-cut algorithm.

In Chapter 6, we summarize the main contributions of this thesis and present
further directions for research. In summary, we present new algorithms for a class of
NP-hard problems that are of great practical importance and our results clearly show

that our algorithms are substantially better than those currently used in practice.
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CHAPTER II

MODELS FOR REPRESENTING PIECEWISE
LINEAR COST FUNCTIONS

As mentioned in Chapter 1, when minimizing (maximizing) a piecewise linear function
PLF, it is necessary to introduce nonlinearities in the model if the function is not
convex (concave). One way to formulate these nonlinearities is by adding binary
variables and new inequalities to the model, yielding a mixed-integer program (MIP),
see for example [38]. Two well known MIP formulations for PLFs are the incremental
cost [36] and the conver combination [12] formulations. The polyhedra of both MIPs
were studied in [34, 48].

Padberg [41] compared the linear programming (LP) relaxations of the two MIP
models for PLF's in the simplest case when there are no constraints. He showed that
the feasible set of the LP relaxation of the incremental cost formulation is integral, i.e.
the binary variables are integer in every vertex of the set. He called such formulations
locally ideal. On the other hand, the convex combination formulation is not locally
ideal, and it strictly contains the feasible set of the LP relaxation of the incremental
cost formulation. Shortly after, Sherali [45] proposed a modification of the convex

combination formulation that is locally ideal.

Alternatively, Beale and Tomlin [4] suggested a formulation for PLFs similar to
convex combination, except that no binary vé.riables are included in the model and
the nonlinearities are enforced algorithmically, directly in the branch-and-bound algo-

rithm, by branching on sets of variables, which they called special ordered sets of type
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2 (SOS2). It is also possible to formulate PLFs similar to incremental cost but with-
out binary variables and enforcing the nonlinearities directly in the branch-and-bound

algorithm.

In this chapter we show that the LP relaxations of both MIP formulations produce
the same bound, which is a result recently obtained independently by Croxton et al.
[9]. Then we show our main result that the bound remains the same when we remove
the binary variables from the two formulations. We also show that both formulations
correspond to the same polyhedron in the space of the continuous variables, and that _
all the vertices of the feasible sets of the corresponding LP relaxations are feasible.
Because the continuous formulations are ‘considerably smaller than the MIP formu-
lations and one cén take advantage of the structure of the problem by branching on
sets of variables, we believe that a continuous formulation should be the model of
choice here. However, neither continuous formulation seems to have any advantage

over the other.

In the remainder of the thesis we will use the term locally idealin the broader sense
to mean that a needed property like integrality or SOS2 is obtained for free. Thus,
in this broader sense both the special ordered set formulation and the continuous

formulation based on incremental cost are locally ideal.

In Section 2.1 we review the incremental cost and the convex combination formu-
lations, and Padberg’s result. In Section 2.2 we show that the bounds of both MIP
formulations, as well as the bounds of the continuous formulations are the same. We
also show that the two MIP formulations correspond to the same polyhedron in the
space of the continuous irariables, and that both continuous formulations are locally

ideal.
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2.1 MIP”Formulatz'onns

In this section we review the incremental cost and the convex combination formu-
lations for PLFs, and Padberg’s result. Suppose we have a PLF f(z) specified by
the points (aj, f(a;)), j € {0,...,T}. Let u; = a; — aj—; and g; = f(a;) — f(aj-1)

vie{1,...,T} Then for any ap < z < ar we have

T=ap+ iy,- and f(z) = f(ap) + Z —y,, (2.1)

j=1 j=1 J

~where0<y; <u; Vje{l,...,T}, and

Yj+1 =+ =yr = 0 whenever y; <u;, j€{1,...,T-1}. (2.2)

To enforce (2.2), one can introduce binary variables z;, j € {1,...,T — 1}, and the

constraints

wzy Sy Sy, Uz < Yj Sujzio Vi €{2,...,T -1}, and 0 < yr < urzr(2.3)

The MIP model given by (2.1), (2.3), and 2; € {0,1} Vj € {1,...,T — 1} is the
incremental cost formulation. We denote the feasible set of the LP relaxation of the

incremental cost formulation by

IB = {(y,2z) € RT x [0,1]77 : (y, 2) satisfies (2.3)}.

Alternatively, we can write

m=ia,-)\j and f(z) = Z)\ f(aj), (2.4)
=0 .
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where

T
Sx=1, A0 Vje{0,...,T} (2.5)
Jj=0

and SOS2, which states that

at most two A;’s can be positive, and if two are positive they must be consecutive.
(2.6)
To enforce (2.6), one can introduce binary variables z;, j € {0,...,T — 1}, and the

constraints

T
/\0 < 20, /\j < Zj-1 +2j V] € {1, .. .,T— 1}, /\T < 271, and sz =1. (27)
. j=0

The MIP model given by (2.4), (2.5), (2.7), and z; € {0,1} Vj € {0,...,T —1} is the
convex combination formulation. ‘
To compare the incremental cost and the convex combination formulations, Pad-

berg expressed the convex combination formulation in terms of the variables of the

incremental cost formulation as

uiyj+1 < ujny; Vi€ {l,...,T -1}, (2.8)

wz <y S ur, 0< yr < upzpey, z—i—%z- Sl-z, o —:—i < 2rg, 1 2 2,
(2.9)
Yi _ Yirr < zj_1—2j4 and z; > zj41 Vi € {2,...,T - 2}. (2.10)

Ui Ui
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We denote the feasible set of the LP relaxation of the convex combination formulation

in terms of the (y, z) variables by
CB = {(y,2) € RT x [0,1]7! : (y, 2) satisfies (2.8) — (2.10)}.

The main result of [41] is

Theorem 7. The incremental cost formulation is locally ideal, i.e., z € {0,1}7! for
all extreme points of IB. The set IB is properly contained in CB. The set CB has
extreme points (y,z) with z & {0,1}7-1. O

2.2 Two Related Relaxations and Bound Com-
parisons

In this section we show that the LP bounds of both MIP formulations, as well as
the bounds of the continuous formulations are the same. We also show that the two
MIP formulations correspond to the same polyhedron in the space of the continuous

variables, and that both continuous formulations are locally ideal.

Beale and Tomlin [4] suggested formulating PLFs with the A variables and con-
straints (2.5) in the model, and branching on SOS2 to enforce (2.6). For exam-
ple, if {Ao,..., A7} is SOS2, (Ao, ..., Ar) is the current solution with A, A; > 0 for

s €{0,...,T},r<s,and |r —s| > 2; pne can branch by requiring
b\ojé s Ar=0

in one branch and
Arpz=-r=Ar =0

in the other branch. See [4] for effective branchingjy étrategiés with SOS2. Now note

that the vertices of
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CN ={\ e RT*1; A satiéﬁ‘es (2.5)}
are the (T + 1)-dimensional unit vectors, and thus satisfy (2.6). Therefore the SOS2
formulation is locally ideal.

Projecting IB onto the y space we obtain
IN ={y € RT : y1 <uy,yr > 0, and y satisfies (2.8)}.

Thus, another way to formulate PLFs is to require y € IN and to enforce (2.2) with
the following branching scheme. If i is the current solution with §; < u;, and gj4x > 0

for some k € {1,...T — j}, we require

Yi=1j

in one branch, and

Y =-=yr=0

in the other branch. The vertices of IN are (0,...,0), (v1,0,...,0), (u1,us,0,...,0),
«vv (u1,...,ur). Thus, the vertices of IN satisfy (2.2), and the above continuous

formulation, which we call SOSX, is locally ideal.

We now establish the relation between the bounds of the incremental cost, con-
vex combination, SOS2, and SOSX formulations. Let fip =min{f(z) : = satis-
fies (2.1) and (y,2) € IB}, fop =min{f(z) : = satisfies (2.1) and (y,2) € CB},
fon =min{f(z) : z satisfies (2.4) and A € CN}, and fiv =min{f(z) : z satisfies (2.1)
and y € IN}.

" Theorem 8. The SOS2 and SOSX formulations are locally ideal. Also, fig = fcp =

fov = fiv.
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Proof The first statement has been proven already. Let A € CN and Ui = u; Zﬁzj i,
j€{l1,...,T}. Since § € IN and

T g T T _
flao) + Z;f:&, = flao) + D 9> A
=1 Y =1 i=j

f(ao)(1 _Z’\)+Zf(a1))‘ "Zf(aa))‘aa

i=1 j=1
thus fiv < fen. Likewise, if § € IN and

T

= _Imvicn 7o) = and =134
by " wn e {1, har up 214 Ao gza

then A € CN and
T
> f(a)A; = f(ao) + Z g—’ﬁa,
=0 j=1Yj
and fiv = fon-

From Theorem 7 it follows that the LP bound obtained by the incremental cost
formulation cannot be worse than the LP bound obtained by the convex combination
formulation. Therefore fop < fig. Now, it is clear that (y,z) € CB = y € IN, and
since z does not appear in the objective function, fiy < fcp. Finally, let § € IN and

zZ; = Y vVie{1,...,T—1}.
Uj
Then, (7,%) € IB, and since z does not appear in the objective function, fiz <
fiv. _ O

Theorem 8 shows that the use of binary variables to model PLFs does not tighten
the formulation. Finally, as we show next in Corollary 2, Theorem 8 implies that
the SOS2 and SOSX formulations are identical in the (z,y)-space as well as in the
(z, A)-space. This implies that there does not seem to be an advantage of one con-
tinuous formulation over the other, i.e. SOS2 and SOSX seem to be equally effective.

Specifically, let
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CH = conv({(z, ) € RT*? : (z, )) satisfies (2.4) — (2.6)})
denote the convex hull of the SOS2 formulation, and

IH = conv({(z,y) € RT* : (z,y) satisfies (2.1) and (2.2)})
the convex hull of the SOSX formulation. Let

T
CH' = {(z,y) : for some (z,)) € CH, y;=u; Y A\ Vi€ {l,...,T}},

i=j

which is the set CH in the (z,y)-space, and

IH' = {(z,)) : for some (z,y) € IH, \j = Yi _ Y1 vie{l1,...,T-1},
| Ui Ujp
A= anddg=1- sz,\,-},
ur —
which is the set IH in the (z, A) space.
Corollary 2. CH' = IH and IH' = CH.

Proof Since all the vertices of IN satisfy (2.2), it follows that

IH = {(z,y) € RT* : (z,y) satisfies (2.1) and y € IN}.

Now, let (Z,7) € CH'. We have §; < uy, §ir > 0, and § satisfies (2.8). So, § € IN,
and CH' C IH.
Let (%, §) be a vertex of IH, where § = (uy,...,u;,0,...,0) forsome j € {1,...,T}

and let ) be given by

A 1 ifi=jg

A J

0 otherwise.

The point (£, \) € CH, and the corresponding point of CH' is (z, §). Thus, IH C CH'.
IH' = CH can be shown similarly. O
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Since the formulations without binary variables give the same LP bound as those
with binary variables, are locally ideal, and are more compact, they should be bet-
ter models for PLFs than the MIP models. Moreover, when additional constraints
are present, the structure of the models without binary variables can be dealt with
explicitly in the space of the continuous variables through branching and cuts. The-
orem 8 and Corollary 2 seem to indicate that there should be no difference between
the convex combination and the incremental cost formulations in the space of the
continuous variables.

What is currently missing however, is the ability to tighten the LP relaxation of
the model without binary variables through the addition of cuts and thus obtain a
branch-and-cut algorithm in the space of the continuous variables. This gap is filled
by the results of the following chapters where we first do a polyhedral study of the

convex hull of solutions and then present a branch-and-cut algorithm.
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CHAPTER III

A BRANCH-AND-CUT ALGORITHM
WITHOUT BINARY VARIABLES FOR
NONCONVEX PIECEWISE LINEAR
OPTIMIZATION

In Chapter 1 we introduced nonconvex piecewise linear optimization problem, what

we call NPLOP, given by

minimize Y fi(z;), (3.1)
jEN
subjectto Y ayz; < b Vie{l,...,m}, (3.2)
jEN
z; 20 VjeN, (3.3)
where N = {1,...,n} and the f;(z;) are piecewise linear functions. In this chapter we

give a branch-and-cut algorithm for NPLOPs with the restriction that a;; > 0 V%, j
and f(z;) is continuous Vj € N. First we will show that NPLOP is NP-hard by
reducing the NP-hard subset sum problem to NPLOP.

Theorem 9. NPLOP is NP-hard.

Proof We reduce the subset sum problem to NPLOP.

Subset Sum

Instance: Two sets of positive integers N = {1,...,n} and M = {a;,...,0,} and a
~ positive integer b.

Question: Does N have a subset S such that 3;ega; = b7
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The solution to Subset S'um is “yes” if and only if the optimal value to

Min 3 fi(z;)
‘ jenN 4
st Y ajz;>b
jEN
0<z;<1 VieN

where .
2a_,-:z7j, if Z; < 29

fj(xj) = {

is b. Observe that 3;en fj(2;) > ¥jen a;2; and the inequality is satisfied at equality

a;, otherwise

if and only if z; € {0,1} V§ € N. Thus, by solving NPLOP we can solve Subset

Sum. a
By using a SOS2 formulation, we can replace (3.1) - (3.3) with

T
minimize Y. > fi(af)A}, - (84)
JEN k=0
T .
subjectto Y D EAf <b Vie{1,...,m}, (3.5)
JEN k=0
T : .
Y M=1 VjieN, (3.6)
k=0 )
,\;920‘ vj le N, .Vke{o,...,T}, (3.7)
{Xs 1k €40, .., T}} is an SOS2 set Vj € N, (3.8)

where 7% = a;a.

In this chapter we give a bra’xjch-and-cut algorithm for solving the model defined
by (3.4) - (3.8). We derive the'cm::s by considering a knapsack relaxation that includes
one inequality from (3.5), which ziwe denote generically as

Zij a)5 <D, (3.9)

JEN k=0
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and all of (3.6) - (3.8). We assume that b > a] Vj € N (otherwise A\] < 1),
af >0VYj €N, k€ {l,...,T} and o) = 0 Vj € N. It is convenient to work
with a full-dimensional polytope because it has a unique inequality (to within scalar
multiplication) for each facet of P. Therefore we eliminate )\? Vj € N and replace
(3.6) with

T

<1 vjen. (3.10)

k=1
Then to accommodate (3.10) we must require ¥f_; A¥ = 1 if A} > 0 for some & > 1.

| Specifically, A; needs to satisfy
if /\;E >0 for k> 1then /\;?‘1+)\;?+/\f+1 =1 fork<T, and A§'1+/\§ =1 fork=T,

in addition to SOS2. We call this new set SOS2’. Let K = {1,2,...,T}. Finally,
the polyhedron that we study to obtain cuts is the convex hull of the system given

by

> > ai < b, (3.11)
JENKkEK )
Y M <1vjeN, ' (3.12)
keK .
X>0VjeNkeK, (3.13)

{)M:k e K}isaSOS2 setVj € N. (3.14)

Let P = conv{\ : X satisfies (3.11),...,(3.14)}. In Section 3.1 we give trivial
facets for P and show how we can lift the convexity constraints. In Section 3.2
we give a family of cover inequalities that are facet-defining in a lower dimensional
space and then we improve these inequalities by sequential lifting. In Section 3.3
we present a branch-and-cut algorithm for linear programs with piecewise linear cost
functions that uses the cuts developed in Sections 3.1 and 3.2 and SOS2 brahching.

In Section 3.4 we present computational results for solving transportation problems
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with piecewise linear costs. These results clearly demonstrate that our approach is
significantly better than both an SOS2 branch-and-bound algorithm (i.e. without
binary variables and without cuts) and a branch-and-cut algorithm that uses a mixed

integer programming formulation.

3.1 Simple Inequalities

In this section we give some simple families of facet-defining inequalities for P. The

proofs of propositions 2-5 are easy and are omitted.

Proposition 2. P is full-dimensional.
Proposition 3. All of the inequalities of (8.13) are facet-defining for P.
Proposition 4. (8.11) is a facet-defining inequality for P if and only if
aj+ Y. af 2b VjEN.

ieN—{j}

Proposition 5. Vj € N, (8.12) is facet-defining for
Pi={AeP:Xf=0 VieN-{j};keK}. (3.15)

An inequality of (8.12) is facet-defining for P for j € N if and only if

aj+a '<b VieN-{j}. (3.16)

We next lift the convexity constraints with respect to the variables that are fixed
to zero in Pj. Let I = {i € N—{j} : b—a} < of } and k; = min {k € K : b—a} < af}
Vi € I. For any i € N — {j} — I the lifting coefficients of ¥, k € K, are zero since

Af > 0 does not imply A} < 1.

For any i € I, we lift in the order
ALAZ L ABTE (L R AR T,
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where (Af=1) \¥) states that these two variables are lifted simultaneously. Note that
ab < b a} < af*. The lifting coefficients of A¥, k < k; — 1, are zero since Af > 0
does not imply A} < 1.

We next simultaneously lift the variables A¥~! and A¥. Let o/~ and o/ be the

lifting coefficients of A¥~* and A¥ respectively. For z € [0, b] let
hi(z) =maz oF TN 4 oAk

st aBTIARTl Lok =
Ml k=1
M2 0, A 20,

and

filz) =min 1= X
4 keK
st. Y aM<b-z
keK
> K<
kEK
M>0VkeK

{\f: k € K} is an SOS?' set.

0, if 2.< b—aj,
filz) =

1-%¢, fb—a;<z<b.
J

Proposition 6.

Proof Since Y AF < 1, we have f;(z) > 0. When 2z < b — aj, A} =1 is feasible
and we have f;(2) =0. If 2 > b— a}, then the maximum value /\Jl- can take is b—;fz and
2

we oBtain the result. _ O

Gu, Nembhauser, and Savelsbergh [28] states that we obtain lifting coefficients
that define facet inducing inequalities if and only if the pair (o™, af) is such that

hi(2) = fi(2) has two solutions X and X are such that (A%, 3%) and (X%, X¥) are
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linearly independent. Since we have a closed form expression for the function f;, we
can compute the set H; of lifting coefficients (af"'l, af") that define facet inducing
inequalities. The points 0,b — a}, and b define the lower envelope of the function
fi(2). Furthermore, the pairs of adjacent points on the lower envelope, i.e., (0,b— a})
and (b — aj, b), define the sets of two values z for which h;(2) = f;(2) and for which
the associated solutions X and X are such that (X2, X%} and (3¢, %) are linearly
independent. We get the set H; by computing the slopes and the intercepts of the

lines defining the lower envelope.

Observe that h;(z) is defined for z € [a¥?,a%] and we have h;(2) = o' +
(of — o)A\ and 2 = a¥71 4 (aF — aF1) M\ when 2 € [afi™!, afi]. The slope and
intercept of the line defined by the (z, fi(2)) points (0,0) and (b — a},0) are 0 and
0 respectively and gives the lifting coefficient pair (0,0). The slope and intercept of
the line defined by the points (b — a},O) and (b,1) are ;1;- and 2%}_1 respectively. If

b— a} < af, from the line

1 ki—1 1 ki ki—1
a; —b 1 a;' " +a;—b a¥ —a¥
hi(z) = 25—+ 5z2= = 1 it
al al
j e

k:
A

1
a;

‘ ki-1, 1 ki 4l
. eppe . . 6, "4a;—b a;*+a;-b .
we obtain the lifting coefficient pair (~—x<—, -—%—). As a result we obtain
J J

0 0 a?"—l-i-a.l—b a?‘-l—al—b -fb 1 ks
Ho— {{(, ) (= S, b <, (3.17)

{(03 0)}, ifb— a} = a,fi .
Finding the set H; is illustrated in Figure 3. The line h}(2) corresponds to lifting

coefficients (0,0) and the line A?(2) corresponds to lifting coefficients

af ' +al—b aff +al—b

1 ’ 1
aj aj

( )-

The lifting coefficient of X, I > k; is the greatest value of o} for which

aﬁ‘l)\ﬁ’l + af-)\ﬁ + /\} <1
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Figure 3: Finding the set H;

VAe{P: X¥=0k>1 M=0 Vvel-{i},ke K}. When Al = 0 there is

no restriction on the value of a!. So suppose /\f‘ > 0. The greatest value of o} is

obtained when A} =1 and A} is at its greatest possible value when A} = 1. So from
aﬁ + b;_}aﬁ. <1,

we obtain

b—d
af-=1———( ala’).
J

If ab1 4 af,"'_l > bVi,i' €I, i, then the lifting coefficients of each variable

can be found independently since when /\f‘ > 0, we have /\f; =0.

We next give a proposition that summarizes the above discussion. The proof also

follows from this discussion because the lifting is maximum.

Proposition 7. Forje€ N, letI={ie N-{j}:b—aj<al}, ki=min{k€ K :
b—aj < af}Viel, andV be a subset of I such that if |V| > 1, then abl4aly ™t >

bVu,v' €V, v#v'. Then

T
PIRE DD B RSP (3.18)

kEK vEV k=kv~1
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with

ok
o) emwey, ah=1-028) ks wey,
J

where the H, are given by (8.17), is a valid inequality. (8.18) is a facet-defining
inequality for Pif V = 1.

Example 1 Let |[N| =4, T =3, and (3.11) be
2A1 + 622 + 823+ 3A; + TA3 +10A3 + 40} +8)2 4+ 10A3 + 5% + 722+ 9X3 < 10. (3.19)

Let P = conv{) : A satisfies (3.12),(3.13), (3.14), and (3.19)}. When j = 1, we
have I =V = {2,3,4} where k, = k; = 3 and k3 = 2. Since

Hy = {(0,0), (~3, )},

Hs = {(0,0)};

and
Hy = {(0, 0), ('_%a ';')}

the inequalities
M+ + 8408 <,

: 1
A2 23408 - 5,\ggr,\g <1,
N2 L 1 1.4
MAN A+ - 5N+ <,
132033033 _Ly2 ya_ Ly L1yg
A1+A1 +A1+A3—'2‘A2+A2—§A4+§A4 S 1
are facet-defining for P. Note that each of these inequalities uses one element from

H;, fori=2,3,4. - 0
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3.2 Lifted Cover Inequalities

In this section we study a family of cover inequalities that are easily shown to be facet-
defining when some variables are fixed at zero. We also show how these inequalities

can be improved by lifting.

Definition 11. Let 2 < k; < TVj € N and C C N be a set such that

Sdi>band 3 dF<h viec

jec jec—{i}

The set C is called a cover.

Proposition 8. Let C be a cover. The cover inequality

(¥ ) <o) -1 (3.20)
jec
1s valid where -
0, if Nj<ai ™,
;= ki1 3.21
! zNj—fJ—E, otherwise, (321)
~2iec %

and Nj = b — Yicc-5) a¥i. (8.20) is facet-defining for
P’=conv{)\€P:)\§=0k>kj, ke K, VjGC,A;?:OVjEN—C, k € K},

if and only if

P < N; Vjiec. (3.22)

Proof Forany j € C,let M =1, Vie C - {j}. If N; > a;’_l, the greatest value of
)\f" is f’,;;_‘:gj——_lr, otherwise it is zero. Since for both cases aj)\fj s /\? =0, (3.20) is
valid.

We now show that (3.20) is facet-defining for P’ when (3.22) is satisfied by giving
Yjec k; linearly independent points. For each j € C, let v;? € P' be a point such
that A% =1, Vi € C — {5} and M=0k < kj, {v}} € P' be points such that
Mi =1, Vie C—{j} and ,\5- =1,forl=1,...,k;—2, and let v;"_l € P' be a point
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k-1
such that M =1, Vi € 0= {7} and X~ = 1t Ny < ™, and 2 = 5%

' _a'd
a;’ —a;

and /\f" T=1- )\fj otherwise. Note that if (3.22) is not satisfied for a j € C, then
v;-cj ¢ P
Suppose that the points v}, I < k;, Vj € C lie on the plane ¥jcc v, ok )b =

|C| — 1. The points v7, Vj € C imply
o =1,VjeC. (3.23)
From the points v;, 1<1<kj—2V) € C and (3.23) we obtain
| of =0k<k;—1,VjeC, (3.24)

From the points v;-c" ~1Vj € C and (3.23) we obtain

R kj—1
0, if N; < a7,
— k:—1
O; = Ni—a.’
2] a .
-k’,-—’k,-—-r, otherwise.
a.” —a.
J J

Since we obtain the inequality uniquely by using these points, (3.20) is facet-defining
for P'.

Suppose that (3.22) is not satisfied, so that there exists a § € C such that
b— Tico—gy o < af" 2, We claim that /\f’ ~! = 0 when (3.20) is satisfied at equal-

ity. Suppose that )\f" =1 5 0 is feasible when (3.20) is satisfied at equality. Since

Yiec-{i} a¥ > b— af"_z, we can not have A =1, Vi € C — {j}. Therefore we must
have )\f" > 0 and there should exist an extreme point such that both /\fj ~!and /\f" are
positive and (3.20) is satisfied at equality. In this extreme point, all other variables
will be at either zero or one. This can only be satisfied when )\;’ = 1. Therefore we

have A;f" ~1 =0 and (3.20) can not be facet-defining when (3.22) is not satisfied. O

Example 1 (Continued) For (3.19), C = {1,2} with k; = k; = 2 is a cover and

therefore the cover inequality

—%A{ + A2~ %A; +X<1 (3.25)

41



is facet-defining for P'={Ae P: X} =X =0, M =0j € {3,4},ke{1,2,3}}. O

3.2.1 Lifting Approximately

When k; < T, for a j € C, we need to lift the variables that are fixed to zero to
obtain strong inequalities for P. In this section we give lower bounds on the lifting

coefficients.

Suppose that for j ¢ V

-1
2 2 okt 3 e <

veV keK
is a valid inequality when /\;E k > 1 are fixed at zero. The lifting coefficient of A;- is

the greatest value of o}, for which

X+ D0 Y ofAE kAT <y
: - vEV kEK
After replacing A;™! with 1 — XL, we obtain
! < T a_lj—l - EvGV EkGK aﬁAﬁ
& = A
j

When A; = 0 there is no restriction on the value of the lifting coefficient. So suppose

-1
+ o

/\;- > 0. Since when A;- > 0, we consume more of the capacity of the constraint than

when Al™! takes the same value, we have ¥ > o} ™! + ey Trex 05K, As a result we

: ! -1
obtain o > o5

An immediate consequence of this result is

Corollary 3. Let C be a cover. The lifted cover inequality

T .
ST+ Y M <io)-1 (3.26)

jec k=k;

is valid where the a; are given by (3.21).

Example 1 (Continued) The approximate lifting of (3.25) by Corollary 3 yields

the valid inequality

1
-§A}+A§+A§-§A;+A3+Agsl.
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3.3 Branch-and-Cut Algorithm

In this section we present a branch-and-cut algorithm for solving linear programs
with piecewise linear cost functions; Branch-and-cut is a generalization of branch-
and-bound. After solving the LP relaxation, if we can not fathom a node, we try to
find a violated cut. If we can find one or more violated cuts, we add them to the
LP relaxation and solve it again. If we can not find a violated cut, we branch. In
addition, we use a primal heuristic to increase the possibility of fathoming nodes by

bounding.
'3.3.1 Primal Heuristic

We give a procedure that modifies an LP solution that does not satisfy SOS2 to one
that does. Assume that we have a solution A such that for at least one j € N the set
{A%: k € K} does not satisfy SOS2. Suppose z; = Fyex afA¥ and af <z < ak.

We create a new vector )\’ given by

k-1 __
’\J' a;? _ a_’;‘l’ (3-27)
: k-1
’k :L'] - ;
A] —_ a,g _ .]79_1) (328)
J J
Af=0, l=1,..,k-2k+1,...,T. (3.29)

This new vector satisfies the SOS2 constraint for j. Since we haven’t changed z;,
the solution is feasible. By applying the above procedure to all § € N not satisfying
SOS2 and assigning /\;g = /\;-k Vk € K for all j € N satisfying SOS2, we obtain a

feasible vector \’.
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3.3.2 Branching

We apply SOS2 branching. We first determine the variable j to branch on and then

for a given j we determine the variable Af to branch on.

Assume that we have a solution A such that for at least one j € N, the set
{X¥ : k € K} does not satisfy SOS2. Let ¢ = f(z}). Currently the cost of z; is
Cj = Tkex cfA¥ which is lower than the true cost which is C; = Tyex kA when
X} are given by (3.27) - (3.29). The difference between C; and C; is the estimated
increase in the optimal cost value after we branch on j. By choosing the j that gives
the maximum C’; — Cj, we hope to obtain a large increase in the LP bound.

The next step is determining the variable to branch on. Suppose that z; is the

value of variable j and we have a;? <z; < a;?'“. Along one branch, we assign

/\g- =0, forl=1,...,k-1,
and in the other we assign

A_'1-=0, forl=k+1,...,T.

3.3.3 Creating Cuts

If ); violates SOS2, then we have a k; such that A¥ > 0 and A~ = /\f" Haoll=

AT = 0. We may be able to derive a violated cut from constraint ¢ if as; > 0.

For each v € N—{j} that satisfies "ycx Ak = 1, we try to create a lifted convexity

kj—1

cut. If a}, +a;j"" > b, then

T
YA+ i< (3.30)
keK k=k; _
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with
e )
v

cuts off the infeasible pomt If a;; Mleh— a}, < afj’, then

D PPLET 1/\k’ oAb <1 (3.31)
kekK.
with -
. b— akj -1 ah+a b
'a;-" =1-—Zanda k’ 1 Gty =0 :
ayy azy

cuts off the infeasible point.

To obtain a cover inequality (3.26) for each v € N — {j}, we find C by choosing
the largest k, € K that satisfies T5_, Af = 1. Let C = {v € N : k, > 0}. Note that

j € C. If T,ec aky > b, then we create the cover cut

> (ke takem1 4 Z M <icl-1, (3.32)

veC k=ky

where the of*~lare defined by (3.21). Since M~1 = 0 Yo € C, A¥ > 0, and
Yiek, M =1Vv € C — {j}, (3.32) cuts off the infeasible point.

3.4 Computational Experience

Our optimization software is MINTO 3.0 [43] with CPLEX 7.5 as LP solver. We tested
our algorithm against standard approaches on instances of transportation problems

with concave piecewise linear cost functions. Specifically we compared

e a convex combination formulation with binary variables and MINTQ’s default

setting.

e a convex combination formulation with binary variables, MINTQ’s default set-

ting and our cuts.
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e a convex combination formulation without binary variables with our cuts and

S0OS2 branching.

e a convex combination formulation without binary variables with SOS2 branch-

ing but without cuts.

We consider the transportation problem

Min E Z f,'j (:Bij_), - (3.33)
i€l jeJ
Zx,-j =8 Vi€l (3.34)
jeJ
Zx,-j = dj, Vj € J, (3.35)
i€l
z;; 20, Viel, jel, (3.36)

where the index sets of supply and demand points are I = {1,..,m} and J = {1,..,n}
respectively. We assume that f;(z;;) is a piecewise linear function and the trans-
portation problem is balanced, i.e 3 ;7 8i = ¥jes dj-

Let the index set of partitions be K’ = {0,...,T}. We can reformulate (3.33)-
(3.36) as

Min 330> kA, (3.37)

i€l jeJ keK'

Y Y aas=s, Viel, (3.38)

Jj€J kEK!
Yo Y aa=d;, Vi€, (3.39)
i€l keK'
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Y Xp=1, Viel jel, (3.40)

keK'

)\fj >0,Viel,jeJ ke K', and {)\fJ : k € K} satisfy SOS type 11 V(i,j) € IzJ.
(3.41)

We assume that af = ¢ =0,V (3,5) € IzJ, af; > 0,Y(3,5) € IzJ k € K' and
ag;- < Min{s;,d;}. We use single constraint relaxations of the transportation problem

to find valid inequalities.

3.4.1 Test Instances

We tested 20 insténces. The instances are randomly generated as follows. Let T be
the number of partitibns in the piecewise linear function. We used T=4 and 5. The
demands are integers uniformly distributed between T+1 and T+20. The supplies
are integers uniformly distributed between T+1 and T + (20 * JIJTII) 87 and d)g| are
modified to obtain a balanced problem. For any variable (i,j), a'f;- = min{s;,d;}. To
find the other afj’s, the interval [0, af] is divided into T' partitions randomly. The
costs are concave so that for any (i,j) the slopes of the partitions decrease as k increase.
T

Cij

is randomly chosen from the [5(1 — 1), 5].

3.4.2 Computational Results

We used a Sun Ultra Sparc 60 workstation with dual UltraSparc II 450 MHz CPUs
and 4MB cache to perform computational tests. The results are summarized in Tables
1 and 2. The instances are named in axbxc.d format where a,b,c and d correspond
to the number of supply points, number of demand points, number of partitions, and
seed number reépectively. For each instance we give the number of nodes required

to solve it and the CPU time in seconds. The instances are terminated after 10, 000
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CPU seconds. * indicates that the problem has been terminated without proving
optimality. For these instances we give the number of nodes that has been evaluated
and the optimality gap at the time of termination. For the algorithms that use our
cuts, we also give the number of cuts created. We also give total number of nodes and
total CPU time in each table. We excluded the instances that has been terminated
without proving optimality when calculating the totals. Table 1 gives results for two
algorithms that use the convex combination formulation without binary variables.
The algorithms are a branch-and-bound algorithm with SOS2 branching and the
branch-and-cut algorithm given in Section 3.3. Table 2 gives results for the convex
combination formulation with binary vériables with and without our cuts. For both
cases we also use MINTO’s default setting (i.e. MINTO’s default branching, cuts,

primal heuristics, etc.).

The results show that the branch-and-cut algorithm given in Section 3.3 is signif-
icantly better than both an SOS2 branch and bound algorithm and a branch-and-cut
algorithm that uses a mixed integer programming formulation. The branch-and-cut
algorithm given in Section 3.3 reduced the total number of nodes by 99% and the
total CPU time by 90 % compared to the branch-and-bound algorithm with SOS2
branching. Table 2 shows that our cuts reduced the computational time and the
~number of nodes processed significantly even if we use a mixed integer formulation.
With the addition of our cuts, the total number of nodes was reduced by 89 %, and
the total CPU time was reduced by 79 %. Finally in comparing the results with
our cuts from tables 1 and 2, we have that the formulation without binary variables .
reduced the number of nodes by 24 % and the time by 48 %. All of these percentages

are conservative since only the instances that terminated are considered.

The branch-and-cut algorithm given in Section 3.3 determines the variable to
branch on by finding the estimated increase for each j € N such that ); does not

satisfy SOS2 . We tested 5 instances to see what happens if we choose the smallest
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Table 3: Comparison of branching rules with and without estimated increase

Without With
Problem | Nodes | Time || Nodes | Time
15x15x4.1 *19685 || 2967 | 947
15x156x4.2 | 32015 | 4013 || 3067 | 1028
15x15x4.3 * | 9677 || 17657 | 3676
156x16x4.4 || 12259 | 1138 373 65
15x15x4.5 || 4353 | 407 | 1001 | 205

.7 € N such that A; does not satisfy SOS2 to branch on. The results are summarized
in Table 3. The instances are terminated after 50,000 nodes. * indicates that the
problem has been terminated without proving optimality. For these instances we give
CPU time at the time of termination. The results show that looking for the variables
that gives the maximum expected increase significantly decreases the number of nodes
and the CPU time.

We had two main assumptions in this chapter: PLF is continuous and all co-
efficients are positive. We can relax the constraints with negative coefficients by
dropping the variables with negative coefficients and increasing the right hand side
of the constraint with the summation of upper bounds of the variables with negative
coefficients multiplied by the absolute value of their coefficients. The relaxation is

a constraint with all positive coefficients and the results of this chapter can be used

to create cuts. However our intuition is that these cuts will not be strong inequal-
ities. Therefore, further pquhedral studi of the single constraint relaxations with
both positive and negative é:Qefﬁcien’ts is needed. This polyhedral investigation is the
subject of Chapter 4. We?%ill disé_tiss the case where PLF is lower semi-continuous

in Chapter 5.
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CHAPTER IV

POLYHEDRAL STUDY OF GENERAL
PIECEWISE LINEAR OPTIMIZATION

In this chapter we generalize the results of Chaptef 3 to a problem where there is no
restriction on the signs of the coefficients. Suppose for each z; the cost function, f (zj), '
is piecewise linear, continuous, and specified by the points (af, f(af)) for k =0,..,T.
Let K = {1,...,T}. In this chapter we give a branch-and-cut algorithm for solving
the model defined by (3.4) - (3.8) where the a;; > 0 Vi, j restriction of Chapter 3 is
relaxed. As in Chaptér 3, we use single constraint relaxations to derive cuts. The

polyhedron that we study to obtain cuts is the convex hull of the system

2 2 A= > D aAi<h (41)

jEN+keK jEN- keK
Y M<1 VjeN (4.2)
keK
N>0 VieNkeK (4.3)
{Xs ke K}isaSOS2 setVje N (4.4)

where N = N*UN~. We assume that b+ X;cn- 0] >a] Vj e N*, ok >0Vj €
N, k€ K, and a} = 0Vj € N. Let PG = conv{]\ : A satisfies (4.1),...,(4.4)}. We
will find valid inequalities for PG by lifting.

Suppose for each j € M C N~ we fix )\;" =1, k; € K and /\f =0, k € K —{k;}.
We also fix /\;? =0,VieEN" —M, ke K. Let k; =0, Vj € N~ — M. Then (4.1)

can be written as

Y S dN<h+ 3 af. (4.5)

JENtT kEK JEN—
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Note that (4.5) is a constraint with all positive constraints. Let PG(B) be the convex

hull of
> 2 A< (4.6)
jENtkEK .
Y A< 1 VjeN+, (4.7)
keK
,\’°>0 V]EN+k€K (4.8)
{Xf:k € K}isa SOS2 setVj e N*. (4.9)

To find a valid inequality for PG, we first find valid inequalities for PG(b+ Yjen- a;j )
by using the results of 'Chapter 3. We then find valid ihequalities for PG by lifting
the variables that are fixed.

In Section 4.1 we derive valid inequalities for PG by lifting the cover inequalities
of Chapter 3. We also give a generalized cover inequality which is valid for PG. In
Section 4.2 we derive valid inequalities for PG by lifting the convexity constraints of
Chapter 3. In Section 4.3 we show how we can approximately lift a valid inequality
for PG(b+ Xjen- a?" ) to obtain a valid inequality for PG. In Section 4.4 we will

_present a branch-and-cut algorithm that uses the generalized cover inequalities and
S0OS2 branching. In Section 4.5 computational results are presented for solving net-

work flow problems with piecewise linear costs. These results demonstrate that our

approach is significantly better than a branch-and-cut approach that uses a mixed

integer formulation.

4.1 Lifting Cover Inequalities

Let C € N* be a cover for PG(b+ ¥;en- a;’) defined by (11) and

SN AN <ol -1 (4.10)
jec

be the corresponding cover inequality given by (3.20). To obtain a valid inequality
for PG we lift the variables \¥ Vj € N—, k € K.
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We start with lifting the variables A%, k < k; Vj € N~. Since Zjec(a;" —1/\;’ 4

)\;") < |Cl—1 when My =0, k > k; Vj € N~, zero is always a feasible lifting
coefficient value for A% k < k; Vj € N~. Therefore we use zero as lifti.ng coefficients
for the variables ¥, k < k; Vj € N=. Let M = Min{S;cc_gyay : 1 € C}. If
M < b+ Tien-—4) a¥i then the maximal lifting coefficients for /\;? k<k;VjeN-

are zero.

Let A = Sjec o — Tjen- a¥ — b and g(B8) = Mas{Tjec(ef " AF 1 +2¥) 1 d e
PG(B)} for B € [b+ Zjen- ajJ, b+ EjeN— aj].

Proposition 9. If3j € C s.t. af" 1 <0, then

ﬂ—b"Z‘eN— a;j y : ks k
|C| =14+ —=—-, ifb+Tjen- a7 <B< Tiecy;

9(B) = g
Cl, if B2 Tjecas -

Proof When B=b+ en- a " we have ¥ jcc(a kj—lz\fj_l + )\f") = |C| - 1. Suppose

we increase 8 by I < A. X; % will increase by —k—ik——r = —i—J—

5 g X
G uJ

For a j € C with aj 1< 0, when )\j’ > 0 and Af’ = 0 we have
11— Af") + )\;" = a;’_l +(1- af"_l)/\;’.

Thus the increase in (af" -1)\;’ 14 )\;’ ) when we increase )\fj by = will be
U,

ke l l
(- ) Hg—pT =7
‘: a;’ —a; A
If ak’ = 0, then A > uk’ Thus /\k’ will increase by zero if 0 <1< A — J , and

l—u

—;;J—lf)\—'uk"<l</\

ki—1

If for at least one j € C we have ajj < 0, then the maximum increase in

Yjec(; o -1)\;’ + )\;’ ) will be ;’\- when we increase the capacity by ! and we obtain

the result. O
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If for at least one i € C' we have af""l < 0, then we can use the above proposition
to find the lifting coefficients. We lift for an 7 € N~ in increasing order of k, k € K.
Suppose we are lifting A¥. We want to find a lifting coefficient o that satisfies -
ST 4 AB) F oL L ofE < (O] - 1
jec

ICI—l—ZJec( TP 4 — o
X

We have three cases to investigatg:

+ af‘l > a:-‘

ki
Case 11f af — ;' < A, then the increase in Eiec(a; B TIABTL L Ab) will be #55

k;
when \¥ = 1. Thus we find the lifting coefficient of as __{‘Ta,i.

Case 2 If a¥™! —af < ) and af —af* > ) then we can have Ejec(a;fj—l)\;"—l +A§") =

|C| when N
—b - oy —ai!
0 <3 = A+ = Dicc ,_CE’G’ZI{}G % <1
‘l

Thus we find the lifting coefficient as

_1 _— al_c_l
k i k-1
ai = _.T_ + ai .

Case 3 If a¥1 — af’ > ), then Zjec(a;"_l)\;"_l + /\f") = |C|, for any value of A}.
Thus we obtain the lifting coefficient of A\F as —

The above coefficients are the actual coeflicients if ¢ € N~ is the first index that
is being lifted. Suppose 7 is not the first index being lifted and L C N~ is the set of
indices that have been lifted. To find the actual lifting coefficients we need to find
the maximum value

(o f’—l +AM) +Y Z of Ak (4.11)
jec JEL k=k;
can take when AF is at a given value. If A’? is positive for some j € L, then the

k=1 kj—1
increase in Tjec(oy’ A7 + Af %) is equal to — Sje Ykek; €5AF. So we have an
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optimal solution when we maximize (4.11) such that A% =0 Vj € L. Thus we can
replace (4.11) with
k=1 kj-1 | \k
Z(ajj AJJ + )\jj).
jec
Therefore the lifting coefficients that we have found in cases 1,2 and 3 are the actual

coefficients for \f Vi € N—.

Example 4: Let |[N| =4, T =3, and (4.1) be
AL+ 622+ 8X3 + 5AL + OAZ + 2003 — ML — 622 — 8X3 — 2)1 — 52 — 823 < 10. (4.12)

Let PG = conv{\ : A satisfies (4.2), (4.3), (4.4), and (4.12)}. Suppose that k3 =1
and k4 = 0. For PG(14) the cover inequality

=3+ A2 -3+ A2 <1

is valid where A = 1. Zero is a feasible value for the lifting coefficient, o3, of A},
therefore let @} = 0. We next find the lifting coéﬂicient, o3, of A]. We have the Case
2 and A* = 1. Therefore we obtain o3 = —2. Since for any value A3 we can have
A2 = )2 = 1, the lifting coefficient, o3, of A3 is -1. We can lift \§ k € K similarly and

obtain the inequality
A A BN A2 222 - A3 -2 - A2 - A2 <.
O

Suppose that in the cover cut a;-c"_l = 0 Vj € C. For this case, the lifting

coefficients we found above may not work. Let & = M a:cjec(af" - a;f’_l) and b =

b + ZjEN— a;j.

Proposition 10. If a;-c"—l =0Vj e, then
|C] -1, fb<B<b+A-1,
9(B) =1 1CI -1+ 22 iff+ A~ < B< Tjec
cl, if B> Tjeca)’-
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Proof When 8 = b we have Zjec(af’ _1/\? 4 /\;?" ) =|C| — 1. Suppose we increase
B by L. Since oy ™' =0, Vj € C, we have A > u}, Vj € C. Thus A}’ will increase by
. —uld .
zeroif 0 <1< A— uf’, and l—gu;— if A — u;’ <l < A. We obtain the result from the
]
above discussion. O
We use Proposition 10 to find the lifting coefficients. We lift for an ¢ € N~ in

increasing order of k, k > k;. Suppose we are lifting A\¥. We want to find a lifting

coefficient of that satisfies

YA 4o 4 BN < (0] - 1

jec
k k-1
|C|"1—2'ec/\‘j—a' k-1 k
f\f It o > of
k; ki—1 ki vk k-1
N IC]|—1—g(b+ EjeN-—{i}/\a’;i, +a7 T+ U N) — o +a 1> of
i

We have three cases to investigate:

Case 1 If af — a < ), then Tjec A = g(b+ Tjen-_g af + af) when X = 1.

Thus we find the lifting coefficient of as |C| — 1 — g(b+ Tjen-—() af" + k)
Case 2 If af~! — af* < ) and af — af* > ) then we can have ¥ ;¢ ,\f" = |C| when

kj k; k—1
Yjecay —b— EjeN——{i} a; — a;

k __ A% __
0<Af=A"= s <1
Thus we find the lifting coefficient as
-1 - al.c_l
af = —A* t -+ af‘l.

Case 3 If a1 — @ > A, then Yiec /\f" = |C|, for any value of A¥. Thus we obtain

the lifting coefficient of AF as —1.

The above coefficients are the actual coeflicients if z € N~ is the first index that

is being lifted. Suppose 7 is not the first index being lifted and L C N~ is the set of

57



indices that have been lifted. To find the actual lifting coeflicients we need to find

the maximum value

S +Y Z ) | (4.13)

Jjec JEL k=k;

can take for a given value of A¥. Thus for a given value of A} we need to solve the

problem
T
Maz Y X433 af Ak (4.14)
jec JEL k=k;

- st. A€ PG (4.15)

. kj
PIDILAEDIDY a'°f\’° > g <bta +ufM =8 (416)

jECkeK jELkeK jEN--Lk=1

We define two new problems as follows:

Maz Y A¥ : (4.17)
jec
st. A€ PG (4.18)
ST dN<B+ T o +q (4.19)
jeECkeK JEN--L
and
T
Min Y 3 |af|A; (4.20)
JeL k:k_,'
st. A€ PG . (4.21)
Yo > e = (4.22)
JjeELkeK

The optimal value of (4.17)-(4.19) can be found by using g(8) given before. If
we can solve (4.20)-(4.22) for each possible value of 7, then we can find the optimal
value of (4.14)-(4.16), and we can find the maximal lifting coefficients by using this
optimal value. We will next give a Proposition that gives an inequality that can be

obtained by approximatley lifting cover inequalities for PG (b + X;en- af" )-
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Definition 12. Let C* C N*,C~-CN~,2<k; <TVje€eCH1<k;<TVjeC-,
ki=0Vj e N~ —C~ and C=C*UC~ be a minimal set such that
3 ¥ Z aff =b+
ject jec-

where A > 0. The set C' is called a generalized cover.

Proposition 11. Let C be a generalized cover. The generalized cover inequality
T
S (@AF T M) - Y (@A + Y A <ot -1 (4.23)
ject jEN- k=k;+2

is valid for PG where

aj — {Mzn{O ,\ } Zf] € C+; (4'24)
Maz{1, %5 } ifjeN".

kj—l

Proof Note that Z,ec+(01_7 + )\~" ) < |C*| =1 is a valid cover inequality for

PG(b+ Ejen- a; ) We need to lift )\k j € N~ to obtain a valid inequality for PG.

We have shown that zero is a feasible lifting coefficient for A k < k; Vj € N~.
We next lift A%+ for 4 € N=. The lifting coefficient o+ of AF+! satisfies

€ — 1 - Tjec(f A7 + a2 )
Ak,-i—l

> afitl, (4.25)

Let S = |C] = 1 — Tjec(ay ™A™ + o A7), Suppose that u¥*! < A If 3j €

C s.t. ak’ ~! <0, then when At = 17f—+r we have § = —%. Therefore we obtain
k;+1
U .
- 1A 2 a§'+1,
and -1 is a feasible lifting coefficient for A%+1,

If af"—l =0Vj € C, then when M\+! = ;k'l_.l_f we have

. I —(\—ufit?
S = MZTL{O, ———'—(—17:—"_'_1——)}
i

Therefore we obtain
l - A + ufi-}-l k,‘+1

_.__._Z_Za‘
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and -1 is a feasible lifting coefficient for AF+!,
Suppose that ¥ > X, If 3j € C s.t. af"—l < 0, then when A\F+! = u—;";r 1<

1

we have S = —+. Therefore we obtain

u{c;+1 .
__‘A > qz."'*'l. (426)

When Afit! = ;;,f—+r I > A, we have S = —1 and

u§‘+1 ki;+1
—_l Z Q; . (4.27)
From (4.26) and (4.27) we obtain
’ k4l
U :
__LA_ 2 aft"‘l.

If af""l =0Vj € C, then when Mot = L1 < )\ we have
. u;

— () = ykit?
S = Min{0, —l—%ﬁ‘—’——)}.

Therefore we obtain

1=\ ki+1 . ki+1 '
—% > ofit! = —"’T > it (4.28)

When A\fit! = ;,;’;1- 1> ), we have S = —1 and

ukitl :
R 7 > af""l . (4.29)

From (4.28) and (4.29) we obtain

ki+1
U, :
—_— 2 ait'*'l.

The lifting coefficient, of*2, of A\¥*? satisfies

ki+1
S — a,-'

ki+2 ki+2
‘—‘Ak‘ T2 -+ Q; 2 o; .
i
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. +1 —okitt . L
Since afit! < —1and S > —1, we have S—of*? > 0. Therefore S—f:‘-rr is minimized
i

when A¥*2 =1 and we obtain

S > alit?
and -1 is a feasible lifting coefficient for A¥*2, The lifting coefficients for A% k > k;+2
can be found similarly. |

Since S < S — SF_4..1 @F ¥, the above lifting coefficients will be valid for A%, i’ €
N - {5} | O
The following Corrollary is an immediate result of the above proof.

Corollary 4. (4.23) is a facet-defining inequality for PG N {)\f =0k>k;j€
C, M=0keK,jeNt—C}ifuf > AV €N~ and M < b+ Sico_qy oy -

Example 4 (Continued): Let C* = {1,2} and C~ = {3} with k; = k; = 2 and
ks = 1. The generalized cover inequality

AL A2 A2 a2 - A3 2 -2 - N8 <

is valid for PG. This inequality is facet-defining for PG N {A\} = )3 = 0}. O

4.2 Lifting Convezxity Constraints

Suppose that the improved convexity constraint
T
PIRIE DD LES! (4.30)
kEK VeV k=ky
is a facet-defining inequality for PG(b+ Yien- arf). We need to lift \¥ i € N~ k€ K
to find a valid inequality for PG. If '
a; <b+ Y afVieN". (4.31)
iEN—-{i'}
is satisfied, then (4.30) can be satisfied at equality when A¥ = 0 for any i € N~.

Therefore downlifting coefficients of A Vi € N~ are zero. Since for any value of
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Mfi€e N™ k < k;, (4.30) can be satisfied at equality their lifting coefficients will
all be zero. If (4.31) is not satisfied, then zero is a feasible lifting coefficient for
M ie N-, k < k;, but not necessarily the maximal lifting coefficient. Therefore we

use zero as lifting coefficients for \f i € N~, k < k;.

We will next show how we can lift \¥ i € N~ k > k;. For any 1 € N, we lift in
increasing order of k, k € K. Let L C N~ be the set of indices that have already
been lifted. It is easy to see that the lifting coefficients will be negative. For ¥, we
want to find the lifting coefficient of that satisfies

T T
ST Y e Y Y abh el N b <1

keK V€V k=ky veL k=ky
VAe{PG:Xi=0je N~ —L—{i}k>k;,\l=01>k}. So of will satisfy

k T k\k T k\k k—1
1- EkeK ’\j - ZUEV Zk:k,, au)‘v - EvEL Ek:ku avAv —
A

+aof 1> b

To find the lifting coefficients, we need to solve the optimization problem

. T T
maz Y A+ D oA+ Y Y afAd (4.32)
kEK vEV k=k, veL k=ky ‘
subjectto > Y afA -3 N afA <b+af T+ (af — af )N (4.33)
JENt+ kKEK jJELkeK
Y M<1vieNtUL - (4.34)
“kEK
lambdaf > 0Vj e NTUL ke K (4.35)
{Xf: ke K}isaSOS2setVje Nt UL (4.36)

for any value of A¥. An upper bound to (4.32)-(4.36) can be found by relaxing the

SOS2 restriction. Another upper bound is 1+ ¥ ey of.

When the data is integer, it can be shown that the values Af can take in an

extreme point are given by



where uf = af — af"l. We can solve the above optimization problem for each possible

value of AF and choose the lifting coefficient accordingly.

4.8 Lifting Approzimately

Suppose that for PG(b+ Yien- a¥) we have the valid inequality

PIP LRI

veV keK
where V' C N+. We need to lift the variables M ie N-, k € K to find a valid
inequality for PG. Let U be an upper bound on the value of ¥ ey Skex ¢EAE. An

simple upper bound is

| Z Maa:kex{af}.
veV
We will next show how we can lift the variables approximately. We assume that

b+ Tien-—qy ai' 20 Vi€ N~
Proposition 12. Zero is a feasible lifting coefficient for \¥ i € N—, k < k;.

Proof When M < 1§ € N-, we have Yyer Ykex ¢kAE < 4. Therefore the
downlifting coefficient will not be positive and zero is an upper bound for it. When
M>0i€N-, k <k, wehave ¥y Trex @EAF < 1, therefore the lifting coefficient

will be nonnegative and zero is a lower bound for it. O

By using the above proposition, we assign zero as lifting coefficients for M\ ¢ €
N~, k < k;. For each ¢ € N~ we will lift in increasing order of k, k¥ € K and
k > k;. Let L C N~ be set of indices that ‘Thave already been lifted and 7 € N~
be the index of the variable set that is being lifted. Suppose that we are lifting \F.
Since ¥ pev Skex @EAL > v, when we increase the capacity of the constraint, we haveb
af < 0. We want to find the lifting coefficient of that satisfies

T

DAY Y afX 4o TN T oA <y
veEV keK JEL k=kj+1
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VAE{PG: X =0VYje(N-—L—-{i})k>k;, X\ =01> k}. Since
J J

kyk T kvk k=1
Y — Lvev Lkek OpAy — 2ijel Lk=k;+1 05 A] — 04
N

+of” 2 af
we can find a bound on the lifting coefficient by replacing

T
2L X+ Y o)

veV keK JEL k=kj+1
with U. Thus
k-1
7-U-q k—1 k
Y ‘a7 2 a;.
(]

When the data is integer the values ¥ can take are

1 uF —1

0,510

We can find an approximate value to the lifting coeflicients by finding a bound for

each possible value of f.

4.4 Branch-and-cut Algorithm

The branch-and-cut algorithm that we use is similar to the one that we have proposed
in Chapter 3. We use the same branching and the same primal heuristic. The main

difference is in the way that we create the cuts.

We use Proposition 11 to obtain cuts. Since the separation algorithm is time
consuming we looked for a cut at every 50 nodes. Suppose that A; does not satisfy
S0S2 and we have Y > 0 and A¥ ™" = AF* = .. =T = 0. If a;; > 0, we will try

to create a cut from constraint .

For each v € N~, we find C~ by choosing the smallest &k, € K such that E,’g":(, M=
1. For each v € N* — {j} we find C* by choosing the largest k, € K that satisfies
Tick, k=1 Let C-={ve N :k >0}, Ct={veNt:k, >0} and
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C = CtUC~. Note that j € Ct. If T e+ @ — Tyec- @b > b, then we can create

the cover cut

' T
S (b 4N - X (@M 3 <ot -1 (487)

veC+ veN- k=ky+2
where the o; are defined by (4.24). Since X' =0Vo € C*, A¥ > 0; ©F, M =1

Vv € C — {j}, and Tj_;, M: = 0, (4.37) cuts off the infeasible point.

4.5 Computational Experience

We use MINTO [43] with CPLEX 7.5 as LP solver for our computations. We tested
our branch-and-cut algorithm against MINTQ’s default branch-and-cut algorithm
on instanceé of netwbrk flow problems with concave piecewise linear cost functions.

Specifically we compare:

e the convex combination formulation with binary variables and MINTOQO’s default

setting.

e the convex combination formulation without binary variables with our cuts and

SOS2 branching.

We consider the network problem

Min 33" fij(z), (4.38)
i€N jeN
Z Ty — E Tj = b; Vie N, (4.39)
jEN jEN
z;; 20 Vi,jEN (4.40)
where N = {1,...,n} and f;;(z;;) is a piecewise linear function. We assume that the

network problem is balanced, i.e. ¥ ;enb; =0.

Let the index set of the partitions be K’ = {0,...,T}. We can reformulate (4.38)-
(4.40) as

65



Min Y3 S bEAE, (4.41)

iEN jEN k€K'
XM=Y Y Mi=b VieN, (4.42)
JENkeK' JEN k€K'
M =1, VijeN, (4.43)
keK’ .
X5 >0, Vi,j€N,keK', and {): k € K} satisfy SOS type I1 Vi,j € N.

| (4.44)
We assume that af; = 0,Vi,j € N and af; < b; + Zyenay; Vi,j € N. We use

single constraint relaxations of the network problem to find valid inequalities.

4.5.1 Test Instances

We tested 15 instances. The instances are randomly generated as follows. Let T be
the number of partitions in the piecewise linear function. We first assign each node
as a transshipment, a supply or a demand point with probability equal to % The
demands and supplies are integers uniformly distributed between 1 and 10 * T'. by,
is modified to obtain a balanced problem, i.e by = — XN5' b;. Let uf; = af; — ol
be integers uniformly distributed between 1 and 10. The costs are found such that
the slopes of the partitions decrease as k increase. Let dfj be uniformly distributed

between 0 and 1 and b?j = 0. The cost function satisfies bfj = bfj_l + de
4.5.2 Computational Results

We used an Ultra Sparc 60 workstation with dual UltraSparc II 460 MHz CPUs and
4MB cache to perform computational tests. The results are summarized in Table 4.
The table gives results for our branch-and-cut algorithm and MINTQ’s default setting
(i.e. MINTOQ’s default branching, cuts, primal heuristics, etc.). The problems are
named in axb.c format where a,b, and ¢ correspond to the number of nodes, number
of partitions and seed number respectively. For each problem we give the number

of nodes réquired to solve the problem and CPU time in seconds. The problems
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are terminated after 10,000 CPU seconds. * indicates that the problem has been
terminated without proving optimality. For these problems we give the number of
nodes that has been evaluated and the optimality gap at the time of termination.
For the algorithms that use our cuts, we also give the number of cuts created. We
also give total number of nodes and total CPU time in each table. We excluded
the problems that has been terminated without proving optimality when calculating
the totals. The results show that our branch-and-cut algorithm is significantly better
than a branch-and-cut algorithrﬁ that uses a mixed integer programming formulation.
Our algorithm reduced the total »number‘of nodes by 62% and the total CPU time by
81 % compared to the MINTQ’s default setting.

In the branch-andfcut algorithm we looked for a .'cut at every 50 nodes. We also
tested the performaﬁcé of our branch-and-éut algorithm when we look for a cut at
each node. The results are summarized in Table 5. Looking for a cut at every 50 nodes
reduced the CPU time by 71 % and increased the number of nodes by 16% compared
to looking for a cut at each node. Since it is significantly faster, we pereferred looking

for a cut at every 50 nodes in our computational experiments.
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CHAPTER V

POLYHEDRAL STUDY OF LOWER-SEMI
 CONTINUOUS PIECEWISE LINEAR
OPTIMIZATION

In Chapter 3 we assumed that the cost function is continuous. In this chapter we
will generalize the resulté of Chapter 3 to the case where the cost function is lower
semi-continuous. The SOS2 formulation that we used in Chapter 3 can not be used
when the function is discontinuous. We need to introduce binary variables to define
the jumps in the function. Therefore, in this chapter we will study the polyhedron
associated with a mixed integer formulation. There are two main MIP formulations
that can be used to formulate lower semi-continuous piecewise linear functions. These

are the incremental cost and the modified convex combination formulations.

The incremental cost formulation for this case is similar to the continuous case.
Suppose we have a plf f(z;) specified by the points (a%, f(af)), & € {0,...,T}. Let
K={1,...,T}Huk =af—af k€ K, ¢} k € K be the slope of the k™ segment and
b;? , k € K be the the jump in the cost function at the breakpoint between segment

k —1 and k. By using incremental cost formulation, we can write z; and f(z;) as

flzz) = Y (chyf + b5z (5.1)
keK
Zj= Z y}‘ . (5°2)
keK
ujz} Syj<uj whf <yf<ubdTlEk=2,...,T-1 0<yf <27 (5.3)
Ae{0,1}ke{l,...,T—1} (5.4)
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We can not use the convex combination formulation defined in Chapter 3 here.

We need to modify it. Let df = f(a~!) + b§~". Then we can write z; and f(z;) as

f(zs) = Y (d5uf + f(af)X)) (5.5)

kEK : .
zi =Y (@57 + abA) (5.6)

keEK
i+ X =2k VEek (5.7)
Y #<1 (5.8)
kEK

pE>0,M5>0 Vkek (5.9)
£e{0,1} Vkek - (5.10)

by using the convex combination formulation. In this chapter, without loss of gener-

ality, we assume that a] =0 and aj < b, Vj € N.

Croxton, Gendron and Magnanti [9] showed that both formulations have the same
LP-bound. Padberg [41] showed that the feasible set of the LP relaxation of the
incremental cost formulation is integral, i.e. the binary variables are integer in every

vertex of the set. He called such formulations locally ideal. Sherali [45] proposed the

above modiﬁcation of the convex combination formulation that is locally ideal.

In this chapter we will use the incremental cost formulation. We make the variable
k

change z¥ = % Vj,k. Observe that 0 < z¥ < 1Vj,k. Let N = {1,...,n}. The
J

polyhedron that we will use to create cuts is

> Y ufzh <b, (5.11)

JjEN keK

7 <z;<1, Zf<zf<zAd'ke{2,... T}, 0<z]<z' VjeN, (512

#e{0,1}VjeN, keK. (5.13)
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Let S = conv{(z, z) : (z, 2) satisfies (5.11) — (5.13)}. The binary variables are

inserted to enforce the restriction

a:f“ =---=m?=0wheneverm§ <l ke{l,...,T-1}.  (514)

Let PX = conv{z : z satisfies (5.11) and (5.14)}.

In Chapter 2 we have shown that the incremental cost and convex combination
formulations are equivalent in the space of continuous variables. Thus any inequality
that we have created in Chapter 3 can be converted into an inequality in the incre- .
mental cost formulation. Since these inequalities are valid in the continuous variable
space, they can also be used for the MIP formulation. The variable change that we
need to make to convert an inequalify in convex combination formulation into an
inequality in incremental cost formulation is

N=gf—aft for1<k<T-1, X =g. (5.15)

We will next modify some propositions from Chapter 3 using variable change
(5.15). Since the inequalities in the propositions are valid for P, they are also valid
for PX and S.

From Proposition 4 of Chapter 3, we obtain
Proposition 13. (5.11) is a facet-defining inequality of PX if and only if
ai+ > af >b VjEN.
j i =
iEN—{j}

From Propositions 5 and 7 of Chapter 3, we obtain

Proposition 14. Vj € N,

[

2l <1 (5.16)

L)
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is a facet-defining inequalz'ty for
PX;={z€PX:2¥=0 Vie N-{j},keK)}. (5.17)
(5.16) is a facet-defining inequality for PX for j € N if and only if
aj+a; t<b VieN-{j} (5.18)

Proposition 15. Forje N,let I={i € N—{j}:b—a; <a]}, ki=min {k€ K :

b—aj < af} Vi €1, and V be a subset of I such that if |V| > 1, then afr~! +ay >

bVv,v' €V, v#v'. Then
T
i+, Y obzh <, (5.19)
veV k=ky—1
with
(ak" l,ak") € H,,

' kvl
1 b ‘:zlﬁ. , zf ak,, —
ky+1 __ 3
@y = geh .
S, otherwise,
} ‘

,uk .
a;

where

ukv

{(0,0), ("—";ff;", 2}, ifb—a} <ok
Vv € V, is a valid inequality. (5.19) is a facet-defining inequality for PX if V = I.

{{(0 ,0)}, if b—a} = akv,

From Proposition 8 of Chapter 3, we obtain

Proposition 16. Let C be a cover defined in (11). The cover inequality

(a2 + (1 —ay)2¥) < O] -1 (5.20)
jec )
is valid where
0, if b— Tiec-gy o < a7,
% =\ Zuee-is) ‘;_a;jk otherwise.

5 )
b- ZtGC—{J} ]
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(5.20) is facet-defining for the subspace
PX'=conv{x€PX:x;?=0k>kj, ke K,VjeC, z;?:OVkGK,jGN—C,},

if and only if

i ?<b- 3 dFvjec. - (5.21)
i€C-{j} :

5.1 Lifted Convexity Constraints

Proposition 17. Vj € N, (5.16) is a facet-defining inequality for
S;={(z,2)€S:zf=0 Vie N-{j},k €K,
#=0 VieN-{jLke{1,...,T-1}} ‘ (5.22)

Proof Let

[wJ,zJ,a: ’?J 2] | (5.23)
Vj € C, and 'u§- be v; vector where first [ elements are equal to 1 and the rest is zero.
e.g.

vi =[1,1,1,1,0,...,0].
The points
[02, - s V5155, V15 -+, U]

forl =1,...,2T —1 are in S}, satisfy (5.16) at equality and are linearly independent.

Therefore (5.16) is a facet-defining inequality for S;. O

We next lift (5.16). We lift the variables that are fixed at zero in (5.22). Observe

k-1

that z¥ can be positive only if ;" = 1. Therefore we define classes C} = {z}} and

= {2F71, 2%} k > 1. For each i € N — {j} we lift the classes sequentially in the

order of

Cl = {a}},C? = {4},2%},CP = {},2},...,CF = {<F 1, aT}.
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In each class we will do simultaneous lifting. For a pair (z¥71, z¥) we want to find a

pair (8571, of) that satisfies

k-2 k-1
zi+ 3 Bia+ ) ohai+ BF e +ofal <1 (5.24)
=1 =1

For z € [0, 8], let
h¥(2) = maz  BF12F1 4 ofxf

) k-1_k-1 k. .k
S.t. a,- z,- + ’u’i .Ti = ‘z

and
k=2 k-1
fi(z) =min 1-gz; -3 Bizi— 3 oia;
=1 =1
1,1
st. ujz; <b—z
0<z;<1

Let k; = min {k € K :b—aj < af} for any s € N — {j}. For k < k;, since zf =1

does not imply z} < 1, we obtain (0, 0) as lifting coefficients of (251, z¥). Thus

The closed form expression of [i#(2) is easy to find and can be written as
0, if0<2<b-aj,

k:
Fi(2) =< a1o
'(2) ‘—'fl—fif, ifo—a; <z<b

a5

Since we have a closed form expression for the function f, we can compute sets
HFi of lifting coefficients (857, o). We obtain lifting coefficients that define facet

inducing inequalities if and only if the pairs (85!, o) are such that f¥(z) = h¥(2)
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has two solutions (Z,Z) and (Z,Z) such that (257!,2%) and (2F7!,z5) are linearly
independent. The points 0 and b — ajl- define the lower envelope of the function f,-k".
Furthermore, the pairs of adjacent points on the lower envelope, i.e, (0,b— aj) and
(b— aj, b), define the sets of two values z for which f¥(2) = h¥(z) and for which the
associated solutions have linearly independent it* compdnents. We get the set HY

by computing the slopes and intercepts of the lines defining the lower envelope.

Observe that h¥(2) is only defined when 2z € [a¥~!, a¥] and in this region we have
z = ab "l 4 ubigh and BFFTY 4 oFial = R 4 ofizk. From the points (0, 0)
and (b — aj,0) we obtain the lifting coefficients as (0,0). The slope and intercept of
the line defined by the pointé (b — aj,0) and (b,1) are ;1;- and. ‘-I%J;—b respectively. If

b— a < a ' from the line

' b 1 —b+aj ki
hfi(z) = —z= —7 4+ = . zf
j a; a; i

1y k-1 _y K
we obtain the lifting coefficient pair (g,ﬂ'l_b, %‘I—) Thus
J

{{(00) (”“— J})} if b— al < a¥,

{(0,0)}, ifb—aj = aki.

Hf = (5.25)

1

Finding the set HF is illustrated in Figure 4. The line ﬁ,-‘(z) corresponds to lifting

. ~ 14 ki=1_ k;
coefficients (0,0) and the line A% (z) corresponds to lifting coefficients (5+—a;j1—b, ';—'}—)
Suppose that we have chosen the pair (0,0) as lifting coefficients for (257, z%).

Then we have

G =min 1- T,
1,1
st. wjz; <b-—z,

0<z

IA

1.

-.n-

The closed form expression for f5+1(z) is same as before. Finding H¥*?! is similar

and we obtain
_k‘+1 a; + ak' - b b

={(-F—— ol -} - (5:26)

.'l
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—_— 1)
sennaa h(z)

Figure 4: Finding the sets HY and H,' '

Finding the set Hy''" is illustrated in Figure 4. The line h¥(z) corresponds to

lifting coefficients. Note that %" is not defined for z € [a¥, a’*1).

. al4atiTiop ki
Suppose we have chosen the pair (<———, %

) as lifting coefficients for (251, z¥).

Fl J
We have
1 ki~-1 ki
: : a;+a —=b . ul g
Ftl(2) = min 1-z;— 21— Mol g
aj aj
1,1 _
s.t uj.'z:ij z,
0<z;<1

If z < a¥, then f¥*(2) should be zero because the pair (BF1,0f) are the

maximal lifting coefficients. When z € [a¥, a¥*!], we have

al+a¥ b ok al+a¥ —b
]_—xl.-—-L-—-———zlc'l——’-g;l.c‘— —xl.—J—-_
3 a i Ll =TT s,

J J J

The closed form expression of f*1(z) follows from above observations and we have

0, if0< z < al,
!c.+1 ( z) —

= ks
z—a;*

ifaf‘gng.
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The points 0 and a¥ define the lower envelope of the function f¥*!. Furthermore,
the pairs of adjacent points on the lower envelope, i.e, (0,a¥*') and (a¥*!,b), define
the sets of two values z for which f¥i(z) = h¥(z) and for which the associated solutions
have linearly independent it components. We get the set Hf""l by computing the

| slopes and intercepts of the lines defining the lower envelope.

Observe that h¥(z) is only defined when z € [a,af*!] and we have z = o +

ubitightl and gRF 4 oftightt = gl 4 ok H1gR+1 We can not use the points

(0,0) and (a¥,0) because h¥(z) is only defined when z € [a¥,a¥*']. The slope

k; k;

and intercept of the line defined by the points (al*,0) and (b, ta;}*—) are r and —ﬁa‘}-
J

respectively. From the line

k; k;
kil _ a’ 1 _ Uu; k;
h, = ——a’T;z = ';1‘15,
3 % i
uk.’-}-l
we obtain the pair (0, —*‘;}—) Thus
Trki+1 U‘F"H \
Hz’ = {(01 : 1 )} (527)

a;
Finding the set H¥*! is illustrated in Figure 5. The line A¥*!(2) corresponds to
lifting coefficients. From (5.26) and (5.27) we obtain
7ki+1 . ki
HE = {f et =0, | (5.28)
HFET ifaf >0.

Finding Hf k > k; + 1 is similar and we have
k uf
Hy ={(0, a_;)} (5.29)
J

k>k;+1.
- We next give a proposition that summarizes the above discussion. The proof also

follows from this discussion.
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Figure 5: Finding the set }’i{ciﬂ

Proposition 18. For an j € N that does not satisfy (5.18), let I = {i € N — {j}:
a; ' >b—al}, ki=min{k € K:b—a} <af}, and V be a subset of I such that if

[V|>1, then ab»= +a' > bWo,0' € V, v #£ /. Then

kvt1 T k
1 k= u
g+ (X (B ks + Y —2aky < (5.30)
vEV k=k, k=k,+2 %

with
By, op) € Hy,
| e e
Vv € V, where HF and H**! are defined by (5.25) and (5.28) respectively. (5.80)

is a facet-defining inequality for S if V =1.

Example 2 Let |[N| =3, T =3, and (5.11) is
23} + 472 + 223 + 3z} + 423 + 323 + 4z3 + 423 + 223 < 10. (5.31)

Let SE = conv{(z,z2) : (,2) satisfy (5.12),(5.13), and (5.31)}. When j = 1, we

have I =V = {2,3} where ko = 3 and k3 = 2. Then

o +153<1
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and
1 3
xi—§z§+§mg+x2 <1

are facet-defining inequalities for SE.

5.2 Cover Inequalities

Definition 13. Let 2< k; <TVj € N and C C N be a set such that
Yaf—b=2>0, Y af<bVieC,andIeCst.ul¥ >A  (5.32)
jec jEC—{i}

The set C is called a cover.

Proposition 19. Let C be a cover. Then

-1 u’f" k
(= L f + %xjf) <|C|-1 (5.33)

jec ’\

is a valid inequality. (5.88) is facet-defining for the subspace
S’=conv{(a¢,z)€S:x§=0k>k,—, ke K,VjeC, xf:OVkEK,jEN—C,
zf=0k2kj, keK—{T}, Vi €C, zf:OVkeK—{T},jeN—C},

if and only if ;
i ?<b- Y dévijec. (5.34)

]

ieC—{}
Proof Since the right hand side is |C| — 1, for any j € C we need to consider the
points where z¥* > 0 Vi € C — {j} and xfj > 0. It suffices to consider the extreme

‘points. For any jeC letzfi=1vieC-{j}. If uf" > ), the greatest value of x?"
i k -1
b- : : )
is E‘GC'“}J 7% and (1- oz])z;cJ 1+ajx;-°’ = 0 and inequality is valid. If uf’ <A
u,
J

then the greatest value of :z:- and z-"'1 are zero and the inequality is valid. The last

k-1 ki—1 k )
case we need to consider is the case where :cj’ = Zj i7" =1 and x]-j = (0. We claim

k-1 _
3

k-1 _

that when z;77" = 277 =1, the max1mum value 3 ;ec((1 — a,-)z;-c’ 4 a_,-x?") can

take is less than or equal to |C|— 2 + —-'— Let
6 () = Maz (1 - ;)" + eya;
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k1k1 k; k
st af " Z7 T +uizi <B.

. Kj .
"The closed form expression for g;” is

0, ifﬂ<a§",
A-

p-aii ™

k . - ' ,
g9 (B) = ;‘ + 74—, fafT < B<dY,

1, if B> aff.
When the right hand side of the constraint is greater than or equal to Tico_yj) aki,
we have ¥;cc((1 - a_.,-)z;-cj 1y ajxf" ) = |C|] — 1. Since decreasing 8 by I < u¥ will
decrease gi* by £ Vi € C and there exists at least one i € C — {j} such that A > u¥,

k‘
1 k;—1 ki A—u;?
7 + o;z;7) by —I-

fixing :1:;?" "7 =27 at 1 will decrease the sum ¥;ec((1 — aj)zkJ -1

and we prove the claim and validity of the inequality.

For each j € C, we give 2k; — 1 points. Let v; be a vector defined by (5.23)
Vj € C, and v;- be v; vector where first [ elements are equal to 1 and the rest is zero.

For each j € C we define 2k; — 3 points as

211 2k -1 2(kj-1)-1 2(kj41)-1 2(kjc1)-1 :
['U 1— 2 ) ”UJ—].-’ ’UJ’ U]+f yesey Ulcl ] (5-35)

forl=0,1,...,2k; — 4.

If u;f’ '> ) we define two more points as

2k —1 2k -1 2(kj-1)-1  2k;—3  2(kj41)-1 2(kjcp)-1
[vi™ 2 NV B | T 1o Y] ] (5.36)
~and
2k -1 2k -1 2(kj—1)-1 _2k -1 2(kj41)-1 2(k|c|) -1
['U ! 2 ). ’v] f I _1 ! avj+f 10 |C| ] (537)
where
b kj—1
2451 Z,ec_{,}a —a;
70 =[L,...,1 5 ].
Uj

If u;f" < A we define two more points as

2k1-1 2k -1 2(kj-1)=1 2kj=8 | 2(kj41)-1 2(kjcp)-1
['U 1 2= ,UJ_{ y J g ”Uj-}-i, yeooy 'UICI ] (5-38)

81



and

k=1 2k2—1 2(kj—1)-1 | 2kj—2  2(kj41)-1 2(kjc))-1
[ 1 ] 2 2 ’...,vj_f ,vj j "UJ-HJ ,-..,'UlCI I ] (5-39)
where
kj—2
=2kj—3 __ 1 b— E"EC_{.’I]' —a; 0.0
'Uj _[s-"a ’ kj-—l » Yy ]
Uy
and
-1 kj—1
k-1 — 1 b 2iec— —{1,7} "al — g ]
1 —_ geeey , kl .

Suppose that these points lie on the plane ¥jec Tk, 0525 + Tjec Tiak, B2F =
|C| — 1. By using the points given in (5.35) for { = 0 we obtain

ok+ Y gi=1VjeC. (5.40)
k<kj k<k; ,

By using the points given in (5.35) for 1 <[ < 2k; — 4 we obtain
of =pf=0k<k—2VjeC. (5.41)

By using the points (5.36) and (5.38) for a j € C such that u;?" > A and uf" <A

respectively, we obtain a; 1= Vj € C. Therefore we have
of + 677 =1Vj e C. (5.42)

For a j such that uj" > ), by using the points given by (5.37) and (5.42) we uniquely

obtain ‘
. kj kj
ki o Uj ki—1 _ Uj
a;’ = Y and B " =1 5

For a j such that u’f" <A, be using the points given by (5.39), (5.42), and

ik k1-1 kj—1
ki—1 —Yiec-{1,5) —H —a;
,Bj + k1 {’]}h J +'3{=1=1
Uy
we uniquely obtain
k; k;
ki _ Y5 k=1 _ Uj
a;” = by and ﬂj =1- T

We obtain the inequality uniquely by using these points, therefore (5.33) is a

facet-defining inequality for S'. O
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Example 2 (Continued) Let C = {1,2} where k; = ko, = 2. Then the cover

inequality
1 4 1 4,
—52% + 5112:1') - '?:Z% + 322 <1
is valid for SE.
Example 3 Let |[N| =2, T =3, and (5.11) be

43} + 223 + 213 + 3z} + 422 + 323 < 10. (5.43)

Let SE = conv{(z,2) : (z,2) satisfy (5.12),(5.13), and (5.43)}. Let C = {1,2}

where k; = ko = 3. The cover inequality

1 2 1 4
gz% + gxf —n+-o73<1

w
w

is valid for SE.

5.3 Relation Between Flow Cover Cuts and Cover
Cuts

Suppose that in a cover C we have

uy > AVj€C, (5.44)

and we set

Ty =1Vj € Ck <kj (5.45)

Let y¥ = ufz} Vj, k. When (5.45) is satisfied we can write a relaxation of (5.11)-

(5.13) as |
f:_;y]’ <b- Jezca;"_l, (5.46)
yi <u¥iTvje o, (5.47)
7 efo,1}vjeC. - (5.48)
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From (5.32) and (5.45), we have
Suf >0-Sd¥ T and 3 W <o-3 a;?"_l, Vie C. (5.49)
jec jec jeCc—{i}) jec

We can create the flow cover inequality

Zc(yf" +uf —N)(1-27") <b- E;aj?"“l. (5.50)
Jj€ Jj€

We can rewrite (5.50) as

Sufay - (W - N <b- Ty T - uf T + O =

jec » jec Jjec jec
k; _kj ki kj—1
jec jec

Therefore the flow cover inequality for (5.46)-(5.48) is a cover inequality when (5.44)
is satisfied. This result is not true in general. If (5.44) is not satisfied, we need to lift

the flow cover inequality to obtain a valid inequality for S.

5.4 Computational Experience

We used MINTO 3.0 [43] with CPLEX 7.5 as LP solver. We tested the performance of
our cuts on instances of transportation problems with lower semi-continuous piecewise

linear cost functions. Specifically we compared

e the incremental cost formulation with binary variables and MINTO’s default

setting.

e the incremental cost formulation with binary variables, MINTQO’s default setting

and our cuts.

We use single constraint relaxations of the transportation problem to find valid

inequalities as in Chapter 3.
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5.4.1 Branching

Suppose that we have z;‘ fractional. Traditional branching enforces zf = 0 in the first

branch and 2§ = 1 in the other. When 2§ = 0 we have zj*! = ... = 2T = 0 and
when 2§ =1 we have 2} = ... = 25 = 1. Thus the traditional branching and SOSX

branching are equivalent and we will use traditional branchng in our computational

experiments.
5.4.2 Creating Cuts

Cuts are created similar to the cuts in Chapter 3. Suppose that for j we have :vf" >0,
a:;f" 1 <1, and zf" H= . = z] = 0. Clearly this z; does not satisfy SOSX. We
may be able to derive a cut from constraint 7 if a;; > 0. Suppose that we are looking

for a cut in constraint 2.

For each v € N — {5} that satisfies z; = 1, we try to create a lifted convexity cut.

If al, +afi ™" > b, then

. T
z,+ Y ofzf <1 (5.51)
k=k;
with
ki b— af’j
aj’ =1- a:!'
w
and
k k-1

" —a

— Y L) .
o = i k> k;
1w

% then

cuts off the infeasible point. If af}'—l <b-d}, <aj,

kj-1 kj—1 ki k
Ty +of gl T oz <1 (5.52)
with
k; kj—1 1 kj—1
k@l —agl kil G; +a —-b

ajJ —_ 1] . 17 and aj] — v 1i7
a.
w (i

cuts off the infeasible point.
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To obtain a cover inequality for each v € N — {5}, we find the cover set C by
choosing the largest k, € K that satisfies ¥ = 1. If 22 < 1, we say k, = 0. Let
C={veJ:k, >0} Notethat j € C. If T ccakr > b, then we create the cover

cut

S(A-ok)btrabad) <l0]-1,  (55)
veC

where

ko — af} - afaj_l

Y ZvEC af; - b

Since zfv = 1 Vv € C and w?" > 0, (5.53) cuts off the infeasible point.

(47

5.4.3 Computational Results

We tested 20 instances. We used the same instances that we have used in Chapter 3,
and we added a jump, an integer uniformly distributed between 0 and 10, after each

segment to the cost function.

We used a Sun Ultra Sparc 60 workstation with dual UltraSparc IT 450 MHz CPUs
and 4MB cache to perform computational tests. The results are summarized in Table
6 which compares the incremental cost formulation with and without our cuts. For

both cases we also use MINTO’s default setting (i.e. MINTO’s default branching,
cuts, primal heuristics, etc.). The problems are named in axbxc.d format where a,b,c
and d correspond to the number of supply points, number of demand points, number
of partitions, and seed number respectively. For each problem we give the number
of nodes required to solve the problem and CPU time in seconds. The problems
are terminated after 10,000 CPU seéonds. * indicates that the problem has been
terminated without proving optimality. For these problems we give the number of
nodes that has been evaluated and the optimality gap at the time of termination.
For the algorithm that use our cuts, we also give the number of cuts created. We

also give the total number of nodes and the total CPU time. The total does not
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include the problems that has been terminated without proving optimality. The
results show that our cuts reduces the computational time and the number of nodes
processed significantly. Specifically our cuts reduced the total number of nodes and
the total CPU time by 90% and 85% respectively in those problems that could be |
solved without the cuts in 10,000 seconds. If more time was allowed the results would

be even better.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

In this thesis, we studied the polyhedral structure of piecewise linear optimization
problems and derived strohg valid inequalities that can be used in branch-and-cut al-
gorithms. In Chaptef 2, we studied the formulations of linear programs with piecewise
linear objective functions. We showed that the two formulations without additional
binary variables have the same LP bound as those of the corresponding formulations
with binary variables. We also showed that th‘e two formulations without binary
variables correspond to the same ﬁolyhedron ih the space of continuous variables.
Therefore, there appeared to be compﬁtational adventages that could be obtained
from the formulations without binary variables. Chapter 3 presented a polyhedral
study of the one row relaxation of a separable piecewise linear optimization prbblem.
We assumed that the objective function is continuous and the coefficients of the vari-
ables are positive. We derived several classes of valid inequalities for this problem

and presented a branch-and-cut algorithm'without binary variables that uses these

inequalities and SOS2 branching. ‘Our computational results demonstrate that our
approach is significantly better than the standard approaches to piecewise linear op-
timization. In Chapters 4 and 5 we relaxed the assumptions of Chapter 3. In Chapter
4, we relaxed the assumption that the coefficients of the variables are positive. We
derived valid inequalities for this case by lifting the inequalities of Chapter 3. In
Chapter 5, we relaxed the assumption that the objective function is continuous. In
this case we need to introduce binary variables to formulate the function properly.
We generalized the inequalities of Chapter 3 to the case where binary variables are

introduced. In both chapters we reported computational results that demonstrate
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that our valid inequalities improve the performance of the branch-and-cut algorithm.

In summary, we presented new algorithms for a class of NP-hard problems that
are of great practical importance. Our computational results clearly showed that our

algorithms are substantially better than those currently used in practice.

Most of the inequalities that we derived are facet-defining for a lower dimensional
polytope. In the thesis, we usually lifted these inequalities approximately to obtain

valid inequalities. Finding maximal lifting coeflicients is a future research area.

We derived the inequalities of Chapters 4 and 5, using the inequalities of Chapter
3. It may be possible to create new classes of valid inequalities by using the special
structure of these problems. We did not study the case where_ both assumptions of
Chapter 3 are relaxed. Hence further investigation of inequalities for this problem is
necessary. The valid inequalities for this problem can be used in a branch-and-cut

algorithm for many real life problems, e.g. merge-in-transit problems [10].

In this thesis, we studied general nonconvex piecewise linear functions. It may
also be interesting to study thé special cases of nonconvex piecewise linear functions.
Step functions é,nd concave piecewise linear functions are examples of these special
cases. For these cases, we can use the structure of the cost function in addition to
the polyhedral structure, to obtain an algorithfn. Alternative formulations may also

be studied for these cases.
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