

A Platform-Centric UML-/XML-Enhanced HW/
SW Codesign Method for the Development of SoC

Systems

A Thesis
Presented to

The Academic Faculty

by

Chonlameth Arpnikanondt

In Partial Fulfillment
Of the Requirements for the Degree

Doctor of Philosophy in Electrical and Computer Engineering

Georgia Institute of Technology
May 2004

A Platform-Centric UML-/XML-Enhanced HW/
SW Codesign Method for the Development of SoC

Systems

Approved by:

Dr. Vijay K. Madisetti, Advisor

Dr. Russell M. Mersereau

Dr. Sudhakar Yalamanchili

April 6, 2004

 iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis advisor, Dr. Vijay Madisetti, for his

guidance and support over the course of my Ph.D. pursuit. Thank you for your patience.

Thank you for believing in me!

I also would like to thank all of the faculty members who have helped to serve on

the defense and proposal committees: Drs. Altunbasak, Barnwell, Lim, Mersereau, Ram-

achandran, L. Wills, and Yalamanchili. My special thanks go out to Drs. Mersereau, and

Yalamanchili for their help serving on the Thesis Reading committee, and Dr. Lim for

agreeing to serve on the defense committee on such a short notice.

Mohamed Ben Romdhane, Lennon Dung, and Tom Egolf—thank you all for being

a good mentor.

Additionally, I would like to thank the staff members at the Center for Signal and

Image Processing (CSIP): Charlotte Doughty, Christy Ellis, Kay Gilstrap, Keith May, and

Sam Smith. Without their assistance over many different occasions, it would be hard to

complete all the requirements for this thesis.

I would love to send a special thanks to the folks at Little Bangkok—yes, all of

you! Thank you all for being my friends, and supporters throughout this long and tedious

process. I might not have said it before, but I owe you folks a lot! Thank you for helping

get me here today.

A special thanks go out to all the members of my family. Thank you for being so

patient. Lastly, it’s you, HON-HON! Thank you for your love and understanding. You have

given me all the confidence in the world! Thank you!

 iv

TABLE OF CONTENTS

Acknowledgements iii

Table Of Contents iv

List Of Tables xi

List Of Figures xiii

Summary xvii

Chapter 1 Introduction 1

1.1 Typical Systems . 2

1.2 Traditional Codesign Methods . 5

1.3 Tools Integrated Environment . 9

1.4 Problem Statement . 11

1.4.1 Technical Problem. 11

1.4.2 Technical Challenges. 12

1.4.3 A Solution to the Problem. 14

1.5 Organization of Dissertation. 20

Chapter 2 Platform-centric SoC Design Method 22

2.1 The Platform Concept. 22

2.1.1 Introduction to Platforms . 23

2.1.2 Platform-based Design for Embedded SoC Systems 25

2.2 Platform-Centric SoC Design Approach . 26

2.2.1 Platform-independent Specification . 30

2.2.2 Platform Analysis . 31

2.2.3 Platform-dependent Specification . 34

 v

2.2.4 System Derivation Process . 35

2.3 Comparison with Previous Research . 36

2.4 Other Embedded Design Approaches using UML. 41

2.5 A Perspective on Collaboration with Non-Platform Approaches 44

Chapter 3 UML and XML 47

3.1 Unified Modeling Language. 47

3.1.1 Constraints and Object Constraint Language (OCL) 53

3.1.2 Tagged Values . 54

3.1.3 Stereotypes . 55

3.1.4 UML to Code Mapping . 55

3.1.5 UML Profile for Schedulability, Performance and Time Specification . . 56

3.2 Extensible Markup Language. 59

3.2.1 Introduction to Markup Languages and XML . 59

3.2.2 Conceptual View of XML. 61

3.2.3 XML Extensions and Applications . 65

3.2.3.1 XPath. 66

Chapter 4 Library of Platform Objects 70

4.1 Conceptual Viewpoint . 70

4.1.1 LPO in Principle . 71

4.1.2 Identity . 73

4.1.3 Scalability . 74

4.1.4 Operations . 75

4.1.5 Interactions . 75

4.2 XML Viewpoint . 76

4.2.1 Mapping of Conceptual LPO to XML Equivalents 76

4.2.1.1 LPO Register File . 77

4.2.1.2 PO Register File . 77

4.2.1.3 Auxiliary Information . 78

4.2.1.4 Structure of LPO . 78

 vi

4.2.1.5 Tag Syntax and Semantics . 80

4.2.1.6 Platform Objects . 81

4.2.1.7 Architecture Blueprint (AB) . 83

4.2.1.8 Platform Object Logical Interface (POlif) 84

4.2.1.9 Resource Locator . 84

4.2.1.10 Platform Object Manager (POM) . 85

4.2.2 Implementation . 87

4.2.2.1 LPO Register File . 87

4.2.2.2 PO Register File . 88

4.2.2.3 POlif . 90

Chapter 5 UML Profile for Codesign Modeling Framework 97

5.1 Codesign Modeling Framework in Principle . 98

5.2 Platform-Centric Utility (PCUprofile) . 100

5.2.1 Domain Viewpoint . 100

5.2.1.1 Main Function Designation. 100

5.2.1.2 Link from UML to LPO . 101

5.2.1.3 Package Processing Instruction. 101

5.2.1.4 Code Insertion. 101

5.2.1.5 Non-design Variables . 102

5.2.2 UML Viewpoint . 103

5.2.2.1 Mapping Utility Domain Concepts into UML Equivalents 103

5.2.2.2 UML Extensions . 104

5.3 Exception Modeling (EMprofile) . 107

5.3.1 Domain Viewpoint . 107

5.3.1.1 Representation of Exceptions . 107

5.3.1.2 Exception Handler Domain. 108

5.3.1.3 Exception Propagation . 108

5.3.1.4 Parameter Passing . 109

5.3.1.5 Post-handling Actions. 109

 vii

5.3.1.6 Usage Model . 109

5.3.2 UML Viewpoint . 109

5.3.2.1 Mapping Exception Domain Concepts into UML Equivalents . 110

5.3.2.2 UML Extensions . 110

5.3.2.3 Example . 112

5.4 Interrupt Modeling (IMprofile) . 113

5.4.1 Domain Viewpoint . 115

5.4.1.1 Interrupt Representation and Characteristics 115

5.4.1.2 Device Register Representation . 115

5.4.1.3 Interrupt Handler. 117

5.4.1.4 Device Encapsulation . 117

5.4.2 UML Viewpoint . 117

5.4.2.1 Mapping Interrupt Domain Concepts into UML Equivalents . . 118

5.4.2.2 Mapping Data Type into UML Equivalents 118

5.4.2.3 Mapping Operators into UML Equivalents 121

5.4.2.4 UML Extensions . 121

5.4.2.5 Usage Model Framework . 124

5.5 Synthesizable HDL Modeling (SHDLprofile) . 126

5.5.1 Domain Viewpoint . 127

5.5.1.1 HDL Design Entities. 129

5.5.1.2 Data Types, Data Objects, and Operations 130

5.5.1.3 Code Structure. 130

5.5.1.4 Behavioral Description . 131

5.5.2 UML Viewpoint . 132

5.5.2.1 Mapping Design Entity Collaboration Mechanisms into UML Equivalents

132

5.5.2.2 Mapping Generic HDL Structures into UML Equivalents 133

5.5.2.3 Mapping Synthesizable HDL Behaviors into UML Equivalents 137

5.5.2.4 UML Extensions . 141

 viii

5.5.2.5 Example Usage . 146

5.6 Architecture Blueprint Modeling (ABprofile) . 150

5.6.1 Domain Viewpoint . 150

5.6.1.1 Modeling the Blueprint for Configuring/Deriving the Target Architecture

151

5.6.2 UML Viewpoint . 153

5.6.2.1 Mapping Blueprint Domain Concepts into UML Equivalents . . 153

5.6.2.2 Mapping the Blueprint Model Instance into the Physical Model154

5.6.2.3 UML Extensions . 155

5.7 UML to SystemC Mapping . 156

Chapter 6 Application Case Study: A Simplified Digital Camera System 160

6.1 Digital Camera System. 160

6.1.1 Image Acquisition Module . 161

6.1.2 Image Conditioning Module . 163

6.1.3 Image Compression Module . 164

6.2 Digital Camera System Requirements . 165

6.2.1 Functional Requirements. 165

6.2.1.1 General Operational Requirements. 165

6.2.1.2 User Interface’s Operational Requirements 166

6.2.1.3 Input and Output . 166

6.2.2 Non-functional Requirements . 166

6.2.2.1 Operating Time Constraint . 167

6.2.2.2 Heat Dissipation and Energy Requirement 167

6.2.2.3 Hardware Platform Requirements. 167

6.3 Platform-Independent Specification. 172

6.3.1 Use Case Analysis. 175

6.3.2 Class Analysis . 181

6.3.2.1 Noun Analysis/Textual Analysis. 182

6.3.2.2 Code Reuse . 184

 ix

6.3.3 Concluding Remarks . 190

6.4 Platform Analysis . 194

6.4.1 Automated Architecture Selection and System Partition 197

6.4.2 Manual Approach to Selecting Target Architecture 200

6.5 Platform-Dependent Specification and System Derivation Process. 204

6.5.1 Peripheral Interface Routines and Quartus II . 206

6.5.2 Transitioning to the Platform-Dependent Specification 208

6.5.3 Deriving the System . 209

6.5.4 Concluding Remarks . 213

6.6 Implementation Results . 214

6.6.1 Resultant Timing and Compression Characteristics 215

6.6.2 Research Evaluation . 215

6.6.2.1 Software Cost Modeling . 217

6.6.2.2 Cost Comparison. 219

6.6.3 Concluding Remarks . 224

Chapter 7 Conclusions 225

7.1 Thesis Contributions. 225

7.2 Publications and Awards. 226

7.3 Future Directions . 227

Appendix A:Cost and Power Estimate Parameter Values 229

A.1 COCOMO II.2000 Cost Parameters. 229

A.2 Power Consumption Input Parameters . 233

Appendix B:Codesign Modeling Framework Stereotypes and Tags Listing 234

B.1 Stereotypes Listing . 234

B.2 Tags Listing . 237

Appendix C:The LPO Tags Listing 238

C.1 LPO Tags Semantics. 238

C.2 LPO Attributes Listing . 240

 x

Appendix D:DTD Files Listing 242

D.1 lpoRegfile.dtd . 242

D.2 poRegfile.dtd . 243

D.3 polif.dtd. 245

Appendix E:Digital Camera Specification 249

E.1 Attributes and Methods . 249

E.2 Implementation Details. 255

Appendix F: COCOMO II: Source Code Counting Rules 297

Appendix G:Summary of UML Notations 301

G.1 Static Structure Model . 301

G.2 Interaction Model . 303

G.3 State Model. 303

G.4 Use Case Model . 304

G.5 Model Management . 305

Bibliography 306

 xi

LIST OF TABLES

Table 2.1: Feature support of current codesign approaches. The survey approaches
include the Model-based [43,44], POLIS [11], Corsair [10], SpecC [20],
SystemC [131], Chip-in-a-day [46]... 37

Table 3.1: UML Models and Diagrams.. 48

Table 3.2: General rules for the mappings between UML models and Java.............. 56

Table 3.3: XPath syntax abbreviations... 67

Table 3.4: Examples of the XPath expressions .. 69

Table 4.1: Summary of the requirement levels as specified in IETF’s RFC2119 71

Table 5.1: Demonstrative use of some bitwise operations 117

Table 5.2: Definition of IMoppak operators... 121

Table 5.3: Interrupt model to code mapping .. 126

Table 5.4: Semantic inferences of the relationships between design components and
physical hardware152

Table 5.5: Mapping of the AB’s target architecture model into the physical model 154

Table 5.6: Mapping of the SystemC constructs to the platform-centric UML models
(SW and HW perspectives)157

Table 6.1: Comparison of the CMOS and CCD image sensors [121, 122].............. 162

Table 6.2: Guidelines for the Abbott’s textual analysis. .. 182

Table 6.3: Software profiling data on the JPEG algorithm 200

Table 6.4: System configuration options. By committing to a combination of these
options, the developer acquires the target architecture, while
simultaneously partitioning the platform-independent specification. 201

Table 6.5: Characteristics of the NiOS-native Multipliers 202

Table 6.6: The mapping of peripheral-related classes from the platform-independent
specification to the platform-dependent specification 208

 xii

Table 6.7: Profiling results on timing characteristics of the JPEG compression
(LL&M algorithm) of the 227x149 RGB color input components with
respect to different compression quality values 211

Table 6.8: Profiling results on timing characteristics of the JPEG compression of the
required 640x480 RGB color input components subject to different
configurations .. 212

Table 6.9: Timing and compression characteristics data from different images...... 216

Table 6.10: COCOMO II.2000 effort multipliers (EMs). .. 218

Table 6.11: Software Sizing Model Symbol Definitions ... 221

Table 6.12: Summary of the source lines of code applicable to the SpecC and platform-
centric approaches ... 224

Table A.1: Summary of the source lines of code applicable to the SpecC and platform-
centric approaches ... 230

Table A.2: PC input parameter values for KRSLOC to KSLOC conversion 230

Table A.3: PC input parameter values for KASLOC to KSLOC conversion 231

Table A.4: SpecC input parameter values for KASLOC to KSLOC conversion...... 231

Table A.5: SpecC/PC scale factor (SF) values with B = 0.91................................... 231

Table A.6: SpecC and PC effort multiplier (EM) values with A = 2.94 232

Table A.7: Input parameter values for Altera’s APEX20KE PLD device 233

Table F.1: COCOMO II SLOC Checklist .. 297

 xiii

LIST OF FIGURES

Figure 1.1: Typical System-on-a-chip Architecture .. 2

Figure 1.2: Power Density Curve .. 3

Figure 1.3: Generic Hardware/Software Codesign Process Flow 4

Figure 1.4: The effect of hardware constraints on: (a) HW/SW prototyping costs (b)
software schedule .. 6

Figure 1.5: A typical time-to-market cost model... 7

Figure 1.6: The Corsair Design Flow .. 10

Figure 1.7: The enhanced system development model. Such a model provides a basis
for the proposed approach. .. 16

Figure 1.8: The UML Profile for Codesign Modeling Framework (see Chapter 5).... 17

Figure 2.1: A simplified 289-pin TI’s OMAP5910 platform architecture, which has the
packaging size of 12x12 mm2 (based on a figure in [70])........................ 24

Figure 2.2: Logical model of the platform-centric environment 26

Figure 2.3: The platform-centric SoC method design flow... 27

Figure 2.4: TI’s OMAP architecture blueprint which (a) depicts the abstract
representation of the platform architecture, and is used by POmm suppliers
as a reference model, and by the developer to construct the target
architecture (b). Each link in the object diagram (b) represents a pre-
defined communication. The DRAM object comes as a derivative
requirement when instantiating the LCD controller POmm module (c). .. 32

Figure 2.5: Collaborative usage model for the proposed platform-centric approach and
the SystemC approach (adapted from [132]) .. 45

Figure 3.1: Summary of UML notations ... 50

Figure 3.2: Demonstrative use of UML extensibility mechanisms 54

Figure 3.3: Structure of the UML Profile for Schedulability, Performance and Time
Specification.. 57

 xiv

Figure 3.4: Structure of an XML document .. 62

Figure 3.5: An example of a Document Type Definition (DTD) file. When written as a
separate file, the DTD file contains the content of the DTD declaration as
nested between the square brackets within the <!DOCTYPE [DTD]>
element. .. 64

Figure 4.1: Structural organization of the LPO ... 79

Figure 4.2: Hierarchical structure of the lpoRegfile.dtd.. 86

Figure 4.3: Hierarchical structure of the poRegfile.dtd ... 89

Figure 4.4: Hierarchical structure of the polif.dtd ... 91

Figure 4.5: Detailed hierarchical structure of the associatedTools element. 92

Figure 4.6: Detailed hierarchical structure of the uml element. 93

Figure 4.7: Detailed hierarchical structure of the functions element........................... 94

Figure 4.8: Detailed hierarchical structure of the characteristics element................... 95

Figure 5.1: Structure of the UML Profile for Codesign Modeling. Also shown are
anticipated relationships among participated packages and actors. 99

Figure 5.2: Example of UML Exception Modeling Using «EMprofile» 114

Figure 5.3: Example of the UML representation of a control and status register...... 120

Figure 5.4: Usage Model Framework for the Interrupt Modeling Profile 125

Figure 5.5: VHDL Design Units.. 129

Figure 5.6: Concurrent state representation of dout <= not din 135

Figure 5.7: Summary of the relationships among entities in the «SHDLmodule» ... 136

Figure 5.8: A half adder implementation in (a) VHDL, and (b) Verilog. The
corresponding source code in VHDL and Verilog is shown in (c). 147

Figure 5.9: A full adder implementation in (a) VHDL, and (b) Verilog. The
corresponding source code in VHDL and Verilog is shown in (c). 148

Figure 5.10: A six-bit-add-two-bit adder implementation in VHDL (a), and the
corresponding source code (b). .. 149

Figure 5.11: A SW-viewed UML/SystemC model of an 8-bit D-F/F 158

Figure 5.12: A HW-viewed UML/SystemC model of an 8-bit D-F/F 159

Figure 6.1: Block diagram of a typical digital camera system. 161

 xv

Figure 6.2: Block diagram of the baseline JPEG encoder ... 164

Figure 6.3: The NiOS embedded processor [81] ... 168

Figure 6.4: NiOS platform, showing communication between the NiOS processor core
and its peripherals [81].. 169

Figure 6.5: The platform-centric SoC method design flow....................................... 171

Figure 6.6: Platform-Independent Specification Process Flow 173

Figure 6.7: Initial Use Case diagram as derived directly from the digital camera’s
extended requirements... 176

Figure 6.8: The Take a picture Activity diagram... 177

Figure 6.9: Derived from the Handle signals requirements document, (a) the eventual
Use Case diagram, and (b) the Activity diagram. 180

Figure 6.10: Preliminary use-case-centric Class diagram derived from the Noun
Analysis/Textual Analysis... 184

Figure 6.11: UML-encapsulated JPEG library. The figure shows the subsystem package
that provides a functional interface to the required library functions. 185

Figure 6.12: UseCase-centric Class diagram utilizing IJG’s JPEG library package ... 186

Figure 6.13: Sequence diagram describing the main scenario for Figure 6.12. 187

Figure 6.14: Detailed Class diagram for the Take a picture use case 188

Figure 6.15: Sequence diagram describing the action that leads to an activation of the
take_a_pic() function... 190

Figure 6.16: Detail-minimal Class diagram for the digital camera system 192

Figure 6.17: A simple POM interface window portraying the NiOS platform, with a
short summary on the JPEG Encoder module provided by CAST Inc.
(http://www.cast-inc.com)... 195

Figure 6.18: The Architecture Blueprint of the NiOS platform (abNios.xmi), depicting
the platform structure .. 196

Figure 6.19: The Architecture Blueprint of the NiOS platform (abNios.xmi), depicting a
partial list of constraints and enumerated types 197

Figure 6.20: Generic usage model for the automated architecture selection and /or
system partition algorithms ... 198

Figure 6.21: Performance model as specified in the UML Real-Time Profile. The figure
describes Requirement NF-R1 from the Supplemental Requirements
Document. .. 199

 xvi

Figure 6.22: UML representation of the LCD. This UML package is accessible through
the <uml> tag from within the XML file that describes the LCD (a POmm/
component). .. 204

Figure 6.23: The UML description of the candidate target architecture as derived from
the blueprint and the associated POmm/components.............................. 205

Figure 6.24: The EP20K200EFC484-2X PLD device power calculator provided as a
Web application by Altera... 207

Figure 6.25: Detail-minimal platform-specific Class diagram describing the digital
camera system ... 210

Figure 6.26: The source files hierarchy for the digital camera system........................ 214

Figure 6.27: Execution time and main storage constraint effort multipliers vs. resource
utilization. ... 219

Figure 6.28: The SpecC methodology process flow. ... 222

Figure E.1: Platform-independent Class diagram for the digital camera system....... 250

Figure E.2: Detail-minimal platform-specific Class diagram describing the digital
camera system ... 251

Figure G.1: Classes and objects ... 301

Figure G.2: Class relationships .. 302

Figure G.3: Sequence diagram .. 303

Figure G.4: State diagram .. 303

Figure G.5: Concurrent States ... 304

Figure G.6: Use Case diagram ... 304

Figure G.7: Package and Subsystem ... 305

 xvii

SUMMARY

As today's real-time embedded systems grow increasingly ubiquitous, rising complexity

ensues as more and more functionalities are integrated. Market dynamics and competitive-

ness further constrict the technology-to-market time requirement, consequently pushing it

to the very forefront of consideration during the development process. Traditional system

development approaches could no longer efficiently cope with such formidable demands,

and a paradigm shift has been perceived by many as a mandate.

This thesis presents a novel platform-centric SoC design method that relies on a

platform-based design to expedite the overall system development process. The proposed

approach offers a new perspective towards the complex systems design paradigm, and is

able to attain the desired paradigm shift through extensive reuse and flexibility. It offers a

unified communication means for all sectors involved in the development process: Semi-

conductor vendors can use it to publish their platform specifications; Tool vendors can use

it to develop and/or enhance relevant tools such as an architecture selector or a HW/SW

partitioner; System developers can use it to efficiently develop the system.

Key technologies are identified, namely the Extensible Markup Language (XML)

and the Unified Modeling Language (UML), that realize the proposed approach. This the-

sis extends XML to attain a standard means for modeling, and processing a large amount

of reusable platform-related data. In addition, it utilizes UML’s own extension mechanism

to derive a UML dialect that can be used to model real-time systems and characteristics.

This UML dialect, i.e. the UML profile for Codesign Modeling Framework (UML-CMF),

remains compliant to the UML standard, and is useful for real-time modeling in general.

 xviii

A sub-profile within the UML profile for Codesign Modeling Framework is also

developed so as to furnish a means for efficient modeling of platforms, and that can be

seamlessly integrated with other real-time modeling capabilities offered by the UML-

CMF. Such an effort yields a robust UML-compliant language that is suitable for a general

platform-based modeling and design.

Last but not least, this thesis defines a comprehensive requirements specification

process, based on UML, that helps capture and analyze informal customers’ requirements

and transform them to a formal, functional requirements specification. A practical use of

the proposed approach is also demonstrated through a powerful case study that applies the

approach to develop a digital camera system. The results are comparatively presented

against the SpecC approach in terms of cost metrics based on the Constructive Cost Mod-

els (COCOMO II.2000).

 1

Chapter 1

Introduction

The semiconductor industry is a very lucrative market. Its sale in the year 2002 alone

grossed an approximate 150 billion USD— 30 percent of which comes from microproces-

sors, DSPs, microcontrollers, and programmable peripheral chips [1]. A recent forecast by

Dataquest predicts an estimated 168 billion USD in semiconductor sale by the end of the

year 2003 [130]. Along with such a huge market share, however, has come an increase in

system complexity. It is estimated that by the year 2010 the expected transistor count will

approach 3 billion with a corresponding expected CPU speed of over 100 GHz, and tran-

sistor density of about 660 million transistors/cm2 [2]. Consequently, such an increase in

complexity will result in an increase in power dissipation, cost, and especially technology-

to-market time.

In [2], it is argued that computer products would eventually progress from large,

general-purpose, impersonal static forms to portable, personal, flexible, market-targeted

forms. Personalization, flexibility, and quick time to market would dictate a quickturn

design methodology. Time to market for new architectures would no longer be measured

in years, but in months. Design cycle would have to decrease or become the bottleneck for

future progress. The time-to-market requirement, coupled with other design constraints

such as design flexibility, cost, real-time requirements and rigid form factor (e.g. size,

weight and power dissipation) represent a formidable challenge that designers of current

systems must overcome. Today the need for a paradigm shift in the design method has

become more and more pronounced and demanding.

 2

Figure 1.1: Typical System-on-a-chip Architecture

1.1 Typical Systems

A distributed, real-time, embedded system-on-a-chip (SoC) with reconfigurable logic and

multiple processing elements sharing a common memory, like that shown in Figure 1.1,

has been catching on rapidly and is likely to become very common in the near future [3].

This assertive conclusion stems from many different factors, where the more important

ones are listed below.

• In terms of sale volume, embedded processors currently have outsold PC proces-

sors by a distant margin [1]. A wide range of applications, especially in the area of

wireless and portable devices, has attributed to a tremendous demand for embedded

processors. Given a rate of progress in IC technologies today, a real-time embedded

SoC will find even more suitable applications in the future.

 L1 cache

Processing
element 4

Processing
element 3

Custom
 logic

 L1 cache

 Hardware-
 software
 RTOS

Memory

Processing
element 2

Processing
element1

Reconfigurable
 logic

 3

Figure 1.2: Power Density Curve

• Current power density data [4] show that power tends to double every eighteen

months. Herring [2] discusses that power dissipation will have a major role in

determining what systems would look like in the future. The power density extrap-

olation as depicted in Figure 1.2 shows that the dissipated heat will eventually

approach those of a nuclear power (250 watts/cm2). With such an increase in power

dissipation, the costs associated with packaging and thermal dissipation will dwarf

any savings achieved with higher transistor densities. Noise and coupling issues

will also become even more difficult to solve as frequencies increase. Consequently

a distributed system that contains several smaller, slower, heat-manageable proces-

sors is going to become a preferable choice to a powerful single-processor system

with a hard-to-solve power dissipation problem.

 4

Figure 1.3: Generic Hardware/Software Codesign Process Flow

• As the IC technology progresses from micron to submicron to molecular levels, the

cost of producing mask sets will skyrocket [31]. A new 300nm, 0.13µ or 0.10µ

high-volume manufacturing plant today cost about $3.5 billion [32]. As such, chip

designers will tend to produce a chip suitable for more than one application. Cou-

pled with the fact that performance flexibility and application flexibility are so

essential to the success of an embedded system [2, 5], a system with a high degree

of reconfigurability will not be uncommon in the near future.

This dissertation will focus upon a design method that is more suitable for such

systems and their predominant requirements such as minimal time-to-market, real-time

environment, flexibility and various form-factor constraints. A paradigm shift in current

 Specifications

 Allocation

 Partitioning Verification

Verification

 Verification

 Scheduling

Communication Synthesis

 SW Synthesis HW Synthesis Interface Synthesis

 5

codesign approaches is imperative. Such design approaches that derive from a processor

running sequential code have fast become a legacy and uncharacteristically tedious when

dealing with the development of systems today. An ever-growing system complexity and

pressure to keep the technology-to-market time to the minimum only further dictate the

necessity for an improvement in current codesign practices.

1.2 Traditional Codesign Methods

Hardware-software codesign refers to a concurrent and cooperative design of hardware

and software in a system. As shown in Figure 1.3, a process of codesign usually involves

four main tasks: architecture selection, hardware/software partitioning, tasks scheduling

and communication synthesis. The design process flows in a waterfall style, typically

commencing with a set of specifications. This approach, however, suffers from numerous

limitations:

• Use of written requirements

• Lack of a collaborative hardware-software codesign environment

• Limited architectural exploration

• Lack of distributed, real-time support

• Inability to cope with very complex SoC systems

Using written requirements to specify system functions and constraints fosters

ambiguity in interpretation and does not facilitate customer interaction, thus leading to

increased design iterations and low customer satisfaction. Current industrial practice com-

monly relies upon designer experience and ad hoc techniques to select an architecture and

allocate algorithm functionality [6]. This approach severely limits a designer’s ability to

explore the design space in order to improve the design.

 6

Figure 1.4: The effect of hardware constraints on: (a) HW/SW prototyping costs (b)
software schedule

 7

Figure 1.5: A typical time-to-market cost model

To minimize overall system costs, traditional system-level design and test

approaches attempt to minimize hardware costs, subject to performance constraints.

Nonetheless, these approaches overlook an important characteristic of software prototyp-

ing. Parametric studies based on historical project data show that designing and testing

software is difficult if margins of slack for hardware CPU and memory resources are too

restrictive [6]. Figure 1.4 [7] depicts the software prototyping principle. Graphs (a) and (b)

show that software dominates system development cost and time when CPU and memory

utilization are high. However as developers reduce resource utilization by adding extra

hardware resources, software cost and schedule tend to decrease drastically. SoC and/or

distributed-processing chip-building techniques are historically not the cause of produc-

tion delays. Software availability, support and knowledge base are the bane of product

schedules [2].

 8

While constraining the HW/SW architecture is detrimental to software develop-

ment cost, the corresponding effect on development time can be even more devastating.

Time-to-market costs can often outweigh design, prototyping, and production costs of

commercial products. Figure 1.5 illustrates a model developed by ATEQ Corporation [8]

of the economic impact of delayed market introduction. This simple model quantifies lost

revenue from delayed market entry (d) based on the product’ s total projected revenue and

the duration of the market window (W). The unshaded region of the triangular revenue

curve signifies this revenue loss. When the product life cycle is short, being late to the

market often mean disaster.

Friedrich et.al. [5] reports that, in most embedded applications, the use of general-

purpose operating system platforms is not applicable because it is too expensive. Embed-

ded system requirements such as processor performance, memory, and cost are so variable

that a general-purpose operating system cannot meet all the needs. Other approaches, such

as avoiding an operating system altogether by implementing all the functionalities

directly, or by developing an in-house operating system, can limit flexibility and be costly.

However, a survey suggests that these approaches are used by 66 percent of the embedded

systems in Japan, primarily because a suitable alternative does not readily exist. As such,

providing a real-time operating system support with a high degree of reconfigurability

becomes very essential to the development of systems today.

Most current HW/SW codesign methods commence with a set of specifications

that is usually described by some kind of a formal language. However, as the design pro-

cess goes from the gate to register-transfer level (RTL), from RTL to the instruction set,

and from the instruction set to system level design where formalism often does not exist,

problems start to ensue [9]. Furthermore traditional HW/SW codesign approaches still

rely heavily on a simulation-based technique, where designers go top-down until getting

the design, then describing it in some language, simulating it, and figuring out what needs

to be done. With such an approach, decisions made during the design process are usually

based solely on designers’ experiences. Also traditional codesign practices require more

 9

time to correct constraint violations because they often are checked very late in the design

process. Given the complexity and demanding schedules of today’s commercial systems,

these blind, design-first-constraint-checked-last approaches tend to yield a sub-optimal result.

1.3 Tools Integrated Environment

As traditional HW/SW codesign methods fail to address many issues involved in the

development of SoC systems today, the first generation of integration tools have emerged

that attempts to aid systems developers in coping with an increasing system complexity.

Such tools normally run on a single underlying semantic backbone, or a single model of

computation [9].

In a tools-integrated environment, the design is usually captured into some kind of

a unified representation, e.g. Specification and Description Language (SDL), or Codesign

Finite State Machine (CFSM). During the design flow, which virtually still adheres to that

of the traditional codesign approach, this unified representation behaves as an input to a

collection of different tools, and often change during each design stage to incorporate

more and/or new information into the design. The Corsair design flow [10] illustrated in

Figure 1.6 is a good representation of this codesign approach. Other tools-integrated

approaches include such methods as POLIS [11] and Coware [138].

Although the tools integration method provides for designers a better automated

and integrated HW/SW codesign environment, its tendency to adhere too much to the tra-

ditional codesign practice proves to be the downside. Its aim to tackle the complexity of

today’s SoC systems will eventually find a bottleneck in its ineffectiveness to raise a level

of design abstraction that is only acceptable to the traditional codesign method. Also, like

its traditional precursor, the lack of focus on flexibility makes it unattractive for current

SoC systems that are so application-oriented and highly driven by technology-to-market

time.

 10

Figure 1.6: The Corsair Design Flow

 Requirement analysis

Specification

System synthesis

System model
 AG + PF

Implementation
synthesis

Req. integ.

 PMSC

 SDL* gen.

SDL*

 Library

Implementation
specification

RTSS
CoGen

 SDL
Performance evaluation

Analysis

PMSC parser

SDL*

Model gen. AG

Estimator

Optimizer

VHDL C

HW synthesis Compiler

 RP configuration

Rapid prototyping platform

 Configuration

Performance evaluation

ZM 4 Simple

System specification
+

Time requirements

Phoenix MP

Model

 11

1.4 Problem Statement

It is evident from the previous discussion that most existing HW/SW codesign methods

fail to address satisfactorily the issues involved in the development of real-time, embed-

ded SoC systems. As the system complexity grows in accordance with Moore’s law, and

as a pressure to minimize the technology-to-market time increasingly overwhelms, the

necessity for a paradigm shift in HW/SW codesign practices becomes a mandate [2]. Flex-

ibility dictates that a processor be designed with the absolute highest general-purpose per-

formance possible [9]. More and more systems developers will turn to build a system out

of such processors to meet tight time-to-market constraints and flexible application

requirements [2]. Constraints must be fully addressed to ensure reliability. In addition, as

semiconductor manufacturers continue to define new methods and new ways to build sys-

tems, it is desirable for systems developers to be able to incorporate such technological

advances into their existing design approaches. Nevertheless, the fact stands that the semi-

conductor market is too vast and too dynamic for current HW/SW codesign approaches to

readily keep pace with its demands. It is also an extremely competitive market, where

such a slack often proves costly to systems manufacturers.

Motivated by all of the reasons above, this dissertation attempts to improve upon

the traditional codesign method and the tools-integrated approach. It aims to raise a design

abstraction level as well as to improve the various vital aspects essential to the success of

a quickturn, yet reliable, development of SoC systems.

1.4.1 Technical Problem

As discussed in DeBardelaben [6], a combinatorially significant number of alternatives

exist in the implementation of embedded systems. Compounded by increasing complexity,

the problem of implementing such systems becomes even more difficult. Embedded sys-

tem requirements are also invariably diverse and often conflicting. Some key requirements

include such attributes as battery life, portability, security, connectivity, user interface,

application compatibility, universal data access, and cost. This list of requirements pre-

 12

sents an enigma for the CPU and system developer. While battery life, portability, and cost

require simple, application-specific solutions, universal data, security, and user interfaces

require the ability for higher performance. These requirements call not only for specific

digital performance requirements, but also for specialized analog capability to permit bet-

ter interaction with the analog-centric human user. CPU and system optimization for one

set of requirements will cause unacceptable design trade-offs in other areas. For example,

architecture cannot be designed solely for high-overhead, general-purpose performance,

or it will sacrifice battery life, portability, and cost.

The objective of this thesis is, therefore, to develop a systematic approach and

guideline that can be used as a design framework to assist system developers in:

• carrying out the SoC design with quickness and correctness,

• exploring architecture and design space so that optimal decisions can be made,

and

• dealing with an ever-growing complexity.

The efficiency of this research is to be comparatively evaluated using the Constructive

Cost Modeling technique, COCOMO II.2000 [19].

1.4.2 Technical Challenges

Designing a distributed real-time embedded SoC is a difficult task by its own right for

there are often many conflicting requirements to be reckoned with. To support system

developers, however, with an efficient codesign method that aids a wide spectrum of such

design can prove even more difficult. There are numerous technical challenges facing

researchers that attempt to do so. Some of the more formidable tasks are listed as follows:

1. Determining a suitable approach to facilitate the system developer in dealing with

an invariably diverse set of requirements as well as the increasing complexity,

while improving upon the technology-to-market time,

 13

2. Developing a design environment that fosters the use of a wide variety of state-of-

the-art design tools and techniques, and is adaptive to frequent technological

changes,

3. Developing a method that has a good appeal towards semiconductor vendors, EDA

tool vendors and system developers.

The complexity of these tasks are primarily attributable to the following factors:

• Large size of the design space. A combinatorially significant number of architec-

tural and functional alternatives exist in the implementation of embedded SoC sys-

tems. Available components often vary in cost, performance, modifiability,

reliability, power, size, and design effort. In addition, there are a lot of communica-

tion elements (buses, crossbars), communication protocols (Bluetooth, PCI), and

interconnect topologies (ring, linear, mesh, tree) to choose from. Further compound

by various combinations of requirements, the design space that system developers

must explore become enormously expansive.

• Complexity and constraints imposed on design time and cost. The year 2002 has

seen information appliances outsold PCs by a wide margin [1]. This new market

encompasses small, mobile, and ergonomic devices that provide information, enter-

tainment, and communications capabilities to consumer electronics, industrial auto-

mation, retail automation, and medical markets. These devices require complex

electronic design and system integration delivered in the short time frames of con-

sumer electronics. The system design challenge of at least the next decade is the

dramatic expansion of this spectrum of diversity and the shorter and shorter time-

to-market window [13].

• Tools and techniques. Vissers [9] argues that semiconductor manufacturers will

design systems, rather than system houses design processors. The semiconductor

sector is going to do more codesign, with a lot of knowledge that was previously at

the system house being either handed off to, or moving towards the semiconductor

 14

company. As such, semiconductor manufacturers will tend to define new methods

and new ways to build systems, and the tools for system design will need to be

based on the same design approach. Given such a trend, the design method must be

able to provide a unified environment for tools and techniques from both the semi-

conductor and the system houses.

• Necessity for a paradigm shift. Traditional codesign approaches is no longer a via-

ble choice for handling the complexity of today’s embedded SoC systems. For

example, system developers using traditional codesign approach often make design

decisions blindly and a priori for there is a lack in the availability of presimulated

data and/or cost-estimation tools. Techniques such as standardization, cosimulation,

coverification, cosynthesis, reuse, etc. need a refreshing re-examination. Systems

complexity dictates that a design abstraction level be raised higher. The need for a

paradigm shift in codesign approaches becomes eminent. A new method, to be use-

ful, must satisfactorily address these requirements associated with current embed-

ded SoC systems.

• Disagreement on a standard practice. While adhering to a standard design practice

and/or a standard set of tools actually helps, it is extremely unlikely that there will

ever be a unanimous agreement on any one design standard. Marketing strategies,

legacy designs and many other opposing factors are often weighed in heavily. Con-

sequently, many excellent standard and non-standard design approaches will con-

tinue to co-exist. To make use of them to the fullest, the design method must act

like a system of such tools and techniques that allows them to work in unison

within the same environment. This integration effort will also prove to be difficult.

1.4.3 A Solution to the Problem

To effectively address the issues in codesign, developers have to raise a design abstraction

level so as to better foster extensive reuse and make a better use of cutting edge tools and

techniques. In addition, requirements must be systematically taken into account to better

 15

reflect the various needs and constraints that are pertinent to the systems development.

This thesis presents a design approach, called a platform-centric SoC design method, that

is motivated by the systems development model as depicted in Figure 1.7.

The development model in Figure 1.7 views the systems development environment

as consisting of three separate domains: a reusable object domain, a platform domain, and

a product design domain. The reusable object domain provides a library (or libraries) of

logical platform-compliant tool and component entities, whose physical whereabouts

could virtually be anywhere accessible through their logical counterparts in the library.

Such use of a logical library within the reusable object domain allows various forms of

platform-compliant tools and components to be uniformly abstracted and represented, and

pre-characterized data compactly modeled and efficiently utilized in the platform and the

product design domains. Chapter 4 of this dissertation details such a logical library, called

a library of platform objects (LPO), that constitutes the reusable object domain. This the-

sis utilizes the Extensible Markup Language (XML) to model the logical LPO database.

XML permits the power of many existing Internet technologies to be harnessed that could

potentially lead to an efficient exchange of data— be it knowledge, application programs,

or design components. When carefully designed, it is also possible for a reusable platform

object and/or application program to insert itself into a reusable object domain as an LPO

module, thus making the library scalable and as expansive as the Internet itself.

On the other hand, the platform concept [96] helps expedite the design process by

reducing the degree of freedom in the development of SoC systems, without absolutely

relinquishing system flexibility and performance. The platform domain comprises such

platforms that are tailored for various specific purposes, e.g. workstation, low-power

handset, VDO, or multimedia. For each platform, the platform vendor would normally

also specify and/or supply compatible tools and components in the reusable object domain

that can be used to develop the final product.

 16

Figure 1.7: The enhanced system development model. Such a model provides a basis
for the proposed approach.

Components

Tools

Reusable Object Domain Platform Domain

Product Design Domain

DSP

MCM

Peripherals

Wireless

CAD

Estimator

Analyzer

Synthesizer

. . .

. . .

Platform1: Low Power Handset

Platform2: Workstation

Platform3: Multimedia

Platform4: VDO

Platform5: Digital Camera

. . .

Platform-Centric Process Flow
(Chapter 2)

(Modeled by the UML Profile for
Codesign Modeling Framework:

Chapter 5)

(XML: Chapter 4)

Digital
Camera

(Chapter 6)
Product1 . . .Product2

Reusable
Component

Vendor

ASIC Vendor

Tool Vendor

. . .

Platform

System

Provider

Developer

 17

Figure 1.8: The UML Profile for Codesign Modeling Framework (see Chapter 5).

The system development phase that renders the final products takes place in the

product design domain. Within this domain, the system developer employs the platform in

the platform domain and the platform-compliant tools and components in the reusable

object domain to derive the target architecture— and eventually the final product. The

product design process is described in detail in Chapter 2; it is then applied to develop a

simplified digital camera system as an application case study in Chapter 6.

The Unified Modeling Language (UML) plays an integral role. By itself, UML fur-

nishes modeling capabilities for handling real-time requirements in software systems.

Codesign Modeling Framework

 «profile»

PCUprofile

 «profile»

 «profile»

EMprofile

ABprofile

 «import»

 «import»

 «import»

 «import»

 «profile»

 «profile»

IMprofile

SHDLprofile

 18

Chapter 5 of this thesis further enhances such capabilities via UML’s stereotypes and tag

values such that, by using the proposed approach, (1) HW design and HW/SW codesign

are robust and possible, (2) platforms could be modeled efficiently, (3) the system devel-

oper could conveniently model interrupts and exceptions— the characteristics that are vital

to most real-time embedded systems, and (4) the enhanced UML for the proposed

approach would furnish an interface facility to the reusable object domain, as well as the

product design domain. The extended UML elements provided for by this thesis are pack-

aged together in the UML Profile for Codesign Modeling Framework as depicted in Figure

1.8, and detailed in Chapter 5.

The platform-centric SoC method is aimed at the design of today’s SoC systems

with emphasis on real-time, embedded systems. The approach provides a guideline and a

SoC design environment that promotes an integration of state-of-the-art tools and tech-

niques necessary for the development of the systems. It renders a new and better perspec-

tive towards codesign approaches, while also raising a level of design abstraction.

Because the configurable platform objects are designed off-cycle, they contribute to a gen-

eral improvement in development time. By incorporating their usage, the overall method

strikes a balance between total design flexibility and minimal time-to-market.

Within a platform-centric environment, timing behaviors and other constraints (e.g.

size, weight) are more predictable. Detailed functional specification derived in the analy-

sis phase will be mapped directly to the target architecture, which, in turn, is constructed

using platform-compatible hardware and software components, much like how a personal

computer system is built by selecting from a menu of different available options. At the

core of the platform-centric approach lie the Unified Modeling Language (UML) and a

library of platform objects (LPO) that, together, effectively raises the design abstraction

level and promote faster development time without incurring additional costs. The

approach also permits a seamless integration of tools and techniques that aid analysis and

synthesis processes as well as design automation.

 19

Borrowed from the software engineerings field and adapted to better suit the

requirements for the development of real-time embedded SoC systems, UML represents a

force that drives the development process flow right from where system requirements are

analyzed and captured until the desirable implementation model results. Use of UML as a

unified representation of the system under development eases the constraints processing

and requirements analyzing processes. Its object-orientedness allows complexity to be

effectively handled. UML uses its own constraint capturing mechanism and the supple-

mentary Object Constraint Language (OCL) in dealing with a wide variety of constraints.

This, in effect, along with the UML modeling capability serve as the underpinnings for the

derivation of the platform-independent functional specifications with timing requirements.

The UML profile for schedulability, performance, and time specification [29], while has

yet to be fully standardized, is useful for modeling real-time systems for analysis and syn-

thesis purposes. The semi-formal nature of UML practically bridges the analysis-synthesis

gap to yield a better design flow. UML framework for hardware and software unified

modeling of real-time, embedded systems will be presented.

The library of platform objects (LPO), on the other hand, provides a collection of

system platforms, i.e. platform objects (PO), that are further governed by a set of rules and

requirements specific to the proposed platform-centric SoC design method. Each platform

object represents an abstraction of a common configurable architecture along with its

related components, and tools and techniques specific to that platform. The eXtensible

Markup Language (XML) can be used to provide a concrete facility for realizing the LPO

and managing the complexity resulted from a huge database of extremely diverse LPO

modules. XML also promotes information interchange which can culminate to the virtu-

ally unbounded sharing of platform object member modules. Furthermore, there exists an

extensive collection of public-domain and/or open-source tools for XML and other related

technologies that can be used to enhance XML’s capability.

 20

1.5 Organization of Dissertation

In this chapter issues in codesign method are introduced. The chapter briefly describes the

technical challenges facing system developers and summarizes the proposed solution to

the problem. The remainder of this dissertation presents a more thorough examination on

the problem and the proposed approach.

Chapter 2 describes the proposed platform-centric SoC design method in detail. It

illustrates the design flow and discusses each main step in the design process. Definition

of a platform as originally defined by Sabbagh [96], as well as the platform-based and

platform-centric design approaches, are presented. The chapter concludes by comparing

the proposed approach with previous related work.

Chapter 3 lays out the technological background for the proposed SoC design

method. Whereas the platform technology is discussed in Chapter 2, this chapter gives an

overview of the other two fundamental technologies: the Unified Modeling Language

(UML) and the Extensible Markup Language (XML). The chapter begins with an intro-

duction to UML as a modeling tool very well perceived within the software engineerings

community. It is followed by a discussion on an attempt by the Object Management Group

(OMG) to empower UML for the development of real-time embedded software— an effort

which will eventually culminate to a design framework known as the UML Profile for

Schedulability, Performance, and Time Specification [29]. Thereafter, an overview of

XML and a few other related Internet technologies ensue.

Chapter 4 outlines the structure of the library of platform objects (LPO), as well as

furnishes a comprehensive guideline and requirements specification that a platform object

must possess in order to be scalable and compatible with the proposed approach. Essential

elements for each platform object, e.g. architecture blueprint, XML-based self-described

modules, platform managing tool, etc., are also discussed in detail.

 21

Chapter 5 provides a detailed treatment of UML extensions for the development of

real-time embedded systems. The chapter starts with a layout of the Codesign Modeling

Framework hierarchy that encompasses five other sub-profiles— the generic utility profile

(PCUprofile) the Exception Modeling profile (EMprofile), the Interrupt Modeling profile

(IMprofile), the Synthesizable Hardware Description Language profile (SHDLprofile),

and the Architecture Blueprint profile (ABprofile). Each of these profiles furnishes a

design framework that is specifically tailored for the proposed approach, and can robustly

cope with the characteristics and requirements essential for the development of real-time

embedded SoC systems. The chapter, then, proceeds to discuss the domain concept for

each sub-profile, followed by the description of the corresponding stereotypes.

Chapter 6 applies the platform-centric SoC design method to the development of a

simplified digital camera system so as to demonstrate the use and the robustness of the

proposed approach. Specifically, the Nios development board is used to mimic the digital

camera system where raw image data are read from a charge-coupled device (CCD), and

then JPEG encoded and stored into memory. The chapter begins with an overview of the

Altera’s Nios system, followed by the actual system development process that explicitly

demonstrates the use of the proposed approach. A quantitative evaluation is then presented

that compares the development cost of the proposed platform-centric SoC design method

against the SpecC method, using the COCOMO II.2000 cost estimation model [19].

Chapter 7 concludes the dissertation with the thesis contributions and a discussion

of future directions for this research.

 22

Chapter 2

Platform-Centric SoC Design Method

In this chapter, a novel platform-centric SoC design method is introduced. The chapter

begins with an overview of the platform concept and platform-based design. Thereafter it

formally defines the platform-centric approach, and discusses the detailed design process

flow as well as how the UML and the library of platform objects (LPO) assists in contrib-

uting to the robustness of the proposed approach. The UML and the LPO provides a tools-

integrated environment that can enable the best of the existing tools and techniques to

work together in one single environment. Because knowledge in the Internet age is ubiqui-

tous, the proposed approach encourages a collaboration of existing state-of-the-art tools

and techniques, including those of open-source and public-domain, as well as proprietary

schemes and standardized approaches. To conclude, the chapter compares the proposed

approach with previous work in the area (Section 2.3) and discusses a possible collabora-

tion between the proposed approach and the SystemC approach (Section 2.4).

2.1 The Platform Concept

In the proposed platform-centric SoC method, the library of platform objects (LPO) and

the UML work collaboratively to enhance the system development process. While UML

manifests itself as a powerful solution to designing and managing complex SoC systems,

the scalable LPO aids the developer by elevating the design abstraction level as well as

providing a set of pre-characterized constraints and knowledge-based environment for the

system developer. This section introduces the platform concept.

 23

2.1.1 Introduction to Platforms

Sabbagh [96] defines platforms as fully functional families of products, each of which is

characterized by a set of commonalities, and is specified and implemented in such a way

that allows itself and its capabilities to be further customized and re-targeted for specific

actual end products. Examples of platforms are abundant, across diversely different appli-

cation areas. For instance, the Boeing 777 passenger doors, each of which has a different

set of parts with subtly different shapes and sizes for its position on the fuselage, are built

out of the same platform whose 98% of all door mechanisms are common [96]. PC plat-

forms, which evolve around the x86 instruction set architecture, a full set of buses, legacy

support for the interrupt controller, and the specification of a set of communication

devices [14], represent other examples.

Even though commonality in platforms often compromises product performance

and hinders innovation and creativity, it expedites the overall process of developing end

products. A typical platform could spawn scores of products that are more quickly and

economically upgradeable through an upgrade of the platform itself. Such advantages are

greatly desirable in the development of embedded SoC systems today, where quick time-

to-market and ease of upgradeability are the dominating factors. Sangiovanni-Vincentelli

and Martin [14] argues that design problems are pushing IC and system companies away

from full-custom design methods, towards designs that they can assemble quickly from

pre-designed and pre-characterized components. In addition, because platforms can poten-

tially yield high-volume production from a single mask set, manufacturers will tend to be

biased towards platform utilization to counter the ever increasing mask and manufacturing

setup costs. These platform benefits have become even more attractive as the present state

of advances in IC technologies results in more readily acceptable system performances

that suit a wide range of applications.

Although the notion of platforms has existed for years, only recently has it drawn a

great deal of interest from the electronic systems design community. Currently a number

of system platforms exist that can roughly be classified as follows [70]:

 24

Figure 2.1: A simplified 289-pin TI’s OMAP5910 platform architecture, which has
the packaging size of 12x12 mm2 (based on a figure in [70]).

• Full-system platform. Platforms in this category often are complete with respect to

hardware and software architectures that full applications can be implemented

upon, and are generally composed of a processor, a communication infrastructure,

and application-specific blocks. Some also utilize FPGAs to attain better flexibility.

Examples of full-system platforms include Philips’ Nexperia, TI’s OMAP multime-

dia platform (Figure 2.1), Infineon’s M-Gold 3G wireless platform, Parthus’ Blue-

tooth platforms, ARM’s PrimeXsys wireless platform, Motorola’s Black, Green

and Silver Oak, Altera’s Excalibur, Quicklogic’s QuickMIPS and Xilinx’ Virtex-II

Pro.

• Quasi-system platform. Platforms in this category generally do not specify full

hardware and software architectures so as to provide more flexibility for system

DSP Core
TM320C55x

150 MHz

TI-enhanced
ARM core
ARM925
150 MHz

 DSP private

DSP shared

 System shared

ARM shared

 ARM private

System DMA

 LCD control SRAM

EMIF-S

EMIF-F

IMIF

 Traffic Control

 75 MHz

Flash

SDRAM

peripherals

peripherals

peripherals

peripherals

peripherals

(TC)

 25

developers to re-target them for a wider range of applications. Such platforms as

Improv Systems, ARC, Tensilica and Triscend focus more on the ability to config-

ure processors, while others such as Sonics’ SiliconBackplane and PalmChip’s

CoreFrame architectures provide neither a processor nor a full application, but

rather define interconnect architectures that full systems can be built upon instead.

The system platform must also include the tools that aid the designer in mapping an appli-

cation onto the platform in order to optimize cost, efficiency, energy consumption, and

flexibility.

2.1.2 Platform-based Design for Embedded SoC Systems

The basic idea behind the platform-based design approach is to avoid designing a chip

from scratch. The utilization of platforms limits choices, thereby providing faster time-to-

market through extensive reuse, but also reducing flexibility and performance compared

with a traditional ASIC or full-custom design approach. Goering [70] surveys how the

platform-based design is defined, and presents them as follows:

• The definition and use of an architectural family, developed for particular types of

application domains, that follows constraints that are imposed to allow very high

levels of reuse for hardware and software components (Grant Martin, Cadence).

• The creation of a stable microprocessor-based architecture that can be rapidly

extended, customized for a range of applications and delivered to customers for

quick deployment (Jean-Marc Chateau, ST Microelectronics).

• An integration-oriented design approach emphasizing systematic reuse, for devel-

oping complex products based upon platforms and compatible hardware and soft-

ware virtual components (VCs), intended to reduce development risks, costs and

time-to-market (Virtual Socket Interface Alliance’s (VSIA) platform-based design

development working group).

 26

Figure 2.2: Logical model of the platform-centric environment

2.2 Platform-Centric SoC Design Approach

The platform-centric method is an enhanced version of a platform-based design approach.

It provides an enhanced tools-integrated environment to assist the designer in coping with

the complexity and the various requirements of today’s real-time, embedded SoC systems.

The approach follows the design flow illustrated in Figure 2.3.

Definition 2.1: Platform-centric SoC Design Method

A reuse-intensive, software-biased, and analysis-driven codesign approach that

relies upon the UML-/XML-enhanced tools-integrated environment and the use of

platforms to develop a feasible1 SoC system quickly and correctly.

Figure 2.2 illustrates the layered architecture of the platform-centric environment.

In the physical layer reside the actual hardware and software components, as well as asso-

ciated design tools, all of which provide the necessary resources for the development of

SoC systems.

1. Borrowed from Operations Research, the term feasible means “constraints conforming.” It is to note that
a feasible design is not necessarily optimal. Nor is it necessarily the best design achievable.

Logical Layer

LPO

PO ... PO

Design Layer

Interface (POM)

Physical Layer

PO

 27

Figure 2.3: The platform-centric SoC method design flow

Requirements

Functional Spec Functional

 Platform
Search & Explore

 a platform candidate

Component-specific details
 Elaborate

 Validate/Verify

 Component - Specific Outputs

System Integration

and optimization

 Target Architecture

Verification

Capture & Analyze Functional Library

 P

la
tf

or
m

-i
nd

ep
en

de
nt

 S
pe

ci
fi

ca
tio

n

 P
la

tf
or

m
-d

ep
en

de
nt

 S
pe

ci
fic

at
io

n

System

 D
erivation Process

 Platform
 A

nalysis

+

POM

 Architechture blueprint of

Blueprint configuration POM

POmm/components
 Search & Explore

POM

 Platform-specific
 specification

view 1
view 2

view N

System analyses, compilation

Application- and Platform-specific

.

.

uml model

uml model

uml model

uml model

uml model
uml model

operations, e.g.

Partitioning Analysis

HW/SW Functional Spec

uml

uml model

model

Supplemental
 Requirements

 28

Definition 2.2: Platform Object (PO)

For any platform that resides in the physical layer and is a member of a particular

library of platform objects (LPO) associated with a platform-centric SoC design

method, there always exists a corresponding platform object (PO) in the logical

layer that models such a platform.

The logical layer represents a pool of platform models called platform objects

(PO), as well as models of other related entities that implement the various platform

objects and/or that are platform-compatible and can be used later to build systems based

on the proposed approach. Effectively these platform objects and their affiliated modules,

such as an abstract representation of the platform that provides an architectural reference

for the system developer, or various additional auxiliary information, which uniquely

defines and identifies such an abstract representation and the relationship with its counter-

part in the physical layer, form a library of platform objects (LPO). It is the LPO modules

in the logical layer with which system developers have direct contact, and not those in the

physical layer.

The LPO in the logical layer can be envisaged as a database of the characteristics of

platforms and their affiliated modules, and thus, is suitable to be uniformly represented

using the Extensible Markup Language (XML). The use of XML also brings forth other

benefits, the most important of which arguably is the ability to blend well into the Internet.

This capability makes the LPO boundary to be as expansive as the Internet itself, and the

LPO member modules to be virtually locationally unrestricted. Furthermore, the LPO can

potentially inherit many characteristics of the Internet technologies which can result in

each of its PO behaving like a directory that can dynamically grow and shrink with respect

to the contents, i.e. the PO member modules (POmm), present at the time of search. The

LPO that can change dynamically in such manner is said to be scalable.

System development activities take place in the design layer. The developer

accesses the resources in the logical and physical layers through a pre-defined interface

 29

called platform object manager (POM). This interface often is a software tool member of

the LPO.

The platform-centric SoC design approach promotes an enhanced tools-integrated

environment while also raising a level of design abstraction. Each platform object (PO)

represents an abstraction of common configurable architectures along with their affiliated

components and tools that belong to the platform domain.

A configurable platform is pre-designed off-cycle, often optimized for a specific

application domain. The platform’s common architecture model, the blueprint, fosters the

concept of scalability and parametrizability; it allows candidate components to be added

in or taken out without affecting other candidates. Besides mitigating the architecture

selection problem, such a characteristic can help the system developer avoid lower-level

hardware-dependent programming, while, at the same time, posing additional require-

ments for the PO member modules (POmm). As such, a library of platform objects is a

logical collection of pre-designed, pre-characterized platforms that are further governed

by a set of rules and requirements specific to the proposed approach. Chapter 4 discusses

these rules and requirements in detail.

The proposed design flow commences with the requirements capturing and pro-

cessing step that results in the platform-independent functional specification as well as the

specification for timing and other requirements. The system developer then applies an

estimation technique on the resultant functional specification to acquire general perfor-

mance estimates and uses them to further help select the target architecture. With the tar-

get architecture information available, the developer can subsequently derive the detailed

platform-dependent specification, which may contain a collection of different analysis

models, e.g. concurrency model, subsystem and component model, etc. This specification

along with the information relevant to the selected architecture are passed back to the

appropriate LPO modules to be further analyzed, realized and integrated. Detailed discus-

sion regarding each main stage in the proposed approach is presented as follows.

 30

2.2.1 Platform-independent Specification

This stage chiefly concerns with the derivation of the functional specification that is still

independent of any platform instance binding. Unlike most current codesign approaches

that begin with a formal specification of the system, the proposed platform-centric method

starts with the requirements capturing process. Kotonya and Sommerville [35] define a

requirement as a statement of a system service or constraint. A service statement describes

how the system should behave with regard to the environment; whereas, a constraint state-

ment expresses a restriction on the system’s behavior or on the system’s development.

The task of requirements capturing typically involves two main subtasks, namely,

determining, and analyzing the requirements as imposed by the customer [36]. During the

requirements determination subtask, the developer determines, analyzes and negotiates

requirements with the customer. It is a concept exploration through, but not limited to,

UML’s Use Case diagrams. The customer involvement in the requirements capturing pro-

cess is highly recommended. Once all the requirements are determined, the analysis sub-

task begins that aims at eliminating contradicting and overlapping requirements, as well as

keeping the system conforming to the project budget and schedule. The functional require-

ments are then modeled using Use Case diagrams; while, those with non-functional char-

acteristics, e.g. speed, size, reliability, robustness, portability, standards compliance, ease

of use, etc., may be captured into the supplementary requirements specification (usually a

note or textual description) later to be processed and incorporated into the functional spec-

ification as constraints [97].

As established techniques in the OO analysis for specifying data and functions, Use

Case and Class diagrams play a major role in deriving the platform-independent func-

tional specification. Once all classes are identified, detailed functional implementations

ensue. Various UML’s diagrams can be used to describe the system characteristics. For

example, Sequence and/or Activity diagrams can capture concurrent and/or sequential

interactions; or, Component diagrams can depict components connection within the sys-

tem. The resulting functional specification can have the class methods implemented using

 31

a programming language of choice. This specification can later be verified for behavioral

correctness and handed off to the next stage.

2.2.2 Platform Analysis

The main objective of this stage is to select the target architecture from the library of plat-

form objects (LPO). Each PO is categorized by its applicable area(s) of use. The developer

selects a candidate platform most likely to be successful for the application at hand based

on information such as the associated datasheet and the requirements specification

obtained in the previous stage. Then the configuration of the selected platform object fol-

lows that results in the target architecture model.

The configuration process starts by acquiring an architecture blueprint specific to

the chosen platform object by means of the platform object manager (POM)—a front-end

tool equivalent to the interface concept in Figure 2.2. The architecture blueprint is a col-

lection of logical PO member modules (POmm), each of which corresponds to a physical

component in the platform. The relationship among the POmm in the blueprint is captured

using the UML’s Class diagrams—the ABprofile framework to be discussed in Chapter 5.

Figure 2.4 (a) illustrates the architecture blueprint of the simplified TI’s OMAP platform

shown in Figure 2.1.

In order to construct the target architecture model, the developer may utilize esti-

mation tools especially optimized for the platform object to provide estimates of design

metrics such as execution time and memory requirements for each part of the platform-

independent specification. Estimation can be performed either statically by analyzing the

specification or dynamically by executing and profiling the design description. The esti-

mation tools take as the input the platform-independent specification, in XML Metadata

Interchange (XMI) format which is defined as part of UML, and generate estimation

results to be used by the developer and/or by the architecture-selection search algorithm.

These results can further be validated against the requirements either manually or using

validation tools.

 32

Figure 2.4: TI’s OMAP architecture blueprint which (a) depicts the abstract
representation of the platform architecture, and is used by POmm suppliers as a reference
model, and by the developer to construct the target architecture (b). Each link in the object
diagram (b) represents a pre-defined communication. The DRAM object comes as a
derivative requirement when instantiating the LCD controller POmm module (c).

 OMAPplatform

1

1

1

0..4

(a)

1

1

 «ABnode»

 «ABnode»
{ABisKindOf = ‘diu’}

DMA_unit

 «ABnode»

 «ABdeploy»
 «ABcomponent»

 «ABnode»

 «ABnode»

{ABisKindOf = ‘diu’}

{ABisKindOf = ‘diu’}

{ABisKindOf = ‘diu’}

{ABisKindOf = ‘mu’}

{ABisKindOf = ‘ifu’}

TC_unit

DSP_core

MPU_core

(use ABprofile)

 «ABnode»

 «ABnode»

DSP_private

 «ABnode»

MPU_privateLCD_IF

. .
 «ABnode» «ABnode» «ABnode»

System_shared MPU_publicDSP_public

1

1 1

11 1

1 *

*
1

1

* * * *

 «ABnode»
{ABisKindOf = ‘ifu’}

IMIF

1

1

 «ABnode»

SRAM_internal

 «ABnode»
{ABisKindOf = ‘ifu’}

EMIFF

EMIFS

11

1

1
 «ABnode»

{ABisKindOf = ‘ifu’}

Offchip_EMIFS_node
 «ABnode»

1

 «ABcomponent»OS1

OS2

 «ABdeploy»

ABomapPackage

(b)

(use ABomapPackage)
 «ABtargetArchitecture»

 «ABnode» «ABnode»

 «ABnode» «ABnode»

 «PCUlpoMember» {id=EPS1D1}

 «PCUlpoMember» {id=EPMU} «PCUlpoMember» {uri=$OMAP_PATH}

OMAP5910:OMAPplatform

LCD_IF_OMAP5910_EMIFS

1

1

1

LCD_controller0:Epson_S1D13506F00A

11

DRAM_16M:Epson_MU

1

Offchip_EMIFS_node
 «ABnode»

 «ABnode»

Epson_S1D13506F00A
 «PCUlpoMember» {id=EPS1D1}

 «ABnode»
{ABisKindOf = ‘mu’}

Epson_MU

0..1

1

(c)

 33

The platform characteristics dictate that a microprocessor or microprocessors be

pre-selected and pre-optimized for specific areas of application. This places a considerable

constraint on the tasks of architecture selection and system partition, which consequently

could result in a faster development time trying to achieve a feasible system. Also such

characteristics could permit estimation tools and profiling techniques to perform more

accurately, as well as attribute to a smaller search space for the automated algorithms. In

the proposed approach, the tasks of selecting the target architecture and partitioning the

system are interwoven. The developer can partition the system and/or select the candidate

hardware components manually, or by using various architecture selection techniques

such as simulated annealing, genetic algorithms, and tabu search. Consult [23], [91] for

detailed treatments of these algorithms on the architectural selection process. In [92], [93],

[94], other related algorithms are presented.

It is to note that, in developing a system where flexibility and technology-to-market

time are the predominant factors, software often carries more weight than the hardware

counterpart. A study by Edwards [37] based on Amdahl’s Law [38], which limits the pos-

sible overall speedup effects obtainable by accelerating a fraction of a program, suggests

that it is not worth the effort to attain a substantial speedup for an arbitrary program by

moving part of it to hardware. To support his claim, Edwards shows that if a part of the

program which accounts for as much as 90% of the execution time is moved to an ASIC, it

is still not possible to achieve more than a speedup factor of 10, even under ideal circum-

stances where the ASIC executes infinitely fast and communication cost is disregarded.

Even though the use of nearly any hardware/software partitioning algorithm is

arguably viable for the proposed approach, the developer should always be aware of the

increasing weight of software in today’s SoC systems development. The platform-centric

approach addresses this issue in two ways. Firstly, by utilizing the platform concept as the

basis for the design, the proposed approach allows the system developer to concentrate

harder on the software development process. Secondly, by utilizing UML as the unified

representation of the system under development, the proposed approach allows the task of

 34

developing a software system to be handled more robustly by one of the best tools in the

software engineering discipline. In Chapter 5, the UML profile for Codesign Modeling

Framework is presented that helps bridge the gap between the platform concept and UML,

and effectively, hardware and software.

Once all the hardware components are chosen, they will be (1) instantiated with the

blueprint to derive the target architecture, and (2) associated with the hardware-bound

software modules, and (3) assigned the proper parameter values either manually by the

designer or automatically either by the POM or an accompanying configuration tool. At

the end of this stage yields the target architecture which can be used to derive hardware-

software functional specification. The target architecture is essentially represented by the

concrete instance of the architecture blueprint. Figure 2.4 (b) illustrates the logical repre-

sentation of the simplified OMAP5910 Video architecture as discussed in [95]. This Video

architecture utilizes a LCD controller POmm module, as shown in Figure 2.4 (c), and a

16-MByte DRAM as permissible by the LCD controller.

2.2.3 Platform-dependent Specification

The XML-based library of platform objects (LPO) is information-rich. Each component in

the LPO is self-descriptive; it supplies the developer and the corresponding PO managing

tool (POM) with information such as identity, design properties (weight, dimension,

times, etc.), tool-related information, and so on. One of the information sets it may carry is

the description of hardware-dependent software routines that can be used by the developer

to avoid low-level coding of hardware dependent routines. Consider the

LCD_controller0:Epson_S1D13506F00A object in Figure 2.4 (b). This object is repre-

sented by a specific XML description of the Epson_S1D13505F00A instance—with all

the required parameters configured, and pre-characterized data captured. Within this XML

description exists a section that possibly describes hardware-dependent software routines,

a corresponding device driver and the location where their implementation may be found.

The availability of these functions facilitates the software development process by helping

 35

the system developer avoid implementing specific hardware-interface routines—it virtu-

ally hides communication-related details at a lower level of design abstraction.

Also, the platform-dependent specification stage is often iterative per se. During

this stage, the developer first derives the hardware-software functional specification.

Thereafter, additional models, e.g. concurrency model, schedulability model, etc., may be

developed and analyzed (in the next stage), whose results are back-annotated for further

elaboration of the hardware-software functional specification. Such activities may proceed

iteratively, as shown in Figure 2.3, until all required system characteristics are determined,

at which point the implementable platform-dependent specification results that can now

be realized and integrated into a full system prototype.

2.2.4 System Derivation Process

The System Derivation process often goes iteratively, hand in hand, with the other stages;

it furnishes an execution domain for the platform-dependent models resulted from the pre-

ceding Platform-dependent stage. The tools and tasks involved within this stage vary con-

siderably ranging from detailed analyses, to validations and verifications, to hardware and

software syntheses, to system integration. Software modules may be compiled, optimized

and saved in a microprocessor-downloadable format, and hardware-bound modules may

be synthesized and saved into some common format like the EDIF netlist file. Or a sched-

ulability analysis tool may take a partially specified schedulability model and completes it

for the developer—a process known as parameters synthesis. At the end of this stage,

accurate timing and other constraints information can be obtained and verified/validated

that leads to the system integration.

At this stage, the platform object manager (POM) simply functions as an auxiliary

tool that supplies the system developer with necessary information to aid a smooth flow of

the development process. In its simplest form, it behaves just like a web browser with all

relevant information compiled and readily retrievable. A more sophisticated POM may

 36

permit other tools to be called and operated within itself, rendering a highly integrated

environment of tools and information.

2.3 Comparison with Previous Research

Table 2.1 shows how the proposed approach compares with previous related research. The

general framework for the hardware/software cosynthesis approach often involves a pre-

determined hardware architecture consisting of a particular microprocessor and an ASIC,

and the hypothesis that if only the behavior could be partitioned between these compo-

nents, the remainder of the design process would automatically be done by the high-level

synthesis tool and the compiler [23]. A representation of the cosynthesis approach

includes the work by Ernst, et.al. [39]. They describe the COSYMA (COSYnthesis of

eMbedded Architectures) system which is used to extract, from a given program, a part

that could be implemented in an ASIC. COSYMA uses a novel software-oriented HW/SW

partitioning algorithm that identifies critical operations in an instruction stream and moves

those operations from software to hardware. Gupta and De Micheli [40] work with a simi-

lar architecture, but take the inverse approach. Instead of trying to accelerate a software

implementation, their Vulcan cosynthesis system aims at reducing the cost of an ASIC

design by moving less time-critical parts to a processor—checking timing constraints and

synchronism as it does so. Yen and Wolf [41, 42] also propose efficient algorithms for

cosynthesizing an embedded system’s hardware engine, consisting of a heterogeneous dis-

tributed processor architecture, and application software architecture, consisting of the

assignment and scheduling of tasks and communication of an embedded system. Although

these cosynthesis approaches represent state-of-the-art efforts on codesign methods, they

do have certain limitations—some of the more notable ones are:

 37

• In the COSYMA and Vulcan systems, the fixed architecture is presumed without

elaborating on such a decision. This limits the usefulness of the approaches.

• Yen and Wolf’s approach supports only bus-oriented architectural topologies,

which do not scale well for large application.

• Automated architectural selection is only partially supported in Yen and Wolf’s

approach, and not at all in COSYMA and Vulcan systems.None is able to raise

design-abstraction level and/or capable of capturing customer’s requirements. Nei-

ther is there a support for real-time handling mechanism.

Table 2.1: Feature support of current codesign approaches. The survey approaches
include the Model-based [43,44], POLIS [11], Corsair [10], SpecC [20], SystemC [131],
Chip-in-a-day [46].

Featuresa

a.
���

 = supported;
�

 = partially supported; BLANK = not supported

Model
Based POLIS Corsair SpecC/

SystemC
Chip-in-

a-day
Proposed
Approach

Mechanism for customer’s requirements
determination and analysis

���

Mechanism for constraints capturing and
validation

� � ��� � ���

Mechanism for real-time handling
� ��� ��� ���

Unified representation
��� ��� ��� ��� ��� ���

Elevation of design abstraction level
��� � � � � �

Translation and elaboration
� ��� ��� ��� ��� ���

Tools integration environment
��� ��� ��� ��� ���

Feasibility for large-scale systems design
��� ��� ��� ��� ���

Suitability for wide range of application
� ��� ��� ���

Being adaptive to technology-specific
approaches

���

Integrated documentation
���

 38

The model-based approach [43, 44] fosters a late-partitioning, late-technology

binding philosophy. Its basic supposition is that models serve as design blueprints for

developing systems. At its core, the model-based approach employs a modeling technique

to capture systems behaviors at different levels of abstraction. The resulting models are

then subject to validation and stepwise refinement process. A validated model is simulated

in a specific set of experimental conditions to verify its adherence to the initial require-

ments, constraints, and design objectives. Technology assignment is then carried out from

the verified model specifications. The approach handles the complexity issue via the use

of design modularity and hierarchy where the designer constructs models from elementary

building blocks that are connected into larger blocks in a hierarchical manner. Neverthe-

less, the approach suffers from several limitations:

• The approach does not explicitly specify the synthesis process.

• Lack of support for translation process and tools makes it insufficient to handle the

requirements of systems today.

• There is no real-time handling mechanism, nor the capability to capture customer’s

requirements.

The POLIS [11] codesign method addresses the issues of unbiased specification

and efficient automated synthesis through the use of a unified framework, with a unified

hardware-software representation. POLIS is an example of the tools-integrated environ-

ment that relies on performance estimates to drive the design, and on automation tech-

niques to complete the tasks at each design step. The integral idea behind POLIS is the

Codesign Finite State Machine (CFSM). The CFSM provides a unified input for the tools

within the POLIS environment. POLIS supports automated synthesis and performance

estimation of heterogeneous design through the use of Ptolemy [45] as the simulation

engine. Such ability allows POLIS to provide necessary feedback to the designer at all

design steps. A simple scheme for automatic HW/SW interface synthesis is also sup-

ported.

 39

Similar to POLIS is the Corsair [10] integrated framework method. The Corsair

framework contains several tools for the automatic implementation of formally specified

embedded systems. Based on the extended specification language Specification and

Description Language with Message Sequence Chart (SDL/MSC), the approach supports

system synthesis, implementation synthesis and performance evaluation for rapid proto-

typing. The data from performance evaluation are back-annotated to support the estima-

tion tool during the system synthesis step.

Even though POLIS and Corsair represent a general improvement for the design of

complex embedded SoC systems, several limitations still exist:

• The CFSM graph used in the POLIS framework provides very little support for

real-time handling mechanism.

• POLIS’s automatic interface generation scheme is still very primitive. Much work

has to be done for it to be able to cope with large-scale systems design.

• Although the tools in the Corsair environment are very well integrated, it only

works for a fixed architecture. The approach gives no insight why this particular

architecture is selected.

• Both methods do not furnish a process for capturing customer’s requirements.

The SpecC method [20], on the other hand, is based on a specify-explore-refine

paradigm. It is a unified language, IP-centric approach aimed at easing the problems

caused by heterogeneous design. The SpecC language can be employed to describe both

hardware and software behaviors until the designer attains the feasible implementation

model later on in the design process, hence, promoting an unbiased hardware/software

partitioning for the system under development. The formalism of the SpecC language

allows for efficient synthesis. SpecC provides support for exceptions handling mecha-

nism, and is capable of capturing information about timing constraints explicitly within its

constructs. Limitations of the SpecC method are in the following areas:

 40

• SpecC only supports the capturing and propagation of timing constraints, but not

other constraints. This makes the tasks of constraints validation more difficult.

• The approach does not specify a process and a mechanism to systematically handle

customer’s requirements.

Another language-based HW/SW codesign approach that could have a significant

impact on how SoC systems are developed relies instead on the SystemC [131] language.

Based entirely on C++, SystemC provides a unified, IP-centric environment for specifying

and designing SoC systems, and is capable of modeling systems at different abstraction

levels from the transaction-accurate level to the bus-cycle accurate level to the RTL level

for hardware implementation—making it well-suited for an interface-based approach that

fosters cosimulation and/or coverification of heterogeneous systems under development.

The SystemC’s support for executable specification modeling within a single language

facilitates HW/SW codesign while, simultaneously, easing the cosimulation/coverification

tasks. In addition, its generalized communication model permits an iterative refinement of

communication through the concepts of ports, channels, and interfaces1. Other features of

SystemC include fixed-point modeling capability, and easy integration of existing C/C++

models.

Nonetheless, SystemC does have its own limitations that manifest in the following

areas:

• Like the SpecC approach, SystemC does not specify a process and a mechanism to

systematically handle customer’s requirements.

• SystemC is relatively new, especially as a HDL. The current version (SystemC 2.0)

has yet to provide support for hardware synthesis.

• The interface-based approach adopted by SystemC singularly might not suffice to

tackle current issues in the development of SoC systems.

1. Borrowed from SpecC [20], the channel and interface concepts are first supported in SystemC 2.0.

 41

The chip-in-a-day approach [46] pioneered by the University of California, Berke-

ley’s Wireless Research Center (BWRC) represents an early prototype for the more prom-

ising platform-based design [14]. The approach uses Simulink to capture a high-level data

flow and control flow diagrams. Based on precharacterized hardware components, it

implements data path macros directly using a tool such as Synopsys’s Module Compiler,

while the control logic is translated into VHDL and synthesized. In this approach, algo-

rithms are mapped directly into hardware that derives its parallelism not from multiple

CPUs, but from a multitude of distributed arithmetic units. Although the current results

claim to be two to three orders of magnitude more efficient in power and area than archi-

tectures based on software processors, the chip-in-a-day approach finds its limitations in

the following:

• It still cannot improve upon the execution time.

• It remains to be seen if this approach can support a much more complex real-time

embedded SoC design.

2.4 Other Embedded Design Approaches using UML

The platform-based design concept [14] upon which the chip-in-a-day approach is based

also spawns an inception of the proposal for the Embedded UML profile [133] whose

objective is to merge real-time UML and HW/SW codesign together. Embedded UML

coalesces various existing ideas currently used in real-time UML and HW/SW codesign

practices. It is conceived by its initiators as a UML profile package which is “suitable for

embedded real-time system specification, design, and verification [133].”

In a nutshell, Embedded UML models the system using a collection of reusable

communicating blocks similar to ROOM’s capsule concept [134]. Interfaces and channels,

that are the extensions of ROOM’s port and connector notations, are used for communica-

tion specification and refinement. Within these interfaces and channels, UML stereotypes

can be defined for communication and synchronization services. Other UML models such

 42

as Use Case and Sequence diagrams provide means for specifying testbenches and test

scenarios, while a combination of well-defined State diagram semantics and Action

semantics [133] serves as a driving force for code generation, optimization, and synthesis.

In addition, the extended Deployment diagrams, called the Mapping diagrams, may be

employed to model system platforms [14] and furnish the platform-dependent refinement

paradigm for performance analysis, and optimized implementation generation.

Even though no detailed implementation of the Embedded UML is available at the

time of this writing, a careful perusal over its proposal reveals a few interesting facts. The

Embedded UML profile and the UML profile for Codesign Modeling Framework (see

Chapter 5) bear some resemblance as per their underlying objectives—each of which

attempts to furnish a means to model and to develop platform-based real-time embedded

systems. Certain minute implementation details of the two profiles differ tentatively.

While the Embedded UML resorts to the ROOM’s real-time modeling approach [134] and

utilizes capsule-based reusable blocks as the basic design units, the Codesign Modeling

Framework profile relies on the UML profile for Schedulability, Performance, and Time

Specification [29] and perceives all design entities, including communication links and

protocols, as reusable objects in the LPO. Yet another fundamental difference between the

two profiles exists that possibly comes as a consequence of discrepancy in the viewpoint

towards how each of them should be conceived. Just like Vissers [9], this thesis believes

that semiconductor manufacturers will design systems, rather than system houses design

processors. Hence, it conceives the UML profile for Codesign Modeling Framework such

that, when employed by the proposed method and/or the system developer, it allows for

easy malleability to new technologies. This is to contrast with the Embedded UML profile

whose approach seems to come from the opposite direction where system houses are the

primary forces in the development process. Under such a circumstance, it is likely that

new methods and new ways defined by the semiconductor sector to build systems could

possibly prevent the Embedded UML from attaining its full effectiveness—mainly due to

the generalization of the Embedded UML package. As a preliminary assessment, the

approach embraced by this thesis should eventually be more robust in a long run as it is

 43

designed to better adapt to technological changes, and to be a more specialized package

without totally relinquishing generality.

Proposed as part of the Yamacraw Embedded Software (YES) effort at the Georgia

Institute of Technology, the YES-UML [135] represents yet another UML extensions

package that aims at furnishing the system-level unified representation for the develop-

ment of today’s embedded systems. The YES approach fosters the concept of extreme

reuse, where the development process encompasses both the Application Engineering and

the Domain Engineering arenas, and the efficiency gain results from the application of the

economies of scope [136] that suggest the development of a family of products rather than

a single product as traditionally practiced.

The YES-UML is perceived as a complete system integrating notations whose

objective is to “address the multiple-language, multiple-analysis problem of embedded

systems design by combining together levels of abstraction and heterogeneous conceptual

models [137].” Owing to its unified representation capability, systems analysts can deal

directly with the UML models at the front-end, whereas systems designers can utilize their

conventional analysis tools seamlessly at the back-end through the XMI interface. The

proposed YES-UML extensions encompass the following modeling capabilities for [135]:

• Behaviors of analog interfaces within the embedded specification,

• Real-time related behaviors within the specification,

• Early identification of size, weight, and power (SWAP) constraints,

• Hardware/software interfaces, and

• The development of an executable specification capable of expressing concurrency

in the real-time system being described.

It is clear from this discussion that, like the Embedded UML, the YES-UML also

bears a number of similarities to the Codesign Modeling Framework profile even though

its intended development paradigm is larger in scope than that of the proposed platform-

 44

centric approach. Due to lack of implementation details, no useful comparison between

the YES-UML and the Codesign Modeling Framework can be made at this time.

2.5 A Perspective on Collaboration with Non-Platform
Approaches

Being a graphical language, UML works well for the proposed approach to help promote

reuse at a high abstraction level—specifically at the platform level where the system could

be quickly assembled using pre-designed, pre-characterized platform components. The

proposed approach normally benefits from such platform-component reuse, as well as the

use/reuse of knowledge brought forth by the XML technologies, to expedite the overall

SoC systems development process. Nevertheless, the utterly diverse requirements of

today’s SoC systems make it nearly impossible that a desirable platform component would

always exist for the system developer when applying the proposed platform-centric SoC

design method. As a result, this section discusses a possible collaboration of the platform-

centric approach and other non-platform approaches that could spawn an efficient sub-

process within the proposed approach, and satisfactorily address this very issue.

A programming language such as SpecC and SystemC is particularly well-suited

for implementing the functionality of the UML models. The reasons are that (1) both of

them are object-oriented, as is UML, which could result in a convenient mapping scheme

between the model and the implementation, and vice versa, and (2) like UML, they can

uniformly represent hardware and software in a single language. SystemC, in particular,

permits a large repertoire of C/C++ reusable modules to be incorporated should need arise.

As a result, SystemC manifests itself as a possible language of choice for the proposed

approach for the implementation of the UML models.

 45

Figure 2.5: Collaborative usage model for the proposed platform-centric approach
and the SystemC approach (adapted from [132])

Figure 2.5 illustrates a possible collaborative scheme between the proposed

approach and the SystemC approach. In this figure, SystemC is used to implement the

functionality of the platform-independent specification resulted from the requirements

analysis. In a typical platform-centric development process flow, further analysis on this

specification (in the platform analysis phase) will help determine the target architecture as

well as the partition of hardware and software modules. At this point, if there exists no

desirable hardware component such that the developer has to implement it as part of the

design cycle, s/he can conveniently apply the SystemC iterative refinement approach to

Sy
st

em
C

 M
od

el

.

.Elaborate

Functional Spec
(Platform-Independent)

UML model

HW/SW Functional Spec

UML model

SystemC Model

Simulation

Refinement

Synthesis

 RTL Netlist
black box

SystemC Approach Proposed Approach

 46

the platform-independent functional model—yielding either the SystemC HW/SW model

or the RTL netlist which can be inserted back into the platform-centric environment. Such

a collaborative approach presented herein provides a safeguard for the proposed platform-

centric method where it can still benefit from a unified design environment and extensive

reuse at the interface level even when the platform level design is not possible.

One of the major contributions of the proposed platform-centric SoC design

method is the information-rich environment that promotes easy and effective architecture

selection process, while at the same time allows a wide range of state-of-the-art tools and

technique to co-exist collaboratively, with minimal modification required. In addition, the

proposed approach defines a UML framework for the design of real-time embedded SoC

systems that begins with customer’s requirements determination and analysis, and results

in a detailed functional specification. This thesis asserts that such contributions bring

about a desirable paradigm shift along with an improvement in the overall efficiency of

the proposed SoC design approach.

The next chapter gives a technological overview of the essential background

related to the Unified Modeling Language (UML) and the Extensible Markup Language

(XML). It commences with an introduction to UML, followed by a discussion on the

UML Profile for Schedulability, Performance, and Time Specification [29]. Thereafter, an

overview of XML and a few other related Internet technologies ensue.

Chapter 4 outlines the structure of the library of platform objects (LPO), as well as

furnishes a comprehensive guideline and requirements specification that a platform object

must possess in order to be scalable and compatible with the proposed approach. Chapter

5 provides a detailed treatment of UML extensions for the development of real-time

embedded systems. Chapter 6 demonstrates the cost-effectiveness and the robustness of

the proposed approach via an application case study, i.e. the development of a simplified

digital camera system. A quantitative evaluation against the SpecC method, using the

COCOMO II cost estimation model follows that concludes the chapter.

 47

Chapter 3

UML and XML

This chapter presents a comprehensive introduction to the Unified Modeling Language

(UML) and the Extensible Markup Language (XML) technologies—the very foundation

of the proposed platform-centric SoC design method. To begin, the chapter explains UML

and its various diagrams as traditionally conceived within the software engineering com-

munity where UML is originated. It also discusses UML usage scenarios, extensibility

mechanisms and possible mappings of UML notations to other programming languages

such as Java, and C/C++. Thereafter, it gives an overview of the UML Profile for Schedu-

lability, Performance, and Time Specification. The chapter concludes with a discussion of

XML and related technologies that are essential for the robust implementation of a scal-

able and Internet-oriented library of platform objects (LPO) for the proposed method.

3.1 Unified Modeling Language

In the proposed platform-centric SoC design method, UML not only serves to drive the

development process from its earliest stage of requirement capturing and analysis to the

later stage of acquiring the correct implementation models, but it also provides a common

input format, i.e. XMI, for the collection of tools in the library of platform objects (LPO).

The UML extension mechanism makes it very flexible to be adapted to better suit new

tools and techniques. In addition, UML can be used for documenting the design.

 48

 The Unified Modeling Language (UML) is a language for specifying, visualizing,

constructing and documenting the artifacts of both software and non-software systems. It

represents a collection of the best engineering practices that have proven successfully in

the modeling of large and complex systems [24]. UML bases most of its foundation on the

works of Booch, Rumbaugh, and Jacobson, but its reach has come to encompass a greater

expanse than originally perceived by its creators [25]. The language has successfully

undergone the standardization process with the Object Management Group (OMG) and

become widely received by the industry.

The UML is a simple and generic notation made of model elements that can be

used to model requirements for design of the system. Mathew [26] describes a UML

model as the basic unit of development which is highly self-consistent and loosely cou-

pled with other models by navigation channels. A model is not directly visible to users. It

captures the underlying semantics of a problem, and contains data accessed by tools to

facilitate information exchange, code generation, navigation, etc. UML models are repre-

sented graphically. Many different perspectives can be constructed for a model—each

shows all or part of the model and is portrayed by one or more diagrams. Table 3.1 lists the

models and diagrams as defined by UML.

Table 3.1: UML Models and Diagrams

UML Models UML Diagrams

1. Class model
2. State model
3. Use case model
4. Interaction model
5. Implementation model
6. Deployment model

1. Class diagrams
2. Sequence diagrams
3. Collaboration diagrams
4. Object diagrams
5. Statechart diagrams
6. Activity diagrams
7. Use case diagrams
8. Component diagrams
9. Deployment diagrams

 49

Use case diagrams describe what a system does from the standpoint of an external

observer. They are closely connected to scenarios—an example of what happens when

someone or something interacts with the system. A use case is a summary of scenarios for

a single task of goal. An actor is who or what initiates the events involved in that task. The

connection between actor and use case is called a communication association. A use case

diagram can also be viewed as a collection of actors, use cases and their communications.

Use case diagrams are helpful in such tasks as communicating with clients, and capturing

and determining requirements.

A class diagram gives an overview of a system by depicting classes and the rela-

tionships among them. Class diagrams are static, which means they display what interacts

but not what happens when they do interact. Some useful relationships are, for example,

association, aggregation, composition and generalization. A number of attributes can be

adorned on an association: a role name to clarify the nature of the association, a navigabil-

ity to shows which direction the association can be traversed, a multiplicity to govern the

number of possible instances of the class associated with a single instance on the other

end, and so on. Mandatory elements in each class diagram consist of classes, associations,

and multiplicities. Figure 3.1 illustrates a subset of UML notations that are often used in

this dissertation and elsewhere.

To simplify complex class diagrams, classes can be grouped into packages. A pack-

age is a collection of logically related UML elements. A package is said to depend on

another if changes in the other could possibly force changes in the first. Dependency is

denoted by a dotted arrow, with the arrow originates from a client package, i.e. a package

which depends upon the other package (the supplier) where the arrow terminates. Another

UML mechanism that assists in simplifying complex class diagrams is the object dia-

grams. Object diagrams show instances instead of classes, and are useful for explaining

small pieces with complicated relationships, especially recursive relationships.

 50

Figure 3.1: Summary of UML notations

ClassName

ClassName

attribute:Type = initialValue

(a) Class

 superType

subType 1 subType 2

(b) Generalization

 Class1

 Class2

(c) Association

 Class

 Class

 Class

1

*

0..1

exactly one

many (zero or more)

optional (zero or one)

(d) Multiplicities

parameter
Class

parametrized class

NiOS<32> bound element

(e) Parametrized Class

 Class Class

(f) Aggregation (g) Composition

 Class1 Class2

(h) Dependency.
Class1 depends on Class2.

 ClassA

Class1 Class2

(i) Either Class1 or Class2 may be used
to implement ClassA.

uri autoConfig textField

0..1*1

uml
1

(j) uml is composed of a uri, zero or
more instances of autoConfig, and
an optional textField.

 51

While class and object diagrams are static model views, sequence, activity, state-

chart, and collaboration diagrams are of dynamic characteristics. A sequence diagram

details how operations are carried out, what messages are sent, and when. Sequence dia-

grams are organized according to time. The time progresses vertically down the page. The

objects involved in the operation are listed from left to right according to when they par-

take in the message sequence. A message in a sequence diagram is asynchronous if it

allows its sender to send additional messages while the original is being processed. Simi-

lar to sequence diagrams, collaboration diagrams convey the same information but instead

focusing on object roles rather than times that messages are sent. In collaboration dia-

grams, object roles are the vertices and messages are the connecting links with proper

sequence numbers on them.

Objects have behaviors and state. The state of an object depends on its current

activity or condition. A statechart diagram shows the possible states of the object and the

transitions that cause a change in state. States in statechart diagrams can be nested. Related

states can be grouped together into a single composite state. Nesting states is necessary

when an activity involves concurrent or asynchronous subactivities. While a statechart

diagram focuses attention on an object undergoing a process, an activity diagram focuses

on the flow of activities in a single process. Out of each activity comes a single transition,

connecting that activity to the next activity. A transition may branch into two or more

exclusive transitions, or merge to mark the end of the branch. A transition may also fork

into two or more parallel activities. These parallel threads can later join to form a single

transition.

The last two diagrams defined by UML are component and deployment diagrams.

Component diagrams are physical analogs of class diagram. Deployment diagrams display

the physical configurations of software and hardware. The physical hardware in a deploy-

ment diagram is made up of nodes, which, in turn, can contain components.

 52

UML is more complete than other languages in its support for modeling complex

systems, and is particularly suited for capturing real-time embedded systems. The major

features of UML suitable for modeling real-time embedded systems include [28]:

• an object model (incorporating data attributes, state, behavior, identity and respon-

sibility) allowing the structure of the system to be captured,

• use case scenarios—allowing key outputs to be identified from system in response

to user input,

• behavioral modeling—use of statechart diagrams help facilitate the dynamic mod-

eling of the system’s behavior,

• packaging—providing mechanisms to organize elements of the modeling into

groups,

• representations for concurrency, communication and synchronization for modeling

real-world entities,

• model of physical topology—using deployment diagrams to show the devices and

processors which comprise the system,

• support for object-oriented patterns and frameworks—allowing common solutions

to common problems to be represented.

In the context of object oriented technology, patterns can be thought of a problem-

solution pair. They capture the static and dynamic structures and collaborations among

key participants of successful solutions to problems that arise when building applications

in a particular domain [67]. As opposed to frameworks that support reuse of detailed

design and code, patterns facilitate reuse of successful software architectures and designs

by relying on two key principles [67]: (1) separation of interface from implementation,

and (2) substitution of variable implementations with common interfaces. Gamma, et.al.,

show in their pioneering work on design patterns [68] how patterns solve design problems

and how they explicitly capture expert knowledge and design trade-offs, and make this

expertise more widely available.

 53

For further readings on UML, UML’s specification by OMG [24] and the user

guide by Booch, Rumbaugh and Jacobson [30] provide a detailed treatment of the subject.

For patterns, the Design Patterns book by Gamma, et.al. [68] is a good starting point for

interested readers. Quick tutorials can be found at [66, 67], while [64, 65] represents the

very foundation of design patterns as conceived by Christopher Alexander during the late

1970s [66].

The following subsections discuss UML’s general extensibility mechanisms that

include topics on constraints and Object Constraint Language (OCL), tagged values, and

stereotypes. Then, a discussion on UML-to-code translation, as well as an overview of the

UML profile for Schedulability, Performance and Time Specification [29] are presented.

This section owes a large part of the UML diagrams description to a good tutorial by

TogetherSoft [27]. Appendix C summarizes the various UML notations.

3.1.1 Constraints and Object Constraint Language (OCL)

To quote [98]: “A constraint is some additional restriction (above the usual UML well-

formedness rules) applied against a modeling element.” UML constraints always appear

enclosed in a pair of curly braces ({}) and can be placed inside text notes. Certain kinds of

constraints, e.g. {subset}, {ordered}, {xor}, etc., are predefined, whereas others can be

user-defined (see UML Specification [24] for details). The interpretation of user-defined

constraints are tool-dependent. In fact, as stated in the specification, it is expected that

individual tools would provide one or more languages in which formal constraints could

be written [24].

As the predefined UML constraints are not comprehensive enough to handle all

aspects of a system specification, and user-defined constraints can potentially result in

ambiguities, UML decidedly includes with its specification a formal constraint description

language—the Object Constraint Language (OCL) [24, 99]—that can come in handy

when need arises.

 54

Figure 3.2: Demonstrative use of UML extensibility mechanisms

OCL expressions are typically used to specify invariant conditions, as well as pre-

and post-conditions that must hold for the system being modeled. They can also be used to

describe guard conditions, to specify constraints on operations, as well as to provide a

navigation language. OCL expressions can reside in text notes, or can be hidden by tools.

Because an evaluation of an OCL expression is instantaneous, it never alters the state of

the system. Figure 3.2 demonstrates the use of UML constraints and OCL expressions.

3.1.2 Tagged Values

To avoid inundating UML models with an excessive number of graphical notations that

often result in developmental ineffectiveness, detailed UML element properties may be

captured using such mechanisms as attributes, associations and tagged values.

A tagged value is a keyword-value pair of type String (in the UML specification, a

keyword is actually called a tag) that permits arbitrary information to be attached to any

kind of model element so as to provide semantic guidance for back-end tools such as code

generators, and report writers [24], to name a few. Each tag represents a particular kind of

Platforms

Omap5910 Nios

bitWidth: Integer = 32

{disjoint}

{bitWidth == 32 || bitWidth == 16}

RegFileSz: Integer = 256

context Nios
 inv: self.RegFileSz = 128 or
 self.RegFileSz = 256 or
 selfRegFileSz = 512

-- This is OCL expressions{abstract}

 «ABnode» «ABnode»

 55

property applicable to one or many kinds of model elements. Similar in nature to UML

constraints, a tagged value also always appears within a pair of curly braces ({}). When

more than one tagged value are to be specified, a comma (,) is used as a delimiter to sepa-

rate them. When a tag appears without an accompanying value, it represents a standard

shorthand notation for {isTagname = true}. As an example in Figure 3.2 above, {abstract}

is a tagged value that is semantically identical to {isAbstract = true}.

3.1.3 Stereotypes

Among the core extensibility mechanisms furnished by UML, stereotypes are probably

the most powerful and extensively used construct. When applied to a model element, it

subclasses that model element, inheriting the attributes and relationships, but exhibiting

specific intent such that an unambiguous interpretation can be rendered when processed

by tools. Just like any model element, a stereotype can have constraints and tagged values

attached to itself.

Stereotypes are usually shown as text imbedded in a pair of guillemets. In Figure

3.2, for example, «ABnode» is a stereotype. So are «ABcomponent», «ABlpoMember»,

«ABmap» and «ABdeploy» in Figure 2.4. Where the use of guillemets is not possible, the

text strings << and >> are used.

3.1.4 UML to Code Mapping

Even though UML’s lack of rigorous formalism has been a subject of criticism by many, it

has also been demonstrated by quite a few UML tool vendors [100, 101, 102, 103, 104,

105] that such a shortcoming does not really hinder the developments of features like code

generation, reverse engineering (where a tool constructs UML models based on existing

code), as well as round-trip engineering, which further tries to regenerate the source code

when the model is modified.

 56

Following simple rules like those shown in Table 3.2, the mappings between UML

and a popular OO programming language such as Java have evolved to become a standard

feature supported by almost all commercial UML tools, plus a couple of free ones. With

some modifications, UML to code mappings for other programming languages, e.g. Ada,

Real-Time Java, Delphi, CORBA IDL, optimized C/C++ for embedded application, are

also possible.

3.1.5 UML Profile for Schedulability, Performance and Time
Specification

Currently undergoing the final stage prior to being standardized by OMG, this real-time

profile aims to bridge a gap between the real-time and UML communities by providing

capabilities for modeling real-time systems and characteristics, such as quality of services

(QoS) that often are non-functional, yet essential to the development of real-time systems.

The profile furnishes a design framework that (1) enables the construction of models that

could be used to make quantitative predictions about the QoS characteristics, and that (2)

facilitates communication of design intent among developers in a standard way [29].

Table 3.2: General rules for the mappings between UML models and Java

UML Constructs Java Constructs

1. Attribute
2. Operation
3. Abstract class
4. Interface
5. Package
6. Subclass (Generalization)
7. Realization
8. «use» or Dependency
9. Multiplicity
10. Role

1. Instance variable
2. Method
3. Abstract class
4. interface keyword
5. Package declaration
6. extend keyword
7. implement keyword
8. import clause
9. Array
10. Instance variable of type Class
that is associated with the Role

 57

Figure 3.3: Structure of the UML Profile for Schedulability, Performance and Time
Specification

General Resource Modeling Framework

 «profile»

RTresourceModeling

 «profile» «profile»

RTconcurrencyModelingRTtimeModeling

 «import» «import»

Analysis Models

 «profile» «profile»

PAprofile SAprofile
 «modelLibrary»

RealTimeCORBAModel

 «import»

Infrastructure Models

 «import»

 «profile»

RMAforRTcorbaMyModel

Analysis
Method Provider

 «import» «import»

 «appliedProfile»

 «appliedProfile» «appliedProfile»

Modeler

OMG

Infrastructure
Provider(Developer)

 58

A UML profile, shown as a package notation adorned with «profile», is a collec-

tion of predefined stereotypes that is used to tailor UML for a specific problem domain.

As such the UML profile for Schedulability, Performance and Time Specification (or, con-

tractively writing, the UML real-time profile) provides the system developer, as well as

tool vendors, e.g. an analysis method provider, or an infrastructure provider, with a means

to effectively model real-time applications for analysis and synthesis via a predefined set

of RT-related stereotypes.

At the core of this profile is the General Resource Modeling framework which

encompasses the RTresourceModeling, RTtimeModeling, and RTconcurrencyModeling

profiles that define the concept and the modeling of resources, time and concurrency,

respectively. Along with these three packages, the UML real-time profile also include the

basic frameworks for schedulability and performance analyses, i.e. the SAprofile and the

PAprofile packages, as well as the Real-Time CORBA infrastructure model. Figure 3.3,

which is adapted from [29] and [106], illustrates the structure of the UML real-time profile

that also depicts the interactions among different active entities (represented by stick fig-

ures) and profile packages.

The UML real-time profile’s general resource model deals specifically with various

aspects of resources modeling in the real-time domain. It details a comprehensive treat-

ment on resources-sharing where mechanisms for modeling activeness and protection are

defined. Services as provided by the resources are either exclusive or non-exclusive, with

various quality of service (QoS) characteristics imposed upon them.

The time model described in the RTtimeModeling profile is a specialized resource

model, and thus, naturally inherits all the rudimentary concept defined in the RTresource-

Modeling package. Using the RTtimeModeling profile, the developer can specify time

value, instant, and duration, as well as associate time with actions and events where

moment of occurrence and duration are of importance. It is to be noted, nonetheless, that

the RTtimeModeling profile only permits one clock to be defined.

 59

The last package in the general resource framework, the RTconcurrencyModeling

profile, copes primarily with the concurrency aspects of modeling real-time applications.

Using this profile, the concept of active objects and threads can be modeled conveniently.

The profile resorts to the message passing scheme for communicative means. From the

profile viewpoint, a call action in the sender initiates a message transfer that subsequently

triggers a behavior in the receiver. The modeler can specify call actions to be synchronous

or asynchronous, and operations or receptions of messages to be immediate or deferred.

In addition to the profiles discussed earlier, the UML real-time profile also contains

two other native packages that provide basic frameworks for modeling real-time applica-

tions for further schedulability and performance analyses. These two profiles do not, by

and large, support all available techniques and algorithms, but rather only a representative

subset of those. It is expected that more specialized profiles for schedulability and perfor-

mance analyses, as well as syntheses, can later be supplied by tool vendors.

3.2 Extensible Markup Language

The Extensible Markup Language (XML) is the other technological underpinnings for the

proposed platform-centric SoC design method. XML provides a concrete facility for real-

izing the LPO concept and managing the complexity resulted from a huge database of

extremely diverse LPO modules. XML also promotes information exchange which can

culminate to the virtually unbounded sharing of PO member modules (POmm). Further-

more, there exists an extensive collection of public-domain and/or open-source tools for

XML and other XML-related technologies that can be used to enhance its capability.

3.2.1 Introduction to Markup Languages and XML

Markup languages are all about describing the form of the document—that is, the way the

content of the document should be interpreted [47]. A markup language is a notation for

writing text with markup tags, where the tags are used to indicate the structure of the text

[48]. Tags have names and attributes, and may also enclose a part of the text.

 60

One of the most predominant markup languages these days is the Hyper-Text

Markup Language (HTML). HTML is an application of the Standard Generalized Markup

Language (SGML), which is a rather complicated superset of XML. HTML has a fixed set

of markup tags, and is primarily used for layout on the Web. Being a hyper-text language,

a HTML document can contain links to other documents, text, sound, images, and various

other resources. However, it says nothing about the content of the data.

Both SGML and HTML heavily influence the development of XML [49]. XML is

a semantic language that allows text to be meaningfully annotated. It is designed to sepa-

rate syntax from semantics to provide a common framework for structuring information

and allow tailor-made markup tags for any imaginable application domain [48]. XML also

supports internationalization (Unicode) and it is platform-independent.

One of the functions of XML is the storage of data. The technologies that dominate

the market for data storage are relational databases that manage traditional data types such

as numbers and text [50]. XML goes beyond the boundary of traditional relational data-

base technologies by offering the potential to process smart data, or i.e. self-describing

data. XML documents are, by their nature, ideal for storing databases [51]. A standardized

interface to XML data is defined through W3C's Document Object Model (DOM) [52],

which provides a CORBA IDL interface [53] between applications exchanging XML data.

The clearly defined format provided by XML helps make the data readily transferable to a

wide range of hardware and software environments. New techniques in programming and

processing data will not affect the logical structure of the document's message [51]. If

more detail needs to be added to the document, the model can be updated and new markup

tags added where required in the document instance. If a completely new style is required

then the existing document model can be linked to the new one to provide automatic

updating of document structures. For these reasons, a claim exists that XML brings about

a revolution in communication and information distribution across the Web and within

intranets [50].

 61

3.2.2 Conceptual View of XML

An XML document is an ordered, labeled tree [48]. The leaf nodes of an XML tree are

terminal elements that contain actual data in the form of text strings. Although a character

data leaf node can be declared EMPTY, it is usually non-empty and must be non-adjacent

to other leaf nodes. Other kinds of XML leaf node exist, that include:

• processing instructions—annotations for various processors,

• comments, and

• a schema declaration, i.e. Document Type Definitions (DTD) or XML-Schema.

In XML tree terminology, non-terminal elements always contain subelements, or

child nodes, that can be grouped as sequences or choices. A sequence defines the order in

which subelements must appear. A choice gives a list of alternatives for subelements.

Sequences and choices can contain each other. Each non-terminal element node can be

labeled with a name—often called element type—and a set of attributes, each consisting

of a name and a value.

By adopting the Extended Backus-Naur Form (EBNF) for its syntax (see Section

1.4 of the official W3C XML Recommendation [55]), XML is designed to be easy to use

with modern compiler tools [54]. The EBNF defines a set of rules, where every rule

describes a specific fragment of syntax. A document is valid if it can be reduced to a sin-

gle, specific rule, with no input left, by repeated application of the rules. XML is defined

by an EBNF grammar of about 80 rules.

An XML document normally consists of three types of markup tags, the first two of

which are optional:

1. An XML processing instruction identifying the version of XML being used, the way

in which it is encoded, and whether it references other files or not, e.g.,

<?xml version="1.0" encoding="UTF-8" standalone="yes">

 62

Figure 3.4: Structure of an XML document

2. A schema declaration that either contains the formal Document Type Definitions

(DTD) markup declaration in its internal subset (between square brackets) or refer-

ences a file containing the relevant markup declaration (the external subset), e.g.:

<!DOCTYPE poModule SYSTEM "http://www.lpo.com/dtds/poModule.dtd">

3. A fully-tagged document instance which consists of a root element, whose element

type name must match that assigned as the document type name in the document

type declaration (DTD), within which all other markup is nested.

The term prolog is used to describe the section where the XML processing instructions

and a schema declaration may optionally appear. Figure 3.4 illustrates the XML document

structure.

XML Processing Instruction

DTD/XML-Schema Declaration

<rootElement>

 <body>

 </body>

</rootElement>

Prolog

Nested
Root
Element

“xmlDocument.xml”

 63

A well-formed XML document must contain exactly one element. This single ele-

ment can be viewed as the root of the document. Elements can be nested, and attributes

can be attached to them. Attribute values must be in quotes, and tags must be balanced, i.e.

they must always be explicitly opened and closed. Empty element tags must either end

with a /> or be explicitly closed.

The structure of an XML document is defined by a schema language. Currently the

W3C XML Recommendation [55] supports two types of a schema language, namely, Doc-

ument Type Definition (DTD) and XML-Schema [56]. While the XML-Schema is by far

more powerful than the DTD, it is also more complicated and still is very immature. Tool

support for the XML-Schema is meager. As of today, it remains to be seen whether or not

the XML-Schema will be able to completely replace the DTD as stated in its objective. In

implementing the LPO, only the DTD will be used for it is more stable and sufficiently

powerful. The DTD to XML-Schema conversion tools are readily available. Figure 3.5

shows an example of a DTD file used to describe the structure of the PO register file.

Also used in SGML, the DTD provides a facility to specify a set of tags, the order

of tags, and the attributes associated with each. A well-formed XML document that con-

forms to its DTD is called valid. A DTD is declared in the XML document’s prolog using

the !DOCTYPE tag. It is actually within the DTD that the sequence and choice grouping of

non-terminal child nodes is specified. XML tags are defined using the DTD’s ELEMENT

tag, while the attributes associated with each XML tag are defined using ATTLIST. A

DTD’s terminal element can be of types parsed character data (#PCDATA), EMPTY or

ANY. A terminal element declared as ANY will not be parsed; thus, it can contain subele-

ments of any declared type, including character data. It is to note that an XML document

is case-sensitive.

 64

Figure 3.5: An example of a Document Type Definition (DTD) file. When written as a
separate file, the DTD file contains the content of the DTD declaration as nested between
the square brackets within the <!DOCTYPE [DTD]> element.

<!-- Define abstract type for each module -->
<!ENTITY % typeFile SYSTEM "file:///C:/Data/Thesis/XML/Test/abstractType.txt">
<!ENTITY % abstractTypeList "(%typeFile;)">

<!ELEMENT poRegfile (self, pom, blueprint, poSchema, poInfo?, polif+)>

<!-- Start with self here -->
<!ELEMENT self (id, poID, uri)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT poID (#PCDATA)>
<!ELEMENT textField (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT uri (#PCDATA)>

<!-- the POM, PO Manager -->
<!ELEMENT pom (id, uri)>
<!-- Architecture blueprint -->
<!ELEMENT blueprint (uri)>
<!-- Location of the PO schema file -->
<!ELEMENT poSchema (uri)>
<!-- Information about the PO -->
<!ELEMENT poInfo (info)+>
<!ELEMENT info (subject, textField)>
<!ELEMENT subject (#PCDATA)>

<!-- Main Entry... consisting of toolModule and componentModule -->
<!ELEMENT polif (name, uri)>

<!-- Attribute declaration -->
<!-- This DTD uses a MIME type for the fieldType attribute -->
<!ATTLIST textField fieldType CDATA "text/plain">
<!ATTLIST textField isImported (yes | no) "no">
<!ATTLIST polif moduleKind (component | tool) #REQUIRED>
<!ATTLIST polif abstractType %abstractTypeList; #REQUIRED>
<!-- moduleID should match an id as defined in each corresponding xml file -->
<!ATTLIST polif moduleID ID #REQUIRED>

 65

3.2.3 XML Extensions and Applications

As of late 1998, the XML design effort was re-chartered under the direction of an XML

Coordination Group and XML Plenary Interest Group to be carried out in five new XML

working groups [57]: XML Schema Working Group, XML Fragment Working Group,

XML Linking Working Group (XLink and XPointer), XML Information Set Working

Group, and XML Syntax Working Group. These working groups were designed to have

close liaison relationships with the W3C's Extensible Stylesheet Language (XSL) Work-

ing Group and Document Object Model (DOM) Working Group. Under such concerted

collaborations, several XML-based technologies have since emerged. These technologies

make XML even more powerful and attractive as a convenient tool to realize the LPO

concept. Some of these XML extensions and applications that could be used to enhance

the proposed platform-centric SoC design method include:

• Namespaces. The use of namespace helps avoid name clashes when the same tag

name is used in different contexts. Namespaces can be defined in any element, and

appear as a prefix before an element or an attribute name, separated by a colon.

Their scope is the element in which they are defined. Unfortunately, namespaces

and DTDs do not work well together [49]; they bear no special meaning for the

DTD. The DTD views a namespace as an integral part of a tag name without differ-

entiating it from the local name. To better harness the power of namespaces, XML-

Schema should be used.

• Addressing and linking. XML extends HTML’s linking capabilities with three sup-

porting languages: Xlink [58] which describes how two documents can be linked;

XPointer [59] which enables addressing individual parts of an XML document;

and, XPath [60] which is an underlying technology for XPointer for specifying

location paths. These technologies, together with the namespace technology, enable

XML documents, e.g. the POmm, to integrate very well into the World Wide Web.

As a result, data exchanges are promoted in such a way that can ultimately lead to

one big database that spans the entire Internet and intranet spaces.

 66

• WWW Resources. The Resource Description Framework (RDF) [61] is an XML

application that works with metadata, i.e. data that describes data; it expresses

XML data in the canonical XML format for ease of identification. RDF is a lan-

guage that describes WWW resources, such as title, author and modification date of

a Web page, as well as anything that can be identified on the Web [62]. It provides a

common framework for expressing WWW information in such a way that it can be

exchanged between applications without loss of meaning. One widely used RDF

today is the Dublin Core, which is seen by many as a way of standardizing RDF for

Web resources [47]. As the LPO can also span the WWW domain, the Dublin Core

may be used to ease the POmm identification process. More information about the

Dublin Core can be found at http://www.purl.org/dc.

Of these XML extensions and applications, XPath plays a major role in an efficient

implementation of the LPO. Because the LPO is composed mainly of XML data, XPath

becomes an obvious choice for data querying and retrieving operations. In addition, other

XML-based technologies such as XPointer, XQuery [72] and XSL/XSLT [71], that can

potentially contribute to the success of the LPO, also base their implementations on or

around XPath. The applicable usages of these technologies may involve using (1)

XPointer to access remote XML content, (2) XQuery to process XML data query, or (3)

XSL/XSLT to automatically render XML data into another format more suitable for

human understanding.

3.2.3.1 XPath

A W3C standard, XPath is a syntax for defining parts of an XML document [73]. It comes

pre-defined with a library of standard functions that helps cope with strings, numbers and

Boolean expressions.

From XPath’s point of view, an XML document is a tree view of nodes. XPath uses

location path expressions similar to the traditional file path to identify nodes in an XML

document. A location path expression results in a node-set that matches the path.

 67

A location path consists of one or more location steps, separated by a slash (/), and

it can be absolute or relative. An absolute location path starts with a slash and a relative

location path does not. The location steps are evaluated in order, one at a time, from left to

right. Each step is evaluated against the nodes in the current node-set. If the location path

is absolute, the current node-set consists of the root node. If the location path is relative,

the current node-set consists of the node where the expression is being used. Location

steps consist of an axis, a node test and zero or more predicates. The syntax for a location

step takes the form: axisname::nodetest[predicate]. For example, in the expression

child::po[last()], child is the name of the axis, po is the node test and [last()] is a predicate.

XPath 1.0 supports only four expression types and seven node types. The expression types

consist of node-set, string, number, and boolean; whereas, the node types encompass doc-

ument, element, attribute, comment, text, namespace and processing instructions.

To make XPath expressions easier to use, abbreviations are defined for frequently

used XPath syntax. Table 3.3 lists these abbreviations. Table 3.4 demonstrates the use of

some XPath expressions on the LPO register file below.

Table 3.3: XPath syntax abbreviations

Expression Abbreviation

self::node() .

parent::node() ..

child::childname childname

attribute::childname @childname

/descendant-or-self::node()/ //

[position()=3] [3]

[position()=last()] [last()]

 68

<?xml version="1.0"?>
<!DOCTYPE lpoRegfile SYSTEM "file:///C:/Data/Thesis/XML/Test/lpoRegfile.dtd">
<lpoRegfile>

<self>
<name>Example LPO</name>
<id>lrf001</id>
<uri>file:///C:/Data/Thesis/XML/Test/lpoRegfile.xml</uri>
<textField>This is a description of this lpoRegfile</textField>
</self>
<po>
<name>po-NiOS</name>
<uri>file:///C:/Data/Thesis/XML/Test/poRegfile_nios.xml</uri>
</po>
<po>
<name>po-OMAP</name>
<uri>file:///C:/Data/Thesis/XML/Test/poRegfile_omap.xml</uri>
</po>

</lpoRegfile>

A number of public-domain tools exist for XPath. For example, the Apache’s

Xalan [74, 75] contains an XPath engine that can be used with C++ or Java. The Java-

based Jaxen [76] and Microsoft’s MSXML [77] provide some alternatives. The examples

presented in Table 3.4 are evaluated using MSXML 3.0. Complete reference to XPath can

be found at the W3C website [60]. ZVON [78] and W3Schools [73] also contain excellent

resources on XPath and other XML-related topics. As it is beyond the scope of this disser-

tation to cover the whole spectrum of XML technologies in detail, interested readers

should consult appropriate references for further information. Chapter 4, however, will

discuss how each XML technologies presented above fit into the LPO implementation

scheme.

 69

Table 3.4: Examples of the XPath expressions

Path Description

/lpoRegfile/self/* returns all children of the self node, i.e. name,
id, uri, textField

@* returns all attributes of the context node

string(//id/.) returns string value of the id node, i.e. lrf001

//attribute::isImported returns the isImported attribute in the docu-
ment, i.e. isImported = “no”

/descendant::po[1] returns the first po node in the document

string(//@fieldType) returns the string value of the fieldType
attribute in the document, i.e. text/plain

po[name and uri] returns all the po nodes within the context that
contain both name and uri elements

//self/textField[@isImported = “no”] returns all textField nodes that have the isIm-
ported attribute values set to “no”

count(//uri) returns number of the uri node appearances,
i.e. 3

 70

Chapter 4

Library of Platform Objects

This chapter is dedicated to a detailed discussion of the XML specification for realizing a

library of platform objects (LPO) for the proposed platform-centric SoC design method. It

starts by describing desirable LPO characteristics from the conceptual domain viewpoint.

From within this domain, requirements for the LPO are identified. Thereafter, the chapter

maps these requirements onto the XML domain, and defines the XML specification, as

well as identifies the roles that are expected from the system developer, the platform

object member modules (POmm) developer, and the POmm themselves. It provides a gen-

eral but precise guideline on how a LPO should be implemented. Requirement levels are

indicated by keywords according to the guideline furnished by the Internet Engineering

Task Force (IETF)’s RTF2119 [63], which is also summarized in Table 4.1.

4.1 Conceptual Viewpoint

This section looks at a LPO analytically, and identifies characteristics that are desirable for

the proposed platform-centric SoC design method. Once identified, these characteristics

serve as the basis for deriving the XML specification. In general, a LPO behaves like a

data warehouse for the developer—it permits data to be stored, inventoried, searched, and

retrieved. The specification addresses such requirements, as well as ensures compatibility

among data from different providers, and among every individual LPO and the proposed

approach.

 71

Definition 4.1: Library of Platform Objects (LPO)

A collection of pre-designed, pre-characterized system platforms that further meet

a governing set of rules and requirements specific to the proposed platform-centric

SoC design method.

Definition 4.2: Platform Object (PO)

A configurable/reconfigurable, pre-designed, pre-characterized system platform

that (1) supports fast and correct system construction via a set of well-defined

communication infrastructure, and (2) carries with it a set of compatible platform

object member modules (POmm).

4.1.1 LPO in Principle

A LPO is a distributed and scalable database. As such, it is only appropriate to, first and

foremost, identify with these principal LPO characteristics that make the concept novel

and beneficial for the proposed platform-centric SoC design method.

Table 4.1: Summary of the requirement levels as specified in IETF’s RFC2119

Keywords Meanings

must, required, shall an absolute requirement

must not, shall not an absolute prohibition

should, recommended there may exist valid reasons in particular
circumstances to ignore a particular item

should not, not recommended there may exist valid reasons in particular
circumstances when the particular behavior
is acceptable or even useful

may, optional truly optional

 72

Database-wise, from the platform-centric approach’s point of view, a LPO involves

three main categories of data:

• Component information. Data in this category conveys various information about

component characteristics, as well as component-specific knowledge for the very

purpose of assisting the developer in efficiently deploying its self. The data shall

include, at the minimum, the component identification and its whereabouts, the cor-

responding UML model, the characteristics similar to those appeared in a databook,

and potentially the availability of component-specific software routines, as well as

any possible tool(s) association. Knowledge-based information, such as design

guideline, user manual, official specification, etc., is also expected.

• Tool information. Because platforms are often designed with certain application

domains in mind, full potential of a platform-based design such as the proposed

approach can usually be benefited when a platform is accompanied by a specially-

tailored tool suite. For this reason, tools, and not just components, are integral to the

robustness of the platform-centric approach. To treat tools and components equally,

the method views tools also as LPO modules that can convey information, just like

their component counterparts. Information held by tool modules is not as diverse as

that of component modules, and shall include information about their availability

and whereabouts, as well as knowledge-based information such as user guide and

manuals.

• Platform information. A platform often is configurable using both hardware and

software components. In addition, because of its specialized nature, it is suitable for

a platform provider to also supply a template that can serve as a guideline for the

developer when trying to construct a desirable target architecture from the platform.

As such, various characteristics related to this template can be collected and

grouped, and the template placed in a LPO.

A LPO is scalable. Once constructed, it is open to an addition of new modules and/

or a removal of current ones—given that such an addition or removal does not conflict

 73

with the requirements for its existence. It is perceived that a LPO could behave like a dis-

tributed database, with platforms (PO) and platform components (POmm) physically

residing across the Internet and the developer only locally maintains the logical represen-

tations of these entities. Owing largely to the Internet technologies, such distributedness

and scalability potentially renders better manageability, maintainability and upgradeabil-

ity for a LPO—a feature that could very well be attractive for both the system developer

and the platform and component providers. Under such a scenario, the system developer

could be completely up-to-date with a current set of available platform technologies and

components; whereas, the platform and component providers could be in total control of

the services such as component usage, upgrade, and maintenance.

4.1.2 Identity

One of the questions with a LPO behaving like a distributed database is, “whose responsi-

bility is it to first initiate the existence of a LPO?” Because a LPO is primarily a database

of platforms whose existences further induce the existence of platform components, it

should be the platform providers that are responsible for the initiation. When a platform is

installed, it shall check to see if a LPO exists that can be identified. If not, it creates one

and makes it known publicly such that subsequent insertion of platforms will not have to

perform the same task redundantly.

The ability to check an existence of a LPO at the time of platform installation

implies that there must locally exist a mechanism that keeps track of platform availability

as well as any relevant information necessary for identifying and locating platforms. This

mechanism represents a logical LPO space that provides the mapping to their physical

counterparts during the development process.

Definition 4.3: Logical LPO space

A logical representation of a LPO that resides locally, where the developer has

complete access to, and providing links to its physical equivalents

 74

Definition 4.4: Physical LPO space

A physical LPO space defines a locationally unrestricted domain where a LPO and

its data may reside. This spatial domain is confined by the Internet boundary, and

includes any local space as well. As such, it is a superset of a logical LPO space.

4.1.3 Scalability

A LPO grows or shrinks dependently on an attachment or removal of LPO modules, i.e.

platforms and/or platform components. An attachment of a LPO module onto a LPO

requires, as a prerequisite, that the attaching module physically exists. Its whereabouts is

locationally unrestricted—it may be locally present, or remotely accessible via the Inter-

net; it attaches itself onto a LPO by creating a logical instance of itself and imprinting that

instance onto the logical LPO space such that a trace to its physical counterpart is possible

and complete, i.e. trace information from the logical LPO space can bring about complete

access to information stored remotely at the physical LPO space. An act of removal is

essentially the reverse concept of an attachment. However, it is only necessary to remove a

logical module from the locally located logical LPO space—effectively detaching a link

between the physical counterpart and the logical LPO. To promote scalability, physical

LPO modules can also make their presences known and identifiable to Internet search

engines.

An installer or an uninstaller can be useful for attaching and removing logical LPO

modules, be they platforms or components. The use of an installer/uninstaller does also

offer another benefit; it makes a LPO more user-friendly and attractive, resulting in a

higher frequency of LPO utilization. In The Selfish Class [69], the authors suggest through

the Work Out Of The Box pattern that a higher rate of software object utilization usually

results in a better rate of survival. This principle applies to the use of default arguments as

well.

 75

4.1.4 Operations

LPO-related operations, chiefly read data and process data, are performed by LPO tools.

Each LPO tool must be able to read needed data from the XMI inputs and/or the platform

components, and then process them according to its intended task.

A LPO may also furnish the developer with a user-interface tool that makes inter-

actions between the developer and the LPO efficient. This tool shall support the Create/

Read/Update/Delete (CRUD) operations, similar to the basic operations found in most

Object Oriented and Query languages, to help manage local modules in the logical LPO

space. Moreover, because of the information-rich nature of a LPO, the user-interface tool

should also be able to process data contents and present them in a human-readable format,

in much the same way as web browsers do.

By observing how a LPO comes into existence, it is obvious that each platform

must also carry with it a user-interface tool. Since it is possible that a LPO can host more

than one platform, there can very well be more than one user-interface tool within a

LPO—each one comes with and belongs to each platform, and can be tailored specifically

to suit the platform’s characteristics. The platform that first initiates the LPO creation shall

lend the service of its user-interface tool to help manage modules in the locally-located

logical LPO space.

4.1.5 Interactions

The platform-centric SoC design method relies heavily on two mechanisms, namely, the

UML and a LPO. These mechanisms belong to two different application domains; UML

applications are allowed to request cross-domain services from a LPO. Because of its

nativeness to UML and its being based on XML just like the LPO, it is envisaged that the

XML Metadata Interchange format (XMI) could be a natural choice that provides a stan-

dard means for representing inter-domain communications. Operations and components

 76

provided by a LPO constitutes a processing power and development resources to drive the

design flow for applications modeled in the UML domain.

Utilizations of LPO components during the development process, either in the con-

text of target architecture construction or application design, are achieved through the use

of UML’s Package which permits these components to be imported into the UML applica-

tion domain for further reuse. As such, it is imperative that each LPO component provide

a UML package whose contents contain links to itself in a LPO, and may describe the

behaviors and characteristics that will promote the reuse of its own self in the UML

domain.

4.2 XML Viewpoint

This section describes a LPO from an implementation point of view, where XML prom-

ises to be a convenient, yet effective, tool for realizing the library. To begin, the mapping

from the conceptual viewpoint to the XML equivalents are presented. The actual imple-

mentation of a LPO then ensues that lays out the general structure, as well as the structures

of the schema documents, including relevant tag definitions, that constitute the physical

artifacts of the LPO.

4.2.1 Mapping of Conceptual LPO to XML Equivalents

Not all the LPO characteristics from the conceptual domain can be explicitly mapped one-

to-one into the XML domain. However, by imposing certain rules to those with no direct

mapping, XML could suffice to completely realize all the characteristics of the LPO.

The logical LPO space as defined in Definition 4.3 can be regarded as a locally-

located database that logically represents a larger set of real data whose locations could be

anywhere in the physical LPO domain. When physical LPO modules are attached to or

removed from a LPO, this local database is modified to reflect such changes. In the XML

domain, such a local database manifests itself as a register file.

 77

Definition 4.5: Register File

An editable document that holds information about the identity and whereabouts of

either the platform objects (PO) or PO member modules (POmm), as defined by

the lpoRegfile and poRegfile schemas, respectively.

4.2.1.1 LPO Register File

The existence of the LPO register file signifies the existence of a LPO. It is created when

the first platform object is installed. Each subsequent PO installation updates the LPO reg-

ister file in order to declare its presence in the LPO (via the logical LPO space).

Axiom 4.1 For the Library of Platform Objects L, L exists if and only if the

corresponding LPO register file RL exists.

Axiom 4.2 Let SRP be a set of PO register files in L. RL exists if and only if

SRP is a non-empty set.

Axiom 4.3 From Axioms 4.1 and 4.2, it follows that L exists if and only if SRP

is a non-empty set.

4.2.1.2 PO Register File

The existence of the PO register file signifies the existence of a platform object (PO). It is

created when the platform object (PO) is installed. Each subsequent POmm installation

updates the PO register file in order to declare its presence in the PO.

Axiom 4.4 For the platform object P, P exists if and only if the corresponding

PO register file RP exists.

Tag syntax definitions of both the LPO and PO register files are defined in XML

schema documents, namely lpoRegfile.dtd and poRegfile.dtd (see Appendix D). The regis-

ter files should only be updated through the installation/uninstallation processes.

 78

4.2.1.3 Auxiliary Information

Because XML that implements a LPO depends on schema documents to define tag syntax

and semantics, present also as part of the library is the fourth data category—the auxiliary

information.

In addition to schema documents, the category actually encompasses anything at

all that cannot be classified into components, tools or platform information, but are

present either as requirements for proper functioning of a LPO or as auxiliary entities for

efficiency gains. Other auxiliary information may include user-defined definitions to be

used by the schema documents, or run-time configuration files used by the user-interface

software, as well as the register files.

4.2.1.4 Structure of LPO

Figure 4.1 illustrates the structural organization of a LPO. UML’s Aggregation notations

depicted as straight lines with hollow diamonds, are used to represent hierarchical contain-

ment relationships, where a module on the hollow diamond end contains the other module.

Straight lines connecting modules simply show Association relationships among them.

Definition 4.6: Platform Object Member Module (POmm)

A member of a particular platform object that is used to design and construct a sys-

tem. Four kinds of module exist in a platform object, corresponding to four LPO

data categories: component, tool, architecture blueprint (or platform information),

and auxiliary.

Definition 4.7: Architecture Blueprint (AB)

Sometimes referred to only as blueprint, it is an abstract, logical view of the PO

architecture(s). It corresponds to the template notion introduced in Section 5.1.1.

 79

Figure 4.1: Structural organization of the LPO

Definition 4.8: Platform Object Logical Interface (POlif)

A collective term used to describe the POmm modules, i.e. POmm/tools and

POmm/components, that provide a logical gateway to the corresponding physical

entities existing elsewhere in the physical LPO space.

Definition 4.9: Platform Object Manager (POM)

A software managing tool whose main task is to provide for the system developer a

user interface to the member modules of the same PO it belongs to. It corresponds

to the concept of user-interface tool described in Section 5.1.4.

As shown in Figure 4.1, a POM should be capable of providing the sole point of

access to the PO domain it belongs to. By further elaborating on POM functionalities, a

 lpoRegfile poRegfile

 Auxiliary Blueprint Components Tools

1 1..*

1 1 1 1

1..* 1..* 1..* 1..*

POmm

Logical LPO Space

Physical LPO Space

 POM
1 1

System
Developers

POmm
Providers

1..*

POlif

Architecture

 80

seamlessly unified tool environment for the proposed approach could possibly be attained.

Figure 4.1 also roughly shows the interactions between the LPO and its environment, i.e.

system developers and POmm providers.

4.2.1.5 Tag Syntax and Semantics

A LPO can become more efficient if its XML tag syntax and semantics possess a certain

degree of flexibility that enable them to be tailored specifically for each platform. None-

theless, for a LPO to function for the proposed platform-centric SoC design method, a

common set of LPO tag syntax and semantics must be agreed upon.

To promote (1) a possible sharing of multi-PO POlifs, and (2) the use of a common

POM to perform basic services for all the POs, all register files in the LPO shall resort to

one common set of XML tag syntax and semantics. Also, all XML documents within each

PO domain—specifically, the POlif domain—must utilize the same syntax and semantics.

In addition, all XML and XMI documents must be valid when checked against appropriate

schema files.

Let P be a platform object in a LPO L. Let be a set of XMI documents,

 be a set of XML documents in the POlif, be a set of the schema documents

associated with each elements in Dp, and � be an official OMG’s XMI schema. Also, let

isValid(x, y) be a function that returns TRUE if an XML document x is valid when checked

against a schema y, and returns FALSE otherwise.

Axiom 4.5 A platform object P can only effectively contribute to the proposed

platform-centric SoC design method if, (1) , isValid(du, �) is TRUE, and

(2) and , isValid(dp, s) is TRUE.

Furthermore, for any active PO, there must exist at least three schema documents at

all time: the polif and poRegfile schemas, and the XMI schema as defined in UML [24].

Du P�

Dp P� S P�

du
�

Du
�

s
�

S� dp
�

Dp
�

 81

4.2.1.6 Platform Objects

Platform objects are designed off-cycle. By so doing, the enhanced flexibility offered by

the proposed approach, or any platform-based design, is somewhat compromised. In

return, however, the platform-centric approach achieves greater potential to attain the fea-

sible design correctly and more quickly by pre-designing, pre-characterizing certain

aspects of the system, as well as providing guidance both in the forms of constraints and

related information so that the system developer can make better design decisions at all

stages of the design.

A PO enters the LPO by updating the LPO register file to record its presence. Upon

entry, various tasks may also need to be carried out and proper values configured. These

configuration tasks may involve:

• determining and selecting existing design tools, and their execution paths,

• determining design tools that must be installed,

• determining the type of a computing platform the POM will be deployed,

• determining if a LPO has already existed.

An installer and/or a clear installation instruction should always be provided to ease the

installation process.

Axiom 4.6 Let L be a LPO, and n be the number of POs in L. Then if there

exists L, then L must contain at least one PO as its library member, i.e.

.

At installation time, the PO checks for the existence of the LPO register file to

determine whether or not a LPO exists. If it finds no LPO register file, it creates one and

updates the file to declare its presence. Then it creates its own PO register file and per-

forms necessary updates to reflect the existence of the POmm modules that are vital to its

existence. These POmm modules include:

exist L
���

n 1�� �	

 82

• The architecture blueprint (AB), and POmm/components that build it,

• Associated POmm/tools, including the PO managing software (POM),

• Schema documents

• Knowledge-based information

It is expected that most of the PO for the proposed approach will come as a result

of modifying existing system platforms. Two broad classes of system platforms are likely

to become common in the LPO:

1. Full-application platform, which allows full applications to be built on top of hard-

ware and software architectures. In general, the blueprint will consist of a processor

and a communication infrastructure. The POmm/components are composed mainly

of application-specific blocks that will probably share POmm/tools. Examples

include Philips’ Nexperia [79] and TI’s OMAP multimedia platform [80].

2. Fully programmable platform, which typically consists of a FPGA and a processor

core. Communication infrastructure is often synthesized along with the core, on an

as-needed basis, during configuration. Examples include Altera’s NiOS [81],

Quicklogic’s QuickMIPS [82], and Xilinx’s Virtex-II Pro [83].

A choice of PO communication infrastructure often plays a vital role in achieving

high performance and great flexibility. Besides easy integration, desirable I/O subsystems

should also take into account scalability and parametrizability. CAN [85], FlexRay [86]

and I2C [87] represent a subset of current cutting edge embedded system I/O technologies

that can potentially be used to build a platform. An I/O subsystem that allows its power to

be configured [88] is also an attractive choice. In any case, proper documentation should

always be exercised.

 83

4.2.1.7 Architecture Blueprint (AB)

Because a PO either often comprises of a family of processors or is fully programmable, it

can be affiliated with more than one target architecture. A blueprint is an abstract, logical

view of these architectures.

Working with a blueprint instead of the physical model consisting of UML nodes

and components can be more attractive for the system developer. It is a convenient means

to represent a set of all possible target architectures attainable per platform. Moreover, it

provides a simple yet powerful mechanism for dealing with the issue of hardware imple-

mentation that, otherwise, would not be satisfactorily addressed were the developer to

adhere to the UML physical model. As will be shown later in Section 5.6, homomorphic

mapping between the logical model of the chosen target architecture derived from an

architecture blueprint and the physical model, if it were to be used, is possible, and thus,

furnishing a proof that the two views are, in fact, equivalent and interchangeable.

At minimum, an architecture blueprint must consist of an abstract representation of

a processor and a communication infrastructure, the latter of which may further consist of

one or more I/O subsystem abstracts. Given the current trend in platform technologies, an

architecture blueprint that represents a family of processors or multi-processors, rather

than a traditional uni-processor, will not be uncommon. A processor may contain one or

more internal storage elements and/or have external storage elements as an additional AB

requirement.

An architecture blueprint is an integral part of the proposed approach; it exists

mandatorily for every PO in the library. Because there always exist at least one processing

unit and one I/O component for every PO, it could be further deduced that if a blueprint

exists, the POmm/components that are used to construct the concrete platform architecture

must also exist.

 84

Axiom 4.7 Let P be a platform object and be a set of the POmm/

components that can be instantiated into the blueprint to implement the concrete

platform architecture. Then .

4.2.1.8 Platform Object Logical Interface (POlif)

By definition (Definition 4.8), POlif is a collective term used to describe POmm/tools and

POmm/components. POlif modules are the core database of the LPO. Like others, POlif

modules are self-descriptive. When implemented using XML, the POlif shall carry its own

schema document to differentiate itself from the auxiliary domain of the register files.

They shall also permit keyword description of themselves to aid search engines.

A POmm/tool is a logical interface module to the corresponding tool that may

physically exist anywhere in the physical LPO space. It contains essential information

about itself, especially its identity, and resource locations, that could be configured during

the installation process.

A POmm/component, on the other hand, carries a much heavier load of data than a

POmm/tool does. In addition to the information about its identity and resource locations, it

contains information regarding its characteristics, UML representation, and possibly HW-

dependent software routines, as well as tool associations. For each POmm/component’s

characteristic, information about name, type, value, and unit shall always be recorded.

4.2.1.9 Resource Locator

All resources in the LPO should be specified using one common format. It is recom-

mended that the LPO follow the Universal Resource Identifier (URI) format [89] when

specifying resource locations in XML documents—the obvious reason for it being the

compatibility with the Internet standard. The most common form of the URI is the Univer-

sal Resource Locator (URL).

SAB P�

exist P
�
�

SAB ��
� �	

 85

4.2.1.10 Platform Object Manager (POM)

A POM is a software managing tool whose main task is to provide for the developer an

interface to the member modules of the same PO it belongs to. A POM supports function-

alities similar to those of the Facade object [68] which provides a unified interface to a set

of interfaces in a subsystem. Like the Facade object, a POM should be able to delegate the

design, either parts or whole, to appropriate POmm modules. If all members of the LPO

adhere to the same tag semantics, a POM can extend its services to encompass all LPO

members, including the LPO register file, and all PO register files. Let P be a platform

object that contains a set of POmm/tools, PT. And let be a POM.

Axiom 4.8 .

POM’s basic operations involve extracting and processing XML-based data. To

extract data, a POM may simply make use of existing XPath engines as convenient tools.

These tools typically take an XPath expression as the argument, and often provide the pro-

gramming interfaces to the popular programming languages like C++ and Java [74 75,

76]. Because of the facility and functionalities offered by XML and XPath, respectively,

data embedded in a POmm module are readily accessible so far as their semantics are

clearly understood. A POM can construct, as well as reconstruct, any XML tree from the

associative schema document. A path expression for each element and attribute can then

be acquired simply by traversing the XML tree.

The other primary POM operation is processing the extracted data. In order for the

system developer to make use of the available data to the fullest, a POM should also

behave as a user interface that can perform such tasks as displaying data, and relevant

information in a user-friendly format, gathering input information for POmm/tools,

searching and locating POmm modules, etc. At the minimum, a POM should support the

following operations:

TPOM P�

exist P
�
�

exist TPOM
� �

TPOM PT
�� �
� �	

 86

Figure 4.2: Hierarchical structure of the lpoRegfile.dtd

• Searching, and fetching LPO modules, e.g. POlif, the architecture blueprint

• Displaying, and formatting data, e.g. displaying Help pages, listing available

POmm/components. XSL/XSLT [71] may be of great use for this purpose.

• Providing links, and allowing user selections so that such tasks as accessing remote

content, activating POmm/tools, etc., may be implemented. XML applications such

as XLink [58] and XPointer [59] could be useful.

• Easing POmm/tool usage. A POM may (1) prepare a batch file, (2) provide step-by-

step instructions on how to run a POmm/tool on a particular set of inputs, and/or (3)

create tool menus that link tool and inputs together, and that permit tool activation.

A POM may also define a unified environment that allows POmm/tools to interact,

e.g. the OMG’s CORBA IDL [53] that permits the compliant objects to communi-

cate through an object broker.

 lpoRegfile

 po self

 textField name id uri name uri

fieldType
isImported

1

1 1..*

1 1

1 0..11 1 1 0..1

subject

searchkey

key

1

1
1..*

 87

4.2.2 Implementation

As the tree view structure of XML documents are easier to follow, it will be adopted as a

means to describe the implementation of the LPO. Then, the mapping of a tree structure to

an equivalent schema document is quite simple and intuitive.

UML’s Class diagrams are used to model the tree structure. The root element of an

XML tree resides solely at the topmost hierarchical level. Child elements that branch out

of their parent are connected to the parent through the UML Aggregation, with the hollow

diamond attached to the parent. An order of child elements are significant and is mapped

from left to right onto the schema document. Leaf nodes in the tree structure represent the

XML terminal nodes that contain strings of type #PCDATA. UML attributes map into

required XML attributes; whereas, UML multiplicity becomes the equivalents in XML.

The actual DTD documents that implement the LPO are included in Appendix D.

4.2.2.1 LPO Register File

Figure 4.2 depicts the hierarchical structure of the LPO register file (lpoRegfile.dtd). Due

to dynamic nature of resources, a fail-safe principle of redundancy is exercised to ensure

consistency and reliability. Consequently, multiple elements may exist solely to identify a

single resource. A description of each element is listed below:

Name Type Multiplicity Description

lpoRegfile Root 1 Signifies existence of LPO

self Element 1 Self identification

po Element 1..* Link to platform objects

searchkey Element 0..1 Relevant keywords that can
identify self

name Leaf 1 Self ID by name

id Leaf 1 Self ID by special identification

 88

Attributes are listed as follows:

4.2.2.2 PO Register File

Figure 4.3 depicts the hierarchical structure of the PO register file (poRegfile.dtd). Same

XML element names share syntax and semantics; thus, only descriptions of new elements

are presented.

uri Leaf 1 Self ID by location

textField Leaf 0..1 Knowledge-based information

key Leaf 1..* Keyword string

Name Type Base Description

subject CDATA textField Subject of information

fieldType CDATA textField Expected data format

isImported Enumeration:
“yes” or “no”

textField Specifies if the content contains
link to an imported document

Name Type Multiplicity Description

poRegfile Root 1 Signifies existence of PO

pom Element 1 Link to POM

blueprint Element 1..* Link to architecture blueprint(s)

poSchema Element 1 Link to a PO schema document

polif Element 1..* Link to POmm

poID Leaf 1 Reference to the PO to which
the register file belongs

Name Type Multiplicity Description

 89

Figure 4.3: Hierarchical structure of the poRegfile.dtd

Attributes are listed as follows:

Name Type Base Description

moduleKind Enumeration:
{“component”,
“tool”}

polif Classifies itself to be either
component or tool

abKind Enumeration:
{“pru”, “iu”, “diu”,
“ifu”, “mu”, “clock”,
“timer”}

polif Classifies itself to be one of the
blueprint types (see Section
5.6.1 for detail).

classification Enumeration:
PO-dependent

polif User-defined category of the
module

moduleID CDATA polif Reference to a POmm via ID.
Provides a security measure to
name and uri references.

 poRegfile

poID

id

uri

moduleKind

classification
moduleID

1

1 0..*

1 1 1 1

1 1

1

1..*1

1

self

name

pom blueprint poSchema polif

uri
1 1

1

name

1..*1

1
1

1
1

 textField

fieldType
isImported

subject

0..1
searchkey

key

1

1..*

uri

uri

id uri

0..1
searchkey

key

1

1..*
abKind

 90

4.2.2.3 POlif

As evident by prior discussions, the POlif constitutes the core of a LPO database. POlif

modules, POmm/tools and POmm/components, contain information necessary for charac-

terizing themselves to be used with the platform-centric SoC design method. To promote

scalability, each POlif module is associated with a unique XML document, which is

defined by a schema document illustrated as the tree structure in Figures 4.4 - 4.8.

In Figure 4.4, most elements are re-used. Those that need be defined are:

Name Type Multiplicity Description

polif Root 1 Signifies existence of a POmm

selfURI Element 1 Possible locations that it may
reside

physicalURI Element 1 Possible locations that the cor-
responding physical module
may reside

installerURI Element 0..1 Link to an installer

uninstallerURI Element 0..1 Link to an uninstaller

componentDo-
main

Element 0..1 Compartment for information
about POmm/component. It is
not used if a POlif is of type
tool.

associatedTools Element 0..1 Specifies possible association
between a POmm/component
and a POmm/tool(s)

uml Element 1 Specifies UML representation
of the module

functions Element 0..* Supplies information, if there is
any, about hardware-dependent
software routines

characteristics Element 0..1 Contains databook information
of the module

 91

Figure 4.4: Hierarchical structure of the polif.dtd

 polif

moduleKind

self

name

id

poID

id

selfURI

 uri

physicalURI

uri

installerURI

uri

componentDomain

associatedTools uml functions characteristics

1

0..1

1

1

1

1

1..*

1

1

1..*

1

1

1..*

1

1..*

0..1

0..1

0..1

1

0..1

1

1

1

*

1

0..1

1

0..1

uninstallerURI

uri

0..1

1

1..*

1

textField

fieldType
isImported

Figure 4.6 Figure 4.8Figure 4.5 Figure 4.7

0..1
searchkey

key

1

1..*

subject

textField

fieldType
isImported

subject

textField

fieldType
isImported

subject

abKind
classification

 92

Figure 4.5: Detailed hierarchical structure of the associatedTools element.

Figure 4.5 depicts a detailed structure of the associatedTools element. This tag ele-

ment only supports a simple association between a POmm/component and one or more

POmm/tools. It is expected that, when given the POmm/component identity in the LPO,

the associated POmm/tool possesses the knowledge on how to process it. Subelements

that need to be defined for the associatedTools elements are:

Name Type Multiplicity Description

defaultToolURI Leaf 1 Default tool by URI. Cannot co-
exist with defaultToolID.

defaultToolID Leaf 1 Default tool by ID. Cannot co-
exist with defaultToolURI.

aTool Element 1..* Identity of each associated tool

 defaultToolURI | defaultToolID

defaultToolURI defaultToolID

id uri

1

1..*

 aTool

0..1

0..11

1

associatedTools
1

 id | uri

textField

fieldType
isImported

subject

textField

fieldType
isImported

subject

 93

Figure 4.6: Detailed hierarchical structure of the uml element.

Figure 4.6 shows the detailed structure of the uml element. Subelements that have

not yet been defined are described below.

Name Type Multiplicity Description

import Element 0..1 Reuse mechanism that allows
UML packages to be imported

autoConfig Element 0..* Compartment that holds pre-
configured values for UML
parameters

config Element 1..* Pre-configured UML parameter
values

forPOID Leaf 0..1 ID of platform object that these
pre-configured values are appli-
cable for

uri
 autoConfig

1

type
value
unit

name

config
1..*

0..1

 *

1

1

forPOID
0..1

uml

1

textField

fieldType
isImported

subject

import

1

uri

0..1

0..1

1..*

textField

fieldType
isImported

subject

 94

Figure 4.7: Detailed hierarchical structure of the functions element.

The config subelement also have attributes associated with it. They are:

The construct of the config element, as well as the preDefined, and userDefined

characteristics to be discussed later, adapts the PROPERTY pattern [90] in such a way that

a number of such tags that can be cataloged in an XML document can vary without any

changes to the schema document. This dissertation expects that POlif providers would

eventually agree upon a comprehensive set of predefined types and units, as well as UML

parameters and component characteristics. Then fairly standard enumeration types can be

defined in the schema document.

Name Type Base Description

name Enumeration:
PO-dependent

config Name of config data

type Enumeration:
PO-dependent

config Predefined type of config data

value CDATA config Value of config data

unit Enumeration:
PO-dependent

config Unit of config data

 functions

1

targetCompiler swPackage

uri

1

1 1

1..*

0..1
0..1

 id | uri

uriid

1..*

textField

fieldType
isImported

subject

 95

Figure 4.8: Detailed hierarchical structure of the characteristics element.

Figures 4.7 and 4.8 depict the tree structures of the functions and characteristics

elements, respectively. The functions element handles information pertinent to hardware-

dependent software routines. Within it, the target compiler and locations of included files

are specified.

The following completes the element descriptions of the POlif schema document.

Name Type Multiplicity Description

targetCompiler Element 1 Expected target compiler

swPackage Element 0..1 Reference to the software

preDefined Element 0..* Pre-defined component charac-
teristics

userDefined Element 0..* User-defined component char-
acteristics

 characteristics

 preDefined userDefined
name
type
value
unit

name
type
value
unit

 textField

fieldType
isImported

 textField

fieldType
isImported

1

* *

 1 1

0..1 0..1

subject subject

 96

Permissible attributes are defined as follows:

Name Type Base Description

name Enumeration:
PO-dependent

preDefined Name of preDefined character-
istics

name CDATA userDefined Name of userDefined character-
istics

type Enumeration:
PO-dependent

preDefined,
userDefined

preDefined and userDefined
type of characteristics

value CDATA preDefined,
userDefined

characteristics value

unit Enumeration:
PO-dependent

preDefined,
userDefined

Unit of characteristics

 97

Chapter 5

UML Profile for Codesign Modeling
Framework

Using UML, this chapter describes the framework, that, together with the framework in

the UML profile for schedulability, performance and time specification, or succinctly the

UML real-time profile [29], constitutes the core concept for developing real-time embed-

ded SoC systems in the platform-centric design environment. This framework, called the

Codesign Modeling Framework, builds upon the real-time foundation provided by the

UML real-time profile; it exists as a supplemental package, and not as a replacement. The

UML real-time profile is now in the final phase before OMG standardization.

The UML real-time profile offers a facility for modeling and analyzing real-time

applications. Such a facility proves adequate for most software development processes.

However, in the codesign environment where hardware and software developments often

take place simultaneously, the profile becomes less useful—it is less capable of coping

with the hardware development, let alone the complexity of the codesign environment

where heterogeneous development processes intermingle systematically.

The UML profile for Codesign Modeling Framework, is aimed at mending such

issues. The profile adds to the UML real-time profile the frameworks for modeling excep-

tions (EMprofile), interrupts (IMprofile), synthesizable HDL (SHDLprofile), as well as an

architecture blueprint (ABprofile) that is used as a template to construct the target architec-

ture. The chapter presents details for each profile individually, starting with the utility

 98

package (PCUprofile) that provides generic utility extensions for the framework, followed

by the EMprofile, IMprofile, SHDLprofile, and ABprofile profiles, respectively.

5.1 Codesign Modeling Framework in Principle

The Codesign Modeling Framework contains a collection of codesign-oriented, real-time

profiles whose intent is to enhance the proposed platform-centric SoC design approach. It

works in conjunction with the UML real-time profile so as to supplement it with codesign

modeling capability. The objectives of the framework detail as follows:

• Permit heterogeneous modeling of hardware and software in the same unified

design environment,

• Support modeling and elaborating of an architecture blueprint that results in the tar-

get architecture,

• Enable one-to-one mapping of UML to synthesizable hardware description lan-

guage (HDL),

• Together with the UML real-time profile, provide a standard means for representing

LPO tools and components, thus, promoting reuse, and

• Enhance design for reliability by including frameworks for exception and interrupt

modeling.

Figure 5.1 depicts the structure of the Codesign Modeling Framework, as well as

the relationships among participated packages and actors. In modeling a system for the

platform-centric method, the developer derives the target architecture (TargetArchitecture

package) from an architecture blueprint (ArchitectureBlueprint package) supplied by the

platform provider, i.e. the LPO module provider, and utilizes the derived architecture as

the hardware reference for developing software applications (MyModel package). Marked

by codesign characteristics, the processes of selecting the target architecture and develop-

ing software applications can be performed in sequence, in parallel, or iteratively.

 99

Figure 5.1: Structure of the UML Profile for Codesign Modeling. Also shown are
anticipated relationships among participated packages and actors.

Codesign Modeling Framework

 «profile»

PCUprofile

 «profile»

 «profile»

EMprofile

ABprofile

 «import»

 «import»

Analysis Models

GRM Framework

 «import»

 «import»

ArchitectureBlueprint

MyModel

Analysis
Method Provider

 «import»

 «import»

 «appliedProfile»

 «appliedProfile»

Modeler

OMG

(Developer)

TargetArchitecture

 «appliedProfile»

 «import»

UML real-time profile

LPO Module
Provider

 «profile»

 «profile»

IMprofile

SHDLprofile

This Dissertation

 «appliedProfile»

 100

In presenting each profile in the Codesign Modeling Framework, this dissertation

adopts the two-viewpoint presentation scheme employed in the UML real-time profile

specification [29]. The first is the domain viewpoint that “captures, in a generic way, the

common structural and behavioral concepts” that characterize each profile. The other is

the UML viewpoint, which is “a specification of how the elements of the domain model

are realized in UML.” The UML viewpoint identifies the required UML extensions, i.e.

stereotypes, tagged values and constraints, and groups them in a profile package. Unlike

the domain model, however, the UML viewpoint represents the concrete realization rather

than the abstract concepts. As such, these extensions do not necessarily map one-for-one

with the domain model.

It shall be noted, however, that all of the extensions to be presented are light-

weighted, which means they require no fundamental change to UML.

5.2 Platform-Centric Utility (PCUprofile)

This section introduces generic utility extensions that serve various purposes to enhance

the robustness of the proposed approach. These utility concepts are often disjoint, and are

expected to be used by most models and profiles within the platform-centric environment.

5.2.1 Domain Viewpoint

5.2.1.1 Main Function Designation

Employing the Codesign Modeling Framework, UML models are likely to be mapped into

more than one language, e.g. C# for application and synthesizable Verilog for hardware

implementation. Automatically determining proper main functions in such models can be

complicated for each programming language has its own way of representing the function.

For example, C/C++/Java use the keyword main, and Pascal uses program, while such

programming languages as Ada/VHDL require explicit designation at link time, and, thus,

any procedure/entity can be main.

 101

Such complexity can be alleviated by explicitly designating the main function on a

proper method in the model, and leaving the language-specific main construct to the code

generator. This approach results in the model being more uniform and readable.

5.2.1.2 Link from UML to LPO

In the platform-centric environment, the Codesign Modeling Framework uses and reuses

LPO resources, whose existences and availability are identified through the use of POM’s

services. However, to reduce communication overhead during LPO module import, only

the resource models represented in UML should be utilized. To later retrieve relevant

information, such models must maintain appropriate links to their parent modules in the

LPO.

5.2.1.3 Package Processing Instruction

The developer uses LPO components, i.e. POmm/components, for developing the system

by means of UML packages. Not all LPO components, however, have hard characteristics.

POmm/components, e.g. software library or legacy code, may need to be modified and/or

compiled as part of the development process. In some cases, the UML package may just

come raw and the appropriate processing steps can only be determined when the configu-

ration of the hardware platform is known. Therefore, a way for specifying default package

processing instruction and/or user-defined instruction is preferable.

5.2.1.4 Code Insertion

Although the Codesign Modeling Framework does allow homomorphic mapping of UML

to code up to a certain degree, it has no intent to attain absolute formalism. The efficiency

in developing systems of great complexity like today’s real-time embedded systems relies

also on the principle of design with reuse (DwR) [107] and good analysis tools, both of

which do not mesh well with the formalism concept. For analysis, UML already is a great

tool. For reuse, it relies on the notion of package.

 102

Code reuse in UML is often tool-dependent. Code is grouped by a UML tool into a

library and modeled using UML package. Another means to achieve code reuse in UML is

by inserting pieces of code into the model and associating them with the desired methods.

Then a code generator can produce full functional source code from the model.

While some better tools support an elaborated code insertion scheme, some do not

and only dwell on the mechanism suggested by the UML specification—placing texts of

code on a UML note. This simple scheme works fine when local variables can be declared

within the method body delimiters like in the languages such as C++ and Java. However, it

becomes awkward and more complicated when the declarations have to be done outside of

the method body delimiters like in Ada and VHDL. Good tools will still be able to handle

it, nonetheless, with more effort. To make code insertion in the Codesign Modeling

Framework as general and as uniform to many programming languages as possible, it is

recommended that, for each method to be given a piece of code, it designates a declaration

area and a body of method area apart from each other, such that a code generator can pro-

cess the inserted piece of code with little effort and no ambiguity.

5.2.1.5 Non-design Variables

Many times in a course of the development process, the developer will want to use non-

design variables for various specific purposes not pertinent to the actual development of

the system. An obvious example of non-design variables includes constraint variables that

capture non-functional system characteristics such as power dissipation, environmental

requirements, and rigid form factors. These variables are predominantly used during the

validation process.

Because some profiles and/or stereotypes, e.g. the «SHDLarch», perceive regular

design variables as conveying further implicit information, it is required that the tools that

will interpret these variables be able to differentiate them from any non-design variable

that may be placed in the same context.

 103

5.2.2 UML Viewpoint

In defining UML extensions, i.e. stereotypes, tagged values and/or constraints, for the

PCUprofile package, the prefix PCU is always attached to the names to differentiate them

from similar or same names in other profiles. This is a standard practice observed in the

UML profile for schedulability, performance and time specification, and is exercised here

to attain the same clarity effect.

5.2.2.1 Mapping Utility Domain Concepts into UML Equivalents

The main function concept maps to the «PCUmain» stereotype attached to an operation

(method), and has no tagged value associated with it.

When a UML model (class or object) is derived from a LPO module, it is denoted

with the «PCUlpoMember» stereotype. Then, the UML to LPO link concept is reified

using either the tagged value PCUuri or PCUid or both. Either one of these tags is enough

to identify the corresponding POmm/component in a LPO. Nonetheless, both of them are

redundantly furnished for reliability.

The package processing instruction concept maps to the «PCUrun» stereotype on a

package. The stereotype has two tagged values, namely PCUrunline, and PCUrunfile,

associated with it. The PCUrunline tag specifies a command line to be run against the

package. The PCUrunfile tag indicates that processing instructions can be found in the

specified file.

The concept of code insertion and reuse maps into the stereotypes «PCUcode»,

«PCUdeclare», and «PCUcodeBody». A Component can be stereotyped «PCUcode» to

indicate that it is a file. The «PCUcode» stereotype defines one tagged value, PCUfileUri

that specifies the location of the file. The «PCUdeclare» stereotype permits texts of

parameter declaration to be inserted; whereas, «PCUcodeBody» treats the whole textual

context as a body of the method.

 104

5.2.2.2 UML Extensions

To minimize the possibility of conflict with other profiles, all extensions in this package

are PCU-prefixed. The presentations are of tabular format, as suggested by the UML spec-

ification guide [24]. For stereotype tables, the fields include a stereotype name, base class

and an associated tagged value. When no tag is defined, it is denoted by --None--. Tag

tables include the name, type, multiplicity and domain concept fields.

«PCUattribute»

This stereotype provides a utility to designate design variables, and is particularly

useful when used together with the «PCUauxAttr» (see Section 5.2.1.5).

«PCUauxAttr»

This stereotype specifies an auxiliary attribute corresponding to the concept of non-

design variables as discussed in Section 5.2.1.5.

«PCUcode»

This stereotype provides a file insertion mechanism (see Section 5.2.1.4).

The following tag is defined:

Stereotype Base Class Tags

«PCUattribute» Attribute --None--

Stereotype Base Class Tags

«PCUauxAttr» Attribute --None--

Stereotype Base Class Tags

«PCUcode» Component PCUfileUri

Tag Name Tag Type Multiplicity Domain Concept

PCUfileUri String specifying the
URI of the file

0..1 See Section 5.2.1.4

 105

«PCUcodeBody»

«PCUdeclare»

The «PCUdeclare» and «PCUcodeBody» represent the declaration, and the body

of the code to be inserted into the model, respectively (see Section 5.2.1.4).

«PCUconfigList»

This utility stereotype permits configuration attributes to be grouped together sepa-

rately from their parent class.

«PCUlpoMember»

This stereotype specifies an affiliation of a UML model to the LPO. The intent is to

furnish a tracing mechanism that will allow relevant information stored in the LPO to be

accessible via the UML model itself.

The defined tags are:

Stereotype Base Class Tags

«PCUcodeBody» Note --None--

«PCUdeclare» Note --None--

Stereotype Base Class Tags

«PCUconfigList» Class --None--

Stereotype Base Class Tags

«PCUlpoMember» Class
Object

PCUuri
PCUid

Tag Name Tag Type Multiplicity Domain Concept

PCUuri String specifying the
URI of the module

0..1 See Section 5.2.1.2

PCUid String specifying the
ID of the module

0..1 See Section 5.2.1.2

 106

«PCUmain»

When adorned on an operation, this stereotype designates the operation to be a

main function.

«PCUrun»

The stereotype represents the concept of package processing instruction (see Sec-

tion 5.2.1.3).

The tags are defined by:

The following constraints are defined for this stereotype:

• If the «PCUrun» stereotype is used, at least one of the tags must be used.

• Although it seems redundant, using both tags at the same time is permissible.

«PCUuseConfig»

This stereotype binds a «PCUconfigList» class comprising configuration attributes

to their parent class.

Stereotype Base Class Tags

«PCUmain» Method --None--

Stereotype Base Class Tags

«PCUrun» Package PCUrunline
PCUrunfile

Tag Name Tag Type Multiplicity Domain Concept

PCUrunline String specifying the command line 0..1 See Section 5.2.1.3

PCUrunfile String specifying the file that need
to be processed

0..1 See Section 5.2.1.3

Stereotype Base Class Tags

«PCUuseConfig» Dependency --None--

 107

5.3 Exception Modeling (EMprofile)

In many critical real-time systems, dependability is so vital that a failure is unacceptable; a

means to detect errors and faults must be exercised so as to prevent unexpected failures

from occurring. Exception provides such a means for system developers, and is a subject

of this section. The UML specification [24] does offer a suggestion on how the exception

facility should be modeled per se. Nonetheless, it comes, not surprisingly, as a general

modeling tip for OO programming. This section expands and explores the language hori-

zon, and devises a simple framework that could be used to model exception handling

mechanisms in the platform-centric environment.

5.3.1 Domain Viewpoint

Unless indicating otherwise, the discussions in this section and Section 5.4.1, Interrupt

Domain Viewpoint, are based primarily on a comprehensive survey on the subjects of real-

time systems and programming languages by Burns and Wellings [108].

Exception handling facilities render a means for containing and handling error situ-

ations in a programming language. Older programming languages, such as C and RTL/2,

have no explicit support for exception handling mechanisms; they rely, instead, on

implicit programming techniques such as checking for an unusual return value, and/or

programming with a non-local goto. Although more recent programming languages, e.g.

Ada, Java, often provide explicit support for exception handling facilities, the models

adopted by these languages still vary: (1) they may or may not allow an exception to be

explicitly represented; (2) an exception may or may not propagate beyond the expected

scope of its handler; and (3) parameters may or may not be passed along with the raised

exception.

5.3.1.1 Representation of Exceptions

An exception can be detected either by environment or by application, and can be raised

synchronously or asynchronously. Most mainstream programming languages are of

 108

sequential characteristics, and their exception handling facilities support only synchronous

notifications—leaving asynchronous notifications that are mostly employed in concurrent

programming to be manually handled by programmers.

Environment-detectable exceptions, on the other hand, often come pre-defined by

programming languages, while application-related exceptions normally are user-defined.

In a case where an explicit declaration of both exception types is required, they tend to

have the same supertype, e.g. a Throwable class in Java, or an exception keyword in Ada.

Otherwise, a type is only pre-defined for environment-detectable exceptions, and an appli-

cation can throw any type at all as an exception without pre-declaration. An example of

this model is a pre-defined exception class in C++.

From a code generator’s viewpoint, these constructs for representing exceptions,

though diverse, can be produced automatically given that the code generator is language-

aware, and it is capable of identifying exceptions in the model.

5.3.1.2 Exception Handler Domain

Depending on the context of computation, an exception may be associated with more than

one handler. As a result, a domain, or a region of computation, must be assigned to each

handler to prevent them from clashing on each other when an exception occurs. A domain

is normally associated with a block, subprogram, or a statement. The majority of main-

stream real-time programming languages, e.g. Ada, Java, C++, uses a block to specify a

domain for a handler.

5.3.1.3 Exception Propagation

When an error event causes an exception to be raised, and there is no handler for it in the

enclosing domain, most mainstream real-time programming languages allow such an

exception to propagate to the next outer-level enclosing domain. This propagation can

continue on until the exception is handled or the program is terminated when no handler

for it is found.

 109

5.3.1.4 Parameter Passing

When a programming language permits an exception to be represented as an object, it is

normally possible that parameters may be passed along with the exception notification by

means of the object attributes.

5.3.1.5 Post-handling Actions

After an exception is raised and handled, the handler may either return the control to its

invoker and the computation resumes, or it may terminate the program altogether. The ter-

mination model is what most exception facilities adopt, and is the only model considered

in this dissertation.

5.3.1.6 Usage Model

The usage models adopted by most mainstream real-time programming languages follow

predominantly the throw/try/catch structure. The throw action permits an exception to be

raised within an enclosing domain established by the try block. The catch block, then,

traps raised exceptions from the associated try block and allows appropriate handlers to be

invoked. A specially designated handler is often allowed as a safety measure for the

exceptions overlooked by the primary try/catch blocks in order for the program to never

fail undeterministically.

It has been shown by Costello and Truta [109], as well as in the work by Lee [110],

that C macros can be used to mimic the throw/try/catch structure, making this popular

usage model even more uniform among major programming languages.

5.3.2 UML Viewpoint

In defining UML extensions, i.e. stereotypes, tagged values and/or constraints, for the

EMprofile package, the prefix EM is always attached to the names to differentiate them

from similar or same names in other profiles.

 110

5.3.2.1 Mapping Exception Domain Concepts into UML Equivalents

To cope with a wide variety of exception modeling characteristics, the profile attempts to

model a complete set of relevant information. An exception is generically represented as a

signal class adorned with the «EMexception» stereotype, which is a generalization of the

standard «signal» stereotype. This stereotype contains no tagged value, and primarily

serves to indicate a special requirement for code mapping (see Section 5.3.1.1).

Where the target programming language permits, parameters may be passed by

means of class attributes (see Section 5.3.1.4). The exception handler domain concept (see

Section 5.3.1.2) maps to the scope imposed by a State Machine diagram containing the try

and catch states (see Section 5.3.1.6). The termination model concept (see Section 5.3.1.5)

maps to a state transition from the handler state to the final state. The exception propaga-

tion concept (see Section 5.3.1.3) is viewed as a propagation of the exception signal from

the current enclosing State diagram to the next outer-level enclosing State diagram.

As per the usage model (see Section 5.3.1.6), the throw action maps to the

«EMthrow» stereotype that defines the EMthrowType tagged value. The EMthrowType tag

lists exception types that can be thrown by an «EMthrowMethod» object. The try and catch

blocks map to the stereotypes «EMtry», and «EMcatch» in the State Machine diagram,

respectively. The handler that is specially designated to trap all other exceptions that are

raised without being caught by the «EMcatch» stereotype is represented by a state adorned

with the «EMcatchAll» stereotype (see Section 5.3.1.6).

5.3.2.2 UML Extensions

To avoid any possible duplicate and ambiguity, all extensions defined in this profile are

prefixed with EM.

 111

«EMbind»

This stereotype binds the exception to its throw and handler class, thus effectively

modeling the exception mechanism at a higher-level of abstraction (see Section 5.3.1.6).

«EMcatch»

This stereotype models the catch structure concept as discussed in Section 5.3.1.6.

«EMcatchAll»

When used after the «EMcatch» block, this stereotype allows the exceptions that

are raised but not caught by the catch block to be trapped. In this context, its function

resembles the finally and others clauses in Java and Ada, respectively. However, when

used alone, it will catches all exceptions, and thus, can be translated to catch(...) in C++.

«EMexception»

This stereotype models the exception representation concept (see Section 5.3.1.1).

Stereotype Base Class Tags

«EMbind» Dependency --None--

Stereotype Base Class Tags

«EMcatch» SimpleState
CompositeState

--None--

Stereotype Base Class Tags

«EMcatchAll» SimpleState
CompositeState

--None--

Stereotype Base Class Tags

«EMexception» Signal --None--

 112

«EMhandler»

This stereotype models the exception handling concept (see Section 5.3.1.1).

«EMthrowMethod»

This stereotype models the throw statement part of the throw/try/catch structure

(see Section 5.3.1.6).

It defines the following tagged value:

«EMtry»

It represents the try structure concept as discussed in Section 5.3.1.6.

5.3.2.3 Example

The UML usage model for the exception profile utilizes a State diagram to model the

throw/try/catch structure, and attaches it to a method. This method can be nested and

called from within another State diagram, resulting in a exception propagation hierarchy.

Stereotype Base Class Tags

«EMhandler» Method --None--

Stereotype Base Class Tags

«EMthrowMethod» Method EMthrowType

Tag Name Tag Type Multiplicity Domain Concept

EMthrowType TVL List of throwable
exception types, for
example (‘rErr’,’wErr’,
‘rwErr’)

0..1 Throw statement (see
Section 5.3.1.6)

Stereotype Base Class Tags

«EMtry» SimpleState
CompositeState

--None--

 113

State Machine diagrams in Figure 5.2 demonstrate the UML usage model of the

exception modeling profile. Figure 5.2 (a) shows the UML representation of an exception,

along with corresponding Java code excerpted from Burns and Wellings [108]. It is to note

in this figure that, even though, the exception possesses no parameter, i.e. class attribute,

using and passing parameters along with the exception notification is perfectly doable.

The State Machine diagram in Figure 5.2 (b) illustrates the modeling of a throw statement.

The try/catch blocks in Figure 5.2 (c) are illustrated as simple states. However, they are

applicable to composite states as well. The corresponding Java code for the try/catch states

is also included in the figure.

5.4 Interrupt Modeling (IMprofile)

Developers of real-time embedded systems so often requires low-level interrupt service

programming to implement applications such as device drivers and controllers. The pro-

posed platform-centric SoC design method expects that the developer would be able to

mostly avoid such tedious programming by resorting to available hardware-dependent

software packages that accompany LPO hardware components. Nonetheless, given the

sheer size and diversity of real-time embedded system characteristics, the availability of

these packages is far from being a cure-all remedy. There will always exist the times that

no suitable packages can be found, and the interrupt programming becomes inevitable,

resulting in an increased complexity. The IMprofile package attempts to provide for the

developer an interrupt modeling framework that can help ease the complexity incurred by

the interrupt programming process, and that is independent of any programming language

in particular.

 114

Figure 5.2: Example of UML Exception Modeling Using «EMprofile»

FullStackException
 «EMexception»

 public FullStackException() {} }
public class FullStackException extends Exception {

(a)

Stack

stackArray:Object []
stackIndex: Integer
stackCapacity:Integer

...
+ push (item:Object) «EMthrowMethod»

 {EMthrowType = (‘FullStackException’) }

...

[stackIndex==stackCapacity]

[else] do/throw new FullStackException()

do/stackArray[stackIndex++] = item

ThrowState

NormalState

.

 ...
 public void push(Object item) throws FullStackException {

public class stack {

 if(stackIndex == stackCapacity) throw new FullStackException();
 stackArray[stackIndex++] = item; }

 ...

 protected Object stackArray[];
 protected int stackIndex, stackCapacity; }

(b)

UseStack

...
+ main (...) «PCUmain»

S:Stack
+ F:FullStackException

TryState

CatchState[F]

[else]
...do/S.push(someObject)

...

.

(c)

 public static void main (...) {

public class UseStack {

 stack S = new Stack();

 try { S.push(someObject);
 ... }

 catch (FullStackException F) ... ;

 }
 }

 «EMtry»

 «EMcatch»

 115

5.4.1 Domain Viewpoint

The actual implementation of interrupt service facilities differs from one programming

language to another. However, the underlying requirements for these languages remain the

same. They are: device register representation and manipulation, device encapsulation,

and interrupt handler. Subsequent discussions are based predominantly on Chapter 15 of

the book by Burns and Wellings [108], that details the technical survey on low-level pro-

gramming.

5.4.1.1 Interrupt Representation and Characteristics

Although many representations of interrupts are possible [108], in principle, they can be

viewed simply as a specialized signal. These interrupt signals can be assigned priority lev-

els. They can also be associated with unique IDs that permit the interrupt handlers to take

proper actions when interrupt events occur. Certain interrupts in Ada, clock interrupt for

example, are reserved and have no user-defined handlers associated with them. Reserved

interrupts are handled through the run-time support system of the language.

5.4.1.2 Device Register Representation

Each device supported on a hardware platform has as many different types of register as

are necessary for its operation [108]. A device register is memory-mapped, and accessible

through a memory address. Depending on the hardware platform configurations, a device

register may (1) either be oriented most-significant-bit first (descending order, big

endian), or least-significant-bit first (ascending order, little endian), and (2) be aligned to a

specified number of bits, e.g. 8-bit (byte-aligned), 16-bit.

In practice, a device register is divided up into several fields. Each of these fields

contains information that is necessary for a correct operation of the device, e.g. control

and status data. An accessibility control can be specified such that each individual field

can independently set a permission for read-only (r), write-only (w), or both read-write

(rw) operations.

 116

To successfully model an interrupt service facility, an expressive way to represent,

and manipulate these device registers is a prerequisite. The requirements are: (R1) it shall

be able to expressively represent device registers at the bit level, and (R2) it shall include a

facility that provides support for bitwise operations. These requirements will be discussed

in terms of VHDL as follows.

The requirement R1 involves the support for BIT and BITVECTOR data types—a

facility that is extensively supported in most HDL languages. BIT is a scalar type, and has

the values ‘1’ and ‘0’, representing logical ‘1’ and ‘0’, respectively. BITVECTOR is then

defined as an array of data type BIT. A BITVECTOR can be of a specified size, range, and

order—e.g. a descending BIT array of size 8 starting from bit 7 down to 0.

Access to data of type BITVECTOR shall be allowed both on an individual-index

basis, or a range-of-index basis. The following bitwise operators shall be supported

(requirement R2):

• Logical operators: and or nand nor xor xnor not

• Relational operators: = /= < <= > >=

• Shift operators: sll srl sla sra rol ror

• Concatenating operator: &

When applying logical and relational operators to BITVECTOR operands, the oper-

ation is carried out bit-by-bit, and matching position-to-position, until a decisive outcome

results. The sll and srl are logical shift left and right. The sla and sra are arithmetic shift

left and right, while the rol and ror are left and right rotation, respectively. These operators

take the left operand to be a data of type BITVECTOR, and the right operand is an integer

indicating a number of positions to shift. The logical shifts fill the vacated bits with logical

‘0’s, while the arithmetic left and right shifts fill the vacated bits with the right-most and

the left-most bits, respectively. The sole adding operator takes two operands, either BIT or

BITVECTOR, concatenates them, and returns a BITVECTOR as the output.

 117

Assume that all operands are of type BITVECTOR, Table 5.1 demonstrates the use

of these operators.

5.4.1.3 Interrupt Handler

An interrupt handler is a software managing routine that executes appropriate actions in

response to an interrupt event. Each interrupt signal is bound to a certain handler such that,

when an interrupt event occurs, the correct handler becomes active.

5.4.1.4 Device Encapsulation

Interrupt service programming often involves low-level hardware operations that is

machine-dependent, and is not portable in general. For a software systems, “it is advisable

to encapsulate all the machine-dependent code into units which are clearly identifiable so

that separation of portable and non-portable sections are achieved [108].” Examples of

such units are classes and packages in Java, protected type facilities in Ada, and a file in C.

5.4.2 UML Viewpoint

In defining UML extensions, i.e. stereotypes, tagged values and/or constraints, for the

IMprofile package, the prefix IM is always attached to the names to differentiate them from

similar or same names in other profiles.

Table 5.1: Demonstrative use of some bitwise operations

Operations Results Operations Results

not “101” “010” “011” xor “101” “110”

“101” > “111” FALSE “010” & “00010” “01000010”

“10100110” sll 2 “10011000” “10100110” srl 3 “00010100”

“10100110” sla 2 “10011000” “10100110” sla 3 “11110100”

“10100110” rol 2 “10011010” “10100110” ror 3 “11010100”

 118

5.4.2.1 Mapping Interrupt Domain Concepts into UML Equivalents

The interrupt model is attained by stereotyping a Class with the «IMinterrupt» stereotype,

where the following tagged values are defined: IMpriority, IMisReserved, and IMid. The

interrupt ID maps to IMid, the priority to IMpriority, and a reserved interrupt is specified by

the IMisReserved tag (see Section 5.4.1.1).

The interrupt handler concept maps to the «IMhandler» stereotype attached to a

method, where it can be bound to an «IMinterrupt» using the «IMbind» stereotype. A class

containing the «IMhandler» method represents the device interface block that encapsulates

the device-dependent operations together in one place (see Section 5.4.1.4). This Class

must be stereotyped with the «IMdeviceIF» stereotype.

5.4.2.2 Mapping Data Type into UML Equivalents

The BIT and BITVECTOR data types map to the IMbit Enumeration, and the «IMbitVector»

stereotype, respectively. Their definitions, usages, and constraints are described in detail

as follows.

IMbit

It is an enumeration whose permissible values, ‘0’ and ‘1’, represent the logical ‘0’

and ‘1’, respectively.

Device Register Representation

To represent device registers in UML, the «IMbitVector» and «IMbitField» stereo-

types are used in conjunction (see also Section 5.4.2.3). The «IMbitVector» stereotype is

adorned on a Class to designate it as a container of a BITVECTOR data. A BITVECTOR

IMbit
‘0’
‘1’

 «enumeration»

VHDL Definition:
SUBTYPE IMbit IS BIT;

 119

data is represented as an attribute (or attributes) with the «IMbitField» stereotype attached

to it. The type expression of the BITVECTOR data follows the format below that satisfac-

torily expresses size and range of the data (see Section 5.4.1.2):

field_name ‘[‘ from_bit ‘:’ to_bit ‘]’ ‘:’ IMbit ‘[‘ size ‘]’ «IMbitField»

In addition, when multiple bit fields of the same characteristics are declared in succession,

only one «IMbitField» stereotype may be used prior to the first bit field declaration to

imply a declaration block. The «IMbitField» block terminates where it encounters another

stereotype, or where it reaches the end of the compartment.

A typical control and status register for the computer has the following structure

[108], whose equivalent UML representation is shown in Figure 5.3.

Bits 15 - 12 : Errors -- Errors
11 : Busy -- Busy
10 - 8 : Unit -- Unit select
7 : Done -- Done/Ready
6 : Ienable -- Interrupt enable
5 - 3 : -- Reserved
2 - 1 : Dfun -- Device function
0 : Denable -- Device enable

Also, by using «IMbitVector» and «IMbitField» stereotypes to represent a device

register. it implies that:

• If all bit fields can be read from, there must exist a getRegValue() method which

returns the register value that results from concatenating all bit fields together. This

function is defined in the «IMbitVector» class as:

+ getRegValue: IMbit[IMvectorSize]

• Similarly, if all bit fields can be written to, there must exist a setRegValue() method

that takes an IMbit array of size IMvectorSize as the input, and assigns its value to

the corresponding bit fields. This function is defined in the «IMbitVector» class as:

 120

Figure 5.3: Example of the UML representation of a control and status register

+ setRegValue(v: IMbit[IMvectorSize])

• There always exists the getSizeBitfieldName() method that return the length of the

bit field indicated by the BitfieldName. This method is defined in the «IMbitVector»

class as:

+ getSizeBitfieldName: Integer

• There always exist the setBitfieldName() and getBitfieldName() methods associated

with each bit field, unless it is marked as read-only (IMrwMode = ‘r’), or write-only

(IMrwMode = ‘w’, see Section 5.4.1.2). In such a case, only the proper method is

implemented. For example, assume that the Errors bit field is read-only while the

Ienable can be read from or written to, then the following methods are defined:

+ getSizeErrors: Integer
+ getErrors: IMbit[4]
+ getSizeIenable: Integer
+ getIenable: IMbit
+ setIenable(v: IMbit)

csr_T

Error [12:15] : IMbit[4]

 «IMbitVector»
{IMvectorSize = 16, IMbitOrder = ‘descend’}

«IMbitField» {IMrwMode = ‘r’}

«IMbitField»
Denable [0:0] : IMbit
Dfun [1:2] : Function_T
Ienable [6:6] : IMbit
Done [7:7] : IMbit
Unit [8:10] : IMbit[3]
Busy [11:11] : IMbit

...

Function_T

Read: IMbit[2] = “01”

 «enumeration»

Write: IMbit[2] = “10”
Seek: IMbit[2] = “11”

 121

5.4.2.3 Mapping Operators into UML Equivalents

In mapping the operators described in Section 5.4.1.2 into UML equivalents, a utility class

IMoppak is defined as a grouping mechanism. The operators placed inside the IMoppak

class become known globally. Let IMbit_T be a super type of types IMbit and IMbit[]. Then,

the operators belonging to the IMoppak class are defined as follows (see Table 5.2).

5.4.2.4 UML Extensions

To avoid any possible duplicate and ambiguity, all extensions defined in this profile are

prefixed with IM.

Table 5.2: Definition of IMoppak operators

Op IMoppak Operators Op IMoppak Operators

and IMand(v1: IMbit_T, v2: IMbit_T) : IMbit_T or IMor(v1: IMbit_T, v2: IMbit_T) : IMbit_T

nand IMnand(v1: IMbit_T, v2: IMbit_T) : IMbit_T nor IMnor(v1: IMbit_T, v2: IMbit_T) : IMbit_T

xor IMxor(v1: IMbit_T, v2: IMbit_T) : IMbit_T xnor IMxnor(v1: IMbit_T, v2: IMbit_T) : IMbit_T

not IMnot(v: IMbit_T) : IMbit_T = IMisEqual(v1: IMbit_T, v2: IMbit_T) :
Boolean

/= IMisNotEqual(v1: IMbit_T, v2: IMbit_T) :
Boolean

> IMisGreater(v1: IMbit_T, v2: IMbit_T) :
Boolean

>= IMisGreaterEqual(v1: IMbit_T, v2: IMbit_T) :
Boolean

< IMisLess(v1: IMbit_T, v2: IMbit_T) :
Boolean

<= IMisLessEqual(v1: IMbit_T, v2: IMbit_T) :
Boolean

sll IMsll(v: IMbit_T, k: Integer) : IMbit_T

srl IMsrl(v: IMbit_T, k: Integer) : IMbit_T sla IMsla(v: IMbit_T, k: Integer) :IMbit_T

sra IMsra(v: IMbit_T, k: Integer) : IMbit_T rol IMrol(v: IMbit_T, k: Integer) : IMbit_T

ror IMror(v: IMbit_T, k: Integer) : IMbit_T & IMcat(v1: IMbit_T, v2: IMbit_T) : IMbit_T

 122

«IMbind»

The stereotype models the explicit binding between an interrupt and its handler

(see Section 5.4.1.3). The UML representation shows as an attachment of the «IMbind»

stereotype on a dependency between «IMdeviceIF» and «IMinterrupt» classes.

«IMbitField»

The stereotype represents an individual bit field within a device register (see Sec-

tion 5.4.1.2, see also Section 5.4.2.2).

The tag defined for it is:

«IMbitVector»

This stereotype represents the BITVECTOR data type as discussed in Section

5.4.1.2 (see also Section 5.4.2.2). Just like the BITVECTOR data type, «IMbitVector»,

together with «IMbitField», are used to model the device register concept in UML.

Stereotype Base Class Tags

«IMbind» Dependency --None--

Stereotype Base Class Tags

«IMbitField» Attribute IMrwMode

Tag Name Tag Type Multiplicity Domain Concept

IMrwMode Enumeration: (‘r’, ‘w’, ‘rw’)
Default value: ‘rw’

0..1 Accessibility Mode of
Register’s Bit Field
(see Section 5.4.1.2)

Stereotype Base Class Tags

«IMbitVector» Class
Object

IMaddress
IMalignment
IMbitOrder
IMvectorSize

 123

The definition of each tagged value is presented as follows:

«IMdeviceIF»

This stereotype represents the device encapsulation concept as described in Section

5.4.1.4.

«IMhandler»

This stereotype represents the device handler concept as discussed in Section

5.4.1.3.

The following constraint is defined for this stereotype:

• A «IMhandler» method must reside in the «IMdeviceIF» class.

Tag Name Tag Type Multiplicity Domain Concept

IMaddress Integer 0..1 Address location of the
register device (see
Section 5.4.1.2)

IMalignment Integer 0..1 Number of bits in Bit-
alignment (see Section
5.4.1.2)

IMbitOrder Enumeration: (‘ascend’,
‘descend’)

0..1 Bit orientation (see
Section 5.4.1.2)

IMvectorSize Integer 1 Number of bits in a
device register

Stereotype Base Class Tags

«IMdeviceIF» Class
Object

--None--

Stereotype Base Class Tags

«IMhandler» Method --None--

 124

«IMinterrupt»

This stereotype models the interrupt concept (see Section 5.4.1.1).

The following tagged values are defined:

5.4.2.5 Usage Model Framework

Figure 5.4 delineates a possible usage model framework for the Interrupt Modeling Profile

(IMprofile) package. In the figure, InterruptInterface and AnInterrupt represents a design

template that the developer can quickly generalize for the modeling of device-specific

operations. This template, which specifies relevant tagged values, and the device-specific

run-time library are supplied by the LPO component provider.

The device encapsulation block, MyInterruptInterface, provides an interface facil-

ity between the software system and the device. Its behavior can be described using State

or Sequence diagrams, or code insertion (Behavior1). Within its region of computation,

defined are instances of device registers, as well as the interrupt handler whose functional-

ity is described by the Behavior2 module. The «IMbind» stereotype on a dependency

between MyInterruptInterface and MyInterrupt classes practically binds the handler

method in MyInterruptInterface to the interrupt represented by the class MyInterrupt.

Using this framework, a simple homomorphic mapping from the interrupt model to code

becomes possible as shown in Table 5.3.

Stereotype Base Class Tags

«IMinterrupt» Class
Object

IMid
IMisReserved
IMpriority

Tag Name Tag Type Multiplicity Domain Concept

IMid String 0..1 Interrupt ID (see Section 5.4.1.1)

IMisReserved Boolean 0..1 Reserved interrupt (see Section 5.4.1.1)

IMpriority Integer 0..1 Interrupt priority (see Section 5.4.1.1)

 125

Figure 5.4: Usage Model Framework for the Interrupt Modeling Profile

MyInterruptInterface

Behavior2
// May define attributes

Behavior1

«IMhandler» ...

// Device registers defined

// Implement using State

MyInterrupt

 «IMinterrupt»

IMoppak

Register Types

 «import»

 «utility»

Device Run-time Library

 «IMdeviceIF»

InterruptInterface
 «IMinterrupt»

AnInterrupt
 «IMbind»

 «IMdeviceIF»

// here

// Other methods
...

{Tag Defined Here}

// here

 «IMbind»

// or Sequence diagrams

// Implement using State
// or Sequence diagrams

.

.
// or code insertion

// or code insertion

MyInterruptInterface()

 126

5.5 Synthesizable HDL Modeling (SHDLprofile)

Thus far, this chapter has established a bridging mechanism (Section 5.2) that permits

information from the LPO to be retrieved and used in the UML context that encompasses

system modeling, analyzing, and implementing. Thereafter Sections 5.3 and 5.4, introduce

the Exception and Interrupt Modeling profiles that, together with the upcoming UML real-

time profile, provide a comprehensive support for the development of platform-based real-

time applications. This section embarks on the issues of hardware implementation, and

Table 5.3: Interrupt model to code mapping

Model Element Real-Time Java [108, 111] Ada [108]

«IMdeviceIF» Class Protected procedure.
If the model element is a template
class, a parameter can be passed to the
constructor, and thus, the protected
procedure.

«IMpriority» Class PriorityParameters pragma Interrupt_Priority(IMpriority)

«IMhandler» Class AsynchEventHandler Procedure

«IMbind» MyInterrupt.addHandler(
IMhandler)
MyInterrupt.bindTo(IMid)

pragma Attach_Handler(IMhandler,
IMid)

«IMinterrupt» AsynchEvent MyInterrupt Ignored.
However, it signifies the requirements
for various Ada interrupt packages.
Moreover, tagged values are used.

Registers RawMemoryAccess var

Methods in IMde-
viceIF

methods entry procedures

Behavior1 Either ignored, or becomes a con-
troller method in parent class.

Initialization procedure for the pro-
tected procedure.

Behavior2 method body procedure body

 127

presents the Synthesizable HDL Modeling (SHDLprofile) package that enables the use of

UML to descriptively model hardware for synthesis. With the SHDLprofile package, both

hardware and software development can take place in one unified environment, rendering

the development task less complicated.

5.5.1 Domain Viewpoint

In the Electronic Design and Automation (EDA) realm, Hardware Description Languages

(HDL) are used to describe hardware functionalities, verify functional correctness, and

synthesize the code for subsequent fabrications. The synthesis capability of today’s main-

stream HDL languages, i.e. Verilog and VHDL, has advanced so much from a few years

back that it becomes very commonplace and almost indispensable in the development of

any hardware system. In implementing the SHDLprofile package, only the synthesizable

subset of HDL syntax and semantics is considered.

 HDL languages differ from traditional software-oriented programming languages

in many aspects. Of all the discrepancies, it likely is the concepts of signals, time, and con-

currency that renders the dissimilitude quite notable. Such concepts require specialized

data types, data values and language constructs that make the UML modeling of HDL

appears extraneously awkward, let alone the fact that UML is fully object-oriented, while

most, if not all, HDL languages are not. Even with the current real-time-oriented UML

profile for Schedulability, Performance and Time Specification, UML is still deemed inad-

equately expressive for the purpose of describing hardware.

The Synthesizable HDL profile, tailored specifically for the proposed approach, is

aimed to augment UML with the capability to expressively describe hardware by means of

UML models, such that unambiguous UML-to-HDL mapping can be realized to aid the

design and implementation of hardware systems. The profile, however, does not attempt to

strictly formalize UML for formalism tends to hinder the analysis capability which is so

essential for the proposed approach. Instead, the profile relaxes the strict formalism to

allow code insertion where appropriate to expedite the development process.

 128

HDL synthesizability is considerably dependent on the interpretation by synthesis

tools; there really is no perennial guarantee for interoperability. As such, this section relies

on several sources, books, tutorials, papers, and manuals alike, to define the common

working subset of synthesizable HDL that is likely to yield the same synthesis results. As

per VHDL, the IEEE 1076.6 standard for VHDL Register Transfer Level (RTL) Synthesis

[112] serves as the ultimate reference. On the other hand, the interoperability standard for

synthesizable Verilog is still work in progress (see http://www.vhdl.org/vi/vlog-synth/).

Every effort is made to ensure the best possible interoperability of synthesizable Verilog in

this dissertation. The basis of subsequent discussions related to VHDL and Verilog comes

predominantly from [113], [114], [115].

Little known use of UML modeling for hardware design has been documented.

Much attention has been directed to formalizing UML object and dynamic models so as to

automate the code generation process. Björklund and Lilius [116] have demonstrated that

automatic generation of optimized synthesizable VHDL code from UML State diagrams

could be achieved. In McUmber and Cheng [117], a method to formalize UML object and

dynamic models that allows in-model VHDL simulation is reported. Nonetheless, none of

these researches provides UML facilities comprehensive enough to tackle the issue of

UML modeling for hardware design, which shall (1) allow hardware systems to be

described structurally and behaviorally for proper analysis, and (2) include comprehensive

facilities for modeling specialized HDL data types, data objects, operations, and language

constructs. Rather, the profile bears some conceptual resemblance to the executable UML

concept described in Mellor [118], but is more complete as an aid for hardware design and

is specifically customized to work well in the platform-centric design environment. No

concrete work regarding the UML modeling of Verilog HDL has been found. Such passive

research activities in this field can probably be attributed to the almost non-OO nature of

Verilog that may prove less attractive compared to the object-based VHDL. It is expected,

though, that research activities will increase as Verilog-2005 rolls out [119] and UML 2.0

becomes mature.

 129

Figure 5.5: VHDL Design Units

5.5.1.1 HDL Design Entities

The VHDL design entities are more modular and more complicated per se when compared

with the Verilog counterparts. As such, the discussion herein will proceed solely in terms

of VHDL.

VHDL specifies five different design units: entity, architecture, configuration,

package and package body, as illustrated in Figure 5.5 [113]. An entity/architecture pair,

known collectively as a design entity, is the main construct for describing a hardware com-

ponent; it is analogous to Verilog’s module. The entity provides the port information of a

particular design entity, while the architecture provides the functional body description.

The configuration functions as a binding mechanism that associates an entity to a particu-

lar architecture. Finally, the package and package body hold common design data that can

be used by a design entity. Their Verilog equivalent is the include construct.

entity ENT1 is
} ...
begin
} ...
end entity ENT1;

configuration CFG1 of ENT1 is
} ...
end configuration CFG1;

package PKG1 is
} ...
end package PKG1;

package body PKG1 is
} ...
end package body PKG1;

architecture ARCH1 of ENT1 is
} ...
begin
} ...
end architecture ARCH1;

 130

5.5.1.2 Data Types, Data Objects, and Operations

Unlike the IMprofile package that explicitly defines bit-oriented data types, and operations

(see Sections 5.4.2.2 and 5.4.2.3) in order to mitigate the difficulty in modeling interrupt

service routines, the SHDLprofile package, instead, adopts the data types, data objects, and

operations of the target language.

Whereas VHDL defines a number of data types, Verilog only defines one and it

never has to be explicitly specified in any declarative statement. A data object is a mecha-

nism adopted by both VHDL and Verilog to pass data from one point to another. Examples

of a data object in VHDL are signal and variable, while examples in Verilog are wire, reg

(register), and parameter. A code generator is expected to be able to understand, syntacti-

cally and semantically, the language-specific declarations and descriptions in the model.

5.5.1.3 Code Structure

The HDL code structure typically comprises declarative statements, sequential statements,

and concurrent statements.

Like most other programming languages, the declarative statements declare objects

for use in other parts of the design unit. In VHDL, these statements are always located

before the begin clause in a package body, architecture, process, procedure, or function

statement. Verilog, on the other hand, has no dedicated declarative region.

Statements after the begin clause in the process statement (VHDL), and inside the

always statement (Verilog) are sequential. So are those in the procedure (VHDL), task

(Verilog) and function (VHDL and Verilog) statement.

As per concurrent statements, the supported set for VHDL/Verilog encompasses

process/always statements, signal/continuous assignments, and VHDL procedure calls. In

order to execute concurrently, VHDL signal assignments and procedure calls must not be

nested inside a process statement.

 131

5.5.1.4 Behavioral Description

Sequence of HDL statements, that may execute sequentially or concurrently within a

design unit, constitute a behavior of that design unit. In VHDL, the following behavioral

constructs are synthesizable: process, wait on, wait until, procedure, function, if clause,

case clause, for loop, generate, next, and exit. In Verilog, the list includes: always, @(),

task, function, if clause, case clause, and for loop. The collaboration among design units is

achieved by means of port and signal (or reg in Verilog).

It is often the case in VHDL that only the wait until statement is permissible for

synthesis. In addition, the process and procedure body can only contain at most one wait

statement, usually as the first statement in the sequence. In the case of the task statement

in Verilog, it can contain no wait equivalent, i.e. @(), at all. Such a diverse usage of wait

statements can result in a modeling complication. As such, it is often a good practice to

exclude all synchronous wait statements from the body of subprograms and/or process/

always statement, and use VHDL’s sensitivity list or Verilog’s @() statement, instead.

A concurrent statement, i.e. the process statement, and the statement in the archi-

tecture body that do not belong to any process, never terminates. Once it executes to its

entirety, it starts over from the beginning. This concept is to be referred to as an endless

continuation.

A generate statement in VHDL furnishes a mechanism to render a description of

regular concurrent statements compact. A for-generate can be used to replicate such state-

ments a predetermined number of times; whereas, an if-generate stipulates the replication

of such statements by means of conditional statements. The generate statements are

expanded back to the normal, explicit descriptions during compilation time.

Parametrized design is also possible in both VHDL and Verilog, making use of the

generic clause, and parameter overloading, respectively. Reuse is attained through the

VHDL package design unit, and the Verilog include clause.

 132

Coding style is also significant since the synthesis tool often infers from it to make

synthesis-related decisions. For example, using an if statement can infer a priority encoder

to be synthesized, while a case statement inferring a mux.

5.5.2 UML Viewpoint

In defining UML extensions, i.e. stereotypes, tagged values and/or constraints, for the

SHDLprofile package, the prefix SHDL is always attached to the names to differentiate

them from similar or same names in other profiles.

Due to the object-based nature of VHDL, it is more straightforward to present the

mapping using VHDL concepts and constructs. Then, where appropriate, related informa-

tion on the corresponding Verilog counterparts ensue. The presentation is organized by

first considering in Section 5.5.2.1 the mapping of the design entity collaboration concept,

followed by the mapping of the generic HDL structure and behavioral constructs in Sec-

tions 5.5.2.2 and 5.5.2.3, respectively. Thereafter, Section 5.5.2.4 details the UML exten-

sions for the SHDLprofile package. The presentation concludes in Section 5.5.2.5 with a

demonstrative example on using this profile.

5.5.2.1 Mapping Design Entity Collaboration Mechanisms into UML Equivalents

The collaboration among design entities involves the port and signal concepts—how to

define and represent them in UML, and how ports from different design units are bound

together to establish a communication channel by means of the signal data object (reg in

Verilog).

A port declaration maps to an attribute declaration in an entity class, with one of

the «SHDLin», «SHDLout», «SHDLinout» stereotypes attached to the attribute to indicate

the port direction. Each port takes on one of the user-defined types that specifies the HDL-

dependent data type and data object type. These types are described in the «SHDLtypedef»

tag section. Though not explicitly specified, syntactically all VHDL ports are data objects

of type signal. Verilog only defines one base data type, which never has to be declared (see

 133

Section 5.5.1.2). In Verilog, I/O ports are viewed as wire. Verilog inputs should be

declared a wire, while the outputs can either be declared a wire or a reg.

As an example, an AND2 ports may be represented as follows:

5.5.2.2 Mapping Generic HDL Structures into UML Equivalents

The design entity concept maps to the «SHDLmodule» stereotype that embellishes an

abstract class (see Section 5.5.1.1). This stereotype represents a synthesizable HDL

domain, and can be iteratively nested. Its presence denotes the existence of the entity/

architecture pairs, or other «SHDLmodule» classes. The stereotype defines no tagged

value.

The entity and architecture concepts map into a class with the «SHDLentity» and

«SHDLarch» stereotype, respectively. In Verilog, the «SHDLentity» stereotype represents

the header area of the module, while, the «SHDLarch» stereotype represents the module

body. The «SHDLentity» class shall contain no method definition. In fact, it must contain

only port definitions that define the design entity interface. The VHDL configuration con-

cept maps to the «SHDLbind» stereotype that binds a pair of «SHDLentity»/«SHDLarch»

classes together.

The VHDL generic clause (parameter overloading in Verilog) maps to a

«SHDLentity» template class. Parameters in the template window represent the generic

parameters in VHDL.

 A1: PortIn

AND2_vhdl

 «SHDLentity»

OR
 «SHDLin»

 Q: PortOut

 A1: PortIn «SHDLin»

 AND2_verilog

 «SHDLentity»

 Q: PortOut «SHDLout»

 A2: PortIn A2: PortIn «SHDLin»

«SHDLout»

 «SHDLtypedef»
{ SHDLdefineType = (‘PortIn’, ‘wire’, default),
SHDLdefineType = (‘PortOut’, ‘reg’, default) }

 «SHDLtypedef»
{ SHDLdefineType = (‘PortIn’, ‘signal’, ‘bit’),
SHDLdefineType = (‘PortOut’, ‘signal’, ‘bit’) }

 134

As opposed to the «SHDLentity» that specifies the communication interface for the

«SHDLmodule», the «SHDLarch» describes the behavior for it. The VHDL architecture

name maps to the name of the «SHDLarch», while architecture-scoped signal declarations

map to attribute declarations that are stereotyped by «SHDLdataObject».

Within the architecture body, instantiation of other entities is possible. In VHDL,

such a process involves (1) declaring the design entity to instantiate, and (2) instantiating

the design entity, and binding the desirable ports and signals together via the port map

statement. The design entity concept maps to a user-defined data object, and thus, could be

declared in the attribute list compartment. The actual instantiation of the design entity

maps to a composition relationship from the «SHDLarch» class to the «SHDLentity»

object. port map statements map to port value assignments in the «SHDLentity» object.

The process (Verilog’s always) statement maps to an object stereotyped with

«SHDLprocess». This object can be implemented by State Machine diagrams, or by

inserting source code for it. The relationship between the «SHDLarch» class and the

«SHDLprocess» object is defined by a composition association (see Figure 5.7).

The concurrent (Verilog’s assign) statements that reside outside the process block

in the architecture body, and that do not involve entity instantiations. map to a container

object stereotyped with the «SHDLparBlock» stereotype. By treating these statements as

having a container object associated with them, they can be annotated with QoS properties

and analyzed just like any other objects, if need be. Then there are two ways to associate

the unmapped concurrent statements with the «SHDLparBlock» object. The first method is

to use code insertion defined in Section 5.2.2.2, i.e. «PCUdeclare», and «PCUcodeBody».

Secondly, concurrent State Machine diagrams can be employed. As an example, consider

the VHDL code that negates the values of din and assigns the new value to a signal dout:

dout <= not din; -- concurrent statement

 135

Figure 5.6: Concurrent state representation of dout <= not din

The State Machine diagram for this expression is portrayed in Figure 5.6. It has no

final state and is perennially active. Every time an event occurs on din, the above state-

ment is evaluated and dout has a new value assigned.

A generate statement maps to a class being stereotyped with «SHDLgenerate»

(see Section 5.5.1.4). The usage model for the «SHDLgenerate» stereotype is portrayed in

Figure 5.7. As seen in the figure, an «SHDLgenerate» class may contain one or more

instances of either the «SHDLparBlock» or «SHDLentity» object. The for statement is

inferred by the SHDLgenFor tag owned by the «SHDLgenerate» stereotype. Conditional

statements for the if-generate map to constraints on the Composition.

Example_parBlock

state1

state3

din/dout <= not din
din/dout <= not din

[din]
entry/ dout <= not din

[din]

Alternate
Representation

state2

state2

 136

Figure 5.7: Summary of the relationships among entities in the «SHDLmodule»

Procedure and function declarations map to method declarations in the method

compartment of the «SHDLarch» class. All methods must be visible publicly (+). A

method that has no return value infers a procedure (VHDL) or a task (Verilog), whereas a

method that has a return value infers a function (VHDL and Verilog). Procedure and/or

function parameters must be of type SHDLdataType. Similar to the concurrent statement,

its implementation entails the use of code insertion (see Section 5.2.2.2), and/or State

Machine diagrams (see Section 5.5.2.3 for details). Figure 5.7 summarizes the relation-

ships among relevant entities within the «SHDLentity»/«SHDLarch» pair.

The package and package body, where global variables and functional facilities

are defined, maps to a class stereotyped with «SHDLpackage». The stereotype has no

tagged value. Then the global variables map to attributes in the attribute list compartment;

whereas, procedures and functions map to methods in the method compartment. See the

discussion above for details about the method inferences of procedures and functions.

...

EntityName
 «SHDLentity»

 «SHDLin»

...
«SHDLout»

ArchName
 «SHDLarch»

// List of signals

// List of procedures
// List of functions

0..*

0..*

0..*
«SHDLparBlock»

«SHDLprocess»

ConcurrentStatements

ProcessObject

EntityInstance

«SHDLbind»

«friend»

«SHDLmodule»

«SHDLparBlock»

«SHDLgenerate» ConcurrentStatements

GenerateBlock
EntityInstance

{SHDLgenFor = (‘indexName’, [from : to : inc]}

0..* {conditional}

{conditional}

 137

5.5.2.3 Mapping Synthesizable HDL Behaviors into UML Equivalents

State Machine diagrams are the UML model of choice for representing behavioral HDL

statements. To implement the «SHDLmodule», sequential state models can be attached to

the «SHDLprocess» object, and an entity instance. A concurrent state model can be asso-

ciated with the concurrent statement object («SHDLparBlock»).

The endless continuation concept (see Section 5.5.1.4) maps to a self-iterating

state, where there is no final state, and the state always transitions back to itself—pending

on the same guard condition as described by the event guard on the transition from the

start state to the first state. The state model depicted in Figure 5.6 is one such example.

The process statement maps to a self-iterating composite state as depicted below.

Due to its endless continuation characteristic, the composite state contains no final state,

and the last substate emanates a transition out of the boundary of the composite state

before looping back with the same event guard as the one modeled from the sensitivity

list.

In VHDL, it is required for this profile that if a wait statement is to be utilized in a

process and/or procedure, it must be the very first statement and the only wait statement

in the process/procedure body. It is recommended that a sensitivity list be used with the

process statement, in place of the wait statement. Verilog’s task, and VHDL/Verilog’s

function do not support the synchronization concept.

[synch_event_1]

ProcessState

...[synch_event_1]

 138

Then, the wait statement in process/procedure, and/or the sensitivity list concept in

the process statement map to the event guard on the transition from the start state to the

first state, and the synchronization signals map to the synch_event conditions, as shown

below.

The following illustrate the mapping of HDL behavioral constructs to the UML

equivalents. These constructs include: transition on wait conditions, if clause, case state-

ments, for loop, VHDL’s next and exit statements, and while loop.

Transition on wait conditions

If clause

Order control over the if sequence statements sometimes is significant, and can be

modeled as shown below using a dynamic choice path.

[synch_event]
state1

[wait until ...]
[wait on ...] [@(...)]

state1 state2

VHDL Verilog

state1 state2

-- If statements
--
st1;
if g1 then
 st2;
else if g2 then
 st3;
else
 st4;
end if;
st5;

st1

st2 st3

st4

st5

[else] [else]

[g1] [g2]

 139

case statement

The standard UML modeling of a case statement is in better agreement than the if

counterpart. Generally, the case statement is modeled as illustrated below.

for loop

The for loop model presented here follows that of Rational Rose™ [102] very

closely.

-- st1
case A is
 when ... => action1; -- st2
 when ... => action2; -- st3
 others => action3; -- st4
end case;

// st1
case(A)
 ... : action1; // st2
 ... : action2; // st3
 default: action3; // st4
endcase;

[others]

st4st3st2

st1

[A=..] [A=..]

do/action1 do/action2 do/action3

-- VHDL

// Verilog

-- VHDL
--
for i in 0 to 2 loop
 action;
end loop;

// Verilog
//
for(i=0; i<=2; i=i+1)
 begin
 action;
 end

st1

st2

st3

entry/i=0

entry/action [i<=2]
exit/i=i+1

 140

VHDL’s next and exit statement

The next statement in a loop maps to a state with only one action: exit/increment

loop index. Similarly, the exit statement maps to a state with the action: exit/exit.

while loop

The while loop, due to its unrestrained nature, is supported by only few synthesis

tools (yet, with certain set of rules to follow). However, it merits to be included here for

completeness.

CompositeState

[..]next_example

exit/increment i

...

...

next Statement

CompositeState

[..]exit_example

 exit/exit

...

...

exit Statement

-- VHDL
--
while B /= 0 loop
 action1;
 action2;
end loop;

state1

entry/action1
do/action2

[B /= 0]

 141

5.5.2.4 UML Extensions

To avoid any possible duplicate and ambiguity, all extensions defined in this profile are

prefixed with SHDL.

Port Direction («SHDLin», «SHDLout», «SHDLinout»)

These stereotypes help specify port directions for attributes of the «SHDLentity»

(see Section 5.5.2.1).

The following constraint is defined for these stereotypes:

• Holder of the Attribute base class must be stereotyped «SHDLentity».

«SHDLarch»

This stereotype represents the architecture concept of the entity/architecture pair

presented in Sections 5.5.1.1 and 5.5.2.2.

SHDLattrType

The SHDLattrType allows a tuple of string values that specifies the HDL language-

dependent data type and data object type to be mapped to a user-defined attribute type. Its

value is described using the Tag Value Language (TVL) as defined in the UML real-time

profile specification [29]. To represent the syntax, this dissertation follows the standard

BNF notational conventions, where:

• A string between double quotes (“) represents a literal,

Stereotype Base Class Tags

«SHDLin» Attribute --None--

«SHDLout» Attribute --None--

«SHDLinout» Attribute --None--

Stereotype Base Class Tags

«SHDLarch» Class --None--

 142

• A token in angular brackets (< >) is a non-terminal,

• A token enclosed in square brackets ([<element>]) implies an optional element of

an expression,

• A token followed by an asterisk (<element>*) implies an open-ended number of

repetitions of that element,

• A vertical bar indicates a choice of substitutions.

The TVL uses parentheses to identify arrays, commas to separate elements of arrays, and

single quotes for string literals.

The SHDLattrType is defined as follows:

<shdlAttrTypeStr> ::= (<attrTypeName> , <dataObjStr> , <dataTypeStr>)

<attrTypeName> ::= <String>

<dataObjStr> ::= <String> | “default”

<dataTypeStr> := <String> | “default”

«SHDLbind»

This stereotype represents the binding of the «SHDLentity» and «SHDLarch»

classes (see Section 5.5.2.2).

«SHDLentity»

The stereotype represents the entity concept as described in Sections 5.5.1.1 and

5.5.2.2.

Stereotype Base Class Tags

«SHDLbind» Dependency --None--

Stereotype Base Class Tags

«SHDLentity» Class
Object

--None--

 143

SHDLforInfoType

Similar to the SHDLattrType, the SHDLforInfoType is described using the TVL lan-

guage. It permits necessary information for executing a for-loop, i.e. index parameter

name, range, and incremental step, to be captured through the SHDLgenFor tag (see

«SHDLgenerate» below).

The SHDLforInfoType is defined as follows:

<shdlForInfoTypeStr> ::= (<indexNameStr> , <indexRange>)

<indexNameStr> ::= <String>

<indexRange> ::= “[“ <from> “:” <to> “:” <incStep> “]”

<from> ::= <Integer>

<to> ::= <Integer>

<incStep> ::= <Integer>

«SHDLgenerate»

This stereotype represents the modeling of VHDL’s generate block (see Section

5.5.2.2).

The stereotype defines one tagged value, which is:

Stereotype Base Class Tags

«SHDLgenerate» Class SHDLgenFor

Tag Name Tag Type Multiplicity Domain Concept

SHDLgenFor SHDLforInfoType 1 generate Statement,
see Section 5.5.2.2

 144

«SHDLmodule»

This stereotype represents the design entity concept as described in Sections

5.5.1.1 and 5.5.2.2.

«SHDLparBlock»

This stereotype represents the grouping of concurrent statements that exist within

the architecture body, but outside any process (see Section 5.5.2.2).

«SHDLprocess»

This stereotype represents the existence of a process in the architecture body (see

Sections 5.5.2.2 and 5.5.2.3).

Stereotype Base Class Tags

«SHDLmodule» Class --None--

Stereotype Base Class Tags

«SHDLparBlock» Object --None--

Stereotype Base Class Tags

«SHDLprocess» Object SHDLsensitive
SHDLsensitive_pos
SHDLsensitive_neg

 145

It defines the following tagged values:

«SHDLtypedef»

This utility stereotype enables the HDL-specific data type and data object type

associated with a particular data value to be captured using a user-defined attribute type

(see Section 5.5.2.1). The «SHDLtypedef» defines one tag, namely, SHDLdefineType.

The SHDLdefineType tag is defined as follows:

Tag Name Tag Type Multiplicity Domain Concept

SHDLsensitive TVL List of signals that a
process is sensitive to
changes, e.g. (‘clear’,
‘reset’)

0..1 Sensitivity List (see
Section 5.5.2.2 and
5.5.2.3)

SHDLsensitive_pos TVL List of signals
whose positive edge a
process is sensitive to

0..1 Sensitivity List (see
Section 5.5.2.2 and
5.5.2.3)

SHDLsensitive_neg TVL List of signals
whose negative edge a
process is sensitive to

0..1 Sensitivity List (see
Section 5.5.2.2 and
5.5.2.3)

Stereotype Base Class Tags

«SHDLtypedef» Class
Object
Note

SHDLdefineType

Tag Name Tag Type Multiplicity Domain Concept

SHDLdefineType SHDLattrType 1..* HDL-specific data
type and data object
type, see Section
5.5.2.1

 146

5.5.2.5 Example Usage

To demonstrate the usage model for the SHDLprofile package, specifically the framework

depicted in Figure 5.7, an implementation of a six-bit-add-two-bit adder modified from

Smith [113] is presented.

The example uses the structural style of hardware modeling to eventually realize a

six-bit-add-two-bit adder. A one-bit half adder is first described that is utilized later to

construct a one-bit full adder. Then by properly connecting full adder instances together,

the example is able to attain the structural description of a six-bit-add-two-bit adder as

desired. Figure 5.8 portrays the UML models of the half adder targeted for (a) VHDL and

(b) Verilog; different implementation styles are used for demonstrative purposes.

Although not explicitly displayed in the figure, properly package importation shall

be strictly exercised. Figure 5.9 depicts the implementation model of a full adder, using

the half adder entities in Figure 5.8. Figure 5.10 shows how the desired six-bit-add-two-bit

adder is implemented for the targeted VHDL. Because of its regular structure, the design

takes advantage of the generate statement. The model for Verilog should be fairly easy to

acquire from the VHDL model, with only one discrepancy: All six FA instances must be

explicitly instantiated in Verilog for it does not have a generate equivalent. Specific tools

may choose to support the generate model for Verilog; it is purely tool-dependent.

 147

Figure 5.8: A half adder implementation in (a) VHDL, and (b) Verilog. The
corresponding source code in VHDL and Verilog is shown in (c).

A: SignalOrWire

HALF_ADD
 «SHDLentity»

 «SHDLin»

Sum: SignalOrWire

B: SignalOrWire
«SHDLout»

Cout: SignalOrWire

 «SHDLarch»

LOGIC

 «SHDLparBlock»

CodeBody

 «SHDLbind»

 «PCUcodeBody»
Sum <= A xor B;
Cout <= A and B;

(a) VHDL Model

A: SignalOrWire

HALF_ADD
 «SHDLentity»

 «SHDLin»

Sum: SignalOrWire

B: SignalOrWire
«SHDLout»

Cout: SignalOrWire

 «SHDLarch»

LOGIC

 «SHDLparBlock»

CodeBody

 «SHDLbind» Verilog_HABehav

entry/assign

sumState
entry/assign

[A,B]

[A,B]

coutState

[A,B]

[A,B]

(b) Verilog Model

-- VHDL
-- Library usage not shown
--
entity HALF_ADD is
 port(A, B: in std_logic; Sum, Cout: out std_logic);
end entity HALF_ADD;

architecture LOGIC of HALF_ADD is
begin
 Sum <= A xor B;
 Cout <= A and B;
end architecture LOGIC;

// Verilog
//
module HALF_ADD(A, B, Sum,Cout);
 input A, B;
 output Sum, Cout;

 assign Sum = A ^ B;
 assign Cout = A & B;

endmodule

(c) Source code

 Sum = A^B Cout = A&B

«SHDLtypedef» { SHDLdefineType =
(‘SignalOrWire’, ‘signal’, ‘std_logic’) }

«SHDLtypedef» { SHDLdefineType =
(‘SignalOrWire’, ‘wire’, default) }

SHDLtype_class

SHDLtype_class

 148

Figure 5.9: A full adder implementation in (a) VHDL, and (b) Verilog. The
corresponding source code in VHDL and Verilog is shown in (c).

A: SignalOrWire

FULL_ADD
 «SHDLentity»

 «SHDLin»

Sum: SignalOrWire

B: SignalOrWire

«SHDLout»

Cout: SignalOrWire

 «SHDLbind»

(a) VHDL Model

(b) Verilog Model

(c) Source code

Cin: SignalOrWire

AplusB: SignalOrWire

 LOGIC
 «SHDLarch»

CoutHA1: SignalOrWire
CoutHA2: SignalOrWire

HA1:HALF_ADD
 «SHDLentity»

A = A
B = B
Sum = AplusB
Cout = CoutHA1

HA2:HALF_ADD
 «SHDLentity»

A = AplusB
B = Cin
Sum = Sum
Cout = CoutHA2

A: SignalOrWire

FULL_ADD
 «SHDLentity»

 «SHDLin»

Sum: SignalOrWire

B: SignalOrWire

«SHDLout»

Cout: SignalOrWire

«SHDLbind»

Cin: SignalOrWire

AplusB: SignalOrWire

 LOGIC
 «SHDLarch»

CoutHA1: SignalOrWire
CoutHA2: SignalOrWire

Same HA1, HA2
as the VHDL model

-- VHDL
--
entity FULL_ADD is
port (A, B, Cin: in std_logic;
 Sum, Cout: out std_logic);
end entity FULL_ADD;

architecture LOGIC of FULL_ADD is
 component HALF_ADD
 port (A, B: in std_logic;
 Sum, Cout: out std_logic);
 end component;
 signal AplusB, CoutHA1, CoutHA2: std_logic;
begin
 HA1: HALF_ADD port map (A=>A, B=>B,
 Sum=>AplusB, Cout=>CoutHA1);
 HA2: HALF_ADD port map (A=>AplusB,
 B=>Cin, Sum=>Sum, Cout=>CoutHA2);
 Cout <= CoutHA1 or CoutHA2;
end architecture LOGIC;

«SHDLparBlock»
CodeBody

 «PCUcodeBody»
Cout <= CoutHA1 or CoutHA2;

 «PCUcodeBody»
assign Cout <= CoutHA1 | CoutHA2;

«SHDLparBlock»
CodeBody

// Verilog
//
module FULL_ADD (A, B, Cin, Sum, Cout)
 input A, B, Cin;
 output Sum, Cout;

 wire AplusB, CoutHA1, CoutHA2;

 HALF_ADD HA1(.A(A), .B(B), .Sum(AplusB),
 .Cout(CoutHA1));
 HALF_ADD HA2(.A(AplusB), .B(Cin),
 .Sum(Sum), .Cout(CoutHA2));

 assign Cout = CoutHA1 | CoutHA2;

endmodule

«SHDLtypedef» { SHDLdefineType =
(‘SignalOrWire’, ‘signal’, ‘std_logic’) }

«SHDLtypedef» { SHDLdefineType =
(‘SignalOrWire’, ‘wire’, default) }

 149

Figure 5.10: A six-bit-add-two-bit adder implementation in VHDL (a), and the
corresponding source code (b).

SHDLtypedef_template_class

 «SHDLtypedef»

{SHDLdefineType=(‘WidthAVec’,‘signal’,‘unsigned($WidthA - 1 downto 0)’),

 «SHDLarch»

 «SHDLbind»

(a) VHDL-targeted six-bit-add-two-bit adder

WidthA: Integer = 6
WidthB: Integer = 2

CarryOut: WidthAVec
AddOut:WidthAVec

LOGIC

«SHDLgenerate» {SHDLgenFor = (‘M’, [0 : WidthA-1 : 1])}

ADDERS

A = A(M)
B = B(M)
Cin = ‘0’
Sum = AddOut(M)
Cout = CarryOut(M)

«SHDLentity»
FA0:FULL_ADD

{M=0}

A = A(M)
B = B(M)
Cin = CarryOut(M-1)
Sum = AddOut(M)
Cout = CarryOut(M)

«SHDLentity»
FA1:FULL_ADD

{M>0 and

A = A(M)
B = ‘0’
Cin = CarryOut(M-1)
Sum = AddOut(M)
Cout = CarryOut(M)

«SHDLentity»
FA2:FULL_ADD

{M>=WidthB}
 M<WidthB}

entity SIXBIT_ADD_TWOBIT is
 generic(WidthA: integer := 6;
 WidthB: integer := 2);
 port(A: in unsigned(WidthA-1 downto 0);
 B: in unsigned(WidthB-1 downto 0);
 Y: out unsigned(WidthA-1 downto 0));
end entity SIXBIT_ADD_TWOBIT;

architecture LOGIC of SIXBIT_ADD_TWOBIT is
 component FULL_ADD
 port(A, B, Cin: in std_logic;
 Sum, Cout: out std_logic);
 end component;
 signal CarryOut: unsigned(WidthA-1 downto 0);
 signal AddOut: unsigned(WidthA-1 downto 0);
begin
ADDERS: block
 begin
 for M in 0 to WidthA-1 generate
 if(M=0) generate
 FA0: FULL_ADD port map (A=>A(M),
 B=>B(M), Cin=>’0’, Sum=>AddOut(M),
 Cout=>CarryOut(M));
 end generate;
 if(M>0 and M<WidthB) generate

 end generate;
 if(M>=WidthB) generate
 -- Port Map
 end generate;
end block ADDERS;
end architecture LOGIC;

 -- Port Map

(b) Source code

 «SHDLentity»

A: WidthAVec «SHDLin»
B: WidthBVec «SHDLin»

SixBit_Add_TwoBit

Y: WidthAVec «SHDLout»

SHDLdefineType=(‘WidthBVec’,’signal’,’unsigned($WidthB - 1 downto 0)}

 150

5.6 Architecture Blueprint Modeling (ABprofile)

The UML profile for Codesign Modeling Framework comprises several subprofiles, as

described in prior sections. The PCUprofile supplies for the other subprofiles the common

facilities, as well as the essential link to the LPO. The EMprofile and IMprofile packages

provide for a more convenient real-time application development by allowing exception

handling routines, and interrupt service routines, respectively, to be modeled at a higher

level of abstraction. On the hardware side of the Codesign Modeling Framework, the

SHDLprofile addresses the need for UML modeling of synthesizable HDL languages, that,

when applied in tandem with the other subprofiles in the framework, renders a uniform

hardware and software environment for the development of platform-centric SoC systems.

The Architecture Blueprint Modeling profile (ABprofile), on the other hand, deals

with the UML representation of platform architectures that renders easy configuration

and/or derivation of the desired target architecture.

5.6.1 Domain Viewpoint

A system platform can involve predesigned and precharacterized hardware, middleware,

and software components (see Section 2.1, The Platform Concept, for further details). A

combination of these components can result in myriad possible target architectures. As

such, it is only appropriate that the platform architecture be represented abstractly in such

a way that subsequent instantiations of platform-compatible components can conveniently

occur that yield the target architecture as the desirable product. The abstract representation

of platform architectures is specifically referred to in this dissertation as an architecture

blueprint, or simply blueprint (see Chapter 4: Definition 4.7, and Section 4.2.1.7).

In principle, the abstract architecture specified by an architecture blueprint aids the

configuration/derivation of the target architecture by furnishing an architectural template

for the system developer. A blueprint-specific tool or tools are expected to always accom-

pany the blueprint to assist in the process of configuring/deriving the target architecture.

 151

5.6.1.1 Modeling the Blueprint for Configuring/Deriving the Target Architecture

UML allows a hardware platform to be modeled as a Node. By associating components,

applications and/or middleware with a Node, the developer can acquire the following:

• Explicitly portray relationships among software and hardware components,

• Draw pre-characterized Node information to be used for such tasks as performance

analysis, and schedulability analysis.

However, in the hardware-software codesign environment, it often requires more

than just representing hardware platforms and deploying software components in order to

be useful. Routine codesign tasks such as mapping HDL code to a programmable logic

device or instantiating a core onto the target architecture cannot be satisfactorily handled

by means of standard UML notations. All these testaments mandate that a more compre-

hensive model shall be implemented to satisfy beyond the normal confines of software

engineering. Now by associating a certain design with an architectural blueprint (AB)

type, the developer and tool shall be able to interpret the appropriate relationship between

them, some of which are shown in Table 5.4.

The benefits of utilizing the AB types in the proposed approach can arguably be

twofold: (1) as previously mentioned, implicative interpretation of the relationship

between design and AB entities can be deduced, and (2) it furnishes coarse-grained cate-

gories in an architecture blueprint that can be used as search keywords within the LPO

domain. Below is the list of these AB types:

• Programmable/Reprogrammable Unit (PRU). The category encompasses blueprint

entities that can be programmed and/or reprogrammed on the field. Typically, an

entity in this class provides a quick system prototype for the developer. Examples

are Field Programmable Gate Array (FPGA), Programmable Logic Device (PLD),

and Electronically Erasable Programmable ROM (EEPROM).

 152

• Implementable Unit (IU). Affiliated blueprint entities in this class bear some simi-

larities to those in the PRU category. They are designed by the developer, but must

be sent for fabrication and packaging after the design and verification. Because of

this distinct nature, the IU belongs in its own class apart from the PRU. Examples

of AB entities in this category is the Application-Specific IC (ASIC), and standard

cell devices.

• Drop-In Unit (DIU). The defining characteristic of AB entities in this class is that

they have been pre-developed, i.e. all characteristics can be precisely acquired.

Unless it is a processor, this type of entity has no direct interactions with the design

and requires an interface unit (IFU), e.g. device driver and controller, to manage the

communications. Example of AB entities in this category are peripheral devices,

processors and coprocessors.

Table 5.4: Semantic inferences of the relationships between design
components and physical hardware

Design Blueprint Type Inference

HDL, EDIF netlist, Data Programmable/Reprogram-
mable Unit, e.g. FPGA

Configuration file for a PRU unit is
expected

HDL, EDIF netlist Implementable Unit, e.g.
ASIC.

Design must be fabricated

--None-- Drop-in Unit, e.g. peripheral
devices, DSP

Hardware entities already in full-
development; may require interface
module for communication

General design component Drop-in Unit: a processor Design is deployed in a processor

Data Memory Unit (MU) Data resides in memory

Application; LPO component Interface Unit (IFU) Device driver, controller exists; Pin
connections information exists.

General design component Clock Clock utilization

General design component Timer Timer utilization

 153

• Interface Unit (IFU). The entities in this class provides a communication means for

the design and other AB entities. Examples of the IFU entities are PCI bus, Parallel

I/O, and Firewire.

• Memory Unit (MU). The AB entities of this type represent the storage element

class. Semantically, the MU is a subtype of the PRU; it exists primarily for the

search purpose. Examples are RAM and ROM.

• Clock. The Clock type is a subtype of the DIU type. Nonetheless, because of its

perennial presence in real-time systems, it merits to be distinguished from the rest

of the class. When present, the «RTclock» stereotype in the UML real-time profile

[29] shall refer to it.

• Timer. Like Clock, the Timer type is a subtype of the DIU and it corresponds to the

«RTtimer» concept in the UML real-time profile [29].

5.6.2 UML Viewpoint

In defining UML extensions, i.e. stereotypes, tagged values and/or constraints, for the

ABprofile package, the prefix AB is always attached to the names to differentiate them

from similar or same names in other profiles.

5.6.2.1 Mapping Blueprint Domain Concepts into UML Equivalents

Physical hardware maps to a class that is stereotyped with «ABnode». A design unit,

describing hardware implementation and software application alike, maps to a blueprint

component represented by an «ABcomponent»-adorned class.

The «ABnode» stereotype comprises one tag: ABisKindOf. This tag permits the

type of the «ABnode» class to be documented (see Section 5.6.1.1). The mapping of the

«ABcomponent» class onto the «ABnode» class is specified by the «ABmap» stereotype

adorned on a Dependency. Similarly, the «ABdeploy» stereotype is used to indicate the

mapping of software application to the «ABnode».

 154

5.6.2.2 Mapping the Blueprint Model Instance into the Physical Model

To prove the validity of using the AB model to configure/derive the target architecture in

place of the physical model, the mapping that demonstrates the one-on-one relationship

between the target architecture and the physical models is shown in Table 5.5.

From Table 5.5, it can be seen that the homomorphic mapping is possible with a

couple of exceptions: there are no corresponding semantics in the physical model for the

«ABprogram» and «ABbecome» stereotypes. This comes as an evidence for the inade-

quacy of the physical model as a modeling facility for the hardware-software codesign

environment.

Table 5.5: Mapping of the AB’s target architecture model into the physical
model

Target
Architecture Model Physical Model Target

Architecture Model Physical Model

‘clock’ Object clock Node ‘timer’ Object timer Node

Object physical HW parametrized Object configured HW

Class Type Node Type Class Instance
(owner)

Node Instance

Link Communication Class Instance
(owned)

Component
Instance

Dependency Dependency Composition Composition

«ABdeploy» «deploy» «ABprogram» --None--

«ABbecome» --None--

 155

5.6.2.3 UML Extensions

To avoid any possible duplicate and ambiguity, all extensions defined in this profile are

prefixed with AB.

«ABbecome»

This stereotype represents the relationship between a design unit and a hardware

entity of type IU (see Section 5.6.1.1). It indicates that the design unit is a synthesizable

HDL description of the hardware entity.

The following constraint is defined for this stereotype:

• The client element at the tail of the arrow must be of IU type.

«ABcomponent»

This stereotype models a design unit that may indiscriminately represents applica-

tion software, or a hardware component (see Section 5.6.1.1).

«ABdeploy»

This stereotype infers that a design unit can be supported by a hardware entity.

Normally, it signifies the residency of a design unit in the hardware. It is the ABprofile

equivalent of the standard «deploy» stereotype.

Stereotype Base Class Tags

«ABbecome» Dependency --None--

Stereotype Base Class Tags

«ABcomponent» Class
Object

--None--

Stereotype Base Class Tags

«ABdeploy» Dependency --None--

 156

«ABnode»

This stereotype represents hardware as view by the architecture blueprint (see Sec-

tion 5.6.1.1).

The tag for this stereotype is defined as follows:

«ABprogram»

This stereotype represents the relationship between a design unit and a hardware

entity of type PRU, where the design unit is used to program the hardware entity (see Sec-

tion 5.6.1.1).

The following constraint is defined for this stereotype:

• The client element at the tail of the arrow must be of PRU type.

5.7 UML to SystemC Mapping

In Section 2.4, the collaborative usage model of the platform-centric and the SystemC

approaches was presented, and potential advantages were discussed. This section focuses

instead on the mapping between the two models to demonstrate that models coherence can

be maintained, and that the mapping process can be automated.

Stereotype Base Class Tags

«ABnode» Class
Object

ABisKindOf

Tag Name Tag Type Multiplicity Domain Concept

ABisKindOf Enumeration: (‘pru’, ‘iu’,
‘diu’, ‘ifu’, ‘mu’, ‘clock’,
‘timer’)

0..1 AB Type (see Section
5.6.1.1)

Stereotype Base Class Tags

«ABprogram» Dependency --None--

 157

Because SystemC is entirely based on an OO language, i.e. C++, mapping to and

from UML is quite natural and intuitive. However, of particular interest is how specialized

SystemC macros and functions map to the UML constructs. Table 5.6 summarizes this

mapping from the software and hardware points of view. The fact that the proposed

approach is software-biased probably would make the software modeling scheme the

more attractive between the two. This SW-viewed UML/SystemC model utilizes the

RTconcurrencyModeling package defined in the UML Real-Time Profile [29] as the basis

for capturing SystemC specialized constructs. On the other hand, the hardware approach

could be useful for migrating existing UML/HDL models to the UML/SystemC. In such a

case, an intelligent tool would be capable of understanding the SystemC constructs from

the SHDLprofile-based UML models, resulting in minimal changes required of the UML

models. It also eases the task of replacing HDL code with the corresponding SystemC.

As an example, consider an implementation of a D flipflop with an asynchronous

reset, whose VHDL description is presented below. Figure 5.11 delineates the SW-viewed

UML/SystemC model of such a flipflop, while Figure 5.12 depicts the model as perceived

from the HW viewpoint.

Table 5.6: Mapping of the SystemC constructs to the platform-centric UML
models (SW and HW perspectives)

SystemC UML (SW Perspective) UML (HW Perspective)

SC_MODULE «CRConcurrent» «SHDLentity»

SC_CTOR «CRMain» «SHDLarch»

SC_METHOD method method

SC_THREAD «CRAction» {isAtomic=true} «SHDLprocess»

SC_CTHREAD «CRAction» {isAtomic=true}
Note: With presence of clock

«SHDLprocess»
{SHDLsensitive=(‘clock’)}

sc_main() «CRAction» sc_main «SHDLentity» sc_main

 158

Figure 5.11: A SW-viewed UML/SystemC model of an 8-bit D-F/F

-- VHDL implementation of an 8-bit D-F/F
-- dffa.vhd

entity dffa is
port(clock : in std_logic;

reset : in std_logic;
din : in std_logic_vector(7 downto 0);
dout : out std_logic_vector(7 downto 0));

end dffa;

architecture rtl of dffa is
begin

process(reset, clock)
begin

if reset = ‘1’ then
dout <= “00000000”;

elsif clock’event and clock = ‘1’ then
dout <= din;

end if;
end process;

end rtl;

 «PCUcodeBody»

if (reset) {

dffa

clock: sc_in<bool>
reset: sc_in<bool>
din: sc_in< sc_int<8> >
dout: sc_out< sc_int<8> >

do_ffa()
«CRMain» dffa()

 «CRConcurrent»
 dout = “00000000”;
}
else if (clock.event()) {
 dout = din;
}

 «PCUcodeBody»

SC_METHOD(do_ffa);
sensitive_pos << clock;
sensitive << reset;

(Use RTconcurrencyModeling, PCUprofile)

 159

Figure 5.12: A HW-viewed UML/SystemC model of an 8-bit D-F/F

 «PCUcodeBody»

if (reset) {

dffa

clock: SHDL_logic
reset: SHDL_logic
din: SHDL_logic_vector(7 downto 0)

dout: SHDL_logic_vector(7 downto 0)

 «SHDLentity»

 dout = “00000000”;
}
else if (clock.event()) {
 dout = din;
}

(Use SHDLprofile, PCUprofile)

«SHDLtypedef»
{SHDLdefineType=(‘SHDL_logic’,’signal’,’std_logic’),

 SHDLdefineType=(‘SHDL_logic_vector’,’signal’,’std_logic_vector’)}

 «SHDLin»

 «SHDLout»

«SHDLarch»

«SHDLprocess»
{SHDLsensitive = (‘reset’),

rtl

do_dffa

«SHDLbind»

 SHDLsensitive_pos=(‘clock’)}

 160

Chapter 6

Application Case Study: A Simplified
Digital Camera System

This chapter demonstrates the robustness of the proposed platform-centric SoC design

approach by using it to develop a simplified digital camera system. A digital camera is a

complex system comprising both mechanistic and electronic components—rendering it

very well-suited as an application case study for this dissertation. The chapter starts by

giving an overview of typical digital camera operations, as well as relevant mechanistic

and electronic components. Thereafter a set of general requirements is given, and the

development process begins in the manner prescribed by the proposed approach (see

Chapter 2). After detailing the tasks involved in each main step of the platform-centric

development process flow, i.e. the platform-independent, platform-analysis, platform-

dependent, and system derivation process steps, the chapter concludes by comparing cost-

effectiveness of the proposed approach with that of the SpecC approach [20] using

COCOMO II.2000 [19].

6.1 Digital Camera System

Comparing to a traditional film camera, a digital camera operates very much on the same

principle, although minute operational details differ considerably. It has by and large the

same user interface as that of a film camera, but with additional options only attainable

through digital photography. A digital camera captures and stores images in digital format

on a storage device. Figure 6.1 depicts a block diagram of a typical digital camera system.

 161

Figure 6.1: Block diagram of a typical digital camera system.

6.1.1 Image Acquisition Module

Just like a traditional film camera, light reflecting off the scene or subject is directed by

the lense onto the image acquisition module, which normally comprises an image sensor,

and/or an analog to digital converter (ADC). The duration and amount of light exposure is

regulated by a shutter and an aperture, respectively.

An image sensor constitutes the core for any digital camera system. It is based pre-

dominantly on either the Charge Coupled Device (CCD) or Complementary Metal Oxide

Semiconductor (CMOS) technology (see Table 6.1 for comparison). Within these sensors,

photocells are arranged in rows and columns, and become electronically charged when

exposed to light. “This charge can then be converted to an 8-bit value where 0 represents

no exposure while 255 represents very intense exposure of the cells to light [120].” Some

of the columns of the photocell array are covered with a black strip of paint, and are used

for zero-bias adjustments, i.e. white balancing, of all the cells in the array. Because the

CMOS imager is inherently noisy, an ADC is often integrated to help prevent further

image quality deterioration [121].

User Interface

Camera Settings and Controller

Image

Module

Image Image Storage Acquisition Conditioning
Module

DeviceCompression
Module

Lense

archive

 162

Normal digital camera operations commence with the process of determining

proper settings for the scene or subject to be photographed. Such tasks typically involve

adjusting the focus, setting image quality, measuring and gathering shooting parameters,

and selecting an appropriate shutter duration and aperture opening (f-stop in photographic

term). Once the required parameters are set and the shutter button is pressed, the following

sequence of operations typically ensues [121]:

• The shutter is closed; the sensor becomes temporarily inactive, and is instantly

flushed off all residual charges. This step is to prepare the sensor to capture a new

image.

• Depending on the camera and the settings, the residual charges that are flushed off

the sensor may be analyzed to acquire the proper settings for automatic point-and-

shoot operations. Or if a LCD viewfinder is present, it will display the flushed

image on the screen.

• The sensor becomes active and, at the same time, the shutter opens, exposing the

sensor to light—charging it as a result. The shutter remains open for the specified

exposure duration, before closing again. The image can now be captured and

streamed off to the Image Conditioning module.

Table 6.1: Comparison of the CMOS and CCD image sensors [121, 122]

Criteria CMOS image sensor CCD image sensor

Cost-effectiveness More cost-effective Less cost-effective

Image Quality Less superior (more susceptible
to noise)

More superior (less susceptible
to noise)

Pixels Access/
Download

Direct access possible (similar
to memory access)

No selective read. Must serially
flush off the whole image

Integrated ADC Yes No

 163

• The shutter re-opens, and the camera is ready to take another picture.

In many digital cameras, the time it takes for the sensor to flush, as well as to read

and set the shooting control parameters is often non-trivial—ranging from as little as 60

milliseconds to as long as 1.5 seconds [121]. This so-called shutter lag can be improved by

utilizing a larger buffer memory, and/or a faster processor. Higher communication band-

width can also speed up the lag. In some CMOS image sensors where rows and columns

can be selectively read, the shutter lag tends to improve as well.

6.1.2 Image Conditioning Module

The functionality of this module chiefly concerns color processing and image enhancing

tasks aimed to render a visually better image for the user. The actual algorithms for

achieving such a result vary from one camera to another, depending on the imposed

design criteria.

When the Image Conditioning module receives the digital data representation of

the image from the Image Acquisition module, specifically, the ADC, it first determines

whether or not demosaicing is required. Most digital cameras today carry only one image

sensor, instead of multiple image sensors for multiple color components. As such, to be

able to acquire a full resolution image from a single image sensor, the color filter array

(CFA) architecture is utilized to assign a color component to each photocell [121]. The

CFA-imposed digital data from this sensor can later be demosaiced with respect to the

CFA architecture to derive the full resolution image. An example of the CFA architecture

is the popular Bayer pattern.

Once a full resolution image is acquired, color processing and image enhancing

tasks can begin. These tasks involve, for example, color balance and saturation settings,

white balancing, noise removing, as well as other image effects and enhancement such as

sharpness enhancing, red-eye eliminating, or sepia coloring.

 164

Figure 6.2: Block diagram of the baseline JPEG encoder

6.1.3 Image Compression Module

To make optimal use of the storage device as well as to expedite upload/download time,

the preprocessed image from the Image Conditioning module may further be compressed

before writing onto the media. Most digital cameras let the user choose the image quality

settings that determine (1) the compression quality, and (2) the image dimension. Often,

this module is also responsible for generating image thumbnails.

Arguably, the most popular image compression algorithm used by digital cameras

today is the JPEG standard. JPEG works well with continuous-toned images, e.g. natural

scenes or photograph pictures. It defines both lossy and lossless algorithms, as well as the

embodiment of minimum requirements, called Baseline JPEG or simply just JPEG, that

guarantees portability across different decoder implementations. The baseline JPEG is

lossy; it, nonetheless, permits different compression quality settings to be specified—for

example, a value in the range of 0 to 100 where 0 means most compressed, worst quality,

Start Of Frame

c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3
c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3
c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3

c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3
c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3

c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3
c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3

c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3
c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3

c1 c1 c1 c1c2 c2 c2 c2c3 c3 c3 c3

 Color
Component
 C1

C2
C3

AC

DC

Separate Planes for each plane (scan)

for each 8x8 block

DCTQuantizeZigzag scan

DPCM

RLE

Frame End Of Frame

Huffman Coding

(or Arithmetic Coding)

Write to File

0110101001...

 165

and 100 least compressed, best quality. Figure 6.2 illustrates the baseline JPEG encoder

block diagram.

In Figure 6.2, the JPEG encoder takes the color components representing the image

as its inputs, and divides each of them into non-overlapping blocks of 8x8 pixels. For each

block, JPEG transforms the spatial data into frequency domain using the Discrete Cosine

Transform (DCT). Then in the quantization step, it rounds these frequency data (DC and

AC components) to the closest pre-defined values in the quantization tables, attempting to

minimize the number of total bits—hereby, resulting in a smaller image size. As the

human vision is less sensitive to high-frequency components, larger gains in compression

ratio may further be achieved by allowing larger errors to occur and/or eliminating some

high-frequency components altogether. The quantized data are then entropy-coded using

Differential Pulse Code Modulation (DPCM) and Huffman encoding for DC components,

and Run-Length encoding (RLE) and Huffman encoding for AC components. Finally a

JPEG file can be produced using the predefined file format.

6.2 Digital Camera System Requirements

For the case study, a functional prototype of a digital camera is developed that must meet

the following initial requirements. As before, requirement levels are indicated using the

keywords described in the guideline furnished by the Internet Engineering Task Force

(IETF)’s RTF2119 [63], as shown in Table 4.1.

6.2.1 Functional Requirements

Functional requirements describe system behaviors. For the case study, the following

functional requirements are imposed.

6.2.1.1 General Operational Requirements

The image acquisition and conditioning modules, illustrated in Figure 6.1, are assumed to

be implemented by another team. This simplified digital camera shall comprise only the

 166

user interface, the JPEG encoder module (see Figure 6.2), and the archiving step that

writes the compressed image onto a media. It must provide means to upload images onto a

PC. It is also responsible for implementing the camera control logics.

6.2.1.2 User Interface’s Operational Requirements

This simplified digital camera system has a pre-set shutter speed, as well as fixed aperture

and focus settings. However, it permits the user to select image quality (normal or good),

as well as a single shot or 2-shot burst mode. The camera status should be appropriately

displayed.

Stored images can be removed via the digital camera’s user interface. An image

upload operation causes all stored images to be transferred to a PC, without deleting the

images on the media; it is analogous to the file copy operation.

6.2.1.3 Input and Output

The inputs are the color components of the image; how these inputs are read shall be

determined by the actual implementation of the JPEG encoder. The eventual output is a

compressed JPEG file or files (in a 2-shot burst mode) written onto a media.

6.2.2 Non-functional Requirements

Non-functional requirements are requirements that do not concern system behaviors; they

encompass such metrics as:

• Performance, e.g. time required to process an image,

• Size, e.g. number of logic elements, and/or size of embedded software,

• Power, e.g. measure of average power consumption,

• Energy, e.g. battery lifetime.

 167

Vahid and Givargis [120] describes non-functional requirements as consisting of

constrained metrics, and optimization metrics. Constrained metrics are values that must

not violate a specified threshold(s); whereas, optimization metrics refer to certain design

goals that aim to improve the system. This section describes the non-functional require-

ments for the case study.

6.2.2.1 Operating Time Constraint

To be useful, the time used to take and store one image shall not exceed 1 second. The

time is measured from the moment the shutter is pressed to the moment the camera is

ready to take another picture.

Although faster operating time is normally desirable, it must also be thoroughly

justified.

6.2.2.2 Heat Dissipation and Energy Requirement

Even though the prototype is implemented on the NiOS development board that relies on

an AC-to-DC adaptor as the power source, the actual product will likely use batteries.

Therefore, it is desirable to minimize the power consumption as much as possible, so as to

prolong battery life. It is required, however, that no cooling fan shall be used.

6.2.2.3 Hardware Platform Requirements

A functional prototype of the simplified digital camera system being developed for the

case study shall be deployed on the Altera NiOS soft core embedded processor platform

targeted for the EP20K200EFC484-2X programmable logic device (PLD). Compatible

platform components may be utilized that are available in the LPO, such that the resultant

product closely emulates the actual digital camera operating environment. Descriptive

summary of the NiOS processor and platform, as well as the EP20K200EFC484-2X PLD

device is presented as follows (see their respective datasheets from Altera [81] for more

details).

 168

Figure 6.3: The NiOS embedded processor [81]

NiOS Embedded Processor

The NiOS embedded processor is a general-purpose, five-stage pipelined RISC

soft processor core in which instructions run in a single clock cycle. The NiOS CPU can

be configured for a wide range of applications; its 16-bit instruction set is targeted for

embedded applications in particular. The NiOS supports a fully-synchronous address/data

bus interface. In addition, it features a configurable 16-bit or 32-bit data path, 64 vectored

interrupts, 1-to-31-bit single-clock shift operations, as well as 128 to 512 general-purpose

registers. Two hardware-assisted multiplications are available that permit a single bit per

cycle multiplication (MSTEP) or a fast integer multiplication (MUL). Instruction set

extensions can be realized via the custom instruction feature. Figure 6.3 depicts the 32-bit

NiOS processor.

CPUPBM IRQ

Timer

UART

SRAM

FLASH

Serial
Port

NiOS

APEX20KE

Area available for
 Customization

address

data out

data in

read/write
ifetch

byte enable

wait

irq

irq#

clock
reset

Q

Q

D

/

/

/

/

/

32

32

32

4

Control

Clock

Interrupt

Enable

Control

Instruction
 Decoder

Operand
 Fetch

ALU

General-Purpose Processor
 Register File

(b) NiOS CPU (32-bit configuration)

.

. .

6

(a) NiOS Embedded System

Effective
address

Program Counter

 169

Figure 6.4: NiOS platform, showing communication between the NiOS
processor core and its peripherals [81]

NiOS Platform

The NiOS embedded processor provides for customizable, on-chip peripherals that

attributes to a convenient configuration of the NiOS platform. Once properly configured,

the developer can have the peripheral bus module (PBM) for such peripherals as timer,

SRAM, FLASH, universal asynchronous receiver/transmitter (UART), and parallel I/O

(PIO) automatically generated. The following PBM features are fully customizable:

• Base address and address span

• Data width

• Read/Write access restrictions (read-only, write-only, read-write)

• Wait states, and

• IRQ signal/priority.

Figure 6.4 depicts the NiOS platform that portrays the communication between the NiOS

embedded processor and its peripherals.

 Peripheral Bus Module (PBM)

 NiOS
Embedded
 Processor

Address
Decode

 Data in
Multiplexer

Interrupt
 Control

Wait State
Generator

Bus Sizing
(Optional)

 Port
Interface

UART

Timer

External
Memory

Internal
Memory

User-Defined
 Peripheral

...
User-Defined
 Peripheral

...

 170

EP20K200EFC484-2X PLD Device

The EP20K200EFC484-2X belongs in the Altera APEX20KE device group within

the APEX20K family. Like all of its sibling devices, the APEX20KE is built upon the

MultiCore architecture consisting of logic array blocks (LABs), whose basic units are the

logic elements (LEs). Each LAB comprises 10 LEs; 16 LABs can be combined to form a

new hierarchical structure called MegaLAB. In addition to these 16 LABs, a MegaLAB

contains an advanced embedded structure called an embedded system block (ESB).

The ESB is the heart of the MultiCore architecture. Each ESB contains 2048 pro-

grammable bits that can be configured as:

• product-term logic, which is superior for control logic functions such as address

decoding and state machines,

• LUT-based logic, or

• three types of memory: dual-port RAM, read-only memory (ROM), or content-

addressable memory (CAM) which allows the address to be identified from a data

input.

Specifically, the EP20K200EFC484-2X device contains 52 ESBs/8320 LEs, with

the maximum RAM bits (ESB bits) of 106496. It is housed in the 484-pin fine line, ball

grid array (BGA) package; the maximum of 376 I/O pins are available for use by the sys-

tem developer. The device allows up to two phase lock loop (PLL) implementations, and

supports four voltage interfaces: 5 V, 3.3 V, 2.5 V, and 1.8 V.

The NiOS embedded processor core is optimized for the APEX20K programmable

logic devices. When programmed on the EP20K200EFC484-2X, the 32-bit configuration

uses approximately 20% of the resources (approximately 13% in the 16-bit configuration),

and can execute up to 50 MIPS with the fastest permissible clock speed of 50 MHz.

 171

Figure 6.5: The platform-centric SoC method design flow

Requirements

Functional Spec

Supplemental
 Requirements

 Functional

 Platform
Search & Explore

 a platform candidate

Component-specific details
 Elaborate

 Validate/Verify

 Component - Specific Outputs

System Integration

and optimization

 Target Architecture

Verification

Capture & Analyze Functional Library

 P

la
tf

or
m

-i
nd

ep
en

de
nt

 S
pe

ci
fi

ca
tio

n

 P
la

tf
or

m
-d

ep
en

de
nt

 S
pe

ci
fic

at
io

n

System

 D
erivation Process

 Platform
 A

nalysis

+

POM

 Architecture blueprint of

Blueprint configuration POM

POmm/components
 Search & Explore

POM

 Platform-specific
 specification

view 1
view 2

view N

System analyses, compilation

Application- and Platform-specific

.

.

uml model

uml model

uml model

uml model

uml model
uml model

operations, e.g.

Partitioning Analysis

HW/SW Functional Spec

uml

uml model

model

 172

By using the platform-centric approach to develop the simplified digital camera

described above, the required tasks follow the prescribed stages that are treated in detail in

Chapter 2 and also illustrated in Figure 6.5. The remainder of this chapter presents specific

work details for each stage, before concluding with the cost comparison against the SpecC

methodology [20].

6.3 Platform-Independent Specification

This stage of the proposed platform-centric approach involves deriving the functional

specification of the system that is still independent of any platform specifics. Due to this

nature, proven techniques in software engineering are applicable to be used by the system

developer. Some well-known UML processes include the Rose™ Unified Process [102],

the UML/Catalysis as described by Graham [123], and the Rapid Object-Oriented Process

for Embedded Systems (ROPES) covered in detail in the UML book by Douglass [28].

Much like the object-oriented programming techniques that specify functional

interfaces without committing prematurely to any specific implementation, the platform-

centric SoC design method imposes no specific UML process on the derivation of this

specification. As a result, the proposed approach is flexible, and can readily adapt to the

diverse requirements of the complex development process of the real-time embedded SoC

systems. To derive the platform-independent specification in this stage, the dissertation

employs the modified version of the Requirement Specification Process as detailed in

Maciaszek [36]. This Use Case driven technique commences with the task of requirement

determination that clarifies the initial requirement document, shedding more light to it

from the developer’s point of view. It then enters the elaboration loop from either the Use

Case analysis or Class analysis entry points (or both, in parallel), and iteratively refining,

and deriving the desired specification using various UML techniques. The resultant UML

model comprises the static system structure captured by the Class diagram, the system

behavior represented by such a diagram as Sequence or Collaboration, and the system

state as described by the State diagram. Figure 6.6 depicts this process flow.

 173

Figure 6.6: Platform-Independent Specification Process Flow

The requirements determination task often requires multi-lateral efforts involving

many subtasks that will elicit, negotiate, validate, manage, and model the customer’s

requirements (see [36], [123] for details). The requirements document resulted from these

subtasks is subsequently analyzed that eventually will yield the platform-independent

specification.

It is quite normal in practice that the initial requirements are ambiguous and/or

incomplete. The requirements statement presented in Section 6.2 decidedly provides

insufficient information for the system developer to proceed further into the development

process, and the developer need to go through the requirements determination process

(preferably together with the customers). Since the requirements determination task is

Requirements Determination

Extended Requirement Document

Use Case Analysis Class Analysis

UML Domain

Sequence Collaboration State Activity

Static Structure (Class Diagrams) Behavior (Interaction Diagrams) State Change (State Diagrams)

DiagramsDiagrams DiagramsDiagrams

PLATFORM-INDEPENDENT SPECIFICATION

R
equirem

ents Specification A
nalysis

supplemental
requirements

 174

somewhat beyond the scope of this dissertation, its detailed procedures will be omitted.

The resultant extended requirements document, which is the product of reworking the

requirements statement in Section 6.2, appears as follows:

Digital Camera’s Extended Requirements

(R1) The user powers on the camera. The camera displays a ready
message and also an image count. A LED light illuminates. The camera is
ready to take a picture.

(R2) The user presses the shutter. The camera takes a picture and
stores the image in the memory. During the operation, the LED light goes
off and comes back on when finished. The image count on display gets
incremented. The camera displays a ready message.

(R3) The user enters the menu mode by pressing the menu button.
The user can browse the available options that include: image quality set-
ting, shot mode, upload, and delete.

(R4) The user uses the select button to show and to change the cur-
rent setting for each available option. For the image quality setting, the
user can choose between “good” or “normal”, with “normal” as the default.
For the shot mode, the user can select either single-shot mode (default) or
two-shot burst mode. The upload and delete settings can be either “yes” or
“no” (default).

(R5) The user uses the done button to commit to the settings and
brings the menu view up one level iteratively until exiting the menu mode
altogether, where the camera is ready to take a picture.

(R6) The user uses the done button to activate the upload operation.
When upload operation is requested, the camera transmits all images
stored in the memory to the PC, where the interface software writes the
JPEG files from these data. No image is deleted upon completion. When
finished, the status is displayed with no change in the image count and the
camera is back in the menu mode.

(R7) The user uses the done button to activate the delete operation
where the camera removes all images from the memory. The image count
on display is reset to zero, and the camera is back in the menu mode.

 175

6.3.1 Use Case Analysis

Depending on the entry point that the extended requirements document enters the

Requirements Specification Analysis domain, the Use Case analysis may either be the

kick-start or the follow-up activity of the string of requirements specification refinement

tasks that proceed sequentially and iteratively. It is also possible, and arguably beneficial,

that the two analysis processes be performed simultaneously so as to impart one’s analyti-

cal strength onto the other, and ergo, becoming more effective in deriving the platform-

independent specification.

The Use Case diagram models the system as seen looking in from the outside, as

such, making it attractive for modeling the requirements document which generally

describes the user’s viewpoint towards system functionalities. In UML terms, a Use Case

diagram comprises one or more use cases, each of which captures a system behavior that

is outwardly visible to an actor or actors, and that readily responds to external events

caused by the actor. A Use Case diagram is a graphical representation of use cases and

actors and how they interact.

Use cases can be derived from the identification of tasks of the actor [36]. From the

digital camera’s extended requirements, two actors are identified, namely, a user, and a

PC, and seven use cases are manifest in the requirements statement. Figure 6.7 portrays

the Use Case diagram of the digital camera system that is derived directly from the

extended requirements. An extension point in a use case merely allows a functionality of

another use case to be summoned at a specified location.

From this initial Use Case diagram, each individual use case, and its respective

actor, gets further elaborated to produce a more detailed requirements document which

narrows the focus down from the system to the use case level. Details and formats of this

derivative requirements document vary from one organization to another, but normally

include information such as pre-/post-conditions, and the main and alternative flow, as

demonstrated below for the Take a picture use case.

 176

Figure 6.7: Initial Use Case diagram as derived directly from the digital
camera’s extended requirements

Use Case Document 1: Take a picture

Use Case: Take a picture

Description: This use case allows the user to take a picture using the
digital camera

Actor: User

Pre-conditions: (PRE-1) The camera powers on without error.

(PRE-2) It is in a ready state.

Main flow: (MR-1) The use case begins when the shutter is pressed.
The LED light goes off.

(MR-2) The camera system reads in the input color compo-
nents. The shot-mode setting determines the number of
times these color components need to be read per one
press-shutter operation.

(MR-3) The camera system compresses the input color
components using the baseline JPEG algorithm. The com-
pression quality parameter is determined by the “GOOD” or
“NORMAL” setting from the setting menu.

Power on

Take a picture

Select options

Display status Upload images

Delete imagesLED illuminated

extension points
upload images
delete images

user

PC

«extend» «extend»

 177

Figure 6.8: The Take a picture Activity diagram

(MR-4) The camera system stores the compressed image
(or images) in the memory. It also increments and displays
an image count. The LED light comes back on.

Alternative Flow: No Alternative flow.

Post-conditions: (POST-1) The compressed image is stored in the memory
so that it can later be retrieved/deleted.

(POST-2) The number of stored images is updated.

(POST-3) The system state is unchanged.

(POST-4) The shutter comes back to its non-pressed state
and ready to be pressed again.

This Take a picture Use Case document can further be analyzed and captured using

the Activity diagram in order to delineate the logical action states of the main and the

alternative flow—the task which could prove helpful in eliciting more requirements. The

resultant Activity diagram could also be used as a reference for the Class Analysis task.

From the Take a picture requirements document, the following action states are educed:

Read color components, Compress input data, Store compressed image, and Update

image count. Figure 6.8 portrays the Take a picture Activity diagram.

Read color
components

Compress
input data

Store compressed
image

Update image
count

Read color
components

Compress
input data

Store compressed
image

Update image
count

[Two-shot Mode]

[Single-shot
Mode]

 178

By iteratively performing such analyses for all the initial use cases, additional use

cases manifest that can contribute to a more profound insight about the system. In so

doing, the developer may proceed:

• depth-first, until no additional requirements can be derived for a particular use case,

at which point the developer moves on to a new use case, or

• breadth-first, where the use cases are discovered layer by layer, or

• alternately between Use Case and Class analyses, treating the two analysis tasks as

concurrent processes that are supportive of one another.

When developing an embedded system within the platform-centric (or generally,

codesign) environment, the Use Case diagram that captures the extended requirements

typically will reveal most of the peripheral components to the developer. The subsequent

Use Case analysis on a peripheral-related use case tends to uncover a communication

interface between software and hardware components in the system. Consider the Use

Case analysis of the Take a picture requirements document. It is apparent from the flow

statements that the only actor for this use case model is the shutter. Then, by looking at the

system from the actor’s (shutter) point of view, it is easy to conceive that none of the

activities being described in the requirements document can possibly be done directly by

the actor. A new use case is required that handles the stimulus generated by the actor (see

MR-1), and that behaves as a proxy to the other activities in the requirements document, as

depicted below. The Use Case Document 2 that follows details the requirements for the

Handle signals use case.

Handle signalsshutter

«extend»

Take a picture

 179

Use Case Document 2: Handle signals

Use Case: Handle signals

Description: This use case intercepts the shutter signal and activates
the system to take a picture

Actor: Shutter

Pre-conditions: (PRE-1) The camera system is ready to accept a signal
from the actor.

(PRE-2) The actor is ready to send a signal

(PRE-3) All pre-conditions in the Take a picture use case
apply, i.e. the power is on safely and the system is in the
ready state.

Main flow: (MR-1) The use case begins when the shutter is pressed.

(MR-2) A signal is sent to the camera system.

(MR-3) The system intercepts the signal, examines it.

(MR-4) [At the extension point] the system begins taking a
picture once it is certain that the signal comes from the
shutter.

Alternative Flow: (AR-1) If the signal does not come from the shutter, appro-
priate extended use case is called.

Post-conditions: (POST-1) The compressed image is stored in the memory
so that it can later be retrieved/deleted.

(POST-2) The number of stored images is updated.

(POST-3) The system state is unchanged.

(POST-4) The shutter comes back to its non-pressed state
and ready to be pressed again.

It is also evident from the Alternative Flow statement AR-1 that there exist other

use cases that interact with the Handle signals use case as well. As the matter of fact, upon

completion of the Use Case analysis, the Use Case diagram, and the respective Activity

diagram will appear as depicted in Figure 6.9.

 180

Figure 6.9: Derived from the Handle signals requirements document, (a) the
eventual Use Case diagram, and (b) the Activity diagram.

Enter menu

Take a picture

Handle signals

Commit to changes

 Select setting

extension points
Take a picture

Shutter

«extend»

«extend»

Intercept
signals

[Shutter

[Select signal]

[Menu

Enter menu
Select setting
Commit to changes

Menu button

Select button

Done button

«extend»

«extend»

Shutter signal Menu signal Select signal Done signal
(from Shutter) (from Menu button) (from Select button) (from Done button)

Take a
picture Enter menu

Commit to
changes

Select
setting

signal] signal]

[Done
signal]

(a) The Handle signals Use Case diagram

(b) The Handle signals Activity diagram

 181

6.3.2 Class Analysis

Although this dissertation presents the Class analysis task after the Use Case analysis,

such an order is not necessarily true in practice. Depending on the practicality of how the

requirements document enters the Requirements Specification domain, the developer may

perform the Class analysis first, or choose to run both analysis tasks simultaneously.

A handful of techniques exist in books, papers and the Internet, that can contribute

to the Class analysis process. Douglass [98], in particular, treats this ever-mystical topic

comprehensively and in great detail. A few other useful books dealing with this subject

matter include, but not limited to, those by Graham [123], Douglass [28], Maciaszek [36],

and Fowler [25].

Where the Use Case analysis derives the platform-independent specification as it is

outwardly visible to the actors, the Class analysis task does just the opposite: It attempts to

derive the specification as it is seen internally. The Class analysis task presented herein

employs the Noun analysis technique to extract candidate classes from the requirements

document. UML diagrams, especially the Sequence and the Use Case diagrams, and Class

analysis techniques such as the Abbott’s textual analysis [124] and the Class-Responsibil-

ity-Collaboration (CRC) Cards technique, which has been developed by Beck and Cun-

ningham (see http://c2.com/doc/oopsla89/paper.html for the original paper, and/or a book

by Wirfs-Brock, Wilkerson, and Wiener [125] for further details) can be utilized to help

identify class attributes and methods, as well as relationships among the candidate classes.

The guideline to the Abbott’s textual analysis, as presented in [123] is summarized

in Table 6.2. The Noun analysis simply is a subset of this technique that concerns only

with improper nouns that infer candidate classes. By grouping candidate classes with

respect to some criteria, the developer can break down the problem into smaller chunks in

a divide-and-conquer manner, which can be handled more easily and effectively when

also applying other techniques to help identify class attributes and methods, as well as

potential relationships among candidate classes.

 182

6.3.2.1 Noun Analysis/Textual Analysis

The noun analysis refers to the process of selecting improper nouns from the requirements

document that can potentially be characterized as a class in the UML model. Performing

such a task as part of the iterative analysis process to derive the platform-independent

specification, this dissertation analyzes the nouns in the extended requirements document,

before focusing on each individual use case, and proceeding in a depth-first manner that

eventually produces a complete use-case-centric Class diagram as the result. The system’s

Class diagram is derived by merging all of the use-case-centric Class diagrams together,

performing additional analyses only where necessary during the merge. In the extended

requirements and Take a picture requirements, the candidate nouns are underscored.

Table 6.2: Guidelines for the Abbott’s textual analysis.

Part of Speech UML Model Component Example

proper noun instance the EP20K200EFC484-2X
PLD device

improper noun class/type/role push-button switch

doing verb operation start

being verb classification is a

having verb composition has a

stative verb invariance condition own

modal verb data semantics, pre-condition,
post-condition, or invariance
condition

must be

adjective attribute value or class good, normal

adjectival phrase association, operation back in the menu mode

transitive verb operation enter

intransitive verb exception or event goes off, commit to

 183

In order to traverse depth-first, consider again the Take a picture requirements. By

grouping the candidate nouns from this document and the extended requirements, basing

the grouping criteria on the Take a picture use case, the following candidate classes are

identified:

By concentrating on these nouns (classes), and doing the Abbott’s textual analysis

on them within the confines of the Take a picture use case, additional class characteristics

are acquired as shown below:

• camera system • shutter
• LED light • compressed image
• color components • memory
• display • [take a picture] operation
• [baseline] JPEG • user

Text Functions Potentially owned by Potentially associated
with

image count attribute camera system; memory --N/A--
image quality
setting

attribute display; camera system;
operation; JPEG

--N/A--

shot mode attribute display; camera system;
operation; JPEG

--N/A--

ready message attribute display --N/A--
store operation memory compressed image
press operation shutter user
increment operation memory; camera system operation
read (input) operation color components operation; JPEG
read shot mode
setting

operation display; camera system;
operation; JPEG

JPEG

read image
quality setting

operation display; camera system;
operation; JPEG

JPEG

display operation display camera system; memory;
operation

on/off operation LED light camera system; operation
take a picture operation operation --All Classes--

 184

Figure 6.10: Preliminary use-case-centric Class diagram derived from the
Noun Analysis/Textual Analysis

Although not evident from the textual analysis, it is fairly intuitive to perceive the

camera system class as maintaining an ownership relationship with all other classes in the

system—hence, inferring composition in the Class model. Figure 6.10 depicts the early

development of the Class diagram as derived from the Noun analysis/Abbott’s textual

analysis above.

6.3.2.2 Code Reuse

Advanced knowledge of the NiOS platform utilization requirement gives the developer a

certain degree of prescience that could impact the decision making process. Surfacing

almost naturally is the choice of using the C programming language and/or NiOS macro

code to develop the application software, as well as the opportunity to reuse the public-

domain JPEG library (in C) to expedite the development process.

user

shutter

press ()

LED

on ()
off ()

operation

take a picture ()

display
ready message
display ()

JPEG
image quality
shot mode

color components

read () compressed image

start ()

Camera System

memory
image count
store ()
increment count ()

 185

Figure 6.11: UML-encapsulated JPEG library. The figure shows the subsystem
package that provides a functional interface to the required library functions.

The developer who is familiar with the JPEG standard would likely know also that

its success has come substantially from the courtesy of the Independent JPEG Group (IJG)

for their effort in distributing free and highly portable C-code implementation of the algo-

rithm. The platform-centric approach envisages the C JPEG library as legacy software that

could be encapsulated using the UML notations as shown in Figure 6.11. The embellished

«PCUrun» stereotype specifies the Makefile to be executed—permitting the inclusion of

the library at the modifiable source code level rather than at the stationary archive level

(e.g. jpeglib.a).

camera system

«PCUrun» {PCUrunline = ‘$MAKEPATH/make’}

jdatadst.c jpeglib.h

jpeg_compress_struct

/* defined in jpeglib.h */
jerr: struct jpeg_error_mgr *
input_components: int
image_width: int
image_height: int
/* enum type */
dct_method: J_DCT_METHOD

«reside»

«file» «file»

jpeg_std_error(struct jpeg_error_mgr *): struct_error_mgr
jpeg_create_compress(struct jpeg_compress_struct *)
jpeg_set_defaults(struct jpeg_compress_struct *)
jpeg_set_quality(struct jpeg_compress_struct *, BOOLEAN)
jpeg_write_scanlines(struct jpeg_compress_struct *,
 unsigned char**, int)
jpeg_finish_compress(struct jpeg_compress_struct *)
jpeg_destroy_compress(struct jpeg_compress_struct *)

jpeg_subsys

jpeg_library

«import»

 186

Figure 6.12: UseCase-centric Class diagram utilizing the IJG’s JPEG library
package

The IJG’s JPEG library imposes further requirements that affect the format and

choice of the input color components, as well as the structure of the compression engine

that includes the image quality attribute. The compressed image class identified earlier

can be implemented by the C structure jpeg_compress_struct. The memory class,

renamed media to reflect the non-volatile nature of the memory, will be used from either

the library or the camera system packages. The image quality attribute corresponds to the

compression quality concept and can be set by calling the jpeg_set_quality() function. Fig-

ure 6.12 depicts the Class diagram, which presently includes the services from the JPEG

library package. In the figure, the JPEG class is also renamed encoder to reflect the fact

that it only copes with the forward operation of the JPEG standard.

user

shutter

press ()

LED

on ()
off ()

operation

take a picture ()

display
ready message
display ()

encoder

image quality
shot mode

color components

read comp ()

start ()

Camera System

media
image count
store ()
increment count ()

jpeg_subsys

cinfo: jpeg_compress_struct *
jerr: jpeg_error_mgr *

«call»

aColorComp

aMedia

aDisplay

aLED

anEncoder

anOp
aShutter

??

 187

Figure 6.13: Sequence diagram describing the main scenario for Figure 6.12.

By identifying roles and responsibilities of the classes in Figure 6.12, and then

modeling their interactions using the interaction diagrams, that comprise the Sequence and

the Collaboration model, the developer can potentially elicit additional information which

could manifest itself as class attributes or operations, or spawn new requirements that

merit their own Use Case and/or Class analysis.

The Sequence diagram in Figure 6.13 portrays a scenario that describes the princi-

pal collaboration of the classes in Figure 6.12. As deducibly evident from the figure, an

awkward relationship between the shutter and the operation class necessitates a closer

scrutiny. The thorough analysis of their relationship would likely result in an identification

of an interface class that is perennially active, waiting for the shutter signal, and that is

also responsible for furnishing a proper response to the intercepted signal—the idea

resembling the interrupt handling mechanism concept as depicted in Figure 6.9.

aShutter aMediaanOp anEncoder aLED aDisplayaColorCompaUser

press()
take a pic()

off()

start()

read ccomp()

ccomp line

compress()
store()

increment count()

on()

display ready message and image count

*[all lines are read]

 188

Figure 6.14: Detailed Class diagram for the Take a picture use case

The read comp (), which returns an input scan line (ccomp line), the compress (),

and the store () functions all come from the library, and must be renamed accordingly. The

IJG’s JPEG library also already specifies for the developer the scan-line format. Informa-

tion such as the need to keep track of the stored image locations and the current memory

location can become more obvious via the diagrammatic representation. Likewise, the

behaviors that may raise doubt, e.g. “Ought the increment count () operation to be called

by the operation class or by the media class?”, or “Does the media class actually play two

distinct roles?”, tend to become more distinguishable, graphically, as well. Figure 6.14

illustrates the detailed resultant Class diagram of the Take a picture use case.

shutter
LED

+on ()
+off ()

SW_service

#take_a_pic()

display

+display ()

encoder

+compress_quality: int
+shot_type: SHOTMODE
+start ()

media
+image_cnt: int

+store()
+increment_cnt()

jpeg_subsys

+cinfo: jpeg_compress_struct *
+jerr: jpeg_error_mgr *

«call»
ccomp_ptr

media_ptr

disp_ptr

led_ptr

jpeg_ptr

 In digiCam class (USE digiCam_genType.h, digiCam_classType.h)
(USE RTconcurrentModeling, jpeg_library)

«CRconcurrent»

+current_offset: int
+addr_offset: unsigned
 short *
+image_size: unsigned
 short *

+start()

«CRconcurrent»

shutter_reg

+set_val(val: int)

«CRconcurrent»

+get_val(): int

#id: int[2] aReg

color_components

#inbuff_base_addr: unsigned char *
#current_sample_ptr: unsigned char *
+get_current_sample_ptr():unsigned char*
+set_current_sample_ptr(val: unsigned char*)
+reset_current_sample_ptr()
+offset_current_sample_ptr(offset: int)

+start()

+start()

aMedia

/*
media is used by
the jdatadst.c file
*/

 189

A few notable changes are evident in Figure 6.14. The operation class is more

properly renamed SW_service (SW for switch) and the camera system class now

becomes the digiCam class that possesses the main function. The digiCam employs the

concurrency modeling facility (the RTconcurrentModeling package [29]) to capture the

concurrent characteristics of the shutter, shutter_reg, and SW_service classes. The press()

function is replaced with the start() function that internally simulates the press action as

coming from the standard input, i.e. a keyboard. The Sequence diagram in Figure 6.15

delineates the detailed behaviors of these concurrent classes, as seen by a controller class

that is not shown here in the figure. The C-like pseudocode of the start() functions appears

below.

Pseudocode of the start() function

The shutter_reg class

void start():

pipe(id);

The shutter class

void start():

if(fork == 0):

for(;;):

scanf(shutter_signal_id);

aReg.set_val(shutter_signal_id);

The SW_service class

void start():

for(;;):

aReg.get_val();

if (shutter_signal_id)

take_a_pic();

 190

Figure 6.15: Sequence diagram describing the action that leads to an activation
of the take_a_pic() function.

6.3.3 Concluding Remarks

To derive the platform-independent specification for the simplified digital camera system,

this dissertation performs the Use Case and Class analyses in a cyclical manner, resulting

in an iterative refinement process that yields the desirable specification as the outcome.

As priorly demonstrated, the adopted requirements analysis approach commences

by identifying the primary use cases and classes from the initial requirements document.

Then, for each primary use case, it determines the relevant classes, including the primary

classes already identified, before proceeding with the Use Case and Class analyses, in a

depth-first manner, until the final UseCase-centric Class diagram results. The platform-

independent specification is derived by merging all such Class diagrams together, while

performing further analyses as necessary.

aShutteraController

scanf(shutter_id_val)

take_a_pic()

«CRconcurrent»«CRconcurrent»«CRconcurrent»

aReg
/aShutterISR:
SW_service

start()

start()

start()

get_val()

set_val(shutter_id_val)

«CRAsynch» «CRSynch» «CRSynch»

[shutter_id_val]

«CRconcurrent»

return(shutter_id_val)

 191

Figure 6.16 depicts the space-optimal Class diagram that, along with the Sequence

and the State diagrams, as well as the supplemental requirements document, constitutes

the platform-independent specification. The detailed specifications document can be

found in Appendix E.

Although not shown explicitly, all the classes in Figure 6.16 belong to the digiCam

class (via the composition). The SW_shutter, SW_menu, SW_select, and SW_done are

the generalized classes of the SW_pushButton, all of which share the same device register

(SW_reg) that allows the SW_service class to intercept the incoming press signal, and call

the appropriate service routine. The display class is also renamed mssg_service to be

more specific about its characteristics. Another notable addition is the utilization of the

EMprofile package (see Chapter 5, Section 5.3 for details), which is discovered during the

Power-up Use Case analysis. For simplicity, this camera only checks the system readiness

by querying the existence of all anticipated peripherals—the operation that is performed

by the peripherals_checkup class during power-up.

Mindful readers might notice that the platform-independent specification presented

herein perceives the system development process as encompassing both hardware and

software, permitting the hardware components and architecture to be configured as well as

designed. This is to contrast with the current UML modeling practice where hardware is

often regarded as being external to the development process and the hardware components

and architecture can only be configured to model the relationships between hardware the

software system under development. The specification is also reflective of the anticipated

hardware/software system structure and behaviors, the benefits of which could be twofold:

• It provides for the developer the precise functional specification of the hardware

components expected to be acquired, configured or designed for the system, and

• It eases the task of transitioning from the platform-independent specification to the

HW/SW specific platform-dependent specification, as shall be seen later in this

chapter.

 192

Figure 6.16: Detail-minimal Class diagram for the digital camera system

SW_shutter

LED

 SW_service

mssg_service

encoder

media

jpeg_subsys«call»

ccomp_ptr

m
ed

ia
_p

tr

led_ptr

jpeg_ptr

In digiCam class (USE digiCam_genType.h, digiCam_classType.h, jpeg_library)
(USE RTconcurrentModeling, EMprofile)

«CRconcurrent»

«CRconcurrent»aReg

color_components

aMedia

«CRconcurrent»

«CRconcurrent»
SW_pushButton

SW_menu
«CRconcurrent»

SW_select
«CRconcurrent»

SW_done
«CRconcurrent»

SW_reg

MissingPeripheralException
«EMexception» /* will automatically

be defined in digiCam
as an attribute */

/* media is used
by jdatadst.c */

handler_shutter handler_menuhandler_selecthandler_done

upload_method

delete_method

controller
mssg_ptr
mssg_ptr
mssg_ptr

ch
ec

ku
p_

pt
r

mssg_ptr

m
ss

g_
pt

r

m
ss

g_
pt

r

m
ss

g_
pt

r

media_ptr
media_ptr

m
ed

ia
_p

tr

sw_ptr

sw7_ptr sw6_ptrsw5_ptrsw4_ptr

peripherals_checkup

start() «EMthrow»
handler() «EMhandler»

«E
M

bi
nd

»
«E

M
bi

nd
»

 193

Thus far this section has covered a lot of ground demonstrating, for the first stage

of the proposed design flow as depicted in Figure 6.5, how the platform-centric SoC

design method utilizes the cross-disciplinary techniques in Software and Requirements

engineering to derive the platform-independent specification from the initial requirements

document. To conclude, this dissertation presents the supplemental requirements docu-

ment as follows.

Digital Camera’s Supplemental Requirements

(NF-R1) Let timeA be the time when the shutter is pressed, and timeB
be the time when the camera is ready to take another picture. Then it is
required that when taking a picture of NORMAL quality:

timeB - timeA � 1 second,

for at least 95 percent of the time.

Note: The number of input samples, and effectively the
image sensor capacity, is still unknown and must be determined.

(NF-R2) Faster is better.

(NF-R3) The final product will operate on battery, as such it should
operate with as little power consumption as practically possible.

(NF-R4) No fan allowed.

(NF-R5) Must use the NiOS soft core, and the EP20K200EFC484-2X
APEX20KE device

(NF-R6) To be competitive, a throughput of 1 Mega-samples/second,
corresponding to a 640x480-pixel, color image sensor, is expected.

(NF-R7) [From the Take a picture Use Case] To be operational, the
power must be on and remains on, and all required peripherals must exist
and functional, i.e.

context digiCam:
inv: (self.current_state = STATE_READY or
 self.current_state = STATE_MENU) implies
 self.power_state = ON
pre: self.current_state <> STATE_ERROR

 194

6.4 Platform Analysis

The principal task in this stage involves identifying the platform from within the LPO that

is best suited the requirements represented by the platform-independent specification.

Such a task is non-trivial. In Figure 6.5, this task is illustrated as an iterative process

involving the search and exploration of available platforms in the LPO, as well as the

hardware/software partitioning analysis of the platform-independent specification per

each candidate platform. In most hardware/software SoC design approaches, where there

exists no explicit support for the derivation process of the platform-independent specifica-

tion, the equivalent of this stage is where the process flow commences, whose input is the

requirements specification1 which has been derived elsewhere.

The search and explore task requires the developer to interact extensively with the

LPO via the Platform-Object Manager (POM) interface software. A simple POM, like the

one shown in Figure 6.17, relies on XSL/XSLT to format the LPO’s XML database and

presents it to the developer in a familiar HTML format. The Summary section provides the

developer with quick cues as per the characteristics of each platform members (POmm/

components and POmm/tools). While the Search operation permits non-LPO searches, an

operation such as the XPath-based Query/Filter helps the developer zero in on a certain

aspect of the LPO database, making it useful for the task at this stage. To simulate the

work environment anticipated by the POM, the DTD schema documents and the XML

register files have been placed in different machines, accessible only through the Internet.

The information applicable to all POmm/components and POmm/tools is amassed from

the actual Nios components and tools, furnished by their respective providers. Due to time

restriction, only a simple POM is developed for the case study. It is envisaged, however,

that a more sophisticated version of the POM software, possibly the one that integrates

itself seamlessly into the platform-centric UML CASE tool, would contribute favorably to

the efficiency of the proposed approach.

1. Requirements specification is a generic term referring to the same concept as the platform-independent
specification, which is a platform-centric jargon.

 195

Figure 6.17: A simple POM interface window portraying the NiOS platform,
with a short summary on the JPEG Encoder module provided by CAST Inc.
(http://www.cast-inc.com)

For this particular case study, actual work is curtailed owing largely to the specific

requirements for the NiOS platform and the EP20K200EFC484-2X PLD device. In a

more typical scenario, the developer would have to explore the available choices of plat-

form, and assess and compare the feasibility of using each one of them for the problem at

hand. This process can be automated using CAD tools. It can also be achieved manually,

or by utilizing both approaches together. The use of platforms helps to allay the difficulty

of such a task by placing well-defined constraints, i.e. the platforms and their respective

components, onto the design space—contracting the sheer size of it as a result. Anyhow

the developer’s experiences still contribute considerably to the success of this task. Figure

6.18 depicts the architecture blueprint of the Altera’s NiOS platform system, where the

constraints and enumeration types are presented in Figure 6.19.

 196

Figure 6.18: The Architecture Blueprint of the NiOS platform (abNios.xmi),
depicting the platform structure

abNios.xmi (USE ABprofile, SHDLprofile, nios_SoftCore)

«ABnode»«ABnode»«ABnode»

«ABnode»
{ABisKindOf = ‘clock’}

Clock_node

{ABisKindOf = ‘pru’}
PLD_node PIO_nodeOffchip_node

«ABcomponent»
NiOScore

isInterruptible: BOOLEAN
spuriousInterrupt: BOOLEAN

width: Integer = 32
regFileSize: Integer = 256
mult_type: multType = Software

«ABcomponent»
OnchipMemory

ContentString: String
mem_type: memType = ROM

base_address: String
end_address: String

width: Integer = 32
content: contentType = GERMS

«ABcomponent»

UserInstr

name: String
CycleCount: Integer
OpcodeNumber: Integer

«ABcomponent»
NiosSystem

freqMHz: Real
«ABcomponent»

OffchipComponentIF

 TimerComponent

«ABcomponent»

AvalonBus

«ABcomponent»

 PIO

«ABcomponent»

AvalonTristate

«SHDLmodule»

UserInstrDescription

VectorTable

ModuleName: String
Offset: String
Address: String

ProgramMem

ModuleName: String
Address: String

 DataMem

ModuleName: String
Address: String

 RESET

ModuleName: String
Offset: String
Address: String

«PCUconfigList»

«PCUuseConfig»

«ABprogram»

*
*

*

0..5

0..10..1

1

1

**

*

1..*

1

0..1 1

1

1..*

1..*

1

1
*

0..1

1

1

*

1

*

1

config: timerConfigType =
period_ms: Integer = 1

 FullFeature

base_address: String
end_address: String
irq: Integer

«ABcomponent»

UART

«ABnode»

UART_node
0..1

*

1

*

1

*

*

*

 197

Figure 6.19: The Architecture Blueprint of the NiOS platform (abNios.xmi),
depicting a partial list of constraints and enumerated types

6.4.1 Automated Architecture Selection and System Partition

Algorithms exist that can assist the system developer in partitioning the system as well as

in selecting the target architecture. Axelsson provides a comprehensive overview on a

number of such algorithms in his thesis [23], the detailed treatment on some of which can

be found in [91, 92, 93, 94].

Architecture selection and system partition algorithms utilize pre-characterized

metrics from the platform-independent specification and from the candidate hardware

components to determine the feasible target architecture and to partition the specification

into hardware and software domains that can be mapped onto the architecture. Such an

automated task is very computationally expensive, and asserts no guarantee that the opti-

mal solution will ever be attained, especially where the design space is large and complex.

Such shortcomings afflict the usefulness of the automated approach tremendously.

abNios.xmi (USE ABprofile, SHDLprofile)

«enumeration»

multType
Software
MSTEP
MUL

memType

RAM
ROM

contentType

Blank
GERMS
File
Command
TextString

TimerConfigType
Custom
Periodic_Interrupt
Watchdog
FullFeature

«enumeration»

«enumeration»«enumeration»

context NiosCore
inv: self.width = 16 or self.width = 32
inv: self.regFileSize = 128 or

self.regFileSize = 256 or
self.regFileSize = 512

inv: self.spuriousInterrupt = TRUE implies
self.isInterruptible = TRUE

inv: self.onchipMemory.sizeByte->sum() < 10240
inv: self.avalonBus.pio->size() = self.pio->size()

context OnchipMemory
inv: self.width = 32 or self.width = 16 or

self.width = 8

context UserInstr
inv: self.cycleCount > 0
inv: self.opCodeNumber >= 0 and

self.opCodeNumber < 5

«enumeration»
 ICapType

None
Rising_edge
Falling_edge
Both_edge

«enumeration»
 PortType

inout_tristate
in
out
inout

IRQGenType
None
Level
Edge

«enumeration»

context PIO
inv: ioDirection = out implies

inputCapture = None

 198

Figure 6.20: Generic usage model for the automated architecture selection and
/or system partition algorithms

The platform-centric SoC design method specifies a general usage model for the

automated architecture selector and/or system partitioner as illustrated in Figure 6.20. In

the figure, the selector/partitioner feeds off the performance and/or schedulability model

(see UML Real-Time Profile for details [29]) that identifies the desired system objectives

for the algorithms. If profiling has to be done on the model, the selector/partitioner either

searches the LPO and calls the applicable profiler for each platform or, in a rare case, runs

the model against its own profiler to acquire the metrics necessary for the algorithms.

Common profiling parameters for candidate platform components, such as throughput or

execution time, may be read off the characteristics section of its XML data file, and/or

obtained from a dedicated characteristics file maintained elsewhere, possibly as part of the

customer support by the selector/partitioner vendors. Once all the required metrics are

determined, the selector/partitioner begins its long voyage that usually only ends when

certain criteria are met, rather than when the optimal solution is found. Figure 6.21 depicts

the performance model for the scenario where the camera is used to take a picture under a

Single-Shot, Normal Quality setting. The figure shows how the 1 frame per second

requirement, Requirement (NF-R1) in the Supplemental Requirements Document, can be

captured. For simplicity, this Sequence model for the JPEG encoding algorithm is not

detail-accurate, especially with respect to the IJG implementation.

Performance Model
Schedulability Model

Selector/Partitioner Profiler

Searches for platforms and possibly
their respective profilers

Get metrics

Characteristics FileLPO

RESULTS

provides

 199

Figure 6.21: Performance model as specified in the UML Real-Time Profile.
The figure describes Requirement NF-R1 from the Supplemental
Requirements Document.

jpeg_ptr
write_jpg:

huffmandct_engine quantizerccomp_ptr jdatadst.c

«PAcontext»

create &
initialize
cinfo

jpeg_set_quality(&cinfo, NORMAL, TRUE)

row_ptr[0] = get_current_sample_ptr()

jpeg_write_scanlines(&cinfo, row_ptr, 1)

start()

start()

start()

start()

*[cinfo_buffer_size/line_length]

*[line_length *
image_height /
cinfo_buffer_size]

«PAcontext»
{PAresTime = (‘req’,

‘percentile’, 95, (1, ‘sec’))}

(USE PAprofile)

 200

6.4.2 Manual Approach to Selecting Target Architecture

In optimization-based computations found in many different research areas, especially the

Operations Research, the initial value plays a crucial role in determining how quickly the

algorithm converges. In a platform-based codesign problem, the platform represents a pre-

determined, and configurable initial values set for a specific problem space. It permits

rapid convergence or, divergence, if no solution can be found; whereas, the pre-targeted

problem space associated with it determines the best-attainable solution for the problem.

For this case study, the inclusion of the Altera’s NiOS platform has already been

mandated. To get preliminary insight as per how the NiOS system should be configured,

the developer may perform a simple profiling on the platform-independent specification,

specifically the tasks related to the Take a picture use case for it is where the timing

requirement is placed. Table 6.3 shows the JPEG profiling results (modified from http://

www.ececs.uc.edu/~ddel/projects/dss/asap/node2.html); while, Chen, et. al. [126] reports

similar figures for both Intel PIII 650 MHz, and NiOS 33 MHz (with Software Multiply)

platforms. They also present the profiling results of the data handling stage, that consumes

approximately 1.72%, and 1.22% of the total execution time (encoding) for the PIII and

NiOS platforms, respectively.

Table 6.3: Software profiling data on the JPEG algorithm

Percentage of Overall Run Time

JPEG Stages Pic. 1 Pic. 2 Pic. 3 Pic. 4 Pic. 5 Pic. 6

FDCT 77.91 78.85 78.85 77.71 78.12 78.29

Quantize 1.62 1.58 1.55 1.62 1.63 1.58

ZigZag 0.34 0.34 0.34 0.34 0.34 0.34

Huffman Encode 14.01 12.71 12.98 13.9 14.1 13.13

 201

It is evident from Table 6.3 and the previous discussion that the FDCT stage is the

most computationally expensive. A closer look at the IJG’s JPEG library, which is now a

part of the platform-independent specification, reveals the support for Fixed- or Floating-

point computations, as well as the JPEG algorithms by Arai, Agui & Nakajima (AA&N,

see a book by Pennebaker and Mitchell [128] for details), and by Loeffler, Ligtenberg &

Moschytz (LL&M) [127]. The AA&N algorithm runs faster (80 multiplies, 464 adds per

an 8x8 2D FDCT), but it is less precise when utilizing the Fixed-point computation;

whereas the LL&M is more precise, doing 192 multiplies, and 512 adds for the same 8x8

2D FDCT operation. Table 6.4 details possible options for configuring and partitioning

the NiOS platform and the platform-independent specification, based on the information

acquired from the specification (the JPEG library), and the LPO. Table 6.5 presents the

profiles for the NiOS-native multipliers, namely, Software, MSTEP, and MUL, where the

MSTEP is a serial multiplier, while the MUL is the parallel implementation.

Table 6.4: System configuration options. By committing to a combination of
these options, the developer acquires the target architecture, while
simultaneously partitioning the platform-independent specification.

Category Available Options

Algorithms AA&N, LL&M

Computational Precision Fixed-point, Floating-point

Hardware Accelerator HW Encoder, HW FDCT, HW Multiply, None

Multiply Software, MSTEP, MUL, Floating-point MUL
(implemented using the custom-instruction)

NiOS CPU 16-bit, 32-bit

 202

The NiOS system compilation process typically takes about 45-90 minutes on a

256MByte RAM, 600MHz PIII notebook to generate the target system for the developer,

making it fairly convenient to compile and re-compile if any of the configurations has to

be adjusted. The following decisions, based on the specification and the profiling results,

are made for the digital camera system:

• 32-bit CPU: The 16-bit option might be less effective. The input data are at least 8-

bit in size. After a series of additions and multiplications, it is possible that the

internal data are going to be larger than 16 bits. Moreover, the 16-bit representation

of the internal data might cause the precision error problem to worsen.

• Hardware Multiply: It is less costly compared with other hardware accelerators,

making it a good starting point. Indeed, a quick look at the hardware encoders as

displayed by the POM would unveil that they will not fit in the required

EP20K200EFC484-2X PLD device, thus, eliminating them altogether. The MUL

option is chosen, to accommodate the multiply-intensive computation of the FDCT

(see Table 6.5).

• Fixed-point: It is faster than the floating-point counterpart. In addition, there exists

no substantial gain in using the floating-point over the fixed-point precision.

• LL&M: Because the fixed-point precision is configured, the LL&M algorithm is

employed to lessen the effect of the precision error.

Table 6.5: Characteristics of the NiOS-native Multipliers

Multiply Type Logic Elements Clock cycles
(16-bit CPU)

Clock cycles
(32-bit CPU)

Software 0 80 250

MSTEP ~20 18 80

MUL ~400 2 16

 203

• 4 Push-button switches (ID: nios_pushButton_switch), one apiece for the Shutter,

Select, Menu, and Done operation.

• A LED (ID: nios_LED)

• RS232/UART (ID: nios_UART) as a communication means for uploading the

images onto the PC.

• Instead of one display as previously specified, a more visible dual seven-segment

display unit (ID: nios_dual_7segment_display) is used to show the number of

stored images, while a LCD display (ID: nios_LCD) is employed to display text

messages.

• 33.33 MHZ clock generator and distributor unit (ID: nios_clockUnit)

• Flash memory (ID: Flash_AMD29LVB00) for non-volatile memory, and a SRAM

(ID: SRAM_DUAL_IDT71V016) for the executable during prototyping.

It is to note that the decision regarding the peripheral components is made in accor-

dance with their behavioral models described in the platform-independent specification

(Figure 6.16). In practice, right-first-time decisions rarely occur, and adjustments as well

as fine-grained calibrations are almost unavoidable. The proposed approach helps make

the execution of these tedious tasks more tolerable and efficient.

To produce the target architecture, the developer imports the architecture blueprint,

and the relevant UML models of the selected peripherals into a common package, and

instantiates and configures them as necessary—creating concrete objects from the

imported classes. Then, the developer links these objects together in a fashion prescribed

by the architecture blueprint, effectively, creating the communications, and completing

the instantiation process of the target architecture. Figure 6.22 shows the UML Class dia-

gram representing the NiOS-compliant LCD, which can be retrieved by the POM and used

by the developer to configure the target architecture. Figure 6.23 then delineates the

resultant target architecture for this particular system configuration.

 204

Figure 6.22: UML representation of the LCD. This UML package is accessible
through the <uml> tag from within the XML file that describes the LCD (a
POmm/component).

6.5 Platform-Dependent Specification and System Derivation
Process

As opposed to the first two stages, the platform-dependent specification and the system

derivation process do not include any iterative sub-process; however, they do traverse

back and forth mostly between themselves in an iterative refinement manner that involves

(1) the derivation of the platform-dependent specification based on the results from the

preceding stages, (2) the activation of the appropriate POmm/tools in the system deriva-

tion process whose input is the platform-dependent specification which is being portrayed

as different model views in Figure 6.5, and (3) the analysis of the results to further refine

the specification, resulting in a loop-back, until all requirements are met. As also indicated

in Figure 6.5, if all the requirements could not be attained successfully by refining the

platform-dependent specification alone, more fundamental changes may be imperative

and the platform-centric process flow leaves the bipartite iteration and goes back to either

the platform-independent stage or the platform-analysis stage to make an appropriate

modification, before proceeding again into the prescribed development process flow.

(USE abNios package)

«ABnode»

PIO_node

«ABcomponent»

 PIO

«ABcomponent»

 lcd_pio

«ABnode»

LCD

(from abNios) (from abNios)

«PCUlpoMember» {PCUid = ‘nios_lcd’}

width: Integer = 11
ioDirection: PortType = inout_tristate
inputCapture: ICapType = None
IRQGen: IRQGenType = None

«PCUlpoMember» {PCUid = ‘nios_lcd’} 1
1

nios_lcd.xmi

 205

Figure 6.23: The UML description of the candidate target architecture as
derived from the blueprint and the associated POmm/components

(USE abNios, nios_lcd, nios_led, nios_clockUnit, nios_UART, nios_pushButton_switch, ...)

«ABcomponent»
nios32:NiOScore

isInterruptible = TRUE
spuriousInterrupt = TRUE

«ABcomponent»

bootROM:OnchipMemory

system32:NiosSystem

timer1:TimerComponent

avalon0:AvalonBus ext_ram_bus:AvalonTristate

vector256:VectorTable

ModuleName = “ext_ram”
Offset = “0x3FF00”
Address = “0x40000”

programMem0:ProgramMem

ModuleName = “ext_ram”
Address = “0x40000”

dataMem0:DataMem

ModuleName = “ext_ram”
Address = “0x40000”

resetLocation:RESET

ModuleName = “bootROM”
Offset = “0x0”
Address = “0x0”

«PCUconfigList»

«PCUuseConfig»

«ABnode» {ABisKindOf = ‘pru’}

EP20K200EFC484-2X:PLD_node
«PCUlpoMember» {PCUuri = $APEX_URI}

«ABnode» «ABnode»

aSRAM:SRAM
{ABisKindOf=‘clock’}
aClock:clock_unit

«ABnode»

aFlash:FLASH

«ABnode»

aRS232:RS232

«ABnode»

 aLCD:LCD

«ABnode»

 aLED:LED

«ABnode»

SW_button:Button

«ABcomponent»«ABcomponent»

«ABcomponent»

«ABcomponent»
«PCUlpoMember»

{PCUuri = $SW_URI}

button_pio0:button_pio
<“0x460”,“0x46F”,19>

«ABcomponent»
«PCUlpoMember»

{PCUid = ‘nios_UART’}
UART0:UART_IF

<11520,“None”,8,1,“Accel”>

«ABcomponent»
«PCUlpoMember»

{PCUuri = $SRAM_URI}
ext_ram:SRAM_IF

<“0x40000”,“0x7FFFF”>

<33.33>

<“0x480”, “0x45F”, 18>

<32,256,MUL>

<“0x0”, “0x3FF”>

... ...

«ABprogram»

 206

6.5.1 Peripheral Interface Routines and Quartus II

In traditional hardware/software codesign approaches, peripheral-interface routines, e.g

device drivers, are normally written by the developer, using low-level macro code specific

to the chosen platform. The utilization of the platform-centric SoC design method, or the

platform-based approach in general, enables such software routines to be prepared in

advance instead by the peripheral and/or platform providers and handed to the developer

as a high-level run-time library package that could save the developer time and effort over

low-level programming. The exact details as per how such a run-time library package is

supported and distributed depends largely on how the platform and the peripheral provid-

ers agree on the collaboration framework. For the NiOS platform employed herein, the C

run-time library for the relevant peripherals is supported by Altera (the platform provider).

The developer accesses the library routines by including the machine-generated nios.h file

with the application source code.

The NiOS run-time library is created as a byproduct of the NiOS system generation

by the Quartus II software (visit http://www.altera.com for details). At the time of its

installation, Quartus II registers itself, i.e. updating the poRegfile, as a POmm/tool that

belongs to the NiOS platform. To conform to the platform-centric approach, Quartus II

would ideally be able to extract required information right out of the target architecture

(Figure 6.23) and produce the run-time library package as well as the PLD-configuration

files, in the SRAM object file (sof) and Intel’s hexadecimal output file (hexout) formats.

However, to modify this commercial software to be totally compliant with the proposed

approach is beyond the means of this thesis. As a workaround, an intermediate program

could be written that analyzes the target architecture in the XMI format, extracts the

required information, and generates the Peripherals Template File (ptf), which can then be

input to Quartus II. After a successful run, the developer uses the NiOS system library to

complete the platform-dependent specification as depicted in Figure 6.25; the report file

(rpt) to perform the power estimation (Figure 6.24); and the sof or hexout file to program

the EP20K200EFC484-2X device using the PLD programmer tool listed in Figure 6.17.

 207

Figure 6.24: The EP20K200EFC484-2X PLD device power calculator provided
as a Web application by Altera

The EP20K200EFC484-2X APEX20KE power calculator, which is supported by

Altera and depicted in Figure 6.24, shows the estimated power of 192.75 mW—a fairly

reasonable value commercially. Although more optimization effort may ensue to further

reduce the power consumption to prolong battery life, this figure already meets the hard

requirement that no fan is allowed. The input parameter values for this estimation are

listed in Appendix A. The results obtained from this estimator provide a preliminary

insight as per the power consumption characteristics of the system under development.

More accurate results will manifest later during the test phase.

 208

6.5.2 Transitioning to the Platform-Dependent Specification

As the name implies, the platform-dependent specification infers the structural and behav-

ioral description of a software system to be deployed on a known platform. The developer

derives this specification from the platform-independent document and the target architec-

ture model, that are presented in Figures 6.16 and 6.23, respectively.

Table 6.6 shows the mapping of the peripheral-related classes from the platform-

independent specification to its platform-specific counterpart. As evident from the table,

the mapping is fairly minimal and systematic, where the peripheral-related classes are

replaced by their respective interface classes and the array pointers are adjusted to reflect

Table 6.6: The mapping of peripheral-related classes from the platform-
independent specification to the platform-dependent specification

Platform-Independent Platform-Dependent

mssg_service mssg_service, but it behaves as a unified
interface to two new classes, sevenseg_IF
and lcd_IF

LED led_IF

SW_pushButton and its generalized
classes

IMprofile facility that specifies the interrupt
(button_interrupt), the interrupt service rou-
tine (SW_service.start()) and the binding
mechanism («IMbind»)

color_components’ input buffer (an
array representation)

FLASH memory @ 0x104000

media’s table of content:
 array of image locations
 array of image sizes

FLASH memory @ 0x100000
FLASH memory @ 0x100020

media’s effective storage space (an
array representation)

FLASH memory @ 0x120000

 209

the chosen addresses1. Such relative ease can be attributed to their explicit modeling in the

platform-independent specification that permits them to be treated as objects, and become

more structural and reusable (see also Section 6.3.3). To emphasize the point, consider the

UART which is never explicitly modeled. Without the benefit of class reuse, the devel-

oper would have to modify every single occurrence of the UART-related operations—a

process which can be tedious and error-prone. In this case, the UART is only used within

the upload_method class, and involves only the overloaded printf() function that can out-

put the printed string to the GERMS monitor via the RS232 PC serial port. Figure 6.25

depicts the detail-suppressed class model of the platform-dependent specification. Its

detailed description can be found in Appendix E.

6.5.3 Deriving the System

The sheer complexity of today’s SoC systems development mandates that automated tools

be an integral part of the design process. The presence of such tools in a well-integrated

environment can enhance the prescient insight of the developer, resulting in an effective

decision making process that can expedite the system development as a whole.

As previously mentioned, the system derivation process is an iterative process

involving different tools for different model views that represents different aspects of the

system under development. To further drive the refinement process of the digital camera

system development, the developer can re-target the profiling of the JPEG compression

task against the preliminary system architecture so as to expose additional expectable,

architecture-dependent system characteristics. Table 6.7 tabulates the execution times of

the JPEG encoder, along with its FDCT sub-module’s, that result from the profiling

against the compression quality values of 65, 75, 90 and 99. The profiling input is a

227x149 RGB raw color components of size 33.03 KBytes, and the target architecture is

the one illustrated in Figure 6.23.

1. The NiOS system utilizes a memory-mapped architecture.

 210

Figure 6.25: Detail-minimal platform-specific Class diagram describing the
digital camera system

 led_IF

 SW_service

mssg_service

encoder

media

jpeg_subsys«call»

ccomp_ptr

m
ed

ia
_p

tr

led_ptr

jpeg_ptr

In digiCam class

(USE digiCam_genType.h, digiCam_classType.h, jpeg_library, EMprofile, IMprofile)

color_components

aMedia

«IMinterrupt»
«IMbind»

MissingPeripheralException
«EMexception» /* will automatically

be defined in digiCam
as an attribute */

/* media is used
by jdatadst.c */

handler_shutter handler_menuhandler_selecthandler_done

upload_method

delete_method

controller

peripherals_checkup

mssg_ptr
mssg_ptr
mssg_ptr

ch
ec

ku
p_

pt
r

mssg_ptr

m
ss

g_
pt

r

m
ss

g_
pt

r

m
ss

g_
pt

r

media_ptr
media_ptr

m
ed

ia
_p

tr

sw_ptr

sw7_ptr sw6_ptrsw5_ptrsw4_ptr

 lcd_IF

 sevenseg_IF

«IMhandler»start()

button_interrrupt

button_irq: int

start() «EMthrow»
handler() «EMhandler»

«E
M

bi
nd

»
«E

M
bi

nd
»

 211

By perceptive inspection, no drastic difference among the four images is found.

Consequently the developer specifies the compression quality values, and makes the

requirements adjustment. The NORMAL image quality is therefore defined to correspond

to the compression quality of 65, and 90 is defined for the GOOD image quality.

A simple linear projection can be performed that could roughly estimate the worst-

case execution time for the NORMAL and GOOD image compression on the required

640x480 RGB input components (Requirement NF-R6). By using the input sample size of

14400 (640x480x3) with the timing characteristics as shown in Table 6.8 that come

directly from Table 6.7, the developer obtains the estimated worst-case execution times of

9.216 and 11.232 seconds for the NORMAL and GOOD setting, respectively. Both of these

profiling results are greater than the 1 second requirement. Hence, the developer performs

additional profiling on different settings and architectures, the results of which are shown

in Table 6.8. Notice that the hardware encoder option is not included because it does not

fit into the EP20K200EFC484-2X device, whose usable resource is 8320 LEs, while all of

the encoder implementations (from Amphion, Barco Silex, and CAST) require the LEs in

excess of this threshold.

Table 6.7: Profiling results on timing characteristics of the JPEG compression
(LL&M algorithm) of the 227x149 RGB color input components with respect
to different compression quality values

Compression
Quality Encoder FDCT

(851 blocks) Non-FDCT JPEG Output
Size

65 861.53 msec 203.97 msec 657.56 msec 4.75 KBytes

75 885.9 msec 204 msec 681.9 msec 5.02 KBytes

90 1095 msec 203.98 msec 891.02 msec 10.0 KBytes

99 2037 msec 203.98 msec 1833.02 msec 27.7 KBytes

 212

The profiling results in Table 6.8 suggest that (1) there exists no feasible solution to

the problem, i.e. given the current requirements specification and the availability of the

POmm/components, the developer cannot achieve the targeted digital camera system

without the specification violation, and (2) a constraint relaxation is needed that could

result in the modification of the requirements specification. Indeed it is quite ambitious to

implement a JPEG encoder on a 33 MHz, moderate density PLD device that can compress

a 640x480 RGB image in 1 second. The following detail some plausible scenarios assum-

ing that the decision is made in favor of relaxing the constraints.

• Another PLD device is acquired that is more powerful, such that it can house a

complete hardware implementation of the JPEG encoder,

Table 6.8: Profiling results on timing characteristics of the JPEG
compression of the required 640x480 RGB color input components subject to
different configurations

Algorithms HW
Accelerators Settings Total

(seconds)
non-FDCT
(seconds)

FDCT
(seconds)

LL&M MUL NORMAL 9.216 5.760 3.456

GOOD 11.232 7.776 3.456

HW FDCT
(with DMA)

NORMAL 5.760 5.760 Negligible

GOOD 7.776 7.776 Negligible

AA&N MUL NORMAL 8.496 5.760 2.736

GOOD 10.512 7.776 2.736

HW FDCT
(with DMA)

NORMAL 5.760 5.760 Negligible

GOOD 7.776 7.776 Negligible

Timing Characteristics (msec/ 2D 8x8 block)

non-FDCT (NORMAL): non-FDCT (GOOD): DCT (LL&M): DCT (AA&N): 0.54,0.40, 0.240.19,

 213

• The requirement reduces the number of input samples, and effectively, leaves the

competitive digital camera market (maybe, entering the cellular phone market

instead?). This decision would also affect the criteria for choosing an image sensor

for the digital camera system.

By employing a more powerful, higher density PLD device, the developer could

eradicate the bottleneck caused by slow clock speed, and high-volume data transfer. The

pursuit of this option would likely yield the feasible digital camera system. However, it

would incur additional cost of improving a PLD device, and developing/acquiring the

hardware JPEG encoder.

On the other hand the developer could compute a more suitable input image size

based on the data in Table 6.8. Because of the explicit 1 fps requirement on the NORMAL

setting operation, and also because of the use of the fixed-point arithmetic for the JPEG

engine, the data from the LL&M, NORMAL settings are used in the calculation. Through a

simple linear interpolation of the digital camera performance where the system with the

FDCT hardware accelerator runs at 0.4 msec/block, and that with the hardware multiply

(MUL) at 0.64 msec/block, the developer attains the estimated input sample size of 53312,

and 33344 for the hardware FDCT and MUL multiply, respectively. These numbers can be

translated into the image dimension of approximately 168x320, and 168x200 pixels, both

of which are much smaller than the 640x480 tentative specification.

6.5.4 Concluding Remarks

Thus far, this dissertation has presented, in detail in a pedagogical manner, the develop-

ment process for the simplified digital camera system based on the proposed platform-

centric SoC design method. It has demonstrated the strength of the proposed approach as

an analysis, modeling, design, and documentation means that could expedite the complex

SoC system development process via a well-integrated design environment that embraces

the exploitation of platforms, UML and XML technologies.

 214

Figure 6.26: The source files hierarchy for the digital camera system

Where the task description ended in the previous section, the developer could have

resumed by deciding on the available options and proceeded until the final system would

result that meets all the specified requirements. Since all the steps involved have already

been discussed, the dissertation halts here to avoid redundancy. The next section presents

the implementation results, and compares the cost-effectiveness of the proposed approach

against that of the SpecC methodology.

6.6 Implementation Results

The eventual implementation of this digital camera system conforms to the platform-

dependent specification as discussed in Section 6.4 (see also Figures 6.23, and 6.25), with

the exception that the input image dimension has effectively been scaled down to

160x160, instead of 640x480 as required by the early specification (see Section 6.5.3 for

details). Figure 6.26 depicts the source files hierarchy of the implementation.

nios_camIF.c
«file»

jpeg_library

digiCam

cdjpeg.h cdjpeg.c

digiCam_genType.h

digiCam_classType.h

digiCam_classOp.c

digiCam_system.c
«file»

«file»

«file»

«file»«file»

«file»

pio_lcd16207.h
«file»

 nios.h
«file»

«import» «import»

«import»

«import»

«import»

«import»

«import»

«import»

nios_platform

PC

RS232

 215

6.6.1 Resultant Timing and Compression Characteristics

C is one of the most popular programming languages currently used to develop real-time

embedded applications. To demonstrate that C and UML can work well together through

their object-oriented discrepancy, all source files are presently implemented in C that

mimics the look and feel of an OO programming language. Such a structural approach

incurs an estimate 85% increase in code size compared with the traditional approach, but

produces a much better correlation between the UML model and its corresponding C code.

Table 6.9 tabulates the timing and compression characteristics for different input

images, all of which are represented by the 160x160 RGB components of size 25KBytes.

As evident from the results, this fully-functional digital camera system prototype performs

reasonably well, exhibiting only a single timing violation (sample06.jpg), while all natural

scenes yield the timing results under the 1 second mark. Further extensive investigation

will determine if this system actually fulfills the 95%, 1 fps requirement as dictated in the

specification.

6.6.2 Research Evaluation

This section introduces the notion of cost as a metric for evaluating the robustness of the

proposed approach. The cost modeling technique estimates the system development cost

by taking into account a number of factors, from human to technology to the complexity

of the project itself, that affect the development process. Such a technique could be very

accurate when carefully calibrated to a specific problem, yet it normally yields good

results, even without much calibration, when used to compare cost-effectiveness of two or

more development costs. In the discussion to follow, the COCOMO II.2000 [19] cost

modeling technique is utilized that comparatively evaluates the cost-effectiveness of the

proposed approach against the SpecC methodology. At present SpecC is undergoing a

standardization process to become a standard language and interchange format for system

specification design (see http://www.specc.org). Thus, it constitutes an eligible benchmark

for an evaluation of this research.

 216

Table 6.9: Timing and compression characteristics data from different input
images

Input Image Characteristics: 160x160 RGB, 25 KBytes

Input Images Settings Total
(seconds)

JPEG file
size (KBytes)

%
Compresse

d

sample01

NORMAL
GOOD

0.515
0.922

2.70
8.44

89.2
66.24

sample02

NORMAL
GOOD

0.523
0.957

2.99
9.83

88.04
60.68

sample03

NORMAL
GOOD

0.545
0.987

3.78
10.9

84.88
56.4

sample04

NORMAL
GOOD

0.722
1.213

5.59
14.8

77.64
40.8

sample05

NORMAL
GOOD

0.948
1.678

9.18
23.1

63.28
7.6

sample06

NORMAL
GOOD

1.028
1.841

11.5
24.7

54
1.2

sample07

NORMAL
GOOD

0.743
1.457

6.45
19

74.2
24

 217

Typically, a development cost of an embedded system equals a sum of costs

incurred by software and hardware, plus any cost or revenue adjustment amounted from

missing or meeting the window of opportunity when the product enters the market. For an

evaluation of this research, however, only the software cost is used in the calculation—a

decision attributable to the fact that the SpecC and the proposed approaches permit the

developer to work at too high a level of design abstraction for the current hardware cost

modeling technique to be an effective efficiency indicator. On the other hand, the window

of opportunity adjustment, which is computed by using the time-to-market cost estimation

model [6, 21, 22], is directly proportional to the results from the software cost estimation,

and hence, can be ignored when comparing cost-effectiveness of the two approaches.

6.6.2.1 Software Cost Modeling

Software cost estimators primarily consist of a core or nominal effort equation that relates

the labor effort for developing software to the size of the software system. This nominal

effort equation represents the cost of developing a software system under ideal conditions.

To get a more realistic view of such software cost, effort adjustment factors are applied to

the nominal estimate to adjust for organization and project-specific economic factors. For

example, the COCOMO II [19] model uses the adjustment factors as shown in Table 6.10

to make the nominal estimate more realistic.

Although many of these tools employs very different parametric cost estimating

relationships (CERs), they all make similar claims about how the design can affect the

software development cost. In all cases, historical data show that increased development

cost and time can occur as a result of squeezing more and more functionality in smaller

and smaller space and time intervals, incurring more design efforts and overall cost as a

result. REVIC [12], COCOMO II [19], and PRICE-S [18], for example, assume that

resource requirements of less than 50% capacity have no cost impact, but as the utilization

approaches 100% the cost impact becomes extreme as depicted in Figure 6.27 [16].

 218

Table 6.10: COCOMO II.2000 effort multipliers (EMs).

Cost Drivers Ratings

Product Factors
EM1: Required software reliability (RELY)
EM2: Database size (DATA)
EM3: Product complexity (CPLX)
EM4: Developed for reusability (RUSE)
EM5: Documentation match to life-cycle needs (DOCU)

0.82 to 1.26
0.90 to 1.28
0.73 to 1.74
0.95 to 1.24
0.81 to 1.23

Platform Factors
EM6: Execution-time constraint (TIME)
EM7: Main-storage constraint (STOR)
EM8: Platform volatility (PVOL)

1.00 to 1.63
1.00 to 1.46
1.00 to 1.30

Personnel Factors
EM9: Analyst capability (ACAP)
EM10: Programmer capability (PCAP)
EM11: Personnel continuity (PCON)
EM12: Applications experience (APEX)
EM13: Platform experience (PLEX)
EM14: Language and tool experience (LTEX)

0.71 to 1.42
0.76 to 1.34
0.81 to 1.29
0.81 to 1.22
0.85 to 1.19
0.84 to 1.20

Project Factors
EM15: Use of software tools (TOOL)
EM16: Multisite development (SITE)
EM17: Required development schedule (SCED)

0.78 to 1.17
0.80 to 1.22
1.00 to 1.43

 219

Figure 6.27: Execution time and main storage constraint effort multipliers vs.
resource utilization.

6.6.2.2 Cost Comparison

The COCOMO II.2000 parametric cost model [19] is used to evaluate the robustness of

this research against the SpecC methodology based on cost-effectiveness of the two

approaches. The COCOMO II.2000 model estimates the system development effort using

the equation of the form:

 (EQ 6.1)

where the unit of the effort equation (CE) is in person-months, i.e. the amount of time one

person spends working on the system development project for one month. The coefficient

A is a productivity constant which captures the effects on effort with projects of increasing

CE A KSLOC
� � E EMi

i 1=

17�
=

 220

size. E, an aggregation of five scale factors (SF), accounts for the relative economies of

scale (values less than 1.0) or diseconomies of scale (values greater than 1.0) encountered

for projects of different sizes. Its value can be computed according to the equation below:

(EQ 6.2)

where the constant B = 0.91.

The effort multipliers EMi model the effect of personnel, computer, product, and

project attributes on software development cost. Table 6.10 gives a brief description of the

COCOMO II.2000 effort multipliers.

However, the primary input to the COCOMO II.2000 cost estimator is the software

size estimate, KSLOC. KSLOC denotes the number of source lines of code (thousands),

which include application code, OS kernel services, control and diagnostics, and support

software (see Appendix F for details). Software size estimates comprise two parts: the

number of new source lines of code (KNSLOC), and the number of adapted source lines of

code (KASLOC)—both are represented as a numerical multiplication of one thousand.

This evaluation uses the following COCOMO II.2000 model to calculate the total number

of source lines of code:

(EQ 6.3)

where AAMR and AAMA has the general form:

(EQ 6.4)

The symbols in the equations are defined in Table 6.11.

E B 0.01 SFj

j 1=

5
�

+=

KSLOC KNSLOC KRSLOC AAMR
�� �

KASLOC AAMA
�� �

+ +=

AAM AA 0.4 DM
� �

0.3 CM
� �

0.3 IM
� �

+ +
� �

1 0.02 SU
� �

UNFM
� �

+
� ��� �

+
100

--=

 221

Before determining the number of effective source lines of code (KSLOC) resulted

from employing the SpecC approach to develop the specified digital camera system, this

dissertation recounts the principal tasks as prescribed by Figure 6.28 as follows (see also

Section 2.3):

• Specification phase. SpecC derives the system specification during this phase of

operation. As opposed to the proposed approach, it specifies no analysis process as

per how the specification might be derived from the initial requirements. The

resultant specification comprises the JPEG encoder, which can be obtained from

http://www.ics.uci.edu/~specc/, as well as the behavioral specification of the digital

camera interface.

Table 6.11: Software Sizing Model Symbol Definitions

Symbols Description

KNSLOC Size of component expressed in thousands of new source lines of code

KRSLOC Size of the reused software component expressed in thousands of
adapted source lines of code

KASLOC Size of the adapted software component expressed in thousands of
adapted source lines of code

AAMa

a. In Eq. 6.3, the subscript R denotes Reused, while A denotes Adapted.

Adaptation adjustment modifier.

AA Degree of assessment and assimilation

DM Percentage of design modified

CM Percentage of code modified

IM Percentage of integration and test modified

SU Software understanding penalty

UNFM Software unfamiliarity

 222

Figure 6.28: The SpecC methodology process flow.

Capture

Specification
 Model

Architecture exploration

Allocation

Partitioning

Scheduling

Architecture
 Model

Communication Synthesis

Protocol Insertion

Interface Synthesis

Protocol Inlining

Communication
 Model

Implementation

 Hardware
 Synthesis

 Software
Compilation

Implementation
 Model

Manufacturing

 Algo
Library

Component
 Library

 Protocol
 Library

 RTL
Library

Compilation

Validation
 Analysis
Estimation

Simulation
 Model

Simulation
 Model

Simulation
 Model

Simulation
 Model

Compilation

Compilation

Compilation

Validation
 Analysis
Estimation

Validation
 Analysis
Estimation

Validation
 Analysis
Estimation

Synthesis Flow

Back End

Validation Flow

 223

• Architecture phase. As shown in Figure 6.28, this phase involves the architecture

selection task and the system partition task. SpecC exploits its own profiling tool to

extract the metrics necessary to perform these tasks from the NiOS-based hardware

components, assumed to be available for the developer. At the end of this phase, a

more refined specification results that is an equivalent of the platform-dependent

specification in the platform-centric SoC design method.

• Communication phase. During this phase, the communication channels between

hardware and software are modeled, elaborated and implemented. The result is a

refined architecture model with all the abstract communication channels being

resolved and synthesized. At the end of this phase, SpecC produces a component

netlist in VHDL and software I/O instructions in C as its output

• Implementation phase. The developer uses the Cygwin C/C++ compiler to compile

the C code. The hardware portion of the model, including the interfaces between

hardware and software, is synthesized using Leonardo Spectrum. This design phase

generates the implementation model which consists of object codes executing on

the NiOS processor and a gate-level netlist of the hardware components which must

then be fed to Quartus II for I/O pin connections and the sof file generation.

As identifiable from the SpecC tasks description above, the non-trivial source code

that contributes to the KSLOC count come from the SpecC JPEG encoder specification

model, the camera interface’s behavioral description, and the NiOS specific software I/O

instructions1. Because SpecC is an OO superset of C, the source lines for the interface

behavioral description is estimated to be equal to the traditional C implementation of the

same specification, which was written for the platform-centric development process for

fast verification purpose. On the other hand, the lines count for the NiOS specific software

I/O instructions is taken directly form the Quartus II generated run-time library. Table 6.12

summarizes the relevant numbers of source lines of code for both approaches.

1. The hardware glue logics are assumed to be small, and thus, negligible.

 224

Derived from Table 6.12, and based on Equations 6.3 and 6.4 , the effective source

lines of code for the SpecC, and the proposed approach are 2.46, and 1.13 KSLOC. Then,

by applying Equations 6.1 and 6.2, the estimated incurring costs for the development of

the digital camera system using the SpecC and the platform-centric SoC design method

are 4.0, and 1.3 person-months, respectively. Please refer to Appendix A for the parameter

values used in the calculations in this section.

6.6.3 Concluding Remarks

Costliness-wise, the proposed approach benefits tremendously from the use of a platform,

and the IJG’s JPEG library, where they attribute to a smaller KSLOC value, regardless of

the total number of source lines which is much larger than that of the SpecC (9.202K to

3.353K). Such results serve to further attest the role of reuse as indeed being indispensable

at all phases of the complex system development process.

Table 6.12: Summary of the source lines of code applicable to the SpecC and
platform-centric approaches

SpecC Platform-Centric

Relevant KSLOC Size
(thousand) Type Size

(thousand) Type

Structural C implementation of
digiCam

n/a n/a 0.936 KNSLOC

Traditional C implementation of
digiCama

a. Represents the best-case estimate of the actual SpecC implementation.

0.567 KNSLOC n/a n/a

jdatadst.c n/a n/a 0.121 KASLOC

IJG JPEG library n/a n/a 6.345 KRSLOC

SpecC JPEG encodera 0.986 KASLOC n/a n/a

Software I/O routines 1.8 KNSLOC 1.8 KRSLOC

 225

Chapter 7

Conclusions

7.1 Thesis Contributions

It has been shown in this thesis that, in an era where the complexity of developing SoC

systems constantly increases, and the technology-to-market time dwindles in response to

market dynamics and competitiveness, system developers can benefit from the integrated

use of platforms, OO analysis techniques, and the ubiquity of the Internet technology, with

very impressive scheduling and cost-saving results. In summary, this thesis has presented

a novel platform-centric SoC design method that improves cost and technology-to-market

time for the development of complex systems, while also effectively enhancing design

space exploration. The novel contributions of this research include the following:

• Key technologies, specifically, platforms, UML, and XML, were identified, and

seamlessly integrated that contribute to the development of a flexible, and robust

system design process which is favorably applicable to a multitude of complex SoC

system requirements.

• A robust design approach, i.e. the proposed platform-centric SoC design method,

was developed that, in addition to the previously identified technologies, fosters

reuse of both UML models (abstract platform components) and non-UML models

(IJG’s JPEG library), as well as the use and reuse of knowledge through the WWW

technologies. In addition, it allows the internal processes to vary that could be more

fitting to the chosen platform.

 226

• A unified, visual representation of the system under development was achieved

through the UML profile for Codesign Modeling Framework (CMF), that is based

on UML 1.5 [24] and the UML Real-Time profile [29], and that can be utilized

within the proposed platform-centric environment for modeling, design, analysis,

synthesis, implementation and documentation purposes. The CMF profile allows

all aspects of the SoC system development process, right from the initial require-

ments, to be described using one common language for better efficiency.

• The specification of an XML database, known as the Library of Platform Objects

(LPO) was described in detail, along with its anticipated usage and behaviors. The

LPO could span the whole Internet space, and could be distributed—paving a way

for a discernible possibility that the system design community might converge on

very few standard platforms such that the task of populating platform components

and tools could be performed in a standard way, not limited to any one individual or

organization, and these components and tools could enter and exit the LPO freely

so long as they are Internet-accessible.

• The use of UML to assist in the development of a complex hardware/software

codesign system, such as a digital camera, that involves real-time characteristics

was demonstrated. It was also shown that such a UML application efficiently

empowered an incorporation of OO analysis techniques, as well as enhanced design

reuse, resulting in an overall improvement of the platform-centric SoC design

approach.

7.2 Publications and Awards

The following publications have resulted from this research:

• C. Arpnikanondt, V. Madisetti, “Constraint-Based Codesign (CBC) of Embedded

Systems: The UML Approach,” Yamacraw Technical Report, Georgia Institute of

Technology, 1999.

 227

• C. Arpnikanondt, V. Madisetti, A Platform-Centric Codesign Approach for SoC

Systems Development, Book Proposal to Kluwer Academic Publishers, 2004.

The following award has resulted from this research:

• US Army Research Lab (ARL) Advanced Sensors Consortium Research Excel-

lence Award, February 1999, College Park, Md.

7.3 Future Directions

This thesis is the product of integrating technologies in three different disciplines, namely

platforms, UML, and XML, so as to form a robust system development approach that is

applicable for use with a multitude of complex system requirements today and tomorrow.

Each one of these technologies has gained steady research interest in both the industry and

academia, and would likely continue to contribute to the proposed platform-centric

approach. Nonetheless, to reap full benefits proffered by the approach it would mandate a

consensus of support among all involved parties—the system houses, IC manufacturers,

and tools and components providers. In the end, it is ultimately the concerted collabora-

tion that matters heftily towards success.

Much exciting research readily exists in this novel platform-centric design

approach, where three state-of-the-art technologies convolute. This thesis envisages reuse

as the principal driving force that contributes to an efficient system development process.

A number of researches that address this issue can be conceivable on many different levels

and from many different perspectives. Research areas such as Retargetable Compilation,

Mixed-Language Programming, and Legacy Software Reengineering all deserve profound

research efforts for they make the proposed approach more flexibly and more accessibly

reusable.

A tool-integrated environment for the POM represents another intriguing research

area within this novel approach. Since the POM relates closely with XML and the Internet

 228

technologies, how such research disciplines as Network Programming and Distributed

Computing can enhance the POM capability would be worth an investigation. A UML-

capable, UML-RT/CMF enabled POM would also be ideal for the approach.

In addition, this thesis assumes that platforms are pre-built, and readily available to

the system developer. The actual development of a platform, however, is an extremely

complex process as evidenced by Sabbagh [96], and other related work [70, 129]. More

research is needed in this area to reduce the platform development cost, while efficiently

producing a system platform that is well-suited to as many applications as possible.

 229

Appendix A

Cost and Power Estimate Parameter
Values

This appendix comprises two main sections. Section A.1 lists the parameter values used to

estimate the development cost for the SpecC and the platform-centric (PC) approaches,

while Section A.2 deals with the input parameter values used in the power consumption

estimation of the digital camera system.

A.1 COCOMO II.2000 Cost Parameters

Tables A.1-A.6 provide detailed development cost parameter values for the SpecC and

platform-centric approaches. Specifically, Table A.1 lists the new, reused, and adapted

number of source lines of code, i.e. KNSLOC, KRSLOC, and KASLOC, respectively, for

both methods. Table A.2 lists the input parameter values used to convert the reused source

lines of code to the equivalent effective source lines of code (KSLOC); whereas Tables

A.3 and A.4 list the values for the adapted source lines conversion for the platform-centric

and the SpecC. Tables A.5 and A.6 summarize the scale factor (SF) ratings, and the effort

multiplier (EM) ratings for the two approaches, respectively.

Since this thesis largely concerns with the relative efficiency of the two methods, it

compares the actual figures from the proposed approach against the best-case estimated

values from the SpecC approach, the results of which were discussed in Section 6.6. These

estimated values were obtained from various sources as specified in Table A.1.

 230

Table A.1: Summary of the source lines of code applicable to the SpecC and
platform-centric approaches

SpecC Platform-Centric

Relevant KSLOC Size
(thousand) Type Size

(thousand) Type

Structural C implementation of
digiCam

n/a n/a 0.936 KNSLOC

Traditional C implementation of

digiCama

a. Obtained from a byproduct of this thesis

0.567 KNSLOC n/a n/a

jdatadst.c n/a n/a 0.121 KASLOC

IJG JPEG library n/a n/a 6.345 KRSLOC

SpecC JPEG encoderb

b. Obtained from the work by Dr. Gajski’s team at http://www.ics.uci.edu/~specc/

0.986 KASLOC n/a n/a

Software I/O routinesc

c. Obtained from the run-time library generated by Quartus II

1.8 KNSLOC 1.8 KRSLOC

Table A.2: PC input parameter values for KRSLOC to KSLOC conversion

Parameters Situation Rating

Assessment & Assimilation (AA) Basic module search & documentation 2

Programmer Unfamiliarity (UNFM) Mostly familiar 0.2

Software Understanding (SU) Reused n/a

Percent Design Modified (DM) Reused 0

Percent Code Modified (CM) Reused 0

Percent Integration Required (IM) Reused, very small 1%

 231

Table A.3: PC input parameter values for KASLOC to KSLOC conversion

Parameters Situation Rating

Assessment & Assimilation (AA) Basic module search & documentation 2

Programmer Unfamiliarity (UNFM) Mostly familiar 0.2

Software Understanding (SU) Structural code, well descriptive Very High: 10

Percent Design Modified (DM) Very small 1%

Percent Code Modified (CM) Small 5%

Percent Integration Required (IM) Small 5%

Table A.4: SpecC input parameter values for KASLOC to KSLOC conversion

Parameters Situation Rating

Assessment & Assimilation (AA) Basic module search & documentation 2

Programmer Unfamiliarity (UNFM) Completely familiar 0

Software Understanding (SU) Structural code, well descriptive Very High: 10

Percent Design Modified (DM) Very small 1%

Percent Code Modified (CM) Small to moderate 20%

Percent Integration Required (IM) Small 5%

Table A.5: SpecC/PC scale factor (SF) values with B = 0.91

Scale Factors Situation Rating

SF1: Precedentedness (PREC) Considerable experience working with software High: 2.48

SF2: Development Flexibility (FLEX) Considerable need for complying to requirements High: 2.03

SF3: Architecture/Risk Resolution (RESL) Some critical risk identification & tool support Nominal: 4.24

SF4: Team Cohesion (TEAM) Basic consistency of objectives and culture Nominal: 3.29

SF5: Process Maturity (PMAT) CMM Level 2 Nominal: 4.68

 232

Table A.6: SpecC and PC effort multiplier (EM) values with A = 2.94

Effort Multipliers Situation SpecC Rating PC Rating

EM1: Reliability (RELY) Low, easily recoverable losses Low: 0.92 Low: 0.92

EM2: Database Size (DATA) Testing DB/Program SLOC < 10 Low: 0.9 Low: 0.9

EM3: Product Complexity (CPLX) SpecC: Low-level coding; interrupt
PC: Component reuse

High: 1.17 Low: 0.87

EM4: Developed for Reuse (RUSE) Across-program reusability High: 1.07 High: 1.07

EM5: Required Documentation (DOCU) Right-sized to life-cycle needs Nominal: 1.0 Nominal: 1.0

EM6: Exe Time Constraint (TIME) < 50% use of available exe. time Nominal: 1.0 Nominal: 1.0

EM7: Main Storage Constraint (STOR) SpecC: < 50% usage
PC: 85% usage

Nominal: 1.0 Very High:
1.46

EM8: Platform Volatility (PVOL) 1 year up Low: 0.87 Low: 0.87

EM9: Analyst Capability (ACAP) SpecC: High, little tool support
PC: High, with tool support

High: 0.85 Very High:
0.71

EM10: Programmer Capability (PCAP) Nominal at 55th percentile Nominal: 1.0 Nominal: 1.0

EM11: Personnel Continuity (PCON) Nominal at 12% turnover per year Nominal: 1.0 Nominal: 1.0

EM12: Application Experience (APEX) 1 year Nominal: 1.0 Nominal: 1.0

EM13: Platform Experience (PLEX) 1 year Nominal: 1.0 Nominal: 1.0

EM14: Language & Tool Experience
(LTEX)

1 year Nominal: 1.0 Nominal: 1.0

EM15: Use of Software Tool (TOOL) strong, mature, well-integrated with
processes

Very High:
0.78

Very High:
0.78

EM16: Multisite Development (SITE) Fully collocated Extra High:
0.80

Extra High:
0.80

EM17: Required Development Schedule
(SCED)

Nominal Nominal: 1.0 Nominal: 1.0

 233

A.2 Power Consumption Input Parameters

Altera provides a power estimator utility for the APEX20KE device family through its

web site. This tool was modeled into the LPO as one of the NiOS’s POmm/tools; it was

used to estimate the power consumption of the digital camera system under development.

The input parameter values for the estimator were retrieved from the NiOS system report

file (.rpt) which was generated automatically by Quartus II after the completion of the

NiOS system building process. Table A.7 summarizes these parameter values.

Table A.7: Input parameter values for Altera’s APEX20KE PLD device

Parameters Values

Device EP20K200E

Package 484FBGA, Commercial Grade

VCCINT 1.8 V

ICCINT,standby 10 mA

fmax 33.33 MHz

Number of flip-flops 1429

Total LE 3526

Total LE wit carry chain 37

Average LE toggle percentage 12.5

ESB output turbo ON 111

ESB output turbo OFF 0

Average ESB output toggle percentage 12.5

Number of OUT and INOUT pins 95

Average output toggle percentage 12.5

Average capacitance load 10 pF

I/O standard 3.3 LVTTL/LVCMOS

 234

Appendix B

Codesign Modeling Framework
Stereotypes and Tags Listing

This appendix provides a quick reference to all the UML stereotypes and tag values

defined in this dissertation (see Chapter 5). Section B.1 lists the stereotypes, and Section

B.2 the defined tags, in alphabetical order.

B.1 Stereotypes Listing

Stereotypes Base Class Tags Description

«ABbecome» Dependency --None-- Relates design unit to hardware entity of
type IU

«ABcomponent» Class
Object

--None-- A POmm/component concept

«ABdeploy» Dependency --None-- Signifies residency of a design unit in
hardware, equivalent to UML «deploy»

«ABnode» Class
Object

ABisKindOf Hardware as perceived by an architecture
blueprint

«ABprogram» Dependency --None-- Relates design unit to hardware entity of
type PRU

«EMbind» Dependency --None-- Binds the exception, the throw method
and the handler together

«EMcatch» SimpleState
CompositeState

--None-- Exception: catch

 235

«EMcatchAll» SimpleState
CompositeState

--None-- Exception: indiscriminate catch

«EMexception» Signal --None-- Represents an exception

«EMhandler» Method --None-- Represents an exception handler method

«EMthrowMethod» Method EMthrowType Exception: throw

«EMtry» SimpleState
CompositeState

--None-- Exception: try

«IMbind» Dependency --None-- Binds an interrupt and its handler

«IMbitField» Attribute IMrwMode Represents an individual bit field within a
device register

«IMbitVector» Class
Object

IMaddress
IMalignment
IMbitOrder
IMvectorSize

A collection of «IMbitField» elements. It
corresponds to a BITVECTOR type in
VHDL.

«IMdeviceIF» Class
Object

--None-- Represents the device encapsulation con-
cept

«IMhandler» Method --None-- Represents an interrupt handler method

«IMinterrupt» Class
Object

IMid
IMisReserved
IMpriority

Represents an interrupt

«PCUattribute» Attribute --None-- Designates design variables

«PCUauxAttr» Attribute --None-- Designates non-design variables

«PCUcode» Component PCUfileUri A file insertion mechanism

«PCUcodeBody» Note --None-- Represents body of code to be inserted

«PCUdeclare» Note --None-- Represents the declaration part of code to
be inserted

«PCUconfigList» Class --None-- Permits configuration attributes to be
grouped together separately from their
parent class

«PCUlpoMember» Class
Object

PCUuri
PCUid

Provides link from UML model to the
LPO library

«PCUmain» Method --None-- Specifies the main function

«PCUrun» Package PCUrunline
PCUrunfile

A package processing instruction

Stereotypes Base Class Tags Description

 236

«PCUuseConfig» Dependency --None-- Binds the «PCUconfigList» class to the
parent class

«SHDLarch» Class --None-- Represents architecture in the VHDL’s
entity/architecture pair

«SHDLbind» Dependency --None-- Represents the binding of the entity/
architecture pair

«SHDLentity» Class
Object

--None-- Represents entity in the VHDL’s entity/
architecture pair

«SHDLgenerate» Class SHDLgenFor Models VHDL’s generate block

«SHDLin» Attribute --None-- Input port

«SHDLinout» Attribute --None-- Bidirectional port

«SHDLmodule» Class --None-- HDL design module

«SHDLout» Attribute --None-- Output port

«SHDLparBlock» Object --None-- A grouping of concurrent statements

«SHDLprocess» Object --None-- Represents the existence of a process in
an architecture body

«SHDLtypedef» Class
Object
Note

SHDLdefine-
Type

Allows user-defined types to be defined
that represents both HDL’s data type and
data object

Stereotypes Base Class Tags Description

 237

B.2 Tags Listing

Tag Name Base Stereotype Type Multiplicity

ABisKindOf «ABnode» Enumeration: (‘pru’, ‘iu’, ‘diu’,
‘ifu’, ‘mu’, ‘clock’, ‘timer’)

0..1

EMthrowType «EMthrowMethod» TVL List of throwable excep-
tion types, for example
(‘rErr’,’wErr’, ‘rwErr’)

0..1

IMaddress «IMbitVector» Integer 0..1

IMalignment «IMbitVector» Integer 0..1

IMbitOrder «IMbitVector» Enumeration: (‘ascend’,
‘descend’)

0..1

IMid «IMinterrupt» String 0..1

IMisReserved «IMinterrupt» Boolean 0..1

IMpriority «IMinterrupt» Integer 0..1

IMrwMode «IMbitField» Enumeration: (‘r’, ‘w’, ‘rw’) 0..1

IMvectorSize «IMbitVector» Integer 1

PCUfileUri «PCUcode» String 0..1

PCUid «PCUlpoMember» String 0..1

PCUrunfile «PCUrun» String 0..1

PCUrunline «PCUrun» String 0..1

PCUuri «PCUlpoMember» String 0..1

SHDLdefineType «SHDLtypedef» SHDLattrType 1..*

SHDLgenFor «SHDLgenerate» SHDLforInfoType 1

SHDLsensitive «SHDLprocess» TVL List 0..1

SHDLsensitive_neg «SHDLprocess» TVL List 0..1

SHDLsensitive_pos «SHDLprocess» TVL List 0..1

 238

Appendix C

The LPO Tags Listing

In this appendix, a brief summary of the XML tags’ semantics that are defined in Chapter

4 of this dissertation is presented as a quick reference, in alphabetical order. Section C.1

summarizes the tags definition; whereas, Section C.2 compiles relevant attributes.

C.1 LPO Tags Semantics

Name Type Multiplicity DTD File Description

associatedTools Element 0..1 polif Specifies possible association between a
POmm/component and a POmm/tool(s)

aTool Element 1..* polif Identity of each associated tool

autoConfig Element 0..* polif Compartment that holds pre-configured
values for UML parameters

blueprint Element 1..* poRegfile Link to architecture blueprint(s)

characteristics Element 0..1 polif Contains databook information of the
module

componentDomain Element 0..1 polif Compartment for information about
POmm/component. It is not used if a
POlif is of type tool.

config Element 1..* polif Pre-configured UML parameter values

defaultToolID Leaf 1 polif Default tool by ID. Cannot co-exist with
defaultToolURI.

defaultToolURI Leaf 1 polif Default tool by URI. Cannot co-exist
with defaultToolID.

 239

forPOID Leaf 0..1 polif ID of platform object that these pre-con-
figured values are applicable for

functions Element 0..* polif Supplies information, if there is any,
about hardware-dependent software rou-
tines

id Leaf 1 lpoRegfile Self ID by special identification

import Element 0..1 polif Reuse mechanism that allows UML
packages to be imported

installerURI Element 0..1 polif Link to an installer

key Leaf 1..* lpoRegfile Keyword string

lpoRegfile Root 1 lpoRegfile Signifies existence of LPO

name Leaf 1 lpoRegfile Self ID by name

physicalURI Element 1 polif Possible locations that the corresponding
physical module may reside

po Element 1..* lpoRegfile Link to platform objects

poID Leaf 1 poRegfile Reference to the PO to which the register
file belongs

polif Element 1..* poRegfile Link to POmm

polif Root 1 polif Signifies existence of a POmm

pom Element 1 poRegfile Link to POM

poRegfile Root 1 poRegfile Signifies existence of PO

poSchema Element 1 poRegfile Link to a PO schema document

preDefined Element 0..* polif Pre-defined component characteristics

searchkey Element 0..1 lpoRegfile Relevant keywords that can identify self

self Element 1 lpoRegfile Self identification

selfURI Element 1 polif Possible locations that it may reside

swPackage Element 0..1 polif Reference to the software

targetCompiler Element 1 polif Expected target compiler

textField Leaf 0..1 lpoRegfile Knowledge-based information

uml Element 1 polif Specifies UML representation of the
module

Name Type Multiplicity DTD File Description

 240

C.2 LPO Attributes Listing

uninstallerURI Element 0..1 polif Link to an uninstaller

uri Leaf 1 lpoRegfile Self ID by location

userDefined Element 0..* polif User-defined component characteristics

Name Type Base Description

abKind Enumeration:
{“pru”, “iu”,
“diu”, “ifu”,
“mu”, “clock”,
“timer”}

polif Classifies itself to be one of the blueprint types (see
Section 5.6.1 for detail).

classification Enumeration:
PO-dependent

polif User-defined category of the module

fieldType CDATA textField Expected data format

isImported Enumeration:
“yes” or “no”

textField Specifies if the content contains link to an imported
document

moduleID CDATA polif Reference to a POmm via ID. Serves as a backdrop to
name and uri references.

moduleKind Enumeration:
{“component”,
“tool”}

polif Classifies itself to be either component or tool

name Enumeration: PO-
dependent

config Name of config data

name Enumeration: PO-
dependent

preDefined Name of preDefined characteristics

name CDATA userDefined Name of userDefined characteristics

subject CDATA textField Subject of information

type Enumeration: PO-
dependent

config Predefined type of config data

type Enumeration: PO-
dependent

preDefined,
userDefined

Predefined and userdefined type of characteristics

Name Type Multiplicity DTD File Description

 241

unit Enumeration: PO-
dependent

config Unit of config data

unit Enumeration: PO-
dependent

preDefined,
userDefined

Unit of characteristics

value CDATA config Value of config data

value CDATA preDefined,
userDefined

Characteristics value

Name Type Base Description

 242

Appendix D

DTD Files Listing

This appendix presents the implementation of the relevant LPO schema documents in the

Document Type Definitions (DTD) format. It begins with an implementation of the

lpoRegfile.dtd in Section D.1, followed by the poRegfile.dtd in Section D.2. Thereafter, an

implementation of the polif.dtd ensues in Section D.3. All verification tasks were done

using MSXML 4.0, downloadable from http://www.microsoft.com/downloads/.

D.1 lpoRegfile.dtd
1 <!ENTITY fileDescription "
2 !-- -- --
3 !-- --
4 !-- File name: lpoRegfile.dtd --
5 !-- Author: Chonlameth Arpnikanondt --
6 !-- Last revised: 09/06/03 --
7 !-- Description: This dtd file is intended to serve as a --
8 !-- simple example for demonstrating what the --
9 !-- dtd file for each PO module may look like --
10 !-- within the platform instance. It represents --
11 !-- just one of many possible implementations --
12 !-- of the recommendations for constructing the --
13 !-- LPO as presented in my thesis. --
14 !-- --
15 !-- -- --
16
17 ">
18
19 <!ELEMENT lpoRegfile (self, po+)>
20
21 <!-- Start with self here -->

 243

22 <!ELEMENT self (name, id, uri, textField?)>
23 <!ELEMENT name (#PCDATA)>
24 <!ELEMENT textField (#PCDATA)>
25 <!ELEMENT id (#PCDATA)>
26 <!ELEMENT uri (#PCDATA)>
27 <!ELEMENT key (#PCDATA)>
28
29 <!-- Main Entry... consisting of toolModule and componentModule -->
30 <!ELEMENT po (name, uri, searchkey?)>
31 <!ELEMENT searchkey (key+)>
32
33 <!-- Attribute declaration -->
34 <!-- This DTD uses a MIME type for the fieldType attribute -->
35 <!ATTLIST textField subject CDATA #IMPLIED>
36 <!ATTLIST textField fieldType CDATA "text/plain">
37 <!ATTLIST textField isImported (yes | no) "no">
38

D.2 poRegfile.dtd

1 <!ENTITY fileDescription "
2 !-- -- --
3 !-- --
4 !-- File name: poRegfile.dtd --
5 !-- Author: Chonlameth Arpnikanondt --
6 !-- Last revised: 09/06/03 --
7 !-- Description: This dtd file is intended to serve as a --
8 !-- simple example for demonstrating what the --
9 !-- dtd file for each PO module may look like --
10 !-- within the platform instance. It represents --
11 !-- just one of many possible implementations --
12 !-- of the recommendations for constructing the --
13 !-- LPO as presented in my thesis. --
14 !-- --
15 !-- -- --
16
17 ">
18
19 <!-- Define abstract type for each module -->
20 <!ENTITY % typeFile SYSTEM "file:///C:/Data/Thesis/XML/Test/niosClassification.
txt">

 244

21 <!ENTITY % classificationList "(%typeFile;)">
22
23
24 <!ELEMENT poRegfile (self, searchkey?, pom, blueprint+, poSchema, textField*, polif+)>
25
26 <!-- Start with self here -->
27 <!ELEMENT self (name, id, poID, uri)>
28 <!ELEMENT name (#PCDATA)>
29 <!ELEMENT poID (#PCDATA)>
30 <!ELEMENT id (#PCDATA)>
31 <!ELEMENT uri (#PCDATA)>
32
33 <!-- the POM, PO Manager -->
34 <!ELEMENT pom (id, uri)>
35 <!-- Architecture blueprint -->
36 <!ELEMENT blueprint (uri)>
37 <!-- Location of the PO schema file -->
38 <!ELEMENT poSchema (uri)>
39 <!-- Information about the PO -->
40 <!ELEMENT textField (#PCDATA)>
41
42 <!-- Main Entry... consisting of toolModule and componentModule -->
43 <!ELEMENT polif (name, uri, searchkey?)>
44 <!ELEMENT searchkey (key+)>
45 <!ELEMENT key (#PCDATA)>
46
47 <!-- Attribute declaration -->
48 <!-- This DTD uses a MIME type for the fieldType attribute -->
49 <!ATTLIST textField subject CDATA #IMPLIED>
50 <!ATTLIST textField fieldType CDATA "text/plain">
51 <!ATTLIST textField isImported (yes | no) "no">
52 <!ATTLIST polif moduleKind (component | tool) #REQUIRED>
53 <!ATTLIST polif abKind (pru | iu | diu | ifu | mu | clock | timer) #IMPLIED>
54 <!ATTLIST polif classification %classificationList; #IMPLIED>
55 <!-- moduleID should match an id as defined in each corresponding xml file -->
56 <!ATTLIST polif moduleID ID #REQUIRED>
57

 245

D.3 polif.dtd
1 <!ENTITY fileDescription "
2 !-- -- --
3 !-- --
4 !-- File name: polif.dtd --
5 !-- Author: Chonlameth Arpnikanondt --
6 !-- Last revised: 09/06/03 --
7 !-- Description: This dtd file is intended to serve as a --
8 !-- simple example for demonstrating what the --
9 !-- dtd file for each PO module may look like --
10 !-- within the platform instance. It represents --
11 !-- just one of many possible implementations --
12 !-- of the recommendations for constructing the --
13 !-- LPO as presented in my thesis. --
14 !-- Note: Choice of ELEMENT and ATTLIST for certain --
15 !-- parameters is reached by considering if it --
16 !-- should be treated as object value or object --
17 !-- property. This places all IDs and URIs in --
18 !-- ELEMENT self to be regarded as ELEMENT. --
19 !-- --
20 !-- -- --
21
22 !-- Namespace is ignored by default for it does not mesh well --
23 !-- with DTD. When XML-Schema is stable enough, one may want --
24 !-- to convert this DTD to a schema and make full use of the --
25 !-- namespace. --
26 ">
27
28 <!-- Define abstract type for each module -->
29 <!ENTITY % typeFile SYSTEM "file:///C:/Data/Thesis/XML/Test/niosClassification.
txt" >
30 <!ENTITY % classificationList "(%typeFile;)">
31
32 <!-- Define sample UML parameters -->
33 <!ENTITY % umlParam "(Width |
34 BaseAddr |
35 EndAddr |
36 Irq)">
37
38 <!-- Define component values characteristics -->
39 <!ENTITY % valueName "(execute_time |
40 access_time |

 246

41 delay_time |
42 latency |
43 setup_time |
44 width |
45 length |
46 power_dissipation |
47 frequency |
48 period |
49 16b_acc_le |
50 16b_acc_eab |
51 16b_acc_performance)">
52
53 <!ENTITY % valueType "(int |
54 signed_int |
55 unsigned_int |
56 float |
57 double |
58 long |
59 longlong)">
60
61 <!ENTITY % timeUnit " fs |
62 ps |
63 ns |
64 us |
65 ms |
66 sec |
67 min |
68 hr">
69
70 <!ENTITY % lengthUnit " fm |
71 pm |
72 nm |
73 um |
74 mil |
75 mm |
76 cm |
77 in">
78
79 <!ENTITY % freqUnit "MHz |
80 GHz">
81
82 <!ENTITY % valueUnit "(%timeUnit; | %lengthUnit; | %freqUnit; | none)">
83

 247

84
85 <!ELEMENT polif (self, searchkey?, componentDomain?, textField?)>
86 <!ELEMENT self (name,
87 id,
88 poID,
89 selfURI,
90 physicalURI?,
91 installerURI?,
92 uninstallerURI?,
93 textField?)>
94 <!ELEMENT name (#PCDATA)>
95 <!ELEMENT poID (id)+>
96 <!ELEMENT selfURI (uri)+>
97 <!ELEMENT physicalURI (uri)+>
98 <!ELEMENT installerURI (uri)+>
99 <!ELEMENT uninstallerURI (uri)+>
100 <!ELEMENT textField (#PCDATA)>
101 <!ELEMENT id (#PCDATA)>
102 <!ELEMENT uri (#PCDATA)>
103 <!ELEMENT searchkey (key+)>
104 <!ELEMENT key (#PCDATA)>
105
106 <!-- Start declaration for children of self -->
107
108 <!-- the componentDomain declaration -->
109 <!ELEMENT componentDomain (associatedTools?,
110 uml,
111 functions*,
112 characteristics?,
113 textField?)>
114
115 <!-- There can be more than one tool. -->
116 <!ELEMENT associatedTools ((defaultToolURI |
117 defaultToolID),
118 aTool+,
119 textField?)>
120 <!ELEMENT defaultToolURI (#PCDATA)>
121 <!ELEMENT defaultToolID (#PCDATA)>
122 <!-- Each tool can be associated with more than one possible tool call -->
123 <!ELEMENT aTool ((uri | id),
124 textField?)>
125
126 <!-- This part concerns UML and its characteristics -->

 248

127 <!ELEMENT uml (uri,
128 import?,
129 autoConfig*,
130 textField?)>
131 <!ELEMENT import (uri)+>
132 <!ELEMENT autoConfig (forPOID?, config+)>
133 <!ELEMENT forPOID (#PCDATA)>
134 <!ELEMENT config (textField?)>
135
136 <!-- This part handles hardware-dependent functions -->
137 <!ELEMENT functions (targetCompiler, swPackage?, textField?)>
138 <!ELEMENT targetCompiler (id | uri)+>
139 <!ELEMENT swPackage (uri)+>
140
141 <!-- This part deals with characteristics, both predefined and user-defined -->
142 <!ELEMENT characteristics (preDefined*, userDefined*)>
143 <!ELEMENT preDefined (textField?)>
144 <!ELEMENT userDefined (textField?)>
145
146 <!-- Attribute declaration -->
147 <!ATTLIST config name %umlParam; #REQUIRED
148 type %valueType; #REQUIRED
149 value CDATA #REQUIRED
150 unit %valueUnit; #REQUIRED>
151 <!ATTLIST preDefined name %valueName; #REQUIRED
152 type %valueType; #REQUIRED
153 value CDATA #REQUIRED
154 unit %valueUnit; #REQUIRED>
155 <!ATTLIST userDefined name CDATA #REQUIRED
156 type %valueType; #REQUIRED
157 value CDATA #REQUIRED
158 unit %valueUnit; #REQUIRED>
159
160 <!-- This DTD uses a MIME-like extension for the fieldType attribute -->
161 <!ATTLIST textField subject CDATA #IMPLIED>
162 <!ATTLIST textField fieldType CDATA "text/plain">
163 <!ATTLIST textField isImported (yes | no) "no">
164 <!ATTLIST polif moduleKind (component | tool) #REQUIRED>
165 <!ATTLIST polif abKind (pru | iu | diu | ifu | mu | clock | timer) #IMPLIED>
166 <!ATTLIST polif classification %classificationList; #IMPLIED>
167

 249

Appendix E

Digital Camera Specification

This appendix details the Class diagrams for the platform-independent and platform-

dependent specifications of the simplified digital camera system presented in Chapter 6 of

this dissertation. The Class diagram for the platform-independent specification is shown

first in Figure E.1. Figure E.2 then delineates the platform-dependent Class model. The

attributes and methods of each class in the diagrams are summarized in Section E.1;

whereas Section E.2 presents the implementation details.

E.1 Attributes and Methods

Due to space limitation, attributes and methods of the relevant classes in Figures E.1 and

E.2 are summarized here for better clarity. These attributes and methods correspond to

those in Figures E.1 and E.2, and not those in the source code that may differ due to class

relationships and an impact of language specifics. Unless stated otherwise, all class

descriptions are applicable to both figures.

 250

Figure E.1: Platform-independent Class diagram for the digital camera system

SW_shutter

LED

 SW_service

mssg_service

encoder

media

jpeg_subsys«call»

ccomp_ptr

m
ed

ia
_p

tr

led_ptr

jpeg_ptr

In digiCam class (USE digiCam_genType.h, digiCam_classType.h, jpeg_library)
(USE RTconcurrentModeling, EMprofile)

«CRconcurrent»

«CRconcurrent»aReg

color_components

aMedia

«CRconcurrent»

«CRconcurrent»
SW_pushButton

SW_menu
«CRconcurrent»

SW_select
«CRconcurrent»

SW_done
«CRconcurrent»

SW_reg

MissingPeripheralException
«EMexception» /* will automatically

be defined in digiCam
as an attribute */

/* media is used
by jdatadst.c */

handler_shutter handler_menuhandler_selecthandler_done

upload_method

delete_method

controller
mssg_ptr
mssg_ptr
mssg_ptr

ch
ec

ku
p_

pt
r

mssg_ptr

m
ss

g_
pt

r

m
ss

g_
pt

r

m
ss

g_
pt

r

media_ptr
media_ptr

m
ed

ia
_p

tr

sw_ptr

sw7_ptr sw6_ptrsw5_ptrsw4_ptr

peripherals_checkup

start() «EMthrow»
handler() «EMhandler»

«E
M

bi
nd

»
«E

M
bi

nd
»

 251

Figure E.2: Detail-minimal platform-specific Class diagram describing the
digital camera system

 led_IF

 SW_service

mssg_service

encoder

media

jpeg_subsys«call»

ccomp_ptr

m
ed

ia
_p

tr

led_ptr

jpeg_ptr

In digiCam class

(USE digiCam_genType.h, digiCam_classType.h, jpeg_library, EMprofile, IMprofile)

color_components

aMedia

«IMinterrupt»
«IMbind»

MissingPeripheralException
«EMexception» /* will automatically

be defined in digiCam
as an attribute */

/* media is used
by jdatadst.c */

handler_shutter handler_menuhandler_selecthandler_done

upload_method

delete_method

controller

peripherals_checkup

mssg_ptr
mssg_ptr
mssg_ptr

ch
ec

ku
p_

pt
r

mssg_ptr

m
ss

g_
pt

r

m
ss

g_
pt

r

m
ss

g_
pt

r

media_ptr
media_ptr

m
ed

ia
_p

tr

sw_ptr

sw7_ptr sw6_ptrsw5_ptrsw4_ptr

 lcd_IF

 sevenseg_IF

«IMhandler»start()

button_interrrupt

button_irq: int

start() «EMthrow»
handler() «EMhandler»

«E
M

bi
nd

»
«E

M
bi

nd
»

 252

buttonInterrupt

color_components

controller

delete_method

encoder

handler_done

Attributes Methods

+button_irq: int /* none */

Attributes Methods

+inbuff_base_addr: unsigned char *
#current_sample_ptr: unsigned char *

+get_current_sample_ptr():unsigned char *
+set_current_sample_ptr(val: unsigned char *)
+reset_current_sample_ptr()
+offset_current_sample_ptr(offset: int)

Attributes Methods

/* none */ +start()
-wait_on_interrupt()

Attributes Methods

/* none */ +start()

Attributes Methods

+compress_quality: int
+shot_type: SHOTMODE
+cinfo: struct jpeg_compress_struct
+jerr: struct jpeg_error_mgr

+start()

Attributes Methods

/* none */ +start()

 253

handler_menu

handler_select

handler_shutter

lcd_IF

LED

led_IF

Attributes Methods

/* none */ +start()

Attributes Methods

/* none */ +start()

Attributes Methods

/* none */ +start()

Attributes Methods

/* none */ +showTxt(txt: char *)
+config()

Attributes Methods

/* none */ +on()
+off()

Attributes Methods

/* none */ +on()
+off()

 254

media

mssg_service

peripherals_checkup

sevenseg_IF

shutter_reg (Figure E.1 Only)

SW_pushButton (Figure E.1 Only)

Attributes Methods

+image_cnt: int
+current_offset: int
+addr_offset: unsigned short *
+image_size: unsigned short *

/* none */

Attributes Methods

+message_txt: MESSAGE_ID +display()
/* following are applicable to Figure E.1 only */
+write_lcd_txt(str: char *)
+write_sevenseg_num(num: int)

Attributes Methods

/* none */ +start() «EMthrowMethod»
+handler() «EMhandler»

Attributes Methods

/* none */ +showNum(num: int)

Attributes Methods

#id: int[2] +start()
+get_val(): int
+set_val(id: int)

Attributes Methods

#id: int +start()
+set_id(val: int)

 255

SW_service

upload_method

E.2 Implementation Details

This section lists the C implementation of the platform-dependent specification of the dig-

ital camera system. To achieve a better correlation between the source code and the UML

diagram, the translation process adheres to the following rules:

• The C struct is used to represent the class concept.

• Visibility could be seen in the Class diagram, but effectively disappears in the code.

• Methods are represented as function pointers in the struct.

• To enable the struct method to access its struct-scope data and operations, the struct

itself is passed automatically, by reference, into the method implementation.

• The code generator also automatically inserts the init() function into each struct

(class). This function is responsible for binding the struct method (function pointer)

to its implementation.

This structural C code implementation leads to an estimate 85% increase in code size

compared with a more traditional approach.

Attributes Methods

/* following applied to Figure E.2 */
#sw_pio: np_pio *

+start()
/* the following applied to Figure E.2 only */
+clear_pio()
+prepare_pio()
+setup_isr()

Attributes Methods

/* none */ +start()

 256

digiCam_system.c

1 /*
2 !-- -- --
3 !-- --
4 !-- File name: digiCam_system.c --
5 !-- Author: Chonlameth Arpnikanondt --
6 !-- Last revised: 10/10/03 --
7 !-- Description: This is the main system file for --
8 !-- the digital camera system. --
9 !-- --
10 !-- This file is mapped from the UML digiCam --
11 !-- package, where the required digiCam software --
12 !-- and hardware components reside. The main --
13 !-- function is chiefly responsible for --
14 !-- initializing these components, and call --
15 !-- the system's controller. --
16 !-- --
17 !-- -- --
18 */
19
20 #include <stdio.h>
21 #include "cdjpeg.h"
22 #include "nios.h"
23 #include "pio_lcd16207.h"
24 #include "digiCam_classType.h"
25
26 /* digiCam system attributes */
27 // main state
28 DIGICAM_STATE current_state = STATE_READY;
29 // menu
30 MENU_STATE current_menu_state = STATE_MENU_ENTRY;
31 MENU_STATE next_menu_state = STATE_MENU_ENTRY;
32 // image quality
33 IMGQUAL_STATE current_imgqual_state = STATE_IMGQUAL_ENTRY;
34 IMGQUAL_STATE next_imgqual_state = STATE_IMGQUAL_ENTRY;
35 // shot mode
36 SHOTMODE_STATE current_shotmode_state = STATE_SHOTMODE_ENTRY;
37 SHOTMODE_STATE next_shotmode_state = STATE_SHOTMODE_ENTRY;
38 // upload
39 UPLOAD_STATE current_upload_state = STATE_UPLOAD_ENTRY;
40 UPLOAD_STATE next_upload_state = STATE_UPLOAD_ENTRY;
41 // delete
42 DELETE_STATE current_delete_state = STATE_DELETE_ENTRY;
43 DELETE_STATE next_delete_state = STATE_DELETE_ENTRY;
44
45 int backto_Main = FALSE;

 257

46 int in_Menu = FALSE;
47 int in_Select = FALSE;
48 int in_Delete = FALSE;
49
50 SHOTMODE SHOT_DEFAULT = ONESHOT;
51 MESSAGE_ID TXT_DEFAULT = READY_TXT;
52 int QUAL_DEFAULT = QUAL_NORMAL;
53
54 /* UML classes that are defined as digiCam attributes */
55 struct led_IF aLED;
56 struct media aMedia;
57 struct lcd_IF aLCD;
58 struct sevenseg_IF aSevenseg;
59 struct mssg_service aMssgService;
60 struct color_components aColorComp;
61 struct peripherals_checkup aSysTest;
62 struct encoder anEncoder;
63 struct upload_method anUploadOp;
64 struct delete_method aDeleteOp;
65 struct handler_shutter aShutterIsr;
66 struct handler_menu aMenuIsr;
67 struct handler_select aSelectIsr;
68 struct handler_done aDoneIsr;
69 struct button_interrupt aButtonIrq;
70 struct SW_service aButtonIsr;
71 struct controller aController;
72
73 /* digiCam methods */
74
75 void reset_next_states(int isBackToMain)
76 {
77 // Reset all relevant next states to ENTRY state
78 next_imgqual_state = STATE_IMGQUAL_ENTRY;
79 next_shotmode_state = STATE_SHOTMODE_ENTRY;
80 next_upload_state = STATE_UPLOAD_ENTRY;
81 next_delete_state = STATE_DELETE_ENTRY;
82
83 if(isBackToMain)
84 next_menu_state = STATE_MENU_ENTRY;
85 }
86
87 void configure_digiCam_system()
88 {
89 /* initial input buffer address */
90 char* inbuff_addr = ((char *) nasys_main_flash + IN_BUFFER_OFFSET);
91 /* Button pio address */

 258

92 np_pio* pio_addr = na_button_pio;
93 /* Button irq number */
94 int button_irq = na_button_pio_irq;
95
96 /* bind init */
97 (aMedia.init) = (& media_init);
98 (aLCD.init) = (& lcd_init);
99 (aSevenseg.init) = (& sevenseg_init);
100 (aMssgService.init) = (& mssg_service_init);
101 (aColorComp.init) = (& color_components_init);
102 (aSysTest.init) = (& peripherals_checkup_init);
103 (anEncoder.init) = (& encoder_init);
104 (aShutterIsr.init) = (& handler_shutter_init);
105 (anUploadOp.init) = (& upload_method_init);
106 (aDeleteOp.init) = (& delete_method_init);
107 (aDoneIsr.init) = (& handler_done_init);
108 (aSelectIsr.init) = (& handler_select_init);
109 (aMenuIsr.init) = (& handler_menu_init);
110 (aButtonIsr.init) = (& SW_service_init);
111 (aController.init) = (& controller_init);
112
113 /* then call init to configure the digiCam system */
114 /* to simulate digiCam op, aMedia will be called later */
115 // (aMedia.init)(&aMedia);
116 (aLCD.init)(&aLCD);
117 (aSevenseg.init)(&aSevenseg);
118 (aMssgService.init)(&aMssgService, &aMedia, TXT_DEFAULT);
119 (aColorComp.init)(&aColorComp, (unsigned char*) inbuff_addr);
120 (aSysTest.init)(&aSysTest);
121 (anEncoder.init)(&anEncoder, &aColorComp, QUAL_DEFAULT, SHOT_DEFAULT);
122 (aShutterIsr.init)(&aShutterIsr, &aMssgService, &aLED, &anEncoder);
123 (anUploadOp.init)(&anUploadOp, &aMedia, &aMssgService);
124 (aDeleteOp.init)(&aDeleteOp, &aMedia, &aMssgService);
125 (aDoneIsr.init)(&aDoneIsr, &anEncoder, &aDeleteOp, &anUploadOp, &aMssgService);
126 (aSelectIsr.init)(&aSelectIsr, &aMssgService);
127 (aMenuIsr.init)(&aMenuIsr, &aMssgService);
128 (aButtonIsr.init)(&aButtonIsr, &aShutterIsr, &aMenuIsr, &aSelectIsr, &aDoneIsr,
129 &aButtonIrq, pio_addr, button_irq);
130 (aController.init)(&aController, &aSysTest, &aMedia, &aMssgService, &aButtonIsr);
131 }
132
133 int main()
134 {
135 configure_digiCam_system();
136 (aController.start)(&aController);
137 return 0; }

 259

digiCam_genType.h

1 /*
2 !-- -- --
3 !-- --
4 !-- File name: digiCam_genType.h --
5 !-- Author: Chonlameth Arpnikanondt --
6 !-- Last revised: 10/10/03 --
7 !-- Description: This file contains various definitions --
8 !-- and pre-defined parameter values required --
9 !-- for a successful operation of the digiCam --
10 !-- system. --
11 !-- --
12 !-- -- --
13 */
14
15 #ifndef DIGICAM_GENTYPE_H
16 #define DIGICAM_GENTYPE_H
17
18
19 /* Needed for platform-independent specs */
20
21 /* Boolean types */
22 #define TRUE 1
23 #define FALSE 0
24
25 /* input image related */
26 #define IMG_HEIGHT 160 /* Test with 149 */
27 #define IMG_WIDTH 160 /* Test with 227 */
28 #define LINE_LENGTH 480 /* IMG_WIDTH * COLORCOMP_DEFAULT */
29 #define COLORCOMP_DEFAULT 3
30
31 /* buffer and memory related */
32 /* only needed for the platform-independent specs */
33 // #define INPUT_BUFFER_SIZE 0x20000 /* 64K buffer */
34 // #define MEDIA_BUFFER_SIZE 0x80000 /* 250K buffer */
35
36 #define UPLOAD_MARK -99
37 #define QUAL_NORMAL 65
38 #define QUAL_GOOD 90
39 #define MAX_IMG_NUM 16
40 #define EVEN_BIT 0x00000001
41
42 /* State variables */

 260

43 typedef enum{ STATE_ENTRY,
44 STATE_READY,
45 STATE_MENU,
46 STATE_ERROR} DIGICAM_STATE;
47 typedef enum{ STATE_MENU_ENTRY,
48 STATE_MENU_IMGQUAL,
49 STATE_MENU_SHOTMODE,
50 STATE_MENU_UPLOAD,
51 STATE_MENU_DELETE} MENU_STATE;
52 typedef enum{ STATE_IMGQUAL_ENTRY,
53 STATE_IMGQUAL_NORMAL,
54 STATE_IMGQUAL_GOOD} IMGQUAL_STATE;
55 typedef enum{ STATE_SHOTMODE_ENTRY,
56 STATE_SHOTMODE_ONESHOT,
57 STATE_SHOTMODE_TWOSHOT} SHOTMODE_STATE;
58 typedef enum{ STATE_UPLOAD_ENTRY,
59 STATE_UPLOAD_NO,
60 STATE_UPLOAD_YES} UPLOAD_STATE;
61 typedef enum{ STATE_DELETE_ENTRY,
62 STATE_DELETE_NO,
63 STATE_DELETE_YES} DELETE_STATE;
64
65 /* message identifiers */
66 typedef enum{ READY_TXT,
67 MENU_ENTRY_TXT,
68 IMGQUAL_TXT,
69 SHOTMODE_TXT,
70 UPLOAD_TXT,
71 DELETE_TXT,
72 IMGQUAL_NORMAL_TXT,
73 IMGQUAL_GOOD_TXT,
74 SHOTMODE_ONESHOT_TXT,
75 SHOTMODE_TWOSHOT_TXT,
76 UPLOAD_YES_TXT,
77 UPLOAD_NO_TXT,
78 DELETE_YES_TXT,
79 DELETE_NO_TXT} MESSAGE_ID;
80
81 /* shotmode option */
82 typedef enum{ ONESHOT,
83 TWOSHOT} SHOTMODE;
84
85 /* ON/OFF status */

 261

86 /* Only for platform-independent specs */
87 // typedef enum{OFF, ON} ONOFF_STATUS;
88
89
90 /* Following are needed for the platform-dependent specs */
91
92 /* Switches ... all switch-related parameters begin with SW */
93 #define SW4 4094 /* value captured when pressed */
94 #define SW5 4093
95 #define SW6 4091
96 #define SW7 4087
97
98 /* delay loops */
99 #define LONG_LOOP 6666000
100 #define SHORT_LOOP 666600
101
102 /* address offsets */
103 #define IMG_ADDR_OFFSET 0x0
104 #define IMG_SIZE_OFFSET 0x20
105 #define IMG_DATA_OFFSET 0x20000
106 #define IN_BUFFER_OFFSET 0x4000
107 #define FLASH_SECTOR_SIZE 0x10000
108
109 /* exception signal */
110 typedef int digiCam_exception;
111 typedef digiCam_exception MissingPeripheralException;
112
113 #endif // DIGICAM_GENTYPE_H
114

 262

digiCam_classType.h

1 /*
2 !-- -- --
3 !-- --
4 !-- File name: digiCam_classType.h --
5 !-- Author: Chonlameth Arpnikanondt --
6 !-- Last revised: 10/10/03 --
7 !-- Description: This file contains class definitions --
8 !-- as specified in the UML document. In C, --
9 !-- these classes are implemented as structures. --
10 !-- --
11 !-- -- --
12 */
13
14 #ifndef DIGICAM_CLASSTYPE_H
15 #define DIGICAM_CLASSTYPE_H
16
17 #include "digiCam_genType.h"
18
19 struct led_IF {
20 // attributes
21 //
22 // methods
23 void (*on) ();
24 void (*off) ();
25 };
26
27 struct media {
28 // attributes
29 int image_cnt;
30 int current_offset;
31 unsigned short *addr_offset;
32 unsigned short *image_size;
33 // methods
34 void (*init) (struct media *self);
35 };
36
37 struct lcd_IF {
38 // attributes
39 //
40 // methods
41 void (*showTxt)(char* txt);
42 void (*config)();

 263

43 void (*init)(struct lcd_IF *self);
44 };
45
46 struct sevenseg_IF {
47 // attributes
48 //
49 // methods
50 void (*showNum) (int num);
51 void (*init)(struct sevenseg_IF *self);
52 };
53
54 struct mssg_service {
55 // attributes
56 MESSAGE_ID message_txt;
57 struct lcd_IF lcd;
58 struct sevenseg_IF sevenseg;
59 struct media *media_ptr;
60 // methods
61 void (*display) (struct mssg_service * self);
62 void (*write_lcd_txt) (struct mssg_service * self, char* str);
63 void (*write_sevenseg_num) (struct mssg_service * self, int num);
64 void (*init) (struct mssg_service * self,
65 struct media *media_ptr,
66 MESSAGE_ID txt);
67 };
68
69 struct color_components {
70 // attributes
71 unsigned char *inbuff_base_addr;
72 unsigned char *current_sample_ptr;
73 // methods
74 unsigned char* (*get_current_sample_ptr) (struct color_components* self);
75 void (*set_current_sample_ptr) (struct color_components* self, unsigned char* val);
76 void (*reset_current_sample_ptr) (struct color_components* self);
77 void (*offset_current_sample_ptr) (struct color_components* self, int offset);
78 void (*init)(struct color_components *self, unsigned char* iv);
79 };
80
81 struct peripherals_checkup {
82 // attributes
83 //
84 // methods
85 void (*start) (struct peripherals_checkup* self);

 264

86 MissingPeripheralException (*checkup) ();
87 void (*handler) ();
88 void (*init)(struct peripherals_checkup *self);
89 };
90
91 /* Jpeg encoder */
92 struct encoder {
93 // attributes
94 int compress_quality;
95 SHOTMODE shot_type;
96 struct jpeg_compress_struct cinfo;
97 struct jpeg_error_mgr jerr;
98 struct color_components* ccomp_ptr;
99 // methods
100 void (*start)(struct encoder *self);
101 void (*init)(struct encoder *self,
102 struct color_components *ccomp_ptr,
103 int qual_iv, SHOTMODE shottype_iv);
104 };
105
106 struct handler_shutter {
107 // attributes
108 struct mssg_service * mssg_ptr;
109 struct led_IF * led_ptr;
110 struct encoder * jpeg_ptr;
111 // methods
112 void (*start)(struct handler_shutter *self);
113 void (*init)(struct handler_shutter *self,
114 struct mssg_service *mssg_ptr,
115 struct led_IF *led_ptr,
116 struct encoder *jpeg_ptr);
117 };
118
119 /* upload */
120 struct upload_method {
121 // attributes
122 struct media * media_ptr;
123 struct mssg_service * mssg_ptr;
124 // methods
125 void (*start)(struct upload_method *self);
126 void (*init)(struct upload_method *self,
127 struct media *media_ptr,
128 struct mssg_service *mssg_ptr);

 265

129 };
130
131 /* delete */
132 struct delete_method {
133 // attributes
134 struct media * media_ptr;
135 struct mssg_service * mssg_ptr;
136 // methods
137 void (*start)(struct delete_method *self);
138 void (*init)(struct delete_method *self,
139 struct media *media_ptr,
140 struct mssg_service *mssg_ptr);
141 };
142
143 /* handler done can be defined now */
144 struct handler_done {
145 // attributes
146 struct encoder * jpeg_ptr;
147 struct delete_method * del_ptr;
148 struct upload_method * send_ptr;
149 struct mssg_service *mssg_ptr;
150 // methods
151 void (*start)(struct handler_done *self);
152 void (*init)(struct handler_done *self,
153 struct encoder *jpeg_ptr,
154 struct delete_method *del_ptr,
155 struct upload_method *send_ptr,
156 struct mssg_service *mssg_ptr);
157 };
158
159 /* handler select */
160 struct handler_select {
161 // attributes
162 struct mssg_service *mssg_ptr;
163 // methods
164 void (*start)(struct handler_select *self);
165 void (*init)(struct handler_select *self, struct mssg_service *mssg_ptr);
166 };
167
168 /* handler menu */
169 struct handler_menu {
170 // attributes
171 struct mssg_service *mssg_ptr;

 266

172 // methods
173 void (*start)(struct handler_menu *self);
174 void (*init)(struct handler_menu *self, struct mssg_service *mssg_ptr);
175 };
176
177 /* interrupt service routine class */
178 struct button_interrupt {
179 // attributes
180 int button_irq;
181 // methods
182 };
183
184 struct SW_service {
185 // attributes
186 // int current_id; // will use the nios routine instead
187 np_pio *sw_pio;
188 struct handler_shutter * sw7_ptr;
189 struct handler_menu * sw6_ptr;
190 struct handler_select * sw5_ptr;
191 struct handler_done * sw4_ptr;
192 struct button_interrupt * button_ptr;
193 // methods
194 // void (*set_current_id)(struct SW_service *self, int val); // not needed anymore
195 void (*clear_pio)(struct SW_service *self);
196 void (*prepare_pio)(struct SW_service *self);
197 void (*setup_isr)(struct SW_service *self);
198 void (*start)(int self_ptr);
199 void (*init)(struct SW_service *self,
200 struct handler_shutter *sw7_ptr,
201 struct handler_menu *sw6_ptr,
202 struct handler_select *sw5_ptr,
203 struct handler_done *sw4_ptr,
204 struct button_interrupt *button_ptr,
205 np_pio* pio_addr, int button_irq);
206 };
207
208 /* controller class */
209 struct controller {
210 // attributes
211 struct peripherals_checkup *checkup_ptr;
212 struct media *media_ptr;
213 struct mssg_service *mssg_ptr;
214 struct SW_service *sw_ptr;

 267

215 // methods
216 void (*start)(struct controller *self);
217 void (*wait_on_interrupt)(struct controller *self);
218 void (*init)(struct controller *self,
219 struct peripherals_checkup *checkup_ptr,
220 struct media *media_ptr,
221 struct mssg_service *mssg_ptr,
222 struct SW_service *sw_ptr);
223 };
224
225 /* function prototypes */
226
227 /* Media struct initialization */
228 extern void media_init(struct media *self);
229
230 /* LCD display */
231 extern void lcd_init(struct lcd_IF *self);
232
233 /* Seven-segment display */
234 extern void sevenseg_init(struct sevenseg_IF *self);
235
236 /* mssg_service interface */
237 extern void mssg_service_init(struct mssg_service * self,
238 struct media * media_ptr,
239 MESSAGE_ID txt);
240
241 /* color_components standard get and set methods */
242 extern void color_components_init(struct color_components *self, unsigned char* iv);
243
244 /* peripherals checkup */
245 extern void peripherals_checkup_init(struct peripherals_checkup *self);
246
247 /* Jpeg encoder */
248 extern void encoder_init(struct encoder *self,
249 struct color_components *ccomp_ptr,
250 int qual_iv, SHOTMODE shottype_iv);
251
252 /* shutter isr service */
253 extern void handler_shutter_init(struct handler_shutter *self,
254 struct mssg_service *mssg_ptr,
255 struct led_IF *led_ptr,
256 struct encoder *jpeg_ptr);
257

 268

258 /* upload operation */
259 extern void upload_method_init(struct upload_method *self,
260 struct media *media_ptr,
261 struct mssg_service *mssg_ptr);
262
263 /* delete-all operation */
264 extern void delete_method_init(struct delete_method *self,
265 struct media *media_ptr,
266 struct mssg_service *mssg_ptr);
267
268 /* handler done */
269 extern void handler_done_init(struct handler_done *self,
270 struct encoder *jpeg_ptr,
271 struct delete_method *del_ptr,
272 struct upload_method *send_ptr,
273 struct mssg_service *mssg_ptr);
274
275 /* handler select service */
276 extern void handler_select_init(struct handler_select *self,
277 struct mssg_service *mssg_ptr);
278
279 /* menu service */
280 extern void handler_menu_init(struct handler_menu *self,
281 struct mssg_service *mssg_ptr);
282
283 /* SWITCH services */
284 extern void SW_service_init(struct SW_service *self,
285 struct handler_shutter *sw7_ptr,
286 struct handler_menu *sw6_ptr,
287 struct handler_select *sw5_ptr,
288 struct handler_done *sw4_ptr,
289 struct button_interrupt *button_ptr,
290 np_pio* pio_addr, int button_irq);
291
292 /* begins the controller implementation */
293 extern void controller_init(struct controller *self,
294 struct peripherals_checkup *checkup_ptr,
295 struct media *media_ptr,
296 struct mssg_service *mssg_ptr,
297 struct SW_service *sw_ptr);
298
299 #endif // DIGICAM_CLASSTYPE_H
300

 269

digiCam_classOp.c

1 /*
2 !-- -- --
3 !-- --
4 !-- File name: digiCam_classOp.c --
5 !-- Author: Chonlameth Arpnikanondt --
6 !-- Last revised: 10/10/03 --
7 !-- Description: This file contains class methods --
8 !-- implementation. --
9 !-- --
10 !-- -- --
11 */
12
13
14 #include <stdio.h>
15 #include "cdjpeg.h"
16 #include "nios.h"
17 #include "pio_lcd16207.h"
18 #include "digiCam_classType.h"
19
20 extern reset_next_states(int isBackToMain);
21
22 /* LED operations */
23 void on()
24 {
25 na_led_pio->np_piodirection = 3; /* set direction: output */
26 na_led_pio->np_piodata = 3; /* both on */
27 }
28
29 void off()
30 {
31 na_led_pio->np_piodirection = 3; /* set direction: output */
32 na_led_pio->np_piodata = 0; /* both off */
33 }
34
35 /* won't be used in platform-dependent */
36 /*
37 void blink()
38 {
39 int i;
40
41 na_led_pio->np_piodirection = 3;
42 for(i=0;i<5;i++) {

 270

43 na_led_pio->np_piodata = 1;
44 nr_delay(200);
45 na_led_pio->np_piodata = 2;
46 nr_delay(200);
47 }
48 }
49 */
50
51 /* Media struct initialization */
52 void media_init(struct media *self)
53 {
54 int i, cnt, sz_tmp, offset_tmp;
55
56 /* initialize addresses */
57 self->image_cnt = 0;
58 self->current_offset = IMG_DATA_OFFSET;
59 self->addr_offset = (unsigned short *)((char *)nasys_main_flash +
60 IMG_ADDR_OFFSET);
61 self->image_size = (unsigned short *)((char *)nasys_main_flash +
62 IMG_SIZE_OFFSET);
63
64 /* Then check memory content so that correct values can be filled in */
65 i = 0;
66 cnt = 0;
67 while(0xFFFF != self->addr_offset[i]) {
68 cnt++;
69 i += 2;
70 }
71 self->image_cnt = cnt;
72 // Fetch values only when there is image in memory
73 // Otherwise, just init
74 if(cnt != 0) {
75 sz_tmp = (self->image_size[2*cnt-1]<<16) | (self->image_size[2*(cnt-1)]);
76 offset_tmp = (self->addr_offset[2*cnt-1]<<16) |
77 (self->addr_offset[2*(cnt-1)]);
78 if((sz_tmp & EVEN_BIT) == 1) sz_tmp++;
79 self->current_offset = offset_tmp + sz_tmp;
80 }
81 }
82
83 /* LCD display */
84 void showTxt(char * txt)
85 {

 271

86 nr_pio_lcdwritescreen(txt);
87 }
88
89 void lcd_config()
90 {
91 nr_pio_lcdinit(na_lcd_pio);
92 nr_pio_lcdwritescreen(" ");
93 }
94
95 void lcd_init(struct lcd_IF *self)
96 {
97 (self->showTxt) = (&showTxt);
98 (self->config) = (&lcd_config);
99 }
100
101 /* Seven-segment display */
102 void showNum(int num)
103 {
104 nr_pio_showhex((num / 10) * 16 + num % 10);
105 }
106
107 void sevenseg_init(struct sevenseg_IF *self)
108 {
109 (self->showNum) = (&showNum);
110 }
111
112 /* mssg_service interface */
113
114 void write_lcd_txt(struct mssg_service * self, char* str)
115 {
116 ((self->lcd).showTxt)(str);
117 }
118
119 void write_sevenseg_num(struct mssg_service * self, int num)
120 {
121 ((self->sevenseg).showNum)(num);
122 }
123
124 void display (struct mssg_service * self)
125 {
126 int i;
127 int LESS_LONG_LOOP = LONG_LOOP-500;
128

 272

129 ((self->sevenseg).showNum)((self->media_ptr)->image_cnt);
130 switch(self->message_txt) {
131 case MENU_ENTRY_TXT:
132 // Menu greeting text
133 ((self->lcd).showTxt)("Menu Mode: SW6: Browse");
134 for(i=0;i<LONG_LOOP;i++);
135 ((self->lcd).showTxt)("SW5: Select SW4: Done");
136 for(i=0;i<LESS_LONG_LOOP;i++);
137 break;
138 case IMGQUAL_TXT:
139 ((self->lcd).showTxt)("Image Quality..");
140 break;
141 case SHOTMODE_TXT:
142 ((self->lcd).showTxt)("Shot Mode..");
143 break;
144 case UPLOAD_TXT:
145 ((self->lcd).showTxt)("UPLOAD..");
146 break;
147 case DELETE_TXT:
148 ((self->lcd).showTxt)("DELETE..");
149 break;
150 case IMGQUAL_NORMAL_TXT:
151 ((self->lcd).showTxt)("Image Quality - Normal");
152 break;
153 case IMGQUAL_GOOD_TXT:
154 ((self->lcd).showTxt)("Image Quality - Good");
155 break;
156 case SHOTMODE_ONESHOT_TXT:
157 ((self->lcd).showTxt)("Single Shot");
158 break;
159 case SHOTMODE_TWOSHOT_TXT:
160 ((self->lcd).showTxt)("Burst - Two-Shot");
161 break;
162 case UPLOAD_YES_TXT:
163 ((self->lcd).showTxt)("UPLOAD - YES");
164 break;
165 case UPLOAD_NO_TXT:
166 ((self->lcd).showTxt)("UPLOAD - NO");
167 break;
168 case DELETE_YES_TXT:
169 ((self->lcd).showTxt)("DELETE - YES");
170 break;
171 case DELETE_NO_TXT:

 273

172 ((self->lcd).showTxt)("DELETE - NO");
173 break;
174 case READY_TXT:
175 default:
176 // READY_MESSAGE
177 ((self->lcd).showTxt)("MAIN> SW7: SHOOTSW6: Menu");
178 for(i=0;i<LESS_LONG_LOOP;i++);
179 }
180 nr_delay(500);
181 }
182
183 void mssg_service_init(struct mssg_service *self,
184 struct media *media_ptr,
185 MESSAGE_ID txt)
186 {
187 self->message_txt = txt;
188 (self->display) = (&display);
189 (self->write_lcd_txt) = (&write_lcd_txt);
190 (self->write_sevenseg_num) = (&write_sevenseg_num);
191 ((self->lcd).init) = (&lcd_init);
192 ((self->sevenseg).init) = (&sevenseg_init);
193 self->media_ptr = media_ptr;
194
195 ((self->lcd).init)(& (self->lcd));
196 ((self->sevenseg).init)(& (self->sevenseg));
197 ((self->lcd).config)();
198 ((self->sevenseg).showNum)((self->media_ptr)->image_cnt);
199 }
200
201 /* color_components standard get and set methods */
202 unsigned char* get_current_sample_ptr(struct color_components* self)
203 {
204 return self->current_sample_ptr;
205 }
206
207 void set_current_sample_ptr(struct color_components* self, unsigned char* val)
208 {
209 self->current_sample_ptr = val;
210 }
211
212 void reset_current_sample_ptr(struct color_components* self)
213 {
214 self->current_sample_ptr = self->inbuff_base_addr;

 274

215 }
216
217 void offset_current_sample_ptr(struct color_components* self, int offset)
218 {
219 self->current_sample_ptr += offset;
220 }
221
222 void color_components_init(struct color_components *self, unsigned char* iv)
223 {
224 self->inbuff_base_addr = iv;
225 self->current_sample_ptr = iv;
226 (self->get_current_sample_ptr) = (& get_current_sample_ptr);
227 (self->set_current_sample_ptr) = (& set_current_sample_ptr);
228 (self->reset_current_sample_ptr) = (& reset_current_sample_ptr);
229 (self->offset_current_sample_ptr) = (& offset_current_sample_ptr);
230 }
231
232 /* peripherals checkup */
233 MissingPeripheralException checkup()
234 {
235 unsigned char peripheral_status = 0x00;
236 MissingPeripheralException err = FALSE;
237
238 #ifdef na_seven_seg_pio
239 peripheral_status = 0x01; // set first bit 0001
240 #endif
241
242 #ifdef na_lcd_pio
243 peripheral_status |= 0x02; // set second bit 0010
244 #endif
245
246 #ifdef na_button_pio
247 peripheral_status |= 0x04; // set third bit 0100
248 #endif
249
250 #ifdef na_ext_flash
251 peripheral_status |= 0x08; // set fourth bit 1000
252 #endif
253
254 #ifdef na_led_pio
255 peripheral_status |= 0x10; // set fifth bit 1000
256 #endif
257

 275

258 if(peripheral_status != 0x1F) err = TRUE;
259
260 return err;
261 }
262
263 void peripherals_checkup_handler()
264 {
265 int i;
266
267 nr_pio_lcdwritescreen("Device Error!");
268
269 na_led_pio->np_piodirection = 3; // set direction: output
270 na_led_pio->np_piodata = 3; // both off
271 for(i=0;i<5;i++) {
272 na_led_pio->np_piodata = 1; // turns one one
273 nr_delay(200);
274 na_led_pio->np_piodata = 2; // alternate
275 nr_delay(200);
276 }
277 na_led_pio->np_piodata = 3; // both off
278 nr_delay(200);
279
280 exit(0);
281 }
282
283 void peripherals_checkup_start(struct peripherals_checkup* self)
284 {
285 /* try & catch the throw clause C style */
286 if(self->checkup())
287 self->handler();
288 /* get to this point means it's okay... turns on LEDs */
289 na_led_pio->np_piodirection = 3;
290 na_led_pio->np_piodata = 3;
291 }
292
293 void peripherals_checkup_init(struct peripherals_checkup *self)
294 {
295 (self->checkup) = (& checkup);
296 (self->handler) = (& peripherals_checkup_handler);
297 (self->start) = (& peripherals_checkup_start);
298 }
299
300 /* Jpeg encoder */

 276

301 void encoder_start(struct encoder *self)
302 {
303 JSAMPROW row_ptr[1];
304 int i, cnt;
305
306 ((self->ccomp_ptr)->reset_current_sample_ptr)(self->ccomp_ptr);
307 (self->cinfo).err = jpeg_std_error(& (self->jerr));
308 jpeg_create_compress(& (self->cinfo));
309
310 (self->cinfo).input_components = COLORCOMP_DEFAULT;
311 (self->cinfo).in_color_space = JCS_RGB;
312 (self->cinfo).image_height = IMG_HEIGHT;
313 (self->cinfo).image_width = IMG_WIDTH;
314
315 jpeg_set_defaults(& (self->cinfo));
316
317 (self->cinfo).dct_method = JDCT_ISLOW;
318 jpeg_stdio_dest(& (self->cinfo), stdout);
319 jpeg_set_quality(& (self->cinfo), (self->compress_quality), TRUE);
320
321 jpeg_start_compress(& (self->cinfo), TRUE);
322
323 cnt = 0;
324 while ((self->cinfo).next_scanline < (self->cinfo).image_height) {
325 row_ptr[0] = ((self->ccomp_ptr)->get_current_sample_ptr)(self->ccomp_ptr);
326 (void) jpeg_write_scanlines(& (self->cinfo), row_ptr, 1);
327 ((self->ccomp_ptr)->offset_current_sample_ptr)((self->ccomp_ptr), LINE_LENGTH);
328 }
329
330 jpeg_finish_compress(& (self->cinfo));
331 jpeg_destroy_compress(& (self->cinfo));
332 }
333
334 void encoder_init(struct encoder *self,
335 struct color_components *ccomp_ptr,
336 int qual_iv, SHOTMODE shottype_iv)
337 {
338 self->compress_quality = qual_iv;
339 self->shot_type = shottype_iv;
340 self->ccomp_ptr = ccomp_ptr;
341 (self->start) = (& encoder_start);
342 }
343

 277

344
345 /* shutter isr service */
346 void handler_shutter_start(struct handler_shutter *self)
347 {
348 extern DIGICAM_STATE current_state;
349
350 switch(current_state) {
351 case STATE_READY:
352 ((self->led_ptr)->off)();
353 ((self->jpeg_ptr)->start)(self->jpeg_ptr);
354 if((self->jpeg_ptr)->shot_type == TWOSHOT)
355 ((self->jpeg_ptr)->start)(self->jpeg_ptr);
356 ((self->led_ptr)->on)();
357 ((self->mssg_ptr)->write_sevenseg_num)((self->mssg_ptr),
358 ((self->mssg_ptr)->media_ptr)->image_cnt);
359 break;
360 default:
361 ((self->mssg_ptr)->write_lcd_txt)((self->mssg_ptr), "Camera Not Ready..");
362 nr_delay(500);
363 }
364 }
365
366 void handler_shutter_init(struct handler_shutter *self,
367 struct mssg_service *mssg_ptr,
368 struct led_IF *led_ptr,
369 struct encoder *jpeg_ptr)
370 {
371 self->mssg_ptr = mssg_ptr;
372 self->led_ptr = led_ptr;
373 self->jpeg_ptr = jpeg_ptr;
374 (self->start) = (& handler_shutter_start);
375 ((self->led_ptr)->on) = (& on);
376 ((self->led_ptr)->off) = (& off);
377 }
378
379 /* upload operation */
380 void upload_method_start(struct upload_method *self)
381 {
382 extern UPLOAD_STATE current_upload_state;
383 extern UPLOAD_STATE next_upload_state;
384 unsigned char *c;
385 unsigned int dataaddr;
386 int datasize = 0;

 278

387 int i, j, k;
388
389 // Reset upload
390 current_upload_state = STATE_UPLOAD_NO;
391 next_upload_state = STATE_UPLOAD_YES;
392 ((self->mssg_ptr)->write_lcd_txt)((self->mssg_ptr), "Please wait. Uploading images...");
393
394 // for all images, transmit...
395 // start off with the marker
396 printf("%d\n", UPLOAD_MARK);
397 for(i=0,k=0; k<(self->media_ptr)->image_cnt; i+=2,k++) {
398 // for each image
399 // 1) get data address
400 dataaddr = (unsigned int) (((self->media_ptr)->addr_offset[i+1] << 16) |
401 ((self->media_ptr)->addr_offset[i]));
402 datasize = (((self->media_ptr)->image_size[i+1] << 16) |
403 ((self->media_ptr)->image_size[i]));
404 c = (unsigned char *) ((char *)nasys_main_flash + dataaddr);
405
406 printf("%d\n", datasize);
407 for(j=0;j<datasize;j++)
408 printf("0x%x\n", c[j]);
409 }
410 // end mark
411 printf("%d\n", UPLOAD_MARK);
412
413 ((self->mssg_ptr)->write_lcd_txt)((self->mssg_ptr), "Done...");
414 nr_delay(1000);
415 }
416
417 void upload_method_init(struct upload_method *self,
418 struct media *media_ptr,
419 struct mssg_service *mssg_ptr)
420 {
421 self->media_ptr = media_ptr;
422 self->mssg_ptr = mssg_ptr;
423 (self->start) = (& upload_method_start);
424 }
425
426
427 /* delete-all operation */
428 void delete_method_start(struct delete_method *self)
429 {

 279

430 extern DELETE_STATE current_delete_state;
431 extern DELETE_STATE next_delete_state;
432 int current_offset = IMG_DATA_OFFSET;
433 unsigned short * data_addr;
434 int i, image_cnt = (self->media_ptr)->image_cnt;
435
436 // This is a delete all operation
437 current_delete_state = STATE_DELETE_NO;
438 next_delete_state = STATE_DELETE_YES;
439 ((self->mssg_ptr)->write_lcd_txt)((self->mssg_ptr), "Deleting images...");
440
441 // if there is an image...
442 if(image_cnt > 0) {
443 data_addr = (unsigned short *)((char *)nasys_main_flash + current_offset);
444 nr_flash_erase_sector(nasys_main_flash, data_addr);
445 current_offset += FLASH_SECTOR_SIZE;
446 for(;;) {
447 if(current_offset > (self->media_ptr)->current_offset)
448 break;
449 else {
450 data_addr = (unsigned short *)((char *)nasys_main_flash+current_offset);
451 nr_flash_erase_sector(nasys_main_flash, data_addr);
452 current_offset += FLASH_SECTOR_SIZE;
453 }
454 }
455 }
456
457 // now, image content is gone
458 // prepare to delete table of content @ nasys_main_flash
459 nr_flash_erase_sector(nasys_main_flash, nasys_main_flash);
460 // initialize the media content struct
461 ((self->media_ptr)->init)(self->media_ptr);
462
463 // adjust hex display...
464 for(i=image_cnt-1; i>=0; i--) {
465 ((self->mssg_ptr)->write_sevenseg_num)((self->mssg_ptr), i);
466 nr_delay(1000);
467 }
468 ((self->mssg_ptr)->write_lcd_txt)((self->mssg_ptr), "Done...");
469 nr_delay(1000);
470 }
471
472 void delete_method_init(struct delete_method *self,

 280

473 struct media *media_ptr,
474 struct mssg_service *mssg_ptr)
475 {
476 self->media_ptr = media_ptr;
477 self->mssg_ptr = mssg_ptr;
478 (self->start) = (& delete_method_start);
479 }
480
481
482 /* handler done */
483 void handler_done_start(struct handler_done *self)
484 {
485 extern DIGICAM_STATE current_state;
486 extern IMGQUAL_STATE current_imgqual_state;
487 extern SHOTMODE_STATE current_shotmode_state;
488 extern UPLOAD_STATE current_upload_state;
489 extern DELETE_STATE current_delete_state;
490 extern int backto_Main;
491 extern int in_Menu;
492 extern int in_Select;
493
494 if((in_Menu && (!in_Select)) && (current_state == STATE_MENU)) {
495 // go to Ready
496 current_state = STATE_READY;
497 in_Menu = FALSE;
498 backto_Main = TRUE;
499 (self->mssg_ptr)->message_txt = READY_TXT;
500 // and reset all relevant next states
501 reset_next_states(backto_Main);
502 }
503 // else if coming from Select
504 else if(in_Select && (current_state == STATE_MENU)) {
505 // go back to Menu, leaves Select
506 in_Select = FALSE;
507 in_Menu = TRUE;
508 (self->mssg_ptr)->message_txt = MENU_ENTRY_TXT;
509 // and reset all but the STATE_MENU_ENTRY
510 reset_next_states(backto_Main);
511 }
512
513 // update parameters
514 if(current_imgqual_state == STATE_IMGQUAL_GOOD)
515 (self->jpeg_ptr)->compress_quality = QUAL_GOOD;

 281

516 else if(current_imgqual_state == STATE_IMGQUAL_NORMAL)
517 (self->jpeg_ptr)->compress_quality = QUAL_NORMAL;
518
519 if(current_shotmode_state == STATE_SHOTMODE_ONESHOT)
520 (self->jpeg_ptr)->shot_type = ONESHOT;
521 else if(current_shotmode_state == STATE_SHOTMODE_TWOSHOT)
522 (self->jpeg_ptr)->shot_type = TWOSHOT;
523
524 if(current_upload_state == STATE_UPLOAD_YES)
525 ((self->send_ptr)->start)(self->send_ptr);
526 if(current_delete_state == STATE_DELETE_YES)
527 ((self->del_ptr)->start)(self->del_ptr);
528 }
529
530 void handler_done_init(struct handler_done *self,
531 struct encoder *jpeg_ptr,
532 struct delete_method *del_ptr,
533 struct upload_method *send_ptr,
534 struct mssg_service *mssg_ptr)
535 {
536 self->jpeg_ptr = jpeg_ptr;
537 self->del_ptr = del_ptr;
538 self->send_ptr = send_ptr;
539 self->mssg_ptr = mssg_ptr;
540 (self->start) = (& handler_done_start);
541 }
542
543 /* handler select service */
544 void handler_select_start(struct handler_select *self)
545 {
546 extern DIGICAM_STATE current_state;
547 extern MENU_STATE current_menu_state;
548 extern MENU_STATE next_menu_state;
549 extern IMGQUAL_STATE current_imgqual_state;
550 extern IMGQUAL_STATE next_imgqual_state;
551 extern SHOTMODE_STATE current_shotmode_state;
552 extern SHOTMODE_STATE next_shotmode_state;
553 extern UPLOAD_STATE current_upload_state;
554 extern UPLOAD_STATE next_upload_state;
555 extern DELETE_STATE current_delete_state;
556 extern DELETE_STATE next_delete_state;
557 extern int backto_Main;
558 extern int in_Menu;

 282

559 extern int in_Select;
560
561 IMGQUAL_STATE tmp_imgqual_state;
562 SHOTMODE_STATE tmp_shotmode_state;
563 UPLOAD_STATE tmp_upload_state;
564 DELETE_STATE tmp_delete_state;
565
566 if(current_state == STATE_MENU) {
567
568 in_Select = TRUE;
569 switch(current_menu_state) {
570 case STATE_MENU_ENTRY:
571 in_Select = FALSE;
572 break;
573 case STATE_MENU_IMGQUAL:
574 if(next_imgqual_state == STATE_IMGQUAL_ENTRY) {
575 if(current_imgqual_state == STATE_IMGQUAL_ENTRY ||
576 current_imgqual_state == STATE_IMGQUAL_NORMAL) {
577 next_imgqual_state = STATE_IMGQUAL_GOOD;
578 current_imgqual_state = STATE_IMGQUAL_NORMAL;
579 (self->mssg_ptr)->message_txt = IMGQUAL_NORMAL_TXT;
580 }
581 else if(current_imgqual_state == STATE_IMGQUAL_GOOD) {
582 next_imgqual_state = STATE_IMGQUAL_NORMAL;
583 (self->mssg_ptr)->message_txt = IMGQUAL_GOOD_TXT;
584 }
585 }
586 else {
587 tmp_imgqual_state = current_imgqual_state;
588 current_imgqual_state = next_imgqual_state;
589 next_imgqual_state = tmp_imgqual_state;
590 if(current_imgqual_state == STATE_IMGQUAL_NORMAL)
591 (self->mssg_ptr)->message_txt = IMGQUAL_NORMAL_TXT;
592 else
593 (self->mssg_ptr)->message_txt = IMGQUAL_GOOD_TXT;
594 }
595 break;
596
597 case STATE_MENU_SHOTMODE:
598 if(next_shotmode_state == STATE_SHOTMODE_ENTRY) {
599 if(current_shotmode_state == STATE_SHOTMODE_ENTRY ||
600 current_shotmode_state == STATE_SHOTMODE_ONESHOT) {
601 next_shotmode_state = STATE_SHOTMODE_TWOSHOT;

 283

602 current_shotmode_state = STATE_SHOTMODE_ONESHOT;
603 (self->mssg_ptr)->message_txt = SHOTMODE_ONESHOT_TXT;
604 }
605 else if(current_shotmode_state == STATE_SHOTMODE_TWOSHOT) {
606 next_shotmode_state = STATE_SHOTMODE_ONESHOT;
607 (self->mssg_ptr)->message_txt =SHOTMODE_TWOSHOT_TXT;
608 }
609 }
610 else {
611 tmp_shotmode_state = current_shotmode_state;
612 current_shotmode_state = next_shotmode_state;
613 next_shotmode_state = tmp_shotmode_state;
614 if(current_shotmode_state == STATE_SHOTMODE_ONESHOT)
615 (self->mssg_ptr)->message_txt = SHOTMODE_ONESHOT_TXT;
616 else
617 (self->mssg_ptr)->message_txt = SHOTMODE_TWOSHOT_TXT;
618 }
619 break;
620
621 case STATE_MENU_UPLOAD:
622 if(next_upload_state == STATE_UPLOAD_ENTRY) {
623 if(current_upload_state == STATE_UPLOAD_ENTRY ||
624 current_upload_state == STATE_UPLOAD_NO) {
625 next_upload_state = STATE_UPLOAD_YES;
626 current_upload_state = STATE_UPLOAD_NO;
627 (self->mssg_ptr)->message_txt = UPLOAD_NO_TXT;
628 }
629 else if(current_upload_state == STATE_UPLOAD_YES) {
630 next_upload_state = STATE_UPLOAD_NO;
631 (self->mssg_ptr)->message_txt = UPLOAD_YES_TXT;
632 }
633 }
634 else {
635 tmp_upload_state = current_upload_state;
636 current_upload_state = next_upload_state;
637 next_upload_state = tmp_upload_state;
638 if(current_upload_state == STATE_UPLOAD_NO)
639 (self->mssg_ptr)->message_txt = UPLOAD_NO_TXT;
640 else
641 (self->mssg_ptr)->message_txt = UPLOAD_YES_TXT;
642 }
643 break;
644

 284

645 case STATE_MENU_DELETE:
646 if(next_delete_state == STATE_DELETE_ENTRY) {
647 if(current_delete_state == STATE_DELETE_ENTRY ||
648 current_delete_state == STATE_DELETE_NO) {
649 next_delete_state = STATE_DELETE_YES;
650 current_delete_state = STATE_DELETE_NO;
651 (self->mssg_ptr)->message_txt = DELETE_NO_TXT;
652 }
653 else if(current_delete_state == STATE_DELETE_YES) {
654 next_delete_state = STATE_DELETE_NO;
655 (self->mssg_ptr)->message_txt = DELETE_YES_TXT;
656 }
657 }
658 else {
659 tmp_delete_state = current_delete_state;
660 current_delete_state = next_delete_state;
661 next_delete_state = tmp_delete_state;
662 if(current_delete_state == STATE_DELETE_NO)
663 (self->mssg_ptr)->message_txt = DELETE_NO_TXT;
664 else
665 (self->mssg_ptr)->message_txt = DELETE_YES_TXT;
666 }
667 break;
668
669 default:
670 in_Select = FALSE;
671 reset_next_states(backto_Main);
672 } // closes switch
673 } // closes if
674 } // closes select_ISR
675
676 void handler_select_init(struct handler_select *self,
677 struct mssg_service *mssg_ptr)
678 {
679 self->mssg_ptr = mssg_ptr;
680 (self->start) = (& handler_select_start);
681 }
682
683 /* menu service */
684 void handler_menu_start(struct handler_menu *self)
685 {
686 extern DIGICAM_STATE current_state;
687 extern MENU_STATE current_menu_state;

 285

688 extern MENU_STATE next_menu_state;
689 extern int backto_Main;
690 extern int in_Menu;
691 extern int in_Select;
692
693 if(!backto_Main) {
694
695 current_state = STATE_MENU;
696 in_Menu = TRUE;
697 in_Select = FALSE; // reset
698 current_menu_state = next_menu_state;
699 if(next_menu_state == STATE_MENU_ENTRY) {
700 // assign next state
701 next_menu_state = STATE_MENU_IMGQUAL;
702 // show menu greeting
703 (self->mssg_ptr)->message_txt = MENU_ENTRY_TXT;
704 }
705 else {
706 switch(current_menu_state) {
707 case STATE_MENU_IMGQUAL:
708 next_menu_state = STATE_MENU_SHOTMODE;
709 (self->mssg_ptr)->message_txt = IMGQUAL_TXT;
710 break;
711 case STATE_MENU_SHOTMODE:
712 next_menu_state = STATE_MENU_UPLOAD;
713 (self->mssg_ptr)->message_txt = SHOTMODE_TXT;
714 break;
715 case STATE_MENU_UPLOAD:
716 next_menu_state = STATE_MENU_DELETE;
717 (self->mssg_ptr)->message_txt = UPLOAD_TXT;
718 break;
719 case STATE_MENU_DELETE:
720 next_menu_state = STATE_MENU_IMGQUAL;
721 (self->mssg_ptr)->message_txt = DELETE_TXT;
722 break;
723 default:
724 current_state = STATE_READY;
725 in_Menu = FALSE;
726 // reset state variables
727 reset_next_states(TRUE);
728 }
729 }
730 }

 286

731
732 if(backto_Main) {
733 backto_Main = FALSE;
734 current_state = STATE_READY;
735 in_Menu = FALSE;
736 reset_next_states(backto_Main);
737 }
738 }
739
740 void handler_menu_init(struct handler_menu *self,
741 struct mssg_service *mssg_ptr)
742 {
743 self->mssg_ptr = mssg_ptr;
744 (self->start) = (& handler_menu_start);
745 }
746
747 /* SWITCH services */
748 void clear_pio(struct SW_service *self)
749 {
750 (self->sw_pio)->np_pioedgecapture = 0;
751 }
752
753 void prepare_pio(struct SW_service *self)
754 {
755 (self->sw_pio)->np_piodirection = 0; // all inputs
756 (self->sw_pio)->np_piointerruptmask = 0xFF; // all generate irq's
757 }
758
759 void setup_isr(struct SW_service *self)
760 {
761 nr_installuserisr(((self->button_ptr)->button_irq), self->start, (int) self);
762 }
763
764 void SW_service_start(int self_ptr)
765 {
766 struct SW_service *self;
767
768 self = (struct SW_service*) self_ptr;
769
770 (self->clear_pio)(self);
771 switch((self->sw_pio)->np_piodata) {
772 case SW7:
773 ((self->sw7_ptr)->start)(self->sw7_ptr);

 287

774 break;
775 case SW6:
776 ((self->sw6_ptr)->start)(self->sw6_ptr);
777 break;
778 case SW5:
779 ((self->sw5_ptr)->start)(self->sw5_ptr);
780 break;
781 case SW4:
782 ((self->sw4_ptr)->start)(self->sw4_ptr);
783 }
784 (self->clear_pio)(self);
785 (self->prepare_pio)(self);
786 }
787
788 void SW_service_init(struct SW_service *self,
789 struct handler_shutter *sw7_ptr,
790 struct handler_menu *sw6_ptr,
791 struct handler_select *sw5_ptr,
792 struct handler_done *sw4_ptr,
793 struct button_interrupt *button_ptr,
794 np_pio* pio_addr, int button_irq)
795 {
796 self->sw7_ptr = sw7_ptr;
797 self->sw6_ptr = sw6_ptr;
798 self->sw5_ptr = sw5_ptr;
799 self->sw4_ptr = sw4_ptr;
800 self->button_ptr = button_ptr;
801 self->sw_pio = pio_addr;
802
803 (self->start) = (& SW_service_start);
804 (self->clear_pio) = (& clear_pio);
805 (self->prepare_pio) = (& prepare_pio);
806 (self->setup_isr) = (& setup_isr);
807 ((self->button_ptr)->button_irq) = button_irq;
808 }
809
810
811 /* begins the controller implementation */
812 void wait_on_interrupt(struct controller *self)
813 {
814 for(;;){
815 ((self->mssg_ptr)->display)(self->mssg_ptr);
816 }

 288

817 }
818
819 void controller_start(struct controller *self)
820 {
821 /* check system readiness */
822 ((self->checkup_ptr)->start)(self->checkup_ptr);
823 /* init media content */
824 ((self->media_ptr)->init)(self->media_ptr);
825 /* install interrupt service routine */
826 ((self->sw_ptr)->setup_isr)(self->sw_ptr);
827 /* clear and prepare button pio */
828 ((self->sw_ptr)->clear_pio)(self->sw_ptr);
829 ((self->sw_ptr)->prepare_pio)(self->sw_ptr);
830
831 /* loop forever waiting for interrupt signals */
832 (self->wait_on_interrupt)(self);
833 }
834
835 void controller_init(struct controller *self,
836 struct peripherals_checkup *checkup_ptr,
837 struct media *media_ptr,
838 struct mssg_service *mssg_ptr,
839 struct SW_service *sw_ptr)
840 {
841 self->checkup_ptr = checkup_ptr;
842 self->media_ptr = media_ptr;
843 self->mssg_ptr = mssg_ptr;
844 self->sw_ptr = sw_ptr;
845 (self->start) = (& controller_start);
846 (self->wait_on_interrupt) = (& wait_on_interrupt);
847 }
848

 289

jdatadst.c (Modified from IJG’s JPEG Library)

1 /*
2 * jdatadst.c
3 *
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains compression data destination routines for the case of
9 * emitting JPEG data to a file (or any stdio stream). While these routines
10 * are sufficient for most applications, some will want to use a different
11 * destination manager.
12 * IMPORTANT: we assume that fwrite() will correctly transcribe an array of
13 * JOCTETs into 8-bit-wide elements on external storage. If char is wider
14 * than 8 bits on your machine, you may need to do some tweaking.
15 */
16
17 /* this is not a core library module, so it doesn't define JPEG_INTERNALS */
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jerror.h"
21 #include "nios.h"
22
23 #ifndef DIGICAM_CLASSTYPE_H
24 #include "digiCam_classType.h"
25 #endif
26
27 int flash_data_count = 0;
28 int flash_start_image_offset = 0;
29 extern struct media aMedia;
30
31 /* Expanded data destination object for stdio output */
32
33 typedef struct {
34 struct jpeg_destination_mgr pub; /* public fields */
35
36 FILE * outfile; /* target stream */
37 JOCTET * buffer; /* start of buffer */
38 } my_destination_mgr;
39
40 typedef my_destination_mgr * my_dest_ptr;
41
42 #define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */

 290

43 #define FLASH_BUF_SIZE 2048 /* need it for data item is of char size */
44
45
46 /*
47 * Initialize destination --- called by jpeg_start_compress
48 * before any data is actually written.
49 */
50
51 METHODDEF(void)
52 init_destination (j_compress_ptr cinfo)
53 {
54 my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
55
56
57 /* Allocate the output buffer --- it will be released when done with image */
58 dest->buffer = (JOCTET *)
59 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
60 OUTPUT_BUF_SIZE * SIZEOF(JOCTET));
61
62 dest->pub.next_output_byte = dest->buffer;
63 dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
64
65 // store image location
66 if (flash_start_image_offset == 0)
67 flash_start_image_offset = aMedia.current_offset;
68
69 }
70
71
72 /*
73 * Empty the output buffer --- called whenever buffer fills up.
74 *
75 * In typical applications, this should write the entire output buffer
76 * (ignoring the current state of next_output_byte & free_in_buffer),
77 * reset the pointer & count to the start of the buffer, and return TRUE
78 * indicating that the buffer has been dumped.
79 *
80 * In applications that need to be able to suspend compression due to output
81 * overrun, a FALSE return indicates that the buffer cannot be emptied now.
82 * In this situation, the compressor will return to its caller (possibly with
83 * an indication that it has not accepted all the supplied scanlines). The
84 * application should resume compression after it has made more room in the
85 * output buffer. Note that there are substantial restrictions on the use of

 291

86 * suspension --- see the documentation.
87 *
88 * When suspending, the compressor will back up to a convenient restart point
89 * (typically the start of the current MCU). next_output_byte & free_in_buffer
90 * indicate where the restart point will be if the current call returns FALSE.
91 * Data beyond this point will be regenerated after resumption, so do not
92 * write it out when emptying the buffer externally.
93 */
94
95 METHODDEF(boolean)
96 empty_output_buffer (j_compress_ptr cinfo)
97 {
98 int i, j;
99 unsigned short buf[FLASH_BUF_SIZE];
100 unsigned short *flash_data_address;
101
102 my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
103
104
105 // prepare data for the nr_flash_write_buffer
106 for(i=0,j=1;j<OUTPUT_BUF_SIZE;i++,j+=2)
107 buf[i]=(dest->buffer[j]<<8)|(dest->buffer[j-1]);
108 flash_data_address = (unsigned short *)((char *)nasys_main_flash +
109 aMedia.current_offset);
110
111 nr_flash_write_buffer(nasys_main_flash, flash_data_address, buf, FLASH_BUF_SIZE);
112 aMedia.current_offset += OUTPUT_BUF_SIZE;
113 flash_data_count += OUTPUT_BUF_SIZE;
114
115 dest->pub.next_output_byte = dest->buffer;
116 dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
117
118 return TRUE;
119 }
120
121
122 /*
123 * Terminate destination --- called by jpeg_finish_compress
124 * after all data has been written. Usually needs to flush buffer.
125 *
126 * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
127 * application must deal with any cleanup that should happen even
128 * for error exit.

 292

129 */
130
131 METHODDEF(void)
132 term_destination (j_compress_ptr cinfo)
133 {
134 int i,j;
135 my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
136 size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
137 unsigned short buf[datacount];
138 unsigned short bufa[2], bufb[2];
139 unsigned short *flash_imgsz_address;
140 unsigned short *flash_imgat_address;
141 unsigned short *flash_data_address;
142
143 // prepare data for the nr_flash_write_buffer
144 for(i=0,j=1;j<=datacount;i++,j+=2)
145 if(j == datacount)
146 buf[i++] = (unsigned short) dest->buffer[j-1];
147 else
148 buf[i]=(dest->buffer[j]<<8)|(dest->buffer[j-1]);
149 /* Get total data size and initialize dataend address */
150 flash_data_count += datacount;
151
152 // put in bufa of unsigend short to avoid any potential problem :<
153 bufa[0] = (unsigned short) flash_data_count;
154 bufa[1] = (unsigned short) (flash_data_count>>16);
155 bufb[0] = (unsigned short) flash_start_image_offset;
156 bufb[1] = (unsigned short) (flash_start_image_offset>>16);
157
158 // store image size
159 flash_imgsz_address = (unsigned short *) (aMedia.image_size) + (2*aMedia.image_cnt);
160 // store image location
161 flash_imgat_address = (unsigned short *) (aMedia.addr_offset) +
162 (2*aMedia.image_cnt);
163 flash_data_address = (unsigned short *) ((char *)nasys_main_flash +
164 aMedia.current_offset);
165
166 // increment image number
167 aMedia.image_cnt++;
168 // set next address to 2*i which is either equal to datacount or datacount+1
169 aMedia.current_offset += (i*2);
170
171 // write number of data written in bytes

 293

172 nr_flash_write_buffer(nasys_main_flash,flash_imgsz_address,bufa,2);
173 // write image beginning location
174 nr_flash_write_buffer(nasys_main_flash,flash_imgat_address,bufb,2);
175 // write data themselves
176 nr_flash_write_buffer(nasys_main_flash,flash_data_address,buf,i);
177 // reset datacount, and image offset
178 flash_data_count = 0;
179 flash_start_image_offset = 0;
180
181 }
182
183
184 /*
185 * Prepare for output to a stdio stream.
186 * The caller must have already opened the stream, and is responsible
187 * for closing it after finishing compression.
188 */
189
190 GLOBAL(void)
191 jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
192 {
193 my_dest_ptr dest;
194
195 /* The destination object is made permanent so that multiple JPEG images
196 * can be written to the same file without re-executing jpeg_stdio_dest.
197 * This makes it dangerous to use this manager and a different destination
198 * manager serially with the same JPEG object, because their private object
199 * sizes may be different. Caveat programmer.
200 */
201 if (cinfo->dest == NULL) { /* first time for this JPEG object? */
202 cinfo->dest = (struct jpeg_destination_mgr *)
203 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
204 SIZEOF(my_destination_mgr));
205 }
206
207 dest = (my_dest_ptr) cinfo->dest;
208 dest->pub.init_destination = init_destination;
209 dest->pub.empty_output_buffer = empty_output_buffer;
210 dest->pub.term_destination = term_destination;
211 dest->outfile = outfile;
212 }
213

 294

nios_camIF.c

1 /*
2 !-- -- --
3 !-- --
4 !-- File name: nios_camIF.c --
5 !-- Author: Chonlameth Arpnikanondt --
6 !-- Last revised: 10/10/03 --
7 !-- Description: This file provides an interface for the --
8 !-- digital camera system while uploading --
9 !-- images to PC. It is a very simple interface --
10 !-- meant to be used as a demonstrative --
11 !-- application software. It works through the --
12 !-- NiOS' GERMS monitor environment with the --
13 !-- typical command line as shown below: --
14 !-- germs_prompt> nr -t | nios_camIF.exe --
15 !-- --
16 !-- When the upload operation is selected --
17 !-- the camera transmits all image data via UART --
18 !-- to the PC. These data are piped to the --
19 !-- nios_camIF software, which then writes jpeg --
20 !-- image files from the transmitted data. --
21 !-- --
22 !-- -- --
23 */
24
25 #include <stdio.h>
26 #include <string.h>
27 #include <ctype.h>
28 #include <stdlib.h>
29
30
31 #define BUFFSIZE 16
32 #define LINESIZE 100
33 char* FILE_BASE = "image_";
34 char* DOT_JPG = ".jpg";
35
36
37 int
38 main()
39 {
40 unsigned char uc[BUFFSIZE];
41 unsigned int u;
42 int bytenum, imgnum;

 295

43 char filename[LINESIZE];
44 char c[LINESIZE], istr[BUFFSIZE];
45 int i, j, cnt, bytecnt;
46 FILE * outfile; /* target jpg file */
47
48 // init image number
49 imgnum = 0;
50
51 // read line until end of file encounter
52 while(gets(c) != NULL) {
53 // if first character is numeric or -99
54 if((c[0] == '-') || (isdigit(c[0]))) {
55 // first -99
56 if(c[0] == '-' && c[1] == '9' && c[2] == '9') {
57 // read image until -99 is encountered again
58 while(gets(c) != NULL) {
59 // second -99
60 if(c[0] == '-' && c[1] == '9' && c[2] == '9')
61 exit(0);
62 else {
63 // it's an image size
64 bytenum = atoi(c);
65 imgnum++;
66 // create output file string
67 // init file base
68 sprintf(filename, "\0");
69 strcat(filename, FILE_BASE);
70 // first convert image number to string
71 sprintf(istr, "%d\0", imgnum);
72 // then concat
73 strcat(filename, istr);
74 strcat(filename, DOT_JPG);
75
76 // open file
77 if ((outfile = fopen(filename, "wb")) == NULL) {
78 fprintf(stderr, "can't open %s\n", filename);
79 exit(1);
80 }
81
82 // read in data
83 bytecnt = 0;
84 while(bytecnt < bytenum) {
85 if(bytenum-bytecnt > BUFFSIZE-1) {

 296

86 cnt = BUFFSIZE;
87 for(i=0; i<BUFFSIZE; i++) {
88 gets(c);
89 sscanf(c, "%x", &u);
90 uc[i] = (unsigned char) u;
91 bytecnt++;
92 }
93 }
94 else {
95 for(i=0; i<(bytenum-bytecnt); i++) {
96 gets(c);
97 sscanf(c, "%x", &u);
98 uc[i] = (unsigned char) u;
99 }
100 cnt = i;
101 bytecnt = bytenum;
102 }
103 fwrite(uc, 1, cnt, outfile);
104 }
105
106 // close file
107 if (outfile != stdout)
108 fclose(outfile);
109 } // else
110 } // inner while
111 } // if(c[0] == '-')
112 } // if first character
113 } // outer while
114
115 return 0;
116 }

 297

Appendix F

COCOMO II: Source Code Counting
Rules

In this appendix, the source code counting rules applicable to this thesis are presented that

are excerpted from the COCOMO II Model Definition Manual [19]. Table F.1 tabulates

these rules as follows:

Table F.1: COCOMO II SLOC Checklist

Definition Checklist for Source Statements Counts

Logical Source Statements Includes Excludes

Statement Type
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1. Executable 1 �
2. Nonexecutable

 3. Declaration 2 �
 4. Compiler directives 3 �
 5. Comments

 6. On their own lines 4 �
 7. On lines with source code 5 �
 8. Banners and non-blank spacers 6 �
 9. Blank (empty) comments 7 �
 10. Blank lines 8 �

O
rd

er
 o

f
Pr

ec
ed

en
ce

 298

How produced

1. Programmed �
2. Generated with source code generators �
3. Converted with automated translators �
4. Copied or reused without change �
5. Modified �
6. Removed �
Origin

1. New work no prior existence �
2. Prior work: taken or adapted from

 3. A previous version, build, or release �
 4. Commercial, off-the-shelf software (COTS), other than libraries �
 5. Government furnished software (GFS), other than reuse libraries �
 6. Another product �
 7. A vendor-supplied language support library (unmodified) �
 8. A vendor-supplied operating system or utility (unmodified) �
 9. A local or modified language support library or operating system �
 10. Other commercial library �
 11. A reuse library (software designed for reuse) �
 12. Other software component or library �
Usage

1. In or as part of the primary product �
2. External to or in support of the primary product �
Delivery

1. Delivered as source �
2. Delivered in compiled or executable form, but not as source �
3. Not delivered �

Table F.1: COCOMO II SLOC Checklist

Definition Checklist for Source Statements Counts

Logical Source Statements Includes Excludes

 299

Functionality

1. Operative �
2. Inoperative (dead, bypassed, unused, unreferenced, or unaccessible):

 3. Functional (intentional dead code, reactivated for special purposes) �
 4. Nonfunctional (unintentionally present) �
Replications

1. Master source statements (originals) �
2. Physical replicates of master statements, stored in the master code �
3. Copies inserted, instantiated, or expanded when compiling or linking �
4. Postproduction replicates—as in distributed, redundant, or reparame-
terized systems

�

Language: General

1. Nulls, continues, and no-ops �
2. Empty statements, e.g. “;;” and lone semicolons on separate lines �
3. Statements that instantiate generics �
4. Begin...end and {...} pairs used as executable statements �
5. Begin...end and {...} pairs that delimit (sub)program bodies �
6. Logical expressions used as test conditions �
7. Expression evaluations used as test conditions �
8. End symbols that terminate executable statements �
9. End symbols that terminate declarations or (sub)program bodies �
10.Then, else, and otherwise symbols �
11. Elseif statements �
12. Keywords like procedure division, interface, and implementation �
13. Labels (branching destinations) on lines by themselves �
Language: C and C++

1. Null statement, e.g. “;” by itself to indicate an empty body �

Table F.1: COCOMO II SLOC Checklist

Definition Checklist for Source Statements Counts

Logical Source Statements Includes Excludes

 300

2. Expression statements (expressions terminated by semicolons) �
3. Expression separated by semicolons, as in a “for” statement �
4. Block statements, e.g. {...} with no terminating semicolon �
5. “;” on a line by itself when part of a declaration �
6. “;” on a line by itself when part of an executable statement �
7. Conditionally compiled statements (#if, #ifdef, #ifndef) �
8. Preprocessor statements other than #if, #ifdef, and #ifndef �

Table F.1: COCOMO II SLOC Checklist

Definition Checklist for Source Statements Counts

Logical Source Statements Includes Excludes

 301

Appendix G

Summary of UML Notations

This appendix intends to provide a quick reference guide to UML notations (UML 1.5). It

is quite terse in description, and far from being complete. The UML specification [24]

should always be consulted if need for further clarification arises.

G.1 Static Structure Model

Figure G.1: Classes and objects

object_name/role_name:class_name

object_name:class_name
attribute1 = ...
attribute2 = ...

class_name

+attribute1
-attribute2:data_type
#attribute3:data_type = init_value
...

+operation1
-operation2(arg_list):return_type
...

This is a note
visibility:
 + public
 - private
 # protected

class_name_too

parametrized_class

parameter:type

parametrized_class<bound_value>

{constraints}

«stereotype»

 302

Figure G.2: Class relationships

parent

child_2child_1

superType

subType_1 subType_2

 Class1

 Class2

 Class

 Class

 Class

1

*

0..1

exactly one

many (zero or more)

optional (zero or one)

 Class Class

(g) Aggregation (h) Composition

 Class1 Class2

(i) Dependency.
Class1 depends on Class2.

(a) Generalization

(c) Association (f) Association Class

(b) Multiplicities

 Class1 Class2
role_name

 Class1

 Class2

role_A

role_B

association_class

(d) Navigability

 Class1

 Class2

(e) Realization
Class1 implements Class2

 303

G.2 Interaction Model

Figure G.3: Sequence diagram

G.3 State Model

Figure G.4: State diagram

role_2

self_delegation

role_3

/role_name:
class_name

operation call

[guard1]operation1()

Active

focus of control

Destruction

return from operation

role_1

Object
asynchronous message

[guard2]operation2()

branching

create object

implicit return implied

[choice_path]

[else]
State_Name2

State_Name

SuperState_Name

entry/action
do/activity
exit/action
event/action(argument)

event(arguments)[condition]/action

/*start_state*/

/*end_state*/

 304

Figure G.5: Concurrent States

G.4 Use Case Model

Figure G.6: Use Case diagram

State_Name1

SuperState_Name

State_Name2

State_Name2State_Name1

UseCase1

 UseCase2

Use Case Name

 UseCase3 ext_pt1

ext_pt2

Use Case Name too

extension points
 ext_pt1
ext_pt2

actor1

actor2

«extend» «extend»

Generalization

 305

G.5 Model Management

Figure G.7: Package and Subsystem

subsystem

content2-importer

content1-importee

 «import»

 container-package

operation1(...): type1
operation2(...): type2

 «interface»

operation1(...): type1

other model elements«access» class

«call»

306

Bibliography

[1] J. Turley, “The Two Percent Solution,” Embedded.com, December 2002; http://
www.embedded.com/story/OEG20021217S0039.

[2] C. Herring, “Microprocessors, Microcontrollers, and Systems in the New Mille-
nium,” IEEE Micro, vol. 20, no. 6, pp. 45-51, November-December 2000.

[3] V. J. Mooney III, D. M. Blough, “A Hardware-Software Real-Time Operating Sys-
tem Framework for SoCs,” IEEE Design & Test of Computers, vol. 19, no. 6, pp.
44-51, November-December 2002.

[4] R. Mahajan, K. Brown, V. Atluri, “The Evolution of Microprocessor Packaging,”
Intel Technology Journal, 3rd Quarter 2000, Intel Corporation; http://devel-
oper.intel.com/technology/itj/q32000/articles/art_1.htm.

[5] L. F. Friedrich, J. Stankovic, M. Humphrey, M. Marley, J. Haskins Jr., “A Survey
of Configurable, Component-Based Operating Systems for Embedded Applica-
tions,” IEEE Micro, vol. 21, no. 3, pp. 54-67, May-June 2001.

[6] J. A. DeBardelaben, “An Optimization-Based Approach for Cost-Effective
Embedded DSP System Design,” Ph.D. Thesis, Georgia Institute of Technology,
May 1998.

[7] J. A. DeBardelaben, V. K. Madisetti, A. Gadient, “Incorporating Cost Modelign in
Embedded-System Design,” IEEE Design & Test of Computers, pp. 24-35, July-
September 1997.

[8] B. C. Cole, “Getting to the Market On Time,” Electronics, pp. 62-65, April 1989.

[9] D&T Roundtable, “Hardware-Software Codesign,” IEEE Design & Test of Com-
puters, vol. 17, no. 1, pp. 92-99, January-March 2000.

307

[10] F. Slomka, M. Dorfel, R. Munzenberger, R. Hofmann, “Hardware/Software Code-
sign and Rapid Prototyping of Embedded Systems,” IEEE Design & Test of Com-
puters, vol. 17, no. 2, pp. 28-38, April-June 2000.

[11] University of California, Berkeley, A Framework for Hardware-Software Co-
Design of Embedded Systems, POLIS Release 0.4, December 1999; http://www-
cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html.

[12] U.S. Air Force Analysis Agency, REVIC Software Cost Estimating Model User’s
Manual Version 9.2, December 1994.

[13] M. Sgroi, L. Lavagno, A. Sangiovanni-Vincentelli, “Formal Models for Embedded
System Design,” IEEE Design & Test of Computers, vol. 17, no. 2, pp. 14-27,
April-June 2000.

[14] A. Sangiovanni-Vincentelli, G. Martin, “Platform-Based Design and Software
Design Methodology for Embedded Systems,” IEEE Design & Test of Computers,
vol. 18. no. 6, pp. 23-33, November-December 2001.

[15] Department of Defense, Parametric Cost Estimating Handbook, Fall 1995.

[16] B. Boehm, Software Engineering Economics, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1981.

[17] D. Lyons, “SEER Helps Keep Satellite Cost Estimates Down to Earth,” Infoworld,
November 27, 1995.

[18] A. Minkiewicz, A. DeMarco, “The PRICE Software Model,” PRICE Systems Inte-
nal Document, June 1995.

[19] University of Southern California, Center for Software Engineering, COCOMO II:
Model Definition Manual, Version 2.1, 2000.

[20] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, SpecC: Specification Lan-
guage and Design Methodology, Kluwer Academic Publishers, March 2000.

[21] M. Levitt, “Economic and Productivity Considerations in ASIC Test and Design-
for-Test,” Digest of Papers: Compcon ’92, pp. 440-445, Spring 1992.

308

[22] J. Miranda, “A BIST and Boundary-Scan Economics Framework,” IEEE Design &
Test of Computers, pp. 17-23, September 1997.

[23] J. Axelsson, “Analysis and Synthesis of Heterogeneous Real-Time Systems,”
Ph.D. Thesis, Linköping University, 1997.

[24] The Object Management Group, OMG Unified Modeling Language Specification
Version 1.5, March 2003; http://www.omg.org/.

[25] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage, 2nd Edition, Addison-Wesley, 2000.

[26] B. Mathew, “UML Tutorial,” Stylus Inc.’s Online Articles, Accessed: January 2003;
http://www.stylusinc.net/articles/uml/lesson1.shtml.

[27] “Practical UML: A Hands-On Introduction for Developers,” TogetherSoft Inc.;
http://www.togethersoft.com/services/practical_guides/umlonlinecourse, accessed
January 2003.

[28] B.P. Douglass, Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns, Addison-Wesley, 1999.

[29] The Object Management Group (OMG), UML Profile for Schedulability, Perfor-
mance, and Time Specification, Final Draft, March 2002; http://www.omg.org/
technology/documents/modeling_spec_catalog.htm.

[30] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

[31] “NRE Charges for SoC Designs to Hit $1M, Study Says,” Semiconductor Business
News, October 1999; http://www.csdmag.com/story/OEG19991006S0043.

[32] S. P. Dean, “ASICs and Foundries,” Integrated Systems Design, March 2001; http:/
/www.isdmag.com/story/OEG20010301S0051.

[33] DOmain Modeling Environment, Version 5.3, Honeywell Labs, Morristown, NJ,
August 2000; http://www.htc.honeywell.com:80/dome/description.htm.

[34] ArgoUML Community Version, Version 0.12, BSD License, January 2003; http://
argouml.tigris.org/.

309

[35] G. Kotonya, I. Sommerville, Requirements Engineering: Processes and Tech-
niques, John Wiley & Sons, 1998.

[36] L. A. Maciaszek, Requirements Analysis and System Design: Developing Informa-
tion Systems with UML, Addison Wesley, 2001.

[37] M. Edwards, “Software Acceleration Using Coprocessors: Is It Worth the Effort?,”
Proceedings of the 5th International Workshop on Hardware/Software Codesign,
pp. 135-139, 1997.

[38] G. M. Amdahl, “Validity of Single-Processor Approach to Achieve Large-scale
Computing Capability,” Proceedings of the 30th AFIPS Spring Joint Computer
Conference, pp. 483-485, 1967.

[39] R. Ernst, J. Henkel, T. Benner, “Hardware-Software CoSynthesis for Microcontrol-
lers,” IEEE Design & Test of Computers, vol. 10, no. 4, pp. 64-75, December 1993.

[40] R. Gupta, G. De Micheli, “Hardware-Software CoSynthesis for Digital Systems,”
IEEE Design & Test of Computers, pp. 29-41, September 1993.

[41] T.-Y. Yen, W. Wolf, “Sensitivity-Driven Co-synthesis of Distributed Embedded
Systems,” Proceedings of the 8th International Symposium on System Synthesis,
1995.

[42] T.-Y. Yen, W. Wolf, “Communication Synthesis for Distributed Embedded Sys-
tems,” Proceedings of the IEEE International Conference on Computer-Aided
Design, pp. 288-294, 1995.

[43] S. Schulz, J.W. Rozenblit, K. Buchenrieder, “Towards an Application of Model-
Based Codesign: An Autonomous, Intelligent Cruise Controller,” Proceedings of
the 1997 IEEE Conference and Workshop on Engineering of Computer Based Sys-
tems, pp. 73-80, Monterey, CA, March 1997.

[44] K. Buchenrieder, J.W. Rozenblit, “Codesign: An Overview,” Codesign: Computer-
Aided Software/Hardware Engineering, pp. 1-16, IEEE Press, 1994.

[45] University of California, Berkeley, The Ptolemy Project, February 2003; http://
ptolemy.berkeley.edu/.

310

[46] R. Goering, “24-hour Chip Design Cycle Called Possible,” EETIMES, August 2001;
http://www.eedesign.com/story/OEG20010803S0083.

[47] S. Holzner, Inside XML, pp. 1-14, New Riders Publishing, November 2001.

[48] A. Møller, M. I. Schwartzbach, “The XML Revolution: Technologies for the
Future Web,” BRICS, University of Arthus, October 2002: http://www.brics.dk/
~amoeller/XML/.

[49] A. Bergholz, “Extending Your Markup: An XML Tutorial,” IEEE Internet Com-
puting, July-August 2000; http://computer.org/internet/xml/xml.tutorial.pdf.

[50] J. P. Thomas, “Understanding XML (eXtensible Markup Language),” Stylus Inc.’s
Online Articles; http://www.stylusinc.net/technology/XML/xml_future.shtml,
accessed March 2003.

[51] M. Bryan, "An Introduction to the Extensible Markup Language (XML)," http://
www.personal.u-net.com/~sgml/xmlintro.htm, accessed March 2003.

[52] Document Object Model (DOM), World Wide Web Consortium; http://
www.w3.org/DOM/, accessed March 2003.

[53] The Common Object Request Broker: Architecture and Specification Version 3.0.2,
The Object Management Group (OMG); http://www.omg.org/technology/docu-
ments/corba_spec_catalog.htm, accessed March 2003.

[54] N. Walsh, “A Technical Introduction to XML,” World Wide Web Journal, Revision
1.1, February 1998; http://www.w3j.com; http://nwalsh.com/docs/articles/xml/
index.html.

[55] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, Extensible Markup Lan-
guage (XML) 1.0, Second Edition, World Wide Web Consortium, October 2000;
http://www.w3.org/TR/REC-xml.html.

[56] XML Schema 1.0, World Wide Web Consortium, May 2001; http://www.w3.org/
XML/Schema.

[57] OASIS, “Extensible Markup Language (XML),” Cover Pages, February 2003;
http://xml.coverpages.org/xml.html.

311

[58] S. DeRose, E. Maler, D. Orchard, XML Linking Language (XLink) Version 1.0,
World Wide Web Consortium, June 2001; http://www.w3.org/TR/xlink/.

[59] S. DeRose, R. Daniel, et.al., XML Pointer Language (XPointer), World Wide Web
Consortium, August 2002; http://www.w3.org/TR/xptr/.

[60] J. Clark, S. DeRose, XML Path Language (XPath) Version 1.0, World Wide Web
Consortium, November 1999; http://www.w3.org/TR/xpath.

[61] Resource Description Framework (RDF), World Wide Web Consortium, February
1999; http://www.w3.org/RDF/.

[62] F. Manola, E.Miller, et.al., “RDF Primer,” World Wide Web Consortium, January
2003; http://www.w3.org/TR/rdf-primer/.

[63] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels
(RFC2119),” The Internet Engineering Task Force, March 1997; http://
www.ietf.org/rfc/rfc2119.txt.

[64] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language: Towns, Buildings,
Construction, Oxford University Press, 1977.

[65] C. Alexander, The Timeless Way of Building, Oxford University Press, 1979.

[66] B. T. Kurotsuchi, “Design Patterns,” Online Tutorial, 1996; http://www.csc.
calpoly.edu/~dbutler/tutorials/winter96/patterns/.

[67] D. L. Levine, D. C. Schmidt, “Introduction to Patterns and Frameworks,” Class
Material, Department of Computer Science, Washington University at St. Louis;
http://classes.cec.wustl.edu/_cs342/.

[68] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements of Reus-
able Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[69] B. Foote, J. Yoder, “The Selfish Class,” Third Conference of Patterns Languages of
Programs (PLoP’96), Monticello, IL, September 1996.

[70] R. Goering, “Platform-based Design: A Choice, not a Panacea,” EETIMES, Septem-
ber 2002; http://www.eetimes.com/story/OEG20020911S0061.

312

[71] J. Clark, XSL Transformation (XSLT) Version 1.0, World Wide Web Consortium,
November 1999; http://www.w3.org/TR/xslt.

[72] S. Boag, D. Chamberlin, et.al., XQuery 1.0: An XML Query Language, Working
Draft, World Wide Web Consortium, November 2002; http://www.w3.org/TR/
xquery/.

[73] “XPath Tutorial,” W3Schools.com; http://www.w3schools.com/xpath/default.asp,
accessed March 2003.

[74] Xalan Java Version 2.5.D1, The Apache XML Project; http://xml.apache.org/
xalan-j/index.html.

[75] Xalan C++ Version 1.4, The Apache XML Project; http://xml.apache.org/xalan-c/
index.html.

[76] Jaxen, SourceForge.net; http://sourceforge.net/projects/jaxen/.

[77] MSXML 3.0, Microsoft Inc.; http://msdn.microsoft.com/xml/.

[78] M. Nic, J. Jirat, “XPath Tutorial,” ZVON; http://www.zvon.org/xxl/XPathTutorial/
General/examples.html, accessed March 2003.

[79] The Nexperia Platform, Philips Semiconductors; http://www.semiconductors.phil-
ips.com/platforms/nexperia/technology/index.html, accessed January 2003.

[80] The Open Multimedia Applications Platform (OMAP), Texas Instruments; http://
www.omap.com, accessed March 2003.

[81] The NiOS Embedded Processor, Altera; http://www.altera.com/products/devices/
nios/nio-index.html, accessed March 2003.

[82] The QuickMIPS Platform, Quicklogic Inc.; http://www.quicklogic.com/home.asp?
PageID=376&sMenuID=220, accessed March 2003.

[83] The Virtex-II Pro Platform FPGAs, Xilinx Inc.; http://www.xilinx.com/xlnx/
xil_prodcat_landingpage.jsp?title=Virtex-II+Pro+FPGAs, accessed March 2003.

[84] Avalon Bus Specification, Altera Inc., San Jose, CA, January 2002.

313

[85] CAN Specification Version 2.0, Robert Bosch GmbH, September 1991.

[86] FlexRay Requirements Specification, Version 2.0.2, FlexRay-Consortium, April
2000; http://www.flexray-group.com/.

[87] The I2C-Bus and How to Use It, Philips Semiconductors, 1995; http://www.semi-
conductors.philips.com/acrobat/ various/I2C_BUS_SPECIFICATION_1995.pdf.

[88] C. Zhang, F. Vahid, “A Power-Configurable Bus for Embedded Systems,” IEEE
International Symposium on Circuits and Systems, pp.V-809-812, May 2002.

[89] Universal Resource Identifier (URI) Specification, World Wide Web Consortium;
http://www.w3.org/Addressing/URL/URL_TOC.html, accessed March 2003.

[90] B. Foote, J. Yoder, “Metadata and Active Object-Models,” OOPSLA '98 MetaData
and Active Object-Model Workshop, Vancouver, Canada, October 1998; http://
www.laputan.org/metadata/metadata.html.

[91] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System Level Hardware/Software
Partitioning Based on Simulated Annealing and Tabu Search,” Design Automation
for Embedded Systems, pp. 5-32, 1997.

[92] M. S. Haworth and W. P. Birmingham, “Towards Optimal System-Level Design,”
Proceedings of the 30th Design Automation Conference, pp. 434-438, 1993.

[93] A. K. Majhi, L. M. Patnaik, and S. Raman, “A Generic Algorithm-Based Circuit
Partitioner for MCMs,” Microprocessing and Microprogramming, Vol. 41, pp. 83-
96, 1995.

[94] J. Teich, T. Blickle, and L. Thiele, “An Evolutionary Approach to System-Level
Synthesis,” Proceedings of the 5th International Workshop on Hardware/Software
Codesign, pp. 167-171, 1997.

[95] T. Tran, “OMAP5910 NTSC or VGA Output,” Texas Instruments’ DSP/EEE Cata-
log, OMAP Application Report SPRA847, June 2003; see http://www-s.ti.com/sc/
psheets/spra847/spra847.pdf.

[96] K. Sabbagh, Twenty-First Century Jet: The Making and Marketing of the Boeing
777, Scribner, New York, 1996.

314

[97] A. Ramirez, et.al., “ArgoUML User Manual, A Tutorial and Reference Description
of ArgoUML, Revision 0.10,” Open Publication License, May 2002; http://
argouml.tigris.org/documentation/defaulthtml/manual/.

[98] B. P. Douglass, Real-Time UML: Developing Efficient Objects for Embedded Sys-
tems, Second Edition, Addison-Wesley, Reading, MA, 1999.

[99] J. Warmer, and A. Kleppe, The Object Constraint Language: Precise Modeling
with UML, Addison-Wesley, 1998.

[100] MagicDraw™ 6.0, No Magic Inc.; http://www.magicdraw.com/, accessed August
2003.

[101] Poseidon for UML, Professional Edition 1.6 and Embedded Edition 1.6.1, Gentle-
ware AG, Hamburg, Germany; http://www.gentelware.com, accessed August 2003.

[102] Rational Rose™, IBM Inc.; http://www.rational.com, accessed August 2003.

[103] Rhapsody™ in C, C++ and Ada, I-Logix Inc., MA.; http://www.ilogix.com/prod-
ucts/rhapsody/index.cfm, accessed August 2003.

[104] Codagen Architect, Codagen Technologies Corp., Montreal, Canada; http://
www.codagen.com/products/architect/default.htm, accessed August 2003.

[105] Enterprise Architect Version 3.51, Sparx Systems, Australia; http://www.sparxsys-
tems.com.au/ea.htm, accessed August 2003.

[106] A. Moore, RT-Profile—A Quick Tour, Artisan Software Inc.; http://wwwbroy.infor-
matik.tu-muenchen.de/~rappl/RT%20Profile(new).pdf, last accessed August 2003.

[107] V. Madisetti, L. Shen, “Timing Interface Design in Core-based Systems,” IEEE
Design & Test of Computers, Vol 13, No. 4, October-December 1997.

[108] A. Burns, A. Wellings, Real-Time Systems and Programming Languages, Third
Edition, Addison-Wesley, 2001.

[109] A. Costello, C. Truta, CEXCEPT Exception Handling in C, Version 1.0.0, The
CEXCEPT Project, June, 2000; see http://cexcept.sourceforge.net/.

315

[110] P. Lee, “Exception Handling in C Programs,” Software—Practice and Experience,
Vol 13, No. 5, pp. 393-401, 1983.

[111] The Real-Time for Java™ Expert Group, The Real-Time Specification for Java™,
Version 1.0, Addison-Wesley, 2000; see also http://www.rtj.org/rtsj-V1.0.pdf.

[112] Draft Standard for VHDL Register Transfer Level (RTL) Synthesis, IEEE Standard
P1706.6/D6, IEEE Computer Society, May 2003; see http://vhdl.org/siwg/
66_D6X.PDF.

[113] D. J. Smith, HDL Chip Design, Doone Publications, AL, 1996.

[114] J. Bhasker, A VHDL Synthesis Primer, Star Galaxy Publishing, PA, 1996.

[115] J. Bhasker, Verilog HDL Synthesis, A Practical Primer, Star Galaxy Publishing,
PA, October 1998.

[116] D. Björklund, J. Lilius, “From UML Behavioral Descriptions to Efficient Synthe-
sizable VHDL,” In NORCHIP02, Copenhagen, Denmark; see http://
www.infa.abo.fi/~dbjorklu/publications/norchip02.pdf.

[117] W. McUmber, B. H. C. Cheng, “UML-Based Analysis of Embedded Systems
Using a Mapping to VHDL,” 4th IEEE High Assurance Software Engineering, pp.
56-63, November 1999.

[118] S. J. Mellor, L. Starr “A Method for Making UML Directly Executable,” EETIMES,
November 2002; see http://www.eetimes.com/design_library/esd/dt/OEG2002111
5S0045.

[119] G. Martin, “Coexistence in a Multilingual Design World,” EETIMES, June 2003; see
http://www.eedesign.com/silicon/OEG20030616S0064.

[120] F. Vahid, and T. Givargis, Embedded System Design: A Unified Hardware/Software
Introduction, John Wiley & Sons, October 2001.

[121] S. W. Grotta, “Anatomy of a Digital Camera,” ExtremeTech, June 2001; see http://
www.extremetech.com/article2/0,3973,15466,00.asp, accessed September 2003.

316

[122] S. W. Grotta, “Anatomy of a Digital Camera: Image Sensors,” ExtremeTech, June
2001; see http://www.extremetech.com/article2/0,3973,15465,00.asp, last accessed
September 2003.

[123] I. Graham, Object-Oriented Methods, Principles & Practice, Third Edition, Addi-
son-Wesley, 2001.

[124] R. Abbott, “Program Design By Informal English Descriptions,” Communications
of the ACM, Vol. 26, No. 11, pp. 882-894, 1983.

[125] R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing Object-Oriented Software,
Prentice Hall, 1990.

[126] Z. Chen, J. Cong, Y. Fan, X. Yang, Z. Zhang, “Pilot — A Platform-Based HW/SW
Synthesis System for FPSoC,” Workshop on Software Support for Reconfigurable
Systems, February 2003.

[127] C. Loeffler, A. Ligtenberg, G. Moschytz, “Practical Fast 1-D DCT Algorithms with
11 Multiplications,” Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing 1989 (ICASSP ‘89), pp. 988-991.

[128] W. Pennebaker, J. Mitchell, JPEG Still Image Data Compression Standard, Van
Nostrand Reinhold, 1993.

[129] A. Messac, M. Martinez, T. Simpson, “Effective Product Family Design Using
Physical Programming,” Engineering Optimization, Vol. 34, No. 3, 2002, pp. 245-
261.

[130] P. Clarke, “Gartner Trims 2003 Semiconductor Growth Forecast,” Semiconductor
Business News, EETIMES, May 2003; see http://www.eetimes.com/semi/news/
OEG20030520S0009.

[131] Functional Specification for SystemC 2.0, Open SystemC Initiative (OSCI), April
2002; see http://www.systemc.org.

[132] SystemC 2.0 User’s Guide, Open SystemC Initiative (OSCI), 2002; see http://
www.systemc.org.

[133] G. Martin, L. Lavagno, J. Louis-Guerin, "Embedded UML: a merger of real-time
UML and codesign ", CODES 2001, Copenhagen, April 2001, pp.23-28.

317

[134] B. Selic, G. Gullekson, P. Ward, Real-Time Object-Oriented Modeling, John Wiley
and Sons, New York, 1994.

[135] J. L. Diaz-Herrera, V. K. Madisetti, “Embedded Systems Product Lines,” Proceed-
ings of Software Product Lines, 22nd International Conference on Software Engi-
neerings, Limerick, Ireland, June 2000, pp. 129-136.

[136] J. Withey, “Investment Analysis of Software Assets for Product Lines,” CMU/SEI-
96-TR-010, Carnegie Mellon University, Pittsburgh, PA, 1996.

[137] J. L. Diaz-Herrera, J. C. Guzman, “Product Lines in the Context of Embedded Sys-
tems,” Proceedings of Software Product Lines, 23rd International Conference on
Software Engineerings, Toronto, Canada, May 2001, pp. 19-25.

[138] K. Van Rompaey, I. Bolsens, H. De Man, D. Verkest, “CoWare—A Design Envi-
ronment for Heterogenous Hardware/Software Systems,” Proceedings of the con-
ference on European design automation, Geneva, Switzerland, 1996, pp. 252-257.

