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manchili, and Bora Uçar, thank you for your advice, comments, and help in making this

dissertation possible.

To my friends, fellow Georgia Tech Ph.D. students, and labmates: thank you for count-

less wonderful discussions, fun distractions, and our amazing time together. You truly

made my time at GT enjoyable. I want to thank all my past and current labmates for all

the amazing time we spend together - may it be due to research, slacking off, long winded

discussions, or grabbing beers: Indranil Roy, Tony Pan, Rahul Nihalani, Chirag Jain, Ankit

Srivastava, Don Kushan Saminda ”Sammy” Wijeratne, Harsh Shrivastava, Nagakishore

Jammula, Neda Tavakoli, Shruti Shivakumar, and Haowen Zhang. Furthermore, I want to

thank former and current students GT from other groups who became great friends over

the years: Srinivas Eswar, Elias Khalil, Robert Chen, Lluis Munguia, Adam McLaughlin,

Mikhail ”Mike” Isaev, Lanssie Ma, and Marat Dukhan: thank you for all the fun times we

shared together! I also want to thank my former room mates and other Atlanta friends:

Arturo Santa Ruiz, Jason Fernando, Daniel Henderson, Nolan Wagener, Ashley Kunkle,

and Alireza Nazari: thank you for a fun many years and for being great friends!

Most of all, to Eileen Shi: thank you for your love and support, thank you for always

being there for me when I needed you and for supporting me through these many years,

thank you for sharing all your happiness and joy, thank you for all the fun adventures and

trips we took together - I love you.

To my early mentors, teachers, and partners in crime: Thank you so much for inspiring

curiosity, sharing a passion for learning, and many thanks for your guidance and useful

iii



advice. A special thank you to my early mentor Peter Karcher: I am so grateful that you

took me under your wing when I was still attending high school. Thank you for sharing

your knowledge and wisdom, and guiding me towards a path that lead to where I am today.

I would not be where I am today without you.

Last but not least, to my loving parents: thank you for your unconditional love and

support. Thank you for always supporting and encouraging my decisions, even if it meant

I would live far far away.

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1: Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Strings, Pattern Matching, and String Indexes . . . . . . . . . . . . . . . . 1

1.1.1 String Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 De Bruijn Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Parallel and Distributed Computing . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Shared-Memory and PRAM . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Distributed Memory . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Parallel Programming Model . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.5 Notions of Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Contributions and Overview . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2: Distributed Parallel Construction of Suffix Arrays . . . . . . . . . . 13

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Distributed Strings . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Parallel Suffix Array Construction . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Prefix Doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Prefix doubling using global sorting . . . . . . . . . . . . . . . . . 17

2.3.3 Avoiding global sorting . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 LCP construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Calculating the LCP . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 LCP construction during SA construction . . . . . . . . . . . . . . 28

2.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Systems and Data sets . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Performance of Our Algorithms . . . . . . . . . . . . . . . . . . . 32

2.5.3 Comparison with Prior State-of-the-art . . . . . . . . . . . . . . . . 34

2.5.4 Scalability and Large Problems . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3: Distributed Parallel Construction of Suffix Trees . . . . . . . . . . . 38

3.1 Related Work and Our Contributions . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Suffix Tree Construction . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 All-Nearest-Smaller-Values . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 All Nearest Smaller Values . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Definition and Notation . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



3.2.2 Generalized ANSV . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Our Distributed Memory ANSV Algorithm . . . . . . . . . . . . . 44

3.3 Parallel Suffix Tree Construction . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Systems and Data sets . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.3 Performance of ST Construction . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 4: Distributed Enhanced Suffix Arrays . . . . . . . . . . . . . . . . . . 66

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Sequential pattern search . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Suffix array search . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Enhanced suffix arrays . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Distributed Enhanced Suffix Arrays . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Forward-Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Distribution of Subtrees . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Distributed Querying . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Distributed Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Efficient Construction of Lc . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



4.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1 Sequential querying . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 Distributed Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.3 Construction of Lc . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 5: Distributed Parallel Connected Components Labeling of de-Bruijn
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Parallel SV Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 Hybrid Implementation using BFS . . . . . . . . . . . . . . . . . . 105

5.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6.1 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6.2 Hybrid Implementation Analysis . . . . . . . . . . . . . . . . . . . 111

5.6.3 Strong Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6.4 Performance Anatomy . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6.5 Comparison with Previous Work . . . . . . . . . . . . . . . . . . . 117

5.6.6 Comparison with Sequential Implementation . . . . . . . . . . . . 118

viii



5.6.7 Comparison with Shared-memory Implementations . . . . . . . . . 119

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 6: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

ix



LIST OF TABLES

2.1 Run-times of different methods in seconds. The numbers in parentheses
denote the number of threads or cores used. The times are for constructing
the suffix array for the first 2 billion nucleotides of the human genome (H
2G), the entire human genome (H 3G), and the pine genome (P 12G). The
character X denotes failure to execute due to running out of memory or not
supporting large inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Run-times for constructing the suffix array with (+LCP) and without the
LCP array for the human genome (H) and the pine genome (P). The run-
times are given in seconds for up to 1600 cores on 100 nodes. . . . . . . . . 36

3.1 Prior results reported for the human genome and our experimental runtimes
(bold). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Average runtime per query in µs for sequential locate/count of 1000 ran-
domly drawn, 20 character long patterns for different inputs of the 200MB
Pizza & Chili corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Summary of the notations used in Section 5.4 . . . . . . . . . . . . . . . . 97

5.2 List of the nine graphs and their sizes used for conducting experiments.
Edge between two vertices is counted once while reporting the graph sizes.
Largest component’s size is computed in terms of percentage of count of
edges in the largest component relative to complete graph. . . . . . . . . . 109

5.3 Kolmogorov Smirnov test values used to estimate the goodness of power
law curve fit to the degree distribution of each graph. BFS is executed if
K-S statistic value is less than 0.05. . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Timings for the largest graph M4 with increasing processor cores . . . . . . 117

5.5 Performance comparison against Rem’s sequential connectivity algorithm
[90, 91] using 1024 cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

x



LIST OF FIGURES

1.1 Suffix tree, Suffix Array, and LCP Array for the example input string S =
mississippi$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Relationship between suffix trees, suffix arrays, and LCP arrays: a subtree
starting at an internal node v with string-depth t and child nodes u0, u1, . . . , ud(v)−1. 5

3.1 Example for equal-range and FE left-matches lFE . . . . . . . . . . . . . . 44

3.2 Peak for Ti. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Peak representation for right matches for processor Pi. Ranges Iij and Mij

are represented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Suffix Tree structure and LCP for a subtree starting at an internal node v
with child nodes u0, u1, . . . , ud(v)−1. . . . . . . . . . . . . . . . . . . . . . 53

3.5 The two possible choices for the parent node for v. . . . . . . . . . . . . . 54

3.6 Cumulative runtime for constructing the Suffix (SA) and LCP Arrays via
[12] and subsequently the Suffix Tree (ST) for the human genome on up to
1024 cores on Cyence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Breakdown of the runtime for different sections of the Suffix Tree construc-
tion of the Pine genome on up to 100 nodes of Cyence. . . . . . . . . . . . 64

3.8 Strong scaling of the Suffix Tree construction of the Pine genome on up to
100 nodes of Cyence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Distribution of subtrees and Top-Level Index (TLI). . . . . . . . . . . . . . 75

4.2 Local work and total runtime as a function of the number of cores for ex-
ecution of bulk locate, conducting 32 million pattern searches on the
human genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



4.3 Relative speedup (strong scaling) of distributed querying on Edison 8-768
cores for 32 million queries on the human genome. The speedup is calcu-
lated with respect to the runtime using 8 cores on 8 nodes: T (8)

T (p)
. . . . . . . 87

4.4 Runtime of distributed DESA construction compared to constructing the Lc
array naively after construction of the suffix and LCP arrays. . . . . . . . . 88

5.1 Initialization of array A for a small connected component with three ver-
tices u, v1, v2 in our algorithm. Partitions are highlighted using different
shades. Desired solution, assuming v1 = min (u, v1, v2), shown on the
right will be to have all three vertices in a single component v1. Accord-
ingly, all the tuples associated with this component should contain the equal
partition id v1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Our parallel SV algorithm, presented using sequential semantics. . . . . . . 100

5.3 Role of the four sorting phases used in each iteration of the algorithm.
Using the first two sorts, partition p joins pmin. The next two sorts en-
able pointer-jumping as pmin joins minMi(pmin). The temporary tuple
〈pmin, , pmin〉tmp used in the algorithm simulates a link between the parti-
tion pmin and the vertex pmin to allow jumping. . . . . . . . . . . . . . . . 101

5.4 Hybrid approach using parallel BFS and SV algorithms to compute con-
nected components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Work load balance in terms of tuples per processes during each iteration of
the three algorithm variants for parallel SV algorithm. Illustrated are the
maximum, average, and minimum count of tuples on all the processes. The
experiments were conducted using the M1 graph and 256 processor cores.
Each edge is represented as 2 tuples internally in the algorithm. . . . . . . . 112

5.6 Performance gains due to load balancing for graphs M1-M3 using 256,
1024 processor cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 Evaluation of prediction heuristics in our algorithm . . . . . . . . . . . . . 115

5.8 Strong scalability results of our algorithm on different graphs using 4096
cores. Speedups are computed relative to the runtime on 256 cores. . . . . . 116

5.9 Percentage time spend in different stages by the algorithm for different
graphs using 2025 cores. BFS is executed only for graphs G1, G2, K1
and K2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xii



5.10 Performance comparison of our algorithm against the Multistep method
[75] using multiple graphs with 2025 cores. . . . . . . . . . . . . . . . . . 119

xiii



SUMMARY

Methods for processing and analyzing DNA and genomic data are built upon combi-

natorial graph and string algorithms. The advent of high-throughput DNA sequencing is

enabling the generation of billions of reads per experiment. Classical and sequential algo-

rithms can no longer deal with these growing data sizes - which for the last 10 years have

greatly out-paced advances in processor speeds. To process and analyze state-of-the-art

genomic data sets require the design of scalable and efficient parallel algorithms and the

use of large computing clusters.

Suffix arrays and trees are fundamental string data structures which lie at the founda-

tion of many string algorithms, with important applications in text processing, information

retrieval, and computational biology. Consequently, the parallel construction of these in-

dices is an actively studied problem. However, prior approaches lacked good worst-case

run-time guarantees and exhibit poor scaling and overall performance.

In this dissertation, we first introduce our distributed memory parallel algorithms for the

construction of suffix arrays and longest common prefix (LCP) arrays that simultaneously

achieve good worst-case run-time bounds and superior practical performance.

We then present a work-optimal distributed memory parallel algorithm for the construc-

tion of suffix trees. We formulate a generalized version of the All-Nearest-Smaller-Values

problem and provide an optimal distributed solution. We then show how this algorithm can

be used to construct the suffix tree of a string given its suffix and LCP arrays. In contrast

to the linear work performed by our algorithm, previous distributed memory algorithms

exhibit quadratic worst-case complexity. Our algorithm is a clear improvement over the

prior state-of-the-art, as it improves theoretical complexity and exhibits far better practical

performance.

Next, we introduce a novel distributed string index, the Distributed Enhanced Suffix

Array (DESA), which is based on the suffix and LCP arrays and adds additional data struc-

xiv



tures. The DESA is designed to allow efficient pattern search queries in distributed memory

while requiring at most O(n/p) memory per process. We present efficient distributed-

memory parallel algorithms for querying, as well as for the efficient construction of this

distributed index.

Finally, we present our work on distributed-memory algorithms for clustering de Bruijn

graphs and its application to solving a grand challenge metagenomic dataset.

xv



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Strings, Pattern Matching, and String Indexes

A String or Text S = s0s1 · · · sn−1 is a sequence of characters or symbols si. We denote

the string length as |S| = n. The string consists of characters from a shared alphabet Σ

with σ = |Σ| unique symbols. The string S doubles as an array, so that we can access any

character si by using array notation S[i] in constant time. For example, a genome can be

represented as a string with alphabet Σ = {a, t, c, g}.

Given a pattern string P = p0p1 . . . pm−1 of length m, we are interested in finding if

and where the string P occurs within a larger string S, where commonly n >> m. This

problem is referred to by multiple names, such as the String Matching, Pattern Matching,

or Substring Search problem. Well known algorithms such as the Rabin-Karp algorithm

[1], the Knuth-Morris-Pratt algorithm [2], or the Boyer-Moore algorithm [3] pre-process

the pattern string P and then linearly scan the larger string S for occurrences.

1.1.1 String Indexes

(Sub)string Indexes are data-structures created by pre-processing the string S, subsequently

allowing much faster pattern search.

Here, we distinguish between structured and unstructured texts. Natural language doc-

uments (such as written English) or source code are examples of structured texts, i.e., texts

that can be split into tokens or words. Such texts can be indexed using dictionaries, which

map each word to a location in a document. Unstructured texts such as DNA sequences

allow no division into disjoint words.

A string index for an unstructured texts needs to index all substrings of the given string

1



S. Examples of such string indexes include the k-mer index, suffix tree, suffix array, and

FM-index.

A k-mer is defined as a length k substring. The k-mers of a string S refer to all length

k substrings of S, i.e., the k prefixes of all suffixes of S. Often, k-mers are represented as

integers in the range 0 to |Σ|k − 1, and can thus be used as an index into a lookup table.

A k-mer Index is a string index which allows finding patterns of fixed size k in constant

time. k-mer indexes are most commonly implemented as hash tables, indexed by each k-

mer’s corresponding integer value. A clear disadvantage of k-mer indexes is that k is fixed,

and only patterns of length k can be queried. Depending on the representation of the k-mer

index, it may be possible to find shorter queries as well.

Suffix Trees and Suffix Arrays instead index every Suffix of the given string S, and allow

querying for any substring of S. The ith Suffix of S is defined as

Suf(i) := S[i..(n− 1)] = sisi+1 · · · sn−1,

i.e., the suffix of S starting at position i. For simplifying presentation and to break am-

biguity, an additional terminating character $ is often appended to the input string S =

s0s1 · · · sn−1$ (i.e., sn = $). By defining $ < c for all c ∈ Σ, the lexicographical ordering

of all suffixes becomes unique.

1.1.1 Suffix Trees

The Suffix Tree (ST) of a string S is a (compacted) trie of all the suffixes of S. The leafs of

the tree are the lexicographically sorted suffixes Suf(i) of S, represented by i - their offset

in S. Each edge in the tree is labeled by a substring of S, such that any root to leaf path

spells out the whole suffix corresponding to the leaf. Edges are compacted, such that each

internal node has at least two children, and no two outgoing edges can start with the same

character. Figure 1.1 shows the Suffix Tree for the string S = mississippi$ in blue.
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For a given string S of length n, its ST can be constructed in O(n) time [4]. The ST

allows searching for a pattern P in S inO(|P |) time (independent of n), as well as reporting

of all occurrences of P in additional time that is linear in the number of occurrences. Since

their invention in 1973, suffix trees have become the de facto data structure for the design of

numerous clever string algorithms, such as approximate pattern matching, identification of

longest common substrings, finding maximal suffix-prefix overlaps, data compression, and

many more [5]. While versatile and powerful, suffix trees have a large space requirement,

prompting the hunt for data structures with similar power but that are space-efficient.

1.1.1 Suffix arrays and LCP arrays

The Suffix Array (SA) of a string S is an array of length n containing the lexicographically

sorted order of all suffixes of S, and as such, compactly represents the leafs of a Suffix Tree.

Each suffix Si is represented by its starting position i, so that SA[j] = i, if and only if the

suffix Suf(i) has rank j among the lexicographically sorted suffixes.

The longest common prefix (lcp) of two strings is the maximum length for which the

prefixes of the two strings are identical. The Longest Common Prefix (LCP ) array is an

array of length n, which contains the lcp between each pair of consecutive suffixes as they

appear in the suffix array.

LCP [i] = lcp(Suf(SA[i− 1]), Suf(SA[i]))

The definition above is undefined for i = 0, hence we set the value for this position in the

LCP array to LCP [0] = 0. Figure 1.1 illustrates the concepts of the suffix array (in red)

and the LCP Array (in yellow) for the input string S = mississippi$.

Manber and Myers first introduced suffix arrays as a space-efficient alternative to suffix

trees [6], and showed how to use suffix arrays for exact pattern matching in O(|P | log n)

time, and when used in conjunction with the Longest Common Prefix (LCP) array in

O(|P |+ log n) time, i.e., at the additional cost of O(log n) compared to suffix trees. Man-
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Figure 1.1: Suffix tree, Suffix Array, and LCP Array for the example input string S =
mississippi$.

ber and Myers introduced an algorithm to construct suffix arrays along with LCP arrays in

O(n log n) time. Suffix arrays can also be constructed in linear time. Interestingly, direct

linear time algorithms that avoid suffix trees as an intermediary step were invented only

in 2003 [7, 8]. Puglisi et al. give a good survey of various approaches to construct suffix

arrays [9].

Suffix arrays are often used in conjunction with Longest Common Prefix (LCP) arrays.

The LCP array simply records the length of the longest common prefix between every pair

of consecutive suffixes in the suffix array. Abouelhoda et al. showed that suffix arrays

combined with LCP arrays, as well as a child table can support a majority of operations

supported by suffix trees [10]. The LCP array can be constructed either during the con-

struction of the suffix array [6, 7], or from a given suffix array in linear O(n) time [11].

Figure 1.2 illustrates the relationship between suffix trees, suffix arrays, and LCP ar-

rays. A subtree of the ST starting at node v corresponds to a range [l, r] of suffixes

SA[l], . . . , SA[r]. This subtree of string-depth t contains suffixes sharing a prefix of t

or more common characters, thus the LCP array in this range contains all values ≥ t and is
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Figure 1.2: Relationship between suffix trees, suffix arrays, and LCP arrays: a subtree
starting at an internal node v with string-depth t and child nodes u0, u1, . . . , ud(v)−1.

surrounded by values < t. The d children of v correspond to d intervals in the LCP array of

all values > t separated by d−1 positions where LCP [i] = t. In the context of (enhanced)

suffix arrays, each node v is represented as its [l, r] interval, and we refer to the children as

the child-intervals of the interval [l, r].

Much recent work on suffix arrays and trees is motivated by their ubiquitous presence

in computational biology applications. The advent of high-throughput DNA sequencing

is generating billions of short reads per experiment, necessitating the design of parallel

algorithms. While the human genome serves as a useful benchmark, particularly for the

purpose of comparison with prior state-of-the-art, current genomic datasets can reach sizes

that are a hundred times larger, for example in metagenomics. Hence, development of

space-efficient distributed memory algorithms are of considerable interest.

1.1.1 Generalized Suffix Arrays and Trees

Suffix arrays and trees can also be constructed for a collection of strings, and referred to as

generalized suffix arrays (GSA) and generalized suffix trees (GST). Further, we denote the

LCP array in this case as the generalized LCP (GLCP). In this case, the input is given as
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m strings Si with i ∈ {0, . . . ,m − 1}, each of length ni and with total combined length

n =
∑m−1

i=0 ni. We denote the jth suffix of string Si by Sufi(j).

Having multiple strings, suffixes may no longer be unique, i.e., two or more strings may

end in the same suffix. A common approach to define a unique deterministic ordering of

all suffixes is to append a unique terminating character $i to each string Si with $0 < $1 <

· · · < $m−1 and $i < c for all c ∈ Σ. Then, defining S as the concatenation of all strings

S = S0$0S1$1 · · ·Sm−1$m−s, the suffix array and LCP array of S yields the GSA and the

corresponding GLCP array for the collection of strings.

However, introducing m new characters to the alphabet is not practical, because mul-

tiple optimizations depend on constant alphabet size |Σ| = O(1), and the string represen-

tation uses at most one byte per character. Concatenating all strings and using the same

separating character $, which in practice is often the null character ’\0’, does not yield

the correct results. Consider two identical suffixes which are followed by strings sharing

a common prefix, then the LCP computed for these two will falsely include the number of

characters shared in the prefix of the strings following the two suffixes.

1.1.2 De Bruijn Graphs

A de-Bruijn graph of a string or a set of strings is defined as a graph where the set of

vertices are all unique k-mers of the strings. An edge connects two vertices ui and uj ,

iff the string or string set contain a k + 1 length substring Q for which Q[0 . . . k − 1] is

the k-mer corresponding to ui and Q[1 . . . k] is the k-mer corresponding to uj . De-Bruijn

graphs find heavy use in computational biology, for example in error correction, genome

assembly and scaffolding.

The assembly problem becomes highly compute and memory intensive as the size and

complexity of the data set increases. In the absence of errors, the size of the de Bruijn graph

is equivalent to the number of unique k-mers in the data set, thus is bounded by the number

of base pairs in the genome(s). For metagenomic datasets, however, the presence of large
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number of species substantially increases this bound. For these datasets, the de-Bruijn

graph has as much as 100s of billions of nodes.

1.2 Parallel and Distributed Computing

1.2.1 Shared-Memory and PRAM

A shared-memory parallel machine has p > 1 parallel processors that all share a common

main memory. Parallel algorithms for shared-memory machines may be expressed as con-

currently running threads or processes of execution, which can access the same memory

locations for sharing information required for parallel computing.

A Parallel Random Access Machine (PRAM) is an abstraction for a shared-memory par-

allel machine and a parallel extension for the RAM computing model used for complexity

analysis. In the PRAM setting, one considers to have p parallel processors, each of which

can access any location in a common shared memory in constant time.

1.2.2 Distributed Memory

In a distributed memory parallel machine processes generally do not share a common main

memory. Concurrently running processes may exchange information via the passing of

messages. Sharing information in this model is no longer possible in constant time. Ana-

lyzing distributed parallel algorithms thus considers the cost associated with the sending of

messages.

For analysis, a message of size m (often in bytes) is assumed to take time

τ + µm

where τ models the latency and µ models the bandwidth as µ ∼ 1
Bandwidth . The values for τ

and µ heavily depend on the given systems and network, and are thus left as variables during

the runtime analysis. The analysis is performed in O-notation. For example, a parallel
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reduction (sum) of n numbers with p processors has complexity O(n
p

+ (τ + µ) log p) in

this model assuming a Hypercube or fully connected network.

1.2.3 Parallel Programming Model

The distributed memory algorithms introduced in this thesis are implemented using the

Message Passing Interface (MPI) - a C/Fortran API for sending and receiving messages on

distributed computing systems. MPI implements many useful collective operations, e.g.,

for broadcasting, gathering, scattering, and all-to-all communication between all or a subset

of processors. We assume the reader is familiar with the definition of these operations.

1.2.4 Data Distribution

For most algorithms discussed in this thesis, all data including input, output, and working

data is distributed equally among p processors. Let A be a sequence (e.g., an array) A =

(a0, a1, . . . , an−1) of size n. We call a sequence A (equally) block distributed across the p

processors, if the following distribution of elements onto processors holds. If n is divisible

by p, then each processor contains exactly n
p

consecutive elements of the sequence, such

that processor i contains the subsequence Ai = (ain
p
, . . . , a(i+1)n

p
−1). Otherwise, let the

remainder of the division be r = n mod p 6= 0. In this case, the first r processors contain

dn
p
e consecutive elements each, and the remaining processors contain bn

p
c elements each.

We assume that n and p is known by each processor, along with its rank i among

processors with 0 ≤ i < p. Then, each processor i can independently calculate its global

index range as: [
ibn
p
c+ min(i, r), (i+ 1)bn

p
c+ min(i+ 1, r)

)
Conversely, for any element with global index 0 ≤ j < n, any processor can independently
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and in constant time determine the rank of the processor on which this element resides:

rankof(j) =


j

bn/pc+1
if j < (bn/pc+ 1)r

r + j−(bn/pc+1)r
bn/pc if j ≥ (bn/pc+ 1)r

For the sake of simplifying the presentation and without loss of generality, we assume

from here on that p equally divides n.

1.2.5 Notions of Scalability

Speedup and Efficiency are common metrics used to evaluate parallel algorithms, both the-

oretically and practically.

The (Absolute) Speedup of an algorithm with runtime T (n, p) for input size n and using

p processors is defined as

Speedup(n, p) =
Tseq(n)

T (n, p)

where Tseq(n) is the runtime of the best sequential algorithm or implementation. Speedup

can be analyzed theoretically in O-notation, as well as numerically computed from exper-

imental data. Relative Speedup is the speedup measured or derived by comparing against

the runtime with p = 1 processors for the same algorithm instead of comparing against the

best known sequential algorithm:

Relative-Speedup(n, p) =
T (n, 1)

T (n, p)

The Efficiency of a parallel algorithm is in turn defined as:

Efficiency(n, p) =
Speedup(n, p)

p

When analyzing these metrics of scalability, we distinguish between strong scaling,

which fixes the input size n and varies p, and weak scaling, which fixes the input size per
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processor (fixed n
p
).

We consider an algorithm or distributed data structure as memory scalable, if each

processor uses at most O(n
p
) memory. This allows scaling to arbitrarily large inputs by

increasing p, i.e., by adding more processors to the job or system.

1.3 Contributions and Overview

In this dissertation, we present distributed memory parallel algorithms for solving string

and graph problems stemming from applications in computational biology. Our algorithms

are designed to be able to scale to much larger problems compared to prior approaches, a

necessity motivated by the rapid increase in the sizes of genomic data sets.

The advent of high-throughput DNA sequencing is enabling the generation of billions

of reads per experiment. Classical and sequential algorithms can no longer deal with these

growing data sizes - which for the last 10 years have greatly out-paced advances in proces-

sor speeds. To process and analyze state-of-the-art genomic data sets require the design of

scalable and efficient parallel algorithms and the use of large computing clusters.

Suffix arrays and trees are fundamental string data structures which lie at the founda-

tion of many string algorithms, with important applications in text processing, information

retrieval, and computational biology. Conversely, the parallel construction of these indices

is an actively studied problem. However, prior approaches lack good worst-case run-time

guarantees and exhibit poor scaling and overall performance.

In order to be able to scale to very large inputs, our algorithms are designed so that

all data and data structures are fully distributed, requiring no more than O(n/p) memory

per processor - a key constraint that allows our algorithms to scale to arbitrarily large in-

puts given enough compute nodes. Surprisingly, most prior approaches do not follow this

constraint and require up to O(n) memory per node - a drastic limitation for scalability.

In Chapter 2, we present our work on distributed memory parallel construction of suf-

fix arrays and LCP arrays. Whereas prior approaches with best performance lack efficient
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worst-case guarantees and vice versa, our algorithms advance the state-of-the-art by simul-

taneously achieving both: good worst-case run-time bounds and superior practical perfor-

mance.

Next in Chapter 3, we present our generalized formulation and distributed algorithmic

solution for the All-Nearest-Smaller-Values (ANSV) problem, and its application to con-

structing suffix trees in parallel distributed memory. The resulting distributed suffix tree

construction algorithm is work optimal and a clear improvement of the state-of-the-art,

both in terms of its theoretical complexity and practical performance.

Then in Chapter 4, we introduce a novel distributed string index, the Distributed En-

hanced Suffix Array (DESA). This distributed data-structure allows efficient construction

and querying, all while requiring at most O(n/p) memory per process. We derive required

properties of the data structure, and provide efficient algorithms for querying, as well as for

the efficient construction of this distributed index.

Finally, in Chapter 5, we present our work on distributed-memory algorithms for finding

connected components in large graphs, and its application to clustering the de Bruijn graph

of a grand challenge metagenomic dataset.

The original work covered in this dissertation is published in the following papers:

• P. Flick and S. Aluru, “Parallel distributed memory construction of suffix and longest

common prefix arrays,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, ACM, 2015, p. 16

• P. Flick and S. Aluru, “Parallel construction of suffix trees and the all-nearest-smaller-

values problem,” in Parallel and Distributed Processing Symposium (IPDPS), 2017

IEEE International, IEEE, 2017, pp. 12–21

• P. Flick and S. Aluru, “Distributed enhanced suffix arrays: Efficient algorithms for

construction and querying,” in SPAA’19 (under review)

• P. Flick et al., “A Parallel Connectivity Algorithm for de Bruijn Graphs in Metage-
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nomic Applications,” in Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis, ACM, 2015, p. 15

• C. Jain et al., “An adaptive parallel algorithm for computing connected components,”

IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 9, pp. 2428–

2439, 2017

• P. Flick et al., “Reprint of a parallel connectivity algorithm for de bruijn graphs in

metagenomic applicationsi,” Parallel Computing, vol. 70, pp. 54–65, 2017
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CHAPTER 2

DISTRIBUTED PARALLEL CONSTRUCTION OF SUFFIX ARRAYS

Suffix arrays and trees are fundamental string data structures of importance to many ap-

plications in computational biology. Consequently, their parallel construction is an ac-

tively studied problem. Prior work algorithms with best practical performance lack effi-

cient worst-case run-time guarantees, and vice versa. In addition, much of the recent work

targeted low core count, shared memory parallelization.

In this chapter, we present parallel algorithms for distributed memory construction of

suffix arrays and longest common prefix (LCP) arrays that simultaneously achieve good

worst-case run-time bounds and superior practical performance. We published this work at

Supercomputing 2015 [12].

In contrast to most previous work, in our approach the input string, as well as all

working data, and the output are fully distributed into blocks of size O(n
p
) across the

p processors. Furthermore, our algorithm provides a worst case run-time guarantee of

O(Tsort(n, p) · log(n)) where Tsort(n, p) is the run-time of parallel sorting. Additionally,

our approach constructs the LCP array alongside the suffix array, also in a fully distributed

fashion.

We present several algorithm engineering techniques that improve performance in prac-

tice. We provide an efficient, scalable implementation of our algorithm, which constructs

the suffix and LCP arrays of the human genome in 7.3 seconds on 1024 Intel Xeon cores.

We reach speedups of over 110× compared to divsufsort [18], the fastest sequential suffix

array construction implementation, commonly used as comparison [19] [20].

The rest of this chapter is organized as follows: In Section 2.1, we review the prior

state of the art. In Section 2.2, we introduce further notation and relevant concepts that

will be used throughout the chapter. We then describe our suffix array and LCP array
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construction algorithms in Section 2.3 and Section 2.4, respectively. Section 2.5 contains

detailed experimental results, followed by conclusions in Section 2.6.

2.1 Related Work

There are multiple prior approaches for parallelizing suffix array construction. The Futamura-

Aluru-Kurtz (FAK) [21] algorithm was the first parallel, distributed memory suffix array

construction algorithm. In this algorithm, the authors first bucket suffixes according to a

w-length prefix, distribute buckets among processors, and then sort each bucket using se-

quential multi-key quicksort (MKQS) [22]. Drawbacks of this approach are the worst-case

run-time of O(n2), and the fact that the input string needs to be in-memory on each proces-

sor. A more recent work by Abdelhadi et al. [23] provides a MPI based implementation of

the FAK algorithm, adapted to cloud computing on AWS (Amazon Web Services).

Another parallel distributed memory algorithm pDC3 was introduced by Kulla and

Sanders [24]. This algorithm is based on the skew/DC3 linear time, recursive construc-

tion algorithm of Kärkkäinen and Sanders [7]. The implementation of pDC3 uses parallel

samplesort in each recursive step and thus ceases to be linear time. An additional drawback

of this approach is the additional memory consumption required by the recursive decom-

position of the string.

Some shared memory algorithms and implementations have been proposed. Homann

et al. [25] introduced the mkESA algorithm, which is a parallelized variant of the Deep-

Shallow algorithm of Manzini and Ferragina [26]. The authors of mkESA report a speedup

of less than 2 when using 16 threads. Mohamed and Abouelhoda [27] introduced a par-

allel bucket pointer refinement (pBPR) algorithm based on the algorithm of Schürmann

and Stoye [28]. According to the authors, their parallel shared memory implementation

beats mkESA. However, their results show poor scalability, as they reach a maximum rel-

ative speedup of less than 1.7 when using a maximum of 8 threads. Recently, Shun [20]

presented a parallel algorithm for constructing the LCP array given the suffix array and
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reported a runtime of 105.7 seconds for constructing both the suffix array and LCP array of

the human genome in shared memory.

Deo and Keely [29], and Osipov [19] developed shared memory GPU algorithms for

suffix array construction. Deo and Keely implemented and tuned a parallel variant of the

DC3 algorithm for GPUs and reached significant speedups of up to 35. Additionally, they

provided a parallel algorithm for constructing the LCP array, given the input string and

the suffix array [29]. Osipov follows a prefix-doubling approach similar to Larsson and

Sadakane [30] and provides an efficient GPU implementation. The author reports relative

speedups of up to 18 and absolute speedups of up to 6 compared to divsufsort [19]. Another

GPU implementation utilizing prefix-doubling is available in the Nvidia NVBIO library.

2.2 Preliminaries

For the definitions and notations for strings, string sets, Suffix Arrays (SA), and LCP arrays,

please refer to Section 1.1 of the Introduction Chapter.

In this Chapter, we describe the algorithms for the generalized case of multiple input

strings, i.e., the construction of the generalized suffix array. Note that the suffix array of a

single string is a special case here m = 1. Some steps of the algorithms simplify for the

case of a single string (m = 1), in which case we will note those changes in the algorithm

descriptions below.

2.2.1 Distributed Strings

In the case of a single string, we assume that the input string S of length n is block dis-

tributed across the p processors according to the characters S[j].

For the generalized case of indexing multiple strings, we define an additional data struc-

ture. In general, a collection of strings can be represented in a number of different ways.

For example, lines in a file, DNA reads in fasta/fastq format, strings in a database or table

format, in-memory as an array of pointers, and many more.
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For our distributed memory representation of a collection of strings S0, S1, . . . , Sm−1,

we index single characters by assuming all strings are concatenated without any separating

characters, and block distribute the working and output data according to this total size

n =
∑

j nj . Note, this representation is internal to our algorithm used for indexing, it is

not a hard requirement for the input file(s).

Additionally, we introduce an array L as the exclusive prefix sum over the string sizes:

L[i] =
∑i−1

j=0 nj , L[0] = 0. The array L is distributed across processors such that L[i] is

locally accessible to all processors which contain at least one character of string Si−1 or

Si according to the block distribution of concatenated string. This distribution of L allows

local lookup of the global starting and ending position, as well as length of a string Si. The

jth character of the ith string is then located at global index L[i] + j.

We define SufS(i) as the suffix which starts at global position iwithin the concatenated

string S, i.e., it is the suffix Sufk(j) of string Sk where i = L[k] + j, j > 0 and k is

the maximum for which this holds. Note, if there is a single input string m = 1, then

SufS(i) = Suf0(i).

2.3 Parallel Suffix Array Construction

2.3.1 Prefix Doubling

Our approach is motivated by Prefix Doubling, which was first introduced by Karp et

al. [31], and then first utilized by Manber and Myers [6] for suffix array construction.

The idea behind prefix doubling is as follows.

Given that the suffixes of a string are already sorted by their h-prefix (i.e., a h-ordering

of suffixes), we can deduce their 2h-ordering. Consider any two suffixes with identical

h-prefix, say Suf(i) and Suf(j). The ordering of these two suffixes according to their

2h-prefix can be deduced by using the current relative ordering of suffixes Suf(i+ h) and

Suf(j + h), which are already sorted according to their h-prefix. Applying this prefix

doubling to all suffixes of an h-ordering then yields the 2h-ordering. Since the longest
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suffix has size n, all suffixes will be sorted after at most log2(n) iterations.

Manber and Myers (MM) [6] algorithm induces the 2h-ordering from the h-ordering

with a single linear scan of the current Suffix Array SA. During the scan, MM accesses

the Inverse Suffix Array (ISA) in a random access fashion, with no locality. In MM, the

SA has to be scanned in linear order, since this is a necessary condition for the correct

placement of suffixes to the front of their respective h-groups. These two properties make

MM both cache-inefficient and hard to parallelize in a straightforward fashion, especially

targeting a distributed memory architecture. Larsson and Sadakane (LS) [30] instead use

ternary split quicksort (TSQS) to create the 2h-ordering from a h-ordering. They sort each

h-group separately using ISA[i+ h] as the key for each suffix Suf(i) in the h-group. The

ISA saves the h-group rank during the construction process. Accesses to the ISA follow

a random, non-local order.

Our prefix doubling algorithm follows a similar approach to LS, as in that we use sorting

to induce a 2h-ordering from a h-ordering. In the following, we introduce two approaches

to suffix sorting by prefix doubling. The first approach (Algorithm PSAC-GS) uses global

sorting in each iteration in order to induce the 2h-ordering. The parallelization of this

approach reduces to parallel sorting and other common parallel primitives. The second ap-

proach (Algorithm PSAC-NS) improves upon the first by avoiding global sorts, and sorting

only non-singleton h-groups, leading to large improvements in run-time.

2.3.2 Prefix doubling using global sorting

Our algorithm for suffix array construction using global sorting PSAC-GS follows the high

level steps as shown in Algorithm 1. In this section, we explain what each step accom-

plishes and how it is parallelized. We parallelize our algorithms using MPI. Most steps of

the algorithm map to common parallel primitives such as parallel sorting, all-to-all,

all-reduce, scan, and exscan.

We keep the following invariants at the beginning of each iteration. The suffix array
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ALGORITHM 1: PSAC-GS (construct SA via global sorting)
Input: strings S0, S1, . . . , Sm−1
Output: (Generalized) Suffix Array SA and inverse suffix array ISA

1 B = k-mers of strings Sj
2
[
. . . ,

( B[i]
SA[i]

)
, . . .

]
= sort([

(
B[i]
i

)
|i = 0 . . . n− 1])

3 B = rebucket(B) // assign h-group ranks
4 for h = k, 2k, 4k, 8k, . . . do
5 // reorder to string order
6 for i = 0, . . . , n− 1 do
7 B′[SA[i]] = B[i]
8 end
9 B = B′

10 if done then
11 ISA = B
12 break
13 end
14 // shift B by h for each string Si
15 B2 = array(n, 0) // array initialized to 0
16 for j = 0, . . . ,m− 1 do
17 for i = L[j] + h, . . . , L[j + 1]− 1 do
18 B2[i− h] = B[i]
19 end
20 end
21 // sort tuples lexicographically

22

. . . ,
 B[i]

B2[i]
SA[i]

 , . . .

 = sort([

 B[i]
B2[i]
i

 |i = 0 . . . n− 1])

23 B = rebucket(B,B2) // assign 2h-group rank
24 done = check-all-singleton(B)

25 end

SA represents the suffixes, sorted according to their h-prefix. The B array is laid out in

the same order as the suffix array SA, and each position i in B contains an identifier for

the h-group of suffix Suf()SSA[i]. We represent each h-group by its leftmost element.

We set B[i] = i + 1 for the first position i of the h-group and B[j] = i + 1 for all further

elements j > i of the same h-group. We denote the values in B as h-group ranks of the

corresponding suffixes. Note that the index into B is 0-based, whereas the h-group ranks

start with 1. We reserve rank 0 for use during the doubling stage to represent the rank of

string positions past the last character, essentially implementing the $ terminating character.
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Example We show an example of this algorithm in Figure 2.1 for a single input string

S =mississippi. The example illustrates the data dependencies and movements for

the different steps of the algorithm using gray arrows.

k-mer sorting In the first step of the algorithm we generate the k-mers of each string Si.

These are the length k prefixes of all suffixes of Si. We map the alphabet Σ to integers

1, . . . , σ, and use the integer 0 as a fill character for the last k − 1 suffixes of each string

Si, i.e., those which do not have k characters. We choose k according to the alphabet size,

such that all k characters of a k-mer fit into a single machine word. Let W be the bit-length

of the machine word (e.g. 32 or 64). We then chose k as:

k =

⌊
W

dlog2(σ + 1)e

⌋

The k-mers of a string can be generated in linear time by a simple scan through the

characters of the string and by using shift and bit operations. Note, this is the only time

during the suffix array construction during which we read the input string(s). The input can

be read in parallel by equally splitting the input file(s). Then, each processor i sends the first

k − 1 characters to its left neighboring processor (rank i− 1,) and can then independently

generate all k-mers for it’s allocated input.

We store the k-mers of all strings Si into an array B, and then sort them lexicograph-

ically using parallel sorting. To keep track of each k-mer’s original position, we treat the

k-mer and its string index as a tuple 〈k-mer, i〉. After sorting these tuples, the second

elements of the tuples yields the SA according to a k-ordering.

Re-bucketing After sorting the k-mers, we need to assign the k-group ranks to each po-

sition in B. Since each k-group consists of identical k-mers, it appears in a contiguous

block in B. Thus, we can assign the new k-group ranks using a simple linear scan through

all positions i of B. If two k-mers are identical and end in a 0 character, then they repre-
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sent identical suffixes coming from different strings. Since we sorted the 〈k-mer, i〉 tuples

lexicographically, they are already in the correct ordering with respect to each other and

we assign distinct k-group ranks. Note, in the single string case suffixes are unique, and it

suffices to sort by the k-mer value.

The re-bucketing within the main loop follows the same procedure, but here we check

for new 2h-groups, which begin whenever either (1) B[i− 1] = B[i] ∧ B2[i− 1] 6= B2[i],

or (2) B[i − 1] = B[i] ∧ B2[i − 1] = B2[i] = 0. In the second case, the two suffixes are

identical but from different strings.

When solving this in parallel, an h-group might span across multiple processors and

finding the beginning of an h-group requires communication. To solve this efficiently, we

perform two passes over the data. In the first pass, we identify each position i which is the

first of its h-group, i.e., those for which either (1) B[i − 1] 6= B[i] ∨ B2[i − 1] 6= B2[i] or

(2) B[i− 1] = B[i]∧B2[i− 1] = B2[i] = 0. We set these elements to B[i]← i+ 1, while

setting all other elements of the same h-group to 0. We then perform a prefix-scan with the

max operation as the combination operator. The result of this operation is that B[i] = i+ 1

only for the first element of each h-group and B[j] = i + 1 for all j ≥ i within the same

h-group. Hence, this operation re-establishes the invariant for B.

Reorder to string order For prefix doubling of each string position i, we need to pair up

the current h-group rank for each suffix Sufj(i) with the h-group rank of suffix Sufj(i+h).

To efficiently pair these ranks, we reorder the h-group ranks available inB from the current

suffix array ordering into the ordering according to the string indexes, yielding the ISA

with h-group ranks.

For each position B[i] in the h-ordered sorted order, we know it’s corresponding orig-

inal string position due to the array SA. Thus, the reordering of B to string order can be

performed by permuting B according to the indexes in SA. Sequentially, this can be done

by a simple linear scan. If all h-groups are singletons, the reordered B is equal to the final
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Figure 2.1: Example of suffix array construction by global sorting for the input string
S =mississippi$ and k = 1.
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ISA.

In the parallel setting, we perform this reordering in three steps. First, the elements are

bucketed according to the target processor to which they will be sent. Then an all-to-all

collective communication is used to exchange the buckets between processors. Finally, the

ISA order is achieved locally by reassigning elements by their SA index.

Shifting by h In order to perform prefix doubling of each suffix Sufj(i), we need to pair

the h-group rank of Sufj(i) with Sufj(i + h). In the reordered B array, these are now

simply accessible at the respective positions B[L[j] + i] and B[L[j] + i + h]. To combine

these two ranks locally, we define an array B2 and fill it as shown in Algorithm 1. This

accomplishes that B2[i] will be equal to B[i + h] if the suffix at i + h is from the same

string as the one at i, and otherwise B2[i] = 0.

For each string, this operation can be seen as a left-shift of values in B by an offset h.

To perform this in the parallel, distributed memory setting, each processor identifies its at

most two string which span across other processors, and sends the corresponding values in

B to the left, and receives values from the right. Since the B array is evenly distributed,

each processor sends data to at most two other processors, and receives from at most two

processors.

In the case of a single input string, this reduces to a simple global left shift of the

distributed array B.

Doubling via sorting To induce the 2h-ordering, we interpret each position i of the dis-

tributed arrays B and B2 as a tuples of size three 〈B[i], B2[i], i〉 and sort these tuples lex-

icographically. After sorting, the third tuple position represents the SA in a 2h-ordering.

We can now re-assign 2h-group ranks using the re-bucketing procedure explained above.

There are many different approaches for sorting on parallel distributed memory archi-

tectures. Blelloch et al. [32] give a good review. We implement parallel sample sort with

regular sampling in our implementation.
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Termination The algorithm terminates if all h-groups are singletons. We check for this

condition during the re-bucketing step. To do so, we keep track if B[i − 1] 6= B[i] is true

for all positions i after the re-bucketing. In case the ISA is needed alongside the SA, we

perform a final reordering prior to terminating the loop. Termination is necessarily reached

after at most log2(n) iterations.

2.3.2 Complexity

The overall complexity of Algorithm PSAC-GS isO(Tsort(n, p)·log(n)), since the doubling

approach requires at mostO(log n) iterations and sorting is the most expensive operation in

each iteration. For samplesort with regular sampling, the sorting complexity isO(n
p

log n
p

+

µn
p

+ τ log(p)).

2.3.3 Avoiding global sorting

For many real world inputs, a significant fraction of h-groups will be fully resolved (be-

come singletons) after only a few iterations. Sorting all positions in each iteration thereafter

thus becomes unnecessary overhead. Further prefix doubling needs to be performed only

for non-singleton h-groups. For each global position i within such an h-group, we require

the current h-group rank for the suffix starting at SA[i] + h. When considering the array

B in the same order as the SA, this information is not simply accessible and may be local-

ized on any processor. We thus use the ISA to represent this information. For any string

position i, ISA[i] contains the current h-group rank of the corresponding suffix. After

termination, this is equivalent to the rank of the suffix and thus the complete ISA.

Our second approach, PSAC-NS (see Algorithm 2), improves upon PSAC-GS. Algo-

rithm PSAC-GS is used for the initial k-mer sorting, and for the first few iterations of prefix

doubling, as long as the number of elements in non-singleton h-groups is less than some

predefined fraction of n. We then switch to PSAC-NS, which takes partially solved SA,

B and ISA arrays as input. We assume that all three arrays, ISA, SA, and B are already
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ALGORITHM 2: PSAC-NS
Input: partially solved SA, ISA and B, resolved up to prefix length h
Input: each processor contains n

p contiguous elements of each array
Output: suffix array SA and inverse suffix array ISA

1 // let r be the processors rank
2 // we use i as a global index into the distributed arrays
3 // keep track of all non-singleton h-groups

4 W =
[
i ∈ {rnp . . . r(

n
p + 1)− 1} | B[i] 6= i+ 1 or B[i+ 1] = i+ 1

]
5 while h ≤ n do
6 // request the group rank needed for doubling

7 M ←
[(
SA[i]+h

i

)
|i ∈W

]
8 M ← all-to-all(M,dest = rankof(SA[i] + h))
9 // send responses (read from ISA)

10 M ←
[(
ISA[i]
j

)
|
(
i
j

)
∈M

]
11 M ← all-to-all(M,dest = rankof(j))
12 // sort each unresolved h-group by using the keys returned in M
13 Wnew = ∅
14 for each non-singleton h-group G in W do
15 // the h-group G is a contiguous section of SA and B
16 sort(G by the ISA returned in M )
17 rebucket(elements of G)
18 // keep track of non-singletons 2h-groups
19 Wnew =Wnew ∪ [i ∈ G | B[i] = i+ 1 and B[i+ 1] 6= i+ 1]

20 end
21 // update the ISA

22 M ←
[(SA[i]

B[i]

)
|i ∈W

]
23 M ← all-to-all(M,dest = rankof(SA[i]))

24 for
(
i
b

)
∈M do ISA[i] = b

25 // update W and check for convergence
26 W =Wnew

27 if W = ∅ then break
28 end

equally distributed among all processors using a block distribution.

Determine non-singleton h-groups The first step of this algorithm is to determine all

non-singleton h-groups in theB array. We do so by using a local property ofB. A position i

is part of a non-singleton h-group if eitherB[i] 6= i+1 (this element is not the representative

of its h-group) orB[i+1] = B[i] (the next element is in the same h-group). We can perform

this check in a single linear scan. Each processor needs to send its first local element of
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B to the previous processor on the left, such that each processor can compare B[i] with

B[i + 1] for its last local element i. We keep track of the indexes of all non-singleton

elements in an additional distributed array W (see Algorithm 2).

Prefix Doubling Consider any non-singleton h-groupGwith global indexes [g, g+1, . . . , g+

|G| − 1], thus starting on processor rankof(g). In order to further resolve this bucket, we

need to apply prefix doubling to the items of this h-group. For an element i ∈ G of this

h-group, i.e., suffix SufS(SA[i]), we need the corresponding h-group rank for the suffix

starting at SA[i] + h if this suffix is part of the same string. If the position SA[i] + h

is a suffix for another string, then the doubling happens with rank value 0. The required

information is available on processor rankof(SA[i] + h) via ISA[SA[i] + h] and the L

array.

We execute these doubling queries in a parallel bulk-query fashion: we generate an

arrayM of query tuples 〈SA[i]+h, i〉 for each non-singleton position i. Then we exchange

all tuples by bucketing the tuples by their target processor rankof(SA[i] + h) and then

using an all-to-all communication.

On the target processor, for each query j = SA[i]+h we check whether the suffix j−h

belongs to the same string via L. If it does, we replace the first tuple element by the ISA

value: ISA[j], otherwise, we set the first tuple element to 0. This corresponds to the B2[i]

value of PSAC-GS. In order to efficiently query the L array, we first sort the tuples by their

first element SA[i]+h. Then we can process the array of query tuplesM by a simple linear

scan of both M and L. Note, in the simple case of m = 1, this step simplifies to simply

accessing ISA[SA[i] + h], in which case there is no need for sorting queries.

Next the messages are returned to their origin using another all-to-all communi-

cation. We can now pair each received value with its SA position using the second tuple

element.
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Bucket sorting The next step consists of sorting each non-singleton h-group using the

received B2 values as keys. Since a h-group might span more than one processor, we first

sort all buckets which are local to the processor. Then we sort the remaining h-groups

(at most two per processor) using up to two parallel steps. In each step, each processor

participates in a parallel sort either with its left, right, or both neighboring processors. The

sorting induces the 2h-ordering of the suffix array. Next, we re-bucket each h-group into

their new corresponding 2h-group ranks. Simultaneously we create a newWnew containing

only those indexes from W which remain non-singleton.

Update ISA As a final step in each iteration, we need to update the ISA with the newly

determined 2h-group ranks for all updated values in B. To do so, we reuse the M array,

and fill it with tuples 〈SA[i], B[i]〉 for each i ∈ W . All messages are exchanged in yet

another round of all-to-all communication, where each tuple is sent to the processor

containing the global index SA[i]. The receiving processor can then update its local ISA

according to ISA[SA[i]] = B[i].

Memory Consumption Algorithm PSAC-NS has a higher memory consumption than

PSAC-GS due to the additional W and M arrays needed to keep track of the non-singleton

positions and the messages. We switch from PSAC-GS to PSAC-NS only when the number

of remaining non-singleton elements falls below εn, where ε < 1 is a tuning parameter. For

example, ε can be set such that the additional memory consumption for W and M remains

less than n additional bytes.

Influence of Alphabet Size The size of the alphabet σ = |Σ| is relevant only in the

initial k-mer sorting stage. Afterwards, all values are in the form of indexes, each requiring

O(log n) bits independent of σ. The chosen value of k depends on the alphabet size, since

we are packing as many characters as possible into a single machine word (i.e., the k-mer),

prior to sorting. As such, a smaller alphabet means that more characters can be sorted in
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the initial stage and thus more iterations can be skipped. However, σ does not influence the

overall worst-case complexity.

2.4 LCP construction

2.4.1 Calculating the LCP

Manber and Myers [6] first introduced the construction of the Longest-Common-Prefix

(LCP) array alongside the suffix array. Our approach follows a similar strategy and makes

use of observations from [6] in order to construct the LCP in parallel during the parallel

SA construction. The key observation is that whenever new 2h-groups are formed from a

single h-group, the LCP value for the first position of each 2h-group can be determined.

When the initial 1-groups are formed, the LCP array can be set to a value of 0 for each

first position of the 1-groups, i.e., all positions where S[SA[i − 1]] 6= S[SA[i]]. All other

positions in the LCP array are initialized to∞.

During the construction of the LCP array, we keep the invariant that after each prefix

doubling step from h→ 2h, all LCP values with LCP [i] < 2h are set to their final value.

Take two suffixes from any, but different, h-groups, say at positions i and j in the SA

then lcp(SufS(SA[i]), SufS(SA[j])) < h. Furthermore, the lcp is given by the minimum

value of the LCP array within the range between the two h-groups [6]. Since we represent

h-groups inside the B array by the index of their first element, the lcp between these two

suffixes is given by:

lcp(Suf(SA[i]), Suf(SA[j])) = min
q∈[bmin,bmax)

LCP [q]

where bmin = min(B[i], B[j]) and bmax = max(B[i], B[j]).

Now, consider any prefix doubling step from h→ 2h. The suffixes of a single h-group

all share an identical h prefix, and two such suffixes of different but adjacent 2h-groups

B[i] and B[j] (i < j) do not have a common prefix of length 2h. Thus these suffixes must
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have a lcp with: h ≤ lcp < 2h.

Let the two suffixes be SufS(SA[i]) = Sufu(i
′) with SA[i] = L[u]+i′ and SufS(SA[j]) =

Sufv(j
′) with SA[j] = L[v]+j′. If either i′+h ≥ nu or j′+h ≥ nv, then the lcp of the two

suffixes has to be ≤ h, however, since the two suffixes were also part of the same h-group,

their lcp is equal to h. Note, that in this case at least one of B2[i] = 0 or B2[j] = 0. If

otherwise both i′ + h < nu and j′ + h < nv, we can determine the lcp between the two

2h-groups as:

lcp(SufS(SA[i]), SufS(SA[j]))

= h+ lcp(SufS(SA[i] + h), SufS(SA[j] + h))

Since lcp(Suf(SA[i] + h), Suf(SA[j] + h)) < h, we can use the above invariant and

property to calculate the LCP directly. Furthermore, we have the h-group ranks for the

suffixes SufS(SA[i]+h) and SufS(SA[j]+h) available locally during the prefix doubling

step as B2[i] and B2[j] respectively.

We can thus calculate the LCP value for new 2h-group boundaries via:

LCP [B[j]]←


h if B2[i] = 0 or B2[j] = 0

h+ min
q∈Rij

LCP [q] otherwise

where the minimum is over the rangeRij of indexes betweenmin(B2[i], B2[j]) andmax(B2[i], B2[j]).

2.4.2 LCP construction during SA construction

2.4.2 LCP of k-mers

We incorporate the LCP construction into our prefix doubling approach. Initially, our

approach sorts by k-mers, and as such, 1-groups are never present (unless k = 1). Thus,

the LCP array has to be initialized from the sorted order of k-mers. We linearly scan the
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sorted k-mers and determine positions where new k-groups begin. A new k-group begins

when either two consecutive k-mers are different, or if they are identical but end in the 0

character. Since the k characters of a k-mer are stored contiguously in a single machine

word, we can determine the lcp between two k-groups using bitwise comparisons. We do

so efficiently, by using bitwise xor and or operations, as well as intrinsics to determine

the highest/lowest set bit. To perform this operation in parallel, each processor i requires

the last k-mer of the previous processor i − 1. Thus, each processor simply sends its last

k-mer to the next processor, and all other processing can then be performed locally.

2.4.2 Doubling

During the prefix doubling procedure, we have to determine the minimum over ranges of

the LCP for each new 2h-group boundary. Manber and Myers [6] use a size n search tree.

We implement the succinct Range-Minimum-Query (RMQ) from Fisher and Heun [33] for

this purpose. The RMQ requires only 2n+o(n) additional bits, is constructed inO(n) time,

and querying for the minimum of a range takes constant time O(1).

For this, we need to solve multiple (one for each new 2h-group) Range-Minimum-

Queries, where the range might span across multiple processors. We propose the following,

hierarchical method for bulk-parallel RMQs.

2.4.2 Bulk-parallel Range-Minimum-Queries

Each processor first constructs the RMQ for the local LCP array of size O(n
p
). Then

each processor determines its local minimum, and sends it to all other processors using a

collective all-gather operation. We then create a RMQ of the processor minimas on

each processor.

In order to solve a minimum query for a range [a, b] (a < b), we first need to determine

the processors on which a and b are located. Given an equal block decomposition with n
p

elements per processor, the corresponding processors are pa = ba p
n
c and pb = bb p

n
c. We
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distinguish between three cases:

(a) pa = pb : In this case the query can be answered by a single processor. We thus send a

message (i, a, b) to processor pa, where i is the global position which generated this

query. This field is used as a return address.

(b) pa + 1 = pb : In this case, we need to send queries to two processors. We send (i, a, (pa+

1)n
p
− 1) to processor pa and (i, pb

n
p
, b) to processor pb. In order to find the total min-

imum, the minimum of the two answers is used.

(c) pa + 1 < pb : In this case the query spans across more than two processors. Here, we

send the same queries as in case (b). However, we need to combine the answers

to these queries with the minimum of the intermediate processors. We thus use the

RMQ of processor minimums to get the minimum over the range [pa + 1, pb − 1] in

constant time. Taking the minimum of this and the received minimums yields the

overall minimum of the requested range.

Instead of sending single messages, we first generate all tuples locally and then ex-

change messages using a single all-to-all collective communication. Each processor

then executes all received queries and replaces the entries (i, a, b) by the minimum position

and minimum value in the range. Each query tuple is updated with the results as:

(i, min
j∈[a,b]

LCP [j], argminj∈[a,b]LCP [j])

A final collective all-to-all returns the results to those processors which posted the

queries, i.e., the processor containing global index i.

Complexity We construct the local RMQs in each iteration of the prefix doubling. This

takes O(n
p

+ p) time, since there are n
p

local elements. Adding this to each iteration of

the suffix array construction algorithm does not change its total complexity. The number
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of total queries is bound by positions in the LCP , since each LCP position gets set only

once. Thus there can be at most O(n) queries throughout the construction, each taking

constant time. Overall, the complexity of suffix array construction dominates the LCP

construction.

Memory Consumption If the LCP array is computed along the suffix array, an additional

4n bytes are required for the LCP array itself. During the LCP construction, additionally

2n+o(n) bits are needed for the succinct range-minimum-query, in addition to the memory

for the packed message exchange. The number of these messages depends on the number

of new bucket boundaries in each iteration and could potentially reach 3 × 4n = 12n

bytes total in the worst case. However, note that the 12n bytes receive-buffer required

by the SA construction is needed only temporarily during the update of the SA, whereas

the LCP update happens after the buffer memory is already freed. Thus the total memory

consumption for constructing the LCP increases the total memory consumption by no more

than the 4n bytes required for the LCP plus 2n+o(n) bits, which is just insignificantly more

than the memory required for storing the LCP array itself.

2.5 Experiments and Results

2.5.1 Systems and Data sets

We implemented our suffix array and LCP array construction algorithms using C++11

and MPI. Our code is compiled with MVAPICH2 v 1.7 and gcc 4.8 using the opti-

mization flags -O3 -march=native. We perform our experiments on an Intel Xeon

Infiniband cluster. Each node consists of two 2.0 GHz 8-Core Intel E5 2650 processors

and 128 GB main memory. The nodes are interconnected with QDR (40Gbit) InfiniBand.

For the experimental evaluation, we use up to 100 identical nodes, corresponding to 1600

cores. All reported run times are averaged over multiple executions.

Since our work is motivated by biological applications, we evaluate the performance

31



0
1 

G
2 

G
3 

G

N
on

−
si

ng
le

to
n 

el
em

en
ts

0 5 10 15

0
1

2
3

4
5

6

Runtime per Iteration for Human Genome (k=1)

Iteration

R
un

tim
e 

pe
r 

ite
ra

tio
n 

[s
]

Number Non−singleton elements
Runtime Algorithm 1
Runtime Algorithm 2

0
1 

G
2 

G
3 

G

N
on

−
si

ng
le

to
n 

el
em

en
ts

●

●

●
● ● ● ● ● ● ● ● ● ●

0 2 4 6 8 10 12

0
1

2
3

4
5

6

Runtime per Iteration for Human Genome (k=21)

Iteration

R
un

tim
e 

pe
r 

ite
ra

tio
n 

[s
] ●

Number Non−singleton elements
Runtime Algorithm 1+2

Figure 2.2: Run-time of each iteration of Algorithm 1 and Algorithm 2 and the number
of non-singleton elements in each iteration. The left graph shows the run-time for both
algorithms, given that the first sorting is performed on k-mers with k = 1. The right graph
shows the time per iteration for our combined algorithm, which first sorts pairs of k-mers
with k = 21, and then switches to Algorithm 2. Timing results are for the human genome
on 1024 cores (64 nodes).

of our algorithm on the human (H.sapiens) genome. The human genome has a size of

approximately 3 billion nucleotides with an alphabet size of 4 (A, C, T, and G). We use

the reference genome from the 1000 Genomes Project [34] version GRCh37. Additionally,

we show performance results for the much larger pine (Picea abies) genome, which has a

length of over 12 billion nucleotides. We use the P.abies assembly version 1.0 published

by Nystedt et al. [35].

2.5.2 Performance of Our Algorithms

We introduced two methods for parallel suffix array construction. The first (Algorithm 1)

performs global sorting in each iteration, whereas Algorithm 2 improves upon the first

algorithm by continuing to sort only non-singleton elements. Figure 2.2 shows why this is

of significant advantage. Both graphs show the run-time spent in each individual iteration

for constructing the suffix array of the human genome on 1024 cores. Additionally, we

show how many non-singleton elements are left in each iteration. For the left Figure, we

initially sort suffixes only by their first character, i.e., k = 1. Thus, suffixes are sorted

by their prefix of size 2i after iteration i. Initially, Algorithm 2 is more than a factor of 2
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Figure 2.3: Run-time composition for suffix array and LCP construction of the human
genome using up to 1600 cores (100 nodes).

slower than Algorithm 1 due to its additional overhead involved in identifying and avoiding

unnecessary sorting of singleton elements. However, since the number of non-singleton

elements decreases drastically after iteration i = 5, the approach taken by Algorithm 2 is

far superior in later iterations.

This observation motivated us to design a combined approach: Only a single iteration

of Algorithm 1, which sorts pairs of k-mers for k = 21, is required until less than 1
10

th of

elements are non-singletons. Hence, Algorithm 2 is used for all subsequent iterations. The

second graph in Figure 2.2 shows the run-time per iteration for the combined approach. The

first iteration (≈ 3.2 seconds) is the most expensive step of the full suffix array construction,

which completes after a total of 5.3 seconds.

Figure 2.3 shows the time spent in each part of the algorithm, including the additional

time needed for the construction of the LCP array. This composition of the total run-time is

shown for different numbers of cores, up to 1600 (100 nodes). The initial sorting of tuples

and the consecutive reordering of elements from the SA to the ISA ordering is the largest

fraction of the total run-time. The optional LCP construction increases the total cost by at

most 30% of the time required for construction of the suffix array.
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2.5.3 Comparison with Prior State-of-the-art

We compare our algorithm and implementation against multiple other methods. The di-

vsufsort suffix array implementation [18] serves as the sequential comparison, since it is

open source and is known as one of the fastest and lightweight suffix array construction

implementations. Furthermore, we run the shared-memory parallel suffix array and LCP

construction tool mkESA [25]. Additionally, we directly compare our implementation with

the FAK implementation cloudSACA by Abdelhadi et al. [23]. We ran all aforementioned

suffix array construction algorithms on the same hardware described earlier, thus allowing

direct comparison. Due to the non-availability of code from other implementations [24,

36, 37, 38], we could not directly compare with their performance. However, all of these

approaches report run-times many times larger than ours.

Method H 2G H 3G P 12G
divsufsort 424.5 586.4 X
mkESA (1) 586.6 1,123.0 X
mkESA (4) 462.6 759.0 X
cloudSACA (128) 40.6 X X
Our method (128) 16.3 22.1 142.6
Our method (1600) 3.5 4.8 14.8

Table 2.1: Run-times of different methods in seconds. The numbers in parentheses denote
the number of threads or cores used. The times are for constructing the suffix array for the
first 2 billion nucleotides of the human genome (H 2G), the entire human genome (H 3G),
and the pine genome (P 12G). The character X denotes failure to execute due to running
out of memory or not supporting large inputs.

In Table 2.1, we show the measured run-times of divsufsort, mkESA, cloudSACA, and

our approach. The MPI-based cloudSACA implementation of the FAK algorithm fails for

inputs larger than 2GB, which is due to a limitation in the algorithm and implementation.

The algorithm requires the input string to be available in memory of every process and

thus cannot scale to inputs larger than main memory. The cloudSACA implementation fails

for inputs larger than 2GB, since it tries to send the complete input string to all processes

using an MPI Scatter operation. In order to compare the performance of our algorithm
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Figure 2.4: Speedup achieved by our suffix array construction algorithm and the FAK im-
plementation of Abdelhadi [23]. Speedup is calculated with respect to the sequential algo-
rithm and implementation divsufsort. Results are for the human genome. The (2G) denotes
that the input is limited to only the first 2 billion nucleotides of the human genome.

with this approach, we use the first 2GB of the human genome as an additional input case.

cloudSACA reaches a speedup of a little over 10× when using 128 processes (see also

Figure 2.4). In our experiments cloudSACA crashed for any number of processes ≥ 256.

The mkESA tool displays only limited scalability, since it allows only a maximum of 4

threads, and when using this many threads, the improvement in run-time remains limited.

Even when using all 4 threads mkESA still remains slower than the sequential divsufsort.

All these methods fail for the pine genome due to its much larger size. The sequential

program divsufsort runs out of memory, and mkESA shows an error that it can not build

indexes for this input size, whereas cloudSACA is limited to 2GB of input as explained

above.

Figure 2.4 shows the speedup of our algorithm and cloudSACA for constructing the

suffix array for the first 2 billion nucleotides of the human genome. We calculate the

speedup based on the sequential run-time of divsufsort. Additionally, we plot the speedup
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Cores H H (+LCP) P P (+LCP)
128 22.1 28.6 107.1 142.6
256 13.4 17.5 59.3 79.2
512 8.4 11.0 34.2 43.8

1024 5.4 7.3 19.8 25.9
1600 4.8 6.5 14.8 20.2

Table 2.2: Run-times for constructing the suffix array with (+LCP) and without the LCP
array for the human genome (H) and the pine genome (P). The run-times are given in
seconds for up to 1600 cores on 100 nodes.

of our method for the full human genome. Our method reaches speedups of over 110×

when using 1024 cores. As such, our algorithm outperforms cloudSACA by a large margin.

2.5.4 Scalability and Large Problems

Our approach scales to well above 1024 cores and can handle large genomes. Table 2.2

shows the run-times for constructing the suffix array with or without the LCP array for

both the human genome and the pine genome. Construction of the suffix array for the

human genome takes 4.8 seconds without and 6.5 seconds with the LCP array on 100

nodes. For the pine genome our algorithm runs in 14.8 seconds and in 20.2 seconds when

the LCP array is constructed alongside. Going from 1024 to 1600 cores yields only a small

improvement in run-time for the human genome, due to its already small local size. For

1024 cores, the local input for each process is a mere 3 MB. For the larger pine genome,

however, we observe better scalability from 1024 to 1600 cores.

2.6 Conclusions

In this chapter, we introduced new parallel distributed memory suffix array and LCP array

construction algorithms that scale to large inputs and a large number of nodes and cores.

Our implementation reaches speedups of above 110× over divsufsort, one of the fastest

known sequential implementations. Our implementation indexes the full human genome in

less than 8 seconds, many times faster than any previously reported run times. Additionally,
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our method scales to larger inputs than any previous published results, and indexes a large

12 billion nucleotide plant genome in less than 15 seconds.
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CHAPTER 3

DISTRIBUTED PARALLEL CONSTRUCTION OF SUFFIX TREES

A Suffix tree is a fundamental and versatile string data structure that is frequently used

in important application areas such as text processing, information retrieval, and compu-

tational biology. Sequentially, the construction of suffix trees takes linear time, and opti-

mal parallel algorithms exist only for the PRAM model. Recent works mostly target low

core-count shared-memory implementations but achieve suboptimal complexity, and prior

distributed-memory parallel algorithms have quadratic worst-case complexity.

In this chapter, we present a novel, efficient distributed memory algorithm for con-

structing the suffix tree for a string given its suffix array and LCP array, an approach that

has been used for PRAM and shared memory, but not for distributed memory.

To do so, we introduce a novel generalization of the All-Nearest-Smaller-Values (ANSV)

problem and give an optimal algorithm to solve this problem in distributed memory, min-

imizing overall communication volume. Combining this with the work of the previous

Chapter on constructing suffix and LCP arrays from a string [12] results in a parallel al-

gorithm for constructing suffix tree from a given input string. Compared to previous dis-

tributed memory algorithms for suffix tree construction, this yields superior theoretical

complexity as well as practical performance. We demonstrate the construction of the suffix

tree for the human genome given its suffix and LCP arrays in under 2 seconds on 1024 Intel

Xeon cores. We published this work at IPDPS 2017 [13].

Given a sequence of values, solving the All-Nearest-Smaller-Values (ANSV) problem

requires finding for each element the first smaller element to the left (or right). A number of

problems can be reduced to the ANSV problem, including merging of two sorted sequences,

monotone polygon triangulation, Cartesian tree construction, and parenthesis matching [39,

40]. Thus, while we present our parallel algorithm for the ANSV problem to facilitate
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construction of suffix trees, it is a problem worth studying in its own right and our algorithm

can be used in these and many other applications.

3.1 Related Work and Our Contributions

3.1.1 Suffix Tree Construction

Previous methods for constructing suffix trees in parallel are abundant, but focus mostly

on the PRAM and shared memory architectures. Apostolico et al. [41] showed how to

construct suffix trees in O(log n) time and using O(n1+ε) space on a n processor CRCW

PRAM. Hariharan [42] introduced the first work-optimal CRCW PRAM algorithm for con-

stant sized alphabets. While these PRAM methods are of theoretical importance and un-

ravel novel techniques for reasoning on strings, to our knowledge no practical implemen-

tations exist nor seam feasible.

Constructing the suffix tree of a string from its suffix array and LCP array became viable

with the advent of fast, linear work suffix array construction algorithms [8, 7]. Kärkkäinen

and Sanders [7] first showed how to construct suffix arrays with O(n log n) work and in

O(log2 n) time on a n processor EREW PRAM.

Iliopoulos and Rytter [43] introduced the first parallel CREW PRAM algorithm for con-

structing the suffix tree for a string from its suffix and LCP arrays. Their algorithm works in

linear O(n) space and O(log n) time using n processors, resulting in O(n log n) work. Re-

cent work by Shun and Blelloch [44] improved upon this result and provided a linear work,

linear space, and O(log2 n) time EREW PRAM algorithm for constructing cartesian trees

utilizing a previous result for binary tree merging from Hagerup and Rüb [45]. The authors

however implement a simpler, non-optimal algorithm for their experiments which requires

at least O(n log n) work, but show good performance on the human genome, for which

they construct the suffix tree in 168 seconds on 40 cores of a shared memory machine.

To date, algorithms for constructing suffix trees for distributed memory have failed to

provide any reasonable complexity guarantees, while also leaving much room for improve-
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ment in both practical performance and scalability.

Ghoting and Makarychev introduced the (WaveFront) algorithm for constructing suffix

trees in parallel on distributed memory systems, as well as an algorithm for the External-

Memory (EM) model [36]. Their algorithm scans the input string S of length n up to

O(n/k) times and extends the suffix tree by O(k) characters in each of these iterations,

where k is a fixed block size dependent on the size of the memory available on each node.

Each processor works on an assigned subtree of the suffix tree, but still requires reading

the whole input up to O(n/k) times. Hence, the parallel algorithm has a quadratic worst-

cast time complexity. In their experiments, the authors illustrate the performance of their

algorithm by constructing the suffix tree of the human genome in 15 minutes on a 1024

processor IBM Blue Gene/L.

Following a similar principle to WaveFront, the Elastic-Range (ERA) algorithm, intro-

duced by Mansour et. al, improves upon its predecessor [37]. ERA uses a dynamic block

size, rather than a fixed k, but retains the quadratic worst-case run-time. The authors re-

port a large improvement in runtime: 13.7 minutes on only 32 cores for the whole human

genome.

Comin and Farreras [38] claim to improve upon ERA and WaveFront with their algo-

rithm Parallel Continuous Flow (PCF). Their algorithm is closely based on its predecessors

and shares its quadratic time complexity. For building the suffix tree of the human genome,

the authors report a runtime of 7 minutes on 172 cores, an improvement of at most 2 times,

while using more than 5 times the number of cores compared to its predecessor.

3.1.2 All-Nearest-Smaller-Values

Berkman et al. [39] showed how to solve the ANSV problem optimally inO(log log n) time

usingO(n/ log log n) processors on CRCW PRAM, and inO(log n) time usingO(n/ log n)

processors on the weaker CREW PRAM model. Based on Berkman’s algorithm, Jájá and

Ryu (JR) [46] demonstrated how to solve the ANSV problem on a pipelined hypercube
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architecture in O(n
p
) time using up to p ≤ n/(log3 n log log n) processors.

Later, Kravets and Plaxton (KP) [47] introduced an O(log n) time algorithm for an

n input, n processor normal hypercube, and proved its optimality by showing that any

hypercube algorithm requires Ω(n) processors to solve the problem inO(log n) time. Their

algorithm, however, is only of theoretical importance, as it uses a large number of calls to

sub-routines, each of which involves routing data across the hypercube.

He and Huang (HH) [40] presented a BSP (Bulk Synchronous Parallel) adaptation of

Berkman’s algorithm and give experimental results for their MPI based implementation.

They show that the communication phase of their algorithm is a (n
p

+ p)-relation. As such,

this algorithm is closest to the algorithm we introduce in this work. However, our algorithm

has multiple advantages over HH, which will be discussed in detail later.

Both He and Huang’s, and Jájá and Ryu’s algorithms are closely based on the com-

munication structure first introduced and proven to be correct by Berkman et al. These

algorithms all assume that all elements in the input are distinct. When used on sequences

where some values appear more than once, they do not return the correct results. A simple

transformation of the sequence can eliminate duplicates by replacing each element ai by a

pair containing its value and index (ai, i), and then comparing elements lexicographically.

However, this does not yield the expected results to the original problem instance.

3.1.3 Our Contributions

Previous parallel ANSV algorithms [39, 40, 46], including HH, all follow the same commu-

nication structure and use the same set of proofs from Berkman et al. [39]. We introduce a

generalized formulation of the ANSV problem, which handles duplicate values in user spec-

ified ways, and generalizes the communication structure, provides novel proofs, and allows

optimizing and minimizing total communication volume. Furthermore, our formulation

identifies left and right matches simultaneously, whereas the HH algorithm is formulated

to find right matches only. Our algorithm has a worst case of O(n
p

+ p) both in terms of
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computation complexity and communication volume.

Our parallel suffix tree algorithm improves significantly upon previous distributed mem-

ory algorithms both in theory and practice. It runs in O(n
p

+p) time, which is work-optimal

for p = O(
√
n). All prior algorithms suffer fromO(n2/p) worst-case complexity, although

their practical performance is better than quadratic. We illustrate the performance of our

algorithm on the human genome, for which we construct the suffix tree in less than 2 sec-

onds on 1024 cores given its suffix and LCP arrays. Combined with the results from the

previous chapter [12], this yields a suffix tree construction in overall time of less than 10

seconds.

3.2 All Nearest Smaller Values

3.2.1 Definition and Notation

The All Nearest Smaller Values (ANSV) problem is defined as follows: LetA = (a0, a1, . . . , an−1)

be a sequence of n elements from a totally ordered set. For each element ai, find the index

of the closest elements to the left and right which are smaller than ai:

l(ai) = max
j<i
{j | aj < ai} (3.1)

r(ai) = min
j>i
{j | aj < ai} (3.2)

We call l(ai) the left match, and r(ai) the right match for element ai. For convenience,

we will simply denote these indexes by l(i) and r(i) instead of l(ai) and r(ai), respectively.

If an element ai does not have a left match we define l(i) = ⊥, where ⊥ can be any

special value that is not a valid index in {0, . . . , n − 1}. Similarly, we define r(i) = ⊥ if

the element ai does not have a right match in A.
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3.2.2 Generalized ANSV

We are interested in solving the ANSV problem directly, even if the input values are not

all unique. We specify three different ways of handling duplicate values by redefining the

meaning of a left (respectively, right) match. In the following, we give three variants for

finding left matches. The definitions apply similarly for right matches.

1. Nearest-Smaller (NS): lNS(ai) = maxj<i{j | aj < ai}

2. Nearest-Nonlarger (NN): lNN(ai) = maxj<i{j | aj ≤ ai}

3. Nearest-Nonlarger-Furthest-Equal (FE): lFE(ai) =

minj<i {j | (aj = ak) ∧ (k = lNN(ai)) ∧ (j > lNS(ak))}

The definition of Nearest-Smaller (NS) is equivalent to the original ANSV formula-

tion, and the Nearest-Nonlarger (NN) is a slight variant thereof, where we are interested in

finding the nearest non-larger (rather than strictly smaller) element to the left (or right).

The Nearest-Nonlarger-Furthest-Equal (FE) variant may seem unintuitive at first, how-

ever, we will show how this version allows us to construct multiway Cartesian trees, as well

as suffix trees. To illustrate the usefulness of FE, we first define the equal-range for an el-

ement: two elements ai and aj with equal value belong to the same equal-range (er), iff no

element in between ai and aj is smaller:

er(ai) = {j | (aj = ai) ∧ ∀i ≤ k ≤ j : ak ≥ ai}

When used for multiway Cartesian tree or Suffix tree construction, each element in

an equal-range corresponds to the same node in the tree. The FE variant, contrary to the

other two, defines a unique representative element for each equal-range. For left matches,

this is the leftmost element in the equal-range, whereas it is the rightmost element of the

equal-range for right matches. Hence, we call this element the furthest of its equal-range.
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Figure 3.1: Example for equal-range and FE left-matches lFE .

Whereas the NS and NN formulations always return the nearest element, the FE element

returns the unique representative for the matching equal-range. Furthermore, if an element

is not the representative for its equal range, the FE variant returns the representative as its

match.

Example Figure 3.1 illustrates the concepts of FE and equal-range. Here, we show the

equal range for elements of value 2, which contains indices 1, 4, and 6. Note that value

2 at index 9 does not belong to the same equal range, because it is separated by a smaller

value 1 at index 7. The arrows visualize the FE left-matches for those items which have

matches in this sequence. The match for value 5 at index 5 is the representative item of the

equal-range, in this case the 2 at position 1.

For suffix tree construction, the FE variant has the advantage that it allows us to skip

an otherwise required merging step. We show how we can solve this generalized ANSV

problem with respect to any combination of the variants for left and right matches, and

solve the matches for both sides simultaneously.

3.2.3 Our Distributed Memory ANSV Algorithm

Given an input sequence (a0, a1, . . . , an−1) of size n, our algorithm assumes that the input

sequence is block distributed across the p processors with n
p

elements per processor. For

simplicity and without loss of generality, assume n is divisible by p. Otherwise, if the

remainder r = n mod p 6= 0, the first r processors contain dn
p
e elements each, and the

remaining processors contain bn
p
c elements each. Assuming from here on that n is divisible
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by p, processor i contains the sub-sequence Ai = (ain
p
, . . . , a(i+1)n

p
−1).

3.2.3 Overview of the algorithm

For many elements in Ai, their nearest smaller values can be found within Ai, i.e., on the

processor itself. For the remaining elements, we define a representative sequence Ti, and

solve the distributed problem on this much smaller sequence. To do so, each processor

determines for each element in Ti, which processor contains the element’s missing left

or right match. We then communicate segments of the sequences Ti between processors,

in such a way that all missing matches can be solved in parallel. In this step, a missing

match for an element in Ti may be solved either locally using values received from other

processors, or solved on another processor Pj . In the latter case, the result will be returned

to Pi in an additional communication step.

3.2.3 Representative sequences

The sequence Ti on processor i consists of tuples (val, lidx, ridx), each representing the

extent of an equal-range for a value val, extending from global indexes lidx to ridx, where

both A[lidx] = A[ridx] = val are the outermost occurrences of elements in its equal-

range. For a tuple t in Ti, we write tval to represent the value, as well as tlidx and tridx to

represent the left and right indexes.

To construct the representative sequence Ti, each processor Pi solves the ANSV prob-

lem on its local sequence Ai and identifies those elements which do not have a left or right

match. The equal-range for each such element will be represented as a tuple in Ti. This rep-

resentative sequence contains tuples in the same order as their respective elements appear

in Ai and each equal range is represented only once.

When searching for the nearest-smaller (NS) or nearest-nonlarger (NN) value, matches

found in the local sequence Ai are also the correct matches with respect to the global

sequence A, since the matches found in Ai are necessarily nearer than any elements on
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other processors. Solving the distributed problem with regards to elements represented in

Ti is thus sufficient. However, for the FE variant a match found in Ai might not be the

furthest of its corresponding equal-range. The truly furthest element in this equal-range

might be on another processor. In this case, the solution to the representative problem will

be used to solve the original problem during a post-processing step.

Let mi = min{aj ∈ Ai} be the minimum value in Ai, and let TMi be the tuple repre-

senting its equal-range. Any element ak > mi without a left match in Ai must come before

the leftmost occurrence of mi, since otherwise this leftmost mi would be a valid left match

for ak. Similarly, any element without a right match must come after the rightmost occur-

rence of mi. We can thus represent the sequence Ti as a concatenation of three sequences

Ti = TLi ‖ TMi ‖ TRi, where TLi contains the tuples for elements without left matches

and TRi those for elements without right-matches. For the example from Figure 3.1,

Ti = [


3

0

0

 ,


2

1

6


︸ ︷︷ ︸

TLi

,


1

7

7


︸ ︷︷ ︸
TMi

,


2

9

9


︸ ︷︷ ︸
TRi

]

Lemma 3.2.1. The sequence Ti is bitonic, where TLi is strictly decreasing and TRi is

strictly increasing with respect to their values.

Proof. Assume this is not true for TLi. Then there exists a tuple tj in TLi such that

tvalj−1 < tvalj . If so, tvalj−1 is a valid left match for tvalj , and tj cannot be in TLi. A similar
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argument proves this property for TRi.

Due to this bitonic nature, Ti can be represented as illustrated in Figure 3.2. We rep-

resent the minimum mi as the topmost element. Larger elements are shown towards the

bottom. Hence, the decreasing sequence TLi is represented as a rising line starting from

the largest element without a left match and ending in the minimum mi. The sequences

Ti across all processors i can thus be represented as a series of such peaks as shown in

Figure 3.3.

3.2.3 Remote matches

The following properties are stated with respect to right matches, but hold true symmetri-

cally for left matches as well.

Lemma 3.2.2. Let ak ∈ Ai be any element without a right match in Ai, but which does

have a right match in the global sequence A, i.e., r(k) 6= ⊥. Then ak’s right match is

represented in Tj for some processor j > i.

Proof. As ak does not have a right match in Ai but has a match in A, its right match ar(k)

must be in Aj for processor j > i. By the definition of the right match, there cannot be any

element smaller than ar(k) between ak and ar(k). Therefore, there cannot be any element

in Aj both to the left of and smaller than ar(k). Consider the equal-range for ar(k). The

leftmost element in this equal-range does not have a left match in Aj for any of the variants

NS, NN, and FE, and thus is included in TLj in all three cases. The match r(k) for ak is

then either the leftmost (NS, NN) or rightmost (FE) element in ar(k)’s equal-range. Due to

how we defined the tuples inside TLj , both these indexes are saved inside TLj .

3.2.3 Communication Ranges

For each processor Pj to the right of Pi (i < j), we define multiple ranges in Ti, namely

Iij , Mij and Lij . Each of these ranges can be represented by a starting and ending index
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with respect to the sequence Ti. Symmetrically, Pj will compute ranges Iji, Mji, and Lji

for every processor to its left. We assume that every processor knows the minimum mj of

every other processor.

The ranges are computed in such a way that matches for Iij and Iji can be fully solved

on either Pi or Pj . This allows us to choose freely whether to send Iij from Pi to Pj or Iji

from Pj to Pi, and thus allows to optimize communication volume or other metrics such as

local workload.

The ranges Mij and Lij contain at most 2 tuples each. Unlike Iij , these are not solved

remotely, but instead are always communicated both ways, i.e., Mji and Lji will always

be available on Pi. We show how these ranges are computed in Algorithm 3. Next we

formally define these ranges and prove some required properties.

In-range Iij We define the in-range Iij for i with respect to j as the range of tuples in

TRi for which the right match must be in Tj on processor Pj . We distinguish between two

cases:

Case j = i+ 1: The in-range Iij contains all tuples t in TRi for which max(mi,mj) <

tval.

Case j > i+ 1: The in-range Iij contains all tuples t in TRi for which: max(mi,mj) <

tval < min{ml | i < l < j}

Since TRi and TLi are monotonic sequences with respect to their value, the ranges defined

above are contiguous within Ti.

We similarly define the in-range for left matches, such that for each pair of processors i

and j, Iij and Iji are defined symmetrically with respect to Ti and Tj . Figure 3.3 illustrates

the concepts of in-ranges Iij and boundary ranges Mij , which are defined next.

Mij The range Mij contains possible left matches for tuples in Iji which have smaller

value that those in Iij . Specifically, we define Mij as the range of at most two tuples from
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TMi ∪ TRi, starting with the tuple for which tval = max(mi,mj), and ending with the

next smaller one if mi is the smaller of the two.

ALGORITHM 3: Matching ranges
Input: Sequence Ti on each processor Pi, and array of all processor minimums

[m0,m1, . . . ,mp−1]
Output: Ranges Iij , Mij and Lij for all right processors j > i.

1 upper ←∞, LB ← ∅
2 for j = i+ 1, . . . , p− 1 do
3 if mj < upper then
4 // determine in-range
5 Iij ← range of tuples t with max(mi,mj) < tval < upper
6 Lij ← LB

7 Mij ← range of tuples tval = max(mi,mj) and next smaller
8 LB ←Mij

9 upper ← mj

10 else
11 Iij ← ∅, Mij ← ∅
12 Lij ← LB

13 end
14 end

Algorithm 3 illustrates how to compute the ranges Iij , Mij , and Lij for all right pro-

cesses j > i. To compute these ranges for processes left of i, we follow a symmetric

protocol by starting the for loop at j = i− 1 and iterating backwards till j = 0. The range

Lij computed inside the algorithm is equal to a range Mik, where k is a processor between

i and j, namely the one for which mk is the minimum for all processors between i and j.

49



Matches for tuples in Iij Each tuple in the range Iij has its right match on processor j

in either Iji or in Mji, and symmetrically each tuple in Iji has its left match on processor i

in either Iij or Mij . We prove this property for NS and NN matches. For FE the match is

no smaller than the values in Mji (Mij), however, the furthest element of that value might

be on a later processor q > j. In this case the match is in Lqi.

Proof. Take any tuple t in the in-range Iij . By definition, its value is smaller than the

minimums of all processors between i and j, thus its match cannot be on these processors.

Due to the symmetric upper bound on the values in Iij and Iji, the right-match for t cannot

be to the left of the first, leftmost tuple in Iji. Furthermore, tval is larger than both mi and

mj , and thus larger than any value inMij . Therefore, a valid right match for twhen looking

for the nearest-smaller (NS) or nearest-nonlarger (NN) must be in either Iji or Mji. There

is one notable exception to this when looking for the nearest-nonlarger-furthest-equal (FE)

right match for t: whenmin(Mij) = mj and the right match for t has valuemj . In this case

the global equal-range for mj might end on another processor Pq with q > j and mq ≤ mj .

The valid match will then be in Mqj . There cannot be any processors between Pi and Pq

with a minimum< mq, since otherwise t could not have a match on Pq. Hence, Lqi = Mqj ,

and t’s match will be available on Pi as well as Pj .

Now that we know how to find matches for the in-ranges, we are left with finding

matches to those tuples not contained in any in-ranges, i.e., those elements equal to the

processor minimums. For any processor j > i, this is the tuple in TRi either with value mj

or the overall minimum mi. In the first case, the match will be either mj (NN), or in Lqi

for a processor q > j, whereas in the second case, the right match will be in Lqi for some

q ≥ j.

3.2.3 The Algorithm

Algorithm 4 shows the high level steps of the resulting algorithm. First, we solve the ANSV

problem locally for the sub-sequence Ai, and create the representative sequence Ti. This
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ALGORITHM 4: Generalized parallel ANSV
Input: Sequence Ai on each processor Pi, left type, right type ∈ {NS,NN,FE}
Output: Left and Right matches Lleft type, Rright type

1 // solve ANSV locally for Ai and return sequence Ti
2 Ti = (TLi,mi, TRi)← local ansv unmatched(Ai)
3 [m0,m1, . . . ,mp−1]← allgather(mi)
4 // get the ranges for all j with Algorithm 3
5 [. . . , Iij ,Mij , Lij , . . .]← get ranges(Ti, [m0,m1, . . . ,mp−1])
6 // all-to-all exchange tuples in ranges Lij and Mij

7 Lrecv = [L0i, . . . , L(p−1)i]← alltoall([Li0, . . . , Li(p−1)])

8 Mrecv = [M0i, . . . ,M(p−1)i]← alltoall([Mi0, . . . ,Mi(p−1)])

9 // communicate in-ranges
10 Irecv[I0i, . . . , I(p−1)i]← send in ranges([Ii0, . . . , Ii(p−1)])

11 // serially solve local sequences and received in-ranges
12 Ti, Irecv ← ansv merge(Ti, Irecv,Mrecv, Lrecv)
13 // return solutions to received in-ranges
14 return in ranges(Irecv)

step can easily be done in linear O(n
p
) time using a stack based approach. Next, we use

allgather to collect the minimumsmi from all processors. Then we can determine the begin

and end indexes for all ranges in Ti: Iij , Mij , Lij by using Algorithm 3 both for left and

right matches. This is done with a simple linear scan of TRi and TLi, and thus possible

in O(n
p

+ p) time. Once the ranges are determined, we send all tuples which fall into M

or L ranges to their target processor using all-to-all collective communications. This

takes O(p) time, since each processor sends and receives at most O(p) tuples in this step.

Next, we send and receive the in-ranges in a collective step the procedure for which is

described in more detail below. The received elements are utilized for solving the matches

for Ti, as well as the matches in received in-ranges Iji. Solving these matches can be

done with a linear time merge-like operations, since both Ti and the received in-ranges are

either strictly increasing or decreasing. As a final step, we return the solutions for received

in-ranges to their original processors.

Communication of in-ranges The matches for elements in the ranges Iij on Pi and Iji

on Pj can be solved on either Pi or Pj . If we naively send all elements in Iij to Pj and
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Iji to Pi, a single processor could be required to receive O(n) elements in the worst-case.

Berkman et al. [39], as well as all parallel algorithms based on it [40, 46], formulate the

communication so that each processor receives data from at most two other processors, one

from the left and one from the right. The number of received elements can thus be bound

by O(n
p
).

We propose to further minimize the communication volume. If every processor Pi

knows the size of Iji for all processors j, we can dynamically decide how best to commu-

nicate these elements. To minimize the per process and global communication volume, we

always send the smaller of the two ranges Iij and Iji. This minimizes the communication

cost for both sending the local elements, as well as receiving the solutions.

Complexity The total complexity for the algorithm is dominated by the communication

of in-ranges. Since each processor sends and receives at most O(n
p
) elements, the time

complexity for the generalized ANSV algorithm is O(n
p

+ p).

3.3 Parallel Suffix Tree Construction

In this section, we show how to construct suffix trees from suffix and LCP arrays on dis-

tributed memory parallel computers by utilizing our algorithm for the generalized ANSV

problem.

3.3.1 Prerequisites

We briefly discuss how suffix arrays and LCP arrays are related to suffix trees, and the

properties used for construction.

Each leaf of a suffix tree represents a specific suffix of the string, and leaves appear in

their lexicographical order. A suffix array therefore represents the leaves of the suffix tree.

Each entry in the LCP array corresponds to a specific internal node in the suffix tree, as

explained below. However, multiple entries in the LCP array might correspond to the same
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internal node.

Each internal node v of a suffix tree is associated with its string-depth t, which is the

length of the longest common prefix (lcp) shared by all suffixes in its subtree. As such, the

minimum lcp over all pairs of consecutive suffixes in v’s subtree is also t. The node v splits

the set of its suffixes into at least two subsets, i.e., its child nodes u0, u1, . . . , ud(v)−1, where

the suffixes in each subtree under uj share a common prefix > t (see Figure 3.4). Since the

LCP array contains the length of the lcp for each pair of consecutive suffixes, the subtree

for v corresponds directly to a range in the LCP array with values all ≥ t.

... ... ...

...

SA:

v

...

u0 u1 u2 ud(v)-1

...
b1 b2

bd(v)-1

...
... ... ...... ...t

t

t t

root

<t <t
LCP: ...} }} }

> t > t > t> t

Figure 3.4: Suffix Tree structure and LCP for a subtree starting at an internal node v with
child nodes u0, u1, . . . , ud(v)−1.

More specifically, for any internal node v with d(v) children, there are exactly d(v)− 1

pairs of consecutive suffixes SA[bj − 1] and SA[bj] in this range for which LCP [bj] =

lcp(SA[bj − 1], SA[bj]) = t. These are all the positions for which bj is the first suffix in its

subtree uj with the exception of the first subtree u0 (see Figure 3.4). We can thus identify

each internal node v of a suffix tree uniquely by b1, the index of the first suffix in the second

child u1 of v. We denote this leftmost element of value t, the representative for v.

Every position in the LCP array corresponds to an internal node, unless that position

is not the representative for the node of its value. A position in the LCP array is not a

representative if its nearest non-larger value to the left is of equal value.

From the position of the representative in the LCP array b1, let l(b1) be the position
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Figure 3.5: The two possible choices for the parent node for v.

of the nearest element to the left which is smaller than t, and similarly let r(b1) be the

index of the nearest smaller element to the right. Let the values of the LCP array at these

positions be tl = LCP[l(b1)] and tr = LCP[r(b1)], then tl < t and tr < t. These two

positions correspond to the beginning and end of the subtree for v, and each corresponds to

an internal node, say wl and wr respectively (see Figure 3.5). Out of these two nodes, the

parent for v is the node with which it shares a longer common prefix, which leads to the

following property:

Case tl < tr:

The parent for v is the node wr. The index r(b1) and the LCP entry at that position

is the representative for this node, since there can not be any entry further left equals

to tr.

Case tl > tr:

In this case, the parent for v is the node wl. The LCP position l(b1) might not be the

representative for this node, if the node has more than two children. The representa-

tive is the leftmost element of value tl, given that no value in between is smaller.

Case tl = tr:

In this case, wl = wr and the representative of value tl is towards the left.

For the last two cases, the index for the parent node is the representative for the nearest

smaller element to the left. Iliopoulos and Rytter [43] calculate a table Leftmost for
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determining the representative for each element of the LCP array. They give an algorithm

for calculating this table in O(n log n) work and O(log n) time on n processors.

We instead propose to directly solve this problem by using our generalized ANSV so-

lution. Specifically, we calculate the nearest-nonlarger-furthest-equal (FE) element to the

left while simultaneously determining the nearest-smaller (NS) element to the right. Note

that our ANSV algorithm was formulated to calculate the matches to both sides simultane-

ously while supporting different matching variants for both sides.

3.3.2 The Algorithm

The high-level steps of our parallel distributed algorithm for the construction of suffix trees

are shown in Algorithm 5. The algorithm assumes that all inputs are distributed equally

across processors with n
p

elements per process. This includes the string S, suffix array SA,

as well as the LCP array.

3.3.2 Parents of internal nodes

We can now formulate how to determine the parent for each internal node by looking only

at its LCP value and the left and right matches returned by the generalized ANSV solution.

We create an array E of edges (j, parent(j)), where each edge defines the index for the

parent of the node corresponding the LCP [j].

For each position j in the LCP array, we determine the values of the left and right

matches LCP [lFE(j)] and LCP [rNS(j)]. We distinguish between multiple cases:

If LCP [lFE(j)] = LCP [j]:

In this case LCP [j] is not the representative for its node, because its not the leftmost

element of its value within the range to the nearest smaller. Thus, we can simply skip

this element, since it is not a valid node.

Else If LCP [lFE(j)] < LCP [rNS(j)]:

This corresponds to the case above where tl < tr, and the parent for the node at j is
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ALGORITHM 5: Parallel Distributed Suffix Tree Construction
Input: String S, Suffix and LCP arrays: SA and LCP for S, all equally distributed with n

p
elements per process.

Output: Suffix tree for S.
1 // get the ANSV matches for the LCP in O(np + p)

2 LFE , RNS ← gANSV(LCP, left=FE, right=NS)
3 // iterate through all local elements in O(np )

4 E : array of edges (j, parent(j), SA[j] + LCP [parent(j)] + 1)
5 // get parents for internal nodes
6 for j = n

p i, . . . ,
n
p (i+ 1)− 1 do

7 if LCP [LFE [j]] = LCP [j] then
8 // this is not a representative
9 continue

10 else if LCP [LFE [j]] < LCP [RNS [j]] then
11 parent← RNS [j]
12 else
13 parent← LFE [j]
14 end
15 E.insert(j, parent, SA[j] + LCP [parent] + 1)

16 end
17 // get parents for leaf nodes
18 for j = n

p i, . . . ,
n
p (i+ 1)− 1 do

19 if LCP [j] < LCP [j + 1] then
20 parent← j + 1
21 else if LCP [LFE [j]] = LCP [j] then
22 parent← LFE [j]
23 else
24 parent← j
25 end
26 E.insert(j + n, parent, SA[j] + LCP [parent] + 1)

27 end
28 // send tuples in E to the processor which contains the parent
29 E ← alltoall(E,target=P [j]) // O(np + p)

30 // get character S[SA[j] + LCP [parent] + 1] for each edge
31 C ← bulk-query(E.cpos)
32 // create internal nodes (alternatively use hash-table)
33 nodes← array of size (σ + 1)np , init to −1
34 for each (idx, parent, char) in E and C do
35 nodes[(σ + 1)parent+ char]← idx
36 end

the nearest-smaller to the right: hence parent(j) = rNS(j). Since this is the leftmost

element of value tr in the equal-range for tr, this is also the representative.
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Else If LCP [lFE(j)] > LCP [rNS(j)]:

This corresponds to the case above where tl > tr. Since the FE variant returns the

leftmost element as the representative for its equal-range, the representative for wl as

well as the parent for j is given by: parent(j) = lFE(j).

Else If LCP [lFE(j)] = LCP [rNS(j)]:

In this case, parent(j) = lFE(j), since both matches correspond to the same node,

the representative of which is to the left given by lFE(j).

For each position j in the LCP, we insert the edge (j, parent(j)) into E.

3.3.2 Parents of leaf nodes

For the leaf nodes, represented by the suffix array, we can determine the parent in a similar

fashion. In order to distinguish between internal and leaf nodes, we offset the indexes of

leaf nodes by n, such that the leaf node SA[j] is represented by index n + j. For each

position in the suffix array SA[j], we can determine its parent independently. The suffix

SA[j] shares a parent node with either its left (SA[j − 1]) or right (SA[j + 1]) neighbor,

specifically the one with which it shares a longer prefix. Since the length of the prefix

matches between these is given by LCP [j] and LCP [j + 1] respectively, the parent node

is the representative for the larger of the two. Here we distinguish only between two cases:

Case LCP [j] ≥ LCP [j + 1]:

The parent for SA[j] is the the left LCP. Since this may not be the representative of

its equal-range, we check whether LCP [lFE(j)] = LCP [j]. If this is the case, the

parent for the leaf SA[j] is lFE(j), otherwise it is parent = j. We insert the edge

(n+ j, parent) to E.

Case LCP [j] < LCP [j + 1]:

The parent for leaf j in this case has the index j+1, since the right LCP is necessarily

57



the leftmost of its value and thus its own representative. Thus, we insert (n+j, j+1)

into E.

3.3.2 Creating internal nodes

So far we have created an array E of edges pointing for each position to their parent index.

For pattern matching applications, instead of having parent pointers, each internal node

should point to its children.

Conceptually, an internal node is a small lookup table, which for each character contains

the index of the child node, which either is the index of an internal node (index into the

node array) or the index of a leaf node (index into the suffix array).

Additionally to each character in the alphabet Σ, the internal node needs an entry for

the end of string character $. For the case of a single input string S, all suffixes are unique.

Thus, the pointer for $ always points to a leaf node. In this case, the internal node is a

lookup table of size σ + 1.

In the generalized case of m ≥ 2 input strings, suffixes are no longer unique. Due to

how we defined the LCP array in this case, a group of identical suffixes will appear as a

contiguous segment in the LCP and suffix arrays. The LCP value for all of these will be

the length of the suffixes. The first character at which they differ are the virtual $i end of

string characters. The internal node corresponding to this segment of the LCP array then

can have more than σ + 1 children. In this generalized case, we use lookup tables of size

σ+2 instead, with one entry for each character c ∈ Σ and two entries for the $ character(s),

giving the index range for the identical suffixes in the suffix array as a start and end index.

Conceptually, the internal nodes are represented as a size (σ + 2)n block distributed

array. This approach works well for very small alphabets, but becomes prohibitively ex-

pensive in terms of memory usage for larger alphabets. Using a hash-table on each process

allows to store the the internal nodes in a more space-compact format, at the cost of lookups

being only expected time O(1). We still conceptually split the nodes across processors ac-
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cording to their index as done in the array format.

Creating the lookup table requires inverting the edges E, as well as reading the first

character associated to each edge. For a node j with parent index q = parent(j), all

suffixes in the subtree of q share the common prefix LCP [q], but each child of q differs

at the next character LCP [q] + 1. For each suffix in the subtree for j this character is

identical, thus we can chose any suffix from j’s subtree, e.g., SA[j]. We label each edge

(j, parent(j)) in E with the character at position cpos(j) = SA[j] +LCP [parent(j)] + 1

of the input string. Note that LCP [parent(j)] is the value of the left or right match used

to determine the parent index itself. Therefore, cpos(j) can be calculated locally for each

j just after determining the index of the parent.

Inverting the edges requires communication of the edges (j, parent(j), cpos(j)) to the

processor which contains the index parent(j). We exchange all edges for remote parents

in one collective communication step.

Since each processor contains n
p

elements and internal nodes, it will send at most O(n
p
)

edges in this communication step. Each internal node has at most σ + 2 outgoing edges.

Therefore, the communication complexity of this many-to-many communication is thus

bound by O(σ n
p

+ p) in the very worst case. In practice, the expected number of edges

per process is O(n
p
). Furthermore, the number of edges actually sent to another process is

much smaller, since tuples are send to one of the two nearest smaller matches. The commu-

nication thus follows the same structure as for the ANSV problem, for which the expected

number of elements communicated is logarithmic, the majority of which are exchanged

between direct neighboring processors.

3.3.2 Edge labels

For each internal node, we now have all its outgoing edges, i.e. the index for each child

node. To determine which position in the lookup table the child index should be written to,

we need the character at the position cpos(j) for each child index j.
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In the case of a single input string S, the required character is given by S[cpos(j)] if

cpos(j) < n. Otherwise, the required character is $. Since the input string S is distributed

across processors, accessing these characters corresponds to a random access reads into the

distributed string. We process these in a bulk fashion as described below.

In the generalized case of m ≥ 2 input strings, we indexed the character positions

assuming that all strings are concatenated together without any separators. Note, in this

virtual representation we can access all characters at cpos(j) directly at the global position

cpos(j), unless the suffix was equal to another. In the latter case, the cpos(j) = SA[j] +

LCP [parent(j)] + 1 points one character past the corresponding string for suffix SA[j],

i.e., at the first character of the following string. Requests to these positions should return

the $ character instead. To do this, we simply change the first character of each string to

$ prior to processing the queries for cpos(j). Note, the first character of each string is

required only for the root node. We know that the root node has to have children for all

possible characters that appear in the strings. Therefore, we can handle the root node as a

special case, and don’t require looking up the characters at cpos(j) for edges from the root

node.

In either case of a single or multiple strings, we need to perform what are essentially

random access reads into the distributed string. We answer these reads by generating re-

quests for all required positions which are not available locally.

In the worst-case, O(n) requests could target the same processor. To mitigate this prob-

lem, we sort all requests based on the index requested using parallel distributed integer

sorting. We then send only unique requests to their target processor, return the requested

characters to the original position of the requests in the sorted range, set the returned char-

acter to all requests targeting the same index, and then return all requests to their origin

process.

Note that this procedure is only needed in the worst-case. If the maximum number of

requests targeting a single processor is less than≤ cn
p

for a small constant c, we can simply

60



send each request to its target processor directly and skip the sorting of requests. This

results in a much better runtime in the expected case. The overall complexity for handling

the requests is thus dominated by the complexity for parallel integer sorting: O(n
p

+ p).

3.4 Experiments and Results

3.4.1 Implementation

We implemented our algorithm for the generalized ANSV problem as well as suffix tree

construction using C++11 and MPI. Our code is thoroughly tested and available as fully

Open Source on GitHub1. For experiments reported here, we compiled our code using gcc

5.2 and MVAPICH2 v 1.7 using the optimization flags -O3 -march=native.

3.4.2 Systems and Data sets

We experimentally evaluated our algorithm and its implementation on two different sys-

tems. The first system Cyence is an Intel Xeon Infiniband cluster, where each node has two

2.0 GHz 8-core Intel E5 2650 processors and 128 GB RAM. The nodes are connected via

a QDR (40Gbit) Infiniband interconnect. The second system FatNode, is a single shared

memory node with four 2.1 GHz Intel Xeon E7-8870 18-core processors and 1 TB of RAM.

We use this system to compare against Shun’s shared memory implementation [44].

The human genome, with an approximate length of 3 billion base pairs, is commonly

used as a benchmark for comparing the performance of parallel suffix array and tree con-

struction algorithms [36, 37, 38, 44, 12]. In addition to benchmarking against other meth-

ods using the human genome, we evaluate the scalability of our approach on the much

larger Pine (Picea abies) genome, which has a length of over 12 billion base pairs [35].

The alphabet size of genomes is 4 (nucleotides A, C, G, and T).

1github.com/parbliss/psac
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Figure 3.6: Cumulative runtime for constructing the Suffix (SA) and LCP Arrays via [12]
and subsequently the Suffix Tree (ST) for the human genome on up to 1024 cores on
Cyence.

3.4.3 Performance of ST Construction

On the Cyence system, we ran experiments on up to 1024 cores (64 nodes) for the human

genome. In Figure 3.6, we show the run-time composition for constructing the suffix tree

for the human genome from scratch, i.e., the time taken for first constructing the suffix and

LCP arrays, as well as the time required to construct the suffix tree from these arrays in-

cluding the time required for solving the All-Nearest-Smaller-Values problem. We observe

that the latter part represents only a minority of the total runtime. On 1024 cores, it take

less than 2 seconds within an overall run-time of 9.5 seconds.

3.4.3 Comparison with prior State-of-the-art

Due to unavailability of any source code, we could not experimentally compare the per-

formance of our code against that of other distributed memory approaches using the same

system. Below, we provide a table (Table 3.1) of previously reported results for suffix tree

construction of the human genome, and compare them to our experimental results (bold).

It appears the performance gains observed in the table exceed the advantage gained by
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hardware improvements.

Shun and Blelloch’s [44] algorithm takes a similar approach to ours, but is developed for

the PRAM model. The authors provide a competitive implementation for shared memory

machines, against which we compare the performance of our MPI based implementation

on the FatNode large shared memory machine. For this implementation we show both the

reported time, as well as the time measured on FatNode. As can be seen, our algorithm

outperforms the shared memory algorithm on a shared memory system.

Algorithm System Cores Time
WaveFront [36] IBM BG/L 1024 15 min
ERA [37] 16x Intel 2-core nodes 32 13.7 min
PCF [38] MareNostrum 172 7 min
Shun [44] 4x 10 core Intel E7-8870 40 168 s
Shun [44] FatNode 72 146 s
Ours FatNode 72 63 s
Ours Cyence 1024 9.5 s

Table 3.1: Prior results reported for the human genome and our experimental runtimes
(bold).

3.4.3 Runtime Analysis and Scaling

Next, we analyze the runtime and scaling behavior of our suffix tree construction algorithm

on the larger pine genome. To focus on contributions in this paper, this analysis considers

suffix tree construction from suffix and LCP arrays. In Figure 3.7, we show the run-time

of various components of the algorithm as the number of cores is varied from 256 (16

nodes) to 1600 (100 nodes), the maximum allocation on Cyence. We started the assessment

at 16 nodes, because the peak memory consumption for this large genome exceeds the

memory capacity of 8 nodes (reason why distributed memory algorithms are necessary).

Determining the tree structure via solving the ANSV, and combining left and right ANSV to

compute the parent edges Calc.Parent, together take less than 25% of the total runtime. The

majority of the time (≈ 60%) is spent in querying the characters for each edge (EdgeChar).

We split this time into local work and the required all-to-all communications. Finally,
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creating the suffix tree nodes from the edges and their associated characters takes less than

15% of the overall time.
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Figure 3.7: Breakdown of the runtime for different sections of the Suffix Tree construction
of the Pine genome on up to 100 nodes of Cyence.

Results of strong scaling experiments for the pine genome are illustrated in Figure 3.8.

The speedup is measured relative fixed to the time taken by 256 cores.

Our implementation scales with 89.9% efficiency, reaching a relative speedup of over

5.6 when increasing the number of cores from 256 to 1600 (a factor of 6.25). The main

contributory factor limiting our scaling is the two all-to-all communications required for

retrieving the edge characters. We plot the relative speedup for just these two opera-

tions (EdgeChar alltoall), as well as the speedup for suffix tree construction excluding

just these two communication steps. The latter scales with efficiency of 102%, possibly

due to cache effects, showing that the limitation factor for scaling lies exclusively within

the MPI Alltoall communication. As it would be impossible to design an algorithm without

one of these operations (even if the solution is known, transforming distributed represen-

tation of input to the output itself requires an all-to-all operation), the performance of our

algorithm is not only good, but close what is obtainable.

64



1
2

3
4

5
6

ST Strong Scaling Pine

Number of Cores

S
pe

ed
up

256 512 736 1024 1600

Suffix Tree Total
Edgechar alltoall
ST w/o Edgechar a2a

Figure 3.8: Strong scaling of the Suffix Tree construction of the Pine genome on up to 100
nodes of Cyence

3.5 Conclusions

In this Chapter, we presented a work-optimal distributed memory parallel algorithm for

the construction of suffix trees. In contrast to the linear work performed by the algorithm,

all previous distributed memory algorithms exhibit quadratic worst-case complexity. Our

algorithm also improves prior state-of-the-art for distributed memory in terms of practical

performance. We illustrate performance of the algorithm on the human genome, for which

we construct the suffix and LCP arrays in 7.5 seconds from the genome, followed by con-

struction of the suffix tree in less than 2 additional seconds, on 64-node dual 8-core Xeon

CPU cluster. Furthermore, we demonstrate that our MPI based implementation performs

better in shared memory than state-of-the-art shared memory algorithms, and can scale to

a large number of cores in distributed memory.
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CHAPTER 4

DISTRIBUTED ENHANCED SUFFIX ARRAYS

The previous chapters, we discussed the efficient distributed construction of suffix arrays

and trees. However, we did not address how the indices can be efficiently queried in dis-

tributed memory.

It turns out that the classic sequential query algorithms for suffix arrays and LCP arrays

do not generalize well to their distributed representation - as they would incur massive

communication latency costs at almost every step.

Given a string S and its suffix array SA, sequentially we can find the range of occur-

rences of a pattern string P in S in O(m log n), where n = |S| and m = |P |. Additionally

using the LCP array, the time complexity for the query can be reduced to O(m + log n)

[6].

Commonly the occurrences are returned as a range in the suffix array, however, if we

wanted to also list all occurrences, then the time complexity of the query would also depend

on the number of results. In this case we would write the complexity of the pattern search

as O(m log n+ occ), or O(m+ log n+ occ) respectively. In the following discussion, we

assume this is implied, and we will state the complexity for finding the range of occurrences

within the suffix array, and thus give the complexity without the dependence on occ.

Enhanced suffix arrays (ESA) were introduced by Abouelhoda et al. [10] and add ad-

ditional data structures on top of the SA and LCP arrays, consequently supporting O(σm)

pattern search - optimal for constant size alphabets. However, querying an SA, ESA, or

compressed indexes such as the FM-index, all require random accesses to O(n) sized data

structures, which in distributed memory is highly inefficient and prohibitively expensive.

In this chapter, we first explain the design constraints for an efficient distributed solution

and discuss the shortcomings of sequential query algorithms. Then, we derive and propose

66



the Distributed Enhanced Suffix Array (DESA), a novel distributed data structure allowing

for efficient distributed querying. Further, we propose an efficient distributed algorithm to

construct the DESA by modifying the distributed SA and LCP array construction algorithm

from Chapter 2. Finally, we demonstrate the performance and scalability of our DESA

implementation.

A majority of the content in this chapter is published in the following paper:

• P. Flick and S. Aluru, “Distributed enhanced suffix arrays: Efficient algorithms for

construction and querying,” in SPAA’19 (under review)

4.1 Motivation

To handle very large string collections, such as billions of DNA fragments sampled for

(meta-)genomic studies, distributed representations and querying of string data structures

are needed. Recent efforts focused on efficient parallel construction of suffix arrays and

suffix trees. Parallel suffix array construction has been studied for shared memory [29,

19, 48], as well as distributed memory [21, 23]. Many parallel algorithms for suffix tree

construction exist: theoretical algorithms for PRAM [41, 42, 43], practical algorithms for

shared-memory machines [44], and algorithms for external or distributed memory [36, 49,

37, 38].

State-of-the-art PRAM algorithms for suffix tree, suffix array, and FM-index construc-

tion were recently introduced by Shun and Blelloch [44] and Labeit et al. [48]. These

algorithms perform extremely well on shared-memory systems, but do not generalize to

distributed memory. Whereas the shared-memory parallel algorithms can randomly ac-

cess the entire string, suffix tree, or array, in distributed memory each processor generally

contains only a part of the whole input or index.

Our distributed construction algorithms for suffix arrays (Chapter 2) and suffix trees

(Chapter 3) use at most O(n/p) memory per processor. Not only do these algorithms

achieve superior run-time complexity, they are also designed to be memory-scalable. Pre-
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vious approaches required O(n) memory per process [21, 23, 36, 37, 38], thus limiting

the problems that could be solved by the memory size of a single compute node. With a

memory requirement ofO(n/p) per processor, potentially any problem can be solved using

a sufficient number of processors and compute-nodes.

However, no prior methods exists to efficiently query the distributed suffix arrays and

trees in distributed memory while not exceeding O(n/p) memory per processor. This is

primarily because query algorithms require the whole input string S to be locally available

on every processor. In this chapter, we present a data structure that allows efficient querying

while not exceeding O(n/p) memory.

4.2 Sequential pattern search

Given a pattern string P = p0p1 . . . pm−1 of length m, we are interested in finding if and

where the string P occurs within a larger string S, where typically n� m.

In a suffix tree, this search is performed in a top-down traversal. Starting at the root, the

characters of the pattern are matched one-by-one to the characters on the unique matching

path (if one exists) from the root to a leaf. If the node representation of the ST allows

constant time look-up of outgoing edges by character, the pattern search has complexity

O(m).

4.2.1 Suffix array search

Using a suffix array, the pattern search can be performed in O(m log(n)) time [6]. Since

the suffixes in a suffix array are sorted lexicographically, we can search for a given pattern

using binary search where in each step we lexicographically compare the pattern P against

the suffix at the given search location.

Algorithm 6 shows how the binary search works for finding the lower bound lP of

occurrences of P in the suffix array. The search compares the pattern lexicographically

against sub-strings in S that start at positions given by the suffix array SA. Since the suffix
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ALGORITHM 6: SA binary search algorithm [6]
Input: Pattern P = p0p1 · · · pm−1, string S, and suffix array SA of S
Output: smallest lP with P ≤lex S[SA[lP ] . . .]

1 if P ≤lex S[SA[0] . . .] then
2 return lP ← 0
3 else if P >lex S[SA[n− 1] . . .] then
4 return lP ← n
5 else
6 [l, r]← [0, n− 1]
7 while r − l > 1 do
8 mid← l+r

2
9 if P ≤lex S[SA[mid] . . .] then

10 r ← mid
11 else
12 l← mid
13 end
14 end
15 return lP ← r

16 end

array is a permutation of 0, . . . , n − 1, the access pattern S[SA[mid] . . .] (line 9) accesses

the string S in random access fashion. There is no dependency or guarantee of the string

position that will be accesses from one iteration to the next. This dependency on the entire

underlying string is the reason this type of query algorithm does not work well when all

data is distributed.

By using the LCP array in addition to the suffix array, the time complexity of the pattern

search can be improved to O(log(n) +m) [6]. This is still dependent on n and thus worse

than the complexity of pattern search in a suffix tree. This algorithm is also performing a

binary search for the pattern, but additionally uses two arrays LLCP and RLCP which

can be derived from the LCP array. These arrays allow to skip certain characters when

comparing the pattern with suffix SA[mid], such that at most O(m) character comparisons

are required during the entire binary search. The string is still accessed in the same location

plus some offset c: S[SA[mid] + c . . .] (see Manber and Myers [6] for details), and thus

suffers from the same problems for using this type of algorithm in distributed memory.
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4.2.2 Enhanced suffix arrays

Enhanced Suffix Arrays (ESA) were introduced by Abouelhoda et al. as a space-saving

replacement for suffix trees [10]. The ESA consists of the suffix array, LCP Array, an

interval tree over the LCP array, and a child-table. Abouelhoda et al. showed how their

data-structure supports the various processing modes of suffix trees. Using the additional

child-table, Abouelhoda et al. show how to achieve O(m) query time for constant alpha-

bets.

Fischer and Heun proposed a succinct Range-Minimum-Query (RMQ) data-structure

built on top of the LCP array in order to replace the child-table [33], yielding a more space

efficient ESA.

ALGORITHM 7: ESA query algorithm [33, 10]
Input: Pattern P = p0p1 · · · pm−1
Output: interval [l, r) for occurrences of P in SA

1 [l, r]← [0, n]
2 c← 0, found← true
3 while found ∧ c < m ∧ l < r do
4 [l, r]← getChild(l, r, P [c])
5 if [l, r] == ∅ then
6 return’not found’
7 end
8 `← min(mini∈[l+1,r] LCP [i],m)

9 found← (S[SA[l] + c . . . SA[l] + `− 1] == P [c . . . `− 1])
10 c← `

11 end

The pattern search algorithms for (enhanced) suffix arrays are also called forward-

search, as they search the array structures by starting with the first character of the pat-

tern P and then iteratively matching more and more characters, while narrowing a search

interval [l, r) in the suffix and LCP arrays. Algorithm 7 illustrates the forward search al-

gorithms as performed by both Abouelhoda et al. [10], and Fischer and Heun [33]. The

search starts from the root represented as the interval [0, n) and c = 0 matched characters.

In each iteration of this search, the current query interval [l, r) corresponds to those suffixes
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SA[l], . . . , SA[r − 1] in the suffix array which have a c-length common prefix with P .

ALGORITHM 8: getChild function from Fischer and Heun [33]
1 Function getChild(l, r, a)
2 i← RMQLCP (l + 1, r − 1)
3 `← LCP [i]
4 repeat
5 if S[SA[l] + `] == a then
6 return [l, i− 1]
7 end
8 l← i
9 i← RMQLCP (l + 1, r − 1)

10 until l = r ∨ LCP [i] > `;
11 if S[SA[l] + `] == a then
12 return [l, r]
13 else
14 return ∅
15 end

Each iteration of the search progresses by finding the child interval in [l, r) which

corresponds to the character P [c]. This getChild() function differs between the two

approaches. The child-table of Abouelhoda et al. contains pre-computed child-intervals.

Finding the correct child-interval thus resorts to scanning the child-table for a match of the

character P [c]. Fischer and Heun iteratively perform the Range-Minimum-Query on the

LCP array up to |Σ| times (see Algorithm 8 above). Both methods access S[SA[i] + c] for

multiple positions i (up to |Σ| many) while searching for the child interval corresponding

to the character P [c]. Due to the nature of the suffix array, these are random accesses into

the string S. Furthermore, `− c characters of the pattern are compared to the suffix starting

at S[SA[l] + c...] in each iteration (Algorithm 7 Line 9) - another random access read into

the string.

In a distributed representation of the string and index arrays, these query algorithms

would require communication in every step of the search - making querying in the dis-

tributed representation prohibitively expensive. Next, we propose a novel distributed data

structure and querying algorithm which avoids random accesses.
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4.3 Distributed Enhanced Suffix Arrays

We propose the Distributed Enhanced Suffix Array (DESA) data structure to allow efficient

querying in distributed-memory. The data structure consists of the distributed suffix array,

LCP array, a Range-Minimum-Query (RMQ) data structure, and an additional character

array Lc, which is formally defined in the next section. All these arrays and data structures

are distributed with O(n/p) elements per processor.

Our proposed DESA removes the requirement to read the suffix array SA and string S

for every character in the pattern during querying, and as such no longer requires random

accesses into the string S. This allows querying a subtree in the distributed representation

while accessing purely local data.

4.3.1 Forward-Search

For efficient top-down traversal and pattern matching in the distributed representation, we

need to remove the requirement for randomly accessing the string S in every step of the

forward-search algorithm.

A key idea is that instead of matching the full pattern to the suffixes during the top-

down traversal, we match only those key-characters which correspond to the branching

characters of the corresponding suffix tree, i.e, the first character on each edge along the

path being traversed. By ignoring other characters during the traversal, we initially allow

a false positive match, which is later verified by performing a string comparison after the

top-down traversal is completed. Splitting the search algorithm into these two stages allows

us to pre-compute the characters required in each traversal decision into locally available

arrays.

We propose a query algorithm (Algorithm 9), a pre-computed character array, and a new

getChild() function, which allow processing a query within a given search interval [l, r]

requiring no random accesses outside of this index range. Thus, if the query interval [l, r]
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lies fully within a processor, it can be processed locally.

We modify the ESA query Algorithm 7 of Fischer and Heun [33] as follows. First,

we remove the found check, which compares ` − c additional characters in each itera-

tion (Algorithm 7, Line 9), and move it outside of the loop. Effectively, we are allowing

false-positives during the iterative querying, by comparing only those characters which

correspond to a branch in the suffix tree. If the querying algorithm finds a SA range for

the pattern with l < r, we merely have to inspect the pattern against a single suffix of the

range (e.g. SA[l]) in order to determine if the pattern matches. The resulting Algorithm 9

illustrates the steps of the forward-search algorithm.

ALGORITHM 9: Global view of DESA query algorithm
Input: Pattern P = p0p1 · · · pm−1
Output: interval of P in SA

1 c← 0
2 while c < m ∧ l < r do
3 [l, r]← getChild(l, r, P [c])
4 `← min(LCP [RMQ(l + 1, r − 1)],m)
5 c← `

6 end
7 if l < r then
8 found← (S[SA[l] . . . (SA[l] +m− 1)] == P [0 . . . (m− 1)])
9 end

Next, we propose to eliminate the random access reads inside the getChild() func-

tion and replace them by pre-computed local lookups. We observe that the character

accessed in Algorithm 8, Line 5: S[SA[l] + `] is identical to S[SA[j] + `] for all j =

l, l+1, . . . , i−1. This is the case, because all these suffixes SA[j] share a common longest

prefix larger than `: LCP [j] ≥ LCP [i] > `. We can thus replace Line 5 in Algorithm 8 by

S[SA[i − 1] + LCP [i]]. This is still a random access into the string S. However, for any

given i, this is always the same character and position in the string S.

Using this property, we can define a character array which contains for each position i:

Lc[i] = S[SA[i− 1] + LCP [i]]
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The corresponding location in the LCP array LCP [i] sits between two subtrees, each of

which has a string depth > LCP [i]. All suffixes in the left of the two subtrees share Lc[i]

as the branching character.

ALGORITHM 10: DESA getChild function
1 Function getChild(l, r, a)
2 i← RMQLCP (l + 1, r − 1)
3 `← LCP [i]
4 repeat
5 if Lc[i] == a then
6 return [l, i− 1]
7 end
8 l← i
9 i← RMQLCP (l + 1, r − 1)

10 until l = r ∨ LCP [i] > `;
11 // return last child interval
12 return [l, r]

13 end

Using the Lc character array, we arrive at the getChild() function as shown in

Algorithm 10. Note that for a subtree with u children, there are u − 1 LCP positions cor-

responding to that node. Thus, only u − 1 characters are explicitly saved for that internal

node. The last sub-tree/child-interval does not have its branching character stored. If the

function does not find a character match in the first u − 1 child intervals, we always con-

tinue the search in the last interval. The matching algorithm (Algorithm 9) still works as

intended, because we allow false-positives during the traversal itself, and check against the

underlying string at the end.

For any given query range [l, r], this algorithm accesses data only within the index

range [l, r], avoiding any non local accesses and thus allows its efficient use in distributed

memory systems.

4.3.2 Distribution of Subtrees

The suffix array and LCP array construction algorithms from Flick and Aluru return these

arrays block distributed across processors. This type of distribution is useful during con-
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Figure 4.1: Distribution of subtrees and Top-Level Index (TLI).

struction, but not so for querying. Any subtree might arbitrarily be split across processor

boundaries - greatly complicating distributed querying.

For an efficient distributed index, we instead need to split the (virtual) suffix tree into a

shared top-level index, and separate subtrees, where subtrees are distributed onto processors

such that each subtree is fully contained within a processor, enabling it to be queries locally.

The top-level index (TLI) is used to match the first few characters of a pattern P , and

then points to whichever processor contains the subtree required for continuing the forward-

search. The top-level index is kept as a copy on every processor and thus cannot be allowed

to exceed the size of O(n/p) to achieve true memory scaling. Figure 4.1 illustrates this

concept.

Here, we introduce two different variants/implementations of a top-level index with

different partitioning schemes for subtrees: a simple Top-Level Lookup Table (TLLT) or a

Top-Level Dynamic Trie (TLDT).

4.3.2 Top-Level Lookup Table

Using a Top-Level q-mer Lookup Table can accelerate top-down traversal by skipping an

initial number of iterations. For each possible q-mer (length q substring) over the alphabet

75



Σ, the suffix array index range is pre-computed and saved into this table. This type of

lookup table of size |Σ|q has been proposed by Manber and Myers as a bucket array to be

used for speeding up the binary search in their suffix array query algorithm [6].

For our distributed suffix array, the lookup table has another important use. Each sub-

range corresponds to a subtree of the associated suffix tree. If the subranges are small

enough, they can be redistributed between processors so that each subrange is fully con-

tained within a processor. Then, a query of the distributed enhanced suffix array can be

fulfilled by a single lookup within the top-level lookup table and solely local processing

within the processor containing the corresponding target subrange.

We require that the size of the lookup table |Σ|q does not exceed our design constraint

that each processor use at most O(n
p
) local memory. At the same time, q should be chosen

large enough, such that the index ranges (subtrees) are expected to be small enough to be

fully contained within a processor and not create a notable load-imbalance. This yields very

rough bounds for useful choices of q to: p < |Σ|q < n
p
, the exact value of which depends on

the application and can be chosen as a tuning parameter, with a trade-off between expected

load imbalance, extra memory usage, and faster querying. For example, for DNA alphabets

and with q = 10, the lookup table will have a modest size of 8MB, and split the suffix index

into over 1 million subtrees - generally more than enough to partition the trees onto a very

large number of processors while maintaining good load balance.

The Top-Level Lookup Table can be easily and efficiently constructed by a single par-

allel scan of the input. Each processor generates all q-mers with a sliding window approach

for its O(n/p) section of the input string and creates a frequency histogram of q-mers. A

parallel reduction (allreduce), followed by a prefix sum over the histogram, then creates the

required lookup table on each processor.

The TLLT works well in practice for real world inputs, however, for some inputs this

fixed top-level lookup table with constant q can fail to bring subtrees below the O(n/p)

size.
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In that case, a more dynamic partitioning and distribution scheme is required.

4.3.2 Top-Level Dynamic Trie

The Top-Level Dynamic Trie (TLDT) is a top level index in the form of a trie, where each

leaf of the trie points to a subtree of the (virtual) suffix tree. We construct the TLDT such

that each subtree is the largest subtree with size≤ n
cp

, where c is a parameter controlling for

load imbalance. Here, largest means that the parent of the subtree exceeds the threadhold

size of n
cp

.

The main challenge in creating the TLDT is to efficiently identify the largest subtrees

with size < n
cp

. We accomplish this by using the generalized All-Nearest-Smaller-Values

(ANSV) algorithm (see Chapter 3). For every LCP position (corresponding to internal nodes

of the ST), this algorithm can be used to find its subtree interval (and therefore its size)

by identifying the left- and right-most elements of the associated subtree. The ANSV

algorithm from Chapter 2 performs this for all nodes simultaneously in parallel in time

O(n
p

+ p). Having identified the size of each subtree, it is then straightforward to mark

those subtrees with sizes below the threshold such that the subtree sizes of their respective

parent nodes exceed the threshold.

The top-level trie is created in parallel as follows. Each processor creates new LCP

and Lc arrays containing those elements which are not within the selected subtrees, i.e.,

those at higher levels. These arrays are then gathered together on all processors, where

they are used to locally construct the top level trie. Finally, the top level tries are used for

partitioning the subtrees onto processors and re-distributing the distributed SA and LCP

accordingly.

4.3.3 Distributed Querying

Taking all parts together, it is now relatively straightforward to formulate the distributed

query algorithms. We will first describe a distributed query for a single pattern P , assum-
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ing the pattern arrives at one of the processors. Then, we will describe a bulk parallel

algorithm, where each processor has a set of query patterns, and all queries are processed

simultaneously.

4.3.3 Distributed Locate

ALGORITHM 11: Distributed Locate
1 Function distributed locate(P )
2 // Phase I: send P to correct processor
3 ρ← TLI.lookup proc(P )
4 send(P,to=ρ)
5 // Phase II: locally query for possible match
6 if ρ = comm.rank() then
7 [l, r]← idx.locate possible(P )
8 send((P, l, r, SA[l]),to=rank of(SA[l]))

9 end
10 // Phase III: rule out false positive
11 if P, pos← recv() then
12 match← strcmp(P, S[pos . . .])
13 if no match then
14 return ∅
15 end
16 return P, [l, r]
17 end
18 end

Algorithm 11 shows at a high level the process of querying the Distributed ESA for

a single pattern P . Given a pattern P = p0, . . . , pm−1 of length m, the pattern search

proceeds in three phases: First, the Top-Level Index (TLLT or TLDT) is queried to de-

termine the subtree/subrange in which the pattern might occur, and which processor ρ ∈

{0, . . . , p− 1} the subtree is located on. The pattern is then sent to processor ρ, where the

local index is queried. The query of the local index returns a possible result range [l, r].

The pattern P is guaranteed to appear in this result range, or not appear in S at all. The

false positive result in the latter case has to be ruled out in the third phase of the query al-

gorithm. To do so, we compare the pattern with one of the suffixes in the result range [l, r],

specifically, we perform a string comparison between P and S[SA[l]...]. Since the string
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S is still equally block distributed, we send the pattern to the processor which contains

the string segment starting at SA[l]. There, a single string comparison yields the required

result. In some cases SA[l] + m might not be located on the same processor as SA[l]. In

this case, the pattern can be split up and send to the corresponding processors containing

the segments. These are then also compared locally and the results combined. The final

query result can then either be output to a file or sent back to the originating processor if

further processing is required.

Complexity The cost for Sending a pattern is modeled as O(τ + mµ), where τ models

the latency, µ the inverse bandwidth, and m = |P |. The local query is executed in O(m)

time. Sending the pattern and range information for ruling out false positives again costs

O(τ +mµ). Finally, checking the pattern against the string requires linear O(m) time.

4.3.3 Distributed Bulk-Locate

The algorithm for bulk-parallel querying of many patterns simultaneously is shown in

Algorithm 12. Each processor ρ ∈ {0, . . . , p − 1} receives a separate list of patterns

P1, . . . , Pz, not necessarily the same number on each processor. The TLI is used to deter-

mine for each pattern Pi, which processor can process the query. The target processor T [i]

for each pattern Pi is saved, the patterns bucketed/sorted by target processor index and then

an all-to-all communication is used to exchange all patterns between all processors such

that each processor will receive those patterns which it can process locally.

In the second phase, each processor locally queries its received patterns Q and records

for each pattern Q[i] the potential solution range [L[i], R[i]].

Next, false positive matches need to be excluded. For this, the patterns are exchanged

via an all-to-all communication. Each pattern Q[i] with solution range [L[i], R[i]] is sent to

the processor owning the section of the string S which contains SA[L[i]]. Once received,

the pattern can be compared with the string S at the suffix location. If the comparison is
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ALGORITHM 12: Distributed Bulk-Locate
1 Function distributed bulk locate([P1, . . . , Pz])
2 // Phase I: lookup where each pattern will be located
3 T ← new array(size = z)
4 for i = 1, . . . , z do
5 T [i]← TLI.lookup proc(Pi)
6 end
7 // all-to-all exchange of patterns for querying
8 [Q1, . . . , Qy]← alltoall([P1, . . . , Pz],to=[T1, . . . , Tz])
9

10 // Phase II: local queries
11 L,R← new arrays(size = z)
12 T ← new array(size = y)
13 for i = 1, . . . , y do
14 // locally query for the pattern
15 L[i], R[i]← idx.locate possible(Qi)
16 // determine which processor contains the string data for suffix SA[L[i]]
17 T [i]← rank of(S, SA[L[i]])

18 end
19 // all-to-all exchange
20 Q,L,R, pos← alltoall([. . . , (Qi, L[i], R[i], SA[L[i]]), . . .], to=T )
21 send(P, SA[l],to=rank of(SA[l]))
22

23 // Phase III: rule out false positives
24 for i = 1, . . . , |Q| do
25 match← strcmp(Qi, S[pos[i] . . .])
26 if no match then
27 L[i], R[i]← ∅
28 end
29 end
30 // return the result SA range for every query
31 return Q,L,R
32 end
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not successful, the solution range is replaced by the empty range ∅. Finally, the result can

be saved or returned to the originating processor.

4.4 Distributed Construction

Given a distributed input string S, the construction of the DESA has multiple steps. First,

we need to construct the SA and LCP arrays for the string S. We do this by using the con-

struction algorithms from Chapter 2 [12]. This yields the SA and LCP arrays in (equally)

block distributed form. We modify this algorithm to also construct the Lc array simultane-

ously to the LCP array with no increase in runtime complexity. We describe this approach

in section 4.4.1 below. We note that any parallel or distributed algorithm for SA and LCP

construction can be used to construct these arrays, however, this may require a different

approach for efficiently constructing the Lc array. Next, we construct the top-level index

and then partition and redistribute the SA, LCP , and Lc arrays accordingly. Finally, we

construct the RMQ locally over the redistributed local parts of the LCP array, completing

the construction of the DESA.

4.4.1 Efficient Construction of Lc

To efficiently construct the Lc array, we modify the LCP construction algorithm of [12],

which is a parallel, distributed memory adaptation of a similar LCP construction algorithm

by Manber and Myers [6].

In [12], the LCP array is constructed during the prefix-doubling algorithm for suffix

array construction. Assuming all suffixes are sorted with respect to their h-prefix (by the

first h characters of each suffixes), one iteration of prefix-doubling will sort all suffixes

with respect their 2h-prefix. In this step, a group of suffixes sharing a common h-prefix,

called an h-group, gets split into multiple adjacent 2h-groups. Two suffixes from the same

h-group, but in adjacent 2h-groups share a common prefix of at least h but less than 2h

characters.
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After the prefix-doubling, the LCP array can be set at these boundaries between 2h

groups, to a value h ≤ LCP [i] < 2h.

Let Suf(SA[i− 1]) and Suf(SA[i]) be two adjacent suffixes of the same h-group but

different 2h-groups. The LCP value at i is determined at this location using a Range-

Minimum-Query as: LCP [i] = h + LCP [RMQLCP (a, b)], where the query range given

by a and b is determined based on the current ranks (positions in the current sorted or-

der) for the suffixes Suf(SA[i − 1] + h) and Suf(SA[i] + h), i.e., by a and b for which

Suf(SA[a]) = Suf(SA[i− 1] + h) and Suf(SA[b]) = Suf(SA[i] + h). We assume that

RMQ returns the leftmost minimum position in the range. For a detailed description of this

algorithm, we refer to [12].

The Lc character array is defined as:

Lc[i] = S[SA[i− 1] + LCP [i]]

Two adjacent suffixes Suf(SA[i − 1]) and Suf(SA[i]) share ` = LCP [i] characters.

The `th character differs, and Lc[i] contains this `th character of the left (SA[i− 1]) suffix.

We propose a construction algorithm for Lc as a modification of the SA and LCP con-

struction algorithm of [12]: For the new 2h-group boundaries, where the LCP is set to

LCP [i] = h+ LCP [RMQLCP (a, b)], we also set

Lc[i] = Lc[RMQLCP (a, b)]

Claim 4.4.1. When LCP [i] is set as described above, it holds that:

Lc[RMQLCP (a, b)] = S[SA[i− 1] + LCP [i]]

where the left-hand side has been set in a previous iteration.

Proof. Consider the adjacent suffixes Suf(SA[i−1]) and Suf(SA[i]). Let q = RMQLCP (a, b)
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be the position of the leftmost minimum inside the LCP array between positions a and b.

Since LCP [q] < h, LCP [q] has been set in a previous iteration, and thus Lc[q] has been

set as well.

The value ofLCP [i] is determined based on the current ranks for the suffixes Suf(SA[i−

1] +h) = Suf(SA[a]) and Suf(SA[i] +h) = Suf(SA[b]), which share exactly LCP [i]−

h = LCP [q] characters. Since we know that LCP [i] = h+ LCP [q] and SA[i− 1] + h =

SA[a], we have:

SA[i− 1] + LCP [i] = SA[i− 1] + h+ LCP [q] = SA[a] + LCP [q]

and therefore:

Lc[i] = S[SA[i− 1] + LCP [i]] = S[SA[a] + LCP [q]] (4.1)

To finish the proof, we then have to show that Lc[i] = Lc[q]. This is the case iff

S[SA[q − 1] + LCP [q]] = S[SA[a] + LCP [q]], i.e., if suffixes SA[a] and SA[q] share

a common prefix of size larger than LCP [q]. By our assumption on the RMQ, q is the

leftmost minimum and we have LCP [j] > LCP [q] for all a ≤ j < q. Therefore, all

suffixes between a and q − 1 must share at least LCP [q] + 1 common characters in their

prefix.

4.4.2 Complexity

The run-time complexity construction of the DESA is dominated by the SA and LCP con-

struction, which has a worst-case complexity ofO(log(n)Tsort(n, p)) [12], where Tsort(n, p)

is the parallel complexity to sort n elements on p processors.
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4.5 Experiments and Results

We implemented the algorithms described above using MPI and C++11, and incorporated

them into our distributed string algorithms framework [12, 13]. The code is available as

open source on GitHub1.

To ensure our parallelization efficiency does not stem from needless injection of redun-

dancy, we demonstrate our performance on single core against state of the art sequential

algorithms and codes, at the scale of problems which they can solve. For such sequen-

tial experiments, we ran on TheMachine, a single socket Intel Core i7-4770 system with

16 GB main memory. For these, we compiled our code with gcc version 7.3.0 and with

optimization flags -O3 -march=native.

We ran scaling experiments on Edison, a Cray XC30 supercomputer. Each compute

node has two sockets of Intel Ivy Bridge 12-core processors, for a total of 24 cores per

node. Each node is equipped with 64 GB main memory and nodes are interconnected by a

Cray Aries Dragonfly topology. For the experimental evaluation we used up to 64 nodes,

for a total of up to 1536 cores. All reported runtimes are averaged over multiple executions.

Since our work is motivated by applications in computational biology, we use the

human genome as an input in order to evaluate the performance. The human genome

(H.sapiens) contains approximately 3 billion nucleotides (A, C, T, and G) with an alphabet

size of 4. Specifically, we use the reference genome from the 1000 Genomes Project [34]

version GRCh37.

4.5.1 Sequential querying

First, we compare a sequential DESA implementation against other sequential approaches.

We implement the following data-structures and query algorithms. Our implementations

for the ESA, DESA, and DESA with lookup table share most of their underlying construc-

tion and querying code - allowing for a fair comparison between these approaches.
1github.com/patflick/psac
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dna proteins english sources dblp.xml
sa index 2.8 3.0 3.2 2.9 3.3
esa index 7.6 11.2 28.0 30.4 26.6
desa index 6.4 9.7 19.1 20.0 15.7
desa tl index 6.0 5.8 14.5 14.7 10.1
sdsl::csa wt 6.3 13.7 15.1 19.9 18.8
sdsl::csa sada 74.9 72.2 65.9 94.1 97.9

Table 4.1: Average runtime per query in µs for sequential locate/count of 1000 randomly
drawn, 20 character long patterns for different inputs of the 200MB Pizza & Chili corpus.

• sa index (SA, S): implements binary search using the suffix array and string S,

having query time complexity O(m log(n)).

• esa index (SA, LCP , RMQ(LCP ), S): ESA index using the suffix array, LCP

array, string S, and a succinct RMQ implementation. The query complexity is

O(σm).

• desa index (SA, LCP , RMQ(LCP ), Lc): (sequential) DESA index. Uses Lc

instead of accesses to S, and performs string comparison at the end to rule out false-

positives. Otherwise, same implementation as ESA above.

• desa tl index (SA, LCP , RMQ(LCP ), Lc, TL): (sequential) DESA index

with a q-mer Top-Level Lookup table.

Furthermore, we compare the query time of our implementations against two imple-

mentations of compressed suffix arrays of the Succinct Data Structure Library 2.0 (sdsl) [50].

We use its current version 2.1.1 from GitHub 2.

We run query benchmarks using a set of different inputs from the Pizza & Chili Corpus

provided by Ferragina et al. [51] and available online3. Same as in the sdsl benchmarks

by Gog and Petri [50], we use the 200MB prefix of the input types dna, proteins,

english, sources, and dblp.xml.
2sdsl-lite version 2.1.1: github.com/simongog/sdsl-lite
3http://pizzachili.dcc.uchile.cl/texts.html

85

https://github.com/simongog/sdsl-lite
http://pizzachili.dcc.uchile.cl/texts.html


Figure 4.2: Local work and total runtime as a function of the number of cores for execution
of bulk locate, conducting 32 million pattern searches on the human genome.

For our benchmark queries, we generate 1000 random substrings of length 20 from

the input file. We then construct and query the different indexes by running the generated

queries 10,000 times. We report the achieved average time per query in Table 4.1. The

times reported are given in microseconds (µs), averaged per query. For sdsl we report

the time required for the count operation - which reports the number of matches. The

locate function in sdsl reports the occurrences, but takes significantly longer to run. The

results show that querying the suffix array alone is multiple times faster than any of the other

indexes - however due to the dependence on n and the many random accesses required, this

method is not applicable to distributed memory querying. Among the enhanced indexes,

our sequential DESA index shows the best performance for all categories of input.

4.5.2 Distributed Scaling

We implemented the distributed construction of the DESA data structure and the distributed

bulk-query algorithm as presented in Algorithm 12.

In order to demonstrate the scalability of our data structure and algorithms, we use the

human genome as an input and generate a pattern file with 32 million randomly chosen

substrings of length 20. We ran scaling experiments on Edison on 8 to 64 nodes.
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Figure 4.3: Relative speedup (strong scaling) of distributed querying on Edison 8-768 cores
for 32 million queries on the human genome. The speedup is calculated with respect to the
runtime using 8 cores on 8 nodes: T (8)

T (p)

Figure 4.2 shows the total time, and time spent in local work, plotted against the number

of cores. As is evident, the time spent in communication (the incremental difference be-

tween the two graphs) remains a small fraction of the total runtime up until a large number

of cores.

Figure 4.3 shows strong scaling results achieved by our implementation on Edison.

The local work scales in a super-linear fashion, taking a total of 136ms on 768 cores (32

nodes) vs. 675 ms on 192 cores (8 nodes), corresponding to a relative speedup of 5× while

increasing the core count by only 4×. Similarly, the local work part of the algorithm takes

22.5 seconds on 8 cores (on 8 nodes), corresponding to a relative speedup of 136× while

increasing the core count by only 96×. The reason for distributing the 8 cores to 8 nodes

instead of choosing them to be on the same node is because the memory required does not

permit the usage of fewer than 8 nodes. The super-linear scaling is achieved because the

distribution and splitting of the DESA onto more processors creates smaller local indexes

of size O(n/p), each of which can be queried faster while additionally benefiting from

better cache reuse. The total runtime, including communication, goes from 826 ms on 192

cores, to 216 ms on 768 cores - a relative speedup of 3.8×. The runtime on 8 cores total is

87



Figure 4.4: Runtime of distributed DESA construction compared to constructing the Lc
array naively after construction of the suffix and LCP arrays.

24.0s - corresponding to a total speedup of over 110× when increasing the processor count

96×.

4.5.3 Construction of Lc

In previous chapters, we experimentally compare the the SA and LCP construction against

other approaches and demonstrates its superior performance. The construction of the SA

and LCP arrays make up close to the entire runtime of the DESA construction. Therefore,

here we show only the effect of the added Lc construction (as described in Section 4.4.1).

We compare the runtime of our Lc construction algorithm against the time required to

construct the SA and LCP Array without Lc (the algorithm and implementation of [12]),

as well as a naive construction of the Lc array by implementing a bulk-query using all-to-

all communication to directly read the underlying string for each Lc[i] at S[SA[i − 1] +

LCP [i]].

The results are shown in Figure 4.4 and demonstrate that our Lc construction algorithm

has a negligible contribution to the total runtime required to construct the other DESA com-

ponents, whereas constructing the Lc array naively adds more than 10% in total runtime.

Our work in [12] previously illustrated fast distributed construction of the suffix array and
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how constructing the LCP array alongside adds just a small fraction to the total runtime.

Here, we have further shown that the additional data structures required to create an ef-

ficiently query-able Distributed Enhanced suffix array can be accomplished in little extra

time. Constructing the DESA index for the full human genome on 1536 cores (64 nodes)

of Edison takes just under 4 seconds.

4.6 Conclusion

In this chapter, we introduced a novel distributed string index, the Distributed Enhanced

Suffix Array (DESA). This distributed data structure allows efficient construction and query-

ing, all while requiring onlyO(n/p) memory per process. We presented efficient distributed-

memory parallel algorithms for querying, as well as for the efficient construction of this dis-

tributed index. We demonstrated the performance of our algorithms by comparing against

other sequential approaches, and demonstrated strong scalability on over 1500 cores.
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CHAPTER 5

DISTRIBUTED PARALLEL CONNECTED COMPONENTS LABELING OF

DE-BRUIJN GRAPHS

5.1 Preface

The work on this project was initially motivated by a problem in Metagenomics assembly.

The grand challenge Iowa corn soil metagenomic data set sequenced at the Joint Genome

Institute contains 1.8 billion sequencing reads [52]. The corresponding de-Bruijn graph

consists of approximately 135 billion vertices and edges, too large for any assembler to

assembly directly. Howe et al. [53] discovered that the high species level heterogeneity

in metagenomic data sets leads to a large number of disjoint connected components in the

de Bruijn graph. This property can be exploited to partition the reads into disjoint sets and

assemble each set independently.

Motivated by this application, we developed a distributed memory parallel connected

components algorithm, making use of iterative sorting of an edge list graph format and

merging of neighboring or overlapping components, as well as a neighbor doubling ap-

proach similar to the pointer jumping method used in list ranking. We demonstrated the

scalability of this algorithm by partitioning the grand challenge Iowa corn soil metage-

nomic data set with 1.8 billion reads, a graph with ≈ 135 billion edges and ≈ 390 million

components, in 22 minutes [15].

Our algorithm showed promising results also for other types for graphs. Chirag Jain

as a lead author continued this work by creating a hybrid approach between our Con-

nected Components (CC) algorithm and distributed memory Breadth-First-Search (BFS).

We showed that using runtime algorithm selection between BFS and our CC algorithm,

the hybrid method generalizes to diverse graph topologies and achieves superior perfor-
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mance [16]. The following Sections of this Chapter explain the algorithms involved and

the experimental performance achieved.

5.2 Introduction

Computing connected components in undirected graphs is a fundamental problem in graph

analytics. The sizes of graph data collections continue to grow in multiple scientific do-

mains, motivating the need for high performance distributed memory parallel graph algo-

rithms, especially for large networks that cannot fit into the memory of a single compute

node. For a graph G(V,E) with n vertices and m edges, two vertices belong to the same

connected component if and only if there is a path between the two vertices in G. Sequen-

tially, this problem can be solved in linearO(m+n) time, e.g. by using one of the following

two approaches. One approach is to use graph traversal algorithms, i.e., either Breadth First

(BFS) or Depth First Search (DFS). A single traversal is necessary for each connected com-

ponent in the graph. Another technique is to use a union-find based algorithm, where each

vertex is initially assumed to be a different graph component and components connected

by an edge are iteratively merged.

Parallel BFS traversal algorithms have been invented that are work-optimal and prac-

tical on distributed memory systems for small-world graphs [54, 55]. While parallel BFS

algorithms have been optimized for traversing a short diameter big graph component, they

can be utilized for finding connected components. However, connectivity can be deter-

mined for only one component at a time, as BFS cannot merge the multiple partial search

trees in the same component that are likely to arise during concurrent runs. For an undi-

rected graph with a large number of small components, parallel BFS thus has limited utility.

On the other hand, BFS is an efficient technique for scale-free networks that are character-

ized by having one dominant short diameter component.

The classic Shiloach-Vishkin (SV) algorithm [56], a widely known PRAM algorithm

for computing connectivity, simultaneously computes connectivity of all the vertices and
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promises convergence in logarithmic iterations, making it suitable for components with

large diameter, as well as for graphs with a large number of small sized components. Note

that compared to simple label propagation techniques, the SV algorithm bounds the number

of iterations to O(log n) instead of O(n), where each iteration requires O(m + n) work.

In this work, we provide a novel edge-based parallel algorithm for distributed memory

systems based on the SV approach. We also propose optimizations to reduce data volume

and balance load as the iterations progress.

To achieve the best performance for different graph topologies, we introduce a dy-

namic pre-processing phase to our algorithm that guides the algorithm selection at runtime.

In this phase, we try to classify the graph as scale-free by estimating the goodness of fit

of its degree distribution to a power-law curve. If and only if the graph is determined to

be scale-free, we execute one BFS traversal iteration from a single root to find the largest

connected component with high probability, before switching to the SV algorithm to pro-

cess the remaining graph. While the pre-processing phase introduces some overhead, we

are able to improve the overall performance by using a combination of parallel BFS and

SV algorithms, with minimal parameter tuning.

Our primary application driver is metagenomic assembly, where de Bruijn graphs are

used for reconstructing, from DNA sequencer outputs, constituent genomes in a metagenome[57].

A recent scientific study showed that high species-level heterogeneity in metagenomic data

sets leads to a large number of weakly connected components, each of which can be pro-

cessed as independent de Bruijn graphs [53]. This coarse grained data parallelism moti-

vated our efforts in finding connected components in large metagenomic de Bruijn graphs.

However, our work is applicable to graphs from domains beyond bioinformatics.

In this study, we cover a diverse set of graphs, both small world and large diameter,

to highlight that our algorithm can serve as a general solution to computing connected

components for undirected graphs. We experimentally evaluate our algorithm on de Bruijn

graphs from publicly available metagenomic samples, road networks of the United States
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and European Union, scale-free networks from the internet, as well as Kronecker graphs

from the Graph500 benchmark [58]. The graphs range in edge count from 82 million to 54

billion. Even though we focus on computing connected components in undirected graphs,

ideas discussed in this work are applicable to finding strongly connected components in

directed graphs as well. Our C++ and MPI-based implementation is available as open

source at https://github.com/ParBLiSS/parconnect.

To summarize the contributions:

• We provide a new scalable strategy to adapt the Shiloach-Vishkin PRAM connectiv-

ity algorithm to distributed memory parallel systems.

• We discuss and evaluate a novel and efficient dynamic approach to compute weakly

connected components on a variety of graphs, with small and large diameters.

• We demonstrate the scalability of our algorithm by computing the connectivity of the

de Bruijn graph for a large metagenomic dataset with 1.8 billion DNA sequences and

54 billion edges in less than 4 minutes using 32K cores.

• Depending on the underlying graph topology, we see variable performance improve-

ments up to 24x when compared against the state-of-the-art parallel connectivity al-

gorithm.

The content of this Chapter was joined work with Chirag Jain and Tony Pan. The

following list of papers are result of this work [15, 16, 17]:

• P. Flick et al., “A Parallel Connectivity Algorithm for de Bruijn Graphs in Metage-

nomic Applications,” in Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis, ACM, 2015, p. 15

• C. Jain et al., “An adaptive parallel algorithm for computing connected components,”

IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 9, pp. 2428–

2439, 2017
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• P. Flick et al., “Reprint of a parallel connectivity algorithm for de bruijn graphs in

metagenomic applicationsi,” Parallel Computing, vol. 70, pp. 54–65, 2017

5.3 Related Work

Due to its broad applicability, there have been numerous efforts to parallelize the connected

component labeling problem. Hirschberg et al. [59] presented a CREW1 PRAM algorithm

that runs in O(log2 n) time and does O(n2 log n) work, while Shiloach and Vishkin [56]

presented an improved version assuming a CRCW2 PRAM that runs inO(log n) time using

O(m + n) processors. As our parallel SV algorithm is based on this approach, we sum-

marize the SV algorithm in separate subsection. Krishnamurthy et al. [60] made the first

attempt to adapt SV algorithm to distributed memory machines. However, their method is

restricted to mesh graphs, which they could naturally partition among the processes [61].

Goddard et al. [62] discussed a practical implementation of SV algorithm for distributed

machines with mesh network topology. Their method, however, was shown to exhibit poor

scalability beyond 16 processors for sparse graphs [63].

Bader el al. [64] and Patwary et al. [65] discussed shared memory multi-threaded

parallel implementations to compute spanning forest and connected components on sparse

and irregular graphs. Recently, Shun et al. [66] reported a work optimal implementation for

the same programming model. Note that these solutions are not applicable for distributed

memory environments due to high frequency of remote memory accesses. Cong et al. [67]

proposed a parallel technique for solving the connectivity problem on a single GPU.

There have been several recent parallel algorithms for computing the breadth-first search

(BFS) traversal on distributed memory systems [54, 55, 68]. However, parallel BFS does

not serve as an efficient, stand-alone method for computing connectivity. There are also

several large-scale distributed graph analytics frameworks that can solve the connectivity

problem in large graphs, including GraphX [69], PowerLyra [70], PowerGraph [71], and
1CREW = Concurrent Read Exclusive Write
2CRCW = Concurrent Read Concurrent Write
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GraphLab [72]. Iverson et al. [73] proposed a distributed-memory connectivity algorithm

using successive graph contraction operations, however, the strong scalability demonstrated

for this method was limited to 32 cores.

Slota et al. [74] proposed a shared memory parallel Multistep method that combines

parallel BFS and label propagation (LP) technique and was reported to perform better than

using BFS or LP alone. In their Multistep method, BFS is first used to label the largest com-

ponent before using the LP algorithm to label the remaining components. More recently,

they proposed a distributed memory parallel implementation of this method and showed

impressive speedups against the existing parallel graph processing frameworks [75]. How-

ever, their algorithm design and experimental datasets are restricted to graphs which contain

a single massive connected component. While our algorithm likewise employs a combina-

tion of algorithms, in contrast to MultiStep, we use BFS and our novel SV implementation,

and determine dynamically at runtime whether the BFS should be executed.

5.3.0 The Shiloach-Vishkin Algorithm

The Shiloach-Vishkin connectivity algorithm was designed assuming a PRAM model. It

begins with singleton trees corresponding to each vertex in the graph and maintains this

auxiliary structure of rooted directed trees to keep track of the connected components dis-

covered so far during the execution. Within each iteration, there are two phases referred

to as shortcutting and hooking. Shortcutting involves collapsing the trees using pointer

doubling. On the other hand, hooking connects two different connected components when

they share an edge in the input graph. This algorithm requires O(log n) iterations each tak-

ing constant time. Since this approach usesO(m+n) processors, the total work complexity

is O((m+ n) · log n).
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Figure 5.1: Initialization of array A for a small connected component with three vertices
u, v1, v2 in our algorithm. Partitions are highlighted using different shades. Desired solu-
tion, assuming v1 = min (u, v1, v2), shown on the right will be to have all three vertices in
a single component v1. Accordingly, all the tuples associated with this component should
contain the equal partition id v1.
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Symbol Description Definition
V Vertices in graph G
E Edges in graph G
〈p, q, r〉 Tuple p, q, r ∈ Z
Ai Array of tuples in iteration

i
Pi Unique partitions {p | 〈p, q, r〉 ∈ Ai}
PBi(p) Partition bucket for parti-

tion p
{〈p̂, q, r〉 ∈ Ai | p̂ =
p}

VBi(u) Vertex bucket for vertex u {〈p, q, r〉 ∈ Ai | r =
u}

Vi(p) Vertex members in parti-
tion p

{r | 〈p, q, r〉 ∈
PBi(p)}

Ci(p) Candidate partitions for
partition p

{q | 〈p, q, r〉 ∈
PBi(p)}

Mi(u) Partitions in vertex bucket
for vertex u

{p | 〈p, q, r〉 ∈
VBi(u)}

Ni(p) Neighborhood partitions
of partition p

∪u∈Vi(p)Mi(u)

Table 5.1: Summary of the notations used in Section 5.4

5.4 Algorithm

5.4.1 Parallel SV Algorithm

5.4.1 Notations

Given an undirected graph G = (V,E) with n = |V | vertices and m = |E| edges, our

algorithm identifies its connected components, and labels each vertex v ∈ V with its cor-

responding component. Our algorithm works on an array of 3-tuples 〈p, q, r〉, where p, q,

and r are integers. The first two elements of these tuples will be updated in each iteration

of the algorithm. The third element r corresponds to a vertex r ∈ V of the graph and is not

changed throughout the algorithm. This element will also be used to identify the vertices

of G with their final connected components after termination.

Let Ai denote the array of tuples in iteration i. We initialize A0 as follows: for each

vertex x ∈ V , we add the tuple 〈x, , x〉, and for each undirected edge {x, y} ∈ E, we
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add tuples 〈x, , y〉 and 〈y, , x〉. The middle elements will be initialized later during the

algorithm.

We denote the set of unique values in the first entry of all the tuples in Ai by Pi,

therefore Pi = {p | 〈p, q, r〉 ∈ Ai}. We refer to the unique values in Pi as partitions,

which represent intermediate groupings of tuples that eventually coalesce into connected

components. We say that a tuple 〈p, q, r〉 is a member of the partition p. Once the algorithm

converges, all tuples for a vertex r will have a single unique partition p, which is also the

unique connected component label for this vertex.

In order to refer to the tuples of a partition p, we define the partition bucket PBi(p) of

p as those tuples which contain p in their first entry: PBi(p) = {〈p̂, q, r〉 ∈ Ai | p̂ = p}.

Further, we define the candidates or the next potential partitions Ci(p) of p as the values

contained in the second tuple position of the partition bucket for p: Ci(p) = {q | 〈p, q, r〉 ∈

PBi(p)}. We denote the minimum of the candidates of p as pmin = min Ci(p). A partition

p for which pmin = p is called a stable partition. Further, to identify all the vertices in a

partition, we define the vertex members of a partition p as Vi(p) = {r | 〈p, q, r〉 ∈ PBi(p)}.

Each vertex u ∈ V is associated with multiple tuples in Ai, possibly in different parti-

tions p. We define vertex bucket VBi(u) as those tuples which contain u in their third entry:

VBi(u) = {〈p, q, r〉 ∈ Ai | r = u}. We define the partitionsMi(u) as the set of partitions

in the vertex bucket for u: Mi(u) = {p | 〈p, q, r〉 ∈ VBi(u)}. The minimum partition in

Mi(u), i.e., minMi(u) is called nominated partition by u.

For a small example graph with vertices u, v1, v2, (Fig. 5.1), we show the array of

tuples A. At the initialization stage, the vertex bucket VB0(u) of u is the set of tuples

{〈u, , u〉, 〈v1, , u〉, 〈v2, , u〉}. The set of unique partitions P0 equals {u, v1, v2}. The par-

tition bucket PB0(u) for partition u is given by the set {〈u, , u〉, 〈u, , v1〉, 〈u, , v2〉}. At

termination of our algorithm, all tuples will have the same common partition id, which for

this example will be min(u, v1, v2).

Each partition is associated with a set of vertices, and the tuples for a vertex can be
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part of multiple partitions. We define the neighborhood for a partition p as those parti-

tions which share at least one vertex with p, i.e., those which share tuples with a common

identical value in the third tuple element. More formally, we define the neighborhood par-

titions of p as Ni(p) = ∪u∈Vi(p)Mi(u). In the above example, the neighborhood partitions

N0(v1) for the partition v1 are u, v1 and v2. All the notations introduced in this section are

summarized in Table 5.1 for quick reference.

5.4.1 Algorithm

We first describe the sequential version of our algorithm, outlined in Algorithm 13. Our

algorithm is structured similar to the classic Shiloach-Vishkin algorithm. However, our

algorithm is implemented differently, using an edge-centric representation of the graph.

At a high level, every vertex begins in its own partition, and partitions are connected via

the edges of the graph. In each iteration, we join each partition to its numerically minimal

neighbor, until the partitions converge into the connected components of the graph. In order

to resolve large diameter components quickly, we utilize the pointer doubling technique

during shortcutting. To implement pointer doubling, we will require the parent partition id

of the newly joined partition in each iteration. We use temporary tuples 〈p, q, r〉tmp to fetch

this information. These tuples will be created and erased within the same iteration.

As laid out in Section 5.4.1.1, we first create an array of tuples A, containing one tuple

per vertex and two tuples per edge (Algorithm 13). In each iteration i, we perform four

sorting operations over Ai. During the first two sorting operations, we compute and join

each partition p to its minimum neighborhood, i.e. minNi(p). Sorting Ai by the third

entry, namely the vertex ids enables easy and cache efficient processing of each vertex

bucket VBi(u), u ∈ V , since the tuples of a bucket are positioned contiguously in Ai due

to the sorted order (line 9-15). For each vertex bucket VBi(u), we scan all the partition

ids containing u, i.e., Mi(u) and compute the nominated partition umin which becomes

the candidate (potential next partition). We save the candidate partition id in the second
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ALGORITHM 13: Connected components labeling
Input: Undirected graph G = (V,E)
Output: Labeling of Connected Components

1 A0 = []
2 for x ∈ V do A0.append(〈x, , x〉);
3 for {x, y} ∈ E do A0.append(〈x, , y〉, 〈y, , x〉);
4 i← 1
5 converged← false
6 while converged 6= true do
7 converged← true
8 Ai ← Ai−1
9 Mi(u)← sort(Ai by third element)

10 for u ∈ V do
11 umin ← minMi(u)
12 for each 〈p, q, r〉 ∈ VBi(u) do
13 〈p, q, r〉 ← 〈p,umin, r〉
14 end
15 end
16 Ci(p)← sort(Ai by first element)
17 for p ∈ Pi do
18 pmin ← min Ci(p)
19 if p 6= pmin then
20 converged← false
21 end
22 for each 〈p, q, r〉 ∈ PBi(p) do
23 〈p, q, r〉 ← 〈pmin, q, r〉
24 end
25 Ai.append(〈pmin, , pmin〉tmp)
26 end
27 redo steps 9 - 15
28 redo steps 16 - 24
29 for each 〈p, q, r〉tmp ∈ Ai do
30 Ai.erase(〈p, q, r〉tmp)
31 end
32 i← i+ 1

33 end

Figure 5.2: Our parallel SV algorithm, presented using sequential semantics.

element of the tuples.

After computing all the candidate partitions, we perform a second global sort of Ai

by the first tuple element in order to process the partition buckets PBi (line 16-24). Each

partition p ∈ Pi then computes and joins the minimum candidate partition, i.e., pmin =
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Figure 5.3: Role of the four sorting phases used in each iteration of the algorithm. Using
the first two sorts, partition p joins pmin. The next two sorts enable pointer-jumping as
pmin joins minMi(pmin). The temporary tuple 〈pmin, , pmin〉tmp used in the algorithm
simulates a link between the partition pmin and the vertex pmin to allow jumping.

min Ci(p). In other words, partition p joins its minimum neighbor pmin. We loop over these

two sort-and-update steps until partitions converge into the connected components of the

graph. Convergence for a partition p is reached when its neighborhood Ni(p) contains p

as its only member. Consequently, we can determine when to terminate the algorithm by

checking whether all the partitions have fully converged, i.e., if they do not have any further

neighboring partitions. For any partition p, p 6= pmin implies the existence of at least one

neighbor partition around p (line 19).

Iteratively invoking lines 7-24 until convergence produces connected components of

the graph within O(n) iterations in the worst-case. By following the pointer doubling

technique described in the SV algorithm [56], we achieve logarithmic convergence. We

summarize the role of all the four sorting operations in Figure 5.3. After joining partition p

to pmin, we revise pmin to minMi(pmin). The revision is effected by introducing temporary

tuples 〈pmin, , pmin〉tmp in Ai (line 25), then repeating the two sorts by the third and first

element respectively (line 27, 28). In a way similar to the first two sorts of this iteration,

the third sort forces the vertex pmin to nominate minMi(pmin) as the candidate partition

id in the second element of the temporary tuples. Partition pmin, then, joins the partition

id minMi(pmin) after the final sort. The temporary tuples are removed from Ai after the
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pointer doubling phase is completed (line 30).

Note that the global count of the temporary tuples equals |Pi| in each iteration, and we

know |Pi| ≤ |V | (by the definition of Pi). Therefore, the O(m + n) bound holds for |Ai|

throughout the execution. After the algorithm converges, the unique connected component

label c of a vertex u ∈ V can be projected from the first element of any tuple 〈c, , u〉 in A.

5.4.1 Parallel Algorithm

We now describe our parallel implementation of the above algorithm for connected compo-

nents labeling in a distributed memory environment. In this setting, each processor in the

environment has its own locally addressable memory space. Remote data is accessible only

through well defined communication primitives over the interconnection network. The al-

gorithm consists of three components: data distribution, parallel sorts, and bucket updates.

We designed our algorithm and its components using MPI primitives.

Data Distribution: All data, including the input, intermediate results, and final output,

are equally distributed across all available processors. As specified in section 5.4.1.2, the

pipeline begins by generating tuples of the form 〈p, q, r〉 from the block distributed input

G(V,E) as edge list. By the end of this operation, each of the ρ processes contains its equal

share of |A|/ρ tuples.

Parallel Sorts: The bulk step of the algorithm is the sorting of tuples by either their

third or first element in order to form the buckets VBi or PBi, respectively. Parallel dis-

tributed memory sorting has been studied extensively. Blelloch et al. [32] give a good

review of different methods. With sufficiently large count of elements per process, which

is often true while processing large datasets, the study concluded that samplesort is the

fastest. Accordingly, we implement a variant of samplesort with regular sampling, where

each processor first sorts its local array independently, and then picks equally spaced sam-

ples. The samples are then again sorted and ρ− 1 of these samples are used as splitters for

distributing data among processors. In a final step, the sorted sequences are merged locally.
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Bucket Updates: After each sort, we need to determine the minimum element for each

bucket, either umin for VBi(u) or pmin for PBi(p). As a result of the parallel sorting,

all the tuples 〈p, q, r〉 belonging to the same bucket are stored consecutively. However, a

bucket might span multiple processors. Therefore, the first and last bucket of each processor

require global communication during processing, while the internal buckets are processed

in the same way as in the sequential case. Note, the first and last bucket on a processor may

be the same if a bucket spans an entire processor. Communicating the minimum of buckets

with the previous and next processor would require O(ρ) communication steps in the worst

case, since large O(|A|) size partitions can span across O(ρ) processes. We thus use two

parallel prefix (scan) operations with custom operators to achieve independence from the

size of partitions, requiring at most O(log ρ) communication steps in addition to the local

linear time processing time.

We describe the custom reduction operation to compute the pmin within the partition

buckets PBi(p). Note that when computing pmin in the algorithm, Ai is already sorted

by the first element of the tuples and pmin is the minimum second element for tuples in

each bucket. We first perform an exclusive scan, where each processor participates with

the minimum tuple from its last bucket. This operation communicates the minimum of

buckets from lower processor rank to higher rank. The binary reduction operator chooses

from 2 tuples the tuple 〈p, q, r〉 with the maximum p, and between those with equal p, the

minimum q. Next we perform a reverse exclusive prefix scan to communicate the minimum

from high rank to low rank. Here, each processor participates with its minimum tuple of

its first bucket. Given the two results of the scan operations, we can compute for each

processor the overall minimum pmin for both the first and the last buckets. Computing umin

follows a similar procedure.

Runtime Complexity: The runtime complexity of each iteration is dominated by sort-

ing A, and the number of iterations is bounded by O(log n). If T (k, ρ) is the runtime to

sort k elements using ρ processes, the runtime of our algorithm for computing connectivity
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of graph G(V,E) equals O(log(n) · T (m+ n, ρ)).

5.4.1 Excluding Completed Partitions

As the algorithm progresses through iterations, certain partitions become completed. A

partition p is completed if p has no neighbor partition except itself, i.e.,Ni(p) = {p}. Even

though we have described how to detect the global convergence of the algorithm, detecting

as well as excluding the completed partitions reduces the active working set throughout

successive iterations.

By the definition ofNi(p) in Section 5.4.1.1,Ni(p) = {p} implies that∪u∈Vi(p)Mi(u) =

{p}. Since the third elements of the tuples are never altered, each vertex is associated with

at least one partition throughout the algorithm, therefore |Mi(u)| > 0∀u ∈ V . Using these

arguments, we claim the following: p is completed ⇔Mi(u) = {p} ∀u ∈ Vi(p). Once

the partition is completed, it takes us one more iteration to detect its completion. While

processing the vertex buckets after the first sort of the algorithm, we label all the tuples in

VBi(u), u ∈ V as potentially completed if |Mi(u)| = 1. While processing the partition

buckets subsequently, partition p is marked as completed if all the tuples in PBi(p) are

potentially completed.

Completed partitions are marked as such and swapped to the end of the local array. All

following iterations treat only the first, non-completed part of its local array as the local

working set. As a result, the size of the active working set shrinks throughout successive

iterations. This optimization yields significant reduction in the volume of active data, par-

ticularly for graphs with a large number of small components, since many small connected

components are quickly identified and excluded from future processing.

5.4.1 Load Balancing

Although we initially start with a block decomposition of the array A, exclusion of com-

pleted partitions introduces an increasing imbalance of the active elements with each it-
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eration. Since we join partitions from larger ids to smaller ids, a large partition will have

smaller final partition ids than small partitions probabilistically. As the sort operation maps

large id partitions to higher rank processes, the higher rank processes retain fewer and

fewer active tuples over time, while lower rank processes contain growing partitions with

small ids. Our experiments in Section 5.6 study this imbalance of data distribution and its

effect on the overall run time. We resolve this problem and further optimize our algorithm

by evenly redistributing the active tuples after each iteration. Our results show that this

optimization yields significant improvement in the total run time.

5.4.2 Hybrid Implementation using BFS

Connected components can be found using a series of BFS traversals, one for each com-

ponent. The known parallel BFS algorithms are asymptotically work-optimal, i.e., they

maintain O(m + n) parallel work for small-world networks [54]. Parallel BFS software

can be adapted to achieve the same objective as our parallel SV algorithm, namely to com-

pute all the connected components in a graph. To do so, parallel BFS can be executed

iteratively, each time selecting a new seed vertex from among the vertices that were not

visited during any of the prior BFS iterations. However, we note the following strengths

and weaknesses associated with using BFS methods for the connectivity problem:

• Pro: For a massive connected component with a small diameter, the large number of

vertices at each level of the traversal yields enough data parallelism for parallel BFS

methods to become bandwidth bound, and thus efficient.

• Con: When the diameter of a component is large and vertex degrees are small, for

instance in mesh graphs, the number of vertices at each level of BFS traversal is

small. The application becomes latency-bound due to the lack of data parallelism.

This leads to under-utilization of the compute resources and the loss of efficiency in

practice [54].
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• Con: For graphs with a large number of small components, parallel BFS needs to

be executed repeatedly. The application becomes latency-bound as the synchroniza-

tion and remote communication latency costs predominate the effective work done

during the execution. In this case, BFS method’s scalability is greatly diminished.

Slota et al. [74] draw a similar conclusion while parallelizing the strongly connected

components problem using shared memory systems.

A small world scale-free network contains a single large connected component [76].

To compute the connectivity of these graphs, we note that identifying the first connected

component using a BFS traversal is more efficient than using the SV algorithm over the

complete graph. For parallel BFS, we use Buluç et al.’s [54] state-of-the-art implemen-

tation available as part of the CombBLAS library [77] and integrate this software as an

alternative pre-processing step to our parallel SV algorithm.

Scale-free networks are characterized by a power-law vertex degree distribution [78].

Therefore, we classify the graph structure as scale-free by checking if the degree distri-

bution follows a power-law distribution. We use the statistical framework described by

Clauset et al. [79] to fit a power-law curve to the discrete graph degree distribution, and

estimate the goodness of fit with one-sample Kolmogorov-Smirnov (K-S) test. The closer

the K-S statistic value is to 0, the better is the fit. If this value is below a user specified

threshold τ , then we execute a BFS iteration before invoking our parallel SV algorithm.

Algorithm 14 gives the outline of our hybrid approach.

In our implementation, we choose to store each undirected edge (u, v) as two directed

edges (v, u) and (u, v) in our edge list. This simplifies the computation of the degree

distribution of the graph (line 2). We compute the degree distribution D of the graph by

doing a global sort of edge list by the source vertex. Through a linear scan over the sorted

edge list, we compute the degree of each vertex u ∈ V . In practice, it is safe to assume

that the maximum vertex degree c is much smaller than number of edges |E| (c � |E|).

Thus each process can compute the local degree distribution in an array of size c, and a
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ALGORITHM 14: Connected components labeling
Input: Undirected graph G = (V,E)
Output: Labeling of Connected Components

1 // Graph structure prediction
2 D ← Degree Distribution(G)
3 if K-S statistic (D) < τ then
4 // Relabel vertices
5 G(V,E)← G(V,E) s.t. u ∈ [0, |V | − 1]∀u ∈ V
6 //Execute BFS
7 choose a seed s ∈ V
8 VI ←Parallel-BFS(s)
9 //Filter out the traversed component

10 V ← V \ VI
11 E ← E \ {(u, v)|u ∈ VI}
12 end
13 Parallel-SV(G(V,E))

Figure 5.4: Hybrid approach using parallel BFS and SV algorithms to compute connected
components

parallel reduction operation is used to solve forD. OnceD is known, evaluating the degree

distribution statistics takes insignificant time as size of D equals c. Therefore, we compute

the K-S statistics as described before, sequentially on each process.

If the K-S statistic is below the set threshold, we choose to run the parallel BFS on

G(V,E) (line 3). Buluç’s BFS implementation works with the graph in an adjacency matrix

format. Accordingly, we relabel the vertices in G(V,E) such that vertex ids are between

0 to |V | − 1 (line 5). This process requires sorting the edge list twice, once by the source

vertices and second by the destination vertices. After the first sort, we perform a parallel

prefix (scan) operation to label the source vertices with a unique id ∈ [0, V − 1]. Similarly,

we update the destination vertices using the second sort.

Next, we execute the parallel BFS from a randomly selected vertex in G(V,E) and get

a distributed list of visited vertices VI as the result. Note that the visited graph component

is expected to be the largest one as it spans the majority of G(V,E) in the case of scale-free

graphs. To continue solving for other components, we filter out the visited component VI

from G(V,E) (line 10,11). VI is distributed identically as V , therefore vertex filtering
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is done locally on each process. We already have the edge list E in the sorted order by

destination vertices due to the previous operations, therefore we execute an all-to-all col-

lective operation to distribute VI based on the sorted order and delete the visited edges

locally on each processor. Finally, irrespective of whether we use BFS or not, we run the

parallel SV algorithm on G(V,E) (line 13). In our experiments, we show the overall gain

in performance using the hybrid approach as well as the additional overhead incurred by

the prediction phase. We also report the proportion of time spent in each of the prediction,

relabeling, parallel-BFS, filtering, and parallel-SV stages.

5.5 Experimental Setup

5.5.1 Hardware

For the experiments, we use Edison, a Cray XC30 supercomputer located at Lawrence

Berkeley National Laboratory. In this system, each of the 5,576 compute nodes has two

12-core Intel Ivy Bridge processors with 2.4 GHz clock speed and 64 GB DDR3 memory.

To perform parallel I/O, we use the scratch storage supported through the Lustre file system.

We assign one MPI process per physical core for the execution of our algorithm. Further,

we only use square process grids as CombBLAS [77] requires the process count to be a

perfect square.

5.5.2 Datasets

Table 5.2 lists the 9 graphs used in our experiments. These include 4 de Bruijn graphs

constructed from different metagenomic sequence datasets, one social graph from Twitter,

one web crawl, one road network and two synthetic Kronecker graphs from the Graph500

benchmark. The sizes of these graphs range from 83 million edges to 54 billion edges.

For each graph, we report the relevant statistics in Table 5.2 to correlate them with

our performance results. Computing the exact diameter is computationally expensive and

often infeasible for large graphs [82]. As such, we compute their approximate diameters by
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Table 5.2: List of the nine graphs and their sizes used for conducting experiments. Edge
between two vertices is counted once while reporting the graph sizes. Largest component’s
size is computed in terms of percentage of count of edges in the largest component relative
to complete graph.

Id Dataset Type Vertices
Undirected

Edges
Components

Approx.
diameter

Largest
component

Source

M1 Lake
Lanier

Metagenomic 1.1 B 1.1 B 2.6 M 3,763 53% NCBI
(SRR947737)

M2 Human
Metagenome

Metagenomic 2.0 B 2.0 B 1.0 M 3,989 91.1% NCBI
(SRR1804155)

M3 Soil
(Peru)

Metagenomic 531.2 M 523.6 M 7.6 M 2,463 0.3% MG-RAST
(4477807.3)

M4 Soil
(Iowa)

Metagenomic 53.7 B 53.6 B 319.2 M - 44.2% JGI
(402461)

G1 Twitter Social 52.6 M 2.0 B 29,533 16 99.99% [80]

G2 sk-2005 Web Crawl 50.6 M 1.9 B 45 27 99.99% [81]

G3 eu-usa-
osm

Road Networks 74.9 M 82.9 M 2 25,105 65.2% [81]

K1 Kronecker
(scale =
27)

Kronecker 63.7 M 2.1 B 19,753 9 99.99% Synthetic
[58]

K2 Kronecker
(scale =
29)

Kronecker 235.4 M 8.6 B 73,182 9 99.99% Synthetic
[58]

executing a total of 100 BFS runs from a set of random seed vertices. For all the graphs but

M4, this approach was able to give us an approximation. However, the size of M4 required

a substantial amount of time for completing this task and as such it did not complete. We

estimate that only 4 of the 9 tested graphs are small world networks.

5.5.2 Metagenomic de Bruijn Graphs

M1-M4 are built using publicly available metagenomics samples from different environ-

ments. We obtained the sequences in FASTQ format. We discarded the sequences with

unknown nucleotides using the fastx clipper utility supported in the FASTX toolkit [83].

The size of the sequence dataset depends upon the amount of sampling done for each en-

vironment. We build de Bruijn graphs from these samples using the routines from the

parallel distributed memory k-mer indexing library Kmerind [84]. It is worth noting that

in de Bruijn graphs, vertex degrees are bounded by 8 [57]. One motivation for picking
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samples from different environments is the difference in graph properties associated with

them such as the number of components and relative sizes. These are dependent on the

degree of microbial diversity in the environments. Among the environments we picked, it

has been estimated that the soil environments are the most diverse while the human mi-

crobiome samples are the least diverse of these environments [85]. This translates to large

number of connected components in the soil graphs M3 and M4.

5.5.2 Other Graphs

Graphs K1-K2 and G1-G3 are derived from widely used graph databases and benchmarks.

We use the synthetic Kronecker graph generator from the Graph500 benchmark specifica-

tions [58] to build Kronecker graphs with scale 27 (K1) and 29 (K2). Graphs G1-G3 are

downloaded directly from online databases in the edge list format. G1 and G2 are small

world scale-free networks from twitter and online web crawl respectively. G3 consists of

two road networks from Europe and USA, downloaded from the Florida Sparse Matrix

Collection [81]. Among all our graphs, G3 has the highest estimated diameter of 25K. To

read these data files in our program, a file is partitioned into equal-sized blocks, one per

MPI process. The MPI processes concurrently read the blocks from the file system and

generate distributed arrays of graph edges in a streaming fashion.

5.6 Performance Analysis

In all our experiments, we exclude file I/O and de Bruijn graph construction time from our

benchmarks, and begin profiling after the block-distributed list of edges are loaded into

memory. Profiling terminates after computing the connected component labels for all the

vertices in the graph. Each vertex id in the input edge list is assumed to be a 64 bit integer.

The algorithm avoids any runtime bias on vertex naming of the graph by permuting the

vertex ids using Robert Jenkin’s 64 bit mix invertible hash function [86].
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5.6.1 Load Balancing

We first show the impact of the two optimizations performed by our parallel SV algorithm

(Sections 5.4.1.4 and 5.4.1.5) for reducing and balancing the work among the processes.

Our algorithm used 10 iterations to compute the connectivity of M1. Figure 5.5 shows the

minimum (min), maximum (max), and mean size of the distributed tuple array per pro-

cess as iterations progress in three variants of our algorithm, using 256 cores. The max

load is important as it determines the parallel runtime. A smaller separation between the

min and max values indicates better load balance. The first implementation, referred to as

Naive (Section 5.4.1.3), does not remove the completed components along the iterations

and therefore the work load remains constant. Removing the stable components reduces

the size of the working set per each iteration as illustrated by the desirable decrease in

mean tuple count. The difference between min and max grows significantly after 4 itera-

tions. With our load balanced implementation, we see an even distribution of tuples across

processors, as the minimum and maximum count are the same for each iteration. We see

that the mean drops to about 50% of the initial value because the largest component in M1

contains 53% of the total edges (Table 5.2).

Consequently, we see improvement in the execution time for M1 and M3 in Figure

5.6 as a result of these optimizations. Of the three implementations, the load balanced

implementation consistently achieves better performance against the other two approaches.

For the M2 graph, we get negligible gains using our load-balanced approach against the

Naive approach because the largest component in M2 covers 91% of the graph. Therefore,

the total work load stays roughly the same across the iterations.

5.6.2 Hybrid Implementation Analysis

As discussed in Section 5.4.2, BFS is more efficient for computing the first component

in the small world scale-free graphs. We use an open-source C++ library [87] which fits

the power-law distributions to discrete empirical data based on the procedure described
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Table 5.3: Kolmogorov Smirnov test values used to estimate the goodness of power law
curve fit to the degree distribution of each graph. BFS is executed if K-S statistic value is
less than 0.05.

Dataset K-S statistic Run BFS
iteration?

Correct
Decision?

M1 0.41 5 3

M2 0.24 5 5

M3 0.39 5 3

M4 0.31 5 3

G1 0.01 3 3

G2 0.03 3 3

G3 0.21 5 3

K1 0.01 3 3

K2 0.01 3 3

by Clauset et al. [79]. Table 5.3 shows the K-S statistic value computed using the degree

distribution for all our graphs. For each of the graphs with scale-free topology (G1, G2, K1,

K2), there is a clear distinction of these values against rest of the graphs. Based on these

observations, we set a threshold of 0.05 to predict the scale-free structure of the underlying

graph topology and execute a BFS iteration for such cases.

To measure the relative improvement obtained by running BFS iteration based on the

prediction, we compare the runtime of this dynamic approach against our implementation

that does not compute K-S statistics and is hard-coded to make the opposite choice, i.e.,

executing BFS iteration only for the graphs M1-M4, G3. This experiment, using 2025

processor cores, measures whether the prediction is correct and if correct, how much per-

formance benefit do we gain against the opposite choice. As illustrated in figure 5.7a, we

see positive speedups for all the graphs except M2. We see more than 3x performance gains

for all the small world graphs as well as G3. For M1 and M3, we gained approximately

25% improvement in the runtime. This experiment confirms that using BFS to identify and

exclude the largest component is much more effective for small world graphs while run-
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ning BFS on large diameter graph such as G3 is not optimal. Moreover, using the degree

distribution statistics, we can choose an optimal strategy for most of the graphs.

Note that computing the degree distribution of a graph and measuring K-S statistics

adds an extra overhead to the overall runtime of the algorithm. We evaluate the additional

overhead incurred by comparing the dynamic approach against the implementation which

is hard-coded to make the same choice, i.e., execute BFS iteration only for G1-G2, K1-K2

(Figure 5.7b) using 2025 processor cores. The overhead varies from 60% for G1 to only

2% for M1. In general, we find this overhead to be relatively high for small-world graphs.

Fitting the degree distribution curve against a power-law model is a sequential routine in

our implementation, and it takes us about a second for scale-free graphs because they tend

to have long-tailed degree distributions. We leave parallelizing and optimizing this routine

as future work. Overall, we observe that the performance gains significantly outweigh the

cost of computing the degree distribution and K-S test.

5.6.3 Strong Scaling

With the optimizations in place, we conducted strong scaling experiments on our algorithm.

In this experiment, we use 256-4096 cores for G1-G3, K1, and M1-M3. Results for M4,

the largest graph are discussed separately as we could not process it with fewer than 4096

cores. Graph K2 is ignored for this experiment because it has same topology as K1. In

Fig. 5.8, we show the runtimes as well as speedups achieved by our algorithm. Most of

these graphs cannot fit in the memory of a single node, therefore speedups are measured

relative to the runtime on 256 cores. Ideal relative speedup on 4096 cores is 16. We achieve

maximum speedup of more than 8x for the metagenomic graphs M1 and M2 and close to

6x speedup for small world graphs G1, G2 and K1. G3 shows limited scalability due to

its much smaller size relative to other graphs. We are able to compute connectivity for our

largest graph M4 in 215 seconds using 32761 cores (Table 5.4).

In section 5.4.1.3 we discussed how each iteration of our parallel SV algorithm uses
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The difference in the timings is the overhead of our prediction strat-
egy.

Figure 5.7: Evaluation of prediction heuristics in our algorithm

parallel sorting to update the partition ids of the edges. As a majority of time of this

algorithm is spent in performing sorting, we also execute a micro benchmark that sorts

2 billion randomly generated 64 bit integers using 256 and 4096 cores. Interestingly, we
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Speedups are computed relative to the runtime on 256 cores.

achieve speedup of 8.06 using our sample sorting method which is close to our scalability

for M1 and M2. We anticipate that implementing more advanced sorting algorithms [88]

may further improve the efficiency of our parallel SV algorithm.

5.6.4 Performance Anatomy

We also report the percentage of total execution time on 2025 cores that are attributable to

each stage of our algorithm (Fig. 5.9). This figure is noteworthy especially for the graphs

for which our algorithm chooses to execute BFS. For G1, G2, K1 and K2, more than 50%
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Table 5.4: Timings for the largest graph M4 with increasing processor cores

Cores 8281 16384 32761

Time for M4
(sec)

429.89 291.19 214.56
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Figure 5.9: Percentage time spend in different stages by the algorithm for different graphs
using 2025 cores. BFS is executed only for graphs G1, G2, K1 and K2.

of the total percentage of time is devoted to predicting the graph structure and relabeling

the vertices before running the parallel BFS and SV algorithm. This figure is not meant to

convey the true overhead due to the relabel and prediction operations individually, as the

time for relabeling is reduced after we sort the edges during the prediction stage (Section

5.4.2). Further, we measure the percentage time spent in the sorting operations in our

parallel-SV algorithm for the graphs M1, M2, M3 and G3. As we expected, this measure

is high and ranges from 91% - 94% for all the four graphs.

5.6.5 Comparison with Previous Work

We achieve notable speedups when the performance of our algorithm is compared against

the state-of-the-art Multistep algorithm [75] using 2025 cores. As before, we begin count-
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ing the time once the graph edge list is read into the memory in both cases. We ran the

Multistep algorithm with one process per physical core as we observed better performance

doing so than using hybrid MPI-OpenMP mode. Also, because the Multistep method ex-

pects the vertex ids to be in the range 0 to |V |−1, we inserted our vertex relabeling routine

in their implementation in order to run the software. Figure 5.10 shows the comparison of

our approach against the MultiStep method. We see > 1 speedups for our method in all

the graphs except G1. The speedup achieved ranges from 1.1x for K2 to 24.5x for G3. The

speedup roughly correlates with the diameter of the graphs. The improvements achieved

for the graphs M1, M2, M3 and G1 can be attributed to two shortcomings in the Multistep

approach: 1) It executes BFS for computing the first component in all the graphs. BFS

attains limited parallelism for large diameter graphs due to small frontier sizes. 2) It uses

the label propagation technique to compute other components which in the worst case can

take as many iterations as the diameter of the graph to reach the solution.

We could not compare our approach against the distributed-memory graph contrac-

tion algorithm [73] proposed to solve the connectivity problem, as the implementation is

not open-source. Based on their experiment description, the graph contraction algorithm

showed strong scalability only till 32 cores. Other distributed graph frameworks such

as GraphX [69], and FlashGraph [89] based on in-memory Apache Spark and external-

memory framework, respectively, can compute the connectivity of large-scale graphs as

well. Slota el al. [75] show that their Multistep algorithm achieves superior performance

against both of these methods. Because our algorithm performs better than Multistep, we

skip a direct comparison against GraphX and FlashGraph.

5.6.6 Comparison with Sequential Implementation

We examine the performance of our algorithm against the best known sequential imple-

mentation for computing connectivity, for graph instances which can fit in the single node

memory (64 GB) - these are relatively small. Previous works [65, 90] have shown that

118



0

25

50

75

M1 M2 M3 G1 G2 G3 K1 K2
Datasets

Ti
m

e 
(s

ec
)

Method

Our method

Multistep

2.1x 1.1x

2.7x

0.9x
1.9x

24.5x

1.1x

1.1x

Figure 5.10: Performance comparison of our algorithm against the Multistep method [75]
using multiple graphs with 2025 cores.

the Rem’s method [91] based on the union-find approach achieves the best sequential per-

formance. The sequential implementation we use in this algorithm was obtained from the

authors of [65]. Again, because the disjoint-set structure used in the algorithm requires the

vertices to be numbered from 0 to n − 1, we placed our relabeling routine in the imple-

mentation. This experiment uses graphs M3 and G3, as all the other graphs require more

than 64 GB memory. We also add a Kronecker graph of scale 25 (m = 537M, n = 17M)

to include a short diameter graph instance. Results of this experiment are shown in Table

5.5. For these three graphs, our algorithm selects BFS iteration for Kronecker graph only.

For the Kronecker graph, our algorithm achieves a 100x speedup using 1024 cores. For the

other graphs, M3 and G3, where the SV algorithm is selected, the speedup decreases with

respect to the sequential algorithm - which is partially due to the fact that the algorithm is

not work optimal.

5.6.7 Comparison with Shared-memory Implementations

The objective of the following comparative discussion between the distributed and shared-

memory algorithms is not only to discuss the performance difference where shared-memory
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implementations tend to get good scaling per core, rather it is to highlight some of the con-

straints that shared-memory implementations have in contrast to their distributed counter-

parts.

Shared-memory parallel methods [65, 66] exhibit good speedups over the best sequen-

tial implementation. It is therefore of no surprise to us that these algorithms can outper-

form our algorithm, especially for small to mid-range graphs. However, there are numerous

problem scales that these shared memory algorithms cannot cope with due to the size of the

graph; whereas our algorithm can easily deal with such networks. Our parallel algorithm

utilizes bulk synchronous communication instead of the fast asynchronous communication

found in shared-memory frameworks. While such communications are inherently slower,

they do enable processing larger networks. Consider the largest network analyzed (Table

5.2): metagenomic graph M4 which has 53.6 billion edges and an equal number of ver-

tices. Processing this graph in memory requires at least the following amount of memory:

2 · (|V | + |E|) × 8 bytes. This assumes that the graph requires |V | elements for the ver-

tices and 2 · |E| elements for the edges 3. Also, |V | integers are required for tracking the

connected component labels. Given the size of the graph, 4 byte integers are not large

enough to store all the unique keys and as such this requires using 8 byte integers. For

the M4 network, a total of 1.7 TB DRAM is needed. As the sequencing cost continues to

decline much faster than Moore’s law [92], we envision the need to analyze even larger

metagenomic graphs that require even more memory, in the near future. The problems

of optimizing distributed-memory parallel algorithms while trying to attain peak perfor-

mance continues to be an important challenge and one that deserves additional attention,

especially the ability to reduce the overhead of communication.

Overall, we see that our proposed algorithm and the optimizations help us improve the

state-of-the-art for distributed-memory parallel solution to the graph connectivity problem.

Simple and fast heuristics to detect the graph structure enables our algorithm to choose the

3Recall that these are un-directed edges and it is customary in CSR, Compressed Sparse Row, format to
store both directions of the edge
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Table 5.5: Performance comparison against Rem’s sequential connectivity algorithm [90,
91] using 1024 cores.

Dataset Fastest Seq. Time (s)
Speedup

p = 64 256 1024

Kronecker (25) 228.8 10.1 34.3 100.6

M3 406.2 2.5 9.3 27.0

G3 45.9 0.9 3.5 7.6

appropriate method dynamically for computing connectivity. This approach enabled us to

compute connectivity for a graph with more than 50 billion edges and 300 million compo-

nents in less than 4 minutes. The speedup we achieve over the state-of-the-art algorithm

ranges from 1.1x to 24.5x.

5.7 Conclusion

In this work, we presented an efficient distributed memory algorithm for parallel con-

nectivity, based on the Shiloach-Vishkin PRAM algorithm. We proposed an edge-based

adaptation of this classic algorithm and optimizations to improve its practical efficiency in

distributed systems. Our algorithm is capable of finding connected components in large

undirected graphs. We show that a dynamic approach that analyzes the graph and selec-

tively uses the parallel BFS and SV algorithms achieves better performance than a static

approach using one or both of these two methods. The dynamic approach prefers BFS ex-

ecution only for a large short-diameter graph component. Our method is efficient as well

as generic, as demonstrated by the strong scalability of the algorithm on a variety of graph

types. We also observed better performance when compared to a recent state-of-the-art

algorithm. The measured speedup is significant, particularly in the case of large diameter

graphs.
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CHAPTER 6

CONCLUSIONS

In this dissertation, we presented distributed memory parallel algorithms for solving string

and graph problems stemming from applications in computational biology. Our algorithms

are designed to be able to scale to much larger problems compared to prior approaches, a

necessity motivated by the rapid increase in the sizes of genomic data sets.

Suffix arrays and trees are fundamental string data structures which lie at the foundation

of many string algorithms, with important applications in text processing, information re-

trieval, and computational biology. Conversely, the parallel construction of these indices is

an actively studied problem. However, prior approaches lacked good worst-case run-time

guarantees and exhibit poor scaling and overall performance.

In order to be able to scale to very large inputs, our algorithms are designed so that

all data and data structures are fully distributed, requiring no more than O(n/p) memory

per processor - a key constraint that allows our algorithms to scale to arbitrarily large in-

puts given enough compute nodes. Surprisingly, most prior approaches do not follow this

constraint and require up to O(n) memory per node - a drastic limitation for scalability.

Despite this constraint on the distribution, our distributed-memory parallel algorithms

for the construction of suffix arrays, LCP arrays, and suffix trees clearly advance the state-

of-the-art. Our construction algorithms improve the overall theoretical runtime complexity,

and our implementation exhibit far superior practical performance: outperforming compet-

ing approaches by as much as an order of magnitude.

In Chapter 2, we introduced new parallel algorithms for distributed memory construc-

tion of suffix arrays and longest common prefix (LCP) arrays that simultaneously achieve

good worst-case run-time bounds and superior practical performance. We presented several

algorithm engineering techniques that improve performance in practice and demonstrated
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the the construction of suffix and LCP arrays of the human genome in less than 7.5 seconds

on 1,024 Intel Xeon cores. Our implementation reaches speedups of above 110× over di-

vsufsort, one of the fastest known sequential implementations. Additionally, our method

scales to larger inputs than any previous published results, and indexes a large 12 billion

nucleotide plant genome in less than 15 seconds.

In Chapter 3, we presented a work-optimal distributed memory parallel algorithm for

the construction of suffix trees. In contrast to the linear work performed by the algorithm,

all previous distributed memory algorithms exhibit quadratic worst-case complexity. Our

algorithm also improves prior state-of-the-art for distributed memory in terms of practical

performance. We illustrate performance of the algorithm on the human genome, for which

we construct the suffix and LCP arrays in 7.5 seconds from the genome, followed by con-

struction of the suffix tree in less than 2 additional seconds, on 64-node dual 8-core Xeon

CPU cluster. Furthermore, we demonstrate that our MPI based implementation performs

better in shared memory than state-of-the-art shared memory algorithms, and can scale to

a large number of cores in distributed memory.

In Chapters 2 and 3 we discussed in depth how to efficiently construct suffix arrays

and trees. In distributed memory, and for large problems, these classical data structures

taken as-is exhibit drawbacks for their use for downstream applications. Suffix trees re-

quire a lot of memory to fully store, which limits their scalability to very large problems.

The classic sequential query algorithms for suffix arrays and LCP arrays do not general-

ize well to their distributed representation - as they would incur massive communication

latency costs at almost every step. This lead us to develop a novel distributed string index:

the Distributed Enhanced Suffix Array (DESA). In Chapter 4, we introduced this new dis-

tributed data structure, which is based on the suffix and LCP arrays, and adds additional

data structures. The DESA allows efficient construction and querying, all while requiring

at most O(n/p) memory per process. We presented efficient distributed-memory parallel

algorithms for querying, as well as for the efficient construction of this distributed index.
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We demonstrated the performance of our algorithms by comparing against other sequential

approaches, and additionally demonstrated strong scalability to over 1500 cores.

Finally, in Chapter 5, we presented a distributed memory algorithm for finding the

connected components in large edge-list graphs. This work was motivated by a grand

challenge metagenomics problem: by finding the connected components in the de Bruijn

graph, we can enable downstream analysis on the independent components. Our solution

was able to find the connected components in the grand challenge 1.8 billion reads metage-

nomics data set - corresponding to a graph with 135 billion edges - in just 22 minutes

on 1280 Xeon cores. Furthermore, we showed that our algorithm can be extended to and

performs well also on general graphs. For general graphs, a dynamic hybrid approach be-

tween our connectivity algorithm and a distributed BFS achieves performance better than

a static approach using either one of these two methods. The dynamic approach prefers

BFS execution only for a large short-diameter graph component. The hybrid method is

efficient as well as generic, as demonstrated by the strong scalability of the algorithm on

a variety of graph types. We also observed better performance when compared to a recent

state-of-the-art algorithm. The measured speedup is significant, particularly in the case of

large diameter graphs.
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