
OPTIMIZING HIGH LOCALITY MEMORY REFERENCES IN CACHE
COHERENT SHARED MEMORY MULTI-CORE PROCESSORS

A Dissertation
Presented to

The Academic Faculty

By

Suk Chan Kang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2019

Copyright c© Suk Chan Kang 2019

OPTIMIZING HIGH LOCALITY MEMORY REFERENCES IN CACHE
COHERENT SHARED MEMORY MULTI-CORE PROCESSORS

Approved by:

Dr. Sudhakar Yalamanchili, Advi-
sor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Linda M Wills
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Ada Gavrilovska
School of Computer Scienece
Georgia Institute of Technology

Dr. Tushar Krishna
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Santosh Pande
School of Computer Scienece
Georgia Institute of Technology

Date Approved: January 10, 2019

To my God and family

ACKNOWLEDGEMENTS

This thesis could be completed with the help of many individuals. Above all, I would

like to express my deepest appreciation to my parents, Joo Shin Kang and Kwang Yeon

Kim, for their love, trust, and sacrifice for me. I would like to thank my brother, Dr. Sang

Yop Kang, for his warm brotherhood and encouragement. My special thanks should also

go to my maternal grandmother, Gab Nieu Kim, my late maternal grandfather, Hyung Chul

Kim, and my late paternal grandmother, Kyung Jieom Kim, for being my heart-warm grand

parents who are full of love. I must also thank my aunt Kwang Woo Kim and my uncle Dr.

Sung Mou Cho, for their generous support in my life.

I would also like to extend my deepest gratitude to Dr. Sudhakar Yalamanchili who

is my advisor. As my role model, he demonstrates that an outstanding scholar can also

be a nice and generous person with quiet charisma. Every one-on-one meeting with him

was simply the precious opportunity to get myself cheered up significantly and to clearly

learn the meaning of a advisor. He always respected me as his PhD student, listened to

and encouraged me, gave exceptional technical solutions and ingenious suggestions, and

patiently waited for my research progress with profound belief in my work. Hence, “who

is your PhD thesis advisor?” has been and also will be one of my favorite question, ever

since I first met with him.

I would also like to extend my gratitude to late Dr. George Riley who is the former

ECE’s associate chair for graduate affairs, for enabling me to have Dr. Sudhakar Yalaman-

chili as my new advisor. I am so sorry that I was too busy even to know that Dr. George

Riley passed away recently. Occasionally, I remind myself of the touching words he gave

me when I was in the midst of hard time looking for a new advisor.

I would like to extend my sincere thanks to Dr. Linda M Wills, Dr. Ada Gavrilovska,

Dr. Tushar Krishna, and Dr. Santosh Pande, for serving as my kind committee members,

which is my honor. I must especially thank Dr. Linda M Wills, for generously giving me

iv

the insightful guidance, thorough and frequent proof-reads of my thesis, and emotional sup-

port, even though she herself was extremely busy. I cannot appreciate her enough because

her help encouraged me extensively and enabled me to remain calm while I was preparing

my thesis and final defense. I learned valuable and useful knowledge used for my thesis

from the courses which Dr. Ada Gavrilovska and Dr. Santosh Pande taught. I also learned

many valuable and critical knowledge from Dr. Tushar Krishna when he kindly answered

my abrupt unscheduled questions related to my research, in the hall ways and lab space.

Thanks should also go to Dr. Jongman Kim who is my former advisor at Gerogia Tech

and his colleague Dr. Chrysostomos Nicopoulos at University of Cyprus, as my former

coworkers with whom I had precious time in my life.

I very much thank Dr. Daniela Staiculescu and Ms. Tasha M Torrence at ECE Graduate

Affairs Office, for their ever consistent kind help and advice.

Additionally, I must very much appreciate Korean Government, for having granted me

the scholarship while I studied at Carnegie Mellon University as a master student. I am so

proud of the support.

Finally, I am extremely grateful to my God. My PhD program was the time when I

realize that you always stay with me. It is you who let me get over all the hardships and

eventually complete my PhD degree.

v

TABLE OF CONTENTS

Acknowledgements . iv

List of Tables . xi

List of Figures . xii

List of Codes . xiv

Acronyms . xvi

Summary .xviii

Chapter 1: Introduction . 1

1.1 False Shared Memory Object . 2

1.2 Two Target Memory Reference Types . 3

1.2.1 Pure Local Memory Data . 4

1.2.2 Centralized Spin-Lock Variables 5

1.3 Thesis Statement . 6

1.4 Thesis Contributions . 6

Chapter 2: Literature Review . 8

2.1 Memory Reference Stream Decoupling . 8

vi

2.2 Virtual Cache Memory Architecture . 9

2.3 Spinlocks And Linux Kernel . 10

2.3.1 Ticket Spinlock . 11

2.3.2 MCS Lock . 11

2.3.3 Linux qspinlock . 12

Chapter 3: (PLMD 1) Pure Local Memory Data Cache: Effective Architected
Register File Extension for Multi-Processors 14

3.1 Insights and Contributions . 15

3.1.1 Pilot Design to Effectively Extend Architected Registers of CCSM
Multi-Processors . 15

3.1.2 Cost-Effective and Flexible VIVT Cache Implementation 17

3.2 Background . 17

3.3 Implementation . 19

3.3.1 Manual Virtual Address Space Filtering 19

3.3.2 The Implementation of The Proposed VIVT PLMD Cache for
Multi-Processors . 20

3.4 Evaluation . 22

3.4.1 Simulation Limitation . 22

3.4.2 Simulation Framework . 23

3.4.3 Designs Under Evaluation . 24

3.4.4 Overall Performance Evaluation 24

3.4.5 TLB Access Behavior . 25

3.4.6 L1/L2 Statistics Analysis (Multi-Level Benefits of PLMD Caches) . 25

3.5 Summary . 29

vii

Chapter 4: (PLMD 2) Subtleties of Run-Time Virtual Address Stacks 31

4.1 Contributions . 32

4.1.1 Breaking Chain of a Widespread Erroneous Assumption 32

4.1.2 Safeguards for Related Prior Work 33

4.2 Background . 33

4.3 Insights: Myths and Realities of Run-Time Stacks 34

4.3.1 Myth1: Dichotomy of Stack/Non-Stack Area 35

4.3.2 Myth2: Privacy of the VA Stack Data 38

4.4 Insights: Potential Hazards . 44

4.4.1 Dichotomy Affects Data Consistency and Dependencies 44

4.4.2 Privacy Affects Cache Coherence and Memory Consistency 45

4.5 Safeguards for Stack/Non-Stack Decoupled-Data Architecture 48

4.5.1 Suggested Safeguards to Achieve Real Dichotomy 48

4.5.2 Suggested Safeguards to Achieve Real Privacy 49

4.6 Summary . 49

Chapter 5: (CSLVs) QT Spinlock: Queuing Ticket Spinlock for Linux Kernel . . 51

5.1 Insights and Contributions . 52

5.1.1 Ultimate Minimalism in Cache Line Bouncing 52

5.1.2 Small Lock Variable Size . 53

5.1.3 Proper Approximate Simulation Model 53

5.2 Background . 54

5.2.1 Test-and-Set (TS) Spinlock: Centralized Spin-Lock 54

viii

5.2.2 Test-and-Test-and-Set (TTS) Spinlock: Centralized Spin-Lock . . . 55

5.2.3 Ticket Spinlock: Centralized Spin-Lock 56

5.2.4 General Queuing Spinlock Scheme 57

5.2.5 MCS Lock: Queuing Lock . 58

5.2.6 Important Properties of Spinlock Operation inside Linux Kernel . . 60

5.2.7 Linux qspinlock: Centralized Spin-Lock Enhanced with Internal
Queuing Lock . 62

5.3 Implementation of QT Spinlock . 67

5.3.1 Caching-Flag (CF) . 67

5.3.2 QT Instructions and QT Messages 69

5.3.3 Transformed Ticket Spinlock Code 70

5.3.4 Intuitive View on Procedures in Lock Contention 75

5.3.5 Impact on Underlying Memory Consistency Model 77

5.4 Essentials Required for Proper Simulators 77

5.4.1 Essential 1: The Perfect-Synchronization-Based Processor Multi-
plexing . 78

5.4.2 Essential 2: The Proper Coherence Message Implementation 80

5.5 Simulator Setup . 82

5.5.1 Baseline Simulator (Marssx86) . 82

5.5.2 Approximate Simulation Model: Critical-Path of Cache Line
Bouncing . 84

5.6 Evaluation . 87

5.6.1 Simulation Configuration . 87

5.6.2 Simulation Workload: Steady State Extreme Lock Contention . . . 88

ix

5.6.3 Unfair Simulation Model . 89

5.6.4 Throughput Performance . 89

5.6.5 Atomic Memory Operations . 90

5.6.6 Cache-to-Cache Transfers . 91

5.7 Summary . 92

Chapter 6: Dissertation Conclusion . 94

References . 99

x

LIST OF TABLES

3.1 The OoO opportunities of the architected register operations, PLMD helper
cache memory operations, and regular memory operations on the single-
processor and CCSM multi-processor systems 16

3.2 The simulation configuration of the two designs under evaluation 23

5.1 Summary of the representative spinlock designs 66

5.2 Simulation configuration . 87

xi

LIST OF FIGURES

3.1 The two prevalent virtual address space-sharing types 17

3.2 Implementation of the proposed VIVT PLMD cache for multi-core systems 21

3.3 Overall performance improvement over the baseline design 24

3.4 Memory access pattern analysis . 26

3.5 L1 data cache read/write statistics of the two evaluated architectures 27

3.6 L2 cache read/write statistics of the two evaluated architectures 28

4.1 Diagram of an example pipeline of (a) a conventional superscalar processor
and (b) a data-decoupled architecture. This is obtained from [10] and is
redrawn here. 34

4.2 Kernel-space synonyms are observed in contemporary OSes. 36

4.3 Page reallocation (a) and remapping (b). 39

5.1 Illustration of the per-thread qnodes establishing a spin-wait queue of a
lock. 58

5.2 Illustration of the abstraction of the per-CPU 4-level spin-wait stack and
per-lock spin-wait queue. 62

5.3 Illustration of the per-CPU 4-level qnode stack and per-lock qnode queue
of the Linux qspinlock. 64

5.4 Illustration of the per-CPU 4-level CF qnode stack and per-lock CF qnode
queue. 68

xii

5.5 Sketch of the QT instructions which update the CF qnodes and lock variable
CFLocation fields, in the lock contention case. 76

5.6 Lock acquisitions/releases throughput performance of the Linux qspinlock
and QT spinlock designs. 89

5.7 Run-time atomic memory operations used by the Linux qspinlock and QT
spinlock. 90

5.8 Run-time cache-to-cache transfers incurred by the Linux qspinlock and QT
spinlock. 91

xiii

LIST OF CODES

1.1 The first target memory object type addressed in this thesis: Pure local
memory data (bufA[10][20][30], r) 3

1.2 The second target memory object type addressed in this thesis: Centralized
spin-lock variables (lock). 4

4.1 Direct I/O working example code . 36

4.2 The “cow user page()” function in the “mm/memory.c” file of Linux kernel
3.14 . 37

4.3 An OpenMP pseudo-code snippet evaluating the variable dotp in a fork-
join task model. 39

4.4 A code example (pnlPearlInferenceEngine.cpp) from the BioParallel
benchmark suite [42] . 40

4.5 Working code with the mmap() function mapping a file inside the VA stack 42

4.6 A code snippet of the run-time binding parallel callback function
parallel produce cb() to be called by the producer of a “producer-
consumer” style program. 46

5.1 A pseudo-C code of the test-and-set (TS) spinlock. 54

5.2 A pseudo-C code of the test-and-test-and-set (TTS) spinlock. 55

5.3 A pseudo-C code of the ticket spinlock. 56

5.4 A pseudo-C code of the MCS spinlock. 58

5.5 A simplified pseudo-C code of the Linux kernel qspinlock. This code as-
sumes the 1-level per-CPU qnode stack for simplification. 62

5.6 The pseudo-Verilog code describing the per-CPU CF stack 68

xiv

5.7 The pseudo-C description of the transformed ticket spinlock code for the
QT spinlock. The code employs the QT instructions which have the “QT ”
prefix in their names. This example is for systems having up to 64 CPUs. . . 71

5.8 The OpenMP code generating the false sharing cache line update inflation
on the array False Shared Array[]. 81

5.9 The main simulation loop of Marssx86 simulator. The loop has
all the vCPUs run on every single simulation cycle. It is located in the
BaseMachine::run() function of the ptlsim/sim/machine.cpp
file. 83

xv

ACRONYMS

2D 2-dimensional.

CAS compare-and-swap.

CCSM cache coherence shared memory.

CF caching flag.

CoW copy-on-write.

CSL centralized spin-lock.

CSLV centralized spin-lock variable.

DDA data-decoupled architecture.

FIFO first-in-first-out.

FSMO false shared memory object.

ILP instruction level parallelism.

IPC inter-process communication.

ISA instruction set architecture.

LKM loadable kernel module.

LRSW least recently spin-waiting.

xvi

LSQ load/store queue.

MRSW most recently spin-waiting.

NUMA non-uniform memory access.

OoO out-of-order.

OS operating system.

PIPT physically indexed physically tagged.

PLMD pure local memory data.

RMW read-modify-write.

ROI region of interest.

SM shared memory.

TLB translate look-aside buffer.

ToS top of stack.

TS test-and-set.

TSO total store ordering.

TTS test-and-test-and-set.

VA virtual address.

vCPU virtual CPU.

VIVT virtually indexed virtually tagged.

xvii

SUMMARY

Optimizing memory references has been a primary research area of computer systems

ever since the advent of the stored program computers. The objective of this thesis research

is to identify and optimize two classes of high locality data memory reference streams in

cache coherent shared memory multi-processors. More specifically, this thesis classifies

such memory objects into spatial and temporal false shared memory objects. The underly-

ing hypothesis is that the policy of treating all the memory objects as being permanently

shared significantly hinders the optimization of high-locality memory objects in modern

cache coherent shared memory multi-processor systems: the policy forces the systems to

unconditionally prepare to incur shared-memory-related overheads for every memory ref-

erence. To verify the hypothesis, this thesis explores two different schemes to minimize

the shared memory abstraction overheads associated with memory reference streams of

spatial and temporal false shared memory objects, respectively. The schemes implement

the exception rules which enable isolating false memory objects from the shared memory

domain, in a spatial and temporal manner. However, the exception rules definitely re-

quire special consideration in cache coherent shared memory multi-processors, regarding

the data consistency, cache coherence, and memory consistency model. Thus, this thesis

not only implements the schemes based on such consideration, but also breaks the chain

of the widespread faulty assumption of prior academic work. This high-level approach ul-

timately aims at upgrading scalability of large scale systems, such as multi-socket cache

coherent shared memory multi-processors, throughout improving performance and reduc-

ing energy/power consumption. This thesis demonstrates the efficacy and efficiency of the

schemes in terms of performance improvement and energy/power reduction.

xviii

CHAPTER 1

INTRODUCTION

The modern cache coherence shared memory (CCSM) multi-processor architecture

presents a shared memory (SM) abstraction to enable software designers to leverage the

intuitive, convenient, and flexible SM programming model. However, the SM abstraction

not only requires support by operating system (OS)s and compilers, but also incurs over-

head in utilizing the underlying micro-architectures. For example, the versatile technique

of creating virtual address (VA) synonyms in SM requires the OS provided inter-process

communication (IPC) interfaces (e.g. shared memory segments in Linux), corresponding

compiler support, virtual-to-physical address translation support, and cache coherence

and memory consistency enforcement while performing synchronization operations on

accesses to the shared synonymed memory. The resultant cache coherence and memory

ordering (for memory consistency) traffic can eventually strain the interconnection

networks. These overheads can grow with increasing core count and eventually overwhelm

any intended performance speed-up and power/energy efficiency advantages, reducing

scalability in the end. A socket based CCSM non-uniform memory access (NUMA)

system will be more sensitive to the scalability challenges, due to its large average memory

latency resulting from crossing of socket borders.

We observe that shared memory accesses can be distinguished based on their locality

properties. In particular, we find that a significant number of accesses that are not shared,

are treated as shared accesses and therefore incur all of the overheads associated with the

SM abstraction. On the other hand, we also take notice that the extremely concurrent

accesses to shared memory data naively make such data the hot spots of the overheads as-

sociated with the SM abstraction. Therefore, this thesis explores opportunities to optimize

such high-locality memory accesses, by bypassing the aforementioned SM overheads in

1

multi-processors. This high-level approach ultimately aims at upgrading system scalability

by improving performance and energy/power efficiency.

1.1 False Shared Memory Object

This thesis hypothesizes that the policy of treating all the memory objects as being per-

manently shared significantly prevents modern CCSM multi-processors from further opti-

mizing the access of high-locality memory objects. Accordingly, we observe that there are

two classes of memory objects whose accesses exhibit high locality and can be subject to

optimization to improve scalability. To better identify such objects, we develop the concept

of the spatial/temporal false shared memory object (FSMO):

• Spatial FSMO: memory object which can be spatially isolated from the SM domain,

due to its private scope

• Temporal FSMO: memory object which can be temporally isolated from the SM

domain, until the critical moment

The FSMO concept is motivated by the clear discrepancy between the design principle

of the parallel SM programs and the actual SM domain operation of the CCSM multi-

processors. The parallel SM programs are optimized to maximally perform the computa-

tion locally, while minimally generating the global SM transactions (e.g. loop paralleliza-

tion usually targets the outer loops, rather than the inner ones). Meanwhile, the contem-

porary CCSM multi-processors too conservatively treat every memory object as a perma-

nently shared one, getting ready to incur the SM overhead mechanisms. This high false

positive rate in identifying actual shared memory objects becomes the origin of the redun-

dant SM overheads. For instance, the CCSM multi-processors prohibit even the qualified

private memory operations from being executed in the full out-of-order (OoO) manner,

constraining them to memory ordering rules regulated by the SM consistency model.

2

1.2 Two Target Memory Reference Types

This thesis focuses on the following two high-locality FSMOs:

1. Pure Local Memory Data: source of NO shared memory references (neither inter-

thread/process nor intra-thread/process), spatial FSMOs

2. Centralized Spin-Lock Variables: source of SEVERE shared memory references

(inter-thread/process), temporal FSMOs

Listing 1.1 and 1.2 depict examples of the two memory objects.

1 i n t foo () {

2 /∗

3 ∗ Pure l o c a l memory da ta ”bufA [1 0] [2 0] [3 0] ” and ” r ”

4 ∗ Scope : f u n c t i o n f o o () a l o n e

5 ∗ /

6 c h a r bufA [1 0] [2 0] [3 0] ;

7 i n t r ;

8

9 /∗

10 ∗ NOT pure l o c a l memory da ta ”bufB [16]”

11 ∗ Scope : f u n c t i o n f o o () and i t s sub−f u n c t i o n bar ()

12 ∗ /

13 c h a r bufB [1 6] ;

14

15 . . .

16 r = b a r (bufB) ;

17 r e t u r n r ;

18 }

Listing 1.1: The first target memory object type addressed in this thesis: Pure local

memory data (bufA[10][20][30], r) .

3

1 /∗

2 ∗ C e n t r a l i z e d sp in−l o c k v a r i a b l e ” l o c k ” i n s i d e t h e sp in−w a i t i n g loop .

3 ∗ Other t h r e a d s / p r o c e s s e s can s h a r e i t , t o c o n c u r r e n t l y read / up da t e i t .

4 ∗ /

5 do {} w h i l e (l o c k == LOCKED CONDITION) ;

6 . . .

Listing 1.2: The second target memory object type addressed in this thesis: Centralized

spin-lock variables (lock).

1.2.1 Pure Local Memory Data

The pure local memory data (PLMD) are the memory objects accessed exclusively within

the functions where they are declared and, consequently, are not referenced from outside

the function scope. We classify PLMD as spatial FSMOs because their spatial function

frame scope is private to their threads.

In handling the PLMD, the contemporary CCSM multi-processors have been wasting

a significant portion of performance and energy. Specifically, the accesses to the PLMD

can perfectly avoid SM overheads such as dealing with VA synonyms and regulating mem-

ory consistency. Additionally, if keeping CPU-affinity scheduling, virtually no coherence

checks are required,

To address this inefficiency of losing performance and energy improvement opportuni-

ties, this thesis proposes to treat the PLMD as spatial FSMOs which extend the architected

registers in CCSM multi-processors. Even though there could be other spatial FSMOs than

the PLMD in one running program, the PLMD are relatively easy to filter from the run-time

VA function frame stacks.

Note that the raw function frame stacks can contain minor NON-PLMD memory ob-

jects, as well. For example, “char bufB[16]” in Listing 1.1 is not PLMD, because

the bar() function references it with the pointer bufB. The portion of the PLMD ref-

erences can be roughly estimated, through counting the references to the VA stack data.

4

Prior work [1] shows that stack references account for an average of 56% of all memory

accesses in SPEC CPU 2000 integer benchmarks (single-threaded workloads). The thesis

research in Chapter 3 also shows that on average around 50% of all memory accesses in

PARSEC benchmarks (multi-threaded workloads) belong to stack references. However, it

is not straight-forward to detect/decouple the references to the stack data (i.e. the superset

of the PLMD), let alone to the PLMD. For this reason, prior work optimizing the stack data

references including [2, 3, 4, 1, 5] all rely on function-critical faulty assumptions. Chapter

4 explains where the assumptions come from, the subtleties of the run-time VA stacks, and

the proper safeguards for the issues.

1.2.2 Centralized Spin-Lock Variables

The centralized spin-lock variable (CSLV) is a hot spot memory object on which all the

lock-waiter threads concurrently spin-wait. The example of the centralized spin-lock (CSL)

design is the ticket spinlock. We classify CSLVs as temporal FSMOs because they can

temporally delay appearing on the CPU node until the thread acquires the lock (this will be

explained further in Chapter 5).

The spinlock is generally the best synchronization option to protect short sized shared

data in memory. However, the spin-waiting synchronization easily becomes the most mas-

sive source of concurrent fine-grain cache coherence operations of the typhoon-like cache

line bounces, and should consider the memory consistency issues. Ironically, it is only af-

ter going through this heavy SM synchronization overhead that the concurrently competing

threads can safely access the very short sized shared data. In socket based CCSM NUMA

systems, the overhead becomes more complicated: it not only comes from the interconnec-

tion network bandwidth limit (throughput) to handle cache coherence contention, but also

from the latency penalty of moving cache lines across the socket boundaries. For this rea-

son, the existing sophisticated scalable software spinlocks are still not good enough for the

large scale socket based CCSM NUMA multi-processors [6]. Unfortunately, the spinlocks

5

using CSLVs are notorious as the worst design in terms of the overhead.

To address this synchronization overhead issue (in terms of both bandwidth and la-

tency), this thesis proposes to handle CSLVs as temporal FSMOs which only the lock-

owner thread can see (while other threads cannot) in the local cache memory. This is

designed to work without destroying the underlying memory consistency rule.

1.3 Thesis Statement

The key ideas, insights, and challenges lead to the following thesis statement: Significant

performance improvement is possible by identifying and optimizing high locality reference

streams in cache coherent shared memory multi-core processors.

1.4 Thesis Contributions

The principle contribution of this thesis is identification and optimization of two classes of

high locality reference streams (PLMD and CSLVs) that significantly affect performance

in CCSM multi-processors. The specific contributions are as follows.

1. It develops the concept of false shared memory objects (FSMOs). Contemporary

CCSM multi-processors unconditionally assume all memory references to be perma-

nently shared accesses and have them restricted by the SM related overheads. The

concept of FSMOs is the main insight of this thesis enabling optimization of memory

accesses to PLMD (spatial FSMOs) and CSLVs (temporal FSMOs).

2. It describes how CCSM multi-processors can effectively extend the architected reg-

isters cost-efficiently, by taking advantage of spatial FSMO attributes of the PLMD,

if they can be properly detected and decoupled from the rest of the memory objects

[5].

3. It presents fundamental insights on how future OSes and compilers can effectively

and correctly exploit the benefits of the run-time VA stack data as a superset of PLMD

6

[7].

4. It proposes the contrarian idea of enabling the centralized spinlock to accomplish

the ultimate minimalism in cache line bouncing, by handling CSLVs as temporal

FSMOs. The idea aims to unleash the power of the centralized spinlock design.

This thesis is organized as follows. Chapter 2 goes through the important prior work related

to this research. Chapter 3 (the first PLMD optimization) presents a novel architecture for

L1 data helper caches in CCSM multi-processors, to realize contribution 2. Chapter 4 (the

second PLMD optimization) details the subtleties of the run-time VA stacks, to realize

contribution 3. Chapter 5 (the CSLV optimization) illustrates the new hardware-supported

Linux kernel default spinlock design, to realize contribution 4. Finally, Chapter 6 concludes

the thesis.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Memory Reference Stream Decoupling

This research topic has been important and popular, ever since the advent of the stored-

program computers. Harvard mark-1 [8] is the first stored-program computer which em-

ploys two separate memory reference pathways to instruction and data streams. As such,

it became the root of the prevalent Harvard architecture systems. The separate instruction

and data pathways help increase the memory referencing throughput, by enabling simulta-

neous accesses to the two streams. However, it is generally not straight-forward to perfectly

decouple memory reference streams.

Quite a few works attempt to further decouple data memory reference streams. The

Compiler Controlled Memory (CCM) scheme [9] decouples memory references into the

two separate memories of the main memory and the compiler controlled memory (CCM).

The register spilled memories generated by compilers are fed into the CCM, to prevent

them from causing the cache pollution problem. However, the CCM scheme is not proper

for the contemporary general purpose systems, because on every context switch, the data

stored in the CCM should be flushed into the main memory. Therefore, the research is

better suited for specialized hardware using dedicated memories, such as DSP devices.

Additionally, the Stack Cache [10], Access Region Locality (ARL) [2], Stack Value

File (SVF) [1], Reverse (Register) Integration [3], Selective Snoop Probe (SSP) [4] , Spe-

cialized Stack Cache and Pseudo Set-Associative Cache (SSC and PSAC) [11], and Sep-

arate Stack-Based Memory Organization [12] techniques all demonstrated the potential

benefit of decoupling the data memory references into stack/non-stack streams, in terms

of performance improvement and energy/power reduction. However, these approaches

8

have function-critical hazards because they are all based on faulty assumptions: (1) the

stack/non-stack memory data regions can be perfectly dichotomized and (2) the raw VA

stack memory regions are only composed of PLMD which have the register-file-like prop-

erties. This is described further in Chapter 4 and [7]. Interestingly, the Safe Stack scheme

[13, 14] (which enhances the security of the run-time function call stacks) can help provide

the safeguards for these previous approaches [10, 2, 1, 3, 4, 11, 12]: for each function call

stack, the compiler transform technique creates a new separate “safe” stack and moves all

the PLMD of the original stack there.

2.2 Virtual Cache Memory Architecture

Virtual caches [15] work using virtual address tags and/or indexes, avoiding the virtual

to physical address translation overhead. The idea is to achieve fast cache access time

and energy/power reduction by avoiding accesses to the translate look-aside buffer (TLB).

However, these advantages cannot be obtained for free because homonym and synonym

(aliasing) issues must be resolved [15, 16] for data consistency. Homonym memory ob-

jects are the objects in different VA spaces (processes) having the same virtual addresses

but which are mapped (translated) into different physical addresses. Conversely, synonym

memory objects are the objects mapped (translated) into the same physical addresses but

which have different virtual addresses. Normally, virtual caches can resolve homonym is-

sues relatively simply, for instance, by tagging cache lines with the address space identifiers

(ASIDs) or flushing the cache memory when context switches take place. However, syn-

onym objects are mostly impossible to classify without proper help from the OS. To make

matters worse, synonym objects can exist within the same virtual address space (i.e. intra-

process synonyms) as well as across different VA spaces (i.e. inter-process synonyms) [15,

16]. Therefore, simple solutions such as flushing the cache memory on context switches

can not resolve all synonym issues.

The hardware-only solutions to resolve synonym issues have to rely on looking up or

9

tracking down the synonymed cache lines, with significant energy and area overheads. A

simple preferred design to resolve the synonym issue is to prohibit any duplicate synonym

cache lines from residing in the cache memory [17, 18]. That is, on a cache miss, the cache

controller invalidates all the other synonymed cache lines after looking up the candidate

lines. Meanwhile, Woo, et al. [19] propose a scheme to use bloom filters [20] to minimize

the overhead of this looking-up approach: the bloom filter early notifies if the virtual cache

memory contains the synonym line of the requested cache line access, to indicate whether

or not the energy-consuming synonym look-up process is still necessary.

The software-supported solutions to resolve synonym issues can have the OS restrict

page allocation, albeit at the cost of increased page fault rates [15]. Other more advanced

ways involve utilizing the OS-provided synonym page mapping information. An exam-

ple is the Opportunistic Virtual Caching (OVC) technique [21]. To that end, the work

enhances the Linux kernel’s virtual address range allocator, to inform the supporting hard-

ware whether the user-space pages are currently free from the read-write synonym page

mappings. More specifically, when a user-space page has the read-write synonym page

mappings, the enhanced virtual address range allocator sets the highest order bit (i.e. 48th

bit, VA47) of the virtual address of the page. Note that the VA47 bit is always kept unset for

user-space pages, in the current 48 bit canonical form X86-64 virtual address space [22].

The proposed OVC cache memory has physical tags as well as virtual tags, to handle the

default physical caching mode operation and cache coherence mechanism. Each line of

the OVC cache also has ASIDs to resolve the homonym issue. The scheme requires only

modifying 240 lines of the Linux kernel code.

2.3 Spinlocks And Linux Kernel

This section focuses on the three first-in-first-out (FIFO) spinlocks (MCS lock [23, 24, 25],

ticket spinlock [23, 24], and qspinlock [25]) to explain the evolution of the contemporary

default Linux kernel spinlocks. A spinlock design should satisfy the “4-byte lock variable”

10

and “4-level stacked context spin-wait” requirements, to be employed as the default Linux

kernel spinlock. The 4-byte lock variable requirement prohibits most of the sophisticated

queuing spinlock schemes (e.g. the MCS lock design [23, 24, 25], CLH lock [26], hierar-

chical CLH lock [27], and K42 lock [28]) from being employed as the Linux kernel default

spinlock. In addition, the 4-level stacked context spin-wait requirement hinders any novel

lock accelerator techniques supporting only 1-level lock context (e.g. the Misar technique

[29]) from being employed for the Linux kernel.

2.3.1 Ticket Spinlock

The ticket spinlock [23, 24] does not build an explicit linked list to conduct the FIFO lock

operation. Instead, the lock and unlock operations update the tail/head ticket number, re-

spectively. The lock-competing threads have to spin-wait, unless their uniquely assigned

ticket numbers become equal to the current head ticket number. Therefore, the ticket spin-

lock is a centralized spinlock (CSL) design: all the lock-waiter threads spin on the shared

lock variable. Like other centralized spinlocks, the ticket spinlock has the advantage of

using simple code. Hence, the ticket spinlock performs the best, out of all the software

spinlocks, in case of experiencing no lock contention [24]. On the other hand, due to the

heavy cache coherence contention surrounding the lock variable, ticket lock definitely does

not scale with increased CPU counts, especially in the socket based CCSM NUMA sys-

tems [24]. The Linux kernel employed the ticket spinlock as the default spinlock, until the

qspinlock replaced it.

2.3.2 MCS Lock

The MCS lock [23, 24, 25] is the representative scalable queuing spinlock design, which

conducts the FIFO lock operation. Each lock-waiter thread spin-waits on its own per-thread

local “qnode,” instead of on the centralized shared lock variable. The per-thread qnodes are

manually declared inside the function stacks of the lock-competing threads, and passed as

11

an argument to the lock()/unlock() API functions, so the design can build a linked listed

queue structure of them.

However, the MCS lock has some native critical problems and/or potential vulnera-

bilities. First, the lock variable unavoidably becomes much larger than 4 bytes, because

it should contain VA pointer values pointing to the current tail thread qnode. This is the

reason why the MCS lock has not yet been employed in the Linux kernel as the default

spinlock, even though it scales nicely. The other queuing locks such as CLH lock [26], hi-

erarchical CLH lock [27], and K42 lock [28] have a similar problem. Second, the unlocking

operation (in addition to the locking operation) imperatively uses the atomic memory oper-

ation, when it detects no successor lock-waiter thread at the moment. This has everything

to do with the multiple lock-competing threads concurrently managing the linked-listed

qnode queue structure. The centralized spinlock designs such as ticket spinlock basically

do not use any atomic memory operation, when releasing the lock. Third, the adjacent pre-

decessor and successor lock-waiter threads should move their qnode cache lines between

them, in a ping-pong way. This can be a heavy overhead taking long latency, if the threads

are running on the large scale socket based CCSM NUMA systems [6].

2.3.3 Linux qspinlock

Even though the MCS lock scales excellently, it cannot be employed as the default Linux

kernel spinlock, just because the design cannot meet the “4-byte lock variable” require-

ment. Alternatively, as of the kernel version 4.2, Linux kernel substitutes the qspinlock

[25] for the previous default ticket spinlock.

As a matter of fact, the qspinlock is not the pure queuing spinlock, but is the workaround

design to make the MCS lock fit into the 4 byte small lock variable. To this end, the

qspinlock is designed to work in the form of a baseline centralized spinlock (CSL) which

is enhanced with an internal MCS lock. The baseline centralized spinlock variable (CSLV)

is referenced for the locking, unlocking, and spin-wait operations. The internal MCS lock

12

removes the cache coherence contention surrounding the baseline CSLV, by letting only one

lock-waiter thread spin-wait on the CSLV. The 4 byte small lock variable size is facilitated

by the fact that the internal MCS lock establishes the queue structure with the per-CPU

qnodes, instead of with the per-thread qnodes. Note that unlike the per-thread qnodes,

the per-CPU qnodes are viable only while CPU-migrations are disabled (e.g. during the

spin-wait iterations). Consequently, this design ends up having a “two-step” spin-wait

operation: the first step spin-waits on the per-CPU qnode of the internal MCS lock, while

the second step spin-waits on the baseline CSLV. Due to this complex design, the qspinlock

naturally can incur much more cache line bounces than the original MCS lock, especially

accompanying a number of atomic memory operations.

13

CHAPTER 3

(PLMD 1) PURE LOCAL MEMORY DATA CACHE: EFFECTIVE

ARCHITECTED REGISTER FILE EXTENSION FOR MULTI-PROCESSORS

The original research document of this thesis work was published in [5].

In general, memory accesses to the VA stack area data (which are a superset of the

PLMD) play an instrumental role in overall system performance. Research in this domain

has shown that real workloads tend to access the VA stack area at a high frequency, albeit

within a small memory footprint [10, 1], because a process/thread is always running within

a function during its execution, and, usually, function frames tend not to be very deep. It is

precisely this observation that has led to various designs for the single-processor systems

that handle memory accesses to the stack area at a higher level in the memory hierarchy, in

order to improve performance and reduce energy consumption.

This thesis research demonstrates that special L1 PLMD helper caches can significantly

boost the performance of one primary and dominant multi-threaded workload running on

a CCSM multi-processor, while actually reducing its energy consumption. This helper

cache introduces the “address space filtering” technique which filters the VA spaces (i.e.

processes) and subsequently handles only the PLMD of the selected virtual address space.

The idea exploits the spatial FSMO attribute of the PLMD, and the ultimate goal is to

present the exclusively selected multi-threaded process the L1 helper cache structure. This

cache is extremely fast and perfectly isolated from the SM domain, just like the architected

register file. The scheme targets the modern workstation and server environments that run

a single, dedicated multi-threaded application workload per machine.

The PLMD helper cache is implemented as a virtually indexed virtually tagged (VIVT)

cache structure, and minimizes the overhead incurred in resolving virtual-cache-related

14

artifacts (e.g. the synonym and homonym issues), in a cost effective way. This is mainly

due to the fact that the scheme grants exclusive access to the PLMD stream of only one

multi-threaded process at a time, as previously introduced.

This chapter first shows a conceptual description of the PLMD cache-based approach

in Section 3.1. It then provides background in Section 3.2 on its context. Section 3.3 details

its implementation and Section 3.4 evaluates the performance and energy efficiency of the

PLMD helper cache technique, demonstrating the usability of this design in future CCSM

multi-processors. The PLMD cache mechanism is especially available to systems that run

one primary and dominant multi-threaded application per machine.

Note that this thesis work makes the assumption which all major related prior work

including [10, 2, 1, 3, 4, 11, 12] rely on: the stack area data are all PLMD, and their

memory references can be perfectly decoupled from the other memory reference streams.

Chapter 4 explains the myths and realities of this assumption, and also explains how to

correctly filter and decouple the PLMD references from the stack area data stream.

3.1 Insights and Contributions

3.1.1 Pilot Design to Effectively Extend Architected Registers of CCSM Multi-Processors

The architected registers are the fastest storage areas in a system. Moreover, on CCSM

multi-processors, storing data in architected registers creates a more significant impact on

performance than storing them in memory: the architected register operations participate

in the full OoO execution, while memory operation reordering is restricted by the shared

memory consistency model of the systems. This overhead has the potential to create the

anomaly that single-threaded programs which require no shared memory operations run

much faster on the OoO single-processors than on the OoO CCSM multi-processors.

Meanwhile, it is nearly impossible to extend the architected registers of existing ma-

chines, because they already have the maximum number of architected registers which their

fixed instruction set architecture (ISA) allows. This thesis proposes a cache-based design

15

Table 3.1: The OoO opportunities of the architected register operations, PLMD helper
cache memory operations, and regular memory operations on the single-processor and
CCSM multi-processor systems

Regular Memory Operations
Single-Processors Full OoO
CCSM Multi-Processors Limited re-ordering allowed by shared memory consistency model
Architected Register Operations
Single-Processors Full OoO
CCSM Multi-Processors Full OoO
PLMD Helper Cache Memory Operations
Single-Processors Full OoO
CCSM Multi-Processors Full OoO

which has a similar effect as extending the architected register file. This effect would re-

markably increase the opportunities of the full OoO executions of the selected one primary

and dominant multi-threaded process, especially on an ISA with relatively small number

of architected registers (e.g. X86 or X86-64 [30]).

The L1 PLMD helper cache architecture proposes a pilot design of the “architected-

register-like” cache memory for the CCSM multi-processors, which is (1) extremely fast

and (2) perfectly isolated from the SM domain. The idea does not require changing the ISA

to deliver the architected register file extension effect. To achieve the fast speed, the design

profits from the VIVT cache memory structure. To achieve perfect isolation from the SM

domain, the design utilizes the spatial FSMO attribute of the PLMD. The “isolation from

the SM domain” property frees the PLMD helper cache from both the memory ordering

regulation and the cache coherence interference (by enforcing “CPU-Affinity” scheduling).

Additionally, the architected register “extension” includes the effect of storing even the

bulky data (e.g. data structures and arrays) in the virtually extended architected registers

(i.e. PLMD helper caches), which is generally not possible with the actual architected

registers.

Table 3.1 recaps the OoO execution opportunities of the architected register operations,

PLMD helper cache memory operations, and regular memory operations.

16

3.1.2 Cost-Effective and Flexible VIVT Cache Implementation

The L1 PLMD helper cache architecture manually filters out all VA spaces except the main

VA space (process). Thus, the run-time PLMD of this lone process become the exclusive

occupants of the PLMD helper cache. This address space filtering technique automatically

removes the synonym and homonym problems of the employed VIVT cache structure,

without incurring additional expensive overhead.

The address space filtering technique also presents the PLMD helper cache with the

unlimited freedom for the VIVT cache configuration. Note that virtually indexed cache

designs usually prefer limiting the cache set size to be equal to or smaller than the virtual

address page size of the OS [21, 31, 32]. This design policy intends to take advantage

of enabling the virtual indices to actually work as physical indices, skipping the address

translation overhead. However, the resulting virtually indexed cache memories have the

only restrictive and bizarre option of adding more associativities, to increase their size,

which ironically increases the access latency and tag-matching power/energy consumption.

3.2 Background

(a) Multi-threaded (b) Shared memory IPC

Figure 3.1: The two prevalent virtual address space-sharing types

There are two prevalent methodologies that are typically utilized in shared-memory

17

architectures: the multi-threaded methodology and the shared memory inter-process com-

munication.

Multi-threaded methodology

Multi-threaded methodology operates on the principle of one main thread and its N sub-

threads residing in a single VA space and comprising one process (abstractly visualized

in Figure 3.1a). The main thread creates its sub-threads using a “clone()” system call.

Consequently, the main thread and its sub-threads share the page table, global variable

area, and file descriptor. The principle of confinement within a single VA space aims to

alleviate the heavy overhead of context switching during parallel execution. However, the

main thread and all sub-threads must have their own separate resources, such as stack area

(user-level/kernel-level) and registers. User-level thread libraries such as POSIX Threads

[33] and OpenMP [34] are based on this concept. In the x86 architecture, the main thread

and its sub threads use the same “cr3” register to refer to the page table for the single

shared VA space. Note that this “cr3” register-sharing activity by a multi-threaded process

can easily be monitored by a full-system simulator such as Simics [35]. This is employed

in the evaluation framework of this thesis described in Section 3.4.

Shared memory inter-process communication (IPC)

Shared memory IPC follows a different philosophy, which does not allow as much resource

sharing as possible. Instead, this type imposes strict VA space protection among processes,

while permitting one shared area, aptly called the “shared memory segment” (illustrated

in Figure 3.1b). The only shared resource is this shared memory segment. A programmer

may utilize this methodology by creating N processes with each one having a different VA

space. The processes interact through the OS-granted shared memory segment. The N

processes are not aware of each other’s existence, because they are conventionally created

by a “fork()” system call from the “shell.” However, processes can communicate with each

18

other through the shared memory segment. The “POSIX shared memory segment” is an

example of this methodology. One downside is that this programming type usually causes

synonym problems when using VIVT caches. (One can easily verify this phenomenon by

simply observing that each process uses a different VA pointer value to point to the shared

memory segment.) While the VA pointers of the different processes will have different

values, they still physically point to the same “shared memory segment” location.

The VIVT PLMD cache architecture proposed in this thesis work is targeted at the

multi-threaded style (Figure 3.1a) of address space-sharing.

3.3 Implementation

3.3.1 Manual Virtual Address Space Filtering

The PLMD cache is the quintessential embodiment of a “small-but-fast” cache that can

satisfy the stack area requirement of high frequency accesses within a confined memory

footprint. Moreover, owing to its small size, the PLMD cache can elevate system per-

formance with minimal power overhead. Its VIVT cache structure can offer significant

advantages over a PIPT equivalent. Most of the additional benefits emanate predominantly

from the elimination of address translation:

• Larger allowed size for the “small-but-fast” cache: PIPT caches require address

translation on every memory access. Therefore, the address translation path latency

from the TLB to the cache would inevitably lower the maximum size that would still

allow for a single-cycle hit. On the contrary, by removing the TLB access, a VIVT

design enables larger cache sizes that are still able to achieve a single-cycle delay.

• Lower energy consumption: typically, the TLB has large (or full) associativity. This

high associativity comes at the cost of energy expensive tag-matching operations.

Instead, a VIVT cache can skip this process, as well as further overhead associated

19

with a TLB miss.

However, it is imperative to address the pathological scenarios of synonyms and

homonyms, which incur undue overhead in typical VIVT caches. In an effort to extract all

the inherent benefits of VIVT caches, while minimizing the adverse side effects, the PLMD

helper cache manually filters out all VA spaces except one main VA space (process). Thus,

the run-time stack areas of this lone process become the exclusive occupants of the PLMD

cache. This design naturally favors modern workstation or server environments that run

one primary and dominant multi-threaded workload. The proposed VA space filtering

approach within the PLMD helper caches results in the following important attributes:

• No synonyms: the inter-process synonyms are created (shared) through the SM do-

main, while by definition, the PLMD are the spatial FSMOs which are isolated from

the SM domain, due to the scope. Note that, even within one VA space, the intra-

process synonyms can still be deliberately created by the programmer, as described

in [15, 16]. However, the PLMD are also free from this kind of synonym, due to their

function frame stack scope.

• No homonyms: since other VA spaces (processes) are filtered out of the PLMD

cache, they do not interfere with the selected, active VA space.

3.3.2 The Implementation of The Proposed VIVT PLMD Cache for Multi-Processors

Figure 3.2 illustrates the proposed mechanism. It depicts the location of the PLMD cache.

The non-PLMD L1 data caches are implemented as physically indexed physically tagged

(PIPT), whereas the accompanying PLMD caches are VIVT. It is important to note that the

PLMD cache is small enough to guarantee a hit access latency of a single CPU cycle, while

the regular L1 caches (Data/Instruction – for non-stack region) require two to three CPU

cycles for a cache hit (in line with most L1 caches found in commercially available CPUs

today). For example, the 32 KB L1 data cache of the Intel micro-architecture (codename

20

Figure 3.2: Implementation of the proposed VIVT PLMD cache for multi-core systems

Sandy Bridge) has a 4-cycle access time [36].

VA Space Filtering in Detail

The proposed VIVT PLMD cache revolves around the notion of VA space filtering. This

technique allows one of the running applications to receive preferential treatment through

an exclusive access to the PLMD cache. Any application can be chosen by the system

administrator to receive this special status. Naturally, the selected application is one that

tends to dominate all other running applications at a particular point in time. Once a pro-

gram is granted this status, its VA space will be granted exclusive access of each core’s

PLMD cache in order to boost its overall performance.

This VA space filtering is achieved through the “cr3” register. The “cr3” register in

the x86 architecture is the register pointing to a VA space’s page table, and can be used

as a unique VA space identifier. Hence, a system administrator can deliver a specific “cr3”

register value to all the CPUs, in order to boost the performance of (potentially) one primary

and dominant multi-threaded workload. This can be achieved through the invocation of a

special command. Note, that this command is not a new ISA instruction, since the “cr3”

register is already accessible to the programmer. Instead, operating system designers may

create a new command that manages the newly proposed PLMD cache resources through

the use of “cr3” register value manipulations. This command would, essentially, work in a

fashion similar to the Unix “nice” command, which modifies the CPU scheduler priorities

21

of all running processes in order to assign more CPU time to specific processes. Upon a

change in the value of the “cr3” register, all VIVT PLMD caches flush their dirty cache

lines into the Level 2 cache. This process prepares the PLMD caches to commence the

handling of the newly selected VA space. The “cr3” VA space filtering mechanism was

modeled in our evaluations using the Simics “Magic” instruction.

L1 Data Memory Reference Stream Decoupling

During VA space filtering, data cache accesses are directed in two separate pathways (des-

ignated by the labels “1” and “2” in Figure 3.2). Pathway “3” in Figure 3.2 denotes line

fetching from the L2 cache, caused by L1 PLMD cache misses that require TLB lookup.

Pathway “4” in Figure 3.2 denotes dirty write-backs from the L1 PLMD caches to the L2

cache, which also require TLB lookup. The stack area memory references of the active VA

space are directed to path “1” (i.e., to the PLMD cache), while all other memory references

are directed to path “2” (i.e., the regular L1 data cache).

3.4 Evaluation

3.4.1 Simulation Limitation

This section evaluates the performance improvement and energy reduction coming from

these architected-register-like features of the L1 PLMD helper caches: 1

• The cache intends to handle only the decoupled spatial FSMO data which are isolated

from the SM domain.

• The cache functions fast with single cycle latency.

• The caches are implemented in the VIVT architecture to significantly reduce TLB

accesses
1Due to the simulator limitation, the effect of full OoO execution opportunities (Section 3.1) of the PLMD

helper caches is not evaluated.

22

Table 3.2: The simulation configuration of the two designs under evaluation

Simulation Configuration
L1D Design (Regular + PLMD) Component Size/Number Information

Baseline (32 KB + 0 KB)

L1 (data) 32 KB; 64 B; 2 way 3-cycle hit; write back/allocate
L1 (instruction) 32 KB; 64 B; 2 way 3-cycle hit
L2 (unified/shared) 512 KB; 128 B; 8 way 12-cycle hit; write back/allocate
Main Memory 2 GB 218-cycle stall
CPU Cores 8 Multi-threaded workloads each 16 sub-threads
Coherence Protocol - MESI

Proposed (16 KB + 2 KB)

L1 (data) 16 KB; 64 B; 2 way 3-cycle hit; write back/allocate
L1 (stack) 2 KB; 64 B; 2 way 1-cycle hit; write back/allocate
L1 (instruction) 32 KB; 64 B; 2 way 3-cycle hit
L2 (unified/shared) 512 KB; 128 B; 8 way 12-cycle hit; write back/allocate
Main Memory 2 GB 218-cycle stall
CPU Cores 8 Multi-threaded workloads each 16 sub-threads
Coherence Protocol - MESI

3.4.2 Simulation Framework

In order to comprehensively evaluate the operational efficacy and efficiency of the proposed

L1 PLMD cache, we employ Simics, a full-system simulator developed by Wind River [35].

Simics provides a “Magic” instruction that enables the simulated software on the target

platform to deliver events to the simulator itself. The “Magic” instruction is incorporated as

a special No Operation (NOP) instruction within the Simics’s target ISA, and, hence, can be

directly implemented in real computer systems. We use the “Magic” instruction to correctly

acquire each multi-threaded benchmark’s “cr3” register value, which is essential to the VA

space filtering mechanism. The benchmark applications used in the simulations come from

the PARSEC benchmark suite [37]. PARSEC is a popular benchmark suite containing

parallel workloads from various emerging applications that are considered representative of

next-generation shared-memory programs for multi-processors. Furthermore, all individual

benchmarks can be executed in a multi-threaded mode and are, therefore, suitable for the

proposed PLMD helper cache architecture for multi-processors.

The simulated target is the Simics “Tango machine” in a multi-core setting. This ma-

chine models an Intel Pentium 4 processor (x86-440bx machines). We simulate a system

with 8 processing cores running the Fedora Core 5 Operating System (with Linux kernel

2.6.15, including SMP support).

23

3.4.3 Designs Under Evaluation

Two designs are compared, by using the full-system simulation framework; namely, a

“Baseline” design and the “Proposed” architecture. The “Baseline” system serves as the

reference point and employs a 32-Kbyte L1 data cache per core, which is twice as large

as the one in the “Proposed” setup (i.e., 16 Kbytes per core). Of course, the “Proposed”

design has an additional 2-Kbyte L1 VIVT PLMD cache, for a total of 18 (16 + 2) Kbytes

of L1 data cache per core. Despite this unfair comparison that tilts strongly in favor of

the baseline design, it will be demonstrated in the following sub-sections that the proposed

design comfortably outperforms the generic architecture, despite the significantly smaller

L1 data cache. Both the 32- and 16-Kbyte L1 data caches (of the baseline and proposed

architectures, respectively) have a 3-cycle hit latency. The 2-Kbyte PLMD cache has a

single-cycle hit latency, similar to the one proposed in [11]. Table 3.2 summarizes the two

design configurations.

3.4.4 Overall Performance Evaluation

Figure 3.3: Overall performance improvement over the baseline design

Figure 3.3 corroborates the prior assertions that the proposed VIVT PLMD cache in-

stills dramatic performance improvements over the much larger L1 data cache of the base-

24

line design. The (simple arithmetic) average overall performance improvement was found

to be 19% for the 10 benchmark applications tested. Of course, the performance boost is

attributed to the presence of the decoupled “small-but-fast” VIVT PLMD cache. Figure

3.4a depicts the breakdown statistics of the memory access patterns. One can notice the

large percentage of accesses served by the PLMD cache. In fact, around 50% (on average)

of all memory accesses can be directed to the small PLMD cache. Such a high percentage

of accesses would easily justify the incorporation of the proposed VIVT PLMD cache in

future multi-core systems.

3.4.5 TLB Access Behavior

Figure 3.4a can also help us comprehend the TLB access behavior of the two designs,

which is presented in Figure 3.4b. Since the PLMD cache read/write hit ratios are very

high, the TLB access reduction percentages shown in Figure 3.4b are almost identical to

the sum of the “Stack L1 Data Write” and “Stack L1 Data Read” portions in Figure 3.4a. It

is important to note that the TLB access reductions in Figure 3.4b are a direct consequence

of the VIVT PLMD cache hits, which obviate the need for TLB accesses. In fact, a TLB

access is only needed in the infrequent cases of a PLMD cache read/write miss and a

PLMD cache dirty write-back, (as illustrated by pathways “3” and “4”, respectively, in

Figure 3.2). On average, the proposed design reduces the amount of TLB accesses by

45.5%. This substantial reduction in TLB references will, in turn, translate into a reduction

in energy consumption. As previously described in Section 3.3.1, TLB accesses are energy

expensive, due to the high associativities that typically characterize TLB implementations.

3.4.6 L1/L2 Statistics Analysis (Multi-Level Benefits of PLMD Caches)

As expected from the smaller L1 data cache (18 KB vs. 32 KB) of the proposed architec-

ture, the L1 data cache hit ratio is noticeably lower, as compared to the baseline design.

Figure 3.5 illustrates the L1 data read/write hit ratios of the two evaluated configurations.

25

(a) Frequency breakdown of the memory area accesses

(b) Reduction in TLB accesses in the proposed (16KB + 2KB PLMD cache) design
over the baseline (32K and no PLMD cache) design

Figure 3.4: Memory access pattern analysis

In the case of the proposed design, the L1 ratios refer to the combined hit ratios of the

regular L1 data cache and the PLMD cache. Naturally, the lower L1 data hit ratios in the

proposed architecture result in increased L2 cache accesses.

26

(a) L1 data read hit ratios

(b) L1 data write hit ratios

Figure 3.5: L1 data cache read/write statistics of the two evaluated architectures

27

(a) L2 read hit ratios

(b) L2 write hit ratios

Figure 3.6: L2 cache read/write statistics of the two evaluated architectures

28

Figure 3.6 shows the effect of the presence of the PLMD cache on the L2 cache behav-

ior. Despite the elevated number of L2 cache accesses in the proposed design (caused by

the lower L1 hit ratios), the existence of the PLMD cache beneficially alters the operational

behavior of the L2 cache. As illustrated in Figure 3.6, all benchmark applications running

on the proposed design experience increased read and write hit ratios in the L2 cache. This

is because the PLMD cache’s operation leads to the precipitation of a strong partitioning

effect against data access thrashing between the L1 and L2 caches. This partitioning effect

enables, for example, the “canneal” benchmark to exhibit an overall performance improve-

ment of over 15%, even though it suffers from a relatively low L1 read hit ratio, as shown

in Figure 3.5. This result is very important, since it showcases the multi-level benefits of the

proposed PLMD cache. Its presence not only lowers the average L1 data cache hit latency,

it also improves the performance of the L2 cache. Hence, the combined effect on overall

performance far outweighs the reduction in L1 hit ratios (resulting from the smaller overall

L1 regular data cache size).

3.5 Summary

The PLMD accesses have a profound effect on overall system performance, since appli-

cation workloads tend to access the stack area data (i.e. the superset of the PLMD) at a

very high frequency. It is apparent that contemporary ubiquitous CCSM multi-processor

machines will continue to be front-runners in exploiting thread-level parallelism, in the

future. Thus, it becomes imperative to devise a methodology that efficiently extends the

architected registers in multi-processors, by making use of the spatial FSMO attribute of

the PLMD. Toward this end, this thesis proposes the first PLMD cache architecture geared

toward CCSM multi-core processors.

The presented PLMD cache employs a manual filtering technique that selects

the run-time PLMD references of only one VA space (process) for caching into the

per-CPU L1 VIVT helper caches. The filtering process very simply helps remove the

29

synonym/homonym issue overheads and set-size limitations of VIVT caches, while, at the

same time, it enables the extraction of all associated performance and energy advantages.

The proposed PLMD cache mechanism is especially amenable to contemporary work-

station and server systems that aim at running one primary and dominant multi-threaded

application per machine.

The evaluation using a full-system simulation environment conclusively proves the ef-

ficacy and efficiency of the proposed VIVT PLMD cache for multi-core settings. Overall,

this research certifies the viability of such helper PLMD caches in future CCSM multi-

processors and demonstrates their powerful capabilities.

30

CHAPTER 4

(PLMD 2) SUBTLETIES OF RUN-TIME VIRTUAL ADDRESS STACKS

The original research document of this thesis work was published in [7].

The run-time virtual address (VA) stack has some unique properties, which have

garnered the attention of researchers. The stack one-dimensionally grows and shrinks

at its top, and contains data that is seemingly local/private to one thread, or process.

Accordingly, the optimization of accesses to local variables on run-time VA stacks has

been widely investigated, focusing on these properties. Prior research indicates that real

workloads tend to access the VA stack area with high temporal/spatial locality and within

a small memory footprint [10, 2, 38, 11, 1]. This attribute directly stems from the fact that

a process/thread always runs within a particular function (e.g., main()) whose frame is

usually not very deep, and a stack simply grows and shrinks in one dimension at its top.

Moreover, the VA stack data is assumed to be private to one thread/process.

These well defined attributes of the VA stack can be utilized to help improve the perfor-

mance and energy/power consumption of the highest level of the memory hierarchy. The

common practice of past work in this area is to first decouple the raw VA stack data from

the entire data memory stream. However, the sophisticated behavior of contemporary oper-

ating systems (OS) and compilers not only prohibits this straight-forward data decoupling

by VA, but it also invalidates the assumption that stacks are private to only one thread/pro-

cess. This problematic phenomenon gives rise to potential function-critical hazards, which

have (so far) been ignored in the literature. Hence, the behavior of run-time VA stacks

should be fully investigated under the new light of contemporary OSes and compilers, so

that its nuances do not lead to unexpected (at best), or incorrect (at worst) behavior.

This thesis work aims to demonstrate how conventional wisdom pertaining to the run-

31

time VA stack fails to capture some critical subtleties and complexities. It first explores

two widely established assumptions surrounding the VA stack area. Then, it demonstrates

why these assumptions are invalid, and highlights the potential hazards regarding data con-

sistency, shared memory consistency, and cache coherence. Finally, it suggests safeguards

against these hazards, which helps correctly filter and decouple the PLMD objects from

the stack address space. Overall, the work explores the function-critical issues that future

operating systems and compilers should address to effectively help reap all the benefits of

using run-time VA stacks.

4.1 Contributions

4.1.1 Breaking Chain of a Widespread Erroneous Assumption

There is a widespread assumption underlying the run-time VA stack area memory refer-

ences, which all major prior work depends upon, including [10, 2, 1, 3, 4, 11, 12]. More-

over, much of this work is interconnected, building on concepts developed by the others,

so it was difficult to isolate the sources of the hazards. For instance, the Stack Cache [10]

and Access Region Locality (ARL) [2] inspired the SVF technique [1], while the SVF

technique (and possibly Reverse Integration [3]) inspired the SSP mechanism [4].

However, the contemporary shared memory programming models are much more so-

phisticated and complicated than the erroneous assumption of prior work. This study breaks

the chain of the misconception, by exploring the subtleties and nuances of VA stacks. In

particular, it makes 3 contributions:

• It invalidates the assumption of a rigid dichotomy between the run-time stack

area and non-stack areas, by demonstrating that OSes generate infrequent, yet

non-negligible, VA-related aliases.

• It shows how the shared memory programming model allows VA stack data to also

be visible across other threads/processes.

32

• It explains the potential hazards that these two realities may cause, regarding data

consistency, memory consistency, and cache coherence.

4.1.2 Safeguards for Related Prior Work

This study also describes some safeguards which require the hardware-software interplay

against these hazards. The safeguards can revive related prior research, by demonstrating

how to correctly filter and decouple the PLMD objects from the run-time VA stack area

data.

4.2 Background

The VA stack area stores: (1) spilled private local data (variables/arrays/memory alloca-

tions) exceeding the architected register file capacity; (2) function frame elements (argu-

ments, the return address, and the caller/callee saved register context); and (3) local data to

be shared with other threads/processes (more in Section 4.3.2). The first two types tend to

dominate the run-time VA stack with high temporal/spatial locality. This is primarily why

prior research in this area handled the run-time stack data (identified simply based on the

VA) assuming the same properties as those exhibited by the register file.

User-level thread runtime libraries (e.g., Pthreads and OpenMP) operate on the princi-

ple of one main thread and its N sub-threads residing in a single VA space and comprising

one process. The main thread and its sub-threads share some resources, such as page ta-

ble, global variable area, and file descriptor. The principle of confinement within a single

shared VA space aims to alleviate the heavy overhead of context switching during par-

allel execution. However, the main thread and all sub-threads must also have their own

separate resources, such as VA stack area and registers. During the lifetime of a process

(main thread), the per-thread stack memories are dynamically allocated/deallocated using

mmap()/munmap() system calls (with flags like “MAP STACK”) on the creation/termi-

nation of those threads. This per-thread dynamic stack memory allocation strategy could

33

Figure 4.1: Diagram of an example pipeline of (a) a conventional superscalar processor and
(b) a data-decoupled architecture. This is obtained from [10] and is redrawn here.

use the same VAs as those of non-stack memory allocations in a temporally interchange-

able manner. The per-thread stack and non-stack memory can be allocated in a spatially

“sandwiched” manner.

The designs of most prior research attempting to optimize the stack area data accesses

can be abstracted as the stack/non-stack data-decoupled architecture (DDA) which is intro-

duced in the Stack Cache design [10]. More specifically, the DDA abstraction has the par-

titioned stack/non-stack two-way pipelines from the specific stages (e.g. load store queue,

OoO execution units, or cache memories), so as to safely exploit handling the stack data

as the PLMD objects. Figure 4.1 illustrates the example pipeline of (a) a conventional

superscalar processor and (b) a data-decoupled architecture. The PLMD helper cache ar-

chitecture (Chapter 3) of this thesis has the partitioned L1 data cache memories, as an

example implementation of the DDA abstraction.

4.3 Insights: Myths and Realities of Run-Time Stacks

The intricacies and nuances resulting from the interactions between the run-time stack and

the OS/compiler invalidate two fundamental and widely accepted assumptions: (a) it is

34

straight-forward to decouple VA stacks (dichotomy of stack/non-stack area), and (b) the

VA stack data is private to one thread/process (privacy of VA stack data).

4.3.1 Myth1: Dichotomy of Stack/Non-Stack Area

In reality, the VA stack/non-stack areas can overlap, due to the following attributes:

Synonyms Reality (for Dichotomy Myth)

Actually, the stack/non-stack dichotomy myth resorts to identifying the data memory ref-

erence streams simply based on the VA, which is by nature the origin of enormous aliases.

Under a contemporary OS, one physical memory frame is easily mapped by its virtual ad-

dress page aliases, in the form of synonyms. The representative cases are “inter-process”

(among different VA spaces) synonyms through the OS-provided shared memory segments,

or shared files mapped by the mmap() function. However, an OS also allows “intra-process”

(within one VA space) synonyms for flexible VA usage. For instance, the mmap() function

presents even user code with a way to create a new mapping in the virtual address space of

its calling process.

Moreover, the OS sometimes uses temporary synonyms in the kernel virtual address

space to access user memory. For example, to process a Direct I/O request (used by

databases) that bypasses the OS’s page cache, the kernel copies user data through a ker-

nel address-space synonym. Additionally, kernel space synonyms are also used during a

copy-on-write (CoW) page fault to copy content of the old page to the newly allocated page.

Notice that Direct I/O is an example of heavy usage of a kernel address-space synonym,

and the CoW fault is an indispensable service throughout the process lifetime. Figure 4.2

illustrates this aliased mapping, where the OS kernel generates a synonym of user stack

data within its non-stack VA space when for example a Direct I/O or CoW operation is

needed.

Listing 4.1 is a working code snippet using the Direct I/O technique.

35

Figure 4.2: Kernel-space synonyms are observed in contemporary OSes.

1 i n t main ()

2 {

3 i n t fd , r e t ;

4 # d e f i n e BUFSIZE 1024

5 c h a r buf [BUFSIZE] a t t r i b u t e ((a l i g n e d (0 x200))) ;

6

7 memset (buf , 0 , s i z e o f (buf)) ;

8 i f ((fd = open (” . / f i l e−to−r e a d ” , O RDONLY | O DIRECT)) <0) {

9 p r i n t f (” F a i l e d t o open %s\n ” , s t r e r r o r (e r r n o)) ;

10 e x i t (1) ;

11 }

12

13 w h i l e ((r e t = r e a d (fd , buf , BUFSIZE))) {

14 i f (r e t < 0) {

15 p r i n t f (” F a i l e d t o r e a d %s\n ” , s t r e r r o r (e r r n o)) ;

16 e x i t (1) ;

17 }

18

19 p r i n t f (”%s\n ” , buf) ;

20 }

21

22 c l o s e (fd) ;

23 }

Listing 4.1: Direct I/O working example code

The code displays the content of the “file-to-read” file using Direct I/O, with the flag

O DIRECT (Line 8). The Direct I/O technique makes a synonym alias inside the kernel

(non-stack), using the kmap*() function and accesses the local (in stack) buffer buf[]

(Line 5) through the alias. Therefore, the read (Line 13) and printf() (Line 19) func-

36

tions use two different paths to access the same data of the buf[] array. The read()

function will fill the buf[] through the kernel synonym VA alias, while the printf()

function will directly access buf[] through the regular stack VA. Direct I/O is a represen-

tative example of using a heavy amount of kernel synonyms.

Listing 4.2 is the actual CoW code obtained from the Linux kernel 3.14.

1 s t a t i c i n l i n e vo id c o w u s e r p a g e (s t r u c t page ∗ d s t , s t r u c t page ∗ s r c , u n s i g n e d long va ,

s t r u c t v m a r e a s t r u c t ∗vma)

2 {

3 d e b u g d m a a s s e r t i d l e (s r c) ;

4

5 /∗

6 ∗ I f t h e s o u r c e page was a PFN mapping , we don ’ t have

7 ∗ a ” s t r u c t page” f o r i t . We do a b e s t−e f f o r t copy by

8 ∗ j u s t c o p y i n g from t h e o r i g i n a l u s e r a d d r e s s . I f t h a t

9 ∗ f a i l s , we j u s t zero− f i l l i t . L i v e w i t h i t .

10 ∗ /

11 i f (u n l i k e l y (! s r c)) {

12 vo id ∗ kaddr = kmap atomic (d s t) ;

13 vo id u s e r ∗ uaddr = (vo id u s e r ∗) (va & PAGE MASK) ;

14

15 /∗

16 ∗ T h i s r e a l l y s h o u l d n ’ t f a i l , because t h e page i s t h e r e

17 ∗ i n t h e page t a b l e s . But i t m igh t j u s t be unreadab le ,

18 ∗ i n which case we j u s t g i v e up and f i l l t h e r e s u l t w i t h

19 ∗ z e r o e s .

20 ∗ /

21 i f (c o p y f r o m u s e r i n a t o m i c (kaddr , uaddr , PAGE SIZE))

22 c l e a r p a g e (kaddr) ;

23 kunmap atomic (kaddr) ;

24 f l u s h d c a c h e p a g e (d s t) ;

25 } e l s e

26 c o p y u s e r h i g h p a g e (d s t , s r c , va , vma) ;

27 }

Listing 4.2: The “cow user page()” function in the “mm/memory.c” file of Linux kernel

3.14

The final end products of the CoW operation are the “two complete different page instances

37

(of the new struct page* dst and the old struct page* src) of threads or pro-

cesses.” The OS kernel creates the virtual address alias (kaddr) temporarily (Line 12)

using the kmap*() function inside the kernel space and then destroys it quickly (Line 23).

This alias of kaddr is used to point to the destination (new) page struct page *dst,

during the copy operation (Line 21).

Reallocation/Remapping Reality (for Dichotomy Myth)

The cross-regional reallocation (of one virtual page) and remapping (to one physical frame)

which the OS page allocator and memory management subsystem perform can destroy the

mutually exclusive access to one memory object from either the VA stack, or the non-stack

address space.

• Stack/non-stack page reallocation (Figure 4.3a). The OS page allocator can inter-

changeably allocate the same virtual page for the per-thread VA stack page and for

the non-stack page. Thus, a virtual page that once belonged to the VA stack can

belong to the VA non-stack, and vice versa.

• Stack/non-stack page remapping (Figure 4.3b). Conversely, the OS memory man-

agement subsystem can interchangeably get the same physical frame mapped for the

per-thread VA stack page and for the non-stack page. Thus, a physical frame that

once belonged to the VA stack page can belong to the VA non-stack page, and vice

versa.

Note that the per-thread stack and non-stack pages can be allocated in a spatially “sand-

wiched” manner, in the VA space.

4.3.2 Myth2: Privacy of the VA Stack Data

Each thread of a process has its own individual run-time VA stack. Unfortunately (and

contrary to popular belief), this does not mean that the VA stack data is always non-visible

38

Figure 4.3: Page reallocation (a) and remapping (b).

to other threads/processes, as will be explained shortly. Please note that in order to make

VA stack data visible to other threads/processes, compilers cannot help but forcibly spill

(commit) the local data into the VA stack area (so that VAs can be assigned to leverage the

shared memory model), even when there are enough available architected registers.

1 vo id foo () {

2 d ou b l e do tp ;

3 . . .

4 do tp = 0 . 0 ; / / i n i t i a l i z a t i o n o f ‘ ‘ d o t p r o d u c t ’ ’

5 # pragma omp p a r a l l e l s h a r e d (N, X, Y) p r i v a t e (i)

6 # pragma omp f o r r e d u c t i o n (+ : do tp)

7 f o r (i n t i = 0 ; i < N; i ++)

8 { do tp += X[i] ∗ Y[i] ; }

9 . . .

10 . . . = do tp ∗ do tp ; / / u se o f do tp

Listing 4.3: An OpenMP pseudo-code snippet evaluating the variable dotp in a fork-join

task model.

Scope Reality (for Privacy Myth)

Within one VA space, virtual memory is always shared (e.g., through pointers) and, hence,

different thread stacks are not protected from other threads. On the contrary, registers are

never shared [39]. Since every thread can access every memory address within the process

address space, one thread can read, write, or even completely wipe out another thread’s

39

stack [40]. This, one – entirely visible – VA space across multiple threads helps perform

parallel operations, as illustrated in Listing 4.3. This parallel code snippet calculates the

variable dotp, by using the OpenMP’s fork-join task model, i.e., its default style. All sub-

threads spawned inside the foo() function can see dotp, even though it is a local variable

defined in the foo() function. The fork-join model is merely a standardized example case.

Programmers can use more complicated multi-threaded programming styles, such as the

thread-pool model, thereby leveraging this scope capability.

The great actual example of the non-private stack data is the per-thread qnodes of MCS

lock [41]. Each per-thread qnode is declared as the automatic variable inside the run-time

VA stack of each lock-competing thread, and is passed as the arguments to the MCS lock

functions. The adjacent predecessor and successor lock-waiter threads have to share their

per-thread qnodes with each other, to perform the queuing lock mechanism which reads

and updates each other’s qnode.

Additionally, the non-private (i.e. shared) stack data accesses are also observed in the

code of the real benchmark suites, as in Listing 4.4.

1 vo id C P e a r l I n f E n g i n e : : P a r a l l e l P r o t o c o l ()

2 {

3 i f (m maxNumberOf I t e ra t ions == 0)

4 {

5 S e t M a x N u m b e r O f I t e r a t i o n s (m numOfNdsInModel) ;

6 }

7

8 i n t i , j ;

9 i n t conve rged = 0 ;

10 i n t changed = 0 ;

11 i n t i t e r = 0 ;

12 c o n s t CGraph ∗pGraph = m pGraphicalModel−>GetGraph () ;

13 i n t nNodes = m connNodes . s i z e () ;

14 i n t nAllMes = m messagesFromNeighbors . s i z e () ;

15

16 <d e l e t e d p a r t>

17

18 messageVecVector newMessages (m messagesFromNeighbors) ;

19

40

20 <d e l e t e d p a r t>

21

22 w h i l e ((! conve rged)&&(i t e r <m maxNumberOf I t e ra t ions))

23 {

24 / / d e l e t e a l l o l d da ta

25 / / work w i t h new da ta

26 i f (i t e r > 0)

27 {

28 # i f d e f OPENMP

29 # pragma omp p a r a l l e l f o r

30 # e n d i f

31 f o r (i = 0 ; i < nAllMes ; i ++)

32 {

33 f o r (j = 0 ; j <m messagesFromNeighbors [i] . s i z e () ; j ++)

34 {

35 d e l e t e m messagesFromNeighbors [i] [j] ;

36 m messagesFromNeighbors [i] [j] = newMessages [i] [j] ;

37 }

38 }

39

40 / / compute b e l i e f s

41 changed = 0 ;

42 # i f d e f OPENMP

43 # pragma omp p a r a l l e l f o r s c h e d u l e (dynamic) r e d u c t i o n (+ : changed)

44 # e n d i f

45 f o r (i =0 ; i < nNodes ; i ++)

46 {

47 i f (! m a r e R e a l l y O b s e r v e d [m connNodes [i]])

48 {

49 message tempBel = m b e l i e f s [m connNodes [i]] ;

50 ComputeBe l i e f (m connNodes [i]) ;

51 changed += ! tempBel−>I s E q u a l (m b e l i e f s [m connNodes [i]] ,

52 m t o l e r a n c e) ;

53 d e l e t e tempBel ;

54 }

55 }

56 conve rged = ! (changed) ;

57 }

Listing 4.4: A code example (pnlPearlInferenceEngine.cpp) from the BioParallel

benchmark suite [42]

41

In Listing 4.4, the variable changed is declared as the VA stack data inside the

CPearlInfEngine::ParallelProtocol() function and initialized to zero (Line 10 and 41).

Then, the variable is shared and processed by sub-threads of the parallel loop that has the

#pragma omp parallel reduction directive (on Line 43).

Inter-Process Synonym Reality (for Privacy Myth)

Actually, the inter-process communication (IPC) programming model allows even VA-

stack data to be visible across different processes. For example, multiple processes can

map shared files (e.g., using the mmap() function), or OS-provided shared-memory seg-

ments (e.g., using the POSIX shmat() function) into their own stacks. Accordingly, these

mappings require proper pre-allocated space inside the VA stacks of the associated pro-

cesses. Listing 4.5 is the example working code for these mappings which shows that the

Linux mmap() function is so versatile and flexible.

1 vo id

2 foo (i n t fd , s i z e t l e n)

3 {

4 /∗ 4 KByte (0 x1000) b u f f e r i n VA−s t a c k , a l i g n e d t o 4 KByte page ∗ /

5 c h a r b u f f e r [0 x1000] a t t r i b u t e ((a l i g n e d (0 x1000))) ;

6 c h a r ∗mapped addr ;

7

8 mapped addr = mmap (b u f f e r , l en , PROT READ ,

9 MAP PRIVATE | MAP FIXED , fd ,

10 0 /∗ o f f s e t f o r mmap () must be page a l i g n e d ∗ /) ;

11 / / s u c c e s s f u l ”mmap” ?

12 a s s e r t (mapped addr != MAP FAILED) ;

13 / / s u c c e s s f u l mmap s p o t ?

14 a s s e r t (mapped addr == b u f f e r) ;

15

16 do

17 {

18 /∗ w r i t e t h e f i l e i n t o t h e s ha red memory segment ∗ /

19 w r i t e (STDOUT FILENO , mapped addr , l e n) ;

20 }

21 w h i l e (0) ;

22

42

23 munmap (mapped addr , l e n) ;

24 }

25

26

27 i n t

28 main (i n t a rgc , c h a r ∗ a rgv [])

29 {

30 i n t fd ;

31 s t r u c t s t a t sb ;

32 s i z e t l e n g t h ;

33

34 fd = open (a rgv [1] , O RDONLY) ;

35 / / s u c c e s s f u l f i l e ”open” ?

36 a s s e r t (fd != −1) ;

37 / / s u c c e s s f u l f i l e s i z e o b t a i n i n g ?

38 a s s e r t (f s t a t (fd , &sb) != −1) ;

39

40 l e n g t h = sb . s t s i z e ;

41

42 foo (fd , l e n g t h) ;

43

44 c l o s e (fd) ;

45 }

Listing 4.5: Working code with the mmap() function mapping a file inside the VA stack

The foo() function declares the char buffer[] array (the target VA memory loca-

tion) inside its stack memory space (Line 5). Then, the mmap() function maps the shared

file to the char buffer[] array (Line 8). The important point is to allocate the target

VA stack memory location at 4 Kbyte page granularity (in alignment and size, i.e., 4, 8, 16,

... Kbytes), as shown on line 5 of Listing 4.5. Recap that a similar alignment attribute was

also applied to the char buf[] in Listing 4.1 (Direct I/O). The mapping technique with

the shared-memory segment, using the shmat() function can also be employed, for the

same purpose.

43

4.4 Insights: Potential Hazards

This section explains certain function-critical hazards that the OS and compiler peculiari-

ties outlined in Section 4.3 give rise to the aforementioned stack/non-stack two-way data-

decoupled architecture (DDA). Note that all hazards described below may lead to functional

incorrectness (i.e., erroneous results), regarding data consistency, memory consistency, and

cache coherence. The safeguards in terms of the micro-architecture, OS, and compiler are

suggested after these hazards are analyzed.

4.4.1 Dichotomy Affects Data Consistency and Dependencies

Synonym Issue

The OS-driven synonym issue of Section 4.3.1 invalidates the assumption that stack and

non-stack data streams can be perfectly decoupled. In other words, data can be accessed

from either, or both, of these two areas. Consequently, duplicated data streams will oc-

cupy the stack/non-stack two-way DDA pipelines, thereby violating data consistency and

dependencies. Compilers and hardware cannot resolve this problem on the fly, unless the

OS provides assistance.

Reallocation/Remapping Issue

The reallocation/remapping issue of Section 4.3.1 can leave stale residue memory objects

in the stack/non-stack two-way DDA pipelines and cache memories. The stale cache lines

can overwrite the fresh lines in the merging point (e.g. lower level shared cache memories)

when they are dirty-written-back to there.

Once the absolute dichotomy myth is broken, the system can hardly benefit from

employing the two-way stack/non-stack DDA pipelines, because it then requires the

intervention between the two-way pipelines, to ensure data consistency and enforce

44

dependencies. Particularly, data coherence between the two-way DDA pipelines should

be maintained. This intra-node cache coherence will ironically complicate the design,

especially because the mechanisms should also consider memory ordering between the

intra-node two-way DDA pipelines, in multi-processor environments. For instance, the

load/store queue (LSQ) snooping operation is required between the two DDA LSQes of

the same CPU node.

4.4.2 Privacy Affects Cache Coherence and Memory Consistency

The OS- and compiler-induced scope and synonym issues of Section 4.3.2 create false pos-

itive inter-thread/process visibility in the VA stack data. While most of the VA stack data

is purely private to one thread/process, a small amount is not. This false positive visibility

requires the VA stack data to be subject to cache coherence and memory consistency. Note

that there is neither register coherence, nor register consistency regulation, because regis-

ters are not accessed by VA, but by name, and, hence, they are private to one thread/process.

Cache Coherence Issue (on One Stack Data)

To illustrate this, take the scenario depicted in Listing 4.3 again. The variable dotp is

defined in the foo() function. Then, the compiler would forcibly spill (store) dotp onto

the VA stack (on Line 2) for the fork-join sub-threads to see it, and a register will be finally

filled (load) with dotp’s updated value (on Line 10), after the parallel part (Lines 5 to 8).

If the initializing store on Line 4 and the parallel part (Lines 5 to 8) of Listing 4.3 are not

concurrently subject to cache coherence, the system could get the incorrect value of dotp

on Line 10.

Another example is the MCS lock [41] which uses the per-thread qnodes. As explained

in Section 4.3.2, each per-thread qnode is declared as the automatic variable inside the run-

time VA stack of each lock-competing thread, and is passed as the arguments to the MCS

lock functions. The adjacent predecessor and successor lock-waiter threads have to share

45

their per-thread qnodes with each other, to perform the queuing lock mechanism which

reads and updates each other’s qnode. Therefore, without the proper cache coherence on

the per-thread qnodes, the MCS lock design would not work at all.

Memory Consistency Issue (between Stack/Non-Stack Data Streams)

The two-way stack/non-stack DDA pipelines intend to remove the intervention between

the two data streams. However, this no intervention combined with the shared stack data

references makes the multi-processor implementations of the architecture unprotected to

memory-order distortions between the two data streams. This hazard becomes more exac-

erbated if the two-way stack/non-stack DDA pipelines employ the OoO execution scheme:

the case further complicates (i.e. decouples) the OoO execution pipeline and its cache

memories which are the two main factors already notorious for affecting memory ordering.

Note that adding any memory ordering intervention between the two-way stack/non-stack

DDA pipelines can adversely affect their performance optimization goal, as explained in

Section 4.4.1.

One example explaining this memory-order distortion hazard is the MCS lock, once

again. Recall that the per-thread qnodes are declared inside the run-time VA stack, while

the critical sections are mostly declared in the non-stack area. Thus, the multi-processor im-

plementation of the two-way stack/non-stack DDA pipelines can easily distort the memory

write operations on the per-thread qnodes and on the critical sections in a random manner,

which destroys the spinlock synchronization.

Listing 4.6 depicts another scenario where such memory-order distortion takes place in

the multi-processor implementation of the two-way stack/non-stack DDA pipeline archi-

tecture.

1 /∗ sharedData : d e c l a r e d i n g l o b a l area ∗ /

2

3 /∗ Thread t o be spawned f o r p a r a l l e l p r o c e s s i n g ∗ /

4 vo id p r o c e s s i n g t h r e a d (l o c k t ∗ l p t r) {

5

46

6 /∗ S y n c h r o n i z a t i o n ∗ /

7 s p i n l o c k (l p t r) ; / / ∗ l p t r = LOCKED, (a c q u i r e t h e l o c k)

8 s h a r e d D a t a = . . . ; / / u p d a t i n g sharedData

9 s p i n u n l o c k (l p t r) ; / / ∗ l p t r = UNLOCKED, (r e l e a s e t h e l o c k)

10

11 }

12

13 vo id p a r a l l e l p r o d u c e c b () {

14 l o c k t l o c k ;

15

16 /∗ spawning p a r a l l e l t h r e a d s ∗ /

17 t h r e a d c r e a t e (. . . , p r o c e s s i n g t h r e a d , (vo id ∗)&l o c k) ;

18

19 }

Listing 4.6: A code snippet of the run-time binding parallel callback function

parallel produce cb() to be called by the producer of a “producer-consumer” style

program.

The code describes parallel produce cb() which is the run-time binding parallel

callback function to be called by the producer of a “producer-consumer” style program. Let

the program declare sharedData in the global area such as OS-provided shared memory

segments, so the producer and consumer can share the data. The call back function spawns

multiple instances of the processing thread() thread to conduct some parallel pro-

cessing (Line 17), and finally has all those sub-threads synchronized when updating the

sharedData (Line 7 to 9). The synchronization uses X86-TSO-architecture-style spin-

locks because spinlocks are the best choice for the extremely short critical section. Note

that because it is a run-time binding callback function, the parallel produce cb()

function deliberately declares the lock variable inside its stack (Line 14), instead of in-

side the global shared data structure containing sharedData. Basically, this is the most

recommended way where the “fork-join” style multi-threaded function can benefit from

allocating its lock variables as local automatic variables. The other inefficient alternative

way is dynamically allocating and deallocating the lock variables in the global memory

47

location, on every run-time “fork-join” operation.

The multi-processor implementation of the two-way stack/non-stack DDA pipelines

which realizes dichotomy myth would easily distort the memory ordering between Line 7

and 8 or between Line 8 and 9, in the random order among processors. This is due to the

fact that lock is in the stack VA space, while sharedData is in the non-stack VA space.

This distortion could then break the synchronization of sharedData. Modern processor

designs, such as X86-TSO, have stronger memory consistency models to ease the coding

process of programmers and compilers, regarding the memory ordering issues.

4.5 Safeguards for Stack/Non-Stack Decoupled-Data Architecture

4.5.1 Suggested Safeguards to Achieve Real Dichotomy

Synonym Reality

For the “kernel-space” and “inter/intra-process” synonym issues, we can borrow from Basu

et al. [21] the VA encoding counter-measure for their opportunistic virtual caching (OVC),

and we can enhence the technique. That is, an OS can encode the VA of each synonym page

without breaking the existing VA mechanism, to specify the stack/non-stack VA region

information of the very original page to which the synonym page is mapped. The solution

requires that the OS is given enough unused VA room (as in 64-bit Linux) to encode the

VA. For 64-bit Linux, the augmented OS VA range allocator can assign each synonym

page with a special VA which contains this encoded original region information in any

of the unused bits (between the 49th VA48 bit and the 64th VA63 bit). This selective VA

encoding of synonyms does not overlap with the existing VA space. Then, the hardware

VA-bound check can eventually identify whether the origin of the synonym page is either

a VA stack, or non-stack page, by the selectively encoded bits. This identification finally

directs the synonym pages to the correct decoupled (stack or non-stack) pipeline.

Recall that the stack/non-stack DDA machines can be free from the intra-process read-

48

write synonym issue between the run-time stack and non-stack areas, if they feed the PLMD

(filtered from the raw VA stack data) to the decoupled stack pipeline, as explained in Sec-

tion 3.3.1. On the contrary, Basu et al. [21] classified a process having the user-space

intra-process synonyms as the offending process and turned off their OVC for such cases.

Reallocation/Remapping Reality

To resolve the reallocation/remapping issue, the OS should invalidate the associated residue

cache lines of either data stream in the pipeline(s) of all CPUs, whenever the realloca-

tion/remapping happens. Fortunately, these invalidations do not need a dirty write-back

into the lower memory sub-system.

4.5.2 Suggested Safeguards to Achieve Real Privacy

Both of the scope issue and inter-process synonym issue of Section 4.3.2 can be eliminated,

by adopting a compiler transformation technique. For instance, the compiler can create the

new VA stack area instance per the existing one, and then filter and move all the PLMD of

the original existing stack area to the newly created stack instance.

Fortunately, the required compiler transformation technique can be directly borrowed

from the safe stack scheme [13] which creates said new “safe stack” instances, to enhance

the security of the function call frame stacks. It is also easy for hardware to detect and

decouple the safe stack data references from the rest of the data references, because the

scheme uses the “hardware-based instruction-level safe region isolation” technique. There-

fore, the micro-architecture can identify the safe stack data accesses, by the dedicated seg-

ment register used to access the safe stack.

4.6 Summary

This study aims to capture the intricacies and nuances of the hazardous interplay between

the run-time VA stack and modern OSes and compilers. Unlike popular belief and practice,

49

the demonstrated problematic scenarios indicate that the VA stack data are just the superset

of the PLMD objects, and, thus, cannot be directly treated as the architected register ex-

tensions. Additionally, this study suggests simple safeguards and modifications to the OS

and/or compiler to eliminate the function-critical hazards of treating the VA stack data as

the PLMD. The full-system vertical study presented in this work aims to guide the future

OS and compiler designs, such that the previously unaddressed issues pertaining to the use

of the VA stack are prevented from leading to erroneous behavior.

50

CHAPTER 5

(CSLVs) QT SPINLOCK: QUEUING TICKET SPINLOCK FOR LINUX KERNEL

The spinlock is generally the best synchronization option to protect the short sized shared

data in memory. In this regard, the importance of the spinlocks inside the OS kernels can

not be emphasized enough, because the kernels have a lot of essential short sized data

shared by the multiple concurrent kernel threads [43, 24]. Every spinlock design runs with

the seemingly simple spin-waiting loops. However, the spin-waiting synchronization is all

about the memory consistency issues and easily becomes the most massive source of the

concurrent fine-grain cache coherence operations generating the typhoon-like cache line

bounces. Ironically, it is only after going-through this heavy SM synchronization overhead

that the concurrently competing threads can safely access the very short sized shared data.

The ticket spinlock is a simple centralized design which out-performs other software

locks, until the lock contention makes the lock variable the cache coherence hot spot [24].

Meanwhile, the queuing lock is the localized design which paradoxically executes by far

the best under the lock contention.

This research proposes the queuing ticket (QT) spinlock which is specially designed

for the Linux kernel. As the name implies, the QT spinlock is the transformed ticket spin-

lock design which silently performs the queuing lock operations as well. To this end, it

works with light-weight micro-architectural support. The QT spinlock ultimately reduces

the spinlock synchronization overhead, by restricting each lock-competing thread to start

caching the lock variable “only when” it acquires the lock. The key enabler of this overhead

reduction is handling the ticket spinlock variable (the CSLV) as the temporal FSMO, until

the thread finally exits the spin-waiting iteration, as introduced in Section 1.2.2. In this

way, the QT spinlock which is the centralized spinlock design can even better scale than

the state-of-the-art software locks, especially on the large scale CCSM NUMA systems.

51

5.1 Insights and Contributions

5.1.1 Ultimate Minimalism in Cache Line Bouncing

The QT spinlock design proposes the contrarian idea of enabling the centralized spinlock

(CSL) to out-perform all the other sophisticated spinlocks, by handling the centralized

spinlock variable (CSLV)s as the temporal FSMOs. The main insight is that (1) the central-

ized spinlock design has the shortest critical-path of cache line bounces, and (2) the Linux

kernel has the “CPU-Affinity Spin-Wait” property (explained later in Section 5.2.6). The

design aims at unleashing the power of the centralized spinlock design.

As described previously, it is ironic that the spinlock synchronization provokes much

higher overhead than its short sized critical section does. The temporal FSMO concept

helps resolve this with these features:

• The concept restricts each lock-competing thread to cache the lock variable line,

“only after” eventually acquiring the lock.

• The concept makes the thread perform the spin-wait operation on the proper hard-

wired value which keeps the spin-wait loop iterating, until receiving the wake-up

signal from the lock-owner thread.

• The concept makes the threads send the required signals to the spin-waiting CPUs,

through the direct CPU-to-CPU message-passing micro-architecture, instead of

through the SM domain.

In this way, the QT spinlock design simply incurs the N times lock variable cache line

moves, in the lock contention case having the N lock-waiting threads (assuming no thread

CPU migration). In other words, the lock variable cache line moves only on each lock

ownership CPU migration. More specifically, the QT spinlock suppresses the unnecessary

moves of the lock variable cache line, among the lock-owner and lock-waiter threads, which

are caused by both of the true and false sharing effects. The introduced temporal FSMO

52

concept helps the QT spinlock accomplish this overhead reduction mechanism without

damaging the underlying SM consistency model.

This is by far the ultimate counter-measure to alleviate the interference of the cache line

moves surrounding the CSLV. Related prior work of such a counter-measure includes the

evolution from the test-and-set (TS) spinlock into the test-and-test-and-set (TTS) spinlock

[44].

5.1.2 Small Lock Variable Size

The QT spinlock brings in the beneficial by-product of great significance that its lock vari-

able becomes small enough (e.g. 4 bytes). This is by virtue of the fact that the QT spinlock

is basically the ticket spinlock design whose lock variable is a CSLV composed of the sim-

ple ticket head/tail value pair. The spinlock variable size seemingly does not look vital

for the most lock designers. However, the lock variable size determines the eligibility of

the lock design in the target programs: it is common practice to embed the lock variables

in the very shared data structure for them to protect, with the cache line alignment being

kept for the best performance. As a consequence, the codes can have trouble re-shaping

the shared data structure, with even the subtle lock variable size increment (e.g. notably

“struct page” of the Linux kernel [25]). Note that the Linux kernel cannot adopt almost all

the sophisticated scalable software spinlock schemes (e.g. the MCS lock [41], CLH lock

[26], hierarchical CLH lock [27], and K42 lock [28]) as the default lock, because of the 4

byte lock variable size limitation.

5.1.3 Proper Approximate Simulation Model

In fact, it is very difficult to evaluate the spin-waiting synchronization designs using soft-

ware multi-processor simulators. Most of the simulators are optimized for the macro-scopic

cache coherence simulation to avoid taking an outrageously long simulation time. In con-

trast with this, the spin-waiting synchronization could be the most massive source of the

53

micro-scopic fine-grain cache coherence operations accompanying the typhoon-like cache

line bounces.

Therefore, this thesis work explores the essentials which the simulators should consider

to properly approximate the evaluation of the spin-wait synchronization performance.

5.2 Background

Despite looking quasi-simple, the spin-waiting synchronization primitives are the main

source of sophisticated programming techniques, such as employing inline assembly

atomic memory operations, and handling memory ordering issues of the memory

consistency model.

This section aims to help understand the contribution of the proposed QT spinlock

design by explaining the evolution of the main-stream spinlock designs. Also presented is

the knowledge required to understand the spinlock designs inside the Linux kernel.

5.2.1 Test-and-Set (TS) Spinlock: Centralized Spin-Lock

1 l o c k t Atomic Tes tAndSe t (l o c k t ∗ p t r) {

2 l o c k t rv = ∗ p t r ;

3 ∗ p t r = LOCKED;

4 r e t u r n rv ;

5 }

6

7 v o l a t i l e l o c k t l o c k = UNLOCKED;

8

9 vo id s p i n l o c k (l o c k t ∗ l p t r) {

10 /∗ sp in−w a i t i n g loop ∗ /

11 do {} w h i l e (Atomic Tes tAndSe t (l p t r) == LOCKED) ;

12 }

13

14 vo id s p i n u n l o c k (l o c k t ∗ l p t r) {

15 ∗ l p t r = UNLOCKED;

16 }

Listing 5.1: A pseudo-C code of the test-and-set (TS) spinlock.

54

Listing 5.1 depicts the pseudo-C code of the test-and-set (TS) spinlock. The TS spinlock is

a naive centralized spin-lock (CSL) design notorious for generating the worst cache coher-

ence contention traffic, among all the spinlock designs ever proposed. On every spin-wait

iteration (Line 11), the TS spinlock executes the heavy atomic memory exchange operation

of the Atomic TestAndSet() instruction which “always” launches the write-invalidate

messages for the lock variable cache line. This way, each spin-wait iteration not only suf-

fers from, but also creates the cache miss penalties for the lock variable, induced by the

heavy atomic memory exchange instruction.

5.2.2 Test-and-Test-and-Set (TTS) Spinlock: Centralized Spin-Lock

1 v o l a t i l e l o c k t l o c k = UNLOCKED

2

3 vo id s p i n l o c k (l o c k t ∗ l p t r) {

4 /∗ n e s t e d sp in−w a i t l o o p s ∗ /

5 do {

6 do {} w h i l e (∗ l p t r == LOCKED) ; / / s p i n n i n g on t h e cache l i n e

7 } w h i l e (Atomic Tes tAndSe t (l p t r) == LOCKED) ; / / s p i n n i n g on a t om ic t e s t−and−s e t

8 }

9

10 vo id s p i n u n l o c k (l o c k t ∗ l p t r) {

11 ∗ l p t r = UNLOCKED;

12 }

Listing 5.2: A pseudo-C code of the test-and-test-and-set (TTS) spinlock.

Listing 5.2 depicts the pseudo-C code of the test-and-test-and-set (TTS) spinlock. The TTS

spinlock is a CSL design which can remarkably reduce the cache coherence contention

traffic of its predecessor TS spinlock [44]. To that end, the TTS spinlock simply adds an

inner spin-wait loop (Line 6) to the existing TS spin-wait loop (Line 5 to 7), making the

two loops nested. The added inner loop spin-waits on the “cached” lock variable, so as

to enable the thread to delay executing the TS spinlock operation until the lock variable

is released. In short, the TTS spinlock is the “trylock” version of the TS spinlock. That

is to say, each spin-waiting thread first confirms that the lock is currently released. If it is

55

true, the thread executes the heavy atomic memory exchange instruction to try to acquire

the lock.

5.2.3 Ticket Spinlock: Centralized Spin-Lock

1 t y p e d e f s t r u c t l o c k {

2 t i c k e t t h e a d T i c k e t , t a i l T i c k e t ;

3 } l o c k t ;

4

5 l o c k t l o c k ;

6 l o c k . h e a d T i c k e t = l o c k . t a i l T i c k e t = 0 ;

7

8 l o c k t Atomic XchgAdd (l o c k t ∗ p t r , i n t i n c r e m e n t) {

9 l o c k t rv = ∗ p t r ;

10 ∗ p t r += i n c r e m e n t ;

11 r e t u r n rv ;

12 }

13

14 vo id s p i n l o c k (l o c k t ∗ l p t r) {

15 l o c k t l o c k s t a t u s = Atomic XchgAdd (l p t r , (0 x1 << TAIL TICKET SHIFT OFFSET)) ;

16

17 /∗ l o c k a c q u i s i t i o n d e c i s i o n ∗ /

18 i f (l o c k s t a t u s . h e a d T i c k e t == l o c k s t a t u s . t a i l T i c k e t)

19 r e t u r n ;

20

21 /∗ sp in−w a i t l oop ∗ /

22 t i c k e t t m y t i c k e t = l o c k s t a t u s . t a i l T i c k e t ;

23 do {} w h i l e (l p t r−>h e a d T i c k e t != m y t i c k e t) ;

24 }

25

26 vo id s p i n u n l o c k (l o c k t ∗ l p t r) {

27 l p t r−>h e a d T i c k e t += 1 ;

28 }

Listing 5.3: A pseudo-C code of the ticket spinlock.

Listing 5.3 depicts the pseudo-C code of the ticket spinlock. The ticket spinlock is

a CSL design which works in the perfect fair FIFO fashion, unlike the TS and TTS

spinlock. The lock variable is plainly composed of the headTicket and tailTicket

56

value pair (Line 1 to 3), both of which are initialized to the same value. Basi-

cally, the spin lock() and spin unlock() functions respectively increment the

tailTicket and headTicket values in memory, by one. Hence, the gap between the

two values means the total number of the lock-owner thread and lock-waiter threads, at

the moment. Incrementing the tailTicket value requires the Atomic XchgAdd()

instruction which performs the atomic “exchange-and-add” memory operation on the lock

variable in memory (Line 15). In other words, it simultaneously returns the current lock

variable in memory and increments its tailTicket field in memory. The return value of

the Atomic XchgAdd() instruction is used to make the lock acquisition decision (Line

18), and to set the myticket value (Line 22). Hence, each spin-wait thread is assigned

the current tailTicket field of the lock variable as its unique myticket value.

The proposed QT spinlock makes use of the property that this kind of atomic memory

instruction can easily decide the lock acquisition status. Hence, the QT spinlock gets the

atomic instruction augmented with additional necessary micro-ops, for this purpose.

The great improvement of the ticket spinlock over the TS and TTS spinlock is that

the spin-waiting loop incurs no atomic memory operation. The loop just compares the

myticket value (which is stored in a register) with the current headTicket value

(which is stored in memory). However, this spin-wait loop operation still makes the lock

variable cache line the heavy hot spot in memory.

5.2.4 General Queuing Spinlock Scheme

As the name implies, the queuing spinlock designs operate with the lock-owner and lock-

waiter threads organized in the queue structure. Each lock-waiter thread spin-waits on its

own local locked value contained in its per-thread “qnode.” Therefore, the spin-wait

induced notorious cache coherence contention surrounding the centralized spin-lock vari-

able (CSLV) disappears. The queue is basically a linked-listed structure of the per-thread

qnodes, and is established and managed by the concurrently running lock-owner and lock-

57

Figure 5.1: Illustration of the per-thread qnodes establishing a spin-wait queue of a lock.

waiter threads, in a back-to-back manner. In other words, the qnode of the newly coming

lock-waiter thread becomes the tail qnode, while the qnode of the lock-owner thread is

the head qnode. The lock-owner thread performs the unlock operation by releasing the

locked value in the qnode of its successor lock-waiter thread. Thus, the queuing locks

deliver perfect fairness for the spinlock “releasing” operation. Figure 5.1 depicts the per-

thread qnodes which establish the spin-wait queue of a lock. The thread X is the lock-owner

thread and thread Y, Z are the lock-waiter threads.

5.2.5 MCS Lock: Queuing Lock

1 t y p e d e f s t r u c t qnode {

2 s t r u c t qnode ∗ n e x t ;

3 b y t e l o c k e d ;

4 } q n o d e t ;

5

6 t y p e d e f q n o d e t ∗ m c s l o c k t ;

7

8 m c s l o c k t l o c k = NULL;

9

10 q n o d e t ∗ Atomic Xchg (m c s l o c k t ∗ p t r , q n o d e t ∗ n e w p t r) {

11 q n o d e t ∗ rv = ∗ p t r ;

12 ∗ p t r = n e w p t r ;

13 r e t u r n rv ;

14 }

15

16 q n o d e t ∗ Atomic CmpAndSwap (m c s l o c k t ∗ p t r , q n o d e t ∗ o l d p t r , q n o d e t ∗ n e w p t r) {

17 q n o d e t ∗ rv = ∗ p t r ;

18 i f (∗ p t r == o l d p t r)

19 ∗ p t r = n e w p t r ;

58

20

21 r e t u r n rv ;

22 }

23

24 vo id s p i n l o c k (m c s l o c k t ∗ l p t r , q n o d e t ∗mynode) {

25 q n o d e t ∗ p r e d e c e s s o r ;

26

27 mynode−>n e x t = NULL;

28 p r e d e c e s s o r = Atomic Xchg (l p t r , mynode) ;

29

30 i f (p r e d e c e s s o r) {

31 mynode−>l o c k e d = LOCKED;

32 p r e d e c e s s o r−>n e x t = mynode ;

33

34 /∗ sp in−w a i t i n g loop ∗ /

35 do {} w h i l e (mynode−>l o c k e d == LOCKED) ;

36 }

37 }

38

39 vo id s p i n u n l o c k (m c s l o c k t ∗ l p t r , q n o d e t ∗mynode) {

40 i f (! mynode−>n e x t) {

41 i f (Atomic CmpAndSwap (l p t r , mynode , NULL) == mynode)

42 r e t u r n ;

43 do {} w h i l e (! mynode−>n e x t) ;

44 }

45 (mynode−>n e x t)−>l o c k e d = UNLOCKED;

46 }

Listing 5.4: A pseudo-C code of the MCS spinlock.

Listing 5.4 depicts the pseudo-C code of the MCS lock. The MCS lock is the represen-

tative queuing spinlock design which establishes the linked-listed structure of the per-thread

qnodes, as explained in Section 5.2.4. Actually, the lock variable is just the VA pointer vari-

able pointing to the per-thread qnode (Line 6), and is initialized to the NULL pointer (Line

8). The spin lock() and spin unlock() functions keep the lock variable point-

ing to the current tail qnode, using the Atomic Xchg() and Atomic CmpAndSwap()

atomic memory instructions (Line 28 and 41, respectively). Each per-thread qnode con-

tains the local “locked” value (on which the thread spin-waits) and the next VA pointer

59

variable pointing to the successor per-thread qnode (Line 1 to 4). The per-thread qnode is

manually created by the programmer as the automatic variable inside the function frame

stack of the lock-competing thread, and the VA pointer variable pointing to it is passed

to the spin lock() and spin unlock() API functions as an argument (Line 24 and

39).

This way, the MCS lock separates the shared lock variable from the local per-thread

locked variables on which each thread actually spin-waits. This separation shines best

in the lock contention case because the spin unlock() function even skips referencing

the shared lock variable, and directly accesses the local per-thread qnode to let go of the

successor lock-waiter thread (Line 45). On the contrary, with no outstanding lock-waiter

thread, the MCS lock runs much slower than the ticket spinlock [24] because releasing the

lock should use the atomic memory instruction on the shared lock variable (Line 40 to 44).

This sophisticated queuing spinlock design can help the MCS lock get over the cache

coherence contention issues. However, the advantage can be extensively lost on the large

scale CCSM multi-processors. The per-thread qnode cache lines should move in a ping-

pong manner between the adjacent predecessor and successor lock-waiting threads, with

long latencies (especially when crossing the processor sockets).

5.2.6 Important Properties of Spinlock Operation inside Linux Kernel

CPU-Affinity Spin-Wait

In the contemporary Linux kernel, it is guaranteed that the spinlock disables the scheduling

preemption, during the spin-wait iterations. In other words, no CPU migration can happen

while the kernel thread spinlock performs the spin-wait operation. This property enables

the queuing spinlock code to spin-wait on the “per-CPU” qnodes, instead of on the “per-

thread” qnodes. Adopting the per-CPU qnodes brings-in these advantages for the Linux

kernel queuing spinlock design:

• The per-CPU qnodes can stay persistent in memory once created, while the per-

60

thread qnodes should be manually created on demand, inside the thread function

frame stack.

• The per-CPU qnodes can use the smaller CPU ID number (instead of the longer VA

pointer value which the per-thread qnodes use), when constructing the linked-listed

queue structure.

This property gives both of the Linux qspinlock and the proposed QT spinlock the means

to shrink the lock variable into 4 bytes.

Deadlock-Free Stacked Spin-Wait

Actually, the Linux kernel spinlock designs are not as simple as the naive tight loops. At

any given moment, one CPU can spin inside up to the 4-level stacked spin-wait loops of

the different contexts: the normal thread and the software/hardware/non-maskable interrupt

handlers [25]. This property (combined with the “CPU-Affinity Spin-Wait property”) intro-

duces the abstraction of the per-CPU 4-level spin-wait stack. The stack grows when an

interrupt service both preempts the current spin-waiting context and ends up spin-waiting

on its own lock. The stack shrinks after the interrupt service finishes spin-waiting. Be-

cause of this property, it is mostly impossible to employ any innovative synchronization

accelerator which considers only 1-level locking operation (e.g. [29]), for the Linux kernel

spinlock.

However, it is strictly inhibited that any multiple stacked contexts running on one CPU

spin-wait on the same lock variable because this becomes the deadlock hazard between

the higher and lower level contexts: for example, the lower-level context and higher-level

context wait for each other when the lower-level context is owning the lock, while the

higher-level one with priority waits for the lock to be released.

When the perfect fair lock functioning in the FIFO fashion contends, the abstraction of

the spin-wait queue for the contended lock is established. As a result of the “Deadlock-

Free Stacked Spin-Wait” property, each entry of the spin-wait queue of one lock spin-waits

61

Figure 5.2: Illustration of the abstraction of the per-CPU 4-level spin-wait stack and per-
lock spin-wait queue.

on each different CPU. Figure 5.2 depicts the abstraction of the per-CPU spin-wait stack

and per-lock spin-wait queue, which are explained in this Section. The lock A, B, and C

are now contended and form their spin-wait queues, respectively. In the lock A’s spin-wait

queue, CPU X is the least recently spin-waiting (LRSW) CPU of lock A, while CPU Z is

the most recently spin-waiting (MRSW) CPU of lock A.

N Maximum Spin-Wait Queue Entries for N CPU System

The above “Deadlock-Free Stacked Spin-Wait” property makes it apparent that the maxi-

mum possible entry number of the spin-wait queue of one lock is equal to the total num-

ber of CPUs in the system. This property helps understand how small the lock variable

could be. For instance, if the ticket spinlock is required to support 256 CPUs, each of the

headTicket and tailTicket field of the lock variable can be only 8 (i.e. log2(256))

bits.

5.2.7 Linux qspinlock: Centralized Spin-Lock Enhanced with Internal Queuing Lock

1 t y p e d e f s t r u c t qnode {

2 s t r u c t qnode ∗ n e x t ;

3 b y t e l o c k e d ;

4 } q n o d e t ;

5

6 /∗ p e r s i s t e n t per−CPU qnodes (t h i s code assumes 1− l e v e l s t a c k f o r s i m p l i f i c a t i o n) ∗ /

62

7 q n o d e t perCPUQnodes [NUM CPUS] ;

8

9 t y p e d e f s t r u c t q s p i n l o c k {

10 c p u I D t t a i l C P U i d ;

11 b y t e l o c k e d ;

12

13 } q s p i n l o c k t ;

14

15 q s p i n l o c k t l o c k ;

16

17 vo id s p i n l o c k (q s p i n l o c k t ∗ l p t r) {

18 q n o d e t ∗ p r e d e c e s s o r , ∗ s u c c e s s o r ;

19

20 /∗ enqueue t o t h e p r e d e c e s s o r qnode ∗ /

21 p r e d e c e s s o r = &perCPUQnodes [l p t r−>t a i l C P U i d] ;

22 p r e d e c e s s o r . n e x t = &perCPUQnodes [myCPUid] ;

23

24 /∗ sp in−w a i t l oop (two−s t e p) ∗ /

25 do {} w h i l e (perCPUQnodes [myCPUid] . l o c k e d == LOCKED) ; / / MCS sp in−w a i t

26 do {} w h i l e (l p t r−>l o c k e d == LOCKED) ; / / CSL sp in−w a i t

27

28 /∗ l o c k t h e l o c k v a r i a b l e ∗ /

29 l p t r−>l o c k e d = LOCKED;

30

31 /∗ r e l e a s e t h e s u c c e s s o r qnode ∗ /

32 s u c c e s s o r = perCPUQnodes [myCPUid] . n e x t ;

33 s u c c e s s o r−>l o c k e d = UNLOCKED;

34

35 }

36

37 vo id s p i n u n l o c k (q s p i n l o c k t ∗ l p t r) {

38 l p t r−>l o c k e d = UNLOCKED;

39 }

Listing 5.5: A simplified pseudo-C code of the Linux kernel qspinlock. This code assumes

the 1-level per-CPU qnode stack for simplification.

Listing 5.5 depicts the simplified pseudo-C code of the Linux qspinlock. Because the

entire code is highly complicated, Listing 5.5 only highlights the part activated in the lock

contention case where the predecessor and successor lock-waiter threads exist.

63

Figure 5.3: Illustration of the per-CPU 4-level qnode stack and per-lock qnode queue of
the Linux qspinlock.

Contrary to its name, the qspinlock is not the pure queuing spinlock because it is in-

vented as a result of hard effort to make the MCS lock fit into the 4 byte small lock variable.

Instead, the qspinlock is designed in the form of the baseline centralized spinlock which is

enhanced with the internal MCS lock.

Baseline Centralized Spinlock

To accomplish the small lock variable, the qspinlock is basically designed as a centralized

spinlock (CSL): note that the qspinlock contains the locked element in the lock variable

(Line 11) and accesses it for both of the spin-wait operation (Line 26) and the lock release

operation (Line 38). In the spin lock() function, the lock-owner thread locks the base-

line CSLV before entering the critical section (Line 29). The baseline CSLV is released by

the spin unlock() function of the lock-owner thread (Line 38).

Internal MCS Lock

The qspinlock removes the cache coherence contention on its baseline centralized spinlock

variable (CSLV), by internally employing the MCS lock. More specifically, all the lock-

waiter threads are synchronized, so only one of them can be selected as the successor

lock-owner which finally can access the baseline CSLV. The internal MCS lock also helps

achieve the small lock variable size by using the per-CPU qnode technique explained in

64

Section 5.2.6: the lock variable has the tailCPUid field (instead of the long VA pointer

variable pointing to the per-thread qnode), for the internal MCS lock operation (Line 10).

Figure 5.3 illustrates the per-CPU 4-level qnode stacks and per-lock qnode queues of lock

A, B, and C. They are implemented by following the abstraction of the per-CPU 4-level

spin-wait stack and per-lock spin-wait queue (Section 5.2.6).

The internal MCS lock operates only inside the spin lock() function. When the

calling thread detects its predecessor lock-waiter thread, the thread enqueues its per-CPU

qnode to the qnode of the predecessor lock-waiter thread (Line 22). Additionally, when the

calling thread detects its successor lock-waiter thread, it dequeues (releases) the per-CPU

qnode of the successor lock-waiter thread, before entering the critical section (Line 33).

Two-Step Spin-Wait

Unlike the per-thread qnodes, the per-CPU qnodes are limitedly viable only while CPU-

migrations are disabled (e.g. during the spin-wait iterations). Consequently, the qspinlock

design ends up having the two-step spin-wait operation: the first step spin-waits on the

per-CPU qnode of the internal MCS lock (Line 25), while the second step spin-waits on

the baseline CSLV (Line 26). The per-CPU qnodes are similar to the per-thread qnodes of

the normal MCS lock (Line 1 to Line 4). However, the per-CPU qnodes are organized as

the per-CPU 4-level stack, to meet the “Deadlock-Free Stacked Spin-Wait” Linux kernel

property explained in Section 5.2.6, and stay persistent in memory (Line 7). Remember

that the per-thread qnodes are manually created on demand as the local data, in the thread

function frame stack. Even though not shown in Listing 5.5, the qspinlock code has several

points which could get a bunch of atomic memory instructions executed on the fly, for the

two-step spin-wait technique. Overall, the qspinlock is a twisted design, which means that

the design is the analogy of the large complex tree (code) planted in the small container

(lock variable).

65

Table 5.1 compares and summarizes all the spinlock designs explained in this Sec-

tion.

Table 5.1: Summary of the representative spinlock designs

Fairness of Releasing Contended Lock
TS Random
TTS Random
Ticket Perfect FIFO
MCS Perfect FIFO
Qspin Perfect FIFO
Atomic Memory Operations
TS Atomic TestAndSet(): on every spin-wait loop iteration
TTS Atomic TestAndSet(): on every outer spin-wait loop iteration
Ticket Atomic XchgAdd(): one time in the spin lock() function
MCS Atomic Xchg(): one time in the spin lock() function

Atomic CmpAndSwap(): one time in the spin unlock() function (only with
NO successor spin-waiter thread)

Qspin Atomic CmpAndSwap(): multiple times (including in loops) in the spin lock()
function

Variable(s) Spin-Waiting On
TS Lock variable (CSLV)
TTS Lock variable (CSLV)
Ticket Lock variable (CSLV)
MCS Per-thread local qnode
Qspin 1st step: per-CPU local MCS qnode

2nd step: lock variable (CSLV)
Minimum Lock Variable Size for 256 CPUs (byte-addressing & 64 bit processors)
TS 1 byte
TTS 1 byte
Ticket 2 bytes
MCS 8 bytes (sizeof generic VA pointer variable)
Qspin 4 bytes
Operations Requiring to Access Lock Variable
TS Locking / Unlocking / Spin-Waiting
TTS Locking / Unlocking / Spin-Waiting
Ticket Locking / Unlocking / Spin-Waiting
MCS Locking / Unlocking (only with no outstanding successor spin-waiter thread)
Qspin Locking / Unlocking / Spin-Waiting (2nd step)

66

5.3 Implementation of QT Spinlock

As defined in Chapter 1, the temporal FSMOs are the memory objects which can be tem-

porally isolated from the SM domain, until the critical moment, so as to suppress the as-

sociated heavy SM transactions. The QT spinlock design exploits the advantage that the

centralized spinlock variables (CSLVs) are the representative temporal FSMOs. That is

to say, the design makes a CPU delay caching the lock variable, until the critical moment

when the CPU eventually acquires the lock. Accordingly, the QT spinlock design simply

incurs the N times lock variable cache line moves, in the lock contention case with the

N lock-waiting threads, as mentioned in Section 5.1.1. In order to properly actualize the

temporal FSMO attribute of the lock variable by exploiting this caching-off/on operation,

the QT spinlock design employs these supports:

• Caching-flag

• QT instructions and QT messages

• Transformed ticket spinlock code

5.3.1 Caching-Flag (CF)

The caching flag (CF) governs the temporal FSMO attribute of the lock variable on each

CPU node. When the CF is reset (offline), the CPU does not cache the lock variable. The

CPU starts caching the lock variable when the CF is set (online) again.

As soon as detecting the lock acquisition failure, a CPU secures and initializes (resets)

the CF. If the lock is contended, the associated CPUs construct the linked-listed system-

wise CF queue for the lock. The CF eventually gets set again remotely in the message-

passing manner by the lock-owner thread, when the thread releases the lock. Listing 5.6

describes the details on how the CFs are implemented on each CPU node, using the pseudo-

Verilog code.

67

Figure 5.4: Illustration of the per-CPU 4-level CF qnode stack and per-lock CF qnode
queue.

1 /∗ l o c a t i o n o f CF: 8 b i t ∗ /

2 t y p e d e f s t r u c t {

3 r e g [5 : 0] CPUid ; / / CPU o f per−CPU CF s t a c k

4 r e g [1 : 0] i n d e x ; / / i n d e x (l e v e l) i n per−CPU CF s t a c k

5 } c f l o c a t i o n t ;

6

7 /∗ e n t r y o f per−CPU CF s t a c k : 9 b i t ∗ /

8 t y p e d e f s t r u c t {

9 r e g CF ; / / l o c a l cach ing−f l a g

10 c f l o c a t i o n t n e x t ; / / l o c a t i o n o f s u c c e s s o r CF

11 } c f e n t r y t ;

12

13 /∗ per−CPU CF s t a c k : 36 b i t s t o r a g e (i . e . 4 X 9 b i t) ∗ /

14 t y p e d e f s t r u c t {

15 c f e n t r y t e n t r y [3 : 0] ; / / 4− l e v e l

16 r e g [1 : 0] t o s ; / / t o p o f s t a c k

17 } c f s t a c k t ;

Listing 5.6: The pseudo-Verilog code describing the per-CPU CF stack

Per-CPU (4-Level) CF Qnode Stack

The QT spinlock also follows the “Deadlock-Free Stacked Spin-Wait” property of the

Linux kernel (Section 5.2.6). Accordingly, each CPU forms the per-CPU 4-level CF qnode

stack (Line 14 to 17), which implements the abstraction of the per-CPU 4-level spin-wait

68

stack (Section 5.2.6). Hence, the per-CPU CF qnode stack grows when a context spin-

waits, and shrinks when the context finishes the spin-wait operation. The location of each

CF qnode is defined by its 2-dimensional (2D) coordinates of (CPUid, stack index) (Line

2 to 5). The storage overhead for this per-CPU CF qnode stack is so small. For instance,

one CPU requires 38 (i.e. 4 X 9 + 2) bits for its per-CPU CF qnode stack, if the system has

up to the total 64 CPUs.

Per-Lock CF Qnode Queue

If the lock is contended, the associated CPUs construct the linked-listed system-wise

CF qnode queue for the lock, which implements the abstraction of the spin-wait queue

(Section 5.2.6). Thanks to the “CPU-Affinity Spin-Wait” property of the Linux kernel

(Section 5.2.6), the adjacent CF qnodes can be linked-listed by using the CF qnode

location. Recall that the software qnodes cannot help using the longer VA pointer values

for this purpose.

Figure 5.4 illustrates the per-CPU 4-level CF qnode stacks and per-lock CF qnode

queues of lock A, B, and C.

5.3.2 QT Instructions and QT Messages

QT Instructions

In order to correctly handle the lock variable as the temporal FSMO controlled by the CF

value, the QT spinlock design introduces the four QT instructions which are the new X86-

64 ISA memory instructions.

QT Messages

Two QT instructions have to update the content of the tail or head CF qnode of the lock.

For this purpose, they introduce the QT messages which are the new light-weight CPU-

69

to-CPU message passing micro-architecture similar to the cache coherence write-update or

write-invalidation messages. Using the QT message is a reasonable technique because the

actual data required to manage the per-lock CF qnode queue are small enough.

The associated QT instructions send the target CF qnodes the QT messages as

part of their memory write operation, just as sending the cache line sharer CPUs the

write-invalidate messages. The QT message gets the location of the target CF qnode from

its QT instruction which directly reads the location from the lock variable in memory. To

this end, the transformed ticket spinlock code for the QT spinlock has its lock variable

contain the location of the head and tail CF qnodes of the lock. Thus, using the QT

message results in a great advantage over the scalable software queuing spinlocks which

rely on the long-latency mechanisms of bouncing the entire cache lines. It is known that

such expensive and redundant cache line ping-pongs can bottleneck the performance of

even the sophisticated scalable software queuing locks, on the large scale CCSM NUMA

multi-processors [6].

Section 5.3.3 explains the QT instructions and QT messages in detail, along with

the QT spinlock code.

5.3.3 Transformed Ticket Spinlock Code

It requires insight to take the traditional ticket spinlock code to the next-level version which

fits into the QT spinlock idea. Thus, we first come up with the “generic ticket spinlock”

concept, and then create the transformed code for the QT spinlock design, as one imple-

mentation of the generic ticket spinlock.

Generic Ticket Spinlock. For each lock-waiter thread to be assigned a unique

myticket value, the headTicket and tailTicket field pair of the lock variable

must be properly updated. Therefore, the actual implementations of the system can be

diverse and are distinguished by two factors: (1) which data forms the headTicket and

70

tailTicket field pair and (2) which action updates the field pair, on the locking/unlock-

ing operations. From this perspective, the traditional ticket spinlock employs the simple

two integer values for the first factor, and the increment (by one) action for the second

factor.

QT Spinlock Design. For the first factor, the design makes the lock variable

headTicket and tailTicket fields comprise the location of the head and tail CF

qnodes of the lock, respectively: each of the fields also contains the trivial “toggle”

metadata. For the second factor, the design updates the headTicket and tailTicket

field pair, utilizing the queuing operations carried-out by the QT instructions and QT

messages.

Listing 5.7 is the pseudo-C code of the transformed ticket spinlock code which the QT

spinlock employs. It illustrates the lock variable, spin lock() and spin unlock()

functions, and use of the QT instructions. Basically, the code structure is almost the same

as that of the traditional ticket spinlock (Section 5.2.3). The main transformed parts are

placed along with where the four QT instructions are used (they have the “QT ” prefix in

the names).

1 t y p e d e f s t r u c t c f l o c a t i o n {

2 b y t e i n d e x : 2 /∗ 2 b i t ∗ / , cpuID : 6 /∗ 6 b i t ∗ / ;

3 } c f l o c a t a t i o n t ;

4

5 t y p e d e f s t r u c t t i c k e t {

6 b y t e t o g g l e ;

7 c f l o c a t i o n t CFLocat ion ;

8 } t i c k e t t ;

9

10 t y p e d e f s t r u c t l o c k {

11 t i c k e t t h e a d T i c k e t , t a i l T i c k e t ;

12 } l o c k t ;

13

14 vo id s p i n l o c k (l o c k t ∗ l p t r) {

15 l o c k t l o c k s t a t u s = QT Atomic ToggleEnqueue (l p t r) ;

71

16

17 /∗ l o c k a c q u i s i t i o n d e c i s i o n ∗ /

18 i f (l o c k s t a t u s . h e a d T i c k e t == l o c k s t a t u s . t a i l T i c k e t)

19 r e t u r n ;

20

21 /∗ sp in−w a i t l oop ∗ /

22 t i c k e t t m y t i c k e t = l o c k s t a t u s . t a i l T i c k e t ;

23 do {} w h i l e (QT Load(& l p t r−>h e a d T i c k e t) != m y t i c k e t) ;

24

25 QT Dequeue(& l p t r−>h e a d T i c k e t . CFLocat ion) ;

26 }

27

28 vo id s p i n u n l o c k (l o c k t ∗ l p t r) {

29 QT WakeUp(& l p t r−>h e a d T i c k e t) ;

30 }

Listing 5.7: The pseudo-C description of the transformed ticket spinlock code for the QT

spinlock. The code employs the QT instructions which have the “QT ” prefix in their

names. This example is for systems having up to 64 CPUs.

Lock Variable Fields

The headTicket and tailTicket of the lock variable consist of these sub-fields:

CFLocation (Line 7). This is the newly adopted facilitator field of the QT spinlock.

It holds the location of the head and tail CF qnodes of the lock (Line 2). The adjacent

successor and predecessor lock-competing threads refer to this location (instead of per-

forming heavy operations such as looking-up the directory memory), to directly send the

QT messages to their target CF qnodes.

toggle (Line 6). It is nothing but the minimum legacy of the ticket value of the tradi-

tional ticket spinlock. The spin lock() and spin unlock() functions respectively

toggle this field of the tailTicket and headTicket. Actually, the QT spinlock is

designed to be able to compress this field into as small as 1 bit, so the code can support as

many CPUs as possible. However, Listing 5.7 specifies the field to be 1 byte (consequently

supporting 64 CPUs), for the program efficiency in the byte-addressing machine: if this

72

value becomes smaller than 1 byte, Line 29 should become the atomic read-modify-write

(RMW) memory operation.

QT Atomic ToggleEnqueue instruction (spin lock(), Line 15)

It is the augmented substitute of the Atomic XchgAdd() instruction which the

traditional ticket spinlock code uses. The instruction basically (1) toggles the

tailTicket.toggle field, and (2) returns the properly processed lock status

value which gives the thread the lock acquisition result (Line 18) and unique myticket

value (Line 22).

The instruction is augmented to determine if the thread acquires the lock or not, using

the simple comparison logic with the current lock variable value. The further augmented

changes are activated when the thread fails to acquire the lock, in this sequence:

• The instruction allocates and initializes (resets) the new CF qnode, and pushes the

CF qnode into the local per-CPU CF qnode stack to make it the local top of stack

(ToS) CF qnode. As a result, the local per-CPU CF qnode stack grows.

• The instruction checks the tailTicket.CFLocation of the lock variable, to get

the location of the tail CF qnode of the lock. When it detects the tail CF qnode with

the check, it enqueues the local ToS CF qnode to the tail CF qnode, by using the QT

message: the instruction sets the next filed of the tail CF qnode to the location of

the local ToS CF qnode.

• The instruction updates the tailTicket.CFLocation field of the lock variable

to the location of the local ToS CF qnode. To suppress the cache line bounce, it

accomplishes this memory write operation in the write-update manner, but does not

yet get the lock variable cached on the local CPU node at this moment. This way,

the instruction handles the lock variable as the temporal FSMO, enabling the lock

variable cache line to exist only on the lock-owner thread CPU node at almost all

73

times.

• The instruction has the updated tailTicket.CFLocation field contained in its

return value, so its calling spin-waiting thread is assigned that field as its unique

myticket value.

QT Load instruction (spin lock(), Line 23)

It switches between the “offline” and “online” memory load operation modes, depending

on the local ToS CF value. When the CF is reset (offline), it just returns the hard-wired

value which keeps the spin-wait loop iterating. When the CF is set (online), it acts as the

normal memory load instruction. The CF is reset by the QT Atomic ToggleEnqueue

instruction, as explained previously, and is set again remotely by the QT WakeUp instruc-

tion of the lock-owner thread. This way, it handles the lock variable as the temporal FSMO,

enabling the lock variable cache line to exist only on the lock-owner thread CPU node at

almost all times.

QT Dequeue instruction (spin lock(), Line 25)

It first pops the ToS CF qnode from the local per-CPU CF qnode stack, to retrieve the

next field pointing to the head CF qnode of the lock. Then, it updates the lock variable

headTicket.CFLocation field to the retrieved next value. Note that this projection

of the local ToS CF qnode content onto the lock variable is indispensable at this point (i.e.

right after the spin-wait loop). This is because the local per-CPU CF qnode stack relies

on the “CPU-Affinity Spin-Wait” property of the Linux kernel, as explained in Section

5.3.1. That is, after the thread exits the spin-wait loop, the thread can experience the kernel

preemption and, hence, can run on a different CPU node afterwards.

As a result of this instruction, the local per-CPU CF qnode stack shrinks. That is, its

ToS CF qnode is finally deallocated from the local per-CPU CF qnode stack and dequeued

from the CF qnode queue for the lock.

74

QT WakeUp instruction (spin unlock(), Line 29)

The instruction is basically a memory RMW instruction which toggles the headTicket.toggle

field. Upon writing on the cache line, it silently reads the headTicket.CFLocation

from the lock variable, to get the location of the head CF qnode of the lock. If it notifies

that the head CF qnode exists, it remotely sets the head CF by sending the QT message, so

the QT Load instruction of the CPU of the head CF qnode should start handling the lock

variable as the shared memory object.

Atomic Memory Instruction in spin unlock() Function

Just like the traditional ticket spinlock, the QT spinlock does not require the atomic

memory operation to release the lock. However, should the code support more than

64 CPUs, Line 29 has to become the atomic RMW memory operation, as mentioned

previously.

Figure 5.5 illustrates the QT instructions which update the CF qnodes and lock vari-

able CFlocation fields, in the lock contention case.

5.3.4 Intuitive View on Procedures in Lock Contention

Overall, the operations of the QT spinlock in the lock-contention case are portrayed as the

round-trip of the location of the newly created local ToS CF qnode as the CFLocation

value. The spin lock() and spin unlock() functions make the value traverse

from the lock variable to the CF qnode queue, and back to the lock variable. The

QT Atomic ToggleEnqueue instruction has its CPU become the departure CPU of

the round-trip. The instruction makes its new local ToS CF qnode the new tail CF qnode

of the lock, by storing its location in (1) the next field of the tail CF qnode, (2) the lock

variable (tailTicket.CFLocation field), and (3) the local register (myticket).

Then, when the tail CF qnode later moves to the head of the CF qnode queue for the

75

Figure 5.5: Sketch of the QT instructions which update the CF qnodes and lock variable
CFLocation fields, in the lock contention case.

76

lock, the QT Dequeue instruction projects the next field of the head CF qnode back

on the lock variable (headTicket.CFLocation field), so the lock-owner thread

can reference it to locate the departure CPU. When releasing the lock, the lock-owner

thread has the QT WakeUp instruction inform the departure CPU to read the updated lock

variable. Then, the CFLocation value finally reunites with the myticket value on the

departure CPU, and lets go of the CPU.

5.3.5 Impact on Underlying Memory Consistency Model

The QT instructions and QT messages are implemented as the memory instructions and the

associated write-invalidate message equivalents, so the QT spinlock mechanism can still

force them to abide by the employed shared memory consistency model. The simulation

environment of this thesis work confirms this fact to some extent, because it runs with its

own shared memory model which is based on the basic total store ordering (TSO) shared

memory consistency model. The TSO model allows the store-load reordering, and the QT

spinlock mainly modifies the memory load instruction inside the spin-wait loop (i.e. the

QT Load instruction). Thus, the simulator would immediately crash if any violation of

the (allowed) memory reordering happens.

Currently, the QT spinlock code adopts the ticket spinlock code of Linux kernel

3.4.4 as the baseline of its transformed code. The micro-architectural supports (e.g. the

QT instructions and QT messages) are modeled in two separate components of Marssx86

full-system simulator [45]: Qemu emulator [46] and PTLsim micro-architecture simulator

[47].

5.4 Essentials Required for Proper Simulators

In truth, it requires utmost circumspection to select the proper multi-processor simulator,

to evaluate the spin-waiting synchronization designs. It stems from the fact that no one

77

simulator fits all workloads. Above all, most of the simulators are optimized for the macro-

scopic cache coherence simulation because, otherwise, the simulation time will sky-rocket.

In contrast with this, the spin-waiting synchronization could be the most massive source

of the micro-scopic fine-grain cache coherence operations accompanying the typhoon-like

cache line bounces. Therefore, we are supposed to empower the simulator to capture the

micro-scopic fine-grain cache coherence events, just like the high-speed cameras can take

sharp consecutive snapshots of the fast-moving objects by taking the extremely high frame

rates. For this purpose, we focus on the next two essentials, while selecting and setting up

the simulator for this research:

• the perfect-synchronization-based processor multiplexing, and

• the proper coherence message implementation.

5.4.1 Essential 1: The Perfect-Synchronization-Based Processor Multiplexing

We explain importance of the “perfect-synchronization-based” multiplexing by inversely

making clear the danger of its prevalent relaxed alternative of the “time-quantum-based”

idea. Basically, the time-quantum-based multiplexing is the legacy handed down by the

high performance multi-processor emulators. That is, the longer time-quantum results in

the faster (but the less concurrent) emulation.

Time-Quantum-Based Multiplexing Emulators

Here we quote the details on the time-quantum based emulator, directly obtained from the

user guide of Simics [48] which is the representative high performance emulator:

“Ideally, Simics would make time progress and execute one cycle at a time, scheduling

processors according to their frequency. However, perfect synchronization is exceedingly

slow, so Simics serializes execution to improve performance. Simics does this by dividing

time into segments and serializing the execution of separate processors within a segment.

The length of these segments is referred to as the quantum and is specified in seconds (this

78

is similar to the way operating systems implement multitasking on a single-processor ma-

chine: each process is given access to the processor and runs for a certain time quantum).

The processors are scheduled in a round-robin fashion, and when a particular processor

P has finished its quantum, all other processors will finish their quanta before execution

returns to P.”

Time-Quantum-Based Multiplexing Simulators

Actually, quite a few multiplexing simulators are designed based on the existing high per-

formance emulators. That is, such simulators extend the emulator (functional-frontend)

with the accurate add-on latency model (timing-backend). Hence, it is natural that those

multiplexing simulators inherit the time-quantum legacy, to speed-up the simulation. This

speed-up is critically required because the execution performance of the real (or virtual)

machines, emulators, and simulators degrade significantly in the listed order by multiple

order-of-magnitude.

Notice that the time-quantum based simulators can still simulate the concurrent IO

events (e.g. cache coherence operations), but at most, in the same limited macro-scopic

manner that the single-processor can do. This can be easily understood by the above quote

which mentions the analogy that “the time-quantum scheduling is similar to the way oper-

ating systems implement multitasking on a single-processor machine.” A single-processor

machine running the multitasking mechanism can get the multiple IO-bound (not CPU-

bound) events initiated in the limited parallel fashion by switching one task to another as

soon as encountering IO service failure. Therefore, the time-quantum based simulation ab-

solutely achieves its speed-up in exchange of the opportunities to accurately simulate the

extremely concurrent IO events.

Unfortunately, this simulation limitation for the concurrent IO events still sustains, no

matter how short time-quantum is adopted. As a matter of fact, the ultimately short (e.g. a

single-cycle long) time-quantum can help get the multiple concurrent events to happen in a

79

more overlapped way. However, this counter-measure brings in another problem when we

simulate a large scale multi-processor machine: the shorter the time-quantum becomes, the

more likely is it to get the latency of each individual IO event considerably hidden by the

long round-robin CPU multiplexing interval.

From this understanding, we can think of the time-quantum-based multiplexing scheme

as the intrinsic simulator design defect when evaluating the micro-scopic fine-grain con-

current cache coherence events. In other words, the scheme can inhibit the timing-backend

subsystems of the simulator from proving their full real worth, no matter how sophisticated

and accurately the subsystems are designed.

5.4.2 Essential 2: The Proper Coherence Message Implementation

Almost all contemporary computer architecture simulators utilize the trick of embedding

NO actual data on the cache lines, to substantially reduce the memory resource required

to run. Instead, each memory operation directly (and instantly) accesses the shared global

memory space, to actually read/write the data. Due to this trick, the multi-processor simula-

tor could unconsciously deliver the “too good to be true” emulator-level short-latency and

high-throughput simulation result, unless it carefully effectuates the cache coherence mes-

sages. Among all the coherence messages, the getX message (which each memory write

operation generates) should be handled with the most special care, for the better correct

simulation.

Built-In Synchronization Effect of getX Message

In the write-invalidation CCSM systems, writing on the cache line is rendered in the

three actions of (1) securing the entire target cache line, (2) updating part of the secured

cache line, and (3) sending out the invalidation message to the other sharer CPUs, if any.

These three actions should be performed in the atomic manner (whether or not the line

is true or false shared one), because the mechanism works with the cache line granular-

80

ity, and the updated cache line becomes the only fresh source of the data. Therefore, the

CCSM multi-processor systems grant the cache line write operation the built-in synchro-

nization effect, which is verified by the code in Listing 5.8. The code uses the OpenMP

directive to generate the false sharing cache line update inflation. The false shared array

False Shared Array[] is aligned to the cache line (64 bytes in the case), to max-

imize the false sharing effect. Each spawned parallel thread is observed to successfully

increment its own private array element (i.e. False Shared Array[tid]) by one,

until reaching the number of N. However, we do not see the X86-64 lock prefix in the

disassembled executable file, which means that the code works without using any explicit

software synchronization.

1 i n t t i d , i ;

2

3 /∗ a r r a y on one cache l i n e (a l i g n e d t o 64 b y t e s cache l i n e) ∗ /

4 i n t F a l s e S h a r e d A r r a y [NTHREADS] a t t r i b u t e ((a l i g n e d (6 4))) = {0} ;

5

6 # pragma omp p a r a l l e l p r i v a t e (i , t i d)

7 {

8 t i d = o m p g e t t h r e a d n u m () ;

9

10 f o r (i = 0 ; i < N; i ++) {

11 F a l s e S h a r e d A r r a y [t i d] += 1 ;

12 }

13 } /∗ end o f p a r a l l e l s e c t i o n ∗ /

Listing 5.8: The OpenMP code generating the false sharing cache line update inflation on

the array False Shared Array[].

The built-in synchronization effect (i.e. atomic memory operation) of the cache line

write comes from its getX message which requests for the exclusive access to the cache

line, against other memory read/write operations. Thus, the cache line write operations

contribute to constructing the critical path of the cache line read/write bounces on the

CCSM multi-processors: their getXmessages constitute the dominant source of the stalled

memory operations. For this reason, the mechanism how getX message works should be

81

the most correctly modeled, to properly simulate the spin-waiting synchronization.

5.5 Simulator Setup

Actually, it is almost unnecessary to simulate the performance of the QT spinlock, because

it arouses the already “determined” ultimately minimal N times cache line moves, in the

lock contention case with the N lock-waiter threads, as explained in Section 5.1.1. Thus,

we conversely focus on making the simulation demonstrate how badly the representative

comparison control provokes the heavy cache coherence memory transactions. The Linux

qspinlock is taken as the comparison control, because it is the work-around default spinlock

choice of the contemporary Linux kernel.

5.5.1 Baseline Simulator (Marssx86)

We scout out Marssx86 [45] as the baseline simulator, among the popular contemporary

multi-processor simulators, considering these required features carefully:

• Full-system multi-processor. The simulator should boot from and run the real Linux

OS kernel because the default Linux kernel spinlocks have more sophisticated and

complicated issues to design, validate, and simulate, than the user-level spinlocks.

• Open source X86-64 platform. The simulator should model the popular X86-64

machines and also should allow us to add the QT instructions, as the new ISA in-

structions.

• Perfect-synchronization-based processor multiplexing. The simulator should avoid

using the time-quantum-based multiplexing scheme, to be able to capture the micro-

scopic concurrent cache coherence events (Section 5.4.1).

Marssx86 is a multiplexing multi-processor simulator. However, it does not use

the time-quantum-based multiplexing mechanism, to simulate the CPUs. Even though

82

the simulator is designed by combining the Qemu emulator [46] and the PTLsim

micro-architecture model [47], the relationship is not the functional front-end and timing

back-end. Instead, the Qemu emulator is just used to fast-forward the target benchmark

application until it reaches the region of interest (ROI). The ROI detection is accom-

plished with the magic instructions which can be embedded inside the benchmark codes.

The ROI-detecting magic instruction immediately switches Marssx86 from running in

the fast-forwarding emulation mode into running in the fine-grain micro-architecture

simulation mode. The simulation mode executes its main loop which realizes the perfect-

synchronization-based processor multiplexing, by having all the simulated virtual CPU

(vCPU)s run on each single simulation cycle. Listing 5.9 describes the main simulation

loop of the Marssx86 simulator.

1 /∗ s i n g l e s i m c y c l e i t e r a t i o n ∗ /

2 f o r (; ;) {

3

4 /∗ a l l vCPUs run i n t h e round−r o b i n manner ∗ /

5 f o r e a c h (i , co remode l . p e r c y c l e s i g n a l s . s i z e ()) {

6

7 }

8 s i m c y c l e ++;

9 i t e r a t i o n s ++;

10

11 }

Listing 5.9: The main simulation loop of Marssx86 simulator. The loop has all the

vCPUs run on every single simulation cycle. It is located in the BaseMachine::run()

function of the ptlsim/sim/machine.cpp file.

However, the stock Marssx86 simulator has weak and improper simulation model for

the shared memory subsystem. The main critical problems of the simulator and our corre-

sponding counter-measures are:

• Imperfect cache coherence state updates. Even though Marssx86 simulator imple-

ments the cache coherence protocols which use the “MOESI” or “MESI” states, it

83

is observed that the states embedded in each cache line do not get updated appropri-

ately. To work around this, we introduce the ideal directory memory structure.

• No proper cache coherence message. Constituting an important part of the SM

consistency model, the cache coherence mechanism itself requires synchronization

operation. To achieve this, the contemporary CCSM multi-processors use the cache

coherence messages. However, the Marssx86 simulator implements deficient cache

coherence messages. Especially, the simulator does not perform any mechanism

equivalent to the getX message which is the essential for the proper shared memory

subsystem simulation of the CCSM multi-processors, as explained in Section 5.4.2.

To work around this, we introduce the ideal interconnection network layer.

Without the proper counter-measures, these two problems easily mess-up the simulation.

For instance, the stock Marssx86 simulator reports even the totally incorrect cache-to-cache

transfer numbers. To achieve the proper approximate comparison evaluation of the spinlock

design performance, we introduce the new simulation model which employs said ideal

directory memory structure and ideal interconnection network layer, in Section 5.5.2.

5.5.2 Approximate Simulation Model: Critical-Path of Cache Line Bouncing

The primary goal of the counter-measures explained in this Section is get the simulator

to report the correct cache-to-cache transfer numbers and approximate throughput perfor-

mance reflecting the critical-path of cache line bouncing, when simulating the spin-waiting

workloads.

Ideal Directory Memory

We implement the “ideal directory memory”, by using the map container of C++ standard

template library (STL). It contains the cache line granularity information which the “ideal

interconnection network layer” requires, including the presence bit vectors and the status

of on-going shared memory load/store operations. However, it does not explicitly control

84

the memory operation ordering for the SM consistency model, which the regular directory

memories are supposed to do as the centralized ordering point [49, 50]. This directory

memory model is ideal, because it (1) frees each cache line from having and updating the

local coherence state, and (2) it always experiences the directory look-up hits.

Ideal Interconnection Network

We implement the “ideal interconnection network” layer to have these features for the

shared memory consistency model.

Cache coherence. The layer synchronizes the shared memory read/write operations on

each cache line the same way the readers/writer lock (also known as shared-exclusive lock

or multiple readers/single-writer lock) synchronization [51] works. That is, during a store

buffer performs the getX operation to update data on one cache line, all the other CPUs

are blocked to perform the load/store operations on the cache line and should wait until the

getX operation completes. The layer mostly adopts the write-preferring priority, in order

to remove the starvation of the memory write operations.

Memory ordering. The layer allows the maximum concurrency of processing the

shared memory operations, by exploiting as much cache-to-cache transfer level paral-

lelism as possible: the ideal interconnection network instantly (upon arrival) initiates all the

requesting shared memory operations in the FIFO manner, and lets them run with the uni-

form cache-to-cache transfer latency. Remark that the instruction level parallelism (ILP) is

also calculated with the uniform latency for the all instructions [52]. The uniform cache-

to-cache transfer latency enables the ideal interconnection network layer to free the ideal

directory memory from playing the centralized ordering point [49, 50] role. The ideal in-

terconnection network layer also naturally reflects the effect that the baseline Marssx86

simulator has the per-CPU store-buffer which allows the re-ordering of the store-load op-

eration.

This interconnection network layer is considered ideal because it allows the maximum

85

concurrency with the shared memory operations, while it at least keeps the synchronization

of the getX message associated events, which is definitely enforced in real systems (Sec-

tion 5.4.2). Thus, the layer is optimized to evaluate the critical-path of cache line bounce

dependencies.

Memory Consistency Model

The CCSM multi-processor simulators (and even the emulators) undeniably should have

the proper SM consistency model to work accordingly. Otherwise, they can not run the

unmodified softwares which are written and built following the specific SM consistency

model. Moreover, the more sophisticatedly the simulators improve their event-driven at-

tributes, the more likely is it that any violation of the SM consistency model can easily crash

the simulator. As a recap, the approximate simulation model works with these features for

the SM operations:

• It is the in-order machine model.

• Its ideal interconnection network layer by default effectuates the maximum concur-

rency of processing the shared memory operations in the FIFO order.

• Its ideal interconnection network layer synchronizes the memory read/write opera-

tions on each cache line, in the readers/writer lock synchronization manner.

• It has the per-CPU store-buffer which allows the re-ordering of the store-load opera-

tion.

Thus, the approximate simulation model works with its memory consistency model which

is based on the simple TSO consistency model.

86

Table 5.2: Simulation configuration

Platform
ISA X86-64
Cache Memories and Main Memory
L1-I/D Private, 3-cycle latency
L2 Private, Unified (I/D), LLC, 15-cycle latency
RAM 136-cycle latency
CPU Structure
Scheduling In-order execution
Fetch width 2
Issues per cycle 2
Store buffer size 16
Commit buffer size 32
Shared Memory Subsystem Model
Ideal Directory Memory Cache coherence operations
Ideal Interconnection Network Cache coherence and memory ordering operations
Cache-to-Cache Transfer 72-cycle latency (uniform)
Evaluated Target Software/Hardware
Operating System Linux (kernel ver. 3.3.4)
Comparison Designs Linux qspinlock v.s. QT spinlock

5.6 Evaluation

5.6.1 Simulation Configuration

The performance of the QT spinlock and Linux qspinlock designs are compared. We

choose the qspinlock (among all the other high performance scalable spinlocks) as the

comparison control because it is the most recently adopted default Linux kernel spinlock

which satisfies the 4 byte lock variable size rule. Thus, the qspinlock design serves as the

reference point which demonstrates how badly the qualified software spinlocks drive the re-

dundant shared memory transactions. The simulated target is the Marssx86 X86-64 model

in a multi-core setting. This machine models an Intel Atom processor with the in-order

pipeline scheduling. We simulate the systems with 4, 8, 12, 16, 20, 24, 28, 32 processing

cores running the Ubuntu Linux OS (with Linux kernel 3.4.4). Note that all the cache-to-

cache transfers run with the uniform 72-cycle latency, as explained in Section 5.5.2. Table

5.2 summarizes the simulation configurations.

87

5.6.2 Simulation Workload: Steady State Extreme Lock Contention

The benchmark workload used in the evaluation is the simple but representative spinlock

micro-benchmark application (similar to the ones used in [44, 24, 6]) which creates the

worst case steady-state lock contention. The application creates the N kernel threads and

has them concurrently compete to perform the read-modify-write (RMW) operations on

the one cache line sized critical section, in a synchronized manner: each kernel thread si-

multaneously loops, to acquire the lock, update the critical section, and release the lock.

We measure the throughput of the 1024 + 2N times lock acquisitions and releases as the

performance measure metric. The additional 2N times is added to compensate for the fact

that the simulator does not respond immediately when the magic instruction informs of the

start and termination of the ROI. The “steady state” means the state where all the N lock-

competing threads are either holding the lock or spin-waiting for the lock. This state is

best for evaluating/comparing the critical-path of cache line bouncing of the qspinlock and

QT spinlock designs. In this state, (1) the qspinlock induces its smallest cache-to-cache

transfer traffic, and (2) both of the qspinlock and QT spinlock avoid the case where the

lock-owner thread acquires the lock again as soon as the thread releases the lock. We write

the benchmark application in the form of the loadable kernel module (LKM), so that the

application can be attached to the Linux kernel on the fly. Additionally, to minimize any

irrelevant kernel services which possibly interfere the benchmark application with preemp-

tions, we get the simulated system to boot into the Linux kernel “Recovery Mode” which is

a minimal kernel option. The Qemu emulator of the Marssx86 simulator fast-forwards the

simulated system until it reaches the steady-state ROI where the required N number of the

kernel threads are eventually created and ready to participate in the simulation. Then, the

magic instruction of the Marssx86 which we embed in the benchmark application switches

the simulator from the emulation mode to the fine-grain simulation mode.

88

5.6.3 Unfair Simulation Model

As mentioned in Section 5.5.2, the simulation model has these ideal properties which by

default allows the maximum concurrency of shared memory operations:

• Its ideal interconnection network instantly (upon arrival) initiates all the requesting

shared memory operations in FIFO manner.

• Its ideal interconnection network lets such shared memory operations run with uni-

form cache-to-cache transfer latency, for all memory operations (i.e. memory load/-

store and atomic-RMW instructions).

These properties are lopsidedly favorable to the Linux qspinlock design rather than to

the QT spinlock design: they significantly hide the shared memory operation latencies

of the former, while giving no benefit to the latter. Despite this unfair comparison that

tilts strongly toward the Linux qspinlock design, it is demonstrated (in the following sub-

sections) that the QT spinlock design comfortably outperforms the Linux qspinlock design.

5.6.4 Throughput Performance

(a) Throughput (acquires / cycle) (b) Speed-up of throughput performance (QT spinlock
over qspinlock)

Figure 5.6: Lock acquisitions/releases throughput performance of the Linux qspinlock and
QT spinlock designs.

Figure 5.6 displays the throughput performance of the Linux qspinlock and the QT

spinlock designs obtained with increasing kernel thread (CPU) counts. Figure 5.6a shows

89

that on the idealized approximate simulation model, both the Linux qspinlock and QT spin-

lock scale well, as the CPU count increases. However, it also corroborates the assertions

that the QT spinlock design out-performs the Linux qspinlock even with the unfair sim-

ulation model (Section 5.6.3). Figure 5.6b gives the speed-up numbers of the throughput

performance (i.e. the throughput of the QT spinlock over the throughput of the qspinlock),

for varying number of CPU cores. The (simple arithmetic) average overall performance

improvement is found to be 1.86 times speed-up. Of course, the performance boost is at-

tributed to the ultimate minimalism in cache line bouncing of the QT spinlock design as

explained in Section 5.1. The important relevant numbers are further provided in Section

5.6.5 and 5.6.6.

5.6.5 Atomic Memory Operations

(a) Number of run-time atomic memory operations (b) Ratio of run-time atomic memory operations
(qspinlock to QT spinlock)

Figure 5.7: Run-time atomic memory operations used by the Linux qspinlock and QT
spinlock.

Figure 5.7 displays the simulation results on the run-time atomic memory operations

which the qspinlock and QT spinlock incur. Figure 5.7a shows the numbers of each design,

while Figure 5.7b shows the ratio of the numbers (i.e. the number of the qspinlock to the

number of the QT spinlock). Because the QT spinlock code is the transformed ticket spin-

lock code, the design is supposed to incur simply 1024 ± trivial error times atomic memory

operations (refer to Table 5.1), which Figure 5.7a verifies. Meanwhile, the qspinlock in-

90

curs twice as many run-time atomic memory operations, with this “steady-state extreme”

lock contention workload. It is very hard to estimate how many run-time atomic memory

operations the qspinlock design incurs, using a static code analysis. However, the qspin-

lock clearly can incur more run-time atomic memory operations while the concurrently

competing threads are in the middle of creating the spin-wait queue of the lock, than while

the threads are eventually running in this “steady-state extreme” lock contention. This is

due to the fact that the qspinlock uses “compare-and-swap (CAS)” based atomic memory

operations to update the lock variable. The CAS operations are subject to being performed

multiple times (usually being located inside a loop), when the lock variable is updated

frequently by the concurrently competing multiple threads.

5.6.6 Cache-to-Cache Transfers

(a) Number of cache-to-cache transfers (b) Ratio of cache-to-cache transfers (qspinlock to QT
spinlock)

Figure 5.8: Run-time cache-to-cache transfers incurred by the Linux qspinlock and QT
spinlock.

Figure 5.8 displays the simulation results on the run-time cache-to-cache transfers

which the qspinlock and QT spinlock incur. Figure 5.8a shows the numbers for each design,

while Figure 5.8b shows the ratio of the numbers (i.e. the number of the Linux qspinlock

to the number of the QT spinlock).

The cache-to-cache transfer number in Figure 5.8a verifies the ultimate minimalism in

cache line bouncing of the QT spinlock design (Section 5.1). One can see that the QT

91

spinlock incurs 1024 ± minor error cache-to-cache transfers, for the 1024 + 2N times

lock acquisition and release operations. Additionally, the numbers in Figure 5.8a confirms

that the Marssx86 simulator is modified and enhanced correctly with the counter-measures

explained in Section 5.5.2.

The ratio of the cache-to-cache transfer numbers presented in Figure 5.8b demonstrates

that the Linux qspinlock incurs an (simple arithmetic) average of 4.87 times more

cache line bounces than the QT spinlock does. This ratio value exhibits the “two-step

spin-waiting” technique of the qspinlock (Section 5.2.7): in the steady-state extreme lock

contention, the qspinlock requires at least 4 cache line bounces among the lock-competing

threads, per lock acquire/release operation. Note that the cache line bounces of queuing

locks induced while running this workload constitutes the critical-path shared memory

dependencies which become the main source of performance degradation.

As Section 5.6.3 emphasized, the adopted approximate simulation model is lopsid-

edly favorable to the Linux qspinlock design rather than to the QT spinlock design: it

hides significant amount of cache-to-cache transfer latencies of the qspinlock. Therefore,

the performance improvement (speed-up) evaluated in this Section must be considered the

minimum improvement. That is, the real CCSM multi-processor systems would deliver

much higher performance improvement with the QT spinlock design (over the Linux

qspinlock), leveraging the ultimate minimalism in cache line bouncing contribution of the

QT spinlock.

5.7 Summary

This study proposes the QT spinlock design, to help resolve the issue that the spinlock oper-

ations themselves induce much heavier SM overheads than the short critical sections which

the very spinlocks are intended to synchronize. Under the lock contention, the QT spinlock

design is ultimately free from cache coherence interference on the lock variable cache line.

92

Consequently, the lock-owner thread has the effect that no other thread competes for the

lock variable cache line concurrently.

To accomplish this, the design identifies the ticket spinlock lock variable as a temporal

FSMO inside the Linux kernel, and handles it accordingly by employing the transformed

ticket spinlock code and the associated light-weight hardware support. Importantly, the

design functions without breaking the underlying SM consistency model. Furthermore,

because it is basically a centralized spinlock design, the QT spinlock can run with a suf-

ficiently small (4 bytes) lock variable, which is the critical feature required for the Linux

kernel default spinlock.

93

CHAPTER 6

DISSERTATION CONCLUSION

This thesis is dedicated to resolving the clear discrepancy between the design principle

of the parallel SM programs and the actual SM domain operation of the CCSM multi-

processors. The parallel SM programs are optimized to maximally perform the compu-

tation locally, while minimally generating the global SM transactions. Meanwhile, the

contemporary CCSM multi-processors too conservatively treat every memory object as a

permanently shared one which incurs SM overhead. This “one size fits all” style policy

of the systems on handling the memory references has been hiding many opportunities to

improve performance and energy/power efficiency.

In order to achieve this goal, the thesis develops the concept of spatial and temporal

FSMOs, identifies their high-locality performance-affecting instances, and optimizes the

identified references. Carrying out the goal requires the comprehensive understanding of

the computer systems, including the micro-architecture, programming models, OSes, and

compilers. Nonetheless, it can free the CCSM multi-processors from unconditionally pay-

ing unnecessary overhead cost when referencing the target FSMOs.

It is nearly impossible to propose a general way to identify and optimize references to

such FSMOs because of the complexity of actual software and hardware computer systems.

Therefore, this thesis focuses on optimizing the references to two well-defined FSMOs: the

PLMD and CSLVs. However, this thesis work can be augmented and enhanced to discover

other performance-affecting FSMO references so as to enable future high-performance and

energy-efficient large scale CCSM multi-processors and their OSes.

94

REFERENCES

[1] H. H. S. Lee, M. Smelyanskiy, C. J. Newburn, and G. S. Tyson, “Stack value file:
Custom microarchitecture for the stack,” in Proceedings HPCA Seventh Interna-
tional Symposium on High-Performance Computer Architecture, 2001, pp. 5–14.

[2] S. Cho, P.-C. Yew, and G. Lee, “Access region locality for high-bandwidth processor
memory system design,” in Proceedings of the 32Nd Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, ser. MICRO 32, IEEE Computer Society,
1999, pp. 136–146.

[3] V. Petric, A. Bracy, and A. Roth, “Three extensions to register integration,” in Pro-
ceedings of the 35th Annual ACM/IEEE International Symposium on Microarchitec-
ture, ser. MICRO 35, IEEE Computer Society Press, 2002, pp. 37–47.

[4] C. S. Ballapuram, A. Sharif, and H.-H. S. Lee, “Exploiting access semantics and
program behavior to reduce snoop power in chip multiprocessors,” in Proceedings of
the 13th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ser. ASPLOS XIII, ACM, 2008, pp. 60–69.

[5] S. C. Kang, C. Nicopoulos, H. Lee, and J. Kim, “A high-performance and energy-
efficient virtually tagged stack cache architecture for multi-core environments,” in
2011 IEEE International Conference on High Performance Computing and Com-
munications, 2011, pp. 58–67.

[6] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always wanted to know
about synchronization but were afraid to ask,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, ser. SOSP ’13, ACM, 2013,
pp. 33–48.

[7] S. C. Kang, C. Nicopoulos, A. Gavrilovska, and J. Kim, “Subtleties of run-time
virtual address stacks,” IEEE Computer Architecture Letters, vol. 14, no. 2, pp. 152–
155, 2015.

[8] Harvard Mark I, https://en.wikipedia.org/wiki/Harvard_Mark_I,
2017 (accessed May 3, 2017).

[9] K. D. Cooper and T. J. Harvey, “Compiler-controlled memory,” in Proceedings of the
Eighth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ser. ASPLOS VIII, ACM, 1998, pp. 2–11.

95

https://en.wikipedia.org/wiki/Harvard_Mark_I

[10] S. Cho, P.-C. Yew, and G. Lee, “Decoupling local variable accesses in a wide-issue
superscalar processor,” in Proceedings of the 26th Annual International Symposium
on Computer Architecture, ser. ISCA ’99, IEEE Computer Society, 1999, pp. 100–
110.

[11] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “L1 data cache decomposition
for energy efficiency,” in Proceedings of the 2001 International Symposium on Low
Power Electronics and Design, ser. ISLPED ’01, Huntington Beach, California,
USA: ACM, 2001, pp. 10–15, ISBN: 1-58113-371-5.

[12] M. Mamidipaka and N. Dutt, “On-chip stack based memory organization for low
power embedded architectures,” in Proceedings of the Conference on Design, Au-
tomation and Test in Europe - Volume 1, ser. DATE ’03, Washington, DC, USA:
IEEE Computer Society, 2003, pp. 11 082–, ISBN: 0-7695-1870-2.

[13] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-
pointer integrity,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14, USENIX Association, 2014,
pp. 147–163.

[14] Code-Pointer Integrity, http://dslab.epfl.ch/proj/cpi/, 2014 (ac-
cessed May 4, 2017).

[15] M. Cekleov and M. Dubois, “Virtual-address caches. part 1: Problems and solutions
in uniprocessors,” IEEE Micro, vol. 17, no. 5, pp. 64–71, 1997.

[16] ——, “Virtual-address caches.2. multiprocessor issues,” IEEE Micro, vol. 17, no. 6,
pp. 69–74, 1997.

[17] COMPAQ Alpha 21264 Microprocessor Hardware Reference Manual, http://
www.ece.cmu.edu/˜ece447/s13/lib/exe/fetch.php?media=
21264hrm.pdf, 1999 (accessed May 6, 2017).

[18] S. G. Tucker, “The ibm 3090 system: An overview,” IBM Syst. J., vol. 25, no. 1,
pp. 4–19, Jan. 1986.

[19] D. H. Woo, M. Ghosh, E. Özer, S. Biles, and H.-H. S. Lee, “Reducing energy of vir-
tual cache synonym lookup using bloom filters,” in Proceedings of the 2006 Interna-
tional Conference on Compilers, Architecture and Synthesis for Embedded Systems,
ser. CASES ’06, ACM, 2006, pp. 179–189.

[20] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun.
ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

96

http://dslab.epfl.ch/proj/cpi/
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=21264hrm.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=21264hrm.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=21264hrm.pdf

[21] A. Basu, M. D. Hill, and M. M. Swift, “Reducing memory reference energy with op-
portunistic virtual caching,” in Proceedings of the 39th Annual International Sym-
posium on Computer Architecture, ser. ISCA ’12, IEEE Computer Society, 2012,
pp. 297–308.

[22] x86-64, https://en.wikipedia.org/wiki/X86-64, 2017 (accessed May
7, 2017).

[23] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable synchronization on
shared-memory multiprocessors,” ACM Trans. Comput. Syst., vol. 9, no. 1, pp. 21–
65, Feb. 1991.

[24] S. Boyd-wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, Non-scalable locks
are dangerous.

[25] MCS locks and qspinlocks, https://lwn.net/Articles/590243/, 2014
(accessed March 3, 2017).

[26] T. Craig, “Building fifo and priority-queuing spin locks from atomic swap,” Tech.
Rep., 1993.

[27] V. Luchangco, D. Nussbaum, and N. Shavit, “A hierarchical clh queue lock,” in
Proceedings of the 12th International Conference on Parallel Processing, ser. Euro-
Par’06, Springer-Verlag, 2006, pp. 801–810.

[28] M. A. Auslander, D. J. Edelsohn, O. Y. Krieger, B. S. Rosenburg, and R. W. Wis-
niewski, “Enhancement to the MCS lock for increased functionality and improved
programmability,” pat. U.S. patent application 10/128,745, 2003.

[29] C.-K. Liang and M. Prvulovic, “Misar: Minimalistic synchronization accelerator
with resource overflow management,” in Proceedings of the 42Nd Annual Interna-
tional Symposium on Computer Architecture, ser. ISCA ’15, ACM, 2015, pp. 414–
426.

[30] R. E. Bryant and D. R. O’Hallaron, x86-64 Machine-Level Programming, https:
//www.cs.cmu.edu/˜fp/courses/15213- s07/misc/asm64-
handout.pdf.

[31] M. Parasar, A. Bhattacharjee, and T. Krishna, “Seesaw: Using superpages to im-
prove vipt caches,” in Proceedings of the 45th Annual International Symposium on
Computer Architecture, ser. ISCA ’18, Los Angeles, California: IEEE Press, 2018,
pp. 193–206, ISBN: 978-1-5386-5984-7.

[32] Intel R© 64 and IA-32 Architectures Optimization Reference Manual, http://
www.intel.com/content/dam/www/public/us/en/documents/

97

https://en.wikipedia.org/wiki/X86-64
https://lwn.net/Articles/590243/
https://www.cs.cmu.edu/~fp/courses/15213-s07/misc/asm64-handout.pdf
https://www.cs.cmu.edu/~fp/courses/15213-s07/misc/asm64-handout.pdf
https://www.cs.cmu.edu/~fp/courses/15213-s07/misc/asm64-handout.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

manuals/64-ia-32-architectures-optimization-manual.pdf,
2016 (accessed March 3, 2017).

[33] POSIX standards IEEE.

[34] OpenMP, http://www.openmp.org/.

[35] Wind River Systems, http://www.windriver.com.

[36] Intel Sandy Bridge Architecture, http://www.realworldtech.com/page.
cfm?ArticleID=RWT091810191937&p=7.

[37] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite: Char-
acterization and architectural implications,” in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, ser. PACT ’08,
ACM, 2008, pp. 72–81, ISBN: 978-1-60558-282-5.

[38] Z. Fang, L. Zhao, X. Jiang, S.-l. Lu, R. Iyer, T. Li, and S. E. Lee, “Reducing l1
caches power by exploiting software semantics,” in ISLPED 2012.

[39] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s Perspective,
2nd. Addison-Wesley, 2010, ISBN: 0136108040, 9780136108047.

[40] A. S. Tanenbaum, Modern Operating Systems, 3rd. Prentice Hall Press, 2007, ISBN:
9780136006633.

[41] M. Chabbi, A. Amer, S. Wen, and X. Liu, “An efficient abortable-locking protocol
for multi-level numa systems,” in Proceedings of the 22Nd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, ser. PPoPP ’17, ACM,
2017, pp. 61–74.

[42] A. Jaleel, M. Mattina, and B. Jacob, “Last level cache (llc) performance of data
mining workloads on a cmp - a case study of parallel bioinformatics workloads,”
in The International Symposium on High-Performance Computer Architecture
(HPCA), 2006., 2006, pp. 88–98.

[43] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris,
and N. Zeldovich, “An analysis of linux scalability to many cores,” in Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10, USENIX Association, 2010, pp. 1–16.

[44] T. E. Anderson, “The performance of spin lock alternatives for shared-memory mul-
tiprocessors,” IEEE Trans. Parallel Distrib. Syst., vol. 1, no. 1, pp. 6–16, Jan. 1990.

98

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.openmp.org/
http://www.windriver.com
http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=7
http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937&p=7

[45] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: A full system simulator for
multicore x86 cpus,” in 2011 48th ACM/EDAC/IEEE Design Automation Conference
(DAC), 2011, pp. 1050–1055.

[46] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ser. ATEC ’05, Ana-
heim, CA: USENIX Association, 2005, pp. 41–41.

[47] M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 microarchitectural simu-
lator,” in 2007 IEEE International Symposium on Performance Analysis of Systems
Software, 2007, pp. 23–34.

[48] Simics User Guide for Unix (Simics Version 3.0). Virtutech AB., 2007, p. 193.

[49] B. K. Daya, C.-H. O. Chen, S. Subramanian, W.-C. Kwon, S. Park, T. Krishna,
J. Holt, A. P. Chandrakasan, and L.-S. Peh, SCORPIO: A 36-Core Research Chip
Demonstrating Snoopy Coherence on a Scalable Mesh NoC with In-Network Order-
ing, https://scorpio.mit.edu/sites/default/files/images/
ISCA_SCORPIO_Presentation.pdf.

[50] ——, “Scorpio: A 36-core research chip demonstrating snoopy coherence on a scal-
able mesh noc with in-network ordering,” in Proceeding of the 41st Annual Interna-
tional Symposium on Computer Architecuture, ser. ISCA ’14, 2014, pp. 25–36.

[51] P. J. Courtois, F. Heymans, and D. L. Parnas, “Concurrent control with ‘readers’ and
‘writers’,” Commun. ACM, vol. 14, no. 10, pp. 667–668, Oct. 1971.

[52] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative Ap-
proach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990, ISBN:
1-55880-069-8.

99

https://scorpio.mit.edu/sites/default/files/images/ISCA_SCORPIO_Presentation.pdf
https://scorpio.mit.edu/sites/default/files/images/ISCA_SCORPIO_Presentation.pdf

	Title Page
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Codes
	Acronyms
	Summary
	Introduction
	False Shared Memory Object
	Two Target Memory Reference Types
	Pure Local Memory Data
	Centralized Spin-Lock Variables

	Thesis Statement
	Thesis Contributions

	Literature Review
	Memory Reference Stream Decoupling
	Virtual Cache Memory Architecture
	Spinlocks And Linux Kernel
	Ticket Spinlock
	MCS Lock
	Linux Qspinlock

	(PLMD 1) Pure Local Memory Data Cache: Effective Architected Register File Extension for Multi-Processors
	Insights and Contributions
	Pilot Design to Effectively Extend Architected Registers of CCSM Multi-Processors
	Cost-Effective and Flexible VIVT Cache Implementation

	Background
	Implementation
	Manual Virtual Address Space Filtering
	The Implementation of The Proposed VIVT PLMD Cache for Multi-Processors

	Evaluation
	Simulation Limitation
	Simulation Framework
	Designs Under Evaluation
	Overall Performance Evaluation
	TLB Access Behavior
	L1/L2 Statistics Analysis (Multi-Level Benefits of PLMD Caches)

	Summary

	(PLMD 2) Subtleties of Run-Time Virtual Address Stacks
	Contributions
	Breaking Chain of a Widespread Erroneous Assumption
	Safeguards for Related Prior Work

	Background
	Insights: Myths and Realities of Run-Time Stacks
	Myth1: Dichotomy of Stack/Non-Stack Area
	Myth2: Privacy of the VA Stack Data

	Insights: Potential Hazards
	Dichotomy Affects Data Consistency and Dependencies
	Privacy Affects Cache Coherence and Memory Consistency

	Safeguards for Stack/Non-Stack Decoupled-Data Architecture
	Suggested Safeguards to Achieve Real Dichotomy
	Suggested Safeguards to Achieve Real Privacy

	Summary

	(CSLVs) QT Spinlock: Queuing Ticket Spinlock for Linux Kernel
	Insights and Contributions
	Ultimate Minimalism in Cache Line Bouncing
	Small Lock Variable Size
	Proper Approximate Simulation Model

	Background
	Test-and-Set (TS) Spinlock: Centralized Spin-Lock
	Test-and-Test-and-Set (TTS) Spinlock: Centralized Spin-Lock
	Ticket Spinlock: Centralized Spin-Lock
	General Queuing Spinlock Scheme
	MCS Lock: Queuing Lock
	Important Properties of Spinlock Operation inside Linux Kernel
	Linux qspinlock: Centralized Spin-Lock Enhanced with Internal Queuing Lock

	Implementation of QT Spinlock
	Caching-Flag (CF)
	QT Instructions and QT Messages
	Transformed Ticket Spinlock Code
	Intuitive View on Procedures in Lock Contention
	Impact on Underlying Memory Consistency Model

	Essentials Required for Proper Simulators
	Essential 1: The Perfect-Synchronization-Based Processor Multiplexing
	Essential 2: The Proper Coherence Message Implementation

	Simulator Setup
	Baseline Simulator (Marssx86)
	Approximate Simulation Model: Critical-Path of Cache Line Bouncing

	Evaluation
	Simulation Configuration
	Simulation Workload: Steady State Extreme Lock Contention
	Unfair Simulation Model
	Throughput Performance
	Atomic Memory Operations
	Cache-to-Cache Transfers

	Summary

	Dissertation Conclusion
	References

