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SUMMARY

Nonlinearities in quantum cascade lasers (QCL’s) have wide applications in wavelength
tunability and ultra-short pulse generation. In this thesis, optica nonlinearities in
INGaAgAllnAs-based mid-infrared (MIR) QCL’s with quadruple resonant levels are
investigated. Design optimization for the second-harmonic generation (SHG) of the
device is presented. Performance characteristics associated with the third-order

nonlinearities are also analyzed.

The design optimization for SHG efficiency is obtained utilizing technigues from
supersymmetric quantum mechanics (SUSY QM) with both material-dependent effective
mass and band nonparabolicity. Current flow and power output of the structure are
anayzed by sdf-consistently solving rate equations for the carriers and photons.
Nonunity pumping efficiency from one period of the QCL to the next is taken into
account by including all relevant electron-electron (e-€) and longitudinal (LO) phonon
scattering mechanisms between the injector/collector and active regions. Two-photon
absorption processes are anayzed for the resonant cascading triple levels designed for
enhancing SHG. Both sequential and simultaneous two-photon absorption processes are
included in the rate-equation model. The current output characteristics for both the
origina and optimized structures are analyzed and compared. Stronger resonant
tunneling in the optimized structure is manifested by enhanced negative differential
resistance. Current-dependent linear optical output power is derived based on the steady-
state photon populations in the active region. The second-harmonic (SH) power is

derived from the Maxwell equations with the phase mismatch included. Due to stronger

Xii



coupling between lasing levels, the optimized structure has both higher linear and
nonlinear output powers. Phase mismatch effects are significant for both structures
leading to a substantia reduction of the linear-to-nonlinear conversion efficiency. The
optimized structure can be fabricated through digitally grading the submonolayer alloys

by molecular beam epitaxy (MBE).

In addition to the second-order nonlinearity, performance characteristics brought
by the third-order nonlinearities are also discussed, which include third-harmonic
generation (THG) and intensity dependent (Kerr) refractive index. Linear to third-
harmonic (TH) conversion efficiency is evaluated based on the phase-mismatched
condition. The enhanced self-mode-locking (SML) effect over a typical three-level laser
is predicted, which will stimulate further investigations of pulse duration shortening by

structures with multiple harmonic levels.

Xiii



CHAPTER |

INTRODUCTION

Quantum cascade lasers operate due to population inversion on intersubband transitions
in unipolar (i.e., only electron injection) multiple quantum well (QW) structures. They
were first redlized by J. Faist in F. Capasso’s group in 1994 [1], athough the general
theoretical idea goes back to 1971 [2]. The unique light generation mechanism and carrier
transport characteristics make QCL’s a type of compact and high-performance laser
source in MIR and far-infrared (FIR) regions [3-7]. The large optical nonlineartities
associated with intersubband transitions, moreover, make QCL’s attractive for tunable
light generation in the near-infrared (NIR) to MIR regime, which is of intense interest for
gas sensing. Furthermore, the unigue combination of giant nonlinearity and ultrafast
intersubband carrier dynamics also makes QCL’s a good candidate for high-speed MIR
optoelectronics. In this chapter, previous studies on nonlinearities of QCL’s and their
applications are reviewed, which provides a context for the current research objectives.

The thesis structure is outlined in the last part of this chapter.

1.1 Overview of Nonlinearitiesin Quantum Cascade Lasers
1.1.1 Harmonic Generation in Quantum Cascade Lasers
In QCL’s, the light is typically generated through intersubband transitions in the
conduction band. The intersubband dipole matrix elements (i.e., between different
guantum mechanical states of a semiconductor QW structure) are of the order of a few
el ectron-charge nanometers, which are larger by a factor of 10-50 than the corresponding

interband transitions [8]. It is for this reason that second-order nonlinearities associated



with intersubband transitions are giant compared to those of interband transitions. The
theory of second-order susceptibilities based on intersubband processes in asymmetric
QW structures was developed by J. Khurgin [9] in the early 1990s. The calculation
showed that the second-order susceptibility in the 10-pm range can reach 5 10% m/V,
which is significantly larger than ~1-10x10™"2 m/V for typical bulk nonlinear crystals [10].
The dependence of the second-order susceptibility on band-gap offsets and QW
geometries was then investigated. Thus, aside from their linear optical properties,
resonant intersubband transitions in coupled QW's can also be designed as strongly
nonlinear oscillators, thus providing for giant nonlinear optical susceptibilities [11-14].
For al these designs, the usefulness in nonlinear frequency conversion was limited due to
difficulties in efficiently coupling the pump radiation to the intersubband optical
trangitions. Besides, even with good coupling, there are fundamental problems in the
resonant absorption of the external pump radiation and the lack of a suitable phase-
matching scheme in most I11-V semiconductors. To overcome these difficulties, the
monolithic and guided wave approach of integrating the nonlinear optical transitions with
the pumping source provides the best solution for efficient coupling. In integrated devices,
laser radiation generated by transitions of carriers injected into the active region serves as
an intracavity optical pump for the nonlinear frequency converstion. All fields
participating in the nonlinear interaction can be at resonance with corresponding
intersubband transitions, maximizing the nonlinear optical response. Phase matching or
guasi-phase matching can be achieved by sdlecting optical modes with different

transverse order. Such integration was earlier suggested for diode lasers [15].



For QCL'’s, the nonlinearities can be further enhanced through resonant triple- or
quadruple-levels design in the active region with strong second- or third-order nonlinear
susceptibilities, resulting in SHG or THG, which makes QCL’s attractive sources for
multiple-color light emission in the MIR and FIR. The monolithic integration of QCL’s
with optimized SHG is reported in Ref. [16]. In this design, the QW’s in the active
region simultanesouly act as the pumping source and medium for nonlinear light
generation. The structure is composed of lattice matched GalnAs/AlInAs multiple QW’s.
The conductionband diagram and quantized states are shown in Fig. 1.1, where one
active region is sandwiched between two injectors. In this design, the active region of the
QCL consists of three coupled QW's, which form five quantized energy levels with
resonant nonlinear cascades, 23-4 for cascade | and 3-4-5 for cascade 1. In particular,
the band diagram is designed to result in a multi-resonant subband structure so that a
subband lies at twice the energy above the lower level of the lasing trangition. The
fundamenta (linear) light emission is at 9.1 um while that for the SHG emission is at
4.55 pm. Figure 1.2 shows the experimental results; approximately 0.1 W of fundamental

peak power results in about 600 nW of SHG light. The linear-to-nonlinear conversion
efficiency h = Py,s/P %is up to 100 mM\/W?. This QCL design has the clear advantages

that it assures a strong overlap and efficient in-plane coupling of fundamental and
nonlinear guided modes. Moreover, since the emitted photons produced by the
intracavity SHG or THG are at frequencies well below the bandgap, reabsorption is
suppressed (though intersubband bound to continuum absorption persists), which is a
unigue advantage over conventional diode lasers. These features taken together have

made SHG in QCL’s a very attractive way to access the MIR (3~4 um) where both



diodes and QCL’s have had limited success [17]. This aso opens the possibility of

compact multicolor MIR sources, which are of intense interest for chemical sensing.
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Figure 1.1 Conduction-band diagram for the design in [16] with one activeregion
sandwiched between two injector regions.
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Figure12 Linear (P,_) and nonlinear (B ) light output versuscurrent.
In this structure, even though some SHG emission is achieved, the linear-to-

nonlinear conversion efficiency till has an opportunity to be improved through further

design optimization. Also, in [16], it is mentioned that some devices exhibit increased



SHG but no lasing. It would appear there is likely to be competition between gain and the
optical nonlinearities through the population distribution among the quantized states
within the conduction band. Thus, a comprehensive theoretical model for QCL
performance accounting for both linear and nonlinear aspects is worthy to be explored.
Some work has been reported on the theoretical modeling of the QCL’s [18, 19], but
none of these models includes both linear and nonlinear optical processes.

1.1.2 Self-Mode-L ocking in Quantum Cascade Lasers

The emission wavelength of QCL’s is in typically in the MIR [20-22]. This spectrd
region is technologically and sciertifically important for chemical and biological sensing
[23] since many molecules have characteristic absorption features here. One of the
advantageous features of QCL’s is potentialy MIR ultra-short pulse generation. In
addition to the large optical nonlinearities associated with intersubband transitions in
QCL’s, the fast (picosecond) intersubband carrier relaxation controlled by electron
optical phonon scattering is another favorable feature of QCL’s. The unique combination
of giant opticad nonlinearities and ulfrafast dynamics makes QCL’s attractive in
applications involving high-speed optoelectronic devices. Generation of picosecond
pulses by SML in QCL’s has been reported in [24]. The origin of SML was interpreted as
due to a new kind of Kerr lensing mechanism in which the refractive index is dependent
on the lasing intensity of the medium associated with intersubband transitions. The
intensity-dependent refractive index (Kerr nonlinearity) of the lasing transition creates a
nonlinear waveguide where the optical losses decrease with increasing intensity. This
favors the generation of ultrashort pulses because of their instantaneous intensity relative

to continuous-wave emission. Later on, the observation of stable pulse emission in self-



mode locked QCL’s was reported in [25]. The measurement was taken by direct down-
converting the detector signal by heterodyning with an RF signal A pulse duration of ~12
ps was estimated from the measured increase of the SHG signal in pulsed emission
compared to the power expected from the SHG signa in CW emission. These
experiments coupled with theoretical modeling strongly indicate that SML in QCL’sis a
feasible technique to achieve stable picosecond pulses with high peak intensity. So far, al
the structures studied for SML in QCL’s are three-level intersubband devices with one
pair of radiative transition levels; thus, only single-photon process dominates the optical
transition. As we discuss later, QCL’s with additional harmonic transition levels may

significantly enhance the Kerr nonlinearity.

1.2 Motivation
Based on the overview above of the current state of the art, our research has focused on
improving and understanding QCL nonlinearities for different scenarios by means of
theoretical exploration. A systematic optimization approach will be proposed below to
enhance SHG in QCL’s. In order to evaluate both the linear and nonlinear performances
of QCL’s, atheoretical model including carrier transport and wave propagation was built.
Nonunity pumping efficiency from one period of the QCL to the next was taken into
account by including all relevant e-e and LO phonon scattering mechanisms between the
injector/collector and active regions. Compared to existed modeling schemes of QCL’s,
significance of the model lies in the incorporation of two-photon processes into carrier
dynamics anaysis, which are important for both linear and nonlinear performance of

optoelectronic devices with SH or TH resonant levels. In addition, our investigations



extend to third-order nonlinearities, which lead to both THG and enhanced nonlinear
refractive index. The research is discussed in detail in the following section.
1.2.1 Optimization of Quantum Cascade L aser s with Second-Harmonic Generation
Efficient intracavity SHG can be achieved in QCL’s with strong second-order nonlinear
susceptibility ¢®. Room for improvement is likely to exist by judicious design of the
band profile. Moreover, a ssmple understarding of SHG and QCL operation would
indicate that SHG and moda gain must be traded off since the electron population
distribution favorable to one would appear to be unfavorable to the other. The purpose of
this part of our research isto design QCL’ s for optimized SHG and at the same time with
improved modal gain.

The optimization scheme is initiated from the figure of merit for SHG, i.e., ¢?,

'vlijlvI jkMik

) (1.1
(Ey - 2aw-ig, )(E; - Aw-ig ;)

c@(@w)u

where M is the dipole matrix element between levels i and |, E; is energy separation
between levels i and j, and and 2g;; is the full width at half maximum (FWHM) of the

transition broadening between levelsiandj.

From Eq. (1.1), it can be seen that ¢® is proportional to the dipole matrix

element product M,,M,M,, for cascade | and M,M, M, for cascade Il. The

nonlinearity can be further enhanced by increasing the dipole matrix element products
while retaining the multiple resonances between levels. The method is based on
SUSYQM, where the energy potential profile is varied in an sospectral manner with
dependency on a single parameter. SUSYQM has been employed in the gan

maximization in QCL’s in [26] and optimization of resonant second-order nonlinear



susceptibility ¢® for the harmonic oscillator in [27]. The current work generalizes this
method to the enhancement of SHG in QCL’s and applies it to material systems with
larger conduction-band offsets by accounting for the energy-dependence of the effective
mass.

1.2.2 Third-Order Nonlinearitiesin Quantum Cascade Lasers

In the kandstructure of the active region of the QCL structure of [16], there are five

energy levels, Ei, By, Es, E4, and Es, of which E; is the ground state, and E;, E3, E4, and
Es are equally spaced with energy intervals resonant with the lasing photon energy 7w .
The THG resonant cascade E, - E, - E, - E; consists of two SHG resonant triplets
E,- E,- E, adE, - E, - E..

Even though the structure was originaly designed for optimized SHG, there are
additional optical nonlinearities related to the tetrad of resonant levels. We start our
discussion with the third-order contribution to the nonlinear polarization,

PO (t) = cPE(t)®, 12
where E(t) isthe applied electric field given by
E(t) = E cos(wt). (1.3)

With the substitution of Eq. (1.3), Eq. (1.2) is expanded as
PO (1) = %c @ (3w;w,w,w) E* cos(3wt) +gc @ (w;w,- w,w)E* coswt).  (1.4)

The first term in Eq. (1.4) describes a response at frequency 3w that is due to an
applied field at frequency w . This term leads to THG. The second term describes a
nonlinear contribution to the polarization at the frequency w of the incident field. This

term leads to a nonlinear contribution to the refractive index at frequency w and thus



resultsin SML of QCL’s. Studies will come to the conclusion about the effect of multiple
harmonic resonance levels on the Kerr effect of QCL’s and point out a possible way of

shortening the emission pulse through band structure design of lasing medium.

1.3 ThesisOutline
The rest of this thesis includes the following parts:

Chapter 2 reviews the theoretical background of QCL electronic structure,
operation principle, carrier scattering mechanisms, and the nonlinear aspects of QCL’s.
Electronic and optical transitions in QCL’s occur between quantized states in the
conduction band, which offers unique design flexibility compared to conventional diode
lasers. The carrier transport is fully dependent on the bandstructure and constituent
materials as well as the operation environment. Scattering mechanisms, such as e-e and
phonon scattering result in the desired performance for numerous applications in the
MIR.

Chapter 3 describes the procedure to optimize QCL’s with respect to the resonant
second-order nonlinearity, based on the SUSYQM approach. After that, carrier transport
and the power output of the structure are analyzed by self-consistently solving rate
equations for the carriers and photons. The current-dependent linear optical output power
is derived based on the steady-state photon populations in the active region. The SH
power is obtained from the Maxwell equations with the phase mismatch included. The
optimized structure can be fabricated through digitally grading the submonolayer alloys
by molecular beam epitaxy (MBE) technique.

Chapter 4 presents the study on MIR QCL’s with a pair of triply harmonic

resonant levels. Potential applications of such designs are discussed based on the resonant



third-order nonlinear susceptiblility at the TH frequency and that at fundamental
frequency. The TH power generated is evaluated based on the nonlinearity susceptibility,
mode overlap with the mode at fundamental frequency, and the effect of phase mismatch.
The higher-order TH mode with the best phase-matching to the fundamental mode is
identified, which greatly improvesthe linear to TH conversion efficiency. In addition to
single-photon processes, resonant two-photon processes are included in the evaluation of
third-order nonlinearity, which results in the enhancement of the positive nonlinear
refractive index leading to SML mechanism.

The conclusions are summarized in Chapter 5.

10



CHAPTER 2

THEORETICAL BACKGROUND

Design of QCL’ s with enhanced nonlinearity is based on theories of optical transitionsin
MIR QCL’s and nonlinear optics. While most of the concepts are quite general, the focus

ison the GalnAgAlInAs material system [16].

2.1 Electronic Statesin Semiconductor Heter ostructures

Intersubband lasers are made possible by the growth of multiple heterostructures, which
are atomically abrupt layers composed of materials with different bandgaps, i.e.,
GalnAg/AllInAs materia system. Thus there is a sharp discontinuity in the band diagrams
at the heterojuction between two such materials. When the layers are made thin enough,
i.e.,, on the order of a DeBroglie wavelength, electron motion is restricted in the growth
direction X and its energy is quantized.

In the treatment, effective-mass theory [28] in the envelopefunction
approximation is used to obtain the electronic wavefunctions and quantized energy levels.

The Gpoint effective mass is used to describe the conductionband curvature
(m =0.041m, in InGaAs). The time-independent Schrodinger equation with the

effective- mass theory is given as

én® ., U _
%N +E(r)8’?(r)—E’? r), (2.1)

where the wavefunction ? (r) for the electron is given by

?(r) =F(rU,,(r), (22)

11



where U ((r) is the Bloch state wavefunction at the band minimum and F(r) isthe
envelope function and satisfies the effective- mass equation. The various materials are
represented by the spatially dependent effective mass m'(x) and the potential E_(x)
corresponds to relative conductionband offset including the externally applied electric

field. The effective- massequation then becomes

e n’Nj, n’ 1 1
g m(x) 2fx m (x) X

+E, (X)BF (r)=EF(r). (2.3
u

where N, isthe in-plane (yz plane) differential operator [29]. The solution for the

envelope function is given by

1 ik .r
F(r) =_e'<//-//y (K %) (24)

IS
wherey . (k,, x) satisfies

p’d 1 d n?k2 0
—  — +E +—1 k,,X)=E. (k K, X, 25
2dx m (x) dx - (%) om (X)Clly n(KyX) Ky (K, X) (2.5)

and k , is the in-plane wavevector, n is the subband index, and S, is the normalization
area. The gpatialy dependent effective mass introduces a coupling between the in-plane
and x directions. The coupling is usualy neglected and Eq. (2.5) becomes the one-
dimensional Schrodinger equation [29].

¢nd 1 d
g 2dx m' (x) dx

+E, (x)§/ (X =Ey (%), (26)

where the energy is given by

h2k;

2m

E.(k,)=E,+ (27)

12



with m’ the effective mass of the well material. Equation (2.7) is the sum of the
guantized energy in the x-direction and the in-plane free particle kinetic energy. Equation
(2.7) means the in-plane/x-direction coupling is neglected, which is seen to be justified by
considering that the inclusion of this coupling in EQ. (2.6) would effectively change the
barrier height E_(x) by the energy

_ Ik om
2m m(x)

D, (2.8)

D

which can be derived from the comparison between Egs. (2.5) and (2.6). Under the
condition that the in-plane kinetic energy is modest compared to the barrier height (520
meV for the INGaAgAlInAs system), and the barrier and well effective mass do not
differ too much, it is reasonable to neglect this coupling. Although the states calculated
are typically assumed to be discrete stationary states, this is not strictly true. Under the
application of an electric field, the states acquire a finite lifetime due to field ionization,
i.e., they may escape into the continuum. Escape to continuum is accounted for via an
escape time, and is usually much longer than intersubband scattering times.

The parabolic E-k dispersion relationship in Eq. (2.7) is accurate only at energies
close to the conductionband minimum (typically, no further 200 meV from this
minimum) [30]. For the structure studied in this thesis, band nonparabolicity should be
included due to the large conductionband offset (520 meV) at the InGaAg/AllnAs
heterojunction. The nonparabolicity is modeled by an energy-dependent effective mass

[31], which is expressed as

rn;p(x’ E) - m* (1+ zgn* (X), (E_ Ecbm))’

= (29)
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where m’"(x)is the conduction-band effective mass for the bulk well or barrier materials,
respectively and g is the nonparabolicity coefficient with unit nf. In the current model,
g isassumed to be the same for the barrier and well materials. With the addition of band

nonparabolicity, Eq. (2.6) is modified as,

n’d 1
2dx m_(x, E)

di+ EC(X)SI () =Ey,(¥). (2.10)
X ¢!

[(1))) ('p) [N

where the effective mass m;p(x, E) is both spatially and energy dependent.

The population in the electronic states introduces space charges which

consequently affect the conduction-band profile E,(X), i.e., band bending. For this reason,

sometimes it is necessary to solve the Poisson equation [29]
dé d u
— —F(X);=-1r(X), 211
B 00 FeOg=-T (9 (2.11)

where F(x) is the electrostatic potential, e(x) is the spatially varying permittivity, and
r (X)isthe charge density. Thisisequivalent to the Hartree approximation. The potential
energy in Egs. (2.3), (2.5), and (2.6) is

E.(X) = E.o(X)- eF (x), (2.12)
where E_,(x) isthe conduction-band offset between intrinsic materials composing the

heterostructure. The Poisson and Schrodinger equations are iteratively solved to arrive at

a self-consistent solution of the Schrodinger equation. However, for the structure
discussed in this thesis, the electron doping density is sufficiently low that E_(X) itself is

not significantly perturbed, and no self-consistent solution is necessary.
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2.2 Operation Principles of Quantum Cascade Lasers
In QCL’s, the optical transition occurs between quasi-discrete energy states within the
conduction band. These states arise from the quantization of electron motion in the active
region’s nanometer-thick layers[32]. By adjusting the width and shape of the QW'’s, one
can design an energy-level difference that leads to a desired emitted wavelength. An
electron remains in the conduction band after emitting a laser photon. The electron can
therefore be recycled by being injected into an adjacent identical active region, where it
emits another photon, and so forth. To achieve this cascading emission of photons, active
regions are alternated with doped electron injectors and an appropriate bias voltage is
applied. The active region-injector stages of the QCL give rise to an energy staircase in
which photons are emitted at each of the steps. The number of stages typically ranges
from 20 to 50 for lasers designed to emit in the 4-8 nm range [33]. The cascade effect is
responsible for the very high powers that QCL’s can attain. Figure 2.1 illustrates the
band diagram of a QCL, where the laser transition is symbolized by the red wavy arrows.
Under the electric field applied across the laser, electrons are injected from the
miniband’ s ground state g into the upper state of the laser transition—level 3 of the active
region. The thinnest QW in the active region enhances tunneling of the electrons from the
injector into the upper state. Stimulated photon emission occurs on the lasing transition 3-

2. For laser action to occur, the electron population in stage 3 must exceed that of state 2.

This population inversion is achieved if the relaxation time t ,, for the transition from

state 3 to State 2 exceeds the electron’s lifetime t, in state 2. To maximize the
population inversion, the energy separation between state 2 and 1 is designed to be equal

to the LO phonon energy, which is 34 meV for InGaAs. In this way, electrons in state 2
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will quickly scatter into state 1 because of the resonant nature of the transition. Hence,
population inversion in QCL is maintained by careful design of the electron transport
time and the phonon scattering time between intersubband transitions. According to
Vasko and Kuznetsov [34], for QW structures, the dimensionless relative gain (negative

of absorption) per layer x is adopted to characterize the emission of optical power by

radiative intersubband transition. The following analysis on the gain proves the

relationship between lasing and population inversion mentioned above.

|:| laser transition
INnn. __
L Iy I |:| probability

density
e

N o

v i

-

~

I ][ A s

£
."f‘f\

T injector

L I

I[ active section

Figure 2.1 Two periods of a typical quantum cascade laser structure.

Since the lasing levels are sufficiently low (within 200 meV of the conduction
band minimum of the well materia), the band nonparabolicity for analyzing the gain can
be ignored, thusthe lasing subbands have the same curvature, and hence the joint density

of states for an intersubband transition is a Dirac d-function at the subband

separationiw = E, - E,. Therelative gain is expressed as,
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x =P \zdE, - £, - w)E[Tk)- f(k)] (2.13
WC«/—2 kn

where L? is the normalization area of QW, M, is the dipole matrix element between

lasing states 3 and 2, and f,, (k.) is the Fermi-distribution function at in-plane

momentum K. .

The population inversion between the lasing states is

DN=N,- N, —r2D°[f(k) f(k)]/LP, (2.14)

e

> the 2D density of statesin conduction subbands and L, the thickness of

with r 2° =

one period of QCL. By combining Egs. (2.13) and (2.14), the relative gain can be

expressed in terms of population inversion as

- 42 | deif d(E, - E - DN 219

B mcwc«/g i
The d-function can be approximated as a Lorentzian,

O3,
p(E;- E,- hw)> +g5,°

d(E; - E +7w) »i (2.16)

where 2g,, isthe FWHM of the 3® 2 transition. With the substitution of Eq. (2.15), Eq

(2.16) can be rewritten as

LT 9s . 2.17)

X =
mwc«/— b2 (E, - E, - hw)® +g2,

For QCL's, it is more convenient to use modal gain G, as a figure of merit of the

design. Modal gain is simply the gain per unit thickness, i.e.,

17



c =X - 4€’p °n*M 5, DNg,, .
" Lo mwee[(E;- E, - w)? +g,,]

(2.18)

It can be seen from the above derivation that population inversion is a key factor that
influences the modal gain of QCL’s. The population inversion is dependent on the

lifetime of the lasing states as well as the electron scattering rate between them [33],

DN it (1 :—2). (2.19)

32

2.3 Carrier Scattering Dynamics of Quantum Cascade L asers
In quantum cascade (QC) structures, the design of energy levels and wavefunctions
allows scattering rates to be engineered to provide a population inversion. A proper
understanding of inter- (and intra-) subband scattering is essential for the design and
understanding of QCL’s. The important intersubband scattering channels are displayed
in Fig. 2.2. It has been well established that LO phonon scattering is the dominant
intersubband scattering mechanism for subband separations greater than the LO-phonon
energy E,,[35, 36]. For intersubband transitions where the separation is less thanE, ),
emission of LO-phonons is energetically forbidden at low temperatures. Nonradiative
relaxation is therefore dominated by a combination of e e scattering, electron-impurity
scattering, and LO-phonon scattering of the high energy tail of the subband electron

distribution. Since we assume the material has low impurities, impurity scattering is not

taken into consideration in the current research.
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Intersubband
E;>Eo

Figure 2.2 Important inter subband scattering mechanisms:
@E;<Eoand(b) E; >E,.

Intrasubband transitions are important process in cooling the subband electron gas
[37]. The efect of intrasubband e e scattering is to thermalize the electron distribution
inside a particular subband. In the present calculation, intrasubband scattering is ignored
and the electrons in each subband are assumed to be thermalized to the same effective
temperature, which may be the same as the lattice temperature. The electron population
in each subband can be described by quasi-Fermi distribution [38].

Without concerning ourselves here with intrasubband transitions, among all the
intersubband transition mechanisms, the dominant ones are LO phonon scattering and e-e
scattering. Thus, the preliminary study is focused on these two scattering processes.

2.3.1 Longitudinal Phonon Scattering

The formalism used for LO phonon scattering is based on that of Smet et al.[39]. The

total scattering rate for absorption of LO-phonons for initial state ‘i,Ri> can be written as

m e’w,, ( 1

¥

- o *DF Bo (@), (2.20)
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where n, , is the Bose-Einstein distribution for the phonons [28], e, and e, are the
static and high frequency dielectric constants, and 7w, is the LO-phonon energy. The
expression for B, ; is

Bo 1 (G.) = 90,02y ; (X (XY | (X (X)1(x,X,0.). (2.21)
The envelope functions y ; ; (x) for the initial or final subband can be obtained through

solving Schrédinger’s equation. 1(z Z',0.) isexpressed as

€ 1 |zdate @ ¥ o
(xx,q.)=¢ puiir e e g yzgexp['\ 0. *+0s |X' XI|]’ (2.22)
gq,\z + qsz)z (q’\ + qs) (q’\ + qs) H

where ¢ is the in-plane momentum, and q.is inverse screening length, which accounts

for the screening of e-e interactions involving in the eectronrLO phonon scattering
process. The screening becomes significant when the electron density increases above
10" cm™ [4Q].

In Eg. (2.20), q is the angle between the initial and final states characterized by

wave-vectors Ri and sz , and thus the g -integration corresponds to the integration over
all possible final states. The exchanged in-plane momentum g can be expressed using

the momentum conservation equation
— |2
o? =|k; - K| =k2+k?- 2Kk, cosq. (2.23)

The magnitude of the in-plane momentum of final states can be decided from energy

conservation

2m' (E, - E +hw,)

k? =k? + .

(2.24)
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The total scattering time between subbands t , ; can then be obtained by averaging over

all possible initial states in the subband:

1 ZSdEerZD(Ek)fi(Ek) o1 (Ey)

" 3 — (2.25)
e f QdEkrc (E)fi(E)

The quasi-Fermi distribution of the initial state contributes significantly to the average
scattering time. It will change with the population at the subband. In the initial calculation,
it is assumed that the population in the lower subband is zero.

Figure 2.3 illustrates our calculation results on the average LO phonon scattering
rate under different energy separations. The population density of electrons here is 10'°
cni?. Since screening is not significant at this low carrier concentration, it is ignored in
the current calculation. Our results agree well with the results in [41]. The peak
scattering rate coincides with the LO phonon energy, which is called resonant LO phonon
scattering. The intersubband transition in this case is vertical. When the energy separation
is greater than the LO phonon energy, electrons in higher subbands have sufficient energy
to emit an LO phonon and scatter to the lower subband. The transition is diagona in k-
space, that is, it is accompanied by momentum transfer between the electron and the
phonon. It is shown in the plot that the scattering rate is inversely dependent on the
energy separation as well as in-plane momentum transfer, which can also be read from
Eq. (2.22). When the separation between subband minima is less than the LO phonon
energy, electrons in the high-energy tail of the upper subband can contribute to the
emitted phonons. In this region (left part of plot), the scattering rate decreases when the

energy separation becomes smaller since electrons in higher energy tail have to be
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involved in the scattering, and their population is small according to the quasi-Fermi

distribution in the subband.

x10"
[}

1 - T=300K

T=7TK

Scattering rate (1/5)
[} L]

0 20 40 60 80 100
Energy separation (meV)

Figure 2.3 The average longitudinal phonon scattering rate asa function of subband ener gy
Separ ation.

2.3.2 Electron-Electron Scattering

Electron-electron scattering is the second most important scattering mechanism in
determining intersubband optical properties. In this mechanism, two initial states (, j)
and two final states , g) are involved. Thus in a two-subband system, there are three
ways in which electron can scatter from the upper to lower level. They are illustrated in

Fig. 2.4.
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22—>21 22—>11 21—=>11

Figure 2.4 The three different inter subband e ectr on-€lectron scattering mechanisms.

The total scattering out of theinitial electron state |i,|2i> is[39],

Wio 509 = s 7R . kgf"(f]: - [t 6 1 & 1,6
TA(E, (K ) +E, () - E(k)- E (k) d(k, +k, - k - k) (2.26
where
- =k k] (2.27)
and
Ao ro(a) = QAxQAXY (X § (XY (XY 5(x)e P, (2.28)

Theterm e, isthe correction to the permittivity due to screening. The carrier distribution
functions f, (Rf)and fg(Rg) were included to properly account for state blocking. The
two d -functions represent the energy and in-plane momentum conservation, respectively.
They simplify the k, and k, integrations, i.e,, k, and k, can be represented in terms of
k, and Ri . For convenience, the following definitions are made,

k =k -k, (2.29)
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ko, =k, - k. (2.29b)
L et the gap between the subband edges be DE . Due to energy conservation,

am,
h 2

kf +k2 =k? +k? +—=DE. (2.30)

From in-plane momentum conservation, we have

[k +k)| =|k, +k|- (2.31)
Equations (2.30) and (2.31) then give
K| =[k,[ + SE?E . (2.32)

By making use of momentum conservation and Eq. (2.32), the momentum g, can finaly

be rewritten as

|Eij - Efg| \/2k”-2 + I - 2kij\/k”-2 + +22 cosf
. (k k) = = ; | (2.33)

where f is the angle between k;; and k.
For a given initial electron in-plane momentumk IZJ. can be written as |RJ. |E)q

with g the angle between k, and IZJ. . The in-plane momentum of the final states can be

derived according to the vectors relationships shown in Fig. 2.5.
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Ki

Figure 2.5 Vector schemefor initial and final momenta.

With the expression of k, and k, plugged into the carrier distribution functions

fo(k,)and f (k) , thedfunction then permits reduction of multiple integral (2.26) to

2
e4me |A'®f (q/\)|
W oo (k)= 5 df od K, §° dg o5 F (k. k;,q,f
e 1.9 (K) phsefeg(a od7k; @ QOm (ki.kj.a.f) (2.34)

where all the probabilities of population factors are lumped into F(k;,k;,q,f).

Obviously, as seen in Fig. 2.4, the process 2, 2 1, 1 is the most dficient
trangition, in which the two electrons in the upper subband scatter into lower subband.
Figure 2.6 plots the result on the average e-e scattering rate with such mechanism, which
agrees with the result in [41], The form of this curve is much simpler than that of the LO
phonon scattering rate. The scattering rate monotonically decreases as the subband

Separation increases.
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Figure 2.6 The average 22-11 electr on-electron scattering rate as a function of subband
ener gy separation.

2.4 Optical Nonlinearitiesand Harmonic Generation
Nonlinear optical phenomena occur when the response of material system to an applied
optical field depends in a nonlinear manner upon the strength of the optical field [42]. In

linear optics, the induced polarization depends linearly upon the electric field; this can be

described by
P(t) =c “E(), (2.35)
where the constant of proportionality ¢® is known as the linear susceptibility. In
nonlinear optics, the optical response can often be described by generalizing Eq. (2.35)
by expressing the polarization P(t)as a power seriesin the field strength E(t) as
P(t)= cPE(t)+c PE* () +c PE*(t)+---° PY() + PO M) +PO(t) +--- . (236)
The quantities ¢® and ¢® are known as the second-order and third-order nonlinear

optical susceptibilities.
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2.4.1 Second-Order and Third-Order Polarizations
Suppose the electric-field strength of a monochromatic laser beam is
E(t) = E cos(wt) (2.37)
The second-order polarization is related to the electric field through second-order

nonlinear susceptibility c‘? as,
501y = cDF (M2 = L@ E2 1 @p:
P (t) =c'YE(t) _EC E cos(2wt)+zc E-. (2.38)

The second-order polarization consists of a contribution at zero frequency and a
contribution at 2v. The 2w contribution leads to the generation of radiation at the SH
frequency. SHG can aso be thought as the interaction of photons at various frequency
components of the field, i.e., two photons of frequency w are destroyed and a photon of
frequency 2w is ssimultaneously created in a single quantum-mechanical process.

The third-order polarization is related to the electric field through the third-order

nonlinear susceptiblity c® as,
56 (1) = cOE1) = La@p? 3. o3
P®(t) =cE({) _ZC E cos(3wt)+zc E* cos(wt) . (2.39)

The first term in the right side of Eq. (2.39) describes a response at frequency 3w that is
due to an applied field at frequency w . This term leads to THG. The second term in Eq.
(2.39) describes a nonlinear contribution to the polarization at the frequency w of the

incident field. This term leads to a nonlinear contribution to the refractive index at
frequency w and thus resultsin SML. The following section describes the derivation of

the relationship between the nonlinear refractive index and ¢® .
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2.4.2 Nonlinear Refractive Index

Equation (2.39) above can be rewritten more clearly as,
PO () = %c“) (3w; w, w, W) E® cos(3wt) +%c(3’ (W, w,w,- W)E®cos(wt).  (2.40)
The total polarization up to the third-order in responding to the applied electric field is as
follows,
P(t)=PY(t) + PP (t)+ PO (t), (2.42)
inwhich
PO()=cWE() = cVE cog( wt) . (2.42)

Inserting Egs (2.42), (2.38), (2.39) into Eq. (2.41), Eq. (2.41) can be expanded as,

P(t) = c“E cosft) +%c‘2) E? cos(2nt) +%c @F2 +7110(3) E® cos(3nt) +§;c(3)E3 cosnt)

:%c("”)E?’ cos(3nt) +%C(2)E2 cos(2wt) + gc(l’ E +%c(3’ E? acos(wt) +% cPE?

from which, it can be seen that third term is related to polarization at the incident field
frequency w, it can be rewritten as,

P.(t)=(c® +%c‘3) E?)E cos(wt) = (c® +%c(3)E2) E(t). (2.44)

The total refractive index can be expressed as
n=n,+n,l, (2.45)

where n,isthe linear refractive index derived as

n, =41+c® , (2.46)

N, is the nonlinear refractive index, and | is the incident light intensity

| = % e,n,E°C. (2.47)
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According to Eq. (2.44), the total refractive index can be expressed as,

n :\/1+ c® +%c(3’E2 . (2.48)

With the substitution of Egs.(2.46) and (2.47) into Eq. (2.48), EQ.(2.48) can thus be

expressed as
3)
n=_|n? i3co 1 N, [1+ §c‘3)% » n0(1+§c(3) I—s) =n, +3C—2I . (2.49)
2  enh,C 2  e,n;c 4 en,C 4e,n;C

By equating Egs. (2.45) and (2.49), it can be found that

33x®
4e,né2c

(2.50)

n,

where according to Eq. (2.40), ¢® =c¢®@ (w,w,w,- w).

2.4.3 Self-Mode-L ocking

If the nonlinear refractive index is positive, the total refractive index increases with the
intensity. Since the center part of beam transverse profile has higher intensity than the
edges, the refractive index at the center is larger than the edges. This leads to an increase
of the beam confinement at the center, and the beam diameter becomes narrower. This
effect is known as the Kerr lensing effect, which isillustrated in Fig. 2.7; a smaller beam
diameter leads to decreased mode interaction with the external gold contacts, thus
reducing the coupling waveguide losses. This results in a saturable loss mechanism, i.e.,
decrease in optical losses with increasing intensity, which is the fundamental ingredient
for SML. In the presence of such a mechanism, it may become favorable for the laser to
emit ultrashort pulses because of their higher instantaneous intensity and hence, lower

losses relative to CW emission, in which the output energy is spread uniformly over time.
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The pulse duration can be estimated using the theory of self-phase modulation (SPM)

[43].
Metal contact
I |
A‘
Refractive
Mode intensity Index
-1 \§
= Semiconductor active |
region

A

v

Lateral position
Figure 2.7 lllustration of Kerr-lensing effect.

Sdf-phase modulation describes the spectral response of a short optical pulse
propagating through nonlinear optical medium. In order to understand the origin of this

effect, let us start with the optical pulse with the form
E(zt) = A(zt)e'ox ") +cc. (2.51)

where c.c. denotes the complex conjugate propagating in the medium characterized by a
nonlinear refractive index of the sort similar to Eq (2.45) but with instantaneous response

to the pulse intensity,

n(t) =n, +n,l (t), (2.52)
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where 1(t) = (n,c/2p) z\(z,t) 2. It is assumed that the nonlinear medium is sufficiently
0

short that no reshaping of the optical pulse can occur within the medium; the only effect

of the medium is to change the phase of the transmitted pulse by the amount
VVO
fo (®)=-2n,I{t)L—, (2.53)
o

where L is the length of the nonlinear medium.
As aresult of the time-varying phase of the wave, the spectrum of the transmitted
pulse will be modified and typicaly will be broader than that of the incident pulse. The

spectral content of the transmitted pul se can be calculated by the energy spectrum

Sw) =|Q, At)e i Ve (2.54)
However, the spectral content can be more intuitively described by the concept of
instantaneous frequency w(t) of the pulse,

w(t) =w, +dw(t) (2.55)

where
dw(t) = d f o () (2.56)
" NL .

denotes the variation of the instantaneous frequency.

The use of the above analysis can be illustrated by an example. Suppose the pulse

shape is given by the form
|(t) = I ,sech?(t/t o), (2.57)

which is illustrated in Fig. 2.8(a), then from Eq. (2.53) the nonlinear phase shift is found

as
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f o (@) =-2n,20 | sech? (tft ), (2.59)
c
and from Eq. (2.56) the change in instantaneous frequency is given by

dw(t) = 4n, (‘:’t"—o LI sech? (th ) tanh(tft ,) . (2.59)

0
The variation in the instantaneous frequency is illustrated in Fig. 2.8(b) with positiven, .
It is can be seen that the leading edge of the pulse is shifted to lower frequencies and that
the trailing edge is shifted to higher frequencies. The frequency spectrum is shown in Fig.

2.8(c). The maximum value of the frequency shift is of the order of the order of

Df ™)
dw,_, » —*—, (2.60)
t 0
where
DF (™ 5 2n2%IOL. (2.61)

A notable feature of SPM is that the induced spectral broadening is accompanied by an

oscillatory structure covering the entire frequency range. To obtained a more accurate

measure of spectral broadening, one should use the RMS spectral width Dw, . defined as

DW, .y =+((W - Wp)?) - (- wp))° (2.62)

The pulse duration can be estimated as [24],

\/2log 2 4
= I+ —f 2, . 2.63
’ I:)erms \/ 3\/§ i ( )
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Figure 2.8 Illustration of self-phase modulation: (a) time dependence of incident pulse
intensity; (b) changein instantaneous frequency of the transmitted pulse; (c) spectral
br oadening dueto self-phase modulation.

2.5 Rate-Equation Model and Density Matrix Approach
There has been much speculation about the nature of the electron transport in QCL’s, i.e.,
coherence versus incoherent of the physica mechanism governing charge transport
through injector/active-region/collector interfaces. The answer to this question touches
upon the validity of our smulation approach to MIR QCL’s.
The rate-equation approach is a semiclassical or Boltzmann-like treatment, in

which the entire multiple QW is treated as a single quantum mechanical system with a
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well defined Hamiltonian. All the subband energy levels are eigenstates (which are
stationary by definition) of this Hamiltonian. The transport process is the collective
effect of intersubband scattering between the various subbands (eigenstates) involved,
and can be calculated using the Fermi’s golden rule approximation. In this picture, there
is no coherent oscillatory time evolution among the subband electron populations. The
electron wavefunctions always correspond to the stationary eigenstates, and scattering
transports an electron from one eigenstate to another. In this approach, the time evolution
of electron population at each subband is governed by the Bolzmann-like equation,

dni o o
3 =a nW; - a nW;, (2.64)
f1i f1i

where i, f run over all states and W,, is the rate at which particles make the transition
f ® i which increase the population of level i, and, and smilarly W, is the rate at which

particles make the transition i ® f which depopulate the level i. The inelastic scattering

mechanism in InGaAg/InAlAs system is via LO phonon scattering and e-e scattering
which are described in Section 2.3. The scattering rate is al'so dependent on the subband
populations through Fermi distributions. Due to the periodicity of the QC structure, the
summation of EQ. (2.64) is just including the injector, active region and collector, which
accounts for 1.5 periods of QCL. Periodic boundary conditions are applied assuming that
the transition from the preceding collector to the active region is equivaent to that
between the collector and the next active region.

In the rate-equation model, no quantum-mechanical effects, such as coherent
resonant tunneling between adjacent states, have been considered. In order to include the

coherent phenomenon into the scenario, density matrix formalism is proposed as an



extended semiclassical simulation scheme [44]. In this approach, the basic ingredient is

the single-particle density matrix r ;. The time evolution of density matrix element is

given by
— L =-iwry + %J(G}'}(;J 5o G o) ce]. (2.65)

where aw; = E, - E; is the energy difference between states i and j. The first term

describes the coherent evolution of the noninteracting carrier system while the second
contribution describes energy relaxation as well as dephasing due to the éastic
intrasubband scatterings, in terms of generalized in- and out-scattering superoperators G
[44]. The diagonal parts of matrices in Eq. (2.65) link to the semiclassical terms in Eq.
(2.64): the diagona parts of G matrices, i.e., ii(= jj¢ correspond to the semiclassical
scattering rates in EqQ. (2.64), G;;¢c°® W,.; similarly, the diagona parts of population
density matrix r ; correspond to the electron population n, at subband i in Eq. (2.64). The
off-diagonal terms (i * j) describe the degree of quantummechanical phase coherence
between states i and j. So Eq. (2.65) is the desired quantum- mechanical generalization of
the Boltzmann transport equation in Eq. (2.64). Analogous to the rate-equation approach,
the density matrix formulism also adopts the same periodic conditions to close the circuit.

In the current MIR QCL structure, the quantum-mechanical coherence effects can
be ignored and the rate-equation model is employed for the smulation since it is well
established that the rate equation is a reasonable approximation to the density matrix
approach in view of the following points.

Due to the rapid scattering and photon lifetime, it is adequate for the most part to

evaluate the output optoelectronic properties based on the steady-state solution to the

35



Boltzmann equation. Thus, it is important to check the relationship between the steady-
state solutions from the two approaches. In the density matrix formulism presented in
Chapter 3 of Ref. [42], the optical properties, such as the absorption (gain) coefficient,

nonlinear susceptibilities ¢® and ¢® | etc., are calculated based on the zeroth order

steady-state solution of density matrix element r 2, exampled as Eq. (3.6.17) on Page

mn?

166 of Ref. [41]. Referring to pages 153 and 149 of [42], r o, isjust the equilibrium

n

population of the system, and the off diagonal density matrix elements at equilibrium
r (m?t n)is vanish, i.e, there is no coherence produced in thermal equilibrium. Thus,

the steady-state population obtained from rate-equation is the same as the zeroth order
steady-state population that solved from the density matrix element. It can therefore be
concluded that calculation of those optical properties by substituting the steady-state
electron populations solved from the rate-equation model is valid.

Another check is carried out based on the comparison between the Rabi
oscillation frequency and the FWHM transition linewidth. If the intersubband Rabi
frequency n between resonant tunneling states i and j is much less than the transition
lindwidth g, between them, it means that the Rabi oscillation between the two subbands
will be quickly damped by the intersubband transition. In this case, the coherence
between tunneling states is weak and thus the off-diagonal matrix elements in density
matrix can be ignored. In the QCL structure under study, the Rabi frequency between the
lasing states is estimated to be 0.76 THz, and the FWHM line broadening is 15.17 THz.

This givesn /gij £ 0.05 for the respective off-diagonal density matrix element. Thus, the
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off-diagonal matrix elements can be safely ignored. This concludes that the rate-equation
model is likely to provide a good approximation to the full density matrix.

There are severa published works that comment on the coherence effect in MIR
QCL’s and validity of semiclassical rate-equation model. In [44], it was found that for
typical QCL structures, energy-relaxation and dephasing processes are sufficiently strong
to destroy any phase-coherence effect on a sub-picosecond time scale; as a result, the
usual semiclassical or incoherent description of stationary charge transport is found to be
in excellent agreement with experiments. As a practical matter, in [18] and [19], rate-
equation models have been demonstrated to be quite successful in modeling MIR QCL’s

and simulation results agree well with the experiment findings.
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CHAPTER 3
SUPERSYMMETRIC OPTIMIZATION OF QUANTUM

CASCADE LASERS

This chapter presents the design procedure for MIR QCL’s with optimized SHG. The
optimization is carried out based on the structure repored in [16], which is designated the
original dructure in the following. It is a multiresonant subband electronic structure
designed in order to enhance the SHG. The physical structure is composed of InGaAs
QW’s and AllnAs barriers, both lattice mattached to an InP substrate. The fundamental
emission wavelength is at 9.1 um and SHG is at 4.55 um. The optimized design is
obtained utilizing techniques from SUSYQM with both material-dependent effective
mass and band nonparabolicity. Carrier transport and power output of the structure are
analyzed by self-consistently solving rate equations for the carriers and photons.
Nonunity pumping in the carrier transport and the phase mismatch in the wave

propagation are included in the model.

3.1 Band Structure Analysis
The bandstructure analysis is the starting point for analyzing any quantum devices. In the
current model, the band structure is solved using the finite-difference method, in which
gpatially dependent mass and band nonparabolicity are included. The Schrédinger
equation is

n”de 1 dy(xo
2 dxEm(X,E) dx 4

+Vo(Xy () =By (X). (3.1)

38



where X is QW layers growth direction and V,(x) is the energy profile for the original

structure. With the expression of effective mass as Eq. (2.9), the above equation is

formed as

én*de 1l 0, _C;IZgn ) )
g?d_ﬁd % Vo(X)l)’ (¥ =é———EE- Ecbm)+§1

Vo(X):(E Ecbm)l)’ (%),

(3.2
where g is the nonparabolicity coefficient, m"(x)is the effective mass of the QW at the

bottom of the conduction band, and E,, is the energy at the conduction-band bottom.

Equation (3.2) is aquadratic eigenvalue problem (QEP). In order to avoid the

mathematical complexity for solving QEP, the band structure is solved through a tria

energy process as shownin Fig. 3.1.

39



Y

Pick thetrial energy Ey. The “pick” should be sequential
and in the interested energy region.

Substitute Ey into Eq. (2.9) to obtain the effective mass

Solve equation (3.2) by finite-difference method. A
group of eiger-energies {E.} are found.

Searchin {E,}if thereis any
|Es - Etr| »07?

Yes

Record the eiger-energy and the corresponding
eigenvectors (the wave-function)

No Are al the interested

eigen-values found?

Fig. 3.1 Solution procedurefor the band structure with nonparabalicity.
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The finite-difference method is one of the most important and simplest ways of
approximating differential operator and transforming differential equations into linear

eigenvaue problem. In finite different method,

dy () |y (x+h)-y (X
dx h

(h® 0) (3.3)

and

d¥y (x) L, dagy () dy (x-h)o_y (x+h)- & (x)+y (x- h)
& dxé dx X g h? '

(3.4)

When Eq. (3.4) isinserted into Eq. (3.1) by representing continuous function y (x) by a
series of discrete valuesy (x;), wherei =1, 2, 3, ..., N for segments on x line, Eq. (3.1)
becomes linear function with the matrix form of

Aji{y =El .}, (3.5)
which can be solved by the linear eigenvalue problem, with eigenvalue E as the subband

energy level and eigenfunction {y ,} as corresponding wavefunctions. The obtained
wavefunctions and subband energy levels for the original structure are denoted as y (?()

and E((,’() respectively, where k represents different subbands.

The band structure calculated for the original structure is shown in Fig. 3.2, which
agrees well with the results shown in [16]. The band structure calculated contains all
active portions of which are accounted for in the rate-equation model described in next
section, i.e., an active region, an injector, and a collector, which is equal to 1.5 periods of
the full cascade. There aretotally 15 (1 £ k £ 15) energy levels retained. The injector and
collector regions are represented by five energy levels each, i.e. subbands 1, 2, 4, 5, and 7

for collector and subbands 8, 10, 11, 12, and 13 for the injector. The active region, where
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laser emission and SHG take place, has 5 energy levels, i.e., subbands 3, 6, 9, 14, and 15.
Radiative transitions occur between the third and second states in the active region,
denoted as 9 and 6, while level 3 is the ground state in the active region. Levels 6, 9, 14,

and 15 constitute two nonlinear cascades; 6-9-14 for cascade | and 9-14-15 for cascade .
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e 400 ——1 T
i o
g ]
ke I I g ]
L —— - = i
- — L= ) " i
-200¢ Injector aadeSt B I
Active region o
Collector ™
00 20 40 p 80 100
Growth axis%mn)

Figure 3.2 Computed band structurefor theoriginal structure.

3.2 Supersymmetric Optimization for Second-Harmonic Generation

The optimized is targeted to improve the figure of merit of SHG, i.e,, the second-order

nonlinear susceptibility ¢ ® with expression as

C(Z)(ZW)» 2pe‘°’g M23M34M24 & n-n, + n-n

& éE42' 2hw - i942 §E43' hw - i943 Eez' hw - igsz

& _ - ou
Mg,M M 3 n, n5. L n3' a0, (36)
Eg- 2AW - ige; &Eg, - AW - i0g,  Eup- AW - ig,, g

o
2

where M;; is the dipole matrix element between levelsi and j, n; is electron population
density a level i, and E; = E - E; is the energy separation betweenlevels i and j and

2g;; isthe FWHM of the transition broadening between levelsiandj.
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From Eq. (3.6), it can be seen that ¢® is proportional to the dipole matrix
element products M ,M ,,M,, for cascade | and M M M, for cascade II, and inverse

proportional to the energy detuning between resonant levels. The optimization strategy is
to maximize the dipole matrix element products while keeping ther resonant energy
levels unchanged.

The nonlinearity can be optimized by systematically changing the band structure
through the QW potential. The method used here is SUSYQM [45]. It enables one to
generate a family of potentials depending on a single parameter | isospectral to the
original one thus preserving the multiple resonances enabling SHG as well as energy-
level positions that facilitate relaxation and tunneling from period to period of the QCL
structure.

The supersymmetric partner of V,(x) isgiven by [45],

_ @ d€ 1 d y
V(%) =V, (x) Jm*(x)&g o &{ In]l +I(x)]}§, (3.7)

with 1(x) = iqz(t)dt and q(x) =y (?()(x). From Eq. (3.7), it can been seen that the
isospectral potential is obtained through the base function q(x), which is chosen from

one of the wavefunctions y (Ok) (X) . The modified wavefunctions can be expressed as
y 50y =y &0+ /I +1(x)], (3.89)
y 5061)=-y {+y Q[ +1 (0] * g, dty &ty {)(t) with it k. (3.8b)

The modified dipole matrix element products relatingto ¢ @ isthen calculated based on

modified wavefunctions in (3.8a) and (3.8b) with variation of parameter |. The
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relationship between dipole matrix elements products and | is then plotted with different

base functions. Best base function q(x) is selected by comparing optimization effects.
SUSYQM has been used for the optimization of the intersubband resonant

¢ @for the harmonic oscillator in [27]. In that work, the initiad SUSYQM calculation

does not include band nonparabolicity. With band nonparabolicity included, the
SUSYQM optimized potential has to be dlightly tailored in order to restore the levels

equidistance. The improvement of dipole matrix element product is about 20 % in that

work. In the current work, to include the band nonparabolicity, the effective mass m’ (x)
in Eq. (3.7) is replaced by the energy-dependent effective mass m;p(x, E.) with aform

smilar to Eq. (2.9),

), (39)

2gn’ (X)” (Ey - Egm)
2

My (X E)=m (x)(1+ -

Thel -valuerangeis | £-1and | 3 Ol to maintain continuity of wavefunctions
[46]. By inspection, there are two groups of g(x) with the optimized | -value |, giving
best optimization, as shown in Fig. 3.3: (i) for q(z) =y fe)(z) and | ,, =06, thereis a
maximum dipole matrix element product MMM, for cascade I, which is
estimated to be about 20 % higher than that with the original potential shape, while that
for cascade Il remains constant; (ii) for q(x) =y 85)(x) and | ,, =0.6, the maximum
Moy M 1aa5Mons for cascade Il exceeds by 20 % the original value, while that for |

and M represent the optimized and original dipole

remains constant. In Fig. 3.3, M, org

matrix element products respectively, with M Mg,,Mg,, for cascade | and



MouyM a5 Mous for cascade 1. According to Eq. (3.1), the largest electron

population lies in level 3, so the role of cascade | is much greater than that of cascade Il,

and group (i) is selected to determinate the optimized potential.
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Figure 3. 3 Dependence of dipole matrix element product on |
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Figure 3.4 Optimized potential and original potential.

The optimized potential from SUSY QM is shown in Fig. 3.4. It can be realized by

modifying the mole fraction of constituents of the ternary dloy, i.e,
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Eg = 324 + 700x + 400X° (meV) for Gaclm-xAs and E, =357 +2290x (meV) for Allm-

xAS [47]. According to SUSYQM, the optimized structure is isospectral to the original
structure for all energy levels. This is the case for the optimized structure with ideally
smooth curvature resulting from continuously compositional grading. Due to low growth
efficiency, in practice, instead of employing continuous graded-index materias, the
structure can be fabricated by digital-alloy growth technique [48], which overcomes the
technical difficulties of continuous grading the aloy composition. In digital alloy
technique, the digitization period (DP) is the thickness of each growth layer with the
same composition, i.e., the step size in digital growth. The smaller the DP, the better the
approximation. With the development of digitally grown submonolayer superlattices
(SMYS) by excellent growth condition control [49], DP can be down to around one half of
the monolayer thickness a for InGaAs/AlGalnAs superlattices structure. The monolayer
thickness can be the upper borderline of the potential curvature roughness for the SMS.
In order to study the influence of digital growth step size on the ideally optimized
structure, apart from the model with ideally curved profile, models are aso built for with
half-monolayer DP and monolayer DP. For the model with half-monolayer DP, the
stepwise grading not only changes the dipole matrix element products, but also displaces
the subbands so their spacings deviate from the desired values, with Egs = 125meV
instead of 131 meV, E(149 = 131 meV instead of 123 meV, and E(is)14) = 90 meV instead
of 105 meV. The energy gap E(is)0, however, is still in strong resonance with that Ege,
even though E(is)(14) deviates alittle more. Thus, thereis still considerable SHG produced

by this structure. The fundamental emission wavelength has a dlight red shift of 0.46 nm,

while that for SHG is 0.92 mm. In the monolayer DP model, al the origina resonant
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states are destroyed with Egs = 120 meV, Exa9 = 52 meV and E(is5)14) = 152 meV. It is
found that profile roughness has more influence on the energy states rather than on the
dipole matrix element. Figure 3.5 (a) shows the band structure of the origina structure
and optimized structure with half monolayer DP, while fig 3.5(b) shows the digitization
of the optimized profile in comparison with the origina and ideally optimized profiles.
The material system Gay47lnpssASAl.4slnos2As is lattice-matched to the InP
substrate. For ternary alloys GalnAg/AlInAs, the mole fraction not only changes the
bandgap, but it also alters the lattice constant a. Thus, there will be strain generated in the
structure with the modified potential. For ternary aloy AB:1xC, a is caculated

bya=a,.x(z) + as. (1- x(z)). The lattice-constant mismatch affects the band structure of
the QW, which was included in the k :p method [50]. The strain is evaluated based on

the relative lattice constant difference between adjacent elements layers in the finite

different method [48]. The strain tensor can be derived as e, =e =g ,

ande, =-2e C,/C, . The conduction-band energy shift is determined by the strain

tensor by DC =C, (e, +e, +e,), in which C; is the deformation potential for the

conduction band. With the optimized potential Vv, (X) , the total Hamiltonian for the
conductionband for the strained lattice can be written as [50],

de 1 d o
++ Vo (X)+DC (3.10)

Ho=-o S = O3
o2 dxgm (x,E) dxg

In the current model, the maximum strain between adjacent layers is ~ 1 %, while the
total strain for the whole one module of the QCL structure is < 0.01 %. The optimized

structure is strain compensated.
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Here we briefly discuss the concern on interface roughness scattering brought by
the thin layers grown by the digital growth technique. As discussed n [26] with the
experimental evidence of [51], since the layersin digital alloy are not confinement layers,
but rather act via the average composition, with wave functions evenly penetrating the
well and barrier dlices, the width fluctuations should average out, with no significant
effect on the wave function shapes. So one may expect limited broadening of
intersubband transitions.

The calculations show that the dipole matrix element product for cascade | is
enhanced by 60 % over the origina value, while that for cascade Il remains unchanged.
As shown in Fig. 3.5(a), the eigenfunction for the second subband changes the most. The

dipole matrix element M,,increases by 35 % compared with the original value. This

leads to larger oscillator strength between the lasing levels.
It is al'so important to verify if the enhancement is robust against changes in the
electric field within the cascade. We therefore checked the dipole matrix element

products variation with electric-field. For the optimized structure with half monolayer
DP, the dipole matrix element product ratio M, /M, for cascade | oscillates around
1.6 with a value > 1.3 within the electric-field range 10-48 kV/cm, and the ratio for
cascade Il is between 0.8 and 1.10. The maximum change of energy spacings is within
the FWHM of the device. Since the electric field changes only slightly above threshold,

the dipole matrix elements enhancement as well (as the energy levels) does not change

much within the operation range of electric field.
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Due to the population redistribution amongst the levels, there will be competition
between gain and ¢ @, but the increased oscillator strength between lasing levels may
aleviate the competition. In order to further investigate the influence on the moda gain
by the SUSYQM modified potential, a dynamic analysis for the lasing performance is

performed through self-consistent rate equations.

3.3 Rate-Equation M odel

A rate-equation model for atypical QCL structure without SHG was studied in Ref. [18].
The current 15-level dynamic model for the QCL structure not only incorporates SHG
within the full cascade scheme, but also the interplay between time-varying photon
density and radiative transition rates. Investigation also goes for the device performance
for applied bias field between 30 kV/cm and 50 kV/cm, which is around the cascading
bias 38 kV/cm. Since energy-level ordering among the three regions varies with the
applied bias, the band structure at 38 kV/cm bias is taken to illustrate the rate-equation
approach. Results from the rate-equation model for the original structure matches well
the experimental resultsin [16].

3.3.1 Intersubband Transition Mechanisms

In the active region, the states 6, 9, 14, and 15 are equally spaced, and the energy
intervals are resonant with the lasing frequency. In addition to the single photon
absorption and emission, the involvement of SHG resonant levels, i.e., 6-9-14 and 9-14-
15 brought both sequentially and simultaneously resonant intracavity two-photon
processes. In the self-consistent rate-equation model, the quantum mechanical description
of two-photon processes given in Ref. [42] is adopted. Two-photon absorption between

states 9 ® 15 and emission between 14 ® 6 tend to degrade the lasing performance due
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to the reduced population inversion between lasing states 69. The single-photon and
two-photon processes are all incorporated into the rate-equation model in order to
investigate the lasing output. Three-photon processes should aso exist for the triply
harmonic resonant levels 6-9-14-15, but the scattering rate is estimated to be on the order
of 10°s™, which is negligible compared to single-photon and two-photon transition rates
onthe order of 10's™

The single-photon stimulated emission rate is expressed as,

2 2
p = e Man gnm

nm

e (En-mwy+gl, " -

where m,, is the photon density (m3), M., isthe dipole matrix element between levelsn
and m, 2g,,is the FWHM of the n® mtrangtion with the value taken from
experimental measurements in Ref. [16], E, . isenergy difference between levels n and

m, e is the permittivity of the lasing medium and w is incident photon frequency.
Unlike the single-photon transition rate, which is proportional to the incident photon
density (light intensity), the two-photon stimulated emission/absorption rate is
proportional to the squared photon density. With the two-photon transition cascade g-m-n,

the two-photon stimulated emission/absorption rate is given by [42],

eM M Aw

9 Jng
2he2 gE nwy (E

W.2P (w
o (W) = - 2hw)? +g2

—m? (BL)

The QCL isformed by several repetitions of the given unit cell. If neglect effects
associated with the initial and final few periods are neglected, the carrier populations in
the various levels will be periodic in the growth direction throughout the QCL. To

introduce periodic boundary conditions, the technique presented in [18] is employed.
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Namely, with the trandational repetition of 1.5 cascade periods, carriers populate the
injector subbands by transferring from the preceding active region and leaving the
collector subbands to enter the subsequent active region. The transition between the
preceding injector region and active region is equivalent to that between the collector
region and the next active region. In order to use the injector-active region-collector to
reflect the full periodic cascade structure, the population in subband 1 must be equivalent
to the population in subband 8, as well as2® 10, 4® 11, 5® 12, and 7® 13. Thus,
the rate equations for the subbands in the injector region are equivalent to those for the
collector region, and the steady-state subband populations for the injector are equal to
those of the collector.

Except for the radiative single-photon and two-photon processes for resonant
levels in the active region, LO phonon scattering and e-e scattering are the main
scattering mechanisms for transitions within each region and transport between the
injector-active region or active region-collector. When the energy separation between the
levels is much smaller than the LO phonon energy, elastic electron-electron scattering
dominates. For the resonant tunneling transitions between the injector and upper lasing
level or between the lower lasing level and the collector, e-e scattering plays an important
role. For the scattering rate calculation, the formulation described in Section 2.3 is
adopted, in which LO phonon scattering rate is calculated using Fermi’ s golden rule with
the Frohlich interaction Hamiltonian, and the e-e scattering rate is calculated with form
factors given by the overlap of the wavefunctions from the initial and final states. For
both scattering mechanisms, both momentum and energy are conserved during carrier

transitions. The transition rate between two states is both momentum dependent and
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energy dependent. The total transition rate between two subbands is obtained by
integration of the transition rates over all possible initial and final states. The electron
distribution at each subband is taken to be quasi-Fermi distribution that depends on the
subband Fermi energy [38], which in turn depends on the subband carrier density. The
interplay between the scattering rates and electron population at each subband is
connected through the Fermi energy at each subband until arriving at the steady-state.
The state blocking effect is considered by the Pauli exclusion factor in term of Fermi’s
distribution function. Due to the small overlap between wavefunctions in the injector and

collector subbands, the transition rates between injector and collector regions are

neglected.
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Figure 3.6 Illustration of carrier transitionsin the 15-level system.
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As shown in Fig. 3.6, two-way transitions are included between any of the two
subbands, so the thermal backfilling is accounted in the theoretical model. For the

transition between any two levels of the nonlinear cascade 6-9-14-15 in the active region,
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the total scattering rate includes not only the nonradiavie ones, but aso the radiative
single-/two-photon transitions, which are linearly and/or quadratically dependent on the
incident photon density. For transition rates between the adjacent single-photon resonant

levels, i.e., Wyg, Wog s Wyi1g) s Woagy s Wiagyasy adWys)14 » ONE has
W = Wu'LO +Wije ) +Wijp ' (313

where V\/ijp can be obtained from Eq. (3.11), and it makes W. depend linearly on the

1]

photon density in the lasing cavity. Similarly, for transition rates between two-photon

resonant levels, i.e., W4 » Wg6 s Wos)» ad W54, One obtains

W, =W+ WSS+ W (3.14)

ij ij ij

where V\/”.2IO can be obtained from Eg. (3.12), and this makes W, has quadratic

i
dependence on the incident photon density. For the transition between any other
subbands, the transition rate is the sum of the e-e and LO phonon scattering rates and thus
independent of the photon density in the cavity.

3.3.2 Rate-Equation Formulation

The rate-equation is built based the population variation at each subband due to various
electron scattering mechanisms. As an example for the subband populations in the

injector/collector region, the rate equation for subband 1 is written as

d . o
d_? =a Wpn; +Wgn; - Wy;n, - Wg;ng) +<'i (Wiahy - Wony), (3.15)
j

where W, represents the total scattering rate between subbands p, and g. In the above

expression, indices j =3,6,9,14,15 and k =2,4,5,7. The rate equation is similar for



any other injector or collector state. The rate equation for the subband population in the

active region is given by

L= E fyn-win) (3.16)

o it
where j =3,6,9,14,15.
The rate equation for density of photons resulted from both the single- and two-

photon processes are as follows,

dm,
T = dwgg(ng - ne) +W(1ps)(14) (n(ls) - n(14) ) +Vv(1p4)9(n(14) - ng)]a

+ 2C—I[V\/(55p)9(n15 - Nng) +W(i4’;6(n14 - ns)]' tﬂW’ (3.17)

p

where Gis the mode confinement factor, which is assumed to be 0.5, and t ;V is the photon

lifetime related to the total lossas t | = (vgaw)'1 [52].

The set of 16 rate equations involves electron populations on 15 subbands
together with the photon density. As shown in Eg. (3.17), the photon density variation
depends on the transient scattering rates and subband electron populations in the active
region, while the radiative scattering rates are also linearly or quadratically dependent on
the photon density in the cavity as shown Eq. (3.11) and (3.12). Apart from this, in each
subband, there is aso the interplay between the electron population and scattering rates,
which are connected by the quas-Fermi distribution functions. The steady-state electron
populations and photon density are achieved by iteratively solving the whole set of 16 rate
equations.

The current density through injector-active region interface is given by
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Ja=di3+ s tdigtJdug s (318
The component current density J, (i = 3, 6, 9, 14, 15) is the difference between the

scattering current density from the injector region to the level i of the active region and the
backscattering from this level i to the injector region, i.e.

Ji =Jdiei - Jies = qék (\Nki n - W,n, )7 (3.19)

where k = 8, 10, 11, 12, 13 represents levels in the injector region. Similarly, current
density flow from the active region to the collector region can be written as

Jac =dac tJoc ¥ doc + Jpaye T e (3.20)
where the component J,. is the difference between the scattering current from the level i
in active region to the collector and backscattering from collector to the level i, i.e.

Jic =Jdioc = Jeoi = qék- Wn, - nw, ). (3.21)
The current densities described above are evaluated based upon the steady-state electron
populations and scattering rates. At steady-state, thisisJ,, =J,. = J.
3.3.3 Linear and Second-Harmonic Wave Propagations and Power Outputs

Once the subband populations in the lasing levels at steady state are found, the net modal

gain can be calculated as

2
net _ G 4pe’|M o)
" l en,L, (2046)

[ng - Ng - (ng - ne)th] , (3-22)

wherel isthelasing wavelength a w, n,,is refractive index at the fundamental frequency,

L, is the thickness of one period of active region and (n,- ng),, is the threshold

population inversion which is derived by setting d—nt]” =0 inEq. (3.17),
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Equation (3.23) aso accounts for al relevant losses in the lasing cavity with SHG; the
first four terms correspond to single- and two-photon absorptions, while the last term
corresponds to the waveguide loss and mirror loss. Above threshold, i.e, G™ >0, the
medium begins to lase. The linear and SHG output light intensity can be calculated from

the photon density m in the cavity as

ly = Ny (AW)M, ti : (3.24)

m

where N, is the number of periods in the lasing cavity (the value is taken as 50 as in
[16]), and the t __ is mirror photon escape time, defined by t ' =a,v,,where a  is the
mirror lossand v, isthe group velocity. The output power is calculated by

P, =1,A (3.25)

where A is the cross section area transverse to the light propagation direction.

With the steady-state electron population, the second-order nonlinear
susceptibility ¢ ® can be evaluated as Eq. (3.6).

The initial fundamental power output can be obtained from the solution of the
steady-state rate equation stated as Egs. (3.24) and (3.25). Only the TM modes are
excited efficiently since the polarization associated with electronic intersubband
transitions contains only the x component. The wave propagates along the waveguide in

the z direction. In order to simplify the solution procedure, It is assumed that the
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transverse wave profile is only x dependent. The magnetic fields H,,,,, of the
fundamental and SH modes can be represented as,
H, (X 2) = A, (2F,(x)e ", (3.26a)
H,y o (% 2) = Ay, (DF,, (0", (3.26h)

A, av) (2 is the magnetic field amplitude varying along the wave guide direction. It is
assumed that A, (z) varies sowly with the coordinate z and A, (0) =0. F, ., (X)
represents the mode profile in the transverse direction and satisfy the Helmholtz equation,

1 w(sz)(X) a&Vew(zw)(x)
x> g c?

kw(2w W(Z\N) (x) =0, (3.27)

where e

w(2w

, isthe frequency and position dependent dielectric constants. The equations

are solved by the finite-difference approach, in which different TM modes at both

frequencies are obtained with phase constants k,,,,, solved as eigenvalues and transverse

mode profiles F,,,, (X) as eigenvectors.

The linear and nonlinear power outputs relate to the magnetic field amplitudes as,

P (2) = ”““2(;“”0 Az (2 o%((x))dx (3.28)

where W =13nm is the width of the wave guide given in [16]. The transverse
component of electric field E,isrelatedto H as

T ZW) e ew)E. (% z2w) (329)

The transverse electric field at SH frequency is related to that at the fundamental

frequency through Maxwell’ s coupled wave equation,
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ﬂEx,ZW(X’ Z) =i (ZW)Z C(Z)E2 (X Z)ei(ZkW—sz)Z. (330)
Iz 4k, c? e

2w

By combining Egs. (3.29) and (3.30), the magnitude of the SH magnetic field at output

can be derived as,

nZwA? o™ - 16,1- R, _ 1 @ (FZ2 ()F
2e, & Dy 51-R (0 "
6:;2w(x)dx

(x)dx

y.2w

A (L) = . (3.31)

where n, =k,c/wand n,, =k, c/w are refractive indices of the fundamental and SH

modes, g, =k, ad g,, =k, +ia,, , are the wavevectors of the fundamenta and SH

2w !
waves, a,, are total loss including the waveguide loss a ., and mirror loss a ,, for the

SH mode, and Dk =2k, - k, is the phase constant mismatch. Since the propagation

loss a,, inthe fundamental mode wave has been included in the single-photon rate
equation Eq. (3.17) through the photon lifetimet :)” which means that the loss has been

taken into account in the evaluation of the linear power P, , it is not contained in the

w
w(2w

wavevector g, in Eq. (3.31). The waveguide losses a ,,,, and dimensions are adopted
from the experimental data in [16]. The mirror losses can be estimated
bya yiow =- Qn Rl(z))/L ,Where R and R, are reflection coefficients at the fundamental
and SH frequencies respectively and they are related to refractive indices

&Ry = (l- N (ow) )2/@-" nw(zw))2 .

From EqQ. (3.28) and (3.31), the nonlinear output power can be obtained from

linear power as,
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_2p*c (2)|2[e'2"izwL - 2eat cos(D<L)+1] @-R) ,

P ]
| .n2n,, | gceO(Dk2 +a2W2X1- R)? "

2w

(3.32)

where | ;is the wavelength of the fundamental mode and | is the effective

interaction cross section decided by the overlap between the fundamental mode and

SH mode,
cae 1 ('52
(6F 2 () cx) 5 F,2(X)dxs W
=1t € () o 3.33
R ™ n4n2 1 (':')2 1 ) ( ) )
W' 2w 0
o—5—c®@ (X)F, (XF,, (X)dx|= o———F,, “(X)dX
ew(X) 4} eZW

In the simulation, |, isestimated to be 470 nm?, which is about half of that reported in

[16]. This is due to the assumption that ¢ ® is uniformly distributed in the nonlinear
interaction region. This assumption is valid as the current study emphasizes on the
relative enhancement effect of the SUSYQM optimized structure over the origind
structure. In Eq. (3.32), since the phase- mismatch factor Dk is about 100 times larger

than lossa ,, , the SH power will be decreased about 10 of the power under phase-

matching condition. If the phase mismatching can decrease to a value around the loss
value, the SH power can thus be improved 103 to 10* times larger.

3.3.4 Comment on Inter subband Refractive | ndex

From Egs. (3.24) and (3.33), the variation of refractive indices n,,,, have substantial

influence on the lasing performance. Apart from the fixed bulk refractive indices, there

are also contributions due to intersubband transitions [53], which are related to the

intersubband linear susceptibility ¢ ® for and bulk refractive index n, (w) as

n., W) = red [c @ (w)]/2n, (W), (3.34)
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where, for the bandstructure shown in Fig. 3.2, ¢® isevaluated as,

4pezé (nz - na)M 223 + (na' n4)M324 + (n4 B n5)M425

c® (W) » é _ - :
€ &(Es - AW)-igs, (B - AW)- 09, (Esy - W) - iQg,

u
0- (3.35)
a

It can be seen from Eq. (3.35) that ¢ isrelated to the intersubband radiative transitions.

Calculation results show that intersubband refractive index is smaller than 0.2 %
of the bulk refractive index and the influence is ignored. The reason is that competitions
among radiative transitions between each pair of resonant levels suppress the overall

influence from the whole active region.

3.4 Optimization Effectson Linear and Nonlinear Output Perfor mances
The current-density variation with the applied electric field for the original and optimized
structures are shown in Fig. 3.7. It can be seen that the current flow in the optimized
structure is more sensitive to the applied field, in which negative differential resistance
(NDR) can be observed. This can be attributed to the band-structure variation with the
applied bias, which is completely decided by the geometry and material composition of
the multiple QW’s. For both structures, the highest current flow happens at the cascading
bias 38 kV/cm due to the strong resonant tunneling between the active and
injector/collector regions. At this bias, one level in the miniband of the injector/collector
region is closely aligned with the upper lasing level or lower lasing level in the active
region. Below this point, the current in the optimized structure ramps up faster with the
applied bias. When the applied bias increases above 38 kV/cm, current in the optimized
structure drops quickly and then ramps up again. This happens when another level in the
miniband of the injector/collector region is aligned with the upper/lower lasing level in

the active region. For the original structure, there is only a mild change of the band
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structure with the applied bias. The tunneling enhancement due to this optimization is not
explicitly addressed in the optimization approach, but is rather a serendipitous outcome

of the optimization.
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Figure 3.7 The current flow through injector-active region-collector versusthe applied
voltage for both the original and optimized structures.

The improvement in the SHG might be expected to affect adversely the gain due
to the population mmpetition among lasing levels and the nonlinear cascades. The
increased oscillator strength, however, between lasing levels tends to counter this
competition. Figure 4 shows the net modal gain for the original structure and optimized
structure. It can be seen that the optimized structure has alower threshold current than the
original structure. Adopting the numbers given in Ref. [16], the lasing cavity is 13 mm
wide and 2.25 mm long. The threshold current for the optimized structure is 1 A
corresponding to a current density of 3.4 kA/cn?, while that for the original structure is
about 6.8 kA/cn?. Above threshold, when the linear output power rises beyond the

saturation power, the gain begins to drop until it equals the total loss. This corresponds to
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zero net moda gain, as shown Fig. 3.8(a). With zero net modal gain, the output power is
in steady-state. When the power falls below the saturation power, the modal gain
increases linearly with the current flow and the optimized structure has a higher modal

gain/current slope, as shown in Fig. 3.8(b).
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Figure 3.8 Net modal gain versus current for the original and optimized structures: (a)
above saturation; (b) below saturation.
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Figure 3.9 shows the variation of |c (2)| with pumping current for both the original

structure and optimized structure. Eq. (3.6) tells that |c ‘2)| are dependent on both the
dipole matrix element products and the population distribution on the states of the active
region. It shows that |c (2)| for the optimized structure is about 1.5 times of that of the
original structure which is about the improvement of the dipole matrix element product
MMM, for the first SHG cascade. |c | changes slowly with the pumping current

above threshold condition.

| ",c(z) | (104 pm/V)

== Optimized structure
— Original structure

U] 1 2 3 4 5
Current (A)

Figure 3.9 Variation of second-order nonlinear susceptibility under different pump
current.

Figure (3.10) shows the linear and nonlinear output for both the origina and
optimized structure. The nonlinear power output is calculated under phase-mismatched
condition. The higher oscillator strength between the lasing levels in the optimized one

leads to higher stimulated emission rate and makes higher linear power output. For the
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origina structure, the highest linear power is 380 mW, the nonlinear power is 85 pW.
These correspond to a linear to nonlinear conversion efficiency of 603 pW/ W?. Thisis
close to the results shown in Ref. [16]. In the optimized structure, the numbers increase
to 490 mW linear power and 323 uW nonlinear power, which correspond to 1300 pW/W?
linear to nonlinear conversion efficiency. The mode profiles of the TMyy mode at
fundamental frequency and three modes at SH frequency are shown in Fig. 3.11, in which
“FM” represent fundamental mode. In the following calculations, the TM oo modes are
picked up at both frequencies since simulation results based on them are much closer to
the experimental measurements reported in Ref. [16]. It was found that better phase-
matching can be achieved between TM oo mode at fundamental frequency and TM o, mode
at SH frequency, which is the same conclusion as Madlis, et al. [54]. With the optimized
design, the linear-to-nonlinear conversion efficiency can achieve a twofold enhancement
over the original one. The calculation shows that the nonlinear power output is only 10
of that under phase-matched conditions. Even though the phase-mismatched condition
didn't degrade the enhancement of SHG by optimization, the phase- matched condition is
a very crucia factor to improve the linear to nonlinear conversion efficiency in QCL
structure. However, that technique is a different physical concept as the optimization

technique, which provides a means to improve the nonlinearity of the lasing medium.
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Figure 3.10 Fundamental power and nonlinear power under different pump current.
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CHAPTER 4
THIRD-ORDER OPTICAL NONLINEARITIES OF QUANTUM

CASCADE LASERS

In this chapter, further study on the third-order optical nonlinearities is carried out on the
structure shown in Fig. 3.2, which isa MIR QCL with apair of triply harmonic resonant
levels. Potential applications of such design are discussed based on the resonant third-
order nonlinear susceptiblility ¢ ® at the TH) frequency, ¢®(3w;w,w,w), and that at
fundamental frequency ¢ ® (w;w,w,-w), which is described in Eq. (1.4). The TH power
generated is evaluated based onc ® (3w;w,w,w), mode overlap with the fundamental
mode and the effect of phase mismatch. The higher-order TH mode with the best phase-
matching to the fundamental is identified, which greatly improves the linear to TH
conversion efficiency. In addition to single-photon processes, resonant two-photon
processes are included in the evaluation of ¢ ® (w;w,w,-w) , which results in the
enhancement of the positive nonlinear refractive index which is predicted to enable the
ultrashort pulse generationvia SML. It is concluded that QCL’s with multiple-resonance
design are not only favorable for tunable light emissionat the SH and TH frequencies in

the NIR to MIR region, but are also promising candidates for ultrafast compact long-

wavelength lasers.
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4.1  Third-Harmonic Generation
THG is associated with the processes illustrated in Fig. 4.1 (&), in which three photons
with frequency w are destroyed and one photon with frequency 3w is created;

¢ @ (3w;w,w,w) is afigure of merit of THG. It is expressed as [41],

ey(Es,- Jw- |95J2) éEnz' 2 - 19,,8E,5- Tw- I(g4J2) E,,- 7w- Igszzl @
1 @& n-n . n-N gJu
Eys- 2W- igsngsf - igs, E,5- 7wv- ig43ég

¢ @ (3w;w,w,w) can be evaluated based on the rate-equation solutions presented in

Chapter 3.3.3.
W
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Figure4.1 Illustration of different resonant transitions: (a) third-harmonic generation; (b)
single-photon process; (c) two-photon process.
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The initial fundamental power output can be obtained from the steady-state
photon populations as in Egs. (3.24) and (3.25). Only TM modes are excited efficiently
since the polarization associated with electronic intersubband transitions contains only
the growth-oriented x component. The wave propagates along the waveguide in the

longitudinal z direction. In order to simplify the solution procedure, it is assumed that the

transverse mode profile is only x dependent. The magnetic fields H, ., of the
fundamental and TH modes can be represented as
H,w(%2) = A, (DF, (e, (4.2)
H, 5.(X 2) = Ay, (DF,, (X)e . (4.2b)
Here, A, (2) is the magnetic-field amplitude varying along the waveguide direction. It
is assumed that that A, (z) varies slowly with coordinate z and A,,(0) =0. F,,,(X)

represents the mode profile in the transverse direction and satisfies the Helmholtz

equation,

T°Fow (X) fﬂvew (x)
ﬂiz) éaN) kW(SN) éW(SW) (X) O (43)

where e, ., is the frequency- and position-dependent dielectric constants The

equations are solved by the finite-difference approach, in which the TM modes at both

frequencies are obtained with phase constants k,,,,, solved as eigenvalues and transverse
mode profiles F,,, (X) as eigenvectors.

The linear and nonlinear power outputs relate to the magnetic field amplitudes as

~ y2vW(3W) (X)d 4 4
O————— X, .
eW(3w) (X) ( )

Puan (2) = W“’“” |AN(3w)( 2)
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where W =13nm is the width of the wave guide given in [16]. The transverse
component of electric field E,isrelatedto H as

H, (%, Z,w)

=iwe(x,w)E,(x,z,w). (4.5)
1z

The transverse electric field a the TH frequency is related to that at the fundamental

frequency through the wave equation,

1E, 5, (X, 2) _i (3w)>
1z 4k, c?

cOE2, (x,2)e @ o2, (4.6)

With the combination of Egs. (4.5) and (4.6), the magnitude of the TH magnetic field at

output can be expressed as
3wA3 st _ 18 ./1- R
3n, WA, a& 10 4 3 . 1 cO (F2, (WF

s’ § Dy 5a- R)” Y0
d:y2,2w (X)dX

(x)dx

y,3w

A(L) = , (4.7

where n, =k,c/wand n,, =k,,c/(3w) are the fundamental and TH moda refractive
indices, g, =k, and g,, =k,, +ia,, are the wavevectors of the fundamental and TH
waves, a ., isthe total loss including the waveguide loss and mirror loss for the TH wave,

Dk =3k, - ks, is the phase constant mismatch and R, and R, are the reflection
coefficientsat fundamental and TH frequencies.

From Egs. (4.6) and (4.7), the nonlinear output power can be obtained from linear
power as

B 9p2|c(3)|2[e'2aaNL - 2eat cos(DkL)+1] (1-R,)
B 12n3n,,1 2ce2(Dk? +a,” JL-R,)’

Pay P3, 4.8)
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where |, is the effective interaction area determined by the overlap between the

fundamental wave and TH waves,

3

(@FaNz(x)de/o—F (x)dx—
=W ) , 4.9)

s, 2. 1, ,
ET(‘)ea—(X)C( "(XF,” (X)F; (X)d%j/o— Faw (X)dX

3

From EQ. (4.8), it can be observed that TH power output is proportiona
tojc © (3N;w,w,w)|2 . In addition, the mode-profile overlap and phase mismatch also play

important roles. In our ssimulations, the emission powers at the fundamental, SH and TH
frequencies are compared. The calculation of SH power follows procedures given in

Section 3.3.3.
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Figure4.2 Lowest order of fundamental, second-harmonic, and third-harmonic modes. (a)
mode profiles; (b) power outputs.

The maximum overlap between the SH/TH mode and the fundamental mode
occurs for the lowest mode TMqo at those three frequencies, whose profiles are shown in
Fig. 4.2(a) and the corresponding emission powers are shown Fig. 4.2(b). From Eqg. (4.8),
it can be seen that the mode overlap is inversely proportional to the effective interaction
area. To achieve higher SH/TH output power, the interaction area should be as small as
possible. The effective interaction area for the SH mode is 470 pm?, with maximum SH

emission up to 85 pw; the effective area or the TH mode is 123 pm? with maximum TH
emission as 135 nW. The linear to SHG conversion efficiency h,, = 2W/PiW is 603

UW/W2, while the linear to THG conversion efficiency h,, =P, /P. is 2.6 pW/WS,

These numbers are close to the experimental results reported in [16, 55]. The deviation is
likely in part due to the assumption that the nonlinear susceptibilities are constant within

the active region. It was found that higher orders of SH and TH modes have better phase-
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matching with the TM o fundamental mode. As shown in Fig. 4.3(a), the best phase-
matching could be achieved between TMg2, SH /TMos TH modes and the TMqo
fundamental mode, but with some sacrifice of mode profile overlap. The effective
interaction cross-section between TMo, SH and TMqo fundamental modes increases to
568 pm?, and the maximum SH power output is 1.2 mW; the effective cross-section
between TM 4 TH and TM go fundamental modes increases to 233 pm?, and the maximum
TH power output is 1.0 pw. Under the best phase- matching condition, even though with
the reduced mode overlap, there is nonetheless still a 20-fold improvement for the SH
power and a 10-fold improvement for the TH power. Therefore, phase-matching is the

most crucial factor for achieving higher powers in the harmonics.
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Figure 4.3 Second-harmonic and third-harmonic modes with the best phase-matching to the
fundamental mode: (a) mode profiles; (b) power outputs.

4.2  Nonlinear Refractive Index with Harmonic Resonant Levels
The second term in Eq. (1.4) describes a nonlinear contribution to the polarization at the
fundamental frequencyw . This leads to a nonlinear contribution to the refractive index
(Kerr effect) at frequencyw . The refractive index including the Kerr nonlinearity can be
expressed as [42]
n, =n, +n,l (4.10)

where n, isthe linear refractive index, n, is the nonlinear refractive index,

n, = Re[c @ (w;w,w,- W)], (4.11)

4nle,c

and the light intensity is | :%noceoEz.
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In [24], SML in QCL’s from the intensity-dependent refractive index has been
demonstrated. If n, is positive, due to the Kerr-lensing effect, the central portion of the
transverse beam profile, where the intensity is highest, experiences a larger refractive
index relative to the edges. Thereafter, the nonlinear dielectric waveguide increases the
beam confinement near its center and narrows the beam diameter to an extent
proportional to the optical power. In the presence of such a mechanism, the mode
interaction with external metal contact decreases and thus reduces the optical losses. This
is a favorable mechanism for the laser to emit ultrashort pulses. Even though we did not
estimate the pulse duration here due to the lack of experimental data for the root- mean

sguare of the spectral width, it can be inferred qualitatively the enhancemernt of SML
effect by analyzing the n, variation due to the additional harmonic resonance levels.
Following Eq. (4.11), n, can be obtained fromc ©® (w;w,w,-w), which itself can
be evaluated based on the steady-<tate rate-equation solutions described in Section 3.3.
For the bandstructure shown in Fig. 1.1, according to formulation derived in [42], two
kinds of resonant terms contribute to ¢ ®(w;w,w,-w) , i.e, terms related to single-

photon processes as shown in Fig. 1(b) and those related to two-photon process as in Fig.
1(c),

(3)
1p

(©)]

c @ (w;w,w,-w)=c 3

(W;w,w,-w) +c . (W;w,w,-w). (4.12)

Single-photon transitions exist between any two states whose separation is

resonant with the fundamental frequency w, i.e. states E, - E;, E;- E, and E, - E..

For any lasing structure there is single-photon processes contributing to ¢ ® (w;w,w,-w),
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which leads to absorption saturation. The explicit expression of ¢ (w;w,w,-w) by

summing up al the contributions from the single-photon processes is

8 4? |V|4
e wiw,w,-w) = gg aN;- N,) 23 :
o € (Esz' hw - 'gsz) (Esz' hW'Hgsz)
M
+ (N,- Ny) — _ (4.13)
¢ ° (E43' hw - |g43)2(E43' hW+|g43)
4 0
+(Ng- N,) M.

(E54' hw - i954)2(E54' hW+igs4)S

3)

from which it can be seenthat c{>

(w;w,w,-w) depends on the population inversion

between resonant levels, the dipole transition strength as well as the detuning and

broadening factors. Due to the multiple resonance nature of the bandstructure, additional
contributions to ¢ ® (w;w,w,-w) from two-photon processes aso exist for resonant
cacades E, - E;- E, and E; - E, - E;, where two photons with frequency w are
absorbed simultaneously or sequentialy and stimulate the upward electronic transitions
across two consecutive resonant levels E,® E, or E;® E;. The expression for

resonant contributions due to these two-photon processes is

4 é M 2 M 2
C 5 (W;wW,W,-w) = &g &N, o :
3e, é (Es - AW - i04,) (E,, - 20w - ig,,)
. . (4.14)
+N M3,Ms u

3 . 2 . l]x
(E43' hw - |g43) (E53 - 27w - 'gss)l':l
Figure 4.4 shows the nonlinear refractive index n, resulting from the single- and

two-photon processes, respectively, together with the total n, that results. The two kinds

of contributions are both positive and of comparable magnitude, which means that the
additional harmonic resonant levels in the lasing active region significantly enhance

(actualy double) the intensity-dependent refractive index, which thus is predicted to lead
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to the enhancement of SML. The maximum optical intensity at the fundamental lasing

frequency is about 1 MWi/cnf. This will result in a tota refractive index

change Dn,, = 0.005. The maximum nonlinear phase shift Df ™ calculated from Eg.
(2.49) isDf ™ = 4.5p .

x10°

== (Contribution from single-photon processes
Contribution from two-photon processes
4F | == Total

Nonlinear refractive index l'lz((:l'l‘lsz)

Current (A)

Figure 4.4 Nonlinear refractive indices dueto single- and two-photon processes.

The pulse duration can be estimated from the SPM described in Section 2.4.3.
Assume the pulse is in Gaussian shape ard the intensity in time domain can be described
as,

1) =1,e %7, (4.15)
where |, is pesk intensity and s is the /e haf-width, which is related to the FWHM
pulse duration as

t ey = 24/IN2s (4.16)
According to the Fourier transform of the Gaussian pulse [56],

Dw,s =1 (4.17)
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where Dw,, isthe 1/ehalf-width in the frequency domain. The spectral broadening factor

Dw,,, for the Gaussian pulseis given by [41],

4 (a2
Dw,,_ = \/1+%(f < Dy, (4.18)

The spectral broadening factor for structure with harmonic levels is estimated to be

Dw, . » 12Dw, while that for the QCL’s structure without harmonic resonant levels is

Dw, ., » 6Dw,. So the increased nonlinear refractive index due to the harmonic design
leads to two-fold enhancement of spectral broadening. SPM aone does not modify the
pulse envelop, but a much shorter pulse can be created with the extra bandwidth
generated, as follows from the Fourier transform of the wider spectrum [57]. It is strongly
indicative that QCL structures with harmonic resonance design are potential candidates
for ultrafast pulse generation. The enhanced spectral broadening may even shorten the
pulse duration, the theoretical reasoning of which is worth continuing investigation and

suggested to be one of the future research directions.
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CHAPTERS

CONCLUSIONS

This dissertation presents investigations on the optical nonlinearities of QCL’s. It is based
on an InGaAg/AlInAs MIR QCL with enhanced SHG in the literature. An analytical
model is built for optimization of SHG followed by the performance evaluation through
optoelectronic transport analysis. In addition, the THG as well as the nonlinear refractive
index induced by the third-order nonlinear susceptibilities is discussed based on results
from the model.

The nonlinear susceptibility associated with SHG was optimized by SUSY QM
approach. Both the position and energy dependent effective mass is included in the
optimization. The optimized structure can be fabricated by the state-of-art digital growth
with haf monolayer DP, which is much simpler than continuously grading the
composition and can assure the optimization effect in some extent, while digital- growth
with monolayer DP is predicted to be too coarse to approximate the ideal potential profile.
The structure is partially strained but strain compensated for a period of the QCL. Lattice
mismatch is included through the deformation potential.

The performance analysis of the QCL’s targeting at evaluating the optimization
effect is carried out semiclassically by the self-consistent rate equations. In order to
account for nonideal injection efficiency within each period of the QCL, the ssimulation is
based on a full cascade structure containing the injector, active region, and collector. By
incorporating the two-photon process into the self-consistent rate equatiors, the modal

gain, output linear power, and SHG power can be obtained from the steady-state solution
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and Maxwell’s wave equations. The current flowing in the entire structure in response to
the applied bias is obtained through the steady-state carrier populations and scattering
rates. It is found that the current density in the optimized structure responds more
sensitively to the applied bias due to enhanced NDR. This may lead to highly
nonconventional transport characteristics of such structures, and may be exploited outside
of the context of intracavity nonlinearitiesin QCL’s. An improvement by a factor of 2.65
of the linear-to-nonlinear conversion efficiency is expected in the idealy optimized
structure, while it is 2.0 for the structure approximated by submonolayer supperlattices.
The optimized structure also demonstrated the increased modal gain at the fundamental
frequency and lower threshold current. In order to account for the phase mismatch
influence on the nonlinear performance, wave coupling during propagation is studied
with the aid of Maxwell wave equation The linear power is enhanced and nonlinear
power is suppressed under phase-mismatched condition, which accounts for about a 10*
times reduction of the linear-to-nonlinear efficiency. This gives an indication that phase
matching is an important factor in improving the nonlinear performance of the QCL
structures. The supersymmetric optimization procedure is an efficient technique to
achieve higher nonlinearity of the lasing medium itself. It may be pointed out that growth
of the optimized structure may be difficult; nonetheless, improvements may make it
worth the effort. In addition, theoretical demonstration of the effect is of interest in its
own right.

Since the structure under investigation could possibly possess interesting third-

order nonlinearities due to three harmonic levels, additional anaysis is carried out for

diverse optical nonlinearities related to ¢ i.e, THG and intensity-dependent refractive
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index n, . Wave-propagation analysis shows that the TH power can be greatly enhanced
in higher TM modes due to better phase- matching. Because of additional contributiorns
from resonant two-photon processes, the nonlinear refractive index is amost double that
expected for a structure with only one pair of resonant levels, which results in significate
gpectral broadening. This is expected to result in enhanced SML leading to ultrashort
pulse gereration. The current work demonstrates that QCL’s with optimized third-order
nonlinearities promise applications in both tunable light emission and ultrafast optics.
Continnued work is underway for detailed analysis on the pulse-shortening by increased
nonlinear refractive index.

This work demonstrates a comprehensive theoretical methodology to analyze and
enhance the nonlinearities of QCL’s, which can be applied for compact multiple-color
emitters and ultra-short pulse generation. Besides being well-suited for analysis of QCL’s,
this model can also be extended to a wide range of nanoscale optoel ectronic devices with
multiple-band electronic structures, i.e., intermediate-band solar cells (IBSC's) and QW
infrared photodetectors (QWIP's), for both linear and nonlinear performance

investigations.
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