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SUMMARY 
 
 
 

Nonlinearities in quantum cascade lasers (QCL’s) have wide applications in wavelength 

tunability and ultra-short pulse generation. In this thesis, optical nonlinearities in 

InGaAs/AlInAs-based mid- infrared (MIR) QCL’s with quadruple resonant levels are 

investigated. Design optimization for the second-harmonic generation (SHG) of the 

device is presented. Performance characteristics associated with the third-order 

nonlinearities are also analyzed.  

The design optimization for SHG efficiency is obtained utilizing techniques from 

supersymmetric quantum mechanics (SUSYQM) with both material-dependent effective 

mass and band nonparabolicity. Current flow and power output of the structure are 

analyzed by self-consistently solving rate equations for the carriers and photons. 

Nonunity pumping efficiency from one period of the QCL to the next is taken into 

account by including all relevant electron-electron (e-e) and longitudinal (LO) phonon 

scattering mechanisms between the injector/collector and active regions. Two-photon 

absorption processes are analyzed for the resonant cascading triple levels designed for 

enhancing SHG. Both sequential and simultaneous two-photon absorption processes are 

included in the rate-equation model. The current output characteristics for both the 

original and optimized structures are analyzed and compared.  Stronger resonant 

tunneling in the optimized structure is manifested by enhanced negative differential 

resistance. Current-dependent linear optical output power is derived based on the steady-

state photon populations in the active region. The second-harmonic (SH) power is 

derived from the Maxwell equations with the phase mismatch included. Due to stronger 
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coupling between lasing levels, the optimized structure has both higher linear and 

nonlinear output powers. Phase mismatch effects are significant for both structures 

leading to a substantial reduction of the linear-to-nonlinear conversion efficiency.  The 

optimized structure can be fabricated through digitally grading the submonolayer alloys 

by molecular beam epitaxy (MBE).   

In addition to the second-order nonlinearity, performance characteristics brought 

by the third-order nonlinearities are also discussed, which include third-harmonic 

generation (THG) and intensity dependent (Kerr) refractive index. Linear to third-

harmonic (TH) conversion efficiency is evaluated based on the phase-mismatched 

condition. The enhanced self-mode- locking (SML) effect over a typical three- level laser 

is predicted, which will stimulate further investigations of pulse duration shortening by 

structures with multiple harmonic levels. 
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CHAPTER I 

INTRODUCTION 

 

Quantum cascade lasers operate due to population inversion on intersubband transitions 

in unipolar (i.e., only electron injection) multiple quantum well (QW) structures. They 

were first realized by J. Faist in F. Capasso’s group in 1994 [1], although the general 

theoretical idea goes back to 1971 [2]. The unique light generation mechanism and carrier 

transport characteristics make QCL’s a type of compact and high-performance laser 

source in MIR and far- infrared (FIR) regions [3-7]. The large optical nonlineartities 

associated with intersubband transitions, moreover, make QCL’s attractive for tunable 

light generation in the near-infrared (NIR) to MIR regime, which is of intense interest for 

gas sensing. Furthermore, the unique combination of giant nonlinearity and ultrafast 

intersubband carrier dynamics also makes QCL’s a good candidate for high-speed MIR 

optoelectronics. In this chapter, previous studies on nonlinearities of QCL’s and their 

applications are reviewed, which provides a context for the current research objectives. 

The thesis structure is outlined in the last part of this chapter.  

1.1 Overview of Nonlinearities in Quantum Cascade Lasers  

1.1.1 Harmonic Generation in Quantum Cascade Lasers  

In QCL’s, the light is typically generated through intersubband transitions in the 

conduction band. The intersubband dipole matrix elements (i.e., between different 

quantum mechanical states of a semiconductor QW structure) are of the order of a few 

electron-charge nanometers, which are larger by a factor of 10-50 than the corresponding 

interband transitions [8]. It is for this reason that second-order nonlinearities associated 
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with intersubband transitions are giant compared to those of interband transitions. The 

theory of second-order susceptibilities based on intersubband processes in asymmetric 

QW structures was developed by J. Khurgin [9] in the early 1990s. The calculation 

showed that the second-order susceptibility in the 10-µm range can reach 5×10-8 m/V, 

which is significantly larger than ~1-10×10-12 m/V for typical bulk nonlinear crystals [10]. 

The dependence of the second-order susceptibility on band-gap offsets and QW 

geometries was then investigated. Thus, aside from their linear optical properties, 

resonant intersubband transitions in coupled QW’s can also be designed as strongly 

nonlinear oscillators, thus providing for giant nonlinear optical susceptibilities [11-14]. 

For all these designs, the usefulness in nonlinear frequency conversion was limited due to 

difficulties in efficiently coup ling the pump radiation to the intersubband optical 

transitions. Besides, even with good coupling, there are fundamental problems in the 

resonant absorption of the external pump radiation and the lack of a suitable phase-

matching scheme in most III-V semiconductors. To overcome these difficulties, the 

monolithic and guided wave approach of integrating the nonlinear optical transitions with 

the pumping source provides the best solution for efficient coupling. In integrated devices, 

laser radiation generated by transitions of carriers injected into the active region serves as 

an intracavity optical pump for the nonlinear frequency converstion.  All fields 

participating in the nonlinear interaction can be at resonance with corresponding 

intersubband transitions, maximizing the nonlinear optical response. Phase matching or 

quasi-phase matching can be achieved by selecting optical modes with different 

transverse order.  Such integration was earlier suggested for diode lasers [15].  
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 For QCL’s, the nonlinearities can be further enhanced through resonant triple- or 

quadruple- levels design in the active region with strong second- or third-order nonlinear 

susceptibilities, resulting in SHG or THG, which makes QCL’s attractive sources for 

multiple-color light emission in the MIR and FIR. The monolithic integration of QCL’s 

with optimized SHG is reported in Ref. [16].  In this design, the QW’s in the active 

region simultanesouly act as the pumping source and medium for nonlinear light 

generation. The structure is composed of lattice matched GaInAs/AlInAs multiple QW’s. 

The conduction-band diagram and quantized states are shown in Fig. 1.1, where one 

active region is sandwiched between two injectors.  In this design, the active region of the 

QCL consists of three coupled QW’s, which form five quantized energy levels with 

resonant nonlinear cascades, 2-3-4 for cascade I and 3-4-5 for cascade II. In particular, 

the band diagram is designed to result in a multi- resonant subband structure so that a 

subband lies at twice the energy above the lower level of the lasing transition.   The 

fundamental (linear) light emission is at 9.1 µm while that for the SHG emission is at 

4.55 µm. Figure 1.2 shows the experimental results; approximately 0.1 W of fundamental 

peak power results in about 600 nW of SHG light. The linear-to-nonlinear conversion 

efficiency 2
LNSHG PP=η is up to 100 µW/W2. This QCL design has the clear advantages 

that it assures a strong overlap and efficient in-plane coupling of fundamental and 

nonlinear guided modes.  Moreover, since the emitted photons produced by the 

intracavity SHG or THG are at frequencies well below the bandgap, reabsorption is 

suppressed (though intersubband bound to continuum absorption persists), which is a 

unique advantage over conventional diode lasers. These features taken together have 

made SHG in QCL’s a very attractive way  to access the MIR (3~4 µm) where both 
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diodes and QCL’s have had limited success [17]. This also opens the possibility of 

compact multicolor MIR sources, which are of intense interest for chemical sensing.   

 

Figure 1.1  Conduction-band diagram for the design in [16] with one active region 
sandwiched between two injector regions. 

 

 

Figure 1.2  Linear ( LP ) and nonlinear ( NLP ) light output versus current. 

In this structure, even though some SHG emission is achieved, the linear-to-

nonlinear conversion efficiency still has an opportunity to be improved through further 

design optimization. Also, in [16], it is mentioned that some devices exhibit increased 
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SHG but no lasing. It would appear there is likely to be competition between gain and the 

optical nonlinearities through the population distribution among the quantized states 

within the conduction band. Thus, a comprehensive theoretical model for QCL 

performance accounting for both linear and nonlinear aspects is worthy to be explored. 

Some work has been reported on the theoretical modeling of the QCL’s [18, 19], but 

none of these models includes both linear and nonlinear optical processes.  

1.1.2 Self-Mode-Locking in Quantum Cascade Lasers  

The emission wavelength of QCL’s is in typically in the MIR [20-22]. This spectral 

region is technologically and scientifically important for chemical and biological sensing 

[23] since many molecules have characteristic absorption features here.  One of the 

advantageous features of QCL’s is potentially MIR ultra-short pulse generation. In 

addition to the large optical nonlinearities associated with intersubband transitions in 

QCL’s, the fast (picosecond) intersubband carrier relaxation controlled by electron-

optical phonon scattering is another favorable feature of QCL’s. The unique combination 

of giant optical nonlinearities and ulfrafast dynamics makes QCL’s attractive in 

applications involving high-speed optoelectronic devices. Generation of picosecond 

pulses by SML in QCL’s has been reported in [24]. The origin of SML was interpreted as 

due to a new kind of Kerr lensing mechanism in which the refractive index is dependent 

on the lasing intensity of the medium associated with intersubband transitions. The 

intensity-dependent refractive index (Kerr nonlinearity) of the lasing transition creates a 

nonlinear waveguide where the optical losses decrease with increasing intensity. This 

favors the generation of ultrashort pulses because of their instantaneous intensity relative 

to continuous-wave emission. Later on, the observation of stable pulse emission in self-
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mode locked QCL’s was reported in [25]. The measurement was taken by direct down-

converting the detector signal by heterodyning with an RF signal A pulse duration of ~12 

ps was estimated from the measured increase of the SHG signal in pulsed emission 

compared to the power expected from the SHG signal in CW emission. These 

experiments coupled with theoretical modeling strongly indicate that SML in QCL’s is a 

feasible technique to achieve stable picosecond pulses with high peak intensity. So far, all 

the structures studied for SML in QCL’s are three- level intersubband devices with one 

pair of radiative transition levels; thus, only single-photon process dominates the optical 

transition. As we discuss later, QCL’s with additional harmonic transition levels may 

significantly enhance the Kerr nonlinearity.  

1.2 Motivation 

Based on the overview above of the current state of the art, our research has focused on 

improving and understanding QCL nonlinearities for different scenarios by means of 

theoretical exploration. A systematic optimization approach will be proposed below to 

enhance SHG in QCL’s.  In order to evaluate both the linear and nonlinear performances 

of QCL’s, a theoretical model including carrier transport and wave propagation was built.  

Nonunity pumping efficiency from one period of the QCL to the next was taken into 

account by including all relevant e-e and LO phonon scattering mechanisms between the 

injector/collector and active regions. Compared to existed modeling schemes of QCL’s, 

significance of the model lies in the incorporation of two-photon processes into carrier 

dynamics analysis, which are important for both linear and nonlinear performance of 

optoelectronic devices with SH or TH resonant levels. In addition, our investigations 
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extend to third-order nonlinearities, which lead to both THG and enhanced nonlinear 

refractive index. The research is discussed in detail in the following section.  

1.2.1 Optimization of Quantum Cascade Lasers with Second-Harmonic Generation 

Efficient intracavity SHG can be achieved in QCL’s with strong second-order nonlinear 

susceptibility )2(χ . Room for improvement is likely to exist by judicious design of the 

band profile. Moreover, a simple understanding of SHG and QCL operation would 

indicate that SHG and modal gain must be traded off since the electron population 

distribution favorable to one would appear to be unfavorable to the other. The purpose of 

this part of our research is to design QCL’s for optimized SHG and at the same time with 

improved modal gain.  

 The optimization scheme is initiated from the figure of merit for SHG, i.e., )2(χ , 

))(2(
)2()2(

jijikiki

ikjkij

iEiE

MMM

γωγω
ωχ

−−−−
∝

hh
,    (1.1) 

where ijM  is the dipole matrix element between levels i and j, ijE  is energy separation 

between levels i and j, and and ijγ2 is the full width at half maximum (FWHM) of the 

transition broadening between  levels i and j. 

 From Eq. (1.1), it can be seen that )2(χ  is proportional to the dipole matrix 

element product 243423 MMM for cascade I and 354534 MMM  for cascade II. The 

nonlinearity can be further enhanced by increasing the dipole matrix element products 

while retaining the multiple resonances between levels. The method is based on 

SUSYQM, where the energy potential profile is varied in an isospectral manner with 

dependency on a single parameter. SUSYQM has been employed in the gain 

maximization in QCL’s in [26] and optimization of resonant second-order nonlinear 
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susceptibility )2(χ  for the harmonic oscillator in [27]. The current  work generalizes this 

method to the enhancement of SHG in QCL’s and applies it to material systems with 

larger conduction-band offsets by accounting for the energy-dependence of the effective 

mass. 

1.2.2 Third-Order Nonlinearities in Quantum Cascade Lasers  

In the bandstructure of the active region of the QCL structure of [16], there are five 

energy levels, E1, E2, E3, E4, and E5,  of which E1 is the ground state, and E2, E3, E4, and 

E5 are equally spaced with energy intervals resonant with the lasing photon energy ωh . 

The THG resonant cascade 5432 EEEE −−−  consists of two SHG resonant triplets 

432 EEE −−  and 543 EEE −− . 

 Even though the structure was originally designed for optimized SHG, there are 

additional optical nonlinearities related to the tetrad of resonant levels. We start our 

discussion with the third-order contribution to the nonlinear polarization, 

    3)3()3( )(~)(~ tEtP χ= ,      (1.2) 

where )(~ tE  is the applied electric field given by 

    )cos()(~ tEtE ω= .     (1.3)  

With the substitution of Eq. (1.3), Eq. (1.2) is expanded as 

)cos(),,;(
4
3

)3cos(),,;3(
4
1

)(
~ 3)3(3)3()3( tEtEtP ωωωωωχωωωωωχ −+= .    (1.4) 

 The first term in Eq. (1.4) describes a response at frequency ω3  that is due to an 

applied field at frequency ω . This term leads to THG. The second term describes a 

nonlinear contribution to the polarization at the frequency ω  of the incident field. This 

term leads to a nonlinear contribution to the refractive index at frequency ω  and thus 
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results in SML of QCL’s. Studies will come to the conclusion about the effect of multiple 

harmonic resonance levels on the Kerr effect of QCL’s and point out a possible way of 

shortening the emission pulse through band structure design of lasing medium. 

1.3 Thesis Outline  

The rest of this thesis includes the following parts: 

 Chapter 2 reviews the theoretical background of QCL electronic structure, 

operation principle, carrier scattering mechanisms, and the nonlinear aspects of QCL’s. 

Electronic and optical transitions in QCL’s occur between quantized states in the 

conduction band, which offers  unique design flexibility compared to conventional diode 

lasers. The carrier transport is fully dependent on the bandstructure and constituent 

materials as well as the operation environment. Scattering mechanisms, such as e-e and 

phonon scattering result in the desired performance for numerous applications in the 

MIR .  

Chapter 3 describes the procedure to optimize QCL’s with respect to the resonant 

second-order nonlinearity, based on the SUSYQM approach. After that, carrier transport 

and the power output of the structure are analyzed by self-consistently solving rate 

equations for the carriers and  photons. The current-dependent linear optical output power 

is derived based on the steady-state photon populations in the active region. The SH 

power is obtained from the Maxwell equations with the phase mismatch included. The 

optimized structure can be fabricated through digitally grading the submonolayer alloys 

by molecular beam epitaxy (MBE) technique. 

 Chapter 4 presents the study on MIR QCL’s with a pair of triply harmonic 

resonant levels. Potential applications of such designs are discussed based on the resonant 
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third-order nonlinear susceptiblility at the TH frequency and that at fundamental 

frequency. The TH power generated is evaluated based on the nonlinearity susceptibility,  

mode overlap with the mode at fundamental frequency, and the effect of phase mismatch. 

The higher-order TH mode with the best phase-matching to the fundamental mode is 

identified, which greatly improves the linear to TH conversion efficiency. In addition to 

single-photon processes, resonant two-photon processes are included in the evaluation of  

third-order nonlinearity, which results in the enhancement of the positive nonlinear 

refractive index leading to SML mechanism.  

 The conclusions are summarized in Chapter 5. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 

Design of QCL’s with enhanced nonlinearity is based on theories of optical transitions in 

MIR QCL’s and nonlinear optics. While most of the concepts are quite general, the focus 

is on the GaInAs/AlInAs material system [16]. 

2.1 Electronic States in Semiconductor Heterostructures 

Intersubband lasers are made possible by the growth of multiple heterostructures, which 

are atomically abrupt layers composed of materials with different bandgaps, i.e., 

GaInAs/AlInAs material system. Thus there is a sharp discontinuity in the band diagrams 

at the heterojuction between two such materials.  When the layers are made thin enough, 

i.e., on the order of a DeBroglie wavelength, electron motion is restricted in the growth 

direction x̂  and its energy is quantized. 

 In the treatment, effective-mass theory [28] in the envelope-function 

approximation is used to obtain the electronic wavefunctions and quantized energy levels. 

The Γ-point effective mass is used to describe the conduction-band curvature 

( 0
* 041.0 mm =  in InGaAs). The time- independent Schrödinger equation with the 

effective-mass theory is given as  

)(?)(?)(
2

2
*

2

rrr EE
m

=







+∇

h
,    (2.1) 

where the wavefunction )(? r  for the electron is given by 

)()()(? 0, rrr nUF= ,     (2.2) 
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where )(0, rnU  is the Bloch state wavefunction at the band minimum and )(rF  is the 

envelope function and satisfies the effective-mass equation. The various materials are 

represented by the spatially dependent effective mass )(* xm  and the potential )(xEc  

corresponds to relative conduction-band offset including the externally applied electric 

field.  The effective-mass equation then becomes 

)()()(
)(

1
2)( *

2

*

2
//

2

rr EFFxE
xxmxxm c =








+

∂
∂

∂
∂

−
∇

−
hh

.    (2.3) 

where //∇  is the in-plane (yz plane) differential operator [29]. The solution for the 

envelope function is given by  

 ),(
1

)( //// .

//

xe
S

F n
i

//
rk kr ψ=     (2.4) 

where ),( xn //kψ  satisfies  

),()(),(
)(2

)(
)(

1
2 *

2

*

2

xEx
xm

xE
dx
d

xmdx
d

nnnc //////

2
// kkk

k
ψψ =








++−

hh
,  (2.5) 

and //k  is the in-plane wavevector, n is the subband index, and //S  is the normalization 

area. The spatially dependent effective mass introduces a coupling between the in-plane 

and x directions. The coupling is usually neglected and Eq. (2.5) becomes the one-

dimensional Schrödinger equation [29]. 

 )()()(
)(

1
2 *

2

xExxE
dx
d

xmdx
d

nnnc ψψ =







+−

h
,    (2.6) 

where the energy is given by  

*

2
//

2

// 2
)(

m
k

EE nn

h
+=k ,     (2.7) 
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with *m  the effective mass of the well material. Equation (2.7) is the sum of the 

quantized energy in the x-direction and the in-plane free particle kinetic energy. Equation 

(2.7) means the in-plane/x-direction coupling is neglected, which is seen to be justified by 

considering that the inclusion of this coupling in Eq. (2.6) would effectively change the 

barrier height )(xEc  by the energy 

)1
)(

(
2 *

*

*

2
//

2

−=
xm

m
m
k

E
h

∆ ,     (2.8) 

which can be derived from the comparison between Eqs. (2.5) and (2.6). Under the 

condition that the in-plane kinetic energy is modest compared to the barrier height (520 

meV for the InGaAs/AlInAs system), and the barrier and well effective mass do not 

differ too much, it is reasonable to neglect this coupling. Although the states calculated 

are typically assumed to be discrete stationary states, this is not strictly true. Under the 

application of an electric field, the states acquire a finite lifetime due to field ionization, 

i.e., they may escape into the continuum. Escape to continuum is accounted for via an 

escape time, and is usually much longer than intersubband scattering times.  

The parabolic E-k dispersion relationship in Eq. (2.7) is accurate only at energies 

close to the conduction-band minimum (typically, no further 200 meV from this 

minimum) [30]. For the structure studied in this thesis, band nonparabolicity should be 

included due to the large conduction-band offset (520 meV) at the InGaAs/AlInAs 

heterojunction. The nonparabolicity is modeled by an energy-dependent effective mass 

[31], which is expressed as  

 )
)()(2

1(),(
2

*
**

h
cbm

np

EExm
mExm

−×
+=

γ
,    (2.9) 
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where )(* xm is the conduction-band effective mass for the bulk well or barrier materials, 

respectively and γ  is the nonparabolicity coefficient with unit m2. In the current model, 

γ  is assumed to be the same for the barrier and well materials.  With the addition of band 

nonparabolicity, Eq. (2.6) is modified as, 

)()()(
),(

1
2 *

2

xExxE
dx
d

Exmdx
d

nnnc
np

ψψ =











+−

h
.   (2.10) 

where the effective mass ),(* Exmnp is both spatially and energy dependent.  

 The population in the electronic states introduces space charges which 

consequently affect the conduction-band profile )(xEc , i.e., band bending. For this reason, 

sometimes it is necessary to solve the Poisson equation [29] 

 )()F(x)( x
dx
d

x
dx
d

ρε −=



 ,     (2.11) 

where F(x) is the electrostatic potential, )(xε is the spatially varying permittivity, and 

)(xρ is the charge density.  This is equivalent to the Hartree approximation. The potential 

energy in Eqs. (2.3), (2.5), and (2.6) is  

 )()()( 0, xexExE cc Φ−= ,     (2.12) 

where )(0, xEc  is the conduction-band offset between intrinsic materials composing the 

heterostructure. The Poisson and Schrödinger equations are iteratively solved to arrive at 

a self-consistent solution of the Schrödinger equation. However, for the structure 

discussed in this thesis, the electron doping density is sufficiently low that )(xEc itself is 

not significantly perturbed, and no self-consistent solution is necessary.  



  15 

2.2 Operation Principles of Quantum Cascade Lasers  

In QCL’s, the optical transition occurs between quasi-discrete energy states within the 

conduction band. These states arise from the quantization of electron motion in the active 

region’s nanometer-thick layers [32].  By adjusting the width and shape of the QW’s, one 

can design an energy- level difference that leads to a desired emitted wavelength. An 

electron remains in the conduction band after emitting a laser photon. The electron can 

therefore be recycled by being injected into an adjacent identical active region, where it 

emits another photon, and so forth. To achieve this cascading emission of photons, active 

regions are alternated with doped electron injectors and an appropriate bias voltage is 

applied. The active region- injector stages of the QCL give rise to an energy staircase in 

which photons are emitted at each of the steps. The number of stages typically ranges 

from 20 to 50 for lasers designed to emit in the 4-8 µm range [33].  The cascade effect is 

responsible for the very high powers that QCL’s can attain.  Figure 2.1 illustrates the 

band diagram of a QCL, where the laser transition is symbolized by the red wavy arrows. 

Under the electric field applied across the laser, electrons are injected from the 

miniband’s ground state g into the upper state of the laser transition—level 3 of the active 

region. The thinnest QW in the active region enhances tunneling of the electrons from the 

injector into the upper state. Stimulated photon emission occurs on the lasing transition 3-

2.  For laser action to occur, the electron population in stage 3 must exceed that of state 2. 

This population inversion is achieved if the relaxation time 32τ  for the transition from 

state 3 to state 2 exceeds the electron’s lifetime 2τ  in state 2.  To maximize the 

population inversion, the energy separation between state 2 and 1 is designed to be equal 

to the LO phonon energy, which is 34 meV for InGaAs. In this way, electrons in state 2 
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will quickly scatter into state 1 because of the resonant nature of the transition.  Hence, 

population inversion in QCL is maintained by careful design of the electron transport 

time and the phonon scattering time between intersubband transitions.  According to 

Vasko and Kuznetsov [34], for QW structures, the dimensionless relative gain (negative 

of absorption) per layer 
ω

ξ  is adopted to characterize the emission of optical power by 

radiative intersubband transition. The following ana lysis on the gain proves the 

relationship between lasing and population inversion mentioned above. 

 

Figure 2.1 Two periods of a typical quantum cascade laser structure. 

Since the lasing levels are sufficient ly low (within 200 meV of the conduction-

band minimum of the well material), the band nonparabolicity for analyzing the gain can 

be ignored, thus the lasing subbands have the same curvature, and hence the joint density 

of states for an intersubband transition is a Dirac δ-function at the subband 

separation 23 EE −=ωh . The relative gain is expressed as,  

g
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ξ h   (2.13) 

where 2L  is the normalization area of QW, 32M  is the dipole matrix element between 

lasing states 3 and 2, and )()2(3 ⊥kf  is the Fermi-distribution function at in-plane 

momentum ⊥k . 

The population inversion between the lasing states is  

[ ] P
k

D
c LkfkfNNN ∑ −=−=

⊥

⊥⊥ )()( 23
2

23 ρ∆ ,   (2.14) 

with 
2

2

hπ
ρ eD

c

m
=  the 2D density of states in conduction subbands and PL  the thickness of 

one period of QCL. By combining Eqs. (2.13) and (2.14), the relative gain can be 

expressed in terms of population inversion as  

NEEL
cm

e
P

c

∆−−⋅= )(2v̂e3
4

23

2232

ωδ
εω

π
ξ h

h
.   (2.15) 

The δ-function can be approximated as a Lorentzian, 

2
32

2
23

32

)(
1

)(
γω

γ
π

ωδ
+−−

≈+−
h

h
EE

EE if ,    (2.16) 

where 322γ  is the FWHM of the 3→2 transition.  With the substitution of Eq. (2.15), Eq 

(2.16) can be rewritten as 

2
32

2
23

322
32

222

)(
4

γω
γ

εω
π

ξ
+−−

∆=
h

h
EE

NzL
cm

e
P

c

.   (2.17) 

 For QCL’s, it is more convenient to use modal gain mG as a figure of merit of the 

design. Modal gain is simply the gain per unit thickness, i.e.,  
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It can be seen from the above derivation that population inversion is a key factor that 

influences the modal gain of QCL’s. The population inversion is dependent on the 

lifetime of the lasing states as well as the electron scattering rate between them [33],  

 )1(
32

2
3 τ

τ
τ∆ −∝N .      (2.19) 

2.3 Carrier Scattering Dynamics of Quantum Cascade Lasers  

In quantum cascade (QC) structures, the design of energy levels and wavefunctions 

allows scattering rates to be engineered to provide a population inversion. A proper 

understanding of inter- (and intra-) subband scattering is essential for the design and 

understanding of QCL’s.  The important intersubband scattering channels are displayed 

in Fig. 2.2. It has been well established that LO phonon scattering is the dominant 

intersubband scattering mechanism for subband separations greater than the LO-phonon 

energy LOE [35, 36]. For intersubband transitions where the separation is less than LOE , 

emission of LO-phonons is energetically forbidden at low temperatures. Nonradiative 

relaxation is therefore dominated by a combination of e-e scattering, electron- impurity 

scattering, and LO-phonon scattering of the high energy tail of the subband electron 

distribution. Since we assume the material has low impurities, impurity scattering is not 

taken into consideration in the current research.  
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Figure 2.2  Important intersubband scattering mechanisms : 

 (a) LOfi EE <  and (b) LOfi EE > . 

 
 

Intrasubband transitions are important process in cooling the subband electron gas 

[37]. The effect of intrasubband e-e scattering is to thermalize the electron distribution 

inside a particular subband. In the present calculation, intrasubband scattering is ignored 

and the electrons in each subband are assumed to be thermalized to the same effective 

temperature, which may be the same as the lattice temperature. The electron population 

in each subband can be described by quasi-Fermi distribution [38]. 

Without concerning ourselves here with intrasubband transitions, among all the 

intersubband transition mechanisms, the dominant ones are LO phonon scattering and e-e 

scattering. Thus, the preliminary study is focused on these two scattering processes. 

2.3.1 Longitudinal Phonon Scattering 

The formalism used for LO phonon scattering is based on that of Smet et al.[39]. The 

total scattering rate for absorption of LO-phonons for initial state ii k
r

,  can be written as  

θ
εε

ω π

ω dqBn
em

kW fiLO
s
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em
fi )()1)(
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2
)(

2

02
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⊥→
∞

→ ∫+−=
h

r
,  (2.20) 
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where LOnω  is the Bose-Einstein distribution for the phonons [28], sε  and  ∞ε  are the 

static and high frequency dielectric constants, and LOωh  is the LO-phonon energy. The 

expression for fiB →  is 

),',()'()'()()(')( **
⊥

∞

∞−

∞

∞−⊥→ ∫∫= qxxIxxxxdzdxqB fiiffi ψψψψ .  (2.21) 

The envelope functions )(, xfiψ for the initial or final subband can be obtained through 

solving Schrödinger’s equation. ),',( ⊥qzzI  is expressed as  
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where 
⊥

q is the in-plane momentum, and  sq is inverse screening length, which accounts 

for the screening of e-e interactions involving in the electron-LO phonon scattering 

process. The screening becomes significant when the electron density increases above 

-211 cm 10  [40].   

In Eq. (2.20), θ  is the angle between the initial and final states characterized by 

wave-vectors ik
r

 and fk
r

, and thus the θ -integration corresponds to the integration over 

all possible final states. The exchanged in-plane momentum 
⊥

q  can be expressed using 

the momentum conservation equation 

θcos222
2

2
fififi kkkkq −+=−=⊥ kk

rr
.  (2.23) 

The magnitude of the in-plane momentum of final states can be decided from energy 

conservation 

2

*
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h LOif
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EEm
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The total scattering time between subbands fi→τ  can then be obtained by averaging over 

all possible initial states in the subband: 

∫
∫

∞

∞

→

→

=

0

2

0

2

)()(

)()()(1

kik
D

ck

k
em

fikik
D

ck

fi EfEdE

EWEfEdE

ρ

ρ

τ
.   (2.25) 

The quasi-Fermi distribution of the initial state contributes significantly to the average 

scattering time. It will change with the population at the subband. In the initial calculation, 

it is assumed that the population in the lower subband is zero. 

Figure 2.3 illustrates our calculation results on the average LO phonon scattering 

rate under different energy separations. The population density of electrons here is 1010 

cm-2.  Since screening is not significant at this low carrier concentration, it is ignored in 

the current calculation. Our results agree well with the results in [41].  The peak 

scattering rate coincides with the LO phonon energy, which is called resonant LO phonon 

scattering. The intersubband transition in this case is vertical. When the energy separation 

is greater than the LO phonon energy, electrons in higher subbands have sufficient energy 

to emit an LO phonon and scatter to the lower subband. The transition is diagonal in k-

space, that is, it is accompanied by momentum transfer between the electron and the 

phonon. It is shown in the plot that the scattering rate is inversely dependent on the 

energy separation as well as in-plane momentum transfer, which can also be read from 

Eq. (2.22). When the separation between subband minima is less than the LO phonon 

energy, electrons in the high-energy tail of the upper subband can contribute to the 

emitted phonons. In this region (left part of plot),  the scattering rate decreases when the 

energy separation becomes smaller since electrons in higher energy tail have to be 
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involved in the scattering, and their population is small according to the quasi-Fermi 

distribution in the subband. 

 

Figure 2.3 The average longitudinal phonon scattering rate as a function of subband energy 
separation. 

 

2.3.2 Electron-Electron Scattering 

Electron-electron scattering is the second most important scattering mechanism in 

determining intersubband optical properties. In this mechanism, two initial states (i, j) 

and two final states (f, g) are involved. Thus in a two-subband system, there are three 

ways in which electron can scatter from the upper to lower level. They are illustrated in 

Fig. 2.4. 
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Figure 2.4 The three different intersubband electron-electron scattering mechanisms . 

The total scattering out of the initial electron state ii k 
r

,  is [39], 
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where  

fi kkq −=⊥ ,     (2.27) 

and  

'**
,, )'()'()()(')( xxq

gjfigfji exxxxdxdxqA −−∞

∞−

∞

∞−⊥→
⊥∫∫= ψψψψ .   (2.28) 

The term sce  is the correction to the permittivity due to screening. The carrier distribution 

functions )( ff kf
v

and )( gg kf
v

 were included to properly account for state blocking. The 

two δ -functions represent the energy and in-plane momentum conservation, respectively. 

They simplify the fk
v

 and gk
v

 integrations, i.e., fk
v

 and gk
v

 can be represented in terms of 

ik
v

 and jk
v

. For convenience, the following definitions are made, 

ijij kkk
vvv

−= ,      (2.29a) 
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fgfg kkk
vvv

−= .      (2.29b) 

Let the gap between the subband edges be E∆ . Due to energy conservation,  

E
m

kkkk e
jigf ∆++=+

2
2222 4

h
.     (2.30) 

From in-plane momentum conservation, we have  

gfji kkkk
vvvv

+=+ .      (2.31) 

Equations (2.30) and (2.31) then give 
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vv Em
kk e

ijfg
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+= .     (2.32) 

By making use of momentum conservation and Eq. (2.32), the momentum ⊥q  can finally 

be rewritten as 
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where φ  is  the angle between ijk
v

 and fgk
v

. 

For a given initial electron in-plane momentum ik
v

, jk
v

 can be written as θ∠jk
v

 

with θ  the angle between ik
v

 and jk
v

. The in-plane momentum of the final states can be 

derived according to the vectors relationships shown in Fig. 2.5. 
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Figure 2.5 Vector scheme for initial and final momenta. 

 

With the expression of fk
v

 and gk
v

plugged into the carrier distribution functions 

)( fff k
r

and )( ggf k
r

, the d- function then permits reduction of multiple integral (2.26) to 
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where all the probabilities of population factors are lumped into ),,,( φθji kkF . 

Obviously, as seen in Fig. 2.4, the process 2, 2? 1, 1 is the most efficient 

transition, in which the two electrons in the upper subband scatter into lower subband. 

Figure 2.6 plots the result on the average e-e scattering rate with such mechanism, which 

agrees with the result in [41],  The form of this curve is much simpler than that of the LO 

phonon scattering rate. The scattering rate monotonically decreases as the subband 

separation increases.  

θ 
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Figure 2.6 The average 22-11 electron-electron scattering rate as a function of subband 
energy separation. 

2.4 Optical Nonlinearities and Harmonic Generation  

Nonlinear optical phenomena occur when the response of material system to an applied 

optical field depends in a nonlinear manner upon the strength of the optical field [42].   In 

linear optics, the induced polarization depends linearly upon the electric field ; this can be 

described by  

)(~)(~ )1( tEtP χ= ,    (2.35) 

where the constant of proportionality )1(χ  is known as the linear susceptibility. In 

nonlinear optics, the optical response can often be described by generalizing Eq. (2.35) 

by expressing the polarization )(~ tP as a power series in the field strength )(~ tE as 

LL +++≡+++= )(~)(~)(~)(~)(~)(~)(~ )3()2()1(3)3(2)2()1( tPtPtPtEtEtEtP χχχ  . (2.36) 

The quantities )2(χ  and )3(χ  are known as the second-order and third-order nonlinear 

optical susceptibilities. 
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2.4.1 Second-Order and Third-Order Polarizations  

Suppose the electric- field strength of a monochromatic laser beam is  

)cos()(~ tEtE ω= ,      (2.37) 

The second-order polarization is related to the electric field through second-order 

nonlinear susceptibility )( 2χ as, 

2)2(2)2(2)2()2(

2
1

)2cos(
2
1

)(
~

)(
~

EtEtEtP χ+ωχ=χ= .   (2.38) 

The second-order polarization consists of a contribution at zero frequency and a 

contribution at 2ω. The 2ω contribution leads to the generation of radiation at the SH 

frequency. SHG can also be thought as the interaction of photons at various frequency 

components of the field, i.e., two photons of frequency ω are destroyed and a photon of 

frequency 2ω is simultaneously created in a single quantum-mechanical process. 

The third-order polarization is related to the electric field through the third-order 

nonlinear susceptiblity )3(χ  as, 

)cos(
4
3)3cos(

4
1)(~)(~ 3)3(3)3(3)3()3( tEtEtEtP ωχ+ωχ=χ= .  (2.39) 

The first term in the right side of Eq. (2.39) describes a response at frequency ω3  that is 

due to an applied field at frequency ω . This term leads to THG. The second term in Eq. 

(2.39) describes a nonlinear contribution to the polarization at the frequency ω  of the 

incident field. This term leads to a nonlinear contribution to the refractive index at 

frequency ω and thus results in SML. The following section describes the derivation of 

the relationship between the nonlinear refractive index and )3(χ . 
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2.4.2 Nonlinear Refractive Index  

Equation (2.39) above can be rewritten more clearly as,  

)cos(),,;(
4
3

)3cos(),,;3(
4
1

)(
~ 3)3(3)3()3( tEtEtP ωω−ωωωχ+ωωωωωχ= . (2.40) 

The total polarization up to the third-order in responding to the applied electric field is as 

follows,  

)(~)(~)(~)(~ )3()2()1( tPtPtPtP ++= ,   (2.41) 

in which  
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~
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~ )1()1()1( tEtEtP ωχ=χ= .    (2.42) 

Inserting Eqs (2.42), (2.38), (2.39) into Eq. (2.41), Eq. (2.41) can be expanded as, 
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ωχ+ωχ+χ+ωχ+ωχ=
(2.43) 

from which, it can be seen that third term is related to polarization at the incident field 

frequency ω , it can be rewritten as, 

)(
~

)
4
3

()cos()
4
3

()(
~ 2)3()1(2)3()1( tEEtEEtP χ+χ=ωχ+χ=ω .  (2.44) 

The total refractive index can be expressed as  

Innn 20 += ,     (2.45) 

where 0n is the linear refractive index derived as 

)1(
0 1 χ+=n  ,    (2.46) 

2n is the nonlinear refractive index, and I is the incident light intensity  

cEnI 2
002

1
ε= .     (2.47) 
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According to Eq. (2.44), the total refractive index can be expressed as, 

2)3()1(

4
3

1 En χ+χ+= .     (2.48) 

With the substitution of Eqs.(2.46) and (2.47) into Eq. (2.48), Eq.(2.48) can thus be 

expressed as  
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By equating Eqs. (2.45) and (2.49), it can be found that  

cn
n

24
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00

)3(

2 ε
χ

=     (2.50) 

where according to Eq. (2.40), ),,;()3()3( ω−ωωωχ=χ .  

2.4.3 Self-Mode-Locking  

If the nonlinear refractive index is positive, the total refractive index increases with the 

intensity. Since the center part of beam transverse profile has higher intensity than the 

edges, the refractive index at the center is larger than the edges. This leads to an increase 

of the beam confinement at the center, and the beam diameter becomes narrower. This 

effect is known as the Kerr lensing effect, which is illustrated in Fig. 2.7; a smaller beam 

diameter leads to decreased mode interaction with the external gold contacts, thus 

reducing the coupling waveguide losses.  This results in a saturable loss mechanism, i.e., 

decrease in optical losses with increasing intensity, which is the fundamental ingredient 

for SML. In the presence of such a mechanism, it may become favorable for the laser to 

emit ultrashort pulses because of their higher instantaneous intensity and hence, lower 

losses relative to CW emission, in which the output energy is spread uniformly over time. 
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The pulse duration can be estimated using the theory of self-phase modulation (SPM) 

[43]. 

 
Figure 2.7 Illustration of Kerr-lensing effect.  

 Self-phase modulation describes the spectral response of a short optical pulse 

propagating through nonlinear optical medium.  In order to understand the origin of this 

effect, let us start with the optical pulse with the form 

..),(~),(~ )( 00 ccetzAtzE tzki += ω−    (2.51) 

where c.c. denotes the complex conjugate propagating in the medium characterized by a 

nonlinear refractive index of the sort similar to Eq (2.45) but with instantaneous response 

to the pulse intensity, 

)()( 20 tInntn += ,    (2.52) 
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where 
2

0 ),(
~

)2()( tzAcntI π= . It is assumed that the nonlinear medium is sufficiently 

short that no reshaping of the optical pulse can occur within the medium; the only effect 

of the medium is to change the phase of the transmitted pulse by the amount 

c
LtIntNL

0
2 )(2)(

ω
φ −= ,     (2.53) 

where L is the length of the nonlinear medium.  

 As a result of the time-varying phase of the wave, the spectrum of the transmitted 

pulse will be modified and typically will be broader than that of the incident pulse. The 

spectral content of the transmitted pulse can be calculated by the energy spectrum 

2
)(0)(

~
)( ∫

∞

∞−

−−= dteetAS tititi NL ωφωω .    (2.54) 

However, the spectral content can be more intuitively described by the concept of 

instantaneous frequency )(tω of the pulse, 

    )()( 0 tt δωωω +=     (2.55) 

where  

)()( t
dt
d

t NLφδω =      (2.56) 

denotes the variation of the instantaneous frequency.  

 The use of the above analysis can be illustrated by an example. Suppose the pulse 

shape is given by the form 

)(sech)( 0
2

0 τtItI = ,      (2.57) 

which is illustrated in Fig. 2.8(a), then from Eq. (2.53) the nonlinear phase shift is found 

as 
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ntNL −= ,     (2.58) 

and from Eq. (2.56)  the change in instantaneous frequency is given by  

)tanh()(sech4)( 00
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2 ττ
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ω

δω ttLI
c

nt = .    (2.59) 

The variation in the instantaneous frequency is illustrated in Fig. 2.8(b) with positive 2n . 

It is can be seen that the leading edge of the pulse is shifted to lower frequencies and that 

the trailing edge is shifted to higher frequencies. The frequency spectrum is shown in Fig. 

2.8(c). The maximum value of the frequency shift is of the order of the order of  

     
0

(max)

max τ
φ

δω NL∆
≈ ,     (2.60) 

where  

    LI
c

nNL 0
0

2
(max) 2

ω
φ ≈∆ .       (2.61) 

A notable feature of SPM is that the induced spectral broadening is accompanied by an 

oscillatory structure covering the entire frequency range. To obtained a more accurate 

measure of spectral broadening, one should use the RMS spectral width rmsω∆  defined as 

2
0

2
0 )()( ωωωωω −−−=∆ rms ,    (2.62) 

The pulse duration can be estimated as [24], 
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Figure 2.8 Illustration of self-phase modulation: (a) time dependence of incident pulse 
intensity; (b) change in instantaneous frequency of the transmitted pulse; (c) spectral 

broadening due to self-phase modulation. 

2.5 Rate-Equation Model and Density Matrix Approach 

There has been much speculation about the nature of the electron transport in QCL’s, i.e., 

coherence versus incoherent of the physical mechanism governing charge transport 

through injector/active-region/collector interfaces. The answer to this question touches 

upon the validity of our simulation approach to MIR QCL’s.  

 The rate-equation approach is a semiclassical or Boltzmann- like treatment, in 

which the entire multiple QW is treated as a single quantum mechanical system with a 

t 

I(t) 

(a) 

t 

d? (t) 

(b) 

 n2 > 0 
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well defined Hamiltonian. All the subband energy levels are eigenstates (which are 

stationary by definition) of this Hamiltonian.  The transport process is the collective 

effect of intersubband scattering between the various subbands (eigenstates) involved, 

and can be calculated using the Fermi’s golden rule approximation. In this picture, there 

is no coherent oscillatory time evolution among the subband electron populations.  The 

electron wavefunctions always correspond to the stationary eigenstates, and scattering 

transports an electron from one eigenstate to another. In this approach, the time evolution 

of electron population at each subband is governed by the Bolzmann-like equation, 

if
if

ifi
if

f
i WnWn

dt
dn

∑∑
≠≠

−= ,     (2.64) 

where i, f run over all states and fiW  is the rate at which particles make the transition 

if →  which increase the population of level i, and, and similarly ifW is the rate at which 

particles make the transition fi →  which depopulate the level i. The inelastic scattering 

mechanism in InGaAs/InAlAs system is via LO phonon scattering and e-e scattering 

which are described in Section 2.3. The scattering rate is also dependent on the subband 

populations through Fermi distributions. Due to the periodicity of the QC structure, the 

summation of Eq. (2.64) is just including the injector, active region and collector, which 

accounts for 1.5 periods of QCL. Periodic boundary conditions are applied assuming that 

the transition from the preceding collector to the active region is equivalent to that 

between the collector and the next active region.  

 In the rate-equation model, no quantum-mechanical effects, such as coherent 

resonant tunneling between adjacent states, have been considered. In order to include the 

coherent phenomenon into the scenario, density matrix formalism is proposed as an 
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extended semiclassical simulation scheme [44].  In this approach, the basic ingredient is 

the single-particle density matrix ijρ . The time evolution of density matrix element is 

given by 

  ( )[ ]∑
′′

′′′′′′′′ +ρΓ−ρΓ+ρω−=
ρ

ji
ji

out
ji,ijji

in
ji,ijijij

ij .c.ci
dt

d
.   (2.65) 

where jiij EE −=ωh is the energy difference between states i and j. The first term 

describes the coherent evolution of the noninteracting carrier system while the second 

contribution describes energy relaxation as well as dephasing due to the elastic 

intrasubband scatterings, in terms of generalized in-  and out-scattering superoperators G 

[44]. The diagonal parts of matrices in Eq. (2.65) link to the semiclassical terms in Eq. 

(2.64): the diagonal parts of G matrices, i.e., jjii ′=′  correspond to the semiclassical 

scattering rates in Eq. (2.64), iiii,ii W ′′′ ≡Γ ; similarly, the diagonal parts of population 

density matrix iiρ  correspond to the electron population in at subband i in Eq. (2.64). The 

off-diagonal terms ( ji ≠ ) describe the degree of quantum-mechanical phase coherence 

between states i and j. So Eq. (2.65) is the desired quantum-mechanical generalization of 

the Boltzmann transport equation in Eq. (2.64). Analogous to the rate-equation approach, 

the density matrix formulism also adopts the same periodic conditions to close the circuit. 

 In the current MIR QCL structure, the quantum-mechanical coherence effects can 

be ignored and the rate-equation model is employed for the simulation since it is well 

established that the rate equation is a reasonable approximation to the density matrix 

approach in view of the following points. 

 Due to the rapid scattering and photon lifetime, it is adequate for the most part to 

evaluate the output optoelectronic properties based on the steady-state solution to the 
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Boltzmann equation. Thus, it is important to check the relationship between the steady-

state solutions from the two approaches. In the density matrix formulism presented in 

Chapter 3 of Ref. [42], the optical properties, such as the absorption (gain) coefficient, 

nonlinear susceptibilities )2(χ  and )3(χ , etc., are calculated based on the zeroth order 

steady-state solution of density matrix element 0
mnρ , exampled as Eq. (3.6.17) on Page 

166 of Ref. [41]. Referring to pages 153 and 149 of [42], 0
mnρ  is just the equilibrium 

population of the system, and the off diagonal density matrix elements at equilibrium 

)(0 nmmn ≠ρ is vanish, i.e., there is  no coherence produced in thermal equilibrium. Thus, 

the steady-state population obtained from rate-equation is the same as the zeroth order 

steady-state population that solved from the density matrix element.  It can therefore be 

concluded that calculation of those optical properties by substituting the steady-state 

electron populations solved from the rate-equation model is valid. 

Another check is carried out based on the comparison between the Rabi 

oscillation frequency and the FWHM transition linewidth.  If the intersubband Rabi 

frequency ν between resonant tunneling states i and j is much less than the transition 

lindwidth  γ ij  between them, it means that the Rabi oscillation between the two subbands 

will be quickly damped by the intersubband transition. In this case, the coherence 

between tunneling states is weak and thus the off-diagonal matrix elements in density 

matrix can be ignored. In the QCL structure under study, the Rabi frequency between the 

lasing states is estimated to be 0.76 THz, and the FWHM line broadening is 15.17 THz. 

This gives 05.0≤ijγν  for the respective off-diagonal density matrix element. Thus, the 



  37 

off-diagonal matrix elements can be safely ignored.  This concludes that the rate-equation 

model is likely to provide a good approximation to the full density matrix. 

There are several published works that comment on the coherence effect in MIR 

QCL’s and validity of semiclassical rate-equation model. In [44], it was found that for 

typical QCL structures, energy-relaxation and dephasing processes are sufficiently strong 

to destroy any phase-coherence effect on a sub-picosecond time scale; as a result, the 

usual semiclassical or incoherent description of stationary charge transport is found to be 

in excellent agreement with experiments. As a practical matter, in [18] and [19], rate-

equation models have been demonstrated to be quite successful in modeling MIR QCL’s 

and simulation results agree well with the experiment findings. 
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CHAPTER 3 

SUPERSYMMETRIC OPTIMIZATION OF QUANTUM  

CASCADE LASERS 

 

This chapter presents the design procedure for MIR QCL’s with optimized SHG.  The 

optimization is carried out based on the structure repored in [16], which is designated the 

original structure in the following. It is a multiresonant subband electronic structure 

designed in order to enhance the SHG. The physical structure is composed of InGaAs 

QW’s and AlInAs barriers, both lattice mattached to an InP substrate. The fundamental 

emission wavelength is at 9.1 µm and SHG is at 4.55 µm. The optimized design is 

obtained utilizing techniques from SUSYQM with both material-dependent effective  

mass and band nonparabolicity. Carrier transport and power output of the structure are 

analyzed by self-consistently solving rate equations for the carriers and photons. 

Nonunity pumping in the carrier transport and the phase mismatch in the wave 

propagation are included in the model.  

3.1 Band Structure Analysis 

The bandstructure analysis is the starting point for analyzing any quantum devices. In the 

current model, the band structure is solved using the finite-difference method, in which 

spatially dependent mass and band nonparabolicity are included. The Schrödinger 

equation is 
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where x̂  is QW layers growth direction and )(0 xV  is the energy profile for the original 

structure. With the expression of effective mass as Eq. (2.9), the above equation is 

formed as 

)()()(
)(2

1)(
)(2

)()(
)(

1
2 02

*

2

*

0*

2

xEExV
xm

EEE
xm

xxV
dx
d

xmdx
d

cbmcbm ψ
γγ

ψ











−








−+−=












+








−

hh
h

, 

 (3.2)  

where γ  is the nonparabolicity coefficient, )(* xm is the effective mass of the QW at the 

bottom of the conduction band, and cbmE is the energy at the conduction-band bottom.   

 Equation (3.2) is a quadratic eigenvalue problem (QEP). In order to avoid the 

mathematical complexity for solving QEP, the band structure is solved through a trial 

energy process as shown in Fig. 3.1.   
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Fig. 3.1 Solution procedure for the band s tructure with nonparabolicity. 
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The finite-difference method is one of the most important and simplest ways of 

approximating differential operator and transforming differential equations into linear 

eigen-value problem. In finite different method,  

)0(               
)()()(

→
−+

≈ h
h

xhx
dx

xd ψψψ
   (3.3) 
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When Eq. (3.4) is inserted into Eq. (3.1) by representing continuous function )(xψ by a 

series of discrete values )( ixψ , where i =1, 2, 3, ..., N for segments on x line, Eq. (3.1) 

becomes linear function with the matrix form of  

     { } { }iiji EA ψψ = ,    (3.5) 

which can be solved by the linear eigenvalue problem, with eigenvalue E as the subband 

energy level and eigenfunction { }iψ  as corresponding wavefunctions. The obtained 

wavefunctions and subband energy levels for the original structure are denoted as 0
)(kψ  

and 0
)(kE  respectively, where k represents different subbands. 

The band structure calculated for the original structure is shown in Fig. 3.2, which 

agrees well with the results shown in [16]. The band structure calculated contains all 

active portions of which are accounted for in the rate-equation model described in next 

section, i.e., an active region, an injector, and a collector, which is equal to 1.5 periods of 

the full cascade.  There are totally 15 )151( ≤≤ k energy levels retained. The injector and 

collector regions are represented by five energy levels each, i.e. subbands 1, 2, 4, 5, and 7 

for collector and subbands 8, 10, 11, 12, and 13 for the injector. The active region, where 
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laser emission and SHG take place, has 5 energy levels, i.e., subbands 3, 6, 9, 14, and 15. 

Radiative transitions occur between the third and second states in the active region, 

denoted as 9 and 6, while level 3 is the ground state in the active region. Levels 6, 9, 14, 

and 15 constitute two nonlinear cascades: 6-9-14 for cascade I and 9-14-15 for cascade II. 

 
 

Figure 3.2 Computed band structure for the original structure. 

3.2 Supersymmetric Optimization for Second-Harmonic Generation 

The optimized is targeted to improve the figure of merit of SHG, i.e., the second-order 

nonlinear susceptibility )2(χ  with expression as  
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where ijM  is the dipole matrix element between levels i and j, in  is electron population 

density at level i, and jiij EEE −=  is the energy separation between levels i and j and 

ijγ2 is the FWHM of the transition broadening between  levels i and j.  
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From Eq. (3.6), it can be seen that )2(χ   is proportional to the dipole matrix 

element products 243423 MMM  for cascade I and 354534 MMM  for cascade II, and inverse 

proportional to the energy detuning between resonant levels.  The optimization strategy is 

to maximize the dipole matrix element products while keeping ther resonant energy 

levels unchanged.  

The nonlinearity can be optimized by systematically changing the band structure 

through the QW potential.  The method used here is SUSYQM [45]. It enables one to 

generate a family of potentials depending on a single parameter λ  isospectral to the 

original one thus preserving the multiple resonances enabling SHG as well as energy-

level positions that facilitate relaxation and tunneling from period to period of the QCL 

structure. 

The supersymmetric partner of  )(xVo   is given by [45],  
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with  dttxI
x

)()( 2∫ ∞−
= θ   and  ).()( 0

)( xx kψθ = From Eq. (3.7), it can been seen that the 

isospectral potential is obtained through the base function )(xθ , which is chosen from 

one of the wavefunctions )(0
)( xkψ . The modified wavefunctions can be expressed as 
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The modified dipole matrix element products relating to )2(χ  is then calculated based on 

modified wavefunctions in (3.8a) and (3.8b) with variation of parameter λ. The 
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relationship between dipole matrix elements products and λ is then plotted with different 

base functions. Best base function )(xθ is selected by comparing optimization effects. 

SUSYQM has been used for the optimization of the intersubband resonant 

)2(χ for the harmonic oscillator in [27]. In that work, the initial SUSYQM calculation 

does not include band nonparabolicity. With band nonparabolicity included, the 

SUSYQM optimized potential has to be slightly tailored in order to restore the levels’ 

equidistance.  The improvement of dipole matrix element product is about 20 % in that 

work. In the current work, to include the band nonparabolicity, the effective mass )(* xm  

in Eq. (3.7) is replaced by the energy-dependent effective mass ) ,(*
knp Exm  with a form 

similar to Eq. (2.9), 
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h
cbmk

knp

EExm
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−×
+=

γ
,   (3.9) 

The λ-value range is 1−≤λ and 0≥λ λ to maintain continuity of wavefunctions 

[46]. By inspection, there are two groups of )(xθ  with the optimized  λ-value optλ  giving 

best optimization, as shown in Fig. 3.3: (i) for )()( 0
)6( zz ψθ =  and 6.0=optλ , there is a 

maximum dipole matrix element product )14(6)14(969 MMM  for cascade I, which is 

estimated to be about 20 % higher than that with the original potential shape, while that 

for cascade II remains constant; (ii) for )()( 0
)15( xx ψθ =  and 6.0=optλ , the maximum 

)15(9)15)(14()14(9 MMM  for cascade II exceeds by 20 % the original value, while that for I 

remains constant. In Fig. 3.3, optM  and orgM  represent the optimized and original dipole 

matrix element products respectively, with )14(6)14(969 MMM  for cascade I and 
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)15(9)15)(14()14(9 MMM  for cascade II.   According to Eq. (3.1), the largest electron 

population lies in level 3, so the role of cascade I is much greater than that of cascade II, 

and group (i) is selected to determinate the optimized potential.  

 
(a) 

 
(b) 

Figure 3. 3 Dependence of dipole matrix element product on λ  :  
(a) )()( )6(

0 xx ψθ = ; (b) )()( )15(
0 xx ψθ =  

 

 

Figure 3.4 Optimized potential and original potential. 
 

 The optimized potential from SUSYQM is shown in Fig. 3.4. It can be realized by 

modifying the mole fraction of constituents of the ternary alloy, i.e., 
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)(400700324 2 meVxxEg ++=  for GaxIn1-xAs and (meV) 2290357 xEg +=  for AlxIn1-

xAs [47].  According to SUSYQM, the optimized structure is isospectral to the original 

structure for all energy levels. This is the case for the optimized structure with ideally 

smooth curvature resulting from continuously compositional grading. Due to low growth 

efficiency, in practice, instead of employing continuous graded- index materials, the 

structure can be fabricated by digital-alloy growth technique [48], which overcomes the 

technical difficulties of continuous grading the alloy composition. In digital alloy 

technique, the digitization period (DP) is the thickness of each growth layer with the 

same composition, i.e., the step size in digital growth. The smaller the DP, the better the 

approximation. With the development of digitally grown submonolayer superlattices 

(SMS) by excellent growth condition control [49], DP can be down to around one half of 

the monolayer thickness a for InGaAs/AlGaInAs superlattices structure. The monolayer 

thickness can be the upper borderline of the potential curvature roughness for the SMS. 

In order to study the influence of digital growth step size on the ideally optimized 

structure, apart from the model with ideally curved profile, models are also built for with 

half-monolayer DP and monolayer DP.  For the model with half-monolayer DP, the 

stepwise grading not only changes the dipole matrix element products , but also displaces 

the subbands so their spacings deviate from the desired values, with E96 = 125meV 

instead of 131 meV, E(14)9 = 131 meV instead of 123 meV, and E(15)(14) = 90 meV instead 

of 105 meV. The energy gap E(15)9, however, is still in strong resonance with that E96, 

even though E(15)(14) deviates a little more. Thus, there is still considerable SHG produced 

by this structure.  The fundamental emission wavelength has a slight red shift of 0.46 µm, 

while that for SHG is 0.92 µm. In the monolayer DP model, all the original resonant 
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states are destroyed with E96 = 120 meV, E(14)9  = 52 meV and E(15)(14) = 152 meV. It is 

found that profile roughness has more influence on the energy states rather than on the 

dipole matrix element. Figure 3.5 (a) shows the band structure of the original structure 

and optimized structure with half monolayer DP, while fig 3.5(b) shows the digitization 

of the optimized profile in comparison with the original and ideally optimized profiles. 

  The material system Ga0.47In0.53As/Al0.48In0.52As is lattice-matched to the InP 

substrate. For ternary alloys GaInAs/AlInAs, the mole fraction not only changes the 

bandgap, but it also alters the lattice constant a. Thus, there will be strain generated in the 

structure with the modified potential. For ternary alloy AxB1-xC, a is calculated 

by ))(1()( zxazxaa BCAC −+= . The lattice-constant mismatch affects the band structure of 

the QW, which was included in the pk ⋅  method [50]. The strain is evaluated based on 

the relative lattice constant difference between adjacent elements layers in the finite 

different method [48]. The strain tensor can be derived as iyyxx εεε == , 

and 11122 CCixx εε −= . The conduction-band energy shift is determined by the strain 

tensor by )(1 zzyyxxCC εεε∆ ++= , in which C1 is the deformation potential for the 

conduction band. With the optimized potential )(xVopt , the total Hamiltonian for the 

conduction band for the strained lattice can be written as [50], 
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In the current model, the maximum strain between adjacent layers is ~ 1 %, while the 

total strain for the whole one module of the QCL structure is < 0.01 %.  The optimized 

structure is strain compensated. 



  48 

 
(a) 

 
(b) 

 
Figure 3.5 (a) Original and optimized band structures with corresponding potential shapes; 
(b)  digitally graded energy potential in comparison with the original and ideally optimized 

potentials. 
 



  49 

Here we briefly discuss the concern on interface roughness scattering brought by 

the thin layers grown by the digital growth technique. As discussed in [26] with the 

experimental evidence of [51], since the layers in digital alloy are not confinement layers, 

but rather act via the average composition, with wave functions evenly penetrating the 

well and barrier slices, the width fluctuations should average out, with no significant 

effect on the wave function shapes. So one may expect limited broadening of 

intersubband transitions.  

The calculations show that the dipole matrix element product for cascade I is 

enhanced by 60 % over the original value, while that for cascade II remains unchanged. 

As shown in Fig. 3.5(a), the eigenfunction for the second subband changes the most. The 

dipole matrix element 32M increases by 35 % compared with the original value. This 

leads to larger oscillator strength between the lasing levels.  

It is also important to verify if the enhancement is robust against changes in the 

electric field within the cascade. We therefore checked the dipole matrix element 

products’ variation with electric- field. For the optimized structure with half monolayer 

DP, the dipole matrix element product ratio orgopt MM  for cascade I oscillates around 

1.6 with a value > 1.3 within the electric- field range 10-48 kV/cm, and the ratio for 

cascade II is between 0.8 and 1.10.  The maximum change of energy spacings is within 

the FWHM of the device. Since the electric field changes only slightly above threshold, 

the dipole matrix elements enhancement as well (as the energy levels) does not change 

much within the operation range of electric field.  

 



  50 

Due to the population redistribution amongst the levels, there will be competition 

between gain and )2(χ , but the increased oscillator strength between lasing levels may 

alleviate the competition. In order to further investigate the influence on the modal gain 

by the SUSYQM modified potential, a dynamic analysis for the lasing performance is 

performed through self-consistent rate equations.  

3.3 Rate-Equation Model 

A rate-equation model for a typical QCL structure without SHG was studied in Ref. [18]. 

The current 15- level dynamic model for the QCL structure not only incorporates SHG 

within the full cascade scheme, but also the interplay between time-varying photon 

density and radiative transition rates. Investigation also goes for the device performance 

for applied bias field between 30 kV/cm and 50 kV/cm, which is around the cascading 

bias 38 kV/cm. Since energy- level ordering among the three regions varies with the 

applied bias, the band structure at 38 kV/cm bias is taken to illustrate the rate-equation 

approach.  Results from the rate-equation model for the original structure matches well 

the experimental results in [16]. 

3.3.1  Intersubband Transition Mechanisms  

In the active region, the states 6, 9, 14, and 15 are equally spaced, and the energy 

intervals are resonant with the lasing frequency.  In addition to the single photon 

absorption and emission, the involvement of SHG resonant levels, i.e., 6-9-14 and 9-14-

15 brought both sequentially and simultaneously resonant intracavity two-photon 

processes. In the self-consistent rate-equation model, the quantum mechanical description 

of two-photon processes given in Ref. [42] is adopted. Two-photon absorption between 

states 159 →  and emission between 614 →  tend to degrade the lasing performance due 
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to the reduced population inversion between lasing states 6-9. The single-photon and 

two-photon processes are all incorporated into the rate-equation model in order to 

investigate the lasing output. Three-photon processes should also exist for the triply 

harmonic resonant levels 6-9-14-15, but the scattering rate is estimated to be on the order 

of -18s10 , which is negligible compared to single-photon and two-photon  transition rates 

on the order of  -111s10  

 The single-photon stimulated emission rate is expressed as, 
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where ωm  is the photon density (m-3), nmM  is the dipole matrix element between levels n 

and m,  nmγ2 is the FWHM of  the mn → transition with the value taken from 

experimental measurements in Ref. [16], nmE  is energy difference between levels n and 

m,  ε  is the permittivity of the lasing medium and ω is incident photon frequency.  

Unlike the single-photon transition rate, which is proportional to the incident photon 

density (light intensity), the two-photon stimulated emission/absorption rate is 

proportional to the squared photon density. With the two-photon transition cascade g-m-n, 

the two-photon stimulated emission/absorption rate is given by [42],  
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 The QCL is formed by several repetitions of the given unit cell.  If neglect effects 

associated with the initial and final few periods are neglected, the carrier populations in 

the various levels will be periodic in the growth direction throughout the QCL. To 

introduce periodic boundary conditions, the technique presented in [18] is employed. 
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Namely, with the translational repetition of 1.5 cascade periods, carriers populate the 

injector subbands by transferring from the preceding active region and leaving the 

collector subbands to enter the subsequent active region. The transition between the 

preceding injector region and active region is equivalent to that between the collector 

region and the next active region. In order to use the injector-active region-collector to 

reflect the full periodic cascade structure, the population in subband 1 must be equivalent 

to the population in subband 8, as well as 102 → , 114 → , 125 → , and 137 → . Thus, 

the rate equations for the subbands in the injector region are equivalent to those for the 

collector region, and the steady-state subband populations for the injector are equal to 

those of the collector. 

 Except for the radiative single-photon and two-photon processes for resonant 

levels in the active region, LO phonon scattering and e-e scattering are the main 

scattering mechanisms for transitions within each region and transport between the 

injector-active region or active region-collector. When the energy separation between the 

levels is much smaller than the LO phonon energy, elastic electron-electron scattering 

dominates.  For the resonant tunneling transitions between the injector and upper lasing 

level or between the lower lasing level and the collector, e-e scattering plays an important 

role. For the scattering rate calculation, the formulation described in Section 2.3 is 

adopted, in which LO phonon scattering rate is calculated using Fermi’s golden rule with 

the Fröhlich interaction Hamiltonian, and the e-e scattering rate is calculated with form 

factors given by the overlap of the wavefunctions from the initial and final states. For 

both scattering mechanisms, both momentum and energy are conserved during carrier 

transitions. The transition rate between two states is both momentum dependent and 
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energy dependent. The total transition rate between two subbands is obtained by 

integration of the transition rates over all possible initial and final states. The electron 

distribution at each subband is taken to be quasi-Fermi distribution that depends on the 

subband Fermi energy [38], which in turn depends on the subband carrier density. The 

interplay between the scattering rates and electron population at each subband is 

connected through the Fermi energy at each subband until arriving at the steady-state. 

The state blocking effect is considered by the Pauli exclusion factor in term of Fermi’s 

distribution function.  Due to the small overlap between wavefunctions in the injector and 

collector subbands, the transition rates between injector and collector regions are 

neglected.   

 
Figure 3.6 Illustration of carrier transitions in the 15-level system. 

 

 As shown in Fig. 3.6, two-way transitions are included between any of the two 

subbands, so the thermal backfilling is accounted in the theoretical model.  For the 

transition between any two levels of the nonlinear cascade 6-9-14-15 in the active region, 
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the total scattering rate includes not only the nonradiavie ones, but also the radiative 

single-/two-photon transitions, which are linearly and/or quadratically dependent on the 

incident photon density.  For transition rates between the adjacent single-photon resonant 

levels, i.e., 69W , 96W , )14(9W , )14(9W , )15)(14(W  and )14)(15(W , one has  

    p
ij

ee
ij

LO
ijij WWWW ++= − ,     (3.13) 

where p
ijW  can be obtained from Eq. (3.11), and it makes ijW  depend linearly on the 

photon density in the lasing cavity. Similarly, for transition rates between two-photon 

resonant levels, i.e., )14(6W , 6)14(W , )15(9W , and 9)15(W ,  one obtains  

P
ij

ee
ij

LO
ijij WWWW 2++= − ,     (3.14) 

where p
ijW 2  can be obtained from Eq. (3.12), and this makes ijW  has quadratic 

dependence on the incident photon density. For the transition between any other 

subbands, the transition rate is the sum of the e-e and LO phonon scattering rates and thus 

independent of the photon density in the cavity.  

3.3.2 Rate-Equation Formulation 

The rate-equation is built based the population variation at each subband due to various 

electron scattering mechanisms. As an example for the subband populations in the 

injector/collector region, the rate equation for subband 1 is written as 

   )()( 111881181
1 nWnWnWnWnWnW

dt
dn

k
k

kkjjjj
j

jj −∑+−−+∑= ,  (3.15) 

where pqW  represents the total scattering rate between subbands p, and q. In the above 

expression, indices 15 14, 9, 6, ,3=j  and 7 5, 4, ,2=k .   The rate equation is similar for 
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any other injector or collector state. The rate equation for the subband population in the 

active region is given by 

     ( )∑ −=
≠=

15

,1 jii
jjiiij

j nWnW
dt

dn
,    (3.16) 

where 15 14, 9, 6, ,3=j .   

 The rate equation for density of photons resulted from both the single- and two- 

photon processes are as follows, 
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dm ppp −+−+−Γ=ω ,   
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2
9)15( ,    (3.17) 

where Γ is the mode confinement factor, which is assumed to be 0.5, and ωτ p  is the photon 

lifetime related to the total loss as 1)( −= ωατ gp v  [52].  

 The set of 16 rate equations involves electron populations on 15 subbands 

together with the photon density. As shown in Eq. (3.17), the photon density variation 

depends on the transient scattering rates and subband electron populations in the active 

region, while the radiative scattering rates are also linearly or quadratically dependent on 

the photon density in the cavity as shown Eq. (3.11) and (3.12).  Apart from this, in each 

subband, there is also the interplay between the electron population and scattering rates, 

which are connected by the quasi-Fermi distribution functions. The steady-state electron 

populations and photon density are achieved by iteratively solving the whole set of 16 rate 

equations.  

 The current density through injector-active region interface is given by  
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    )15()14(963 IIIIIIA JJJJJJ ++++= .     (3.18) 

The component current density IiJ  (i = 3, 6, 9, 14, 15) is the difference between the 

scattering current dens ity from the injector region to the level i of the active region and the 

backscattering from this level i to the injector region, i.e. 

    ( )∑ −=−= →→
k

iikkkiIiiIIi nWnWqJJJ ,    (3.19) 

where k = 8, 10, 11, 12, 13 represents levels in the injector region.  Similarly, current 

density flow from the active region to the collector region can be written as 

   CCCCCAC JJJJJJ )15()14(963 ++++= ,    (3.20) 

where the component iCJ  is the difference between the scattering current from the level i 

in active region to the collector and backscattering from collector to the level i, i.e.  

   ( )∑ −=−= →→
k

kikiikiCCiiC WnnWqJJJ .   (3.21) 

The current densities described above are evaluated based upon the steady-state electron    

populations and scattering rates. At steady-state, this is JJJ ACiA == .  

3.3.3 Linear and Second-Harmonic Wave Propagations and Power Outputs 

Once the subband populations in the lasing levels at steady state are found, the net modal 

gain can be calculated as  
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where λ is the lasing wavelength at ω, ωn is refractive index at the fundamental frequency, 

pL is the thickness of one period of active region and thnn )( 69 −  is the threshold 

population inversion which is derived by setting 0=
dt

dmω  in Eq. (3.17), 
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Equation (3.23) also accounts for all relevant losses in the lasing cavity with SHG; the 

first four terms correspond to single- and two-photon absorptions, while the last term 

corresponds to the waveguide loss and mirror loss. Above threshold, i.e., 0>net
mG , the 

medium begins to lase. The linear and SHG output light intensity can be calculated from 

the photon density m in the cavity as 

m

L
mNI

τ
ω ωω )(mod h= ,    (3.24) 

where modN  is the number of periods in the lasing cavity (the value is taken as 50 as in 

[16]), and the mτ  is mirror photon escape time, defined by gmm vατ =−1 , where mα  is  the 

mirror loss and gv is the group velocity. The output power is calculated by  

      AIP ωω =      (3.25) 

where A is the cross section area transverse to the light propagation direction. 

 With the steady-state electron population, the second-order nonlinear 

susceptibility  )2(χ  can be evaluated as Eq. (3.6). 

The initial fundamental power output can be obtained from the solution of the 

steady-state rate equation stated as Eqs. (3.24) and (3.25). Only the TM modes are 

excited efficiently since the polarization associated with electronic intersubband 

transitions contains only the x component. The wave propagates along the waveguide in 

the z direction. In order to simplify the solution procedure, It is assumed that the 
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transverse wave profile is only x dependent. The magnetic fields )2(, ωωyH  of the 

fundamental and SH modes can be represented as, 

zik
y exFzAzxH ω−

ωωω = )()(),(, ,     (3.26a) 

zik
y exFzAzxH ω−

ωωω = 2)()(),( 222, .    (3.26b) 

)()2( zA ωω  is the magnetic field amplitude varying along the wave guide direction. It is 

assumed that )(zAω  varies slowly with the coordinate z and 0)0(2 =ωA . )()2( xF ωω  

represents the mode profile in the transverse direction and satisfy the Helmholtz equation, 
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 where  )2( ωωε  is the frequency and position dependent dielectric constants. The equations 

are solved by the finite-difference approach, in which different TM modes at both 

frequencies are obtained with phase constants )2( ωωk  solved as eigenvalues and transverse 

mode profiles )()2( xF ωω as eigenvectors.   

 The linear and nonlinear power outputs relate to the magnetic field amplitudes as, 
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where mW µ13=  is the width of the wave guide given in [16].  The transverse 

component of electric field xE is related to yH  as  
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The transverse electric field at SH frequency is related to that at the fundamental 

frequency through Maxwell’s coupled wave equation, 



  59 

zkki
x

x ezxE
ck

i
z

zxE )2(2
,

)2(
2

2

2
2, 2),(

4
)2(),(

ωω −
ω

ω

ω χ
ω

=
∂

∂
.   (3.30) 

By combining Eqs. (3.29) and (3.30), the magnitude of the SH magnetic field at output 

can be derived as,  
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where ωωω ckn = and ωωω ckn 22 =  are refractive indices of the fundamental and SH 

modes, ωωγ k=  and ωωω αγ 222 ik += , are the wavevectors of  the fundamental  and SH 

waves, ωα 2  are total loss including the waveguide loss w
ωα 2  and mirror loss m

ωα 2 for the 

SH mode,  and ωω 22 kkk −=∆  is the phase constant mismatch. Since the propagation 

loss ωα  in the fundamental mode wave has been included in the single-photon rate 

equation Eq. (3.17) through the photon lifetime ωτ p , which means that the loss has been 

taken into account in the evaluation of the linear power ωP , it is not contained in the 

wavevector ωγ in Eq. (3.31). The waveguide losses w
)2( ωωα  and dimensions are adopted 

from the experimental data in [16]. The mirror losses can be estimated 

by ( ) LRm
)2(1)2( ln−=ωωα  , where 1R  and 2R  are reflection coefficients at the fundamental 

and SH frequencies respectively and they are related to refractive indices 

as ( ) ( )2

)2(
2

)2()2(1 11 ωωωω nnR +−= .  

From Eq. (3.28) and (3.31), the nonlinear output power can be obtained from 

linear power as, 
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where 0λ is the wavelength of the fundamental mode and RI is the effective 

interaction cross section decided by the overlap between the fundamental mode and 

SH mode,  
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In the simulation, RI  is estimated to be 470 µm2, which is about half of that reported in 

[16]. This is due to the assumption that )2(χ  is uniformly distributed in the nonlinear 

interaction region. This assumption is valid as the current study emphasizes on the 

relative enhancement effect of the SUSYQM optimized structure over the original 

structure. In Eq. (3.32), since the phase-mismatch factor k∆  is about 100 times larger 

than loss ωα 2 , the SH power will be decreased about 10-4 of the power under phase-

matching condition. If the phase mismatching can decrease to a value around the loss 

value, the SH power can thus be improved 103 to 104 times larger.  

3.3.4 Comment on Intersubband Refractive Index 

From Eqs. (3.24) and (3.33), the variation of refractive indices )2( ωωn have substantial  

influence on the lasing performance.  Apart from the fixed bulk refractive ind ices, there 

are also contributions due to intersubband transitions [53], which are related to the 

intersubband linear susceptibility )1(χ for and bulk refractive index )(ωbn as 

   )(2)]([ real)( )1( ωωχω bisb nn = ,    (3.34) 
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where, for the bandstructure shown in Fig. 3.2, )1(χ  is evaluated as, 
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It can be seen from Eq. (3.35) that )1(χ  is related to the intersubband radiative transitions. 

Calculation results show that intersubband refractive index is smaller than 0.2 % 

of the bulk refractive index and the influence is ignored. The reason is that competitions 

among radiative transitions between each pair of resonant levels suppress the overall 

influence from the whole active region. 

3.4 Optimization Effects on Linear and Nonlinear Output Performances 

The current-density variation with the applied electric field for the original and optimized 

structures are shown in Fig. 3.7. It can be seen that the current flow in the optimized 

structure is more sensitive to the applied field, in which negative differential resistance 

(NDR) can be observed. This can be attributed to the band-structure variation with the 

applied bias, which is completely decided by the geometry and material composition of 

the multiple QW’s.  For both structures, the highest current flow happens at the cascading 

bias 38 kV/cm due to the strong resonant tunneling between the active and 

injector/collector regions.  At this bias, one level in the miniband of the injector/collector 

region is closely aligned with the upper lasing level or lower lasing level in the active 

region. Below this point, the current in the optimized structure ramps up faster with the 

applied bias. When the applied bias increases above 38 kV/cm, current in the optimized 

structure drops quickly and then ramps up again. This happens when another level in the 

miniband of the injector/collector region is aligned with the upper/lower lasing level in 

the active region. For the original structure, there is only a mild change of the band 
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structure with the applied bias. The tunneling enhancement due to this optimization is not 

explicitly addressed in the optimization approach, but is rather a serendipitous outcome 

of the optimization.  
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Figure 3.7 The current flow through injector-active region-collector versus the applied 
voltage for both the original and optimized structures.  

 The improvement in the SHG might be expected to affect adversely the gain due 

to the population competition among lasing levels and the nonlinear cascades. The 

increased oscillator strength, however, between lasing levels tends to counter this 

competition. Figure 4 shows the net modal gain for the original structure and optimized 

structure. It can be seen that the optimized structure has a lower threshold current than the 

original structure. Adopting the numbers given in Ref. [16], the lasing cavity is 13 µm 

wide and 2.25 mm long. The threshold current for the optimized structure is 1 A 

corresponding to a current density of 3.4 kA/cm2, while that for the original structure is 

about 6.8 kA/cm2. Above threshold, when the linear output power rises beyond the 

saturation power, the gain begins to drop until it equals the total loss. This corresponds to 
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zero net modal gain, as shown Fig. 3.8(a). With zero net modal gain, the output power is 

in steady-state. When the power falls below the saturation power, the modal gain 

increases linearly with the current flow and the optimized structure has a higher modal 

gain/current slope, as shown in Fig. 3.8(b).    

 
(a) 

 
(b) 

 
Figure 3.8  Net modal gain versus current for the original and optimized structures: (a) 

above saturation; (b) below saturation. 
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 Figure 3.9 shows the variation of )2(χ  with pumping current for both the original 

structure and optimized structure. Eq. (3.6) tells that )2(χ  are dependent on both the 

dipole matrix element products and the population distribution on the states of the active 

region. It shows that )2(χ  for the optimized structure is about 1.5 times of that of the 

original structure which is about the improvement of the dipole matrix element product 

243423 MMM  for the first SHG cascade. )2(χ  changes slowly with the pumping current 

above threshold condition.     

 

Figure 3.9 Variation of second-order nonlinear susceptibility under different pump 
current. 

 

 Figure (3.10) shows the linear and nonlinear output for both the original and 

optimized structure. The nonlinear power output is calculated under phase-mismatched 

condition. The higher oscillator strength between the lasing levels in the optimized one 

leads to higher stimulated emission rate and makes higher linear power output. For the 
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original structure, the highest linear power is 380 mW, the nonlinear power is 85 µW. 

These correspond to a linear to nonlinear conversion efficiency of 603 µW/ W2.  This is 

close to the results shown in Ref. [16].  In the optimized structure, the numbers increase 

to 490 mW linear power and 323 µW nonlinear power, which correspond to 1300 µW/W2 

linear to nonlinear conversion efficiency. The mode profiles of the TM00 mode at 

fundamental frequency and three modes at SH frequency are shown in Fig. 3.11, in which 

“FM” represent fundamental mode.  In the following calculations, the TM00 modes are 

picked up at both frequencies since simulation results based on them are much closer to 

the experimental measurements reported in Ref. [16]. It was found that better phase-

matching can be achieved between TM00 mode at fundamental frequency and TM02 mode 

at SH frequency, which is the same conclusion as Malis, et al. [54]. With the optimized 

design, the linear-to-nonlinear conversion efficiency can achieve a twofold enhancement 

over the original one.  The calculation shows that the nonlinear power output is only 10-4 

of that under phase-matched conditions. Even though the phase-mismatched condition 

didn’t degrade the enhancement of SHG by optimization, the phase-matched condition is 

a very crucial factor to improve the linear to nonlinear conversion efficiency in QCL 

structure. However, that technique is a different physical concept as the optimization 

technique, which provides a means to improve the nonlinearity of the lasing medium. 
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Figure 3.10 Fundamental power and nonlinear power under different pump current. 

 
 

 
Figure 3.11 Transverse magnetic field profiles at the fundamental frequency and second-

harmonic frequency. 
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CHAPTER 4 

THIRD-ORDER OPTICAL NONLINEARITIES OF QUANTUM 

CASCADE LASERS 

 

In this chapter, further study on the third-order optical nonlinearities is carried out on the 

structure shown in Fig. 3.2, which is a MIR QCL with a pair of triply harmonic resonant  

levels. Potential applications of such design are discussed based on the resonant third-

order nonlinear susceptiblility )3(χ at the TH) frequency, ),,;3()3( ωωωωχ , and that at  

fundamental frequency ),,;()3( ωωωωχ − , which is described in Eq. (1.4). The TH power 

generated is evaluated based on ),,;3()3( ωωωωχ , mode overlap with the fundamental 

mode and the effect of phase mismatch. The higher-order TH mode with the best phase-

matching to the fundamental is identified, which greatly improves the linear to TH 

conversion efficiency. In addition to single-photon processes, resonant two-photon 

processes are included in the evaluation of  ),,;()3( ωωωωχ − , which results in the 

enhancement of the positive nonlinear refractive index which is predicted to enable the 

ultrashort pulse generation via SML. It is concluded that QCL’s with multiple-resonance 

design are not only favorable for tunable light emission at the SH and TH frequencies in 

the NIR to MIR region, but are also promising candidates for ultrafast compact long-

wavelength lasers. 
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4.1 Third-Harmonic Generation 

THG is associated with the processes illustrated in Fig. 4.1 (a), in which three photons 

with frequency ω  are destroyed and one photon with frequency ω3  is created; 

),,;3()3( ωωωωχ is a figure of merit of THG. It is expressed as [41], 
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),,;3()3( ωωωωχ  can be evaluated based on the rate-equation solutions presented in 

Chapter 3.3.3. 

 
 (a) 

 
(b)  (c) 

Figure 4.1  Illustration of different resonant transitions: (a) third-harmonic generation; (b) 
single -photon process; (c) two-photon process. 
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The initial fundamental power output can be obtained from the steady-state 

photon populations as in Eqs. (3.24) and (3.25). Only TM modes are excited efficiently 

since the polarization associated with electronic intersubband transitions contains only 

the growth-oriented x component. The wave propagates along the waveguide in the 

longitudinal z direction. In order to simplify the solution procedure, it is assumed that the 

transverse mode profile is only x dependent. The magnetic fields )3(, ωωyH  of the  

fundamental and TH modes can be represented as 

zik
y exFzAzxH ω−

ωωω = )()(),(, ,     (4.2a) 

zik
y exFzAzxH ω−

ωωω = 3)()(),( 333, .    (4.2b) 

Here, )()3( zA ωω  is the magnetic-field amplitude varying along the waveguide direction. It 

is assumed that that )(zAω  varies slowly with coordinate z and 0)0(3 =ωA . )()3( xF ωω  

represents the mode profile in the transverse direction and satisfies the Helmholtz 

equation, 
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 where )3( ωωε  is the frequency- and position-dependent dielectric constants. The 

equations are solved by the finite-difference approach, in which the TM modes at both 

frequencies are obtained with phase constants )3( ωωk  solved as eigenvalues and transverse 

mode profiles )()3( xF ωω as eigenvectors.    

 The linear and nonlinear power outputs relate to the magnetic field amplitudes as 
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where mW µ13=  is the width of the wave guide given in [16].  The transverse 

component of electric field xE is related to yH  as  
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.     (4.5) 

The transverse electric field at the TH frequency is rela ted to that at the fundamental 

frequency through the wave equation, 
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 With the combination of Eqs. (4.5) and (4.6), the magnitude of the TH magnetic field at 

output can be expressed as  
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where ωωω ckn = and )3(33 ω= ωω ckn  are the fundamental and TH modal refractive 

indices, ωωγ k=  and ωωω α+=γ 333 ik  are the wavevectors of  the fundamental and TH 

waves, ωα3  is the total loss including the waveguide loss and mirror loss for the TH wave,  

ωω −=∆ 33 kkk  is the phase constant mismatch, and 1R and 3R  are the reflection 

coefficients at  fundamental and TH frequencies. 

From Eqs. (4.6) and (4.7), the nonlinear output power can be obtained from linear 

power as 
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where 3I  is  the effective interaction area determined by the overlap between the  

fundamental wave and TH waves,  
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From Eq. (4.8), it can be observed that TH power output is proportional 

to
2)3( ),,;3( ωωωωχ . In addition, the mode-profile overlap and phase mismatch also play 

important roles.  In our simulations, the emission powers at the fundamental, SH and TH 

frequencies are compared. The calculation of SH power follows procedures given in 

Section 3.3.3.  

 
(a) 
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(b) 

Figure 4.2 Lowest order of fundamental, second-harmonic, and third-harmonic modes: (a) 
mode profiles; (b) power outputs. 

  

 The maximum overlap between the SH/TH mode and the fundamental mode 

occurs for the lowest mode TM00 at those three frequencies, whose profiles are shown in 

Fig. 4.2(a) and the corresponding emission powers are shown Fig. 4.2(b). From Eq. (4.8), 

it can be seen that the mode overlap is inversely proportional to the effective interaction 

area. To achieve higher SH/TH output power, the interaction area should be as small as 

possible. The effective interaction area for the SH mode is 470 µm2, with maximum SH 

emission up to 85 µw; the effective area or the TH mode is 123 µm2 with maximum TH 

emission as 135 nW. The linear to SHG conversion efficiency 2
222 ωωωη PP= is 603 

µW/W2, while the linear to THG conversion efficiency 3
33 ωωωη PP=  is 2.6 µW/W3. 

These numbers are close to the experimental results reported in [16, 55]. The deviation is 

likely in part due to the assumption that the nonlinear susceptibilities are constant within 

the active region. It was found that higher orders of SH and TH modes have better phase-
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matching with the TM00 fundamental mode. As shown in Fig. 4.3(a), the best phase-

matching could be achieved between TM02 SH /TM04 TH modes and the TM00 

fundamental mode, but with some sacrifice of mode profile overlap. The effective 

interaction cross-section between TM02 SH and TM00  fundamental modes increases to 

568 µm2, and the maximum SH power output is 1.2 mW; the effective cross-section 

between TM04 TH and TM00 fundamental modes increases to 233 µm2, and the maximum 

TH power output is 1.0 µw. Under the best phase-matching condition, even though with 

the reduced mode overlap, there is nonetheless still a 20-fold improvement for the SH 

power and a 10-fold improvement for the TH power. Therefore, phase-matching is the 

most crucial factor for achieving higher powers in the harmonics.  

 

(a) 
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(b) 

Figure 4.3 Second-harmonic and third-harmonic modes with the best phase-matching to the 
fundamental mode: (a) mode profiles; (b) power outputs. 

 

4.2 Nonlinear Refractive Index with Harmonic Resonant Levels 

The second term in Eq. (1.4) describes a nonlinear contribution to the polarization at the 

fundamental frequencyω . This leads to a nonlinear contribution to the refractive index 

(Kerr effect) at frequencyω . The refractive index including the Kerr nonlinearity can be 

expressed as [42] 

     Innn 20 +=ω      (4.10) 

where 0n  is the linear refractive index, 2n is the nonlinear refractive index, 
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and the light intensity is 2
002

1
EcnI ε= .  
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 In [24], SML in QCL’s from the intensity-dependent refractive index has been 

demonstrated. If 2n  is positive, due to the Kerr- lensing effect, the cent ral portion of the 

transverse beam profile, where the intensity is highest, experiences a larger refractive  

index relative to the edges. Thereafter, the nonlinear dielectric waveguide increases the 

beam confinement near its center and narrows the beam diameter to an extent 

proportional to the optical power. In the presence of such a mechanism, the mode 

interaction with external metal contact decreases and thus reduces the optical losses. This 

is a favorable mechanism for the laser to emit ultrashort pulses. Even though we did not 

estimate the pulse duration here due to the lack of experimental data for the root-mean-

square of the spectral width, it can be inferred qualitatively the enhancement of SML 

effect by analyzing the 2n  variation due to the additional harmonic resonance levels. 

 Following Eq. (4.11), 2n  can be obtained from ),,;()3( ωωωωχ − , which itself can 

be evaluated based on the steady-state rate-equation solutions described in Section 3.3. 

For the bandstructure shown in Fig. 1.1, according to formulation derived in [42], two 

kinds of resonant terms contribute to ),,;()3( ωωωωχ − , i.e., terms related to single-

photon processes as shown in Fig. 1(b) and those related to two-photon process as in Fig. 

1(c), 

),,;(),,;(),,;( )3(
2

)3(
1

)3( ωωωωχωωωωχωωωωχ −+−=− pp .   (4.12) 

 Single-photon transitions exist between any two states whose separation is 

resonant with the fundamental frequency ω , i.e. states 32 EE − , 43 EE −  and  54 EE − . 

For any lasing structure there is single-photon processes contributing to ),,;()3( ωωωωχ − , 
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which leads to absorption saturation. The explicit expression of ),,;()3( ωωωωχ − by 

summing up all the contributions from the single-photon processes is 
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from which it can be seen that χ1 p
(3)(ω;ω,ω,−ω)  depends on the population inversion 

between resonant levels, the dipole transition strength as well as the detuning and 

broadening factors. Due to the multiple resonance nature of the bandstructure, additional 

contributions to ),,;()3( ωωωωχ − from two-photon processes also exist for resonant 

cascades 432 EEE −−  and 543 EEE −− , where two photons with frequency ω  are 

absorbed simultaneously or sequentially and stimulate the upward electronic transitions 

across two consecutive resonant levels 42 EE →  or 53 EE → . The expression for 

resonant  contributions due to these two-photon processes  is 
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 Figure 4.4  shows the nonlinear refractive index 2n  resulting from the single- and 

two-photon processes, respectively, together with the total 2n that results. The two kinds 

of contributions are both positive and of comparable magnitude, which means that the 

additional harmonic resonant levels in the lasing active region significantly enhance 

(actually double) the intensity-dependent refractive index, which thus is predicted to lead 
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to the enhancement of SML. The maximum optical intensity at the fundamental lasing 

frequency is about  1 MW/cm2. This will result in a total refractive index 

change 005.0=ω∆n . The maximum nonlinear phase shift (max)
NLφ∆ calculated from Eq. 

(2.49) is πφ 5.4max =∆ NL . 

 

Figure 4.4 Nonlinear refractive indices due to single - and two-photon processes. 

 The pulse duration can be estimated from the SPM described in Section 2.4.3.  

Assume the pulse is in Gaussian shape and the intensity in time domain can be described 

as,  

  
2)(

0)( σteItI −= ,     (4.15) 

where 0I  is peak intensity and σ is the e1 half-width, which is related to the FWHM 

pulse duration as  

    στ 2ln2=FWHM .    (4.16) 

According to the Fourier transform of the Gaussian pulse [56],   

     1.0 =σω∆      (4.17) 
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where 0ω∆  is the e1 half-width in the frequency domain.  The spectral broadening factor 

rmsω∆  for the Gaussian pulse is given by [41],  

    ( ) 0
2max

33
4

1 ωφω ∆+=∆ NLrms .    (4.18) 

The spectral broadening factor for structure with harmonic levels is estimated to be 

012 ωω ∆≈∆ rms while that for the QCL’s structure without harmonic resonant levels is 

06 ω∆ω∆ ≈rms . So the increased nonlinear refractive index due to the harmonic design 

leads to two-fold enhancement of spectral broadening. SPM alone does not modify the 

pulse envelop, but a much shorter pulse can be created with the extra bandwidth 

generated, as follows from the Fourier transform of the wider spectrum [57]. It is strongly 

indicative that QCL structures with harmonic resonance design are potential candidates 

for ultrafast pulse generation. The enhanced spectral broadening may even shorten the 

pulse duration, the theoretical reasoning of which is worth continuing investigation and 

suggested to be one of the future research directions. 
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CHAPTER 5 

 CONCLUSIONS  

 

This dissertation presents investigations on the optical nonlinearities of QCL’s. It is based 

on an InGaAs/AlInAs MIR QCL with enhanced SHG in the literature. An analytical 

model is built for optimization of SHG followed by the performance evaluation through 

optoelectronic transport analysis. In addition, the THG as well as the nonlinear refractive 

index induced by the third-order nonlinear susceptibilities is discussed based on results 

from the model.  

The nonlinear susceptibility associated with SHG was optimized by SUSYQM 

approach.  Both the position and energy dependent effective mass is included in the 

optimization. The optimized structure can be fabricated by the state-of-art digital growth 

with half monolayer DP, which is much simpler than continuously grading the 

composition and can assure the optimization effect in some extent, while digital-growth 

with monolayer DP is predicted to be too coarse to approximate the ideal potential profile.  

The structure is partially strained but strain compensated for a period of the QCL. Lattice 

mismatch is included through the deformation potential.  

The performance analysis of the QCL’s targeting at evaluating the optimization 

effect is carried out semiclassically by the self-consistent rate equations. In order to 

account for nonideal injection efficiency within each period of the QCL, the simulation is 

based on a full cascade structure containing the injector, active region, and collector. By 

incorporating the two-photon process into the self-consistent rate equations, the modal 

gain, output linear power, and SHG power can be obtained from the steady-state solution 
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and Maxwell’s wave equations. The current flowing in the entire structure in response to 

the applied bias is obtained through the steady-state carrier populations and scattering 

rates. It is found that the current density in the optimized structure responds more 

sensitively to the applied bias due to enhanced NDR.  This may lead to highly 

nonconventional transport characteristics of such structures, and may be exploited outside 

of the  context of intracavity nonlinearities in QCL’s. An improvement by a factor of 2.65 

of the linear-to-nonlinear conversion efficiency is expected in the ideally optimized 

structure, while it is 2.0 for the structure approximated by submonolayer supperlattices. 

The optimized structure also demonstrated the increased modal gain at the fundamental 

frequency and lower threshold current. In order to account for the phase mismatch 

influence on the nonlinear performance, wave coupling during propagation is studied 

with the aid of Maxwell wave equation.  The linear power is enhanced and nonlinear 

power is suppressed under phase-mismatched condition, which accounts for about a 104 

times reduction of the linear-to-nonlinear efficiency. This gives an indication that phase 

matching is an important factor in improving the nonlinear performance of the QCL 

structures. The supersymmetric optimization procedure is an efficient technique to 

achieve higher nonlinearity of the lasing medium itself. It may be pointed out that growth 

of the optimized structure may be difficult; nonetheless, improvements may make it 

worth the effort. In addition, theoretical demonstration of the effect is of interest in its 

own right.  

 Since the structure under investigation could possibly possess interesting third-

order nonlinearities due to three harmonic levels, additional analysis is carried out for 

diverse optical nonlinearities related to )3(χ  i.e.,  THG and intensity-dependent refractive 
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index 2n . Wave-propagation analysis shows that the TH power can be greatly enhanced 

in higher TM modes due to better phase-matching.  Because of additional contributions 

from resonant two-photon processes, the nonlinear refractive index is almost double that 

expected for a structure with only one pair of  resonant levels, which results in significate 

spectral broadening. This is expected to result in enhanced SML leading to ultrashort 

pulse generation. The current work demonstrates that QCL’s with optimized third-order 

nonlinearities promise applications in both tunable light emission and ultrafast optics. 

Continnued work is underway for detailed analysis on the pulse-shortening by  increased 

nonlinear refractive index.  

 This work demonstrates a comprehensive theoretical methodology to analyze and 

enhance the nonlinearities of QCL’s, which can be applied for compact multiple-color 

emitters and ultra-short pulse generation. Besides being well-suited for analysis of QCL’s, 

this model can also be extended to a wide range of nanoscale optoelectronic devices with 

multiple-band electronic structures, i.e., intermediate-band solar cells (IBSC’s) and QW 

infrared photodetectors (QWIP’s), for both linear and nonlinear performance 

investigations.  
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