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SUMMARY

This thesis considers three physician scheduling problems in health care sys-

tems. Specifically, we focus on improvements to current physician scheduling practices

through the use of mathematical modeling. In the first part of the thesis, we present

a physician shift scheduling problem focusing on maximizing continuity of care (i.e.,

ensuring that patients are familiar with their treating physicians, and vice versa).

We develop an objective scoring method for measuring the continuity of a physi-

cian schedule and combine it with a mixed integer programming model. We apply

our methods to the problem faced in the pediatric intensive care unit at Children’s

Healthcare of Atlanta at Egleston, and show that our schedule generation approach

outperforms manual methods for schedule construction, both with regards to solution

time and continuity.

The next topic presented in this thesis focuses on two scheduling problems: (i) the

assignment of residents to rotations over a one-year period, and given that assignment,

(ii) the scheduling of residents’ night and weekend shifts. We present an integer

programming model for the assignment of residents to rotations such that residents

of the same type receive similar educational experiences. We allow for flexible input

of parameters and varying groups of residents and rotations without needing to alter

the model constraints. We present a simple model for scheduling 1st-year residents

to night and weekend shifts. We apply these approaches to problems faced in the

Department of Surgery Residency Program at Emory University School of Medicine.

Rotation assignment is made more efficient through automated schedule generation,

and the shift scheduling model allows us to highlight infeasibilities that occur when

shift lengths exceed a certain value, and we discuss the impact of duty hour restrictions

xi



under limitations of current scheduling practices.

The final topic of this thesis focuses on the assignment of physicians to various

tasks while promoting equity of assignments and maximizing space utilization. We

present an integer programming model to solve this problem, and we apply this

model to the physician scheduling problem faced in the Department of Gynecology

and Obstetrics at Emory University Hospital and generate high quality solutions very

quickly.
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CHAPTER I

INTRODUCTION

Operations research and mathematical modeling are increasingly applied to health

care operations, particulary to problems involving resource allocation. The set of

supply, demand, and feasibility requirements inherent in such problems often lend

themselves well to a mathematical optimization model. While problems focused at

the hospital level often seek to minimize costs, the ultimate goal is to deliver the best

level of patient care.

This thesis focuses on three topics related to the allocation of resources in health

care systems. The first two topics focus on the development of flexible models for

assigning physicians to shifts or rotations to satisfy patient demand, physician prefer-

ences and educational requirements, while maximizing patient care through improved

continuity or adequate physician coverage. The third topic is focused on the assign-

ment of physicians to varying tasks so as to maximize space utilization and promote

equity of assignments. For each of these topics, optimization models provide a means

of developing scheduling strategies which consider physician preferences, work hour

restrictions, and the expected demand for physicians’ time.

1.1 Shift Scheduling for Physician and Patient Continuity

The Accreditation Council for Graduate Medical Education (ACGME) has instituted

work hour restrictions which limit allowable duty hours for medical residents [1].

Increased duty hour restrictions placed on residents have resulted in more fragmented

care, or the treating of patients by multiple physicians. Being treated by the same

physician improves a patient’s sense of continuity. It has been shown that continuity

of care improves patient satisfaction [40], while fragmented care is reported to increase
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patient length of stay [16].

With increased fragmentation of care comes more handoffs, or the transfer of a

patient’s care from one physician to another. Each handoff requires careful commu-

nication between physicians to relay all pertinant information regarding a patient’s

care. However, one impact of increased duty hour restrictions is an increase in handoff

errors, simply due to the increased frequency of handoffs required by more fragmented

care [50, 52].

1.1.1 Objectives

Patient care is largely impacted by the quality of communication between physicians

at handoff. Miscommunications at handoff have become “widely recognized as a lead-

ing safety hazard in health care” [28]. However, communication can be improved and

best practices can be identified [3, 37, 43]. As one approach to improving hand-

offs, our goal is to improve physician scheduling methods to maximize continuity for

physicians and patients by considering the expected familiarity a physician may have

with patients transferred to their care upon starting each shift. A physician schedule

which maximizes continuity, while adhering to duty hour restrictions and physician

and institutional preferences, could improve the efficiency of handoffs.

1.1.2 Methodology

We present a modeling and solution approach for assigning attending physicians,

medical residents, and fellows to service and call shifts in the pediatric intensive care

unit (PICU) at Children’s Healthcare of Atlanta at Egleston (Children’s) over a one-

year period. We developed the Handoff Continuity Score, or HCS, for measuring the

continuity of a schedule. The HCS measures the familiarity of oncoming physicians

at each shift change based on previous days worked, using familiarity factors which

rate the familiarity that a physician feels at handoff following a break of 1 up to

5 days, and considering the shifts worked in the previous five days. We combined

2



the HCS with a mixed integer programming model, the Children’s PICU Physician

Scheduling MIP (CPPS-MIP), which includes three sets of constraints to enforce

feasibility requirements, institutional and physician preferences, and calculate the

HCS. The objective of CPPS-MIP is to maximize the HCS while minimizing violations

of physician preferences.

For a 51-week time horizon and a physician pool which includes 9 attending physi-

cians and 7 fellows, no feasible solution to this MIP is found within 48 hours using

CPLEX 12.4. However, a feasible schedule can be constructed using an iterative

heuristic which incorporates modified versions of CPPS-MIP. We show that this

heuristic produces a physician schedule which achieves an optimality gap of 3.42%

for the scheduling instance faced by Children’s for this time period.

We tested our solution approach using problems of different size and make, and

investigated the benefits of variations to the heuristic incorporated into our solu-

tion approach. We also developed an alternative model formulation with the goal of

improving on the efficiency of the heuristic.

1.1.3 Contribution

Attempting to satisfy physician preferences when faced with increased duty hour re-

strictions creates a complex scheduling problem. Our solution approach facilitates re-

source optimization, and automated schedule construction requires significantly less

time than manually constructing such a schedule. We are the first to consider fa-

miliarity among oncoming physicians at shift change during schedule construction.

Schedules which maximize continuity, in combination with other methods for improv-

ing communication, have the potential to improve handoff efficiency.

We generated 6-month schedules for attending physicians which were implemented

in the PICU at Children’s Healthcare of Atlanta in 2011 and 2012.
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1.2 Medical Resident Rotation and Shift Scheduling

Most teaching hospitals experience two physician scheduling problems: (1) the assign-

ment of residents to rotations (i.e., “rotation assignment”) to both meet patient care

demand and satisfy educational requirements and (2) the scheduling of day-to-day

shifts (i.e., “shift scheduling”). In order to maximize their education, medical resi-

dents are often assigned to rotations in various hospitals and/or medical services to

receive instruction during their training. These rotations require varying numbers of

residents of different levels of experience to provide coverage to meet demand. Manu-

ally constructing a schedule which assigns residents to rotations can be a cumbersome

task, particularly if there are a large number of rotations to cover with complicated

demands with regards to the number and types of residents preferred for assignment.

We discuss this problem as faced in the Department of Surgery Residency Program

at Emory University School of Medicine (EUSOM).

Day-to-day shift scheduling of these residents is made additionally difficult due to

increased duty hour restrictions [1]. One of the most recent restrictions implemented

is the requirement that 1st-year residents be on duty for no more than 16 consecutive

hours. This prevents the scheduling of 1st-year residents to back-to-back day and

night shifts, a scenario which was previously standard practice. Training hospitals

must find ways to overcome scheduling shortages when duty hour restrictions make

past scheduling practices infeasible. EUSOM is one such program that has identified

shortages while trying to construct day-to-day shift schedules.

1.2.1 Objectives

Resident physician rotation assignment and shift scheduling must adhere to rules

governing resident education, work hours, and rest periods, but must also balance the

objectives of maximizing resident experience and patient care. In hopes of alleviating

the burden of manually constructing a rotation assignment, which is often a time
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consuming task, our goal is to create a user-friendly automated tool which can be

used in current and future years with varying numbers of residents and rotation

demands.

The combination of ACGME duty hour restrictions and physician preferences

complicate day-to-day shift scheduling of residents. One common preference among

attending physicians at EUSOM is that 1st-year residents be given responsibility for

all night and weekend shifts. Our analysis of the impact of duty hour restrictions and

these preferences on the feasibility of scheduling inform decision-making with regards

to resident shift scheduling.

1.2.2 Methodology

We developed two integer programming (IP) models with the goals of creating feasible

assignments of residents to rotations over a one-year period (Resident Rotation As-

signment Model (RRA-IP)), and constructing night and weekend call-shift schedules

for the individual rotations (Surgical Resident Shift Scheduling Model (SRSS-IP)).

These models create the ability to capture various duty-hour rules and constraints,

test multiple what-if scenarios, and largely automate the process of schedule genera-

tion. We tested these models using scheduling constraints faced in the Department

of Surgery at EUSOM.

We performed a detailed analysis of the performance of RRA-IP with varying

objective functions. The complete objective function includes four objectives, namely

(i) minimize weighted demand violations, (ii) minimize deviation from equality of

assignments for residents in the same group, (iii) minimize denied resident requests

for service assignments during specific periods, and (iv) maximize assignments to

desirable services, of which the first two have higher priority. We limited the objective

function to only the highest priority objectives to determine the impact on solution

time and quality of the rotation schedule. We also investigated variations to education
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requirements for residents, namely the requirements that residents of a given level

and type require similar (or identical) experiences in the course of a year. Finally,

we modified the constraints which enforce these education requirements in hopes of

improving solution times.

We developed an Excel-based decision support tool for entering parameter values

such as the numbers of residents, services, demands, and education requirements,

without needing modifications to the constraints in RRA-IP. We constructed a 1-year

rotation schedule using RRA-IP and find that in comparison to a manual schedule

constructed for the same time period, it performs better with respect to solution time

and equality of assignments for residents in the same group.

We used SRSS-IP to investigate how shift lengths and specific duty hour restric-

tions impact schedule feasibility given physician preferences (i.e., nights and weekends

staffed by 1st-year residents). For education purposes, it is important that residents

work as many daytime shifts as possible. We tested variations to the duty hour re-

striction limiting residents to 80 duty hours per week, when averaged over four weeks,

and we considered varying weekday, night, and weekend shift lengths to determine

the impact on resident education (specificially, the number of daytime shifts that can

be assigned).

1.2.3 Contribution

Allocating residents to rotations more efficiently could have positive impacts on pa-

tient care [27], resident education [20], and compliance with duty-hour restrictions

[44]. The Resident Rotation Assignment Model we have developed is general and

can be used to generate schedules at EUSOM as well as in other residency programs,

even if the number of residents, number of rotations to cover, and demands of those

rotations change over time. The model constructs schedules faster than can be done
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manually, and there is a sense of fairness among residents when a schedule is con-

structed by an objective model. An easy-to-use automated tool which incorporates

these models could be rapidly adopted by programs throughout the country.

The shift scheduling model we present provides a means of understanding the

impact of shift lengths and duty hour restrictions on resident education. It is possible

to construct day-to-day shift schedules given current scheduling practices (i.e., 1st-

year residents staffing night and weekend shifts), but with potential negative impacts

on resident education. Relaxing ACGME duty hour restrictions limiting the number

of allowable duty hours worked per week by a small margin could provide a means

of improving resident education by increasing the number of daytime shifts assigned

to each resident. Alternatively, reducing daily workloads or changing the preferred

scheduling practices could provide an additional solution.

1.3 Task Assignment for Equity and Maximal Space Uti-
lization

Manually constructing a staff schedule can be a difficult process, particularly if faced

with conflicting objectives, non-homogeneous staff members, multiple tasks, and space

availability limitations. Mathematical modeling could provide a tool for constructing

such a schedule, balancing the complex factors at play.

1.3.1 Objectives

In hospital settings, it is not uncommon for physicians to be assigned to different tasks

in a given week and from week to week, where each task may have different demands

for physicians, and physician preferences and availability, both by day and task,

complicate schedule construction. In the Department of Gynecology and Obstetrics at

Emory University Hospital (Emory OB/GYN), a group of heterogeneous physicians

are required to staff a number of assignments, including Labor and Delivery, the

Emergency Room, two outpatient clinics, and Surgery. Some of these assignments
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have fixed demands for physicians, while others should receive coverage if possible

given physician and space availability. Physicians in the scheduling pool have varying

availabilities, requirements, and preferences. Any assignment of physicians to tasks

should maximize fairness with regards to a number of different metrics.

Our goal is to provide an automated tool for constructing physician schedules

which satisfy demand and meet all objectives within feasibility requirements.

1.3.2 Methodology

We present an integer programming model, the Physician Scheduling model (PS-IP),

for assigning physicians with non-homogeneous personal preferences and requirements

to a set of tasks with varying demand and space availability. The model considers

a large number of objectives from maximizing fairness of assignments to minimizing

undesirable scheduling scenarios (e.g., assignments to surgery and night call in the

same day). We test PS-IP by attempting to construct a 6-month schedule using con-

straints and vacation requests from Emory OB/GYN. After showing that no feasible

solution exists due to a shortage of physicians to meet all demand (even when remov-

ing vacation requests), we relax a constraint preventing assignments to consecutive

night call shifts. We seek to minimize assignments to consecutive night call shifts,

in addition to the other objectives, and show that a feasible solution is possible in

this case. We investigate alternatives to the objective function to determine the best

option for meeting scheduling goals.

1.3.3 Contribution

We developed a model to solve a physician scheduling problem which includes a

non-homogeneous physician pool, various tasks, and multiple objectives, while also

considering availability of space. Using PS-IP, we solve this problem faced by Emory

OB/GYN within minutes.
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CHAPTER II

PHYSICIAN SCHEDULING FOR CONTINUITY: AN

APPLICATION IN PEDIATRIC INTENSIVE CARE

When the care of a patient is transferred from one physician (MD) or team of physi-

cians to another, a handoff takes place, whereby all rights and responsibilities regard-

ing the patient change hands. In many cases, the first introduction an MD has with a

patient’s case is from another MD during a handoff. The communication that occurs

between MDs at this time is a “vital link in the continuity of patient care” [43].

While many issues require careful discussion during a handoff, familiarity with

a patient prior to taking responsibility of their care may help reduce the impact of

a less than effective handoff and lead to a sense of continuity for the physician and

patient alike. An MD schedule which meets all feasibility requirements (such as com-

pliance with duty hour restrictions), satisfies physician preferences (when possible),

and maximizes the likelihood of familiarity between physicians and their patients, is

one approach to improving continuity and potentially handoff efficiency.

Optimized physician scheduling can provide a means of maximizing continuity

within the confines of duty hour restrictions. In this chapter, we present a modeling

and solution approach for assigning physicians to service (daytime) and call (night)

shifts over a one-year period. Our approach is unique in that it seeks to make assign-

ments which maximize continuity by considering expected familiarity of physicians

with patients transferred to their care upon starting each shift.
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2.1 Introduction

In an inpatient setting where the average patient length of stay (LOS) exceeds one day,

patients are likely to be treated by multiple physicians including attending physicians

and residents. In 2003 and again in 2011, the Accreditation Council for Graduate

Medical Education (ACGME) instituted work hour restrictions greatly limiting the

hours that residents can work [2]. These increased restrictions further contribute to

fragmentation of care, or the treating of individual patients by multiple physicians.

This is due to the fact that medical residents may be on duty for shorter periods of

time than was allowed prior to the implementation of the new duty hour restrictions,

and therefore may not be able to treat a patient during his entire stay in the hospital.

Increased duty hour restrictions also force a trend towards night shift work in inpatient

hospital settings and create concerns regarding negative impacts on education of

residents, schedule flexibility, and continuity of care [18].

Continuity of care can have impacts on the quality of patient care. It has been

shown that patient satisfaction is improved by continuity of care [40]. In one study,

Epstein et al. (2010) observe a negative relationship between fragmentation of care

and patient length of stay [16]. Rodriguez et al. (2010) investigate the impacts that

the length of time surgical residents spend on individual rotations has on continuity of

care, and find that rotations lasting only one month in duration are insufficient [38],

though this is often the norm. In a follow-up study, Turner et al. (2012) find that

simply increasing the length of surgical rotations beyond one month is not enough

to improve continuity of care. The authors offer other suggestions for improving

continuity, including an apprenticeship model which assigns residents to one or two

supervising physicians for the duration of their assignment to a rotation [49].

Fragmentation of care caused by increased duty hour restrictions means more

handoffs of patients from one physician’s care to another, increasing the risk for

communication errors occurring during handoff due to increased frequency [50, 52].
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Such communication errors can place patients at risk. Flawed communication at

handoff has become “widely recognized as a leading safety hazard in health care”

[28]. For example, Pickering et al. (2009) developed a tool for measuring the level of

corrupted information shared at handoff [36]. The quality of communication between

MDs at handoff largely impacts patient care, and efforts can be made to improve

communication and identify best practices [3, 37, 43].

In this chapter, we present a mixed integer programming (MIP) model which con-

structs physician schedules that maximize continuity and familiarity by utilizing an

objective scoring method for measuring continuity at each handoff. In Section 2.2,

we outline the physician scheduling problem faced by many institutions where hospi-

talized patients are treated by multiple physicians due to their length of stay in the

hospital, and we discuss the scoring method we developed for measuring continuity.

We present the MIP we developed, and discuss our solution approach. In Section 2.3,

we provide results from an application of our methods to the Pediatric Intensive Care

Unit (PICU) at Children’s Healthcare of Atlanta at Egleston (Children’s). We also

discuss applications to units and institutions with different preferred schedule struc-

tures. In Section 2.4, we present results from modifications to our solution approach

as well as an analysis of our methods applied to problems of different size. In Section

2.5, we present an alternative model for solving this scheduling problem. We discuss

implementation of our methods in Section 2.6 and summarize our findings in Section

2.7.

2.2 Problem Description and Model

Joint scheduling of specialty residents and/or subspecialty fellows (we use the term

“residents” to refer to physicians in both of these groups) along with other physicians

(e.g., attendings) is a complex problem due to ACGME duty hour restrictions as well

as individual physician preferences. To abide by ACGME restrictions, residents may
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be scheduled a maximum of 80 duty hours per week when averaged over four weeks,

and may be scheduled for a maximum of 24 hours of continuous duty, with at most 4

additional hours to ensure an effective transfer of care [1]. An 8-hour layoff is required

between scheduled duty periods (10 hours is recommended), and residents must have

at least 14 hours free of duty after 24 hours of in-house duty. Residents must have

one day per week free of duty when averaged over four weeks, and may be scheduled

for in-house call (i.e., the resident must remain on site) at most once every third night

when averaged over four weeks. In addition to these requirements, a feasible schedule

must satisfy the expected patient demand for MDs.

We investigate the problem of scheduling staff under such restrictions in the PICU

at Children’s. This PICU is a 30-bed multidisciplinary medical-surgical quaternary

care unit which cares for acutely ill patients, and is part of the largest pediatric

healthcare system in the country. A typical daily schedule for the PICU includes 2

attendings and 2 fellows on service during the day, and 1 attending and 1 fellow on

call at night (in addition to up to 4 residents on service during the day, and 2 on

call at night). According to the Virtual PICU Performance System (VPS), a national

PICU database [51], of 26 PICU’s around the country that submitted data for at

least 1 quarter in 2011, only 7 (including Children’s) have 24 or more beds, and only

Children’s schedules fellows to work night call shifts in house. Thus, the scheduling

problem faced at Children’s is challenging due to size and complexity, as compared

to other PICU’s.

When scheduling staff, there are often institutional or individual preferences that

are unique to each situation. In the PICU at Children’s for example, a block service

schedule structure has been implemented with the goal of creating continuity in the

unit. Specifically, attending physicians are scheduled to be on-service for one week

at a time (i.e., 7-day service block) and prefer not to exceed that limit, and fellows

are on-service for overlapping 14-day periods (i.e., one fellow starts a 14-day service

12



block every Monday). Additional individual preferences with regards to specific days

on or off service or night-call also are taken into account when constructing an MD

schedule for the unit, a process which was previously performed manually. For past

schedules, manual construction of a 6-month attending-only schedule (which is not

highly regulated by the ACGME) required several hours, with additional time invested

on an ongoing basis to accommodate schedule changes.

In light of these constraints and preferences in scheduling, our goal is to develop

an efficient and effective approach for assigning physicians to day and night shifts

such that physician and patient continuity is maximized, within the boundaries of

hard feasibility constraints and soft physician preferences. To measure the continuity

of a schedule, we developed the Handoff Continuity Score, or HCS.

2.2.1 Handoff Continuity Score

Intuitively, a physician has more familiarity with a patient’s progress and current

state if she treated the patient for multiple consecutive days. Conversely, returning

to duty after a multi-day break may require a readjustment period for the physician to

re-familiarize herself with the patient’s condition. So given a physician duty schedule,

we measure the continuity at each handoff based on two basic assumptions:

• A physician’s familiarity with her patients increases with multiple (possibly

successive) on-duty days where the physician cares for the patients.

• A physician’s familiarity decreases as the number of recent days off-duty in-

creases.

To capture the familiarity felt by physicians at handoff for each previous day

worked within a specific time period, we developed the familiarity factors reported

in Table 1. These familiarity factors are based on a five-day period (i.e., the average

patient length of stay in the PICU at Children’s) and have a seemingly inverse expo-

nential relationship. These factors were developed based on informal discussions and
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Table 1: Familiarity Factors

Previous days worked Familiarity Factor
< 1 day ago 0.5

[1,2) days ago 0.25
[2,3) days ago 0.15
[3,4) days ago 0.075
[4,5) days ago 0.025

surveys of the attending physician group at Children’s at multiple meetings. Linear

familiarity factors were considered (and testing revealed similar results with linear

factors), but this particular attending physician group suggested that there was not

a linear relationship between the familiarity felt after having worked one up to five

days prior to a handoff. Several formats for the familiarity factors were proposed and

discussed, but those we have chosen were considered to be “most appropriate” for the

physician group in this PICU. We also investigated the use of factors which consider

time periods shorter and longer than the average patient length of stay, but a five-day

period was identified to be most appropriate as it is a good “global marker” for this

patient population. Thus, while the factors in Table 1 are specific to the group at

Children’s, they are also flexible and can be adjusted for other units and institutions

based on their own perceptions of continuity.

To determine the continuity of a schedule, we assign a continuity score between

0 and 1 to each oncoming physician at shift change. This score is equivalent to

the summation of familiarity factors corresponding to each previous day worked by

the physician. For example, if a physician is starting a shift after having worked 2

days and 4 days previously, they receive a score of 0.15 + 0.025 = 0.175. A score

of 1 implies the greatest familiarity. The score for each handoff is calculated as the

average continuity score over all oncoming physicians, and for a complete physician

schedule, we average these handoff scores to determine the overall HCS. For more
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details on the development of the HCS, see [42].

2.2.2 A Mixed Integer Programming Model

We developed a mixed integer programming model (MIP) for automated physician

schedule generation. The MIP seeks to maximize the HCS (i.e., continuity) while

conforming to feasibility constraints and satisfying MD preferences when possible.

Optimization methods applied to scheduling staff in a hospital setting is not a new

concept. The problem of scheduling nurses to shifts in a hospital has been studied

extensively; see [9, 10] for comprehensive reviews. Beaulieu et al. (2000) present

a mathematical model for scheduling emergency room physicians to shifts over a 6-

month period [4]. Sherali et al. (2002) use a mixed-integer program for scheduling

residents to night-shifts over a 4-5 week period [41]. Rousseau et al. (2002) develop a

flexible solution approach applying constraint programming, local search, and genetic

algortihms to the physician scheduling problem faced by various units/institutions

with minimal customization [39]. Topaloglu (2006) assigns emergency medicine res-

idents to day and night shifts using goal programming [45], and in a later paper,

applies sequential and weighted methods to a multi-objective optimization model

for assigning residents to night-call shifts while considering levels of seniority [46].

Ovchinnikov and Milner (2008) develop a user-friendly spreadsheet model to assign

first through fourth year residents to night-call and emergency rotation shifts in a

radiology department [35], and Cohn et al. (2009) solve multiple nested IP models

to assign 10-20 residents to various types of night-call shifts (e.g., primary, backup)

in three different hospitals over a 1-year period [11]. Brunner et al. (2010) present

a branch and price algorithm for constructing daily physician schedules with flexible

shift start times and shift lengths, for a scheduling horizon of up to 6 weeks [8].

Other relevant scheduling problems addressed in the literature include airline crew

scheduling [21, 26]. Similar to the physician scheduling problem that we address, crew
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scheduling involves extensive duty hour restrictions. Ernst et al. (2004) compile a

detailed list of previous work in personnel scheduling, including problem type and

solution approach [17].

The Children’s PICU Physician Scheduling MIP (CPPS-MIP) we developed shares

some characteristics with previous work. Turner (2011) develops optimization models

for assigning surgical residents to individual patients to maximize continuity of care

and education of residents by considering expected surgical cases for each resident

[48]. However, to the best of our knowledge, we are the first to consider the benefits

of optimized MD shift scheduling on continuity. CPPS-MIP is general and can be

easily applied to various units and institutions with different preferences where each

day is divided into two non-overlapping time periods, each period starting at the same

time every day. This means that on any given day, an MD can be scheduled to be

on service sometime between the hours of 8am and 4pm, for example, and/or on call

sometime between 4pm and 8am the following day. However, different shift types are

possible in each time period (e.g., 8am - 4pm vs. 8am - 12pm service shift).

The notation we use in CPPS-MIP is given in Tables 2, 3, and 4.

Some constraints in CPPS-MIP are applicable to a majority of institutions (con-

straints (1a) through (1k)), while others are more specific to the problem faced at

Children’s due to physician preferences (constraints (2a)-(2i)). Constraints (3a)-(3c)

calculate the HCS, and (3c) and (3d) form the objective function.

The following constraints enforce the feasibility of the MD schedule. Each day,

there is a demand for physicians during each time period, denoted by constraints

(1a), which can be written for different physician groups such as residents of all

levels, attendings only, fellows only, etc. ACGME requirements must be satisfied by

the schedule for residents, corresponding to a maximum of 80 duty hours per week,

averaged over four weeks (constraints (1b)), and a maximum of 28 hours worked

consecutively, where we assume that 4 of those hours are used to ensure an effective
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Table 2: Children’s PICU Physician Scheduling MIP (CPPS-MIP) - Sets and de-
scriptions

Set Description
A,R Sets of attending physicians and residents, respectively
I Set of all physicians, I = A ∪R

Rt
Sets of all residents of type t (e.g. R1=1st year residents,..., Rn=fellows),
R =

⋃
i∈{1,2,...,n}Ri

J Set of days in the planning horizon, J = {1, 2, ..., N}

L
Set of scheduling time periods in each day = {1, 2}, 1: day-service, 2: night-
call

Kl Set of shift types for time period l in L
W Set of weeks in the planning horizon, W = {1, 2, ..., N/7}

C1
Set of doubles (k1, k2) such that k1 ∈ K1, k2 ∈ K2, and working shifts k1

and k2 which start on the same day requires 24+ consecutive hours on duty

C2

Set of doubles (k1, k2) such that k1 ∈ K2, k2 ∈ K1, and working shift k1

on some day j and shift k2 on day j + 1 requires 24+ consecutive hours on
duty

Ĉ1

Set of triples (k1, k2, k3) such that k1,k3 ∈ K1, k2 ∈ K2, and working shifts
k1 and k2 on some day j and then shift k3 on day j + 1 would require 29+
consecutive hours on duty

Ĉ2

Set of triples (k1, k2, k3) such that k1,k3 ∈ K2, k2 ∈ K1, and working shift
k1 on some day j and then shifts k2 and k3 on day j + 1 would require 29+
consecutive hours on duty

T
Set of doubles (k1, k2) such that k1 ∈ K1, k2 ∈ K2, and on any given day,
there are less than 10 hours between the end of k1 and the start of k2

Ti

Set of doubles (k1, k2) such that k1,k2 ∈ Ki and there are less than 10 hours
between the end of k1 on any given day and the start of k2 on the following
day, i ∈ {1, 2}

T̂1

Set of doubles (k2, k3) such that k2 ∈ K2, k3 ∈ K1, and there are less than
14 hours between the end of k2 on any given day and the start of k3 on the
following day

T̂2
Set of doubles (k1, k2) such that k1 ∈ K1, k2 ∈ K2, and there are less than
14 hours between the end of k1 and the start of k2 on the same day

℘ Set of physician groups (e.g., ℘ = {A,R,R1 ∪R2, ...})

BP
Set of possible service block lengths (in days) for physicians in group P ,
P ∈ ℘ (e.g., BA = {7})
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Table 3: Children’s PICU Physician Scheduling MIP (CPPS-MIP) - Decision Vari-
ables and descriptions

Decision Variable Description

Xijk
1 if physician i works shift k on day j; 0 otherwise. i ∈ I,
j ∈ J , k ∈

⋃
l∈{1,2}Kl

Yijn

1 if physician i is assigned to a service block of length
n days starting on day j; 0 otherwise. i ∈ I, j ∈ J ,
n ∈ {1, 2, ..., N − j + 1}

Dijl

1 if physician i works shifts in two consecutive time peri-
ods beginning with time period l on day j; 0 otherwise.
i ∈ I, j ∈ J , l ∈ {1, 2}

Rijl
continuity score for physician i at start of time period l
on day j. i ∈ I, j ∈ J , l ∈ {1, 2}

R̂ijl
Rijl if physician i works during time period l on day j;
0 otherwise. i ∈ I, j ∈ J , l ∈ {1, 2}

Ωij

1 if physician i is assigned to consecutive service blocks
beginning with a block starting on day j; 0 otherwise.
i ∈ I, j ∈ J

transfer of care and are not considered duty hours (constraints (1c)). A 10-hour rest is

recommended between scheduled duty periods (constraints (1d)), and residents must

have at least 14 hours free of duty after 24 hours of in-house duty (constraints (1e)).

Residents must have one day per week free of duty, when averaged over four weeks

(constraints (1f)-(1h)), and may be scheduled for in-house call at most once every

third night (constraints (1i)). Given that multiple shift types are available during

each time period, there is an additional feasibility constraint requiring that no MD

be scheduled for overlapping shifts (constraints (1j)). Constraints (1k) are required

if 1st year residents are available for scheduling. Physicians in this group may work a

maximum of 16 consecutive hours, and therefore may not be assigned to duty shifts

in two consecutive time periods.
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Table 4: Children’s PICU Physician Scheduling MIP (CPPS-MIP) - Parameters and
descriptions

Parameter Description
N Length of scheduling horizon, in days

N̂
Number of past days to consider when determining HCS (e.g., N̂
= 5 = average patient length of stay in the PICU at Children’s)

vljP
demand for physicians in group P during time period l on day j.
P ∈ ℘, j ∈ J , l ∈ {1, 2}

L̄k length (in hours) of shift k. k ∈
⋃
l∈{1,2}Kl

Qir
1 if resident i is available for scheduling in the PICU during week
r; 0 otherwise. i ∈ I, r ∈ W

ePjn

number of physicians in group P that must be scheduled to a
block of length n which starts on day j. P ∈ ℘, j ∈ J ,
n ∈ {1, 2, ..., N − j + 1}

Fm
familiarity factor corresponding to a shift worked [m− 1,m) days

ago, m ∈
{

1, 2, ..., N̂
}

ZP

the maximum allowable deviation from the number of service shifts
a physician in group P is scheduled from the amount they would
work if all service shifts were assigned evenly among that group.
P ∈ ℘

Oijl
0 if physician i requested not to work during time period l on day
j, 1 otherwise. i ∈ I, j ∈ J , l ∈ {1, 2}

Uijl
1 if physician i requested to work during time period l on day j, 0
otherwise. i ∈ I, j ∈ J , l ∈ {1, 2}

(1a)
∑

k∈Kl

∑
i∈C Xijk = vljP ∀j ∈ J , l ∈ L, P ∈ ℘

(1b)
∑

l∈L
∑

k∈Kl

∑
j∈{m,m+1,...m+27} L̄kXijk/4 ≤ 80 ∀i ∈ R

m ∈ {1, 2, ..., N − 27}

(1c)
Xijk1 +Xijk2 +Xi(j+1)k3 ≤ 2 ∀i ∈ R, (k1, k2, k3) ∈ Ĉ1

j ∈ {1, 2, ..., N − 1}

Xijk1 +Xi(j+1)k2 +Xi(j+1)k3 ≤ 2 ∀i ∈ R, (k1, k2, k3) ∈ Ĉ2

j ∈ {1, 2, ..., N − 1}
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(1d)

Xijk1 +Xijk2 ≤ 1 ∀i ∈ R, j ∈ J , (k1, k2) ∈ T

Xijk1 +Xi(j+1)k2 −
∑

k∈K2
Xijk ≤ 1 ∀i ∈ R, (k1, k2) ∈ T1

j ∈ {1, 2, ..., N − 1}

Xijk1 +Xi(j+1)k2 −
∑

k∈K1
Xi(j+1)k ≤ 1 ∀i ∈ R, (k1, k2) ∈ T2

j ∈ {1, 2, ..., N − 1}

(1e)

Xijk1 +Xijk2 +Xi(j+1)k3 ≤ 2 ∀i ∈ R

j ∈ {1, 2, ..., N − 1}

(k1, k2) ∈ C1, (k2, k3) ∈ T̂1

Xijk1 +Xi(j+1)k2 +Xi(j+1)k3 ≤ 2 ∀i ∈ R

j ∈ {1, 2, ..., N − 1}

(k1, k2) ∈ C2, (k2, k3) ∈ T̂2

(1f)

Xijk −Dij1 ≤ 0 ∀i ∈ I, j ∈ J , k ∈ Kl, l ∈ L

Xijk −Dij2 ≤ 0 ∀i ∈ I, j ∈ J , k ∈ K2

Xi(j+1)k −Dij2 ≤ 0 ∀i ∈ I, j ∈ {1, 2, ..., N − 1},

k ∈ K1

(1g)
Dij1 −

∑
l∈L
∑

k∈Kl Xijk ≤ 0 ∀i ∈ I, j ∈ J

Dij2 −
∑

k∈K2
Xijk −

∑
k∈K1

Xi(j+1)k ≤ 0 ∀i ∈ I, j ∈ {1, 2, ..., N − 1}

(1h)
∑

j∈{m,m+1,...m+27}Dij1/4 ≤ 6 ∀i ∈ R

m ∈ {1, 2, ..., N − 27}

(1i)
∑

k∈K2
Xijk +Xi(j+1)k +Xi(j+2)k ≤ 1 ∀i ∈ R, j ∈ {1, 2, ..., N − 2}
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(1j)
∑

k∈Kl Xijk ≤ 1 ∀i ∈ I, j ∈ J , l ∈ L

(1k)

∑
k∈K1

Xijk +
∑

k∈K2
Xijk ≤ 1 ∀i ∈ R1, j ∈ J∑

k∈K2
Xijk +

∑
k∈K1

Xi(j+1)k ≤ 1 ∀i ∈ R1, j ∈ {1, 2, ..., N − 1}

As previously mentioned, MDs in the PICU at Children’s prefer a block structure

to their service schedule, so there are additional “preference constraints” in our MIP.

Constraints (2a)-(2c) are necessary for scheduling MDs according to the preferred

block structure. Constraints (2a) ensure that an MD assigned to a service block

is scheduled to work the appropriate shifts corresponding to that block. A prede-

termined number of MDs of each type must be assigned to each block (constraints

(2b)), and MDs may not work overlapping blocks (constraints (2c)). It is possible to

be assigned to consecutive service blocks, but with a penalty (constraints (2d)).

(2a)
∑

k∈K1
Xisk ≥ Yijn ∀i ∈ P , s ∈ {j, j + 1, ..., j + n− 1}

j ∈ {1, 2, ..., N − n+ 1}, n ∈ BP , P ∈ ℘

(2b)
∑

i∈P Yijn ≥ ePjn ∀j ∈ {1, 2, ..., N − n+ 1}, n ∈ BP , P ∈ ℘

(2c) Yijn + Yikr ≤ 1 ∀i ∈ P , n ∈ BP , k ∈ {j, j + 1, ..., j + n− 1}

r ∈ {1, 2, ..., N − k + 1}

j ∈ {1, 2, ..., N − n+ 1}, (j, n) 6= (k, r)

P ∈ ℘

(2d) Yijn + Yi(j+n)r ≤ 1 + Ωij ∀i ∈ P , n ∈ BP , j ∈ {1, 2, ..., N − n+ 1},

r ∈ {1, 2, ..., N − j − n+ 1}, P ∈ ℘

Some constraints in our MIP that are specific to the PICU at Children’s, but may

be modified for other units, include the following. Attending physicians prefer not to
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work two consecutive call shifts if on service in between those shifts (constraints (2e)),

and over the scheduling horizon, the number of days on service for each MD should

be close to average for each physician type (constraints (2f)). There are two types

of service shifts (1: 8am-4pm; 2: 8am-12pm) and 1 type of call shift (3: 4pm-8am).

MDs in the PICU prefer a fellow work shift 3 on weekend days only if he or she was

scheduled for shift 1 (constraints (2g)), and fellows may only work shift 2 on any day

if they were assigned to shifts 1 and 3 the previous day (constraints (2h)). Shift 2 is

designed to allow time for effective transfer of care following a 24-hour shift.

(2e)
∑

k∈K2

(
Xijk +Xi(j+1)k

)
+Xi(j+1)l ≤ 2 ∀i ∈ A, k ∈ K1

j ∈ {1, 2, ..., N − 1}

(2f)
∑

k∈K1

∑
j∈J Xijk −

(∑
j∈J v1jP/ |P |

)
≥ ZP ∀i ∈ P , P ∈ ℘

(2g) Xij3 ≤ Xij1 ∀i ∈ Rn, j ∈ {r − 1, r}

r ∈ {7, 14, ..., N}

(2h) 0.5 ·
(
Xi(j−1)1 +Xi(j−1)3

)
≥ Xij2 ∀i ∈ Rn, j ∈ {2, 3, ..., N}

When not scheduled in the PICU, fellows could be doing research or be assigned to

a rotation in Anesthesia (4 weeks during the 3 year fellowship), the Cardiac Intensive

Care Unit (12 weeks), or an elective (4 weeks). Fellows do not take night call during

these rotations. Thus, assuming that these assignments to various rotations are made

in advance of daily scheduling in the PICU, constraints (2i) specify that each fellow

can only be assigned to service and call shifts in weeks they are available (i.e., are

not assigned elsewhere).
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(2i) Xijk ≤ Qir ∀i ∈ Rn, r ∈ W , j ∈ {7r − 6, 7r − 5, ..., 7r}, k ∈ Kl, l ∈ L

The HCS is calculated based on previous days worked by oncoming MDs [42].

Specifically, each MD receives a continuity score between 0 and 1 (1 = most familiar)

computed as the summation of a subset of familiarity factors (Table 1) corresponding

to each day worked in the last 5 days (constraints (3a)). Each handoff score is only

based on the previous days worked by oncoming MDs, not all MDs, so we incorporate

constraints (3b) to capture the scores for oncoming MDs only. The score for each

handoff is the average continuity score over all oncoming MDs. The HCS for the

entire schedule is calculated as the average of all handoff scores (constraints (3c)).

(3a) Rijl =
∑

m∈{1,2,...,N̂} FmDi(j−m)l ∀i ∈ I, l ∈ L

j ∈
{
N̂ + 1, N̂ + 2, ..., N

}

(3b)

R̂ijl ≤
∑

k∈Kl Xijk ∀i ∈ I, l ∈ L

j ∈
{
N̂ + 1, N̂ + 2, ..., N

}
R̂ijl ≥ Rijl +

∑
k∈Kl Xijk − 1 ∀i ∈ I, l ∈ L

j ∈
{
N̂ + 1, N̂ + 2, ..., N

}
R̂ijl ≤ Rijl ∀i ∈ I, l ∈ L

j ∈
{
N̂ + 1, N̂ + 2, ..., N

}
(3c) HCS =

(∑
j∈{N̂+1,..,N}

∑
l∈L

[∑
i∈I R̂ijl/

∑
P∈{A,R} vljP

])
/
(

2N − 2N̂
)

To optimize continuity, our goal is to maximize the HCS. Because preferences

of physicians in the PICU at Children’s must be taken into account, a penalty is

incurred if MDs are scheduled to consecutive service blocks, or if physician requests

are violated (constraints (3d)).

(3d) Penalty =
∑

i∈I
∑

j∈J Ωij +
∑

i∈I
∑

j∈J
∑

l∈L [(1−Oijl) ·Xijl + Uijl ·Xijl]
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Then our objective is: Maximize (HCS - Penalty). Note that since the penalty

increases by increments of 1 and the HCS is between 0 and 1, the MIP will not seek

to increase the HCS by increasing the penalty. In other words, the penalty is exactly

determined by physician requests, and exists to ensure that requests are granted if

feasibly possible and denied otherwise.

2.2.3 Solution Approach

Physicians at Children’s provided us with a manually constructed schedule for the

51-week period from Monday, July 5, 2010 - Sunday, June 26, 2011. The schedule

included only attendings and fellows, so we limit our solution approach discussion

to these two groups. To illustrate the advantage of optimized MD scheduling with

regards to physician and patient continuity, we attempted to use CPPS-MIP to gen-

erate MD schedules for these groups for the same time period. However, a significant

amount of running time was required (no feasible solution was found within 48 hours

using CPLEX 12.4). Note that this and the remaining computational experiments

reported in this chapter were performed on one of two systems ((1) 2.27 GHz Xeon

quad-core processor and 48 GB RAM, or (2) 2.33 GHz Xeon quad-core processor

and 12 GB RAM). The poor performance of CPLEX on CPPS-MIP motivated us

to develop the following heuristic, which finds a feasible solution (assuming enough

physicians are available for scheduling) by fixing some assignments and then solving

CPPS-MIP with a reduced set of decision variables:

Heuristic 1 - Iterative Schedule Construction with Modified CPPS-MIP:

• Step 1: Iteratively assign attending physicians to shifts on a week-by-week

basis, ignoring requests for time off and/or on duty.

• Step 2a: Assign fellows to service blocks using the following simple integer

program, with sets, parameters, and decision variables as defined in Table 5.
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Table 5: Fellows’ Service Block Assignment Integer Program (FSBA-IP) - Sets,
Parameters, and Decision Variables

Set Description
F set of fellows
W set of weeks in schedule horizon

Parameter Description

Gij
1 if fellow i is available to work a 2-week service block
beginning in week j; 0 otherwise. i ∈ F , j ∈ W

Decision Variable Description

Yij
1 if fellow i is assigned to a 2-week service block begin-
ning in week j; 0 otherwise. i ∈ F , j ∈ W

d
maximum number of service blocks assigned to any fel-
low

Fellows’ Service Block Assignment Integer Program (FSBA-IP):

Minimize d

s.t.∑
j∈{1,2,...,W} Yij ≤ d ∀i ∈ F∑

i∈F Yij = 1 ∀j ∈ {1, 2, ...,W}

Yij + Yi(j+1) ≤ 1 ∀i ∈ F , ∀j ∈ {1, 2, ...,W − 1}

Yij + Yi(j+2) ≤ 1 ∀i ∈ F , ∀j ∈ {1, 2, ...,W − 2}

Yij ≤ Gij ∀i ∈ F , ∀j ∈ {1, 2, ...,W}

FSBA-IP fairly assigns fellows to service blocks (fair with respect to the total

number of block assignments given to each fellow over the schedule horizon),

disallowing assignments to overlapping or consecutive service blocks.

• Step 2b: Given the solution to FSBA-IP, next assign fellows to call shifts:

In each week, assign the Monday, Thursday, and Sunday night call shifts to

the fellow on week one of a two-week service block, and assign the Wednesday

and Saturday night call shifts to the other fellow on-service that week. Assign

the Tuesday and Friday night call shifts to one of the fellows not on service

(arbitrary). Note that fellows’ requests for time off at night will be taken into
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account at a later step.

• Step 3: Run CPPS-MIP with fellows’ shifts fixed, optimizing for attending

physicians using the schedule found in Step 1 as a starting point.

• Step 4: Run CPPS-MIP again with fellows’ service shifts and attending physi-

cians’ service and call shifts fixed to solution values from Step 2, optimizing for

fellows’ call shifts.

We used this heuristic to generate MD schedules for the 51-week period. An

optimal solution to FSBA-IP in Step 2a can be found in less than 1 second. Step

3 requires running CPPS-MIP with some variables fixed. After running for 2 hours,

the penalty is minimized and only marginal improvement in the HCS is found up to

48 hours. Therefore, for Step 4, we use the best solution found after running Step

3 for 2 hours. An optimal solution to CPPS-MIP with variables fixed according to

Step 4 requires only a few seconds for this instance.

Using the schedule found by Heuristic 1 to warm start CPLEX, CPPS-MIP could

not find an HCS-improved schedule after running for 48 hours, and the optimality

gap is reported by CPLEX at 25% based on the LP relaxation upper bound. To

close the gap, we need to improve either the heuristic solution, or the upper bound,

or both. Proposition 1 helps us identify a better upper bound, and shows that the

optimality gap of the Heuristic 1 solution is much smaller than the one reported by

CPLEX.

Proposition 1: Let H be the HCS of an optimal N-block schedule (equal-length,

consecutive and non-overlapping blocks) and let H1 = the best HCS of any k-block

schedule, k ≤ n and N mod k = 0. Then H1 ≥ H.

Proof : Let H1 = the best HCS of any k-block schedule. Let ∆ be an optimal N-

block schedule (N mod k = 0). Then ∆ can be broken up into N/k k-block segments.
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Let H = the HCS of ∆. Let X1, X2, ..., XN/k equal the summation of all handoff scores

in block segments 1, 2, ..., N/k, respectively, for the optimal N-block schedule. Then

(P1) H =
(∑

i∈{1,2,...,N/k}Xi

)
/ (2NB)

where B = block length in days. Since H1 = the best HCS of any k-block schedule,

each Xi, i in {1, 2, ..., N/k}, cannot exceed H1 when divided by the number of days

and handoff periods in that k-block period. In other words,

(P2) H1 ≥ Xi/ (2kB)∀i ∈ {1, 2, ..., N/k}

Calculating the summation of both sides of P2 over all i and then taking the

average, we have the following inequality:

(P3) H1 ≥
(∑

i∈{1,2,...,N/k}Xi

)
/ (N/k · 2kB) =

(∑
i∈{1,2,...,N/k}Xi

)
/ (2NB) =H

Thus, by (P3), H1 ≥H.

�

Fellows in the PICU at Children’s work two-week service blocks, which is equiva-

lent to 2 consecutive one-week service blocks, and these blocks coincide with the start

and end days of attending service blocks. Therefore, we can apply this proposition

to both fellows and attendings. Thus, a 51 week schedule for attendings and fellows

at Children’s cannot achieve a higher HCS than 1, 3, and 17 week schedules.

By format of the HCS calculation and the service block structure at Children’s,

the one service block (i.e., one week period) leading up to the start of a schedule

is taken into account when determining the HCS of that schedule. Therefore, given

Proposition 1, we used CPPS-MIP to generate a 4-week schedule, optimizing the

HCS over the last 3 weeks of the schedule in order to determine the best possible 3

week HCS. In the next section, we refer to this 3-week schedule as our “3 week test

problem,” which CPLEX solves in less than 1 minute.
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We can generalize Proposition 1 to instances without the service block structure.

Corollary 1: Let H be the HCS of an optimal N-week schedule and let H1 = the

best HCS of any k-week schedule, k ≤ n and N mod k = 0. Then H1 ≥ H.

The proof for this corollary is identical to that of Proposition 1, with the exception

that the word “block” is replaced with “week” wherever it appears, and block length

“B” is replaced by “7”. An even more general version of this corollary can also be

proven with “week” replaced by “day”.

After first removing the constraints enforcing the service block structure imple-

mented at Children’s (constraints (2a)-(2d)), we used the modified MIP to generate 4

and 5-week schedules (again optimizing over the last 3 and 4 weeks of the schedules,

respectively) to determine the best possible HCS of such schedules without service

blocks.

2.3 Results and Discussion

The HCS for the manual and heuristic-generated schedules (for the 51-week period

from July 5, 2010 through June 26, 2011) are reported in Table 6. We also re-

port the HCS for daytime service shifts, night call shifts, attendings, and fellows,

respectively. For each score presented in Table 6, the heuristic-generated schedule

achieves a statistically significant improvement over the score incurred by the man-

ually generated schedule, determined using a z-test (computed using HCS at each

handoff over schedule horizon). The manual and heuristic-generated schedules each

incorporate the preferred service block structure, and so there is understandably rel-

atively little improvement (6.49%) in the HCS for service shifts. The largest increase

in the HCS (36.87%) is attributed to the night call shifts. The HCS for attend-

ings increased significantly more than the HCS for fellows. 14-day service blocks

for fellows provide concentrated clinical time which is important for education, but
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Table 6: Handoff Continuity Score (HCS) Results

Manual
Schedule

Heuristic-
Generated
Schedule

Percent Increase∗

HCS 0.6627 0.7919 19.50%
HCS - Service

Shifts Only
0.7578 0.8070 6.49%

HCS - Night Call
Shifts Only

0.5676 0.7769 36.87%

HCS - Attending
Physicians Only

0.5961 0.7980 33.86%

HCS - Fellows
Only

0.7293 0.7859 7.76%

Call Shifts without
an On-Service

Physician (N=357)
15%(52) 1.4%(5)

* All statistically significant increases, p < .001 using a z-test.

also provides more continuity for daytime service shifts than the 7-day service blocks

worked by attendings. Therefore, the manually generated schedule had a high HCS

for fellows compared to attendings due to the service block structure. In addition,

ACGME duty hour restrictions provide rigorous constraints which limit much vari-

ability of night call shift assignments for fellows compared to attendings. Therefore

the heuristic could only find marginal (but still statistically significant) improvement

in the HCS for fellows. Note that all physician requests were satisfied by manual and

heuristic-generated schedules.

In addition to the HCS by physician type and time of day, Table 6 also reports the

percentage (and the number) of night call shifts over the schedule horizon without an

on-service physician assigned. While not part of the MIP’s objective, it is intuitive

that a schedule which maximizes continuity would likely have very few night call

shifts where an on-service physician was not scheduled. As reported in the table, the
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Table 7: Test Problem Results and Comparison to Heuristic Solution

Problem
Description

Optimal
Solution

Heuristic 1
Solution

Optimality Gap

3 week schedule 0.8190 - < .01%
51 week schedule - 0.7919∗ 3.42%+

* solution doesn’t improve after running MIP for 48 hours
+ optimality gap based on Proposition 1

heuristic-generated schedule includes only five night call shifts where an on-service

physician is not assigned, compared to 52 in the manually generated schedule.

The heuristic-generated schedule takes no special considerations when scheduling

for the December holidays, but maintains the service schedule structure adopted for

the rest of the year. Inputting the manually generated holiday schedule (Dec. 24 -

Jan. 2) into the heuristic-generated schedule, the HCS for this new schedule is .7826,

still an 18.09% improvement over the manual schedule.

Given the fact that a 51 week block schedule cannot achieve a higher HCS than

a 3 week block schedule based on Proposition 1, we conclude that the HCS for the

heuristic-generated schedule is within 3.42% of optimality. A comparison between

the 3 week test problem and the 51 week heuristic solution is given in Table 7.

To test the applicability of CPPS-MIP to other units and institutions without a

service block structure, as well as the efficiency of the model in such scenarios, we

removed the constraints enforcing the service block structure (constraints (2a)-(2d))

and used Heuristic 1 with this modified MIP to generate a schedule for the same

51-week time period. Results from this analysis are reported in Table 8. We found

that removing the requirements for the service block structure greatly increased the

running time required to reach a good solution. After running the modified MIP for 24

hours for a time horizon of 51 weeks, no improvement beyond the warmstart solution

provided by the heuristic is found, and the optimality gap reported by CPLEX is
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Table 8: HCS Results for General Problem without Service Block Structure

Problem Modified Optimality Gap Optimality Gap
Description CPPS-MIP (CPLEX) (Corollary 1)

Solution
3 weeks 0.9238 < 0.01% -
4 weeks 0.9203 < 0.01% -
12 weeks 0.8775 12.48% 4.88%
27 weeks 0.8599∗ 16.30% 7.43%
51 weeks 0.7719∗ 29.54% 19.68%

∗ no improvement of warmstart solution

29.54%. With Corollary 1, this gap is reduced to 19.68%, which is still quite a large

gap. In light of this, we tested the model on problems with smaller time horizons,

namely 27 weeks and 12 weeks. For the 27 week problem, an optimality gap of 7.43%

can be achieved within 24 hours, using Corollary 1. For the smallest problem that

we tested (i.e., 12 week time horizon), an optimality gap of 4.88% can be achieved in

24 hours.

From this analysis, we see that CPPS-MIP is more effective and Proposition 1

provides a tighter upper bound under service block constraints. The modified MIP

used in the analysis presented in Table 8 is relatively efficient on small problems

(e.g., 12 week time horizon), but doesn’t approach optimality very rapidly for larger

problems. To improve the efficiency of the modified MIP on larger problems, we can

either (1) develop an alternative heuristic for constructing a better initial feasible

schedule without the service block structure, or (2) search for methods to reduce the

upper bound.

In hopes of reducing the upper bound on physician scheduling problems without

the service block structure implemented at Children’s, we considered the inclusion of

additional constraints to limit assignments to multiple consecutive days. We observed
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in solutions to the 3 week and 4 week test problems reported in Table 8 that physi-

cians were assigned to many consecutive days (beyond the 7-day limit implemented

at Children’s). While this may be good for continuity, such assignments can have

negative impacts on physician fatigue and morale. Our goal was to improve the solu-

tion time of these problems by limiting consecutive assignments. However, the large

number of symmetric solutions prevent improvement in solution times. For example,

if we limit the number of consecutive daytime assignments to 7, for example, there

are many possible start days for each possible 7-day period (e.g., Monday, Tuesday,

etc.), and the assignment of one physician is equivalent to the assignment of any

other (unless specific requests for the relevant time periods are considered). Alter-

native methods for reducing the upper bound need to be found, which we leave to

future work. However, we expect that for most practical instances, while no defined

service block structure may be implemented, there will exist other rules with regards

to consecutive days on service. Such rules would limit the range of feasible schedules,

and thus we expect the performance of the modified MIP (with the addition of these

new constraints) to achieve a performance level more in line with that observed for

Children’s.

2.4 Heuristic and Problem Size Variations

We tested alternatives to Heuristic 1 in order to determine if there was a different

heuristic which achieved better results. Areas where we considered creating variations

include Steps 2b, 3 and 4. Step 2b requires the assigning of fellows to night call shifts

according to a prespecified structure. Step 3 of the heuristic, which seeks to find

an optimal schedule for attendings while leaving fellow assignments fixed, is the step

which requires the most running time and has the greatest optimality gap. Once

a reasonable schedule is found (we stopped the MIP at 2 hours), these attending

assignments are fixed, and Step 4 requires running CPPS-MIP again to optimize

32



Figure 1: Descriptions of Original and Alternate Heuristics

fellows’ night call shift assignments.

We tested variations of Heuristic 1 by changing the order of assignments. Essen-

tially, rather than first preassigning fellows to call shifts, we preassign attendings to

call shifts. We then seek to optimize fellows’ night call shift assignments, and then

with these assignments fixed, solve for attendings’ day and night shifts. Figure 1

describes these alternate heuristics in more detail. Heuristics 2 and 3 differ in the

preassignment of night call shifts to attendings. Both of these call structures are

models proposed by physicians in the PICU at Children’s. We originally planned to

test an alternate heuristic which kept the same order of assignments as Heuristic 1,

but changed the fellows’ night call assignments in Step 2b. However, due to ACGME

rules requiring that no fellow be assigned to more than one night call shift in three

days, we see that no improvement in this night call structure can be made in terms of

continuity, and so alterations to it would not likely result in improvements over the

original heuristic.

Results from testing these alternate heuristics with a running time of two hours
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Table 9: Heuristic 1 Variations - Results

Step 3 Step 4
HCS Running

Time
Gap HCS Running

Time
Gap

Heuristic 1 0.7904 2 hours 8.28% 0.7919 < 10 sec. < 0.01%
Heuristic 2 0.7224 < 10 sec. < 0.01% 0.7899 2 hours 8.34%
Heuristic 3 0.7519 < 10 sec. < 0.01% 0.7907 2 hours 8.24%

in Step 4 are reported in Table 9. Heuristic 1 outperforms the alternates, but only by

a very slight margin; there is only a gap of 0.15% between the best and worst HCS

values found following Step 4, and there are no noticable differences in the structures

of the solutions. If we look at the solutions more closely in terms of the objectives

achieved prior to 2 hours, we see that these heuristics perform almost identically (see

Figure 2). Extending the running time to 24 hours reveals no significant differences

(see Figure 3). The majority of improvement in objectives is achieved for each case

prior to a running time of 1 hour (see Figure 4). However, there is some modest

improvement between 1 hour and 2 hours. Thus, given the small difference between

1 hour and 2 hour running times in practice, we conclude that running CPPS-MIP

in the relevant steps for two hours is logical.

We also investigated changing the problem size to determine if Step 3 of Heuristic

1 solves to optimality more quickly with more or less physicians in the scheduling pool.

The PICU at Children’s requires a minimum of 7 attendings, and can accommodate at

most 13 attendings. Therefore, we tested the heuristic with these values, leaving the

number of fellows the same. We also investigated the impact of doubling the number

of attendings and fellows available for scheduling (i.e., 18 attendings, 14 fellows) to

see if there was any impact on efficiency of this step of the heuristic. Figure 5 reports

the LP and IP objectives for these variations to our problem size with a running

time of 24 hours. The figure also reports these values for the original problem size

which includes 9 attendings and 7 fellows. Each of these variations is initialized with

34



Figure 2: LP vs. IP objectives for variations to Heuristic 1 with a running time of 2
hours.

Figure 3: LP vs. IP objectives for variations to Heuristic 1 with a running time of
24 hours.
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Figure 4: LP vs. IP objectives for variations to Heuristic 1 with a running time of 1
hour.

a similar feasible schedule. The variation which includes only 7 attendings achieves

an HCS greater than 0.80 relatively quickly, and reaches an optimality gap of 6.67%

after 24 hours. Variations which include 13 and 18 attendings, respectively, achieve

similarly high HCS values as well, but require significantly longer running times to

achieve those values (i.e., 4 and 18 hours, respectively), and optimality gaps at the

end of 24 hours are 9.57% and 11.14%, respectively.

We conclude that, regardless of the number of attendings available for scheduling,

this problem remains difficult, though slightly less so with only the minimum number

of attendings.
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Figure 5: LP vs. IP objectives in Step 3 of Heuristic 1 for variations to the problem
size with a running time of 24 hours.

2.5 Alternative Model

To determine if we could improve on the running time required by CPPS-MIP, we

developed an alternative model using decision variables which consider the sequence

of shift assignments for each physician, and compare this model to CPPS-MIP. By

altering the formulation in this way, we hope to eliminate many constraints present in

CPPS-MIP through preprocessing. New sets and parameters required by this model

are listed in Table 10. The remaining sets and parameters are identical to those

defined for CPPS-MIP and are listed in Tables 2 and 4.

Decision variables are listed in Tables 11 and 3. Primary decision variables Xiθ

consider the sequence of assignments to shifts for each physician. Therefore, unlike

CPPS-MIP, we assign a unique number to each possible shift in the schedule horizon.

We number these shifts in order of the start time of each shift. For shifts that start

at the same time, the longer shift is numbered first. For an example, see Figure 6.

We can eliminate many constraints present in CPPS-MIP thanks to the format
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Table 10: Alternative Scheduling Model - Sets and Parameters

Set Description

I, I1, I2
Set of all physicians, attending physicians, and residents,
respectively

Klj Set of shifts during time period l on day j, j ∈ J , l ∈ L
K̄ Set of all shifts

∆t

Set of possible sequences for physicians in It, t ∈ {1, 2},
such that each component of ∆t corresponds to a 3-shift
sequence

σ̄tθ
Set of shifts in sequence θ for physicians in It, θ ∈
{1, 2, ..., |∆t|}, t ∈ {1, 2}

Parameter Description

σtθs
shift s in sequence θ for physicians in It, s ∈ {1, 2, 3},
θ ∈ ∆t, t ∈ {1, 2}

Table 11: Alternative Scheduling Model - Decision Variables and descriptions

Decision Variable Description

Xiθ
1 if physician i is assigned to shift sequence θ; 0 other-
wise

Sik 1 if physician i is assigned to shift k; 0 otherwise

of the primary decision variables in this alternative model. We do this by simply

only allowing shift sequences in the sets ∆t which do not violate these constraints.

The eliminated constraints are (1c)-(1e), (1j)-(1k), (2e), and (2g)-(2i). The remaining

constraints are included in this alternative model, with some slight modifications to

accommodate the new variables. For easier comparison with CPPS-MIP, the con-

straints are numbered similarly, with each constraint label preceded by “A.”.

Figure 6: Numbering of Shifts in Schedule Horizon for Alternative Model
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(A.1a)
∑

i∈P
∑

k∈Klj Sik = vljP ∀l ∈ L, j ∈ J , P ∈ ℘

(A.1b)
∑

k∈K̄ L̄kSik/4 ≤ 80 K̄ =
⋃
p∈{m,...,m+27},l∈LKlp, ∀i ∈ I2

m ∈ {1, 2, ..., N − 27}

(A.1f)
Dij1 − Sik ≥ 0 ∀i ∈ I, k ∈ Klj, j ∈ J , l ∈ L

Dij2 − Sik ≥ 0 ∀i ∈ I, k ∈ K2j ∪K1(j+1)

j ∈ {1, 2, ..., N − 1}

(A.1g)
Dij1 −

∑
l∈L
∑

k∈Klj Sik ≤ 0 ∀i ∈ I, j ∈ J

Dij2 −
∑

k∈K̄ Sik ≤ 0 K̄ = K2j ∪K1(j+1), ∀i ∈ I, j ∈ J

(A.1h)
∑

j∈{m,...m+27}Dij1/4 ≤ 6 ∀i ∈ I2, m ∈ {1, 2, ..., N − 27}

(A.1i)
∑

j∈{s,s+1,s+2}
∑

k∈K2j
Sik ≤ 1 ∀i ∈ I2, s ∈ {1, 2, ..., N − 2}

(A.2a)
∑

k∈K1s
Sik − Yijn ≥ 0 ∀i ∈ P , s ∈ {d, d+ 1, ..., d+ n− 1}

d ∈ {1, 2, ..., N − n+ 1}, n ∈ BP

P ∈ ℘

(A.2b)
∑

i∈P Yijn ≥ ePjn ∀j ∈ {1, 2, ..., N − n+ 1}

n ∈ BP , P ∈ ℘
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(A.2c) Yijn + Yikr ≤ 1 ∀i ∈ P , n ∈ BP , k ∈ {j, j + 1, ..., j + n− 1}

r ∈ {1, 2, ..., N − k + 1}

j ∈ {1, 2, ..., N − n+ 1}

(j, n) 6= (k, r), P ∈ ℘

(A.2d) Yijn + Yi(j+n)r ≤ 1 + Ωij ∀i ∈ P , n ∈ BP , j ∈ {1, 2, ..., N − n+ 1}

r ∈ {1, 2, ..., N − j − n+ 1}, P ∈ ℘

(A.2f)
∑

k∈K1j
Sik −

(∑
j∈J v1jP/ |P |

)
− ZP ≥ 0 ∀i ∈ P , P ∈ ℘

(A.3a) Rijl =
∑

m∈{1,2,...,N̂} FmDi(j−m)l ∀i ∈ I, l ∈ L

j ∈
{
N̂ + 1, N̂ + 2, ..., N

}

(A.3b)

R̂ijl ≤
∑

k∈Klj Sik ∀i ∈ I, l ∈ L

j ∈
{
N̂ + 1, N̂ + 2, ..., N

}
R̂ijl ≥ Rijl +

∑
k∈Klj Sik − 1 ∀i ∈ I, l ∈ L

j ∈
{
N̂ + 1, N̂ + 2, ..., N

}
R̂ijl ≤ Rijl ∀i ∈ I, l ∈ L

j ∈
{
N̂ + 1, N̂ + 2, ..., N

}

(A.3c) HCS =
(∑

j∈{N̂+1,..,N}
∑

l∈L

[∑
i∈I R̂ijl/

∑
P∈{I1,I2} vljP

])
/
(

2N − 2N̂
)

(A.3d) Penalty =
∑

i∈I
∑

j∈J Ωij+∑
l∈L
∑

j∈J
∑

i∈I
∑

k∈Klj [(1−Oijl) · Sik + Uijl · Sik]

The next set of constraints are new for this alternative model. Constraints (A.4a)

ensure that variables Sik correspond appropriately with variables Xiθ. Constraints
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(A.4b) guarantee that if a physician is assigned to a shift sequence that ends with

shifts k and k̂, then they must be assigned to another shift sequence which begins

with k and k̂. Finally, each physician must be assigned to a shift sequence which

begins with dummy shift 0 (constraints (A.4c)) and each physician must be assigned

to a shift sequence which ends with dummy shift
∣∣K̄∣∣+ 1 (constraints (A.4d)).

(A.4a)
∑

θ∈∆t:k∈σ̄tθ Xiθ − Sik ≥ 0 ∀i ∈ It, k ∈ K̄, t ∈ {1, 2}

(A.4b)
∑

θ∈∆t:σtθ2=k,σtθ3=k̂Xiθ−∑
θ∈∆t:σtθ1=k,σtθ2=k̂Xiθ

= 0 ∀i ∈ It, k ∈
{

1, ...,
∣∣K̄∣∣− 1

}
, k̂ ∈{

k + 1, ...,
∣∣K̄∣∣}, t ∈ {1, 2}

(A.4c)
∑

θ∈∆t:σtθ1=0 Xiθ = 1 ∀i ∈ It, t ∈ {1, 2}

(A.4d)
∑

θ∈∆t:σtθ3=|K̄|+1 Xiθ = 1 ∀i ∈ It, t ∈ {1, 2}

As in CPPS-MIP, the objective for this model is: Maximize (HCS - Penalty).

We tested this alternative model for the same 51-week time horizon reported in

Table 6. However, due to the large number of variables and constraints required by

this problem, the model could not be constructed using CPLEX 12.4 due to memory

issues. For a 10-week time horizon with the current pool of physicians, there are

over 450,000 possible shift sequences per attending, and almost 800,000 possible shift

sequences per fellow (after preprocessing).

To test the efficiency of this model on a small problem, we chose a time horizon of

only 4 weeks, with 5 attending physicians and 3 fellows. However, no feasible sched-

ule was found up to 24 hours of running the model, with or without the constraints

enforcing the service block structure. When given a feasible schedule as a starting

point (31.71% optimality gap), this alternative model can find an improvement to an

optimality gap of 21.53% up to 24 hours with service blocks, and improves to an opti-

mality gap of 18.70% up to 24 hours without service blocks. With this same problem,
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CPPS-MIP can find an optimal solution (optimality gap < 0.01%) in approximately 2

minutes, with or without the service block structure. Thus, CPPS-MIP outperforms

this alternative model, both on general problems as well as those with a service block

structure.

One possible solution to this memory issue is using column generation techniques

to reduce the number of shift sequences considered at any one time. The addition of

constraints limiting assignments to overlapping sequences may strengthen the model

as well. We leave these steps towards model improvement to future work.

2.6 Implementation

2.6.1 2011 - Challenges and Results

We generated an attending-only schedule for the PICU at Children’s, to be imple-

mented from July 1 - Dec. 23, 2011. Without needing to schedule fellows, and with

the smaller time horizon, we simply used CPPS-MIP to create this schedule, rather

than Heuristic 1. Modifying the MIP and deciding on an appropriate schedule re-

quired many iterations, where a MIP-generated schedule was presented to one or

more physicians in the group, and issues were identified that required the addition

of new constraints in the MIP (see additional constraint definitions in Appendix A).

Attending-only schedules for the 6-month period could be generated by CPPS-MIP

in approximately 2 hours (no additional improvement in the HCS was found up to 48

hours).

The heuristic-generated schedule reported in Table 6 assigned attendings to al-

ternating night call shifts in the weeks they are on service. While this may be best

for continuity, such a schedule would create fatigue and was therefore an unattractive

solution. One standard practice when assigning attendings to call shifts in the PICU

was to assign on-service attendings to work call either Monday or Thursday, as well

as call on either Saturday or Sunday. These MDs were then not assigned to any other
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call shifts during the week. With constraints enforcing this preference, the optimal

schedule assigned one off-service attending to the call shifts on Tuesday, Wednesday,

and Friday. This option was undesirable due to the requirement for consecutive night

call shifts. Therefore, we decided that no one should be assigned to take call two

nights in a row.

As an alternative to scheduling on-service attendings to call either Monday or

Thursday and then once over the weekend, the physicians thought that scheduling

one on-service attending to call shifts on Thursday and Saturday, and the other on-

service attending to call shifts on Monday, Friday, and Sunday, would be an acceptable

assignment and good for continuity. With both of these call models, there were in-

stances where a physician’s requests were denied in order to keep with these preferred

night call structures.

One physician in this group routinely requested to work call on Mondays and

Saturdays during weeks they requested to be on-service. This violates the alternative

call structure. We decided that in weeks where this is the case, the other on-service

attending physician should be assigned to call on Thursday and Sunday.

Each physician in the group has a specific number of day and night shifts on

Monday through Friday, as well as weekend day and night shifts, that should be

worked to satisfy various fellowship and other requirements. These requirements

don’t always coalesce well with the 7-day service blocks, but these requirements, as

well as physician requests, should take priority over the 7-day service blocks and

preferred call structure. Thus, the constraints enforcing the 7-day service blocks, as

well as the preferred call structure, were altered to be soft constraints, where requests

were given precedence in the objective function. Table 12 provides a description of

the MIP versions used to generate a schedule at each iteration, as well as the HCS

for each schedule.

The final MIP-generated schedule (based on Model Version 4, see Table 12) has
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Table 12: Model Development to Find an Acceptable Schedule - descriptions and
Handoff Continuity Score (HCS) for modified MIP versions used to generate schedules
at each iteration

Model Version Description HCS
1 Call structure: on-service attendings on call either Mon-

day or Thursday, then either Saturday or Sunday
0.70

2 Model Version 1, plus the following constraints/changes:
(i) no consecutive call shifts, and (ii) requests take pri-
ority over 7-day service blocks

0.64

3 Call structure: on-service attendings on call either Mon-
day, Friday, and Sunday, or Thursday and Saturday,
plus the following constraints/changes: (i) no consecu-
tive call shifts, and (ii) requests take priority over 7-day
service blocks

0.68

4 Model Version 3, plus the following change: requests
take priority over call structure

0.69

been implemented, with some minor manual modifications. For comparison, an ad-

ditional schedule was constructed manually for the same time period by a physician

at Children’s experienced in schedule construction, and with the same goal of maxi-

mizing continuity, resulting in an HCS of 0.63.

We used Heuristic 1 with these new constraints/modifications to CPPS-MIP to

generate an additional schedule corresponding to the 51-week period between July

5, 2010 and June 26, 2011. The HCS for this new schedule is .7578, still a 14.35%

improvement over the HCS for the manually generated schedule constructed for the

same time period.

2.6.2 2012 - Challenges and Results

Following the positive reception of the 2011 schedule, we generated an attending-only

schedule for the PICU for July 1 - Dec. 23, 2012. No manual schedule was generated

in parallel. The pool of attendings available for scheduling increased from 9 to 11 for

this time period. Using CPPS-MIP, we found a schedule (optimality gap < 1%) in
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Table 13: Attending Physician Requests: 2011 vs. 2012

2011 2012
Attendings 9 11

Requests Average Requests Average Increase∗

On Service 104 11.56 134 12.18 5%
On Call 22 2.44 34 3.09 26%

Off Service 217 24.11 723 65.73 173%
Off Call 212 23.56 687 62.45 165%

* Percent increase per person

approximately 35 minutes. This improvement in running time was largely due to the

extensive personal requests made by attendings for this period, which limited possible

variations to the schedule for purposes of HCS improvement. Table 13 reports the

number of requests made for 2011 and 2012, for the same time periods (i.e., July 1 -

December 23). Requests to be off service or off call increased per person on average

by 173% and 165%, respectively.

This large increase in requests can be partly attributed to the change in formats

that occurred for entering these requests. For the 2011 schedule, attendings made

requests by month, with no predetermined format (see a subset of these requests in

Figure 7). For the 2012 schedule, as a means of structuring the way requests were

entered, we created an Excel spreadsheet for entering requests for each individual day

in the schedule horizon. We gave this spreadsheet to the attendings, and they used

a slight variation of this form for communicating their requests. Figure 8 shows this

form, and a sample of the requests that were made.

Further study is needed to better understand the reason for this large increase

in requests for this period, whether due to the change in request formats or for

reasons more unique to each physician. However, it is clear that with more requests,

automated schedule generation is more efficient. Unfortunately, physician and patient

continuity may suffer. When we remove all physician requests for this time period,
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Figure 7: 2011 Physician Requests Entry Form - Subset

Figure 8: 2012 Physician Requests Entry Form - Subset
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there is an HCS increase of 2.40% which can be significant in terms of continuity.

The number of night call shifts without an on-service physician scheduled is reduced

by 7.41%. If we randomly ignore 50% of requests, the HCS is increased by up to

1.24%, and the number of night call shifts without an on-service physician scheduled

is reduced by up to 5.56% (calculated using 10 instances, 7 of which did not improve

on the HCS with all requests considered within 2 hours). However, for each of these

cases, a large number of requests are denied, as expected.

2.7 Conclusions

Physician preferences and increased duty hour restrictions create a complex schedul-

ing problem when attempting to satisfy all requirements in a manually-generated

schedule. The solution approach presented here facilitates resource optimization,

constructing a feasible schedule in significantly less time than is needed to create a

schedule by hand. Further, by considering familiarity among oncoming physicians,

schedules are produced which maximize continuity. In conjunction with other meth-

ods for improving communication, schedules with greater continuity have the potential

to enhance handoff efficiency.

The HCS provides a means of understanding the continuity of a physician sched-

ule, and together with CPPS-MIP and Heuristic 1, allows for the construction of

schedules which may improve handoff efficiency. However, there exist many factors

not considered in the above analysis (e.g., bed occupancy, new admissions, disease

acuity, and fatigue) which may impact the handoff process. Physician fatigue cannot

be completely eliminated, regardless of the stringency of duty hour restrictions, and

therefore communication failures created by exhaustion will still occur. Future work

includes developing a score as an expansion of the HCS which accounts for familiarity

among oncoming physicians as well as fatigue of physicians signing out.
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While counterintuitive, one can argue that too much familiarity among oncom-

ing physicians could negatively impact the handoff process. Increased familiarity may

cause some oncoming MDs to pay less attention during handoff, thereby possibly miss-

ing important information regarding a patient’s care. Therefore, optimized scheduling

to maximize familiarity among oncoming physicians can only improve handoff effi-

ciency in combination with other steps for improving communication at handoff (e.g.,

sign-out checklist).
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CHAPTER III

AUTOMATED MEDICAL RESIDENT ROTATION AND

SHIFT SCHEDULING TO ENSURE QUALITY

RESIDENT EDUCATION AND PATIENT CARE

At academic teaching hospitals around the country, the majority of clinical care is

provided by resident physicians. During their training, medical residents often rotate

through various hospitals and/or medical services to maximize their education. De-

pending on the size of the training program, manually constructing such a rotation

schedule can be cumbersome and time consuming. Further, rules governing allowable

duty hours for residents have grown more restrictive in recent years [2], making day-

to-day shift scheduling of residents more difficult. These rules limit lengths of duty

periods, allowable duty hours in a week, and rest periods, to name a few.

In this chapter, we present two integer programming models (IPs) which (1) assign

surgical residents to services over a 1-year time period, and given that assignment,

(2) schedule the residents to night and weekend shifts over a one month period.

These IPs solve these scheduling problems more effectively and efficiently compared

to manual methods. The shift scheduling IP highlights the infeasibilities created

by increased duty-hour restrictions placed on residents in conjunction with current

scheduling paradigms.

3.1 Introduction

Resident physician rotation assignment is a challenging task which must balance the

goals of maximizing resident experience and providing sufficient staff to provide ex-

cellent patient care, while adhering to the rules governing resident education. During
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their five years of training after graduation from medical school, surgery residents

at the Department of Surgery Residency Program at Emory University School of

Medicine (EUSOM) spend time rotating through six hospitals so that they are ex-

posed to the different areas of medicine that they may face as practicing surgeons.

These hospitals include Emory University Hospital, Emory University Hospital Mid-

town, Grady Memorial Hospital, Children’s Healthcare of Atlanta - Egleston Campus,

the Veterans Affairs Medical Center in Atlanta, and Piedmont Hospital. Each hos-

pital has one or more clinical services that must be staffed by residents in various

levels of training (post-graduate years (PGY) 1-5), midlevel providers and attending

surgeons.

Assigning residents to the different services in a way that meets patient care de-

mands and satisfies educational requirements is a challenging and time-consuming

task. Development of the surgery resident rotation schedule at EUSOM typically

consumes 48 work-hours of a surgery residency program coordinator’s time and 24

hours of the surgery residency program director’s time. Additional time is often

required throughout the year to adjust the rotation assignment schedule to accom-

modate unplanned events (e.g., absence of residents due to illness).

Day-to-day shift scheduling is made difficult by restrictions regarding work hours

and rest periods. These rules and restrictions are constantly evolving, with the most

recent changes in duty hours and rest periods instituted by the Accreditation Council

for Graduate Medical Education [1] on July 1, 2011. While designed to reduce fa-

tigue and improve patient safety, increased duty hour restrictions create challenges in

scheduling to ensure that surgery residents meet educational requirements [12, 33, 52].

Current scheduling techniques coupled with ever more restrictive duty hour con-

straints limit surgical residents’ exposure to the operating room [12] and to contact

with their attending surgeon mentors in the operating room, the clinics, and on the

wards. Further, staffing/work requirements for various surgical services are also made
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more complex by these restrictions [33]. Restricted duty hours limit the amount of

time senior and junior residents can spend mentoring those junior to them (such as

medical students rotating on the clinical teams) in the training program, extends the

burden of clinical care to teams with fewer members, and limits the pool of residents

available for night and emergency coverage. The impact of this resource-constrained

environment is potentially far-reaching.

As allowable duty hours for resident physicians continue to decrease, training

hospitals must overcome scheduling shortages that are created. EUSOM has identified

shortages in the clinical coverage that can be provided by resident physicians as

a result of the new duty hours regulations, according to Keith Delman, Program

Director for the General Surgery Residency Program in the Department of Surgery

at Emory University School of Medicine. Resident physicians are trainees, and the

number of trainees in a department is strictly regulated by the ACGME to ensure

1) that there is a sufficient amount of clinical exposure for training and 2) that

resident physicians are not being employed solely for their function as providers of

clinical service. The ACGME is unlikely to allow clinical departments additional

residency positions; therefore, other strategies must be utilized to ensure coverage.

Residency programs will need to redesign their schedules to accommodate duty hours

regulations, and may need to employ midlevel providers (e.g., nurse practitioners and

physician’s assistants) to augment the staff needed to provide good patient care.

Idiosyncratic resident scheduling practices which cater to the individual prefer-

ences of attending surgeons create additional scheduling difficulties. For example, at

EUSOM, 1st-year residents are responsible for their service’s routine night and week-

end shifts, according to Program Director Keith Delman. Trying to accommodate

scheduling practices such as these, which are often not based on thoughtful study of

the actual service needs, only adds to the complexity of scheduling.
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To address the complex problem of assigning residents to services, and then cre-

ating day-to-day schedules which abide by ACGME duty hour restrictions, we have

developed two integer programming (IP) models. The first IP, the Resident Rotation

Assignment Integer Programming Model (RRA-IP) creates a feasible assignment of

residents (PGY1-PGY5) to services over a one-year period. For day-to-day schedul-

ing, we developed a simple integer programming model for the assignment of 1st-year

residents to weekday, night, and weekend shifts, given the service assignments pro-

vided by RRA-IP. The goal in development of this IP, which we call the Surgical

Resident Shift Scheduling Model, or SRSS-IP, was to better inform decisions regard-

ing scheduling, as current scheduling paradigms may prove to be infeasible in light of

constantly evolving duty-hour restrictions.

The remaining sections of this chapter are organized as follows. Section 3.2 pro-

vides a review of literature related to the problems we address. We provide details

of RRA-IP in Section 3.3, followed by a discussion of efficiency results of this model

in Section 3.4. We present a decision support tool we developed in Section 3.5, and

discuss steps towards implementation in Section 3.6, as well as goals for future work.

We present SRSS-IP in Section 3.7, followed by results and discussion in Section 3.7.1.

We provide conclusions in Section 3.8.

3.2 Literature Review

To our knowledge, little work has been done to optimally assign residents to services,

particularly the large number faced at EUSOM (28 services staffed by residents from

EUSOM in 2012-2013). Franz and Miller (1993) present a solution approach for as-

signing medical residents to rotations over a 1-year period using a linear programming

model and rounding procedure to find an integer solution [19]. Day et al. (2006) de-

velop an integer programming model for assigning medical residents and fellows to

services over a 2-week period [13]. Javeri (2011) develops an integer programming
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model for assigning monthly rotations [24], but the discussion is limited to a presen-

tation of the model definitions, and lacks validation and efficiency results. Unlike the

prior work in this area, the main characteristics of the rotation assignment problem

we face include:

• Assigning rotations over a 1-year period

• Education requirements:

Required rotations

Equivalent experience among residents of the same type

• Flexibility of model parameters

With the inclusion of extensive supply and demand constraints, as well as a user-

friendly format for entering parameters specific to different institutions, our goal is to

design a flexible, widely applicable scheduling system for rotation assignment which,

given a set of inputs and preferences, can be modified to provide the output to a

schedule of any complexity.

The impact of increased duty hour restrictions has been investigated extensively.

Following the implementation of the 80-hour work week in 2003 (i.e., residents may

work a maximum of 80 duty hours per week, when averaged over four weeks), Kort et

al. (2004) conducted a survey of surgical residents and found that residents perceived

negative impacts on continuity and safety of care, their operative experience, and

their relationships with attending physicians [27]. Connors et al. (2009) review

resident operative logs and find decreases in total cases as a result of increased duty

hour restrictions, possibly implying inadequate operative experience [12]. A survey of

surgery program directors reveals that duty-hour restrictions hinder clinical education

opportunities and compromise patient safety [52]. Van Eaton et al. (2011) discuss

challenges created due to the evolution of duty hour restrictions since 2003, as well

as the new restrictions implemented in July, 2011 [50].
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Increased duty hour restrictions complicate day-to-day shift scheduling of physi-

cians, particularly medical residents, and mathematical modelling is a common ap-

proach to day-to-day scheduling problems [17], more increasingly those faced in a

hospital setting. The most common application is nurse scheduling; see [9, 10] for com-

prehensive reviews. Applications in physician scheduling have also received extensive

investigation. Beaulieu et al. (2000) develop a mathematical model for distributing

shifts over a 6-month period to emergency room physicians [4]. Sherali et al. (2002)

assign residents to night shifts using a mixed-integer program [41], and Rousseau et

al. (2002) develop an easily customizable solution approach to the day-to-day physi-

cian scheduling problem [39]. Day et al. (2006) develop an integer programming

model to generate a weekly shift schedule for a surgery residency program at a large

academic program [13]. Topaloglu (2006) uses goal programming to assign emergency

medicine residents to day and night shifts [45], and assigns residents to night shifts by

applying sequential and weighted methods to a multi-objective optimization model

which considers levels of seniority [46]. Ovchinnikov and Milner (2008) use Microsoft

Excel and a solver program to create feasible schedules for radiology residents [35].

Cohn et al. (2009) assign residents to primary and backup night-call shifts in three

hospitals using multiple nested IP models [11]. While considering flexible shift times

and lengths, Brunner et al. (2010) schedule physicians over a 6 week period using a

branch and price algorithm [8]. Topaloglu and Ozkarahan (2011) use column gener-

ation to minimize the sum of deviations from the desired service levels for a resident

scheduling problem [47]. Javeri (2011) develops an integer programming model for

scheduling day-to-day shift assignments and tests this model at 2 hospitals which

included four different facilities [24].

The IP we developed for day-to-day shift scheduling solves the relatively simple

problem of assigning 1st-year residents to weekday, night, and weekend shifts over

a one-month period. This model allows us to test multiple scenarios very quickly,
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to determine how current scheduling paradigms and duty hour restrictions impact

schedule feasibility to determine if current scheduling practices are sufficient or if

changes are needed. McCoy et al. (2011) find that it is possible to redesign a resident

schedule to abide by the new restrictions without increasing staffing or decreasing

patient admissions, but with possible negative impacts on continuity of care, quality

of education, and time off between shifts [33]. Freiburg et al. (2011) conducted a sur-

vey to understand how residents perceive the benefits of 10 separate accommodation

strategies used by training programs to adhere to resident work-hour restrictions [20].

The use of health IT is one of the most highly rated, as well as hiring of nurse prac-

titioners and physician assistants, with respect to resident surgical education. The

latter of these would be especially useful because a survey determined that surgical

residents spend a large amount of time in noneducation activities [7] which could be

redistributed if other staff were available, but this could require a large amount of

human and fiscal capital, as determined by Mitchell et al. (2007) using a computer

prediction model [34]. Our analysis of a one-month PGY1 shift schedule provides a

means of understanding the impact of current scheduling paradigms combined with

limiting duty hour restrictions, and reveals the possible need for midlevel providers

to share daytime responsibilities with residents.

3.3 Resident Rotation Assignment Model

We developed an integer programming model, the Resident Rotation Assignment

Model (RRA-IP), to assign residents to monthly rotations based on the demands of

each service and the supply of residents during one year. Individual services request

that a certain number of residents at certain levels in their training (i.e., PGY1

through PGY5) be assigned to that service for a period of time (typically one month

at a time). Some of these requests represent a strong need for residents to cover

the needs of the service, while others represent a desire for residents of a certain
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Table 14: Emory Surgical Resident groups - 2012-2013

Resident Group Number of Residents
PGY1-Categorical 9

PGY1-Prelim 6
PGY1-Urol. 3
PGY1-Neuro 3
PGY1-Ortho 5
PGY1-ENT 3
PGY1-CT 1

PGY1-Plastics 1
PGY2-Categorical 9

PGY2-Prelim 3
PGY2-GU 3
PGY2-CT 1

PGY3 9
PGY4 10
PGY5 7

training level to be assigned, but coverage is not necessary. The supply of residents

available for assignment to each service is determined by a number of factors, the most

important being educational requirements which specify the experiences residents of

certain levels should receive to gain a well-rounded education. Further, it is important

that residents of the same level and type receive equivalent (or similar) experiences

throughout the year. Such resident groups are identified in Table 14.

Sets and parameters used by RRA-IP are defined in Tables 15 and 16. Decision

variables in RRA-IP (listed in Table 17) represent the assignment of residents to

specific services during a given time period. There are additional dummy variables

to capture the case when there is no feasible assignment of residents to satisfy an

individual service’s demand.

The complete model formulation of RRA-IP is presented below. There are a

series of both supply and demand constraints. On the supply side, there is a limit

on the number of times that each resident may be assigned to an individual service
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Table 15: Resident Rotation Assignment Model - Sets and Descriptions

Set Description

L
Set of resident levels, e.g., L={1, 2, ..., 5} to represent PGY1-
PGY5

R,R1, ..., R|L|
Set of all medical residents, set of level 1 residents, ..., set of
level |L| residents, respectively. Note that R =

⋃
l∈{1,2,...,|L|}Rl

K Set of rotations

S, S1, ..., S|K|
Set of all services, set of services in rotation 1, ..., set of ser-
vices in rotation |K|, respectively

Pl

Set of time periods for resident level l, l ∈ L. Note that
residents of different levels may be assigned to services for
time periods less than or greater than a one-month period,
but possible time periods for each level are disjoint.

C
Set of service clusters such that each cluster contains services
which represent equivalent experience

C̄
Set of service clusters such that each cluster contains services
for which a limit may be placed on the number of times that
a resident may be assigned to that group of services

Us
Set of services s ∈ S such that a resident can not be assigned
to any individual service in the set for two consecutive months

Ūs

Set of services s ∈ S such that if a resident is assigned to
any individual service in the set multiple times, then those
assignments must be consecutive

I
Set of resident subcategories over all resident levels (e.g., I =
{1, 2, ...} ={PGY1-Categoricals, PGY1-Prelims,...})

Gi Set of residents in resident subcategory i, i ∈ I

Ī1

Set of resident subcategories i such that all residents in group
Gi require identical service assignments, i ∈ I. For each of
these groups, if one resident in the group is assigned to a
service, then all residents in that group must be assigned to
that same service during some period in the year.

Ī2

Set of resident subcategories i such that all residents in group
Gi require identical cluster assignments, i ∈ I. For each of
these groups, if one resident in the group is assigned to a
service in some service cluster, then all residents in that group
must be assigned to a service in that cluster during some
period in the year.

Ī3

Set of resident subcategories i such that all residents in group
Gi require similar cluster assignments, i ∈ I. For each of these
groups, if one resident in the group is assigned to a service in
some service cluster, then all residents in that group should
be assigned to a service in that cluster during some period in
the year, if possible.
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Table 16: Resident Rotation Assignment Model - Parameters and descriptions

Parameter Description

Qrk
Binary parameter indicating whether or not resident r must
be assigned to a service in rotation k, r ∈ R, k ∈ K

Q̄rs
Binary parameter indicating whether or not resident r must
be assigned to service s, r ∈ R, s ∈ S

L̄sl1l2p

Binary parameter indicating whether or not service s requests
at least one resident from levels l1 and l2 in period p, s ∈ S,
p ∈ Pl1

Ōc
Integer paramater which sets a limit on the number of assign-
ments of any resident to services in service group c, c ∈ C̄

Wrsp, W̄rsp

Binary parameters indicating whether or not resident r re-
quested to be assigned or not assigned to service s during
period p, r ∈ Rl, s ∈ S, p ∈ Pl, l ∈ L

D̄si

Binary variable indicating whether or not a resident may be
assigned to service s more than once in a time period of i
months, s ∈ S, i ∈ {1, 2, 3, ..., 12}

Dlsp

Penalty incurred for not assigning the preferred number of
residents of level l to service s during time period p, s ∈ S,
p ∈ Pl, l ∈ L

Bisp
Bonus for assigning a resident from group i to service s during
period p, i ∈ I, s ∈ S, p ∈ Pl : Rl ∩Gi 6= ∅, l ∈ L

Φlsp
Preferred number of residents of level l requested for service
s during period p, p ∈ Pl, l ∈ L, s ∈ S

Γlsp
Maximum number of residents of level l that can be assigned
to service s during period p, p ∈ Pl, l ∈ L, s ∈ S

Vrp
Binary parameter indicating the availability of resident r dur-
ing period p, r ∈ Rl, p ∈ Pl, l ∈ L

Mls
Maximum number of periods that a resident of level l can be
assigned to service s, l ∈ L, s ∈ S

Ψi
Maximum number of periods that residents in group i can be
assigned to services, i ∈ I

Θlc
Minimum number of periods that residents of level l must be
assigned to some service in cluster c, c ∈ C, l ∈ L

P̃p1l1p2l2

Binary parameter indicating whether or not period p1 for res-
ident level l1 intersects with period p2 for resident level l2,
l1, l2 ∈ L, p1 ∈ Pl1 , p2 ∈ Pl2
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Table 17: Resident Rotation Assignment Model - Decision variables and descriptions

Decision Variable Description

Xrsp

Binary variable, = 1 if resident r is assigned to service
s during period p; 0 otherwise. r ∈ Rl, s ∈ S, p ∈ Pl,
l ∈ L

Ylsp

Integer variable≥ 0, shortage below preferred number of
residents of level l requested for service s during period
p, s ∈ S, p ∈ Pl, l ∈ L

αrc

Integer variable ≥ 0, for resident r and service group
c, the maximum deviation between assignments of res-
ident r to service group c from other residents in the
equivalence group, r ∈ R, c ∈ C

βrsp

Binary variable, = 1 if resident r’s request to be assigned
to service s during period p is denied; 0 otherwise. r ∈
Rl, s ∈ S, p ∈ Pl, l ∈ L

β̄rsp

Binary variable, = 1 if resident r’s request to be assigned
off service s during period p is denied; 0 otherwise. r ∈
Rl, s ∈ S, p ∈ Pl, l ∈ L

(constraints (1)). Residents may not be available for assignment during all periods

(constraints (2)), and residents may be assigned to at most one service per time

period (constraints (3)). For education purposes, it is required that some residents

be assigned to a service in certain rotations at some point during the year (constraints

(4)).

4th and 5th-year residents (PGY4’s and PGY5’s) must have identical assignments

to other residents of their level throughout the year (constraints (5)). This means

that if one PGY4 is assigned to service X at some point during the year, for example,

then all PGY4’s must be assigned to service X in some period during the year. 1st

through 3rd year residents in the same resident subgroup (e.g., PGY1-Categorical,

PGY2-GU, etc.) should have identical experience throughout the year (constraints

(6)). This means that if one PGY1-Categorical resident is assigned to service X in

service cluster Y, for example, then all PGY1-Categorical residents must be assigned

to a service in service cluster Y at some point during the year. While experience
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equality is strongly desired, there may be circumstances where this is not possible,

and thus we have added the soft constraints (7). Parameters can be adjusted to allow

for identical service cluster assignments, or just similar cluster assignments. Nine

services are grouped into a general surgery cluster because they represent identical

experience. These services are identified in Appendix B. The remaining services

provide unique experiences, and thus there are no other equivalence group clusters.

There may be a limit on the number of times that a resident may be assigned

to a specific groups of services (constraints (8)). For example, it may be undesirable

that residents be assigned to too many night rotations. Some services are required

for some residents (constraints (9)), and some service group clusters are required

(constraints (10)). For example, PGY2-Urol residents should be assigned to some

vascular surgery service and a specific general surgery service. In some cases, it may

be preferred that if a resident is assigned to the same service more than once, then

those assignments should be consecutive or not (constraints (11)-(12)). It may be

required that a resident not be assigned to the same service in a 4-month period, for

example, which is ensured by constraints (13). Residents may request that they be

assigned to a specific service in a specific month (constraints (14)), or off a specific

service during a certain month (constraints (15)).

Demand constraints include the following. Each service prefers a specific number

of residents from each level during each period (constraints (16)). We have added the

dummy variable Ylsp to allow for the possibility that one of these preferences cannot

be satisfied. If this is the case, a penalty is incurred in the objective function. There is

a maximum number of residents from each level that may be assigned to each service

in each period (constraints (17)). Constraints (18) ensure that if a service requests a

resident from one of two different resident levels, then at least one of those resident

levels is represented by residents assigned to that service.

The objectives are to:

60



i Minimize the violations of service demands for residents

ii Minimize the violations of resident preferences for services during/not during a

specific month

iii Minimize the deviation from equality of experience for residents in the same equiv-

alence group

iv Maximize the number of residents that are assigned to desirable services

It is not required that residents be assigned to some of the services for education

purposes, but the experience they receive on some services is highly desirable, and thus

there is a bonus when an assignment to one of those services is made. For example,

there are three services that are highly desirable for PGY1-Categorical residents due

to the education they gain on those services.

The complete model formulation is as follows:

Minimize
∑

l∈L
∑

p∈Pl

∑
s∈S Dlsp · Ylsp +

∑
c∈C
∑

l∈L
∑

r∈Rl αrc +∑
l∈L
∑

p∈Pl

∑
r∈Rl

∑
s∈S
(
βrsp + β̄rsp

)
-
∑

i∈I
∑

p∈P̄i

∑
r∈Gi

∑
s∈S Bisp ·Xrsp

subject to:

(1)
∑

p∈Pl Xrsp ≤ Mls ∀r ∈ Rl, l ∈ L, s ∈ S

(2) Xrsp ≤ Vrp ∀r ∈ Rl, p ∈ Pl, l ∈ L, s ∈ S

(3)
∑

s∈S Xrsp ≤ 1 ∀r ∈ Rl, p ∈ Pl, l ∈ L

(4)
∑

p∈Pl

∑
s∈cXrsp ≥ Θlc ∀r ∈ Rl, l ∈ L, c ∈ C
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(5)
∑

p∈Pl:Rl∩Gi 6=∅,l∈L (Xrsp −Xr̂sp) = 0
for some r̂ ∈ Gi, ∀r ∈ Gi

such that r 6= r̂, ∀i ∈ Ī1,

s ∈ S

(6)
∑

p∈Pl:Rl∩Gi 6=∅,l∈L
∑

s∈c (|Gi| ·Xr̂sp)

-
∑

r∈Gi

∑
p∈Pl:Rl∩Gi 6=∅,l∈L

∑
s∈cXrsp

≤ 0 ∀r̂ ∈ Gi, i ∈ Ī2, c ∈ C

(7)
∑

p∈Pl:Rl∩Gi 6=∅,l∈L
∑

s∈c (|Gi| ·Xr̂sp)

-
∑

r∈Gi

∑
p∈Pl:Rl∩Gi 6=∅,l∈L

∑
s∈cXrsp

≤ αr̂c ∀r̂ ∈ Gi, i ∈ Ī3, c ∈ C

(8)
∑

p∈Pl

∑
s∈cXrsp ≤ Ōc ∀r ∈ Rl, l ∈ L, c ∈ C̄

(9)
∑

p∈Pl Xrsp ≥ Q̄rs ∀r ∈ Rl, l ∈ L, s ∈ S

(10)
∑

p∈Pl Xrsp ≥ Qrk ∀r ∈ Rl, l ∈ L, s ∈ Sk,

k ∈ K

(11) Xrsp +Xrsp̂ −Xrs(p+p̃) ≤ 1 ∀r ∈ Rl

p ∈ {1, 2, ..., |Pl| − 2}

p̂ ∈ {p+ 2, p+ 3, ..., |Pl|}

p̃ ∈ {1, 2, ..., p̂− p− 1}

l ∈ L, s ∈ Ūs

(12) Xrsp +Xrs(p+1) ≤ 1 ∀r ∈ Rl

p ∈ {1, 2, ..., |Pl| − 1}

l ∈ L, s ∈ Us
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(13)
∑

i∈{0,1,..,q}Xrs(f+i) + q · D̄sq ≤ q + 1 ∀r ∈ Rl, f ∈ {1 + j · (q + 1)},

q ∈ {1, 2, ...}, j ∈ {0, 1, ...}: f ≤

Mls, ∀l ∈ L, s ∈ S

(14) Xrsp + βrsp ≥ Wrsp r ∈ Rl, p ∈ Pl, l ∈ L, s ∈ S

(15) Xrsp − β̄rsp ≤ W̄rsp r ∈ Rl, p ∈ Pl, l ∈ L, s ∈ S

(16)
∑

r∈Rl Xrsp + Ylsp ≥ Φlsp ∀p ∈ Pl, l ∈ L, s ∈ S

(17)
∑

r∈Rl Xrsp ≤ Γlsp ∀p ∈ Pl, l ∈ L, s ∈ S

(18)
∑

r∈Rl1
Xrsp1 +

∑
r∈Rl2

Xrsp2 ≥ L̄sl1l2p1 ∀l1, l2 ∈ L, s ∈ S, p1 ∈ Pl1 , p2 ∈

Pl2 : P̃p1l1p2l2 = 1

3.4 Results

We attempted to use RRA-IP to generate a 1-year rotation schedule for July 2012 -

June 2013, for all resident levels 1 through 5. Using CPLEX 12.4, a feasible schedule

is found within 2 minutes, and after running the model for 24 hours, the optimality

gap is 8.50% and does not improve rapidly (see Figure 9). Note that this and the

remaining computational experiments reported in this chapter were carried out on

either a system with a 2.27 GHz Xeon quad-core processor and 48 GB RAM or another

with a 2.33 GHz Xeon quad-core processor and 12 GB RAM. While this solution

may be considered acceptable for implementation, we find that the optimality gap is

often higher when there is a slight change in equivalence requirements. The current

equivalence requirements state that residents in groups PGY1-Categorical, PGY1-

Prelim, up to PGY3’s, all require similar experience to other residents within their
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Figure 9: PGY1-PGY5 Resident Rotation Assignment Model with current equiva-
lence requirements - LP vs. IP objectives up to 24 hours

respective groups. PGY4 and PGY5 residents require identical service assignments

over the year to other residents within their respective groups. We modified this

requirement to state that residents in all resident groups (i.e., PGY1-Categorical

through PGY5) require similar experience to other residents within their group. Such

a variation in the equivalence requirements may occur in other programs. With this

slight modification, the model achieves an optimality gap of 15.65% in 2 hours, and

does not improve up to 24 hours (see Figure 10).

We investigated how variations to the objective function might impact this solu-

tion time and the structure of the solutions. The rotation scheduling problem faced

at EUSOM has four main objectives, with different priority levels:

1. Minimize weighted demand violations (highest priority)

2. Minimize deviation from equality of assignments for residents in the same group

(high priority)

3. Minimize denied resident requests for service assignments during specific periods

(low priority)
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Figure 10: PGY1-PGY5 Resident Rotation Assignment Model with all resident
groups requiring similar experience - LP vs. IP objectives up to 24 hours

4. Maximize assignments to desirable services (low priority)

Objectives 3 and 4 have approximately equal priority levels which are consider-

ably lower than objectives 1 and 2. Different weights could be assigned to different

components of the objective function, based on their relative importance. However,

using only objectives 1 and 2, we generated 1-year schedules with RRA-IP assuming

(1) current equivalence requirements, or (2) all resident groups requiring similar ex-

perience. For the case with the current equivalence requirements where some of the

experiences have to be exactly the same, the optimality gap achieved by 24 hours is

4.51% (see Figure 11). However, if all resident groups require similar experience (i.e.,

exact equivalence is not required and we have some flexibility), the optimality gap

after running RRA-IP for 24 hours is 33.38% (see Figure 12).

We investigated whether providing RRA-IP (with these two objectives) with an

initial feasible solution would improve the running time for either case of equivalence

requirements. To find such an initial solution, we used RRA-IP to generate a schedule

with only objective one for each of the two sets of equivalence requirements. Optimal
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Figure 11: PGY1-PGY5 Resident Rotation Assignment Model with objectives 1 and
2 and with current equivalence requirements - LP vs. IP objectives up to 24 hours

Figure 12: PGY1-PGY5 Resident Rotation Assignment Model with objectives 1 and
2 and with all resident groups requiring similar experience - LP vs. IP objectives up
to 24 hours
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Figure 13: PGY1-PGY5 Resident Rotation Assignment Model with full objective
function, with and without warm start, and with current equivalence requirements -
LP vs. IP objectives up to 24 hours

solutions (optimality gap < 0.01%) can be found with this modified objective function

in less than one minute. These solutions have equivalent or fewer demand violations

than the best solutions found within 24 hours using the full objective function, but in-

clude many more instances of uneven assignments to service clusters among residents

in the same resident group (50 more instances with current equivalence requirements,

52 more if all groups require similar experience). Using these solutions as a starting

point, RRA-IP, with objectives 1 and 2, cannot find improved solutions in 24 hours.

Using these same initial feasible schedules to warm start RRA-IP with the full

objective function, we see that an improved solution can be found within 10 hours

with the current equivalence requirements, with an optimality gap of 4.08% achieved

by 24 hours (see Figure 13). If all resident groups require similar experience, providing

the warmstart solution does not reduce the optimality gap by 24 hours.

We observe that objective 2 and related constraints greatly impact the solution

time required by RRA-IP, but are crucial for producing solutions which have greater

equality of assignments among residents in the same group. Therefore, we tested
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a variation to the equivalence constraints which we will refer to as “balancing con-

straints” [24]. We define new variables Zicj ∀i ∈ I, c ∈ C, and j ∈ {1, 2} which

represent the maximum (j = 2) and minimum (j = 1) number of assignments of

residents in group i to services in cluster c. We replace constraints (7) in the original

formulation with constraints (7̄.1) and (7̄.2) to calculate these minimum and maxi-

mum values. Constraints (6) in the original formulation are removed, and replaced

with constraints (6̄) which force equality of upper and lowerbounds when identical

clusters are required. Then we replace
∑

c∈C
∑

l∈L
∑

r∈Rl αrc in the objective function

with
∑

c∈C
∑

i∈Ī3 (Zic2 − Zic1), and we seek to minimize this value.

(6̄) (Zic2 − Zic1) = 0 ∀i ∈ Ī2, c ∈ C

(7̄.1)
∑

p∈P
∑

s∈cXrsp ≤ Zic2 ∀r ∈ Gi, i ∈ I, c ∈ C

(7̄.2)
∑

p∈P
∑

s∈cXrsp ≥ Zic1 ∀r ∈ Gi, i ∈ I, c ∈ C

We tested these new balancing constraints against the original equivalence con-

straints. Table 18 reports the solution time and optimality gaps for different combi-

nations of the four objectives, for both equivalence requirement cases. Tests A and

B can be solved very quickly (< 1 minute each) for each equivalence requirement,

because deviation from equivalence is not a part of the objective function for these

two tests. With the addition of objectives 2 or 2+ (i.e., with balancing constraints

and corresponding objective), we see an increase in solution time as expected. How-

ever, with current equivalence requirements, an optimal solution (gap < 0.01%) can

be found within 13 hours for Test F, which includes the full objective function. The

remaining tests achieve optimality gaps below 5% by 24 hours.

When all resident groups require similar experience, however, the results are not as

attractive for Tests C and E with regards to solution times. Fortunately, replacing the
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original equivalence constraints with the new ones, an optimal solution (optimality

gap < 0.01%) can be found within 6 hours with the full objective (see Test F). With

the original equivalence constraints, the optimality gap reaches 15.65% by 2 hours,

but does not improve up to 24 hours.

Tests E and F, with current equivalence requirements, solve the problem faced at

EUSOM. The efficiency of RRA-IP is much improved by inclusion of the balancing

constraints, particularly for the case where residents in all resident groups require

similar experience to other residents in their respective groups. This is due to the

fact that, rather than attempting to minimize the deviation from equivalence for each

individual resident in the scheduling pool, we are now looking at each resident group

as a whole unit, with only two variables to represent the upper bound and lower

bound on number of assignments of residents in that group to each service cluster.

Rules regarding equivalent experience may differ greatly for other programs, so we

tested RRA-IP with various equivalence requirements. Results are reported in Table

19 with either equivalence constraints or balancing constraints.

We see that RRA-IP is relatively efficient in solving the problem in a majority of

the scenarios. Test 3, which requires identical services for all resident groups, required

the longest solution time, and does not rapidly approach optimality. Incorporating

the balancing constraints rather than the original equivalence constraints produced

improvements in solution times (or equivalent solution times) for all tests except Test

3. Fortunately, this is a scenario which is not likely to appear often in practice, due

to the need to satisfy service demands which should take precedence over equivalence

of assignments.

To better understand the impact of equivalence constraints vs. balancing con-

straints (and corresponding objectives) on the quality of the solutions produced, the

following is a detailed discussion of the differences in the solutions reported in Table

19 for each set of equivalence requirements.
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Test 1 PGY1-3 require similar experience, PGY4-5 require identical ser-

vices (current rules)

The solution achieved with balancing constraints had 1 fewer demand violation

than the solution from the model with equivalence constraints, and 4 fewer re-

quest violations. PGY1-Prelim residents had fewer total assignments, but the

number of assignments per resident were equal as opposed to the solution with

the equivalence constraints. PGY1-Urol residents and PGY2-Prelim residents

had more total assignments, and assignments per resident were equal for each

group with either balancing or equivalence constraints. PGY2-Categorical resi-

dents had fewer total assignments, and assignments per resident were not equal

as opposed to the solution with the equivalence constraints. The remaining

resident groups had equal total numbers of assignments (and equal numbers of

assignments per resident) with balancing and equivalence constraints. There

were some differences in assignments to service clusters for each resident group,

other than PGY3, PGY4, and PGY5, and the solution produced with equiva-

lence constraints included 5 instances of assignments to service clusters by resi-

dents in a resident group where equivalence was not achieved across all residents

within that group, as compared to only 2 instances in the solution produced

with balancing constraints.

Test 2 All resident groups require similar experience

The solution achieved with balancing constraints had an identical number of

demand violations to the solution from the model with equivalence constraints,

and 2 fewer request violations. PGY1-Categorical residents had fewer total

assignments, but the number of assignments per resident were equal with bal-

ancing and equivalence constraints. PGY1-Prelim residents and PGY1-Urol
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residents had more total assignments, and the number of assignments per res-

ident (by group) were equal as opposed to the solution with the equivalence

constraints. PGY2-Categorical residents had fewer total assignments, and as-

signments per resident were not equal as opposed to the solution with the equiv-

alence constraints. The remaining resident groups had equal total number of

assignments (and equal numbers of assignments per resident) with balancing

and equivalence constraints. There were some differences in assignments to ser-

vice clusters for each resident group, other than PGY3 and PGY5, and both

solutions included 8 instances of assignments to service clusters by residents in

a resident group where equivalence was not achieved across all residents within

that group.

Test 3 All resident groups require identical services

The solution achieved with balancing constraints had 7 more demand viola-

tions than the solution from the model with equivalence constraints, and an

identical number of request violations. PGY1-Prelim residents had fewer total

assignments, PGY1-Urol residents had more total assignments, but assignments

per resident were equal for each group with either balancing or equivalence con-

straints. The remaining resident groups had equal total numbers of assignments

(and equal numbers of assignments per resident) with balancing and equivalence

constraints. There were some differences in assignments to service clusters for

most resident groups, and both solutions included 0 instances of assignments

to service clusters by residents in a resident group where equivalence was not

achieved across all residents within that group.

Test 4 All resident groups require identical experience

The solution achieved with balancing constraints had 5 fewer demand violations

than the solution from the model with equivalence constraints, and an identical

73



number of request violations. PGY1-Categorical residents, PGY1-Urol resi-

dents, and PGY2-Prelim residents had more total assignments, PGY1-Prelim

residents had fewer total assignments, but for each group, assignments per res-

ident were equal with either balancing or equivalence constraints. The remain-

ing resident groups had equal total numbers of assignments (and equal num-

bers of assignments per resident) with balancing and equivalence constraints.

There were some differences in assignments to service clusters for some resident

groups, and both solutions included 0 instances of assignments to service clus-

ters by residents in a resident group where equivalence was not achieved across

all residents within that group.

Test 5 No similar/identical experience/service requirements

The solution achieved with balancing constraints had an identical number of

demand and request violations to the solution from the model with equivalence

constraints, and demand violations were identical by service and time period.

PGY2-Categorical residents had fewer total assignments, and assignments per

resident were equal with either balancing or equivalence constraints. PGY2-

Prelim residents had more total assignments, and assignments per resident were

equal with balancing constraints unlike the solution found with equivalence con-

straints. The remaining resident groups had equal total numbers of assignments

(and equal numbers of assignments per resident) with balancing or equivalence

constraints. The number of assignments to each service cluster was almost

identical for each resident group, but both solutions included 59 instances of as-

signments to service clusters by residents in a resident group where equivalence

was not achieved across all residents within that group.
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Test 6 PGY1 require similar experience, PGY2-5 require identical expe-

rience

The solution achieved with balancing constraints had an identical number of

demand and request violations to the solution from the model with equivalence

constraints. PGY1-Prelim residents had fewer total assignments, and assign-

ments per resident were equal with either balancing or equivalence constraints.

PGY1-Urol residents had more total assignments, and assignments per resident

were equal with balancing constraints unlike the solution found with equiva-

lence constraints. The remaining resident groups had equal total numbers of

assignments (and equal numbers of assignments per resident) with balancing or

equivalence constraints. There were some differences in assignments to service

clusters for PGY1 resident groups, and the solution produced with equivalence

constraints included 1 instance of assignments to service clusters by residents in

a resident group where equivalence was not achieved across all residents within

that group, as compared to 0 instances in the solution produced with balancing

constraints.

For all cases except Test 3 (which did not achieve an improved solution time with

the inclusion of the balancing constraints and corresponding objective function), we

see either an equivalent number or a reduction in demand violations with the balanc-

ing constraints. Request violations are also identical or reduced with the balancing

constraints. There is some variation for the solutions to each test with regards to

the total number of assignments by resident group, but there were only two instances

where assignments per resident within a group were not equal in the solution produced

with balancing constraints, but were equal in the solution produced with equivalence

constraints. For each test, the number of instances of assignments to service clusters

by residents in a specific group where equivalence of assignments was not achieved

was identical or improved in the solution produced with balancing constraints. We
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conclude that the inclusion of balancing constraints and corresponding objective func-

tion produce solutions which are as good or better than solutions produced by the

model with equivalence constraints for these instances with a maximum running time

of 24 hours.

Requests made by residents impact the quality of any rotation assignment sched-

ule. Thus, we conducted these 6 tests again, this time excluding residents’ requests on

or off specific services during specific time periods. We found that RRA-IP performed

worse for Tests 1, 3, and 6, in terms of the time required to reach optimality, or the

optimality gap achieved by 24 hours, whether we used equivalence constraints or bal-

ancing constraints (and the corresponding objective functions). The remaining tests

performed better for one set of experience constraints (i.e. equivalence or balancing),

but not for both. Demand violations were similar for each test, as compared between

tests with equivalence constraints or balancing constraints, and also with the original

tests which included resident requests. Instances of uneven assignments to service

clusters by resident group were similar as well, but in some cases were increased when

resident requests were not considered. These cases each had larger optimality gaps

than when resident requests were considered. Despite these reductions in performance

of RRA-IP without resident requests, it is important to note that for each test except

Test 6, RRA-IP performed better with the inclusion of balancing constraints and

corresponding objective function than with the equivalence constraints.

While inclusion of the balancing constraints and corresponding objective do im-

prove efficiency, they do not produce identical solutions to the model with the equiv-

alence constraints, assuming the model with equivalence constraints could be solved

to optimality in a reasonable amount of time. Consider the following scenario of

residents in some group G (containing 10 residents who require similar experience)

assigned to services in some service cluster C:

• Case 1: 5 residents are assigned to service cluster C 2 times each, the other 5
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residents are assigned to service cluster C 1 time each.

• Case 2: 9 residents are assigned to service cluster C 1 time each, the remaining

1 resident is assigned to service cluster C 2 times.

The impact of each of these cases on the objective function value is reported

in Table 20, for both the model with equivalence constraints as well as balancing

constraints. We see that the result is not identical, and the model with the equivalence

constraints places higher value on having less deviation on an individual basis, rather

than for a resident group as a whole.

Table 20: Resident Rotation Assignment Model - Balancing Constraints vs. Equiv-
alence Constraints: Impact on Objective Function Value (Sample Scenario)

Equivalence Balancing
Constraints Constraints

Case 1 25 1
Case 2 9 1

Whether this is a priority or not, we investigated the impact of using the IP with

balancing constraints to produce a solution, and then using that solution to warm

start the IP with equivalence constraints. Results from this analysis are presented in

Table 21. We only considered Tests 1, 2, 4 and 6 since Test 5 performed similarly

for both equivalence and balancing constraints, and Test 3 actually performed worse

with balancing constraints than equivalence constraints. The right most column of the

Table is the total solution time, which includes the time to generate the schedule with

balancing constraints, as well as the time to improve on that schedule with equivalence

constraints, up to a maximum running time of 24 hours for the latter case. We see

that we approach optimality much faster with each test using the solution found with

balancing constraints as an initial starting solution.
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3.5 Decision Support Tool

We developed an Excel-based decision support tool for easy entry of all the parame-

ters reported in Tables 15 and 16 to allow for flexibility in service requirements and

demand from year to year. As an example, the set of residents in the scheduling

pool for the 2012-2013 rotation schedule are shown as entered in the spreadsheet in

Figure 14. The user simply enters the name of each resident available for scheduling,

grouped by resident level and type.

Services needing staffing, as well as specific demands for each service, are entered

into the tool, with the demand assumed to be identical for each month of the year

(see Figure 15). If this is not the case, however, additional spreadsheets are available

for entering month specific demand to allow for fluctuations in demand. If a service

should be added or removed from this list, the user can simply enter or erase the

name, respectively, and select the button labeled “Compile Data”, and the table is

automatically adjusted to allow for additional/fewer entries, with default values of

“0” entered.

Additional necessary data is entered into the tool on a number of different spread-

sheets, to include but not limited to:

• Number of time periods for scheduling of each resident level (default = 12)

• Maximum number of times any resident can be assigned to each service

• Service penalties for demand violations

• Resident bonuses for assignments to desirable services

These and the remaining spreadsheets include macros for automatically updating

the forms when changes to the numbers of residents and services, or service demands,

are made. Once a rotation assignment schedule is generated using RRA-IP given
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Figure 14: Resident Rotation Assignment Decision Support Tool - Screenshot of
Resident Data Entry Form

the entered parameters, the schedule is presented using an excel spreadsheet, with

assignments listed by service and time period for each resident level.

3.6 Implementation

We used this decision support tool and RRA-IP to generate a rotation schedule for

PGY1 residents for July 2012 - June 2013. Generating such a schedule required mul-

tiple iterations where we generated a schedule and experienced schedulers at EUSOM

reviewed the schedule to identify any issues. Some of the issues that arose include:

• PGY1-Categorical residents should not have more than 2 night rotations in one

academic year.
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Figure 15: Resident Rotation Assignment Decision Support Tool - Screenshot of
Service Data Entry Form

• No one can have back-to-back night rotations

• If repeated by the same resident, some rotations should or should not be con-

secutive

• Misunderstandings of demands by services with regards to resident levels re-

quested

• Some rotations absolutely must be covered

• Errors with fixed assignments of some residents

We corrected these issues which revolved around incorrectly entered data, and

initial feedback regarding use of this model to create rotation schedules has been

positive. Decision-makers at EUSOM hope to use this decision support tool for

construction of the 2013-2014 rotation schedule.
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3.6.1 Comparison to Manual Schedule

We received a manually constructed schedule for PGY2-PGY5 residents for July 2012

- June 2013. We compared manual and IP-generated PGY2 and PGY3 schedules

(note that residents in groups PGY4 and PGY5 require identical service assignments,

and thus there was little room for potential improvement). Both the manual and

IP-generated schedules satisfied all demand. The manual schedule included much

deviation from equivalence for residents in groups PGY2-Categorical, PGY2-Prelim,

and PGY2-GU (there existed deviation from equivalence for 5, 4, and 6 service clus-

ters, respectively). The IP-generated schedule included only two instances where

assignments to service clusters were not equivalent across a resident group. Thus,

RRA-IP can produce a schedule which satisfies all demand and meets all feasibil-

ity requirements, but in a faster time and with less deviation from equivalence for

relevant groups than compared to manual methods.

One significant limitation here, however, is that requests for vacation time were

not considered in RRA-IP. Including such requests could reduce this improvement in

schedules, and we plan to include vacation requests in the next phase.

3.6.2 Future Work

After receiving individual resident requests for the 2012-2013 rotation schedule, we

identified additional constraints necessary if we wish to accommodate requests with

RRA-IP. Unfortunately, there is currently not a standardized format for residents of

each level to make requests for vacation time, and not all requests have the same level

of importance. Types of requests include resident A requests:

• to be or not to be assigned to service S in month M (included in RRA-IP).

• not to be assigned to specific rotations until later in the year.

• time periods for three vacation weeks, with different options for each vacation
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listed in order of preference. Time periods can be for specific weeks, or just pre-

ferred months. Preferred vacation times possibly change with denial of vacation

dates of highest preference.

• to be or not to be assigned to the same rotation with resident B.

We plan to provide a template for entering future request data which captures

a majority of the types of requests listed above. We will allow the various types of

requests to be prioritized by residents using a rating system to allow for greater flexi-

bility in terms of preferences. Requests are gathered by multiple sources before being

submitted to decision-makers, as residents represent multiple specialties. Therefore,

the success of such a template relies heavily on the cooperation of the numerous

groups providing data. If accepted by all groups, such a template could greatly im-

prove the process of schedule generation due to the reduction in time required to

decipher non-standardized request information.

The analysis reported herein relies on use of the commercial solver CPLEX. Next

steps include the combining of the decision support tool we developed with a freely

available solver such as GLPK [30] or OpenSolver [32] for regular use at the opera-

tional level. Further tool development will also be necessary to accommodate changes

in availability and preferences that can occur throughout the year. This will require

additional constraints in RRA-IP for recording a previous assignment schedule, as

well as an addition to the objective function to minimize the level of change in any

new schedule from the previous one. Such an update to the model will allow for

constructing a new but similar schedule so as not to disrupt the assignments for all

residents due to a perhaps small change in availability.

3.7 Surgical Resident Shift Scheduling Model

The solution given by the rotation assignment model RRA-IP provides input to the

day-to-day scheduling model, which we will refer to as the Surgical Resident Shift
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Scheduling Model, or SRSS-IP. Once residents are assigned to services on a monthly

basis, their day-to-day schedule must be determined for the service he or she is as-

signed to. The day-to-day schedules for some subsets of the services are solved to-

gether, as some services share residents to staff night and weekend call shifts. SRSS-IP

is identical for different groups of services, so we focus on one such group which we call

the Emory group. Services in this group include EUH General Surgery A, General

Surgery B, Surgery Oncology, ACS, Vascular Surgery and Night.

The preferred shift duration for residents assigned to services in the Emory group

is 13 hours. Day shifts start at 6am and end at 7pm; night shifts start at 6pm and

end at 7am. There is a one-hour overlap between night and day shifts dedicated for

information exchange and care transition. In practice, it is often difficult for residents

to leave on time due to workload, so we model this problem with flexible shift lengths

in order to investigate the impacts that longer shifts would have on the ability to

schedule residents so as to meet demand while complying with ACGME duty hour

restrictions.

The objective of SRSS-IP is to maximize the minimum number of hours worked

over all residents in order to maximize fairness in terms of hours scheduled, while

staying within the duty hour regulations. Sets and parameters incorporated into the

model are shown in Tables 22 and 23.

Table 22: Surgical Resident Shift Scheduling Model - Sets and descriptions

Set Description

R
Set of all 1st-year medical residents assigned to the Emory
group

S

Set of services in the group (i.e., S = {1 (EUH General
Surgery A), 2 (EUH General Surgery B), 3 (EUH Surgery On-
cology), 4 (EUH Vascular Surgery), 5 (EUH ACS), 6 (EUH
Night), 7 (EUH Weekend)})

Ks Set of shifts required for service s, s ∈ S
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Table 23: Surgical Resident Shift Scheduling Model - Parameters and descriptions

Parameter Description

Ars
1 if resident r is assigned to service s; 0 otherwise.
r ∈ R, s ∈ S

N Days in schedule horizon
Ht Length of shift t, t ∈ {1, 2, ..., 2 ·N}

Decision variables in this model represent the determination that a resident is

assigned to a specific shift. If a resident cannot be assigned to a certain shift, then a

copy of the resident may be assigned. Defining decision variables in this way allows for

clearer constraint definitions. An additional dependent variable represents the days

in which residents are not scheduled for any shifts. We present formal descriptions of

the variables in Table 24.

Table 24: Surgical Resident Shift Scheduling Model - Decision variables and descrip-
tions

Decision Variable Description

Xrsk
Binary variable, = 1 if resident r is assigned to service
s for shift k; 0 otherwise. r ∈ R, s ∈ S, k ∈ Ks

Yrsk

Binary variable, = 1 if a copy of resident r is assigned to
service s for shift k; 0 otherwise. r ∈ R, s ∈ {1, 2, ..., 5},
k ∈ Ks

Zra
Binary variable, = 1 if day a of the month is free of duty
for resident r; 0 otherwise. r ∈ R, a ∈ {1, 2, ..., N}

P
Integer variable, = minimum number of shifts worked
by any resident

P̄
Integer variable, = total number of shifts worked by all
residents

The complete model formulation follows below. Constraints (1) ensure that vari-

able P does not exceed the minimum number of shifts worked among all the residents.

Constraints (2) set P̄ equal to the total of all resident assignments, to reduce the
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number of resident copies which are assigned. If a resident is assigned to a partic-

ular service, then that resident (or a copy of that resident) must be at their service

for all weekday shifts (constraints (3)). For example, when the assignment model

assigns residents to EUH General Surgery A, then they should be at that service for

all weekday shifts from Monday through Friday (unless prevented due to a previous

night shift assignment). One resident (and not a copy) should be assigned to each

night and weekend shift (constraints (4)).

One PGY1 resident is assigned to EUH Night each period, which is a night float

resident who covers the needs of all services in the group for a majority of the nights in

the period. Standard practice in the Emory group is to assign other PGY1 residents

assigned to services in the group to cover the remaining night call shifts, as well as

weekend shifts, since duty hour restrictions prevent the resident assigned to EUH

Night from working every night in the period. Weekend shifts are very similar to

night shifts in that any resident assigned to a weekend shift must cover the needs of

all services in the group.

Educational requirements and ACGME duty hour restrictions constitute the sup-

ply constraints. Residents must not be scheduled for more than six consecutive nights

of night float (constraints (5)), hence the reason that the resident assigned to Emory

Nights cannot work every night during the period. Duty periods of PGY1 residents

must not exceed 16 hours in duration, a new restriction as of July, 2011 [1]. PGY1

residents must also have eight hours free of duty between scheduled duty periods,

although 10 is desired. Since the preferred shift length is 13 hours, PGY1 residents

cannot be assigned to two consecutive shifts (constraints (6)). Note that this con-

straint holds for shifts of longer lengths as well. All residents may work a maximum

of 80 hours each week, when averaged over four weeks (constraints (7)). Residents

must have at least one day free of duty each week when averaged over four weeks

(constraints (8)). Constraints (9) and (10) force Zra equal to 1 if resident r has day
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a free of duty, and equal to 0 otherwise.

Maximize P+P̄

subject to:

(1)
∑

s∈S
∑

k∈Ks Xrsk ≥ P ∀r ∈ R

(2)
∑

r∈R
∑

s∈S
∑

k∈Ks Xrsk = P̄

(3) Xrsk + Yrsk = Ars ∀r ∈ R, s ∈ {1, 2, 3, 4, 5}, k ∈ Ks

(4)
∑

r∈RXrtk = 1 ∀k ∈ Kt, t ∈ {6, 7}

(5)
∑

t∈{k,k+2,...,k+12}Xr6t ≤ 6 ∀k ∈ {1, 2, ..., 2N − 12}, r ∈ R

(6)
∑

s∈S
∑

t∈{k,k+1}Xrst ≤ 1 ∀k ∈ {1, 2, ..., 2N − 1}, r ∈ R

(7)
∑

s∈S
∑

t∈{k,k+1,...,k+55}Ht ·Xrst ≤ 80·4 ∀k ∈ {1, 2, ..., N − 55}, r ∈ R

(8)
∑

a∈{t,t+1,...,t+27} Zra ≥ 4 ∀r ∈ R, t ∈ {1, 2, ..., N − 27}

(9)
∑

s∈S
(
Xrs(2a−1) +Xrs(2a)

)
+ 2Zra ≤ 2 ∀r ∈ R, a ∈ {1, 2, ..., N}

(10)
∑

s∈S
(
Xrs(2a−1) +Xrs(2a)

)
+ Zra ≥ 1 ∀r ∈ R, a ∈ {1, 2, ..., N}

3.7.1 Results and Discussion

We used SRSS-IP to generate a one-month (31 day) schedule for the Emory group

given varying values to the parameters Ht (i.e., the length of shift t). For each
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scenario tested, the model solves to optimality within a matter of seconds. The

Emory group is assigned 4 PGY1 residents each month (as requested) by RRA-IP.

We found that it was possible to assign all night and weekend shifts to PGY1 residents

assuming weekday service shifts, night call shifts, and weekend day shifts all have a

duration of 13 hours. However, as mentioned previously, in practice, it is difficult for

residents to complete a weekday service shift in 13 hours. The average duration of a

weekday service shift for residents assigned to the Emory group is approximately 14.5

hours, but can be as high as 16 hours (the maximum allowed by ACGME duty hour

restrictions). In light of this, we investigated the impact of variations to the preferred

shift lengths of 13 hours. We also investigated the number of weekday service shift

assignments that could be given to each resident with each parameter set tested (using

Equation S.1).

(S.1)
∑

s∈{1,2,3,4,5}
∑

k∈Ks Xrsk ∀r ∈ R

While it may be possible to construct a feasible schedule which assigns PGY1

residents to all night call and weekend shifts, even with shift lengths up to 16 hours,

if the result is a schedule which reduces resident education due to a small number of

weekday service shift assignments given, then this is an undesirable result. Our goal

in performing this analysis is to determine an answer to the following questions:

• At what shift lengths does it become infeasible to only schedule PGY1 residents

to night and weekend shifts, assuming a preferred minimum number of weekday

service shifts assigned to each resident?

• How do variations in ACGME duty hour restrictions impact these infeasibilities?

Figure 16 reports the largest number of weekday service shifts that can be assigned

to each resident depending on the length of a weekday service shift (in hours). Note

that night call and weekend shifts are assumed to be 13 hours in duration. Thus,

88



Figure 16: The maximum number of weekday service shift assignments that can be
given to each resident depending on the length in hours of weekday service shifts.
Night and weekend shifts are assumed to be 13 hours in duration. A typical weekday
service shift has a duration of approximately 14.5 hours for residents assigned to the
Emory group.

with 13 hour night and weekend shifts and 14.5 hour weekday service shifts (i.e., the

average for the Emory group), it is possible to fill these night and weekend shifts

with PGY1 residents and each resident can be assigned to 20 weekday service shifts.

Shorter weekday service shifts are needed to assign a larger number of weekday service

shifts to each resident.

ACGME duty hour restrictions mandate a maximum of 80 duty hours per week for

all residents, when averaged over four weeks. In 2011, duty hour restrictions expanded

to include a limit of 16 hours of consecutive duty for PGY1 residents. This limits

PGY1 residents from working consecutive day and night shifts. Without this new

restriction, night and weekend shift scheduling may be easier to accomplish with only

PGY1 residents, but with an additional restriction limiting consecutive duty hours to

28 hours, assigning a PGY1 resident to a day and night shift in the same day would

prevent them from being on duty the following day. If one of our goals with regards
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to day-to-day shift scheduling is to keep residents on weekday service shifts as much

as possible for education purposes, then removing this 16-hour restriction would not

be an ideal solution. Thus, rather than further investigating the impact of this new

16-hour restriction, we analyzed the impact of the 80-hour duty week.

Given a specific number of weekday service shifts that should be assigned to each

resident, Figure 17 reports the number of weekly duty hours that would be needed

in order for PGY1 residents to be able to cover all night call and weekend shifts. We

considered varying weekday service, night call, and weekend shift lengths. From this

figure, we see that with a weekday service shift length of 15 hours (and 13 hour night

call and weekend shifts), a feasible night and weekend shift assignment can be made

with PGY1 residents within the 80-hour mandate. However, this is only true if 19

or fewer weekday service shifts are desired for each resident. For each resident to be

given 20 weekday service shifts, 1 additional duty hour would be needed each week,

on average.

Figure 17 also reports results for weekday service shifts lasting 16 hours, with

night call and weekend shifts varying from 13 to 16 hours in duration. Note that

since PGY1 residents may not be assigned to consecutive shifts due to the 16-hour

maximum on-duty period mandate, the fact that these day and night shifts may

overlap by more than 1 hour is irrelevant with regards to the calculation of the hours

needed to construct a feasible night and weekend schedule with only PGY1 residents.

For the extreme case of 16 hour shifts for all shift types, we see that a large number

of weekly hours are needed. However, if night call and weekend shifts last 13 or 14

hours, respectively, with only a few additional hours per week on average (above the

80-hour limit), residents may gain 1 or more weekday service shifts per month. These

weekday service shifts provide a much richer educational experience than night and

weekend call shifts.
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Figure 17: The weekly duty hours needed per resident for assignments to 17, 18, 19,
and 20 weekday service shifts in a month, respectively. Duty hours are reported for
4 shift length variations listed as X/Y/Z to represent weekday service shifts, night
shifts, and weekend shifts of durations X, Y, and Z hours, respectively. The ACGME
mandates a maximum of 80 duty hours per week.

An alternative to attempting to extend the weekly duty hour limit is to reduce

the weekday service shift workload for PGY1 residents, so that these residents may

be assigned to as many weekday service shifts as preferred, while still being able to

cover all night call and weekend shifts. One means of reducing this workload is to

hire additional staff to manage many of the activities performed by these residents

during a weekday service shift but which do not enrich their education. Alternatively,

2nd through 5th year residents can be assigned to night call and weekend shifts as

well. This is likely the simplest solution, but requires a change in paradigm among

supervising physicians in the Emory group accustomed to a day-to-day schedule with

PGY1 residents covering all night and weekend shifts.
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3.8 Conclusions

One of the greatest challenges in graduate medical education is navigating the com-

plexities associated with resident scheduling. This is compounded by new and con-

tinuously evolving rules with respect to resident education, work hours, night and

emergency call, and supervision. If a systematic, reproducible, widely applicable

decision support tool/software can be designed to “solve” these complex manpower

distribution puzzles, the process could be rapidly adopted across every residency

training group in the country. It would simplify and streamline a process which can

take several days worth of person-hours of time.

The efficient assignment of residents to services and effective scheduling while

on those services could positively impact patient care [27], improve compliance with

the duty-hour restrictions [44], improve resident education [20], and enhance patient

care through increased supervision and reduced fatigue. The quality of patient care

delivered by residents is affected by various factors. Continuity of care, resident

fatigue, and proper resident supervision all play a role in patient health outcomes. By

more efficiently assigning the appropriate PGY levels of residents to clinical services,

it may be possible to improve both patient care and resident education on those

services.

RRA-IP can be used in subsequent years to generate feasible schedules. Educa-

tional requirements do not change frequently, so the IP should be able to stay up

to date with only the occasional small changes. Use of RRA-IP provides solutions

which are better than manually generated schedules with respect to objectives, and

can reduce the number of hours that the scheduler must work to generate a feasible

schedule for the year, freeing up a staff member’s time and energy to be spent on

other valuable activities. Among residents, there is a perceived sense of fairness in

having an objective model rather than a person create schedules for the year, and

so residents may be less likely to complain in general. Finally, such a model can be
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adapted in different hospital systems to help them create feasible schedules.

SRSS-IP highlights the impact of shift lengths and duty hour restrictions on physi-

cian scheduling, particularly with regards to resident education. Current scheduling

practices which require that 1st-year residents be assigned to all night and weekend

shifts are still feasible under new duty hour restrictions, but there may be negative

impacts on resident education due to a reduction in the number of weekday shifts

that can be worked by residents. Resident education can be improved by slightly

relaxing ACGME duty hour restrictions, by reducing daily workloads, or by changing

the preferred scheduling practices.
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CHAPTER IV

ASSIGNING PHYSICIANS TO MULTIPLE TASKS TO

MAXIMIZE SPACE UTILIZATION AND ACHIEVE

EQUITY

In the final chapter of this thesis, we study the problem of assigning physicians to

multiple tasks to maximize space utilization and ensure fairness. We outline the

methodology we use to solve this problem as well as efforts towards implementation

in a real-world setting. We discuss planned future work, and conclude with our

contributions.

4.1 Introduction

When scheduling staff, regardless of the industry, there are often multiple objectives

including minimizing cost, maximizing resource utilization or staff preferences, or

maximizing fairness of assignments or quality of life. Balancing the necessary and

sometimes conflicting objectives when manually creating a staff schedule can be a

challenging and cumbersome task, particularly when attempting to optimize objec-

tives within feasibility requirements. Scheduling can be further complicated by indi-

vidual staff preferences and restrictions which create a non-homogeneous scheduling

pool.

While many industries require staff to work in a single location, it is not un-

common to see instances where workers are expected to complete tasks in different

locations on different days, particularly in hospital settings. Within many medical

specialties, physicians provide services in operating rooms, the emergency room, as

well as outpatient clinics, just to name a few, and physicians from one specialty must
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often share these spaces with other physicians. Space capacities can restrict how as-

signments to various locations can be made, with or without sharing of space among

various groups.

In this chapter, we present an integer programming model (IP) for assigning a

group of heterogeneous physicians to multiple tasks with varying demand and space

availability. Section 4.2 provides specific details of this problem faced in the Depart-

ment of Gynecology and Obstetrics at Emory University Hospital (Emory OB/GYN)

[15], and gives a discussion of previous relevant literature. Section 4.3 presents details

of the IP we developed for solving this problem which considers multiple objectives.

We used this model to construct a 6-month schedule for a group of physicians at

Emory OB/GYN. In Section 4.4, we discuss our results and provide details of the ef-

ficiency of our model with alternative objective functions. We discuss efforts towards

implementation and future work in Section 4.5, and provide conclusions in Section

4.6.

4.2 Problem Description and Literature Review

Emory OB/GYN has 39 faculty members (2011-2012), approximately 25% of whom

are generalists who cover a selection of daytime activities including Labor and Delivery

(L&D), the Emergency Room (ER), two outpatient clinics (which we will refer to as

Clinic 1 and Clinic 2), and Surgery. Some of these activities, such as L&D and the

ER, have fixed demand each day, while others (e.g., the clinics) should be staffed by

available physicians if possible depending on physician and exam room availability,

but assigning staff is not necessary. Some physicians in and outside this group of

generalists have fixed time periods for which they provide coverage in the clinics,

limiting the flexibility of further assignments to these clinics due to space availability.

Not all generalists can be assigned to each activity. Thus, the problem of assigning

physicians can be quite complex.
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The objective in assigning physicians to these daytime activities has many parts,

including maximizing space utilization within the clinics while balancing assignments

of physicians to those clinics. Further, we seek to construct a fair schedule with

regards to the number of day and night L&D calls, weekends, holidays, and ER

assignments given to each physician.

Previous work in scheduling daily hospital operations is extensive [5, 17], includ-

ing problems in nurse scheduling [9, 10] and assignment of medical residents to shifts

[11, 13, 41, 45, 46]. Mansdorf (1975) develops a mathematical model with the ob-

jective of determining the most fair and efficient allocation of staff among a group

of outpatient clinics [31]. Hodgson et al. (1977) present an integer programming

approach to the problem of assigning physicians from different specialties to cover

multiple outpatient clinics which share space [22]. Similar to our problem, they con-

sider other commitments such as operating room schedules of the physicians. Isken

et al. (1999) present a simulation framework for outpatient obstetrical clinics, and

consider the assignment of exam rooms to specific physicians [23]. Other applications

such as academic course scheduling also consider utilization of available space when

making assignments [14].

Assignments to various unique tasks are not uncommon in hospital settings. For

education purposes, medical residents are often assigned to different medical services

during their training, most commonly for a one-month period at a time, and multi-

ple approaches have been taken to solve this problem. Franz and Miller (1993) use a

rounding procedure to assign medical residents to such services over a one-year period

[19], and Day et al. (2006) use integer programming to assign medical residents and

fellows to services [13]. Belien and Demeulemeester (2007) construct a trainee sched-

ule at a hospital using column generation, and compare two decomposition methods

based on (1) physicians available for scheduling and (2) activities trainees can be

assigned to [6]. Javeri (2011) develops an integer programming model for making
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mothly service assignments while considering fairness among residents of the same

training level [24].

Rostering problems in hospitals often must incorporate multiple objectives, and

rarely is the scheduling pool of physicians homogeneous. Maenhout and Vanhoucke

(2010) develop a branch and price approach for assigning heterogeneous nurses to

shifts while considering multiple objectives including equity and cost [29]. Li et al.

(2012) use goal programming and meta-heuristic search to create a nursing roster

given nine conflicting objectives [25].

The main characteristics of the problem of scheduling physicians for Emory OB/

GYN include:

• Assignments to multiple activities

• Variations in clinic space available each day

• Heterogeneous physicians in scheduling pool

• Multiple objectives

In combination, these characteristics create a complex scheduling environment

which has yet to be addressed in the literature to the best of our knowledge. Math-

ematical modelling can provide a tool for automating schedule generation while con-

sidering the unique characteristics of this problem. This chapter presents an integer

programming model, the Physician Scheduling model (PS-IP), which assigns physi-

cians to multiple tasks over the schedule horizon while considering space availability,

differentiates between unique characteristics of each physician in the scheduling pool,

and incorporates multiple objectives. PS-IP is highly efficient, and can greatly im-

prove the process of schedule generation. While the model formulation is specific to

the problem faced by Emory OB/GYN, the methodology could be applied to other

units and institutions with slight modifications to accommodate varying physician

and institutional preferences.
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4.3 An Integer Programming Model

Table 25 displays the possible daytime assignments that can be given to each physician

in the scheduling pool for Emory OB/GYN. If a physician is assigned to ER/Clinic/

Surgery, then there are several distinct possible subassignments that can be given,

shown in Table 26.

Table 25: Emory OB/GYN Daytime Assignments

Assignment
1 Labor and Delivery
2 ER/Clinic/Surgery (weekdays and non-holidays only)
3 Off Duty

Table 26: Emory OB/GYN ER, Clinic, and Surgery Weekday Assignments

Assignment
4 Emergency Room and Clinic
5 Clinic 1 - Full Day
5 Clinic 1 - Morning
7 Clinic 1 - Afternoon
8 Clinic 2 - Full Day
9 Clinic 2 - Morning
10 Clinic 2 - Afternoon
11 Surgery

The sets, parameters, and primary decision variables of PS-IP are presented in

Tables 27, 28, and 29. Additional dependent variables, which are used mainly to form

the objective function, are given in Table 30.

4.3.1 Model Constraints

Each physician must be given exactly one daytime assignment each weekday and

holiday (constraints (1)). Possible assignments are L&D day call, ER/Clinic/Surgery,

and Off Duty (see Table 25). On weekends (non-holidays), physicians can either be
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Table 27: Emory OB/GYN Physician Scheduling Model - Sets and descriptions

Set Description

Pt
Set of physicians available for assigning to task t, t ∈
{1, 2, ..., 12}

D Set of days in schedule horizon

Cpt
Set of days in schedule horizon for which physician p can
be assigned to task t

Dw, De, Dh

Set of weekdays (excluding holidays), weekends (exclud-
ing holidays), and holidays in schedule horizon, respec-
tively

Dm Set of mondays in schedule horizon

Di
Set of days in month i in schedule horizon, i ∈
{1, 2, ..., 6}

Ds
Set of days in the 2nd week of each month in the schedule
horizon

Hi
Set of holidays in week i of the schedule horizon, i ∈
{1, 2, ..., |D| /7}

A Set of possible daytime assignments (i.e., A = {1, 2, 3})

T
Set of ER/Clinic/Surgery assignments (i.e., T =
{4, 5, ..., 11})

Lij

Set of possible morning (i=1) and afternoon (i=2) as-
signments at clinic j (inclusive of full-day assignments),
j ∈ {1, 2}

J
Set of availability periods, defined as the disjoint time
periods for which no physicians leave or join the group
during the period

Fj Set of days in availability period j, j ∈ J

given a daytime assignment or L&D night call (constraints (2)). If a physician is

assigned to night call, then she must be off duty the next day (constraints (3)). No

physician can be assigned to night call if they are off duty (constraints (4)).

(1)
∑

t∈A:p∈Pt,d∈Cpt Xptd = 1 ∀p ∈ P , d ∈ Dw ∪Dh

(2)
∑

t∈A:p∈Pt,d∈Cpt Xptd + Ypd = 1 ∀p ∈ P , d ∈ Cp(12) ∩De : d /∈ Dh

(3) Xp3(d+1) − Ypd ≥ 0 ∀p ∈ P , d ∈ {1, 2, ..., |D| − 1} ∩ Cp(12)

(4) Xp3d + Ypd ≤ 1 ∀p ∈ P , d ∈ Cp(12)
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Table 28: Emory OB/GYN Physician Scheduling Model - Parameters and descrip-
tions

Parameter Description

Rpd

1 if physician p requests assignments to all weekend La-
bor and Delivery night call shifts in the week beginning
with day d; 0 otherwise. p ∈ P , d ∈ Dm

Uijd

Preferred additional number of physicians that can staff
clinic j during time period i on day d, j ∈ {1, 2}, i ∈
{1, 2}, d ∈ Dw

Vijd

Maximum additional number of physicians that can staff
clinic j during time period i on day d, j ∈ {1, 2}, i ∈
{1, 2}, d ∈ Dw

λk The weight placed on objective k

Table 29: Emory OB/GYN Physician Scheduling Model - Primary Decision Variables
and descriptions

Decision Variable Description

Xptd
1 if physician p is given assignment t on day d; 0 other-
wise. p ∈ Pt, d ∈ Cpt, t ∈ {1, 2, ..., 11}

Ypd
1 if physician p is assigned to Labor and Delivery night
call on day d; 0 otherwise. p ∈ P12, d ∈ Cp(12)

If a physician is assigned to ER/Clinic/Surgery, then she must be assigned to one

subassignment within that category (see Table 26) (constraints (5)).

(5)
∑

t∈T :d∈Cpt Xptd −Xp2d = 0 ∀p ∈ P , d ∈ Cp2

L&D day and night call require exactly one physician per day (constraints (6) and

(7)). ER requires exactly one physician per weekday (constraints (8)).

(6)
∑

p∈P1:d∈Cp1 Xp1d = 1 ∀d ∈ D

(7)
∑

p∈P12:d∈Cp(12) Ypd = 1 ∀d ∈ D

(8)
∑

p∈P4:d∈Cp4 Xp4d = 1 ∀d ∈ Dw

L&D day call and ER are assigned on a weekly basis. In other words, one physician

is assigned to each weekday L&D day call shift in a given week, and another physician
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Table 30: Emory OB/GYN Physician Scheduling Model - Additional Variables and
descriptions

Variable Description

αdij

Number of morning (i=1) and afternoon (i=2) assign-
ments to clinic j on day d above the preferred number,
j ∈ {1, 2}, d ∈ Dw

β̄
Largest number of weeks without a Surgery assignment
for all physicians

M̄j
Largest number of Labor and Delivery night call shifts
worked by any physician in availability period j, j ∈ J

W̄j

Largest number of weekend Labor and Delivery day call
shifts worked by any physician in availability period j,
j ∈ J

Q Largest number of holidays worked by any physician

Mij

Largest number of Labor and Delivery night call shifts
worked by any physician in intersection of month i and
availability period j if nonempty, i ∈M , j ∈ J

Wij

Largest number of weekend Labor and Delivery day call
shifts worked by any physician in intersection of month
i and availability period j if nonempty, i ∈M , j ∈ J

Bd
Largest number of assignments to either clinic on day d,
d ∈ Dw

Θj
Largest number of ER assignments worked by any physi-
cian in availability period j, j ∈ J

∆j
Largest number of Labor and Delivery day call shifts
worked by any physician in availability period j, j ∈ J

Ψd
1 if some physician works both L&D night call and
Surgery on day d; 0 otherwise. d ∈ Dw
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is assigned to each ER shift (constraints (9)).

(9)
∑

r∈{0,1,...,4}:d+r∈Cpt Xpt(d+r) ≥ 5 ·Xpt(d+r̂) − |Hi| ∀p ∈ Pt, d ∈ Dm

r̂ ∈ {0, 1, ..., 4} :

d+ r̂ /∈ Dh & d+ r̂ ∈ Cpt

t ∈ {1, 4}, i = (d+ 6) /7

Any physician assigned to L&D day call or ER during the week should not be

assigned to L&D night call any of those days (excluding holidays) (constraints (10)).

(10) Ypd +Xptd ≤ 1 ∀p ∈ Pt, d ∈ Cpt ∩Dw ∩ Cp(12) : d /∈ Dh, t ∈ {1, 4}

The same physician should be assigned to L&D day call on both Saturday and

Sunday (excluding holidays) (constraints (11)). This should not be the same physician

assigned to L&D day call during the week (constraints (12)).

(11) Xp1(d+5) −Xp1(d+6) = 0 ∀p ∈ P1, d ∈ Dm : d+ r ∈ Cp1,

d+ r /∈ Dh for r ∈ {5, 6}

(12)
∑

r∈{0,1,...,6}:d+r∈Cp1,d+r/∈Dh Xp1(d+r)+∣∣∣Hi ∩
(⋃

r̄∈{0,1,...,4} {d+ r̄}
)∣∣∣

≤ 5 ∀p ∈ P1, d ∈ Dm

If a physician is assigned to L&D day call on Saturday and Sunday, then they

must be off duty on Monday (constraints (13)).

(13) Xp1(d+5) +Xp1(d+6) −Xp3(d+7) ≤ 1 ∀p ∈ P1, d ∈ {1, 8, ..., |D| − 13} :

d+ r ∈ Cp1 for r ∈ {5, 6}

The physician assigned to weekend L&D night call should work night call on

Friday and Sunday (constraints (14)). Saturday L&D night call can be assigned to

this physician as well if requested (constraints (15) and (16)).
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(14) Yp(d+4) − Yp(d+6) = 0 ∀p ∈ P12, d ∈ Dm : d +

r ∈ Cp(12), d+ r /∈ Dh for

r ∈ {4, 6}

(15)
∑

r∈{4,5,6}:d+r∈Cp(12),d+r/∈Dh Yp(d+r) −Rpd ≤ 2 ∀p ∈ P12, d ∈ Dm

(16)
∑

r∈{4,5,6}:d+r∈Cp(12),d+r/∈Dh Yp(d+r) − 3 ·Rpd ≥ 0 ∀p ∈ P12, d ∈ Dm

Physicians should not be assigned to L&D day call and/or ER in consecutive weeks

(constraints (17)). We set the right-hand side of this inequality to 7 because there

are at most 2 holidays in any week in the year. Therefore, this allows someone to be

assigned to L&D (or ER) in one week, and then given 2 holiday L&D assignments

the previous or following week.

(17)
∑

t∈{1,4}
∑

r∈{0,1,...,4}∪{7,8,...,11}:d+r∈Cpt Xpt(d+r) ≤ 7 ∀p ∈ P

d ∈ {1, 8, ..., |D| − 13}

There is a maximum number of physicians that can staff each clinic (constraints

(18)). Each week, some physicians have a fixed schedule of clinic assignments, and

these fixed assignments impact the number of additional physicians that may be

scheduled (see Tables 31 and 32). Physicians listed in these tables with numbers make

up the pool of physicians we are tasked with scheduling. Some of these physicians

already have fixed clinic schedules, and are not given any further clinic assignments.

The remaining physicians, represented by letters, help provide coverage in the clinics

during predetermined time periods.

(18)
∑

p∈Pt
∑

t∈Lij :d+r∈Cpt Xpt(d+r) ≤ Vij(d+r) ∀d ∈ Dm, r ∈ {0, 1, ..., 4},

i ∈ {1, 2}, j ∈ {1, 2}

Each physician may be assigned to Surgery at most once in a week (constraints

(19)). At most two physicians may be assigned to Surgery each day (constraints (20)).
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Table 31: Emory OB/GYN Weekly Clinic 1 Fixed Assignments

Clinic 1
Monday Tuesday Wednesday Thursday Friday
am pm am pm am pm am pm am pm

Physician 1 Fluctuates with schedule
Physician 2 Fluctuates with schedule
Physician 3 Fluctuates with schedule
Physician 4 Fluctuates with schedule
Physician 5 Fluctuates with schedule

Additional physicians covering clinic
Physician A X X X X X X X X X X
Physician B X X X X
Physician C X X

(19)
∑

r∈{0,1,...,4}:d+r∈Cp(11) Xp(11)(d+r) ≤ 1 ∀p ∈ P11, d ∈ Dm

(20)
∑

p∈P11:d∈Cp(11) Xptd ≤ 2 ∀d ∈ Dw

Physicians should not be assigned to L&D night call and clinic duties in the same

day (constraints (21)). Physicians should be assigned to L&D night call at most twice

during the week (excluding weekends) (constraints (22)).

(21) Ypd +
∑

t∈
⋃
i,j∈{1,2} Lij :d∈Cpt∩Cp(12)

Xptd ≤ 1 ∀p ∈ Pt ∩ P12, d ∈ Dw

(22)
∑

r∈{0,1,...,4}:d+r∈Cp(12) Yp(d+r) ≤ 2 ∀p ∈ P12, d ∈ Dm

On holidays, the physician assigned to L&D day call also works L&D night call

(constraints (23)).

(23) Xp1d − Ypd = 0 ∀p ∈ P1 ∩ P12, d ∈ Dh : d ∈ Cp1 ∩ Cp(12)

There are additional constraints when scheduling physicians for Emory OB/GYN,

but these constraints are taken into account in the definition of the decision variables

(i.e., if certain assignments are not possible, then the variables corresponding to those

assignments are not created). Such constraints include the following:

• No assignments to ER/Clinic/Surgery are given on weekends or holidays.
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Table 32: Emory OB/GYN Weekly Clinic 2 Fixed Assignments

Clinic 2
Monday Tuesday Wednesday Thursday Friday
am pm am pm am pm am pm am pm

Physician 6 X X X X
Physician 5 Fluctuates with schedule
Physician 7 Fluctuates with schedule
Physician 8 Fluctuates with schedule
Physician 10 X X X X
Physician 11 X X X X

Additional physicians covering clinic
Physician D X X X X X X X X X X
Physician E X
Physician F X
Physician G X
Physician H X X X X
Physician I Schedule varies by week
Physician J Schedule varies by week
Physician K X X X X
Physician L X X X
Physician M X X
Physician N X
Physician O X

• No one is assigned to clinic duties on Wednesday mornings due to necessary

meetings.

• Physicians only work in designated clinic locations.

• Physicians should be assigned to Off Duty during predetermined vacation days.

• Physician 6 is not assigned to L&D day or night call on weekdays (except

holidays). Rather, her schedule will be entered manually.

• Physicians 6, 10, and 11 should not be assigned to Surgery or ER.

• Physician 1 is not assigned to clinic duties on Thursday mornings.

• Physician 8 is not assigned to L&D day call during the 2nd week of each month.
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Figure 18: Emory OB/GYN Physician Availability Across Schedule Horizon

• Physicians 6, 10, and 11 have fixed clinic schedules, and therefore, we assume

that no additional assignments to clinic duties are allowed for these physicians.

• Physicians should be assigned to Off Duty during periods of unavailability (see

physician availability across schedule horizon in Figure 18).

4.3.2 Objective

There are multiple objectives. Fairness is important with regards to the following:

1. monthly L&D night call assignments (O.1)

2. total L&D night call assignments over schedule horizon (O.2)

3. total L&D day call assignments over schedule horizon (O.3)

4. monthly weekend L&D day call assignments (O.4)

5. total weekend L&D day call assignments over schedule horizon (O.5)

6. total holiday assignments (O.6)
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7. total ER assignments (O.7)

To ensure that fairness for each of these items is considered with respect to the

time periods that individual physicians are available, soft constraints (24) through

(30) consider only physicians that are available, and during the appropriate windows

of availability.

(24)
∑

d∈Cp(12)∩Di∩Fj Ypd ≤ Mij ∀p ∈ P12, i ∈ {1, 2, ..., 6}, j ∈ J

(25)
∑

d∈Cp(12)∩Fj Ypd ≤ M̄j ∀p ∈ P12, j ∈ J

(26)
∑

d∈Cp1∩Fj Xp1d ≤ ∆j ∀p ∈ P1, j ∈ J

(27)
∑

d∈Cp1∩Di∩De∩Fj Xpld ≤ Wij ∀p ∈ P1, i ∈ {1, 2, ..., 6}, j ∈ J

(28)
∑

d∈Cp1∩De∩Fj Xp1d ≤ W̄j ∀p ∈ P1, j ∈ J

(29)
∑

d∈Cp1∩Dh Xp1d ≤ Q ∀p ∈ P1

(30)
∑

d∈Cp4∩Dw∩Fj Xp4d ≤ Θj ∀p ∈ P4, j ∈ J

Additional objectives include the following:

8. Maximize the total number of assignments to clinics (O.8).

9. Each physician should be assigned to Surgery once per week if possible. There-

fore, we seek to minimize the maximum number of weeks for which any physician

is not assigned a Surgery day (O.9). The maximum number of weeks for which

any physician is not assigned a Surgery day is determined by constraints (31).

(31)
∑

d∈Dm

(
1−

∑
r∈{0,1,...,4}:d+r∈Cp(11) Xp(11)(d+r)

)
≤ β̄ ∀p ∈ P11

10. If a physician is assigned to night call during the week (excluding weekends and

holidays), he or she may be assigned to Surgery one of those days. However,

while this is acceptable, it is not ideal and thus the total number of assignments

to both Surgery and night call in the same day should be minimized (O.10).

Soft constraints (32) determine if a physician is assigned to both Surgery and

night call in the same day, for each day in the schedule horizon.
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(32) Ypd +Xp(11)d − 1 ≤ Ψd ∀d ∈ Dw ∩ Cp(11) ∩ Cp(12), p ∈ P11 ∩ P12

11. We seek to minimize assignments to clinics above the preferred number (O.11).

Soft constraints (33) determine the number of assignments above the preferred

number in a given day.

(33)
∑

p∈Pt
∑

t∈Lij :d+r∈Cpt Xpt(d+r) ≤ Uij(d+r) + α(d+r)ij ∀d ∈ Dm

r ∈ {0, 1, ..., 4}

i ∈ {1, 2}, j ∈ {1, 2}

12. Among those physicians for which the clinic schedule is flexible, the number

of physicians assigned to each clinic location should be balanced as much as

possible (O.12). Constraints (34) and (35) determine the minimum number of

assignments at each clinic location.

(34)
∑

p∈Pt
∑

t∈{5,6,7}:d∈Cpt,d/∈Dh Xptd ≥ Bd ∀d ∈ Dw

(35)
∑

p∈Pt
∑

t∈{8,9,10}:d∈Cpt,d/∈Dh Xptd ≥ Bd ∀d ∈ Dw

So the objective with weights λk is the following:
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Objective Function 1:

Minimize

(O.1) λ1

∑
j∈J
∑

i∈{1,2,...,6}Mij

(O.2) +λ2

∑
j∈J M̄j

(O.3) +λ3

∑
j∈J ∆j

(O.4) +λ4

∑
j∈J
∑

i∈{1,2,...,6}Wij

(O.5) +λ5

∑
j∈J W̄j

(O.6) +λ6Q

(O.7) +λ7

∑
j∈J Θj

(O.8) −λ8

∑
d∈Cpt∩Dw

∑
p∈Pt

∑
t∈{5,6,...,10}Xptd

(O.9) +λ9β̄

(O.10) +λ10

∑
d∈Dw Ψd

(O.11) +λ11

∑
d∈Dw

∑
i∈{1,2}

∑
j∈{1,2} αdij

(O.12) −λ12

∑
d∈Dw Bd

4.4 Results and Discussion

We attempted to use PS-IP to construct a physician schedule for July - December,

2012, but no feasible solution was found due to violated constraints. However, one

simple modification to physician availability can allow for a feasible schedule to be

produced; i.e., we remove the restriction that physicians 6, 10 and 11 not be assigned

to ER or Surgery. This is clearly not a feasible option, but we see that a solution is

possible with greater physician availability. With this adjustment, the model finds an

optimal solution (optimality gap = 0.00%) in approximately 2 minutes. Thus, PS-IP

could efficiently solve the problem faced at Emory OB/GYN if more physicians were

available for assignments to ER and Surgery. This is not the case, however, so we

considered an alternative means of finding a feasible schedule.

One such approach is to allow consecutive assignments to L&D night call. This

109



is not an ideal scenario, but it is acceptable if necessary to satisfy feasibility require-

ments and physician preferences such as vacation requests. Constraints (4) state that

no physician can be assigned to L&D night call if they are off duty, and a physician

is forced to be off duty in a given day if they were assigned to L&D night call the

previous day (constraints (3)) or are on vacation or unavailable. If a physician is as-

signed to L&D night call, it is important that they not be assigned to daytime duties

the following day. Therefore, rather than removing constraints (3) to allow consecu-

tive night assignments, we make constraints (4) soft constraints with the addition of

penalty variables Γpd (see new constraints (4̄)).

(4̄) Xp3d + Ypd ≤ 1 + Γpd ∀d ∈ Cp3 ∩ Cp(12), p ∈ P3 ∩ P12

This adjustment allows for physicians to be scheduled to L&D night call even if

they are considered to be off duty due to a night call assignment the previous day, but

we include a penalty and seek to minimize these penalties in the objective function

(see Objective Function 2 below). So the new additional objective is:

13. We seek to minimize the number of times physicians are given consecutive as-

signments to L&D night call.

Objective Function 2:

Minimize

Objective Function 1

(O.13) +λ13

∑
p∈P3∩P12

∑
d∈Cp3∩Cp(12) Γpd

A complete list of the objectives is given in Table 33.

With this objective and the modified constraints (4̄), a good feasible schedule

(with optimality gap < 1%) can be found in approximately 3 minutes (optimality

gap < 0.01% achieved in less than 1 hour). This schedule includes 9 instances of

physicians given consecutive assignments to L&D night call.
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Table 33: Emory OB/GYN - Physician Scheduling Problem Objectives

Objective Description
1 Balance monthly L&D night call assignments
2 Balance total L&D night call assignments over schedule horizon
3 Balance total L&D day call assignments over schedule horizon
4 Balance monthly weekend L&D day call assignments

5
Balance total weekend L&D day call assignments over schedule
horizon

6 Balance total holiday assignments
7 Balance total ER assignments
8 Maximize total clinic assignments

9
Minimize the maximum number of weeks for which any physician
is not assigned a Surgery day

10
Minimize the total number of assignments to both Surgery and
L&D night call in the same day

11 Minimize assignments to clinics above the preferred number
12 Balance assignments to clinics across both locations

13
Minimize the number of times physicians are given consecutive as-
signments to L&D night call

The results reported above are found using an objective weight vector λ which

places high value on objectives 3, 5, 7, and 13 (objectives which balance assignments to

weekdays and weekends on L&D day call, ER assignments, and minimize consecutive

assignments to L&D night call, respectively), placing the highest weight on objective

3. The remaining objectives are given a weight of 1. With a unit weight vector, we see

a great increase in solution time, and the large number of objectives results in largely

unbalanced L&D day call and ER assignments in a solution produced after running

PS-IP for 2 hours (optimality gap 8.62%). In this solution, physicians available for

short time periods in the schedule horizon are given a large number of L&D day call

and ER assignments during those periods as compared to other physicians available

at the same time, which is an undesirable result. Thus, we prioritize the objectives

as described.
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PS-IP is highly efficient for solving this instance of the physician scheduling prob-

lem faced by Emory OB/GYN. In addition, we tested various objective functions

(reported in Table 34) to understand their impact on the solutions. Note that an op-

timality gap < 1% is achieved for each objective function tested in under 5 minutes.

From Table 34, we see from Test 2 that removing objective 11 has very little

impact on the values of the objective function components, and the solution time

is about the same. This is not surprising, as this objective seeks to minimize the

daily number of assignments to clinics above the preferred number, and PS-IP gives

no great advantage to assigning more than this preferred number. Test 3, which

excludes objective 12 (i.e., balanced clinic assignments across locations) as well as

objective 11, has a similar result as well, but assignments to clinics are less balanced,

as expected (i.e., there is a larger gap between the number of assignments to each

clinic). If this objective loses importance, we see that the objective function used in

Test 3 could provide an acceptable schedule. While each objective function tested

achieves an optimality gap < 1% in 5 minutes or less, Tests 1 and 2 require up to 1

and 2 hours, respectively, to achieve an optimality gap < 0.01%. Test 3 reaches an

optimality gap < 0.01% in less than 12 minutes. Thus, the objective function used

in Test 3 may be an acceptable alternative if an optimality gap < 0.01% is strongly

desired, and balanced assignments to clinics become less important.

Test 4 produces a solution which also achieves very similar values of the objective

function components compared to that found with the full objective. We expect less

balanced assignments to clinics given the objectives omitted by this test, but we would

also expect to see more assignments to Surgery and L&D night call in the same day.

This is not the case, however. Thus, we conclude that some combination of model

constraints and objectives prevent an improvement in the number of assignments to

Surgery and L&D night call in the tests which include objective 10.
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The result of Test 5 is very similar to that of Test 4. Tests 4 and 5 reach an

optimality gap < 0.01% in under 5 minutes. The solution found by Test 6 varies

greatly from that of Test 1 (i.e., PS-IP with full objective). Not only is there a slower

solution time (to an optimality gap < 0.01%), but there is also a large increase in

consecutive assignments to L&D night call, and no assignments to Surgery are given

over the schedule horizon. Each of these issues prevent this objective function from

being useful in generating an acceptable schedule.

From this analysis, we conclude that the objective function used by Test 2 would

be an acceptable alternative to use of the full objective function, but with no im-

provement in solution time, there is really no benefit in using this objective function

instead. If balanced assignments to clinics across locations is not important, the ob-

jective function used by Test 3 would be useful, particularly as it produces a similar

result with a faster solution time. The objective functions used in Tests 4 and 5

may also provide a reasonable substitute, with even faster solution times, but further

tests on varying instances are needed for comparison to determine if the tests produce

acceptable schedules under different circumstances. The objective function used by

Test 6 is much too limited to provide a solution acceptable for implementation.

In light of this comparison, we see that, for this instance where balanced clinic

assignments are important, the full objective function (i.e., incorporating the 13 ob-

jectives) is most appropriate. Given this, we investigated whether or not we could

improve on the 3 minute solution time required to reach an optimality gap < 1%. To

accomplish this, we limited our objective function to our high priority objectives (i.e.,

3, 5, 7, and 13). An optimal solution (optimality gap < 0.01%) to PS-IP with this

objective function is found in seconds. Fixing the L&D day call assignments from this

solution, and then using the full objective and solving the model again, an optimal

solution (optimality gap < 0.01%) can be found in less than 1.25 minutes. Table 35

reports the results from this analysis. We refer to this new two-part test as “Test 7”.
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Table 35: Emory OB/GYN - Comparison of Model with Full Objective to Two-Part
Model

Test Solution Time Comparison to Model with Full Objective

1 3 Minutes∗ -

7 < 1.5 Minutes+

Almost identical values of objective function com-
ponents, slightly less balanced holiday assignments,
monthly L&D night call assignments, and monthly
weekend L&D day call assignments, total assignments
to Clinics 1 and 2 vary by 7 (less) and 1 (more) over
schedule horizon, respectively

∗ Optimality gap < 1%; optimality gap < 0.01% achieved in 1 hour
+ Optimality gap < 0.01%

This two-part test (i.e., Test 7) constructs an optimal schedule (gap < 0.01%)

with a much smaller solution time than the original model with the full objective.

Whether or not the solution provided by this test is acceptable for implementation,

given the slightly less balanced holiday, night call, and weekend assignments, can be

determined by decision-makers at Emory OB/GYN. We do see that the solution time

can be greatly reduced by limiting the objective in this way.

4.5 Implementation and Future Work

During model development, we have been in direct contact with decision-makers

at Emory OB/GYN, with the goal of providing them with a tool for constructing

physician schedules on a regular basis. Communications included sample schedules

generated by PS-IP and feedback regarding issues which usually revolved around

miscommunicated scheduling constraints.

Initial discussions regarding the physician scheduling problem faced at Emory

OB/GYN resulted in the inclusion of objectives 1-2, 4-6, 8-9, and 11-12 in the ob-

jective function. However, schedules produced by our model with these objectives

made it clear that the additional objectives 3, 7, and 10 were needed due to a lack of
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balance among L&D day call and ER assignments over the schedule horizon, as well

as an overwhelming number of assignments to both Surgery and L&D night call in

the same day.

We evaluated and used as a benchmark a manually constructed schedule for July-

December, 2012, which included assignments of physicians to L&D day call, L&D

night call, and ER. We were also given vacation requests for that time period. We used

PS-IP to generate a schedule for the same time period, considering vacation requests.

The manual schedule had 27 back-to-back night call assignments, compared to only

9 for the IP-generated schedule. The maximum number of night call assignments per

physician was higher in the manual schedule than for the IP-generated schedule, for

each availability period (the same is true for each month in the schedule horizon). The

maximum number of weekdays on ER was higher for the manual schedule for 3 of the

4 availability periods. The maximum numbers of weekend L&D day call assignments

given to any physician were identical for 4 of the 6 months in the schedule horizon.

The maximum number of holiday L&D day call assignments given to any physician

were also identical.

One limitation in this comparison is that no assignments of physician 6 to L&D day

or night call were made on weekdays (excluding holidays), as requested by decision

makers at Emory OB/GYN. The manual schedule includes L&D assignments of this

physician. However, despite this limitation, we conclude that automated schedule

generation outperforms manual schedule construction with respect to solution time

and the scheduling objectives.

Feedback has been very positive regarding the ability of our model to generate a

schedule which meets all scheduling requirements, as well as the usefulness of an au-

tomated tool which schedulers can use at the operational level. Future work includes

the development of a stand-alone tool for decision-makers to generate schedules at

the operational level using a freely available solver such as GLPK [30] or OpenSolver
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[32] and incorporating the integer programming model presented in this chapter. We

will develop a user-friendly interface which allows physician specific restrictions to

be entered as parameters into the model to create greater flexibility in schedule con-

struction for years to come.

4.6 Conclusions

The physician scheduling problem faced by Emory OB/GYN can be efficiently solved

with the use of an integer programming model. While solution times are consider-

ably low, they can be further reduced depending on the importance of some of the

scheduling objectives. The solution approach presented here allows for creating feasi-

ble schedules while considering multiple objectives, a task which can be cumbersome

to accomplish manually. The model considers the varying availability of clinic space

each day, and allows for scheduling of physicians with varying restrictions.

While the model formulation we present is specific to the problem faced by Emory

OB/GYN, a similar methodology could be applied in other settings with various types

of availability and demand constraints.
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

This thesis presents three applications of optimization methods to problems in physi-

cian scheduling, and provides methods for improving schedule construction over man-

ual methods. More efficient scheduling of physicians, both with regards to rotations

and day-to-day shifts, could positively impact patient care [27]. With methods for

measuring the continuity of a schedule, handoff efficiency can be improved through

mathematical modeling. Optimization models can further inform decisions with re-

gards to shift scheduling, particularly as increased duty hour restrictions combined

with physician preferences may negatively impact resident education.

As discussed in Chapter 2, there are many factors which impact the efficiency of a

handoff, including but not limited to bed occupancy levels, new admissions through

the day, disease acuity of current patients, and fatigue of physicians both starting

and ending a duty period. ACGME duty hour restrictions were created in part to

reduce physician fatigue. However, fatigue cannot be completely eliminated. One

future research direction is to investigate the impact of fatique on handoff efficiency.

An expansion of the HCS which includes a factor for measuring fatigue of physicians

at handoff may provide a tool for understanding this impact, in combination with

careful analysis of the communication that occurs during those handoffs.

An additional research direction includes attempting to better understand the im-

pact that too much familiarity among oncoming physicians may have on the handoff

process. If increased familiarity reduces a physician’s level of attention to communi-

cation shared at handoff, this is an undesired result. Thus, further study is needed
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to identify the true impact of an HCS-maximized schedule on handoff efficiency and

quality.

While the heuristic we developed, which incorporates the Children’s PICU Physi-

cian Scheduling MIP (CPPS-MIP), efficiently solves the physician scheduling prob-

lem faced at Children’s, results are not as attractive when removing the institutional

preference for service blocks. We believe the alternative model we developed has the

potential to improve on the efficiency of the heuristic and CPPS-MIP on problems

with a more general structure (i.e., without service blocks). Constraints which pre-

vent assignments to overlapping shift sequences could tighten the alternative model

formulation. Further, column generation techniques could be employed to reduce the

size of the problem and improve efficiency.

In Chapter 3, we discussed two physician scheduling problems faced by the De-

partment of Surgery at Emory University School of Medicine (EUSOM): (1) resident

rotation assignment, and (2) day-to-day shift scheduling. We developed an efficient

model for rotation assignment, and using a simple integer program, provided insights

into the impact of current practices for day-to-day shift scheduling. We developed

a decision support tool for construction of rotation assignment schedules. Future

work includes the combining of the excel-based decision support tool we developed

for entering problem specific parameters with a freely available solver such as GLPK

or OpenSolver. With enough flexibility to handle various types of demand and sup-

ply constraints, such a tool could be easily adopted by similar programs to that of

EUSOM.

In Chapter 4, we show that a physician scheduling problem which includes a

non-homogeneous physician pool, multiple objectives, multiple tasks, and space con-

siderations, can be efficiently solved using integer programming. We solved a specific

instance of such a problem faced by the Department of Gynecology and Obstetrics

at Emory University Hospital. Future work includes the combining of the integer
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programming model we developed with a user-friendly decision support tool, using a

freely available solver so that schedules can be easily constructed at the operational

level.
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APPENDIX A

CHILDREN’S PICU PHYSICIAN SCHEDULING MIP

(CPPS-MIP) - ADDITIONAL CONSTRAINT

DEFINITIONS

Additional constraints were added to CPPS-MIP during creation of an attending-

only schedule for the PICU for July-December, 2011. These constraints, as well as

additional set, parameter, and decision variable definitions, are presented below. Note

in the set definitions that we refer to a physician M. This physician routinely requested

to be assigned to specific night call shifts which did not align with the preferred call

structures of other physicians in the group at Children’s. Thus, we define sets related

to this physician’s requests for clarity of constraint definitions.

Table 36: Children’s PICU Physician Scheduling MIP (CPPS-MIP) - Additional
Sets, Parameters, and Decision Variables

Set Description
J̄ set of Mondays in schedule horizon

J̃ , Ĵ

set of Mondays in schedule horizon for which physician
M requested or did not request to be assigned to night
call shifts on Monday and Saturday, respectively

Ā set of attendings excluding physician M
Parameter Description

Ψti

required weekday service (t = 1), call (t = 2), and week-
end service (t = 3) shifts for physician i over the schedule
horizon, i ∈ A

λp
weight on penalty p in the objective function, p ∈
{1, 2, ..., 8}

Decision Variable Description

Φpij
Binary variable, = penalty p incurred for physician i in
week beginning with day j. i ∈ A, j ∈ J̄ , p ∈ {1, 2, ..., 8}
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We modified constraints (2a) to be soft constraints, to allow the possibility that

attendings not be assigned to 7 consecutive days if necessary to satisfy requests and/or

fellowship requirements.

(2̄a) Yijn −
∑

k∈K1
Xisk ≤ Φ1is ∀i ∈ A, s ∈ {j, j + 1, ..., j + n− 1}

j ∈ {1, 2, ..., N − n+ 1}, n ∈ Bp, P ∈ ℘

Attendings should not be assigned to night call two days in a row. This is a

modification of original constraints (2e).

(2̄e)
∑

k∈K2

(
Xijk +Xi(j+1)k

)
≤ 1 ∀i ∈ A, j ∈ {1, 2, ..., N − 1}

Each attending should be assigned to no more than 3 night call shifts per week.

(4a)
∑

k∈K2

∑
r∈{0,1,...,6}Xi(j+r)k ≤ 3 ∀i ∈ A, j ∈ J̄

Attendings should be assigned to at most two night calls of Tuesday, Thursday,

and Saturday, and Tuesday, Thursday, and Sunday, respectively.

(4b)
∑

k∈K2

(
Xi(j+1)k +Xi(j+3)k +Xi(j+5)k

)
≤ 2 ∀i ∈ A, j ∈ J̄

(4c)
∑

k∈K2

(
Xi(j+1)k +Xi(j+3)k +Xi(j+6)k

)
≤ 2 ∀i ∈ A, j ∈ J̄

Monday and Thursday night call shifts should be assigned to on-service physicians

if possible. We assume that a physician is an “on-service” physician for the week if

they work the service shift on Monday.

(4d)
∑

k∈K2
Xijk −

∑
k∈K1

Xijk ≤ Φ2ij ∀i ∈ A, j ∈ J̄

(4e)
∑

k∈K2
Xi(j+3)k −

∑
k∈K1

Xijk ≤ Φ3ij ∀i ∈ A, j ∈ J̄

If a physician is one of the “on-service” physicians for the week, they should be

assigned to at least one weekend night call shift.

(4f)
∑

k∈K1
Xijk −

∑
k∈K2

(
Xi(j+5)k +Xi(j+6)k

)
≤ Φ4ij ∀i ∈ A, j ∈ J̄
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The same attendings should work night call on Monday, Friday, and Sunday, and

Thursday and Saturday, respectively, in weeks physician M did not request to be on

call on Monday and Saturday.

(4g) 2 ·
∑

k∈K2
Xijk −

∑
k∈K2

(
Xi(j+4)k +Xi(j+6)k

)
≤ Φ5ij + Φ6ij ∀i ∈ A, j ∈ Ĵ

(4h)
∑

k∈K2

(
Xi(j+3)k −Xi(j+5)k

)
≤ Φ7ij ∀i ∈ A, j ∈ Ĵ

In weeks physician M did request to be on call on Monday and Saturday, the same

attending should work night call on Thursday and Sunday.

(4i)
∑

k∈K2

(
Xi(j+3)k −Xi(j+6)k

)
≤ Φ8ij ∀i ∈ Ā, j ∈ J̃

Fellowship requirements should be met within 90% for each physician. These

include the number of weekday, night call, and weekend day shifts assigned over the

schedule horizon.

(4j)
∑

j∈J̄
∑

r∈{0,1,...,4}
∑

k∈K1
Xi(j+r)k ≥ 0.9 ·Ψ1i ∀i ∈ A

(4k)
∑

j∈J
∑

k∈K2
Xijk ≥ 0.9 ·Ψ2i ∀i ∈ A

(4l)
∑

j∈J̄
∑

r∈{5,6}
∑

k∈K1
Xi(j+r)k ≥ 0.9 ·Ψ3i ∀i ∈ A

The objective function then becomes:

Maximize HCS - Penalty -
∑

i∈A
∑

j∈J̄
∑

p∈{1,2,...,8} λp · Φpij

Note that requests are given precedence over the service block structure, as well

as the preferred call shift structure.
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APPENDIX B

RESIDENT ROTATION ASSIGNMENT MODEL -

SUPPLEMENTARY TABLE AND DATA

Table 37 reports the demand from each service staffed by surgical residents from

Emory University School of Medicine. An asterisk next to a resident level means: (i)

if contained in an “or” statement, then the asterisk means that this level is preferred

over the other, (ii) if not contained in an “or” statement, then the asterisk means that

the level is preferred, but not demanded, (iii) if next to a number, then the asterisk

means that that number of a particular resident level is preferred, but not demanded.

The following services represent equivalent experiences in general surgery.

• GMH General Surgery A

• GMH General Surgery B

• EUH General Surgery A

• EUH General Surgery B

• EUH ACS

• EUH Surgery Oncology

• EMH General Surgery

• PGH General Surgery

• VAH General Surgery
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Table 37: Services staffed by surgical residents from Emory University School of
Medicine, with monthly demand requirements. GMH = Grady Memorial Hospital,
EUH = Emory University Hospital, EMH = Emory University Hospital Midtown,
VAH = Veterans Affairs Hospital, PGH = Piedmont General Hospital, HEH = Emory
University Hospital at Egleston.

Rotation Service Name Demand

1 GMH General Surgery A
1 PGY-1, 1 PGY-3* or PGY-4, and 1
PGY-5

1 GMH General Surgery B
1 PGY-1, 1 PGY-3* or PGY-4, and 1
PGY-5

1 EUH General Surgery A
1 PGY-1, 1 PGY-2 or PGY-3*, and 1
PGY-4 or PGY-5*

1 EUH General Surgery B
1 PGY-1 or PGY-2*, and 1 PGY-4 or
PGY-5*

1 EUH ACS 1 PGY-1 or PGY-2*, and 1 PGY-4

1 EUH Surgery Oncology
1 PGY-1, 1 PGY-3, 1 PGY-4, and 1
PGY-5

1 EMH General Surgery 1 PGY-1, 1 PGY-2, and 1 PGY-4

1 PGH General Surgery
1 PGY-1*, 1 PGY-2*, 1 PGY-3*, 1
PGY-4*, and 1 PGY-5*

1 VAH General Surgery 1 PGY-2 and 1 PGY-4* or PGY-5
2 EUH Selective 1 PGY-3* and 1 PGY-5*
3 GMH Trauma Day 1 PGY-1
4 GMH Trauma Night 1 PGY-3, and 1 PGY-4
5 EUH SICU 1 PGY-2* or PGY-3
6 GMH SICU 1 PGY-1 and 2 or 3* PGY-2’s

7 EUH Vascular Surgery
1 PGY-1, 1 PGY-2, and 1 PGY-4* or
PGY-5

8 VAH Vascular Surgery 1 PGY-2, and 1 PGY-3* or PGY-4
9 HEH Pediatric Surgery Day 3 PGY-1’s and 1 PGY-4
10 GMH Burns 1 PGY-1, 1 PGY-2, and 1 PGY-3
11 GMH Plastic Surgery 1 PGY-1
12 GMH Urology 1 PGY-1

13 EUH Transplant
1 PGY-1* or PGY-2 and 1 PGY-3 or
PGY-4*

14 EUH Cardiothoracic 1 PGY-2
15 EUH Night 1 PGY-1 and 1 PGY-3
16 HEH Pediatric Surgery Night 1 PGY-1
17 VAH Cardiothoracic 1 PGY-2
18 GMH Quad Night 1 PGY-1
19 EUH Colorectal 1 PGY-1, 1 PGY-2, and 1 PGY-5
20 GMH General Surgery C 1 PGY2 and 1 PGY4
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