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SUMMARY

The primary aim of this thesis is to develop effective solution techniques for

large-scale maritime inventory routing problems that possess a core substructure common

in many real-world applications. We use the term “large-scale” to refer to problems whose

standard mixed-integer linear programming (MIP) formulations involve tens of thousands

of binary decision variables and tens of thousands of constraints and require days to solve

on a personal computer. Although a large body of literature already exists for problems

combining vehicle routing and inventory control for road-based applications, relatively little

work has been published in the realm of maritime logistics. A major contribution of this

research is in the advancement of novel methods for tackling problems orders of magnitude

larger than most of those considered in the literature.

We first present a detailed description of a particular class of deterministic single prod-

uct maritime inventory routing problems (MIRPs), which we call MIRPs with inventory

tracking at every port. After providing a comprehensive literature survey of this class of

MIRPs, we introduce a MIP model for a core maritime inventory routing problem. In

addition to being a centerpiece of this thesis, this model is quite general and incorporates

assumptions and families of constraints that are most prevalent in practice. We also discuss

other modeling features commonly found in the literature and how they can be incorpo-

rated into the core model. Next, we offer what appears to be the first unified discussion

of some of the most common advanced techniques used for solving these problems. Fi-

nally, we present a library, called MIRPLib, of publicly available test problem instances for

MIRPs with inventory tracking at every port. Despite a growing interest in combined rout-

ing and inventory management problems in a maritime setting, no data sets are publicly

available, which represents a significant “barrier to entry” for those interested in related

research. Our main goal for MIRPLib is to help maritime inventory routing gain maturity

as an important and interesting class of planning problems. As a means to this end, we
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(1) make available benchmark instances for a particular class of MIRPs; (2) provide the

mixed-integer linear programming community with a set of optimization problem instances

from the maritime transportation domain in LP and MPS format; (3) provide a template for

other researchers when specifying characteristics of MIRPs arising in other settings. Best

known computational results are reported for each instance.

We next present a two-stage decomposition algorithm for the single product maritime

inventory routing problem defined above. The problem involves routing vessels, each be-

longing to a particular vessel class, between loading and discharging ports, each belonging

to a particular region. We call our algorithm “Zoom” because it iteratively solves a MIRP

by zooming out and then zooming in on the problem. Specifically, in the “zoomed out”

phase, we solve a first-stage master problem in which aggregate information about regions

and vessel classes is used to route vessels between regions, while only implicitly consider-

ing inventory and capacity requirements, berth limits, and other side constraints. In the

“zoomed in” phase, we solve a series of second-stage subproblems, one for each region, in

which individual vessels are routed through each region and loading and discharge quanti-

ties are determined. Our algorithm bears a close resemblance to Benders decomposition for

mixed-integer linear optimization except that our second-stage problems are mixed-integer

linear programs, not pure linear programs. Not only is our solution approach different from

previous methods discussed in the maritime transportation literature, but computational

experience shows that our approach is promising.

In our next chapter, we study a maritime inventory routing problem with a long planning

horizon of up to 365 periods (days). For instances with many ports and many vessels, MIP

solvers often require hours to produce good solutions even when the planning horizon is

90 or 120 periods. Building on the recent successes of approximate dynamic programming

(ADP) for road-based applications within the transportation community, we develop an

ADP procedure to quickly generate good solutions to these problems within minutes. Our

algorithm operates by solving many small subproblems (one for each period) and, in so

doing, collecting and learning information about how to produce better solutions. Our

algorithm is one of the first of its kind for maritime transportation problems and represents

xiv



a significant departure from the traditional methods used. In particular, whereas virtually

all existing methods are “MIP-centric,” i.e., they rely heavily on a solver to solve a nontrivial

MIP in a couple of minutes to generate a good or improving solution, our framework puts the

effort on finding suitable value function approximations and places much less responsibility

on the solver. Computational results illustrate that with a relatively simple framework, our

ADP approach is able to generate good solutions to instances with dozens of vessels and

varying time horizons much faster than a commercial solver emphasizing feasibility.

Our final research contribution is a polyhedral study of an optimization problem involv-

ing a single time period that was motivated by maritime inventory routing, but is applicable

to a more general class of problems outside those in a maritime setting. Numerous plan-

ning models within the chemical, petroleum, and process industries involve coordinating

the movement of raw materials in a distribution network so that they can be blended

into final products. The uncapacitated fixed-charge transportation problem with blending

(FCTPwB) studied in this chapter captures a core structure encountered in many of these

environments. We model the FCTPwB as a mixed-integer linear program and derive two

classes of facets, both exponential in size, for the convex hull of solutions for the problem

with a single consumer and show that they can be separated in polynomial time. Further-

more, we prove that in certain situations these classes of facets, along with the continuous

relaxation of the original constraints, yield a complete description of the convex hull. Fi-

nally, we present a computational study that demonstrates that these classes of facets are

effective in reducing the integrality gap and solution time for more general instances of the

FCTPwB with arc capacities and multiple consumers.

In terms of overall impact, this thesis makes several important contributions. From

a scientific perspective, perhaps our most significant contribution is the philosophy that

we introduce for attacking large-scale maritime inventory routing problems. By exploiting

aggregation and decomposition, our methods represent a paradigm shift in the way one

should approach such problems. From a practical perspective, billions of dollars are spent

annually shipping bulk goods all across the globe and our models and algorithms have

the potential to improve the decision support systems responsible for the movement of

xv



these goods. Lastly, we hope that this thesis brings greater attention to the maritime

transportation sector from the OR and transportation science communities.
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CHAPTER I

INTRODUCTION

Despite its lack of prominence within the operations research (OR) and transportation

science communities, maritime transportation is an essential component of global trade.

Capitalizing on their size, strength, and economies of scale, seafaring vessels are responsible

for moving vast quantities of goods all around the globe at costs unmatched by other modes

of transportation. Proper management and coordination within this sector is critical to

the vitality of countless supply chains, yet the application of OR techniques has remained

largely untapped compared to its counterparts in the broader transportation industry. The

primary contribution of this thesis is the development of effective solution techniques for an

important class of optimization problems arising in the maritime transportation industry.

As such, we first introduce maritime transportation, emphasize its role in the international

trade, and ultimately make a case for why more effective solution methods are a meaningful

contribution.

1.1 Maritime Transportation

The maritime transportation industry forms the backbone of several national economies

and plays a critical role in the international competitiveness of many others. Virtually all

global supply chains include at least one maritime leg, leading to issues of improved inte-

gration and giving rise to intricate logistics problems with complex decisions [79]. Figures 1

and 2 underscore the vital role sea-based transport plays in the global economy. For years,

it has been responsible for moving over 70% of all international trade in terms of value.

Perhaps more compelling is the fact that it is responsible for moving between 80% and 90%

of all international trade in terms of volume. Without question, maritime transportation

has a stronghold on moving large quantities of goods between continents [28].

Of the four primary modes of industrial transport - air, rail, sea, and truck - sea-based

transportation is arguably the most underrepresented within the OR and transportation
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Figure 1: Modal split of international trade in value (US$ billion) 2000-2006. Source:
Rodrigue et al. [83] (adapted from GlobalInsight).

Figure 2: Modal split of international trade in goods (million metric tons) 2000-2006.
Source: Rodrigue et al. [83] (adapted from GlobalInsight).
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science communities. This fact is somewhat surprising given the richness of the planning

problems that arise and the potential economic and environmental impact added efficiency

could provide. As Figure 3 shows, transporting freight via water is relatively cost-effective.

There are several indicators of this underrepresentation. First, compared to other modes of

transportation, there are very few special-interest groups devoted to the maritime industry.

For example, the Institute for Operations Research and Management Science (INFORMS)

has a section, or special-interest group, for air (the Aviation Application Section) and for

rail (the Rail Applications Section), but no such group for maritime applications. Second,

there are only a handful of publicly reported OR-based decision support systems being

used for maritime applications compared with dozens used in road-based ones. Whereas

OR is now ubiquitous in the way airlines develop their schedules, price their itineraries,

route their aircraft, and schedule their crew, expert judgment and traditional spreadsheet

planning remain prominent tools in the maritime environment. Third, there are no publicly

available benchmark instances on which researchers can test their algorithms [29].

Figure 3: Freight transport costs in cents per ton-mile. Source: Rodrigue et al. [83] (adapted
from Ballou [13]).
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The three main ingredients of maritime transportation are vessels, ports, and cargos,

which we briefly describe in turn. There are numerous types of vessels, from general-purpose

cargo vessels to industry-specific ships like liquefied natural gas carriers. Vessels are further

classified by their size, expressed in deadweight tonnage (dwt), length, and width. In

contrast to trucks in road-based transport, vessels involve major capital investments and

high operating costs. For example, approximate costs associated with a 200,000 dwt very

large crude carrier (VLCC) include: a construction cost of roughly US $100 million, daily

time-charter rates of US $50,000-100,000, daily fuel costs of US $25,000-50,000, and port

fees of US $10,000-100,000. Meanwhile, the value of the cargo on-board is roughly US $100

million.

Ports act as transfer points for trade. Because they offer materials handling equipment

and facilities for storing and transfering cargo, ports charge vessels a port fee for their

services. Idiosynacrasies at a port, such as draft limits, the number of berths, and the

amount and type of equipment, influence the number of times a vessel loads or discharges

at a particular port in a given time horizon. In this research, port operations are not

explicitly modeled as our focus is on the movement of vessels over time. Nonetheless, OR

has become integral to port terminal operations [93,95].

Cargo (or freight) is a set of goods shipped together from a single origin to a single

destination. In the vehicle routing literature, it is often referred to as an order. Maritime

cargo is conventionally broken down into two categories: break-bulk cargo and bulk cargo.

Break-bulk cargo refers to general cargo that is packaged, itemized by containers, and trans-

ported by container ships. This cargo tends to have numerous origins, destinations, and

clients. Before containerization, economies of scale were difficult to achieve with break-bulk

cargo as the loading and unloading process was very labor and time consuming [83]. Bulk

cargo, which is our primary focus in this thesis, refers to dry and liquid freight that is not

packaged or palletized such as oil, liquid chemicals, coal, iron ore, phosphate, bauxite, and

grain. It is the dominant player in maritime shipping. It often requires the use of specialized

ships such as oil tankers as well as specialized transshipment and storage facilities. Con-

ventionally, it has a single origin, destination and client and is prone to economies of scale.
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Table 1: Development of international seaborne trade, selected years (millions of tons
loaded). Source: UNCTAD [105].

Year Oil Main bulks Other dry cargo Total
(all cargoes)

1970 1442 448 676 2566
1980 1871 796 1037 3704
1990 1755 968 1285 4008
2000 2163 1288 2533 5984
2006 2698 1836 3166 7700
2007 2747 1957 3330 8034
2008 2742 2059 3428 8229
2009 2642 2094 3122 7858
2010 2752 2333 3323 8408

Services tend to be irregular, except for energy trades, and part of vertically integrated

production processes. For more details, see Christiansen et al. [28], Rodrigue et al. [83],

and Stopford [96].

In the petro-chemical industry, bulk products are the most prevalent. Energy-related

commodities like crude oil, oil products, LNG, and thermal coal account for 44% of seaborne

trade by weight [96]. As of 2005, about 2.4 billion tons of petroleum were shipped by

maritime transportation, which is roughly 62% of all the petroleum produced [106]. There

are roughly 4000 tankers available on the international oil transportation market for this

distribution. Meanwhile, transportation costs account for about 5 to 10% of the added

value of oil, and they depend on the amounts of oil carried, the origin from which it is

extracted, and the destination to which it is being transported. In the global LNG market,

some estimate that shipping costs account for 10 to 30% of all costs. Although costs are

important, they do not tell the entire story. A well-devised routing schedule for a fleet of

vessels may also allow vessels to satisfy demand spikes that occur due to external factors.

In this case, a small increase in shipping costs may result in a significant profit.

1.2 Maritime Inventory Routing

Of the nearly 9 billion tons of goods in international seaborne commerce traded in

2011, bulk goods such as coal, crude oil, iron ore, and liquefied natural gas accounted for
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well over 50% of this quantity and easily represented several hundreds of billions of US

dollars in value [105] (see also Table 1). With such figures expected to grow over future

decades, effective maritime transportation is paramount. A focal point of this thesis is on

a particular maritime transportation planning problem known as the Maritime Inventory

Routing Problem (MIRP), which plays an integral role in global bulk shipping.

Inventory routing problems (IRPs) involve the integration and coordination of two com-

ponents of the logistics value chain: inventory management and vehicle routing. Maritime

inventory routing problems are a special class of IRPs that arise in a maritime setting. IRPs

have come to prominence because they are an integral component in vendor managed in-

ventory replenishment (VMR), a policy in which a central decision maker coordinates both

the inventory and its distribution within a supply chain [22]. The survey paper on com-

bined inventory management and vehicle routing problems by Andersson et al. [8] provides

a summary of research on IRPs in road and maritime settings.

A MIRP is best described in terms of its main components: ports and vessels. Each

port is classified as a loading port where product is produced and loaded onto vessels or

as a discharging port where product is consumed, typically after being discharged from

vessels or from an alternative source (e.g., a pipeline). Product can be stored in inventory

at both types of ports. Each port typically has: exactly one classification type, “loading”

or “discharging”; an inventory capacity that may change over time; a fixed number of

berths limiting the number of vessels that can simultaneously load or discharge in a given

time period; lower and upper bounds on the amount of product that can be loaded or

discharged in a period; and deterministic bounds on the rate of production or consumption.

In some settings, rates are only monitored for one side of the supply chain, e.g., only on

the production side. When rates are not specified at a port, a set of time windows, each

with a minimum quantity that should be loaded or discharged, may be given. Alternatively,

there are settings in which contracts with customers (discharging ports) outline monthly

demands, or state that a certain amount of product is to be delivered fairly evenly spread

throughout the year. Over- and under-deliveries may be accepted, but may incur a penalty.

To transport the product, the planners control or charter a heterogeneous fleet of vessels.
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Each vessel belongs to a particular vessel class and has a fixed capacity, a cruising speed,

and a travel cost. Vessels make voyages between ports by picking up inventory at one or

more ports and delivering inventory to one or more ports. Vessels may partially load and

discharge so that two or more ports of the same type (loading or discharging) may be visited

in succession. In general, a vessel will fully discharge before loading at another port.

In Chapters 2 and 3, we address a MIRP with precisely the characteristics listed above.

Using the nomenclature of Andersson et al. [8], this type of MIRP can be classified as a

deterministic, finite-horizon, split-pickup and split-delivery problem. The solution of this

planning problem specifies routes, i.e., the sequence and times of ports visited, for each

vessel as well as the quantity of product loaded or discharged in each time period by each

vessel. In Chapter 4, we study a simplified version of this problem in which there are no

split pickups or split deliveries, but instead a much longer time horizon. Such problems are

typical encountered in the supply chains for liquefied natural gas.

Having discussed the basic characteristics of a MIRP, we now attempt to distinguish this

problem from the class of road-based IRPs, which have received far more attention in the

literature. MIRPs possess several noteworthy idiosyncrasies that differentiate them from

an IRP typically encountered in road-based applications (see, e.g., [8]). First, the classical

IRP assumes that a fleet of vehicles are located at a central depot (a single supplier) and

are dispatched to customers to satisfy demand before returning to the depot in the same

period. In a maritime setting, the notion of a single central depot is conspicuously absent.

Likewise, vessels are typically traveling long distances and around the clock making the time

dimension of the problem very important. Second, the planning horizon is typically longer

in a maritime setting due to time-consuming port operations and long travel times. On the

other hand, with shorter planning horizons, models for road-based applications typically

require finer granularity. Third, in traditional IRP models, inventory levels are tracked

only at customers, not at the supplier (the depot). Fourth, in a maritime setting, vessels

typically visit relatively few (3 or fewer) ports in succession when loading or discharging,

whereas traditional IRPs may involve tens of customers to visit with a small quantity

(relative to vehicle capacity) being loaded at each visit.
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It is also important to distinguish maritime inventory routing problems from a closely

related class of problems known as cargo routing problems. As discussed in Al-Khayyal and

Hwang [5] and Hwang [60], cargo routing problems are mainly constrained by the cargo,

which is usually defined by the loading and discharging ports, and by time windows for

loading and discharging. Inventory routing problems are constrained by inventory require-

ments such that the inventory level of products at ports should be maintained. In general,

cargo routing is performed under more restrictive constraints since the time windows to

load and discharge are usually narrow and the quantities to be loaded and discharged are

known in advance. In contrast, in a MIRP, the number of calls (i.e., visits) at a given port

over the planning horizon, the quantity to be loaded or discharged at each port call, as

well as the port pickup and delivery pairings are not specified in the data. Thus, due to

the larger solution space, it can be argued that maritime inventory routing is often more

challenging computationally than traditional cargo routing.

Even within the class of MIRPs, such problems are typically classified along several

axes. The first axis concerns the type of planning: strategic, tactical, and/or operational.

In a maritime setting, strategic planning involves decisions over a long time horizon of one

to twenty years. Tactical planning usually involves several months, possibly up to a year, of

vessel routing and product distribution decisions. Operational planning requires the finest

granularity and typically focuses on a planning horizon of several weeks or a few months.

The second axis is the type of shipping environment: industrial, tramp, or liner [64, 85].

Industrial operators own or control both the vessels and cargo to be transported, and focus

on minimizing their transport costs. Tramp shipping is analogous to a taxi service, as the

vessels go after cargoes that become available in the market. Liner shipping, for which

there are virtually no MIRP applications in the literature, resembles bus line operations

since the vessels follow published itineraries and schedules. In practice, MIRP applications

may involve elements from both industrial and tramp shipping (see, e.g., [6]). The third

axis distinguishes between deep-sea and short-sea shipping. Deep-sea shipping pertains to

intercontinental trips through deep seas in which travel times are much longer than the

time required to load and discharge at ports. Short-sea shipping typically refers to short
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regional trips in which travel times are likely to be shorter than the time requirements at

a port, and therefore port operations and service constraints are necessary to adequately

model reality.

1.3 Mixed-Integer Linear Programming

A common thread in this thesis is the use of mixed-integer linear programming (MIP

for short). In this section, we collect some of the essential concepts that will play a role

throughout the thesis. For an extensive treatment of the subject, see Nemhauser and

Wolsey [71].

1.3.1 Basic Concepts of Mixed-Integer Linear Programming

A MIP problem is given by

(MIP ) min cTx (1a)

s.t. Ax ≥ b (1b)

xj ∈ {0, 1} , ∀ j ∈ B (1c)

xj ∈ Z+ , ∀ j ∈ G (1d)

xj ≥ 0 , ∀ j ∈ C (1e)

where x is an n-dimensional vector of decision variables, Z+ is the set of non-negative

integers, B ⊆ {1, . . . , n} is the set of binary variables, G ⊆ {1, . . . , n} is the set of general

nonnegative integer variables, and C ⊆ {1, . . . , n} is the set of continuous variables. The

sets B, G, and C partition {1, . . . , n}. An instance of (1) is specified by the data (c,A,b)

where c ∈ Qn is the cost vector (Q is the set of rationals), A ∈ Qm×n is the constraint

matrix, and b ∈ Qm is the right hand side vector. The continuous or linear programming

(LP) relaxation of problem (1) is obtained by relaxing the integrality requirements on all

non-continuous decision variables. Let X denote the feasible region of (1) and let conv(X)

denote the convex hull of X. We refer to a point x ∈ X as an integer feasible solution, or

simply a solution, to problem (1).

Since the class of MIP optimization problems is NP-hard, leading MIP solvers possess

a vast array of techniques, which some developers even refer to as “tricks,” for solving MIPs
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to within some degree of optimality. While these techniques are important, they should

not cloud our understanding of the fundamental strategies used in today’s solvers. In a

nutshell, MIPs are solved via a procedure called “branch-and-cut,” which brings together

two successful ideas: “branch-and-bound” and “cutting plane” methods.

Branch-and-bound is an implicit enumeration procedure that gradually divides the fea-

sible region into smaller subregions. To implement this divide-and-conquer approach, a

search tree is built where each node in the tree corresponds to a particular subregion of the

feasible region. The goal is to avoid exhaustive enumeration of the entire solution space

by pruning nodes that do not contain or will not lead to an optimal solution. Nodes are

pruned for two reasons. First, a node can be pruned by infeasibility if the subregion at that

node is empty. Second, a node can be pruned by bound if, after calculating a lower bound

on the value of the best possible solution in the subregion at each node, we find that this

lower bound exceeds the objective value of a solution we have already found. In either case,

we do not need to explore this subregion any further.

Cutting plane methods attempt to strengthen the continuous relaxation of (1) by adding

valid inequalities to it in hopes that the resulting formulation more accurately represents

conv(X), at least in the region of an optimal solution to (1). A linear inequality πTx ≥ π0

is called a valid inequality for a set S if it is satisfied by all points in S. By definition, if

a valid inequality is added to the LP relaxation for a feasible region S, the LP will still be

a relaxation of S. Valid inequalities can be added to the original formulation (1), prior to

solving the LP relaxation, by deriving information about the problem from its structure.

Alternatively, they can be added after solving the LP relaxation by determining that an

integer decision variable takes a fraction value in the LP relaxation. It is in this context that

they were called cutting planes (or “cuts”) since they cut off the optimal solution to the

current LP relaxation, but not any feasible integer solution. Within the MIP community

there is agreement that there is no shortage of cuts that can be added to a MIP. Meanwhile,

identifying which cuts will bring about the fastest possible search is still an open problem.

When merged together, these two techniques complement one another to form the
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branch-and-cut procedure, a generic, yet powerful framework for solving MIPs. The al-

gorithm is designed to yield a provably optimal solution by producing one or more solutions

whose objective function value is equal to the best known lower bound. At the same time,

it can also be modified to give solutions that are provably optimal within any specified

tolerance, e.g., 5%, and therefore can be used as an approximation algorithm with a faster

running time.

1.3.2 Primal Heuristics for General Purpose MIP Solvers

A primal heuristic is an algorithm that attempts to find a feasible solution to an op-

timization problem, often with complete disregard for a dual bound or dual information

(hence, the qualifier “primal.”) Given that a general MIP is NP-hard, such heuristics have

the unenviable task of trying to find a good feasible (or sometimes just any feasible) solu-

tion to any optimization or feasibility problem that can be formulated as a MIP. Why are

primal heuristics so important? A good feasible incumbent solution can help prune sub-

optimal branches of the search tree as early as possible and, therefore, reduce the memory

and CPU time required to solve the problem. The importance of a good primal solution is

reflected in the solution process of the best MIP solvers. Indeed, Figure 4, which depicts a

flow chart of the solution process used in SCIP, widely regarded as the best non-commercial

general purpose MIP solver in the world, contains four separate calls to “Primal Heuristics”

scattered throughout the search procedure. The purpose of this subsection is to familiarize

the reader with the state of current MIP solvers and to convey a simple message: Despite

the abundance of primal heuristics available for general purpose MIPs, they are typically

unable to find good solutions in a reasonable amount of time to the maritime inventory

routing problems, when cast as MIPs, studied in this thesis.

State of the art MIP solvers typically possess a rich arsenal of more than 20 different

primal heuristics that are dynamically applied before the root node solve, in the root node,

and periodically in the nodes of the branch and bound tree. Primal heuristics can be

categorized along several dimensions. One dimension is to differentiate strategies based on

their goal, function, or purpose: “Start” (or “Starting”) heuristics, as they are called in [17],
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Figure 4: Flow chart of the solution process in SCIP. Source: Achterberg and Lodi [2].

attempt to find an integer feasible solution from scratch; Improvement heuristics seek to

improve on a current incumbent solution; Repair heuristics try to repair a partial or slightly

infeasible solution.

A second dimension distinguishes between the techniques used to obtain an integer

feasible solution. The four most prominent techniques are rounding, diving, pivoting, and

“MIPing.” Rounding methods round every integer variable which takes a fractional value

in an LP feasible vector to an integer value. Every integer variable that is already integral

in this LP feasible vector stays unchanged. Diving methods attempt to explore one or more

root-leaf paths of the search tree by iteratively bounding or fixing variables of a fractional

LP solution to promising values and then re-solving the LP. Pivoting methods work on the

LP tableau and use the mechanism of pivoting to move from one LP feasible solution to

the next while reducing integer infeasibility. MIPing, a term coined in [39], is a relatively

new trend and means “translating into a MIP model.” The basic idea is to fix a subset
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of integer decision variables at an integer value and solve a smaller MIP, called a subMIP,

to optimality or up to a given node limit or time limit. Just over a decade ago, such an

idea was impractical given the existing technology. Today, solvers are capable of generating

good solution to small MIPs in a time comparable to what is would take to solve the

LP relaxation. In general, MIPing requires more CPU time than rounding, diving, and

pivoting, but also allows a larger neighborhood to be explored and, therefore, may lead to

better solutions.

A third dimension is the input given to the heuristic. Let xmip be the incumbent

solution, i.e., the best feasible solution found thus far, and xnodeLP be the solution of the

LP relaxation at a node in the search tree. Most Start heuristics take an LP solution xnodeLP

as input, although some do not even require an LP to be solved, and attempt to transform

it into an integer feasible solution. Improvement heuristics often take xmip as input along

with xnodeLP and/or other feasible solutions, and perform some sort of local search to find

a better solution. Repair heuristics can take a partial or slightly infeasible solution and try

to steer the solution towards a feasible one.

It is beyond the scope of this introduction to describe the dozens of primal heuristics

that have been developed for general MIP solvers. Instead, we try to categorize some of

the main approaches in Table 2 (Acronyms used: DINS = Distance Induced Neighborhood

Search; RINS = Relaxation Induced Neighborhood Search; RENS = Relaxation Enforced

Neighborhood Search). For an extensive discussion on this topic, see the Master’s theses of

Berthold [17] and Christophel [32].
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Table 2: Common primal heuristics found in general purpose MIP solvers

Primal Heuristic Purpose Technique Input
Wedelin’s heuristic [14] Starting Lagrangian Nothing
Diving Starting Diving xnodeLP

Feasibility Pump [38] Starting Rounding xnodeLP

Pivoting [10,11] Starting Pivoting xnodeLP

RENS [17] Starting MIPing xnodeLP

Rounding Starting Rounding xnodeLP

Objective Feasibility Pump [1] Starting Rounding xnodeLP

Crossover [17] Improvement MIPing 2 or more int. feasible solns
DINS [43] Improvement MIPing xmip, xnodeLP

Local Branching [37] Improvement MIPing xmip, xnodeLP

RINS [33] Improvement MIPing xmip, xnodeLP

Solution Polishing [87] Improvement MIPing 2 or more int. feasible solns
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CHAPTER II

MIRPLIB: A MARITIME INVENTORY ROUTING SURVEY AND

INSTANCE LIBRARY

2.1 Introduction

In this chapter, we study a particular maritime transportation planning problem known

as the Maritime Inventory Routing Problem (MIRP), which plays an integral role in global

bulk shipping. In recent years, there have been several appeals to create a set of benchmark

instances on maritime transportation for the research community. Andersson et al. [8] urge

authors, in collaboration with industrial partners, to make their data available along with a

full and rich description of the model so that other can reproduce it. Similarly, Christiansen

and Fagerholt [26] write “... there are still not any published sets of benchmark problems

for maritime transportation problems, while there are numerous in land-based transport.”

The primary goal of this chapter is to help fill this void by introducing a set (or “library”) of

benchmark instances for a particular class of single product MIRPs. By doing so, we hope

to help maritime inventory routing gain maturity as an important and interesting class of

planning problems and to spur the development of better mathematical models and more

advanced algorithms. We call this libary MIRPLib in the spirit of other libraries in the OR

community such as TSPLib, MIPLib, ORLib, and MineLib, which have been used for the

traveling salesman problem, mixed-integer linear programming (MIP), OR, and open-pit

mining, respectively.

In order to create the first publicly available library of MIRP instances, we scoped the

problem to be interesting and accessible. Christiansen et al. [29] define a MIRP as “a

planning problem where an actor has the responsibility for both the inventory management

at one or both ends of the maritime transportation legs, and for the ships’ routing and

scheduling.” While this definition is reasonable and concise, it leaves ample room for inter-

pretation and variation. Indeed, just as with the IRP, there is no single well-defined MIRP,
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but instead many variants that address particular aspects of a specific industrial applica-

tion [8]. To scope this work, we have opted to study a core model in which inventory levels

at all loading and discharging ports must stay within prespecified bounds during every time

period throughout the entire planning horizon. We refer to this class of problems as MIRPs

with inventory tracking at every port. We believe that this class of problems is a suitable

starting point for a library since it most closely resembles the traditional concept of VMR

in which a central entity is tasked with maintaining inventory levels at all suppliers and

customers, while simultaneously managing the distribution of the inventory.

Our emphasis on a core model is in line with what Christiansen and Fagerholt [26]

describe as “a need to direct the research on maritime transportation towards more basic

research.” By focusing on a core model that lies at the intersection of many of the models

seen in the literature, we believe that researchers can compare their algorithms in a mean-

ingful way without having to understand a detailed variant of this base model. Meanwhile,

this does not discount the importance of rich models. We hope researchers can use this

library as a template before making their data available to the community.

The single product MIRP that we study as our core model is best described in terms

of its main components: ports and vessels. Each port is classified as a loading port where

product is produced and loaded onto vessels or as a discharging port where product is

consumed, typically after being discharged from vessels or from an alternative source (e.g.,

a pipeline). Product can be stored in inventory at both types of ports. Each port has:

exactly one classification type, “loading” or “discharging”; a variable inventory capacity;

a fixed number of berths limiting the number of vessels that can simultaneously load or

discharge in a given time period; lower and upper bounds on the amount of product that

can be loaded or discharged in a period; and deterministic, but possibly non-constant, per-

period bounds on the rate of production or consumption. If the bounds in a single period

coincide, then the rate is fixed. Each discharging port has a deterministic, but possibly

non-constant, per-period unit price for the quantity discharged. Port operations, such as

time to berth and time to set up equipment for loading or discharging, are not explicitly

modeled.
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To transport the product, the planners control or charter a fleet of heterogeneous vessels.

Each vessel belongs to a particular vessel class and has a fixed capacity, a cruising speed,

and a travel cost per km. Vessels make voyages between ports by picking up inventory at

one or more ports and delivering inventory to one or more ports. Vessels may partially

load and discharge so that two or more ports of the same type (loading or discharging) may

be visited in succession. In general, a vessel will fully discharge before loading at another

port, but this is not required in the model. A berth is only occupied by a vessel when

loading or discharging. Thus, there can be more vessels at a port than there are berths.

Using the nomenclature of Andersson et al. [8], this core MIRP model can be classified as

a deterministic, finite-horizon, split-pickup and split-delivery problem. The solution of this

planning problem specifies routes, i.e., the sequence and times of ports visited, for each

vessel as well as the quantity of product loaded or discharged in each time period by each

vessel.

To reiterate, in this chapter, we focus exclusively on tactical MIRPs in which inventory

levels at all loading and discharging ports must stay within prespecified bounds during every

time period throughout the entire planning horizon. MIRPs with explicit time windows

constraints are not considered. Of course, there are other interesting types of MIRPs

that have been studied. For example, in the liquefied natural gas (LNG) industry, it is

sometimes the case (see, e.g., Section 4 in [7]) that a producer is responsible for ensuring

that inventory bounds are strictly enforced at a liquefaction plant while fulfilling a set of

long-term customer contracts. This problem is a MIRP. However, since inventory level

constraints are not stated in every time period for the customers, we do not include it here.

Similarly, Christiansen [23] discusses a real-world problem faced by a company that trades

ammonia with internal and external customers (ports). Although inventory bounds are

explicitly stated for each internal port in every time period, load and discharge amounts with

external ports are based on negotiations and are, therefore, specified with time windows.

Once again, since inventory constraints are not stated in every time period for all customers,

this problem is an extension of the core model presented here. Note that, as long as time

window constraints are not included, we allow for lower and upper inventory bounds at
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some ports to be ignored as this is equivalent to setting these bounds to −∞ and +∞,

respectively.

The outline of this chapter is as follows. In Section 2, we review the literature on

MIRPs with inventory tracking. In Section 3, we present an arc-flow MIP formulation of

a core MIRP along with extensions to handle other features frequently encountered in the

literature. In Section 4, we discuss how to use the library. Finally, we provide best known

results for the instances currently in the library in Section 5.

2.2 Literature Review

In this section, we present a review of the papers and solution methods for MIRPs

with inventory tracking at all ports. A survey of applications, problems, and algorithms in

maritime routing and scheduling can be found in Christiansen et al. [29]. Table 6 attempts

to categorize the papers discussed below.

As mentioned in the introduction, Christiansen [23] studies a single product MIRP from

the ammonia industry. Although the problem that she considers does not satisfy the strict

definition of our core MIRP model, it is important to mention this work as it is one of the

most cited papers in maritime routing and scheduling, and its model provides the basis

of several other models seen in subsequent papers. A company owns both production and

consumption facilities and must route a fleet of vessels so that inventory bounds are never

breached. Continuous-time arc- and path-flow models are formulated and a branch-and-

price algorithm is developed.

Ronen [86] addresses a multi-product MIRP faced by producers of liquid bulk products

in which each product must be stored and shipped in separate compartments of a vessel.

Vessels are chartered to make voyages that visit a single loading port and a single discharging

port, while possibly carrying multiple products. A simple heuristic is suggested. Persson

and Göthe-Lundgren [76] also consider a multi-product MIRP for an oil refinery company

in Sweden. They formulate both arc- and path-flow models on a time-space network. To

solve the problem, they suggest a heuristic that uses column generation and variable fixing

within a partial branch-and-bound search.
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Extending the model of Christiansen [23], Al-Kayyal and Hwang [5] study an arc-flow

model in which multiple liquid bulk products are shipped by a fleet of heterogeneous vessels,

each of which has a dedicated compartment for a subset of the products; each compartment

is dedicated to the same product throughout the planning horizon. Computational experi-

ments reveal that the time required to solve their model directly using a commercial solver

increases exponentially in the number of vessels and time periods considered. Li et al. [66]

study a MIP model similar to that of Christiansen [23] and Al-Kayyal and Hwang, but at

an operational level with finer granularity. For example, they ensure that inventory bounds

are satisfied at every moment in time, rather than just at the beginning and end of each

loading and discharging event (or time period in our core model). Like Christiansen [23],

their model involves internal and external ports. However, unlike Christiansen, external

sites act solely as external suppliers of raw materials that no other site produces, inventory

levels at external sites are ignored, and no time windows are specified. Whereas Al-Kayyal

and Hwang and Li et al. assume that compartments are dedicated for certain products,

i.e., it is not permissible to assign a product to a compartment that has been used previ-

ously by other products, Siswanto et al. [91] relax this assumption and study a MIRP with

undedicated compartments. Multiple heuristics are applied to generate feasible solutions.

Several case studies also appear in the literature. Dauzère-Pérès et al. [34] describe a

case study in VMR involving a Norwegian supplier of calcium carbonate slurry, a product

used in paper manufacturing. The supplier is responsible for routing a fleet of heterogeneous

vessels and for maintaining sufficient inventory levels of up to sixteen products at ten tank

farms in Northern Europe. Ensuring inventory remains within bounds at both the supply

point and the tank farms is imperative; moreover, these bounds are rather tight. While

vessel voyages are relatively simple (each vessel travels from the supply point to a single

tank farm before fully discharging), the decision of which vessel to use and how much of each

product to load on the chosen vessel is challenging. A memetic algorithm, a population-

based approach that combines local search heuristics with crossover operators, is used to

generate solutions within the decision support tool. Note that even though inventory bounds

are not enforced at the supplier, we consider this problem to be a MIRP with inventory
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tracking since the lower and upper inventory bounds at the supply port can be considered

−∞ and +∞, respectively. Christiansen et al. [27] present a MIRP encountered by a

major cement producer involving bulk ships with multiple compartments that transport

multiple non-mixable cement products. While a mathematical programming formulation is

not provided, a construction heuristic embedded in a genetic algorithmic framework is used

as a solution method. Andersson [6] studies a maritime inventory routing subcomponent of

the supply chain of Södra Cell AB, one of the largest producers of pulp in the world. The

problem is complicated by the availability of several modes of transportation for distributing

the pulp. Along with trucks, trains, and barges, a fleet of long-term time-chartered vessels

are used, but additional vessels can also be chartered on the spot market. A path-flow model

is formulated and solved using a branch-and-price methodology. Bilgen and Ozkarahan [19]

present a MIP model for a multi-product bulk grain blending and shipping problem faced

by a company that manages a wheat supply chain. The salient characteristic of their model

that differentiates it from other models listed here is the ability to blend multiple products

to meet customer demand requirements. Although their routing decisions may be slighly

complicated by the presence of split pickups, they include a simplifying assumption that all

voyages begun in a period (a month) end in the same period.

Another stream of research emerged from a class of tactical planning problems within

vacuum gas oil (VGO) transportation. This class of single product MIRPs is a tramp

shipping application involving voyage chartered vessels or spot charters, i.e., vessels that

are chartered for a single voyage from a loading region to a discharging region. Furman et

al. [41] present a rich arc-flow MIP model embedded in a decision support tool used to aid

decision-makers in the routing and inventory management of VGO at ExxonMobil. This

case study describes many real-world constraints and techniques for modeling vessels with a

complicated cost structure. Driven by a need to generate good solutions quickly to models

similar to those described in [41], Song and Furman [92] apply a large neighborhood search

to an arc-flow model that extends the ideas introduced in Savelsbergh and Song [89]. In

particular, after an initial solution is generated, a local search procedure, akin to a 2-opt

procedure, is applied in which the decision variables associated with all but two vessels are
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fixed and an exact optimization algorithm is called to locally optimize the decisions for these

two vessels. This procedure is applied for up to
(|V|

2

)
iterations, where |V| is the number

of vessels and vessel pairs are chosen randomly in each iteration. We refer to this type of

algorithmic approach as MIP-based local search as a small MIP model is solved during each

local search phase. Working off of a simpler problem than the one considered in [41] and [92],

Engineer et al. [36] formulate a path-flow model and apply a branch-cut-and-price approach

for solving the problem. Three types of valid inequalities are suggested that generalize valid

inequalities presented in previous work. Hewitt et al. [57] also attempt to generate good

solutions quickly for the instances considered in [36] with branch-and-price guided search

(BPGS) [56], a technique that systematically searches restricted neighborhoods of a MIP

using information from an extended formulation in the master problem. They consider a

much richer set of local search neighborhoods than previously studied and show that, after

parallelizing their code on four processors, BPGS is quite effective at finding high-quality

solution in 30 minutes for the MIRP instances considered.

Agra et al. [3] study a general MIRP and propose two discrete-time formulations to

solve it: an arc-flow formulation and a fixed-charge network flow formulation. They show

that the latter formulation is much tighter than the arc-flow formulation. In addition to

their alternative formulation, their main contributions are several types of valid inequalities,

which can further strengthen the models, and the use of priority branching to accelerate the

solution process. All valid inequalities are generated before the branch-and-cut algorithm

is launched. Shen et al. [90] devise a Lagrangian relaxation approach to solve a crude oil

transportation problem involving chartered vessels and pipelines that are used to transport

product from a central supplier to a number of customers. Papageorgiou et al. [75] consider

instances involving company owned and long-term chartered vessels and apply a two-stage

decomposition algorithm, similar in spirit to Benders decomposition for MIP, in which

vessels are first routed between regions and then intra-regional loading/discharging and

routing decisions are made. While the first-stage master problem provides useful bounds,

an effective construction heuristic to generate good solutions quickly is presented along with

extensions to the local search neighborhoods presented in Hewitt et al. [57]. Whereas [75]
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attempts to find good primal and dual solutions to tactical planning problems of up to 60

periods (days), Papageorgiou et al. [74] focus exclusively on finding good primal solutions

to planning problems of up to 360 periods in a short amount of time (i.e., minutes).

Inventory tracking models have also been studied for MIRPs arising in the distribution

of LNG, sometimes referred to as LNG-IRPs. Grønhaug and Christiansen [48] are the first

to study an LNG-IRP and introduce arc- and path-flow models that also include features

idiosyncratic to LNG shipping, e.g., boil-off and cargo tanks. Because larger instances of

the arc- and path-flow models are difficult to solve with a commercial solver, Grønhaug

et al. [49] introduce a branch-and-price method in which the master problem handles the

inventory management and the port capacity constraints, while the subproblems generate

the ship route columns. Different accelerating strategies are implemented. Andersson et

al. [7] present a path-flow formulation of a planning problem faced by a vertically integrated

LNG company. The company is responsible for the inventory management at all liquefaction

plants and regasification terminals in addition to the transportation between these plants;

no computational experiments are performed. Fodstad et al. [40] study arguably the richest

version of an LNG-IRP discussed in the literature as it involves contract management and

spot market trading. To solve their LNG-IRP model, Fodstad et al. [40] solve a MIP directly,

while Uggen et al. [104] present a fix-and-relax heuristic. Goel et al. [47] study an arc-flow

model of a similar LNG-IRP with a single-pickup and single-delivery assumption. They

present a construction heuristic and adapt the local search procedure of Song and Furman

[92] to generate solutions to instances with 365 time periods. Their main algorithmic

contribution is to show how vessel pairs should be chosen to improve solution quality and

reduce total solution time.

Table 6 summarizes those papers in the literature whose focus is on modeling or solving

a MIRP with inventory tracking at all ports. The headings of Table 6 are: Aff refers to the

primary affiliation of the authors (BIT = Blekinge Institute of Technology, Sweden; CUPB =

Chinese University of Petroleum - Beijing, China; DEU = Dokuz Eylul University, Turkey;

Molde = Molde University College, Norway; NUS = National University of Singapore;

UMSL = University of Missouri-St Louis, USA; UNSW = University of New South Wales at
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The Australian Defense Force Academy); App refers to the primary application motivating

the paper or the computational instances (“L. bulk” means “liquid bulk”); Model notes

whether an arc- or path-flow model or both are discussed or used; Method refers to the

solution method applied (ADP = Approximate Dynamic Programming; BC = Branch-and-

Cut; BP = Branch-and-Price; BPC = Branch-Price-and-Cut; BPGS = Branch-and-Price

Guided Search; CG = Column Generation; Lagrangian = Lagrangian relaxation); B stands

for “Branching” and denotes whether any special branching procedures are discussed; C

stands for “Cuts” or “Constraints” and denotes whether any valid inequalities were derived

to improve the model. The final six columns roughly describe the size of the largest instance

in each paper, where the size is measured coarsely in terms of the number |V| of vessels,

the number |J | of ports, the number of loading and discharging ports (|J P | and |J C |,

respectively), the number |T | of time periods, and the number |K| of products. Note that

the largest value reported for each parameter is shown, but there may not be an instance

corresponding to the values shown. For example, Grønhaug et al. [49] consider instances

with up to 75 time periods, but they do not have an instance with the parameters shown

in the table. Not all papers include a computational study.

Table 6 reveals that over two-thirds of the papers on MIRPs with inventory tracking

at all ports are affiliated with Norwegian research at the Norwegian University of Science

and Technology (NTNU), the Norwegian Foundation for Scientific and Industrial Research

(SINTEF), and/or the Norwegian Marine Technology Research Institute (MARINTEK);

or with ExxonMobil Research and Company (denoted XOM) and Georgia Tech (denoted

GT). We also see that the motivating applications are rather diverse as are the solution

techniques to solve the models. It appears that arc-flow models are far more common than

path-flow models, which we attribute (at least partially) to the fact, in some computational

studies, the number of routes per vessel that are ultimately generated is extremely large

since there are no time windows, as there are in cargo routing, to drastically reduce the

number of routes to consider. Most instances considered in the literature involve fewer

than 5 vessels and no more than 10 ports. (Recall that Table 6 shows only the maximum

number of vessels, ports, and time periods considered over all instances.) Roughly one-third

23



of the applications involve multiple products. Other commonalities pertaining to branching

strategies (column B) and valid inequalities (column C) are discussed in Section 3, after

we present our core model.

2.3 Our Core Maritime Inventory Routing Problem

In this section, we provide an arc-flow MIP formulation of our core MIRP. This model, or

a close variant, has been considered in [3,41,48,75,92]. The model is a discrete-time model

involving an underlying time-space network. Its primary purpose is to identify optimal

routing decisions for a fleet of heterogeneous vessels and optimal loading and discharg-

ing amounts by each vessel in each time period to ensure that inventory remains within

prespecified bounds.

It is worth contrasting this model with other prominent models that appear in the

literature. In their introduction to maritime inventory routing, Christiansen and Fagerholt

[25] describe a continuous-time arc-flow model for a single product MIRP, which they call a

“basic ship inventory routing problem,” with constant production and consumption rates.

Their model also takes place on a network, but it is quite different from the one presented

below. Although arc-flow formulations are more prevalent, path-flow models are also studied

(see column Model of Table 6 for references). Grønhaug et al. [49] prefer a path-flow model,

which they attempt to solve via branch-and-price. As Grønhaug et al. [49] point out: “The

advantages of path-based models are that ... intricate and nonlinear constraints and costs

can easily be incorporated when generating the paths.”

2.3.1 An Arc-Flow Mixed-Integer Linear Programming Model

Some of the sets, parameters, and decision variables introduced below are not used in the

standard formulation, but will be used later, so we include them here for ease of reference.

Sets are represented using capital letters in a calligraphic font, such as T and V. Where

possible, parameters are denoted with capital letters in italic font or with Greek characters;

however, some deviations are made to express constraints more easily, e.g., inventory balance

constraints. Decision variables are always lower case.

Indices and sets
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t ∈ T set of time periods with T = |T |

v ∈ V set of vessels

vc ∈ VC set of vessel classes

j ∈ J P (r ∈ RP ) set of production, a.k.a. loading, ports (regions)

j ∈ J C (r ∈ RC) set of consumption, a.k.a. discharging, ports (regions)

j ∈ J (r ∈ R) set of all ports (regions): J = J P ∪ J C and R = RP ∪RC

n ∈ N set of regular nodes or port-time pairs:

N = {n = (j, t) : j ∈ J , t ∈ T }

n ∈ Ns,t set of all nodes (including a source node ns and a sink node nt)

a ∈ A set of all arcs

a ∈ Av(Avc) set of arcs associated with vessel v ∈ V (vessel class vc ∈ VC)

a ∈ FSvn(FSvcn ) forward star associated with node n = (j, t) ∈ Ns,t and

vessel v ∈ V (vessel class vc ∈ VC)

a ∈ RSvn(RSvcn ) reverse star associated with node n = (j, t) ∈ Ns,t and

vessel v ∈ V (vessel class vc ∈ VC)

Data
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Bj (Br) number of berths (berth limit) at port j ∈ J (in region r ∈ R)

Cva (Cvca ) cost for vessel v (a vessel in vessel class vc) to traverse

arc a = ((j1, t1), (j2, t2)) ∈ Av(Avc)

dj,t number of units produced/consumed at port j ∈ J in period t ∈ T

∆j (∆r) an indicator parameter taking value +1 if j ∈ J P (r ∈ RP )

and -1 if j ∈ J C (r ∈ RC)

Fmin
j,t (Fmax

j,t ) minimum (maximum) amount of product that can be loaded or

discharged at port j from a single vessel in a period

Qv (Qvc) capacity of vessel v ∈ V (capacity of a vessel in vessel class vc)

Rn the unit sales revenue for product discharged at node n = (j, t)

Smin
j,t (Smax

j,t ) lower bound (capacity) at port j ∈ J in time period t ∈ T

sj,0 initial inventory at port j ∈ J

sv0 initial inventory on vessel v ∈ V

Decision Variables

dj,t (continuous) amount to produce/consume at port j ∈ J in period t

fvn (continuous) amount loaded/discharged at port j ∈ J in period t

from vessel v ∈ V

sj,t (continuous) number of units of inventory at port j ∈ J available

at the end of period t

svt (continuous) number of units of inventory on vessel v ∈ V available

at the end of period t

xva (binary) takes value 1 if vessel v ∈ V uses arc a incident to node n = (j, t) ∈ N

zvn (binary) takes value 1 if vessel v ∈ V can load or discharge product

at node n = (j, t) ∈ N

Network

The core model takes place on an underlying time-space network first introduced in

Song and Furman [92]. The network has a set Ns,t of nodes and a set A of directed arcs.

26



i, 1 i, 2 i, 3 i, 6i, 4 i, 5

ns

j, 1 j, 2 j, 3 j, 6j, 4 j, 5

Time

Port i

Port j

Source node Travel arc

Sink node

nt

Unused vessel

Entering the system

Exiting the system

Waiting arc

Actual route chosenj, t Regular node

Figure 5: Example of the time-space network structure for a single vessel

The node set is shared by all vessels, while each vessel has its own arc set Av. The set Ns,t

of nodes consists of “regular” nodes or port-time pairs, which represent a potential visit by

one or more vessels to port j ∈ J in time period t ∈ T , as well as a source node ns and a

sink node nt.

Associated with each vessel v is a set Av of arcs, which can be subdivided further as

shown in Figure 5. An arc from the source to the sink node denotes that the vessel is not

used in the solution. A source arc from the source node to a regular node represents the

arrival of a vessel to its initial destination. A sink arc from a regular node to the sink node

conveys that a vessel is no longer being used and has exited the system. A waiting arc from

a port j in time period t to the same port in time period t + 1 represents that a vessel

stays at the same port in two consecutive time periods. Finally, a travel arc from a regular

node n1 = (j1, t1) to a regular node n2 = (j2, t2) with j1 6= j2 represents travel between two

distinct ports. The set of incoming and outgoing arcs associated with vessel v ∈ V at node

n ∈ Ns,t are denoted by RSvn (for reverse star) and FSvn (for forward star), respectively.

The network structure affords great flexibility in modeling and embeds a significant

amount of data. First, note that the travel duration between two distinct ports on a travel

arc is given by the length (t2−t1) of the arc and this duration may be time-dependent, e.g., it
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may take longer to travel from China to Europe during a particular season. Second, in some

applications, all vessels may not be able to visit all ports because of physical restrictions at

the port. Such vessel-port incompatibilities can easily be handled in this network by simply

not including arcs in the respective sets. For example, if vessel v cannot visit port j, then

the sets FSvn and RSvn are empty for all n = (j, t) and t ∈ T .

Core Model

max
∑
n∈N

∑
v∈V

Rnf
v
n −

∑
v∈V

∑
a∈Av

Cvax
v
a (2a)

s.t.
∑

a∈FSvn
xva −

∑
a∈RSvn

xva =


+1 if n = ns

−1 if n = nt

0 if n ∈ N

, ∀ n ∈ Ns,t,∀ v ∈ V (2b)

sj,t = sj,t−1 + ∆jdj,t −
∑
v∈V

∆jf
v
n , ∀ n = (j, t) ∈ N (2c)

svt = svt−1 +
∑

{n=(j,t)∈N}
∆jf

v
n , ∀ t ∈ T ,∀ v ∈ V (2d)

∑
v∈V

zvn ≤ Bj , ∀ n = (j, t) ∈ N (2e)

zvn ≤
∑

a∈RSvn
xva , ∀ n = (j, t) ∈ N , ∀ v ∈ V (2f)

Fmin
j,t zvj,t ≤ fvj,t ≤ Fmax

j,t zvj,t , ∀ n = (j, t) ∈ N , ∀ v ∈ V (2g)

Dmin
j,t ≤ dj,t ≤ Dmax

j,t , ∀ n = (j, t) ∈ N (2h)

Smin
j,t ≤ sj,t ≤ Smax

j,t , ∀ n = (j, t) ∈ N (2i)

0 ≤ svt ≤ Qv , ∀ v ∈ V, ∀ t ∈ T (2j)

xva ∈ {0, 1} , ∀ v ∈ V, ∀ a ∈ Av (2k)

zvn ∈ {0, 1} , ∀ n = (j, t) ∈ N ,∀ v ∈ V . (2l)

The objective function is stated in the form of a profit maximization where revenue is earned

at the time product is delivered to a port. However, the objective function appears in many

different forms. Some authors prefer to count revenue as being earned at the time prod-

uct is consumed, e.g., [7, 49] replace the terms
∑

n∈N
∑

v∈V Rnf
v
n with

∑
n=(j,t)∈N Rj,tdj,t.
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Other authors, e.g., [3, 5, 36, 104], prefer to omit the revenue component and simply mini-

mize transportation costs and the loading/discharge costs, which include port operations,

duties, etc. We assume that these costs are all captured in the parameter Cva . The costs

incorporated in source and sink arcs can also vary, but we use the calculations provided in

Table 3. Still other authors, e.g., [47, 75, 86], include penalty terms for violating inventory

bounds at ports. Inventory costs are not included in the objective function because we

assume that the shipper owns both the production and consumption sites.

Constraints (2b) require flow balance for every vessel, that is, if a vessel enters node

n ∈ N , it must also exit node n ∈ N . Constraints (2c) are inventory balance constraints

at loading and discharging ports, respectively. Constraints (2d) maintain inventory bal-

ance on each vessel. Constraints (2e) limit the number of vessels that can attempt to

load/discharge at a port at a given time. Constraints (2f) ensure that a vessel does not

attempt to load/discharge at a node unless the vessel is actually at that node. Constraints

(2g) state that if a vessel attempts to load/discharge at node n, then the actual amount

loaded/discharged is within predetermined port-specific bounds [Fmin
j,t , Fmax

j,t ]. Constraints

(2h) ensure that the amount produced or consumed in each period is within prespecified

bounds. Constraints (2i) require ending inventory in each time period at each port to be

within prespecified bounds.

In a number of models used for tactical or operational planning, the decision variables

dj,t, which denotes the production and consumption rates at each port over the planning

horizon, are deterministic inputs to the model, rather than decision variables. In this case,

we have that Dmin
j,t = Dmax

j,t . Since some strategic models used for vertically integrated

supply chains may wish to determine production and consumption rates, e.g., [47, 48], we

model dj,t as decision variables.

It is also worth noting some not-so-obvious features and constraints that are not stated

(implicitly or explicitly) in the Core Model (2). First, although the notion of a region is not

mentioned, in our library of instances, we assume that each port belongs to a prespecified

region of the same type, i.e., loading or discharging. Second, it is assumed that if a vessel

travels from port i to port j, the vessel will attempt to load/discharge at port j (and,
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therefore, incurs a port fee). This will always happen in an optimal solution because the

data for the instances of interest all satisfy the triangle inequality, i.e., it is cheaper to travel

from port a to port c than to travel from a to b and then b to c. Note that the port fee is

paid only once. That is, if a vessel attempts to load at port j in period t, remains at port

j in period t + 1 (but, perhaps, abandons the berth in this period), and then attempts to

load again at port j in period t + 2, only one port fee is incurred. Third, in a single time

period, it may be possible for a vessel to load or discharge more inventory than a port’s

capacity. For example, suppose a discharging port j consumes 25 units of product per

period and has a constant capacity of 250 units. Then, 275 units could be discharged in a

single period. This could occur if port j has 0 inventory at the end of period t, i.e., sj,t = 0,

and a vessel carrying at least 275 units of inventory arrives in period t + 1 and discharges

275 units, 25 of which satisfy demand in period t + 1 while the remaining 250 units are

stored in inventory. This example also shows the limitations of a discrete-time formulation

since inventory bounds are only required to be satisfied at the end of each period.

2.3.2 Common Side Constraints and Additional Model Features

2.3.2.1 “Travel at capacity” constraints

Many authors include constraints that require a vessel to travel at capacity from a

loading region to a discharging region and empty from a discharging region to a loading

region:

svt ≥ Qvxva , ∀ v ∈ V, ∀ a = ((j1, t), (j2, t
′)) ∈ Av : j1 ∈ J P , j2 ∈ J C ∪ {nt} (3a)

svt ≤ Qv(1− xva) , ∀ v ∈ V, ∀ a = ((j1, t), (j2, t
′)) ∈ Av : j1 ∈ J C , j2 ∈ J P ∪ {nt} .

(3b)

Although these “travel full” constraints (3a) are usually justified on the basis that vessel

capacity is a scarce resource and therefore a vessel’s capacity should always be fully utilized

when making long voyages, there are applications in which it has been shown that such an

assumption may not always be optimal (see, e.g., [40]). On the other hand, in virtually

all MIRPs discussed in the literature, vessels fully discharge before reloading. This is

in contrast to what occurs in liner shipping where vessels load and discharge containers
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regularly without ever fully discharging. Finally, note that constraints (3a) and (3b) require

vessels to leave the system empty or full.

2.3.2.2 Differentiating among similar solutions

It may be useful to include several features into the Core Model (2) in order to give

slight preference to some solutions over what would otherwise be considered almost identical

solutions.

When a vessel visits a port, there may be multiple time periods in which it can load

or discharge product. In reality, we prefer a vessel to load or discharge as few times as

possible to minimize the duration and cost of port operations associated with that vessel.

In addition, we prefer a vessel to load or discharge as soon as it arrives at a port, assuming

the port has a berth available and enough inventory or capacity to do so. To accommodate

these secondary goals without affecting the primary goals of managing inventory and routing

vessels, we may choose to associate a negligible cost tεz with each binary decision variable

zvj,t, where εz is a small nonnegative parameter representing the cost to load or discharge

and t is the time period. If a nonzero εz parameter is specified, the objective function in

the Core Model (2) should include the additional term∑
v∈V

∑
j∈J

∑
t∈T
−(tεz)z

v
j,t . (4)

Note that by using the coefficient −(tεz) instead of −εz, solutions in which a vessel attempts

to load or discharge sooner rather than later are preferred.

Because the Core Model (2) is a finite-horizon model, a second useful modeling feature

is to give a small value to vessels for “exiting the system” as soon as they are no longer

needed. In terms of the Core Model (2), this means that we would like vessels to take a

sink arc once it is no longer necessary or profitable for them to engage in other activities.

Without such a feature, a solution in which vessel v discharges all of its product at port j

in time period t and remains empty at that same port until the end of the planning horizon

is valued as highly as a nearly identical solution in which vessel v fully discharges at port j

in period t and then exits the system immediately by taking the sink arc from node (j, t) to

the sink node. Indeed, we prefer the latter solution since vessel v will be available sooner
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for service at the start of the next planning horizon. To accomplish this, we introduce a

reward ρ per unit time for a vessel that finishes early. This reward is built into the cost of a

sink arc, which is discussed in Section 2.4.3, so that the Core Model (2) remains the same.

2.3.2.3 Soft inventory bounds and a simplified spot market representation

In certain strategic and tactical planning models, the inventory bound constraints (2i)

at ports may be considered soft, i.e., they should ideally be satisfied, but are permitted

to be violated with a penalty. There are several reasons why this “soft” interpretation

may be beneficial or necessary from a modeling standpoint. First, the inventory bounds in

constraints (2i) may be overly conservative in order to make the solution more robust by

preventing ports from running out of inventory or exceeding capacity due to uncertainty

in the data. In this case, it may be acceptable to penalize a small bound violation if it is

impossible or unfavorable for a vessel to reach the port before the violation occurs. Second,

soft constraints may help mitigate unwanted effects of the time discretization used in the

planning model. For example, suppose that it takes a vessel 9.5 days to travel from port i to

port j, but that a daily time discretization is used requiring the travel time to be modeled

as 10 days. Then, while in reality it might be possible for the vessel to arrive a half-day

early at port j just in time to prevent a stockout, a daily time discretization may necessitate

that a partial stockout take place. Third, in some planning models, it may be interesting

to experiment with different fleet compositions in which case the proper mix of vessels may

not be available to meet all inventory requirements in every period.

To account for these possibilities, it is convenient to incorporate a simplified spot market

representation into the model. Mathematically, let αj,t be a nonnegative decision variable

representing the amount of product that port j purchases from (when j ∈ J C) or sells to

(when j ∈ J P ) the spot market in time period t. Then, we can re-write the port inventory

balance constraints (2c) as

sj,t = sj,t−1 + ∆j

(
dj,t −

∑
v∈V

fvn − αj,t

)
, ∀ n = (j, t) ∈ N . (5)

Note that with the addition of a simplified spot market, there is no backlogging of inventory.

Rather, inventory bounds at ports are satisfied at the end of each time period t. For a
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concrete example, Goel et al. [47] model a strategic LNG-IRP with inventory tracking at

all ports using constraints (5). The objective function in the Core Model (2) should also be

amended to penalize the use of the α decision variables.

If αj,t variables are included in the model, then we may include other side constraints

as well:

αj,t ≤ αmax
j,t ∀ j ∈ J ,∀ t ∈ T (6a)∑

t∈T
αj,t ≤ αmax

j ∀ j ∈ J . (6b)

Constraints (6a) bound the amount of violation that may occur in a single period by a

constant αmax
j,t . Constraints (6b) limit the amount of cumulative violation that may occur

at each port over the entire planning horizon by a constant αmax
j .

2.3.2.4 Draft limits

The draft of a vessel is the distance between the waterline and the bottom of the vessel

and is a function of the load onboard. Draft limit constraints are sometimes necessary to

ensure that larger vessels can only enter, reside in, or exit certain harbors if they are not

fully loaded [27, 41, 92]. Such constraints may also affect the sequence of port visits made

by a vessel. Assuming we can compute the draft associated with a certain inventory level

on a vessel, we can write draft limit constraints as

svt−1 ≤ DRAFTv,in
j + (Qv −DRAFTv,in

j )(1− zvj,t) , ∀ v ∈ V, ∀ j ∈ J , ∀ t ∈ T

(7a)

svt ≤ DRAFTv,out
j + (Qv −DRAFTv,out

j )(1− zvj,t) , ∀ v ∈ V,∀ j ∈ J , ∀ t ∈ T

(7b)

where DRAFTv,in
j and DRAFTv,out

j denote the maximum permissible draft for vessel v

when entering and exiting port j. These constraints are enforced both before (port inlet)

and after (port outlet) loading has been completed and before discharge has begun. Draft

limits often apply to port-vessel combinations.

33



2.3.2.5 Cruising speed as a decision variable

Depending on the age of a vessel, fuel costs typically constitute 15-20% of a vessel’s

total annual cost [96] and as much as 60% of a vessel’s daily cost [85]. To date, virtually

all maritime inventory routing research has assumed that vessels travel at a single speed,

presumably because most models have been at the strategic or tactical level, not an opera-

tional one. Today, with a growing interest to reduce greenhouse gases and to better utilize

an existing fleet of vessels, making cruising speed a decision variable in planning models has

received attention.

When a vessel is designed, naval architects optimize the hull and power plant to a

prescribed design speed [96]. This is the speed typically assumed in planning models.

Nevertheless, vessels are capable of traveling at various speeds in order to meet deadlines

and to satisfy customer service levels. A common approximation is to assume that fuel

consumption is a quadratic or cubic function of a vessel’s cruising speed. Consequently,

Ronen [85] points out that reducing a vessel’s cruising speed by 20% can reduce the daily

fuel consumption by 50%.

One way of handling this added flexibility in the Core Model (2) is to include additional

inter-port travel arcs into the network. Specifically, in addition to a design speed, vessels

have lower and upper limits on the cruising speed that can be achieved. Thus, given a

minimum and maximum speed for each vessel, we can compute upper and lower bounds

(τmax
ij and τmin

ij , respectively) on the time required to travel between two distinct ports i and

j. Since time is discretized in the Core Model (2), for each time period in the time interval

[τmin
ij , τmax

ij ], we can compute the optimal average cruising speed that minimizes fuel cost

while allowing the vessel to arrive in the desired period; the fuel cost associated with this

speed is used when computing the cost of this arc. With these additional arcs, the Core

Model (2) can be solved “as-is” and an optimal solution will specify the arcs taken by each

vessel, and, therefore, the average speed of the vessel between each pair of ports.
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2.3.2.6 Multiple products

It is easy to extend the Core Model (2) to handle multiple products. For simplicity, here

we discuss a particular setting in which we assume that three parameters are enforced at the

aggregate level, rather than on each product: (i) bounds on amounts loaded or discharged

at a port, (ii) inventory bounds at ports, and (iii) inventory bounds on vessels. In other

words, constraints (2g), (2i), and (2j) still hold without being modified to apply to each

specific product. See [5] and [27] for models when dedicated compartments are needed.

Let K denote the set of products. Let Dmin
j,t,k and Dmax

j,t,k denote lower and upper bounds

on the amount of product k produced or consumed at port j in period t. Let Rj,t,k be

the unit sales revenue for product k discharged at port j ∈ J C in period t. We retain all

of the decision variables currently in the model, but include additional ones to keep track

of product-specific decisions. Namely, define decision variables dj,t,k, f
v
j,t,k, sj,t,k, and svt,k

to correspond to the original variables dj,t, f
v
j,t, sj,t, and svt , but now they are specific to

product k. Constraints (2c), (2d), and (2h) can be modified to

sj,t,k = sj,t−1,k + ∆jdj,t,k −
∑
v∈V

∆jf
v
j,t,k , ∀ n = (j, t) ∈ N ,∀ k ∈ K (8a)

svt,k = svt−1,k +
∑

{n=(j,t)∈N}
∆jf

v
j,t,k , ∀ t ∈ T , ∀ v ∈ V,∀ k ∈ K (8b)

Dmin
j,t,k ≤ dj,t,k ≤ Dmax

j,t,k , ∀ (j, t) ∈ N , ∀ k ∈ K . (8c)

Several constraints to link the variables are needed:

fvj,t =
∑
k∈K

fvj,t,k , sj,t =
∑
k∈K

sj,t,k , svt =
∑
k∈K

svt,k , ∀ (j, t) ∈ N ,∀ v ∈ V,∀ k ∈ K . (9)

Finally, the term
∑

n=(j,t)∈N
∑

v∈V Rj,tf
v
j,t in the objective function of the Core Model (2)

becomes ∑
n=(j,t)∈N

∑
v∈V

∑
k∈K

Rj,t,kf
v
j,t,k .

2.3.3 Common Modeling Enhancements

Having introduced a core model, our next goal is to summarize two modeling enhance-

ments that can be used to tighten it. These techniques have been used in some form or
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another in previous papers, but have not been described in a uniform manner or have not

been identified as a common strategy. Our aim here is to unify our understanding of these

enhancements.

2.3.3.1 Advanced branching techniques

Column B of Table 6 lists the authors that have used some form of advanced branching

strategy to improve algorithmic efficiency. In its current form, the Core Model (2) contains

two types of binary decision variables: x variables representing the flow of a particular

vessel along a particular arc and z variables representing an attempt to load or discharge

at a particular port and time by a particular vessel. After solving the LP relaxation at

a node of the branch-and-cut tree, a MIP solver will branch on a binary decision variable

that takes a fractional value in the LP relaxation. Unfortunately, branching on the existing

binary decision variables in the model can have little impact due to the symmetry of many

solutions. For example, if vessel v is not allowed to travel along an arc beginning in time

period t due to a branching decision made by the solver, it may be able to delay starting its

travel until the subsequent time period t+1. Thus, the solver may just shift a fractional value

to different variables in time without ever improving the bound. The motivation behind

advanced branching strategies is to overcome this ineffectual branching by branching on

more significant decisions.

Priority branching relies on the fact that certain decisions are more influential than

others. The problem is that some higher priority decisions may not be explicitly modeled

in the existing formulation. Some examples of high-level decisions not modeled as decision

variables in the Core Model (2) are: (i) the number of vessels that visit a particular port in

a specific time interval [49,75]; (ii) the number of times a particular vessel visits a particular

port [3]; and (iii) the number of voyages from a particular loading port/region to a particular

discharging port/region in a specific time interval. It can be argued that determining the

number of vessels that visit a particular port over the entire planning horizon is more

important than knowing the precise times of the visits.

Advanced branching can usually be accomplished in at least two ways. We use item (i)
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stated above when illustrating these procedures. A first approach, which is straightforward

to implement, is to include auxiliary decision variables in the Core Model (2) that represent

the number of visits summed over all vessels to port j over the entire planning horizon. All

of the leading commercial MIP solvers allow the user to assign a higher branching priority

to these variables first so that if one of these variables takes a fractional value in the LP

relaxation at a node in the branch-and-cut tree, the solver will choose to branch on one of

these variables before all other decision variables taking a fractional value. Alternatively,

instead of including additional integer variables into the model, a second approach is to

implement a callback that effectively accomplishes the same task, but without increasing

the number of decision variables in the model. In this approach, one writes a callback to

check if the number of visits to a particular port is fractional. If so, a port is identified and

two local cuts are written with respect to the original decision variables. This approach

requires more effort from the user, but may yield additional efficiency.

2.3.3.2 Lot-sizing based constraints

The LP relaxation of the Core Model (2) can be weak and often results in many binary

variables taking fractional values so as to incur only a fraction of the fixed costs. Using the

language of maritime inventory routing, this means that only a fraction of a vessel may travel

along an arc and/or only a fractional attempt to load/discharge is made at a port. One

way of overcoming this deficiency is to include additional constraints involving the binary

variables to ensure, for example, that ports are visited with a minimum and maximum

frequency. This can be at least partially accomplished using lot-sizing relaxations based on

the standard lot-sizing model which we briefly review here for sake of completeness. Table

6 column C lists the authors that have used some form of valid inequalities that can be

derived from the standard lot-sizing model.

Consider the standard capacitated lot-sizing set (see, e.g., Pochet and Wolsey [77], whose

notation we use here) in which one must decide in what periods to produce an item and

how much to produce, given demand data dt, initial inventory s0, constant storage capacity
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smax, and capacities Ct on production in period t of a finite planning horizon T :

st−1 + xt = dt + st , ∀ t ∈ T (10a)

0 ≤ xt ≤ Ctyt , ∀ t ∈ T (10b)

yt ∈ {0, 1} , ∀ t ∈ T (10c)

0 ≤ st ≤ smax , ∀ t ∈ T . (10d)

The decision variables are: st, the stock (inventory) in period t; xt, the amount produced

in period t; and yt, a binary decision variable taking value 1 if production takes place in

period t and 0 otherwise. For any time interval [t1, t2], we can sum over constraints (10a)

and apply inequalities (10b) and (10d) to obtain the lot-sizing relaxation

st1−1 +

t2∑
u=t1

Cuyu ≥ d[t1,t2] , ∀ 1 ≤ t1 ≤ t2 ≤ T (11a)

yt ∈ {0, 1} , ∀ t ∈ T (11b)

0 ≤ st ≤ smax , ∀ t ∈ T , (11c)

where d[t1,t2] =
∑t2

u=t1
du is the demand in the time interval.

Before describing valid inequalities that can be applied directly to set (11), we give

an example of how the capacitated lot-sizing set (10) naturally arises in the Core Model

(2). Consider a discharging port j ∈ J C and suppose that dj,t = Dmin
j,t = Dmax

j,t , Fmin
j,t =

Smin
j,t = 0, Fmax

j,t = Fmax
t (a constant), and Smax

j,t = Smax (a constant) for all t ∈ T . Let

fj,t =
∑

v∈V f
v
j,t be the total amount of product discharged in time period t, zj,t =

∑
v∈V z

v
j,t

be the number of vessels attempting to discharge in time period t, and assume that port j

has exactly one berth so that zj,t is binary. Coupling these assumptions with constraints

(2c) and (2g), and omitting the subscript j, we obtain the set

st−1 + ft = dt + st, ∀ t ∈ T

0 ≤ ft ≤ Fmax
t zt, ∀ t ∈ T

zt ∈ {0, 1}, ∀ t ∈ T

0 ≤ st ≤ Smax, ∀ t ∈ T ,
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which is identical to the capacitated lot-sizing set (10). An analogous set can be derived

for each loading port j ∈ J P after making a change of variable commonly used in lot-sizing

problems.

From the mixed-binary set (11), it is possible to generate several types of valid inequal-

ities.

• Option 1: After ignoring the upper bound constraint st ≤ smax in set (11) and fixing

t1 and t2, we obtain the continuous 0-1 knapsack set(s, y) ∈ R1
+ × {0, 1}n :

n∑
j=1

aj ≤ b+ s

 ,

for which several families of strong valid inequalities are known (see, e.g., [77]) . To our

knowledge, no attempt at applying valid inequalities for the continuous 0-1 knapsack

set has been reported.

• Option 2: Here we describe the most typical valid inequalities that appear in the

MIRP literature. Replacing st with its upper bound, we obtain the pure binary set

t2∑
u=t1

Cuyu ≥ d[t1,t2] − smax
t1−1 , ∀ 1 ≤ t1 ≤ t2 ≤ T

yt ∈ {0, 1}, ∀ t ∈ T ,

where smax
0 = s0 and smax

t = smax for all t ∈ T . Replacing the coefficients Cu with an

upper bound Cmax
[t1,t2] in each interval [t1, t2] leads to the set of valid inequalities

t2∑
u=t1

yu ≥
⌈d[t1,t2] − smax

t1−1

Cmax
[t1,t2]

⌉
, ∀ 1 ≤ t1 ≤ t2 ≤ T . (12)

In the context of the Core Model (2), these valid inequalities have a nice interpretation:

They require a minimum number of attempts to load or discharge at a port during a

set of time intervals.

More generally, one can consider a variety of coefficients C[t1,t2] > 0 and perform the

Chvátal-Gomory procedure to obtain valid inqualities

t2∑
u=t1

⌈ Cu
C[t1,t2]

⌉
yu ≥

⌈d[t1,t2] − smax
t1−1

C[t1,t2]

⌉
, ∀ 1 ≤ t1 ≤ t2 ≤ T . (13)
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Replacing the coefficients Cu with Fmax
u , Agra et al. [3] use the different vessel ca-

pacities Qv in place of the coefficients C[t1,t2] to generate valid inequalities for their

problem prior to invoking the solver.

• Option 3: Whereas constraints (12) and (13) are stated solely in terms of binary vari-

ables and were derived from the set (11) by relaxing the continuous decision variables

st to their upper bounds smax
t , it is also possible to derive a potentially stronger set of

valid inequalities by applying another relaxation to the set (11). This approach does

not relax each st variable to its upper bound smax
t , but instead keeps the continuous

variables in the model and replaces the coefficients Cu by a constant upper bound C.

Before describing this relaxation, we need to define the mixing set, the facets of which

are useful for capacitated lot-sizing models.. Consider the mixing set defined by K

inequalities:

XMIX
K =

{
(s,y) ∈ R+ × ZK : s+ yk ≥ bk, ∀k = 1, . . . ,K

}
. (14)

It is well known that the K simple mixed-integer rounding (SMIR) inequalities

s+ fbkyk ≥ fbkdbke ,∀k = 1, . . . ,K , (15)

where fbk = bk − bbkc is the fractional part of bk, are valid and facet-defining for

XMIX
K . However, they do not suffice to give the convex hull of XMIX

K when K > 1.

In this case, we need the mixing inequalities (see Proposition 8.4 and Theorem 8.5

of [77]).

Returning to our derivation, consider a variant of set (11), known as the constant

capacitated lot-sizing relaxation, in which each Ct is replaced by a constant C so that

constraints (11a) become

st1−1 +

t2∑
u=t1

Cyu ≥ d[t1,t2] , ∀ 1 ≤ t1 ≤ t2 ≤ T .

Letting s̄t = st
C , d̄[t1,t2] =

d[t1,t2]
C , and y[t1,t2] =

∑t2
u=t1

yu, the constant capacity version
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of set (11) can be rewritten as

s̄t1−1 + y[t1,t2] ≥ d̄[t1,t2] , ∀ 1 ≤ t1 ≤ t2 ≤ T (16a)

0 ≤ y[t1,t2] − y[t1,t2−1] ≤ 1 , ∀ t1 ∈ T ,∀ t2 = t1 + 1, . . . , T (16b)

y[t,t] ≤ 1 , ∀ t ∈ T (16c)

y[t1,t2] ∈ Z+ , ∀ 1 ≤ t1 ≤ t2 ≤ T (16d)

s̄t ≥ 0 , ∀ t ∈ T . (16e)

This is an instance of a mixing set (14) in which additional side constraints appear, but

are of the form By ≤ d with B the arc-node incidence matrix of a digraph (network)

and where d is an integral vector. Thus, all nontrivial facets of the convex hull of

solutions to the constant capacitated lot-sizing relaxation are the mixing inequalities

(see p.280 of [77]). Engineer et al. [36] applied a subset of the SMIR inequalities,

which they called “port capacity cuts,” to a model similar to the Core Model (2) and

found that these inequalities tightened the relaxation and improved the bound. To

our knowledge, no attempt at applying the mixing inequalities has been made.

Finally, note that if the capacitated lot-sizing set (10) also includes constraints Cmin
t yt ≤

xt for all t ∈ T , i.e., forcing a minimum amount to produce if production takes place,

then applying the same arguments as above, analogous sets and valid inequalities can be

derived. For example, analogous to constraints (12), one can bound the maximum number

of attempts to load or discharge at a port in different time intervals. Another possible way

to generate valid inequalities is to simultaneously consider lot-sizing relaxations involving

not just one, but a subset of ports. This approach is used in Papageorgiou et al. [75].

2.4 Using MIRPLib

Instances and results for each instance are maintained at http://mirplib.scl.gatech.edu/.

The current instances are inspired by characteristics of real-world MIRPs, but do not rep-

resent any particular real-world data set. Since our focus is on a core model that lies at

the intersection of many real-world models, we believe this choice is justified. We hope to

include additional instances and results as they become available.
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As mentioned from the outset, our major goals with this library are: (1) to present

benchmark instances for a particular class of MIRPs; (2) to provide the mixed-integer

linear programming community with a set of optimization problem instances from the mar-

itime transportation domain; (3) to provide a template for other researchers when specifying

characteristics of MIRPs arising in other settings; (4) to accelerate the development of ad-

vanced algorithms. In this section, we describe the information provided in a data instance

and, in so doing, address goals (1), (2), and (3). This information helps explain many of

the major details of a maritime inventory routing problem.

Each instance is given in three formats: a “data only” format, LP format, and MPS

format. LP and MPS file formats are standard in the MIP computational community as

they provide a common format for reading LP and MIP models. Although LP and MPS

formats are useful for comparing solver performance, they are somewhat limiting as they

impose a specific MIP model on the user, a model which may not be ideal for generating

good solutions or bounds. Since other models and techniques may be superior, we also

provide instance data in a “data only” format. As shown in Figure 6, each data set consists

of four data objects: metadata, port data, vessel class data, and vessel data. When an

instance is stated in “data only” format, five files are provided corresponding to each of

the aforementioned data objects, but with port data further broken down into loading port

data and discharging port data. A discussion of each data object is provided below.

Several notes are needed. The basic unit in which inventory and capacities are measured

is kilotons. The basic unit of the objective function coefficients is US $1000. Note that all

data on the MIRPLib website starts indexing from 0, not 1. Consequently, a 60-period

instance with 10 ports means that T = {0, . . . , 59} and J = {0, . . . , 9}. The data type,

e.g., int, double, string, etc., associated with each entry in Figure 6 is given on the

website.

2.4.1 Metadata

Metadata includes high-level information for an instance. Most of the parameters are

self-explanatory, but we describe each for the sake of completeness. In all instances, η = 24
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Metadata
Number of periods |T |
Number of loading regions |RP |
Number of discharging regions |RC |
Number of loading ports {|Jr|}r∈RP

Number of discharging ports {|Jr|}r∈RC

Number of vessel classes |VC|
Number of vessels per class {|Vvc|}vc
Hours per period η

Spot market price per unit P spot

Spot market discount factor γspot

Attempt cost εz
Reward for finishing early ρ
Constant for single period αmax

j,t κ1α
Constant for cumulative αmax

j κsum
α

Port data
Index j
Type type

Region index r
x-coordinate xj
y-coordinate yj
Port fee πj
No. of berths Bj
Max amount Fmax

j

Min amount Fmin
j

Capacity Smax
j

Initial inventory sj,0
Rate {dj,t}t
Revenue {Rj,t}t

Vessel class data
Index vc
Capacity Qvc

Design speed σvckn
Travel cost per km Cvckm
Discount traveling empty γvc

Vessel data
Index v
Vessel class index vc
Initial inventory sv0
Initial port j
First time available τv0

Figure 6: Data objects

hours per period.

The number of periods |T | refers to the maximum number of periods for which the

instance is defined. That is, a data file may state that |T | = 360 implying that data, e.g.,

production and consumption rates, are specified for at most 360 periods. We only use the

first 45 or 60 periods worth of data to solve a 45- or 60-period problem. However, users

may be interested in solving longer horizon problems.

As previously mentioned, ports belong to regions. Thus, in addition to specifying the

number of loading regions |RP | and discharging regions |RC |, we also provide the number

of ports in each region. In particular, if the number of loading regions |RP | is 2, then

the data {|Jr|}r∈RP following “Number of loading ports” is a list of two positive integers

denoting the number of loading ports in each of the two loading regions. The same is true

for “Number of discharging ports.” The number of vessel classes and vessels per vessel class

is listed next. For example, if there are 3 vessel classes, then the number of vessels per

vessel class will be a sequence of 3 positive integers, e.g., “2 3 4”, implying that there are

2 vessels in the first vessel class, 3 in the second, and 4 in the third.
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A spot market price per unit and discount factor are also included. The purpose of

the spot market discount factor γspot is to delay the use of the spot market until the last

possible time period in which it is needed. Specifically, if αj,t decision variables are included

in the model (see Constraints (5)), then we also include the following additional penalty

term −
∑

j

∑
t Ptαj,t into the model, where Pt = (γspot)tP spot for all t ∈ T . Notice that if

the spot market discount factor γspot ∈ (0, 1) and P spot > 0, then {Pt}t∈T is a decreasing

sequence, meaning that it is always cheaper to purchase from the spot market as late as

possible. A similar idea was used in Goel et al. [47].

As discussed in Section 2.3.2.2, negligible positive parameters εz and ρ are included in

some instances to give vessels an incentive to load or discharge as few times as possible and

to exit the system as soon as it is no longer necessary or profitable for them to engage in

service. The precise use of εz is shown in equation (4). Table 3 shows how ρ is incorporated

into the sink arc cost.

The final parameters provided in the metadata are nonnegative parameters κ1
α and κsum

α

and are associated with the right hand side values of Constraints (6a) and (6b), discussed

in Section 2.3.2.3, when a simplified spot market representation is used. If the decision

variables αj,t should be included in the model, then they should include a variable upper

bound, i.e., Constraints (6a) should be used with αmax
j,t = κ1

αdj,t for all j ∈ J and t ∈ T . If

Constraints (6b) are included in the model, then αmax
j = κsum

α dj,0 for all j ∈ J . We use dj,0

since, for the current instances, it is approximately equal to the average of the dj,t variables

over most planning horizons starting at time 0. For example, κ1
α = 0.5 means that, in any

period, the amount of product bought from or sold to the spot market is at most one-half of

the amount produced/consumed in that period, and κsum
α = 1 implies that the cumulative

amount of product bought from or sold to the spot market over the entire planning horizon

may not exceed (roughly) the average amount produced/consumed in any one period.

We now describe how to use the constants κ1
α and κsum

α . First, if either parameter is not

listed, assume it is 0. Second, they work in tandem. The rules, expressed in pseudocode,

for using these parameters are: If κ1
α ≤ 0, then the decision variables αj,t should not be

included in the model; else if κ1
α > 0 and κsum

α ≤ 0, then the decision variables αj,t should
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be included in the model, but Constraints (6b) should not be included; else (i.e., κ1
α > 0

and κsum
α > 0), then the αj,t variables with Constraints (6a) and (6b) should be included

in the model.

2.4.2 Port data

Each port is defined by the following information: Each port has an integer index

j ∈ {0, . . . , |J | − 1} and a type ‘Loading’ or ‘Discharging’. Since ports belong to regions,

each port is assigned a region index (an integer r ∈ {0, . . . , |R|−1}). Each region is classified

as a loading region or a discharging region, but not both. All ports within a region have

the same classification as the region.

Each port j is given x and y coordinates on a two-dimensional plane. The distance

δij between two distinct ports i and j is the Euclidean distance between the two ports

calculated using the x and y coordinates provided. The travel time between two distinct

ports depends on the vessel class and is discussed below.

Each port has a port fee πj ∈ {10, . . . , 100}, which is incurred every time a port is

visited, not every time an attempt to load or discharge is made. For example, if a vessel

arrives at port j in time period 1, attempts to load in time period 2, waits outside the

port in period 3 and then departs for another port, the port fee is incurred just once. On

the other hand, if a vessel arrives at port j in period 1, then visits port k in the same

region, and then returns to port j before departing from the region, then three port fees are

incurred: πj+πk+πj . See the travel cost calculation in Table 3. Whereas discharging ports

always have a berth limit of Bj = 1, loading ports may have multiple berths. In reality,

discharging ports may also have multiple berths, but having fewer berths typically results

in more challenging instances.

Rather than varying the port inventory capacity Smax
j,t and the minimum and maximum

loading/discharging amounts per period, Fmin
j and Fmax

j , these values are fixed to a single

value throughout the planning horizon. Values for these parameters were chosen so that

Fmin
j was roughly 50 units at discharging ports, but sometimes higher at loading ports, and

Fmax
j was almost always greater than one-half of the largest vessel class’s capacity. Note that
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it is possible for Fmax
j to be larger than Smax

j . At a discharging port with zero inventory in

the beginning of a period, this might allow larger vessels to discharge the amount consumed

in that period plus the amount Smax
j needed to bring the inventory up to capacity in the

end of the period. The minimum inventory level Smin
j at all ports is zero.

Initial inventory levels at each port are given and were selected in connection with

the starting position of vessels. Although the production and consumption rates may be

constant in some instances, a list {dj,t}t∈T is specified for each port j. Likewise, a list

of revenues {Rj,t}t∈T is given for each discharging port j ∈ J C . For instances with two

loading regions, production and consumption rates were chosen so that solutions in which

the same subset of discharging regions is served by a single loading region is avoided. In

other words, we tried to avoid instances in which the problem could be decomposed with

the same vessels always returning to the same loading region.

The port capacity-to-rate ratio Smax
j /d̄j , where d̄j is the average rate at port j, is one of

the factors that determines how tightly constrained an instance is since smaller ratios require

a port to be visited more frequently. Production and consumptions rates and capacities at

individual ports were generated so that the capacity-to-rate ratios of ports within a region

are typically distinct integer values. This makes it less likely to encounter optimal solutions

in which two ports are repeatedly visited in a periodic manner. For example, suppose ports

i and j belong to the same region, are close to one another, have low inventory capacities

relative to that of most vessel classes, and have identical capacity-to-rate ratios, respectively.

Then it seems reasonable to expect solutions in which these vessels are visited by a single

vessel during each visit to the region. On the other hand, if the capacity-to-rate ratios are

distinct, then it seems less likely that these two ports will always be visited by the same

vessel during a visit to the region.

2.4.3 Vessel class data

Each vessel belongs to a particular vessel class vc ∈ VC, which has a fixed capacity Qvc,

a design cruising speed σvckn in knots, a travel cost Cvckm per km, and a discount parameter

γvc for traveling empty. The meaning of each parameter is given below. As previously
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mentioned, we use the term vessel class to refer to vessels with the same aforementioned

parameters. Thus, two Panamax vessels may be in different vessel classes if their parameters

are different.

The travel time τvcij between two distinct ports i and j using a vessel in vessel class vc is

calculated as τvcij = dηδij/σvckm/he, where δij is the Euclidean distance between ports i and j

and σvckm/h = (1.852)σvckn is the design speed in kilometers per hour of a vessel in vessel class

vc.

The formulas for calculating arc costs for each vessel class are shown in Table 3. Stopford

[96] partitions the cost of operating a vessel into five components: operating costs, e.g., day-

to-day crew costs and daily vessel maintenance costs; periodic maintenance costs when a

vessel is dry-docked for major repairs; voyage costs, e.g., fuel costs, port fees, and canal dues;

capital costs; and cargo-handling cost, e.g., the cost of loading, stowing, and discharging

cargo. Here we consider a much simpler cost structure, which does not include period

maintenance costs, capital costs, canal dues, or cargo-handling costs. Instead, we assume

that the parameter Cvckm captures the fuel cost and operating costs per kilometer associated

with a nearly full vessel. In addition, we assume that a port fee πj is incurred if port j is

visited, independent of whether or not an attempt to load or discharge at that port is made.

Thus, as shown in Table 3, the cost of traveling from a loading port j1 to a discharging port

j2 is the total fuel and operating costs Cvckmδj1,j2 over the entire voyage plus the port fee

πj2 at the destination port j2. Although a vessel may not be near capacity when traveling

between two loading or discharging ports, the same calculation is used. On the other hand,

since vessels almost always travel empty from a discharging port to a loading port, we

assume that a vessel will save fuel on such a voyage; hence, we discount the total fuel and

operating costs Cvckmδj1,j2 by the factor (1− γvc). For example, if γvc = 0.2, then the travel

component of the arc cost is discounted by 20%.

A vessel cruising at an average speed of 15 knots travels approximately 667 km per day.

Assuming an average operating cost of US $50,000 per day, this implies that the travel cost

per km is roughly US $75. Using these figures as a starting point, we created other vessel

classes.
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Table 3: Arc cost calculations for each vessel class

Arc type Example arc a Cost Cvca
Source a = (ns, (j, t)) πj
Sink a = ((j, t), nt) −(|T | − t)ρ
Waiting a = ((j, t), (j, t+ 1)) 0

Inter-port a = ((j1, t1), (j2, t2))
Cvckmδj1,j2(1− γvc) + πj2 if j1 ∈ J C , j2 ∈ J P
Cvckmδj1,j2 + πj2 otherwise

2.4.4 Vessel data

As mentioned above, each vessel v ∈ V belongs to a particular vessel class vc ∈ VC.

In addition, a vessel has an initial inventory on board sv0. Since these instances involve

company owned or long-term time-chartered vessels, the starting port j and the first time

τv0 the vessel is available to attempt to load or discharge is also specified. Note that τv0 > 0

means the vessel is en route to its starting port at the outset of the planning problem.

Vessels originating in loading regions initially have zero inventory, while those beginning in

discharging regions start full (at capacity).

Voyage chartered vessels are not considered in the current set of instances. However,

these instances would not specify the starting port and time available. Instead, we might

place bounds on the number of vessels that can be chartered in a given time interval.

2.5 Current Instances and Best Known Results

There are two sets of instances. The first set of instances involves 60-period planning

horizons and are studied in Chapter 3 and [75]. The second set, treated in Chapter 4

and [74], involves 360-period planning horizons with a single loading port and multiple

discharging ports, each of which belongs to a distinct region. For the results provided, it

is assumed that a vessel will only travel from a loading region to a discharging region and

vice versa; a vessel will never visit two regions of the same type in succession. Thus, for

the second set of instances, vessels only make out-and-back trips from the loading port to

a discharging port. All instances are solved as minimization problems, i.e., we minimize

the negative of the objective function in the Core Model (2), so dual bounds refer to lower
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bounds. In all instances, it is assumed that vessels must travel at capacity from a loading

port to a discharging port and empty from a discharging port to a loading port; that

is, constraints (3a) and (3b) are enforced. Moreover, all instances include soft inventory

constraints (6) and constraints (5) in lieu of constraints (2i). Whereas in the first set of

instances, the amount of cumulative violation αmax
j allowed is small making feasibility an

issue, in the second set, the amount of cumulative violation allowed is infinite making it

simple to find feasible solutions. In the second set, revenues Rj,t are zero making the goal

to minimize travel costs and spot market usage.

Our convention for naming instances is based on the number of loading and discharg-

ing regions, the number of ports, the number of vessel classes, and the number of ves-

sels. This convention is best understood with an example. Consider an instance named

LR2 12 DR3 123 VC4 V14c. LR2 means that there are two loading regions. 12 means that

there is one port in the first loading region and two ports in the second loading region. DR3

means that there are three discharging regions. 123 means that there is one port in the

first discharging region, two in the second, and three in the third. VC4 means that there

are four vessel classes. V14 means that there are a total of 14 vessels (with at least one

vessel belonging to each vessel class). Finally, if a letter is included at the end, this is to

distinguish this instance from other instances.

Tables 4 and 5 show the current best known objective function value and bound for each

instance. The objective function values in Table 4 were computed using the Zoom algorithm

described in [75], while those in Table 5 were computed running Gurobi 5.0 for 24 hours

with emphasis on feasibililty and warmstarting the solution procedure with the best solution

found using the approach described in [74]. The best bounds, which are currently rather

weak and, therefore, open to improvement, were computed running Gurobi 5.0 for 24 hours

with default emphasis using the Core Model (2). The solutions corresponding to the best

known objective function value are available on the website.

It is worth mentioning two experiments that we conducted on the 60-period instances in

Table 4 in order to give potential users a barometer of current techniques. All computations

were carried out on a Linux machine with kernel 2.6.18 running on a 64-bit x86 processor
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equipped with two Intel Xeon E5520 chips, which run at 2.27 GHz, and 48GB of RAM.

In the first experiment, we loaded the MPS file for each instance in instance set 1 into

Gurobi 5.0 with default emphasis and let the solver work for 24 hours. Gurobi could not

find a feasible solution to any instances in this time limit. In a second experiment, we

modified the model to allow an unlimited amount of spot market to be purchased (as in

instance set 2), but with a high penalty if the cumulative amount of spot market purchased

violated the bounds set in the data. This time, Gurobi found truly feasible solutions to five

of the instances, while the others had more units from the spot market purchased than is

permitted. The purpose of reporting these experiments is to highlight the fact that using

the Core Model (2) to generate solutions and bounds to large instances may not be ideal.

Indeed, we hope that better models and solution methods are developed in the future.

2.6 Conclusions

This chapter has introduced a core model for maritime inventory routing problems with

tracking at every port. A detailed survey of related research is presented and summarized

based on common attributes. Several modeling features and extensions are outlined along

with a unifying discussion of key structural properties that can be exploited. Finally, we

provide the first publicly available set of instances for maritime inventory routing, which

we hope will help grow interest in this line of research and be used by many others in the

future.
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Table 4: Best known results for instances solved with a 60-period planning horizon

Instance objval bound

LR1 1 DR1 3 VC1 V7a -16675 -17847
LR1 1 DR1 4 VC3 V11a -13257 -15020
LR1 1 DR1 4 VC3 V12a -11040 -12832
LR1 1 DR1 4 VC3 V12b -10053 -11287
LR1 1 DR1 4 VC3 V8a -5191 -6691
LR1 1 DR1 4 VC3 V9a -7552 -9383
LR1 2 DR1 3 VC2 V6a -13532 -15841
LR1 2 DR1 3 VC3 V8a -14652 -17379
LR2 11 DR2 22 VC3 V6a -12655 -14198
LR2 11 DR2 33 VC4 V11a -15387 -19565
LR2 11 DR2 33 VC5 V12a -22730 -25988
LR2 22 DR2 22 VC3 V10a -32627 -35873
LR2 22 DR3 333 VC4 V14a -26873 -33503
LR2 22 DR3 333 VC4 V17a -27000 -33909

Table 5: Best known results for instances solved with a 360-period planning horizon

Instance objval bound

LR1 1 DR2 11 VC1 V6a 112022 106901
LR1 1 DR2 11 VC2 V6a 283358 267059
LR1 1 DR2 11 VC3 V7a 184462 120214
LR1 1 DR2 11 VC3 V8a 198409 138735
LR1 1 DR2 11 VC4 V8a 156058 137408
LR1 1 DR2 11 VC5 V8a 216043 120923
LR1 1 DR3 111 VC3 V10b 313870 186956
LR1 1 DR3 111 VC3 V13b 355680 234713
LR1 1 DR3 111 VC3 V16a 498431 267470
LR1 1 DR4 1111 VC3 V15a 274751 248524
LR1 1 DR4 1111 VC3 V15b 371514 277477
LR1 1 DR4 1111 VC5 V17a 268175 247529
LR1 1 DR4 1111 VC5 V17b 357119 249664
LR1 1 DR5 11111 VC5 V25a 402595 362894
LR1 1 DR5 11111 VC5 V25b 526535 376106
LR1 1 DR8 11111111 VC5 V38a 954190 575369
LR1 1 DR8 11111111 VC5 V40a 725759 623686
LR1 1 DR8 11111111 VC5 V40b 895517 629485
LR1 1 DR12 111111111111 VC5 V70a 1139065 982586
LR1 1 DR12 111111111111 VC5 V70b 1384856 980050
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CHAPTER III

A TWO-STAGE DECOMPOSITION ALGORITHM FOR SINGLE

PRODUCT MARITIME INVENTORY ROUTING

3.1 Introduction

In this chapter, we present a two-stage decomposition algorithm for the single product

maritime inventory routing problem (MIRP) defined in Chapter 2. The problem involves

routing vessels, each belonging to a particular vessel class, between loading and discharging

ports, each belonging to a particular region. We call our algorithm “Zoom” because it

iteratively solves a MIRP by zooming out and then zooming in on the problem. Specifi-

cally, in the “zoomed out” phase, we solve a first-stage master problem in which aggregate

information about regions and vessel classes is used to route vessels between regions, while

only implicitly considering inventory and capacity requirements, berth limits, and other side

constraints. In the “zoomed in” phase, we solve a series of second-stage subproblems, one

for each region, in which individual vessels are routed through each region and loading and

discharge quantities are determined. Our algorithm bears a close resemblance to Benders

decomposition for mixed-integer linear optimization except that our second-stage problems

are mixed-integer linear programs, not pure linear programs. Not only is our solution ap-

proach different from previous methods discussed in the maritime transportation literature,

but computational experience shows that our approach is promising.

By far the most common decomposition approach used for MIRPs is column generation

(or branch-and-price) [36, 48, 76]. This fact is not surprising for three reasons. First, given

the success of column generation in solving traditional vehicle routing problems, of which

inventory routing is a more complicated extension, it is natural to apply similar techniques

to MIRPs. Second, virtually all attempts to solve a MIRP using column generation have

involved a relatively small number of vessels (at most five or six) which means that the

number of pricing problems to solve at each iteration is relatively small. Third, in some
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settings, complex cost structures associated with vessel voyage costs are easier to compute

when considering entire vessel voyages (i.e., using a path-based perspective) rather than

when considering the individual legs of the full voyage (i.e., using an arc-based perspective).

In most column generation approaches, a restricted master problem selects an optimal set

of vessel voyages (routes and load/discharge quantities along the routes) from a subset

of voyages that satisfy all inventory and routing constraints. In this sense, the master

problem attempts to handle all routing and inventory decisions simultaneously. In the

pricing subproblem, dual information from the master problem is used to check if there

are any other voyages that should be considered in the master problem. In spite of its

popularity, Engineer et al. [36] noted that while computational studies have shown that

path-based extended formulations for the VRP yield small root node gaps, on the order of

5 to 15 percent, path-based extended formulations for the MIRP can yield very large gaps,

often upwards of 100 percent.

While our decomposition algorithm also iteratively solves a master and sequence of

subproblems, the philosophy of our decomposition differs in several key ways from existing

methods in the literature. First, our master problem is a “route-only” model, meaning that

it only attempts to route vessels from region to region while only implicitly considering other

details like inventory balance and berth limit constraints. Second, our master problem does

not explicitly model the flow (route) of each individual vessel, but instead uses aggregation

to route vessels by vessel class. Third, our subproblems decompose by region, not by vessel.

In particular, given a solution to the master problem, which specifies the entrance and exit

times of vessels in each vessel class within each region, our regional subproblem attempts to

handle all regional constraints explicitly and determines voyages (routes and load/discharge

times and quantities) for each vessel.

Our reason for decomposing in this fashion was motivated by the fact that, in our

setting and many others like it, inter-regional travel times and costs are at least an order

of magnitude greater than those within a region. Thus, it seems natural to place a higher

priority on inter-regional routing decisions, while subordinating less costly, but nonetheless

important, regional decisions to a second stage. Another motivating factor is that, for
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economic reasons, vessels almost always travel with inventory at capacity from a loading

region to a discharging region, and empty from a discharging region to a loading region.

Consequently, once we know when a vessel in a particular vessel class is scheduled to arrive

and depart from a region, we know how many units must be loaded/discharged and how

many periods we have to accomplish this task.

Our algorithm has a similar spirit to classic Benders decomposition for mixed-integer

linear programming (MIP), but with at least one major difference. In traditional Benders

decomposition, a MIP is decomposed into two stages: the first stage involves solving a pure

integer program (excluding an auxiliary continuous decision variable used to represent the

objective function value of the second stage subproblem), while the second stage consists

solely of continuous decision variables and can therefore be solved using linear programming.

In our approach, the first stage is a pure integer program, but the second stage is a MIP.

The outline of this chapter is as follows. In Section 3.2, we describe a multi-start

construction heuristic for finding a good feasible solution faster than a commercial solver. In

Section 3.3, we describe an exact two-stage decomposition algorithm. Several enhancements

are outlined in Section 3.4 followed by a sketch of our complete solution procedure in Section

3.5. Finally, we present computational experiments with our approach in Section 3.6.

Assumptions: Throughout this chapter, we assume that the parameters Fmin
j,t , Fmax

j,t ,

Smin
j,t , and Smax

j,t do not change over time, i.e., the subscript t can be dropped, and that

consumption and production rates are given as data, i.e., Dmin
j,t = Dmax

j,t = dj,t for all j ∈ J

and t ∈ T .

3.2 A Two-Stage Construction Heuristic

In this section, we describe a two-stage multi-start heuristic for constructing an initial

feasible solution to the Core Model (2). This heuristic is effective at generating solutions

much faster than a commercial solver and has many similarities with our second approach,

but is easier to describe. The heuristic is not guaranteed to find an initial feasible solution,

but often finds solutions that are nearly feasible. If the solution produced is infeasible, then

local search is performed to attempt to remove infeasibilities. Our local search procedures
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are described in Section 3.4.1.

The heuristic first generates a solution to an aggregate model in which data is aggregated

in two ways. First, port data within each region are aggregated into coarse regional data.

This allows us to treat a region as a “super-port” having a production or consumption

rate, a capacity, a berth limit, etc, equal to the sum of the corresponding attribute at each

individual port in the region. Second, vessel data are aggregated by vessel class so that

individual vessel paths are not distinguished by the solution procedure. After aggregation

has occurred, vessels are routed from region to region using regional and vessel class data

only. Individual ports and vessels are ignored. We call this first-stage aggregate model

SystemModel since it is convenient to think of it as the model a system-level manager

might solve in order to obtain a coarse solution to a large-scale problem. With a solution

to the aggregate model in hand, a sequence of submodels, one for each region, is solved to

determine precise routes and loading/discharging decisions for each individual vessel over

the entire planning horizon. We call each second-stage submodel RegionalModel as we

can think of a regional manager having control over the decisions that affect his particular

region.

The motivation for aggregating and decomposing in this manner is due to the following

observations. The two largest contributors to the objective function value of our MIRP are

inter-regional arc costs and revenues from discharging product at discharging ports. Intra-

regional arc costs are typically an order of magnitude less than inter-regional arc costs.

Moreover, since prices at ports within a region are highly positively correlated and since we

assume that vessels travel at capacity from a loading region to a discharging region, once we

know the discharging regions that vessels are scheduled to visit, we know the approximate

revenue that will be obtained from those visits. Consequently, it seems natural to give a

higher priority to inter-regional routing decisions and only secondary importance to intra-

regional decisions.

Before describing SystemModel and RegionalModel, it is important to note that both

models are instantiations of the Core Model (2). This means that after writing the code

(in an algebraic modeling language or in a programming language) for the Core Model (2)
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just once, we may create instances of the model multiple times, with different underlying

networks and different parameter data, to produce system and regional models for each

region. We believe this model re-usability is an attractive practical feature of our approach.

3.2.1 SystemModel

To create SystemModel and to accommodate our aggregations based on region and

vessel class, we use a different network from the one described in Section 2.3. The regular

nodes are region-time pairs (r, t) for all r ∈ R and t ∈ T , as opposed to port-time pairs,

since our goal is determine the movement of vessels from region to region. In addition, the

arc set is the union of the arc sets Avc for each individual vessel class, i.e., A = ∪vc∈VCAvc,

where the arc sets Avc are straightforward adaptations of the individual vessel arc sets.

Specifically, the arc set Avc consists of source arcs, sink arcs, inter-regional travel arcs, and

waiting arcs within a region. The only intra-regional travel arcs in this network are waiting

arcs ((r, t), (r, t+ 1)), as shown in Figure 7. Inter-regional travel arcs assume the maximum

travel time between regions is required. That is, if τij denotes the travel time between

two ports i and j, then for each pair of regions r1 and r2 of different type (loading and

discharging), the inter-regional travel time τr1,r2 = max{τij : i ∈ r1, j ∈ r2}.

We populate the model with data aggregated by region:

Br =
∑
j∈r

Bj , dr,t =
∑
j∈r

dj,t , Fmin
r,t = min

j∈r
{Fmin

j,t } , Fmax
r,t =

∑
j∈r

Fmax
j,t ,

sr,0 =
∑
j∈r

sj,0 , Smin
r,t =

∑
j∈r

Smin
j,t , Smax

r,t =
∑
j∈r

Smax
j,t , ∀ r ∈ R,∀ t ∈ T .

There is some ambiguity in how the revenues Rr,t at nodes should be set. Setting Rr,t equal

to the average or maximum revenue over all ports in the discharging region are natural

choices.

There are three changes to the Core Model (2) that are required:

1. Wherever the index j or v appears, an r or a vc should appear instead. Consequently,

all decision variables that are vessel-specific in the Core Model (2) become vessel class-

specific in SystemModel, i.e., the variables become fvcn , x
vc
a , z

vc
n , and svcr,t (the latter is

explained below).
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1,1 1,2 1,3 1,91,7 1,8

2,1 2,2 2,3 2,92,7 2,8

3,1 3,2 3,3 3,93,7 3,8

Time

Loading
Region

Discharging
Region

Intra-regional arc Inter-regional arc

Loading
Region

Discharging
Region

1,1 1,2 1,3 1,91,7 1,8

2,1 2,2 2,3 2,92,7 2,8

Max travel time (Conservative)

Post-Aggregation

Pre-Aggregation

Figure 7: Example of a network before and after aggregation. Circles represent port-time
pairs in the original network. Squares represent region-time pairs in the aggregate network.
The two ports in the discharging region are aggregated together. No aggregation occurs in
the loading region since there is only one loading port.

2. Constraints (2k) become xvca ∈ Z+, ∀ vc ∈ VC, ∀ a ∈ Avc to account for the fact that

multiple vessels in the same class may travel along the same arc. Constraints (2l)

become zvcr,t ∈ Z+ with zvcr,t ≤ Br, ∀ n = (r, t) ∈ N ,∀ vc ∈ VC, since multiple vessels in

the same class may simultaneously attempt to load/discharge in the same region.

3. In the Core Model (2), each vessel has its own dedicated arc set Av. Since a vessel

can only be in one location at a time, it was enough to use the decision variable svt

to keep track of inventory on each vessel in each time period. When modeling the

flow of vessel classes, however, different vessels in the same vessel class are often in

different regions at the same time. Thus, we use the continuous decision variable

svcr,t to keep track of the amount of inventory on each vessel class in each region in

each time period. In addition, inventory balance constraints (2d) for each vessel are

replaced by inventory balance constraints for each vessel class,

svcr,t = svcr,t−1+∆r

fvcr,t − ∑
a∈XSvc,interr,t

Qvcxvca

 , ∀ r ∈ R, ∀ t ∈ T ,∀ vc ∈ VC , (17)
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where XSvc,inter
r,t is FSvc,inter

r,t if r ∈ RP and RSvc,inter
r,t if r ∈ RC , and FSvc,inter

r,t is the

set of outgoing arcs from node (r, t) that are inter-regional or sink arcs and RSvc,inter
r,t

is the set of incoming arc to node (r, t) that are inter-regional or source arcs.

Finally, it may be that SystemModel is infeasible because it is impossible to satisfy the

inventory bound constraints in all regions. To avoid this situation, analogous to Constraints

(5), we may replace regional inventory balance constraints (2c) with the constraints

sr,t = sr,t−1 + ∆r

(
dr,t −

∑
vc∈VC

fvcn − αr,t

)
, ∀ n = (r, t) ∈ N . (18)

There is no bound on the cumulative amount of slack
∑

t αr,t that can be used.

Under this formulation, a solution produced by SystemModel specifies, among other

things, routes for all vessel classes from region to region and the minimum duration a ves-

sel in each vessel class will remain in each region, all while maintaining inventory balance

constraints, inventory bound constraints, and berth limit constraints at an aggregate (re-

gional) level. Note the emphasis on “minimum duration.” Since the inter-regional arcs in

this model assume the longest port-to-port arc is being taken, once individual vessel routes

are determined in the RegionalModel, it may turn out that a vessel will arrive in a region

earlier than expected and stay in the region longer than the minimum duration.

Since a solution to SystemModel does not specify routes for individual vessels, only

routes for each vessel class, we perform a post-processing step and assign individual vessels

from each vessel class to routes based on a simple first-in first-out (FIFO) procedure. That

is, if two or more vessels from the same vessel class are routed to a region in overlapping

time intervals, then we assign the routes to individual vessels so that the first vessel to enter

the region is the first to leave, breaking ties arbitrarily.

We now describe how SystemModel is solved multiple times in order to generate sev-

eral first-stage solutions. The underlying reason for doing this is that, even if the maxi-

mum travel time between regions is used in the first-stage network, SystemModel may still

generate solutions that are overly optimistic in which vessels enter a region, immediately

load/discharge all of their inventory, and then travel to another region. Of course, for some
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instances, it may be necessary for vessels to stay multiple periods in a region so that mul-

tiple ports can be visited. To allow for this possibility, we add constraints to SystemModel

that force vessels in vessel class vc to remain in a region r for a minimum duration of τvcr

periods. Specifically, we include the constraints

t+τvcr∑
u=0

∑
a∈FSvc(r,u)

xvca ≤
t∑

u=0

∑
a∈RSvc(r,u)

xvca , ∀ r ∈ R, ∀ t ∈ T ,∀ vc ∈ VC , (19)

which state that the number of vessels in vessel class vc exiting region r by time t + τvcr

must not exceed the number of vessels in vessel class vc entering region r by time t. Note

that these constants τvcr depend on the region and vessel class because larger vessels may

need to remain at a single port for multiple periods or visit multiple ports in a region to

fully load or discharge, while smaller vessels may only need to visit a single port in one time

period.

To obtain multiple first-stage solutions, we can vary the parameter τvcr so that vessels are

forced to stay in a region for a minimum number of consecutive periods. Let τvc,min
r denote

the minimum duration that a vessel in vessel class vc must remain in region r and τvc,max
r

denote the largest minimum duration that should be considered (so τvc,max
r ≥ τvc,min

r ). The

parameter τvc,min
r can be computed from the data, e.g., if Fmax

j,t < Qvc for all j ∈ r, then

τvc,min
r ≥ 1. The parameter τvc,max

r is defined by the user. We found that τvc,max
r = 2 or

3 works well for the instances we considered. Given these parameters, we first set τvcr =

τvc,max
r for each region r and each vessel class vc, and solve SystemModel with minimum

duration constraints (19). This produces the most conservative first-stage solution. Then,

we simultaneously decrement each τvcr by 1, subject to τvcr ≥ τ
vc,min
r , and solve SystemModel

again so that vessels can potentially make more voyages. We continue this process until

τvcr = τvc,min
r for each region r and each vessel class vc. Note that by proceeding in this

order, from most conservative to least conservative, we can warm-start the solution process

of each iteration with the solution found from the previous iteration.

As a final note, if we assume that the travel times between regions is the minimum

travel time between any two ports in the two regions, instead of the maximum travel time

as above, and set revenues Rr,t = max{Rj,t : j ∈ r} for each r ∈ RC and t ∈ T , then
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the SystemModel can be used to compute a valid bound on the objective function of the

Core Model (2). This bound is easy to compute and almost always better than the bound

obtained from solving the Core Model (2) as-is, but is typically not very tight as port specific

information is ignored in favor of using regional information.

3.2.2 RegionalModel

Given a first-stage solution, we solve a sequence of second-stage subproblems, one for

each region, in order to construct a solution, not necessarily feasible, to the Core Model

(2). Throughout this subsection, we assume a fixed region r ∈ R is under consideration.

Suppose after obtaining a solution to SystemModel and applying the FIFO procedure men-

tioned above, it is determined that vessel v makes Kv
r visits to region r over the entire

planning horizon. Then the purpose of RegionalModel is to determine the route and load-

ing/discharging decisions that vessel v selects during each of its Kv
r visits.

Intra-regional routing and loading/discharging decisions are found by solving an in-

stantiation of the Core Model (2) with three modifications. First, the underlying network

involves only those nodes associated with ports in region r and only the source, sink, intra-

regional, and waiting arcs in arc set Av that are associated with region r. It is a subnetwork

of the original network described in Section 2.3.

Second, since a vessel may visit a region multiple times, we allow a vessel to take multiple

source and sink arcs in region r over the planning horizon. To accomplish this, we replace

the flow balance constraints (2b) for the cases when n = ns and n = nt, which ensure

that exactly one source and one sink arc for each vessel is chosen over the entire planning

horizon, with the constraints

∑
a∈FSvns,k

xva = 1 , ∀ v ∈ V,∀ k ∈ Kv
r (20a)

∑
a∈RSvnt,k

xva = 1 , ∀ v ∈ V,∀ k ∈ Kv
r , (20b)

where FSvns,k and RSvnt,k are the sets of source and sink arcs, respectively, associated with

vessel v’s kth visit to this region. These constraints ensure that exactly one source arc and

exactly one sink arc is taken on vessel v’s kth visit.
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There is some flexibility in how the sets FSvns,k and RSvnt,k are chosen. We can fix the

departure time when a vessel leaves a region or we can fix the arrival time when a vessel

enters a region. Either way, because the first-stage solution assumes that the maximum

travel time between regions is required, we are guaranteed that any solution produced by

the second-stage models will result in a solution that can be made feasible to the full model.

We choose to fix the departure time when a vessel leaves a region. Let tvk and uvk be the

first and last time periods that vessel v may enter and exit region r during its kth visit.

Thus, for each port j ∈ r, RSvnt,k includes sink arcs ((j, uvk), nt) (note that all tail nodes

have the same departure time uvk) and FSvns,k includes source arcs (ns, (j, t
v
j,k)), where tvj,k

is the latest possible time that vessel v can reach port j on visit k if it leaves the previous

region visited at the fixed departure time dictated by the first-stage solution.

Third, for each of vessel v’s Kv
r visits, we set svtvk−1 = 0 if r ∈ RP and svtvk−1 = Qv if

r ∈ RC . During all time periods t ∈ T \ ∪K
v
r

k=1[tvk, . . . , u
v
k] that do not involve a visit, the

inventory balance constraints (2d) on vessels are omitted as they are not necessary.

It may be that RegionalModel is infeasible because it is impossible to satisfy the inven-

tory bound constraints at all ports. To avoid this situation, analogous to Constraints (5),

we may replace inventory balance constraints (2c) with the constraints

sj,t = sj,t−1 + ∆j

(
dj,t −

∑
v∈V

fvn − αj,t + βj,t

)
, ∀ n = (j, t) ∈ N . (21)

Here, βj,t is a slack variable with a high penalty that takes a positive value if a vessel

is forced to load more inventory than a loading port has in inventory or discharge more

inventory that a discharging port has capacity for. By including slack variables βj,t, the

solver will not report that the model is infeasible, but instead a solution that uses some

positive amount of costly slack.

3.2.3 Summary and Commentary

We now summarize our construction heuristic. Pseudocode is provided in Algorithm

1. Multiple first-stage solutions are generated by solving SystemModel while varying the

minimum duration that vessels in each vessel class must stay in each region. Vessels within

each vessel class are then assigned to specific routes based on a simple FIFO procedure.
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After these solutions are generated, RegionalModel instances are populated, with initial

conditions/constraints dictated by the first-stage solution, and solved. A complete solution

to the Core Model (2) is now available. Finally, we apply local search on this complete

solution to repair it if it is infeasible or improve it otherwise.

A valid criticism of this approach is that there is no feedback loop between the first-

and second-stage models. For example, after solving RegionalModel for a particular region,

suppose we learn that during a particular visit, a certain vessel (in vessel class vc1) requires

more time in the region to fully load or discharge. It would be instructive if the SystemModel

could use this information to amend its first-stage solution. The problem is that, in the

aggregate framework devised above, aggregation takes place within each region and within

each vessel class. Thus, it is difficult to use vessel-specific information to modify constraints

and decision variables that affect all vessels in a vessel class. Continuing the example, if we

were to insist that all vessels in vessel class vc1 must remain an additional period in region

r, then this could have an adverse effect in which a majority of vessels remain longer than

needed in the region.

We are not arguing that successfully incorporating a feedback loop in this scheme is

impossible, but it would take some care. Instead, in the next section, we devise another

two-stage procedure that incorporates a feedback loop and systematically makes progress

towards a better complete solution.

3.3 A Two-Stage Algorithm with Feedback

In this section, we describe another two-stage procedure that is more exact in nature

than our construction heuristic. The purpose of this second approach is to remedy two

issues. First, the lower bounds provided by the Core Model (2) are often extremely loose for

large instances and our construction heuristic does not attempt to generate better bounds.

Second, our construction heuristic does not have a feedback loop in which SystemModel is

re-solved after gathering information from the solutions to the regional subproblems. With

these two deficiencies in mind, our aim is to devise an algorithm, which continues to use

aggregation and decomposition, that iteratively solves first- and second-stage models and
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Algorithm 1 Multi-Start Construction Heuristic

1: Create an empty list of SystemModel solutions called AggregateSolutionPool.
2: Set τvcr = τvc,max

r for each region r and vessel class vc.
3: repeat
4: Solve SystemModel with minimum duration constraints (19) and modified inventory

balance constraints (18).
5: Set τvcr = min{τvcr − 1, τvc,min

r }.
6: until no τvcr is decremented
7: for each solution in AggregateSolutionPool do
8: Perform FIFO procedure to assign vessels to specific routes.
9: for each region do

10: Solve RegionalModel with modified inventory balance constraints (21).
11: end for
12: Merge the solutions to each RegionalModel into a complete, but possibly infeasible,

solution to the Core Model (2).
13: Perform local search on the complete solution to remove infeasibility (penalties) and

improve the solution.
14: end for
15: return The best solution found.

also produces useful bounds.

Throughout this section, we make the following simplifying assumption:

“Two-port-with-no-revisits” assumption: A vessel may visit at most two

ports during each visit to a region and, once a vessel leaves a port, it will not

return to that port during the same visit in the region.

In other words, routes within a region are simple as they involve at most two ports without

any revisits. It is natural to ask: How restrictive is this assumption? In practice, voyages

with one or two ports per visit in a region are the most common due to issues of robustness

and economies of scale. Planners prefer to design routes with voyages having a limited

number of port visits to reduce the impact of the unplanned disruptions on future voyages.

Likewise, it is often more economical to have a vessel visit a small number of ports, unlike

in the trucking industry where many customers may be served by a single vehicle after it

leaves the depot. As a result, there are numerous applications in which at most two ports

per visit are considered. Dauzère-Pérès et al. [34] created a decision support tool for the

distribution of calcium carbonate slurry in which “ships never unload in more than one

port before returning to the processing plant.” In a shipment planning problem of bitumen,
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Persson and Göthe-Lundgren [76] allow for a vessel to discharge at no more than two ports

per voyage. In liquefied natural gas (LNG) transportation, the most common practice is

to have full load and full discharge where a vessel travels between only one loading port

and discharging port in a trip (Andersson et al. [7], Goel et al. [47], Rakke et al. [81]). In

the LNG setting studied by [48], multiple port visits in discharging regions are possible,

but the number of ports visits are limited to two due to tank restrictions. Other papers in

which this restriction is used include [6, 19, 86]. Hennig et al. [54, 55] limit the number of

port visits in both loading and discharging regions to three on a crude oil transportation

problem and mention that this is a practical limit from both economic and risk reduction

perspectives. In summary, while visiting three or more ports is possible in some settings,

there are numerous applications when our assumptions are not too stringent. On the other

hand, if visits to three or more ports in a region are possible, but rare, our approach may

still be of interest as it can find an optimal solution within a large, but restricted solution

space of the original solution space.

It is also natural to ask: What happens if this assumption is relaxed? Theoretically, it

is not difficult to extend the ideas that we present below. Practically, it is likely that the

first-stage model will be much more time consuming to solve and produce weaker bounds.

3.3.1 An Augmented Time-Space Network

Before explaining our first- and second-stage models, we describe an augmented time-

space network underlying the models. The fundamental goal behind this augmentation is

to decouple inter- and intra-regional routing decisions. To this end, we introduce two sets,

denoted N ′ and N ′′, of “customs” nodes. We associate with each original node n = (j, t) ∈

N two additional nodes: a customs entrance node n′ = (j′, t) ∈ N ′ and a customs exit

node n′′ = (j′′, t) ∈ N ′′. The purpose of introducing these additional nodes is to keep

track of the exact nodes (port-time pairs) used to enter and exit a region (hence, the name

“customs” node). All incoming arcs to an entrance node are inter-regional or source arcs

and all outgoing arcs are customs arcs. All incoming arcs to an exit node are customs arcs

and all outgoing arcs are inter-regional or sink arcs. All inter-regional arcs connected to
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Figure 8: Augmented time-space network

original nodes are removed. An example of an augmented network when there is one loading

region with a single port and one discharging region with two ports is shown in Figure 8.

3.3.2 SystemModel-2Port: A Route-Only Master Problem

Our first-stage problem, which we call SystemModel-2Port to distinguish it from System-

Model of the previous section, can again be interpreted as the problem solved by a system-

level manager in hopes of getting a coarse solution to the Core Model (2). SystemModel-

2Port is a route-only pure integer program that produces as output (i) the number of vessels

from each vessel class that travel along each inter-regional arc and (ii) the duration and the

number of vessels in each region during each visit. Inventory balance at ports is partially

modeled, but only implicitly. Constraints based on well-known lot-sizing relaxations are

included to ensure that ports and regions are visited with the correct frequency.
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3.3.2.1 Basic elements of SystemModel-2Port

SystemModel-2Port takes place on the augmented time-space network described above,

but only considers customs entrance and exit nodes; original nodes are ignored. Since the

routes of each vessesl class are modeled, not the individual vessel routes, we define the

set Avc of all arcs associated with vessel class vc and the set Avc,inter of all inter-regional

arcs associated with vessel class vc. In addition, a set Avc,ee of entry-exit arcs (not to be

confused with intra-regional arcs) is required. Whereas intra-regional arcs connect original

nodes in a region as shown in Figure 8, entry-exit arcs connect customs entrance nodes to

customs exit nodes within a region. Thus, the entry-exit arc (j′1, t1), (j′′2 , t2) for a particular

vessel class corresponds to a vessel that enters the region at port j′1 at time t1, makes its

first visit to the corresponding original port j1 before traveling to original port j2 some time

before or at t2, and exits the region from port j′′2 at time t2. If j1 = j2, then the vessel

remains at the same port for the duration of the visit. Figure 9 depicts a portion of the

augmented time-space network used in the first-stage problem. Only arcs for one particular

vessel class are shown.

1′, 1 1′, 2 1′, 3
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3′, 9

Time

1′′, 1 1′′, 2 1′′, 3

2′′, 9

3′′, 9

Entrance
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Nodes

Entry-exit arc Inter-regional arc

1′, 1

2′, 7 2′, 8
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Figure 9: First-stage customs network
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Entry-exit arcs exploit information about port capacities, minimum and maximum

load/discharge quantities, and vessel class capacities in order to avoid creating vessel routes

which will certainly lead to infeasibilities in the second stage. For ease of exposition, as-

sume for the moment that port capacities, production/consumption rates, and travel times

are constant over the planning horizon. The idea is straightforward to extend when this

is not the case. Let νvcj1,j2 denote the minimum number of periods required for a vessel in

vessel class vc to fully load/discharge at ports j1 and j2, where j1, j2 ∈ r for some region

r ∈ R, during a single visit to that region. Then, for each pair of ports j1 and j2, entry-exit

arcs are created with length νvcj1,j2 up to some user-defined parameter. In practice, there is

typically a maximum duration that a vessel will remain in a given region, e.g., five or ten

days, and this parameter can be used to limit the number of entry-exit arcs that need to

be considered.

As an example, suppose that the arc (3′, 7), (3′′, 9) shown in Figure 9 is the shortest

entry-exit arc from port 3 to itself (i.e., ignore arc (3′, 7), (3′′, 7) and arc (3′, 7), (3′′, 8)). This

could occur for the following reason. Suppose that port 3 is a discharging port consuming 40

units of product per period with a capacity Smax
3 = 210 and maximum per-period discharge

quantity Fmax
3 of 250 units. Then, the minimum duration required for a vessel with 300

units of capacity to visit only port 3 is three periods since the vessel would have to discharge

250 units in the first period, 40 units in the second period, and 10 units in the third period.

For each entry-exit arc a = ((j1, t1), (j2, t2)) ∈ Avc,ee, we introduce an integer decision

variable wvca to denote the number of vessels in vessel class vc that travel along arc a. In

additional, let Ra denote the maximum price at the two ports associated with arc a over

all times in the time interval, i.e., Ra = max{Rj,t : j ∈ {j1, j2}, t ∈ [t1, t2]}. Since prices at

ports in the same region are assumed to be highly positively correlated and also relatively

close to one another, using the maximum value is guaranteed that our lower bound is valid.

Since we assume that at most two ports are visited during a particular visit to a region, the

cost associated with an entry-exit arc is Cvca = Cvc(j1,j2)−Q
vcRa, where C(j1,j2) is the cost of

traveling from port j1 to j2 and is assumed to be constant for all time periods. Note that

C(j,j) = 0 for all j ∈ J .
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In the first-stage model, there are two types of decision variables: xvca denoting integer

flow on inter-regional arcs a ∈ Avc,inter within vessel class vc, and wvca denoting flow on

entry-exit arcs a ∈ Avc,ee within vessel class vc. The following model can be used to obtain

a lower bound on the objective function of a restricted space of the Core Model (2) under

the restrictions imposed by the assumptions made at the outset:

SystemModel-2Port

min
x,w

∑
vc∈VC

∑
a∈Avc,inter

Cvca x
vc
a +

∑
vc∈VC

∑
a∈Avc,ee

Cvca w
vc
a (22a)

s.t.
∑

a∈FSvcns

xvca = |Vvc|, ∀ vc ∈ VC (22b)

∑
a∈RSvcnt

xvca = |Vvc|, ∀ vc ∈ VC (22c)

∑
n′′∈N ′′

wvc(n′,n′′) −
∑

a∈RSvc
n′

xvca = 0, ∀ vc ∈ VC, ∀ n′ = (j′, t) ∈ N ′ (22d)

∑
a∈FSvc

n′′

xvca −
∑
n′∈N ′

wvc(n′,n′′) = 0, ∀ vc ∈ VC,∀ n′′ = (j′′, t) ∈ N ′′ (22e)

First-stage berth limit constraints (see Section 3.3.2.2) (22f)

Lot-sizing based covering and packing constraints (see Section 3.3.2.3) (22g)

wvca ∈ Z+, ∀ vc ∈ VC,∀ a ∈ Avc,ee (22h)

xvca ∈ Z+, ∀ vc ∈ VC, ∀ a ∈ Avc,inter . (22i)

The first four sets of constraints ensure flow balance for each vessel classes. Constraints

(22f) attempt to ensure that certain berth limit constraints are not violated. Constraints

(22g) are covering and packing constraints that ensure that a port or loading region is

visited enough times in every time interval. They do not ensure that product is actually

loaded/discharged at that time (this will be left to the regional managers to decide). Lot-

sizing based covering and packing constraints are discussed below. This model contains no

inventory-related constraints.

3.3.2.2 First-Stage Berth Limit Constraints

In the Core Model (2), berth limit constraints at a port are explicitly handled through

Constraints (2e). Although SystemModel-2Port (22) does not know when an attempt to
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load/discharge is actually made, some logical deductions can be made to ensure that certain

berth limits are not violated. Initially, we include in Model (22) a first-stage berth limit

constraint for each port-time pair by limiting the number of “shortest” entry-exit arcs that

can be taken. A “shortest” entry-exit arc a = ((j1, t), (j2, u)) is simply an arc from j1 to

j2 whose duration u − t is as small as possible. By definition, a vessel must attempt to

load or discharge at time t and time u in order for arc a to be a shortest entry-exit arc

(otherwise, the vessel could load or discharge in fewer time periods, e.g, in the interval

[t, . . . , (u − 1)]). For vessel class vc, let F̄Svc,ee(j′,t) be the set of shortest outgoing entry-exit

arcs from node n′ = (j′, t) and let R̄Svc,ee(j′′,t) be the set of shortest incoming entry-exit arcs

to node n′′ = (j′′, t). Then, the first-stage berth limit constraint

∑
vc∈VC

 ∑
a∈F̄Svc,ee

(j′,t)

wvca +
∑

a∈R̄Svc,ee
(j′′,t)

wvca

 ≤ Bj , ∀ j ∈ J , ∀ t ∈ T , (23)

is valid for the first-stage master problem. Constraint (23) sums over all of the shortest

entry-exit arcs incident to the entrance node n′ = (j′, t) and the exit node n′′ = (j′′, t).

As an example, consider port j = 1 at time period t = 3 shown in Figure 10 and assume

that there is only one vessel class. Suppose that all of the arcs shown in Figure 10 are the

shortest entry-exit arcs involving port 1 at time period 3. That is, in order to fully load

or discharge, a vessel must remain in the region at least two additional periods if the two

ports involved are port 1 and itself or port 1 and port 3; otherwise, if ports 1 and 2 are

involved, then a vessel must remain in the region at least one additional period. Then,

a valid constraint is: the flow on all arcs shown in Figure 10 must not exceed b1. If this

constraint is violated, then there is no way for all vessels involved to fully load/discharge

at port 1 at time period 3.

Additional constraints will be generated dynamically and appended to Model (22).

3.3.2.3 Lot-sizing based covering and packing constraints

Our main tool for ensuring that ports and regions are not under- or overwhelmed by

vessels are constraints based on the familiar lot-sizing set. Consider the standard capacitated

lot-sizing set (see, e.g., Pochet and Wolsey [77]) in which one must decide in what periods
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Figure 10: Example of first-stage berth limit constraints

to produce an item and how much to produce, given demand data dt, initial inventory

s0, constant storage capacity smax, and capacities Ct on production in period t of a finite

planning horizon T :

st−1 + xt = dt + st , ∀ t ∈ T (24a)

0 ≤ xt ≤ Ctyt , ∀ t ∈ T (24b)

yt ∈ {0, 1} , ∀ t ∈ T (24c)

0 ≤ st ≤ smax , ∀ t ∈ T . (24d)

The decision variables are: st, the stock (inventory) in period t; xt, the amount produced

in period t; and yt, a binary decision variable taking value 1 if production takes place in

period t and 0 otherwise. For any time interval [t1, t2], we can sum over constraints (24a)

and apply inequalities (24b) to obtain the relaxation

st1−1 +

t2∑
u=t1

Cuyu ≥ d[t1,t2] + st2 , ∀ 1 ≤ t1 ≤ t2 ≤ T (25a)

yt ∈ {0, 1} , ∀ t ∈ T (25b)

0 ≤ st ≤ smax , ∀ t ∈ T , (25c)
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where d[t1,t2] =
∑t2

u=t1
du is the demand in the time interval. Replacing st1−1 with its upper

bound smax
t1−1 and st2 with its lower bound smin

t2 , we obtain a further relaxation

t2∑
u=t1

Cuyu ≥ d[t1,t2] + smin
t2 − s

max
t1−1 , ∀ 1 ≤ t1 ≤ t2 ≤ T (26a)

yt ∈ {0, 1} , ∀ t ∈ T . (26b)

Note that we prefer to include the term (smin
t2 −s

max
t1−1) in the right hand side of (26a) instead

of (0− smax) since instance data may reveal that smax
t1−1 < smax and smin

t2 > 0.

Relaxation (26) has an important interpretation that we ultimately exploit. Namely,

if we interpret yt as the decision to turn a production machine on or off, then relaxation

(26) has replaced the original lot-sizing set (24) in which stocking, production quantity, and

machine on-off decisions are made with a pure binary set with constraints on the number of

times the machine must be turned on during every time interval [t1, t2]. In other words, the

original mixed-integer linear set has been relaxed to a pure integer set whose constraints

are specified in a purely combinatorial way. Geometrically speaking, our set of interest is

the projection of relaxation (25) onto the space of binary variables y.

Finally, note that if the capacitated lot-sizing set (24) also includes constraints Cmin
t yt ≤

xt for all t ∈ T , i.e., forcing a minimum amount to be produced if production takes place,

then applying the same arguments as above, the relaxation

t2∑
u=t1

Cmin
u yu ≤ d[t1,t2] + smax

t2 − smin
t1−1, ∀ 1 ≤ t1 ≤ t2 ≤ T (27a)

yt ∈ {0, 1}, ∀ t ∈ T , (27b)

is valid. Constraints (26a) and (27a) work in tandem to bound the number of times the

machine must be turned on over the planning horizon.

Using the ideas above, we now describe how to define what we call lot-sizing based

covering and packing constraints. For every time interval [t1, t2], these constraints provide

lower and upper bounds on the number of vessels (actually, the weighted combination of

vessels from each vessel class) that can enter or depart from a subset of ports in a region.

Consider a subset I of ports in the same region. Let Avc,eeI,[t1,t2] be the set of all entry-

exit arcs associated with vessels in vessel class vc that “touch” a port in I in the time
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interval [t1, t2]. That is, arc a = ((i, t), (j, u)) belongs to Avc,eeI,[t1,t2] and “touches” a port in

I in [t1, t2] if and only if there exists a path {(i, t) = (i1, u1), . . . , (iK , uK) = (j, u)} in the

original network described in Section 2.3 such that ik 6= ik+1 for at most one k (i.e., the

path satisfies the “two-port-with-no-revisits” assumption) and with a node (ik, uk) on the

path satisfying ik ∈ I and uk ∈ [t1, t2]. In other words, Avc,eeI,[t1,t2] is the set of arcs for which

a vessel in vessel class vc has an opportunity to load or discharge at a port in I in the time

interval [t1, t2]. Define Cvc,min
I,[t1,t2],a and Cvc,max

I,[t1,t2],a to be the minimum and maximum amount

of product that can be loaded/discharged at all ports in I in the time interval [t1, t2] by a

vessel in vessel class vc if entry-exit arc a is used. Let dI,[t1,t2] =
∑

j∈I
∑t2

u=t1
dj,u and let

Smin
I,t and Smax

I,t denote the minimum and maximum inventory levels at all ports in I at time

t. Finally, let I be the set of subsets I of ports under consideration.

Then, analogous to Constraints (26a) for the lot-sizing set, we can define subset covering

constraints∑
vc∈VC

∑
a∈Avc,ee

I,[t1,t2]

Cvc,max
I,[t1,t2],aw

vc
a ≥ dI,[t1,t2] + Smin

I,t2 − S
max
I,t1−1 , ∀I ∈ I,∀1 ≤ t1 ≤ t2 ≤ T .

(28)

Similarly, analogous to Constraints (27a), we can define subset packing constraints∑
vc∈VC

∑
a∈Avc,ee

I,[t1,t2]

Cvc,min
I,[t1,t2],aw

vc
a ≤ dI,[t1,t2] + Smax

I,t2 − S
min
I,t1−1 , ∀I ∈ I,∀1 ≤ t1 ≤ t2 ≤ T .

(29)

Since the maximum amount that a vessel in vessel class vc can load/discharge in a region

is its capacity Qvc, i.e., Cvc,max
I,[t1,t2],a ≤ Qvc, one could easily replace the coefficients Cvc,max

I,[t1,t2],a

with Qvc in (28) and still have a valid relaxation, albeit a much weaker one. Instead,

by using simple logical arguments, one can exploit the parameters to compute coefficients

Cvc,max
I,[t1,t2],a that are strictly less than Qvc. For example, if we consider a single port I = {j}

and an entry-exit arc a = ((i, t), (j, u)), with i 6= j, that touches port j in the time interval

of interest, we can assume that at least Fmin
i units will be loaded/discharged at port i

leaving at most Qvc − Fmin
i units to be loaded/discharged at port j.

Example 1. Consider the 3-period horizon instance shown in Figure 11. Customs entrance

and exit nodes are shown along with 12 entry-exit arcs. There are two ports in a discharging
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Figure 11: Example of customs network

Table 7: Example of lot-sizing based covering and packing constraints

I, [t1, t2] Covering Constraints

{1}, [1, 2] 200(w5 + w6) + 250(w1 + w3 + w8 + w10) + 300(w2 + w4) ≥ 50 = 100− 50 (C1)
{2}, [2, 2] 200(w1 + w3 + w7 + w9 + w10 + w11 + w12) ≥ −125 = 75− (200− 75) (C2)
{2}, [2, 3] 200(w1 + w7) + 250(w3 + w5 + w10 + w12) + 300(w9 + w11) ≥ 25 = 150− (200− 75) (C3)

{1, 2}, [1, 3] 300
∑12

a=1 wa ≥ 325 = 375− 50 (C4)

Packing Constraints

{1}, [1, 2] 300w2 + 100(w1 + w4 + w5 + w6 + w8) + 50w3 ≤ 350 = 100 + (300− 50) (P1)
{2}, [2, 3] 300w11 + 100(w1 + w5 + w7 + w9 + w12) + 50w3 ≤ 450 = 150 + 300− 0 (P2)

{1, 2}, [1, 3] 300
∑12

a=1 wa ≤ 925 = 375 + 600− 50 (P3)

region, each with one berth, and the travel time between ports is one period. Assume that

Fmin
j = 50, Fmax

j = 200, Smax
j = 300 for j = 1, 2, and that initial inventories are s1,0 = 50

and s2,0 = 0. Suppose there is a single vessel class with capacity Q1 = 300 and note that

since Fmax
j < Q1 for j = 1, 2, which implies that all entry-exit arcs involve at least two

periods. Assume that the initial nodes of the vessels are not fixed.

Table 7 lists some of the lot-sizing based constraints that can be derived based on the

instance data. We discuss some of the particulars for several of the constraints listed.

Constraint (C1): Because Fmax
1 = 200, at most 200 units of inventory can be discharged at
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port 1 in the time interval [1, 2] if arc 5 or 6 is chosen. Arcs 1, 3, 8, and 10 involve both

ports and, because Fmin
2 = 50, at most 250 units can be discharged at port 1 in the time

interval [1, 2] if any of these arcs is chosen. Constraint (C2): This constraint is redundant

as the right hand side value is below zero. Note, however, that 200 is the coefficient for

each variable in the constraint since Fmax
2 = 200. Also note that Smax

{2},1 = (200 − 75) since

at most Fmax
2 = 200 units can be discharged in time period 1 and 75 of those units will

be consumed by demand in period 1. Constraint (P1): Arcs 1, 5, and 8 involve port 2

and arcs 4 and 6 involve port 1 for some time periods outside of the time interval [1, 2].

Using the parameters Fmax
1 = Fmax

2 = 200 implies that the minimum amount that must be

discharged at port 1 in [1, 2] is 300− 200 = 100 units. Constraints (C4) and (P3): We call

these constraints regional covering and regional packing constraints, respectively, as they

apply to all ports in the region.

3.3.3 RegionalModel-2Port: A Constrained Second-Stage Subproblem

The second-stage model, which we call RegionalModel-2Port, to solve our regional sub-

problems is very similar to RegionalModel with two minor differences. First, a solution to

SystemModel-2Port specifies the arrival node (i, t) and departure node (j, u) for each visit.

(Recall that a solution to SystemModel specifies the latest possible arrival time and the de-

parture time; arrival and departure ports are left to the regional manager.) Consequently,

the sets FSvns,k and RSvnt,k associated with Constraints (20) become singletons. Second,

the “two-port-with-no-revisits” assumption needs to be enforced. This is accomplished by

setting to zero all arcs that cannot be on an (i, t)− (j, u) path.

3.3.4 Feedback Loop: Iterating between the Master and Subproblems

Given a first-stage solution to SystemModel-2Port, it may not be possible to find a

feasible second-stage solution for each regional subproblem. In this case, each infeasible

subproblem must communicate to the master problem a set of cuts that can be used to

generate a different first-stage solution. We do this through two types of cuts.

The first type of cut is generated when a first-stage berth limit constraint is violated.

This may happen when multiple entry-exit arcs involving the same subset of ports is chosen.
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The second type of cut we generate is a so-called enumeration cut. When the first-stage

solution does not induce a feasible second-stage solution for a particular region, we can

always apply an enumeration cut to prevent the first-stage model from generating the same

solution for this region. If xvca ∈ {0, 1} for all vc ∈ VC and a ∈ Avc, then an enumeration

cut can be written as

∑
vc∈VC

 ∑
a∈Avc:x̂vca =0

xvca +
∑

a∈Avc:x̂vca =1

(1− xvca )

 ≥ 1 (30)

where x̂ is the current first-stage solution that induces an infeasible second-stage solution.

Otherwise, one needs to express this cut using a binary expansion of the integer variables.

Note that we could also attempt to separate lot-sizing based cuts on an as-needed

basis, but we prefer to generate them before launching the solver. The main reason for

this preference is that, in early testing, we found that checking for violated inequalities,

after each new incumbent solution was found, resulted in longer run times than simply

including the constraints a priori and letting the presolver eliminate redundant constraints.

Separation appears to be time consuming because one needs to check every port and every

region in every time interval [t1, t2].

3.3.5 Relation to Classical Benders Decomposition

Our approach bears a resemblance to classical Benders decomposition for mixed-integer

linear optimization [16]. Consider the MIP

min cTx + dTy (31a)

s.t. Ax ≥ b (31b)

Bx + Cy ≥ g (31c)

x ∈ Znx
+ ,y ∈ Rny

+ (31d)

where all vectors and matrices are of conforming dimension. After projecting problem

(31) onto the space defined by the integer variables, Benders decomposition states solving
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problem (31) is equivalent to solving the so-called full master problem

min cTx + η (32a)

s.t. Ax ≥ b (32b)

η ≥ (g −Bx)Tp ∀ p ∈ P (32c)

0 ≥ (g −Bx)T r ∀ r ∈ R (32d)

x ∈ Znx
+ (32e)

where P and R denote the set of extreme points and extreme rays, respectively, of the

polyhedron D = {u ≥ 0 : CTu ≤ d}. The standard Benders decomposition algorithm

solves problem (31) in two stages. In the first stage, problem (32) is solved, except with

P and R replaced by a subset of extreme points and rays of D, for a first-stage solution

x̃. In the second stage, the LP max{(g −Bx̃)Tu : u ∈ D} is solved and an extreme ray is

returned if the LP is determined to be unbounded; otherwise an extreme point is returned.

This extreme point or ray is then included in the subset or extreme points and rays found

thus far and the iterative process continues.

Suppose that x can be partitioned as xT = (xT1 ,x
T
2 ) so that we can rewrite (31) as

min cT1 x1 + cT2 x2 + dTy

s.t. A1x1 + A2x2 ≥ b (33)

B1x1 + B2x2 + Cy ≥ g

x1 ∈ Znx1
+ ,x2 ∈ Znx2

+ ,y ∈ Rny

+ .

In our approach, we find it more natural to project problem (33) onto the space defined

by the x1 integer variables only. Assuming prices are constant over time in every region,

the objective function value of any second-stage solution is completely determined by the

first-stage solution. Thus, solving problem (33) is equivalent to finding a first-stage solution
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x1 that induces a feasible second-stage solution to the MIP

min cT2 x2 + dTy

s.t. A2x2 ≥ b−A1x̃1 (34)

B2x2 + Cy ≥ g −B1x̃1

x2 ∈ Znx2
+ ,y ∈ Rny

+ .

At first glance, projecting the original problem (33) onto the space defined by only a subset

of the integer variables does not seem appealing for two reasons. First, the second-stage

problem (34) is a MIP, not an LP, and therefore theoretically much harder to solve. It

turns out, however, that these MIPs are typically not challenging to solve given the fact

that problem (34) also decomposes by region. Second, we are forced to use tools that go

beyond standard LP techniques. Namely, LP theory says that if the second-stage LP in

standard Benders decomposition is infeasible, then the dual is unbounded and, thus, we

can find an extreme ray to include in the restricted master problem. In our decomposition

framework, if problem (34) is infeasible, then this could be due to the LP relaxation being

infeasible or because no integer solution exists. If the former occurs, we could add a Benders

feasibility cut just as in the traditional setting. If the latter occurs, which is more likely,

we must add a cut to the restricted master problem that prevents the master problem from

generating the same solution again.

3.4 Enhancements: Improving Practical Performance

In this section, we discuss several important techniques that we have found useful to

improve the practical performance of the Zoom algorithm. The first improvement leads

to primal enhancements, while the last improvement is aimed at improved the dual bound

provided by (22).

3.4.1 MIP-Based Local Search

An important and effective enhancement is the use of MIP-based local search, a general

method in which a series of smaller/reduced MIPs are solved to locally improve an existing

solution to a larger MIP. Although it can be applied to any solution (feasible or infeasible) at
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any time in the search procedure, we apply it immediately following the construction phase

described in Section 3.2 and to each solution stored in a solution pool of SystemModel-2Port

(22). Several authors have shown how local search can be used to find high-quality solutions

and improve existing solutions. Note that in [92], one loading region, one discharging region,

and voyage chartered vessels are considered so that a vessel path involves a single inter-

regional trip. In our problem, long-term vessels make multiple inter-regional trips.

The first local search neighborhood that we found to be effective empirically is an

extension of the “Fix Supply” and “Fix Demand” neighborhoods proposed in Hewitt et

al. [57]. In this neighborhood, all decisions in all regions of a particular type (i.e., loading

or discharging) are fixed while the decisions in the remaining regions are selected by the

solver. It is effective at optimizing routing and loading/discharging decisions in each region.

Moreover, although we do not do it, the regional problems can be solved separately (in

parallel). This neighborhood has the advantage that a solver can often solve the MIP-based

local search problem to optimality in under 60 seconds for instances involving four ports in

a region and a 60-period horizon. It is surprising that this neighborhood is solvable in a

reasonable amount of time.

Our algorithm works as follows. We first fix the decisions made in the loading regions

and optimize the decisions made in the discharging regions, subject to the constraint that

vessels must arrive at the correct fixed starting nodes in the loading regions. For example,

if all decisions are fixed in all loading regions, then the path (sequence of port-time pairs)

and loading decisions of every vessel when visiting the loading regions is fixed. We prefer

to fix loading region decision first because, in our instances, there are typically more ports

in a discharging region than in a loading region and, therefore, it seems likely that there

are more opportunities for improvement. Next, we fix all decisions made in the discharging

regions and optimize the decisions in the loading regions. The search continues iterating

between the two regions until no improvements are made. After obtaining a re-optimized

solution given a particular fixing in regions of the same type, we attempt to have vessels

leave a region as soon as possible. For example, if we find that a vessel has fully discharged

by time t but does not leave the region until time t + 1, which might happen because the

79



vessel can still arrive at its next loading region when leaving at time t+1, then we force the

vessel to leave at time t so that in the subsequent solve, when the decisions in the loading

regions are re-optimized, the solver has more flexibility.

Algorithm 2 Iterated Fix Supply Fix Demand Local Search

Require: A feasible or infeasible solution to the Core Model (2).
1: repeat
2: for fixedRegionType in {Loading,Discharging} do
3: for each region of type fixedRegionType do
4: Fix all vessel paths and all zvn variables in this region to their current value.
5: end for
6: for each region not of type fixedRegionType do
7: Solve RegionalModel with Constraints (20) where FSvns,k and RSvnt,k are defined

in the text.
8: (Optional) Force vessels to depart from a region in the time period of their last

attempt to load/discharge.
9: end for

10: end for
11: until no improvement in the objective function value is made or no vessels departs from

a region in an earlier time period than in the previous iteration
12: return The updated solution.

Pseudocode of this procedure is given in Algorithm 2, which we call “Iterated Fix Supply

Fix Demand Local Search.” To make the algorithm more precise, we explain how the sets

FSvns,k and RSvnt,k in Constraints (20) are modified. We will refer to regions in which

decisions are fixed as “fixed regions” and all other regions as “free regions.” Recall that the

arrival and departure nodes for each vessel in each fixed region are known. For each free

region and for each vessel, we define FSvns,k as the set of source arcs {(ns, (j, tvj,k))} for visit

k, where tvj,k is the time period in which vessel v would arrive at port j on its kth visit to

this free region if it were to depart from the previous region from its fixed node. Similarly,

we define RSvnt,k as the set of sink arcs {((j, uvj,k), nt)} for visit k, where uvj,k is the time

period in which vessel v would need to depart from port j on its kth visit to this free region

in order to arrive in the subsequent region at the correct fixed node.

As a final note on this procedure, it is worth mentioning some details about our imple-

mentation, since empirically it is superior to what we believe is an easier implementation.

Perhaps, the most straightforward implementation is to instantiate the Core Model (2) and
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then write an iterative procedure that solves reduced instances of the Core Model (2). In

this approach, all regional subproblems are solved simultaneously, despite being separable,

and, thus, the instances can be relatively large and time consuming. Instead, we solve

each regional subproblem separately using RegionalModel and pass pertinent information

between regions with a data structure. This approach is parallelizable, but solves relatively

quickly in series.

Another local search neighborhood that proved to be useful is similar to the “Fix Time

Window” neighborhood proposed in Hewitt et al. [57]. In this neighborhood, a subset S of

vessels is selected and the discrete decision variables for all vessels not in S are fixed, i.e., all

xva and zvn variables are fixed at their current value for v ∈ V \S. For each vessel in S, a time

window is selected and all discrete decision variables outside of the time window are fixed,

while all decision variables inside the time window are selected by solving a small MIP.

Specifically, if [t1, t2] denotes the time window, all routing variables xva that start before

or after the time window, i.e., a = ((j1, t), (j2, t
′)) with t < t1 or t > t2, are fixed during

the solve. We found that MIP-based local search is particularly well suited for eliminating

small infeasibilities in a given solution.

3.4.2 Branching on Auxiliary Decision Variables

SystemModel-2Port (22) has a highly fractional LP relaxation, meaning that even after

branching on many variables, the solution to the LP relaxation contains many binary de-

cision variables that take a fractional value. Branching on these arc variables has limited

impact because arcs essentially repeat in time, e.g., arcs from port i to j occur in succession

until the end of the time horizon. To avoid unproductive branching, we employ a technique

commonly used in a column generation in which we include auxiliary integer decision vari-

ables so that we can branch on decisions that are likely to have more impact. Specifically,

we introduce auxiliary integer decision variables yvcr and yvcj to count the number of times

vessels in vessel class vc visit region r ∈ R and port j ∈ J over the entire time horizon.

We then assign yvcr variables the highest branching priority, yvcj variables the next highest

branching priority, and finally the original variables are assigned the solver’s default priority.
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3.4.3 Integer Knapsack Polytope Constraints

The bound provided by the LP relaxation of SystemModel-2Port is usually good relative

to the improvements that are made after branching. As a consequence, it may be interesting

for those experimenting with a heuristic to solve only the root node of the branch-and-bound

tree and use the bound obtained without going any further. In order to improve the LP

relaxation, one can include integer knapsack polytope constraints.

If we isolate a packing constraint (29) in which slack variables are also included (i.e., if

a spot market is present), we obtain the set

W =

x ∈ {0, 1}n1 , s ∈ Rnk
+ :

n1∑
j=1

âjxj −
nk∑
k=1

sk ≤ b̂

 , (35)

where the xj variables correspond to arc variables, the sk variables correspond to slack

variables over an interval of nk periods, and âj and b̂ are data. Solvers like Gurobi and

Cplex have specialized routines that attempt to separate inequalities for the continuous

knapsack set, which we would have if there were only a single s variable present in (35).

We could include auxiliary continuous variables to represent the sum
∑nk

k=1 sk, but then

we would have to hope that the solver is able to find some helpful cuts for this set while

working in a higher dimension. Instead, we make use of the fact that only a small amount

of cumulative slack is permitted in our model and replace the sum
∑nk

k=1 sk by its upper

bound smax. Setting b = b̂+ smax, we obtain the relaxed pure binary knapsack set

X =

x ∈ {0, 1}n1 :

n1∑
j=1

âjxj ≤ b

 . (36)

Solvers have extremely efficient routines for performing separation on binary knapsack sets.

However, in order for us to take advantage of this, for every packing constraint that we

include in the model, we would also have to include a constraint of the form (36), set the

solver’s parameter for generating knapsack cuts to “aggressive” and again hope that the

solver is able to generate helpful cuts. Instead of depending on the solver to generate useful

cuts for these single-row binary knapsack constraints, we go one step further and attempt

to generate facets of low-dimensional integer knapsack sets. To do this, we collect all

binary variables xj with the same coefficient âj and we create a temporary integer decision
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variable yi. We say “temporary” because these variables are not included in the final model;

their only purpose is for preprocessing. Assume this aggregation produces n2 such integer

variables yi. This gives rise to an integer knapsack set

Y =

y ∈ Zn2 :

n2∑
j=1

ajyj ≤ b

 . (37)

When n2 is small, e.g. n2 ≤ 10, it is possible to obtain the facets of the integer knapsack

polytope (37) by calling PORTA [31].

There are at least two options when applying facets of the integer knapsack polytope:

(Option 1) append some or all of them to the initial formulation in a preprocessing step; (Op-

tion 2) append them within a branch-and-cut framework in which separation is performed

at a subset of nodes in the branch-and-cut tree; or (Option 3) a compromise approach in

which the cuts are generated in a preprocessing step, added to a cut pool, and then added

on an as-needed basis. We have opted for the latter approach so that the number of rows

in the initial constraint matrix is kept small.

3.5 Summary of Our Approach

Having defined all of the ingredients, we summarize in pseudocode our algorithmic

approach in Algorithm 3.

Observations:

1. Step 4: For larger instances, warm-starting SystemModel-2Port can save hundreds of

seconds in presolve time and an additional hundreds of seconds in solving the root

LP.

2. We refer to Steps 5-21 as Zoom. This procedure is implemented using a LazyCon-

straintCallback as is typically required for a Benders-like strategy.

3. Steps 15-20: Since we are searching for the best solution to the Core Model (2), which

does not impose the two-port-with-no-revisits assumption, we solve a relaxed version

of RegionalModel-2Port in hopes of finding a feasible solution to the Core Model (2).

We warm-start the solution process for each relaxed model in Step 16 with the solution
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Algorithm 3 Complete Solution Procedure

1: Create an empty list of solutions SolutionPool.
2: Apply the two-stage multi-start construction heuristic of Section 3.2 to generate a list

LIST of (possibly infeasible) solutions to the Core Model (2).
3: Perform local search on each solution in LIST to remove any infeasibilities and/or find

an improving solution.
4: Warm-start SystemModel-2Port (22) with the best feasible solution found thus far.
5: for each integer feasible solution found do
6: for each regional subproblem do
7: Solve RegionalModel-2Port
8: if RegionalModel-2Port is infeasible then
9: Add a first-stage berth limit cut or enumeration cut.

10: end if
11: end for
12: if all regional subproblems are feasible then
13: A new incumbent solution has been found.
14: end if
15: for each regional subproblem do
16: Solve a relaxed version of RegionalModel-2Port with no two-port-with-no-revisits

constraints.
17: end for
18: if all regional subproblems are feasible then
19: Store this solution in SolutionPool.
20: end if
21: end for
22: Perform local search on each solution in SolutionPool to find an improving solution.
23: return The best solution found and the bound provided by SystemModel-2Port (22).
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obtained from the restricted model in Step 8, so that the additional CPU time for

this search is often a couple of seconds.

4. Step 22: We could perform local search after each new solution to the Core Model

(2) is found, but we chose to use local search as a last step in the spirit of a solution

polishing procedure.

3.6 Computational Experiments

All computations were carried out on a Linux machine with kernel 2.6.18 running on

a 64-bit x86 processor equipped with two Intel Xeon E5520 chips, which run at 2.27 GHz,

and 48GB of RAM. The LP and MIP solvers of Gurobi 5.0 were used. All algorithms were

coded in Python and run on a single thread.

All models were solved with the default optimality tolerance of 0.01%. In the construc-

tion heuristic, SystemModel was given a time limit of 300 seconds (each time it was called

in Step 4 of Algorithm 1) and was solved with emphasis on feasibility.

3.6.1 Experiments with the Core Model

We conducted several experiments with the Core Model (2) to understand its strengths

and limitations. These experiments are described in Section 2.5. The main finding was

that, within a 24-hour time limit, the Core Model (2) could not find feasible solutions to

any of the instances and produced bounds that were virtually useless.

We also performed an experiment to answer the question: Does a solver perform bet-

ter (i.e., produce feasible or higher quality feasible solutions) when the Core Model (2)

is modified so that the solution space is smaller and only includes solutions that satisfy

the two-port-with-no-revisits assumption? Since our approach provides a bound on the

restricted solution space due to the two-port-with-no-revisits assumption, we would like to

know what happens when these same restrictions are incorporated into the Core Model (2).

Unfortunately, the results are worse. To reduce the solution space of the Core Model (2), we

included additional constraints, which were implemented in two ways. First, we included

explicit constraints in the Core Model (2) so as not to violate the two-port-with-no-revisits
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assumption. The additional constraints led to an even larger model and ultimately bogged

down the solution process even further, producing bounds that were worse (in a 24-hour

time limit) than when these constraints had not been included at all. Second, we attempted

to include these constraints in a lazy fashion through a LazyConstraintCallback. In this

approach, additional constraints are only generated on an as-needed basis. The problem

with this approach is that in order to use lazy constraints, one must disable dual reductions,

which are used in the preprocessing phase, and so the resulting presolved model is larger.

Solving this larger presolved model along with checking for lazy constraint violations also

resulted in worse performance than the vanilla approach.

3.6.2 Main computational results

Tables 8 and 9 show the main results of our approach for instances with planning

horizons of 45 and 60 periods, respectively. The relative and absolute gaps are computed as

(zBest−zLB)/zBest*100% and (zBest−zLB), respectively, where zBest is the objective function

value of the best known solution and zLB is the lower bound provided by SystemModel-

2Port. An asterisk appears next to relGap and absGap as a reminder that the lower bound

is with respect to the two-port-with-no-revisits assumption. Nevertheless, in all of the best

known solutions to all instances, the two-port-with-no-revisits assumption is never violated.

We begin with some general comments about the algorithm. As one would expect, going

from 45 periods to 60 periods leads to greater computational challenges as reflected in the

gaps. For instances with one loading and one discharging region, our algorithm is quite

effective and produces small relative and absolute gaps. For instances with multiple loading

and multiple discharging regions, our algorithm has greater difficulty proving optimality

(with respect to the “two-port-with-no-revisits” assumption). A partial explanation for

this is that, in our instances with multiple loading and discharging regions, many two-port

visits are typically required. SystemModel-2Port, which provides the lower (dual) bound,

favors splitting vessels, e.g., sending one-half of a vessel to port 1 in region 1 and one-

half of the same vessel to port 2 in the same region, in its node LP relaxations to avoid

intra-regional travel costs. An example is shown in the Example 2.
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Example 2. The purpose of this example is to illustrate how SystemModel-2Port (22)

prefers to split vessels in its LP relaxations, leading to highly fractional solutions. There

are two vessel classes with capacity 300 and 250, respectively, each with two vessels. The

starting nodes for each vessel are given. Source and sink arcs are not shown. Figure 12

shows an optimal solution to this small instance. Meanwhile, Figure 13 shows the solution

to the root LP relaxation. Numbers next to arcs denote the fractional amount of flow along

each arc. The most important observation is that, since integral flows of vessels in vessel

classes does not need to be obeyed in the LP relaxation, vessels are split to avoid avoid intra-

regional arc costs. Vessels are also split across time. For example, in an optimal solution,

the vessel starting in the discharging region at time 3 makes a two-port visit (it starts at

the customs entrance node for discharging port 1 and then terminate at the customs exit

node for discharging port 2). On the other hand, in the LP relaxation, this same vessel is

split over time and only makes a single-port visit.

Despite some relative gaps above 5%, we believe that the results are quite promising. For

a relative comparison, Hewitt et al. [57] use a branch-and-price guided local search technique

to find solutions to challenging 60-period instances presented in Engineer et al. [36]. This

class of problems is different from ours and, therefore, a direct comparison is difficult, but we

would argue that our instances are as complex as theirs. Their algorithm runs for 30 minutes

on four processors, which is roughly two hours of serial computation. They produce very

good results, but they make no attempt at providing a bound. Our approach is successful

at simultaneously finding good solutions and good bounds in just over two hours.

The columns labeled CH+LS denote the construction heuristic combined with local

search. The results indicate that this combined method performs reasonably well, producing

solutions that are close to the best known solutions. For most of the instances with a single

loading region, the best solution to SystemModel was found within 100 seconds, while the

remaining time was spent improving the lower bound. In short, we believe that less time

could be spent solving SystemModel for these instances with a single loading region without

significantly changing the solution found by the construction heuristic.

Our solution polishing procedure calls our local search heuristics. It is given a total
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Figure 12: The optimal solution to an instance with 16 periods, 1 loading region having 2
ports, 1 discharging region having 2 ports, 2 vessel classes with 2 vessels in each class.
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Figure 13: The solution to the LP relaxation of the instance shown in Figure 12.
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time limit of 300 seconds since its main purpose is to polish the solution, e.g., force vessels

to leave the system sooner and remove any wasted trips, not to significantly improve the

solution. In other words, solution polishing was used to “beautify” the solution and was

not responsible for any appreciable improvements after calling the Zoom algorithm.

3.6.3 First-stage results

Tables 10 and 11 provide more detail related to SystemModel-2Port (22) by comparing

its performance under its default formulation, when auxiliary variables are included to allow

for enhanced branching (see Section 3.4.2), and when constraints from the integer knapsack

polytope are included (see Section 3.4.3). These tables show the number of first-stage berth

limit cuts (B) and enumeration cuts (E) that are generated; the quality of the root LP

relaxation (the value of the LP solution obtained after all processing to the root node of the

search tree is completed); and the final bound provided in a two-hour time limit. Again,

the final bound (Final LB*) is denoted with an asterisk as a reminder that the “two-port-

with-no-revisits” assumption is in effect. For each instance, SystemModel-2Port (22) was

warm-started with the same inital solution found by the construction heuristic with the

objective function value reported in Tables 8 and 9.

One might think that the root LP objective function values would be the same for the

Default and Integer knapsack cuts approaches, but this is not the case. The initial

LP value should be the same, since the initial models are identical and, therefore, should

undergo the same presolve sequence. The processing done at the root node can be rather

different, which, indeed, is the case as the final root LP values do not agree. It is surprising

that the integer knapsack constraints (added via a cut table) yield inferior objective function

values for the 45-period instances, but superior values for the 60-period instances. In general,

20 to 200 integer knapsack cuts are added to the model.

The tables indicate that, despite the increase in the number of variables in the model,

including auxiliary decision variables for enhanced branching often improves the value of

the root LP relaxation and almost always produces the best final bound. In general, few

first-stage berth limit cuts are generated simply because “collisions” at ports are infrequent
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due to the spacing of the vessels in good feasible solutions. On the other hand, for some

instances, many enumeration cuts were generated, implying that SystemModel-2Port was

generating routings that were causing infeasibilities in the regional subproblems. For the

larger instances, the bound improvements after the LP relaxation were minor.

Another useful feature of our approach is that the bounds provided by the LP relaxation

of SystemModel-2Port are, with only a few exceptions (see instance LR2 11 DR2 22 VC3 V6a),

relatively close to the final bound produced after running branch-and-cut for an extended

period of time and significantly better than those produced by the Core Model. Although

SystemModel-2Port is useful in generating new and better solutions, one could also use it

only for computing a bound. For example, one could implement a simple parallel framework

in which one or more processors are dedicated to computing a primal solution and another

is aimed at a dual solution.

Several additional experiments were performed, the results of which we summarize here.

We experimented with simultaneously using auxiliary variable branching and integer knap-

sack constraints, but this did not result in any appreciable improvements. We also gave

SystemModel-2Port (22) a five-hour time limit and the additional improvements to the

bounds were minor. This suggests that more powerful cuts or model restructuring may be

needed.

3.7 Conclusions

In this chapter, we introduced a two-stage algorithm for solving single product MIRPs

with a planning horizon of up to 60 periods. These split-pickup and split-delivery problems

are very challenging computationally, thus, it is not surprising that our approach calls upon

many different techniques to produce good solutions and useful bounds. Our approach uses

both aggregation and decomposition to simplify the problem into smaller, more manageable

subcomponents. It also borrows well-known results from the lot-sizing literature to provide

bounds. Computational results show that our approach is promising.

Another salient feature of our approach is the fact that the decomposition lends itself

to parallelization. In both the construction heuristic and the two-stage approach with
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feedback, the regional subproblems can be solved independently. It would be interesting to

explore the computational gains from a parallel implementation of our algorithms.
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CHAPTER IV

QUICKLY FINDING GOOD SOLUTIONS TO LONG-HORIZON

MARITIME INVENTORY ROUTING PROBLEMS

4.1 Introduction

In this chapter, we study a maritime inventory routing problem (MIRP) with a long

planning horizon of up to 365 periods (days). For instances with many ports and many

vessels, mixed-integer linear programming (MIP) solvers often require hours to produce

good solutions even when the planning horizon is 90 or 120 periods. Building on the

recent successes of approximate dynamic programming (ADP) for road-based applications

within the transportation community, we develop an ADP procedure to quickly generate

good solutions to these problems within minutes. Our algorithm operates by solving many

small subproblems (one for each time period) and, in so doing, collecting and learning

information about how to produce better solutions. Our algorithm is one of the first of

its kind for maritime transportation problems and represents a significant departure from

the traditional methods used. In particular, whereas virtually all existing methods are

“MIP-centric,” i.e., they rely heavily on a solver to tackle a nontrivial MIP to generate

a good or improving solution in a couple of minutes, our framework puts the effort on

finding suitable value function approximations and places much less responsibility on the

solver. Computational results illustrate that with a relatively simple framework, our ADP

approach is able to generate good solutions to instances with dozens of vessels and varying

time horizons much faster than a commercial solver emphasizing feasibility.

The problem that we consider in this chapter is a simplification of our core problem

defined in Chapter 2 and resembles that of Goel et al. [47]. It assumes that there is

exactly one port within each region (consequently, we will use the terms “port” and “region”

interchangeably); port capacity always exceeds vessel capacity, i.e., Smax
j,t ≥ max{Qvc : vc ∈

VC}; and vessels can fully load or discharge in a single period, i.e., Fmax
j ≥ max{Qvc : vc ∈
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VC}. These assumptions allow vessels to load or discharge in the same period in which they

leave a port so that loading and discharging decisions do not need to be explicity modeled.

Instead, if an inter-regional travel arc or sink arc is taken, we assume that a vessel fully

loads or discharges immediately before traveling.

It is important to address the question of why a solution with such fine-grained detail

and for such a long planning horizon is even needed. The central reason is due to risk and

lack of liquidity for certain commodities. Liquefied natural gas (LNG) is a case in point.

Historically, LNG has been a highly illiquid commodity. As a consequence, LNG buyers

have come to expect specific long-term plans, called “annual delivery plans,” that specify

exactly when they will be receiving cargoes so that they can plan for their operations based

on a contractually bound delivery plan. Essentially, they try to avoid situations where they

do not receive a delivery from their contracted seller and where they cannot purchase the

required LNG in an illiquid market. That said, in practice, delivery schedules are updated at

regular intervals, e.g., monthly, based on how the schedules and market unfold. The buyer

and seller typically work together to adjust their schedules based on how the uncertainty

reveals itself. Even after negotiations occur, an updated annual delivery plan with the same

granularity of detail must be generated.

Although there is uncertainty over such a long time horizon, in this chapter we study a

deterministic version of the problem. Such a model might arise if one considers a restricted

set of solutions, obtained by using conservative inventory bounds at ports (see Section

2.3.2.3 of Chapter 2) or pessimistic travel times between ports. Alternatively, one could

view a deterministic instance as a single scenario in a stochastic programming framework.

Either way, obtaining good solutions quickly to deterministic problems remains a challenge.

The primary contribution of this chapter is the development of an ADP algorithm for

long-horizon maritime inventory routing planning problems. There are two main reasons

why we chose to explore an ADP framework. First, ADP has a proven track record of gen-

erating high-quality solutions to dynamic resource allocation problems, of which dynamic

fleet management is a special case [102]. Second, it has the ability to accomodate stochas-

ticity without drastic changes to the framework or implementation. Despite the fact that
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we only consider deterministic problems in this chapter, being able to adapt the framework

developed here to stochastic variants of the underlying deterministic problem are of great

interest.

4.2 Literature Review

In this section, we briefly survey some of the relevant research on maritime transporta-

tion and ADP methods.

4.2.1 Maritime Applications

From an application perspective, this chapter is most concerned with inventory routing

problems arising in the LNG industry, which are known as LNG-IRPs. Recall from Chapter

2 that a MIRP can be defined as “a planning problem where an actor has the responsibility

for both the inventory management at one or both ends of the maritime transportation legs,

and for the ships’ routing and scheduling” [29]. Using this definition, previous approaches

applied to LNG-IRPs can be divided into two groups based on whether the actor has control

of both the production and consumption ports, or just one of the two. Rakke et al. [80,81],

St̊alhane et al. [94], and Halvorsen-Weare and Fagerholt [53] treat the case when the actor

only has control of production by attempting to generate annual delivery plans for the

world’s largest LNG producer. The producer has to fulfill a set of long-term customer

contracts. Each contract either outlines monthly demands, or states that a certain amount

of LNG is to be delivered fairly evenly spread throughout the year to a given consumption

port. Over- and under-deliveries are accepted, but incur a penalty. In contrast, there are

also LNG-IRPs that arise for vertically integrated companies who have control of both the

production and consumption side of the supply chain [40,47–49]. In some applications, the

opportunity to sell LNG in the spot market using short-term contracts is also present.

Several solution methods for the case when the actor only has control of production have

been investigated. Rakke et al. [81] propose a rolling horizon heuristic in which a sequence

of overlapping MIP subproblems are solved. Each subproblem involves at most 3 months

of data and consists of a one-month “central period” and a “forecasting period” of at most

two months. Once a best solution is found (either by optimality or within a time limit), all
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decisions variables in the central period are fixed at their respective values and the process

“rolls forward” to the next subproblem. St̊alhane et al. [94] propose a construction and

improvement heuristic that creates scheduled voyages based on the availability of vessels

and product while keeping inventory feasible. Halvorsen-Weare and Fagerholt [53] study

a simplied version of the LNG-IRP problem where cargoes for each long-term contract

are pre-generated with defined time windows, and the fleet of ships can be divided into

disjoint groups. The problem is decomposed into a routing subproblem and a scheduling

master problem where berth, inventory and scheduling decisions are handled in the master

problem, while routing decisions are dealt with in the subproblem. Unlike branch-and-

price, the subproblems are solved only once. Most recently, Rakke et al. [80] developed a

branch-price-and-cut approach that relies on delivery patterns at the customers.

Solution techniques for the case of a vertically integrated company were presented in

Chapter 2 as this setting falls under the umbrella of the Core Model (2), which considers

MIRPs with inventory tracking at every port. Grønhaug et al. [49] introduce a branch-

and-price method in which the master problem handles the inventory management and the

port capacity constraints, while the subproblems generate the ship route columns. Fodstad

et al. [40] solve a MIP directly while Uggen et al. [104] present a fix-and-relax heuristic.

Goel et al. [47] present a simple construction heuristic and adapt the local search procedure

of Song and Furman [92] to generate solutions to instances with 365 time periods. Their

model seeks to minimize penalities and does not consider travel costs.

4.2.2 Approximate Dynamic Programming

Over the past few decades, approximate dynamic programming has emerged as a pow-

erful tool for certain classes of multistage stochastic dynamic problems. The monographs

by Bertsekas and Tsitsiklis [18] and Sutton and Barto [98] provide an introduction and

solid foundation to this field. At the same time, they are mainly directed at researchers

in computer science and electrical engineering, they use a language more commonly found

in control theory and artificial intelligence, and they often make implicit assumptions that

make it difficult to transfer the techniques to certain problem classes within operations
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research. It was only in the last decade or so that ADP was successfully applied to truly

large-scale applications arising in the transportation and logistics community. Powell [78]

and his associates are largely responsible for this achievement. Despite its accomplishments

and continued growth, all of the aforementioned authors affirm that successful implemen-

tations of ADP methods still require considerable intuition into the structure of a problem.

Our work builds on the ideas presented by Powell and his associates in the context of

stochastic dynamic resource allocation problems. These problems involve the assignment

of a set of reusable resources to tasks that occur over time. The arrival process of the

tasks is known only through a probability distribution. The assignment of a resource to a

task produces a reward, removes the task from the system, and modifies the state of the

resource. Often, different types of resources can be used to cover a task, and covering a task

with different types of resources may yield different rewards. Dynamic fleet management

problems are a special case in this problem class. When modeled as MIPs, these problems

take place on a time-space network involving location-time pairs. Service requests (demands

for service) from location i to location j appear over time (randomly, in the stochastic

setting) and profit is earned by assigning vehicles of different types to fulfill these service

requests. Myopically choosing the vehicle type that maximizes the immediate profit is often

not best over a longer horizon. Empty repositioning is also a key issue.

Our point of departure is the class of the dynamic fleet management problems studied

in [45, 46, 100–102]. In Godfrey and Powell [45], a stochastic dynamic fleet management

problem is studied in which requests for vehicles to move items from one location to another

occur randomly over time and expire after a certain number of periods. Once a vehicle

arrives at its destination node (location-time pair), it is available for servicing another

request or for traveling empty to a new location. A single vehicle type with single-period

travel times is considered and an ADP algorithm in which a separable piecewise linear

concave value function approximation is shown to yield strong performance. This work is

extended in [46] to handle multi-period travel times between locations. Further extensions

are made to allow for deterministic multi-period travel times with multiple vehicle types

[102], random travel times with a single vehicle type [100], and random travel times with
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multiple types [101]. In all of these studies, separable piecewise linear concave value function

approximations are used and shown to work well.

There are two important observations to make regarding the above papers. First, they

all treat dynamic fleet management problems, not inventory routing problems. That is,

the movement of vehicles is critical, while the amount of a product on the vehicles or

at each location is not an issue and, therefore, is not modeled. Second, they all use value

function approximations that are only a function of the vehicle state. That is, they value the

number of each vehicle type that will be available at each location over future time periods.

In contrast, Toriello et al. [103] use value function approximations that are a function of

the inventory state at each location in order to address a deterministic inventory routing

problem with a planning horizon of 60 periods. Their problem involves a homogeneous

fleet of vehicles that transport a single product between a single loading region and a single

discharging region. Each region may have multiple ports. They assume that (1) the inter-

regional travel time is a constant regardless of which location is last visited in the loading

region and which location is the first visited in the discharging region, and that (2) all

locations visited in a region by the same vehicle are visited in the same time period. With

these assumptions, the problem reduces to an inventory routing problem with single-period

travel times. In addition, after traveling from the loading region to the discharging region,

vehicles exit the system as they are assumed to behave like voyage chartered vessels as

in [36, 41, 57, 92]. They employ separable piecewise linear concave value functions of the

inventory to generate high-quality solutions much faster than solving a large MIP model

with a commercial solver.

In this chapter, we extend the ideas above by considering a deterministic inventory

routing problem with multiple discharging regions and multi-period travel times. One-way

travel times range between 5 and 37 periods. Like Toriello et al. [103], we employ value func-

tion approximations that are only a function of the inventory state. However, the presence

of multiple discharging regions, multi-period travel times, and longer time horizons makes

our problem arguably more complex. This chapter is organized as follows. In Section 4.3,

we present a mixed-integer linear programming formulation and a dynamic programming
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formulation of our problem. In Section 4.4, we provide our solution methodology using

an ADP framework. Finally, computational results illustrate the effectiveness of our ADP

approach in Section 4.5.

Assumptions: For ease of reference, we collect the assumptions made throughout this

chapter: (1) there is exactly one port within each region; (2) port capacity always exceeds

the capacity on vessels, e.g., Smax
j,t ≥ max{Qvc : vc ∈ VC}; and (3) vessels can fully load

or discharge in a single period, e.g. Fmax
j ≥ max{Qvc : vc ∈ VC}. (4) Production and

consumption rates are known, e.g., Dmin
j,t = Dmax

j,t = dj,t, (5) Revenues are not considered,

e.g., Rj,t = 0, for all j and t, leaving us with a cost minimization problem. (6) There is a

single loading port as is typically the case for LNG-IRPs problems [47,53,80,94]

4.3 Formulations

In this section, we present a mixed-integer linear programming formulation as well as

a dynamic programming formulation of the problem. At all times, we try to use notation

consistent with that of Chapter 2. As before, we have a time-expanded network where

nodes represent port-time pairs. Arcs represent the flow of vessel classes from one node

to another, rather than the flow of each individual vessel. Travel times between ports are

fixed. Let FSvc,inter
n denote the set of all outgoing inter-regional travel arcs and sink arcs

from node n ∈ N associated with vessel class vc ∈ VC.

4.3.1 Arc-Based Mixed-Integer Linear Programming Model

We consider the following MIP model:
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LNG MIP Model

max
∑
vc∈VC

∑
a∈Avc

−Cvca xvca +
∑
j∈J

∑
t∈T
−Pj,tαj,t (38a)

s.t.
∑

a∈FSvcn
xvca −

∑
a∈RSvcn

xvca =


+1 if n = ns

−1 if n = nt

0 if n ∈ N

, ∀ n ∈ Ns,t,∀ vc ∈ VC

(38b)

sj,t = sj,t−1 + ∆j

dj,t − ∑
vc∈VC

∑
a∈FSvc,intern

Qvcxvca − αj,t

 , ∀ n = (j, t) ∈ N (38c)

∑
vc∈VC

∑
a∈FSvc,intern

xvca ≤ Bj , ∀ n = (j, t) ∈ N (38d)

αj,t ≥ 0 , ∀ n = (j, t) ∈ N (38e)

sj,t ∈ [0, Smax
j,t ] , ∀ n = (j, t) ∈ N (38f)

xvca ∈ Z+ , ∀ vc ∈ VC , ∀ a ∈ Avc

(38g)

The objective is to minimize the sum of all transportation costs and penalties for lost

production and stockout. Constraints (38b) require flow balance of vessels within each

vessel class. Constraints (38c) are inventory balance constraints at loading and discharging

ports, respectively. Berth limit constraints (38d) restrict the number of vessels that can

attempt to load/discharge at a port at a given time. This formulation requires that a

vessel must travel at capacity from a loading region to a discharging region and empty

from a discharging region to a loading region. In contrast to the Core Model (2), the LNG

MIP Model (38) does not require decision variables for tracking inventory on vessels (vessel

classes), nor does it include decisions variables for the quantity loaded/discharged in a given

period.

In order for the LNG MIP Model (38) to furnish the correct lost production and stockout

values, the penalty parameters Pj,t must be monotonically decreasing in time, i.e., Pj,t >

Pj,t+1. This ensures that a solution will not involve lost production (stockout) until the

inventory level reaches capacity (falls to zero).
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This model is similar to the one studied in Goel et al. [47]. The major differences are that

they do not include travel costs in the objective function; they model each vessel individually

(in other words, there is only one vessel per vessel class); they model consumption rates

as decision variables with upper and lower bounds; and they include an additional set of

continuous decision variables to account for cumulative unmet demand at each consumption

port.

4.3.2 Dynamic Programming Formulation

We now formulate our MIRP as a finite-horizon dynamic programming problem. It

is convenient to interpret this DP formulation as a sequence of dispatching problems. At

each point in time, a regional manager has a set of vessels available for dispatching in his

region. If enough inventory is available for a vessel to fully load or enough excess capacity

is available for a vessel to fully discharge, then the manager faces three options for each

available vessel: send the vessel to another region, have the vessel remain in the region, or

force the vessel to exit the system.

With this interpretation in mind, we now describe the DP formulation. The state of the

system at time t is given by the vector tuple (rt, st) where

rt = {rvcj,u,t : j ∈ J , u = t, . . . , T, vc ∈ VC}

st = {sj,u,t : j ∈ J , u = t, . . . , T}

rvcj,u,t = Just before making decisions in time period t (i.e., in the time t

subproblem), the number of vessels in vessel class vc that are or will be

available for service at location j in the beginning of time period u

when decisions are made in time period u (u ≥ t)

sj,u,t = The number of units of inventory “available” at location j at the end of

time period u, after making and executing all decisions in the

time t subproblem.

Here, “available” inventory refers to inventory that is either in storage at the port (i.e., has

already been discharged) or is on vessels that are at the port but have yet to discharge. The

initial state of the system, i.e., inventories and vessel positions, is given. Let sj,t−1,t denote

the initial inventory available at port j in the beginning of time period t prior to any events
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(e.g., decisions, deliveries, consumptions, etc.) taking place.

Given a time period t and the state of the system, we have restrictions on the number

and weighted combination of vessels that may leave a port in a given time period:

∑
vc∈VC

∑
a∈FSvc,intern

xvca ≤ Bj , ∀ n = (j, t) ∈ N (39a)

∑
vc∈VC

∑
a∈FSvc,intern

Qvcxvca ≤

 sj,t−1,t + dj,t if j ∈ J P

Smax
j,t − sj,t−1,t − dj,t if j ∈ J C

, ∀ n = (j, t) ∈ N . (39b)

Constraints (39a) are berth limit restrictions (identical to Constraints (38d)) and limit the

number of vessels that may take an inter-regional or sink arc in time period t. Constraints

(39b) ensure that the maximum amount of inventory that can be loaded (discharged) onto

all vessels leaving a port does not exceed the amount of available inventory (remaining

capacity) at that port.

Next, we have to model the dynamics of the system, i.e., the transition of vessels and

inventory over time. To model the flow of vessels, we have the following requirements:

∑
a∈FSvcn

xvca = rvcj,t,t , ∀ n = (j, t) ∈ N ,∀ vc ∈ VC (40a)

rvcj,u,t+1 −
∑

a=((i,t),n)∈RSvcn

xvca = rvcj,u,t , ∀ n = (j, u) ∈ N : u > t,∀ vc ∈ VC . (40b)

Equations (40a) state that all vessels available at time t must transition by remaining at

the same port, moving to another port, or exiting the system. Equations (40b) keep track

of the number of vessels in each vessel class that will become available in some future time

period u > t. Inventory at ports is updated according to the equations

sj,u,t =

 sj,u−1,t + dj,u − αj,u − qout
j,u if j ∈ J P

sj,u−1,t − dj,u + αj,u + qin
j,u if j ∈ J C

, ∀ n = (j, t) ∈ N , ∀ u ≥ t (41a)

where qin
j,u and qout

j,u represent the quantity of inventory incoming to and outgoing from

port j at time u after decisions in time t have been made. Specifically, define qout
j,u =∑

vc∈VC Q
vc

(∑
a∈FSvc,inter

(j,u)
xvca

)
if u = t and 0 if u > t, and qin

j,u =
∑

vc∈VC Q
vc
(∑

a∈XS x
vc
a + rvcj,u,t

)
with XS = FSvc,inter

(j,u) if u = t and XS = RSvc(j,u) if u > t. Lastly, before transitioning from
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the time t subproblem to the time t + 1 subproblem, we must initialize sj,t,t+1 = sj,t,t for

all j ∈ J .

Using the principle of optimality, we can write our time t optimization problem as

Vt(rt, st−1) = max
∑
vc∈VC

∑
j∈J

∑
a∈FSvc(j,t)

− Cvca xvca −
∑
j∈J

Pj,tαj,t + Vt+1(rt+1, st) (42a)

s.t. (39), (40), (41) (42b)

αj,u ≥ 0 , ∀ n = (j, u) ∈ N : u ≥ t (42c)

sj,u,t ≥ 0 , ∀ n = (j, u) ∈ N : u ≥ t (42d)

xvca ∈ Z+ , ∀ vc ∈ VC , ∀ a ∈ Avc : a = ((·, t), (·, ·)) (42e)

Note that Vt is a function of rt and st−1, not st. This is because we have followed the

standard notation in inventory models where a variable st denotes the ending inventory in

time period t. Also note that we only require the inventory variables sj,u,t to be nonnegative

and not below port capacity. This is because, according to our definition, sj,u,t represents

the amount of inventory in storage or on a vessel at port j in some future time period u,

and therefore could easily exceed capacity at a port.

4.4 Solution Methodology

Solving stochastic dynamic programming problems is notoriously challenging due to

the curse of dimensionality: As the dimension of the state space grows, the time required

to solve the problem exactly grows exponentially quickly. The MIRP studied here is no

exception. Attempting to solve Bellman’s equation (42) exactly is futile. Instead, we try to

solve it approximately using ADP methods.

We accomplish this by replacing the future value function Vt+1 with a suitable approx-

imation V̂t+1 and solve the approximate problem

Ṽt(rt, st−1) = max
∑
vc∈VC

∑
j∈J

∑
a∈FSvc(j,t)

−Cvca xvca −
∑
j∈J

Pj,tαj,t + V̂t+1(rt+1, st) (43a)

s.t. (42b)− (42e) (43b)

With an approximate value function in place, we now have the main ingredients for an ADP
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algorithm. The only missing piece is to describe how the value function is updated in each

iteration. This is discussed below.

Pseudocode of our approach is shown in Algorithm 4.4. The most common ADP meth-

ods step forward in time. The decisions made in the time t subproblem are guided by the

current value function approximation, as shown in Step 5. After a solution to the time t

subproblem is obtained, we typically collect some sort of marginal information to determine

what the marginal benefit would be from having an additional vessel or an addition unit of

inventory available at a given port and future time. Next, we update the state of the system.

Once all subproblems have been solved, we update the value function approximations using

information obtained from the current solution and from each of the subproblems.

Algorithm 4 Basic Deterministic ADP Algorithm

1: Initialization: Choose an approximation V̂t for all t ∈ T .
2: for n = 1 to N do
3: Initialize the state of the system (r1, s0).
4: for t = 1 to T do
5: Solve the time t subproblem

max
∑
vc∈VC

∑
j∈J

∑
a∈FSvc(j,t)

−Cvca xvca −
∑
j∈J

Pj,tαj,t + V̂t+1(rt+1, st) .

6: Obtain marginal value information.
7: Update the state of the system.
8: end for
9: Update the value function approximation: V̂t ← Update(V̂t, rt, st, πt) for all t ∈ T .

10: end for
11: return The best solution found and its corresponding value function approximations.

In the next subsection, we discuss our value function approximations. After which, we

discuss our updating procedure.

4.4.1 Value Function Approximations

For dynamic resource allocation maximization problems, separable piecewise linear con-

cave value function approximations have enjoyed much success. Toriello et al. [103] note

that piecewise linear concave functions are appropriate for several reasons. From a mod-

eling viewpoint, they can easily be embedded into a MIP (when solved as a maximization

problem). From a practical perspective, concavity captures the diminishing returns one
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expects to gain from future inventories. Finally, from a theoretical perspective, they are the

“closest” continuous functions to true MIP value functions, which are known to be piece-

wise linear, superadditive, and upper semi-continuous, but possibly discontinuous [20, 21].

Separability in space/location is also quite natural for problems in which vehicles always

fully load and fully discharge at a single location [101,102]. Meanwhile, separability in time

is less understood, but has proven to be effective in a stream of research paper for dynamic

fleet management applications [46,88,101,102].

In this work, we also use a value function approximation that is a separable piecewise

linear concave function. Specifically, we replace Vt(rt, st−1) with

V̂t(rt, st−1) =
∑
j∈J

∑
u≥t

V̂j,u,t(sj,u,t−1) ,

where V̂j,u,t is a univariate piecewise linear concave function defined by a sequence of de-

creasing slopes v̂kj,u,t and integral breakpoints βkj,u,t. Note that this approximation ignores

the number of vessels that will be available in the future. Although this might at first seem

like a significant amount of information is not being used, in fact, it is not the case. Since

vessels always fully discharge, knowing the future amount of available inventory sj,u,t at a

discharging port is more useful than knowing the number of vessels in each vessel class that

will make the delivery. On the other hand, some information is lost at the loading port.

With this approximation, the term V̂t(rt, st−1) in Equation (43) becomes

∑
j∈J

∑
u≥t

∑
k∈Kj,u,t

v̂kj,u,tw
k
j,u,t ,

where Kj,u,t = {1, . . . ,Kj,u,t} is an index set of slopes and wkj,u,t are continuous decision

variables satisfying

sj,u,t =
∑

k∈Kj,u,t

wkj,u,t

0 ≤ wkj,u,t ≤ βkj,u,t ∀ k ∈ Kj,u,t .

As a final approximation, rather than consider the value of all future inventories after

time period t, we limit ourselves to a shorter time horizon based on travel times and so-

called capacity-to-rate ratios. In particular, let τj be the travel time between the loading
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port and discharging port j. Let C2Rj,t be the capacity-to-rate ratio at discharging port j

beginning in time period t, i.e., the number of periods it will take for port j to run out of

inventory when starting full in time period t. Then, in time period t, we only value inventory

up to time period t + uj,t where uj,t = τj + C2Rj,t. The rationale for this truncation is to

avoid giving ports with a high consumption rate an artificially high value. Thus, the term

V̂t(rt, st−1) in Equation (43) becomes

∑
j∈J

t+uj,t∑
u=t

∑
k∈Kj,u,t

v̂kj,u,tw
k
j,u,t .

Figure 14 helps to illustrate how our approximation is used. Given an available vessel

in the loading region (LR) in time period 1, the time 1 subproblem considers the tradeoff

between the immediate cost of moving the vessel and the reward associated with satisfying

future demands. In this example, discharging region 1 (DR1) has a capacity-to-rate ratio of

four periods, whereas that of discharging region 2 (DR2) is three periods. With separable

value functions, we sum the value function approximations over future time periods in which

a piecewise concave linear function is shown.

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

Time

LR

DR1

DR2

cost=10
cost=20

Figure 14: Example using separable piecewise linear concave value function approximations.

It is important to mention that our approach does not allow vessels to leave the system

until the very last time period of the horizon and therefore there is no value for this option.

Consequently, some needless trips at the end of the horizon may take place. The rationale for

removing the option to take a vessel out of service is due to the fact that, in our instances,
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there is not an overabundance of vessels and so all vessels are continually in operation.

Moreover, some might argue that our problem is an infinite horizon problem and should

not be truncated. Thus, as a final step in our solution approach, we have a simple routine,

which we call “end effect polishing,” to remove these needless trips that are an artifact of

the finite horizon.

4.4.2 Updating the Value Function Approximation

Just as there are numerous choices for designing a value function approximation, there

are also a number of techniques commonly found for updating the value function approxi-

mations (see, e.g., George and Powell [42]). Perhaps, the most important consideration is

to determine what the goal of the update is. In early iterations of an ADP algorithm, it

is often beneficial to explore the solution space. Thus, it is usually prefered to have a fast

update rule that results in substantive changes to the value function. On the other hand,

in later iterations, some sort of convergence is often desired, in which case small changes

are sought. Regression and batch least-squares are sometimes used [78]. Toriello et al. [103]

suggest other fitting procedures.

Our focus is on generating one or more good solutions quickly; convergence is less of

a concern. Consequently, we prefer to make rapid changes to the approximation. To this

end, we adapt the concave adaptive value estimation (CAVE) algorithm introduced in [45].

This method creates and maintains a univariate piecewise linear concave function for each

of the approximations.

We associate a dual variable πj,u,t with each inventory balance equation (41). Since our

time t subproblem is a MIP, dual variable information is not immediately available. We

choose to obtain the value for πj,u,t by solving the so-called fixed model associated with the

solution of that subproblem. That is, after obtaining a solution to the time t subproblem,

we fix all integer decision variables to their optimal values and solve the resulting LP. We

use the πj,u,t values associated with the LP of the fixed model. An alternative approach is

to use the dual values of the root node LP relaxation. One could also spend more effort and

write an auxiliary method to compute the true marginal benefits of having an additional
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unit of inventory.

Given a time period t, the current value function approximation V̂t, the inventory levels

st−1, and dual values πt, we would like to update the value function locally, while also

preserving global concavity. To do this, we take a convex combination of the current slope

and an estimate of what the slope should be based on the information collected. Let

αn ∈ [0, 1] be the stepsize parameter in the nth iteration of the ADP algorithm, i.e., the

outermost loop in the ADP Algorithm 4.4. Let k be the index of the slope (v̂kj,u,t) that we

would like to update given the inventory level sj,u,t−1. Then the slope is updated using the

rule

v̂kj,u,t = (1− αn)v̂kj,u,t + αnπ
max
j,u,t , ∀ j, u, t (u ≥ t) (44)

where

πmax
j,u,t = max

s=t,...,u
{πj,u,s} , ∀ j, u, t (u ≥ t) .

Using the parameter πmax
j,u,t in the updating step, as opposed to πj,u,t, was shown to be

effective in [46] and [102]. Essentially, the parameter πmax
j,u,t attempts to estimate the marginal

value of having an additional unit of inventory at port j in the future time period u (when

solving the time t subproblem) by taking maximum dual value at (j, u) computed over the

subproblems in time periods t, t+ 1, . . . , u.

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

Time

LR

DR1

DR2

cost=10
cost=20 π2,4 π2,5 π2,6 π2,7

π3,4 π3,5π3,3

Figure 15: Example showing the collection of dual information in future time periods.
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4.5 Computational Experiments

In this section, we compare the performance of our ADP method with that of the

commericial MIP solver Gurobi 5.0 solving the LNG MIP Model (38) over shorter and

shorter planning horizons. In all experiments, we set Gurobi’s MIPFocus parameter to 1

to emphasize feasibility so that more time is spent trying to find good feasible solutions.

All models and algorithms were coded in Python. All experiments were carried out on a

Linux machine with kernel 2.6.18 running a 64-bit x86 processor equipped with two 2.27

GHz Intel Xeon E5520 chips and 32GB of RAM.

Four methods are compared. Method M0 refers to Gurobi 5.0 with emphasis on feasi-

bility. Methods M1, M2, and M3 are ADP methods with different rules for updating the

value function approximations. All ADP algorithms were run for 50 iterations. All value

function approximations are initialized with zero slopes. The different stepsizes αn that are

used in Equation (44) for updating slopes are shown in Table 12.

Method M1 uses a simple harmonic stepsize rule to ensure that the algorithm will con-

verge to a set of value function approximations if the total number of iterations were not

limited. Methods M2 and M3 are meant to be more aggressive in searching for good solu-

tions. Let rgapn denote the relative gap computed on the nth iteration of ADP algorithm.

That is, rgapn = min{(zn − zBest)/zn, 1} where zBest is the best known objective function

value and zn is the objective function value found on the nth iteration of the algorithm.

The basic idea behind the stepsize update for methods M2 and M3 is that, after a certain

number of iterations (here, 25), we would like to re-invigorate the search for a better set

of value function approximations. Thus, if the objective function value zn of the solution

found in iteration n is poor, we expect the relative gap rgapn to be closer to 1 and so the

stepsize chosen will be close to 1/C, leading to a more drastic change in the value function

approximations. On the other hand, if the relative gap rgapn is small, we would like the

stepsize to be closer to 1/(C + n) so that the value function updates are modest. Finally,

it should be noted that we tried other constants, but these parameter settings convey the

most important observations.
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Table 12: Stepsizes used for ADP variants

Method Stepsize Constant

M1: αn = [C1 + n]−1 C1 = 10

M2: αn =

{
[C2 + n]−1 if n ≤ 25

[C2 + (1− rgapn)n]−1 o.w.
C2 = 8

M3: αn =

{
[C3 + n]−1 if n ≤ 25

[C3 + (1− rgapn)n]−1 o.w.
C3 = 5

4.5.1 Instances with a 180-period horizon

Our first experiment considers instances with a 180-period horizon. In practice, it is

doubtful that one would solve the LNG MIP Model (38) directly when the planning horizon

is so large. However, it is worth exploring the differences in the two approaches. Figures 16

through 18 compares the objective function value of the incumbent as a function of CPU

time for three instances: LR1 1 DR5 11111 VC5 V25b, LR1 1 DR8 11111111 VC5 V40b, and

LR1 1 DR12 111111111111 VC5 V70b. The last instance has 12 discharging regions (DR12),

5 vessel classes (VC5), and 70 vessels (V70).

The first observation from these figures is that our ADP method is capable of generating

good solutions quickly. As the number of vessels and discharging regions grow, the time

it takes Gurobi to find a solution of comparable quality increases. The second observation

is that using a smaller constant C in the stepsize update appears to drive the objective

function value down faster.

Table 13 shows the additional time required for Gurobi to find a solution whose objective

function value equals or is superior to the that of the best ADP variant for a larger set of

instances. A ‘>36000’ means that Gurobi could not find a better solution within a 10-hour

time limit. We see that an increase in the number of discharging ports and vessels typically

results in more time for Gurobi to achieve equal or better performance. Finally, it is worth

mentioning that lower bounds for these problems are usually poor and so it is difficult to

say anything conclusive about optimality gaps.
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Figure 16: Comparison of solution times for an instance with 180 periods, 5 discharging
regions, 5 vessel classes, and 25 vessels.

Figure 17: Comparison of solution times for an instance with 180 periods, 8 discharging
regions, 5 vessel classes, and 40 vessels.
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Figure 18: Comparison of solution times for an instance with 180 periods, 12 discharging
regions, 5 vessel classes, and 70 vessels.

Table 13: 180-period instances: Additional time (sec) required by Gurobi to reach a solution
of equal or better quality

ADP GRB
Instance Objval Time to Best Additional Time

LR1 1 DR3 111 VC3 V10b 139815 40 >36000
LR1 1 DR3 111 VC3 V13b 176976 139 2771
LR1 1 DR3 111 VC3 V16a 245376 52 1251
LR1 1 DR4 1111 VC3 V15a 129821 145 5013
LR1 1 DR4 1111 VC3 V15b 200344 211 >36000
LR1 1 DR4 1111 VC5 V17a 121802 58 >36000
LR1 1 DR4 1111 VC5 V17b 177488 111 >36000
LR1 1 DR5 11111 VC5 V25a 174167 290 >36000
LR1 1 DR5 11111 VC5 V25b 263088 339 1283
LR1 1 DR8 11111111 VC5 V38a 482365 433 497
LR1 1 DR8 11111111 VC5 V40a 322494 202 >36000
LR1 1 DR8 11111111 VC5 V40b 415464 346 30836
LR1 1 DR12 111111111111 VC5 V70a 543483 975 >36000
LR1 1 DR12 111111111111 VC5 V70b 609194 1112 >36000
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4.5.2 Instances with a 120-period horizon

In our second experiment, we test our ADP method on instances with a 120-period

horizon in order understand if could be competitive with a rolling horizon framework. Re-

call that in a rolling horizon framework, a sequence of small MIPs with overlapping time

intervals are solved to generate a solution over the entire planning horizon. For example, to

generate solutions to planning problems with a 360-period horizon, Rakke et al. [81] solve

subproblems involving 90 periods and piece together the solutions to these subproblems

to create a solution for the full planning horizon. For several of our instances, one-way

inter-regional travel times are over 30 periods in duration and we found that solving a re-

duced MIP with a 90-period time horizon could lead to solutions with odd end behavior.

Extending these horizons over 120 periods seemed to yield more stable results.

Figure 19: Comparison of solution times for an instance with 120 periods, 5 discharging
regions, 5 vessel classes, and 25 vessels.

In this experiment, we compare our ADP methods with Gurobi 5.0 emphasizing feasibil-

ity on instances with 120-period planning horizons. The results indicate that our methods

are still capable of generating good solutions quickly. It should be noted that in a rolling

horizon framework, the solution process for each subsequent subproblem can be warm-

started using the current solution. Indeed, we could warm-start the solution process using
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Figure 20: Comparison of solution times for an instance with 120 periods, 8 discharging
regions, 5 vessel classes, and 40 vessels.

the best known value function approximations.

Table 14 shows the time required for our ADP algorithm to find its best solution and

the additional time that Gurobi needed to find a solution of equal or better quality. As

Figure 21: Comparison of solution times for an instance with 120 periods, 12 discharging
regions, 5 vessel classes, and 70 vessels.
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before, a ‘>36000’ means that Gurobi could not find a better solution within a 10-hour time

limit. Compared to the 180-period instances, we see that Gurobi is able to find solutions of

equal or better quality to more instances with the 10-hour time limit. On one instance, it

was able to find a better solution than any of our ADP methods and in less time.

Table 14: 120-period instances: Additional time (sec) required by Gurobi to reach a solution
of equal or better quality

ADP GRB
Instance Objval Time to Best Additional Time

LR1 1 DR3 111 VC3 V10b 112827 12 674
LR1 1 DR3 111 VC3 V13b 134247 106 1753
LR1 1 DR3 111 VC3 V16a 142096 72 -56
LR1 1 DR4 1111 VC3 V15a 80468 82 1110
LR1 1 DR4 1111 VC3 V15b 131780 49 >36000
LR1 1 DR4 1111 VC5 V17a 76554 16 938
LR1 1 DR4 1111 VC5 V17b 125626 21 56
LR1 1 DR5 11111 VC5 V25a 107750 79 >36000
LR1 1 DR5 11111 VC5 V25b 179538 103 3
LR1 1 DR8 11111111 VC5 V38a 314924 17 497
LR1 1 DR8 11111111 VC5 V40a 193207 141 >36000
LR1 1 DR8 11111111 VC5 V40b 263791 109 2198
LR1 1 DR12 111111111111 VC5 V70a 303241 138 >36000
LR1 1 DR12 111111111111 VC5 V70b 385661 383 >36000

4.5.3 Instances with a 360-period horizon

As a final experiment, we test our ADP method on instances with a 360-period horizon.

We place this experiment last because we do not expect solving the 360-period LNG MIP

Model (38) to be useful for these large instances. The solutions to each instance are used

to generate the data in Table 5.

Table 15 shows the time required for our ADP algorithm to find its best solution and

the additional time that Gurobi needed to find a solution of equal or better quality. A

‘>86400’ means that Gurobi could not find a better solution within a one-day time limit.

As a final comment, we believe that as the number of vessel classes increases, the time

it takes to solve the LNG MIP Model (38) should increase more rapidly than that of our

ADP algorithm. Since some applications may not allow vessels to be aggregated by vessel
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Table 15: 360-period instances: Additional time (sec) required by Gurobi to reach a solution
of equal or better quality

ADP GRB
Instance Objval Time to Best Additional Time

LR1 1 DR3 111 VC3 V10b 315358 249 >86400
LR1 1 DR3 111 VC3 V13b 364484 93 >86400
LR1 1 DR3 111 VC3 V16a 574617 262 10322
LR1 1 DR4 1111 VC3 V15a 276954 133 39346
LR1 1 DR4 1111 VC3 V15b 380737 320 >86400
LR1 1 DR4 1111 VC5 V17a 259226 113 >86400
LR1 1 DR4 1111 VC5 V17b 365883 313 >86400
LR1 1 DR5 11111 VC5 V25a 404377 83 >86400
LR1 1 DR5 11111 VC5 V25b 532162 424 >86400
LR1 1 DR8 11111111 VC5 V38a 962344 525 >86400
LR1 1 DR8 11111111 VC5 V40a 750681 455 >86400
LR1 1 DR8 11111111 VC5 V40b 904454 1342 >86400
LR1 1 DR12 111111111111 VC5 V70a 1159183 423 >86400
LR1 1 DR12 111111111111 VC5 V70b 1399026 1197 >86400

class, our ADP approach may become more attractive.

4.5.4 Profiling the ADP Algorithm

Table 16 shows the percentage of time our ADP algorithm spends in each of its major

functions, averaged over all instances and all time horizons considered. In software engi-

neering, this type of “profiling” is useful as it informs a developer of which functions are

consuming the bulk of the CPU effort. Almost 70% of the solution time is spent either

initializing or solving all of the MIP subproblems. This large percentage is expected since

MIP solving is costly compared to all of the other operations. However, a more intelligent

implementation should be able to shrink the percentage of time spent on MIP initialization

since this involves nothing more than severals loops. End effect polishing refers to a simple

procedure that we apply after obtaining a solution for the full horizon. Since our algorithm

does not allow vessels to leave the system, needless trips at the end of the horizon may

take place. End effect polishing seeks to remove these needless trips that are an artifact of

truncating what some might argue is an infinite horizon problem. In our approach, value

119



Table 16: Average percentage of time spent in each ADP-related function

Function % of Time

MIP initialization 21.58
MIP solving 47.51
State updating 17.64
End effect polishing 6.02
Slope updating 0.84
Miscellaneous 6.41

function (or slope) updating requires virtually no time as convex combinations of informa-

tion are used. This percentage of time would increase if one were to use more sophisticated

schemes for updating the value function, e.g., regression.

4.6 Conclusions and Future Work

This chapter introduced an approximate dynamic programming framework for gener-

ating good solutions quickly to maritime inventory routing problems with a long planning

horizon. The ADP approach appears to be one of the first of its kind in the maritime rout-

ing and scheduling domain and represents a significant departure from previous methods

for this class of problems. Rather than putting the burden on a MIP solver to produce

good solutions or improving solutions, our approach shifts this effort to identifying value

function approximations that lead to good solutions. Computational experiments indicate

that this framework is capable of obtaining better solutions than a commercial MIP solver

tasked with considering many periods simultaneously.

As far as future research directions are concerned, Powell and his associates have laid

the groundwork for an algorithmic approach that can incorporate stochastic elements, e.g.,

stochastic demands, travel times, etc. [78]. Although we have not explored these extensions,

the attractive feature of the proposed ADP framework is that it requires minor changes.

In particular, it considers sample realizations of the uncertain elements to solve each time

t subproblem, and then proceeds as normal. When the value function approximations are

updated with a convex combination procedure as we have done, the stepsize may become

dependent on the noise in the estimates obtained over the course of the algorithm.
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Another interesting experiment would be to assess the benefit from storing value function

approximations when the model is re-optimized. For example, within the context of a

general decision support tool that is called every month to obtain an updated long-term

plan, it seems likely that warm-starting our ADP framework with the best known value

function approximations would lead to better solutions faster.

Yet another experiment could explore using our ADP framework as a local search tech-

nique for re-optimization. As mentioned in the introduction, building an actual annual

delivery plan usually involves several rounds of negotiations between the producer and the

consumers. At various points in the negotiation process, one customer may agree to the

timing of his deliveries, while another does not. In this case, we could fix the paths associ-

ated with a subset of vessels and then attempt to apply our ADP algorithm on a reduced

problem.
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CHAPTER V

FIXED-CHARGE TRANSPORTATION WITH PRODUCT BLENDING

5.1 Introduction and Problem Statement

In many operational and planning models within the chemical, petroleum, and process

industries, a common issue involves blending raw materials with varying attributes and

concentration levels into homogeneous intermediate or end products. Blending raw mate-

rials affords an organization the opportunity to realize sizable cost savings, while meeting

demand for an array of final products and satisfying pre-determined specification require-

ments for each type of product [82]. The inherent flexibility of the blending process can

be exploited to optimize the allocation and transportation of raw materials to production

facilities. This motivates the study of what we call the fixed-charge transportation problem

with product blending (FCTPwB). The feasible region of this problem arises as a substruc-

ture within many applications in the petrochemical industry, and potentially in other areas

including supply chain management, agriculture, and the energy sector [67].

A general form of the standard fixed-charge transportation problem for a single product

can be described as follows [71]. Consider a set of suppliers S = {1, . . . ,m} and a set of

consumers C = {1, . . . , n}. Each supplier i ∈ S has a minimum and maximum supply of

a given product, denoted li and ui, respectively. Similarly, each consumer j ∈ C has a

minimum and maximum demand for the product, denoted lj and uj , respectively. Product

can be sent from suppliers to consumers on an underlying directed bipartite graph G =

(S∪C,A), where A is the set of arcs. For each arc (i, j) ∈ A, let cij denote the unit revenue

for flow shipped from supplier i to consumer j and uij denote the capacity of flow on arc

(i, j). What makes this problem more interesting than the classical transportation problem

is the additional assumption that a fixed cost fij is incurred if arc (i, j) is opened. It is

important to emphasize that fixed costs are incurred when arcs are opened as opposed to

when suppliers are opened, as would happen in the facility location problem.
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The FCTPwB incorporates an additional proportionality requirement on the quality of

the product. Specifically, let p̃i denote the nominal quality (or purity) of product available

from supplier i ∈ S and p̃min
j denote the minimum quality required at consumer j ∈ C. Then

the additional constraint, which we refer to as a linear blending constraint, requires that the

average quality of all product received by consumer j must be at least p̃min
j , where we assume

that product received by a consumer can be blended together to meet this requirement. A

similar constraint could be imposed based on a maximum quality requirement p̃max
j .

In this variant of the problem we assume that there is a single product as well as

a single attribute associated with that product. The blending constraint applies to this

single attribute. More generally, there could be multiple products/commodities each with

multiple attributes, and consumers could demand different products with varying minimum

and maximum quality requirements. In addition, the problem described above consists of

a single period in which a product is distributed, but one could envision a multi-period

problem in which the supply and demand inventories are affected by exogeneous factors,

which is why we have chosen to describe the supply and demand as having to satisfy pre-

determined inventory level requirements.

To cast this problem as a mixed-integer program, we introduce continuous decision

variables xij to denote the amount of product sent from supplier i to consumer j and

binary decision variables yij which take value 1 if arc (i, j) is opened and 0 otherwise. Let

pij := p̃i − p̃min
j be the “purity difference” between supplier i and consumer j, ∀(i, j) ∈ A.
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This yields the arc-based formulation:

(FCTPwB) max
x,y

∑
(i,j)∈A

cijxij −
∑

(i,j)∈A
fijyij (45a)

s.t.
∑
i∈S

pijxij ≥ 0, ∀j ∈ C (45b)

li ≤
∑
j∈C

xij ≤ ui, ∀i ∈ S (45c)

lj ≤
∑
i∈S

xij ≤ uj , ∀j ∈ C (45d)

0 ≤ xij ≤ uijyij , ∀(i, j) ∈ A (45e)

yij ∈ {0, 1}, ∀(i, j) ∈ A . (45f)

The objective of this formulation is to maximize profit, defined as the revenue from shipping

product from suppliers to consumers minus the fixed cost incurred from opening the arcs

on which goods are sent. Constraint (45b) models the linear blending constraint since it is

a re-statement of the blending constraint∑
i∈S p̃ixij∑
i∈S xij

≥ p̃min
j , ∀ j ∈ C

as it would appear in its natural form.

An interesting history of blending in the petroleum industry is given in [35] and [82].

These two works, along with [84], describe successful deployments of decision support sys-

tems in which blending is an integral component and underscore the importance of math-

ematical programming methodologies. In the chemical, petroleum, and wastewater treat-

ment industries, several blending and pooling problems have undergone extensive study.

The survey paper by Misener and Floudas [70] discusses five relevant classes of pooling

problems.

When formulated as mathematical programs, most practical blending problems are mod-

elled as mixed-integer nonlinear mathematical programming problems (MINLPs). However,

because of the difficulty in solving these MINLPs, mixed-integer linear programming (MIP)

formulations are commonly used to approximate MINLP formulations [61, 65]. In these

MIP models, nonlinearities that arise from blending constraints are linearized (through

reformulation) or approximated (sometimes iteratively) [65,69].
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The fixed-charge transportation problem (FCTP) without blending has been studied for

years, with early work dating back to Balinski [12]. In the standard FCTP, each supplier

i ∈ S has a fixed supply si = li = ui and each consumer j ∈ C has a fixed demand

dj = lj = uj . This problem is known to be NP-hard. As a consequence, the FCTPwB is

NP-hard since if pij > 0, ∀(i, j) ∈ A, then the blending constraints (45b) become redundant

and the resulting problem is simply the FCTP. By and large, researchers have focused on

developing heuristics and exact algorithms for solving the FCTP [4,15,44,58,62,63,73,97].

More generally, the FCTP is a special case of the fixed-charge network flow problem for

which substantial polyhedral theory and numerous algorithms have been developed. Notable

inequalities derived from studying the single-node fixed-charge flow model include flow cover

cuts [50, 72], flow path cuts [107], and flow pack cuts [9]. These cutting planes are now

standard in many commercial MIP solvers. The relation between our facets and flow cover

cuts is discussed in Section 5.2.4. We are not aware of any literature in which blending

constraints are also considered.

Despite the abundance of research on blending and fixed-charge problems, there is a

dearth of literature in which both themes are studied simultaneously from a polyhedral

vantage point. In this paper, we strive to fill this void by investigating polyhedral as-

pects of the uncapacitated FCTPwB in which fixed charges and linear blending constraints

are present. Our contributions are a polyhedral analysis of the FCTPwB, including two

new families of facet-defining valid inequalities which fully exploit the presence of a linear

blending requirement, and computational results that demonstrate the effectiveness of the

inequalities. In Section 2, we introduce two exponentially-sized facet classes for the single-

consumer uncapacitated FCTPwB polytope and provide intuition for their validity using

arguments based on lifting facets of lower-dimensional sets. We also show that these facets

can be separated with a low-order polynomial-time separation routine. In Section 3, we

prove that in two special cases these facet classes, along with the continuous relaxation

of the original formulation constraints, yield the convex hull of the feasible region. These

results lend theoretical support to our claim that our two facet classes are strong. In Sec-

tion 4, computational results are presented to illustrate the effectiveness of our facets at
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reducing the integrality gap and solution time on instances with multiple consumers and

arc capacities. These results also provide empirical support that our separation procedure

is extremely fast in practice. Some discussion of the relevance and applicability of these

cuts to other models is provided in Section 5.

5.2 An Uncapacitated Single-Consumer Model

In this section, we study polyhedral aspects of an uncapacitated single-consumer model.

We begin by collecting several assumptions that we will use throughout the remainder of

the paper. We assume that each supplier can send product to a single consumer, that

the consumer’s (supplier’s) lower bound on demand (supply) is 0, and that the consumer’s

(supplier’s) upper bound on demand (supply) is 1, which is without loss of generality since

we can scale parameters accordingly. Having unequal lower and upper bounds is not critical,

but will permit us to work with a set that is full dimensional. We assume that arc capacities

are arbitrarily large. Given that only one consumer is present, we drop the subscript for

the consumer. We assume p1 > p2 > · · · > pm and pi 6= 0, ∀i ∈ S. This, again, is done

for mathematical convenience. In fact, when we return to the multi-consumer case we will

continue to assume that pij 6= pkj and pij 6= 0, ∀i, k ∈ S,∀j ∈ C. Let S+ = {1, · · · ,m+} be

the set of good suppliers (i.e., suppliers whose purity difference pi is positive) and analogously

define S− = {m+ + 1, · · · ,m} to be the set of bad suppliers. Let S = S+ ∪ S− be the set

of all suppliers. We assume m+ = |S+| ≥ 1 and m− = |S−| ≥ 1.

The feasible region, denoted by Xm+,m− , of the single-consumer uncapacitated FCTPwB

is the set of points (x,y) ∈ Rm+ × {0, 1}m satisfying

(blending constraint)
∑

i∈S+ qixi −
∑

k∈S− rkxk ≥ 0 (46a)

(demand constraint)
∑

i∈S xi ≤ 1 (46b)

xi ≤ yi, ∀ i ∈ S, (46c)

where qi = pi, ∀ i ∈ S+, rk = −pk, ∀ k ∈ S−. Note that q1 > · · · > qm+ > 0 and

0 < rm++1 < · · · < rm. We have introduced the parameters qi and ri for convenience so

that all coefficients are positive. Our primary goal is to obtain a polyhedral description of

the convex hull of Xm+,m− , denoted by conv(Xm+,m−).
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5.2.1 Extreme Points

We now characterize the extreme points of conv(Xm+,m−). The intuition behind their

structure is simple. The extreme points of the projection of conv(Xm+,m−) onto the contin-

uous variables correspond to one of the three following cases: (i) the origin, (ii) one good

supplier sending one unit of flow to satisfy demand while all other suppliers send nothing,

or (iii) one good supplier and one bad supplier each sending product in such a way that

both the blending and demand constraints are tight. When we return to the original space

conv(Xm+,m−), we must also consider the y variables.

Proposition 1. The extreme points of conv(Xm+,m−) are(
0,
∑
i∈T

ei

)
, ∀ T ⊆ S (47a)(

ei, ei +
∑
j∈T

ej

)
, ∀ i ∈ S+,∀ T ⊆ S \ {i} (47b)(

rk
qi + rk

ei +
qi

qi + rk
ek, ei + ek +

∑
j∈T

ej

)
, ∀ i ∈ S+, k ∈ S−,∀ T ⊆ S \ {i, k}, (47c)

where ei ∈ Rm is the i-th unit vector. All nontrivial extreme points of conv(Xm+,m−)

have exactly one positive value among the variables xi, i ∈ S+, and possibly one additional

positive value among the variables xk, k ∈ S−.

Proof It suffices to prove that the extreme points of {x ∈ Rm+ : (46a); (46b)}, the

continuous projection of conv(Xm+,m−), have the desired structure. This follows because

the set only has two nontrivial constraints (46a) and (46b), and therefore when choosing

which constraints to fix at equality at an extreme point, at most two variables (satisfying

the specified conditions) will be positive. �

Corollary 1. The set conv(Xm+,m−) is full-dimensional.

Corollary 2. xi ≥ 0 and yi ≤ 1 for all i ∈ S are trivial facets of conv(Xm+,m−).

Corollary 3. The blending constraint
∑

i∈S+ qixi−
∑

k∈S− rkxk ≥ 0 is a facet of conv(Xm+,m−).

The inequalities
∑

i∈S xi ≤ 1 and xi ≤ yi for i ∈ S+ are facets of conv(Xm+,m−) when

m+ ≥ 2.
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Proof We can easily pick 2m+ 1 affinely independent extreme points for Corollary

1 and 2m such points for Corollaries 2 and 3. �

5.2.2 Facets of the Uncapacitated Single-Consumer FCTPwB Polytope

We now state and prove our main result.

Theorem 1. (Facet Class 1: Lifted Blending Facets) The inequalities

∑
i∈T

xi +
∑
k∈S−

min

{
1,
rk
rl

}
xk ≤

∑
i∈S+\T

(
qi
rl

)
xi +

∑
i∈T

yi , ∀ T ⊆ S+,∀ l ∈ S− , (48)

are valid for conv(Xm+,m−). They are facet-defining in all cases except when (a) T = ∅ and

l < m, or (b) T = S+ and l > m+ + 1.

Theorem 2. (Facet Class 2: Lifted Variable Upper Bound Facets) Let S+
j = {1, . . . , j} for

j ∈ S+ ∪ {0}, with S+
0 = ∅. Let S−l = {m+ + 1, . . . , l} for l ∈ S− ∪ {m+}, with S−m+

= ∅.

The inequalities ∑
i∈T+

rl(qi − qj)
qi

xi +
∑

k∈T−∪{l}
(qj + rk)xk ≤

∑
k∈T−∪{l}

qjyk +
∑

i∈S+
j−1\T+

(qi − qj)xi +
∑
i∈T+

rl(qi − qj)
qi

yi ,

∀ T+ ⊆ S+
j−1, ∀ T

− ⊆ S−l−1,∀ j ∈ S
+,∀ l ∈ S−

(49)

are valid for conv(Xm+,m−). If the conditions T+ = S+
j−1 and T− 6= ∅ do not hold simulta-

neously, then the inequalities (49) are also facet-defining for conv(Xm+,m−).

Before proving these theorems, we give a brief explanation about their derivation as well

as an illustrative example. Note that in Facet Class 1 when l = m and T = ∅, the constraint

becomes the original blending constraint (46a). Similarly, note that in Facet Class 2 when

j = 1, l ∈ S−, and T− = T+ = ∅, the constraint becomes a variable upper bound constraint

xl ≤ q1
q1+rl

yl on a bad supplier l ∈ S−. Wherever possible, we will use subscripts i and j

when indexing good suppliers and k and l when indexing bad suppliers.

We refer to these inequalities as lifted facets because they can be derived from lifting

blending or variable upper bound inequalities from lower-dimensional sets. Specifically,
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for Facet Class 1, if we fix T ⊆ S+ and l ∈ S−, and set xi = yi = 0,∀i ∈ T , and

xk = yk = 0,∀k ∈ S−, k 6= l, we may lift the pairs of variables (xt, yt), which were fixed at

0, by considering the lifting function associated with the blending constraint
∑

j∈S+\T qjxj−

rlxl ≥ 0, which is a facet on this restricted set. Similarly, for Facet Class 2, we fix a good

supplier j ∈ S+, a bad supplier l ∈ S−, and set xi = yi = xk = yk = 0,∀i ∈ S+
j−1, ∀k ∈ S

−
l−1.

We may then lift the pairs of variables (xt, yt), which were fixed at 0, by considering the

lifting function associated with the variable upper bound constraint xl ≤
qj

qj+rl
yl, which

is a facet on this restricted set. Moreover, it can be shown that this lifting function is

superadditive, hence, we obtain the computationally attractive property known as sequence

independent lifting [51].

Example. There are two good suppliers, S+ = {1, 2}, two bad suppliers, S− = {3, 4},

and p = (11, 7,−3,−5). The lifted blending facets are

T l

3x1 − 7x2 + 3x3 + 3x4 ≤ 3y1 {1} 3 (LB 3a)

−11x1 + 3x2 + 3x3 + 3x4 ≤ 3y2 {2} 3 (LB 3b)

x1 + x2 + x3 + x4 ≤ y1 + y2 {1, 2} 3 (LB 3c)

−11x1 − 7x2 + 3x3 + 5x4 ≤ 0 ∅ 4 (LB 4a)

5x1 − 7x2 + 3x3 + 5x4 ≤ 5y1 {1} 4 (LB 4b)

−11x1 + 5x2 + 3x3 + 5x4 ≤ 5y2 {2} 4 (LB 4c)

As described above, these facets are obtained by “turning off” all good suppliers in T and

all bad suppliers besides l, and then lifting back in the pairs (xt, yt) of variables that were

“turned off” starting from the lower-dimensional blending constraint
∑

j∈S+\T qjxj−rlxl ≥

0. Note that facet (LB 4a) is the original blending constraint. Facet (LB 3c) states that at

least one good supplier must be “turned on” if any product is sent from a supplier.
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The lifted variable upper bound facets are

T+ T− j l

14x3 ≤ 11y3 ∅ ∅ 1 3 (LVUB 13)

16x4 ≤ 11y4 ∅ ∅ 1 4 (LVUB 14)

−4x1 +10x3 ≤ 7y3 ∅ ∅ 2 3 (LVUB 23a)

12x1 +110x3 ≤ 12y1 +77y3 {1} ∅ 2 3 (LVUB 23b)

−4x1 +12x4 ≤ 7y4 ∅ ∅ 2 4 (LVUB 24a)

−4x1 +10x3 +12x4 ≤ 7y3 +7y4 ∅ {3} 2 4 (LVUB 24b)

20x1 +132x4 ≤ 20y1 +77y4 {1} ∅ 2 4 (LVUB 24c)

Note that when j = 1, the variable upper bound inequality (q1 + rl)xl ≤ q1rl, for l ∈ S−,

is already facet-defining. When j = 2 and l = 3, i.e., when supplier 1 alone is “turned off”

at the outset, there are two ways to lift in the pair (x1, y1) to obtain a facet as shown in

(LVUB 23a) and (LVUB 23b). When j = 2 and l = 4, i.e., when suppliers 1 and 3 are

“turned off” at the outset, there are three ways to lift in the pairs (x1, y1) and (x3, y3) to

obtain a facet as shown in (LVUB 24a) – (LVUB 24c).

In addition to the bound inequalities, inequalities (LB) and (LVUB), the following three

facets are needed to describe the convex hull of Xm+,m− for this example:

−110x1 + 30x2 + 30x3 + 162x4 ≤ + 30y2 + 77y4

30x1 − 42x2 + 128x3 + 30x4 ≤ 30y1 + 77y3

60x1 + 550x3 + 396x4 ≤ 60y1 + 385y3 + 231y4 .

Proof of Theorem 1: Let (x∗,y∗) ∈ Xm+,m− , T ⊆ S+, and l ∈ S−. If y∗i = 0, ∀ i ∈ T ,

then inequality (48) reduces to a weakened version (because of the min operator) of the

blending constraint (46a) under the restriction xi = yi = 0, ∀ i ∈ T . Otherwise, we have

∑
i∈T

x∗i +
∑
k∈S−

min

{
1,
rk
rl

}
x∗k ≤

∑
i∈T

x∗i +
∑
k∈S−

x∗k ≤ 1 ≤
∑
i∈T

y∗i ≤
∑

i∈S+\T

(
qi
rl

)
x∗i +

∑
i∈T

y∗i .

In all but the two exceptional cases, to prove that inequality (48) is facet-defining for a

given choice of T ⊆ S+ and l ∈ S−, let u ∈ S+ \ T and v ∈ T . One can verify that the
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following 2m− 1 points, along with the origin, are affinely independent:(
0, ei

)
, ∀ i ∈ S+ \ T (50a)(

ei, ei

)
, ∀ i ∈ T (50b)(

rl
qi + rl

ei +
qi

qi + rl
el, ei + el

)
, ∀ i ∈ S+ (50c)

(
0, ek

)
, ∀ k ∈ S− (51a)(

rk
qu + rk

eu +
qu

qu + rk
ek, eu + ek

)
, ∀ k ∈ S−, k < l (51b)(

rk
qv + rk

ev +
qv

qv + rk
ek, ev + ek

)
, ∀ k ∈ S−, k > l (51c)

Note that (50a)–(50c) contribute 2m+ points and (51a)–(51c) contribute 2m− − 1 points.

�

Proof of Theorem 2: Let (x∗,y∗) be an extreme point of conv(Xm+,m−). Let j ∈

S+, l ∈ S−, T+ ⊆ S+
j−1, and T− ⊆ S−l−1. If x∗i = 1 for some i ∈ S+ or if x∗k > 0 for some

k ∈ S− \ (T− ∪ {l}), then validity is immediate. So suppose (x∗,y∗) takes the form (47c)

for some i ∈ S+ and some k ∈ T− ∪ {l}.

Case 1: If i ≥ j (qj ≥ qi), then (qj + rk)x
∗
k = (qj + rk)

(
qi

qi+rk

)
≤ qj = qjy

∗
k.

Case 2: If i ∈ S+
j−1 \ T+, then since x∗i + x∗k = 1 and rkx

∗
k − qix∗i = 0, we obtain

(qj − qi)x∗i + (qj + rk)x
∗
k = qj(x

∗
i + x∗k) + rkx

∗
k − qix∗i = qj = qjy

∗
k .

Case 3: If i ∈ T+, then
(
rl(qi−qj)

qi

)
x∗i + (qj + rk)x

∗
k =

(
rl(qi−qj)

qi

)(
rk

qi+rk

)
+ (qj +

rk)
(

qi
qi+rk

)
≤ qj +

rl(qi−qj)
qi

= qjy
∗
k +

(
rl(qi−qj)

qi

)
y∗i , with equality holding only when k = l.

In all but the exceptional cases, to prove that inequality (49) is facet-defining for a given

choice of j ∈ S+, l ∈ S−, T+ ⊆ S−j−1, and T− ⊆ S−l−1, let u ∈ S+ \ S+
j−1 and v ∈ S+

j−1 \

T+. One can verify that the following 2m − 1 points, along with the origin, are affinely

independent: (
0, ei

)
, ∀ i ∈ (S+

j−1 \ T
+) ∪ (S+ \ S+

j−1) (52a)(
ei, ei

)
, ∀ i ∈ T+ ∪ (S+ \ S+

j−1) (52b)(
rl

qi + rl
ei +

qi
qi + rl

el, ei + el

)
, ∀ i ∈ S+

j−1 (52c)
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(
0, ek

)
, ∀ k ∈ (S−l−1 \ T

−) ∪ (S− \ S−l ) (53a)(
rk

qj + rk
ej +

qj
qj + rk

ek, ej + ek

)
, ∀ k ∈ T− ∪ {l} ∪ (S− \ S−l ) (53b)(

rk
qu + rk

eu +
qu

qu + rk
ek, eu + ek

)
, ∀ k ∈ S−l−1 \ T

− (53c)(
rk

qv + rk
ev +

qv
qv + rk

ek, ev + ek

)
, ∀ k ∈ T− (53d)

Note that (52a)–(52c) contribute 2m+ points and (53a)–(53d) contribute 2m− − 1 points.

�

5.2.3 Separation

The next proposition shows that separation of the lifted blending constraints (48) and

the lifted variable upper bound constraints (49) can be done in polynomial time, i.e., the

former can be done in O(m2) time while the latter can be done in O(m3) time.

Proposition 2. Let (x∗,y∗) be an optimal solution to the LP relaxation.

1. Fix l ∈ S−. If

ζ(l) :=
∑
k∈S−

min

{
1,
rk
rl

}
x∗k +

∑
i∈S+

((
1 +

(
qi
rl

))
x∗i − y∗i

)+

−
(
qi
rl

)
x∗i (54)

is positive, where (x)+ := max{0, x}, then the most violated lifted blending inequality

(48) for this l ∈ S− is given by the subset T := {i ∈ S+ :
((

1 +
(
qi
rl

))
x∗i − y∗i

)
> 0}.

If ζ(l) ≤ 0, ∀l ∈ S−, then there is no violated lifted blending inequality (48).

2. Fix j ∈ S+ and l ∈ S−. If

ψ(j, l) := −
j−1∑
i=1

(qi − qj)
rl

x∗i +

j−1∑
i=1

(
(qi − qj)

qi
(x∗i − y∗i ) +

(qi − qj)
rl

x∗i

)+

+
l∑

k=m++1

(
(qj + rk)

rl
x∗k −

qj
rl
y∗k

)+
(55)

is positive, then the most violated lifted variable upper bound inequality (49) for this

j ∈ S+ and l ∈ S− is given by the subsets

T+ :=

{
i ∈ {1, . . . , j − 1} :

(
(qi − qj)

qi
(x∗i − y∗i ) +

(qi − qj)
rl

x∗i

)
> 0

}
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and

T− :=

{
k ∈ {m+ + 1, . . . , l} :

(
(qj + rk)

rl
x∗k −

qj
rl
y∗k

)
> 0

}
.

If ψ(j, l) ≤ 0,∀j ∈ S+,∀l ∈ S−, then there is no violated lifted variable upper bound

inequality (49).

Proof. 1. For each bad supplier l ∈ S−, one can find the most violated blending

inequality (48), or determine that no such violated inequality exists, by checking if

ζ(l) = κ+ max
T⊆S+

∑
i∈T

(x∗i − y∗i )−
∑

i∈S+\T

(
qi
rl

)
x∗i

is positive, where κ =
∑

k∈S− min
{

1, rkrl

}
x∗k is a constant independent of the subset T .

Notice that the maximization is trivial: if x∗i − y∗i > −
(
qi
rl

)
x∗i , set i ∈ T ; otherwise,

i ∈ S+ \ T . Consequently, if ζ(l), as defined in (54), is positive, set T = {i ∈ S+ :((
1 +

(
qi
rl

))
x∗i − y∗i

)
> 0}. Since ζ(l) can be computed by summing over all good suppliers

j ∈ S+, of which there are at most m, and this operation must be done for each bad supplier

l ∈ S−, of which there are also at most m, we can determine the most violated lifted blending

cuts (48) in O(m2) time.

2. For each good supplier j ∈ S+ and each bad supplier l ∈ S−, one can find the most

violated variable upper bound inequality (49), or determine that no such violated inequality

exists, by checking if

ψ(j, l) = max
{T+⊆S+

j−1,T
−⊆S−l−1}

∑
i∈T+

(qi − qj)
qi

(x∗i − y∗i ) +
∑

k∈T−∪{l}

(
(qj + rk)

rl
x∗k −

qj
rl
y∗k

)

−
∑

i∈S+
j−1\T+

(qi − qj)
rl

x∗i

is positive. As above, this maximization problem is trivial: if
(
rl(qi−qj)

qi

)
(x∗i − y∗i ) > −(qi−

qj)x
∗
i for i ∈ S+

j−1, set i ∈ T+; otherwise, set i ∈ S+
j−1\T+. Similarly, if (qj+rk)x

∗
k−qjy∗k > 0

for k ∈ S−l−1, set k ∈ T−; otherwise, set k ∈ S−l−1 \T
−. Hence, if ψ(j, l), as defined in (55), is

positive, set T+ and T− accordingly. In the worst case, it requires O(m3) time to find the

most violated lifted variable upper bound facets over all (j, l) pairs. This follows because

looping over all (j, l) pairs, for j ∈ S+ and l ∈ S−, requires O(m2) time, and for a given

(j, l) pair, the above summation requires O(m) time. �
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5.2.4 Relation to Single-Node Flow Covers

We close this section by comparing the constraint set Xm+,m− with that of the single-

node flow model since the latter has been studied extensively in the literature [50,72]. The

constraint set for a single-node flow model is given by

F :=

(x,y) ∈ Rm+ × {0, 1}m :
∑
j∈N+

xj −
∑
j∈N−

xj ≤ b, xj ≤ ajyj , ∀ j ∈ N

 ,

where the set N of arcs has been partitioned into incoming arcs N− and outgoing arcs

N+, each arc j has a fixed capacity aj ∈ R+ if opened, and b ∈ R is the exogeneous

supply/demand at this node. There are two ways to relate the set Xm+,m− to F .

• Interpretation 1: After setting aj = 1,∀j ∈ S, b = 1, and N− = ∅, one can treat the

demand constraint
∑

i∈S xi ≤ 1 as the constraint
∑

j∈N+ xj−
∑

j∈N− xj ≤ b in F and

intersect F with a single homogeneous linear inequality
∑

i∈S+ qixi−
∑

k∈S− rkxk ≥ 0

to obtain the set Xm+,m− as it was originally defined in (46).

• Interpretation 2: After setting aj = |pj |,∀j ∈ S, and b = 0, and introducing an

auxiliary decision variable zj = |pj |xj , ∀j ∈ S, one can rewrite
∑

j∈S pjxj ≥ 0 as∑
j∈S− zj−

∑
j∈S+ zj ≤ b. Thus, S− and S+ play the role of N+ and N−, respectively,

in F . In addition, one must intersect these constraints with the demand constraint,

which becomes
∑

i∈S
zj
|pj | ≤ 1, to obtain the set

Z :=

(z,y) ∈ Rm+ × {0, 1}m :
∑
j∈S−

zj −
∑
j∈S+

zj ≤ 0,
∑
j∈S

zj
|pj |
≤ 1, zj ≤ |pj |yj ,∀ j ∈ S

 .

Since Xm+,m− and Z are subsets of F , valid cuts generated by well known procedures for

the single-node flow covers, e.g., lifted flow cover inequalities, are valid for Xm+,m− and Z.

However, it is easy to verify that our two facet classes cannot be obtained as flow cover

inequalities from Xm+,m− or Z when the additional side constraint is omitted.

5.3 Special Cases: One Good or One Bad Supplier

In this section, we consider two special cases of the FCTPwB in which S+ or S− is a

singleton. In both cases, we show that the continuous relaxation of Xm+,m− along with
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Facet Classes 1 and 2 yield the convex hull of Xm+,m− . These results lend theoretical

support to our claim that inclusion of our two facet classes lead to strong formulations of

the FCTPwB. Note that, as shown in the example from Section 5.2.2, when |S+| > 1 and

|S−| > 1, the continuous relaxation of the original formulation constraints and the two facet

classes are not enough to describe conv(Xm+,m−).

5.3.1 One Good Supplier and Many Bad Suppliers

First consider the simplified single-consumer model in which there is a single good

supplier and one or more bad suppliers, i.e., S+ = {1} and S− = {2, . . . ,m}. In this case,

the lifted blending and variable upper bound facets for X1,m−1 become:

∑
i∈S

xi ≤ y1 (56a)

xk ≤
q1

q1 + rk
yk,∀ k ∈ S−. (56b)

Constraint (56a) states that if any product is sent, then the arc originating from the lone

good supplier must be “on” (otherwise, the blending constraint cannot be met). Similarly,

the maximum amount of product that can be sent from a bad supplier k ∈ S− is bounded

above by the ratio q1
q1+rk

.

Theorem 3. [A Polyhedral Description of conv(X1,m−1)] Let P := {(x,y) ∈ Rm+ × [0, 1]m :

(46a), (56a), (56b)}. Then P = conv(X1,m−1).

Proof Let (x∗,y∗) ∈ P with some fractional y∗i ∈ (0, 1). We show that (x∗,y∗)

cannot be an extreme point of P (see, e.g., Approach 2 on p.145 of [108]). Without loss of

generality, we assume that the pi’s have been normalized so that q1 = 1. The proof is split

into four cases:

Case 1: Suppose i ∈ S− and x∗i <
y∗i
ri+1 . Then for some ε > 0 we have (x∗,y∗±εei) ∈ P .

Therefore (x∗,y∗) is not extreme.

Case 2: Suppose
∑

k∈S x
∗
k = α < 1. Then the points

x1
k =

x∗k
α
, y1

k = min

{
1,
y∗k
α

}
,∀ k ∈ S, and x2

k = 0, y2
k = max

{
0,
y∗k − α
1− α

}
, ∀ k ∈ S,
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satisfy (x1,y1), (x2,y2) ∈ P and yield (x∗,y∗) = α(x1,y1) + (1 − α)(x2,y2). Thus, i 6= 1

and we must have
∑

k∈S x
∗
k = 1 at any nontrivial extreme point of P .

Case 3: Suppose
∑

k∈S x
∗
k = 1 (which implies y∗1 = 1), x∗i =

y∗i
ri+1 and x∗1−

∑
k∈S− rkx

∗
k >

0. The point (x1,y1) with

x1
1 =

ri +
∑

k 6=1,i(rk − ri)x∗k
ri + 1

, x1
i =

1−
∑

k 6=1,i(rk + 1)x∗k
ri + 1

,

y1
1 = 1, y1

i = 1−
∑
k 6=1,i

(rk + 1)x∗k, (x1
k, y

1
k) = (x∗k, y

∗
k),∀ k 6= 1, i

and (x2,y2) with

x2
1 = 1−

∑
k 6=1,i

x∗k, x2
i = 0, y2

1 = 1, y2
i = 0, (x2

k, y
2
k) = (x∗k, y

∗
k),∀ k 6= 1, i

belong to P and there is some λ ∈ (0, 1) with (x∗,y∗) = λ(x1,y1) + (1− λ)(x2,y2).

Case 4: Suppose
∑

k∈S x
∗
k = 1, x∗i =

y∗i
ri+1 and x∗1 −

∑
k∈S− rkx

∗
k = 0. Then y∗i +∑

k∈S−\{i}(rk + 1)x∗k = 1, which implies that 0 ≤ x∗l <
1

rl+1 , ∀l ∈ S
− \ {i}, and that there

exists some k ∈ S− \ {i} such that x∗k > 0. Since 0 < x∗k <
1

rk+1 , y∗k = 1 (otherwise, we are

in Case 1). Define the direction vector d ∈ Rm as

d1 =

(
ri + 1

rk + 1
− 1

)
, di = 1, dk = − ri + 1

rk + 1
, dj = 0,∀j /∈ {1, i, k},

and note that
∑

j∈S dj = 0 and d1−
∑

l∈S− rldl = 0. For ε > 0, define y1
i = (ri + 1)(x∗i + ε),

y2
i = (ri + 1)(x∗i − ε), and let x1 = x∗ + εd, x2 = x∗ − εd, y1

j = y2
j = y∗j ,∀ j 6= i. Then

if ε is small enough, (x1,y1), (x2,y2) ∈ P , and (x∗,y∗) is their midpoint, so it cannot be

extreme. �

5.3.2 Many Good Suppliers and One Bad Supplier

A polyhedral description of conv(Xm−1,1) is more complex than conv(X1,m−1), in which

there were only a polynomial number of facets. When S+ = {1, . . . ,m− 1} and S− = {m},
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the lifted blending and variable upper bound facets for Xm−1,1 become:

∑
i∈T

xi + xm ≤
∑

i∈S+\T

(
qi
rm

)
xi +

∑
i∈T

yi , ∀ T ⊆ S+ (57a)

∑
i∈T

rm(qi − qj)
qi

xi + (qj + rm)xm ≤ qjym +
∑

i∈S+
j−1\T

(qi − qj)xi +
∑
i∈T

rm(qi − qj)
qi

yi ,

∀ T ⊆ S+
j−1 , ∀ j ∈ S

+

(57b)

Theorem 4. [A Polyhedral Description of conv(Xm−1,1)] Let P := {(x,y) ∈ Rm+ × [0, 1]m :

xi ≤ yi, ∀i ∈ S+, (46b), (57a), (57b)}. Then P = conv(Xm−1,1).

The next two propositions are used in the proof of Theorem 4. Let αi = rm
qi+rm

,∀ i ∈ S+.

Proposition 3. The extreme points of conv(Xm−1,1) that lie in a lifted blending facet (57a)

defined by the subset T ⊆ S+ are: (
0,
∑
u∈U

eu

)
, ∀ U ⊆ S \ T (58a)(

ei, ei +
∑
u∈U

eu

)
, ∀ i ∈ T, ∀ U ⊆ S+ \ T (58b)(

αiei + (1− αi)em, ei + em +
∑
u∈U

eu

)
, ∀ i ∈ S+,∀ U ⊆ S+ \ T , (58c)

Proof By inspection. Substitute each extreme point of conv(Xm−1,1) into the lifted

blending facet defined by the subset T ⊆ S+ and verify that the facet is only satisfied at

equality by the above extreme points. �

Proposition 4. The extreme points of conv(Xm−1,1) that lie in a lifted variable upper bound

facet (57b) defined by j ∈ S+ and the subset T ⊆ Sj−1 are:(
0,
∑
u∈U

eu

)
, ∀ U ⊆ S+ \ T (59a)(

ei, ei +
∑
u∈U

eu

)
, ∀ i ∈ (S+ \ Sj−1) ∪ T, ∀ U ⊆ S+ \ (T ∪ {i})

(59b)(
αiei + (1− αi)em, ei + em +

∑
u∈U

eu

)
, ∀ i ∈ Sj ,∀ U ⊆ S+ \ (T ∪ {i}), (59c)
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Proof By inspection. Substitute each extreme point of conv(Xm−1,1) into the lifted

variable upper bound facet defined by j ∈ S+ and the subset T ⊆ Sj−1 and verify that the

facet is only satisfied at equality by the above extreme points. �

Proof of Theorem 4. We show that for any cost vector (c, f) ∈ Rm×m, (c, f) 6= (0,0),

the set M(c, f) of optimal solutions to the problem max{cTx − fTy : (x,y) ∈ Xm−1,1}

coincides with at least one of the hyperplanes associated with an inequality defining P

(see, e.g., Approach 6 on p.146 of [108]). Since the inequalities defining P are all facets of

conv(Xm−1,1), P is a minimal polyhedral representation of conv(Xm−1,1). The proof, which

is outlined in Figure 22, proceeds by partitioning the space of cost vectors and by gradually

eliminating cost vectors from consideration. Initially, cost vectors that lead to optimal

solutions that lie on one of the trivial or formulation facets are considered. Finally, cost

vectors that lead to the case in which we are indifferent between sending product exclusively

from a single good supplier and from a good supplier and the bad supplier are considered.

The following notation will be used:

• αi = rm
qi+rm

, (1− αi) = qi
qi+rm

, ∀ i ∈ S+

• gi = αici + (1− αi)cm − (fi + fm), ∀ i ∈ S+

• CF = arg max{ci − fi : (x,y) ∈ Xm−1,1}

• G = arg max{gi : (x,y) ∈ Xm−1,1}

Note that CF and G are sets, not indices. Here ci − fi denotes the cost of sending all

supply exclusively from good supplier i ∈ S+, whereas gi denotes the cost of sending a

nontrivial convex combination of supply from supplier i and the lone bad supplier m so

that
∑

i∈S xi = 1 and
∑

i∈S pixi = 0. We say that gi is the cost associated with a “blended”

solution. Each bullet below corresponds to a branch in the tree presented in Figure 22.

• If fi < 0 for some i ∈ S, then yi = 1 in every optimal solution, i.e., M(c, f) = {(x,y) ∈

Xm−1,1 : yi = 1}. Thus, we may assume that fi ≥ 0,∀i ∈ S.

• If cm < 0, then xm = 0 in every optimal solution, i.e., M(c, f) = {(x,y) : xm = 0}.

Thus, we may assume that cm ≥ 0.
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• If cm = 0, then

– if ci − fi < 0 for some i ∈ S+, then xm = 0 in every optimal solution. Thus, we

may assume that ci − fi ≥ 0, ∀i ∈ S+.

– if ci − fi > 0 for some i ∈ S+, then xi = 0 in every optimal solution. Thus, we

may assume that ci − fi = 0, ∀i ∈ S+.

– if ci − fi = 0,∀i ∈ S+, then xi = yi in every optimal solution.

Thus, we may assume that cm > 0. In the remainder of the proof, we omit the

statement “Thus, we may assume ...” to refer to the complement case as the details

are shown in the tree structure of Figure 22.

• If gj < 0, ∀j ∈ G, then xm = 0 in every optimal solution.

• If ci − fi > gj , ∀i ∈ CF, ∀j ∈ G, then
∑

i∈S xi = 1 and xm = 0 in every optimal

solution.

• If ci − fi < 0,∀i ∈ CF , then a “blended” solution is always optimal in which case∑
i∈S pixi = 0 in every optimal solution.

• Similarly, if ci−fi < gj ,∀i ∈ CF, ∀j ∈ G, then a “blended” solution is always optimal

in which case
∑

i∈S pixi = 0 in every optimal solution.

• If ci − fi > 0,∀i ∈ CF , then a solution in which all product is sent exclusively from a

good supplier is optimal in which case
∑

i∈S xi = 1 in every optimal solution.

• If i /∈ CF ∪G, then xi = 0 in every optimal solution.

Finally, we arrive at the last black box in Figure 22 in which we only have to consider cost

vectors that satisfy c ∈ Rm−1 ×R++, f ∈ Rm+ , 0 = ci − fi = gj , ∀i ∈ CF, ∀j ∈ G;CF ∪G =

S+. Let F0 = {i ∈ S+ : fi = 0} and F+ = {i ∈ S+ : fi > 0}. We now consider two cases,

fm = 0 and fm > 0, and show that the former leads to extreme points that lie on a lifted

blending facet and the latter to extreme points on a lifted variable upper bound facet.

Suppose fm = 0. Set T = CF and note that fi > 0,∀i ∈ T , i.e., T ⊆ F+. This follows

since for all k ∈ CF ∩ G, 0 = ck − fk = gk implies ck = fk = cm(> 0). Similarly, for all
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i ∈ CF \G, we have ci = fi ≥ 0 by assumption. Suppose, to the arrive at a contradiction,

that fi = 0. Since 0 > gi = αici + (1−αi)cm and (1−αi)cm > 0 by assumption, it must be

the case that ci < 0, which is a contradiction. Then, in accordance with Proposition 3, the

following extreme points lie on the lifted blending facet defined by T :(
0,
∑
k∈U

ek

)
, ∀ U ⊆ F0 (60a)(

ei, ei +
∑
k∈U

ek

)
, ∀ i ∈ CF, ∀ U ⊆ S+ \ F+ (60b)(

αiei + (1− αi)em, ei + em +
∑
j∈U

ej

)
, ∀ i ∈ G, ∀ U ⊆ S+ \ F+. (60c)

Suppose fm > 0. Set j = max{t ∈ G} and T = CF ∩Sj−1 so that CF ⊆ (S+ \Sj−1)∪T

and G ⊆ Sj . Then, in accordance with Proposition 4, the following extreme points lie on

the lifted variable upper bound facet defined by j and T ⊆ Sj−1:(
0,
∑
k∈U

ek

)
, ∀ U ⊆ F0 (61a)(

ei, ei +
∑
k∈U

ek

)
, ∀ i ∈ CF, ∀ U ⊆ S+ \ (T ∪ {i} ∪ F+) (61b)(

αiei + (1− αi)em, ei + em +
∑
k∈U

ek

)
, ∀ i ∈ G, ∀ U ⊆ S+ \ (T ∪ {i} ∪ F+). (61c)

The only fact that we need to justify is that F0 ⊆ S+ \ T , or, equivalently, T ⊆ F+.

Suppose, to arrive at a contradiction, that this is not the case, i.e., that T 6= ∅ and ∃i ∈ T

such that fi = 0. Then, since i ∈ CF and fi = 0, we have ci − fi = ci = fi = 0 and

0 ≥ gi = αici+ (1−αi)cm−fi−fm = (1−αi)cm−fm, which implies that fm ≥ (1−αi)cm.

Since j /∈ T by construction and 1 − α1 > · · · > 1 − αm−1 by assumption, we see that

fm ≥ (1− αi)cm > (1− αj)cm, or

(1− αj)cm − fm < 0 . (62)

In addition, we have cj − fj ≤ 0, which means that fj ≥ cj and

αjcj − fj ≤ 0 . (63)

It follows from inequalities (62) and (63) that

0 = gj = αjcj − fj︸ ︷︷ ︸
≤0

+ (1− αj)cm − fm︸ ︷︷ ︸
<0

< 0 , (64)
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which is a contradiction. �

c ∈ Rm, f ∈ Rm

yj = 1

∃j ∈ S : fj < 0

c ∈ Rm, f ∈ Rm+

xm = 0

cm < 0

c ∈ Rm−1 × R+, f ∈ Rm+

c ∈ Rm−1 × {0}, f ∈ Rm+

xm = 0

ci − fi > 0

xi = 0

ci − fi < 0

∃i ∈ S+ : ci − fi 6= 0

xi = yi

ci − fi = 0,∀i ∈ S+

cm = 0

c ∈ Rm−1 × R++, f ∈ Rm+

xm = 0

gj < 0,∀j ∈ G

c ∈ Rm−1 × R++, f ∈
Rm+ , gj ≥ 0, ∀j ∈ G

∑
i∈S xi = 1, xm = 0

ci − fi > gj ,∀i ∈ CF, ∀j ∈ G
c ∈ Rm−1 × R++, f ∈
Rm+ , ci − fi ≤ gj ≥
0,∀i ∈ CF, ∀j ∈ G

∑
i∈S pixi = 0

ci − fi < 0,∀i ∈ CF
c ∈ Rm−1 × R++, f ∈
Rm+ , 0 ≤ ci − fi ≤
gj , ∀i ∈ CF, ∀j ∈ G

∑
i∈S pixi = 0

ci − fi < gj ,∀i ∈ CF, ∀j ∈ G
c ∈ Rm−1 × R++, f ∈
Rm+ , 0 ≤ ci − fi =
gj , ∀i ∈ CF, ∀j ∈ G

∑
i∈S xi = 1

ci − fi > 0, ∀i ∈ CF
c ∈ Rm−1 × R++, f ∈
Rm+ , 0 = ci − fi =
gj , ∀i ∈ CF, ∀j ∈ G

xi = 0

i /∈ CF ∪G c ∈ Rm−1 × R++, f ∈
Rm+ , 0 = ci − fi =
gj , ∀i ∈ CF, ∀j ∈
G;CF ∪G = S+

Facet Class 1

fm = 0

Facet Class 2

fm > 0

ci − fi ≤ gj ,∀i ∈ CF, ∀j ∈ G

gj ≥ 0,∀j ∈ G

cm > 0

cm ≥ 0

fj ≥ 0, ∀j ∈ S

Figure 22: Proof outline of Theorem 4
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5.4 Computational Results

In this section, computational results are presented to illustrate the effectiveness of

our two facet classes. In our first experiment, we investigate the reduction in the root

node integrality gap due to our blending facets on uncapacitated single-consumer FCTPwB

instances. Since our facets do not give the convex hull of Xm+,m− when m+ > 1 and

m− > 1, this experiment provides empirical evidence concerning the strength of our facets

with respect to the set Xm+,m− . In our second experiment, we solve capacitated multi-

consumer FCTPwB instances to provable optimality and show that integrating our cuts in

a branch-and-cut algorithm yields significant reductions in the overall solution time and the

number of nodes explored in the search tree.

All experiments have the following characteristics: All computations were carried out

on a Linux machine with kernel 2.6.18 running on a 64-bit x86 processor equipped with

two Intel Xeon E5520 chips, which run at 2.27 GHz, and 32GB of RAM. The LP and

MIP solvers of Gurobi 3.0 were used [52]. For every set of parameters, 100 instances

were randomly generated. All cuts are generated via the separation routine described in

Proposition 2. Specifically, for each good and each bad supplier, the most violated blending

cuts are generated and are only added if the violation is at least ε := 0.0001. Note that

when multiple consumers are present, the number and set of good and bad suppliers differ

for each consumer. Separation is performed for each consumer.

5.4.1 Uncapacitated Single-Consumer FCTPwB

In our first experiment, we present results for instances of the uncapacitated single-

consumer FCTPwB. In light of Theorems 3 and 4, all instances have at least two good and

bad suppliers so that the convex hull is not already known. Since our facets, along with the

original formulation constraints, do not yield the convex hull of Xm+,m− , our main curiosity

in this experiment is to obtain empirical evidence concerning how effective our cuts are at

tightening the LP relaxation. Specifically, we aim to answer the following question: What is

the reduction in the integrality gap due to our two facet classes and how many of these cuts

are necessary to achieve this gap reduction? The integrality gap is defined as (z∗−zLP )/z∗,
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where z∗ is the true optimal objective function value (computed in advance) and zLP is the

objective function value of the LP relaxation.

To answer this question, we could compare the integrality gap of the LP relaxation with

that of a cutting plane algorithm in which only blending cuts are separated. However, in

addition to this comparison, we may also want to know the value of our blending cuts when

they are embedded in a MIP solver in which standard MIP cuts are used. To this end, we

compare the integrality gap at the root node for four different options: the LP relaxation

(denoted by ‘LP’ in the tables), Gurobi on its own, i.e., without blending cuts, (‘GRB’),

a user-implemented cutting plane algorithm (‘User’) in which only our blending cuts are

added to the model until the LP relaxation ceases to improve by at least ε or no violated

cuts are found, and Gurobi with both standard MIP cuts enabled and blending cuts added

through a callback (‘GRB+User’). We also experimented with turning off all default Gurobi

cuts and having Gurobi use only our cuts through a callback. However, this option was

almost always worse than default Gurobi and was always worse than our cutting plane

implementation. Note that in this first experiment MIP preprocessing (‘presolve’) is turned

off to understand how our blending cuts improve the quality of the original formulation.

A particular instance is generated as follows. First, we select the number of good and

bad suppliers m+ and m−, respectively. Fixed costs are set such that fi = m− i+1,∀i ∈ S.

Unit cost are set such that ci = m + 1, ∀i ∈ S+, and ck = m + 1 + ∆bad,∀k ∈ S−, where

∆bad ∈ Z+ is a parameter representing an increase in revenue (i.e., an incentive) for using

bad suppliers. It is important to note that without an appreciable incentive for using bad

suppliers, the optimal solution is trivial: send everything from a single good supplier. In

this case, our blending cuts will not help. Nominal purity levels are generated as p̃i ∼

Normal(0, 1), ∀i ∈ S. To have exactly m+ good and m− bad suppliers, respectively, we sort

the p̃i’s in decreasing order, re-index so that p̃1 > · · · > p̃m and set p̃min = (p̃m+ + p̃m++1)/2.

Finally, we set pi = p̃i − p̃min,∀i ∈ S.

The results are shown in Tables 17 and 18. The heading ‘# Good’ refers to the number

of good suppliers. The next four columns indicate the average integrality gap (%) at the

root node of the branch-and-bound tree for the four different options discussed above.

143



To reiterate, this gap is exact since it is relative to the true optimal MIP solution. The

remaining columns show cut-specific information. ‘Cuts (User)’ and ‘Cuts (GRB+User)’

refer to cut information associated with the ‘User’ and ‘GRB+User’ option, respectively.

‘LB’ and ‘LVUB’ denote the average number of lifted blending cuts (48) and lifted variable

upper bound cuts (49) that were generated through separation, respectively. ‘Rounds’ refers

to the average number of separation rounds, i.e., the average number of times an attempt

to separate the current optimal solution to the LP relaxation with a blending cut.

The results in Tables 17 and 18 suggest that our blending cuts are effective at reducing

the integrality gap of the model. In fact, the smallest gap is often achieved when only

blending cuts are added. These results provide compelling empirical evidence that the

subset of facets of Xm+,m− identified in Theorems 1 and 2 work well by themselves. We

also see that when the number of suppliers is larger and when the incentive for using bad

suppliers (∆bad) increases, our cuts are more valuable, i.e., the difference between the

integrality gap of ‘GRB’ and ‘User’ and between ‘GRB’ and ‘GRB+User’ becomes more

pronounced.

Given that blending cuts alone are so effective, one might assume that coupling blending

cuts with standard MIP cuts added by Gurobi would further reduce the integrality gap.

The results indicate that this is not the case when we simply add blending cuts as user cuts

through a callback in Gurobi. It appears that with default settings Gurobi prefers not to

generate cuts as aggressively as our implemented cutting plane method. Two possible expla-

nations for this behavior are: (i) if the absolute value of the ratio (violation of cut)/(norm

of cut) does not exceed Gurobi’s default tolerance, the cut may be rejected, and (ii) if two

cuts are close to parallel, one of them may be rejected (Z. Gu, personal communication,

August 13, 2010). At any rate, these results also serve as a useful reminder: Care has to

be taken when setting up computational experiments and with interpreting computational

results. If we had just used a callback implementation, we would have drawn completely

different conclusions about the value of our blending cuts!
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Table 17: Root information for the uncapacitated single-consumer FCTPwB with 20 sup-
pliers

Data Root Gap (%) Cuts (User) Cuts (GRB+User)
∆bad # Good LP GRB User GRB+User LB LVUB Rounds LB LVUB Rounds

5 5 1.19 0.00 0.00 0.00 0 6 1 0 4 1
5 10 1.45 0.00 0.01 0.00 3 49 3 1 17 1
5 15 3.63 0.08 0.32 0.19 38 208 15 7 226 7
15 5 16.72 0.42 0.12 1.27 33 86 8 51 56 5
15 10 29.67 13.93 5.51 14.44 308 652 43 102 801 11
15 15 17.47 2.66 2.20 7.21 315 300 69 58 712 12
25 5 24.52 2.28 0.50 4.97 110 196 14 119 438 9
25 10 22.59 9.92 1.09 8.57 301 439 39 108 874 11
25 15 16.71 2.70 1.08 7.13 281 155 59 56 716 12
50 5 9.29 0.66 0.01 0.87 73 51 6 79 301 5
50 10 13.51 4.19 0.15 2.66 221 154 26 96 742 11
50 15 13.04 4.82 0.32 4.63 227 79 47 58 715 13
100 5 4.20 0.22 0.00 0.23 49 24 3 56 215 3
100 10 7.49 0.68 0.04 0.35 142 68 15 69 536 8
100 15 8.97 2.84 0.13 2.08 175 63 36 55 642 12

Table 18: Root information for the uncapacitated single-consumer FCTPwB with 40 sup-
pliers

Data Root Gap (%) Cuts (User) Cuts (GRB+User)
∆bad # Good LP GRB User GRB+User LB LVUB Rounds LB LVUB Rounds

5 10 0.25 0.00 0.00 0.00 0 15 1 0 8 0
5 20 0.22 0.00 0.00 0.00 0 78 2 0 20 0
5 30 0.39 0.00 0.00 0.00 1 248 3 0 464 7
15 10 3.99 0.15 0.05 0.31 36 247 9 20 41 2
15 20 3.53 0.28 0.18 0.53 62 1214 16 29 246 3
15 30 12.74 7.83 5.98 8.68 997 1065 105 100 2471 10
25 10 19.04 4.23 0.30 5.76 111 744 17 135 138 5
25 20 24.65 12.73 8.96 12.46 1300 1939 74 283 4422 14
25 30 14.13 8.71 3.91 8.87 1295 1556 136 161 4346 16
50 10 23.89 14.94 1.75 12.10 1068 1610 51 304 2415 10
50 20 16.13 11.46 2.77 7.83 1741 2059 99 261 4583 13
50 30 12.69 7.53 2.31 6.86 1111 772 114 136 3738 14
100 10 9.60 4.91 0.05 5.10 597 487 24 219 1940 7
100 20 9.89 6.06 0.77 4.03 1439 999 78 255 4320 14
100 30 10.19 6.32 0.69 5.56 1050 357 106 134 3610 13

5.4.2 Capacitated Multi-Consumer FCTPwB

In our next experiment, we show the strength of our two cut classes for capacitated

multi-consumer FCTPwB instances described by Formulation (45). In this capacitated

setting, our inequalities remain valid, but may no longer be facet-defining. The set-up for

this experiment resembles what was done above, except in addition to investigating the root
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Table 19: FCTPwB Data Sets

Data Set # Consumers # Good Suppliers per Consumer
1 10 15,14,13,12,11,10,9,8,7,6
2 17 18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2

relaxation, we also observe that our cuts are effective at solving these instances to provable

optimality. In some cases, embedding blending cuts within Gurobi reduces solution time

by two orders of magnitude.

A particular instance is generated as follows. There arem = 20 suppliers and the number

of consumers varies depending on data set used. Table 19 specifies the number of consumers

as well as the number of good suppliers for each consumer. For example, in Data Set 1, the

first consumer has 15 good suppliers; the last consumer has 6. As above, nominal purity

levels are generated as Normal(0,1) random variables and purity differences are computed

so that the appropriate number of good suppliers aligns with what is stated in Table 19. For

each arc (i, j) ∈ A, we set fij = m−i−(j/m); cij = m+1 if pij > 0 and cij = m+1+i+∆bad

if pij < 0. We set li = lj = 0, ui = n, and uj = 1,∀i ∈ S, j ∈ C. Finally, we distinguish

between weakly and highly capacitated instances in which arc capacities uij are randomly

generated as Uniform(0.80,0.95) and Uniform(0.25,0.50), respectively. In the tables, weakly

and highly capacitated instances are denoted with a ‘W’ and an ‘H,’ respectively.

The results are shown in Tables 20–23. Tables 20 and 21 present information related

to the root node of the search tree while Tables 22 and 23 focus on information related to

solving the instances to provable optimality. ‘Cap’ refers to the capacity of the instance.

Note that MIP preprocessing (‘presolve’) is turned on, just as a user would do. Tables 20

and 21 report the same information reported in the first set of experiments. In Tables 22

and 23, under the ‘# Cuts’ heading, ‘LB’ and ‘LVUB’ refer to the number of lifted blending

and lifted variable upper bound cuts that were ever generated. ‘# Nodes’ refers to the

number of nodes that were explored in the search tree.

After solving the capacitated multi-consumer FCTPwB model to provable optimality

and averaging the results, the following observations are apparent. No blending (user) cuts
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were ever generated after the root node. This does not necessarily mean that there are no

violated blending cuts at nodes other than the root node. However, with default parameter

settings Gurobi chooses never to execute our cut callback beyond the root node and therefore

never attempts to generate blending cuts at nodes other than the root node. It should also

be noted that default Gurobi cuts were almost never generated beyond the root node. In

every case, fewer nodes in the branch-and-cut tree were explored when blending cuts were

generated alongside default Gurobi cuts. This reduction in the number of nodes explored

often led to an order of magnitude improvement in the overall solution time.

In contrast to what was observed in our first experiment, Gurobi often performed many

more rounds of separation at the root node than our implemented cutting plane method

in this second experiment. One possible explanation for this is that when arc capacities

are introduced, our inequalities are no longer facet defining and are unable to reduce the

integrality gap as much per iteration as in our first experiment. Meanwhile, with the

introduction of arc capacities and multiple consumers, Gurobi is able to generate more of

its own inequalities (30-40% of which are Gomory mixed-integer cuts and 25-35% of which

are flow cover cuts). Note that arc capacities lead to multiple single-node flow cover sets

and, therefore, greater potential for flow cover inequalities to be separated. This leads to

more opportunities for us to generate more (weaker) inequalities, which in turn leads to

more opportunities for Gurobi to generate more inequalities, and so forth. Thus we end up

with many more separation rounds and slow convergence.

In preliminary experimentation, we also learned that when the parameter ∆bad was

large, it was important to place an upper bound on the number of each type of blending cut

that can be generated or on the number of separation rounds. Without such a constraint,

an excessive number of blending cuts could be generated at the root node, bogging down the

computations at subsequent iterations, ultimately resulting in longer solution times than

default Gurobi. To avoid this, we imposed an upper bound of 5000 rounds of separation for

all of the instances solved in this second experiment. As a final comment, in general, weakly

capacitated instances are much easier to solve. Since our cuts were developed for an unca-

pacitated model, it seems natural that they should perform better on weakly capacitated
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instances.

Table 20: Root information for FCTPwB Data Set 1

Data Root Gap (%) # Cuts (User) # Cuts (GRB+User)
Cap ∆bad LP GRB User GRB+User LB LVUB Rounds LB LVUB Rounds
W 5 40.55 31.65 15.24 9.40 1219 4380 50 31342 178102 2128
W 15 35.37 27.30 14.11 9.62 856 3062 27 2860 10049 143
W 25 29.69 23.80 12.76 8.10 339 1714 3 1522 6783 27
W 50 22.60 16.47 10.99 5.93 327 1773 3 1696 7787 46
W 100 16.93 12.01 9.79 4.75 316 1712 3 2897 9681 174
H 5 43.60 20.89 23.71 13.65 91 57 12 574 466 466
H 15 36.13 23.19 20.67 12.31 212 48 25 1169 302 417
H 25 30.15 21.08 18.35 11.23 311 64 34 1796 376 1159
H 50 24.35 20.37 14.25 11.86 431 82 47 742 159 106
H 100 15.59 11.65 9.11 6.81 415 74 38 675 128 65

Table 21: Root information for FCTPwB Data Set 2

Data Root Gap (%) # Cuts (User) # Cuts (GRB+User)
Cap ∆bad LP GRB User GRB+User LB LVUB Rounds LB LVUB Rounds
W 5 34.39 20.23 13.03 7.97 1473 4924 40 65557 281830 3665
W 15 30.49 18.59 12.38 7.78 629 2608 6 1717 7037 19
W 25 27.32 17.76 11.82 7.76 449 2035 3 1833 8021 20
W 50 21.36 13.50 10.37 5.77 447 2170 3 1760 8063 20
W 100 16.56 9.50 8.86 3.71 395 1879 3 2084 7346 51
H 5 24.54 7.37 13.99 4.79 240 69 30 1354 594 798
H 15 27.94 10.03 12.79 5.30 330 87 39 7061 1717 3646
H 25 26.22 11.71 12.80 5.84 450 98 53 6795 4927 2829
H 50 22.37 11.75 11.85 6.29 679 118 76 26381 3914 4568
H 100 15.06 7.96 9.29 6.71 684 118 68 12042 2878 3158

Table 22: Full solve information for FCTPwB Data Set 1

Data Time (sec) # Cuts # Nodes
Cap ∆bad GRB GRB+User LB LVUB GRB GRB+User
W 5 271.06 7.42 31342 178102 2018646 3204
W 15 217.10 0.91 2860 10049 1538488 159
W 25 59.97 0.47 1522 6783 443672 17
W 50 19.40 0.55 1696 7787 114445 37
W 100 59.42 0.80 2897 9681 300811 167
H 5 0.40 0.61 574 466 1433 603
H 15 2.41 0.65 1169 302 18523 469
H 25 28.48 1.55 1796 376 249101 1485
H 50 43.49 0.26 742 159 317443 95
H 100 29.95 0.21 675 128 218113 53

148



Table 23: Full solve information for FCTPwB Data Set 2

Data Time (sec) # Cuts # Nodes
Cap ∆bad GRB GRB+User LB LVUB GRB GRB+User
W 5 931.71 12.45 65557 281830 4176033 5627
W 15 221.64 0.61 1717 7037 962686 8
W 25 123.12 0.56 1833 8021 465171 8
W 50 63.83 0.49 1760 8063 230501 8
W 100 11.18 0.60 2084 7346 42606 38
H 5 2.11 1.57 1354 594 10382 1089
H 15 5.90 6.58 7061 1717 27501 5500
H 25 169.14 46.41 6795 4927 843040 148599
H 50 265.60 159.21 26381 3914 1028405 444680
H 100 273.77 129.75 12042 2878 1076130 372344

5.5 Future Research

We would like to extend our two facet classes in two ways. First, it would be interesting

to determine similar cuts for the capacitated FCTPwB. We attempted to do this for the

case of a single good supplier and many bad suppliers. However, even for this simple set,

the form of the cuts became complicated. Second, it would be interesting to construct facet

classes when the right-hand-side b, which in our model is set to 0, of the blending constraint∑
i∈S pixi ≥ b takes nonzero values. Obtaining facets for this set, i.e., X := {(x,y) ∈

Rm+ × {0, 1}m :
∑

i∈S pixi ≥ b,
∑

i∈S xi ≤ 1, xi ≤ yi,∀i ∈ S}, could have greater appeal to

the MIP community as they could be used to solve general MIP instances in which this

structure appears. Our initial efforts into the question suggest that when b > 0 Facet Class

2 inequalities remain valid and facet-defining. However, we also found that “new” facets

surface. We believe that lifting arguments will help to resolve this issue.

Although not presented here, we have also tested our blending inequalities when there

are multiple blending constraints present. Specifically, suppose that the single blending

constraint
∑

i∈S pixi ≥ 0 is replaced by
∑

i∈S p
a
i xi ≥ 0,∀a ∈ A, where A is a set of attributes

and pai is the purity difference for supplier i with respect to attribute a ∈ A. We have found

that applying our cuts for each attribute independently can reduce the root integrality gap

by 80% on instances similar to those considered in Section 5.4.1. It would be interesting to

explore how our cuts perform on multi-period models as well as multi-period models with
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multiple attributes.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

6.1 Conclusions

The thrust of this thesis is the development of effective solution methods for large-scale

inventory routing problems arising in a maritime setting. With a monopoly on moving

large volumes of goods between continents [28], the maritime transportation industry is

poised for new technology and innovations to improve efficiency. The models and methods

introduced here have the potential to improve the decision support systems responsible for

the movement of many valuable goods that are shipped by sea.

In Chapter 2, we introduce a core mixed-integer programming model for a particular

class of MIRPs known as MIRPs with inventory tracking at every port. By and large, the

literature on maritime routing and scheduling has been concerned with new applications

with specific constraints and modeling features closely tied to each application. While these

papers are important contributions as they expose the growing interest in the domain, it is

often difficult to determine if the associated algorithmic techniques apply more generally.

Our first contribution is to isolate a core substructure found in numerous applications and

to describe ways of approaching this substructure. A comprehensive survey of this class of

MIRPs is included along with a unified discussion of common enhancements. Finally, we

present the first publicly available library of benchmark instances for this class of MIRPs.

We hope that this library helps spur interest and development in this research domain.

Chapter 3 develops a two-stage decomposition method for solving the class of MIRPs

presented in Chapter 2. There is a fundamental difference in the philosophy of our de-

composition with that of traditional approaches for maritime (inventory and cargo) routing

problems. Traditional decomposition methods use column generation strategies to decom-

pose these problems into a master problem and multiple subproblems. Each subproblem

can be intrepreted as the problem a vessel manager solves to decide if there exists a more
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profitable route for his vessel. The master problem is the problem a system manager solves

to assign vessels to routes and ensure that all other constraints at ports are satified. Our

approach more closely resembles Benders decomposition and interprets each subproblem

as the problem a regional manager solves to route vessels through his region and ensure

that all port-specific constraints are satisfied. Meanwhile, our master problem represents

the problem a system manager solves to determine how vessels are routed from region to

region. Empirically, our algorithm yields high-quality solutions and good bounds to large-

scale instances.

Our contributions in Chapter 4 take advantage of the recent successes of approximate

dynamic programming (ADP) in dynamic fleet management problems to quickly gener-

ate good solutions to maritime inventory routing planning problems with a long horizon.

ADP has emerged as a powerful framework for solving stochastic dynamic problems in the

transportation community. Borrowing from several scientific disciplines, including artifi-

cial intelligence, mathematical programming, and simulation, it transforms a multi-stage

problem into a sequence of smaller problems. That is, it uses a form of time (or stage) de-

composition. Using suitably chosen value function approximations, we solve a subproblem

in each time period to decide how available vessels should be routed, and, as a consequence,

how inventory should be distributed. For large instances with many ports and dozens of

vessels, our ADP framework produces good solutions much more quickly than a commercial

solver solving a single problem that involves all time periods in the planning horizon.

Chapter 5 addresses a problem that arises in maritime inventory routing, but is applica-

ble in an even broader context. Fixed-charge transportation problems involve the routing

of goods through a distribution network and require that a fixed charge is incurred when

a particular arc is used. In some practical applications, it is also desirable to mix or blend

these goods to lower costs. In this chapter, we present the first polyhedral analysis of the

fixed-charge transportation problem with product blending (FCTPwB). This analysis in-

cludes two new families of facet-defining valid inequalities which fully exploit the presence of

a linear blending requirement. We prove that in two special cases these facet classes, along

with the continuous relaxation of the original formulation constraints, yield the convex hull
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of the feasible region. These results lend theoretical support to our claim that our two facet

classes are strong. Computational results illustrate the effectiveness of our cuts at reducing

the integrality gap and solution time on instances when they are no longer facet-defining.

6.2 Future Research Directions

We end with a discussion of several avenues for further research.

6.2.1 Arc-based vs. path-based formulations

As mentioned in Chapters 2 and 3, a useful contribution would be to provide guidelines

as to when path-based formulations of a MIRP are superior to arc-based models. For

complicated MIRPs having multiple split pickups and split deliveries, we believe that arc-

based formulations are preferred. This is based on several observations. First, MIP-based

local search heuristics appear to be better suited for making small local changes, e.g.,

modifying part of a vessel’s path/route, as opposed to making sweeping changes to the

current solution. Second, path-based formulation that use column generation often have

to generate many columns. On the other hand, MIRPs with time windows (i.e., inventory

is not tracked at every port; instead, minimum quantities must be loaded or discharged

in a set of given time windows) are more amenable to path-based methods. It would be

instructive to know precisely why one approach is favorable in certain settings.

6.2.2 Integration of more supply chain components

Supply chain networks involve more than simply routing vehicles from supply points

to consumption points. From initial procurement to final delivery of goods to customers,

there are many decisions to be made and these decisions are often intertwined. Although

we have focused exclusively on one component of the supply chain, moving products from

production regions to regions of high demand, it is interesting to consider a larger integrated

network in which inventory routing problems are solved to answer more strategic questions

related to fleet size and new business opportunities. Motivating factors are also discussed

in [8] and [47].
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6.2.3 Uncertainty and robust solutions

Just as with other modes of transport, the maritime sector is rife with uncertain data

and decisions that need to be made without perfect knowledge. With this reality, one

could argue that the prevailing emphasis on deterministic problems within the maritime

transportation community is misaligned. The case studies described in Chapter 2 indicate

that there is value in solving deterministic problems. Likewise, it is typical to first study

deterministic versions of a problem before addressing stochastic variants. Nevertheless,

building decision support tools that generate robust solutions is always of great practical

interest.

Within the maritime sector, the primary sources of uncertainty include: demand fluctu-

ations due to seasonality and variability in climate; weather delays during travel; mechanical

delays at ports; strikes at ports; spot charter rates; spot market demands and prices. How-

ever, the most prominent sources of uncertainty depend on the application. If delays due

to strikes and weather are most important, then one may seek to find certain types of

solutions, or policies, that give greater flexibility in the long run. For example, the air-

line industry typically assigns aircraft to fly simple cyclic routes, e.g., Boston-Los Angeles

and Los Angeles-Boston, as opposed to complicated multi-leg routes, in order to allow for

smoother recoveries after a disruption. It is not clear that dedicating certain vessels to

cyclic routes leads to good solutions or is even necessary in a maritime setting.

Several attempts have already been made, e.g., [24,30,59,68], but researchers in this area

have really only scratched the surface. Ultimately, there needs to be a way of producing

solutions that balance risk and reward. One approach is to generate many near-optimal

solutions so that a decision-maker has a menu of options from which to choose. Another

approach, akin to what is done in portfolio optimization, is to explicitly model risk and

reward so that an efficiency frontier can be created and a solution fitting the decision-

maker’s risk profile can be selected.
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6.2.4 Approximate dynamic programming for maritime problems

Our application of ADP was in the spirit of a fast heuristic as it was used to generate

good solutions quickly without any regard for a bound. However, another reason we chose to

employ an ADP approach is due to the fact that the ADP framework can easily be extended

to allow for uncertainty in the data. This ease of transitioning from a deterministic setting to

a stochastic one is typically absent when working with MIP models. It would be interesting

to explore some of the themes mentioned above on uncertainty using the ADP approach.

A second research stream is to pursue parallelization. As recognized in [99, 101], when

regional decisions can be made independently, the time t subproblem can be decomposed by

region and all regional problems can be solved in parallel. Alternatively, one could attempt

to run many ADP solvers in parallel with different value function approximations and

different updating procedures to converge to a good approximation as quickly as possible.

A third open question is: Why do piecewise linear concave value functions approxi-

mations lead to good solutions? Practically, concavity leads to models that are can be

solved with relative ease. Empirically, numerous studies have found that these approxima-

tions work well. Theoretically, however, it is still not clear why piecewise linear concave

functions perform so well. Studying the true dynamic programming value function of the

dynamic resource allocation problem may help to address this question.

It would also be interesting to investigate the benefit of incorporating vessel states into

the value function approximation. Our value function approximations essentially “throw

away” information about the state of each vessel and only keep track of future inventories at

ports. It may be possible to generate superior solutions by valuing vessel states in addition

to inventory states.

Finally, a more general and lofty research question concerns the development of ADP as

a modeling and solving framework. A drawback of ADP is the lack of commercial and non-

commercial software associated with it. Today, the mixed integer programming community

is fraught with software for modeling and solving MIP models. A layman with access to

Microsoft Excel could potentially solve a small MIP simply by entering several lines of data
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into a spreadsheet. No such software is available for ADP methods. This means that special-

purpose code must be written and debugged, leading to a potentially large investment of

time. Moreover, each tweak to the model may lead to an algorithmic change. Worse yet,

even when the algorithm is working properly, this does not mean that the algorithm is

working well. Leaders in the field [78] admit that fine-tuning an ADP algorithm can be

a frustrating process. Many of these difficulties need to be overcome before ADP gains

widespread acceptance as a tool for practitioners.
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